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Abstract 
 
 
 This study compares contemporary design optimization algorithms for use in missile 
design applications. The engineering design problem for this study is the development of a 
desired single stage solid propellant missile system. The methods are used independently to 
match a prescribed set of parameters defining the missile?s geometry and propellant 
characteristics. For this development, three different design optimization techniques are 
considered: a real-coded genetic algorithm (GA), a binary GA, and a Repulsive Particle Swarm 
Optimizer (RPSO). Since there is not nearly as much known about how the RPSO operates 
compared to the GA?s, an extensive effort was invested in the study of how changing RPSO 
controlling parameters would affect its operation. Also, a new hybrid optimizer has been 
developed for this study involving a separate Particle Swarm imbedded within the standard 
RPSO. The algorithms are compared based on their speed and effectiveness in solving the design 
problem, with the figure of merit being a factor based on the desired performance goals for the 
missile.  
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1 INTRODUCTION 
Engineering design problems can generally be reduced to a set of crucial design variables 
that ultimately determine the effectiveness of a design. It is not a trivial matter to determine what 
values of these design parameters are required to match performance predicted by the objective 
function defining the effectiveness of a complex system. Manually varying all of these 
parameters can be an intractable task. Alternatively, optimization algorithms can be very 
effective in addressing a large class of these complex design problems. Using various 
mathematical schemas, optimization algorithms search the design space far more effectively and 
efficiently for solutions which meet the required design goals. The development of optimizers 
has become an ongoing area of research as their need and use has become more widespread. As 
optimizers are developed, it is important that they be tested on various problems and compared to 
other optimizers that have already been tested extensively and proven their merit. That is the 
motivation for this work: improving, developing, and testing optimizers for use in engineering 
applications. 
In order to effectively evaluate optimization algorithms, a somewhat difficult, yet 
ultimately achievable goal must be set. The goal must not be too simple so as to allow any basic 
algorithm to reach a solution in a relatively short period of time, and yet not so complex as to 
require extended computational times or clusters of processors in order to evaluate the objective 
function. The design of a single stage solid propellant missile by manipulating key parameters 
required for full system performance modeling satisfies these requirements and is of current 
interest1.   
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The modern collection of optimizers has grown to include algorithms based on 
evolutionary and social behavior models. Genetic Algorithms (GA?s) have been used 
successfully in aerospace engineering applications for the optimization of spacecraft controls2,3, 
turbines4, helicopter controls5, flight trajectories6, wings and airfoils7,8,  missiles 1,9,10,11, 
rockets12, propellers13 and inlets14 . Particle Swarm Optimizers (PSO?s) have also been used for a 
variety of applications and research areas, including some engineering applications15. In some 
cases, real-coded GA?s have been shown to outperform their binary coded counterparts16,17,18. 
These comparisons and subsequent results are the key motivators for the current effort.  
Increasing computing power has led to the development of increasingly more complex 
optimizers that are able to proficiently solve increasingly more complex design problems.   
Genetic Algorithm?s were originally developed from theories outlined by Professor John 
Holland. In his book ?Adaptation in Natural and Artificial Systems?19, Holland prescribed 
schemes for using population based adaptive optimizers. The key principle driving Holland?s 
methodology is survival of the fittest. This is achieved by first creating a population of members 
representing candidate solutions. The performances of these members are then analyzed and 
compared to one another. The weaker (worse) solutions are killed off and the stronger (better) 
ones are left to ?reproduce? and ?mutate? to produce superior offspring. Subsequent populations 
are created using a variety of strategies, including the tournament style of evolution.  
The Particle Swarm Optimization method is based on the application of the philosophy of 
bounded rationality and decentralized decision-making20. PSO works on the principles of social 
behavior observed in natural groups such as a swarm of birds or a school of fish21. The 
understanding of how members in these groups move and communicate with each other is 
essential to the operation of this optimizer. The members, or particles, in these swarms 
3 
 
communicate with each other in order to see which ones have better solutions. Those with worse 
solutions will attempt to ?move? towards those better solutions. Throughout this process, each 
particle will continue to search within its own area for a better solution. 
The search for more efficient optimizers for use in aerospace and many other applications 
continues. Prolonged run times and the inability of some optimizers to sufficiently converge have 
led to the use of a diversified group of optimization algorithms. The application of multiple 
optimizers may also result in the development of completely different but nearly equally optimal 
solutions. 
 This study compares results for various optimization algorithms used for designing solid 
motor rockets. The study involves the use of Genetic Algorithms, a Repulsive Particle Swarm 
Optimizer, and a newly developed staged Repulsive Particle Swarm Optimizer. The algorithms 
are compared on their overall optimization result and on the speed of convergence to this result. 
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2 GENETIC ALGORITHM METHODOLOGY 
There are two Genetic Algorithms used in this study that the Particle Swarm will be 
compared against. These two GA?s, a real-coded GA and the binary GA IMPROVE?22, were 
used in a previous study23 that will provide the foundation for the optimizer development done in 
this body of work. The GA?s will allow for a direct comparison to be drawn between their 
solutions and the Particle Swarm results. 
Both the real-coded GA and the binary GA IMPROVE? function on the same basic 
premise. The evolution of the populations is driven by tournaments between the existing 
members. Each discrete population is composed of information sets called individuals, with each 
individual possessing a fitness and a chromosome.  These individuals are representatives of 
potential solutions to the current problem.  The chromosomes are composed of genes which are 
the GA variables specified in an input file. These GA?s use the tournament style selection 
process by selecting certain members, or parents, according to their fitness and using them to 
create offspring for the next population.   
The real-coded GA compares randomly selected pairs of parents in the current population 
with the member having the better fitness surviving for use in reproduction.  Two of the 
surviving parents are then mated using the crossover and mutation routines that mix and 
transform their genes to create new offspring23.  
The crossover and mutation processes ultimately determine how the parameter evolution 
process occurs. The crossover routines determine how individual genes are selected from the 
parents and mixed to create the offspring. Multiple crossover routines may be performed 
including Uniform, Single-point, and Blend X. Uniform crossover works by randomly selecting 
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a gene, or design parameter value, from either parent 1 or parent 2. Therefore, the offspring may 
be composed of any combination of the parents? genes. Single-point crossover uses a random 
number (Rnd#) between 0 and 1 to define what percentage of the first parent?s genes will be 
given to the offspring. For example, if there are 10 design parameters and the random number is 
chosen as 0.4, then genes 1-4 of the first parent and genes 6-10 of the second parent will belong 
to the offspring. The genes selected from the first parent always starts at parameter #1 and 
continues until the random percentage of parameters is satisfied, at which point, the rest of the 
parameters are chosen from the second parent. Blend X24 operates by multiplying the absolute 
value of the difference between the parameters of parent 1 and parent 2 by a random number 
(Rnd#) between 0 and 1 and adding it to the smaller of the two values. That is, if the parameter 
values of parents 1 and 2 are 10.0 and 5.0, respectively, then the offspring?s parameter value will 
be (10.0 ? 5.0)*Rnd# + 5.0. Unlike the Uniform and Single-point routines, Blend X produces 
offspring completely unique from their parents. 
Because none of these crossover routines can create an offspring with parameter values 
that are outside the range of its parents?, genetic mutation is necessary for solution diversity. 
Thus, a Gaussian mutation routine that is controlled by two factors, mutation rate and mutation 
amount, is used to transform the offspring members after they are created. The number of genes 
mutated by the routine is determined by the mutation rate, ?. This term can be set between 0.0 
and 1.0, with 1.0 resulting in a mutation of every gene. The mutation amount, ?, controls how 
much each gene is mutated and usually ranges from 0.005 (very little mutation) to 0.5 (high 
mutation). To fully mutate the offspring?s genes, a Gaussian distributed random number with a 
zero mean and unit variance is used in conjunction with the value of ? as shown below. 
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For i = 1 to number of genes: 
Offspring(i) =? ?[xmax(i) ? xmin(i)]* gaussian _ random_ number + Offspring(i) (1) 
xmax(i) and xmin(i) represent the maximum and minimum values for the gene variables 
specified by the user on input. If the mutation of any of the genes results in a value that falls 
below the specified minimum or above the specified maximum, then that value is automatically 
set to that minimum or maximum. 
 The binary GA uses a generational approach, while the real-coded GA uses a steady state 
operational mode. The differentiating characteristic for these two modes is the number of 
members from a generation which must be evaluated for performance.  The binary GA evaluates 
all of the members from the current population and determines their fitness. Each member of the 
population is then replaced by the tournament system through the crossover and mutation 
routines. The objective function is then used to evaluate all of the new members and the entire 
process is repeated until the maximum number of generations is reached.  
By operating in steady state, the real-coded GA is only required to replace one member of 
the population through the tournament system and crossover and mutation routines once the 
initial population is evaluated. The objective function is used to evaluate only the new member, 
which is then used to replace the worst performer of the previous generation. This process is 
repeated until the maximum number of iterations is reached. The new member immediately 
enters the genetic pool, resulting in an immediate move toward the optimal solution. This may 
result in very fast and accurate convergence for single goal problems25 but may suffer from a 
lack of diversity since the steady state operation does not allow for as many random guesses as 
the generational approach. The real-coded GA must rely more heavily on the mutation and 
crossover routines, which was why it was essential to include the Blend X option.  
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3 REPULSIVE PARTICLE SWARM METHODOLOGY 
 The Repulsive Particle Swarm Optimizer (RPSO) developed by Mishra20 has been 
modified for use in this undertaking. Members of the RPSO mimic the social behavior of a 
swarm of individuals. The individual particles are composed of the variables specified in the 
code input file. The individuals exist in a multidimensional space, each acting as a particle with a 
position and a velocity. The individual particles travel through the solution space all the while 
remembering their overall best position. The swarm members relay information about desirable 
positions to each other and modify their own positions and velocities accordingly. The swarm 
members can communicate by either doing ?swarm best?, in which the best position ever seen by 
any one member is known to all of the other members or by doing ?local bests?, in which the 
best position seen by a particle in a specific neighborhood is known to the members of that 
neighborhood. The following equations show how the particle positions and velocities are 
updated with each iteration.  
For i = 1 to number of iterations: 
? ? ? ?igiiiii xxrcxxrcvv ?????? ?? 22111 ?     (2) 
11 ?? ?? iii vxx       (3) 
The individual particles have position, x, and velocity, v. The inertial constant is represented by 
?. Successful choices for ? tend to be slightly less than unity. The constants c1 and c2 control 
how much the particles will be aimed towards the good positions. Both usually have values 
around unity. r1 and r2 are random numbers ranging from 0.0 to 1.0. The overall best position 
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that a particle has seen is represented by   and the global best seen by the swarm is represented 
by   . If local bests are used,    is replaced by   .  
In this study, a variant of the general PSO known as the Repulsive Particle Swarm 
(RPSO) is used. This method tends to be more effective in finding the global optimum in a 
complex solution space. However, the RPSO may take longer to find solutions to certain 
problems. The previous equations for particle position and velocity are modified slightly. 
For i = 1 to number of iterations: 
? ? ? ? zrxxrxxrvv ihiiiii 3211 ?? ?????? ???????    (4) 
11 ?? ?? iii vxx       (5) 
As before, r1, r2, and r3 are random number between 0.0 and 1.0. In this case, the inertial 
weight, ?, will range from 0.01 to 0.7. The position of a randomly chosen other particle is 
represented by   , and z is a randomly chosen velocity vector. ?, ?, and ? are all constants. In 
instances when the routine gets stuck in local optimum, a chaotic perturbation may be introduced 
to both the position and velocity of some particles. 
The RPSO used in this effort has been modified from Mishra?s RPSO to allow the 
particles to have a wider local search ability. Each particle travels around in its immediate 
surroundings searching for a better solution. A parameter called nstep controls the local area in 
which the particle is allowed to search. This parameter makes the particles act in a way that more 
resembles the real life behavior of swarms.  
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               Fully Connected                        Random                  Ring 
                  (Global Best)                             (Local Best) 
 
The particles are allowed to learn from the other members of the swarm. In the extreme 
case, every particle will learn from the overall best member. This, however, is not always 
practical or realistic. Hence, in the practical algorithm, a particle is only allowed to learn from a 
select few of its neighbors. The communication structure that the particles exist in, or the way in 
which the particles learn from their neighbors, is known as the topology. Topologies used here 
include random, ring and random, and ring. Figure 1 contains simple illustrations of how the 
particles might be connected through the various topologies in the solution space.  
 
Since a particle searches around within its own immediate area by itself, it may not learn much 
from interacting with only its closest neighbors. However, this RPSO may also be set so that a 
particle can learn from a predetermined number of randomly chosen members of the swarm. This 
method is seen to more closely reflect human social learning patterns. In this fashion, desirable 
characteristics filter through the population because there is a path to all of the population from 
any given member. 
Further changes were made to the RPSO in order for it to work effectively with the solid 
motor missile systems code. Originally, the swarm was initialized with completely random 
positions and velocities. This caused problems with the missile code due to the fact that the 
Figure 1. Particle Swarm Solution Space Topology26 
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problem is substantially constrained. Many of the initial members would be created with non-
viable solutions (e.g. motor geometry conflicts, insufficient thrust for liftoff), which severely 
limited the swarms initial search ability and consequently, its overall search ability. To 
compensate for this, the RPSO was modified so that the initial population is created using only 
viable members. The optimizer runs through a prescribed number of iterations creating random 
parameter values for each member. Once the member has been evaluated, if it is determined to 
have a viable solution, it is kept and placed in the initial population. If not, the member is 
discarded and the iterations continue until the population is filled with the prescribed number of 
members or the number of iterations is completed. If the population is unable to be completely 
filled with viable solutions after the set number of iterations, then the rest of the members are  
created using random values, viable or not. 
The implicit searching method of the particles and their somewhat chaotic movement 
within the solution space also caused problems for the constraints on the design space. The 
inherent nature of the RPSO causes many of the particles to ?fly? outside of the prescribed 
parameter bounds. In some cases, particles will completely diverge from the swarm and the 
defined boundary of the solution space. Therefore, extensive effort was invested in ?fencing in? 
the particles and preventing them from going outside of the parameter bounds. If the calculated 
particle velocity causes a parameter value to drop below the allowable minimum or go above 
allowable the maximum, a new velocity is calculated by multiplying the minimum or maximum 
allowable velocity, respectively, by a random number between 0.0 or 1.0. That is, the parameter 
value will be allowed to move in the same direction, but by only a fraction of the total distance to 
the boundary value. 
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One additional change was made to the existing RPSO to make it a more effective search 
tool. Previously, the particles would search in their local space at set intervals looking for better 
values. It was determined that it would be more reasonable, and eventually, more effective if the 
particles would search at random intervals while performing the nstep function in their local 
space. The source code for the modified RPSO can be found in Appendix D. 
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4 SOLID MOTOR SOUNDING ROCKET SYSTEM DESCRIPTIONS 
 A previous study was conducted in which the three optimizers were compared on their 
effectiveness to match a desired thrust versus time curve for a solid rocket motor27. The initial 
part of this study goes one step further and compares the optimizers based on their ability to 
design a desired sounding rocket with specific performance goals. The code creates preliminary 
design level simulations with complete geometry and burn characteristics for solid rocket 
motors. The code also calculates the weight of the structure used to encase the motor including 
the case, end cap, joints, and conical nozzle. The weight of the structure is then added to the 
propellant weight, igniter weight, and payload to determine the total weight of the system. The 
code uses a simple set of dynamic equations, including a set of empirical equations for drag, to 
fly the rocket on a vertical trajectory over the length of the motor burn28. When considering an 
object moving in the vertical plane, the sum of forces equations reduce to 
                   (6) 
where T is thrust, D is drag, W is weight, g is gravity, and      is the incremental change in 
velocity per change in unit time. By using small time steps, dt, the thrust can be considered to be 
approximately constant over the time step. The drag is defined as 
                (7) 
with the drag coefficient, CD, calculated in terms of the current Mach number of the object. The 
weight is taken as the average weight over the time increment and is calculated as follows. 
                         (8) 
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Ab, ?p, and r are all characteristics of the solid propellant, while Wo is the initial weight of the 
rocket. By letting 
             (9) 
and 
                  (10) 
the sum of forces can now be written as  
 
     
  
            (11) 
When the above equation is integrated over the interval [Vo, Vf] for the case of T >     , the 
equation becomes 
         
       
          
            
          
                  (12) 
and is further simplified by letting 
              
         
                
         
     (13) 
From these equations, the final velocity can be calculated as follows. 
             
         
     (14) 
Once the final velocity is calculated, the average velocity can be determined and then multiplied 
by the time increment to determine the change in altitude over the time step.  
For the case of T <     , C1 is negative, and the force equation then becomes 
   
   
 
    
    
       (15) 
where 
              (16) 
When integrated over the interval [Vo, Vf], the equation becomes 
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        (17) 
The final velocity is now defined as  
               
         
     (18) 
and the change in altitude of the vehicle calculated as stated previously. 
The code is composed of 11 critical design variables that describe the geometry of the 
motor and nozzle29. The various optimizers are used to evaluate these solid motor parameters in 
order to match desired performance goals for the missile. The optimizers can be used to match 
any combination of three separate goals: burnout altitude, burnout velocity, and takeoff weight. 
The first task of the program is to read in an input file containing mathematical constants, 
grain parameters, and goal parameters. Once the initial files are read, the optimizer?s input file 
containing the variables to be optimized is read. For each new member of a population in the 
case of the GA?s, or for each particle move in the case of the RPSO, a new missile grain design 
is constructed using data from the initial constants input file and parameters generated by the 
optimizer. The program then designs and burns the motor using a series of subroutines that 
determine geometry and burn characteristics. The program then uses the propellant parameters to 
determine the thrust of the motor as a function of time at sea level conditions. The specified grain 
geometry governs the part of the thrust equation that is independent of atmospheric pressure. The 
thrust and the calculated weights are then used with the dynamic equations to determine the 
overall performance of the missile. Figure 2 contains the general flow chart for the sounding 
rocket code. 
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Begin Code 
Setup 
Mass 
Properties 
Propulsion Performance 
Read Optimizer Input File 
Yes 
Optimizer 
(Particle Swarm or GA) 
Has Max Generations 
been reached? 
Fuels 
Read in Initial Constants  
No 
Figure 2. Sounding Rocket Design Code Program Flow 
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There are 11 design variables that the sounding rocket code uses to produce a physical 
model of the system. The variables are described in Table 1.   
Figure 3 has been adapted from Reference 30 to illustrate how these variables are used by 
the optimizer in conjunction with the initial constants to generate the solid propellant grain. For 
the solid motor system, circularly perforated grains, star grains and wagon wheel grains are 
possible with this geometric combination.    
 
 
 
 
 
Table 1. Solid Motor Variable Definitions 
Description Variables 
Propellant fuel type kfuel 
Propellant outer radius ratio Rpvar=(Rp+f)/Rbody 
Propellant inner radius ratio Rivar=Ri/Rp 
Number of star points Nsp 
Fillet radius ratio fvar=f/Rp 
Epsilon - star width eps 
Star point angle ptang 
Grain length gl 
Outer radius of grain Rbi 
Nozzle Throat Diameter diath 
Nozzle Expansion Ratio  ratio 
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Figure 3. Solid Propellant Grain Cross-Section Schematic 
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5 PARTICLE SWARM INPUT PARAMETER TESTING 
5.1 Particle Swarm Control Parameter Optimization 
 With the previous particle swarm optimization studies, there were no real guidelines 
regarding what the values of the input parameters controlling the optimizer should be. For the 
Repulsive Particle Swarm, this includes values for population size, neighborhood size, nstep, ?, 
?, ?, and ?. For the optimization study focused around matching thrust versus time curves, 
arbitrary values were chosen for ?, ?, ?, and ?, while a limited amount of effort was put forth to 
find values for population size, neighborhood size, and nstep that seemed to produce the most 
efficient optimization results.  
 In order to fully evaluate the optimization potential of the Repulsive Particle Swarm 
Optimizer, it was necessary to study the RPSO?s controlling parameters. It was not immediately 
clear what effect changing these parameters would have on the overall behavior of the optimizer, 
so a parametric study was performed using varying values of the particle velocity control 
parameters ?, ?, ?, and ?. A variable matrix was set up using these four parameters in which they 
were all allowed to vary between nine different values, thus creating a matrix of size    or 6561 
total combinations. The allowable values of ?, ?, and ? were set to 0.05, 0.125, 0.25, 0.375, 0.50, 
0.625, 0.75, 0.875, and 0.95, while the allowable values for ? were 0.02, 0.105, 0.19, 0.275, 
0.36, 0.445, 0.53, 0.615, and 0.70. These quantities approximate an even distribution across the 
total range of allowable values for the parameters. 
 For the input parameter sets to be accurately compared, a penalty function had to be 
introduced into the optimizer routine. The intrinsic properties of the particle swarm cause many 
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of the particles to tend to fly outside of the parameter bounds defined by the problem. When this 
happens, the particle is artificially reined in by the program and allowed to only move a 
randomly selected distance within the parameter bounds. Since certain combinations of the input 
parameters ?, ?, ?, and ? may tend to cause more particles to try to escape the bounds of the 
program, these sets may benefit purely on the basis of the random placement of the particles 
from the boundary control system. To prevent this, when a particle attempts to overstep the 
bounds of the program, it is still moved to a random place within the parameter bounds, but it is 
assessed a penalty in the form of a very high fitness value and not allowed to search locally after 
it has been moved. 
 For these RPSO tests, the solid motor sounding rocket code was used to carry a payload 
of 70lb to a burnout altitude of 50,000ft and a burnout velocity of 1,000ft/sec with a minimum 
total takeoff weight. Each test run was allowed to perform 250,000 function evaluations. The 
sounding rocket code was used for this study because it is complex enough to fully test the 
optimizer?s ability, yet simple enough to provide solvable problems that did not require extended 
run times that would make it impractical for the number of runs needed to evaluate the input 
parameters. The fitness for each of the optimizer runs was calculated as follows: 
                                                                                      (19) 
The results of the RPSO input parameter grid search are shown in Figure 4.  
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The matrix of variable parameter inputs for the RPSO produced a wide range of final fitness 
values for the optimization goal. Interestingly, the majority of the input sets produced fitness 
answers that fell below the red line, which represents the fitness achieved from using the original 
values of ?, ?, ?, and ? used in the prior study. It appears that there is a negative trend between 
the fitness values and the increasing run number. This might directly reflect the trend of 
increasing the first term of the parameter matrix, ?. The best, or lowest, fitness value came from 
run number 5639. The values of the input variables and resulting fitness for the best performer of 
the grid search and the original set are shown in Table 2. 
 
 
Figure 4. RPSO Sounding Rocket Parameter Testing Results 
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Table 2. Sounding Rocket RPSO Input Parameter Optimization Results 
 Original Values New Best Values 
? 0.25 0.875 
? 0.25 0.75 
? 0.50 0.625 
? 0.25 0.36 
Fitness 9578 2300 
 
 
 
 
 
 
 
 
All of the parameter values for the best performer of the grid search are different from those of 
the original settings. More specifically, the new values place a higher importance on ?, or the 
best the particle has ever seen. The optimizer also performed better by increasing the effect of ?, 
or the best value any neighbor particle has seen. The term ?, which adds more randomization into 
the particle movement, proved to work better with a higher value and ?, a repulsive term, 
seemed to work better with a slightly larger value. With the new values for the particle velocity 
parameters, the optimizer was able to decrease the previous fitness value by over 75%. This 
represents a significant improvement in fitness value for this goal set and hopefully, overall 
optimizer effectiveness. 
 Since the optimizer performed better with higher values for each of the four particle 
velocity parameters, it was deemed important to see what effect changing the values of the 
neighborhood sample size, nn, and the local search parameter, nstep, would have on the RPSO 
performance. With the total population containing 30 particles, nn and nstep were allowed to 
vary in increments of 5 from 5 to 30 and 5 to 15, respectively. Once again, all test runs were to 
perform 250,000 function evaluations. Table 3 contains the resulting input matrix for the values 
of nn and nstep and the corresponding fitnesses returned from the sounding rocket program.  
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Table 3. Secondary RPSO Input Parameter Optimization Results 
               nstep 
      nn 5 10 15 
5 6707.40 7870.98 6351.36 
10 2300.14 8852.32 6928.61 
15 7402.22 6132.84 7586.63 
20 9179.19 5913.00 7228.87 
25 6704.24 5002.58 6505.95 
30 8999.98 7734.87 6525.35 
 
 
 
 
 
 
 
 
 
The best fitness resulted from using an nstep of 5 and an nn of 10, which happened to be 
the default values used during the previous studies. The next closest fitness value was over twice 
as large, however. Interestingly, having a value of 5 for nstep generally produced worse fitness 
values than for nstep equal to 10 or 15, except when paired with the value of 10 for nn. 
Conversely, there was no value of nn that generally produced either a better or worse fitness for 
all values of nstep. These characteristics might have resulted from having already optimized the 
values of ?, ?, ?, and ? with this pairing of nstep and nn as part of the input settings, or this 
pairing might actually be the best overall combination for the sounding rocket program. To fully 
address this question, further testing is required in which a complete input parameter matrix is 
examined with all possible combinations of ?, ?, ?, ?, nstep, and nn. Using the parameter values 
in this study, that would require 118,098 total optimizer runs, which would be extremely time 
consuming and not entirely practical. A more sensible approach would be to use another 
optimizer, either one of the GA?s or a gradient optimizer such as the Pattern Search, to 
manipulate all of the RPSO control parameters in order to obtain the set that most efficiently uses 
the optimization algorithm.  
23 
 
5.2 Sounding Rocket Optimizer Comparison 
Even though a significant improvement was made in the overall performance of the 
RPSO in the context of the sounding rocket problem, it does not necessarily mean that the RPSO 
is an effective optimizer. In order to fully evaluate its efficiency, it must be compared to the 
binary and the real-coded Genetic Algorithms, which are well established optimizers for this 
class of problems. Parameter tests were not performed on the two GA?s in this study. Parameters 
that have been found to be successful in previous studies were used in these tests and held 
constant throughout. These parameters can be seen in Appendix A for the binary GA and 
Appendix B for the real-coded GA. Figure 5 shows a comparison of the convergence histories 
for the RPSO with its original input parameters, the RPSO with its newly optimized input 
parameters, and both GA?s for the same three goal sounding rocket problem.  
 
 
Figure 5. Sounding Rocket 3 Goal Convergence History 
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It is obvious that both of the GA?s completely outperformed the RPSO with the binary GA being 
the top performer. Not only did the GA?s develop solutions with much better fitness values, but 
they were also able to achieve this with a relatively small number of objective function calls. 
Although the improved RPSO surpasses the original RPSO very quickly, it does not make a 
significant improvement in fitness value until after around 200,000 function evaluations, at 
which point the fitness improves by over 75%. If allowed to run a bit longer, the RPSO might 
make another significant step towards an optimal solution that would rival those of the GA?s, but 
this only shows how much less efficient it is for this particular problem. 
 The final motor design parameters and goal results are shown in Table 4 while the 
corresponding missile grain cross sections are shown in Figure 6. It is apparent that the two GA?s 
and the two RPSO?s all converged on very different motor designs, with the design from the 
original set of RPSO inputs being the most unlike the others, which would be expected. Looking 
at the motor cross section images, the RPSO appears to be approaching a design that is very 
similar to that of the binary GA, however, upon closer inspection, most of the parameter values 
are much different. If allowed to run for a greater number of function evaluations, the RPSO 
might produce a design completely different yet near equally optimal solution when compared to 
the GA?s. 
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Table 4. Sounding Rocket Converged Design Parameters 
PARAMETER RPSO BEST RPSO ORIGINAL BINARY GA REAL GA 
propellant type 7 7  8  8  
propellant RPVAR: 
(Rp+f)/(body radius) 0.52232459 0.53092006 0.53503937 0.75481233 
propellant RIVAR: 
Ri/Rp 0.01010000 0.93402695 0.22137256 0.01000000 
number of star 
points 8 13  11  17  
fillet FVAR: f/Rp 0.06356675 0.18598332 0.04064516 0.01470821 
epsilon star width 0.47259510 0.88108498 0.68666667 0.34154324 
star point angle 1.27535397 6.47795456 5.67716550 8.90955565 
grain length 239.78698141 271.08171369 301.36987000 241.53865028 
outer radius of grain 23.76000000 23.76000000 22.95238100 19.06190103 
throat diameter 19.80000000 19.80000000 12.86399300 19.49394728 
nozzle expansion 
ratio 1.91562031 3.37402866 3.84251950 3.24619152 
Altitude @BO 47760.86 40958.55  50004.55  49999.98  
Velocity @BO 960.67 600.84  997.71  968.22  
Initial Weight 21672.41 22759.92  26505.14  10339.07  
Total Fitness 2300.14 9463.37  33.34  42.14  
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                RPSO Best                       RPSO Original 
                 
         Binary GA         Real GA 
Figure 6. Sounding Rocket Final Grain Cross Sections 
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When comparing the designs based on the individual goals, the best performing RPSO made vast 
improvements in matching the desired burnout altitude and velocity while still making a modest 
improvement in decreasing the takeoff weight. The large fitness value for the RPSO is due 
mostly to it missing the desired burnout altitude by over 2,200ft, but this is only a difference of a 
little less than 5 percent.  
The main goal of this study was to see if the performance of the Particle Swarm 
Optimizer could be improved by manipulating the control parameters of the algorithm. 
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Significant improvement was made in the optimizer?s performance by just using a course grid to 
evaluate different combinations of the input parameters.  
Even though the RPSO did not perform as well as the GA?s for this problem, it still 
showed potential to serve as a viable optimization tool. It might be useful to use the RPSO in 
conjunction with the GA?s to provide solution diversity when multiple nearly optimal solutions 
are needed. It is also important to note that the optimizers were only evaluated on one problem 
and goal set. The RPSO may perform just as well or even better than the GA?s if it were only 
trying to match one goal, a different set of performance goals, or even used to solve different 
engineering problems. However, different types of problems may not yield as good of results 
with the current set of input parameters and may require their own optimized parameter sets. 
Other studies have shown that the RPSO, or a derivative thereof, has performed better than the 
GA on matching a curve to data31.  
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6 COMPOUND REPULSIVE PARTICLE SWARM DEVELOPMENT 
6.1 Hybrid Optimizer Methodology 
 It is apparent from the previous studies that the Particle Swarm generally converges much 
slower than the Genetic Algorithms for solid rocket motor preliminary design level trade studies. 
The development of this hybrid optimizer was pursued in an attempt to improve the RPSO?s 
ability to converge quickly to a good solution and possibly improve the overall fitness of the 
solution for this class of design problems. Hybrid optimizers incorporate the combination of two 
or more optimizers, usually of different types. A previous study combined the RPSO with the 
Pattern Search gradient optimizer and produced very promising results31. This study involves the 
integration of one RPSO into another, creating a compound RPSO.  
 The RPSO?s slow convergence may be due to the large solution space and the way the 
search mechanisms of the algorithm work. The particles cannot effectively search within a small 
area of the solution space even though they communicate with each other and perform individual 
local searches. The attachment of a second RPSO is used to more effectively search within an 
area around the current global best using a ?mini? swarm. 
 The traditional RPSO can be thought of as a transport system for the mini-swarms. If the 
overall swarm best has improved after a generation, the mini-swarm search is initialized. This 
imbedded RPSO functions in the same way as the single-phase RPSO except that it is much 
more constrained. Similar to the parent swarm, the mini-swarm is initialized with a prescribed 
number of individuals with viable solutions. However, an overpopulation scheme has been 
implemented to help the performance of the mini-swarm. In this scheme, an oversized random 
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population is created with the number of members being much larger than what will eventually 
be used in the mini-swarm. The members? fitnesses are compared and only a select number of 
members with the lowest fitnesses are chosen to continue in the mini-swarm. This scheme was 
implemented to help the members of the mini-swarm start closer to the optimal value, while not 
requiring a significant number of extra function evaluations. 
The overall number of particles used in the mini-swarm is significantly less than that of 
the parent swarm, and they are only allowed to search within a small percentage of the solution 
space centered around the current best position. The global best used in the mini-swarm velocity 
equations is initialized with the current overall best and remains set as such until one of the mini-
swarm members finds a better solution. The mini-swarm continues searching until the specified 
number of iterations is met, which is also significantly less than the large swarm. The input file 
for the mini-swarm can be seen in Appendix E. 
A second modification has been made to the RPSO to help speed up convergence and 
improve the obtained solution. Since the RPSO tends to go long periods without finding better 
solutions, a counter has been set up so that if the optimizer has gone a prescribed number of 
iterations without improving, the mini-swarm optimizer is called once again to search around the 
current best solution. The hybrid optimizer methodology is represented in Figure 7.   
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Figure 7. Integrated Hybrid Optimizer Logic 
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6.2 Hybrid Optimizer Comparison 
For initial testing, the compound optimizer was used on the same solid rocket motor code 
used in Reference 27. The results from these tests looked very promising and the hybrid 
optimizer was able to outperform the conventional RPSO in all test cases. These initial findings 
successfully demonstrated the compound optimizer?s potential to work on more complex 
engineering problems. 
For the next level of testing, the RPSO-RPSO compound optimizer has been attached to 
the same sounding rocket code used in the previous section to see if further improvement can be 
made in the performance of the particle swarm algorithm. The hybrid optimizer will be 
compared against the standard RPSO using the same goal set and number of function evaluations 
used for the sounding rocket in the previous study. Initially, the same parameter settings found 
for the best performer in the previous RPSO study were used for the parent swarm and the mini-
swarm of the hybrid. Results from these settings for the sounding rocket code, however, did not 
prove as promising as the results from the solid rocket motor code used in Reference 27. At this 
point, it was decided to use another set of velocity parameters ?, ?, ?, and ? for the mini-swarm 
settings. The new set of parameters chosen was one used in the previous grid run search for the 
conventional RPSO. Although this set of parameters did not produce a final answer as good as 
the optimal set for the standard RPSO, it was primarily chosen for its fast convergence and 
relatively good fitness value. 
This new combination of parent and mini-swarm parameters proved to work much better 
for the compound optimizer. Combinations of 5 and 10 particles allowed to search within 5% 
and 10% of the solution space were the settings used to test the mini-swarm. The convergence 
histories for these four hybrid settings and the previously optimized RPSO are shown in Figure 
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8. The numbers represented in the legend for the hybrid optimizer (ex. 5 ? 5%) represent the 
number of particles within the mini-swarm and the percentage of the parameter range they are 
allowed to search within. 
 
 
 
The compound optimizers behave much differently than the standard particle swarm. The 
hybrid particle swarm tends to converge much faster and in a much more continuous fashion. 
Until making the large fitness jump after the 200,000 function evaluation mark, the non-
hybridized particle swarm was being beaten by all of the different hybrid input combinations.  
Both the 5 particle-5% search area and the 10 particle-10% search area mini-swarm 
combinations performed very well for the hybrid. At the 150,000 function evaluation mark, they 
had already converged to answers which are comparatively close to the answer that the standard 
RPSO required an extra 50,000 function evaluations to achieve. Although the best performer of 
Figure 8. Hybrid Optimizer Sounding Rocket Convergence History 
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the hybrid runs performs more efficiently than the original, it still does not converge as well as 
the GA?s.  
Table 5 shows the design parameter and goal values while Figure 9 shows the grain 
cross-section plots for the best performer of the hybrid and the single phase RPSO with the 
optimum input parameter set. The hybrid optimizer developed a somewhat different looking 
motor with a significantly better fitness than the standard particle swarm. The hybrid ends up 
matching the burnout altitude much better but does a worse job in matching the burnout velocity 
and minimizing the weight. This is most likely a direct result from how the fitness is actually 
determined and the weighting of the three goals. The altitude goal is of an order of magnitude 
higher than both of the other goals, thus it has the highest impact on the overall fitness. 
The hybrid produced a design roughly 25% better than the standard particle swarm, and it 
did so with significantly fewer function evaluations. The mini-swarm allows the RPSO to search 
within more confined areas of the solution space which, consequently, allows the optimizer to 
converge faster and in a more gradual fashion. The required number of particles of the mini-
swarm and the size of the solution space they are allowed to search in may be different for each 
problem, depending on the makeup of the solution space. This initial test of the compound RPSO 
hybrid proves promising, yet the optimizer requires further validation to ensure that it is a useful 
optimization device. 
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Table 5. Original and Compound RPSO Sounding Rocket Converged Design Parameters 
PARAMETER RPSO BEST Compound RPSO  (5 ? 5%) 
propellant type 7 7 
propellant RPVAR: 
(Rp+f)/(body radius) 0.52232459 0.48779950 
propellant RIVAR: 
Ri/Rp 0.01010000 0.43874862 
number of star 
points 8 9 
fillet FVAR: f/Rp 0.06356675 0.05419492 
epsilon star width 0.47259510 0.52420674 
star point angle 1.27535397 6.41346202 
grain length 239.78698141 241.09208069 
outer radius of grain 23.76000000 23.97510469 
throat diameter 19.80000000 19.35065689 
nozzle expansion 
ratio 1.91562031 2.78466686 
Altitude @BO 47760.86 48364.79 
Velocity @BO 960.67 1051.18 
Initial Weight 21672.41 22611.68 
Total Fitness 2300.14 1709.00 
 
    
RPSO Best             Compound RPSO 
 
Figure 9. Original and Compound RPSO Sounding Rocket Final Grain Cross Sections 
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7 SINGLE STAGE SOLID MISSILE SYSTEM DESCRIPTIONS 
To more effectively compare the optimizers, a more complex suite of codes and multiple 
goal sets were required. A bit more complex than the sounding rocket, the single stage solid 
missile system design code1 generates preliminary level engineering models of missiles powered 
by single stage solid propellant motors and flies them based on a set of 35 essential design 
parameters. The optimizers are used to manipulate these design parameters in order to develop 
missiles that achieve desired performance goals. This code has been used in multiple 
optimization studies11,12,23 and has proven to be an accurate and reliable instrument for use in 
engineering applications. 
After the program is initialized, it reads in various constants contained in two input files. 
These terms include mathematical constants, program limits, material properties, moments of 
inertia, component lengths and locations, and program goals. The entire component breakdown 
of the files is presented in Table 6. Some of these terms may be altered at some point within the 
code, but the variable arrays must be created with acceptable values at the start of the code. 
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Table 6. Component Breakdown of Missile Design Code Initial Constants 
 
Component Section Number of Variables 
Constants 22 
Material Densities 6 
Program Lengths, Limits, and Constants 31 
Constants and Set Numbers 25 
Initiation of Launch Data 16 
Target Data 6 
GA Goals (outdata variables) 20 
Auxiliary Variables to be Used as Needed 21 
List of GA Variables Passed to Setup, etc. 35 
Total Missile Variables 40 
Guidance and Plotting Variables 29 
Component Densities 30 
Masses 30 
Center of Gravity 30 
Moments of Inertia 60 
Component Lengths 30 
Axial Starting Point of Components 30 
Required and Computed Data for Aero 30 
Other Dimensions 16 
Internal Solid Rocket Grain Variables 14 
Nozzle and Throat Variables 23 
Other Computed Stage Variables 8 
  
Once all of the constants are initialized, the program reads in the appropriate optimizer input file. 
Whether for one of the GA?s or the RPSO, the file will contain the optimizer controlling 
parameters as well as the variables to be used in the optimization. Whenever a new member is 
created by the GA?s or every time a particle moves in the RPSO, a completely new missile is 
created based on the initial constants and specified design parameter constraints. The missile 
flight is then simulated by a sequence of subroutines that determine the propulsion 
characteristics, mass properties, and aerodynamic properties. The performance and flight profile 
for the missile are determined by a 6-degree-of-freedom, or 6-DOF, routine. 
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 For the 6-DOF to successfully fly the missile, all of its flight characteristics must be 
known. A number of parameters define the geometry and propellant characteristics for the 
missile, and from these parameters, the code is able to determine the thrust profile for the motor 
in a manner similar to that described in Section 4. The code uses the specified grain geometry to 
determine the part of the thrust equation that is independent of atmospheric conditions. The large 
volume left inside of the missile after the propellant has been burned required that the tail-off for 
the thrust be modeled in order to more accurately predict performance. Once the propulsion 
system is modeled, the mass properties for the missile are calculated and used to determine the 
center of gravity and moments of inertia for all component systems. 
 Before the 6-DOF routine can take control of the missile, its aerodynamic properties are 
determined using a fast predicting aerodynamic scheme called AERODSN32. AERODSN is very 
useful in that it is a non-linear, fast-predictive code, which is essential for use with the optimizers 
in order to provide a fairly high level of accuracy while simultaneously minimizing run times. 
However, this requires that certain assumptions be made primarily relating to missile geometry.  
The 6-DOF simulates missile flight by integrating the equations of motion and using the 
previously calculated propulsion, physical, and aerodynamic characteristics in a single model. 
The program flies the missile in a spherical earth model using all six degrees of freedom to 
determine the missile?s overall performance and flight profile. The missile?s individual 
performance is then compared against the desired performance goals specified at the onset of the 
program, a fitness determined, and returned to the optimizer for analysis. A flow chart for the 
code is shown in Figure 10. 
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Figure 10. Missile System Design Code Program Flow 
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Table 7. Single Stage Solid Missile Variable Definitions 
 
Missile 
Geometry Propellant Properties Autopilot Controls 
Nose Radius Ratio = 
rnose/rbody Fuel Type 
Autopilot On Delay 
Time 
Nose Length Ratio = 
lnose/dbody 
Propellant Outer  
Radius Ratio 
rpvar=(rp+f)/rbody 
Initial Launch Angle 
(deg) 
Fractional Nozzle 
Length Ratio = f/ro 
Propellant Inner Radius 
Ratio rivar=ri/rp Pitch Multiplier Gain 
Nozzle Throat 
Diameter/dbody Number of star points Yaw Multiplier Gain 
Total Length of 
Stage1/dbody Fillet Radius Ratio f/rp 
Initial Elevator Angle 
(deg) 
Diameter of Stage1 
(dbody) Epsilon - star width 
Gainp2 ? gain in pitch 
angle dif 
Wing Exposed Semi-
span = b2w/dbody Star point angle B2var = b2vane/rexit 
Wing Root Chord = 
crw/dbody  
Time Step to Actuate 
Controls 
Wing Taper Ratio = 
ctw/crw  
Gainy2 ? gain in yaw 
angle dif 
Leading Edge Sweep 
Angle Wing (deg)  
Deltx for Z 
Corrections 
xLEw/lbody  Deltx for Y Corrections 
Tail Exposed Semi-
span = b2t/dbody   
Tail Root Chord = 
Crt/dbody   
Tail Taper Ratio = 
ctt/crw   
Leading Edge Sweep 
Angle Tail (deg)   
xTEt/Lbody   
Nozzle Exit 
Dia/dbody   
 
For this study, a single stage solid motor was used in the design optimizations. In order to 
create a fully developed missile system, 35 design variables are used for the model. Table 7 lists 
the required variables for the model and separates them between the various types.  
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As can be seen in the second column of Table 7, the solid motor grain design used in this 
system is very similar to that used in the sounding rocket program. The absent propellant 
property variables that are inherent to the sounding rocket are defined elsewhere in this program 
as it works to develop a more complete missile system. The third column of the table lists the 
variables used to control the autopilot for the program. These variables are used in case the 
missile is being guided by an active control system. This missile code possesses the ability to 
control the missile through tail fin deflections, nozzle vane deflections, or nozzle gimbaling. 
However, during this study, the autopilot system was turned off and the missiles were only 
allowed to fly ballistic trajectories. The first column of the table lists all of the parameters used to 
develop the external geometry of the missile including the nose, wings, tail fins, and nozzle33. 
The missile code designs a bell nozzle by fitting a parabola tangent to a circular arc throat 
section. The parabola is extended out until the required expansion ratio for the nozzle is met33. A 
more detailed description of the external geometry components of the missile can be seen in 
Reference 34.  
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8 SINGLE STAGE SOLID MISSILE SYSTEM OPTIMIZER COMPARISONS 
 All four of the optimization algorithms were compared using the single stage solid motor 
missile system code described in Section 7. To effectively compare the optimizers, they must be 
evaluated on multiple goals and goal sets. In the first set of optimizer tests, the two GA?s, RPSO, 
and compound RPSO were used to match a specified range. By only requiring a match to one 
goal, the optimizers have a higher probability of finding a missile design that successfully meets 
the performance requirement. It would be possible for all four optimizers to find completely 
different, yet nearly equivalent optimal solutions. A more effective comparison of the optimizers, 
however, would require a more difficult goal set. That is why for the next set of tests, the 
optimizers were used to match various goal pairs. By matching two separate goals, such as range 
and takeoff weight, the probability of finding good solutions significantly decreases. The design 
parameters for all four of the optimizers are constrained by the same maximum and minimum 
allowable values so as to allow for the optimizers to potentially choose the same or similar 
designs. The input files for the optimizers can be seen in Appendices F ? H. 
 
8.1 Single Stage Solid - Match Range 250,000 ft 
 For the first optimizer test, the algorithms were required to match a single goal: design a 
missile that has a range of 250,000 ft. For all of these tests, the optimizers were allowed to 
perform 100,000 function evaluations and once again, were compared on overall fitness and on 
speed of convergence. Due to the lower amount of function evaluations allowed for these tests 
and its overall performance in the sounding rocket test, the hybrid RPSO was run using 5 
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particles with a 5% search area for the mini-swarm. The fitness for matching range is calculated 
as follows: 
                                      (20) 
The corresponding convergence histories for the optimizers are shown in Figure 11. 
 
 
 
 
The real-coded GA was able to achieve the best fitness over the entire length of the optimization 
run. It was able to maintain a fitness nearly an order of magnitude better than the binary GA, 
which was the second best overall performer. Neither the conventional RPSO nor the compound 
RPSO were able to outperform either of the GA?s.  The compound RPSO, however, was able to 
outperform the standard RPSO in both speed of convergence and overall fitness value. The scale 
of the graph should be noted. Even though the compound particle swarm did not match the 
Figure 11. Single Stage Solid Match Range 250,000ft Convergence History 
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desired range as closely as the GA?s, it still missed the target by less than 5 ft, which might be 
considered a sufficient answer.  
As the previous particle swarm input parameter study showed, the velocity parameters for 
the swarm can have a profound effect on the optimizer?s performance. Similar results could 
possibly be demonstrated for the parameters of the mini-swarm. A varied set of control 
parameters could result in increased solution convergence for the compound RPSO. 
The final missile design parameters and relative 3-D missile plots are shown in Table 8 
and Figure 12, respectively. There are significant differences between all four of the optimizer 
designs. Interestingly, the compound RPSO design matches much more closely to the two GA 
designs than it does the standard RPSO. This optimizer test could have shown how single goal 
problems have the ability to produce completely separate but nearly equally optimal results, yet 
all of the optimizers appeared to be converging on a similar solution. There seems to be a direct 
correlation to the size of the missile and the fitness value. The real GA was obviously able to 
match the goal much more closely, but the compound RPSO still only missed the target range by 
less than one missile diameter.   
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Table 8. Single Stage Solid 250,000ft Range Design Parameters 
 
PARAMETER COMPOUND RPSO RPSO BINARY GA REAL GA 
rnose/rbody 0.5940 0.5940 0.4667 0.4921 
lnose/dbody 2.9700 2.9700 2.4677 2.1681 
fuel type 7.7000 8.9100 4.2000 3.6886 
star out R (rpvar) 0.6410 0.6167 0.5857 0.4981 
star inner ratio 0.6043 0.7920 0.3800 0.1907 
number of star pts 7.7251 10.8900 10.6000 7.5305 
fillet radius ratio 0.0468 0.0990 0.0953 0.0565 
eps 0.6700 0.9405 0.8333 0.8321 
star point angle (deg) 1.2394 7.3168 6.4000 2.2710 
fractional nozzle length 0.8517 0.6784 0.8171 0.9489 
dia throat/dbody 0.2983 0.2970 0.2730 0.2794 
fineness ratio 13.3776 14.8500 12.0000 12.2367 
dia stage 1 (m) 0.4375 0.6336 0.4622 0.3952 
wing semispan/dbody 0.0362 0.0495 0.0271 0.0415 
wing root chord/dbody 0.0361 0.0495 0.0214 0.0303 
wing taper ratio 0.9125 0.9468 0.9300 0.9830 
wing LE sweep angle (deg) 5.3544 13.3342 7.4444 1.1327 
xLEw/lbody 0.2330 0.2475 0.2143 0.2423 
tail semispan/dbody 1.2577 1.3860 1.2000 1.3276 
tail root chord/dbody 1.0925 1.0890 0.9667 1.0370 
tail taper ratio 0.6744 0.9483 0.6196 0.8493 
tail LE sweep anlge (deg) 17.2962 3.7229 6.0635 22.5363 
xTEt/lbody 0.9994 0.9900 0.9643 0.9686 
autopilot delay time (sec) 5000.0000 5000.0000 5000.0000 4999.1740 
initial launch angle (deg) 65.5544 73.7197 67.8571 67.2771 
pitch multiplier gain 3.7484 3.9793 3.9200 4.1139 
yaw multiplier gain 1.7744 1.1841 2.3889 1.1935 
nozzle exit dia/dbody 0.8933 0.6196 0.6033 0.8466 
initial pitch cmd angle (deg) -7.0000 -7.0000 -11.2667 -11.4603 
gain in pitch 0.0035 0.0043 0.0100 0.0042 
b2var=b2vane/rexit 0.0050 0.0090 0.0000 0.0085 
time step to actuate noz (sec) 0.4301 0.9307 0.4400 0.9656 
gain in yaw 0.0055 0.0024 0.0100 0.0075 
deltx corrections for z 0.2712 0.7056 0.0000 0.3523 
deltx corrections for y 0.9599 0.6725 0.0000 0.2061 
FITNESS 0.142455 3.704469 7.41948E-05 2.24332E-08 
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Figure 12. Single Stage Solid 250,000ft Range 3-D Models 
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8.2 Single Stage Solid - Match Range 750,000 ft 
 For the second optimizer test, the algorithms were once again required to match a range 
goal. This time they were expected to design a missile that has a range of 750,000 ft. Although 
similar to the previous test, this evaluation is still valuable because it helps to further evaluate the 
optimizers by forcing them to explore a separate part of the solution space. Once again, the 
optimizers were allowed to perform 100,000 function evaluations and were compared on overall 
fitness and on how fast they converged. The corresponding convergence histories for the 
optimizers are shown in Figure 13. 
 
 
 
 
Just as in the previous match range problem, the real-coded GA completely outperformed the 
other optimizers in both convergence speed and overall fitness. The RPSO?s also failed once 
again to outperform either of the GA?s. The RPSO was unable to make any further 
Figure 13. Single Stage Solid Match Range 750,000ft Convergence History 
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improvements after the initial fitness jump that occurred after only a tenth of the allowable 
function evaluations were performed. The compound RPSO was able to overcome this and 
produce a design with a fitness value an order of magnitude lower.  
The final missile design parameters and relative 3-D missile plots are shown in Table 9 
and Figure 14, respectively. As with the previous optimizer test, four completely different 
designs were developed by the optimizers. Interestingly, the two RPSO designs are more similar 
to each other, while at the same time, the two GA designs are more similar to each other. This 
could be a testament to the differences between the social behavior theory of the Particle Swarms 
and the evolution theory of the Genetic Algorithms.  
The design chosen by the compound RPSO happened to be one of the larger missiles 
again, but the size disparity between it and the GA?s designs happened to be much larger than in 
the previous test. The hybrid RPSO optimizer design ended up missing the target by less than 5 
ft. This seems like a fairly good result considered it is only just over twice the missile diameter 
and less than 5.8x10-4% error. The two GA?s achieved this level of accuracy after less than 
20,000 function evaluations. 
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Table 9. Single Stage Solid 750,000ft Range Design Parameters 
 
PARAMETER COMPOUND RPSO RPSO BINARY GA REAL GA 
rnose/rbody 0.5940 0.5940 0.6000 0.4686 
lnose/dbody 2.9700 2.9700 1.5000 2.4161 
fuel type 3.0716 7.1135 6.3333 4.8264 
star out R (rpvar) 0.7920 0.7920 0.4429 0.5630 
star inner ratio 0.1965 0.5741 0.3333 0.2903 
number of star pts 10.4201 10.8900 10.2000 9.3306 
fillet radius ratio 0.0990 0.0990 0.0533 0.0608 
eps 0.9405 0.9405 0.7944 0.7660 
star point angle (deg) 6.9040 9.3931 5.2000 2.3099 
fractional nozzle length 0.9801 0.7402 0.6862 0.8173 
dia throat/dbody 0.2970 0.2970 0.2563 0.2679 
fineness ratio 14.8500 14.8500 14.3333 12.5506 
dia stage 1 (m) 0.6336 0.6336 0.4919 0.5579 
wing semispan/dbody 0.0495 0.0495 0.0500 0.0373 
wing root chord/dbody 0.0495 0.0495 0.0386 0.0231 
wing taper ratio 0.9801 0.9126 0.9540 0.9874 
wing LE sweep angle (deg) 29.7000 8.2556 3.3016 5.1092 
xLEw/lbody 0.2475 0.2475 0.2071 0.2321 
tail semispan/dbody 1.3860 1.3860 1.4000 1.3079 
tail root chord/dbody 1.0890 1.0890 1.0333 1.0480 
tail taper ratio 0.6678 0.5651 0.7276 0.6418 
tail LE sweep anlge (deg) 24.7908 14.2276 29.0794 13.9887 
xTEt/lbody 0.9836 0.9900 0.9786 0.9903 
autopilot delay time (sec) 5000.0000 5000.0000 5000.0000 4999.3909 
initial launch angle (deg) 46.9515 57.1010 61.4286 65.3084 
pitch multiplier gain 4.3312 3.6348 3.9200 4.0316 
yaw multiplier gain 1.2869 1.0999 2.0714 1.7802 
nozzle exit dia/dbody 0.6604 0.7374 0.7100 0.6705 
initial pitch cmd angle (deg) -7.0000 -7.0000 -9.1333 -12.9696 
gain in pitch 0.0055 0.0046 0.0100 0.0082 
b2var=b2vane/rexit 0.0022 0.0099 0.0000 0.0057 
time step to actuate noz (sec) 0.5286 0.3815 0.9067 0.3822 
gain in yaw 0.0037 0.0079 0.0000 0.0068 
deltx corrections for z 0.3883 0.2938 1.0000 0.7611 
deltx corrections for y 0.5040 0.1351 0.0000 0.1520 
FITNESS 0.43482 5.04715 5.76720E-05 2.48252E-06 
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Figure 14. Single Stage Solid 750,000ft Range 3-D Models 
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8.3 Single Stage Solid - Match Range 100,000 ft Takeoff Weight 2,500 lb 
 To more thoroughly test the optimizers, three more complex goal sets were chosen for 
comparison. The first goal set required the algorithms to match a range of 100,000 ft while also 
matching a takeoff weight of 2,500 lb. As with the single goal tests, the optimizers were allowed 
to perform 100,000 function evaluations. Because the optimizers are required to match two 
goals, they are driven more towards a global solution that minimizes both goals. The 
optimization only required the minimization of single fitness value as before. The fitness is 
determined by summing the goals as follows: 
                                                                (21) 
The corresponding convergence histories for the optimizers are shown in Figure 15. 
 
 
 
 
Figure 15. Single Stage Solid Match Range 100,000ft Weight 2,500lb 
Convergence History 
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Though still the best performer, the real-coded GA did not perform overwhelmingly better than 
the other optimizers. The compound RPSO outperformed the standard particle swarm for the 
entire optimization run, with the standard RPSO only coming close with the last large fitness 
jump. This final jump by the hybrid particle swarm after 80,000 function evaluations actually 
pushed it to a better fitness than the binary GA. As previously speculated, the optimizers all 
appear to be driven toward a global minimization solution. There is very little difference between 
the four fitness values. Because the fitness values are relatively high, the actual optimal solution 
to this minimization problem may not have been defined within the prescribed set of allowable 
parameters. The indication of these results is that the compound RPSO is a competitive 
algorithm for complex problems.  
Table 10 and Figure 16 show the final missile design parameters and relative 3-D missile 
plots, respectively. Unlike the previous tests, there does not appear to be as much diversity 
between the designs developed by the optimizers. As expected, the worst performer, the binary 
GA, ended up being most unlike the other designs. The graphical representation for the 
convergence for the RPSO?s is somewhat skewed compared to the GA?s. The current best fitness 
values for all of the optimizers are recorded only at the end of each generation/iteration. For the 
real GA, this is after every function evaluation, and for the binary GA, this is after every 200 
function evaluations. The RPSO?s iterations are much longer, and the best fitness values are 
reported only after more than 4,000 function evaluations. This accounts for a much less gradual 
graphical representation of convergence for the RPSO?s. The compound RPSO may appear more 
gradual due to the fitness value being reported after the much shorter mini-swarm iterations. 
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Table 10. Single Stage Solid 100,000ft Range 2,500lb Weight Design Parameters 
 
PARAMETER COMPOUND RPSO RPSO BINARY GA REAL GA 
rnose/rbody 0.4787 0.5869 0.5333 0.4150 
lnose/dbody 1.7441 1.8614 2.4677 2.4533 
fuel type 6.5340 2.5608 6.3333 7.3769 
star out R (rpvar) 0.5462 0.5870 0.7286 0.7065 
star inner ratio 0.3410 0.1010 0.5200 0.3949 
number of star pts 6.5239 10.5705 8.6000 9.4862 
fillet radius ratio 0.0532 0.0760 0.0813 0.0484 
eps 0.8666 0.8236 0.8889 0.8546 
star point angle (deg) 3.9955 6.3574 7.6000 5.4533 
fractional nozzle length 0.7367 0.9801 0.7386 0.9640 
dia throat/dbody 0.2751 0.2970 0.2524 0.2534 
fineness ratio 14.8500 14.8500 13.0000 12.5510 
dia stage 1 (m) 0.2816 0.2823 0.3401 0.3332 
wing semispan/dbody 0.0322 0.0185 0.0214 0.0209 
wing root chord/dbody 0.0472 0.0455 0.0386 0.0415 
wing taper ratio 0.9452 0.9504 0.9240 0.9228 
wing LE sweep angle (deg) 22.9509 1.0712 11.5873 16.8577 
xLEw/lbody 0.2274 0.2475 0.2500 0.2392 
tail semispan/dbody 1.3860 1.3642 1.2000 1.2000 
tail root chord/dbody 1.0890 0.9325 0.9667 0.9674 
tail taper ratio 0.6547 0.7858 0.5694 0.9270 
tail LE sweep anlge (deg) 13.5621 2.1120 16.6508 9.0799 
xTEt/lbody 0.9965 0.9990 0.9643 0.9769 
autopilot delay time (sec) 5000.0000 5000.0000 5000.0000 4999.1318 
initial launch angle (deg) 54.1655 57.4390 41.4286 57.1196 
pitch multiplier gain 4.2039 4.0119 3.9200 4.3300 
yaw multiplier gain 1.0298 2.5035 2.4286 1.7933 
nozzle exit dia/dbody 0.6646 0.9398 0.8700 0.9483 
initial pitch cmd angle (deg) -7.0000 -7.0000 -8.0667 -11.9299 
gain in pitch 0.0001 0.0084 0.0100 0.0044 
b2var=b2vane/rexit 0.0069 0.0000 0.0100 0.0043 
time step to actuate noz (sec) 0.4129 0.3977 0.7200 0.7346 
gain in yaw 0.0085 0.0036 0.0100 0.0076 
deltx corrections for z 0.2438 0.6875 0.0000 0.1884 
deltx corrections for y 0.8862 0.7156 0.0000 0.8768 
TOTAL FITNESS 18.04673 18.19579 19.63227 15.82746 
Range Error 0.64565 5.52699 0.85501 0.04880 
Weight Error 17.40109 12.66880 18.77725 15.77866 
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Figure 16. Single Stage Solid 100,000ft Range 2,500lb Weight 3-D Models 
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Figure 17. Match Range 100,000ft Error, Test 3 
 
 
Figure 18. Match Weight 2,500lb Error, Test 3 
Figure 17 shows the solution convergence plot for the match range goal of the optimization. 
Only the real GA had large fluctuations in its range error while the RPSO?s and binary GA 
maintained nearly constant values after their initial improvements, with only small changes 
during the rest of the run. Figure 18 shows the convergence history for the weight error.  
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For this goal, only the standard RPSO showed large fluctuations in its weight error, while the 
other optimizers remained mostly constant with only small improvements for the majority of the 
run. The standard RPSO managed to be the worst performer in the range goal and the best 
performer in the weight goal. Interestingly, the compound RPSO?s improvement over the binary 
GA involved it having better answers for both the range goal and the weight goal.  
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8.4 Single Stage Solid - Match Range 350,000 ft Takeoff Weight 4,000 lb 
 The second two goal test required the optimizers to match a range of 350,000 ft while 
also matching a takeoff weight of 4,000 lb. Figure 19 shows the convergence histories for the 
optimizers. 
 
 
 
Once again, the real GA ended up being the best performing optimizer. The compound RPSO 
was able to outperform the single phase particle swarm optimizer for this goal and produce an 
answer better than the binary GA. The hybrid RPSO?s ability to take advantage of a much more 
thorough local search is very apparent around the 80,000 function evaluation mark. The standard 
RPSO was unable to make any significant improvements after its initial jump, but the hybrid was 
able to make some significant improvements with the use of the mini-swarm. The optimizers 
were not grouped as closely together as with the previous range-weight goal set and the run 
produced multiple orders of magnitude improvement between the four fitness values.  
Figure 19. Single Stage Solid Match Range 350,000ft Weight 4,000lb 
Convergence History 
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Table 11 and Figure 20 show the final missile design parameters and relative 3-D missile 
plots, respectively. Looking at these, the compound RPSO effectiveness becomes more apparent. 
The compound RPSO was able to develop a unique design compared to the three other 
optimizers, and although not as accurate as the real-coded GA, its fitness is better than that of the 
binary GA. This test run shows how making multiple calls to the mini-swarm after failing to 
improve can prove effective. The standard RPSO was unable to improve over the length of the 
run, but because the hybrid continued to call upon the mini-swarm, it was able to make a very 
significant improvement before reaching the maximum number of function evaluations.    
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Table 11. Single Stage Solid 350,000ft Range 4,000lb Weight Design Parameters 
 
PARAMETER COMPOUND RPSO RPSO BINARY GA REAL GA 
rnose/rbody 0.5940 0.4040 0.4000 0.5450 
lnose/dbody 2.9700 2.2931 2.4677 2.6525 
fuel type 7.3291 3.8625 2.6000 5.3379 
star out R (rpvar) 0.5016 0.5360 0.5142 0.4674 
star inner ratio 0.3103 0.2878 0.7533 0.3902 
number of star pts 9.1741 5.0500 9.4000 5.9667 
fillet radius ratio 0.0877 0.0733 0.0720 0.0636 
eps 0.6408 0.6060 0.8611 0.7068 
star point angle (deg) 4.8039 6.2506 2.2000 7.7415 
fractional nozzle length 0.7767 0.7463 0.6914 0.7006 
dia throat/dbody 0.2559 0.2548 0.2865 0.2661 
fineness ratio 11.9358 10.1000 11.0000 11.4019 
dia stage 1 (m) 0.4824 0.5099 0.4858 0.4766 
wing semispan/dbody 0.0246 0.0344 0.0214 0.0265 
wing root chord/dbody 0.0233 0.0450 0.0214 0.0405 
wing taper ratio 0.9143 0.9090 0.9480 0.9719 
wing LE sweep angle (deg) 27.2583 27.8624 12.5079 20.4673 
xLEw/lbody 0.2053 0.2020 0.2285 0.2206 
tail semispan/dbody 1.2577 1.2120 1.3333 1.3692 
tail root chord/dbody 1.0566 0.9090 1.0333 0.9740 
tail taper ratio 0.6420 0.5050 0.5964 0.5899 
tail LE sweep anlge (deg) 23.3743 23.4372 28.1587 12.5368 
xTEt/lbody 0.9682 0.9595 0.9642 0.9867 
autopilot delay time (sec) 5000.0000 5000.0000 4999.0000 4999.2974 
initial launch angle (deg) 75.7407 64.9833 53.5714 70.8039 
pitch multiplier gain 3.8389 3.6360 4.2933 3.6346 
yaw multiplier gain 2.6228 1.3101 3.0634 1.7781 
nozzle exit dia/dbody 0.8719 0.6135 0.7366 0.7861 
initial pitch cmd angle (deg) -7.0000 -7.0000 -11.2666 -9.8070 
gain in pitch 0.0100 0.0053 0.0000 0.0030 
b2var=b2vane/rexit 0.0078 0.0000 0.0000 0.0062 
time step to actuate noz (sec) 0.8941 0.3030 0.8600 0.4220 
gain in yaw 0.0017 0.0003 0.0100 0.0068 
deltx corrections for z 0.0607 0.7626 0.0000 0.3531 
deltx corrections for y 0.0382 0.5597 1.0000 0.6857 
TOTAL FITNESS 4.76180 71.77821 8.05037 0.06887 
Range Error 2.65134 71.63351 0.76689 0.05249 
Weight Error 2.11046 0.14468 7.28348 0.01638 
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Figure 20. Single Stage Solid 350,000ft Range 4,000lb Weight 3-D Models 
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Figure 21. Match Range 350,000ft Error, Test 4 
 
 
Figure 22. Match Weight 4,000lb Error, Test 4 
Figure 21 shows the solution convergence plot for the range error. The real-coded GA once again 
had large fluctuations in the range error while the other optimizers only had a small number of 
changes in the range error. The compound RPSO maintained a poor range error close to that of 
the standard RPSO until the final call of the mini-swarm managed to provide a drastically better 
solution. Figure 22 shows the weight error convergence history for the optimizers.  
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The real GA continued to improve steadily with only minor fluctuations, while the binary GA 
showed no changes after about 7,000 function evaluations. The mini-swarm of the compound 
RPSO managed to make significant improvements in both goal errors at the end of the run. The 
hybrid RPSO was actually able to match the weight much more closely than the binary GA, 
accounting for its overall better fitness.  The standard RPSO was able to effectively minimize the 
weight goal, but its inability to similarly minimize the range goal ultimately led to its poor 
performance.  
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8.5 Single Stage Solid - Match Time of Flight 240 sec Takeoff Weight 2,500 lb 
 The final two goal test required the optimizers to match a 240 sec time of flight while 
also matching a takeoff weight of 2,500 lb. The optimizers have already proven their ability to 
match range goals, so this test uses another performance parameter for evaluation. Once again, 
the optimization only required the minimization of a single fitness value as before. The fitness is 
determined by summing the goals as follows: 
                                                            (22) 
Figure 23 shows the convergence histories for this optimization test. 
 
 
The binary GA ended up being the best performer of this optimization test, but did not perform 
overwhelmingly better than the other optimizers. The compound RPSO outperformed the 
standard particle swarm for most of the optimization run and was able to develop an answer very 
near that of the GA?s. The optimizers were once again driven toward a global minimization 
solution with there being very little difference between the four fitness values. The relatively 
Figure 23. Single Stage Solid Match TOF 240sec Weight 2,500lb 
Convergence History 
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high fitness values may have resulted from the actual optimal solution not being defined within 
the prescribed set of allowable parameters.  
The final missile design parameters and relative 3-D missile plots are shown in Table 12 
and Figure 24, respectively. The hybrid RPSO was once again able to develop a design 
completely unlike the others while maintaining a performance very comparable to the GA?s. 
Other than the nose parameters, most of the other design parameters for the hybrid are 
significantly different than those of the other optimizers. 
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Table 12. Single Stage Solid 240sec TOF 2,500lb Weight Design Parameters 
 
PARAMETER COMPOUND RPSO RPSO BINARY GA REAL GA 
rnose/rbody 0.4040 0.4040 0.4667 0.4000 
lnose/dbody 1.5048 2.1651 2.8065 1.6679 
fuel type 2.9327 5.1677 2.0667 2.5834 
star out R (rpvar) 0.5231 0.5159 0.5857 0.7075 
star inner ratio 0.2099 0.2807 0.2400 0.5570 
number of star pts 5.0439 5.1944 11.0000 10.3661 
fillet radius ratio 0.0888 0.0601 0.1000 0.0468 
eps 0.6135 0.6419 0.7889 0.7175 
star point angle (deg) 4.9593 6.5429 5.8000 3.5387 
fractional nozzle length 0.6704 0.6781 0.7752 0.9069 
dia throat/dbody 0.2532 0.2525 0.2627 0.2500 
fineness ratio 10.9351 12.5823 12.0000 11.5040 
dia stage 1 (m) 0.2967 0.2853 0.3088 0.3180 
wing semispan/dbody 0.0110 0.0467 0.0157 0.0104 
wing root chord/dbody 0.0348 0.0495 0.0157 0.0473 
wing taper ratio 0.9087 0.9090 0.9120 0.9399 
wing LE sweep angle (deg) 2.7909 12.7349 18.0317 18.8796 
xLEw/lbody 0.2021 0.2020 0.2357 0.2064 
tail semispan/dbody 1.2120 1.2120 1.2667 1.2000 
tail root chord/dbody 0.9059 0.9090 0.9000 0.9440 
tail taper ratio 0.5114 0.5050 0.7817 0.7500 
tail LE sweep anlge (deg) 9.9175 29.7000 22.6349 30.0000 
xTEt/lbody 0.9907 0.9900 0.9571 0.9683 
autopilot delay time (sec) 5000.0000 5000.0000 5000.0000 4999.5958 
initial launch angle (deg) 83.7936 84.1500 85.0000 85.0000 
pitch multiplier gain 4.3675 4.3560 3.9733 3.6810 
yaw multiplier gain 3.4244 3.4650 3.4206 1.2194 
nozzle exit dia/dbody 0.9355 0.9405 0.9500 0.9483 
initial pitch cmd angle (deg) -7.0000 -7.0000 -9.6667 -7.9205 
gain in pitch 0.0099 0.0099 0.0100 0.0052 
b2var=b2vane/rexit 0.0088 0.0099 0.0000 0.0049 
time step to actuate noz (sec) 0.9950 0.9900 0.3467 0.5563 
gain in yaw 0.0097 0.0099 0.0000 0.0065 
deltx corrections for z 0.9910 0.9900 1.0000 0.5178 
deltx corrections for y 0.9929 0.9900 1.0000 0.2823 
TOTAL FITNESS 13.79352 14.23533 13.53377 13.59890 
TOF Error 13.79294 13.68900 13.53333 13.59890 
Weight Error 0.00058 0.54633 0.00045 7.27596E-13 
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Figure 24. Single Stage Solid 240sec TOF 2,500lb Weight 3-D Models 
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Figure 25. Match TOF 240sec Error, Test 5 
 
 
Figure 26. Match Weight 2,500lb Error, Test 5 
Figure 25 shows the time of flight error history for the optimizers. The error for this goal 
accounted for the majority of the error for all of the optimizers. It appears the solution space 
might have limited the time of flight error to around 13.5. Figure 26 shows the convergence 
history for the weight errors.  
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Table 13. Final Optimizer Fitness Comparisons 
 
 COMPOUND RPSO RPSO BINARY GA REAL GA 
Match 250,000ft 0.142455 3.704469 7.41948E-05 2.24332E-08 
Match 750,000ft 0.434820 5.047148 5.76720E-05 2.48252E-06 
Match 100,000ft 2,500lb 18.046730 18.19579 19.63227 15.82746 
Match 350,000ft 4,000lb 4.761799 71.778210 8.05037 0.06887 
Match 240sec 2,500lb 13.793520 14.235330 13.53377 13.59890 
 
All of the optimizers performed fairly well at matching the weight goal for this problem. Other 
than the single-phase RPSO, the optimizers were able to match the weight within a hundredth of 
a pound. The added accuracy of the real GA is purely academic and may make the graph a bit 
misleading. Because the optimizers were able to match the weight so well and the time of flight 
so poorly, this most likely means it would require a much larger missile to achieve the required 
flight time. The optimizers probably chose to match the weight goal instead of the time goal 
because the weight goal is an order of magnitude larger and resulted in much higher fitness 
values when time of flight was matched. This discrepancy could be addressed by goal weighting. 
Table 13 shows the overall fitness results for all four of the optimizers for the five single 
stage solid missile test cases performed. 
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9 CONCLUSIONS AND RECOMMENDATIONS 
A repulsive particle swarm optimizer has been developed by compounding a RPSO for 
use on complex engineering problems. This compound RPSO was developed based on a 
previously modified version of the standard RPSO that was adapted to make the algorithm 
compatible with reasonable engineering problems. To demonstrate the utility of this approach, 
this new optimization algorithm has been applied to a complex rocket propulsion application. 
The standard RPSO algorithm was first coupled to a solid motor sounding rocket design code so 
that a study could be performed on its input parameters and how they affect optimizer 
performance. From these results, the compound particle swarm optimizer was developed by 
imbedding a second, smaller particle swarm within the original algorithm. These two forms of 
the RPSO were then attached to a full 6-DOF single stage solid missile design code and 
compared against a binary and real-coded GA. A number of single and two goal tests were 
performed in which the optimizers were allowed to run for 100,000 function evaluations in order 
to compare their fitness convergence. Even in its early stages of development, the compound 
particle swarm optimizer showed significant potential as a useful engineering tool when 
compared to the genetic algorithms. The hybrid RPSO was generally able to converge much 
faster than the standard RPSO, but did not necessarily always have the best fitness at the end of 
the optimization run. Although unable to outperform the GA?s, the particle swarm was shown to 
be effective. The compound RPSO actually seemed to be more competitive on the more complex 
problems.  
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Further studies on the compound RPSO?s mini-swarm control parameters are 
recommended to determine whether a more optimum set exists for better overall convergence or 
to determine varying sets of input parameters for use on different problems. It may also be 
beneficial to use a separate optimizer to optimize the input parameters for use on certain 
problems or for different engineering applications. The standard RPSO?s inability to 
continuously improve on some of the goals may show that the optimized input parameters found 
in the sounding rocket study may not be the best parameters for use on the full missile code. The 
hybrid swarm also showed its ability to make improvements when the single-phase could not by 
making repeated calls to the mini-swarm after the larger swarm failed to show improvement. 
Changing the frequency of these calls may also have a profound impact on the overall solution. 
The compound RPSO proved extremely useful on cases when the standard RPSO would 
fail to improve during most of the run. Studies have also shown that the number of particles, the 
percentage of the solution space, and the number of iterations allowed for the mini-swarm can 
have a significant impact on the solution convergence. A fundamental modification to the local 
search portion of the particle swarm optimizer may make it more efficient and may lead to 
dramatically improved results. For example, the Pattern Search algorithm may be used on the 
best performer at the completion of the mini-swarm runs in order to improve results. The RPSO 
and especially the compound RPSO are relatively new tools for use in this area, but the 
preliminary results have proven promising. The compound RPSO was even able to outperform 
the binary GA on two of the multi-goal test cases. However, the RPSO?s are still not able to 
converge to solutions nearly as quickly as the GA?s. The current compound RPSO algorithm has 
shown a vast improvement to Mishra?s particle swarm algorithm with plenty of room left for 
further advancement. 
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APPENDIX A: Sounding Rocket Binary GA Input File 
.false.    ; micro 
.false.    ; pareto 
.false.                                       ; steady_state 
.false.    ; maximize 
.true.    ; elitist 
.true.    ; creep 
.false.    ; uniform 
.false.    ; restart 
.true.    ; remove_dup 
.false.    ; niche 
.false.    ; phenotype 
0.04    ; niche diversity percentile goal 
61742    ; iseed 
0.9    ; pcross 
0.002    ; pmutation 
0.05    ; pcreep 
3    ; ngoals 
1.,1.,1.    ; xgls(j) 
1.    ; domst 
2550    ; convrg_chk (end of group2) 
11    ; no_para 
 
 'kfuel 1' ,  8.0 , 1.0 , 1.0 , .false.  ;xmax,xmin,resolution,niche_par 
 'rpvar 2' ,  0.95  , 0.1     , 0.01 , .false.  ;xmax,xmin,resolution,niche_par 
 'rivar 3' ,  0.99  , 0.01   , 0.01 , .false.  ;xmax,xmin,resolution,niche_par 
 'nsp 4'  ,  17.0  , 3.0     , 2.0 , .false.  ;xmax,xmin,resolution,niche_par          
 'fvar 5' ,  0.2    , 0.01   , 0.01 , .false.  ;xmax,xmin,resolution,niche_par          
 'eps 6'  ,  0.9    , 0.1     , 0.1 , .false.  ;xmax,xmin,resolution,niche_par          
 'ptang 7' ,  10.0  , 1.0     , 0.1 , .false.  ;xmax,xmin,resolution,niche_par 
 'gl  8'  ,  800.  , 100.   , 2.5 , .false.  ;xmax,xmin,resolution,niche_par   
 'rbi  9'  ,  24.    , 2.0     , 0.5 , .false.  ;xmax,xmin,resolution,niche_par 
 'diath 10' ,  20.0 , 0.5     , 0.1 , .false.  ;xmax,xmin,resolution,niche_par                  
 'ratio'  ,  10. , 1.5     , 0.1 , .false.  ;xmax,xmin,resolution,niche_par 
   1                                              ; ifreq 
   400                                          ; mempops 
   625                                          ; maxgen 
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APPENDIX B: Sounding Rocket Real GA Input File 
.false.    ;generational  ONLY 1 GA TYPE CAN BE  
.true.    ;steady_state  ONLY 1 GA TYPE CAN BE 
.false.    ;hybrid        ONLY 1 GA TYPE CAN BE 
.false.    ;uniform x (50% parent1 and parent2)     
.true.    ;Blend x (blend of parents) 
.false.    ;singlepointx     
.false.    ;var_mutation  true allows mutation  
2000    ;kcheck # of gen before 1/5 rule ck   
0.2    ;xmutation_rate  how much mutation  
.1    ;xmutation_amount % of variables mutate   
3.    ;ngoals                               
1.,1.,1.    ;xgls(j)            
11    ;no_para 
 
'kfuel 1' ,  8.0 , 1.0 , 1.0 , .false.  ;xmax,xmin,resolution,niche_par 
'rpvar 2' ,  0.95 , 0.1 , 0.01 , .false.  ;xmax,xmin,resolution,niche_par 
'rivar 3' ,  0.99 , 0.01 , 0.01 , .false.  ;xmax,xmin,resolution,niche_par 
'nsp 4'  ,  17.0 , 3.0 , 2.0 , .false.  ;xmax,xmin,resolution,niche_par          
'fvar 5'  ,  0.2 , 0.01 , 0.01 , .false.  ;xmax,xmin,resolution,niche_par          
'eps 6'  ,  0.9 , 0.1 , 0.1 , .false.  ;xmax,xmin,resolution,niche_par          
'ptang 7' ,  10.0 , 1.0 , 0.1 , .false.   ;xmax,xmin,resolution,niche_par 
'gl  8'  ,  800. , 100. , 2.5 , .false.  ;xmax,xmin,resolution,niche_par   
'rbi  9'  ,  24. , 2.0 , 0.5 , .false.  ;xmax,xmin,resolution,niche_par 
'diath 10' ,  20.0 , 0.5 , 0.1 , .false.  ;xmax,xmin,resolution,niche_par                  
'ratio'  ,  10. , 1.5 , 0.1 , .false.  ;xmax,xmin,resolution,niche_par 
1    ; ifreq 
30    ; mempops 
250000   ; maxgen 
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APPENDIX C: Sounding Rocket RPSO Input File 
0  ;maximize objective function = 1, minimize objective function = 0 
30  ;population size, n 
10  ;neighboring population sample size, nn (must be less than n) 
100  ;maximum allowable number of independent variables, mx 
5  ;local sample space size, nstep (5 < nstep <15) 
100  ;results displayed every "nprn" iteration, nprn 
1  ;chaos parameter, nsigma (=0 no chaotic perturbation, =1 chaotic perturbation) 
3  ;neighborhood topology type, itop (=1 ring, =2 ring and random, =3 random)  
0.75d0  ;particle velocity term 1 constant, a1 
0.05d0  ;particle velocity term 2 constant, a2 
0.25d0    ;particle velocity term 3 constant, a3 
0.36d0  ;particle velocity inertia constant, w 
0.01d0  ;chaos conditioning term, sigma  ... should not have to change 
4863  ;random generator seed 
600         ;number of iterations (generations), itrn 
11  ;actual number of independent variables, m 
3  ;ngoals 
1.,1.,1.  ; xgls(j) 
'kfuel 1' ,  8.0d0 , 1.0d0  , 1.0d0  ;xmax,xmin,vlim 
'rpvar 2'    ,  0.95d0 , 0.1d0  , 1.0d0  ;xmax,xmin,vlim 
'rivar 3' ,  0.99d0 , 0.01d0 , 1.0d0  ;xmax,xmin,vlim 
'nsp 4'  ,  17.0d0 , 3.0d0  , 1.0d0  ;xmax,xmin,vlim          
'fvar 5'  ,  0.2d0 , 0.01d0 , 1.0d0  ;xmax,xmin,vlim          
'eps 6'  ,  0.9d0 , 0.1d0  , 1.0d0  ;xmax,xmin,vlim        
'ptang 7' ,  10.d0 , 1.0d0  , 1.0d0  ;xmax,xmin,vlim 
'gl 8'       ,  800.d0 , 100.0d0 , 1.0d0  ;xmax,xmin,vlim   
'rbi 9'  ,  24.d0 , 2.0d0  , 1.0d0  ;xmax,xmin,vlim 
'diath 10'   ,  20.d0 , 0.5d0  , 1.0d0  ;xmax,xmin,vlim          
'ratio 11'   ,  10.0d0 , 1.5d0  , 1.0d0  ;xmax,xmin,vlim          
 
 
 
 
 
 
 
 
 
 
 
 
76 
 
 
 
 
 
APPENDIX D: RPSO Source File 
      subroutine swarm 
c 
c     SUBROUTINE TO FIND GLOBAL MINIMUM BY REPULSIVE PARTICLE SWARM METHOD 
c     WRITTEN BY SK MISHRA, DEPT. OF ECONOMICS, NEHU, SHILLONG (INDIA) 
c 
c     modified by R.M. Jenkins, Auburn University (May-November 2009) to 
c     include constrained optimization based on user-input parameter limits 
c     and more realistic parameter behavior in multi-disciplinary 
c     engineering optimization problems 
c 
      implicit double precision(a-h,o-z) 
      parameter(np=100,nnp=25,mxp=100,nstepp=25,itrnp=2200,nsigmap=1) 
      parameter(itopp=3,nprnt=100) 
      parameter(npr=200,mstr=750,mpop=400,ngls=20) 
      character names*14 
      character ext*5,fname*80 
      COMMON /RNDM/IU,IV 
      common/swarmcontrol/minmax,ibest,mvar,iter,member,intl,intlans, 
     &bstwrt,shtans 
      common/bounds/xxmax(mxp),xxmin(mxp),vlim(mxp) 
C     common/pass/yy(15,100) 
      common/range/rangej(mxp) 
      common/pop/amn(np) 
      common/cal/ical 
      common/best/bestans,bestyy(mxp) 
      common/gls/ngoals 
      common/gls2/xgls(ngls*2) 
      INTEGER IU,IV 
      dimension x(np,mxp),v(np,mxp),a(mxp),vi(mxp),tit(50),c(mxp) 
      dimension xx(np,mxp),f(np),v1(mxp),v2(mxp),v3(mxp),v4(mxp) 
      dimension bst(mxp),xmax(mxp),xmin(mxp),names(mxp+1) 
      dimension cenj(mxp),xval(np,mxp),vval(np,mxp),z(np,mxp) 
      dimension vlimin(mxp),vlimax(mxp),gbst(np,mxp),bestpop(itrnp) 
      dimension trial(mxp) 
      dimension xoa(itrnp,np,mxp),sol(np),bestx(itrnp,mxp) 
      dimension fminmem(np),xbest(np,mxp) 
      dimension bwt(mxp) 
      data fmin /1.0d10/ 
      common/fcount/fcount 
      integer fcount 
      common/pass/yy(1,15,30),ys(11,40) 
      integer pnlt(np),bstwrt 
c 
c     minmax   = 1 maximize; = 0 minimize 
c     n    = population size 
c     nn   = neighboring population sample size (must be less than n) 
c     mx   = maximum allowable number of independent variables (f(x1,x2,......,mx) 
c     nstep   = local tunneling parameter (ignores local gradients) 
c                 5 < nstep < 15 
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c     nprn   = results displayed every nprn iteration 
c     nsigma is a perturbation parameter 
c                 nsigma = 0  no chaotic perturbation 
c                 nsigma = 1  chaotic perturbation 
c     itop   = neighbor topology type 
c                 itop = 1    ring 
c                 itop = 2    ring and random 
c                 itop = 3    random 
c     iu   = random number generator seed 
c     itrn   = number of iterations (generations)  
c     m          = actual number of independent variables  
c     xmax,xmin   = maximum and minimum parameter values; (xmax-xmin) = range 
c     vlim        = upper limit on particle velocity, expressed as a 
c      multiplier on parameter range (maximum = 1.0)               
c 
      epsilon=1.D-20 ! ACCURACY NEEDED FOR TERMINATON 
c     
      open(unit=5,file='rpsoin.dat') 
      open(unit=4,file='funcount.dat') 
      open(unit=36,file='initpop.dat') 
      open(unit=48,file='Best_data.dat') 
      read(5,*)minmax 
      read(5,*)n 
      read(5,*)nn 
      read(5,*)mx 
      read(5,*)nstep 
      read(5,*)nprn 
      read(5,*)nsigma 
      read(5,*)itop 
      read(5,*)a1 
      read(5,*)a2 
      read(5,*)a3 
      read(5,*)w 
      read(5,*)sigma 
      read(5,*)iu 
      read(5,*)itrn 
      read(5,*)m 
      read(5,*) ngoals  
      read(5,*) (xgls(j),j=2,ngoals+1) 
c 
      xgls(1)=float(ngoals) 
      ys(4,5)=dble(float(ngoals)) 
 
      do j=1,m 
      read(5,*) names(j),xmax(j),xmin(j),vlim(j) 
 if(vlim(j).gt.1.0d0) vlim(j)=1.0d0 
 xxmax(j)=xmax(j) 
 xxmin(j)=xmin(j) 
 enddo 
 close(5) 
      names(m+1)='fln' 
      names(m+2)='z0' 
      names(m+3)='tol' 
      names(m+4)='parmatch' 
c 
      FFMIN=1.D30 
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      fmin=1.0d10 
      LCOUNT=0 
      npop=n 
      mvar=m 
c 
c     generate boundaries for solution space 
c 
      iter=1 
      fcount = 0 
      avg = 0 
      bstwrt = 0 
      do j=1,m 
 rangej(j)=xmax(j)-xmin(j) 
      enddo 
c 
c     Generate an initial random population of m-tuple parameters x(i,j)  
c     for "n" population members and calculate the fitness function of each member.   
c     Each parameter is constrained to lie within user specified ranges. 
c 
      intl = 0 
      pnlt = 0 
      shtans = 10e9 
      write(*,*)'filling initial population with viable solutions' 
      isol=0 
c  
      write(36,714)(names(i),i=1,m), 
     & ('fitness') 
  714 format(7x,120(a14,1x)) 
c 
   50 do 450 i=1,100000 
        do j=1,m 
   rangej(j)=xmax(j)-xmin(j) 
          call random(rand) 
   trial(j)=rand*rangej(j)+xxmin(j) 
   a(j)=trial(j) 
   ys(9,j)=a(j) 
 enddo 
   ys(4,2)=dble(float(isol+1)) 
   ys(4,3)=dble(float(0)) 
        call objective_function(a,M,solution) 
 if(solution.lt.1.0d10.and.isol.lt.n.and.i.le.100000)then 
   isol=isol+1 
   write(*,*)i,isol,sngl(solution) 
   sol(isol)=solution 
   fminmem(isol)=solution 
          do k=1,m 
     x(isol,k)=a(k)  
   enddo 
   if(isol.eq.n)then 
           write(*,*)'initial population filled' 
    goto 60 
   endif 
 endif 
 
  450 continue 
c 
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      write(*,*)'initial population could not be completely filled 
     &with viable solutions' 
      do i=isol+1,n 
      fminmem(i)=1.0d10 
        do k=1,m 
   call random(rand) 
   x(i,k)= rand*rangej(k)+xmin(k)  
 enddo 
      sol(i) = 1.0d10 
      enddo 
   60 continue 
c 
c  write initial population data 
      do i=1,n 
      write(36,716)i,(x(i,ii),ii=1,m), 
     & (sol(i)) 
  716 format(1x,i3,1x,120(e14.8,1x)) 
      enddo 
      close(unit=36) 
c  determine best member of initial population 
      fmin=sol(1) 
      bestans=sol(1) 
      do j=1,m 
       bestyy(j)=x(1,j) 
      enddo 
      ibest=1 
      do i=2,n 
 if(sol(i).lt.fmin)then 
   fmin=sol(i) 
   bestans=sol(i) 
   do j=1,m 
           bestyy(j)=x(i,j) 
   enddo 
   ibest=i 
 endif 
      enddo 
  
      do j=1,n 
 avg = avg + sol(j) 
      enddo 
      avg = avg/n 
 
      best0=fmin  !best value returned from random population 
c 
c     prepare data for next generation 
c 
      do i=1,n 
 member=i 
        amn(i)=fminmem(i) 
        do j=1,m 
   a(j)=x(i,j) 
          z(i,j)=a(j) 
c 
c     randomize initial generation velocities 
c 
          call velocity(i,j,x,a1,dvelmin,dvelmax,velmin,velmax,rangevel) 
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          call random(rand1) 
          vtemp=rand1*rangevel+velmin 
   v(i,j)=vtemp-x(i,j) 
 enddo 
      enddo 
c 
      DO 100 ITER=1,ITRN  !*** THIS IS THE GENERATION LOGIC LOOP ***  
c 
      ys(4,3)=dble(float(iter)) 
      if(fcount.gt.100000) goto 999 
c 
      write(ext,'(i5)') iter 
      do kb=1,5 
       if(ext(kb:kb).eq.' ')ext(kb:kb)='0' 
      enddo 
      fname='Iteration.'//ext 
      open(unit=45,file=fname,status='unknown') 
      write(45,714)(names(i),i=1,m), 
     & ('fitness') 
c 
        do i=1,n  !*** THIS IS THE POPULATION LOGIC LOOP *** 
           member=i 
           do j=1,m 
            if(iter.eq.1)then 
      a(j)=z(i,j) 
     else 
      a(j)=z(i,j)+v(i,j) !array of all independent variables  
c               for particle "i" in a given generation 
     endif 
             c(j)=a(j) 
             vi(j)=v(i,j)         !array of velocities for particle "i" 
           enddo 
c      
c      LSRCH lets each particle look in a limited "volume" of space  
c      to determine if a better solution s available.  The array of parameters 
c      for such a solution, if one exists, is called xx(member,i) 
c  
         amnn=amn(member) 
         intl=1 
c 
  call lsrch(a,m,nstep,amnn,bst,fi) 
   70      if(fi.lt.amnn)then 
      amn(member)=fi 
    endif 
           do in=1,m 
            xx(member,in)=bst(in) 
           enddo 
         f(i)=fi 
  write(45,716)i,(a(ii),ii=1,m),(f(i)) 
        enddo   !*** END OF POPULATION LOGIC LOOP *** 
c 
      if(iter.eq.1)then 
         bestpop(iter)=f(1) 
  ibest=1 
         do i=2,n 
     if(f(i).lt.bestpop(iter))then 
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       bestpop(iter)=f(i) 
       ibest=i 
     endif 
  enddo 
  fmin=bestpop(iter) 
  bestoa=fmin 
     member=1 
     intl=2 
     call setup 
      endif 
c 
c     now consider all other iterations 
c 
      bestpop(iter)=f(1) 
      ibest=1 
      do i=2,n 
  if(f(i).lt.bestpop(iter))then 
    bestpop(iter)=f(i) 
    ibest=i 
  endif 
      enddo 
      if(bestpop(iter).lt.bestoa)then 
        bestoa=bestpop(iter) 
     member=1 
     intl=2 
     call setup 
      endif       
 fmin=bestpop(iter) 
  
      do j=1,n 
 avg = avg + f(j) 
      enddo 
      avg = avg/n 
 
      write(27,*)'iteration no.',iter,'     fitness =',sngl(bestans) 
      write(48,*)'iteration no.',iter,'     fitness =',sngl(bestans) 
      write(*,*)'iteration no.',iter,'     fitness =',sngl(bestans) 
      write(4,*) iter,fcount,sngl(bestans),avg 
      avg = 0 
 
      bstwrt = 1 
      do l=1,m 
      bwt(l) = bestyy(l) 
      enddo 
      call objective_function(bwt,M,solution) 
 
      do j=1,m 
      write(27,*)bestyy(j) 
      write(48,*)bestyy(j) 
      enddo 
      bstwrt = 0 
c 
c     F(I) CONTAINS THE LOCAL BEST VALUE OF FUNCTION FOR ITH INDIVIDUAL 
c 
c     XX(I,J) IS THE M-TUPLE VALUE OF X ASSOCIATED WITH LOCAL BEST F(I) 
c 
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c      NOW LET EVERY INDIVIDUAL RANDOMLY CONSULT NN(<<N) COLLEAGUES AND 
c      FIND THE BEST AMONG THEM 
c 
      do i=1,n 
c     ------------------------------------------------------------------ 
        IF(ITOP.GE.3) THEN 
c     RANDOM TOPOLOGY ****************************************** 
c     CHOOSE NN COLLEAGUES RANDOMLY AND FIND THE BEST AMONG THEM 
          BEST=1.0D10 
           DO II=1,NN 
                 CALL RANDOM(RAND) 
               NF=INT(RAND*N)+1 
                IF(BEST.GT.F(NF)) THEN 
                 BEST=F(NF) 
                NFBEST=NF 
                 ENDIF 
           ENDDO 
        ENDIF 
C---------------------------------------------------------------------- 
        IF(ITOP.EQ.2) THEN 
C     RING + RANDOM TOPOLOGY ****************************************** 
        BEST=1.0D10 
          CALL NEIGHBOR(I,N,I1,I3) 
          DO II=1,NN 
                IF(II.EQ.1) NF=I1 
                 IF(II.EQ.2) NF=I 
                  IF(II.EQ.3) NF=I3 
                      IF(II.GT.3) THEN 
                     CALL RANDOM(RAND) 
                      NF=INT(RAND*N)+1 
                     ENDIF 
                  IF(BEST.GT.F(NF)) THEN 
                  BEST=F(NF) 
                  NFBEST=NF 
                 ENDIF 
             ENDDO 
        ENDIF 
C--------------------------------------------------------------------- 
        IF(ITOP.LE.1) THEN 
C     RING TOPOLOGY ************************************************** 
        BEST=1.0D10 
           CALL NEIGHBOR(I,N,I1,I3) 
           do ii=1,3 
                if(ii.eq.1) nf=i1 
                if(ii.eq.2) nf=i 
                if(ii.eq.3) nf=i3 
                if(best.gt.f(nf)) then 
                  best=f(nf) 
                  nfbest=nf 
                endif 
             enddo 
        endif 
c--------------------------------------------------------------------- 
c     Each particle "i" will now move through the solution space (with a 
c     "velocity" V) based on the following criteria 
c 
83 
 
         do j=1,m 
            vlimin(j)=-(x(i,j)-xxmin(j)) 
     vlimax(j)=xxmax(j)-x(i,j) 
  enddo 
c 
c     (1) velocity based on the particle's experience, including memory of  
c         it's best position in the past ... xx(i)  
c      
      do j=1,m 
        CALL RANDOM(RAND) 
        V1(J)=A1*RAND*(XX(I,J)-X(I,J)) 
c 
c     (2) velocity based on neighboring particles best experience, based on 
c         the choice of solution topology ... "W" is an "inertial weight 
c         parameter in the next three terms 
c 
        CALL RANDOM(RAND) 
        V2(J)=V(I,J) 
        IF(F(NFBEST).LT.F(I)) THEN 
          V2(J)=A2*W*RAND*(XX(NFBEST,J)-X(I,J)) 
        ENDIF 
c 
c     (3) velocity selected randomly 
c 
        CALL RANDOM(RAND) 
        RND1=RAND 
        CALL RANDOM(RAND) 
        V3(J)=A3*RAND*W*RND1 
c 
c     (4) velocity based on the particle's most recent velocity value  
c 
        V4(J)=W*V(I,J) 
c 
c     The total particle velocity is then 
c 
           V(I,J)= V1(J)+V2(J)+V3(J)+V4(J) 
c 
c      now ensure that the particle remains within the defined parameter space 
c 
  if(v(i,j).gt.0.0d0)then 
   vmax=vlim(j)*vlimax(j) 
   if(v(i,j).lt.vmax)then 
    goto 900 
   else 
    v(i,j)=rand*vmax 
          endif 
  elseif(v(i,j).lt.0.0d0)then 
    vmin=vlim(j)*vlimin(j) 
   if(abs(v(i,j)).lt.abs(vmin))then 
    goto 900 
   else 
    v(i,j)=rand*vmin 
          endif 
  endif 
  900 continue 
        X(I,J)=X(I,J)+V(I,J) 
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           ENDDO 
      ENDDO 
c 
       DO I=1,n 
         IF(F(I).LT.FMIN) THEN 
           FMIN=F(I) 
           II=I 
           DO J=1,M 
             BST(J)=XX(II,J) 
           ENDDO 
         ENDIF 
       ENDDO 
      IF(LCOUNT.EQ.NPRN) THEN 
      LCOUNT=0 
c      IF(DABS(FFMIN-FMIN).LT.EPSILON) GOTO 999 
      FFMIN=FMIN 
      ENDIF 
      LCOUNT=LCOUNT+1 
      ansitrn=fmin 
 if(minmax.eq.1)ansitrn=1.0d0/fmin 
  100 CONTINUE      !***** END OF GENERATION LOGIC 
LOOP ***** 
  999 continue 
      ans=fmin 
 if(minmax.eq.1)ans=1.0d0/fmin 
 close(unit=4) 
 return 
  200 format(10x,100(a14,3x)) 
  201 format(4x,100(f10.4,8x)) 
  202 format(10x,102(a14,1x)) 
  203 format(/) 
      end 
c 
      SUBROUTINE lsrch(a,m,nstep,amnn,bst,fi) 
      implicit double precision(a-h,o-z) 
      parameter(np=100,nnp=25,mxp=100,nstepp=25,itrnp=2200,nsigmap=1) 
      COMMON /RNDM/IU,IV 
      common/bounds/xxmax(mxp),xxmin(mxp),vlim(mxp) 
c     common/pass/yy(15,100) 
      common/range/rangej(mxp) 
      common/swarmcontrol/minmax,ibest,mvar,iter,member,intl 
      common/pop/amn(np) 
      common/best/bestans,bestyy(mxp) 
      common/pass/yy(1,15,30),ys(11,40) 
      INTEGER IU,IV 
      dimension a(mxp),b(mxp),x(np,mxp),xx(np,mxp) 
      dimension c(500,mxp),bst(mxp) 
 
c 
c     This subroutine allows an individual particle to "wander" within a specified locality 
c         to determine if a better solution can be found in that locality. It does so by 
c         systematically varying each independent parameter sequentially. 
c 
 ichange=0 
 amin=dfloat(-nstep/2) 
 amax=dfloat(nstep/2-1) 
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c 
c     "A" is the initial array of values for each independent variable for a given particle "i" 
c     "B" is a new (possible) array of these variables, determined by NSTEP 
c     "M" is the number of independent variables 
c     "NSTEP" determines the separation of values examined within the local search volume, 
c                centered on "A" 
c     this subroutine is called for every particle "i" in a given generation 
c 
      ncount=1 
      kbest=1 
      fbest=amnn 
 
 do k=1,m 
  b(k)=a(k) 
 enddo 
 
      do j=1,nstep    !step loop  
c 
         do jj=1,m    !loop systematically changes the parameter 
c                                  set sequentially 
 
  rangej(jj)=xxmax(jj)-xxmin(jj) 
  if(rangej(jj).lt.1d-5) then 
  b(jj)=xxmax(jj) 
  goto 350 
  endif 
 
       call velocity(member,jj,x,vlim(jj),dvelmin,dvelmax,velmin,velmax, 
     &   rangevel) 
         anstep=dfloat(j-(nstep/2)-1) 
         delamin=(dvelmin-0.0001d0)/(-amin) 
  delamax=(dvelmax-0.0001d0)/amax 
         if(anstep.lt.0.0d0)then 
            
                 call random(rand) 
 
           b(jj)=a(jj)+delamin*anstep*rand 
      ys(9,jj)=b(jj) 
    call objective_function(b,m,fii) 
           do k=1,m 
             c(ncount,k)=ys(9,k) 
    enddo 
    goto 350 
    elseif(anstep.gt.0.0d0)then 
 
              call random(rand) 
 
           b(jj)=a(jj)+delamax*anstep*rand 
    ys(9,jj)=b(jj) 
           call objective_function(b,m,fii) 
           do k=1,m 
             c(ncount,k)=ys(9,k) 
    enddo 
    goto 350 
    else 
           ys(9,jj)=a(jj) 
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      c(ncount,k)=ys(9,k) 
    endif 
  350 continue 
         if(fii.lt.fbest)then 
  fbest=fii   !best value for member "i"from NSTEP 
   if(fbest.lt.bestans)then 
           bestans=fbest 
    do jk=1,m 
     bestyy(jk)=c(ncount,jk) 
    enddo 
  endif 
  amnn=fbest 
  kbest=ncount 
  endif 
         amnn=fbest 
         bst(jj)=c(kbest,jj)    !array of parameters associated with 
c                                          best value of member "i" to date 
  ncount=ncount+1 
  enddo 
      enddo 
      fi=fbest 
      return 
      end 
c 
c     THIS SUBROUTINE IS NEEDED IF THE NEIGHBOURHOOD HAS RING TOPOLOGY 
c     EITHER PURE OR HYBRIDIZED 
c 
       SUBROUTINE NEIGHBOR(I,N,J,K) 
       IF(I-1.GE.1 .AND. I.LT.N) THEN 
       J=I-1 
       K=I+1 
       ELSE 
       IF(I-1.LT.1) THEN 
       J=N-I+1 
       K=I+1 
       ENDIF 
       IF(I.EQ.N) THEN 
       J=I-1 
       K=1 
       ENDIF 
       ENDIF 
       RETURN 
       END 
c 
      SUBROUTINE RANDOM(RAND1) 
       DOUBLE PRECISION  RAND1 
       COMMON /RNDM/IU,IV 
       INTEGER IU,IV 
       RAND=REAL(RAND1) 
       IV=IU*65539 
       IF(IV.LT.0) THEN 
       IV=IV+2147483647+1 
       ENDIF 
       RAND=IV 
       IU=IV 
       RAND=RAND*0.4656613E-09 
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       RAND1=DBLE(RAND) 
       RETURN 
       END 
c 
      subroutine velocity(i,j,x,par,dvelmin,dvelmax,velmin,velmax, 
     &rangevel) 
c     subroutine to determine limits on particle velocity 
      implicit double precision(a-h,o-z) 
      parameter(np=100,nnp=25,mxp=100,nstepp=25,itrnp=2200,nsigmap=1) 
      common/bounds/xxmax(mxp),xxmin(mxp),vlim(mxp) 
      dimension x(np,mxp) 
      dvelmin=dabs(x(i,j)-xxmin(j)) 
      dvelmax=dabs(xxmax(j)-x(i,j)) 
      velmin=x(i,j)-par*dvelmin 
      velmax=x(i,j)+par*dvelmax 
      rangevel=velmax-velmin 
      return 
      end 
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APPENDIX E: Compound RPSO Mini-Swarm Input File 
5  ;population size, n2 
5  ;neighboring population sample size, nn2 (must be less than n) 
5  ;local sample space size, nstep2 (5 < nstep <15) 
100  ;results displayed every "nprn" iteration, nprn2 
1  ;chaos parameter, nsigma2 (=0 no chaotic perturbation, =1 chaotic perturbation) 
3  ;neighborhood topology type, itop2 (=1 ring, =2 ring and random, =3 random)  
0.25d0  ;particle velocity term 1 constant, a1_2 
0.95d0  ;particle velocity term 2 constant, a2_2 
0.05d0    ;particle velocity term 3 constant, a3_2 
0.70d0  ;particle velocity inertia constant, w_2 
0.05d0  ;percentage of solution space for miniswarm search, sp 
20        ;number of iterations (generations), itrn2 
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APPENDIX F: Single Stage Solid Binary GA Input File 
.false.    ;micro  FIN                           
.false.    ;pareto                               
.false.    ;steady_state                         
.false.    ;maximize                             
.true.                                        ;elitist                              
.false.                                       ;creep                                
.false.                                       ;uniform                              
.false.                                       ;restart                              
.true.                                        ;remove_dup                           
.false.                                       ;niche                                
.false.                                       ;phenotype                            
0.04    ;niche_diversity_percent_goal         
67742    ;iseed                                
0.9    ;pcross                               
0.002    ;pmutation                            
0.05    ;pcreep                               
2    ; ngoals 
1.0 1.0    ; xgls(j) 
1.    ;domst                                
2550    ;convrg_chk(end_of_group2)            
35    ;no_para                              
 'rnos/rbod' 0.60000 0.40000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'lnos/dbod' 3.00000 1.50000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'kfuel___3' 9.00000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 
 'rpvar___4' 0.80000 0.30000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'rivar___5' 0.80000 0.10000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'nsp_____6' 11.0000 5.00000 1.0000  .false. ;xmax_xmin_resolution_niche 
 'fvar____7' 0.10000 0.03000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'eps_____8' 0.95000 0.60000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'ptang___9' 10.00000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 
 'fn1____10' 0.99000 0.66000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'dth/Db_11' 0.30000 0.25000 0.0020  .false. ;xmax_xmin_resolution_niche 
 'Lb/Db__12' 15.00000 10.0000 0.5000  .false. ;xmax_xmin_resolution_niche 
 'dbody__13' 0.64000 0.25000 0.0020  .false. ;xmax_xmin_resolution_niche 
 'b2w/DB_14' 0.05000 0.01000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'crw/DB_15' 0.05000 0.01000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'trw____16' 0.99000 0.90000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'wleswe_17' 30.0000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 
 'xLEw___18' 0.25000 0.20000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'b2t/DB_19' 1.40000 1.20000 0.1000  .false. ;xmax_xmin_resolution_niche 
90 
 
 'crt/DB_20' 1.10000 0.90000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'trt____21' 0.99000 0.50000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'tleswp_22' 30.00000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 
 'xTEt___23' 1.00000 0.95000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'Apdly  24' 5000.0  4999.0  1.0  .false. ;xmax_xmin_resolution_niche 
 'thet0__25' 85.00000 40.00000 1.0000  .false. ;xmax_xmin_resolution_niche 
 'gainp1_26' 4.40000 3.60000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'gainy1_27' 3.50000 1.00000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'xcet___28' .95000  .55000  0.0500  .false. ;xmax_xmin_resolution_niche 
 'dele0__29' -7.000  -15.000 1.0000  .false. ;xmax_xmin_resolution_niche 
 'gainp2_30' 0.01000 0.00000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'b2var__31' 0.01000 0.00000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'dtchek_32' 1.00000 0.30000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'gainy2_33' 0.01000 0.00000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'delx-z_34' 00001.0 00000.0 00001.0 .false. ;xmax_xmin_resolution_niche 
 'delx-y_35' 00001.0 00000.0 00001.0 .false. ;xmax_xmin_resolution_niche 
 1    ;frequency  FIN DEDR_6                   
 200                                         ;number of members in each generation    
 500                                         ;number of generations                   
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APPENDIX G: Single Stage Solid Real GA Input File 
.false.    ;generational  ONLY 1 GA TYPE CAN BE  
.true.    ;steady_state  ONLY 1 GA TYPE CAN BE  
.false.    ;hybrid        ONLY 1 GA TYPE CAN BE  
.false.    ;uniform x (50% parent1 and parent2   
.true.    ;Blend x (blend of parents)           
.false.    ;singlepointx                         
.false.    ;var_mutation  true allows mutation   
2000    ;kcheck # of gen before 1/5 rule ck   
0.2    ;xmutation_rate  how much mutation    
.1    ;xmutation_amount % of variables mutated 
2    ;ngoals  
1.0 1.0    ;xgls(j)  
35    ;no_para                              
'rnos/rbod' 0.60000 0.40000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'lnos/dbod' 3.00000 1.50000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'kfuel___3' 9.00000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 
 'rpvar___4' 0.80000 0.30000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'rivar___5' 0.80000 0.10000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'nsp_____6' 11.0000 5.00000 1.0000  .false. ;xmax_xmin_resolution_niche 
 'fvar____7' 0.10000 0.03000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'eps_____8' 0.95000 0.60000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'ptang___9' 10.00000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 
 'fn1____10' 0.99000 0.66000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'dth/Db_11' 0.30000 0.25000 0.0020  .false. ;xmax_xmin_resolution_niche 
 'Lb/Db__12' 15.00000 10.0000 0.5000  .false. ;xmax_xmin_resolution_niche 
 'dbody__13' 0.64000 0.25000 0.0020  .false. ;xmax_xmin_resolution_niche 
 'b2w/DB_14' 0.05000 0.01000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'crw/DB_15' 0.05000 0.01000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'trw____16' 0.99000 0.90000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'wleswe_17' 30.0000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 
 'xLEw___18' 0.25000 0.20000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'b2t/DB_19' 1.40000 1.20000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'crt/DB_20' 1.10000 0.90000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'trt____21' 0.99000 0.50000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'tleswp_22' 30.00000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 
 'xTEt___23' 1.00000 0.95000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'Apdly  24' 5000.0  4999.0  1.0  .false. ;xmax_xmin_resolution_niche 
 'thet0__25' 85.00000 40.00000 1.0000  .false. ;xmax_xmin_resolution_niche 
 'gainp1_26' 4.40000 3.60000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'gainy1_27' 3.50000 1.00000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'xcet___28' .95000  .55000  0.0500  .false. ;xmax_xmin_resolution_niche 
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 'dele0__29' -7.000  -15.000 1.0000  .false. ;xmax_xmin_resolution_niche 
 'gainp2_30' 0.01000 0.00000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'b2var__31' 0.01000 0.00000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'dtchek_32' 1.00000 0.30000 0.1000  .false. ;xmax_xmin_resolution_niche 
 'gainy2_33' 0.01000 0.00000 0.0100  .false. ;xmax_xmin_resolution_niche 
 'delx-z_34' 00001.0 00000.0 00001.0 .false. ;xmax_xmin_resolution_niche 
 'delx-y_35' 00001.0 00000.0 00001.0 .false. ;xmax_xmin_resolution_niche 
   1    ; ifreq FIN DEDR_6                    
   30    ; mempops                             
   100000   ; maxgen                             
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APPENDIX H: Single Stage Solid RPSO Input File 
0  ;maximize objective function = 1, minimize objective function = 0                 
30  ;population size, n                                                              
10  ;neighboring population sample size, nn (must be less than n)                    
100  ;maximum allowable number of independent variables, mx                          
5  ;local sample space size, nstep (5 < nstep <15)                                   
100  ;results displayed every "nprn" iteration, nprn                                 
1  ;chaos parameter, nsigma (=0 no chaotic perturbation, =1 chaotic perturbation)    
3  ;neighborhood topology type, itop (=1 ring, =2 ring and random, =3 random)        
0.875d0 ;particle velocity term 1 constant, a1                                       
0.75d0  ;particle velocity term 2 constant, a2                                        
0.625d0    ;particle velocity term 3 constant, a3                                     
0.36d0  ;particle velocity inertia constant, w                                        
0.01d0  ;chaos conditioning term, sigma  ... should not have to change                
4863  ;random generator seed                                                          
2200         ;max number of iterations (generations), itrn                                 
35  ;actual number of independent variables, m                                       
2  ; ngoals 
1.0 1.0  ; xgls(j) 
 'rnos/rbod' 0.60000 0.40000 1.0d0      ;xmax,xmin,vlim 
 'lnos/dbod' 3.00000 1.50000 1.0d0      ;xmax,xmin,vlim 
 'kfuel___3' 9.00000 1.00000 1.0d0      ;xmax,xmin,vlim 
 'rpvar___4' 0.80000 0.30000 1.0d0      ;xmax,xmin,vlim 
 'rivar___5' 0.80000 0.10000 1.0d0      ;xmax,xmin,vlim 
 'nsp_____6' 11.0000 5.00000 1.0d0      ;xmax,xmin,vlim 
 'fvar____7' 0.10000 0.03000 1.0d0      ;xmax,xmin,vlim 
 'eps_____8' 0.95000 0.60000 1.0d0      ;xmax,xmin,vlim 
 'ptang___9' 10.00000 1.00000 1.0d0      ;xmax,xmin,vlim 
 'fn1____10' 0.99000 0.66000 1.0d0      ;xmax,xmin,vlim 
 'dth/Db_11' 0.30000 0.25000 1.0d0      ;xmax,xmin,vlim 
 'Lb/Db__12' 15.00000 10.0000 1.0d0      ;xmax,xmin,vlim 
 'dbody__13' 0.64000 0.25000 1.0d0      ;xmax,xmin,vlim 
 'b2w/DB_14' 0.05000 0.01000 1.0d0      ;xmax,xmin,vlim 
 'crw/DB_15' 0.05000 0.01000 1.0d0      ;xmax,xmin,vlim 
 'trw____16' 0.99000 0.90000 1.0d0      ;xmax,xmin,vlim 
 'wleswe_17' 30.0000 1.00000 1.0d0      ;xmax,xmin,vlim 
 'xLEw___18' 0.25000 0.20000 1.0d0      ;xmax,xmin,vlim 
 'b2t/DB_19' 1.40000 1.20000 1.0d0      ;xmax,xmin,vlim 
 'crt/DB_20' 1.10000 0.90000 1.0d0      ;xmax,xmin,vlim 
 'trt____21' 0.99000 0.50000 1.0d0      ;xmax,xmin,vlim 
 'tleswp_22' 30.00000 1.00000 1.0d0      ;xmax,xmin,vlim 
 'xTEt___23' 1.00000 0.95000 1.0d0      ;xmax,xmin,vlim 
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 'Apdly  24' 5000.0  4999.0  1.0d0      ;xmax,xmin,vlim 
 'thet0__25' 85.00000 40.00000 1.0d0      ;xmax,xmin,vlim 
 'gainp1_26' 4.40000 3.60000 1.0d0      ;xmax,xmin,vlim 
 'gainy1_27' 3.50000 1.00000 1.0d0      ;xmax,xmin,vlim 
 'xcet___28' .95000  .55000  1.0d0      ;xmax,xmin,vlim 
 'dele0__29' -7.000  -15.000 1.0d0      ;xmax,xmin,vlim 
 'gainp2_30' 0.01000 0.00000 1.0d0      ;xmax,xmin,vlim 
 'b2var__31' 0.01000 0.00000 1.0d0      ;xmax,xmin,vlim 
 'dtchek_32' 1.00000 0.30000 1.0d0      ;xmax,xmin,vlim 
 'gainy2_33' 0.01000 0.00000 1.0d0      ;xmax,xmin,vlim 
 'delx-z_34' 00001.0 00000.0 1.0d0      ;xmax,xmin,vlim 
 'delx-y_35' 00001.0 00000.0 1.0d0      ;xmax,xmin,vlim 
 
 

