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Proper design analysis is indispensable to assure quality and reduce emergent cost 
due to faulty software. Teaching proper design verification skills early during the 
pedagogical development of a software engineer is crucial, as much analysis is the only 
tractable way of resolving software problems early when they are easy to fix. Besides, 
fundamental component of any engineering discipline, including software engineering, is 
the use of formal and sound techniques that facilitate analysis of artifacts produced by 
students. Yet, the impact of formal methods in software engineering practice, as well as 
education, is minuscule. The fundamental reasons why formal methods are not 
effectively utilized are attributed to (1) the impedance mismatch between the underlying 
mathematical underpinning of formal methods and students? semi-formal, if not informal,
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view of the design problem and (2) the lack of tool support for seamless and transparent 
integration of formal methods into software design education. This thesis suggests a 
strategy and tool support to improvement attainment of software design verification skills. 
The strategy illustrates how selective and pragmatic application of model-based 
verification methods can be used in software design education via tools that aim to bridge 
the gap between students? semi-formal design world-view and the formalism underlying 
formal methods. 
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1. INTRODUCTION 
As modern systems are increasingly becoming reliant upon computing technologies, 
software that powers these platforms is emerging as a vital component for today?s 
technology infrastructure. A study performed by the National Institute of Standards and 
Technology (NIST) reveals that erroneous and inefficient software products cost U.S. 
economy $59.5 billion annually in failed missions and lost productivity [42]. Clearly, the 
need for reliable software systems is critical as such systems are becoming pervasive in 
our lives. With the continuing growth of using software-intensive technology products, it 
will be even more important to attain higher levels of reliability and assurance. Various 
software verification methods have been introduced and applied [8] through software 
development stages to detect and eliminate errors as early as possible. Concomitantly, in 
academia, there has been considerable interest in developing more effective software 
design and verification techniques [1] and teaching them to new generation of software 
engineers [28].  
1.1 The Need for Integration of Formal Methods into Software Design Education 
The principle methods for complex system verification include simulation [8], testing 
[42], deductive verification [8], and model checking [6]. Simulation and testing both 
involve conducting experiments before deploying the system in the field. While 
simulation is performed using an abstraction (i.e. model) of the system, testing is 
performed on the actual product. In both cases, they usually involve providing certain
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inputs to the system or the system model and observing the corresponding outputs. These 
methods are common and cost-effective ways to find many errors. However, checking all 
possible interactions among all building blocks of the system using simulation and testing 
techniques is computationally intractable.  
Deductive verification [8] refers to the use of axioms and proofs to prove the 
correctness of the software systems and usually applied in the verification of mission 
critical systems. Proofs were first constructed by hand and eventually software tools were 
built to facilitate the effort. Although deductive reasoning is widely recognized and 
accepted by computer scientists, the process is rather time consuming and can only be 
performed by experts who have proper education and experience in logical reasoning. 
Model checking is a technique for formally verifying finite state concurrent systems 
based on formal methods [7]. Formal methods, mathematically based techniques that 
provide a framework to specify, define, and verify systems, can effectively reveal 
ambiguity, incompleteness, and inconsistency within complex systems. Use of formal 
methods does not automatically guarantee correctness. However, when used 
appropriately, these techniques have proven themselves to result in software products 
with higher levels of quality [9]. In model checking, specified systems are modeled as 
finite-state machines and its expected properties and behaviors are specified in temporal 
logic, and the process of verification can be performed automatically. The procedure 
normally uses an exhaustive search of the state space of the system to determine if some 
specification is true or not. While model checking has become increasingly popular in the 
industry, other formal methods have received relatively little attention. The introduction  
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of formal methods, as a set of engineering disciplines and practices, into software design 
education has at least a two-fold benefit to the students [28]. First, it bridges the gap 
between theories in computer science and emerging industry practices. Second, it 
provides students valuable and pragmatic skills in the formal modeling and analysis of 
complex software systems that are beyond the scope of conventional informal 
verification methodologies. 
1.2 The Challenges in Integrating Formal Methods into Software Design Education 
The emerging trend of model-driven development [14] and model-driven architecture [30] 
suggests significant benefits when integrating model-based verification techniques into 
software design education. By learning the engineering discipline of applying these 
techniques to facilitate the development, analysis, and verification of software, students 
will grasp the significance of formal methods and gain valuable skills and experience in 
software design and modeling [28]. Strategies of integrating formal methods in the form 
of model-based verification into software design education have been difficult. Many 
academic institutions either completely avoid teaching formal methods or teach them in 
an isolated manner, with emphasis on notations rather than its underlying principles [15]. 
Carnegie Mellon University [15] has successfully integrated formal methods throughout 
its software engineering graduate program, but their approach cannot easily be adapted 
into undergraduate software design curriculum because undergraduate students do not 
possess the requisite skills to understand and apply formal methods. For these students, it 
is beneficial to participate in courses designed specifically toward them, such as courses 
that provide exposure to model checking without having students to burden themselves  
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with high requirements in advanced background in mathematics. Concomitantly, new 
software tools should be developed to facilitate learning the pragmatic use of formal 
methods and to fill the gap between learning and practice to help the students accomplish 
following goals [47]: 
? to use formal methods without getting into the quagmire of theoretical details 
? to avoid steep learning curves about the syntax of a specific formal method by 
using alternative generic high-level constraint patterns to analyze designs 
? to collaboratively analyze inconsistencies and design conflicts at least semi-
formal reasoning within the realm of the actual industrial software development 
process  
Using today?s technology, students must rely on existing model checking tools to assist 
their learning experience. There are indeed capable model checking tools available, such 
as SMV [29] and SPIN [18]; yet, they share a common problem for a typical 
undergraduate student: These tools are difficult to learn and difficult to use, despite many 
accolades they have won from the industry, they are not designed for education purposes, 
and the learning curve is enormous, considering the range of functionalities they provide. 
Both model checkers are command-line applications requiring the user to memorize the 
meaning of all of their run-time parameters and options. In order to perform model 
checking, the software model which serves as an input to the model checkers need to be 
encoded using a separate but complex notation, almost as if the user is learning a new 
programming language. But perhaps the most serious problem of all, the model checkers 
do not facilitate the understanding or the learning of model checking by hiding the model 
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checking processes from their users. No information is conveyed back to the users until 
the end, when model checking has been completed and lines of cryptic text-based results 
are dumped on the screen. To a typical undergraduate software engineering student, these 
text-based results probably make little sense.  
The origin of the steep learning curve of the existing model checking tools can be 
traced back to almost twenty years ago when these tools were still in their infant stage of 
development. Computing at the time was a lot different than today. Computers were not 
only bulky and slow, but also extremely expensive. Computing resources were scarce and 
precious. As a result, most computer applications are written using structured 
programming languages in the most cost-effective manner to boast their performance. In 
order to do so, other aspects of the software, such as usability and maintainability, had 
been sacrificed. When building a software application to solve a particular problem, as 
long as the problem is solved within a reasonable amount of time and using a reasonable 
amount of computing resources, one could care less of how does the application solve the 
problem. As time has progressed and technology has been improved, modern computer 
platforms with the computation power one could only dream of just a few years ago have 
become accessible at much lower costs. The availability of high performance computing 
platforms has triggered a paradigm shift in the computing society regarding how to write 
software. Much more emphasis has been given to the learnability, flexibility, and 
robustness of the software instead of its crude performance, and the structured 
programming approach has been gradually shifted out and replaced by the object-oriented 
programming approach for the same purpose. It is quite ironic during the same period of  
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time formal methods have gained acceptability in the industry and even some popularity 
when dealing with the verification of mission critical hardware systems [4]. This success 
has quickly led the application of the same approach on the verification of software 
systems. Model checking tools have become more robust, powerful, and feature-rich, and 
have a lot of potential to offer in the campaign against hidden software design flaws. 
However, it is built on top of an aging foundation. It is rather difficult to integrate these 
legacy tools directly with today?s software design methodology being taught in 
undergraduate level classrooms.  
1.3 Research Objective  
Given the challenging obstacle of merging formal methods into software design 
education, the goal of this research is to enable the methodology of teaching formal 
methods in undergraduate level software design curricula, without having the students to 
be burdened by the vast amount of theoretical details and mathematical logic required to 
understand formal methods. This objective can be realized by developing a tool that 
integrates model checking into current software design methodology being taught in 
undergraduate software design courses. The design of this tool addresses the difficulties 
of teaching formal methods to undergraduate students in general, as well as the 
shortcomings of existing model checking tools for educational purposes. This tool 
abstracts unnecessary theoretical details away from its users while emphasizing flexible 
interaction with during the model checking process. As a result, the students may not 
only gain a novel verification technique to validate their software design in a quick and 
effective manner, but also attain fresh insights on how model checking works. 
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The thesis is organized as follows. Chapter 2 reviews the related work in formal 
methods, model checking and the integration of formal methods into software design 
education. Chapter 3 lays out the general strategy on how to realize the research 
objectives. Chapter 4 provides the conceptual design of the tool, and chapter 5 addresses 
finer design details related to components of the tool. Chapter 6 describes the 
implementation details of the tool and provides a case study to demonstrate its utility and 
effectiveness. Finally, in chapter 7 we conclude by discussing the benefits and limitations 
of the tool as well as future work to extend our research. 
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2. LITERATURE REVIEW 
In meeting the challenge of software products? growing complexity, a major goal of 
software engineering is to enable the construction of reliable software systems [16]. The 
use of formal improves reliability by revealing inconsistencies, ambiguities, and 
incompleteness hidden in the system design [43]. As a result, a set of software 
engineering techniques and practices for software verification and testing based on 
formal methods, known as model-based verification, has been codified and adopted [16]. 
2.1 Formal Methods 
Modeling and verification techniques employed by model-based verification involve the 
application of a formal methodology. A formal method in software development is 
defined as ?a method that provides a formal language for describing a software artifact 
(e.g. specifications, designs, code) such that formal proofs are possible, in principle, 
about properties of the artifact [43].? In this formal methodology, essential models of a 
software system are created using a formalism, which is a collection of principles and 
practices that are built upon well-defined language of expression and inference and 
meaning assigned to the symbols of the language [9], and then analyzed and compared 
against its expected behaviors. Formal specification is the use of notations derived from 
formal logic to describe [26] 
? the assumptions about the world in which a system will operate,
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? the requirements that the system is to achieve, and  
? the design to accomplish those requirements.  
Essentially, a real system is represented, as a rule, in the form of labeled transition system 
(LTS) [26]. LTS is an oriented graph whose nodes are associated with the states of the 
system, and edges of this graph that connects the nodes, labeled by symbols of performed 
actions, are used for representation of the transition-action relation in the system. When 
the system starts, some state called initial is selected in the set of states of the LTS, and a 
sequence of transition-actions in the LTS is called its run or trace. The totality of all 
possible traces in the LTS is called the language of the system. An LTS is called finite if 
the sets of its states and transitions are finite, and infinite if otherwise. In formal 
specification, the basic types of properties that are usually specified include behavior 
properties over time, working characteristics, and internal structure. The behavioral 
properties are most important. Examples of such behavioral properties include safety and 
liveness properties, and they can be expressed in logic languages, such as temporal logic.  
On the other hand, formal verification is the use of proof methods from formal logic 
to [26] 
? analyze specifications for certain forms of consistency and completeness,  
? prove that the design will satisfy the requirements, given the assumptions, and 
? prove that a more detailed design implements a more abstract one 
Two well established approaches to formal verification are model checking [8] and 
theorem proving [9]. Theorem proving, proposed by Burstall [5], Kr?ger [25] and Pneuli 
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[34], is a technique by which both the system and its desired properties are expressed in 
the form of mathematical logic. This logic is given by a formal system which defines a 
set of axioms and a set of inference rules. Theorem proving is the process of finding a 
proof of a property from the axioms of the system, and it is increasingly being used today 
in the mechanical verification of safety-critical properties of hardware and software 
designs [8]. The theorem proving tools consists of powerful collections of inference steps 
that can be used to reduce a proof goal to simpler sub-goals that can discharged 
automatically by the primitive proof steps of the prover. Given a property and a model, 
the prover is either able to verify the property by completing the proof or given back 
scenarios in which the property is violated. The advantage of theorem proving is that it 
can deal directly with infinite state spaces by relying on techniques such as structural 
induction to prove over infinite domains. Therefore, it is not limited by size of the state 
space. Large systems cannot be verified by a model checker for the same reason, but they 
can still by verified by the theorem prover. Unfortunately, theorem proving requires 
considerable amount of technical expertise. As a result, the process is often slow and 
error prone.  
2.2 Model Checking 
Model checking relies on building a finite model of a system and checking that a desired 
property is holding in the model [9]. It involves an exhaustive state space search which is 
guaranteed to terminate. During the search process, the model and the property are fed to 
a model checker and the model checker determines whether the system model satisfies 
the property. The result is either a claim that the property is true or a sequence of states
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from some initial state that violates the property, also known as a counterexample. Model 
checking can be applied to analyze specifications of software systems. Because checking 
whether a single model satisfies a formula is much easier than proving the validity of a 
formula for all models, model checking can be implemented fairly efficiently [8]. 
2.2.1 The Advantages and Disadvantages of Model Checking 
Applying model checking to a design consists of several tasks: modeling [8], 
specification [8], and verification [39]. Modeling refers the conversion of a design into a 
formalism accepted by a model checking tool. In some cases, this is a straightforward 
compilation task. In other cases, owing to limitations on time and memory, modeling a 
particular design may require the use of abstraction to eliminate irrelevant or unimportant 
details. Before verification, it is necessary to state the properties that the design must 
satisfy. This specification is usually given in some logical formalism, such as temporal 
logic, which is able to assert the behavior of the system as it evolves over time. Although 
model checking provides means for checking a model of a design satisfies a given 
specification, it is impossible to determine whether the given specification covers all the 
properties that the system should satisfy. With modeling and specification in proper order, 
verification can take place. In theory, model checkers can perform verification 
automatically, given a model and a specification. However in practice, it often involves 
human assistance [8]. An example is the analysis of the verification results. In case of a 
negative result, the user is often provided with an error trace serving as a counterexample 
for the supplied property, which can be used to track down the exact location of the 
design fault. False negatives result from incorrect modeling of the system or incorrect 
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specification Erroneous results or premature termination of verification can also emerge 
due to the size of model. In this case, it is necessary to decompose the model into fine-
grain sub-models or change some parameters of the model checking tool. 
Compared to theorem proving, model checking is relatively easy, systematic, and fast 
[8]. Model checking can be used to check partial specifications and provide valuable 
feedback about a system?s correctness even if the system has not been completely 
specified. Model checker can produce counterexamples that reflect the errors in design, 
which can be invaluable for debugging. It is preferable to theorem proving, or deductive 
reasoning, whenever it can be applied. However, there will always be critical applications 
in which theorem proving is necessary for complete verification. There have been new 
research directions that attempt to integrate deductive verification and model checking to 
maximize benefits offered by both [36]. The main disadvantage of model checking is 
state explosion problem, as mentioned earlier. Many efforts have been invested to resolve 
the problem, such as McMillan?s symbolic model checking [29]. Other approaches such 
as partial order reduction [33], localization reduction [22], and semantic minimization 
[13], are all designed to remove redundant states from a system model. 
2.2.2 Symbolic Model Checking and Partial Order Reduction 
In the original implementation of model checking algorithm, transition relations were 
represented explicitly by adjacency lists [8]. For a software system with small number of 
states and processes, the approach was quite practical. As the system model becomes 
more complex, the model checker simply could not handle the growing number of states. 
Since a model checker replies on an internal global state transition graph to keep track of  
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the states and transitions during model checking, McMillan [29], in 1987, realized that by 
using a symbolic representation for the state transition graph, much larger systems could 
be verified. The new symbolic representation was based on Bryant?s ordered binary 
decision diagrams (OBDDs) [3]. OBDDs provide a canonical form for Boolean formulas 
that is usually much more compact than conjunctive or disjunctive normal form, and very 
efficient algorithms have been developed in order to manipulate them. In this implicit 
representation, each state is encoded by an assignment of Boolean values to the set of 
state variables associated with the model. The transition relation can be expressed as a 
Boolean formula in terms of two sets of variables, one set encoding the old state and the 
other encoding the new. This formula is then represented by a binary decision diagram. 
The model checking algorithm is based on computing fix points of predicated 
transformers that are obtained from the transition relation. The fix points are sets of states 
that represent various temporal properties of the system. In the new implementations, 
both the predicate transformers and the fix points are represented with OBDDs. Thus, it is 
possible to avoid explicitly constructing the state graph of the system. 
Besides symbolic model checking, partial order reduction is another popular 
technique designed to combat the state explosion phenomenon [33]. This technique 
exploits the independence of concurrently executed events. Two events are independent 
of each other when executing them in either order results in the same global outcome. A 
common model for representing concurrent software is the interleaving model, in which 
all of the events in a single execution are arranged in a linear order called an interleaving 
sequence. Concurrently executed events appear arbitrarily ordered with respect to one 
another. As a result, all possible interleaving of such events are normally considered and 
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causing an extremely large state space. The partial order reduction technique makes it 
possible to decrease the number of interleaving sequences that must be considered. Thus, 
the number of states that are needed for model checking is reduced. Under the partial 
order reduction technique, when a specification cannot distinguish between two 
interleaving sequences that differ only by the order in which concurrently executed 
events are taken, it is sufficient to analyze only one of them.  
2.2.3 Using Temporal Logic for Model Checking 
Temporal logic is a formalism for describing sequences of transitions between states in a 
reactive system and has been proven to be useful for specifying concurrent systems, as 
they can describe the ordering of events in time without introducing time explicitly [8]. In 
temporal logic model checking, finite state machine models software or hardware system 
and a property specified as a formula in a certain temporal logic are given. The goal is to 
determine whether the system satisfies the formula. Since time is not considered 
explicitly, instead, a formula might specify that eventually some designated state is 
reached, or that an error state is never entered. Properties like eventually or never are 
specified using special temporal operators and these operators can be combined with 
Boolean connectives or nested arbitrarily.  
CTL* is a powerful logic used for model checking as well as foundation for other 
logics [8]. Conceptually, CTL* formulas describe properties of computation trees. The 
tree is formed by designating a state in a Kripke structure [8] as the initial state and then 
unwinding the structure into an infinite tree with the designated state as the root. The 
computation tree shows all of the possible executions starting from the initial state. The 
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logic formulas are composed of path quantifiers and temporal operators. The path 
quantifiers are used to describe the branching structure in the computation tree, and there 
are two of such quantifiers: A for all computation paths, and E for some computation path. 
These quantifiers are employed in a particular state to specify either paths starting from 
this state or some of the paths starting from this state contain certain properties. The 
temporal operators are used to describe properties of a path through the tree. There are 
five basic operators [8]: 
? X ? next time, which requires a property to hold in the second state of the path. 
? F ? eventually or in the future, which requires a property to hold at some state on 
the path. 
? G ? always or globally, which requires a property to hold at every state on the 
path. 
? U ? until, which requires the second property to hold at some state on the path, 
and the first property to hold at every proceeding state in the path. 
? R ? release, which requires the second property to hold along the path up and 
including the first state where the first property holds. However, the first property 
is not required to hold eventually. 
There are two useful sub-logics based on CTL* [8]. One is branching-time logic 
called Computation Tree Logic (CTL) [7]. The other is linear-time logic called Linear 
Temporal Logic (LTL) [7]. CTL is a restricted subset of CTL* in which each of the 
temporal operators X, F, G, U, R must be immediately preceded by a path quantifier,
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resulting ten basic CTL operators: 
? AX and EX 
? AF and EF 
? AG and EG 
? AU and EU 
? AR and ER 
Examples of some typical CTL formulas include the following: 
? AG safe: All reachable states are safe. 
? AG AF stable: The system is stable infinitely often. 
? AG (request �? AF response): A request is always a response sometime in the 
future. 
? AG EF restart: It is possible to restart the system in any reachable state 
Formally, a finite state machine <Q, R, I> consists of a set of states Q, a state transition 
relation R ? Q ? Q, and a set of initial state I ? Q. A path is an infinite sequence of states 
such that each consecutive pair of states is in R. The set of states Q is often encoded by a 
set of state variables, such that each state corresponds to some value for the variables and 
no distinct states correspond to the same value. Basic on this foundation, a proposition is 
defined as any Boolean combination of predicates on the state variables. A formula is a 
proposition, a Boolean combination of formulas, or the combination of a temporal 
operator and a formula [8]. Each formula is evaluated at some state q. A proposition 
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holds at q if q satisfies the proposition. The operator A means ?for all paths starting at q?, 
E means ?for some path starting at q?, G means ?for every state along the path?, and F 
means ?for some state along the path?. Therefore, AG safe holds at q is every state (G) 
along every path (A) starting at q satisfies the proposition safe. The system satisfies a 
formula if the formula holds at all initial states. If not, a model checker typically attempts 
to find a counterexample. For instance, if the formula AG safe is false, a counterexample 
is a finite path starting at some initial state and ending at a state that is not safe. 
In explicit model-checking techniques, the truth value of a CTL formula is 
determined in a graph-theoretic manner by traversing the state diagram, with time 
complexity linear in the size of the state space and in the length of the formula [7]. Using 
symbolic model checking techniques, instead of visiting individual states as in 
conventional state space search, symbolic model checkers visit a set of states at a time [4, 
28]. A state set can be represented by a predicate on the state variables such that a state is 
in the set if and only if the predicate is true at the state. When the state space is finite, we 
can assume that the state variables are Boolean and there are only finitely many of them. 
A predicate on these variables is simply a Boolean function, which can be represented by 
reduced ordered binary decision diagrams (OBDDs) [3]. An OBDD resembles a binary 
decision tree, except that isomorphic sub-trees must be combined resulting a directed 
acyclic graph. In addition, each path can contain a variable at most once, and must 
comply with a fixed linear order of the variables.  
Linear Temporal Logic (LTL) is an extension of propositional logic to include discrete 
time information [8]. Formulas are interpreted as referring to events along an infinite path  
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of time points. LTL formulas are built inductively from its set of atomic propositions. 
These atomic propositions and their operators are given below, and p and q are some 
states or events occurring in the path of time points: 
? And    p ? q 
? Or    p ? q 
? Not    ? p 
? Next    X p 
? Always    G p 
? Eventually / Future  F p 
? Strong Until   p U q 
? Releases   p R q 
One can model LTL by assigning to each natural number a set of true atomic propositions. 
The operators then define requirements on those propositions. The formula for the 
proposition ?And? means that states p and q must both be true. ?Or? means that either 
state p is true, or state q is true. ?Not? means that state p is false. Atomic propositions 
?Next?, ?Always?, ?Eventually?, ?Until? and ?Release? have same meanings from CTL*, 
where they have been originated.  
2.2.4 Existing Model Checking Tools 
There are tools available that facilitate the checking of expected model based system 
behavior and properties of concurrent programs under different fairness assumptions. 
SMV [29], the Symbolic Model Verifier, is a popular model-checking system first 
developed by McMillan in 1993. It uses the OBDD-based symbolic model checking 
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algorithm to perform verification and takes a finite state machine as the model of the 
system, expressed in its own input language, and properties of the system, expressed in 
CTL formula. The system model is often decomposed into a series of modules and each 
can be instantiated multiple times. A SMV module can be composed either 
synchronously, which means all modules perform an action concurrently at a time period, 
or using interleaving, which means exactly one module performs an action at a time 
period. The state transitions in the model can be either deterministic or nondeterministic. 
The state transitions in the model can be specified explicitly in terms of Boolean relations 
or implicitly as a set of parallel assignment statements. When performing model checking, 
a breadth-first searching procedure with fixed-point algorithms is used to check the 
satisfaction of the finite state machines against the expected properties.  
An alternative model checking system is called SPIN [18], which uses explicit state 
enumeration and partial order reduction during model checking. It was developed at Bell 
Laboratories by Gerard Holzmann and Doron Peled, and primarily used for verifying 
asynchronous software systems such as communication protocols. It can check a system 
model for deadlocks or unreachable code or determines if it satisfies a particular property 
composed by LTL specification. The input language to describe the system model, called 
PROMELA [18], an acronym for Process Meta-Language, was developed by Gerard 
Holzmann. It uses syntactic constructs similar to several other programming languages, 
such as C. The basic building blocks of SPIN models are asynchronous processes, 
buffered and un-buffered message channels, synchronizing statements, and structured 
data. Unlike SMV, SPIN uses partial order reduction to limit the state space explosion 
problem to optimize the process of model checking. 
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2.3 The Role of Formal Methods in Software Design Education 
Formal methods involve the use of discrete mathematics and mathematical logic in the 
study and practice of computer science and software engineering [1]. From its beginning, 
computing was regarded as an abstract, mathematical science. Pioneers like Turing, 
Church, and von Neumann used mathematics to establish the essence and boundaries of 
the computing discipline. Although computing technology is crucial in software 
engineering education and practice, the underpinnings are mathematical in nature and 
computing does deal with purely logical processes [30]. Students often resist the use of 
mathematics in the study of computing, usually for the following reasons: 
? Students may lack the proper preparation or motivation. 
? Many have neither an understanding of nor appreciation for the role of 
mathematics, or more explicitly, formal methods, in computing [31]. 
? Some feel intimidated or even fearful of the level of mathematical knowledge and 
capability required. 
As the term software engineer becomes a popular title for software developers, there is 
little evidence to show that the practice of software design and engineering compares 
with the rigor and discipline that is required for practice in other engineering fields [32]. 
So the question seems to be whether software engineering programs should follow the 
traditional engineering approach to professional education. Quality problems arise from 
incomplete and imprecise requirements, specification, shoddy designs with poor 
documentation, and almost sole reliance on testing for software quality assurance, and 
there is increasing interest in the use of formal methods for specification and design [1].
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With the explosive growth of software, the Internet, and electronic commerce, formal 
methods become a practical approach for achieving higher confidence in today and 
tomorrow?s infrastructure system [1]. 
2.3.1 Formal Methods as Part of an Engineering Curriculum 
Formal methods improve software reliability by providing mathematical frameworks to 
define, specify, and verify complex software systems. However, the majority of software 
engineering curricula have a low level of emphasis on formal methods [1]. This is partly 
due to a lack of interest on the part of the software industry, but much of the 
responsibility must be attributed to the state of the curriculum and course design. The 
computing education community has adopted a curriculum strategy of dividing curricula 
elements into areas of theory and practice. This causes both faculty and students to view 
the theory of computing as separate and distinct from the practice of computing. As a 
result, there are theorists who are viewed as the mathematical elite and practitioners with 
little respect for the applicability of formal methods to their work. This mindset inhibits 
the use and integration of formal methods into software development process, and 
ultimately, into software design and engineering education. Because of this, there is little 
guidance and support available to faculty, who would like to introduce formal methods 
into their software engineering courses. 
The scope and scale of software projects today are increasing dramatically, along 
with shorter release cycles, and traditional software quality assurance methodologies are 
facing more challenges in attempting to meet quality standards [16]. Equipped with 
formal methods to address the complexity, model checking provides software engineers 
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fresh insights on how to debug, verify, and validate designs. With the success of model 
checking and other formal approaches for software verification are attracting attentions, 
trying to integrate them into software design education has lead to following observations 
[28]: 
? The theoretic foundations of model checking involve mathematical logic. 
? The engineering principles and processes used for implementing model checking 
provide excellent training for students to solve complicated design and analysis 
problems. 
? The skills and knowledge that students acquire from the course provide them with 
alternative approaches to solve problems in many important software engineering 
areas. 
Strategies of integrating formal methods in the form of model-based verification into 
software design education have been difficult. Generally there are three strategies [15]. 
The first approach avoids teaching formal methods altogether and considers formal 
methods are impractical and mature enough to be beneficial in software engineering 
practices. The appropriateness of this argument for the general software engineering 
education is debatable. The second approach is to devote a specific course which 
emphasizes formal verification of source code using a number of formal methods, such as 
VDM [21] or Z [40]. The students are expected to learn about the methods, and then they 
are expected to apply the formal skills to software development activities. This approach 
involves broad coverage of a variety of formal methods that provide students with a 
larger scope of exposure, but may not enable them to be proficient in any specific 
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approach. Furthermore, the methods tend to be taught in an isolated manner with 
emphasis in notations rather than its underlying principles. This isolated exposure 
generally prohibits students to apply such approaches in software engineering practices. 
Finally, the third approach is invented to redesign the curriculum so that formal methods 
are integrated throughout the entire curriculum [15]. Carnegie Mellon University [15], as 
an example, redesigned its software engineering graduate program to promote better 
understanding to formal models of software systems. This approach offers many benefits 
to the students as they incorporate finite state modeling and temporal logic for model 
checking interactive aspects of system. More specifically, the curriculum integrated with 
formal methods enables the analysis of software development products such as delivered 
code, specifications, designs, documentation, prototypes, and test suites. It also treats 
both static and dynamic analyses, such as type checking, verification, testing, 
performance analysis, hazard analysis, reverse engineering, and program slicing. 
Although a novel strategy, the approach adopted at Carnegie Mellon is difficult to 
apply at the undergraduate level, as it  assumes that students in the curriculum have 
already had exposure to advanced logic, discrete and combinatorial mathematics that 
facilitate the attainment of the requisite skills to understand and apply formal methods. 
Although many graduate students who have strong background in mathematics indeed 
possess such skills; many undergraduate students with comparatively limited background 
in advanced mathematics, a course delivery strategy that revolves around formal methods 
can be overwhelming for two reasons: 
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2. The impedance mismatch between the underlying mathematical underpinning of 
formal methods and students? semi-formal, if not informal, view of the design 
problem and  
3. The lack of tool support in the seamless integration of formal methods into 
software design education  
Considering the difficulties of teaching formal methods to undergraduate students, 
software tools should encourage learning by abstracting required material into relatively 
simple paradigms that novice users can easily learn and manage [9]. However, most tools, 
used to support the learning and the teaching of formal methods, are developed for 
practitioners, rather than for educators or learners. Some desired properties of tools that 
are attractive to this group of users include [9]: 
? Ease of Use: Tools should be easy to use and their output should be easily 
interpreted by novice users. 
? Ease of Learning: Tools should provide a starting point for writing formal 
specifications for users who would not otherwise write them. The knowledge 
requirement of formal methods on the users should be kept minimal. 
? Focused Analysis: Tools should be good at analyzing at least one aspect of the 
system well. 
? Early Payback: Tools should provide significant benefits almost as soon as the 
users start to use them. 
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? Incremental Gain for Incremental Effort: Tools should provide users increased 
benefits as the users are getting more adept or are putting more effort into writing 
specifications. 
? Efficiency: Tools should make efficient use of users? time, and the amount of time 
used by the tool should be proportional to the extensiveness of the analysis. 
? Integrated Use: Tools should work in conjunction with other common 
programming languages and techniques and should be integrated with traditional 
software development tools. Users should not have to look into another new 
methodology in order to receive benefits. 
? Evolutionary Development: Tools should allow partial specification and analysis 
of selected aspects of a system. 
? Orientation toward Error Detection: Tools should be optimized to find errors 
rather than confirming correctness.  
Going one step further, rather than building a single tool, ?meta-tools? can be built to 
automatically produce tools that are customized toward a particular problem domain [38], 
formal notation [10], or logic [17, 24]. It is also important for a tool to make the user 
aware its strengths, limitations, modeling assumptions, ease of integration with other 
tools, and start-up costs. 
2.3.2 Common Formal Methods used in Software Engineering Education 
The education of formal methods in a classroom environment often revolves around a 
particular technique. As a result, specific formal techniques have become foundations for 
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certain curricula aimed to provide exposure of formal methods to students, due to their 
popularity in the industry. The most popular formal techniques are VDM [21] and the Z 
notation [40]. 
VDM is a model-oriented formal method based on a denotational semantic setting, 
intended to support stepwise refinement of abstract models into concrete implementations 
[21]. The method includes a formal specification language, VDM-SL [21], which 
supports various forms of abstraction. Representational abstraction is supported by data 
modeling facilities. These facilities are based on six mathematical data-structuring 
mechanisms: sets, sequences, maps, composite objects, Cartesian products and unions. At 
a lower level, the language provides various numeric types, Booleans, tokens and 
enumeration types. By using the data-structuring mechanism and the basic data types, 
compound data types can be formed with a specific mathematical structure, and these 
compound data types are denoted as domains. Sub-typing is supported by attaching 
domain invariants to domain definitions. Operational abstraction is supported by both 
functional abstraction and relational abstraction: the former by means of function 
specification and the latter by operation specification. Both functions and operations may 
be specified implicitly using pre and post conditions, or explicitly using applicative 
constructs to specify functions and imperative constructs to specify operations. 
Operations have direct access to a collection of global objects: the state of the 
specification. The state is constructed as a composite object and built from labeled 
components. A VDM specification typically consists of a state description augmented 
with invariant and initialization predicates, a collection of domain definitions augmented 
with invariants, a collection of constant definitions, a collection of operations and a 
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collection of functions. An initial specification is usually kept as abstract as possible. 
Then the initial specification can be further developed and refined using two techniques: 
data reification, which addresses the refinements of state elements, and operation 
modeling, which addresses the refinements of the functions and operations. Data 
reification involves the transition from abstract to concrete data types, and a justification 
of this transition. Choosing a more concrete data model implies a redefinition of all 
operations and functions on the original model in terms of the new model, a process 
called operation modeling. Central to data reification is the notion of adequacy, expressed 
through two functions on the abstract and concrete domains, the abstraction-function and 
the retrieve-function. The abstraction-function maps abstract values onto concrete values; 
the retrieve-function does the opposite, mapping concrete values onto abstract values. 
The final step within the development is the transition of a low-level specification into 
the chosen programming language. 
The Z notation is based upon set theory and mathematical logic [44]. The set theory 
used includes standard set operators, set comprehensions, Cartesian products, and power 
sets. The mathematical logic is a first-order predicate calculus. Together they make up 
the mathematical objects in Z. These objects and their properties can be collected in 
schemas, which are patterns of declaration and constraint. The schema language can be 
used to describe the state of a systems, and conditions in which that state may change. It 
can also be used to describe system properties, and to reason about possible refinements 
of a design. A characteristic feature of Z is the use of types. Every object in the 
mathematical language has a unique type, represented as a maximal set in the current 
specification. This notion of types suggests that an algorithm can be written to check the 
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type of every object in the specification. Another important feature of Z is the use of 
natural language. In Z, mathematics is used to state the problem, to discover solutions, 
and to prove the chosen design meets the specification. Natural language is used to relate 
the mathematics to objects in the real world. This task is often partly achieved by the 
judicious naming of variables and additional comments in the specification. Z also 
supports the concept of refinement. A system can be developed by constructing a model 
of a design, using simple mathematical data types to identify the desired behavior. This 
description can be further refined later by constructing another model which respects the 
design decisions made, and yet is closer to implementation. This process of refinement 
can be continued until executable code is produced.  
In summary, both VDM the Z notation are mathematical languages with powerful 
structuring mechanisms capable of producing formal specifications, and both require 
immense requisite skills in mathematical logic to be understood and used effectively. As 
a result, their user group is largely limited to seasoned professionals who have grasped 
the underlying principle over years of experience [43]. 
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3. A PRACTICAL STRATEGY FOR INTEGRATING MODEL CHECKING  
INTO SOFTWARE DESIGN EDUCATION 
The goal of the research is to integrate formal methods into current software design 
methodology being taught in undergraduate software design courses. This objective is 
realized by building a tool called the Behavioral Model Analyzer (referred as the BMA in 
the rest of the thesis). The BMA aims to address the difficulties of teaching formal 
methods to undergraduate students, as well as the shortcomings of existing model 
checking tools for educational purposes. The operation of the BMA can broadly be 
described in the following manner. It accepts as input a software design model (i.e., 
statechart) and a property specifying how the model is required to behave. The BMA then 
performs model checking using the model and the property to display the results back to 
the modeler. Although this description hardly differs from the operation of any other 
model checking tool, the BMA places emphasis on the following features that are not 
present in other model checkers: 
? The input software design models are UML models, which are commonly used in 
software design, rather than tool-specific model description languages which 
modelers have little exposure. 
? The properties defining the required behaviors of the models can either be 
supplied or derived in the form of abstract and user-friendly specification
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?  templates rather than temporal logic, thus eliminating the requisite mathematical 
skills involved in formal methods.  
? The results of model checking are shown using graph visualization rather than 
cryptic text, so that students can have better grasps on where problems are 
detected and how to fix them. 
3.1 Using UML Models as Input Design Models 
Unified Modeling Language (UML) [2, 19, 38], is a general-purpose visual modeling 
language that is used to specify, visualize, construct, and document the artifacts of a 
software system and is capable of capturing information about the static structure and 
dynamic behavior of the system. The static structure defines the collection of discrete 
objects that make up the system and the dynamic behavior defines the history of objects 
over time and the communication among objects to accomplish goals. Software tools can 
provide code generators from UML into a variety of programming languages, as well as 
reverse engineered models from existing programs. UML is not a highly formal language 
designed for the theorem proving, but rather a modeling language for discrete systems. 
These reasons, coupled with the increasing popularity of object-oriented methodology, 
made UML ubiquitous in both the industry and the academia [2, 38]. 
Although UML offers a variety of diagrams to model different perspectives of a 
software system, we are interested of using the state machine view, modeled by a 
statechart diagram, to represent an input design model, since the state machine view 
describes the dynamic behavior of objects over time by modeling the lifecycles of objects 
of each class [2, 19, 38]. A state machine is a graph of states and transitions and it is
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attached to a class and describes the response of an instance of the class to events that it 
receives. Events represent the kinds of changes that an object can detect ? the receipt of 
calls or explicit signals from one object to another, a change in certain values, or the 
passage of time. Anything that can affect an object can be characterized as an event. A 
state is a set of object values for a given class that have the same qualitative response to 
events that occur; therefore it describes a period of time during the life of an object of a 
class. In the state machine, a set of states is connected by transitions. A transition leaving 
a state and entering into another state defines the response of an object to the occurrence 
of an event. 
To facilitate model checking of UML statecharts, the BMA translates input models 
into an intermediate format defined in terms of PROMELA language. This is similar in 
principle to the translation of UML models into code skeletons within the Model-Driven 
Architecture initiative [30]. PROMELA is an acronym for Process Meta-Language [18], 
which is a model description language for the model checker SPIN [18]. The BMA uses 
SPIN to perform model checking by translating abstract and user-friendly inputs from the 
modeler into tool-specific inputs for SPIN, and visualizing text-based model checking 
output in the form of graphs. As a result, UML statecharts need to be translated into 
PROMELA before the model checking process. 
3.2 Substituting Temporal Logic with Specification Templates 
In model checking, a property (i.e., required behavior) of the model is specified using 
temporal logic. The steep learning curve for the mathematical skills required to use 
temporal logic is one of the core reasons why formal methods have been almost absent in
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undergraduate design education. It is imperative for the BMA to circumvent this obstacle. 
As a result, the BMA uses the notion of specification templates [12] to describe the 
required property of the model. A specification template is a generalized description of a 
commonly occurring requirement on the permissible state sequences in a finite-state 
model of a system, and it describes the essential structure of some aspect of the system?s 
intended behavior. The specification templates are generalized in a hierarchical structure 
in terms of their scopes for formal specification and verification. The scope of a template 
is the extent of program execution over which the template must hold. It is determined by 
specifying a starting and an ending state for the template. Therefore the scope consists of 
all states beginning with the starting state and up to but not including the ending state. 
There are five different scopes (Figure 1) [12]: 
? Global ? the entire program execution 
? Before ? the execution up to a given state 
? After ? the execution after a given state 
? Between ? any part of the execution from one given state to another 
? After-Until ? just like Between but the designated part of the execution continues 
even if the second state does not occur 
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Figure 1 Scopes of specification templates 
Each template can be translated into its corresponding temporal logic formula by the 
BMA. When working with a specification template, only states required by the particular 
template need to be supplied by the modeler in terms of simple mathematical logic. Some 
common specification templates are listed as follows (Figure 2) [12]: 
 
Figure 2 Specification templates in hierarchical order  
Occurrence Templates include  
? Absence ? A given state or event does not occur within a scope. This template is 
also known as Never. 
? Existence ? A given state or event must occur within a scope. This template is 
also known as Future or Eventuality. 
? Bounded Existence ? A given state or event must occur k times within a scope. 
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? Universality ? A given state or event occurs throughout a scope. This template is 
also known as Globally, Always and Henceforth. 
Ordering Templates include  
? Precedence ? A state or event P must always be preceded by a state or event Q 
within a scope. 
? Response ? A state or event P must always be followed by a state or event Q 
within a scope. This template is also known as Follows and Leads-to. 
Compound Templates include  
? Chain Precedence ? A sequence of states or events P
1
, ?, P
n
 must always be 
preceded by a sequence of states or events Q
1
, ?, Q
m
. 
? Chain Response ? A sequence of states or events P
1
, ?, P
n
 must always be 
followed by a sequence of states or events Q
1
, ?, Q
m
.  
? Boolean Combinations ? Sometimes we want to generalize the templates to allow 
for sets of states to describe scopes and properties. Some times this is 
straightforward and sometimes disjunctions and conjunctions of state or event 
descriptions can yield incorrect specifications when substituted into templates. 
These templates outline how Boolean combinations can be applied in different 
case. 
Each of the hierarchical specification templates has its corresponding temporal logic 
specified, and the BMA translates these templates into temporal logic. The model checker 
SPIN can perform model checking using the translated temporal logic as input. Table 1 
provides the temporal logic specifications for the Existence Templates.  
 
 35
Specification Scope Temporal Logic Specification 
Globally <>(P) 
Before R !R W (P & !R) 
After Q [](!Q) | <>(Q & <>P)) 
Between Q and R [](Q & !R -> (!R W (P & !R))) 
After Q until R [](Q & !R -> (!R U (P & !R))) 
Table 1 Temporal logic specifications for the existence templates 
In the table, P, Q, and R are events and the column specification scope indicates the 
scope where event P is true. The temporal operators in the temporal logic specifications 
have the following semantics: 
? Eventually <> 
? Always  [ ] 
? Negation ! 
? Or  | 
? And  & 
? Implies �? 
? Until  U 
? Strong Until W 
Using the temporal logic for the specification templates as a foundation, the BMA can 
automatically derive the specification templates from UML sequence diagrams [2, 38], if 
they are included in the input design model, thus avoiding the necessity of having the 
modeler to input the required behavioral property of the design model. A sequence 
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diagram specifies a set of messages arranged in time sequence to depict a scenario or the 
behavioral sequence of a use case. Each message on a sequence diagram corresponds to 
an operation on a class or an event trigger on a transition in a state machine. Since each 
specification template involves with the occurrence of one or more states or events 
present based on different scopes, it is possible to derive these specification templates by 
detecting the order of occurrence of the events in the sequence diagram. 
3.3 Three Incremental Steps to Realize the BMA 
The features of the BMA are implemented using three incremental steps. The first step 
includes the translation of UML statechart models for the purpose of model checking, the 
construction of the specification template input interface so that a modeler can supply the 
required behavioral property for the design model without the intricate details involving 
formal methods, and a graph visualization shows the counterexample, as a sequence of 
states, which violates the required property. The second step incorporates the capability 
to automatically recognize and derive the behavioral properties, in the form of 
specification templates, from the UML sequence diagrams. The third and final step adds 
the capability to visualize the specification finite state machine generated from the 
required behavioral properties before model checking. This visualization offers two 
benefits to the modelers. First, it provides detailed awareness and representation of the 
specification templates to the modeler. When deriving these templates from the UML 
sequence diagrams, it is unlikely the modeler knows the derived templates ahead of time. 
Second, since the BMA emphasizes learning formal methods through interaction, the 
detailed representation of specification templates in the form of graphs provides the 
modeler better intuitive grasp of the required behavior. 
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4. ARCHITECTURAL DESIGN OF THE BEHAVIORAL MODEL ANALYZER 
The development strategy described in chapter 3 has outlined the required functions of 
the BMA. The architectural design of the BMA follows this strategy to form the 
functional components of the application. This goal of this chapter is to provide the 
design details at the component level in three phases to reflect distinct functions 
performed in each of one of the phases. The architectural design for the BMA can be 
divided into three subsystems as shown in Figure 3: the Semi-Automated BMA, the 
Automated BMA, and the Advanced Visualizer. The DesktopBMA is the front-end UI 
component of the entire application. 
 
Figure 3 Three subsystems of the BMA
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The Semi-Automated BMA fulfills Phase I requirements of the BMA. In this subsystem, 
model information from the UML statecharts, exported in XMI, are extracted and 
translated into PROMELA design models described by the PROMELA model description 
language. Specification templates are obtained from the modeler and translated into 
temporal logic. Model checking is then performed using the PROMELA model and 
behavioral constraints defined in terms of temporal logic. The results of model checking 
are visualized in an interactive and informative manner. 
The Automated BMA fulfills Phase II requirements of the BMA. In this subsystem, 
messages in the UML sequence diagrams are examined and specification templates are 
derived based on the order of occurrence of these messages without intervention from the 
modeler.  
The Advanced Visualizer fulfills Phase III requirements of the BMA. In this 
subsystem, the reachability graph of the states in the design model is generated. If errors 
are detected during model checking, an error trace is also shown to indicate the execution 
path of the error. The specification finite state machine is also generated from the 
specification templates either supplied by the modeler or derived from the UML sequence 
diagrams. 
4.1 Architectural Design of the Semi-Automated BMA 
The architectural design of the Semi-Automated BMA consists of eight functional 
components as shown in Figure 4: DesktopBMA, XMIParser, TemplateInput, 
LTLEncoder, PromelaParser, SpinEvoker, OutputParser, and ModelVisualizer. These 
components provide the following functions to perform model checking and display the 
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results: 
1. Convert UML statecharts to PROMELA model description language 
2. Obtain specification templates and translate them into temporal logic 
3. Perform model checking  
4. Graphically display the errors detected during model checking  
 
Figure 4 Static structure of the Semi-Automated BMA  
The BMA is enacted when the DestopBMA initializes. This component contains 
functions to call other components to execute the work request by using interactive user 
interface widgets. Using these widgets, a UML design model is converted into 
PROMELA language; specification templates regarding the design model are supplied; 
and the model checking process is launched to find potential errors. When a UML input 
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model has been chosen, the detailed structure information of the input model is extracted 
by the XMIParser and stored in a data structure called StateMachine. Afterwards, the 
graph visualization of the input model is generated by the ModelVisualizer. The model 
information stored in the StateMachine data structure is converted into PROMELA 
language and stored in a text file by the PromelaEncoder. Meanwhile, specialized user 
interface elements provided by the TemplateInput enable constraint templates to be 
supplied, and these templates are converted into temporal logic by the LTLEncoder and 
saved into a temporal text file. Once the design model and the specification templates are 
converted into PROMELA and temporal logic, respectively, the model checker is evoked 
by the SpinEvoker to perform model checking. Error information is extracted from the 
text-based model checking results by the OutputParser and saved into a data structure 
called Errors. Using this data structure, a colored trace linking the problematic states in 
the existing visualization is generated by the ModelVisualizer. The interactions among 
the components are specified in terms of the  UML sequence diagram shown in Figure 5. 
 
Figure 5 Sequence diagram of the Semi-Automated BMA 
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The deployment diagram shown in Figure 6 provides the physical view of the 
components grouped by their functions. The components in this system can be grouped 
into five subsystems. The subsystem UI contains the BMADesktop. Besides being the 
user interface, it facilitates communication among other components. The Property 
Specification handles the process of converting supplied specification templates to 
temporal logic and contains the TemplateInput, LTLEncoder, and the text file that 
includes the converted temporal logic from the specification templates. The Model 
Checking component performs model checking and retrieves the raw results from the 
model checker. It contains the SpinEvoker, OutputParser, and the data structure 
containing the errors found during model checking. Finally, the Visualization provides 
the results of model checking using graphs. 
 
Figure 6 UML Deployment diagram of the Semi-Automated BMA 
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4.2 Architectural Design of the Automated BMA 
The architectural design of the Automated BMA consists of four major components as 
shown in Figure 7: DesktopBMA, TemplateHandler, XMISeqParser, and TempSelector. 
These components facilitate the derivation of specification templates from the UML 
sequence diagram. When using the BMA, the specification templates can either be 
directly supplied or automatically derived from the UML sequence diagram, but not both 
at the same time. 
 
Figure 7 Static structure of the Automated BMA 
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The process of deriving specification templates starts when the messages in the UML 
sequence diagrams are extracted by the XMISeqParser and stored in a data structure 
named UMLMessages. Then the list of messages in the data structure is examined and 
relevant specification templates are derived by the TemplateHandler. Since the BMA is a 
prototype application, only the recognition of the before and the between occurrence 
templates defined by Dwyer et al [12] is implemented to demonstrate the effectiveness of 
our strategy. The recognized templates are saved into the data structures TempBeforeList 
and TempBetweenList, respectively. The list of recognized templates are shown to the 
modeler by the TempSelector, and the modeler needs to check off the particular ones to 
use as properties for the design model to perform model checking. Afterwards, the 
selected templates are converted into temporal logic and saved in a text file by the 
TempSelector. The interactions among the components are described in terms of the 
UML sequence diagram shown in Figure 8. 
 
Figure 8 UML Sequence diagram of the Automated BMA 
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The deployment diagram shown in Figure 9 provides the physical view of the 
components in this system based on their functions. It contains two subsystems. The UI 
subsystem contains the DesktopBMA, which is the user interface. The rest of the 
components are all grouped under the Template Generation. This subsystem performs the 
extraction of the messages from the UML sequence diagrams, the derivation of 
specification templates based on their order of occurrence, and the conversion of the 
derived templates into temporal logic. 
 
Figure 9 UML Deployment diagram of the Automated BMA 
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4.3 The Architectural Design of the Advanced Visualizer 
The architectural design of Advanced Visualizer includes four components as shown in 
Figure 10: DesktopBMA, ReachVisualizer, SpecParser, and SpecVisualizer. These 
components enable two additional functions:  
1. Generate a reachability graph and highlight the trace of errors detected during 
model checking. 
2. Derive the specification finite state machine from the specification templates. 
 
Figure 10 Static structure of the Advanced Visualizer 
In this system, the main purpose of the DesktopBMA is to coordinate the communications 
among other components. The ReachVisualizer component is responsible for displaying 
the reachability graph derived from the finite state design model. To produce this graph, 
this component needs to access to two data structures: LTL and StateMachine, both are 
managed by DesktopBMA. LTL is the text file containing the property of the design 
model expressed in temporal logic, which is converted from the specification templates. 
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StateMachine is the data structure containing the finite state design model, which is 
extracted from the UML statecharts. To generate the specification finite state machine, 
structure information from LTL is extracted by the SpecParser and stored in another data 
structure called SpecMachine. This data structure is used by the SpecVisualizer to 
construct the specification finite state machine. The interactions among the components 
in this system are described by the UML sequence diagram shown in Figure 11. These 
two functions represent two separate processes that are completely independent of each 
other. When using the BMA, the specification finite state machine is generated earlier 
than the reachability graph because the temporal logic required to derive the specification 
finite state machine is available before model checking, and the errors required to 
produce the reachability graph becomes available after model checking. 
 
Figure 11 UML Sequence diagram for the Advanced Visualizer  
The deployment diagram shown in Figure 12 provides the physical view of the 
components in the Advanced Visualizer grouped by their functions. There are three 
subsystems in this phase. The UI subsystem contains the component DesktopBMA, which 
is the user interface and performs the coordination of communications among other 
components. The Specification FSM Generation derives the specification finite state 
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machine and contains the SpecVisualizer, as well as the SpecParser. It also contains the 
data structure enclosing the specification finite state machine and the text file containing 
the temporal logic needed to generate the specification finite state machine. The 
Reachability Graph Generation generates the reachability graph and contains the 
ReachVisualizer and the data structures that are required to generate the reachability 
graph. 
 
Figure 12 UML Deployment diagram for the Advanced Visualizer
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5. THE VERIFICATION PROCESS USING THE BEHAVIORAL  
MODEL ANALYZER 
The BMA provides various functions to improve the use of model checking as a formal 
method in software design education. These functions can be divided into the following 
processes: 
? Converting UML statecharts to PROMELA model description language 
? Augmenting state variables to the design model 
? Obtaining  supplied specification templates 
? Deriving specification templates from UML sequence diagrams 
? Visualizing model checking results 
? Visualizing the reachability graph 
? Visualizing the specification finite state machine  
This chapter provides the detailed design motivation and procedure on the realization of 
these processes by the BMA. 
5.1 Converting UML Statecharts to PROMELA Model Description Language 
The BMA uses an existing model checker called SPIN [18] to perform model checking. 
SPIN is a formal verification tool for verifying distributed software systems and uses its 
own input verification language called PROMELA [18] to perform verification. As a 
result, the design model needs to be converted to its corresponding PROMELA input.
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Before the conversion to the PROMELA model, a finite state machine representing 
thehierarchical structure of the software design model is obtained by extracting states and 
transitions from the UML statecharts which are exported to XMI. This finite state 
machine is stored in an internal data structure. 
Based on the finite state machine, the PROMELA file can be divided into blocks, 
with each block representing the execution at a state in the state machine. The system 
always starts at the first block. Transition events are translated into signals in PROMELA. 
When a transition event is signaled, a GOTO statement causes the current block, 
representing the source state of the transition, to pass the execution control to another 
block, representing the target state of the transition. When the block representing the final 
state in the PROMELA file is reached, the system gracefully exists. Figure 13 provides a 
simple finite state model and its PROMELA description after the conversion. 
 
Figure 13 A simple finite state machine and its PROMELA model 
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5.2 Augmenting State Variables to the Design Model 
Although UML statecharts can model transitions in the finite state machine, it does not 
offer ways to describe finer details regarding each transition. Whenever an event is 
causing the system to transition from one state to another, this change should be captured 
using state variables. The absence of the use of state variables in the UML statecharts 
makes it impossible to express the transitional logic as an essential element of the model 
behavior. To fill this gap, the BMA allows the modeler to define state variables for each 
transition in the finite state machine. Figure 14 shows the specialized GUI that is used to 
define state variables. 
 
Figure 14 Defining state variables in the BMA 
The previous section describes the process of converting the system model, 
represented in the UML statechart diagram, into the PROMELA model. This process 
produces the PROMELA skeleton code used for model checking. State variables are
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incorporated into this skeleton system to accurately describe the model?s dynamic 
properties. The BMA offers two distinct approaches that allow the augmentation of the 
state variables. The first approach assumes that the modeler has no knowledge of 
PROMELA and does not understand how the BMA converts the system model into 
PROMELA. In this case, s/he can associate state variables with each transition in the 
system?s finite state machine. A special GUI lists all transition events in the finite state 
machine and the modeler can assign different logic for different events. After the modeler 
has finished supplying all the logic, the BMA inserts the logic into the PROMELA file. 
The second approach assumes that the modeler may be familiar with PROMELA and 
prefers to insert the state variables directly into the PROMELA file. In this case, the 
BMA allows the modeler view and modify the contents of the PROMELA file and saves 
any modifications made by the modeler. 
5.3 Specification Templates 
In formal methods, the property of the design model is described by using temporal logic, 
which requires significant level of expertise in mathematical background. On the other 
hand, the hierarchical specification templates introduced by Dwyer et, al [12] offer an 
alternative mechanism to describe the model checking property in an intuitive manner. 
The list of hierarchical specification templates are described in the previous chapter. In 
the BMA, each specification template is encoded using one or more atomic propositions 
that are grouped together using operators such as always, before, and until, etc. Since 
each atomic proposition represents a specific predicate that is meaningful in the context 
of the particular design model, it is up to the modeler to define them. To simplify the
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process, variables can be defined to represent different logical propositions and these 
variables can be used to form multiple specification templates. Figure 15 displays how to 
define these variables when supplying specification templates. 
It is typical for the modeler to supply one specification template before performing 
model checking. If more than one specification templates are supplied, they are 
concatenated into one complex template using the AND operator. If the design model 
violates one of the specification templates, the BMA will provides the visualization of a 
counter example for that particular specification template only. 
 
Figure 15 Defining specification templates in the BMA 
5.4 Deriving Specification Templates from UML Sequence Diagrams 
Conventional model checking tools require the properties of the design model to be 
expressed in temporal logic. Our approach of substituting temporal logic with 
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specification templates alleviates the problem to a degree, but having the modeler to 
supply the templates is not always desirable due to the following two reasons: 
? The modeler may not be familiar with the concept of the hierarchical specification 
templates and cannot apply them in model checking. 
? The modeler may not able to correctly originate the properties of the design 
model due to inexperience or complexity of the model. 
Under these situations, the BMA?s ability of deriving the templates directly from the 
UML sequence diagram is a valuable feature. The BMA extracts messages in the UML 
sequence diagrams, which are exported into XMI, and store them into an internal data 
structure. We use a top-down approach to recognize the specification templates creating a 
rule for each unique template, based on the availability and the sequence of the messages. 
Given the set of all messages in the UML sequence diagram, all possible combinations of 
messages and their sequences are examined to detect which rule has been met and what 
are their elements. Using this available information, the template is constructed using the 
elements in a detected rule. The prototype only implements the global, before, after, and 
between scopes of the existence templates and the global scope of the universality 
templates in the hierarchical template system. 
Consider the detection of the between-existence template as an example, which states 
that a message or event Q should eventually occur between messages P and R. First, the 
BMA extracts all the unique messages from the UML sequence diagrams and forms all 
possible cases where one message can occur between two other unique messages. For 
instance, the UML sequence diagram below in Figure 16 leads to the following template 
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combinations, where the template <A, B, C> is interpreted as Message B occurs between 
Messages A and C.  
? <A, B, C>, <A, B, D>, <A, C, B>, <A, C, D>  
? <A, D, B>, <A, D, C>, <B, A, C>, <B, A, D> 
? <B, C, D>, <B, D, C>, <C, A, D>, <C, B, D> 
 
Figure 16 A simple UML sequence diagram 
The BMA examines all of these combinations one by one. Redundant combinations that 
have the same meaning with an already derived template, such as <C, B, A> is the same 
as <A, B, C>, are eliminated. For the combination <A, B, C>, the BMA finds one 
occurrence of Message B in the sequence diagram, and finds whether there is a Message 
A occurring before B and C occurring after B. If so, the template is proved to be true. 
Otherwise, the BMA examines the next occurrence of Message B and applies the same 
procedure, until all occurrences of B are examined. For this simple sequence diagram, <A, 
B, C> is tested to be true, as well as the templates <A, B, D>, <A, C, D>, and <B, C, D>. 
Using a different example shown in Figure 17, the BMA derives the templates <A, B, C> 
and <A, C, B> using the same algorithm. For any between-existence template <P, Q, R>, 
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the BMA does not support P, Q, or R to be the same message in the UML sequence 
diagram.  
 
Figure 17 Another UML sequence diagram as an example 
Even with limited templates available in implementation, a sequence diagram with a 
few messages can produce many templates that match the criteria. Some are relevant to 
model checking while others are not. Performing model checking with many templates at 
one time can be extremely slow, and the BMA facilitates this requirement by injecting a 
GUI containing all of the recognized templates, as shown in Figure 18. The modeler can 
select the templates that are relevant and only the selected templates are used for model 
checking. Another reason for this screening process is that occasionally the BMA will 
incorrectly derive a specification template. This problem is caused by the limitation that 
the BMA is unable to recognize the events that are unreached during execution. Looking 
at the UML statecharts of a design model, one observes that certain paths in the finite 
state machine remain unreached, and they are not known until the runtime. Figure 19 
shows such an example.   
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Figure 18 Confirming the derived templates  
In this example, at State 1, the finite state machine either transitions to State 2, or to State 
3, but not both at the same time. This means either Transitions B and E, or C and F, are 
reachable. Since we do not know which transitions can be reached for certain ahead of 
the runtime, it is impossible to produce accurate specification templates based on the 
occurrence of these transition events. 
 
Figure 19 An unreachable path 
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5.5 Visualizing Model Checking Results 
Once the design model has been converted to the PROMELA model and the specification 
templates converted to temporal logic, the BMA relies on the model checker SPIN to 
perform model checking. The model checker produces text-based model checking results 
which indicate whether the property is violated. If it is, then there is a list of states that 
have been traversed in order for the model checker to make such a conclusion. In other 
words, this list of traversed states is the counter example produced during model 
checking. The only problem is that these states do not map to the design model, but rather 
an optimized finite state machine based on the design model that is generated by the 
model checker at the beginning of model checking. However, the model checker does 
provide line numbers in the PROMELA text file that can be mapped to the states in its 
optimized model checking state machine. Given how the PROMELA text file is 
structured in Section 5.1, the BMA maps these line numbers to the states in the design 
model. 
When the finite state design model is extracted from the UML statecharts, a graph 
containing the states and transitions among the states is generated and displayed. Once 
the list of traversed states from the model checker?s optimized finite state machine is 
mapped to the list of traversed states in the design model and stored into a data structure, 
the BMA locates the list of states in the graph and uses a different color to redraw them. 
Given the order of those states that have been reached during model checking, the 
transitions executed to reach these states is derived and colored as well. The result is a 
finite state graph containing the trace of errors found during model checking showing in 
Figure 20. 
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Figure 20 Visualizing model checking results in the BMA 
5.6 Visualizing the Reachability Graph 
Reachability analysis is a common practice in software verification and primarily used to 
verify the properties of synchronization structure, such as freedom from deadlock, 
starvation, and dangerous parallelism [46]. It describes the construction of a state-
transition model of a system from models of individual processes. The composite state-
transition model is called a reachability graph [46]. In this graph, each node represents a 
possible state in the system, whereas states represent the value of all variables in the 
system. Each edge represents progress in a single task. Figure 21 shows the reachability 
graph constructed from two simple interleaved tasks, T1 and T2, and they are 
synchronized prior to termination. 
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Figure 21 A simple reachability graph 
The reachability graph provides an enhanced view of the counter example detected 
during model checking. The state-transition model is portrayed in a structure which 
resembles a tree. The root of the tree is the initial state in the model, and a leaf state of the 
tree is an ending state in the model. The error trace, which generated from the counter 
example produced by the model checker, is displayed. This error trace starts at the root of 
the reachability tree, and ends at one of the leaves of the tree. It resembles one path of the 
tree. 
The error trace cannot be drawn in the same way in the visualization described in the 
previous section since the structure of a tree is different from a finite state machine. The 
BMA generates the reachability tree first, and then colors the states and transitions in the 
branch representing the counter example. Ideally, the reachability graph without the 
counter example should be available as soon as the finite state model is extracted from 
the UML statecharts and stored in a data structure. However, due to potential non-
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terminating paths in the tree, the error trace generated from the results of model checking 
is used as a factor to limit the size of the tree. Thus, the reachability graph feature of the 
BMA is only available after the model checking has been completed. The BMA uses a 
modified depth-first algorithm to visualize the reachability tree. The classic depth-first 
algorithm in this scenario involves drawing nodes in the graph based on transitions 
evoked at each state. The algorithm starts at the initial state, then it chooses one of 
transitions evoked from the initial state to draw the next state where the chosen transition 
leads to. This process will continue till a final state has been reached, suggesting a 
complete path of the tree is visualized. At the same time, the algorithm keeps a list, which 
contains all states in the finite state machine. Every time a state has been visualized, it is 
removed from the list, so the algorithm does not draw the same state again. When all the 
states have been drawn, the visualization of the complete reachability graph is finished. 
This algorithm cannot be directly applied here because the reachability graph in the 
BMA involves the occurrence of the same state multiple times due to the potential 
infinite nature of some states in the design model. Therefore the marking strategy in the 
depth-first algorithm is modified. Now the same node in the tree is allowed to be drawn a 
number of times before the drawing stops, and this number should be defined based on 
the complexity of the design model. The strategy of picking a sub-branch of the tree to 
draw first is also modified and the priority is given to the states and transitions present in 
the error trace. This way, the counter example will not be partially left out of the 
reachability graph. Once the reachability graph is completely visualized, the BMA picks 
the branch that represents the counter example and colors it. Figure 22 shows a 
reachability graph produced by the BMA. 
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Figure 22 The reachability graph produced by the BMA 
5.7 Visualization of the Specification Finite State Machine 
The property defining the required behavior of the design model is converted to temporal 
logic by the BMA and the model checker converts the temporal logic into a specification 
text file so it can easily construct this finite state machine during model checking. The 
BMA visualizes this finite state machine to offer enhanced description of the 
specification templates. Since the conversion from the specification templates to the 
temporal logic is performed prior to model checking, this feature is available before the 
model checking process. 
The format of the specification text file is identical to the PROMELA file generated 
by the BMA. Figure 23 shows the content of the text file representing a simple 
specification finite state machine as a toy example. The text file is divided into sections. 
Each section represents a state in the finite state machine and transitional behavior is 
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specified under each section. The header of a section corresponds to the name of that 
particular state. At the state init, p and q are some events that cause the finite state 
machine to transition into other states. The state accept_all is the final state.  
 
Figure 23 A simple specification text file and its Visualization 
Since the state machine terminates at the final state, the section representing this state 
does not contain transitions to other states. Given this highly structured format of the 
specification text file, the BMA extracts the states and transitions in the text file and 
visualizes the specification finite state machine it represents. Figure 24 displays the 
visualization of a much more complex specification finite state machine produced by the 
BMA based on a specification template derived from the UML sequence diagram. Details 
of this design model can be found in the case study section of the next chapter.   
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Figure 24 The specification finite state machine visualized by the BMA
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6. IMPLEMENTATION AND CASE STUDY 
6.1 Implementation 
The BMA is developed in Java using the open source Eclipse IDE and it is compiled 
using Sun?s Java SDK 5.0. All GUI components in the application are built using the 
Java Swing toolkit. The XMI files containing the UML diagrams are parsed using the 
open source Xerces XML SAX parser for Java [45]. All graph-based visualizations in the 
application are generated by the Java Universal Network/Graph Toolkit (JUNG) [17]. 
The model checker SPIN [18] is used to perform model checking by the BMA. The BMA 
is developed on Windows, and it can be run on Linux with slight modifications. 
6.2 Case Study 
To demonstrate that the BMA is able to correctly detect problems giving a model and its 
property, this section provides a case study revolving around the following BMA features: 
? Performing model checking using supplied specification templates 
? Performing model checking using derived specification templates 
? Visualizing the specification finite state machine 
? Visualizing the reachability graph 
One strategy is to require students to submit verification queries in terms of BMA 
templates along with their UML statechart designs. As part of their homework 
assignment, students can be provided with a set of constraints their designs need to
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satisfy. They are them asked to supply verification queries and demonstrate the 
correctness of their designs with respect to these queries. In evaluating submitted 
assignments the instructor can not only check the correctness of the design, but also 
students? verification performance. Verification performance can be tested by running the 
verification queries against the instructor provided reference models that are mutated to 
measure the fault revealing quality of the student-supplied queries. In the following 
scenario, we assume a student is submitting a design model, while the instructor uses 
specifications to verify the consistency of the student?s design. 
6.2.1 Scenario Description 
For the case study, a simple gas pump design model is created and submitted by a 
student and its UML statechart diagram is shown in Figure 25. In this model, the gas 
pump starts in an idle start state waiting for a customer to interact with it. When a 
customer wants to use the pump by lifting a nozzle, the pump checks whether the nozzle 
is available to be used because sometimes a nozzle can be out of service. This causes the 
pump go to the state ?CheckingNozzle?. If the nozzle is out of service, the pump goes to 
the state ?Unavailable? and eventually goes back to the idle start state and the customer 
is forced to choose another nozzle. If the nozzle is ready to be used, the gas pump goes to 
the state ?Available? and once the customer starts pumping gas into his/her car, the gas 
pump goes to the state ?InUse?. At this state, the customer can pause the process and the 
pump goes to the state ?Paused?. The customer can also stop the process to finish fueling 
the car. In this case, the pump goes to the state ?Stopped?. While the pump is at the state 
?Paused?, the customer can either continue the fueling process or stop the fueling process. 
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If continue, the pump goes to the state ?ReEnabled? and the gas is again being pumped 
into the car and the pump goes back to the state ?InUse?. If stop, the pump goes to the 
state ?Stopped?. At the state ?Stopped?, the pump goes to the final state ?Completed? and 
the fueling process is completed. This UML statechart model is created using Rational 
Rose and exported into XMI. The XMI file is opened by the BMA and the visualization 
of the statechart is generated by the BMA, as shown in Figure 26. 
 
Figure 25 Statechart diagram of the gas pump model 
 
 67
 
Figure 26 Visualization of the UML statechart model 
6.2.2 Model Checking Using Supplied Specification Templates 
Specifications are needed before model checking takes place. The BMA can either obtain 
specification templates directly from the instructor or derive them from the UML 
sequence diagram. If the templates are supplied from the instructor, state variables need 
to be supplied beforehand. Figure 27 shows the interface for defining state variables. The 
top section of this interface displays the PROMELA model description of the design 
model. The PROMELA description can be modified by the instructor if s/he is 
comfortable in editing the PROMELA file. The bottom section of this interface enables 
the definition of state variables for each transition in this finite state model. 
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Figure 27 Interface for state variables in the BMA 
Here we assume the role of being the instructor and providing state variables and 
properties to the original model designed by the student. Before inserting state variables 
that are relevant to the case study, let us consider the following logic based on the 
scenario: The status of the gas pump can be described by a variable whose value 
represents five states including unavailable, inuse, paused, stopped, and finished. The 
state unavailable suggests the nozzle is out of service. The state in-use suggests that the 
nozzle is currently being used. The state paused suggests the fueling process is paused, 
and the state stopped suggests that the nozzle is currently idle. A state variable named 
pumpstatus is created to hold the value of these states. To create this variable in the BMA, 
we need to select the variable selection item under the List of Transitions and then type 
the declaration ?int pumpstatus = 0? in the textbox on the right, as shown in Figure 28. 
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Figure 28 Initializing a state variable 
Besides initializing the state variable, additional values are needed to represent the 
five states. The exact values are irrelevant as long as they are different from each other, 
and we assign them from 1 to 5 respectively. This process is done by directly inserting 
expressions into the PROMELA language, as shown in Figure 29. 
 
Figure 29 Assigning values for the states 
While the finite state machines executes, transitions cause the state variable 
pumpstatus to change states. More specially, the state unavailable is assigned to the 
variable whenever the transitional event NotReady occurs. The state stopped is assigned 
whenever the transitional events Ready or Stop executes. The state in-use is assigned 
 
 70
whenever the transitional event Pump takes place. The state paused is assigned whenever 
the transitional event Pause takes place, and finally, the state finished is assigned 
whenever the transitional event Finish takes place. Specifying transitional logic with 
respective to different transitional events in the BMA is demonstrated in Figures 30. 
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Figure 30 Assigning transitional logic to different transitional events  
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Once the transitional behaviors have been defined, the specification templates for the 
design model are supplied. In this scenario, we demonstrate by creating three templates 
for model checking. The first template can be described as ?the pumpstatus will reach the 
inuse state before the paused state?. This refers to the fact that a customer must always 
start the fueling process before s/he can pause the pump. This template can be divided 
into two logical propositions: one representing the status of the pump is currently inuse, 
the other is currently paused. The two propositions are joined using the scope operator 
before. Figure 31 displays the interface which enables the specification of the templates. 
 
Figure 31 Specifying specification templates in the BMA 
In the scenario, we define two propositions: The first is called pumpinuse with the 
logical expression ?pumpstatus == INUSE? assigned to it. The second is called 
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pumppaused with the logical expression ?pumpstatus == PAUSED? assigned to it. We 
also specify that the scope operator of this template is before, and pumpinuse is occurring 
before pumppaused. Figure 32 displays the declaration of the propositions and the 
template which made up by the two propositions and the before operator. 
 
Figure 32 Declaration of propositions during template specification 
The model checking using the supplied template does not yield any errors, shown in 
Figure 33. The design model is consistent with the specification template. 
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Figure 33 No error is found during model checking 
Let us look at another template: the pumpstatus will reach the state stopped after 
reaching the state in-use. Transitional logic is already defined in the demonstration of the 
previous template. Like the previous template, two propositions are declared: one 
representing the status of the pump is inuse, and the other representing the state is 
stopped. The two propositions are joined by the scope operator after, as shown in Figure 
34. The result of model checking yields no errors, proving the design model is consistent 
with the template.  
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Figure 34 Defining the second specification template 
While the design model matches with the properties presented by the first two 
templates, the third template provides a mismatch between the design model and the 
specification. This template is described as ?the pumpstatus will reach the state paused 
between the reaching the state inuse and the state stopped?. Although this template makes 
sense within the context of the scenario, upon careful inspection of the UML statechart 
diagram presented in Figure 25, the instructor finds that the transition Pause and the state 
?Paused? are not necessarily being reached during execution. In the scenario, the 
customer may complete the fueling process without pausing in the middle, thus the 
pumpstatus state variable may not be assigned to the state paused. Creating the template 
in the same way as described above and performing model checking proves that the 
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design model violates the specification, shown in Figure 35, and the colored error trace is 
shown in Figure 36.  
 
Figure 35 Error detected in model checking 
 
Figure 36 Error trace displayed by the BMA 
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In order to conform to the specification, the design model can be modified based on the 
results from model checking. The reason for which the model violates the specification 
template is that the transition event Pause can be unreachable. One alternative model 
shown in Figure 37 is consistent with the specification. In this model, the transition event 
Pause is guaranteed to be reached. 
 
Figure 37 A model conforms to the specification 
6.2.3 Model Checking Using Derived Specification Templates 
If UML sequence diagram is present, the BMA is capable of deriving specification 
templates from the sequence diagram. Therefore the instructor can take advantage of this 
feature rather than design specifications from scratch to test the student?s design. Figure 
38 shows a sequence diagram used for this case study. It represents the following 
scenario: A customer wants to use the pump by lifting the nozzle, the gas pump first 
checks whether the nozzle is available to be used or not (CheckNozzle). Then it finds out 
that the nozzle is ready to be used and informs the customer (Ready). The customer 
connects the nozzle to the gas tank and starts pumping gas into the car (Pump). While
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 fueling the car, the customer pauses the process (Pause). Then the customer continues 
fueling (Continue), and the nozzle once again starts pumping gas into the car (Pump). 
The gas tank is full and the customer stops fueling (Stop), and the customer disconnect 
the nozzle from the gas tank and the process is finished (Finish). 
 
Figure 38 The UML sequence diagram for the case study 
This UML sequence diagram is also created by using Rational Rose and exported into 
XMI. Once the XMI file has been loaded into the BMA, the BMA automatically applies 
the algorithm explained in chapter 5 to derive the specification templates. The list of the 
templates that have been detected is presented to the instructor, as shown in Figure 39. 
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Figure 39 The list of specification templates derived by the BMA 
The presentation of the templates remains primitive since there is no standard and 
effective way for displaying them using text-based interface. Each item in this list 
represents a derived template. Each template contains a scope operator, such as before, 
after, or between. Rather than using propositions, the templates are composed of the 
occurrence of messages in the UML sequence diagram. Each message is UML sequence 
diagram is related to a transitional event, therefore in the list, the name of each 
transitional event identifies each message in the sequence diagram. The name of the 
transition is followed by the source and target states of the transition. Upon examining 
the templates, one or more relevant templates are chosen as properties for model 
checking. In this case, we pick the first template in the list: CheckNozzle is occurring 
before Ready. The result of model checking confirms that the design model does not 
violate this property, as shown in Figure 40. 
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Figure 40 The design model does not violate the specification 
The limitation of deriving templates fall into the problem which that the BMA is 
unable to recognize which transition can be skipped during execution. Since the 
templates are formed based on pure calculation of message sequences, it is unable to 
check which transition event can potentially be unreached. The sequence diagram shown 
in Figure 38 represents a valid scenario. One template generated by the BMA based on 
this scenario is that the event Pause occurs between the occurrences of events Pump and 
Stop. Based on the experiments from the previous section, the event Pause may not 
necessarily be reached during execution, thus the design model violates this template, if 
being used as a specification. This shortcoming places great emphasis upon human 
examination when the instructor checks off which template is relevant and to be us during 
model checking.  
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6.2.4 Visualizing the Specification Finite State Machine and the Reachability Graph 
The visualization of the specification finite state machine becomes available immediately 
after the BMA has obtained the specification templates. If the BMA is relying on users to 
define templates, the visualization is generated after the templates are defined using 
propositions and scope operators. If the BMA is deriving templates from UML sequence 
diagram, the visualization is generated after the user checks off which template is 
relevant to the model, so that it be included as part of the properties list for model 
checking. Figure 41 displays the visualization produced using a derived template in the 
scenario: the event CheckNozzle occurs before Ready. The overlapping elements 
produced in the visualization are caused by limitation of JUNG, the library used to 
generate visualizations in the BMA. 
 
Figure 41 The specification finite state machine 
The visualization of the reachability graph is available immediately after the model 
checking is completed. If an error is detected during model checking, it displays an error 
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trace from the originating state to an ending state. The reachability graph shown in Figure 
42 is generated after model checking using the scenario design model and the derived 
template, the event Paused occurs between the occurrences of events Pump and Stop, as 
the specification.  
 
Figure 42 The reachability graph
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7. CONCLUSIONS 
Formal methods represent powerful techniques in meeting the challenges to reduce 
design flaws and increase overall quality in software. The need for formal methods 
increases tremendously in safety critical systems. The uses of formal methods enhance 
the insight into the understanding of software requirements. Therefore it is critical to 
bring formal methods into software design education. The BMA represents one step 
forward in this direction. 
7.1 The Limitations of the BMA 
Two critical limitations are encountered during the implementation of the BMA: 
? Inadequate system model description provided by UML  
? Information loss during system model translation to PROMELA 
The BMA relies on the UML statecharts to obtain the behavioral model of the software 
system. Yet the UML statecharts cannot capture the transitional behaviors of the finite 
state machine. Recall that the UML statecharts are composed of distinct states with one 
or more state transitions between the states. Although UML statecharts provide 
mechanisms to specify guard conditions and triggers for every transition in the finite state 
machine, these mechanisms are inadequate to describe the runtime behavior of a vivid 
software system. State variables and their manipulation during a transition are not 
supported by UML. As a result, there is little or no restriction on the action specification
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during the transitions from one state to another. To get around this problem, an additional 
component is incorporated into the application that allows state variables to be defined, 
so that specification properties can be created based on these simple variables to test 
whether the model is behaving as expected during model checking. This component does 
not offer enough flexibility to enrich the model since the input is limited to simple 
variable declarations.  
Another problem that has been encountered is potential information loss when 
converting the system model into the PROMELA input language that is required by the 
model checker. Information loss here refers as the original model description of system 
has changed once it has been converted into PROMELA, and suggesting that not all 
behaviors of the original model have been captured. The quality loss is largely due to the 
absence of a standard methodology that UML statecharts to be converted into 
PROMELA systematically since PROMELA is not designed to accommodate 
translations from UML statecharts when it was created. As one can expect, this problem 
occurs more frequently when the model becomes more complex. Finite state models with 
many transitions that are missing transitional logic often causes model checking to be 
trapped in an infinite loop. On the other hand, complex transitional logic coupled with 
guard conditions often cause model checking to end prematurely. To ensure the model 
checking process takes place without these side effects, problematic elements in 
PROMELA are rewritten at the sacrifice of slight variation to the original finite state 
model. Simple and moderate-sized finite state models with limited number of transitions 
are not being affected.  
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7.2 Future Work 
Given the limitations from the previous section, the perfection of the BMA requires 
additional efforts from the computing community to recognize the potential offered by 
formal methods and to produce new methodology and better tools that integrates model 
checking with existing software design techniques. Model checkers such as SPIN need to 
be improved to accommodate verification of UML models, not just hardware systems. 
Methodology needs to be invented and standardized to convert UML models to the input 
model description language accepted by model checkers. The emergent trend toward 
model-driven development [15] and the adoption of the principles underlying the model-
driven architecture [29] implicates the necessity of promoting critical analysis and 
verification skills within the context of software design education. The significance of 
teaching formal methods in the context of emerging trends in software development is 
also argued by Davies and Simpson [11] and Robinson [37].  
The industry has already recognized the needs to produce new tools that complement 
this weakness in the UML specification. iUML [23], an application development 
environment offers support for executable UML modeling by incorporating Action 
Specification Language (ASL) [23] in UML models, represents one such effort. At this 
time, these new tools are neither sophisticated nor flexible enough to fill the gap. 
The capability of the BMA can be augmented by implementing the recognition of 
additional specification templates. Currently the BMA only supports the existence 
templates for the purpose of demonstration. The visualization of the statechart design 
model and the specification finite state machine is problematic as the visualization library 
JUNG currently does not support arcs. Using an alternative visualization library or 
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waiting a more mature version of JUNG will eliminate this problem. The flexibility of the 
BMA can be improved by more vigorous separation of modules in the design of the 
application by using specialized wrappers for SPIN and JUNG. This way the model 
checker and the visualization library can easily be swapped out and replaced with 
alternative tools. 
7.3 Conclusion 
The BMA offers potential benefits to its target users ? undergraduate students who have 
little or no background in formal methods. With this tool, they can apply model checking, 
which is one of the most powerful verification techniques existing today. In this case, the 
students do not have to directly interact with a model checker, to manually design their 
model in the input language of the model checker, or to generate the sets of specifications 
for their designs. Through visualization, the application offers valuable output as 
compared to the text output of the original model checker. By closely working with UML 
models, the BMA provides a convenient bridge between the model checker and the 
current software modeling environment. 
The idea of bringing formal methods into software design education has little to lose, 
but a lot to gain. Formal methods have proven themselves to be effective in formal 
verification of software systems [38]. It provides significant benefits to students if they 
utilize its potential for software design activities. The BMA represents an initiative to 
develop a methodology to realize such an idea. 
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