EXPLORING THE INTEGRATION OF MODEL-BASED FORMAL METHODS INTO
SOFTWARE DESIGN EDUCATION

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not
include proprietary or classified information.

Shuo Wang

Certificate of Approval:

John Hamilton
Associate Professor
Computer Science and Software
Engineering

Dean Hendrix
Associate Professor
Computer Science and Software
Engineering

Levent Yilmaz, Chair
Assistant Professor
Computer Science and Software
Engineering

Stephen L. McFarland
Acting Dean
Graduate School

EXPLORING THE INTEGRATION OF MODEL-BASED FORMAL METHODS INTO
SOFTWARE DESIGN EDUCATION

Shuo Wang

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements of the
Degree of
Master of Science

Auburn, Alabama
December 16, 2005

 iii
EXPLORING THE INTEGRATION OF MODEL-BASED FORMAL METHODS INTO
SOFTWARE DESIGN EDUCATION

Shuo Wang

Permission is granted to Auburn University to make copies of this thesis at its discretion,
upon request of individuals or institutions and at their expense. The author reserves all
publication rights.

 Signature of Author

 Date of Graduation

 iv
VITA

Shuo Wang, son of Linfu Wang and Suran Guo, was born in October 1979 in Tianjin,
the People?s Republic of China. He entered Georgia Institute of Technology in 1998 and
received a Bachelor of Science degree in College of Computing in December 2002. Mr.
Wang entered Graduate School at Auburn University in August, 2003.

 v
THESIS ABSTRACT
EXPLORING THE INTEGRATION OF MODEL-BASED FORMAL METHODS
INTO SOFTWARE DESIGN EDUCATION

Shuo Wang
Master of Science, December 16, 2005
(B.S., Georgia Institute of Technology, December 2002)

105 Typed Pages
Directed by Dr. Levent Yilmaz

Proper design analysis is indispensable to assure quality and reduce emergent cost
due to faulty software. Teaching proper design verification skills early during the
pedagogical development of a software engineer is crucial, as much analysis is the only
tractable way of resolving software problems early when they are easy to fix. Besides,
fundamental component of any engineering discipline, including software engineering, is
the use of formal and sound techniques that facilitate analysis of artifacts produced by
students. Yet, the impact of formal methods in software engineering practice, as well as
education, is minuscule. The fundamental reasons why formal methods are not
effectively utilized are attributed to (1) the impedance mismatch between the underlying
mathematical underpinning of formal methods and students? semi-formal, if not informal,

 vi
view of the design problem and (2) the lack of tool support for seamless and transparent
integration of formal methods into software design education. This thesis suggests a
strategy and tool support to improvement attainment of software design verification skills.
The strategy illustrates how selective and pragmatic application of model-based
verification methods can be used in software design education via tools that aim to bridge
the gap between students? semi-formal design world-view and the formalism underlying
formal methods.

 vii
ACKNOWLEDGEMENT

I would like express sincerely appreciation to Dr. Levent Yilmaz for his guidance,
insight, and encouragement throughout the research to help me succeed.
I would also like to thank the rest of my thesis committee members, Dr. John
Hamilton and Dr. Dean Hendrix for their valuable suggestions and comments.
Last but not least, I would like to thank my family and friends for their understanding,
motivation and support.

 viii
Style manual or journal used: Journal of SAMPE

Computer software used: Microsoft Word

 ix
TABLE OF CONTENTS

List of Figures.. xi
List of Tables...xiii
1 Introduction ... 1
1.1 The Need for Integration of Formal Methods into Software Design Education.................... 1
1.2 The Challenges in Integrating Formal Methods into Software Design Education 3
1.3 Research Objective.. 6
2 Literature Review .. 8
2.1 Formal Methods... 8
2.2 Model Checking .. 10
2.2.1 The Advantages and Disadvantages of Model Checking... 11
2.2.2 Symbolic Model Checking and Partial Order Reduction... 12
2.2.3 Using Temporal Logic for Model Checking ... 14
2.2.4 Existing Model Checking Tools... 18
2.3 The Role of Formal Methods in Software Design Education.. 19
2.3.1 Formal Methods as Part of an Engineering Curriculum... 21
2.3.2 Common Formal Methods used in Software Engineering Education 25
3 A Practical Strategy for Integrating Model Checking into Software Design Education 29
3.1 Using UML Models as Input Design Models.. 30
3.2 Substituting Temporal Logic with Specification Templates ... 31
3.3 Three Incremental Steps to Realize the BMA ... 36

 x
4 Architectural Design of the Behavioral Model Analyzer ... 37
4.1 Architectural Design of the Semi-Automated BMA ... 42
4.2 Architectural Design of the Automated BMA... 42
4.3 The Architectural Design of the Advanced Visualizer.. 45
5 The Verification Process Using the Behavioral Model Analyzer... 48
5.1 Converting UML Statecharts to PROMELA Model Description Language....................... 48
5.2 Augmenting State Variables to the Design Model .. 50
5.3 Specification Templates .. 51
5.4 Deriving Specification Templates from UML Sequence Diagrams.................................... 52
5.5 Visualizing Model Checking Results .. 57
5.6 Visualizing the Reachability Graph... 58
5.7 Visualization of the Specification Finite State Machine ... 61
6 Implementation and Case Study ... 64
6.1 Implementation.. 64
6.2 Case Study ... 64
6.2.1 Scenario Description .. 65
6.2.2 Model Checking Using Supplied Specification Templates.. 67
6.2.3 Model Checking Using Derived Specification Templates ... 77
6.2.4 Visualizing the Specification Finite State Machine and the Reachability Graph......... 81
7 Conclusions ... 83
7.1 The Limitations of the BMA ... 83
7.2 Future Work... 85
7.3 Conclusion... 86
References .. 87

 xi
LIST OF FIGURES

Figure 1 Scopes of specification templates..32
Figure 2 Specification templates in hierarchical order ..33
Figure 3 Three subsystems of the BMA ..37
Figure 4 Static structure of the Semi-Automated BMA ..39
Figure 5 Sequence diagram of the Semi-Automated BMA ...40
Figure 6 UML Deployment diagram of the Semi-Automated BMA...41
Figure 7 Static structure of the Automated BMA..42
Figure 8 UML Sequence diagram of the Automated BMA...43
Figure 9 UML Deployment diagram of the Automated BMA ..44
Figure 10 Static structure of the Advanced Visualizer ..45
Figure 11 UML Sequence diagram for the Advanced Visualizer..46
Figure 12 UML Deployment diagram for the Advanced Visualizer ...47
Figure 13 A simple finite state machine and its PROMELA model..48
Figure 14 Defining state variables in the BMA ...49
Figure 15 Defining specification templates in the BMA ...52
Figure 16 A simple UML sequence diagram...54
Figure 17 Another UML sequence diagram as an example...55
Figure 18 Confirming the derived templates ...56
Figure 19 An unreachable path ..56
Figure 20 Visualizing model checking results in the BMA... 58

 xii
Figure 21 A simple reachability graph...59
Figure 22 The reachability graph produced by the BMA ..61
Figure 23 A simple specification text file and its Visualization ..62
Figure 24 The specification finite state machine visualized by the BMA63
Figure 25 Statechart diagram of the gas pump model ...66
Figure 26 Visualization of the UML statechart model...66
Figure 27 Interface for state variables in the BMA ...67
Figure 28 Initializing a state variable...68
Figure 29 Assigning values for the states ..69
Figure 30 Assigning transitional logic to different transitional events ..71
Figure 31 Specifying specification templates in the BMA ..72
Figure 32 Declaration of propositions during template specification..73
Figure 33 No error is found during model checking..73
Figure 34 Defining the second specification template...74
Figure 35 Error detected in model checking..75
Figure 36 Error trace displayed by the BMA...76
Figure 37 A model conforms to the specification..76
Figure 38 The UML sequence diagram for the case study ..77
Figure 39 The list of specification templates derived by the BMA ...78
Figure 40 The design model does not violate the specification...79
Figure 41 The specification finite state machine ...80
Figure 42 The reachability graph... 81

 xiii
LIST OF TABLES

Table 1 Temporal Logic Specifications for the existence templates..34

 1
1. INTRODUCTION
As modern systems are increasingly becoming reliant upon computing technologies,
software that powers these platforms is emerging as a vital component for today?s
technology infrastructure. A study performed by the National Institute of Standards and
Technology (NIST) reveals that erroneous and inefficient software products cost U.S.
economy $59.5 billion annually in failed missions and lost productivity [42]. Clearly, the
need for reliable software systems is critical as such systems are becoming pervasive in
our lives. With the continuing growth of using software-intensive technology products, it
will be even more important to attain higher levels of reliability and assurance. Various
software verification methods have been introduced and applied [8] through software
development stages to detect and eliminate errors as early as possible. Concomitantly, in
academia, there has been considerable interest in developing more effective software
design and verification techniques [1] and teaching them to new generation of software
engineers [28].
1.1 The Need for Integration of Formal Methods into Software Design Education
The principle methods for complex system verification include simulation [8], testing
[42], deductive verification [8], and model checking [6]. Simulation and testing both
involve conducting experiments before deploying the system in the field. While
simulation is performed using an abstraction (i.e. model) of the system, testing is
performed on the actual product. In both cases, they usually involve providing certain

 2
inputs to the system or the system model and observing the corresponding outputs. These
methods are common and cost-effective ways to find many errors. However, checking all
possible interactions among all building blocks of the system using simulation and testing
techniques is computationally intractable.
Deductive verification [8] refers to the use of axioms and proofs to prove the
correctness of the software systems and usually applied in the verification of mission
critical systems. Proofs were first constructed by hand and eventually software tools were
built to facilitate the effort. Although deductive reasoning is widely recognized and
accepted by computer scientists, the process is rather time consuming and can only be
performed by experts who have proper education and experience in logical reasoning.
Model checking is a technique for formally verifying finite state concurrent systems
based on formal methods [7]. Formal methods, mathematically based techniques that
provide a framework to specify, define, and verify systems, can effectively reveal
ambiguity, incompleteness, and inconsistency within complex systems. Use of formal
methods does not automatically guarantee correctness. However, when used
appropriately, these techniques have proven themselves to result in software products
with higher levels of quality [9]. In model checking, specified systems are modeled as
finite-state machines and its expected properties and behaviors are specified in temporal
logic, and the process of verification can be performed automatically. The procedure
normally uses an exhaustive search of the state space of the system to determine if some
specification is true or not. While model checking has become increasingly popular in the
industry, other formal methods have received relatively little attention. The introduction

 3
of formal methods, as a set of engineering disciplines and practices, into software design
education has at least a two-fold benefit to the students [28]. First, it bridges the gap
between theories in computer science and emerging industry practices. Second, it
provides students valuable and pragmatic skills in the formal modeling and analysis of
complex software systems that are beyond the scope of conventional informal
verification methodologies.
1.2 The Challenges in Integrating Formal Methods into Software Design Education
The emerging trend of model-driven development [14] and model-driven architecture [30]
suggests significant benefits when integrating model-based verification techniques into
software design education. By learning the engineering discipline of applying these
techniques to facilitate the development, analysis, and verification of software, students
will grasp the significance of formal methods and gain valuable skills and experience in
software design and modeling [28]. Strategies of integrating formal methods in the form
of model-based verification into software design education have been difficult. Many
academic institutions either completely avoid teaching formal methods or teach them in
an isolated manner, with emphasis on notations rather than its underlying principles [15].
Carnegie Mellon University [15] has successfully integrated formal methods throughout
its software engineering graduate program, but their approach cannot easily be adapted
into undergraduate software design curriculum because undergraduate students do not
possess the requisite skills to understand and apply formal methods. For these students, it
is beneficial to participate in courses designed specifically toward them, such as courses
that provide exposure to model checking without having students to burden themselves

 4
with high requirements in advanced background in mathematics. Concomitantly, new
software tools should be developed to facilitate learning the pragmatic use of formal
methods and to fill the gap between learning and practice to help the students accomplish
following goals [47]:
? to use formal methods without getting into the quagmire of theoretical details
? to avoid steep learning curves about the syntax of a specific formal method by
using alternative generic high-level constraint patterns to analyze designs
? to collaboratively analyze inconsistencies and design conflicts at least semi-
formal reasoning within the realm of the actual industrial software development
process
Using today?s technology, students must rely on existing model checking tools to assist
their learning experience. There are indeed capable model checking tools available, such
as SMV [29] and SPIN [18]; yet, they share a common problem for a typical
undergraduate student: These tools are difficult to learn and difficult to use, despite many
accolades they have won from the industry, they are not designed for education purposes,
and the learning curve is enormous, considering the range of functionalities they provide.
Both model checkers are command-line applications requiring the user to memorize the
meaning of all of their run-time parameters and options. In order to perform model
checking, the software model which serves as an input to the model checkers need to be
encoded using a separate but complex notation, almost as if the user is learning a new
programming language. But perhaps the most serious problem of all, the model checkers
do not facilitate the understanding or the learning of model checking by hiding the model

 5
checking processes from their users. No information is conveyed back to the users until
the end, when model checking has been completed and lines of cryptic text-based results
are dumped on the screen. To a typical undergraduate software engineering student, these
text-based results probably make little sense.
The origin of the steep learning curve of the existing model checking tools can be
traced back to almost twenty years ago when these tools were still in their infant stage of
development. Computing at the time was a lot different than today. Computers were not
only bulky and slow, but also extremely expensive. Computing resources were scarce and
precious. As a result, most computer applications are written using structured
programming languages in the most cost-effective manner to boast their performance. In
order to do so, other aspects of the software, such as usability and maintainability, had
been sacrificed. When building a software application to solve a particular problem, as
long as the problem is solved within a reasonable amount of time and using a reasonable
amount of computing resources, one could care less of how does the application solve the
problem. As time has progressed and technology has been improved, modern computer
platforms with the computation power one could only dream of just a few years ago have
become accessible at much lower costs. The availability of high performance computing
platforms has triggered a paradigm shift in the computing society regarding how to write
software. Much more emphasis has been given to the learnability, flexibility, and
robustness of the software instead of its crude performance, and the structured
programming approach has been gradually shifted out and replaced by the object-oriented
programming approach for the same purpose. It is quite ironic during the same period of

 6
time formal methods have gained acceptability in the industry and even some popularity
when dealing with the verification of mission critical hardware systems [4]. This success
has quickly led the application of the same approach on the verification of software
systems. Model checking tools have become more robust, powerful, and feature-rich, and
have a lot of potential to offer in the campaign against hidden software design flaws.
However, it is built on top of an aging foundation. It is rather difficult to integrate these
legacy tools directly with today?s software design methodology being taught in
undergraduate level classrooms.
1.3 Research Objective
Given the challenging obstacle of merging formal methods into software design
education, the goal of this research is to enable the methodology of teaching formal
methods in undergraduate level software design curricula, without having the students to
be burdened by the vast amount of theoretical details and mathematical logic required to
understand formal methods. This objective can be realized by developing a tool that
integrates model checking into current software design methodology being taught in
undergraduate software design courses. The design of this tool addresses the difficulties
of teaching formal methods to undergraduate students in general, as well as the
shortcomings of existing model checking tools for educational purposes. This tool
abstracts unnecessary theoretical details away from its users while emphasizing flexible
interaction with during the model checking process. As a result, the students may not
only gain a novel verification technique to validate their software design in a quick and
effective manner, but also attain fresh insights on how model checking works.

 7
The thesis is organized as follows. Chapter 2 reviews the related work in formal
methods, model checking and the integration of formal methods into software design
education. Chapter 3 lays out the general strategy on how to realize the research
objectives. Chapter 4 provides the conceptual design of the tool, and chapter 5 addresses
finer design details related to components of the tool. Chapter 6 describes the
implementation details of the tool and provides a case study to demonstrate its utility and
effectiveness. Finally, in chapter 7 we conclude by discussing the benefits and limitations
of the tool as well as future work to extend our research.

 8
2. LITERATURE REVIEW
In meeting the challenge of software products? growing complexity, a major goal of
software engineering is to enable the construction of reliable software systems [16]. The
use of formal improves reliability by revealing inconsistencies, ambiguities, and
incompleteness hidden in the system design [43]. As a result, a set of software
engineering techniques and practices for software verification and testing based on
formal methods, known as model-based verification, has been codified and adopted [16].
2.1 Formal Methods
Modeling and verification techniques employed by model-based verification involve the
application of a formal methodology. A formal method in software development is
defined as ?a method that provides a formal language for describing a software artifact
(e.g. specifications, designs, code) such that formal proofs are possible, in principle,
about properties of the artifact [43].? In this formal methodology, essential models of a
software system are created using a formalism, which is a collection of principles and
practices that are built upon well-defined language of expression and inference and
meaning assigned to the symbols of the language [9], and then analyzed and compared
against its expected behaviors. Formal specification is the use of notations derived from
formal logic to describe [26]
? the assumptions about the world in which a system will operate,

 9
? the requirements that the system is to achieve, and
? the design to accomplish those requirements.
Essentially, a real system is represented, as a rule, in the form of labeled transition system
(LTS) [26]. LTS is an oriented graph whose nodes are associated with the states of the
system, and edges of this graph that connects the nodes, labeled by symbols of performed
actions, are used for representation of the transition-action relation in the system. When
the system starts, some state called initial is selected in the set of states of the LTS, and a
sequence of transition-actions in the LTS is called its run or trace. The totality of all
possible traces in the LTS is called the language of the system. An LTS is called finite if
the sets of its states and transitions are finite, and infinite if otherwise. In formal
specification, the basic types of properties that are usually specified include behavior
properties over time, working characteristics, and internal structure. The behavioral
properties are most important. Examples of such behavioral properties include safety and
liveness properties, and they can be expressed in logic languages, such as temporal logic.
On the other hand, formal verification is the use of proof methods from formal logic
to [26]
? analyze specifications for certain forms of consistency and completeness,
? prove that the design will satisfy the requirements, given the assumptions, and
? prove that a more detailed design implements a more abstract one
Two well established approaches to formal verification are model checking [8] and
theorem proving [9]. Theorem proving, proposed by Burstall [5], Kr?ger [25] and Pneuli

 10
[34], is a technique by which both the system and its desired properties are expressed in
the form of mathematical logic. This logic is given by a formal system which defines a
set of axioms and a set of inference rules. Theorem proving is the process of finding a
proof of a property from the axioms of the system, and it is increasingly being used today
in the mechanical verification of safety-critical properties of hardware and software
designs [8]. The theorem proving tools consists of powerful collections of inference steps
that can be used to reduce a proof goal to simpler sub-goals that can discharged
automatically by the primitive proof steps of the prover. Given a property and a model,
the prover is either able to verify the property by completing the proof or given back
scenarios in which the property is violated. The advantage of theorem proving is that it
can deal directly with infinite state spaces by relying on techniques such as structural
induction to prove over infinite domains. Therefore, it is not limited by size of the state
space. Large systems cannot be verified by a model checker for the same reason, but they
can still by verified by the theorem prover. Unfortunately, theorem proving requires
considerable amount of technical expertise. As a result, the process is often slow and
error prone.
2.2 Model Checking
Model checking relies on building a finite model of a system and checking that a desired
property is holding in the model [9]. It involves an exhaustive state space search which is
guaranteed to terminate. During the search process, the model and the property are fed to
a model checker and the model checker determines whether the system model satisfies
the property. The result is either a claim that the property is true or a sequence of states

 11
from some initial state that violates the property, also known as a counterexample. Model
checking can be applied to analyze specifications of software systems. Because checking
whether a single model satisfies a formula is much easier than proving the validity of a
formula for all models, model checking can be implemented fairly efficiently [8].
2.2.1 The Advantages and Disadvantages of Model Checking
Applying model checking to a design consists of several tasks: modeling [8],
specification [8], and verification [39]. Modeling refers the conversion of a design into a
formalism accepted by a model checking tool. In some cases, this is a straightforward
compilation task. In other cases, owing to limitations on time and memory, modeling a
particular design may require the use of abstraction to eliminate irrelevant or unimportant
details. Before verification, it is necessary to state the properties that the design must
satisfy. This specification is usually given in some logical formalism, such as temporal
logic, which is able to assert the behavior of the system as it evolves over time. Although
model checking provides means for checking a model of a design satisfies a given
specification, it is impossible to determine whether the given specification covers all the
properties that the system should satisfy. With modeling and specification in proper order,
verification can take place. In theory, model checkers can perform verification
automatically, given a model and a specification. However in practice, it often involves
human assistance [8]. An example is the analysis of the verification results. In case of a
negative result, the user is often provided with an error trace serving as a counterexample
for the supplied property, which can be used to track down the exact location of the
design fault. False negatives result from incorrect modeling of the system or incorrect

 12
specification Erroneous results or premature termination of verification can also emerge
due to the size of model. In this case, it is necessary to decompose the model into fine-
grain sub-models or change some parameters of the model checking tool.
Compared to theorem proving, model checking is relatively easy, systematic, and fast
[8]. Model checking can be used to check partial specifications and provide valuable
feedback about a system?s correctness even if the system has not been completely
specified. Model checker can produce counterexamples that reflect the errors in design,
which can be invaluable for debugging. It is preferable to theorem proving, or deductive
reasoning, whenever it can be applied. However, there will always be critical applications
in which theorem proving is necessary for complete verification. There have been new
research directions that attempt to integrate deductive verification and model checking to
maximize benefits offered by both [36]. The main disadvantage of model checking is
state explosion problem, as mentioned earlier. Many efforts have been invested to resolve
the problem, such as McMillan?s symbolic model checking [29]. Other approaches such
as partial order reduction [33], localization reduction [22], and semantic minimization
[13], are all designed to remove redundant states from a system model.
2.2.2 Symbolic Model Checking and Partial Order Reduction
In the original implementation of model checking algorithm, transition relations were
represented explicitly by adjacency lists [8]. For a software system with small number of
states and processes, the approach was quite practical. As the system model becomes
more complex, the model checker simply could not handle the growing number of states.
Since a model checker replies on an internal global state transition graph to keep track of

 13
the states and transitions during model checking, McMillan [29], in 1987, realized that by
using a symbolic representation for the state transition graph, much larger systems could
be verified. The new symbolic representation was based on Bryant?s ordered binary
decision diagrams (OBDDs) [3]. OBDDs provide a canonical form for Boolean formulas
that is usually much more compact than conjunctive or disjunctive normal form, and very
efficient algorithms have been developed in order to manipulate them. In this implicit
representation, each state is encoded by an assignment of Boolean values to the set of
state variables associated with the model. The transition relation can be expressed as a
Boolean formula in terms of two sets of variables, one set encoding the old state and the
other encoding the new. This formula is then represented by a binary decision diagram.
The model checking algorithm is based on computing fix points of predicated
transformers that are obtained from the transition relation. The fix points are sets of states
that represent various temporal properties of the system. In the new implementations,
both the predicate transformers and the fix points are represented with OBDDs. Thus, it is
possible to avoid explicitly constructing the state graph of the system.
Besides symbolic model checking, partial order reduction is another popular
technique designed to combat the state explosion phenomenon [33]. This technique
exploits the independence of concurrently executed events. Two events are independent
of each other when executing them in either order results in the same global outcome. A
common model for representing concurrent software is the interleaving model, in which
all of the events in a single execution are arranged in a linear order called an interleaving
sequence. Concurrently executed events appear arbitrarily ordered with respect to one
another. As a result, all possible interleaving of such events are normally considered and

 14
causing an extremely large state space. The partial order reduction technique makes it
possible to decrease the number of interleaving sequences that must be considered. Thus,
the number of states that are needed for model checking is reduced. Under the partial
order reduction technique, when a specification cannot distinguish between two
interleaving sequences that differ only by the order in which concurrently executed
events are taken, it is sufficient to analyze only one of them.
2.2.3 Using Temporal Logic for Model Checking
Temporal logic is a formalism for describing sequences of transitions between states in a
reactive system and has been proven to be useful for specifying concurrent systems, as
they can describe the ordering of events in time without introducing time explicitly [8]. In
temporal logic model checking, finite state machine models software or hardware system
and a property specified as a formula in a certain temporal logic are given. The goal is to
determine whether the system satisfies the formula. Since time is not considered
explicitly, instead, a formula might specify that eventually some designated state is
reached, or that an error state is never entered. Properties like eventually or never are
specified using special temporal operators and these operators can be combined with
Boolean connectives or nested arbitrarily.
CTL* is a powerful logic used for model checking as well as foundation for other
logics [8]. Conceptually, CTL* formulas describe properties of computation trees. The
tree is formed by designating a state in a Kripke structure [8] as the initial state and then
unwinding the structure into an infinite tree with the designated state as the root. The
computation tree shows all of the possible executions starting from the initial state. The

 15
logic formulas are composed of path quantifiers and temporal operators. The path
quantifiers are used to describe the branching structure in the computation tree, and there
are two of such quantifiers: A for all computation paths, and E for some computation path.
These quantifiers are employed in a particular state to specify either paths starting from
this state or some of the paths starting from this state contain certain properties. The
temporal operators are used to describe properties of a path through the tree. There are
five basic operators [8]:
? X ? next time, which requires a property to hold in the second state of the path.
? F ? eventually or in the future, which requires a property to hold at some state on
the path.
? G ? always or globally, which requires a property to hold at every state on the
path.
? U ? until, which requires the second property to hold at some state on the path,
and the first property to hold at every proceeding state in the path.
? R ? release, which requires the second property to hold along the path up and
including the first state where the first property holds. However, the first property
is not required to hold eventually.
There are two useful sub-logics based on CTL* [8]. One is branching-time logic
called Computation Tree Logic (CTL) [7]. The other is linear-time logic called Linear
Temporal Logic (LTL) [7]. CTL is a restricted subset of CTL* in which each of the
temporal operators X, F, G, U, R must be immediately preceded by a path quantifier,

 16
resulting ten basic CTL operators:
? AX and EX
? AF and EF
? AG and EG
? AU and EU
? AR and ER
Examples of some typical CTL formulas include the following:
? AG safe: All reachable states are safe.
? AG AF stable: The system is stable infinitely often.
? AG (request �? AF response): A request is always a response sometime in the
future.
? AG EF restart: It is possible to restart the system in any reachable state
Formally, a finite state machine <Q, R, I> consists of a set of states Q, a state transition
relation R ? Q ? Q, and a set of initial state I ? Q. A path is an infinite sequence of states
such that each consecutive pair of states is in R. The set of states Q is often encoded by a
set of state variables, such that each state corresponds to some value for the variables and
no distinct states correspond to the same value. Basic on this foundation, a proposition is
defined as any Boolean combination of predicates on the state variables. A formula is a
proposition, a Boolean combination of formulas, or the combination of a temporal
operator and a formula [8]. Each formula is evaluated at some state q. A proposition

 17
holds at q if q satisfies the proposition. The operator A means ?for all paths starting at q?,
E means ?for some path starting at q?, G means ?for every state along the path?, and F
means ?for some state along the path?. Therefore, AG safe holds at q is every state (G)
along every path (A) starting at q satisfies the proposition safe. The system satisfies a
formula if the formula holds at all initial states. If not, a model checker typically attempts
to find a counterexample. For instance, if the formula AG safe is false, a counterexample
is a finite path starting at some initial state and ending at a state that is not safe.
In explicit model-checking techniques, the truth value of a CTL formula is
determined in a graph-theoretic manner by traversing the state diagram, with time
complexity linear in the size of the state space and in the length of the formula [7]. Using
symbolic model checking techniques, instead of visiting individual states as in
conventional state space search, symbolic model checkers visit a set of states at a time [4,
28]. A state set can be represented by a predicate on the state variables such that a state is
in the set if and only if the predicate is true at the state. When the state space is finite, we
can assume that the state variables are Boolean and there are only finitely many of them.
A predicate on these variables is simply a Boolean function, which can be represented by
reduced ordered binary decision diagrams (OBDDs) [3]. An OBDD resembles a binary
decision tree, except that isomorphic sub-trees must be combined resulting a directed
acyclic graph. In addition, each path can contain a variable at most once, and must
comply with a fixed linear order of the variables.
Linear Temporal Logic (LTL) is an extension of propositional logic to include discrete
time information [8]. Formulas are interpreted as referring to events along an infinite path

 18
of time points. LTL formulas are built inductively from its set of atomic propositions.
These atomic propositions and their operators are given below, and p and q are some
states or events occurring in the path of time points:
? And p ? q
? Or p ? q
? Not ? p
? Next X p
? Always G p
? Eventually / Future F p
? Strong Until p U q
? Releases p R q
One can model LTL by assigning to each natural number a set of true atomic propositions.
The operators then define requirements on those propositions. The formula for the
proposition ?And? means that states p and q must both be true. ?Or? means that either
state p is true, or state q is true. ?Not? means that state p is false. Atomic propositions
?Next?, ?Always?, ?Eventually?, ?Until? and ?Release? have same meanings from CTL*,
where they have been originated.
2.2.4 Existing Model Checking Tools
There are tools available that facilitate the checking of expected model based system
behavior and properties of concurrent programs under different fairness assumptions.
SMV [29], the Symbolic Model Verifier, is a popular model-checking system first
developed by McMillan in 1993. It uses the OBDD-based symbolic model checking

 19
algorithm to perform verification and takes a finite state machine as the model of the
system, expressed in its own input language, and properties of the system, expressed in
CTL formula. The system model is often decomposed into a series of modules and each
can be instantiated multiple times. A SMV module can be composed either
synchronously, which means all modules perform an action concurrently at a time period,
or using interleaving, which means exactly one module performs an action at a time
period. The state transitions in the model can be either deterministic or nondeterministic.
The state transitions in the model can be specified explicitly in terms of Boolean relations
or implicitly as a set of parallel assignment statements. When performing model checking,
a breadth-first searching procedure with fixed-point algorithms is used to check the
satisfaction of the finite state machines against the expected properties.
An alternative model checking system is called SPIN [18], which uses explicit state
enumeration and partial order reduction during model checking. It was developed at Bell
Laboratories by Gerard Holzmann and Doron Peled, and primarily used for verifying
asynchronous software systems such as communication protocols. It can check a system
model for deadlocks or unreachable code or determines if it satisfies a particular property
composed by LTL specification. The input language to describe the system model, called
PROMELA [18], an acronym for Process Meta-Language, was developed by Gerard
Holzmann. It uses syntactic constructs similar to several other programming languages,
such as C. The basic building blocks of SPIN models are asynchronous processes,
buffered and un-buffered message channels, synchronizing statements, and structured
data. Unlike SMV, SPIN uses partial order reduction to limit the state space explosion
problem to optimize the process of model checking.

 20
2.3 The Role of Formal Methods in Software Design Education
Formal methods involve the use of discrete mathematics and mathematical logic in the
study and practice of computer science and software engineering [1]. From its beginning,
computing was regarded as an abstract, mathematical science. Pioneers like Turing,
Church, and von Neumann used mathematics to establish the essence and boundaries of
the computing discipline. Although computing technology is crucial in software
engineering education and practice, the underpinnings are mathematical in nature and
computing does deal with purely logical processes [30]. Students often resist the use of
mathematics in the study of computing, usually for the following reasons:
? Students may lack the proper preparation or motivation.
? Many have neither an understanding of nor appreciation for the role of
mathematics, or more explicitly, formal methods, in computing [31].
? Some feel intimidated or even fearful of the level of mathematical knowledge and
capability required.
As the term software engineer becomes a popular title for software developers, there is
little evidence to show that the practice of software design and engineering compares
with the rigor and discipline that is required for practice in other engineering fields [32].
So the question seems to be whether software engineering programs should follow the
traditional engineering approach to professional education. Quality problems arise from
incomplete and imprecise requirements, specification, shoddy designs with poor
documentation, and almost sole reliance on testing for software quality assurance, and
there is increasing interest in the use of formal methods for specification and design [1].

 21
With the explosive growth of software, the Internet, and electronic commerce, formal
methods become a practical approach for achieving higher confidence in today and
tomorrow?s infrastructure system [1].
2.3.1 Formal Methods as Part of an Engineering Curriculum
Formal methods improve software reliability by providing mathematical frameworks to
define, specify, and verify complex software systems. However, the majority of software
engineering curricula have a low level of emphasis on formal methods [1]. This is partly
due to a lack of interest on the part of the software industry, but much of the
responsibility must be attributed to the state of the curriculum and course design. The
computing education community has adopted a curriculum strategy of dividing curricula
elements into areas of theory and practice. This causes both faculty and students to view
the theory of computing as separate and distinct from the practice of computing. As a
result, there are theorists who are viewed as the mathematical elite and practitioners with
little respect for the applicability of formal methods to their work. This mindset inhibits
the use and integration of formal methods into software development process, and
ultimately, into software design and engineering education. Because of this, there is little
guidance and support available to faculty, who would like to introduce formal methods
into their software engineering courses.
The scope and scale of software projects today are increasing dramatically, along
with shorter release cycles, and traditional software quality assurance methodologies are
facing more challenges in attempting to meet quality standards [16]. Equipped with
formal methods to address the complexity, model checking provides software engineers

 22
fresh insights on how to debug, verify, and validate designs. With the success of model
checking and other formal approaches for software verification are attracting attentions,
trying to integrate them into software design education has lead to following observations
[28]:
? The theoretic foundations of model checking involve mathematical logic.
? The engineering principles and processes used for implementing model checking
provide excellent training for students to solve complicated design and analysis
problems.
? The skills and knowledge that students acquire from the course provide them with
alternative approaches to solve problems in many important software engineering
areas.
Strategies of integrating formal methods in the form of model-based verification into
software design education have been difficult. Generally there are three strategies [15].
The first approach avoids teaching formal methods altogether and considers formal
methods are impractical and mature enough to be beneficial in software engineering
practices. The appropriateness of this argument for the general software engineering
education is debatable. The second approach is to devote a specific course which
emphasizes formal verification of source code using a number of formal methods, such as
VDM [21] or Z [40]. The students are expected to learn about the methods, and then they
are expected to apply the formal skills to software development activities. This approach
involves broad coverage of a variety of formal methods that provide students with a
larger scope of exposure, but may not enable them to be proficient in any specific

 23
approach. Furthermore, the methods tend to be taught in an isolated manner with
emphasis in notations rather than its underlying principles. This isolated exposure
generally prohibits students to apply such approaches in software engineering practices.
Finally, the third approach is invented to redesign the curriculum so that formal methods
are integrated throughout the entire curriculum [15]. Carnegie Mellon University [15], as
an example, redesigned its software engineering graduate program to promote better
understanding to formal models of software systems. This approach offers many benefits
to the students as they incorporate finite state modeling and temporal logic for model
checking interactive aspects of system. More specifically, the curriculum integrated with
formal methods enables the analysis of software development products such as delivered
code, specifications, designs, documentation, prototypes, and test suites. It also treats
both static and dynamic analyses, such as type checking, verification, testing,
performance analysis, hazard analysis, reverse engineering, and program slicing.
Although a novel strategy, the approach adopted at Carnegie Mellon is difficult to
apply at the undergraduate level, as it assumes that students in the curriculum have
already had exposure to advanced logic, discrete and combinatorial mathematics that
facilitate the attainment of the requisite skills to understand and apply formal methods.
Although many graduate students who have strong background in mathematics indeed
possess such skills; many undergraduate students with comparatively limited background
in advanced mathematics, a course delivery strategy that revolves around formal methods
can be overwhelming for two reasons:

 24
2. The impedance mismatch between the underlying mathematical underpinning of
formal methods and students? semi-formal, if not informal, view of the design
problem and
3. The lack of tool support in the seamless integration of formal methods into
software design education
Considering the difficulties of teaching formal methods to undergraduate students,
software tools should encourage learning by abstracting required material into relatively
simple paradigms that novice users can easily learn and manage [9]. However, most tools,
used to support the learning and the teaching of formal methods, are developed for
practitioners, rather than for educators or learners. Some desired properties of tools that
are attractive to this group of users include [9]:
? Ease of Use: Tools should be easy to use and their output should be easily
interpreted by novice users.
? Ease of Learning: Tools should provide a starting point for writing formal
specifications for users who would not otherwise write them. The knowledge
requirement of formal methods on the users should be kept minimal.
? Focused Analysis: Tools should be good at analyzing at least one aspect of the
system well.
? Early Payback: Tools should provide significant benefits almost as soon as the
users start to use them.

 25
? Incremental Gain for Incremental Effort: Tools should provide users increased
benefits as the users are getting more adept or are putting more effort into writing
specifications.
? Efficiency: Tools should make efficient use of users? time, and the amount of time
used by the tool should be proportional to the extensiveness of the analysis.
? Integrated Use: Tools should work in conjunction with other common
programming languages and techniques and should be integrated with traditional
software development tools. Users should not have to look into another new
methodology in order to receive benefits.
? Evolutionary Development: Tools should allow partial specification and analysis
of selected aspects of a system.
? Orientation toward Error Detection: Tools should be optimized to find errors
rather than confirming correctness.
Going one step further, rather than building a single tool, ?meta-tools? can be built to
automatically produce tools that are customized toward a particular problem domain [38],
formal notation [10], or logic [17, 24]. It is also important for a tool to make the user
aware its strengths, limitations, modeling assumptions, ease of integration with other
tools, and start-up costs.
2.3.2 Common Formal Methods used in Software Engineering Education
The education of formal methods in a classroom environment often revolves around a
particular technique. As a result, specific formal techniques have become foundations for

 26
certain curricula aimed to provide exposure of formal methods to students, due to their
popularity in the industry. The most popular formal techniques are VDM [21] and the Z
notation [40].
VDM is a model-oriented formal method based on a denotational semantic setting,
intended to support stepwise refinement of abstract models into concrete implementations
[21]. The method includes a formal specification language, VDM-SL [21], which
supports various forms of abstraction. Representational abstraction is supported by data
modeling facilities. These facilities are based on six mathematical data-structuring
mechanisms: sets, sequences, maps, composite objects, Cartesian products and unions. At
a lower level, the language provides various numeric types, Booleans, tokens and
enumeration types. By using the data-structuring mechanism and the basic data types,
compound data types can be formed with a specific mathematical structure, and these
compound data types are denoted as domains. Sub-typing is supported by attaching
domain invariants to domain definitions. Operational abstraction is supported by both
functional abstraction and relational abstraction: the former by means of function
specification and the latter by operation specification. Both functions and operations may
be specified implicitly using pre and post conditions, or explicitly using applicative
constructs to specify functions and imperative constructs to specify operations.
Operations have direct access to a collection of global objects: the state of the
specification. The state is constructed as a composite object and built from labeled
components. A VDM specification typically consists of a state description augmented
with invariant and initialization predicates, a collection of domain definitions augmented
with invariants, a collection of constant definitions, a collection of operations and a

 27
collection of functions. An initial specification is usually kept as abstract as possible.
Then the initial specification can be further developed and refined using two techniques:
data reification, which addresses the refinements of state elements, and operation
modeling, which addresses the refinements of the functions and operations. Data
reification involves the transition from abstract to concrete data types, and a justification
of this transition. Choosing a more concrete data model implies a redefinition of all
operations and functions on the original model in terms of the new model, a process
called operation modeling. Central to data reification is the notion of adequacy, expressed
through two functions on the abstract and concrete domains, the abstraction-function and
the retrieve-function. The abstraction-function maps abstract values onto concrete values;
the retrieve-function does the opposite, mapping concrete values onto abstract values.
The final step within the development is the transition of a low-level specification into
the chosen programming language.
The Z notation is based upon set theory and mathematical logic [44]. The set theory
used includes standard set operators, set comprehensions, Cartesian products, and power
sets. The mathematical logic is a first-order predicate calculus. Together they make up
the mathematical objects in Z. These objects and their properties can be collected in
schemas, which are patterns of declaration and constraint. The schema language can be
used to describe the state of a systems, and conditions in which that state may change. It
can also be used to describe system properties, and to reason about possible refinements
of a design. A characteristic feature of Z is the use of types. Every object in the
mathematical language has a unique type, represented as a maximal set in the current
specification. This notion of types suggests that an algorithm can be written to check the

 28
type of every object in the specification. Another important feature of Z is the use of
natural language. In Z, mathematics is used to state the problem, to discover solutions,
and to prove the chosen design meets the specification. Natural language is used to relate
the mathematics to objects in the real world. This task is often partly achieved by the
judicious naming of variables and additional comments in the specification. Z also
supports the concept of refinement. A system can be developed by constructing a model
of a design, using simple mathematical data types to identify the desired behavior. This
description can be further refined later by constructing another model which respects the
design decisions made, and yet is closer to implementation. This process of refinement
can be continued until executable code is produced.
In summary, both VDM the Z notation are mathematical languages with powerful
structuring mechanisms capable of producing formal specifications, and both require
immense requisite skills in mathematical logic to be understood and used effectively. As
a result, their user group is largely limited to seasoned professionals who have grasped
the underlying principle over years of experience [43].

 29
3. A PRACTICAL STRATEGY FOR INTEGRATING MODEL CHECKING
INTO SOFTWARE DESIGN EDUCATION
The goal of the research is to integrate formal methods into current software design
methodology being taught in undergraduate software design courses. This objective is
realized by building a tool called the Behavioral Model Analyzer (referred as the BMA in
the rest of the thesis). The BMA aims to address the difficulties of teaching formal
methods to undergraduate students, as well as the shortcomings of existing model
checking tools for educational purposes. The operation of the BMA can broadly be
described in the following manner. It accepts as input a software design model (i.e.,
statechart) and a property specifying how the model is required to behave. The BMA then
performs model checking using the model and the property to display the results back to
the modeler. Although this description hardly differs from the operation of any other
model checking tool, the BMA places emphasis on the following features that are not
present in other model checkers:
? The input software design models are UML models, which are commonly used in
software design, rather than tool-specific model description languages which
modelers have little exposure.
? The properties defining the required behaviors of the models can either be
supplied or derived in the form of abstract and user-friendly specification

 30
? templates rather than temporal logic, thus eliminating the requisite mathematical
skills involved in formal methods.
? The results of model checking are shown using graph visualization rather than
cryptic text, so that students can have better grasps on where problems are
detected and how to fix them.
3.1 Using UML Models as Input Design Models
Unified Modeling Language (UML) [2, 19, 38], is a general-purpose visual modeling
language that is used to specify, visualize, construct, and document the artifacts of a
software system and is capable of capturing information about the static structure and
dynamic behavior of the system. The static structure defines the collection of discrete
objects that make up the system and the dynamic behavior defines the history of objects
over time and the communication among objects to accomplish goals. Software tools can
provide code generators from UML into a variety of programming languages, as well as
reverse engineered models from existing programs. UML is not a highly formal language
designed for the theorem proving, but rather a modeling language for discrete systems.
These reasons, coupled with the increasing popularity of object-oriented methodology,
made UML ubiquitous in both the industry and the academia [2, 38].
Although UML offers a variety of diagrams to model different perspectives of a
software system, we are interested of using the state machine view, modeled by a
statechart diagram, to represent an input design model, since the state machine view
describes the dynamic behavior of objects over time by modeling the lifecycles of objects
of each class [2, 19, 38]. A state machine is a graph of states and transitions and it is

 31
attached to a class and describes the response of an instance of the class to events that it
receives. Events represent the kinds of changes that an object can detect ? the receipt of
calls or explicit signals from one object to another, a change in certain values, or the
passage of time. Anything that can affect an object can be characterized as an event. A
state is a set of object values for a given class that have the same qualitative response to
events that occur; therefore it describes a period of time during the life of an object of a
class. In the state machine, a set of states is connected by transitions. A transition leaving
a state and entering into another state defines the response of an object to the occurrence
of an event.
To facilitate model checking of UML statecharts, the BMA translates input models
into an intermediate format defined in terms of PROMELA language. This is similar in
principle to the translation of UML models into code skeletons within the Model-Driven
Architecture initiative [30]. PROMELA is an acronym for Process Meta-Language [18],
which is a model description language for the model checker SPIN [18]. The BMA uses
SPIN to perform model checking by translating abstract and user-friendly inputs from the
modeler into tool-specific inputs for SPIN, and visualizing text-based model checking
output in the form of graphs. As a result, UML statecharts need to be translated into
PROMELA before the model checking process.
3.2 Substituting Temporal Logic with Specification Templates
In model checking, a property (i.e., required behavior) of the model is specified using
temporal logic. The steep learning curve for the mathematical skills required to use
temporal logic is one of the core reasons why formal methods have been almost absent in

 32
undergraduate design education. It is imperative for the BMA to circumvent this obstacle.
As a result, the BMA uses the notion of specification templates [12] to describe the
required property of the model. A specification template is a generalized description of a
commonly occurring requirement on the permissible state sequences in a finite-state
model of a system, and it describes the essential structure of some aspect of the system?s
intended behavior. The specification templates are generalized in a hierarchical structure
in terms of their scopes for formal specification and verification. The scope of a template
is the extent of program execution over which the template must hold. It is determined by
specifying a starting and an ending state for the template. Therefore the scope consists of
all states beginning with the starting state and up to but not including the ending state.
There are five different scopes (Figure 1) [12]:
? Global ? the entire program execution
? Before ? the execution up to a given state
? After ? the execution after a given state
? Between ? any part of the execution from one given state to another
? After-Until ? just like Between but the designated part of the execution continues
even if the second state does not occur

 33

Figure 1 Scopes of specification templates
Each template can be translated into its corresponding temporal logic formula by the
BMA. When working with a specification template, only states required by the particular
template need to be supplied by the modeler in terms of simple mathematical logic. Some
common specification templates are listed as follows (Figure 2) [12]:

Figure 2 Specification templates in hierarchical order
Occurrence Templates include
? Absence ? A given state or event does not occur within a scope. This template is
also known as Never.
? Existence ? A given state or event must occur within a scope. This template is
also known as Future or Eventuality.
? Bounded Existence ? A given state or event must occur k times within a scope.

 34
? Universality ? A given state or event occurs throughout a scope. This template is
also known as Globally, Always and Henceforth.
Ordering Templates include
? Precedence ? A state or event P must always be preceded by a state or event Q
within a scope.
? Response ? A state or event P must always be followed by a state or event Q
within a scope. This template is also known as Follows and Leads-to.
Compound Templates include
? Chain Precedence ? A sequence of states or events P
1
, ?, P
n
 must always be
preceded by a sequence of states or events Q
1
, ?, Q
m
.
? Chain Response ? A sequence of states or events P
1
, ?, P
n
 must always be
followed by a sequence of states or events Q
1
, ?, Q
m
.
? Boolean Combinations ? Sometimes we want to generalize the templates to allow
for sets of states to describe scopes and properties. Some times this is
straightforward and sometimes disjunctions and conjunctions of state or event
descriptions can yield incorrect specifications when substituted into templates.
These templates outline how Boolean combinations can be applied in different
case.
Each of the hierarchical specification templates has its corresponding temporal logic
specified, and the BMA translates these templates into temporal logic. The model checker
SPIN can perform model checking using the translated temporal logic as input. Table 1
provides the temporal logic specifications for the Existence Templates.

 35
Specification Scope Temporal Logic Specification
Globally <>(P)
Before R !R W (P & !R)
After Q [](!Q) | <>(Q & <>P))
Between Q and R [](Q & !R -> (!R W (P & !R)))
After Q until R [](Q & !R -> (!R U (P & !R)))
Table 1 Temporal logic specifications for the existence templates
In the table, P, Q, and R are events and the column specification scope indicates the
scope where event P is true. The temporal operators in the temporal logic specifications
have the following semantics:
? Eventually <>
? Always []
? Negation !
? Or |
? And &
? Implies �?
? Until U
? Strong Until W
Using the temporal logic for the specification templates as a foundation, the BMA can
automatically derive the specification templates from UML sequence diagrams [2, 38], if
they are included in the input design model, thus avoiding the necessity of having the
modeler to input the required behavioral property of the design model. A sequence

 36
diagram specifies a set of messages arranged in time sequence to depict a scenario or the
behavioral sequence of a use case. Each message on a sequence diagram corresponds to
an operation on a class or an event trigger on a transition in a state machine. Since each
specification template involves with the occurrence of one or more states or events
present based on different scopes, it is possible to derive these specification templates by
detecting the order of occurrence of the events in the sequence diagram.
3.3 Three Incremental Steps to Realize the BMA
The features of the BMA are implemented using three incremental steps. The first step
includes the translation of UML statechart models for the purpose of model checking, the
construction of the specification template input interface so that a modeler can supply the
required behavioral property for the design model without the intricate details involving
formal methods, and a graph visualization shows the counterexample, as a sequence of
states, which violates the required property. The second step incorporates the capability
to automatically recognize and derive the behavioral properties, in the form of
specification templates, from the UML sequence diagrams. The third and final step adds
the capability to visualize the specification finite state machine generated from the
required behavioral properties before model checking. This visualization offers two
benefits to the modelers. First, it provides detailed awareness and representation of the
specification templates to the modeler. When deriving these templates from the UML
sequence diagrams, it is unlikely the modeler knows the derived templates ahead of time.
Second, since the BMA emphasizes learning formal methods through interaction, the
detailed representation of specification templates in the form of graphs provides the
modeler better intuitive grasp of the required behavior.

 37
4. ARCHITECTURAL DESIGN OF THE BEHAVIORAL MODEL ANALYZER
The development strategy described in chapter 3 has outlined the required functions of
the BMA. The architectural design of the BMA follows this strategy to form the
functional components of the application. This goal of this chapter is to provide the
design details at the component level in three phases to reflect distinct functions
performed in each of one of the phases. The architectural design for the BMA can be
divided into three subsystems as shown in Figure 3: the Semi-Automated BMA, the
Automated BMA, and the Advanced Visualizer. The DesktopBMA is the front-end UI
component of the entire application.

Figure 3 Three subsystems of the BMA

 38
The Semi-Automated BMA fulfills Phase I requirements of the BMA. In this subsystem,
model information from the UML statecharts, exported in XMI, are extracted and
translated into PROMELA design models described by the PROMELA model description
language. Specification templates are obtained from the modeler and translated into
temporal logic. Model checking is then performed using the PROMELA model and
behavioral constraints defined in terms of temporal logic. The results of model checking
are visualized in an interactive and informative manner.
The Automated BMA fulfills Phase II requirements of the BMA. In this subsystem,
messages in the UML sequence diagrams are examined and specification templates are
derived based on the order of occurrence of these messages without intervention from the
modeler.
The Advanced Visualizer fulfills Phase III requirements of the BMA. In this
subsystem, the reachability graph of the states in the design model is generated. If errors
are detected during model checking, an error trace is also shown to indicate the execution
path of the error. The specification finite state machine is also generated from the
specification templates either supplied by the modeler or derived from the UML sequence
diagrams.
4.1 Architectural Design of the Semi-Automated BMA
The architectural design of the Semi-Automated BMA consists of eight functional
components as shown in Figure 4: DesktopBMA, XMIParser, TemplateInput,
LTLEncoder, PromelaParser, SpinEvoker, OutputParser, and ModelVisualizer. These
components provide the following functions to perform model checking and display the

 39
results:
1. Convert UML statecharts to PROMELA model description language
2. Obtain specification templates and translate them into temporal logic
3. Perform model checking
4. Graphically display the errors detected during model checking

Figure 4 Static structure of the Semi-Automated BMA
The BMA is enacted when the DestopBMA initializes. This component contains
functions to call other components to execute the work request by using interactive user
interface widgets. Using these widgets, a UML design model is converted into
PROMELA language; specification templates regarding the design model are supplied;
and the model checking process is launched to find potential errors. When a UML input

 40
model has been chosen, the detailed structure information of the input model is extracted
by the XMIParser and stored in a data structure called StateMachine. Afterwards, the
graph visualization of the input model is generated by the ModelVisualizer. The model
information stored in the StateMachine data structure is converted into PROMELA
language and stored in a text file by the PromelaEncoder. Meanwhile, specialized user
interface elements provided by the TemplateInput enable constraint templates to be
supplied, and these templates are converted into temporal logic by the LTLEncoder and
saved into a temporal text file. Once the design model and the specification templates are
converted into PROMELA and temporal logic, respectively, the model checker is evoked
by the SpinEvoker to perform model checking. Error information is extracted from the
text-based model checking results by the OutputParser and saved into a data structure
called Errors. Using this data structure, a colored trace linking the problematic states in
the existing visualization is generated by the ModelVisualizer. The interactions among
the components are specified in terms of the UML sequence diagram shown in Figure 5.

Figure 5 Sequence diagram of the Semi-Automated BMA

 41
The deployment diagram shown in Figure 6 provides the physical view of the
components grouped by their functions. The components in this system can be grouped
into five subsystems. The subsystem UI contains the BMADesktop. Besides being the
user interface, it facilitates communication among other components. The Property
Specification handles the process of converting supplied specification templates to
temporal logic and contains the TemplateInput, LTLEncoder, and the text file that
includes the converted temporal logic from the specification templates. The Model
Checking component performs model checking and retrieves the raw results from the
model checker. It contains the SpinEvoker, OutputParser, and the data structure
containing the errors found during model checking. Finally, the Visualization provides
the results of model checking using graphs.

Figure 6 UML Deployment diagram of the Semi-Automated BMA

 42
4.2 Architectural Design of the Automated BMA
The architectural design of the Automated BMA consists of four major components as
shown in Figure 7: DesktopBMA, TemplateHandler, XMISeqParser, and TempSelector.
These components facilitate the derivation of specification templates from the UML
sequence diagram. When using the BMA, the specification templates can either be
directly supplied or automatically derived from the UML sequence diagram, but not both
at the same time.

Figure 7 Static structure of the Automated BMA

 43
The process of deriving specification templates starts when the messages in the UML
sequence diagrams are extracted by the XMISeqParser and stored in a data structure
named UMLMessages. Then the list of messages in the data structure is examined and
relevant specification templates are derived by the TemplateHandler. Since the BMA is a
prototype application, only the recognition of the before and the between occurrence
templates defined by Dwyer et al [12] is implemented to demonstrate the effectiveness of
our strategy. The recognized templates are saved into the data structures TempBeforeList
and TempBetweenList, respectively. The list of recognized templates are shown to the
modeler by the TempSelector, and the modeler needs to check off the particular ones to
use as properties for the design model to perform model checking. Afterwards, the
selected templates are converted into temporal logic and saved in a text file by the
TempSelector. The interactions among the components are described in terms of the
UML sequence diagram shown in Figure 8.

Figure 8 UML Sequence diagram of the Automated BMA

 44
The deployment diagram shown in Figure 9 provides the physical view of the
components in this system based on their functions. It contains two subsystems. The UI
subsystem contains the DesktopBMA, which is the user interface. The rest of the
components are all grouped under the Template Generation. This subsystem performs the
extraction of the messages from the UML sequence diagrams, the derivation of
specification templates based on their order of occurrence, and the conversion of the
derived templates into temporal logic.

Figure 9 UML Deployment diagram of the Automated BMA

 45
4.3 The Architectural Design of the Advanced Visualizer
The architectural design of Advanced Visualizer includes four components as shown in
Figure 10: DesktopBMA, ReachVisualizer, SpecParser, and SpecVisualizer. These
components enable two additional functions:
1. Generate a reachability graph and highlight the trace of errors detected during
model checking.
2. Derive the specification finite state machine from the specification templates.

Figure 10 Static structure of the Advanced Visualizer
In this system, the main purpose of the DesktopBMA is to coordinate the communications
among other components. The ReachVisualizer component is responsible for displaying
the reachability graph derived from the finite state design model. To produce this graph,
this component needs to access to two data structures: LTL and StateMachine, both are
managed by DesktopBMA. LTL is the text file containing the property of the design
model expressed in temporal logic, which is converted from the specification templates.

 46
StateMachine is the data structure containing the finite state design model, which is
extracted from the UML statecharts. To generate the specification finite state machine,
structure information from LTL is extracted by the SpecParser and stored in another data
structure called SpecMachine. This data structure is used by the SpecVisualizer to
construct the specification finite state machine. The interactions among the components
in this system are described by the UML sequence diagram shown in Figure 11. These
two functions represent two separate processes that are completely independent of each
other. When using the BMA, the specification finite state machine is generated earlier
than the reachability graph because the temporal logic required to derive the specification
finite state machine is available before model checking, and the errors required to
produce the reachability graph becomes available after model checking.

Figure 11 UML Sequence diagram for the Advanced Visualizer
The deployment diagram shown in Figure 12 provides the physical view of the
components in the Advanced Visualizer grouped by their functions. There are three
subsystems in this phase. The UI subsystem contains the component DesktopBMA, which
is the user interface and performs the coordination of communications among other
components. The Specification FSM Generation derives the specification finite state

 47
machine and contains the SpecVisualizer, as well as the SpecParser. It also contains the
data structure enclosing the specification finite state machine and the text file containing
the temporal logic needed to generate the specification finite state machine. The
Reachability Graph Generation generates the reachability graph and contains the
ReachVisualizer and the data structures that are required to generate the reachability
graph.

Figure 12 UML Deployment diagram for the Advanced Visualizer

 48
5. THE VERIFICATION PROCESS USING THE BEHAVIORAL
MODEL ANALYZER
The BMA provides various functions to improve the use of model checking as a formal
method in software design education. These functions can be divided into the following
processes:
? Converting UML statecharts to PROMELA model description language
? Augmenting state variables to the design model
? Obtaining supplied specification templates
? Deriving specification templates from UML sequence diagrams
? Visualizing model checking results
? Visualizing the reachability graph
? Visualizing the specification finite state machine
This chapter provides the detailed design motivation and procedure on the realization of
these processes by the BMA.
5.1 Converting UML Statecharts to PROMELA Model Description Language
The BMA uses an existing model checker called SPIN [18] to perform model checking.
SPIN is a formal verification tool for verifying distributed software systems and uses its
own input verification language called PROMELA [18] to perform verification. As a
result, the design model needs to be converted to its corresponding PROMELA input.

 49
Before the conversion to the PROMELA model, a finite state machine representing
thehierarchical structure of the software design model is obtained by extracting states and
transitions from the UML statecharts which are exported to XMI. This finite state
machine is stored in an internal data structure.
Based on the finite state machine, the PROMELA file can be divided into blocks,
with each block representing the execution at a state in the state machine. The system
always starts at the first block. Transition events are translated into signals in PROMELA.
When a transition event is signaled, a GOTO statement causes the current block,
representing the source state of the transition, to pass the execution control to another
block, representing the target state of the transition. When the block representing the final
state in the PROMELA file is reached, the system gracefully exists. Figure 13 provides a
simple finite state model and its PROMELA description after the conversion.

Figure 13 A simple finite state machine and its PROMELA model

 50
5.2 Augmenting State Variables to the Design Model
Although UML statecharts can model transitions in the finite state machine, it does not
offer ways to describe finer details regarding each transition. Whenever an event is
causing the system to transition from one state to another, this change should be captured
using state variables. The absence of the use of state variables in the UML statecharts
makes it impossible to express the transitional logic as an essential element of the model
behavior. To fill this gap, the BMA allows the modeler to define state variables for each
transition in the finite state machine. Figure 14 shows the specialized GUI that is used to
define state variables.

Figure 14 Defining state variables in the BMA
The previous section describes the process of converting the system model,
represented in the UML statechart diagram, into the PROMELA model. This process
produces the PROMELA skeleton code used for model checking. State variables are

 51
incorporated into this skeleton system to accurately describe the model?s dynamic
properties. The BMA offers two distinct approaches that allow the augmentation of the
state variables. The first approach assumes that the modeler has no knowledge of
PROMELA and does not understand how the BMA converts the system model into
PROMELA. In this case, s/he can associate state variables with each transition in the
system?s finite state machine. A special GUI lists all transition events in the finite state
machine and the modeler can assign different logic for different events. After the modeler
has finished supplying all the logic, the BMA inserts the logic into the PROMELA file.
The second approach assumes that the modeler may be familiar with PROMELA and
prefers to insert the state variables directly into the PROMELA file. In this case, the
BMA allows the modeler view and modify the contents of the PROMELA file and saves
any modifications made by the modeler.
5.3 Specification Templates
In formal methods, the property of the design model is described by using temporal logic,
which requires significant level of expertise in mathematical background. On the other
hand, the hierarchical specification templates introduced by Dwyer et, al [12] offer an
alternative mechanism to describe the model checking property in an intuitive manner.
The list of hierarchical specification templates are described in the previous chapter. In
the BMA, each specification template is encoded using one or more atomic propositions
that are grouped together using operators such as always, before, and until, etc. Since
each atomic proposition represents a specific predicate that is meaningful in the context
of the particular design model, it is up to the modeler to define them. To simplify the

 52
process, variables can be defined to represent different logical propositions and these
variables can be used to form multiple specification templates. Figure 15 displays how to
define these variables when supplying specification templates.
It is typical for the modeler to supply one specification template before performing
model checking. If more than one specification templates are supplied, they are
concatenated into one complex template using the AND operator. If the design model
violates one of the specification templates, the BMA will provides the visualization of a
counter example for that particular specification template only.

Figure 15 Defining specification templates in the BMA
5.4 Deriving Specification Templates from UML Sequence Diagrams
Conventional model checking tools require the properties of the design model to be
expressed in temporal logic. Our approach of substituting temporal logic with

 53
specification templates alleviates the problem to a degree, but having the modeler to
supply the templates is not always desirable due to the following two reasons:
? The modeler may not be familiar with the concept of the hierarchical specification
templates and cannot apply them in model checking.
? The modeler may not able to correctly originate the properties of the design
model due to inexperience or complexity of the model.
Under these situations, the BMA?s ability of deriving the templates directly from the
UML sequence diagram is a valuable feature. The BMA extracts messages in the UML
sequence diagrams, which are exported into XMI, and store them into an internal data
structure. We use a top-down approach to recognize the specification templates creating a
rule for each unique template, based on the availability and the sequence of the messages.
Given the set of all messages in the UML sequence diagram, all possible combinations of
messages and their sequences are examined to detect which rule has been met and what
are their elements. Using this available information, the template is constructed using the
elements in a detected rule. The prototype only implements the global, before, after, and
between scopes of the existence templates and the global scope of the universality
templates in the hierarchical template system.
Consider the detection of the between-existence template as an example, which states
that a message or event Q should eventually occur between messages P and R. First, the
BMA extracts all the unique messages from the UML sequence diagrams and forms all
possible cases where one message can occur between two other unique messages. For
instance, the UML sequence diagram below in Figure 16 leads to the following template

 54
combinations, where the template <A, B, C> is interpreted as Message B occurs between
Messages A and C.
? <A, B, C>, <A, B, D>, <A, C, B>, <A, C, D>
? <A, D, B>, <A, D, C>, <B, A, C>, <B, A, D>
? <B, C, D>, <B, D, C>, <C, A, D>, <C, B, D>

Figure 16 A simple UML sequence diagram
The BMA examines all of these combinations one by one. Redundant combinations that
have the same meaning with an already derived template, such as <C, B, A> is the same
as <A, B, C>, are eliminated. For the combination <A, B, C>, the BMA finds one
occurrence of Message B in the sequence diagram, and finds whether there is a Message
A occurring before B and C occurring after B. If so, the template is proved to be true.
Otherwise, the BMA examines the next occurrence of Message B and applies the same
procedure, until all occurrences of B are examined. For this simple sequence diagram, <A,
B, C> is tested to be true, as well as the templates <A, B, D>, <A, C, D>, and <B, C, D>.
Using a different example shown in Figure 17, the BMA derives the templates <A, B, C>
and <A, C, B> using the same algorithm. For any between-existence template <P, Q, R>,

 55
the BMA does not support P, Q, or R to be the same message in the UML sequence
diagram.

Figure 17 Another UML sequence diagram as an example
Even with limited templates available in implementation, a sequence diagram with a
few messages can produce many templates that match the criteria. Some are relevant to
model checking while others are not. Performing model checking with many templates at
one time can be extremely slow, and the BMA facilitates this requirement by injecting a
GUI containing all of the recognized templates, as shown in Figure 18. The modeler can
select the templates that are relevant and only the selected templates are used for model
checking. Another reason for this screening process is that occasionally the BMA will
incorrectly derive a specification template. This problem is caused by the limitation that
the BMA is unable to recognize the events that are unreached during execution. Looking
at the UML statecharts of a design model, one observes that certain paths in the finite
state machine remain unreached, and they are not known until the runtime. Figure 19
shows such an example.

 56

Figure 18 Confirming the derived templates
In this example, at State 1, the finite state machine either transitions to State 2, or to State
3, but not both at the same time. This means either Transitions B and E, or C and F, are
reachable. Since we do not know which transitions can be reached for certain ahead of
the runtime, it is impossible to produce accurate specification templates based on the
occurrence of these transition events.

Figure 19 An unreachable path

 57
5.5 Visualizing Model Checking Results
Once the design model has been converted to the PROMELA model and the specification
templates converted to temporal logic, the BMA relies on the model checker SPIN to
perform model checking. The model checker produces text-based model checking results
which indicate whether the property is violated. If it is, then there is a list of states that
have been traversed in order for the model checker to make such a conclusion. In other
words, this list of traversed states is the counter example produced during model
checking. The only problem is that these states do not map to the design model, but rather
an optimized finite state machine based on the design model that is generated by the
model checker at the beginning of model checking. However, the model checker does
provide line numbers in the PROMELA text file that can be mapped to the states in its
optimized model checking state machine. Given how the PROMELA text file is
structured in Section 5.1, the BMA maps these line numbers to the states in the design
model.
When the finite state design model is extracted from the UML statecharts, a graph
containing the states and transitions among the states is generated and displayed. Once
the list of traversed states from the model checker?s optimized finite state machine is
mapped to the list of traversed states in the design model and stored into a data structure,
the BMA locates the list of states in the graph and uses a different color to redraw them.
Given the order of those states that have been reached during model checking, the
transitions executed to reach these states is derived and colored as well. The result is a
finite state graph containing the trace of errors found during model checking showing in
Figure 20.

 58

Figure 20 Visualizing model checking results in the BMA
5.6 Visualizing the Reachability Graph
Reachability analysis is a common practice in software verification and primarily used to
verify the properties of synchronization structure, such as freedom from deadlock,
starvation, and dangerous parallelism [46]. It describes the construction of a state-
transition model of a system from models of individual processes. The composite state-
transition model is called a reachability graph [46]. In this graph, each node represents a
possible state in the system, whereas states represent the value of all variables in the
system. Each edge represents progress in a single task. Figure 21 shows the reachability
graph constructed from two simple interleaved tasks, T1 and T2, and they are
synchronized prior to termination.

 59

Figure 21 A simple reachability graph
The reachability graph provides an enhanced view of the counter example detected
during model checking. The state-transition model is portrayed in a structure which
resembles a tree. The root of the tree is the initial state in the model, and a leaf state of the
tree is an ending state in the model. The error trace, which generated from the counter
example produced by the model checker, is displayed. This error trace starts at the root of
the reachability tree, and ends at one of the leaves of the tree. It resembles one path of the
tree.
The error trace cannot be drawn in the same way in the visualization described in the
previous section since the structure of a tree is different from a finite state machine. The
BMA generates the reachability tree first, and then colors the states and transitions in the
branch representing the counter example. Ideally, the reachability graph without the
counter example should be available as soon as the finite state model is extracted from
the UML statecharts and stored in a data structure. However, due to potential non-

 60
terminating paths in the tree, the error trace generated from the results of model checking
is used as a factor to limit the size of the tree. Thus, the reachability graph feature of the
BMA is only available after the model checking has been completed. The BMA uses a
modified depth-first algorithm to visualize the reachability tree. The classic depth-first
algorithm in this scenario involves drawing nodes in the graph based on transitions
evoked at each state. The algorithm starts at the initial state, then it chooses one of
transitions evoked from the initial state to draw the next state where the chosen transition
leads to. This process will continue till a final state has been reached, suggesting a
complete path of the tree is visualized. At the same time, the algorithm keeps a list, which
contains all states in the finite state machine. Every time a state has been visualized, it is
removed from the list, so the algorithm does not draw the same state again. When all the
states have been drawn, the visualization of the complete reachability graph is finished.
This algorithm cannot be directly applied here because the reachability graph in the
BMA involves the occurrence of the same state multiple times due to the potential
infinite nature of some states in the design model. Therefore the marking strategy in the
depth-first algorithm is modified. Now the same node in the tree is allowed to be drawn a
number of times before the drawing stops, and this number should be defined based on
the complexity of the design model. The strategy of picking a sub-branch of the tree to
draw first is also modified and the priority is given to the states and transitions present in
the error trace. This way, the counter example will not be partially left out of the
reachability graph. Once the reachability graph is completely visualized, the BMA picks
the branch that represents the counter example and colors it. Figure 22 shows a
reachability graph produced by the BMA.

 61

Figure 22 The reachability graph produced by the BMA
5.7 Visualization of the Specification Finite State Machine
The property defining the required behavior of the design model is converted to temporal
logic by the BMA and the model checker converts the temporal logic into a specification
text file so it can easily construct this finite state machine during model checking. The
BMA visualizes this finite state machine to offer enhanced description of the
specification templates. Since the conversion from the specification templates to the
temporal logic is performed prior to model checking, this feature is available before the
model checking process.
The format of the specification text file is identical to the PROMELA file generated
by the BMA. Figure 23 shows the content of the text file representing a simple
specification finite state machine as a toy example. The text file is divided into sections.
Each section represents a state in the finite state machine and transitional behavior is

 62
specified under each section. The header of a section corresponds to the name of that
particular state. At the state init, p and q are some events that cause the finite state
machine to transition into other states. The state accept_all is the final state.

Figure 23 A simple specification text file and its Visualization
Since the state machine terminates at the final state, the section representing this state
does not contain transitions to other states. Given this highly structured format of the
specification text file, the BMA extracts the states and transitions in the text file and
visualizes the specification finite state machine it represents. Figure 24 displays the
visualization of a much more complex specification finite state machine produced by the
BMA based on a specification template derived from the UML sequence diagram. Details
of this design model can be found in the case study section of the next chapter.

 63

Figure 24 The specification finite state machine visualized by the BMA

 64
6. IMPLEMENTATION AND CASE STUDY
6.1 Implementation
The BMA is developed in Java using the open source Eclipse IDE and it is compiled
using Sun?s Java SDK 5.0. All GUI components in the application are built using the
Java Swing toolkit. The XMI files containing the UML diagrams are parsed using the
open source Xerces XML SAX parser for Java [45]. All graph-based visualizations in the
application are generated by the Java Universal Network/Graph Toolkit (JUNG) [17].
The model checker SPIN [18] is used to perform model checking by the BMA. The BMA
is developed on Windows, and it can be run on Linux with slight modifications.
6.2 Case Study
To demonstrate that the BMA is able to correctly detect problems giving a model and its
property, this section provides a case study revolving around the following BMA features:
? Performing model checking using supplied specification templates
? Performing model checking using derived specification templates
? Visualizing the specification finite state machine
? Visualizing the reachability graph
One strategy is to require students to submit verification queries in terms of BMA
templates along with their UML statechart designs. As part of their homework
assignment, students can be provided with a set of constraints their designs need to

 65
satisfy. They are them asked to supply verification queries and demonstrate the
correctness of their designs with respect to these queries. In evaluating submitted
assignments the instructor can not only check the correctness of the design, but also
students? verification performance. Verification performance can be tested by running the
verification queries against the instructor provided reference models that are mutated to
measure the fault revealing quality of the student-supplied queries. In the following
scenario, we assume a student is submitting a design model, while the instructor uses
specifications to verify the consistency of the student?s design.
6.2.1 Scenario Description
For the case study, a simple gas pump design model is created and submitted by a
student and its UML statechart diagram is shown in Figure 25. In this model, the gas
pump starts in an idle start state waiting for a customer to interact with it. When a
customer wants to use the pump by lifting a nozzle, the pump checks whether the nozzle
is available to be used because sometimes a nozzle can be out of service. This causes the
pump go to the state ?CheckingNozzle?. If the nozzle is out of service, the pump goes to
the state ?Unavailable? and eventually goes back to the idle start state and the customer
is forced to choose another nozzle. If the nozzle is ready to be used, the gas pump goes to
the state ?Available? and once the customer starts pumping gas into his/her car, the gas
pump goes to the state ?InUse?. At this state, the customer can pause the process and the
pump goes to the state ?Paused?. The customer can also stop the process to finish fueling
the car. In this case, the pump goes to the state ?Stopped?. While the pump is at the state
?Paused?, the customer can either continue the fueling process or stop the fueling process.

 66
If continue, the pump goes to the state ?ReEnabled? and the gas is again being pumped
into the car and the pump goes back to the state ?InUse?. If stop, the pump goes to the
state ?Stopped?. At the state ?Stopped?, the pump goes to the final state ?Completed? and
the fueling process is completed. This UML statechart model is created using Rational
Rose and exported into XMI. The XMI file is opened by the BMA and the visualization
of the statechart is generated by the BMA, as shown in Figure 26.

Figure 25 Statechart diagram of the gas pump model

 67

Figure 26 Visualization of the UML statechart model
6.2.2 Model Checking Using Supplied Specification Templates
Specifications are needed before model checking takes place. The BMA can either obtain
specification templates directly from the instructor or derive them from the UML
sequence diagram. If the templates are supplied from the instructor, state variables need
to be supplied beforehand. Figure 27 shows the interface for defining state variables. The
top section of this interface displays the PROMELA model description of the design
model. The PROMELA description can be modified by the instructor if s/he is
comfortable in editing the PROMELA file. The bottom section of this interface enables
the definition of state variables for each transition in this finite state model.

 68

Figure 27 Interface for state variables in the BMA
Here we assume the role of being the instructor and providing state variables and
properties to the original model designed by the student. Before inserting state variables
that are relevant to the case study, let us consider the following logic based on the
scenario: The status of the gas pump can be described by a variable whose value
represents five states including unavailable, inuse, paused, stopped, and finished. The
state unavailable suggests the nozzle is out of service. The state in-use suggests that the
nozzle is currently being used. The state paused suggests the fueling process is paused,
and the state stopped suggests that the nozzle is currently idle. A state variable named
pumpstatus is created to hold the value of these states. To create this variable in the BMA,
we need to select the variable selection item under the List of Transitions and then type
the declaration ?int pumpstatus = 0? in the textbox on the right, as shown in Figure 28.

 69

Figure 28 Initializing a state variable
Besides initializing the state variable, additional values are needed to represent the
five states. The exact values are irrelevant as long as they are different from each other,
and we assign them from 1 to 5 respectively. This process is done by directly inserting
expressions into the PROMELA language, as shown in Figure 29.

Figure 29 Assigning values for the states
While the finite state machines executes, transitions cause the state variable
pumpstatus to change states. More specially, the state unavailable is assigned to the
variable whenever the transitional event NotReady occurs. The state stopped is assigned
whenever the transitional events Ready or Stop executes. The state in-use is assigned

 70
whenever the transitional event Pump takes place. The state paused is assigned whenever
the transitional event Pause takes place, and finally, the state finished is assigned
whenever the transitional event Finish takes place. Specifying transitional logic with
respective to different transitional events in the BMA is demonstrated in Figures 30.

 71

Figure 30 Assigning transitional logic to different transitional events

 72
Once the transitional behaviors have been defined, the specification templates for the
design model are supplied. In this scenario, we demonstrate by creating three templates
for model checking. The first template can be described as ?the pumpstatus will reach the
inuse state before the paused state?. This refers to the fact that a customer must always
start the fueling process before s/he can pause the pump. This template can be divided
into two logical propositions: one representing the status of the pump is currently inuse,
the other is currently paused. The two propositions are joined using the scope operator
before. Figure 31 displays the interface which enables the specification of the templates.

Figure 31 Specifying specification templates in the BMA
In the scenario, we define two propositions: The first is called pumpinuse with the
logical expression ?pumpstatus == INUSE? assigned to it. The second is called

 73
pumppaused with the logical expression ?pumpstatus == PAUSED? assigned to it. We
also specify that the scope operator of this template is before, and pumpinuse is occurring
before pumppaused. Figure 32 displays the declaration of the propositions and the
template which made up by the two propositions and the before operator.

Figure 32 Declaration of propositions during template specification
The model checking using the supplied template does not yield any errors, shown in
Figure 33. The design model is consistent with the specification template.

 74

Figure 33 No error is found during model checking
Let us look at another template: the pumpstatus will reach the state stopped after
reaching the state in-use. Transitional logic is already defined in the demonstration of the
previous template. Like the previous template, two propositions are declared: one
representing the status of the pump is inuse, and the other representing the state is
stopped. The two propositions are joined by the scope operator after, as shown in Figure
34. The result of model checking yields no errors, proving the design model is consistent
with the template.

 75

Figure 34 Defining the second specification template
While the design model matches with the properties presented by the first two
templates, the third template provides a mismatch between the design model and the
specification. This template is described as ?the pumpstatus will reach the state paused
between the reaching the state inuse and the state stopped?. Although this template makes
sense within the context of the scenario, upon careful inspection of the UML statechart
diagram presented in Figure 25, the instructor finds that the transition Pause and the state
?Paused? are not necessarily being reached during execution. In the scenario, the
customer may complete the fueling process without pausing in the middle, thus the
pumpstatus state variable may not be assigned to the state paused. Creating the template
in the same way as described above and performing model checking proves that the

 76
design model violates the specification, shown in Figure 35, and the colored error trace is
shown in Figure 36.

Figure 35 Error detected in model checking

Figure 36 Error trace displayed by the BMA

 77
In order to conform to the specification, the design model can be modified based on the
results from model checking. The reason for which the model violates the specification
template is that the transition event Pause can be unreachable. One alternative model
shown in Figure 37 is consistent with the specification. In this model, the transition event
Pause is guaranteed to be reached.

Figure 37 A model conforms to the specification
6.2.3 Model Checking Using Derived Specification Templates
If UML sequence diagram is present, the BMA is capable of deriving specification
templates from the sequence diagram. Therefore the instructor can take advantage of this
feature rather than design specifications from scratch to test the student?s design. Figure
38 shows a sequence diagram used for this case study. It represents the following
scenario: A customer wants to use the pump by lifting the nozzle, the gas pump first
checks whether the nozzle is available to be used or not (CheckNozzle). Then it finds out
that the nozzle is ready to be used and informs the customer (Ready). The customer
connects the nozzle to the gas tank and starts pumping gas into the car (Pump). While

 78
 fueling the car, the customer pauses the process (Pause). Then the customer continues
fueling (Continue), and the nozzle once again starts pumping gas into the car (Pump).
The gas tank is full and the customer stops fueling (Stop), and the customer disconnect
the nozzle from the gas tank and the process is finished (Finish).

Figure 38 The UML sequence diagram for the case study
This UML sequence diagram is also created by using Rational Rose and exported into
XMI. Once the XMI file has been loaded into the BMA, the BMA automatically applies
the algorithm explained in chapter 5 to derive the specification templates. The list of the
templates that have been detected is presented to the instructor, as shown in Figure 39.

 79

Figure 39 The list of specification templates derived by the BMA
The presentation of the templates remains primitive since there is no standard and
effective way for displaying them using text-based interface. Each item in this list
represents a derived template. Each template contains a scope operator, such as before,
after, or between. Rather than using propositions, the templates are composed of the
occurrence of messages in the UML sequence diagram. Each message is UML sequence
diagram is related to a transitional event, therefore in the list, the name of each
transitional event identifies each message in the sequence diagram. The name of the
transition is followed by the source and target states of the transition. Upon examining
the templates, one or more relevant templates are chosen as properties for model
checking. In this case, we pick the first template in the list: CheckNozzle is occurring
before Ready. The result of model checking confirms that the design model does not
violate this property, as shown in Figure 40.

 80

Figure 40 The design model does not violate the specification
The limitation of deriving templates fall into the problem which that the BMA is
unable to recognize which transition can be skipped during execution. Since the
templates are formed based on pure calculation of message sequences, it is unable to
check which transition event can potentially be unreached. The sequence diagram shown
in Figure 38 represents a valid scenario. One template generated by the BMA based on
this scenario is that the event Pause occurs between the occurrences of events Pump and
Stop. Based on the experiments from the previous section, the event Pause may not
necessarily be reached during execution, thus the design model violates this template, if
being used as a specification. This shortcoming places great emphasis upon human
examination when the instructor checks off which template is relevant and to be us during
model checking.

 81
6.2.4 Visualizing the Specification Finite State Machine and the Reachability Graph
The visualization of the specification finite state machine becomes available immediately
after the BMA has obtained the specification templates. If the BMA is relying on users to
define templates, the visualization is generated after the templates are defined using
propositions and scope operators. If the BMA is deriving templates from UML sequence
diagram, the visualization is generated after the user checks off which template is
relevant to the model, so that it be included as part of the properties list for model
checking. Figure 41 displays the visualization produced using a derived template in the
scenario: the event CheckNozzle occurs before Ready. The overlapping elements
produced in the visualization are caused by limitation of JUNG, the library used to
generate visualizations in the BMA.

Figure 41 The specification finite state machine
The visualization of the reachability graph is available immediately after the model
checking is completed. If an error is detected during model checking, it displays an error

 82
trace from the originating state to an ending state. The reachability graph shown in Figure
42 is generated after model checking using the scenario design model and the derived
template, the event Paused occurs between the occurrences of events Pump and Stop, as
the specification.

Figure 42 The reachability graph

 83
7. CONCLUSIONS
Formal methods represent powerful techniques in meeting the challenges to reduce
design flaws and increase overall quality in software. The need for formal methods
increases tremendously in safety critical systems. The uses of formal methods enhance
the insight into the understanding of software requirements. Therefore it is critical to
bring formal methods into software design education. The BMA represents one step
forward in this direction.
7.1 The Limitations of the BMA
Two critical limitations are encountered during the implementation of the BMA:
? Inadequate system model description provided by UML
? Information loss during system model translation to PROMELA
The BMA relies on the UML statecharts to obtain the behavioral model of the software
system. Yet the UML statecharts cannot capture the transitional behaviors of the finite
state machine. Recall that the UML statecharts are composed of distinct states with one
or more state transitions between the states. Although UML statecharts provide
mechanisms to specify guard conditions and triggers for every transition in the finite state
machine, these mechanisms are inadequate to describe the runtime behavior of a vivid
software system. State variables and their manipulation during a transition are not
supported by UML. As a result, there is little or no restriction on the action specification

 84
during the transitions from one state to another. To get around this problem, an additional
component is incorporated into the application that allows state variables to be defined,
so that specification properties can be created based on these simple variables to test
whether the model is behaving as expected during model checking. This component does
not offer enough flexibility to enrich the model since the input is limited to simple
variable declarations.
Another problem that has been encountered is potential information loss when
converting the system model into the PROMELA input language that is required by the
model checker. Information loss here refers as the original model description of system
has changed once it has been converted into PROMELA, and suggesting that not all
behaviors of the original model have been captured. The quality loss is largely due to the
absence of a standard methodology that UML statecharts to be converted into
PROMELA systematically since PROMELA is not designed to accommodate
translations from UML statecharts when it was created. As one can expect, this problem
occurs more frequently when the model becomes more complex. Finite state models with
many transitions that are missing transitional logic often causes model checking to be
trapped in an infinite loop. On the other hand, complex transitional logic coupled with
guard conditions often cause model checking to end prematurely. To ensure the model
checking process takes place without these side effects, problematic elements in
PROMELA are rewritten at the sacrifice of slight variation to the original finite state
model. Simple and moderate-sized finite state models with limited number of transitions
are not being affected.

 85
7.2 Future Work
Given the limitations from the previous section, the perfection of the BMA requires
additional efforts from the computing community to recognize the potential offered by
formal methods and to produce new methodology and better tools that integrates model
checking with existing software design techniques. Model checkers such as SPIN need to
be improved to accommodate verification of UML models, not just hardware systems.
Methodology needs to be invented and standardized to convert UML models to the input
model description language accepted by model checkers. The emergent trend toward
model-driven development [15] and the adoption of the principles underlying the model-
driven architecture [29] implicates the necessity of promoting critical analysis and
verification skills within the context of software design education. The significance of
teaching formal methods in the context of emerging trends in software development is
also argued by Davies and Simpson [11] and Robinson [37].
The industry has already recognized the needs to produce new tools that complement
this weakness in the UML specification. iUML [23], an application development
environment offers support for executable UML modeling by incorporating Action
Specification Language (ASL) [23] in UML models, represents one such effort. At this
time, these new tools are neither sophisticated nor flexible enough to fill the gap.
The capability of the BMA can be augmented by implementing the recognition of
additional specification templates. Currently the BMA only supports the existence
templates for the purpose of demonstration. The visualization of the statechart design
model and the specification finite state machine is problematic as the visualization library
JUNG currently does not support arcs. Using an alternative visualization library or

 86
waiting a more mature version of JUNG will eliminate this problem. The flexibility of the
BMA can be improved by more vigorous separation of modules in the design of the
application by using specialized wrappers for SPIN and JUNG. This way the model
checker and the visualization library can easily be swapped out and replaced with
alternative tools.
7.3 Conclusion
The BMA offers potential benefits to its target users ? undergraduate students who have
little or no background in formal methods. With this tool, they can apply model checking,
which is one of the most powerful verification techniques existing today. In this case, the
students do not have to directly interact with a model checker, to manually design their
model in the input language of the model checker, or to generate the sets of specifications
for their designs. Through visualization, the application offers valuable output as
compared to the text output of the original model checker. By closely working with UML
models, the BMA provides a convenient bridge between the model checker and the
current software modeling environment.
The idea of bringing formal methods into software design education has little to lose,
but a lot to gain. Formal methods have proven themselves to be effective in formal
verification of software systems [38]. It provides significant benefits to students if they
utilize its potential for software design activities. The BMA represents an initiative to
develop a methodology to realize such an idea.

 87
References
[1] Almstrum, V. L., Dean, C. N., Goelman, D., Hilburn, T. B., and Smith, J. (2001).
?ITiCSE 2000 Working Group Reports: Support for Teaching Formal Methods?,
Working Group Reports from ITiCSE on Innovation and Technology in Computer
Science Education.
[2] Borger, E., Cavarra, A., Riccobene, E, (2003). ?Modeling the Meaning of
Transitions from and to Concurrent States in UML State Machines?, Proceedings of
the 2003 ACM Symposium on Applied Computing, pp. 1086 - 1091
[3] Bryant, R. E. (1986). ?Graph-Based Algorithms for Boolean Function
Manipulation?, IEEE Trans. Comput. C-35, 8.
[4] Burch, J. R., Clarke, E. M., Long D. E., McMillan, K. L., and Dill, D. L. (1994)
?Symbolic Model Checking for Sequential Circuit Verification?, IEEE Trans.
Computer-Aided Design of Integrated Circuits, vol. 13, no. 4, pp. 401-424.
[5] Burstall, R. M. (1974) ?Program Proving as Hand Simulation with a Little
Induction?, In IFIP Congress 74, pp. 308 ? 312, North Holland.
[6] Clarke, E. M., Emerson, E. A. (1981). ?Design and Synthesis of Synchronization
Skeletons Using Branching Time Logics?, in Logic of Programs: Workshop,
Yorktown Heights, NY.

 88
[7] Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). ?Automatic Verification of
Finite State Concurrent Systems Using Temporal Logic Specifications?, ACM
Trans. Program Lang. Syst. 8, 2, 244-263.
[8] Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking, Edmund M.
Clarke, Jr., Orna Grumberg, and Lucent Technologies.
[9] Clarke, E. M. & Wing, Jeannette. (1996). ?Formal Methods: State of the Art and
Future
Directions?, ACM Computing Surveys 28, 4 (December 1996): 626-643.
[10] Cleaveland, R., Madelaine, E., and Sims, S. (1995). ?Generating Front Ends for
Verification Tools?, In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS ?95), Vol. 1019 of Lecture Notes in Computer Science, E.
Brinksma, R. Cleaveland, K. Larsen, and B. Steffen Eds., Springer-Verlag, 153-173.
[11] Davies J. and A. Simpson. (2004). ?Teaching Formal Methods in Context,? In
Procedings of the CoLogNET/FME Symposium, TFM 2004. LNCS 3294, pp. 185-
202.
[12] Dwyer, M., Arvrunin, G. and Corbett, J. (1999). ?Property Specification Patterns
for Finite-State Verfication?, Proceedings of the 21st international conference on
Software engineering, pp. 411 ? 420.
[13] Elseaidy, W., Cleaveland, R., and Baugh, J. (1996). Modeling and Verifying Active
Structural Control Systems?, Sci. Comput. Program.
[14] Emerson, E. A. (1981). ?Branching Time Temporal Logic and the Design of Correct
Concurrent Programs?, Ph.D. thesis, Harvard University.

 89
[15] Garlan D. (1994). ?Integrating Formal Methods into a Professional Master of
Software Engineering Program?, Proceedings of The 8th Z Users Meeting..
[16] Gluch P. D. and Weinstock B. C. (1998). ?Model-Based Verification: A
Technology for Dependable System Upgrade?, CMU/SEI-98-TR-009.
[17] Gordon, M. (1987). ?HOL: A Proof Generating System for Higher-Order Logic?, in
VLSIspecification, Verification and Synthesis. Kluwer.
[18] Holzmann, G. (1997). ?The Model Checker SPIN?, IEEE Trans. On
Software Engineering, Vol. 23, No. 5, May 1997, pp. 279-295.
[19] Jagger, D., Schleicher, A., Westfechtel, B (1999). ?Using UML for Software Process
Modeling?, Foundations of Software Engineering, Proceedings of 7
th
 European
Software Engineering Conference, pp 91-108.
[20] Java Universal Network/Graph Framework. (2004). http://jung.sourceforge.net/.
[21] Jones, C. B. (1986). Systematic Software Development Using VDM. Prentice-Hall
International, New York.
[22] Kelemen, C., Tucker, A., Henderson, P., Bruce, K., and Astrachan, O. (2002) ?Has
Our Curriculum Become Math-Phobic?? Proceedings of the 5
th
 Annual
SIGCSE/SIGCUE Conference on Innovation and Technology in Computer Science
Education, pp. 132-135.
[23] Kennedy Carter iUML, http://www.kc.com.
[24] Kindred, D. and Wing, J. (1996). ?Fast, Automatic Checking of Security Protocols?,
in Proceedings of the USENIX Workshop on Electronic Commerce Protocols.
[25] Kroger, F. LAR (1977): A logic for algorithmic reasoning. Acta Informatica 8:243?
246.

 90
[26] Kryvyi, S., Matveyeva, L. (2003) ?Formal Methods of Analysis of System
Properties?, Cybernetics and System Analysis, Vol. 39, No. 2.
[27] Kurshan, R. P. (1994). ?The Complexity of Verification?, In Proceedings 26
th

ACM Symposium on Theory of Computing (STOC), Montreal, 365 ? 371.
[28] Liu, H., Gluch, D. P. (2002). ?A Proposal for Introducing Model Checking Into an
Undergraduate Software Engineering Curriculum?, The Journal of Computing
in Small Colleges, Volume 18, Issue 2.
[29] McMillan, K. L. (1993). Symbolic Model Checking: An Approach to the
State Explosion Problem. Kluwer.
[30] MDA. (2004). MDA: "The Architecture of Choice for a Changing World,"
http://www.omg.org/mda/executive_overview.htm.
[31] Mills, H., (1988) Software Productivity, Dorset.
[32] Parnas, D. L., (1999) ?Software Engineering Programs are not Computer Science
Programs?, IEEE Software.
[33] Peled, D. (1996). ?Combining Partial Order Reduction with On-the-Fly Model-
 Checking,? J. Formal Meth. Syst. Des. 8 (1), 39-64.
[34] Pnueli, A. (1977). ?The Temporal Logic of Concurrent Programs?, Theoretical
Computer Science 13: 45 ? 60.
[35] Queille, J. and Sifakis, J. (1982). ?Specification and Verification of concurrent
systems in CAESAR,? In Proceedings of Fifth ISP.
[36] Rajan, R., Shankar, N., Srivas, M. K. (1995). ?An Integration of Model Checking
with Automated Proof Checking?, Proceedings of the 1995 Workshop on
Computer-Aided Verification, pp. 84 ? 97.

 91
[37] Robinson K. (2004). ?Embedding Formal Development in Software
Engineering,? In Procedings of the CoLogNET/FME Symposium, TFM 2004.
LNCS 3294, pp.32-46.
[38] Rumbaugh, J., Jacobson, I., and Booch, G. (1999). The Unified Modeling Language
Reference Manual, Addison-Wesley Longman, Inc.
[39] Sistla, A. P., Gyuris, V. and Emerson, E.A. (2000). ?SMC: A Symmetry-Based
Model Checker for Verification of Safety and Liveness Properties,? ACM
Transactions on Software Engineering and Methodology (TOSEM), Volume 9,
Issue 2.
[40] Spivey, J.M. (1988) Introducing Z: a Specification Language and its Formal
Semantics. Cambridge University Press, Cambridge.
[41] Steffen, B., Margaria, T., Classen, A., and Braun, V. (1996) ?The Meta ?95
Environment?, In Proceedings of Computer-Aided Verification ?96, Lecture Notes
Computer Science, Springer-Verlag.
[42] ?The Economic Impacts of Inadequate Infrastructure for Software Testing?. (2002)
National Institute of Standards and Technology.
[43] Vienneau, Robert. A Review of Formal Methods (1993). Griffins AFB, N.Y.: Rome
Laboratory.
[44] Woodcock, J., Davies, J. (1996) Using Z: Specification, Refinement, and Proof,
rentice Hall Europe, 1996.
[45] Xerces XML Parser. (2004) http://xml.apache.org.
[46] Yeh, W. and Young, M. (1991) ?Compositional Reachability Analysis Using
Process Algebra?, Symposium on Testing, Analysis, and Verification.

 92
[47] Yilmaz, L. (2004) ?Integrating Model-Based Verification into Software Design
Education?, ASEE Southeast Section Conference.

