

Secondary Bus Performance in Reducing Cache Writeback Latency

by

Rakshith Thambehalli Venkatesh

A thesis submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the
requirements for the Degree of
Master of Science

Auburn, Alabama
May 9, 2011

Keywords: Cache Writeback, System Bus, Queuing Delay, Processor Performance

Copyright 2011 by Rakshith Thambehalli Venkatesh

Approved by

Sanjeev Baskiyar, Co-Chair, Associate Professor of Computer Science and Software Engineering
Vishwani D. Agrawal, Co-Chair, James J. Danaher Professor of Electrical and Computer Engineering
Weikuan Yu, Assistant Professor of Computer Science and Software Engineering

ii

Abstract
 For single as well as multi core designs, effective strategies to minimize cache access latencies
have been proposed by a number of researchers over the last decade. Such designs include the Miss Status
Holding Registers, Victim Buffers, Eager and Lazy Write backs, and Cache Pre-fetching. However, write-
buffer stalls remain a bottleneck in real-time memory accesses. To alleviate this problem, the Secondary
Bus Architecture was developed at Auburn. The secondary bus connects the write back buffer to the main
memory via an independent secondary bus controller to retire dirty cache lines to memory. The write back
traffic is only about 25-30% of the total traffic between the last level of cache and memory and is
intermittent compared to read requests. Therefore, a narrow 8-bit secondary bus was used in the
implementation. The secondary bus controller identifies idle main bus cycles by snooping on the main
bus control lines. These idle cycles are used to retire write back buffer entries to the main memory.
 In this research, we evaluated the effectiveness of secondary bus in retiring cache write-backs to
the memory using a series of extensive rigorous experiments run on the computers of the Alabama Super
Computer Center using SimAlpha and SPEC CPU 2006 benchmarks. The simulator SimAlpha was used
for analyzing the architecture since it incorporates a well defined memory hierarchy. The SPEC CPU
2006 programs are both CPU and memory intensive and thus were ideal candidates for our evaluations.
The I/O injections used normal traffic distribution using DMA as well as the new Direct Cache Injection
mechanism.
 We observed performance improvements of up to 35% over the base architecture (i.e. one without
a secondary bus) in presence of I/O traffic on the main bus and 17% in absence of any I/O traffic.
Furthermore, queuing delays on the main bus were observed to drastically reduce. In comparisons with
iii

Eager Write back, a strategy that is popular in many contemporary cache designs, it was found that the
secondary bus architecture is much superior in performance.

iv

Acknowledgements
 My years at Auburn University as a graduate student have been excellent mainly because of a
great academic course structure and the emphasis on research. This setup wouldn?t have been possible
without the excellent faculty and amazing support staff at Auburn University who encourage innovation
and provide exceptional classroom, library, laboratory and also recreational facilities. I would like to
thank Auburn?s faculty and staff members who have helped me amass great amount of knowledge, hone
my skills and graduate with a Master?s degree.
 I would like to thank Professor Sanjeev Baskiyar for supervising my thesis. I also thank him for
providing funding for the master?s thesis research for two years with a DARPA/AFRL grant. His
availability for discussion and advice regarding my research work as well as my career choice is highly
appreciated. I would also like to thank him for allowing me to go on an internship for the summer of 2010
and get valuable experience. I appreciate John O?Farrell?s help during the course of the simulations using
Sim-alpha. Simulations were carried out together with John and the code changes and the results were
unified. He also pointed out the approach of simpoints for speeding up the simulations.
 Professor Vishwani Agrawal has taught quite a few of my courses and every bit of information I
gathered from his classes have been extremely helpful. I would also like to thank him for recommending
me for a summer internship at Texas Instruments (TI) in India. The hardware design and test concepts I
eventually learnt at TI are invaluable. Professor Nelson?s course on EDA tools, Professor Singh?s course
on VLSI design and testing and Professor Reeves?s class on Digital Signal Processing require special
mentioning as they were highly informative and helped me identify my interests in electrical engineering.
v

 I am grateful to my friends here at Auburn who made my sojourn an eventful and memorable one.
I would like to specially thank my friends Santosh Kulkarni and Pratap Prasad for their advice and
support during tough times and for gleefully sharing my good times. I am thankful to Balapradeep
Gadamsetti for being a great buddy. I cannot end without thanking Dr Dave Sree and his family for giving
glimpses of India at Auburn.
 My experiences at Wipro Technologies Ltd have helped me approach the challenges at graduate
school in a more mature fashion. I am thankful to my teammates at Wipro for creating a great team based
environment. The internship at TI Ltd further enhanced and polished my knowledge in the area of VLSI
after my coursework at Auburn laid the foundation. I am grateful to my manager and my mentor at TI for
providing an excellent research environment.
 No amount of gratitude can ever be enough towards my parents Venkatesh T. L and Sathyavathi
G. S and brother Rohith, who have been there for me every moment. I wouldn?t have achieved anything
without their constant love and emotional support.

vi

Table of Contents
Abstract ... ii
Acknowledgements .. iv
List of Figures .. viii
List of Tables .. x
List of Abbreviations ... xi
Chapter 1. Introduction ... 1
1.1 Caches and Memory Hierarchy ... 2
1.2 Bottlenecks and Tradeoffs in Cache Design ... 3
1.3 Problem Description ... 5
Chapter 2. Background on Processor Architecture ... 8
2.1 Uniprocessor and Multiprocessor Architectures ... 8
2.2 Processor System Bus ... 10
2.3 Input/Output techniques in modern day computers .. 12
2.4 Memory mapped I/O ... 12
2.5 Interrupt driven I/O ... 14
2.6 Direct Memory Access (DMA) ... 14
2.7 Direct Cache Access (DCA) and Cache Injection .. 16
2.8 Cache Writeback Strategies .. 17
Chapter 3. Prior Work on Memory Hierarchy Optimization .. 19
3.1 Write Buffers .. 19
3.2 Victim Buffers and Victim Caches ... 21
vii

3.3 Cache Prefetching ... 23
3.4 Miss Status Holding Registers .. 25
3.5 Eager Writeback .. 26
3.6 Secondary Bus Architecture.. 27
Chapter 4. Secondary Bus Architecture .. 28
4.1 Design of the Secondary Bus .. 28
4.2 Design Issues .. 30
Chapter 5. Simulation Setup for Performance Evaluation .. 32
5.1 Sim-alpha Simulator ... 32
5.2 SPEC Benchmark Programs and Simpoints ... 34
5.3 Sim-alpha Architectural Configurations Used in Simulations .. 34
Chapter 6. Simulation Results and Observations .. 38
6.1 Queuing Delay on the Main System Bus .. 38
6.2 Cycles per Instruction ... 41
Chapter 7. Future Work .. 45
Chapter 8. Conclusion ... 47
Bibliography ... 49

viii

List of Figures
Figure 1: Memory hierarchy in a computer .. 2
Figure 2: Memory access requests per 100 million instructions ... 6
Figure 3: A typical bus based computer architecture [10] .. 9
Figure 4: A simple multi core processor architecture ... 10
Figure 5: DMA flow diagram ... 15
Figure 6: Direct cache injection based I/O. ... 17
Figure 7: Write buffer example with write-back technique in a three level memory hierarchy. 21
Figure 8: Processor Cache Architecture with Write Buffers. ... 22
Figure 9: Cache Prefetching Architecture [25] ... 24
Figure 10: Miss Handling Architecture for multi bank caches ... 25
Figure 11: Architecture with the Secondary bus ... 29
Figure 12: Microarchitecture of the Alpha 21264 processor [35]. .. 33
Figure 13: Probability density function used for I/O injection, Mean = 100 cycles and SD = 60 cycles. .. 37
Figure 14: Percentage reduction in queuing delays across different I/O rates. ... 39
Figure 15: Total number of queued cycles during an I/O traffic rate of 1.8 GB/Sec. 40
Figure 16: Total number of queued cycles during an I/O traffic rate of 1.2 GB/Sec. 40
Figure 17: Percentage improvement in processor throughput with the secondary bus. 41
Figure 18: Comparison between I/O techniques and Eager Writeback for I/O rate of 1.2 GB/Sec. 43
Figure 19: Comparison between I/O techniques and Eager Writeback for I/O rate of 1.8 GB/Sec. 43
Figure 20: CPI percentage improvement for the GemsFDTD program.. 44
Figure 21: Front side bus architecture in Intel's multi core processors. .. 45
ix

Figure 25: Dedicated FSB for each dual core processor. .. 46

x

List of Tables
Table 1: Main trade-offs for a bus design [10]. .. 11
Table 2: Contemporary I/O bus bandwidths. .. 13
Table 3: Simalpha specifications .. 35

xi

List of Abbreviations
1. SRAM - Static Random Access Memory.
2. DRAM - Dynamic Random Access Memory.
3. CPU - Central Processing Unit.
4. L1/L2 - Level 1/Level 2 Cache.
5. LRU - Least Recently Used.
6. SPEC - Standard Performance Evaluation Corporation.
7. I/O - Input/Output.
8. DMA - Direct Memory Access.
9. GPU - Graphics Processing Unit.
10. ILP - Instruction Level Parallelism.
11. ALU - Arithmetic and Logic Unit.
12. PC - Personal Computer.
13. DCA - Direct Cache Access.
14. NIC - Network Interface Controller.
15. IOC - I/O Controller.
16. MC - Memory Controller.
17. MSHR - Miss Status Holding Register.
18. LLC - Last Level Cache.
19. SDRAM - Synchronous DRAM.
1

Chapter 1. Introduction
 Computer designs and related technologies have made incredible progress in the last half century.
There has been a constant scaling up in speed and scaling down in size every generation. This can be
strongly attributed to the advances in semiconductor devices and also to innovative designs at the
architectural level. It has also given rise to the notion that smaller is faster. Memory and computational
logic are analogous to cement and water when it comes to the construction of a computer. There are three
digital circuit implementation factors critical to the design of the state of the art computer, which scale
fast but at different rates relative to each other. Integrated circuit logic technologies, semiconductor
memories and magnetic disk technologies form those three main components of a computer in the
decreasing order of speed.
 Circuit logic density scaling has always followed the Moore?s law [1] with the transistor count
doubling every 1.5 years. Memory modules such as Register files, Static Random Access Memories
(SRAMs, present on chip) and Dynamic RAMs (present off chip), have also increased in capacity at the
same rate due to the transistor device scaling. But large interconnect capacitances have resulted in slower
access speed for larger memory units. This explains the speed gap between the memory devices and the
logic circuitry. Disk density has been improving by 50% per year, almost quadrupling in three years.
Since disks have mechanical parts, they can never match the speeds of the RAMs. Hence they are mainly
used for mass storage. As a consequence of this varied rate of scaling the speed gap between memory
devices and computational logic has been widening, thereby creating several performance bottlenecks.
Memory hierarchies are used in order to bridge this gap between these three component levels and ease
the constraints.
2

 This chapter introduces the typical cache and memory setup in modern day processors and the
performance issues associated with them. The chapter concludes with a description of the problem
addressed in this work.
1.1 Caches and Memory Hierarchy
 A cache is nothing but a small memory unit that stores data for future data requests to be serviced
faster. The keyword here is small, because a smaller memory structure would have lower access latencies.
A typical memory hierarchy in present day processors, both single and multi core ones, starts with the
register files within the processor core and gradually moves towards larger but slower memory levels
comprising expensive cache memories and ends in either the disk or network storage elements. The main
motive behind this arrangement is to bridge the speed gap between the Central Processing Unit (CPU)
core and the slower memory devices. This is very clearly illustrated in the Figure 1 reproduced from [2]
below.

Figure 1: Memory hierarchy in a computer
3

 A successful cache access is termed as a hit and failure is called a miss. This applies to both reads
and writes. A read hit occurs when the requested block is present in the cache and a miss occurs when it
isn?t, prompting an access to the next level of cache with greater access latency. Similarly a write miss
occurs when the modified data could not be successfully written to the next level of the cache because of
the data block being absent from the cache. Let us consider a 3 level memory hierarchy comprising of a
level 1 (L1) cache, a L2 cache and the memory for an example. If the probability of a hit in a level i
memory structure is given by hi and if Ti is the access time in cycles for the corresponding cache level, the
average memory access time in cycles is given by this expression and provides a good performance
measure,
TAverage T - T - T ??????? ???.
 Miss rate (1 - hi) reduction is the primary motive behind all cache based designs. Designs that do
not address large miss rates would essentially lead to more program stalls and a smaller processor
throughput even with pipelined and superscalar architectures. The ?temporal? and ?spatial? locality of the
cache blocks are used for mitigating the miss rates in caches. Programs vary widely in terms of
workloads, algorithmic complexity and size. Hence, it is also hard to design a cache hierarchy that suits
perfectly for every program. However, we can always design one for optimal performance requirements
by analyzing the tradeoffs involved. Memory hierarchy design is simpler for a set of applications that
have similar and fixed workloads.
1.2 Bottlenecks and Tradeoffs in Cache Design
 Memory hierarchies are very much required for cushioning the impact of access latencies due to
slower devices, but a certain amount of tradeoffs are required for an optimal design. Reducing the number
of cache misses has been the primary goal of most designers as it addresses both miss rate and miss
penalty. Some of the basic cache design methodologies are listed below:
4

1. As seen from equation 1, the miss rate greatly affects the average memory access time. To reduce
the miss rate caches (cache memories) with larger block sizes are used. As a drawback, a larger
block size increases miss penalty after a certain optimal value since it would consume more
cycles to transfer a block from the memory.
2. Larger caches certainly help in reducing miss rate, but the miss penalty increases as it takes more
cycles to access a larger memory device. Caches with multiple banks are a good option if the data
sets of the programs are large.
3. Using a higher associativity cache also helps in reducing the miss rate. This reduces the number
of conflict misses. But the hardware complexity of the data retrieval circuitry increases because
we now have to select between multiple ?ways?.
4. Processors typically use two levels of caches. By increasing the number of levels to three, we can
get some speed-up.
5. Miss penalty can be reduced by giving more priority to reads than writes. In a setup with write
buffers, on a miss we can check the buffer for the requested block. Writing the block to the
memory and then reading it back would add to the miss penalty.
 The tradeoffs between the hardware overhead and speed with caches are quite clear now. In
addition to these, the write traffic handling is a major task for the cache controller. In programs involving
large workloads, almost every cache miss results in an eviction as there is never much space on the cache
for the incoming block. Write buffers are quintessential to every cache for absorbing the write latency
(discussed in later chapters), and they are not foolproof either. Write buffer induced processor stalls can
be attributed to the following three reasons [3]:
1. Full stalls occur when the buffer is full. The processor would have to retire the entries in the buffer
to make space for the replaced cache entry causing stalls as the requested block has to wait.
2. A read-access stall occurs when a read miss in L2 cache encounters a delay in reading from the
5

memory because the write-back buffer is currently writing to memory.
3. A read-hazard stall occurs when L2 read miss finds its data in write-back buffer. However, this
hazard can be avoided if write-back buffer entries and L2 cache entries can be swapped.
 There are several strategies for cache write handling. Designs explained in [3], [5] and [6] have
shown that write buffers contribute significantly in mitigating stalls. Jouppi in [7] and [8] proposed the
victim buffer for handling conflict misses that mainly occur with direct mapped L1 caches. Chu and
Gottipati [3] examine various factors to be considered for write buffer performance evaluation in their
work. They find that even a single word of buffering yields a substantial gain in performance. Write
buffer strategies are deeply analyzed in [9]. Having a deeper buffer provides more write merging
opportunities and also reduces conflict misses. A read bypassing strategy, mentioned earlier, helps in
holding the write data until the read takes place. An eager writeback strategy helps in balancing the
accesses on the main system bus to reduce delays due to bus contention by committing Least Recently
Used (LRU) blocks to memory earlier than the expected time. Handling the write traffic in such a way
that there is complete concurrency between reads and writes will act as the upper bound on any
improvement that can be achieved by addressing the write buffer issues.
1.3 Problem Description
 Write data traffic to memory constitutes up to 30% of the total communication traffic to the
memory in most of the modern computer configurations and with many of the existing software
programs. The results shown in Figure 2 convey the same with some of the Standard Performance
Evaluation Corporation (SPEC) CPU benchmarks for a typical uniprocessor architecture operating at
3GHz and having a 2MB on chip L2 cache using Sim-alpha, an Alpha 21264 processor simulator. In
Figure 2, our simulations with SPEC benchmarks show that as much as 30% of the traffic between the
CPU and memory is comprised of writes.
6

Figure 2: Memory access requests per 100 million instructions

 The amount of queued cycles per request on the main system bus that results due to the access
conflict between the read requests and the write commits from the memory whenever the write buffer
becomes full. Write intensive benchmarks have shown that write buffer induced stalls can add significant
latency to read misses in the last level cache. Research work in the area of write buffer analysis is
minimal, but the works in [4], [5], [6] and [9] agree that write buffers do contribute to processor stalls, a
case of the solution itself becoming a problem. The average number of cycles required per instruction
execution is significantly lower than the average queued cycles per request on the main bus. This does not
mean that the program execution is entirely blocked because of the queuing delay (design features such as
?out of order execution?, ?speculative execution? and ?non blocking caches? ensure this does not happen),
but there is certainly a major impact on the program execution time. This indicates that those instructions
that have to endure the penalty of L2 cache misses take a large beating in execution time because of the
conflict between the incoming reads and the outgoing write traffic.
 The above mentioned setbacks with write buffers are addressed by using a hardware enhancement
and a write-back strategy to support the main system bus. This architecture along with I/O techniques
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
Pe
rce
nta
ge
 co
mp
osi
tio
n o
f m
em
or
y a
cce
sses
SPEC CPU 2006 benchmark programs
Reads Writebacks
7

such as ?direct cache injection?, ?memory mapped I/O? and ?interrupt driven I/O? which communicate
directly with the CPU cache (as opposed to DMA) can make the best use of the main bus by efficient
memory bandwidth utilization. The proposal is to have a dedicated bus, smaller in bandwidth to the main
bus, to handle cache writes to the memory. Having a separate bus will also help I/O communications and
Write-backs to happen in parallel in the case of the above mentioned techniques. The benefit of using a
secondary bus to handle all of the cache writes to the memory has been studied in this thesis on some of
the latest SPEC benchmark programs. Serial bus speeds are shown to be enough to handle the write traffic
and be used as the secondary bus. A secondary bus controller that snoops for main bus traffic and
determines the cycles best suited for a writeback to the memory is the hardware addition required to allow
the link to function in the presence of I/O traffic and read requests. The main idea is to have write buffer
entries retire ahead of time and only during those cycles where the main system bus is free from either a
communication with the memory or an I/O device. One such arrangement has been extensively simulated
in this work for different I/O data rates and also for Direct Memory Access (DMA) and Direct I/O
transfer techniques.

8

Chapter 2. Background on Processor Architecture
 Processors are classified into various different categories based on the architectural design. They
can be categorized based on the instruction set complexity, number of cores, internal register length and
number of threads per core to name a few. One thing that is common to all these designs is the caching of
data for faster access. Almost every processor has multiple levels of cache and they use a common system
bus to communicate with the memory and other peripheral devices like Graphics Processing Units
(GPUs), I/O devices and Network Interfaces. This chapter throws light on a typical uniprocessor
architecture that has later been used for simulations in this work and also provides an insight into the
concept of multi core processors.
2.1 Uniprocessor and Multiprocessor Architectures
 A typical uniprocessor is made up of only one processing core which can in turn have a pipelined
and/or superscalar architecture that make use of instruction level parallelism (ILP). The former executes
almost one instruction per cycle by having pipeline registers store the control information while a
superscalar architecture incorporates multiple processing resources to enable two or more instructions to
execute in parallel. A lot of the present day uniprocessors incorporate both pipelining and superscalar
features to extract the best possible performance. Also, the architecture that exploits ILP in the best
possible way is the one that guarantees a good instruction throughput. Several hardware-software
techniques are used to make this happen. Resources can be register files, ALUs, branch predictors and
multipliers to name a few. Resource redundancy can help us run multiple threads in parallel on the
processor thus resulting in faster program execution. Typical uniprocessor architecture from [10] is shown
in Figure 3.
9

 Multi-core architectures are in vogue today because the scalability of uniprocessors has reached
its limits and researchers have leveraged on the concepts of parallel programming. This has led to the use
of several processor cores of reasonable speeds to perform the task and make use of the multiple threads
in programs in a more efficient manner. These architectures exploit both instruction level and thread level
parallelism. Figure 4 shows a simple multi-core processor block diagram. It is a common design practice
for each processor core to have a local L1 cache and a shared L2. An interconnection network between
the L1 and L2 caches handles data transfers between the two. A cache coherency protocol checks for
Figure 3: A typical bus based computer architecture [10]
CPU-memory bus

CPU
Cache Bus Adapter
(Bridge)
Bus Adapter
(Bridge)
Main memory
(DRAM)
AGP bus
I/O controller
Graphics
output

PCI bus
Bus Adapter
(Bridge)
I/O controller
I/O bus
Network

I/O controller I/O controller
Disk Disk CD
10

inconsistencies between the two levels and the memory. The L2 cache can later be connected to the main
memory through a main system bus.

2.2 Processor System Bus
 In a computer system, the various subsystems will have communication interfaces to each other.
For instance, the CPU needs to communicate with the Memory and also with the I/O devices because the
executing program comprises of both memory and I/O bound instructions. This communication is
commonly done using a bus. The bus serves as a shared communication link between the subsystems. The
two major advantages of a bus based system are low implementation cost and versatility. By defining a
single interconnection scheme, new devices can be added easily and peripherals can even be moved
between computer systems that use a common bus. The cost of a bus is low because a single set of wires
is shared among multiple devices. One major drawback with a bus is that it creates a communication
bottleneck especially when there is I/O traffic on the bus along with the regular memory traffic. In server
systems where I/O is frequent, designing a bus system capable of meeting the demands of the processor is
a major challenge.
? Local L1 Local L1 Local L1
Shared L2
Interconnection
Network
?
.
Figure 4: A simple multi core processor architecture
11

 One of the main challenges designers face with a bus based design is that the maximum bus speed
is largely limited by physical factors like the length of the bus and the bus loading (number of devices on
the bus). The desire for high I/O rates and high I/O throughput can also lead to conflicting design
requirements. Buses are traditionally grouped into CPU-Memory buses (main system bus) or the I/O
buses. I/O buses may be lengthy, may have many types of devices connected to them, have a wide range
in the data bandwidth of the devices connected to them, and normally follow a bus standard. CPU-
memory buses, on the other hand, are smaller in length and faster. Several bus bridges are used to connect
the buses of different bandwidth and speed specifications. Ultimately, all of the I/O buses connect to the
main system bus as shown in Figure 3.
 Any communication over the bus happens between a master, who initiates the transaction and the
slave who services accordingly. A situation with multiple masters on the bus would call for some kind of
an arbitration mechanism. Table 1 illustrates the cost and performance trade-offs that need to be looked
into while choosing a bus design. One thing that is clear from the table is that ?higher performance comes
at a cost?. The first four points are self explanatory. It also talks about split transactions and how they aid
in performance at a higher cost. The idea behind split transactions is to divide bus events into requests
and replies, so that the bus bandwidth can be utilized in the time between the request and the reply.
Table 1: Main trade-offs for a bus design [10].
Option High Performance Low Cost
Bus Width Separate address and data lines. Multiplex address and data lines.
Data width Wider is faster. Narrower is cheaper.
Transfer Size Multiple Words have less bus overhead. Single-word transfer is simpler.
Bus masters Multiple entities. Single master requires no
arbitration.
Split transaction Yes - separate request and reply packets get higher
bandwidth.
No - continuous connection is
cheaper and has lower latency.
Clocking Synchronous Asynchronous
12

 The final item in Table 1 is about bus clocking and it is concerns whether a bus is synchronous or
asynchronous. If a bus is synchronous, it includes a clock in the control lines and a fixed protocol for
sending address and data relative to the clock. Since little or no logic is needed to decide what to do next,
these buses can be both fast and inexpensive. Major disadvantages include clock skew problems, which
limit the length of the bus and a fixed clock rate means that everything on the bus must run at the same
pace. Asynchronous buses, on the other hand, are not clocked. Instead, self-timed, handshaking protocols
are used between the bus sender and receiver. It is much easier to accommodate a variety of devices and
to lengthen the bus without worrying about clock skew. This comes at the cost of increased traffic on the
bus causing large queuing delays for other traffic. It is not surprising to see the CPU-memory bus to be
synchronous and an asynchronous I/O bus in computer architecture.
2.3 Input/Output techniques in modern day computers
 As explained in the previous chapters, I/O refers to the exchange of data between the CPU and
the peripheral devices. Traditional as well as some current techniques under research are discussed in this
section. Table 2 lists the peak bandwidths which some of the fastest I/O buses are capable of. Though
these are just the maximum possible numbers and the I/O traffic may not always attend such high rates, it
gives an insight into the potential traffic that can be associated with I/O. One more point to note is that
most of this traffic transits via the main system bus (CPU-memory bus) before reaching its destination
(see Figure 3). This destination for all practical purposes is either the CPU or the memory.
2.4 Memory mapped I/O
 In this type of I/O a peripheral device is connected to the CPU's address and data lines exactly
like memory through some mapping, so whenever the CPU reads or writes to the address associated with
the peripheral device, the CPU transfers data to or from the device. This mechanism has several benefits
and only a few disadvantages. The prime advantage of a memory-mapped I/O subsystem is that the CPU
can use any instruction that accesses memory to transfer data between the CPU and a memory-mapped
13

I/O device. The MOV instruction is the one most commonly used to send and receive data from a
memory-mapped I/O device, but any instruction that reads or writes data in memory is also legal.
Table 2: Contemporary I/O bus bandwidths.
Bus Name Peak Bandwidth (GB/Sec)
SATA 3.0 [11] 0.750
Light Peak [12] 1.25
USB 3.0 [13] 6.25
PCI Express 2.0 [14] 2 - 16
AGP [15] 2.133
QPI [16] 19.2 ? 25.6
HyperTransport [17] 22.4 ? 51.2
10 Gigabit Ethernet (10GBASE-X) [18] 1.25
40 Gigabit Ethernet (40GBASE-X) 5
100 Gigabit Ethernet (100GBASE-X) 12.5
Infiniband (SDR, 12X) [14] 3
Infiniband (DDR, 12X) 6
Infiniband (QDR, 12X) 12
14

 A major disadvantage of memory-mapped I/O devices is that they consume addresses in the
memory map. Generally, the minimum amount of space that can be allocated to a peripheral (or block of
related peripherals) is a four kilobyte page. Therefore, a few independent peripherals can wind up
consuming a fair amount of the physical address space. Fortunately, a typical Personal Computer (PC) has
only a couple dozen such devices, so this isn't much of a problem. However, some devices, like video
cards, consume a large chunk of the address space (e.g., some video cards have 32 megabytes of on-board
memory that they map into the memory address space).
2.5 Interrupt driven I/O
 In the case of programmed I/O, the CPU is busy waiting for an I/O opportunity and as a result
remains tied up with that I/O operation until it is completed. This disadvantage can be overcome by
means of interrupt driven I/O. In Programmed I/O, CPU itself checks for an I/O opportunity, but here the
I/O controller interrupts the execution of CPU whenever an I/O device wants to initiate a transaction. This
way the CPU can perform other computations in the mean time and execute an interrupt service routine
only when an I/O operation is required, which is quite an optimal technique. A priority scheme
determines what happens in the case of simultaneous interrupts. A fixed priority scheme results in devices
getting assigned priorities in a fixed order. This may result in some low priority devices not being
serviced enough. A solution to this is to assign priorities in a rotational order. This scheme rotates the
highest priority among all devices by shifting the priorities.
2.6 Direct Memory Access (DMA)
 DMA technology provides special channels for CPU and I/O devices to exchange I/O data, and
the memory is used for buffering the I/O data. When the CPU wants to handle I/O data, it triggers the
DMA write operations that transfer the I/O data from I/O devices to the memory. On the opposite
direction, when the CPU writes data to I/O devices, the DMA read operations (transferring I/O data from
the memory to I/O devices) are performed.
15

 The data flow diagram for a DMA transaction over different levels of the memory hierarchy is
shown in Figure 5 for a DMA produce - CPU consume direction, reproduced from [19]. The processor,
memory and the DMA engine are involved in the interactions during a DMA operation. The interaction
requires three data structures namely the DMA buffer, descriptor and destination buffer, all residing in the
main memory. To start off, the device driver creates a descriptor for a DMA buffer. The driver allocates a
DMA buffer in the memory and initializes the descriptor with the DMA buffer?s start address, size and
status information. The driver informs the DMA engine of the descriptor?s start address. DMA engine
then loads the descriptor?s content from the memory. With the DMA buffer?s start address and size
information extracted from the descriptor, the DMA engine receives the data from the I/O device and
writes the data to the DMA buffer. After all I/O data is stored in the DMA buffer, the owner status of the
descriptor is modified to be the DMA engine. The DMA engine sends an interrupt to the processor to
DMA
Req Size
Write
I/O data Snoop
Write back
Memory
Write
DMA
Produce
DMA
Engine
Memory
Controller Memory
CPU
Cache
Reuse
Distance
CPU
Consume
Read
Read data
Figure 5: DMA flow diagram
16

indicate the completion of the receiving operation. The driver handles the interrupt raised by the DMA
engine and copies the received I/O data from the DMA buffer to the Destination buffer. Then, it frees the
DMA buffer. The processors adopt snooping-cache scheme for maintaining I/O data?s coherence,
accordingly they need to send snoop requests to the processor?s data cache to invalidate those cache
blocks that pertain to the I/O data under DMA request. Consequently, when the CPU consumes the I/O
data, the compulsory misses will take place and trigger the memory read requests to the memory
controller.
2.7 Direct Cache Access (DCA) and Cache Injection
 In addition to the traditional techniques discussed above, DCA and cache injection are two other
techniques that attempt to ease the memory bottleneck but letting the I/O device directly inject I/O data
into the processor?s cache. These techniques are producer driven when compared to the previously
discussed techniques such as DMA, Interrupt Driven I/O and programmed I/O, which are consumer
driven. Both of them are well suited for the large data rate network I/O over the Gigabit Ethernet. DCA
[20] is basically a cache coherency optimization that delivers inbound data from a network interface
controller (NIC) directly into processor caches dramatically reducing stalls due to memory access of
descriptor, packet header and packet payload data structures.
 Another technique that is worth mentioning because it is one of the assumptions in the
simulations carried out in our work is that of direct cache injection [21]. Cache injection addresses the
continuing disparity between processor and memory speeds by placing data into a processor?s cache
directly from the I/O bus. This disparity adversely affects the performance of memory bound applications
including certain scientific computations, encryption, image processing, and some graphics applications.
As shown in Figure 6, reproduced from [21], the injection operation is first initiated by the NIC. Unlike in
DMA, where the next step is to write to the memory, step 2 allocates incoming network data into the
cache. If the processor uses this data promptly there is no need to fetch the data from the memory.
17

Figure 6: Direct cache injection based I/O.

2.8 Cache Writeback Strategies
 Cache writeback, as explained before, is the process of committing data blocks back to the
memory via the system bus. Several write buffering and writeback techniques are used to ease the
memory access latency after a cache miss. The most basic ones of them all are the ?writeback? and the
?writethrough? techniques which are explained here.
a. Write Back
 In this technique, the memory locations written are marked as dirty and are held in the cache until
a read request evicts this line as a replacement. More often than not there is traffic towards the memory
every time a cache read miss occurs some dirty cache line has to make way for the incoming datum. As a
result a read miss in a writeback cache would require two memory accesses: one to retrieve the needed
datum, and one to write replaced data from the cache to the store.

18

b. Write Through
 When the system writes to a memory location that is currently held in cache, it writes the new
information both to the appropriate cache line and the memory location itself at the same time. This type
of caching provides worse performance than write-back, but is simpler to implement and has the
advantage of internal consistency, because the cache is never out of sync with the memory the way it is
with a write-back cache.
 Writeback caches are more complex architectures than the ones using writethrough when it
comes to implementation. Both the techniques as discussed later use some sort of buffering to absorb the
impact of memory accesses. These methodologies are also used between the L1 and L2 caches. L1 caches
usually comprise of separate partitions for instruction and data portions of the cache lines to aid in faster
instruction fetch rates. Since writes can happen only on a datum, we can use a buffer only for the data
cache among the two.

19

Chapter 3. Prior Work on Memory Hierarchy Optimization
 Cache accesses and the penalties associated with them have been targeted by a lot of researchers
over the past two decades. All the proposed cache write-back policies are aimed at minimizing the impact
that a write to the next level would have on the processor pipeline. Consequently there have been a good
number of innovative solutions such as Write Buffers, Victim Buffers, MSHRs, Eager retirement policies
and Cache Prefetching. Most of the modern day processors use a good mix of all of these strategies. This
chapter discusses a few of them.
3.1 Write Buffers
 As mentioned in the previous chapter, cache write techniques used in uniprocessor architectures
involve either the ?Write-Through? or the ?Write-Back? policy [10]. In a Write-Through technique, the
modified data lines are written to the cache as well as the next lower level in the memory hierarchy. On
the other hand, caches employing Write-Back usually mark the data line as ?dirty? to imply that the cache
line is inconsistent with the next level in the hierarchy and do a write to the next level only when they are
evicted by another incoming block. The disadvantage of Write-Through is that the processor has to stall
since the memory is accessed every time there is a write operation. Write-Back also creates processor
stalls whenever a dirty line is evicted from the cache and it has to be written to the memory to make space
for the required line.
 Using a ?write buffer? between the caches and the memory or the next lower level in the hierarchy
helps in reducing this bottleneck. This is one of the earliest solutions proposed for tackling cache
coherency and the associated latencies in the memory hierarchy. The cache writes directly go into the
buffer than the next level and since the buffer has similar access latencies as the cache, we benefit through
20

reduced stalls. Write buffers can also induce CPU stalls at times. Listed below are a few problems
associated with write buffers [3]:
1. Full stalls occur when the buffer is full and the store cannot merge.
2. A read-access stall occurs when a read miss in L2 cache encounters a delay in reading from
memory because the write-back buffer is currently writing to memory.
3. A load-hazard stall occurs when L2 read miss finds its data in write-back buffer. However, this
hazard can be avoided if write-back buffer entries and L2 cache entries can be swapped.
 There are certain occupancy based policies for retiring the buffer entries to the next level in the
memory hierarchy. The buffer can retain a suitable number of entries for coalescing purposes, but can
retire entries at the maximum possible rate when occupancy rises above a particular mark (number of
valid entries in the buffer). Waiting until this mark before retiring means that sequential writes can
achieve maximal coalescing. The most recently allocated entry cannot be retired until a new entry is
allocated. We call the entry that triggers retirement, the high-water mark and name the retirement policy
according to this mark. For example, a retire-at-2 policy would wait until 2 or more entries are valid in the
buffer before starting the process.
 Read access stalls on the other hand can be reduced by using an eager writeback policy, which is
discussed later in this chapter. Flushing the write buffer on every load miss solves the load hazard
problem, but at substantial cost. Techniques such as Flush-full, Flush-partial and Flush-item only are
alternative solutions to this problem. Flush-full flushes the entire write buffer when the miss hits in the
buffer. Flush-partial saves some work by flushing entries in FIFO order only as far as necessary to purge
the hit entry. Flush-itemonly saves even more work by flushing only the hit entry. If a different entry is
already being retired when the load hazard occurs, we assume this transaction completes first. Finally,
read-from-WB allows the load miss to read its data directly from the write buffer without altering the
buffer?s contents, avoiding an access to the next level in the process [3], [9]. Deeper buffers also help in
21

reducing the buffer full stall by storing more burst writes which is normally associated with the data
intensive streaming programs. It also supports the concept of lazy retirement. As mentioned before, more
contents held in the buffer provide more write merging opportunities and also improves the chances of a
hit in the buffer upon a read miss in the cache. Figure 7 illustrates the writeback policy with a buffer.

3.2 Victim Buffers and Victim Caches
 In cache terminology a ?victim? cache block is the one that is evicted upon a conflict cache miss.
Many cache blocks get evicted in direct mapped caches during iterative function calls or context switches
in a program. Since the probability of a cache block becoming a victim is very high in direct mapped
caches compared to set associative ones, we need a buffer mechanism to hold these blocks as they may be
required sooner in the program. So misses in the cache that hit in the victim cache provide a great chance
to reduce miss penalty [7], [22], [23]. Experiments carried out on certain benchmark programs in [7]
show that a small victim cache of 5 to 8 entries was enough to reduce the number of misses in a 1 to 4KB
first level cache by about 80% of the cache misses.
Datapath
L1 Cache WB
L2 Cache W
B
Memory
Figure 7: Write buffer example with write-back technique in a three level memory hierarchy.
22

 The term ?victim buffer? on the other hand is associated with the buffering mechanism that
ensures write merging. They are an advanced version of the write buffers discussed previously. A dirty
cache line is buffered and any subsequent modifications to the line are merged to the entry in the buffer
itself during write misses. Victim buffers are typically made up of more entries than a victim cache.
Another difference between the two is in the fact that victim caches catch both ?dirty? and ?non-dirty?
lines which are victims, whereas the victim buffer is usually meant for modified or ?dirty? cache lines
[10]. The block diagram of a typical uniprocessor memory hierarchy can be seen in Figure 8. In a two
cache arrangement, the L1 cache usually employs either a victim cache for support with a direct mapped
cache or a victim buffer in case a cache with higher associativity is used. L employs the ?write through?
policy. The L2 employs a write buffer and uses a writeback policy for coherence.

System Bus
Main Memory I/O
PROCESSOR
Victim Cache / Write Buffer

L2 Cache
L1 Instruction Cache L1 Data Cache

Write Buffer
Processor
Chip
Figure 8: Processor Cache Architecture with Write Buffers.
23

3.3 Cache Prefetching
 CPU cache prefetching involves fetching a block from the main memory into the CPU when the
block has not been referenced in the expectation that it will be referenced in the near future. Hardware
cache prefetching is specifically concerned with prefetching algorithms implemented solely by dedicated
hardware without any software support. Two questions have to be answered before prefetching a block:
which block to prefetch and when to prefetch. The simplest candidate to prefetch is the next sequential
block after the one most recently referenced. This is illustrated in [24] with a technique called always
prefetch. With this algorithm, every time there is a reference to block i, the cache is examined for block i
+ 1 (i.e., the next sequential block, in terms of ascending memory addresses). If block i + 1 is absent from
the cache, it is prefetched.
 A variation which requires fewer prefetches and prefetch lookups (i.e., look into the cache to see
if the block is there) is called prefetch on misses, which prefetches the next sequential cache block if and
only if the access to the current cache block is a miss. A more complicated scheme, known as tagged
prefetch [24], keeps the number of prefetch lookups low while issuing more prefetches than prefetch on
misses. In this case, each cache block has a single bit, called the tag, which is set to zero whenever the
block does not reside in the cache. When a block is referenced by the processor, its tag will be set to one.
A block brought into the cache by a prefetch, however, retains its tag of zero.
 Figure 9 (reproduced from [24]) shows a typical hardware cache prefetch architecture. The two
prefetch units, one for each cache, are responsible for issuing new prefetch requests to the main memory.
During each clock cycle, each prefetch unit receives information like cache misses, cache hits, instruction
types, and branch target addresses from the processor and the caches. Based on this information, it
decides whether to issue a new prefetch request or not. If it does, the prefetch address is looked up in the
corresponding cache. The request is issued in the next clock cycle if the data is not found in the cache.
Issued requests from both prefetch units are not sent directly to the memory bus, though, but to a prefetch
address buffer, each of which is organized as a FIFO queue with 16 entries. The oldest entry is sent to the
24

memory bus only when the bus is free. If the buffer is full when a newly issued request arrives, the oldest
entry is discarded from the buffer to make room for the new one. Whenever there is a cache miss, the
address of the missing cache block is compared against every entry of the buffer. Any entry which
matches the address represents a failed prefetch (because it is issued too late) and is discarded without
being issued.

 One of the disadvantages of cache prefetching is the unavoidable increase in memory traffic
because of prefetches which are never referenced. The limitations of cache prefetching on a bus-based
multiprocessor system are investigated in [26]. Results show that, when bus bandwidth is the bottleneck,
prefetching will not improve performance, even when it reduces the demand miss ratio. Another
disadvantage of cache prefetching is that useless prefetches may pollute cache contents by displacing
useful cache blocks from the cache and, thus, cause new cache misses which would not have happened
had there been no prefetching. All of these factors ensure the advantages from cache prefetching are
minimal on CPU performance.
Figure 9: Cache Prefetching Architecture [25]
25

3.4 Miss Status Holding Registers
 Out of order instruction execution is a popular technique in pipelined computers that allow a
processor to fetch another instruction whenever there is a miss in the data cache. This means the processor
need not wait until the data request is serviced by the next level in memory. A non blocking cache is used
in such a situation to reap the benefits. Extra hardware is needed to store the cache miss information in the
form of the requested address and that is where the Miss Status Holding Register (MSHR) comes into
play. These registers hold the address information for the miss that is to be serviced. A hit under miss
optimization reduces the effective miss penalty by helping during a miss instead of ignoring the requests
of the processor [10].

Cache
Bank
1
Cache
Bank
2
Cache
Bank
N
?.
MSHR
File 1
MSHR
File 2
MSHR
File N ?.
Figure 10: Miss Handling Architecture for multi bank caches
26

 Most of the modern processors such as Intel Pentium 4 use multi banked L2 caches to facilitate
parallel miss request servicing [27]. This optimization allows multiple misses over a miss, which means
we can have multiple misses in queue. Conventionally each cache bank would have an MSHR file to
facilitate storing of this miss information [28]. Figure 10 shows the block diagram of a typical multi bank
cache and the MSHR arrangement.
3.5 Eager Writeback
 The fundamental idea behind eager writeback strategies is to write the dirty cache lines to the
next level in the hierarchy and clear the dirty bits earlier than in a conventional writeback. Since the main
system bus handles a huge amount of data traffic for data intensive applications, this enhancement would
be highly beneficial for performance improvement. The work in [29] explores one such technique by
indirectly distributing the traffic on the main bus to make use of the idle bus cycles. The Eager writeback
technique is a compromise between the writeback and write through techniques. Here the write commits
are neither made upon every cache line modification like in write through nor does the write buffer waits
to get filled. The dirty lines are evicted as and when the main system bus becomes free. However, the
system bus carries more traffic than just the writebacks and reads from the cache hierarchy to the
memory. Input/Output (I/O) traffic can cause a major bottleneck on the main system bus when network
based I/O or other I/O intensive applications are running is considered. This technique does not provide
much benefit with I/O considerations. In summary, the following two points highlight the shortcomings
of the Eager writeback strategy:
1. The strategy does not ?snoop? the main bus to identify free memory cycles. This can be a
hazardous in situations where clustered activity is present on the main bus. The write commits are
just offset to an earlier stage through an early writeback of LRU lines with Eager writeback. This
may not always solve the problem of bus contention.
27

2. During high I/O traffic densities on the main bus, the performance of the CPU decreases because
of the large queuing for CPU read requests. This is a situation amplified by two kinds of traffic,
CPU Produce-I/O Consume and I/O Produce-CPU Consume.
 A majority of the processors today use an optimal mix of the above techniques to mitigate the
memory access penalties that results from a cache miss. Some researchers also call for dynamic
optimizations in order to optimize the performance for a particular type of application currently running
on the processor.
3.6 Secondary Bus Architecture
 The concept of a secondary bus to connect the level-2 cache to memory for cache writebacks has
been explored in [30] by O?Farrell and Baskiyar. The simulations results on three data intensive micro-
benchmarks show that adding an additional bus to support the main system bus would help in achieving
significant reductions in queuing delays on the main bus. Such reductions in queuing delays offer superior
temporal determinacy in a real-time environment. Their simulation results also compare well with ?free
writeback? (it models a system in which dirty writebacks do not generate any memory traffic on the bus)
and indicate that this bus can indeed parallelize reads and writes. It also discusses the feasibility of
implementing such a bus as a serial or a wireless link.

28

Chapter 4. Secondary Bus Architecture
 The main system bus is a bottleneck in bus based systems and an efficient use of the bus cycles
calls for some kind of access control mechanisms. An additional bus can support by carrying the write
traffic off the main system bus. Just adding a second bus would not help in easing congestion as it would
only transfer the bottleneck to the memory interface from the L2 cache interface of the main bus. This
write traffic would require a new write back policy (retirement policy), to make sure there is a less
contentious path between the memory and the processor for reads. A bus controller is required for
controlling who (write buffer, an I/O device or Read requests) gets access to the main memory and when.
This chapter explains the design of the secondary bus architecture that is expected to ease queuing delay
and result in improved program execution speed for the CPU. The secondary bus architecture was
designed by Wang and Baskiyar [31].
4.1 Design of the Secondary Bus
The motive behind the secondary bus architecture design is to first provide a separate path from
write buffers to main memory so that the three main reasons for CPU stalls (explained in Chapter 1) due
to the main bus bottleneck are reduced. We refer to direct I/O here as a technique similar to cache
injection or DCA (discussed in section 2.3.4), where the I/O data is directly written to or read from the
processor cache. Direct I/O gives us an upper bound on the improvements possible with the architecture
under discussion. Then, the following two time slices can be made use of to commit dirty cache lines in
the write buffer to the memory over the main system bus:
a. In the absence of any data traffic directed towards or from the main memory.
b. During I/O transactions on the main system bus in the case of direct I/O.
29

 The first condition is required because we are assuming a single ported memory here. A single
port memory restricts the number of simultaneous accesses to just one, irrespective of whether it is for a
read or a write operation. Hence, to return the cache lines in the buffer, choosing intervals when the
memory is free eliminates queuing delays on the system bus as opposed to the techniques discussed in the
previous chapter. Secondly, in the presence of any I/O traffic that is a result of a communication directly
between the processor and the I/O device (as it happens during a Direct I/O transaction), the memory unit
is available for write commits via the secondary bus. The design of their secondary bus based architecture
[31] is shown in Figure 11 below.

Figure 11: Architecture with the Secondary bus

As seen in Figure 11, the main bus is supported by the secondary bus during writebacks and I/O
transactions. This is made possible by the secondary bus controller which does a snoop on the main bus
and identifies the bus cycles where it is not busy with memory operations. These are the cycles where the
30

secondary bus would take over and commit the dirty cache lines to the memory, giving a ?faucet? like
control. The ?control input? to the secondary bus controller is made up of the main bus control lines that
give information about the type of transaction happening on the bus. This can be address strobe, burst
ready or the I/O control lines [32], which indicate when a transaction starts on main bus. The signals ?s ?
and ?s ? are sent in accordance with the states of the main bus to arbitrate their memory accesses.

4.2 Design Issues
 There are several design issues that need to be addressed while developing a write back policy for
the secondary bus architecture. Some of them are explained here.
a. There can be situations when there can be read requests on the main bus at a point where there can be
cache retirements happening on the secondary bus to the memory. One of the ways of handling this
situation is to make the main bus request to queue up in the MSHRs and then complete the write
operation until the writeback buffer is empty, while the other option would be to abort the burst
writeback and enable the main bus to do the transaction with the memory. In this design, the main bus
access is given priority so as not to contribute to the queuing delay on the bus. This creates a
dependency for the secondary bus states on that of the main bus.
b. The addition of the secondary bus and the bus controller can consume some area on the motherboard
and the memory controller hub respectively. Secondary bus though, is designed to be of a smaller
width than the main bus and hence of a smaller bandwidth since it is only used for the writebacks.
This would mean the transactions on the secondary bus would take longer than the main bus. This is
not a concern because writes constitute a small percentage of the total memory traffic as discussed
earlier and lesser bandwidth would suffice. However, the usefulness of the secondary bus depends on
the amount of free memory bandwidth. If the main bus is busy with ?direct I/O? operations or idle for
longer time, even a small secondary bus would be good enough to commit the dirty cache lines. This
will lead to performance boost in situations when there is severe I/O traffic or clustered memory
31

accesses, which otherwise can lead to congestion on the main bus. This design ensures that the
performance of a processor with a particular application will not be degraded as much as it would for
a computer without the secondary bus.
c. In the case of direct I/O operations, as explained before we can parallelize the write back and I/O read
operations. During DMA, the memory bandwidth is used up most of the time for one of these: I/O
reads, I/O writes, CPU reads or CPU writes. This movement of I/O data between the processor cache
and the memory adds more queuing delay to the traffic on the main bus, thereby creating a bottleneck.
DMA reduces the number of available cycles for writeback. It would cause the write buffer induced
CPU stalls to aggravate, which otherwise is one of the major areas of improvement with the
secondary bus. So the secondary bus will work fine with DMA without any specific design
modifications, but with reduced benefits.

32

Chapter 5. Simulation Setup for Performance Evaluation
 Any new design or an enhancement to an older design always requires evaluation. Computer
architecture research groups around the world use simulators like SimpleScalar, Sim-alpha, GEMS,
SimOS and Simics to name a few. These simulators try to simulate the entire architecture along with the
modification to our desired level of accuracy. Though the simulation data generated can never match the
data collected from a real time run on an actual hardware for accuracy, they are faster and good for
comparisons at an early design stage. In this work the Sim-alpha simulator [33] is used for the same
purpose. SPEC CPU 2006 benchmarks are used for simulations as they a both CPU and memory
intensive. The latter, especially, was very important as a good workout for the memory hierarchy is
essential for secondary bus benefits to be visible. The changes made to the simulator encompasses the
architectural design originally made in [31]. In other words, secondary bus architecture is very much
suited for memory and I/O intensive programs. This chapter throws light on the simulation setups created
using Sim-alpha and the SPEC benchmarks.
5.1 Sim-alpha Simulator
 Sim-alpha is a validated, execution driven, Alpha 21264 processor simulator. It was written by
extending the SimpleScalar tool suite [34]. Sim-alpha models the implementation constraints as well as
the performance enhancing features of the Alpha 21264 processor. The simulator settings can be varied
by the user to simulate the influence of parameters like cache sizes, memory speed, fetch width, issue
queue sizes, bus bandwidths and many others associated with a computer.
 The 21264 is a superscalar processor that can fetch and execute up to four instructions per cycle.
It also features out of order execution, which results in critical path executions to start and complete
33

quickly. It also has a branch prediction unit and executes speculatively. Coupled with high clock speeds
this unique combination of out-of-order and speculatively execution, provide exceptional core
computational performance [35]. The processor has seven pipeline stages as shown in Figure 12
(reproduced from [35]). Most of the present day complex applications cannot necessarily be run at a
throughput of fours instructions per cycle. Some of them can take more than 1000 cycles to execute due
to the access bottlenecks on the last level cache (LLC), the system bus and the memory. Though the
numbers shown below in Table 3 are from the actual design of the 21264 processor, these can be varied
using several flags or configuration files with sim-alpha.

Figure 12: Microarchitecture of the Alpha 21264 processor [35].

 Sim-alpha incorporates a detailed memory subsystem with support for multi level cache
hierarchies, address translations, bus contention and a Synchronous DRAM (SDRAM) memory model. It
builds on x86 machines and acts a cross architectural simulator, whereby it runs on a x86 machine and
34

simulates binaries compiled for the Alpha 21264 instruction architecture. The average error by using sim-
alpha as opposed to the actual Alpha processor is only about 2% as evaluated across a handful of micro
benchmarks in [33].
5.2 SPEC Benchmark Programs and Simpoints
 The SPEC CPU 2006 benchmarks suite [36] consists of integer and floating-point programs that
represent a wide range of applications that we use today on our computers. These benchmarks are highly
rated for evaluating several computer design components, mostly the CPU, memory subsystem and also
compilers. Though some of the previous SPEC suites had problems exercising the memory subsystem
either due to lack of working sets [29] or due to lesser application complexity, the 2006 programs run
longer, have large working sets and are more complex. Video compression and speech recognition have
also been added to these new benchmarks.
 The 2006 suite of programs have a large amount of run times though its predecessors can now
finish a run within minutes on the existing architectures. Runs times of the current benchmarks can range
from machine weeks to months on a cycle accurate simulator like sim-alpha, before one can get access to
the results. They also show high variability across several runs on the same set of data even after these
accurate simulations. In order to ease this problem simulation points (simpoints) [37] are used during
simulations. These small set of samples (simpoints) when simulated and weighted appropriately provide
an accurate picture of the complete execution of the program with large reduction in the simulation time.
Several days of run times are reduced to just a few hours with a slight compromise on accuracy. The
methods used to extract these points and their weights are discussed in [37]. It also provides a list of files
for the CPU 2006 group for quick use in simulations.
5.3 Sim-alpha Architectural Configurations Used in Simulations
 Sim-alpha requires a processor and memory hierarchy configuration list to start a simulation run.
We have used the data provided in Table 3 for simulations with the secondary bus. Modifications were
35

made to the memory hierarchy with the addition of a write buffer to the last level cache. In the final
structure, L1 cache had a victim buffer for support and the L2 (LLC) had the write-back buffer to handle
write traffic. This setup made up the base architecture against which the secondary bus architecture would
be compared later. Changes to the configuration file involved the addition of a new bus connecting the
write buffer (added previously) to the memory, bypassing the main bus. It was made sure that the write
traffic used only the secondary bus.
Table 3: Simalpha specifications
Processor Parameter Specifications
Processor Speed 3 GHz
Level 1 Data Cache 8 way, 32KB, virtual-index virtual-tag
Level 1 Instruction Cache 8 way, 32KB, virtual-index virtual-tag
Level 2 Cache 8 way, 2MB, physical-index physical-tag
Number of MSHRs per Cache 8
Write Mechanism for Level 1 Cache Victim Buffer, No Writeback Buffer
Write Mechanism for Level 2 Cache Writeback Buffer, No Victim Buffer
Main Bus (Front Side Bus) 600MHz, 8B wide, 10 cycles of arbitration latency
Secondary Bus 600MHz, 1B wide, 10 cycles of arbitration latency

 A major benefit of using such a secondary bus would be in those situations where I/O traffic uses
a large part of the bandwidth on the main bus causing congestion for non I/O data. Hence, a simulation
setup to generate I/O traffic at a rate described by a ?Normal? distribution was created. Normal
36

distribution was assumed I/O traffic with the CPU because I/O can be mainly composed of network traffic
and disk traffic. Figure 13 gives the probability density function used for our simulations. A dummy I/O
device that would generate blocks of the size of cache lines was implemented and I/O injection
frequencies were chosen to get a calculated bandwidth pinch. The I/O data rates tried were of 600
MB/Sec, 1.2 GB/Sec and 1.8 GB/Sec. These numbers were chosen based on the I/O bus bandwidth
number shown in Table 2. I/O data eventually reside in the LLC by evicting some dirty cache lines in
order to make space for this incoming data. These replacements can lead to some conflict misses later in
the run and cause more traffic on the main system bus. Comparisons with Eager writeback [29] were also
made possible with a different set of changes to the simulator. DMA I/O was discussed in section 2.3.3
and performance comparisons with the DMA I/O were also required. Simulator changes included
implementing a DMA engine that would mimic the I/O injection and act as a bus master. This time I/O
traffic went through the memory unit before landing in the LLC as opposed to Direct I/O, thereby
reducing the memory bandwidth available for writeback.
 Simpoints does help us in speeding up the simulations but faster simulations can only be achieved
via a supercomputing environment. The Alabama Supercomputing Authority [38] provided us with a
server cluster that was made up of some of the latest processors. As a result of multiple simpoints being
run in parallel on the supercomputer nodes, the results for all of the 16 benchmarks were obtained in just a
couple of weeks. Although separate such simulations had to be run for Eager writeback, each of the I/O
injection rates, DMA I/O and Direct I/O conditions, each taking about two weeks, because of the inability
of Sim-alpha to make use of multi processing.
37

Figure 13: Probability density function used for I/O injection, Mean = 100 cycles and SD = 60 cycles.

38

Chapter 6. Simulation Results and Observations
In this chapter, the simulations results obtained with sim-alpha and their analysis are put down.
The results shown include comparisons with the Eager writeback technique for all the different I/O
frequencies, simulations with I/O traffic. The metrics used for evaluation included queuing delay on the
main bus, maximum number of cycles taken by any instruction, average cycles per instruction execution
and number of instructions taking more than 1000 cycles to complete. Though all of the metrics are
interrelated, the results give understanding of their dependencies on each other. Reduction in some of the
metrics like the average queuing delay for an instruction can be more beneficial to certain real time
applications and systems as opposed to personal computers and server based systems.
6.1 Queuing Delay on the Main System Bus
The main bus in our simulations has a bandwidth of 4.8 GB / Sec and was shared by some I/O
traffic (600MB / Sec, 1.2 GB / Sec and 1.8 GB / Sec) the writeback traffic and the read traffic. There are
times when the bus is being used for servicing a number of clustered requests and another request that
comes up at the same time has to be queued because of the limit on the number of outstanding requests. In
real-time systems these queuing delays can become significant resulting in unexpected latencies and hard
deadlines getting missed. Our simulations show significant reduction in queuing delays due to separation
of the write traffic from the read traffic. Figure 14 shows the percentage queuing delay reduction achieved
with the secondary bus against the base architecture for each of the SPEC programs at various I/O rates.
Almost all of the programs showed great reduction in the queuing delays with an average reduction of
nearly 99% during the absence of I/O traffic on the main bus. With I/O devices trying to communicate
with the processor through the technique of direct I/O, we start to see reduced benefits, though Figure 14
39

conveys that the percentage reduction is still considerably high. It also indicates that a majority of the data
queuing that occurs on the main bus is due to the write traffic in a write back cache and the benefit of
using a secondary bus on queuing delay is very clear.

Figure 14: Percentage reduction in queuing delays across different I/O rates.
The comparisons with the Eager writeback and other types of I/O like DMA are shown in Figure
15. It is obvious that direct I/O extracts the best out of the secondary bus architecture when compared to
DMA. When DMA is used, the I/O data travels through the memory before reaching the processor. This
data is very much like any other read data from the memory, reducing the memory bandwidth for
writeback using the secondary bus. With direct I/O, we can do a write back to the memory as well as an
I/O read from the I/O controller in parallel. All these factors lead to a reduced performance for DMA with
the secondary bus, but it is quite useful in reducing the delays nevertheless. Although Eager Writeback
results in good reduction in queued cycles, it cannot match the advantage with a secondary bus. This is
because the write back policy there does not snoop for free cycles on the main bus and only offsets the
0
20
40
60
80
100
120
Per
ce
ntage
Re
du
ction
 in
 qu
eu
ed
 cy
cle
s
SPEC CPU 2006 Benchmarks
No I/O 600 MB/Sec 1.2 GB/Sec 1.8 GB/Sec
40

writes to an earlier stage. Figure 16 provides the total queued cycles information during an I/O rate of 1.2
GB/Sec.

Figure 15: Total number of queued cycles during an I/O traffic rate of 1.8 GB/Sec.

Figure 16: Total number of queued cycles during an I/O traffic rate of 1.2 GB/Sec.
0
5E+09
1E+10
1.5E+10
2E+10
2.5E+10
3E+10
3.5E+10
4E+10
4.5E+10
5E+10
To
tal
 Qu
eu
ed
 C
yc
les
SPEC CPU 2006 Benchmarks
Direct_IO DMA Eager Writeback
0
5E+09
1E+10
1.5E+10
2E+10
2.5E+10
3E+10
To
tal
 Qu
eu
ed
 C
yc
les
SPEC CPU 2006 Benchmarks
Direct_IO DMA Eager Writeback
41

6.2 Cycles per Instruction
A comparison of the ?cycles per instruction? between the secondary bus architecture and the base
architecture, gives us the speed-up achieved. Figure 17 shows the percentage speed-up achieved across a
range of programs from the SPEC CPU 2006 benchmark suite.

Figure 17: Percentage improvement in processor throughput with the secondary bus.

Speed-ups of up to 19% were achieved due to the addition of the secondary bus as seen in Figure
17 in the absence of I/O traffic on the main bus. With the presence of the secondary bus, read requests on
main bus never waited for the dirty writeback traffic to be written to the main memory whenever it
requested data due to a L2 cache miss. In the presence of I/O traffic further improvement was seen with
speed-ups of up to 33%. In other words, the degradation of the base architecture was relatively severe
when simulated with I/O traffic. The improvements in CPI are also a direct consequence of the reduction
in queued cycles seen in the previous section. Programs that have a huge writeback rate or the ones that
work on large data sets are the most beneficial of this architecture. On an average 13% speed-up over the
base architecture was seen across 10 out of the 16 benchmarks we simulated with sim-alpha.
0
5
10
15
20
25
30
35
40
45
Pe
rce
nta
ge
 Im
pr
ov
em
en
t in
 C
PI
SPEC CPU 2006 benchmarks
No I/O 600 MB/Sec 1.2 GB/Sec 1.8 GB/Sec
42

Results also show that the speed-up depends on how much the program strains the memory
hierarchy. Processors using smaller second level caches lead to higher number of cache misses and hence
writebacks. Thus programs having a very large working set could be more advantageous compared to the
ones using smaller caches and working sets. This can be seen with programs like namd, gromacs, sjeng,
h264ref, etc. The program namd did not have any writebacks to the memory and hence the architecture
was never put to test during the simulations. Programs like bwaves, zeusmp, gemsFDTD, sphinx, etc. were
highly writeback intensive with nearly 30% of the traffic on the main bus being the writeback traffic.
As a result of the speed-up achieved, the group of instructions taking more than 1000 processor
cycles was reduced. The results are shown in Figure 18 and Figure 19 for I/O injection rates of 1.2
GB/Sec and 1.8 GB/Sec respectively. Although a majority of the 100 million instructions simulated took
only around 100 to 200 cycles to execute due to cache hits, there were instructions which took more than
1000 cycles. Instructions taking more than 1000 cycles refer to those that are affected by the writeback
latencies upon a read miss in L2. Hence these additional cycles were mainly due to the memory accesses
and main bus contention. More than 90% decrease in the number of such instructions was seen across the
benchmark suite and this justifies the speed-ups seen in Figure 17.
43

Figure 18: Comparison between I/O techniques and Eager Writeback for I/O rate of 1.2 GB/Sec.

Figure 19: Comparison between I/O techniques and Eager Writeback for I/O rate of 1.8 GB/Sec.

 A comparison with the Eager Writeback technique shows that the performance improvement
tends to decrease with I/O traffic on the main bus. This is can also be seen in the results from [29].
0
50000
100000
150000
200000
250000
Nu
mb
er
of
In
str
uc
tio
ns
tak
ing
 m
or
e t
ha
n 1
00
0
cy
cle
s
SPEC CPU 2006 Benchmarks
Direct_IO DMA Eager Writeback
0
50000
100000
150000
200000
250000
300000
350000
400000
Nu
mb
er
of
In
str
uc
tio
ns
tak
ing
 m
or
e t
ha
n 1
00
0
Cy
cle
s
SPEC CPU 2006 Benchmarks
Direct_IO DMA Eager Writeback
44

Secondary bus, because of bus redundancy, scales easily with increased I/O rates. This is best explained
with the plot shown in Figure 20 for the GemsFDTD benchmark program. GemsFDTD was chosen
mainly because it has a good writeback rate compared to other programs and also shows improvements in
CPI in excess of 35% for high I/O rates. With DMA, the results tend to flatten out at large I/O traffic
rates. But it is not necessarily true that the CPI keeps improving with increased I/O with the secondary
bus. There will be a point where the entire 4.8GB/Sec bandwidth of the main bus would not be sufficient
and it may result in queuing delays and CPIs going out of the usual range of 0 to 3 cycles per instruction.
That problem is still due to the main bus bandwidth getting exhausted which, happens very rarely as the
main bus width is proportional to the number of devices on the bus. Increased number of agents on the
bus will surely lead to wider main system bus.

Figure 20: CPI percentage improvement for the GemsFDTD program.

0
5
10
15
20
25
30
35
40
600 MB/Sec 1.2 GB/Sec 1.8 GB/Sec
Pe
rce
nta
ge
 Im
pr
ov
em
en
t in
 C
PI
CPI for different IO Injection rates for GemsFDTD benchmark program
Direct_IO DMA_IO Eager_Writeback
45

Chapter 7. Future Work
 The benefits of the secondary bus were obvious from the simulation results seen in the previous
chapter. Though the technique was applied to a uniprocessor system during our analysis, a similar
implementation can very much be used even with a multi-core processor. Although the front side bus
(FSB) architecture is slowly giving way to technologies such as Quickpath [16] and HyperTransport [17],
we still have more room for improvement on the FSB as seen from the secondary bus. Since FSB is a
simpler design compared to Quickpath or HyperTransport, secondary bus architecture is worth
considering for a dual core or a quad core processor. As seen in Figure 21 and Figure 22 [16] many multi
core processors still use FSB as their system bus for communications with the chipset and hence
secondary bus can be quite handy in easing congestion. Simulations with the multi core processor
environment with the secondary bus can be done similar to the ones in the previous chapter using full
system simulators such as GEMS, Simics or the M5.

Figure 21: Front side bus architecture in Intel's multi core processors.
46

Figure 22: Dedicated FSB for each dual core processor.
 Implementation considerations for the secondary bus need to be researched. We have shown that
an 8 bit bus with a bandwidth of 600MB/Sec is good enough for the secondary bus, but we should be able
to find a technology for realizing the same in hardware. Serial buses such as SATA provide sufficient
bandwidths for write back data and can be considered. Wireless link is another technique that can come
handy when facing space related constraints. A wireless link however would require the addition of a
wireless transmitter and a receiver which may consume slightly more power than a bus based link.
 The I/O injection rates were well tested with the proposed architecture and future simulations can
use benchmarks that can actually generate the I/O data as well as feed on them. Some web applications
are best suited for this purpose. It would call for writing an independent benchmark and then compiling
the same for the Alpha benchmark. Modifications have to the made to the bridges and other controller
logic to differentiate between the I/O and CPU data when communicating through the memory hierarchy.
As mentioned in chapter 5 sim-alpha does not have these extensions built into it.

47

Chapter 8. Conclusion
A simple solution for reducing latencies due to bus contentions on the main system bus between
the CPU and the chipset has been evaluated in this work. The technique of bus redundancy combined with
a policy for efficient bus bandwidth management through data traffic distribution have shown to give
significant performance improvements compared to existing architectures. Since write traffic on the main
system bus is the largest contributor to the queuing delays, separating the write and read data traffic is
beneficial. Also, queuing delays were considerably reduced due to the sharing of the bus load by the
secondary bus. This improvement was verified across a range of the SPEC CPU 2006 benchmarks which
comprised of both CPU and memory intensive workloads to test the architecture.
Performance metrics such as the average queuing delay per instruction and cycles per instruction
were used to validate the results and understand the CPU areas that were directly impacted by this
architecture. Comparisons were made against two types of I/O techniques namely DMA and Direct I/O
and we found that this design would be highly advantageous in the presence of I/O traffic on the main
bus. I/O devices and processors can be involved in two types of communications that determine the traffic
direction on the main system bus:
1. I/O produce, CPU consume (more than 80% of the I/O traffic are of this type).
2. CPU produce, I/O consume.
We were unable to analyze the second type of traffic as our benchmarks did not generate any I/O traffic
themselves. The ?I/O produce and CPU consume? traffic type was simulated and analyzed by creating an
I/O device that would pump data at regular intervals either directly the on-chip cache (direct I/O) or to the
memory through DMA. In addition to seeing better improvements over the base architecture, the
48

secondary bus approach also proved to be better than Eager writeback for most of the SPEC programs.
When larger I/O rates were considered, the gap between Eager writeback and secondary bus widens.
The secondary bus can be implemented in many ways. In our simulations we used an 8-bit wide
bus to evaluate the design for different traffic intensities. In the future, various other implementations of
the secondary bus can be tried. Split bus or pipelined transactions can be tried on the secondary bus with
multiple bit lines. The number of bit lines that can be used for the secondary bus depends on the L2 cache
write-back rate. The secondary bus provides excellent benefits for single ported memories at a minimal
cost, which consists of a small hardware addition for controlling the bus accesses and a small bus.

49

Bibliography
[1] G. E. Moore, Cramming More Components onto Integrated Circuits, Electronics, Vol. 38, pp. 114-
117, 19 Apr. 1965.

[2] Memory Hierarchy [Online]. Available: http://en.wikipedia.org/wiki/Memory_hierarchy

[3] P. P. Chu and R. Gottipati, Write Buffer Design for On-Chip Cache. Proceedings of the IEEE
International Conference on Computer Design: VLSI in Computers and Processors, pp. 311-316,
Oct. 1994.

[4] T. E. Anderson, H. M. Levy, B. N. Bershad and E. D. Lazowska, The Interaction of Architecture and
Operating System Design, Proceedings of the 4th International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 108-120, 1991.

[5] B. Chen, Memory behavior of an X11 window system, Proceedings of the USENIX Winter Technical
Conference, Jan. 1994.

[6] D. Nagle, R. Uhlig, T. Mudge, S. Sechrest, Optimal allocation of on-chip memory for multiple-API
operating systems, Proceedings of the 21st Annual International Symposium on Computer
Architecture, pp. 358-369, 18-21 Apr. 1994.

[7] N.P. Jouppi, Improving direct-mapped cache performance by the addition of a small fully-associative
cache and prefetch buffers, Proceedings of the 17th Annual International Symposium on Computer
Architecture, pp. 364-373, 28-31 May. 1990.

[8] N.P. Jouppi, Cache Write Policies and Performance, Proceedings of the 20th Annual International
Symposium on Computer Architecture, pp. 191-201, 28-31 May. 1993.

[9] K. Skadron, D.W. Clark, Design issues and tradeoffs for write buffers, Proceedings of the 3rd
International Symposium on High-Performance Computer Architecture, pp.144-155, 1-5 Feb. 1997.

[10] J.L. Hennessy and D.A. Patterson, Computer Architecture: A quantitative approach, Morgan
Kauffmann Publishers Inc., 3rd edition, 1996.

[11] Serial ATA Revision 3.0 specification, 27 May. 2009, [Online]. Available:
http://www.serialata.org/documents/SATA-6Gbs-Fast-Just-Got-Faster.pdf

[12] S. Addagatla, M. Shaw, S. Sinha, P. Chandra, A.S. Varde, M. Grinkrug, Direct Network Prototype
Leveraging Light Peak Technology, Proceedings of the IEEE 18th Annual Symposium on High
Performance Interconnects (HOTI), pp. 109-112, 18-20 Aug. 2010.

50

[13] PHY Interface for the PCI Express and USB 3.0 Architectures, 3 Nov. 2009, [Online]. Available:
http://download.intel.com/technology/usb/USB_30_PIPE_10_Final_042309.pdf

[14] M.J. Koop, Wei Huang, K. Gopalakrishnan, D.K. Panda, Performance Analysis and Evaluation of
PCIe 2.0 and Quad-Data Rate InfiniBand, Proceedings of the 16th IEEE Symposium on High
Performance Interconnects (HOTI), pp. 85-92, 26-28 Aug. 2008.

[15] AGP V3.0 Interface Specification, Sep. 2002, [Online]. Available:
http://download.intel.com/support/motherboards/desktop/sb/agp30.pdf

[16] An Introduction to Intel Quickpath Interconnect, Jan. 2009, [Online]. Available:
http://www.intel.com/technology/quickpath/introduction.pdf

[17] HyperTransport I/O Link Specification, Nov. 2006, [Online]. Available:
http://www.hypertransport.org/docs/twgdocs/HTC20051222-0046-0017.pdf

[18] Career Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications, Jun. 2010, [Online]. Available:
http://standards.ieee.org/getieee802/download/802.3ba-2010.pdf

[19] D. Tang, Y. Bao, W. Hu and M. Chen, DMA cache: Using on-chip storage to architecturally separate
I/O data from CPU data for improving I/O performance, Proceedings of the 16th IEEE International
Symposium on High Performance Computer Architecture, pp. 1-12, 9-14 Jan. 2010.

[20] R. Huggahalli, R. Iyer and S. Tetrick, Direct cache access for high bandwidth network I/O,
Proceedings of the 32nd International Symposium on Computer Architecture, pp. 50- 59, 4-8 June
2005.

[21] E.A. Leon, K.B. Ferreira, A.B. Maccabe, Reducing the Impact of the MemoryWall for I/O Using
Cache Injection, Proceedings of the 15th Annual IEEE Symposium on High-Performance
Interconnects, pp. 143-150, 22-24 Aug. 2007.

[22] Z. Chuanjun and F. Vahid, Using a victim buffer in an application-specific memory hierarchy,
Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, vol.1, pp.
220- 225, 16-20 Feb. 2004.

[23] G. Memik, G. Reinman, W.H. Mangione-Smith, Reducing energy and delay using efficient victim
caches," Proceedings of the International Symposium on Low Power Electronics and Design, pp.
262- 265, 25-27 Aug. 2003.

[24] A.J. Smith, Cache memories, ACM Computing Surveys, vol. 14, no. 3, pp. 473-530, Sep. 1982.

[25] J. Tse and A.J. Smith, CPU cache prefetching: Timing evaluation of hardware implementations, IEEE
Transactions on Computers, vol.47, no.5, pp. 509-526, May. 1998.

[26] D.M. Tullsen, S.J. Eggers, Limitations Of Cache Prefetching On A Bus-based Multiprocessor,
Proceedings of the 20th Annual International Symposium on Computer Architecture, pp.278-288, 16-
19 May. 1993.

[27] The Microarchitecture of the Intel Pentium 4 Processor on 90nm Technology, Intel Technology
Journal, vol. 8, Issue. 1, 18 Feb. 2004.
51

[28] D. Kroft, Lockup-Free Instruction Fetch/Prefetch Cache Organization, Proceedings of the 8th
International Symposium on Computer Architecture, pp. 81-87, 12-14 May 1981.

[29] H.H.S. Lee, G.S. Tyson, M.K. Farrens, Eager writeback-a technique for improving bandwidth
utilization, Proceedings of the 33rd Annual IEEE/ACM International Symposium on
Microarchitecture, pp.11-21, 2000.

[30] J. O?Farrell and S. Baskiyar, Improved Real-Time Performance Using a Secondary Bus, Proceedings
of the Computers And Their Applications, Honolulu, HI, March, 2010, ISCA Press.

[31] S. Baskiyar and C. Wang, A secondary channel between cache and memory for decreasing queuing
delay, US Provisional patent application filed no. 61/003,542 on Nov 17, 2007, Auburn University,
AL.
[32] Intel Embedded Pentium processor family Developer?s Manual, December 1998. [Online]. Available:
http://www.intel.com/design/intarch/manuals/273204.htm

[33] R. Desikan, D. Burger, S.W. Keckler, Measuring experimental error in microprocessor simulation,
Proceedings of the 28th Annual International Symposium on Computer Architecture, pp.266-277,
2001.

[34] T. Austin, E. Larson and D. Ernst. Simplescalar: An Infrastructure for Computer System Modeling,
IEEE Computer, Volume 35, Number 2, pp. 59-67, Feb. 2002.

[35] R.E. Kessler, E.J. McLellan and D.A. Webb, The Alpha 21264 microprocessor architecture,
Proceedings of the International Conference on Computer Design: VLSI in Computers and
Processors, pp. 90-95, 5-7 Oct. 1998.

[36] SPEC CPU2006 Benchmark Descriptions, ACM SIGARCH newsletter, Computer Architecture
News, Volume 34, No. 4, September 2006.

[37] K. Ganesan, D. Panwar and L. K. John, Generation, Validation and Analysis of SPEC CPU2006
Simulation Points Based on Branch, Memory and TLB Characteristics, Proceedings of the SPEC
Benchmark Workshop on Computer Performance Evaluation and Benchmarking, Section: Modeling
and Sampling Techniques, pp. 121-137, Jan. 2009.

[38] Alabama Supercomputing Authority. http://www.asc.edu/

