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Abstract 
Magnetic bearing research is generally concerned with the development of the automatic 
control systems required to levitate a rotor, driven by either an electric motor or air turbine. 
The regulation of rotor speed in research has often been accomplished by manual methods, 
turning a rheostat in the case of an electric motor and by adjusting a regulator or valve if the 
drive is by an air turbine. 
Automatic control of rotor speed would facilitate research using magnetic bearings. This 
control would assist the development of adaptive disturbance rejection techniques since rotor 
speed could be easily adjusted for any change in the desired rejection frequency. Automatic 
speed control could also be central to health and containment strategies for magnetically 
suspended flywheels used in the control of space structures. If cracks are detected in a 
flywheel through health monitoring, the speed of the rotor/flywheel could be automatically 
reduced to a level where the damaged flywheel could be temporarily operated. 
This work details the development and implementation of a control system to automatically 
and precisely regulate the speed of a magnetically suspended rotor and flywheel. 
Development began with the installation of an electronic flow control valve and all 
instrumentation needed to measure rotor response. Once all hardware was in place, a Simulink 
model of the entire system, actuator (electronic valve) and plant (air turbine, magnetic 
bearings, rotor and flywheel), was created. This model was developed using system 
identification techniques where a step input is applied to the plant and its response is 
measured. A transfer function of the plant was derived from these tests, and it relates 
volumetric flow rate of air to rotor speed and uses variable coefficients. The operation of the 
electronic valve was too complex to be described by differential equations or transfer 
functions. Thus, a model of it was written in software and included in Simulink using an 
embedded MATLAB function. 
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The Simulink model was then used to develop a speed controller for the simulated system. 
Simulations established the type of controller and its gains. A proportional-derivative or PD 
controller was found to accurately regulate the speed of the simulated system. When 
complete, this controller was combined with the actual magnetic-bearing controller to create 
the software necessary for bearing and speed control. This software was then executed on 
dSPACE hardware to provide overall control of the system - actuator, bearings, rotor and 
flywheel. Numerous tests were conducted on this system to tune the gains of the speed 
controller. Once tuned, the PD controller developed in the simulated environment worked 
exceptionally well on the real system. The controller can maintain the actual speed of the 
rotor to within a few rpm of the desired for speeds ranging from 200 to over 6000 rpm. 
The final part of this work involved developing instrument panels from which to operate the 
bearings and control the speed of the rotor. Instrument panels similar to those found in 
automobiles were created using ControlDesk, an integrated software development 
environment provided with dSPACE. A series of panels were designed and created so that 
variables necessary to operate and precisely control the bearings and rotor could be monitored 
and easily adjusted. 
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Chapter 1 - Introduction and Literature Review 
A great deal has been written regarding the use of magnetic bearings to suspend a rotor. This 
literature generally describes the development of the control systems used to keep the rotor 
suspended and away from the magnets used for suspension. In testing of the magnetic bearing 
controllers, an electric motor is often used to spin the rotor or in some instances, a turbine 
driven by compressed air has been used. The regulation of rotor speed in research has often 
been accomplished by manual methods, turning a rheostat in the case of an electric motor and 
by adjusting a regulator or valve if the drive is by an air turbine. For those systems found 
using compressed air drive, none of them employed automatic speed control. 
1.1 Air-Driven Rotors 
Compressed air was employed to drive a flywheel used to study position stability in high 
temperature superconducting (HTSC) magnetic bearings [1]. An air turbine was not used to 
spin the flywheel; instead, compressed air was blown over the flywheel until it reached the 
desired speed. Hikihara again used compressed air in other tests conducted on HTSC 
magnetic bearings [2]. In these later tests, vanes were attached to the rotor and compressed air 
was directed against them to revolve the rotor. The air supply was shut off once the rotor was 
up to speed. NASA used an air impeller or air turbine to drive the rotor in their study of a 
passive magnetic bearing flywheel [3]. The speed of this rotor was controlled by manually 
adjusting a pressure regulator positioned in the air supply line leading to the impeller. A 
stroboscope was then used to monitor the speed of the rotor. This form of speed control was 
again employed by NASA to investigate permanent magnetic bearings for spacecraft 
applications [4]. An air turbine also drove the rotor in the magnetic bearing system built by 
Matras to study adaptive disturbance rejection [5]. The speed of this rotor was not maintained 
automatically but was set by manually adjusting a shutoff valve. It is this system of Matras? to 
which automatic speed control was applied. 
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1.2 Process Identification 
A model of the magnetic-bearing system was needed before a speed controller could be 
developed. The transfer function portion of this model was derived from the equation of 
motion for the system. However, most of the coefficients of the transfer function were 
unknown but were found experimentally by a method known as system identification or real-
time identification. This method is often used in the chemical process industries to build a 
model from which a controller can be designed. Generally, process dynamics are determined 
by applying a deterministic input (pulse, ramp or step) of one controlled variable and then 
measuring the output of the process until it reaches steady-state. The dynamics of the system 
are then given by the transient response. 
Kealy and O?Dwyer compared various open and closed loop process identification techniques 
in the time domain [6]. The most common method used for PID controller development is one 
where a step input is applied to a system that is initially at rest. These step tests are completed 
open loop, and the model obtained is first order with dead time, where dead time is the delay 
between the application of the step and initial system response. 
Open-loop step tests were conducted by Gajan et al. to determine process response to the 
addition of chlorine into a water treatment system [7]. Here, a number of tests were performed 
at various flow rates of chlorine. Each test was repeated several times to obtain a valid process 
model. Open-loop process identification was also employed to develop controllers to 
minimize energy consumption in complex distillation columns [8]. Step inputs were used to 
perturb the distillation process, and its output was registered until steady-state conditions were 
achieved. Since this process was non-linear, the size of the steps had a very large influence on 
system identification. A series of smaller steps were necessary to model the system in a linear 
manner. 
Audits of control systems found in pulp and paper mills have also been conducted with open-
loop step tests [9]. The performance of these systems has been found to degrade over time, 
resulting in lower production and decreased product quality. Performance degradations are the 
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result of process variations which ultimately affect the process transfer function and controller 
tuning. During an audit, open-loop identification tests are performed to establish the causes of 
process variations. These causes are then corrected and controllers retuned for the ?new? 
process. Furthermore, many of the processes found in the manufacture of pulp and paper are 
nonlinear. However, it has been shown that linear control techniques can be applied to 
nonlinear processes [10]. These techniques were partially developed from open-loop process 
identification tests. Here, the change in a chemical concentration to a step change in water 
flow rate was shown to be nonlinear. However, linear controllers were developed and applied 
to regulate the chemical process. 
1.3 Transfer Functions 
The input to the magnetic bearing system is volumetric flow rate of air, and the output is the 
angular velocity of the rotor. A number of step tests were conducted using different flow rates 
to establish the dynamics of this system. With the rotor initially at rest, each test was 
performed by suddenly introducing a fixed flow rate of compressed air into the turbine. The 
velocity response of the rotor was then recorded, and from this response, the transfer function 
relating flow rate to speed was determined. As a result of the step tests, it was found that the 
system could not be characterized by a single transfer function. Instead, multiple transfer 
functions were necessary to describe the system depending on the desired or set speed 
(operating point). Since these transfer functions all had the same form, the system was 
modeled using a single transfer function with variable coefficients. 
Transfer functions with variable coefficients are often used in the development of adaptive 
controllers. If process dynamics vary depending on the operating point, then a different 
transfer function describes the system at each operating point. Once these functions are 
known, a single controller can be designed that can adapt or alter its gains depending on 
current operating conditions. Brazauskas and Levisauskas used adaptive transfer function 
based control to regulate the temperature in an industrial methane tank [11]. Controllers for 
machining processes have also been developed using adaptive transfer functions. Milling for 
example is a variable process because the cutting force needed by the mill varies depending 
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on the depth of cut and the material being milled [12]. For productivity reasons, it is desirable 
to maximize the allowable cutting force applied by the mill. One way to maximize this force 
is to manipulate the feed rate or the rate at which material is fed to the mill. This rate can be 
adjusted using variable gain controllers. Depending on design, gains can be altered directly 
based on operating conditions or modified as a function of the manipulated variable (e.g. feed 
rate) [13]. 
1.4 Controller Gains 
It was decided to try a proportional-integral-derivative (PID) controller to regulate the speed 
of the rotor. A PID controller was selected since it is employed extensively in a variety of 
industries, provides satisfactory control over a wide range of processes and is straight forward 
to implement [14]. Depending on the source, PID controllers account for anywhere from 50% 
to 95% of the regulators used in closed-loop industrial processes [15][16]. PID controllers and 
their variants PI and PD are also easy to build in Simulink. Furthermore, once designed, most 
PID controllers need to be tuned (i.e. gains adjusted) for the actual process, and this tuning 
was done using ControlDesk instrument panels. 
There are numerous methods for calculating PID gains, including Ziegler-Nichols, Cohen-
Coon, Skogestad?s, Relay, Good-Gain and the ever popular trial and error. The last method 
requires no explanation. In the early 1940s, Ziegler and Nichols (Z-N) developed two 
methods for obtaining preliminary values of controller gains. With the process reaction 
method, controller gains are established from the open-loop step response of the process. 
Recall that this same type of response is used in system identification. The ultimate cycle 
method also developed by Z-N is a test performed closed loop using only proportional 
control. Here, the gain is increased until process output shows sustained oscillations. At this 
point, the gain necessary to produce these oscillations is determined to be the ultimate gain, 
and from it, the proportional gain Kp, reset time Ti and derivative time Td are calculated. The 
integral gain Ki is equal to Kp/Ti,and the derivative gain is TdKp [17]. 
5 
 
The process reaction method is simple to use once the process response curves have been 
obtained. However, this method cannot be applied if just PD control is desired [15]. In 
addition, Z-N often leads to the overestimation of gains, especially with the ultimate cycle 
method since this approach operates a process near its stability limit [18]. The Ziegler-Nichols 
method was not used since a PD controller worked best with the magnetic-bearing system. 
The Cohen-Coon (C-C) method of estimating gains is similar to the process reaction approach 
developed by Ziegler-Nichols. Cohen-Coon like Z-N measures the open-loop response of a 
process to a step change in one input. From this response, the proportional controller gain Kc, 
reset time Ti and derivative time Td are calculated. C-C differs from Z-N in that these three 
coefficients are determined from percentage changes in input and output [15]. Ziegler-Nichols 
constructs these values more directly from the process response curve. Similar to Z-N, Cohen-
Coon is simple to use once the process response is known. However, C-C can only be applied 
to processes having a large time delay (transportation lag or dead time) between input and 
output. It is for this reason that the method of Cohen-Coon was not used. 
Skogestad?s method is another model-based approach to estimating controller gains. Similar 
to the methods of Ziegler-Nichols and Cohen-Coon, Skogestad requires the process response 
or reaction to a step input of one variable. Also similar to these other methods, Skogestad 
calculates the proportional gain Kp, integral time Ti and derivative time Td from the response 
curve. However, unlike the Z-N open-loop method, Skogestad?s approach can be applied to 
processes other than just those that are first order with dead time. In addition to this process 
type, Skogestad?s method can be used with four other types of systems [19]. The gains 
determined with the Skogestad approach were much too great for use in both the simulated 
environment and the actual system. 
In 1984, ?str?m and H?gglund proposed the relay method for estimating controller gains [20]. 
This method can be applied to both simulated processes and actual ones. When used on an 
actual process, the relay method is superior to the second approach of Ziegler-Nichols since 
relay minimizes the possibility of operating a plant near its stability limit [18]. In the relay 
method, an on-off relay replaces the controller in the feedback loop and applies step-like 
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control to the process. Control is held in one direction until process output exceeds the set 
point. Then, control is reversed until the output falls below the set point at which time control 
is again reversed. The constant reversal of control causes the process to oscillate at the same 
frequency of the control but in the opposite direction. The period of these oscillations is a 
close approximation of the Ziegler-Nichols ultimate period found from their ultimate cycle 
method. From the period generated by the relay, the ultimate gain is determined and then Kp, 
Ti and Td are found using the formulas of Ziegler-Nichols. Relay was not tested since the next 
and last method to be discussed provided adequate gain estimates. 
Another experimental approach to estimating controller gains is the Good Gain method. This 
method does not require a process model, but one can be used if available. Good Gain is 
intuitive, and its aim is acceptable stability. Acceptable stability is achieved when the first 
undershoot of the proportionally controlled response is barely observable [19]. To use Good 
Gain, operate the process with just proportional control, and adjust the proportional gain Kp 
until acceptable stability is achieved. If integral control is to be included, set the integral time 
Ti equal to 1.5Tou where Tou is the time between the first overshoot and first undershoot of the 
response. If derivative control is added to either P or PI control, the derivative time Td is 
initially set to Ti/4. Td may need to be adjusted somewhat from this initial estimate. The 
integral and derivative gains Ki and Kd are then calculated as always - Ki = Kp/Ti and Kd = 
TdKp. Good Gain was used in conjunction with a process model to establish initial gain 
estimates for the actual speed controller. 
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Chapter 2 - Existing System 
Automatic speed control was applied to an existing magnetic-bearing system. Prior to 
discussing the development of the speed controller, an overview of the current system will be 
provided. This overview will include all bearing hardware, the dSPACE system providing the 
interface between the hardware and bearing-controller software, the Simulink bearing 
controller and the ControlDesk instrument panel for operating and monitoring the rotor and 
flywheel. 
2.1 Bearing Hardware 
Figure 2-1 shows a flywheel on a rotor suspended by two magnetic bearings. 
 
Figure 2-1 Existing Magnetic-Bearing System 
1 
2 
5 
4 3 
10 
9 
7 
8 
6 
11 
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This experimental device was constructed by the Air Force Research Laboratory (AFRL) as a 
part of the Flywheel Attitude Control Energy Transmission System (FACETS) program. At 
one time, the Air Force was investigating the use of magnetically suspended flywheels for 
combined energy storage and attitude control of space structures. When the FACETS program 
was complete, AFRL donated the test setup shown in Figure 2-1 to Auburn University. A 
condensed description of the FACETS bearing is given here. A formal discussion of it along 
with complete construction details are provided by Matras [5] and Barber [21]. 
The two magnetic bearings are located by arrows 6 and 8 in Figure 2-1. For future reference, 
arrow 6 identifies bearing number one and arrow 8 bearing number two. Each bearing consists 
of 4 pole pairs or 4 electromagnets located radially around the rotor or shaft supporting the 
flywheel (arrow 7). All electrical hardware needed to energize the electromagnets and 
suspend the rotor are indicated by arrows 1 through 4. The power supplies for the bearings are 
pointed to by arrows 3 and 4. Arrow 2 is directed at the box containing the amplifiers for 
energizing the magnets. Arrows 5 and 9 point to the sensors for the mechanical and electronic 
tachometers; arrows 10 and 11 identify the air turbine which spins the rotor and the air supply 
line to the turbine. 
Arrow 1 points to the hardware providing position measurements of the rotor relative to the 
magnets. Position or displacement readings are calculated from voltages produced by 
proximity probes located inside each bearing. There are 4 proximity probes per bearing, one 
for each magnet, for a total of 8 probes. The rotor is then suspended or floated by constantly 
varying the current to the magnets so the rotor never contacts the magnets. The required 
currents are determined by a constant analysis of the displacement measurements. Current 
management and position analysis are accomplished with control software that will soon be 
discussed. 
2.2 dSPACE 
A system manufactured by dSPACE [22] provides the interface between the host computer 
and all bearing hardware. The dSPACE system consists of the following hardware: 
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? DS1005 processor, 
? DS2003 analog to digital (A/D) converter, 
? DS2002/2003 A/D connector panel, 
? DS2103 digital to analog (D/A) converter, and 
? DS2103 D/A connector panel. 
The dSPACE processor and A/D and D/A converters reside in an expansion box connected to 
the host computer with a fiber-optic cable. Each connector panel provides the physical 
connections for input to and output from the computer and processor. Pictured in Figure 2-2 
are the two connector panels. 
 
Figure 2-2 Connector Panels 
The A/D panel provides connections for up to 32 input signals from sensors generating analog 
voltages. For the magnetic bearings, there are 8 signals from the Proximitor probes and 8 from 
the amplifiers. The flow-control valve and tachometers generate 4 other inputs needed to 
D/A 
A/D 
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control the rotor. Thirty-two connections are also available for the output of control signals to 
actuators. For the FACETS bearing, there are 8 output signals to the amplifiers plus 2 others 
required to operate the valve. 
Control programs process inputs to and generate output from dSPACE. A control program 
starts as a Simulink block diagram, a sample of which is shown in Figure 2-3. 
 
Figure 2-3 Simulink Block Diagram 
A dSPACE provided software module call Real-Time Workshop (RTW) converts a block 
diagram to a C-language program. This program is then compiled by RTW and executed by 
the DS1005 processor to control an actual system. 
Controlling a system is simplified by another dSPACE software module, ControlDesk. 
ControlDesk provides for the creation of instrument panels from which control code can be 
executed and modified in real time. A sample instrument panel is pictured in Figure 2-4. 
11 
 
 
Figure 2-4 ControlDesk Instrument Panel 
Variables in a Simulink block diagram can be easily connected to ControlDesk instruments 
(e.g. the knobs shown in Figure 2-4) for display or manipulation. In addition, the functionality 
of an instrument panel can be extended by the user with other software features of 
ControlDesk. 
2.3 Bearing Controller 
Modeling and control of the FACETS magnetic bearing were completed by Matras [5]. He 
developed a state-space model of the AFRL unit and used a proportional - integral -derivative 
or PID controller to actively manage the bearings. This model was implemented in Simulink. 
Matras then added adaptive disturbance rejection (ADR) with output redefinition to his 
model. ADR is used to reject or compensate for forces due to rotor imbalance and base 
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motion disturbances. These forces would likely be seen in any magnetic bearing mounted on a 
space structure such as a satellite. If these forces are ignored or uncompensated for in the 
bearing controller, the rotor could contact the electromagnets and damage or destroy them. 
The bearing controller and its development are well documented by Matras. Thus, only a brief 
description of the controller will be presented here. Pictured in Figure 2-5 is the top-level 
Simulink block diagram for the magnetic-bearing controller. 
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Figure 2-5 Bearing Controller 
Each block in the diagram represents a component or a subsystem of the complete model. The 
subsystem representation provides a condensed view of each block. Refer to [5] for an 
expanded view of the subsystems. 
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ADC Mux 
Subsystem ADC Mux represents in Simulink the A/D converter and connector panel discussed 
in Chapter 2.2. This subsystem collects inputs into the system and routes them to other 
subsystems for processing. Recall from the earlier discussion of the hardware that there are 8 
inputs (signals or analog voltages) from the Proximitor probes, 8 from the amplifiers 
powering the bearings and 4 signals from the tachometers and flow-control valve. 
State Estimator 
Inputs to State Estimator are rotor position from ADC Mux and control current to the 
bearings. This subsystem calculates actual position and estimates the position and velocity 
states for input to other subsystems. 
PID Controller 
The PID Controller as its name implies implements proportional-integral-derivative control 
action using the measured position of the rotor, integrated position and estimated velocity of 
the rotor as inputs. The sole output is a control signal. This subsystem was constructed so that 
different controller gains could be applied to each bearing. 
Adaptive Control 
As described by Matras [5], adaptive control is only applied to the axes of bearing number 1. 
The Adaptive Control subsystem includes its own subsystem to generate control signals based 
on user-specified rejection frequencies. The input to Adaptive Control is measured rotor 
position, estimated states (rotor position and speed) and any auxiliary inputs applied through 
the ADC Mux block.  The outputs of this block are the adaptive control signals for Bearing 1. 
Bias 
Bias generates the control voltages used for suspending the rotor. Inputs from both the PID 
and adaptive controllers are added to user-specified bias voltages to generate composite 
voltages. The rotor can be biased towards one magnet or another by specifying a separate bias 
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voltage for each magnet. Composite voltages are then output to the bearings from the DAC 
Demux subsystem. In addition, an extra signal can also be applied to the composite voltages 
through the ADC Mux and Excitation subsystems. 
Excitation 
The description of the Excitation subsystem is taken directly from Matras [5]. This block 
generates sinusoidal excitation signals that can be controlled for each channel (axis) 
separately (Channels will be described later in this thesis.). It also feeds the signal for the 
auxiliary input through to the Bias subsystem. The auxiliary input is used for the signal 
generated by the DSA (dynamic signal analyzer) when determining frequency response data. 
Error 
Detecting current and position errors and taking any precautionary actions are the functions of 
the Error block. Current and position errors occur when either exceeds a certain value. If an 
error occurs, the user is notified, and if configured to do so, the bearings will be shut off. 
However, turning off the bearings could seriously damage them if the rotor is spinning. Thus, 
this block is almost always configured to only notify the user when an error is detected. Error 
conditions are numerical coded and stored in the Err and ErrADR data storage areas shown in 
Figure 2-5. Inputs to Error are the measured position of the rotor and the currents flowing to 
the bearings. Outputs are an integral gain reset and possible bearing deactivation. 
DAC Demux 
Subsystem DAC Demux is the Simulink interface to the D/A converter and connector panel 
covered in Chapter 2.2. Inputs to this subsystem are bearing control voltages output from 
Bias, a rotor status signal from Error and the measured and estimated positions of the rotor 
with respect to the magnets. Either the actual or estimated positions can be selected by the 
user for use in measuring frequency response data. There are 8 control voltages output from 
DAC Demux. These signals are then routed to the amplifiers shown in Figure 2-1. The 
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amplifiers convert the voltages to currents to generate the magnetic attractive forces in the 
bearings. Voltages needed to operate the flow-control valve are also output from DAC Demux. 
2.4 Instrument Panel 
Operating the FACETS bearing requires modifying variables within each subsystem of the 
block diagram given in Figure 2-5. For example, a variable in the Error subsystem must be 
changed to power on and off the bearings. Refer to [5] for an expanded view of Error and of 
all subsystems shown in Figure 2-5. Changing the values of variables is accomplished through 
instrument panels or layouts created with ControlDesk. The instrument panel originally 
constructed to operate the FACETS bearing is pictured in Figure 2-6. 
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Figure 2-6 Original Instrument Panel 
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The pictured layout is very complete, but it is difficult to use given the large amount of 
information available in one view. Thus, as part of the current development effort, the original 
layout was logically reorganized into five panels or dialogs. Each dialog is accessed and 
displayed individually from a top-level instrument panel. Since the instrument panel in Figure 
2-6 has been redone, the operation of the FACETS bearing from it will not be explained. 
Instead, the new dialogs will be presented later in this thesis, and at that time, it will be 
explained how to use these dialogs to operate the bearing. 
2.5 Flywheel 
Arrow 7 in Figure 2-1 points to the flywheel which is a part of the current magnetic-bearing 
system. This flywheel was designed and constructed by Barber, and the details of its design 
can be found in [21]. Barber used this flywheel and the FACETS bearing developed by 
Matras to investigate a health monitoring system for flywheels supported by magnetic 
bearings and used on satellites for energy storage and attitude control. Flywheels of this type 
could operate at speeds of up to 100,000 rpm [21]. If a crack were to develop at such a high 
speed, it could quickly lead to a complete failure of the flywheel. 
Health monitoring provides for the early detection of developing cracks and other structural 
flaws such as the delamination of composite materials used in the construction of energy-
storing flywheels. Cracks produce vibrations in rotating machinery. Matras used the FACETS 
bearing to develop and refine adaptive disturbance rejection or ADR. This technique 
automatically adjusts the bearing controller to compensate for vibration due to rotor 
imbalances and base-motion disturbances. With ADR, any change in the balance of the rotor 
can be identified by observing the automatic adjustments of the adaptive control gains. Barber 
used ADR as the basis of his health monitoring system. Any change in balance of the 
flywheel due to a crack for example was identified by monitoring the adaptive control gains. 
How cracks and crack growth were simulated in a flywheel is explained in [21]. 
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Chapter 3 - Hardware Upgrades 
The FACETS bearing and flywheel will be used to further develop ADR and health 
monitoring of flywheels. To assist future development, it was decided to implement automatic 
speed control of the rotor. As delivered from the Air Force Research Laboratory, rotor speed 
was regulated by manually adjusting a shutoff valve positioned in the air supply line to the 
turbine. Compared to manual speed regulation, automatic control offers the following 
advantages by: 
? providing an easy way to set or change speeds, 
? maintaining a set speed under varying air flow conditions, 
? enabling tests requiring varying speeds, 
? synchronizing rotor speed and ADR frequency, 
? providing for the containment of damaged flywheels, and by 
? compensating for other disturbances. 
Before a speed controller could be developed, a number of hardware upgrades were required 
of the system. These upgrades are detailed in the following sections of Chapter 3. 
3.1 Air Delivery 
Compressed air is delivered to the laboratory room housing the FACETS bearing from a 
common source serving numerous labs. When the air turbine was first connected to the air 
supply, there was only enough compressed air to spin the rotor to 1500 rpm. This was the 
speed as reported by the optical encoder or mechanical tachometer affixed to the end of the 
rotor as seen in Figure 2-1, arrow 5. Rotor speed was verified with a stroboscope. From prior 
tests conducted at AFRL, the bearing had been operated to 13,000 rpm [5]. Health monitoring 
studies also required speeds in excess of 1500 rpm [21]. 
Two options were available for increasing the supply of air to the turbine - (1) improve the 
piping in the lab or (2) buy an air compressor. Opting for the former and cheaper alternative, 
the assistance of the Auburn University mechanical shop was enlisted. This department is 
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responsible for all building maintenance, and they simplified and improved the piping 
network in the lab. All pipes smaller than one-half inch in diameter were replaced with one-
half inch pipes. The flow path from the pipe entering the lab to the turbine was straightened 
by removing a number of bends and elbows. Small diameter shutoff valves were also replaced 
with one-half inch models. With these piping changes complete (and inexpensive), there was 
enough air to turn the rotor to over 6000 rpm, an increase in speed of more than 300%. 
Pressure in the supply pipe ranged from about 110 psi with the shutoff valve closed to around 
90 psi with the valve fully opened and the rotor spinning. 
The volume of air consumed by the turbine was needed to develop the speed control system. 
To determine air consumption, a volumetric flow meter was installed in the air supply line to 
the turbine. This meter is pictured in Figure 3-1. 
 
Figure 3-1 Rotameter 
There are many different types of flow meters, and the one shown in Figure 3-1 is a variable 
area meter or rotameter. An explanation of its operation is given by Holman [23], and he 
classifies this type of meter as a drag effect device. The rotameter provides flow 
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measurements by sight and in standard cubic feet per minute (scfm) of air. This device was 
provided gratis by Bruce Smith of Control & Power, Inc, an industrial supplier of controls, 
instrumentation and automation based in Birmingham, Alabama. With the rotameter installed, 
it was found that about 10 scfm of air at 100 psi are required to start the flywheel moving. 
Nearly 20 scfm of air at 90 psi are flowing to the air turbine with the shutoff valve fully open. 
The flow meter slightly reduced the maximum speed of the rotor, but the data provided by the 
meter were essential to the development of a speed controller. 
3.2 Speed Measurement 
The optical encoder or mechanical tachometer mentioned previously was never well 
calibrated. Thus, it was decided to purchase an electronic tachometer so that rotor speed 
would be accurately reported. After reviewing the available offerings, a Shimpo model DT-
5TX digital tachometer was purchased, and this instrument is pictured in Figure 3-2. 
 
Figure 3-2 Digital Tachometer 
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The Shimpo tachometer was chosen since it met our requirements regarding sensor input and 
signal output. It was also competitively priced and available from numerous suppliers. The 
DT-5TX accepts input from a number of different speed sensors, including magnetic pick-
ups, retro-reflectors and rotary-pulse generators. A retro-reflector was chosen since it is easy 
to install and is effective over a distance of from 1 inch to 3 feet from the measurement 
source. This wide range offers great flexibility in locating the sensor. However, range is 
dependent on the diameter of the object whose rpm is being measured. 
Figure 2-1 provided a picture of the retro-reflective sensor in place with the FACETS bearing. 
Another view of the sensor is given in Figure 3-3. 
 
Figure 3-3 Retro-Reflective Sensor 
The retro-reflector detects a revolution of the rotor each time its light is returned or reflected 
back to it by a small piece of photo-reflective tape (visible in Figure 3-3) attached to the rotor. 
The sensor then only needs to be aimed at the tape to detect rpm. Aim or alignment is assisted 
by an LED mounted on top of the sensor and by the homemade mounting bracket. This cost-
Sensor 
Tape 
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effective hardware aids alignment by providing for sensor adjustments in three directions - 
vertically, parallel with and perpendicular to the rotor. 
In addition to its digital display, the tachometer is equipped with an analog voltage output 
module that generates a 0 to 10 volt DC signal linearly proportional to measured rpm. This 
signal is then input directly into dSPACE through the A/D converter. Furthermore, the 
tachometer must be configured prior to use. Configuration is performed with buttons located 
on the front panel of the tach. These buttons can be seen in Figure 3-2. There are a number of 
variables requiring configuration, and for complete setup information, refer to the Shimpo 
DT-5TX instructional manual [24]. 
3.3 Flow Control 
An electronic valve controllable with dSPACE was required to implement automatic speed 
regulation of the rotor. Electronically-controlled valves are available in at least two types - 
pressure regulators and flow-control valves. Pressure regulators adjust air flow by venting 
excess air to the atmosphere. This is an undesirable feature since it is noisy and disruptive, 
especially when operating in a laboratory or small room. Venting probably isn?t noticeable if 
a pressure regulator is used within a large, open building such as a factory. Because they vent, 
pressure regulators were deemed unsuitable for speed control. 
Flow-control valves regulate air flow by adjusting the position of an obstruction or stopper in 
the flow path through the valve. The stopper?s position is controlled either by a solenoid or a 
stepper motor. A solenoid-operated valve was selected initially because it had a high flow 
capacity and provided valve-position feedback. Position feedback correlates stopper position 
with volumetric flow rate of air, and this relationship was required to develop the speed 
controller. The solenoid valve tested required just a single voltage signal to position the 
stopper. Stopper position was then supposed to be linearly proportional to the applied voltage 
- 0 volts to close and 10 volts to fully open. In tests, the solenoid-operated valve worked very 
poorly. 
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The action of the valve was non-linear and not repeatable. The valve acted like an on-off 
device - it was either closed or fully open. In fact, it required only about 1 volt to completely 
open the valve. In addition, valve control was not symmetric. It required more voltage to close 
the valve a certain amount than to open it the same amount. Furthermore, the solenoid-
operated valve would become unstable, and the stopper would oscillate if the voltage was 
increased or reduced too rapidly. Automatic speed control would have been difficult to 
implement with this particular valve. 
A flow-control valve operated by a stepper motor was then tested. This type of valve uses a 
stepper motor rather than a solenoid to control the position of the stopper. The valve selected 
is built by Aalborg Instruments and Controls of Orangeburg, NY. Unfortunately, the Aalborg 
valve did not provide position feedback, but this feature was soon added. In practice, this 
stepper-motor valve works wonderfully and is pictured in Figure 3-4. 
 
Figure 3-4 Aalborg Valve and Accessories  
Note the project box next to the valve and the linear voltage differential transformer (LVDT) 
attached to the top of the valve. The project box was built by the Research Electronics 
LVDT 
Project Box 
Valve 
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Support Facility at Auburn University, and this capable department also added the LVDT. 
Electrical connections between the stepping motor valve (SMV) and the A/D converter are 
provided by the project box while the LVDT adds the position feedback missing from the as-
purchased Aalborg valve. 
The Aalborg SMV requires two voltage signals for operation, one for direction and another 
for speed. This valve opens if the direction signal is between 7.6 and 12 volts. A direction 
signal of less than 2.3 volts will close the valve; stopper position is held at 0 volts. In practice, 
a voltage of 8.5 is used to open the valve, and a 1.5 volt signal is used to close the valve. 
Refer to the Aalborg instruction manual for detailed operating instructions [25]. 
The speed at which the SMV opens and closes (i.e. raises and lowers the stopper) is controlled 
by a voltage signal of from 0+ to 2.5 volts. Low voltages provide slow stepping rates while 
higher voltages yield faster stepping rates. During testing, it was found that the valve would 
respond to a voltage as small as 0.05 volt. Air flow can be precisely controlled at this low 
voltage. For practical purposes, the fastest stepping rate should be limited to 0.7 volt since 
rates greater than this result in temporary instability in the magnetic bearings. 
  
 
With the required hardware in place, a speed controller could now be developed. 
Development began with the creation of a Simulink model representing the actual system 
valve, air turbine, rotor, flywheel and magnetic bearings. This model is shown in Figure 4
Figure 4-1 
26 
Chapter 4 - System Model 
Simulink Model of Magnetic-Bearing System 
- 
-1. 
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The system model contains three major components which are labeled in the block diagram - 
Control Subsystem, Aalborg Valve and MagBear - Masked Subsystem. Chapter 4 will detail 
the creation of the system model and its use in developing the actual speed controller. 
4.1 Transfer Function 
An equation for the angular velocity of the rotor is needed to build the model of the magnetic 
bearing (magbear) subsystem. This subsystem will include the air turbine, rotor, flywheel and 
magnetic bearings. Rotor velocity can be found from the equation of motion (EOM) for the 
subsystem, and this equation was developed from the free-body diagram of the rotor and 
flywheel shown in Figure 4-2. Forces due to gravity and the bearing supports are not shown 
since they do not contribute to the desired EOM. 
 
Figure 4-2 Free-Body Diagram of Rotor and Flywheel 
The torque exerted on the rotor by the air turbine is a function of the volumetric air flow rate 
Q. This function was assumed to equal an unknown torque constant Tq multiplied by Q. The 
units of torque are N-m, flow rate m3/sec and the torque constant N-sec/m2. Moment of inertia 
J is that of the rotor and flywheel about the axis of rotation. Barber found this moment of 
inertia to be 0.004903 kg-m2 [21] At this point, the damping coefficient c of the system is 
unknown but when found, will be in units of N-m-sec. Finally, the angular velocity or speed 
of the rotor and flywheel is given by g2016g4662 in rad/sec. 
g1846g3044g1843 
g2016g4662 
g1836g2016g4663 
g1855g2016g4662 
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The differential equation of motion follows and was found by summing moments about the 
rotational axis: 
g1836g2016g4663 g3397g1855g2016g4662 g3404 g1846g3044g1843      (4.1) 
Equation 4.1 can also be expressed in terms of ? where g2033 g3404 g2016g4662 and g2033g4662 g3404 g2016g4663: 
g1836g2033g4662 g3397g1855g2033 g3404 g1846g3044g1843      (4.2) 
Since the magnetic-bearing subsystem is described by a single equation of motion (Equation 
4.2) with a single state variable ?, a transfer function will be used to model the subsystem. 
The transfer function can be found from 4.2 where flow rate Q is the input to the system and 
speed ? is the output. Assuming zero initial conditions, the Laplace transform of Equation 4.2 
is: 
g1836g1871g2033g4666g1871g4667g3397g1855g2033g4666g1871g4667 g3404 g1846g3044g1843g4666g1871g4667     (4.3) 
Rearranging 4.3 yields the transfer function relating input to output: 
g2033g4666g1871g4667 g3404 g1846g3044g1843g4666g1871g4667g1836g1871g3397g1855  
    (4.4) 
The rotational speed of the rotor ? is measured by the tachometer; volumetric flow rate Q is 
measured by the rotameter, and the moment of inertia J has been previously determined. The 
torque constant Tq and the damping coefficient c are the unknowns. At this point, it is 
assumed that the magbear system is linear and time-invariant (LTI) since a Laplace transform 
was used to derive Equation 4.4. This assumption implies that Tq and c are constant over the 
speed range of the rotor. 
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Equation 4.4 is of the form, 
g1854g2868
g1871g3397g1853g2868 
(4.5) 
where g1854g2868 g3404 g1846g3044 g1836uni2044  and g1853g2868 g3404 g1855 g1836uni2044 . Applying a step input of Q to the system yields: 
g2033g4666g1871g4667 g3404 g3436g1843g1871g3440g3436 g1854g2868g1871g3397g1853
g2868
g3440 
(4.6) 
The solution to this equation by partial fraction expansion is: 
g2033g4666g1872g4667 g3404 g1843g1854g2868g1853
g2868
g4670uni0031g3398g1857g2879g3028g3116g3047g4671 
(4.7) 
Substituting for a0 and b0 yields the velocity of the rotor with respect to time: 
g2033g4666g1872g4667 g3404 g1843g1846g3044g1855 g4674uni0031g3398g1857g2879g3030g3047 g3011g3415 g4675 
(4.8) 
Note from Equation 4.8 when time t0 = 0 seconds, the speed g2033g4666uni0030g4667 is zero. This is an expected 
result since at time zero, the step input of air has not yet been applied. As time increases after 
the application of Q, velocity reaches a steady-state value at time steady-state tss of: 
g2033g4666g1872g3046g3046g4667 g3404 g1843g1846g3044g1855  
 (4.9) 
A units check shows the speed of the rotor to be in rad/sec. The speed at any time t in terms 
of the steady-state speed ?ss for a step input of Q is: 
g2033g4666g1872g4667 g3404 g2033g3046g3046 g4674uni0031g3398g1857g2879g3030g3047 g3011g3415 g4675     (4.10) 
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Equations 4.9 and 4.10 were used to experimentally determine the torque constant Tq and 
damping coefficient c of the actual system comprised of the air turbine, rotor, flywheel and 
magnetic bearings. These coefficients were found by applying a step input of air Q to the 
system and allowing the flywheel to reach a steady-state speed. The response of the system 
from time t0 to time tss was captured using the data acquisition capabilities of ControDesk. 
Equation 4.10 was then fit to the response data which resulted in the coefficients for a0. With 
a0 known, c could now be found since g1853g2868 g3404 g1855 g1836uni2044  and J had already been determined from prior 
research. Equation 4.9 was then used to determine Tq since ?ss , Q and c were all now known. 
4.2 Step Response 
Step inputs in standard cubic feet per minute, scfm, and cubic meters per second, m3/sec, 
shown in parentheses, of 10 (0.004720), 12 (0.005663), 14 (0.006607), 16 (0.007551), 18 
(0.008495) and 20 (0.009439) were used to generate speed vs. time response curves for the 
system. All steps were applied with the control valve fully open. The valve was not used to 
throttle the air flow to the desired value. With this approach, the valve?s contribution to the 
system?s response was constant for all inputs. The desired step was achieved with the flow 
adjustment knob on the rotameter. This adjuster can be seen in Figure 3-1. Once the flow rate 
was set, data collection was activated and so were the bearings. Each test ran until the rotor 
reached its steady-state speed. At this point, data collection was turned off, and curves were 
fit to the data using MATLAB. However, data collected by ControlDesk has to be converted 
to a mat file format before MATLAB can process it. This conversion is accomplished from 
ControlDesk using a built-in utility. 
Once the data were converted, MATLAB?s curve fitting tool, cftool, was used to fit curves to 
the data. The curves fit with cftool were one-term exponentials of the form given in Equation 
4.10. These curves are shown in red in Figure 4-3, and the actual response data are drawn in 
black. 
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Figure 4-3 Rotor Speed vs. Time 
Except for a slight divergence at 18 scfm, Equation 4.10 fits the data very well. The curves do 
not begin at time zero since there was a slight time lag between the start of data collection and 
the actuation of the bearings. 
Table 4-1 summarizes the data presented in Figure 4-3 and lists the values of c and Tq found 
from fitting Equation 4.10 to the step response data. Note that rotor speed can be converted to 
rpm by multiplying the values in rad/sec by uni0036uni0030 uni0032g2024uni2044 . 
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Q 
scfm 
Q 
10-3 m3/sec 
?ss 
rpm 
?ss 
rad/sec 
a0 
1/sec 
c 
10-4 N-m-sec 
Tq 
N-sec/m2 
10 4.720 945 99 0.040 1.9612 4.11 
12 5.663 1609 168 0.046 2.2554 6.71 
14 6.607 2393 251 0.054 2.6476 10.04 
16 7.551 3629 380 0.065 3.1870 16.04 
18 8.495 4391 460 0.087 4.2656 23.09 
20 9.439 6076 636 0.098 4.8049 32.39 
 
Table 4-1 Step Response Data 
It is seen from Table 4-1 that the damping coefficient c and torque constant Tq vary with the 
air flow rate and speed of the rotor. However, these variables are constant for a given speed. 
Thus, while the magbear system cannot be described by a single LTI transfer function, it can 
be considered as a series of these transfer functions, each one specific to a set speed. 
A transfer function was created for each air flow rate shown in Table 4-1. A simple Simulink 
model was then constructed to test how accurately these transfer functions predicted the 
steady-state speed of the rotor. This model is shown in Figure 4-4 for a step input of 0.009439 
m3/sec or 20 scfm of air. 
 
Figure 4-4 Model of Individual Transfer Function 
The response or output of this model is given in Figure 4-5. 
speed - rads/secSystem
0.004903 s+0 .00048049
32 .39
Q - m^3/sec
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Figure 4-5 Step Response of Transfer Function 
The steady-state speed from the transfer function, 636 rad/sec, is identical to that determined 
experimentally. In fact, the transfer functions for each step input predict a steady-state speed 
nearly identical to that found by experiment. 
A single LTI transfer function does not characterize the magnetic-bearing system since it is 
not linear as evidenced in Figure 4-3 and Table 4-1. However, a single transfer function can 
be used to model the magbear system provided coefficients Tq and c are varied with input. 
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4.3 Variable Coefficients 
A transfer function with variable coefficients can be created in Simulink. One way to do so 
requires rearranging the transfer function as a sum of integrators and then placing this 
function in a masked subsystem block. This approach was used here. 
The transfer function representing the magnetic-bearing system was derived earlier and given 
in Equation 4.4. This equation is repeated below: 
g2033g4666g1871g4667 g3404 g1846g3044g1843g4666g1871g4667g1836g1871g3397g1855  
    (4.4) 
With a little algebra, Equation 4.4 can be rearranged as the difference of two integrators (1/s): 
g2033g4666g1871g4667 g3404 uni0031g1836 g4680g1843g1846g3044g1871 g3398g2033g4666g1871g4667g1855g1871 g4681 
(4.11) 
In the form of Equation 4.11, the coefficients Tq and c of the integrators can be varied as a 
function of rotor speed. How Tq and c vary was found by fitting curves to the data given in 
Table 4.1. These curves were again fit using MATLAB?s cftool. It was found that the torque 
constant Tq changes as a function of speed according to the following quadratic polynomial: 
g1846g3044 g3404 uni0034uni002Euni0035uni0035uni0037g3400uni0031uni0030g2879g2875 g1499g4666g2033g2870g4667g3397uni0032uni002Euni0033uni0031uni0033g3400uni0031uni0030g2879g2871 g1499g4666g2033g4667g3397uni0032uni002Euni0032uni0031uni0038   (4.12) 
In Equations 4.12 and 4.13, ? is given in rpm instead of rad/sec since ultimately, the input to 
the simulated and actual speed controllers will be desired rotor speed in user-friendly rpm. A 
quadratic polynomial also represented the variance of the damping coefficient c with speed: 
g1855 g3404 uni0031uni002Euni0031uni0031uni0037g3400uni0031uni0030g2879g2869g2870 g1499g4666g2033g2870g4667g3397uni0035uni002Euni0030uni0030uni0037g3400uni0031uni0030g2879g2876 g1499g4666g2033g4667g3397uni0031uni002Euni0034uni0035uni0039g3400uni0031uni0030g2879g2872  (4.13) 
Graphs of Tq and c are provided in Figures 4-6 and 4-7. 
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Figure 4-6 Torque Constant vs. Rotor Speed 
36 
 
 
Figure 4-7 Damping Coefficient vs. Rotor Speed 
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4.4 MagBear - Masked Subsystem 
A Simulink model was then constructed from the transfer function, Equation 4.11, and 
Equations 4.12 and 4.13. This model is pictured in Figure 4-8, and it simulates the dynamics 
of the air turbine, rotor, flywheel and magnetic bearings. 
 
Figure 4-8 Simulink Model with Variable Coefficients 
The embedded MATLAB functions Calc Tq and Calc c contain Equations 4.12 and 4.13. Set 
RPM is the steady-state rotor speed desired by the user, and speed - RPM is the instantaneous 
rotor speed calculated by the model. Coefficients Tq and c are not varied continuously with 
speed but are instead set according to the specified steady-state speed, Set RPM. These 
coefficients could be constantly varied by using speed - RPM in place of Set RPM as the input 
to functions Calc Tq and Calc c. Continuously-varying coefficients were tried, but when used, 
the transient speeds of the rotor were overstated by the model. The transfer function model 
shown in Figure 4-8 is contained in the block labeled MagBear - Masked Subsystem of Figure 
4-1. This subsystem accurately modeled the air turbine, rotor, flywheel and bearings. 
4.5 Valve Position 
The model of the magnetic-bearing system developed thus far is given in Figure 4-8, and it 
requires air flow as input. Ultimately, the input to the completed model and to the actual 
system will be desired rpm. To achieve a certain speed, the control valve must flow a certain 
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quantity of air. How much air it flows depends on the position of the valve or how far the 
valve is opened. As delivered, there was no way to determine air flow as a function of 
position. To obtain this data, an LVDT was added to the valve. This device was seen 
previously in Figure 3-4, and the LVDT tracks the position of the valve by following the 
motion of the valve?s stopper. 
With the LVDT in place, tests were conducted to produce a curve of volumetric air flow rate 
in scfm versus position as a percent of fully open. To conduct these tests, a control panel to be 
discussed later was constructed in ControlDesk to operate the valve. The valve was then 
opened until a certain flow rate was achieved as indicated by the rotameter. At this flow rate, 
the valve?s position was read from the output of the LVDT. Output was calibrated to read as a 
percentage of full open. The valve?s position was recorded for flow rates ranging from 6 to 20 
scfm in increments of 1 scfm. Six scfm is about the minimum amount of air required to keep 
the rotor spinning and 20 scfm is the maximum air flow available from the building?s 
compressed air source. The results of the flow tests are summarized in Table 4-2. 
Q (scfm) % Open 
0 0 
6 6 
7 7 
8 10 
9 11 
10 13 
11 14 
12 16 
13 18 
14 20 
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15 23 
16 27 
17 31 
18 39 
19 50 
20 100 
 
Table 4-2 Flow Rate and Valve Position 
A graph of the data in Table 4-2 is shown in Figure 4-9, and this graph was constructed using 
MATLAB?s cftool. 
 
Figure 4-9 Flow Rate vs. Valve Position 
40 
 
The curve in Figure 4-9 is given by the following equation: 
g1843uni0020 g3404 uni0032uni0031uni002Euni0032uni0039g1499g1857g2879g2868uni002Eg2868g2868g2868g2874g1499g4666uni0025uni0020g3042g3043g3032g3041g4667 g3398uni0032uni0031uni002Euni0032uni0039g1499g1857g2879g2868uni002Eg2868g2873g2872g2869g2874g1499g4666uni0025uni0020g3042g3043g3032g3041g4667uni0020  (4.14) 
Equation 4.14 defines flow rate in scfm as a function of valve position. Position as a function 
of stepping rate and time must also be known before an accurate model of the valve can be 
created. 
4.6 Stepping Rates 
The Aalborg valve requires two voltage signals for operation - one for direction and the other 
for stepping rate. Stepping rate determines how fast the valve opens and closes. Both direction 
and rate will be contained in the control signal (voltage) produced by the yet-to-be-designed 
speed controller. Direction is determined from the sign of the signal - open if positive and 
close if negative. The absolute value of the control signal will be the stepping rate in volts. 
To complete the model of the valve, its position as a function of time at various stepping rates 
must be determined. If position is known at any time, the instantaneous flow rate can be 
calculated from Equation 4.14. This flow rate is then the input to the MagBear - Masked 
Subsystem shown in Figure 4-8. 
The valve will accept a rate signal from 0+ to 2.5 volts [25]. Tests were thus conducted at 
stepping rates of from 0.1 to 1.5 volts in increments of 0.1 volt. Testing at rates greater than 
0.7 volt probably wasn?t necessary since any rate greater than 0.7 volt can produce temporary 
instability in the bearings. Each test began with the selection of a stepping rate. Data 
acquisition was then activated in ControlDesk followed by the actuation of the valve. The 
position of the valve as reported by the LVDT was captured as a function of time as the valve 
moved from completely closed to fully open. Each test then produced a position versus time 
curve or more accurately a line for each stepping rate. Regardless of rate, the relationship 
between position and time was always a straight line with a y intercept of 0. However, the 
slope of each line was unique to a stepping rate. 
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The slopes of the position versus time plots were found in the usual way - cftool, and are 
given in Table 4-3. Slope is the velocity of the valve stopper in units of % open/sec. 
Stepping Rate 
(volts) 
Slope 
(% open/sec) 
0.1 0.2372 
0.2 0.4195 
0.3 0.6012 
0.4 0.8827 
0.5 1.1460 
0.6 1.4720 
0.7 1.8980 
0.8 2.2460 
0.9 2.6850 
1.0 3.0890 
1.1 3.5690 
1.2 3.9910 
1.3 4.4600 
1.4 4.9350 
1.5 5.4080 
 
Table 4-3 Stepping Rate and Slope 
At the risk of stating the obvious, if a control signal or stepping rate of 0.2 volt is applied for 
0.5 second, then from Table 4-3 the valve opens uni0030uni002Euni0034uni0031uni0039uni0035g3400uni0030uni002Euni0035 g3404 uni0030uni002Euni0031uni0032uni0030uni0032uni0034uni0025. Interpolation is 
required if the control signal is not equal to one of the rates given in Table 4-3. Interpolation 
is performed linearly by the valve model according to Equation 4.15. 
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g1877g2870 g3404 g4666g1876g2870 g3398g1876g2869g4667g4666g1877g2871 g3398g1877g2869g4667g4666g1876
g2871 g3398g1876g2869g4667
g3397g1877g2869 
(4.15) 
In Equation 4.15, y2 is the slope to be found, and x2 is the stepping rate calculated by the 
controller. The values x1 and x3 are the stepping rates from Table 4-3 which bound x2. 
Similarly, y1 and y3 are the slopes which bound y2. Thus, if the controller sets the stepping rate 
at 0.24 volt, the valve position changes by: 
g1877g2870 g3404 g4666uni0030uni002Euni0032uni0034g3398uni0030uni002Euni0032g4667g4666uni0030uni002Euni0036uni0030uni0031uni0032g3398uni0030uni002Euni0034uni0031uni0039uni0035g4667g4666uni0030uni002Euni0033g3398uni0030uni002Euni0032g4667 g3397uni0030uni002Euni0034uni0031uni0039uni0035 g3404 uni0030uni002Euni0034uni0039uni0032uni0032uni0020uni0020uni0025uni0020g1867g1868g1857g1866 g1871g1857g1855uni2044  
If the valve steps at 0.24 volts for 0.5 sec, then it opens or closes (negative % open) uni0030uni002Euni0034uni0039uni0032uni0032g3400
uni0030uni002Euni0035 g3404 uni0030uni002Euni0032uni0034uni0036uni0031uni0025. 
Stepping rate, slope (stopper velocity) and time are all required to determine the incremental 
change in valve position for an interval of stepping time. The relationship between these four 
variables is displayed graphically in Figure 4-10. A MATLAB program, plot3DStepRates.m, 
was written to generate Figure 4-10. A listing of this program is given in Appendix A. 
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Figure 4-10 Position Lookup Table 
Figure 4-10 is implemented as a lookup table by the valve model. Given a stepping rate and 
time interval, the model calculates the incremental change in valve position according to 
Figure 4-10. Note that a stepping rate is not used directly; it is converted to a slope using 
Table 4-3 and Equation 4.15. Incremental change in air flow is then determined by the model 
using Equation 4.14. The complete model of the Aalborg valve is discussed next. 
4.7 Aalborg Valve 
Lookup tables are used to control systems that are difficult to model with differential 
equations and analytical functions. For example, lookup tables are employed to control 
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automotive fuel injection systems [26]. In practice, these tables are experimentally generated 
from extensive testing of the actual system. This approach was used here to develop a 
description of the Aalborg valve since the dynamics of the valve were too complex to be 
described by a differential equation or transfer function. Therefore, the valve was modeled 
using a lookup table, and this table was shown graphically in Figure 4-10. The table was 
incorporated into the Simulink model of the magnetic-bearing system as an embedded 
MATLAB function or program. This program is contained in the block labeled Aalborg Valve 
in Figure 4-1. A program listing for the valve is contained in Appendix B, and the operation 
of this program and related portions of the Simulink model are discussed next. 
As seen in Figure 4-1, there are four inputs to the Aalborg Valve function - pct, ctrl, rMax and 
sTime. The current position (% open) is given in pct and is read from persistent memory 
(ValvePos). The control signal ctrl is the stepping rate determined by the controller. This 
signal can be either positive or negative. Positive ctrl opens the valve and negative ctrl closes 
it. rMax is the maximum stepping rate permitted by the user, and sTime is the time that ctrl is 
applied. sTime is equal to the fundamental sample time or the integration time step used for 
the simulation. The MATLAB program uses the control signal ctrl, Table 4-3 and Equation 
4.15 to determine the rate (% open/sec) at which the valve?s position is changing. This rate is 
then multiplied by sTime to determine the incremental change in position during one time 
sample. The new position of the valve pctNew is found by taking the previous position pct and 
adding (valve opening) or subtracting (valve closing) the incremental position. Equation 4.14 
and pctNew (i.e. % open) are then used to determine flow rate Q. Flow rate is routed to the 
MagBear - Masked Subsystem transfer function (Figure 4-8) and pctNew is stored for use in 
the next time step. This completes the description of the valve model, but there are a few other 
items to note from Figure 4-1. 
A Transport Delay one percent greater than the Sample Time was required to eliminate 
algebraic loop errors from the Simulink model shown in Figure 4-1. Delaying a signal is a 
known solution to this type of error, and best accuracy is achieved when the delay is larger 
than the simulation step size [27]. The simulation would not run without the Transport Delay, 
and delaying the flow rate slightly had no effect on the results of the model. 
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Another embedded MATLAB function Start Up was incorporated into the valve model to 
account for the inertia of the rotor and flywheel when starting from rest. During testing it was 
determined that about 10 scfm of air at 100 psi were required to initiate flywheel movement. 
The simple Start Up function models this starting inertia by preventing rotation until the flow 
rate Q equals 10. Function Start Up outputs Q as determined by the valve whenever rpm 
exceeds zero since the flywheel once spinning will continue to turn with less than 10 scfm of 
air applied to it. 
It was also found during initial testing that valve motion is delayed when moving from the 
fully closed position. When closed, the valve does not open immediately after a voltage is 
applied; there is a delay before the valve begins to open and air starts flowing. This delay is 
modeled with a negative initial value of pct (% Open) in Data Store Memory - ValvePos. 
Using a negative value at the start of a simulation forces the simulation to run for a time 
before pct becomes positive and air begins to flow in the model. 
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Chapter 5 - Controller Model 
The model of the magnetic-bearing system shown in Figure 4-1 is nearly complete. The 
development of the plant (air turbine, rotor, flywheel and magnetic bearings) transfer function 
and that of the Aalborg valve were covered in Chapter 4. To complete the system model, a 
speed controller must be designed for the simulated system. This controller will be contained 
in the Control Subsystem block of Figure 4-1, and it will be implemented in the actual system 
pictured in Figure 2-1. 
The speed controller for the magnetically-suspended rotor must limit large oscillations in rpm 
and achieve acceptable settling times. In addition, the desired speed should be maintained and 
not deviate from the set point. This implies that steady-state errors must be minimized or 
eliminated. While these requirements do not place specific numbers on the design criteria, the 
requirements will ensure the desired response for the intended purposes of the magnetic-
bearing system - support the studies of ADR and flywheel health. 
5.1 Proportional Control 
To test the Simulink model developed thus far, a simple proportional controller was added to 
the Control Subsystem seen in Figure 4-1. A block diagram of this proportional controller is 
shown in Figure 5-1. 
 
Figure 5-1 Proportional Controller 
A proportional gain Kp of 0.0001 volt/rpm was chosen to test the model. This gain was not 
scientifically determined but resulted from the operating characteristics of the valve. The 
ctrl
1
Kp * error
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1
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Aalborg valve accepts a voltage or stepping rate of from 0+ to 2.5 volts. Thus, the signal from 
the controller must be within this range. Through testing, it was established that stepping rates 
above 0.7 volt resulted in temporary bearing instability and that the valve would not respond 
to stepping rates less than about 0.05 volt. So, a practical stepping rate (control signal) would 
be between 0.05 and 0.7 volt. The rate determined by the controller is Kp x error were error is 
the difference of desired or set rpm and actual or measured rpm. With the existing supply of 
compressed air, the flywheel can reach speeds in excess of 6000 rpm. Rounding up, the 
maximum error is thus 7000 - 0 = 7000 rpm. To not exceed a stepping rate of 0.7 volt, Kp 
must equal  uni0030uni002Euni0037uni0020g1874g1867g1864g1872 uni0037uni0030uni0030uni0030uni0020g1870g1868g1865uni2044 g3404 uni0030uni002Euni0030uni0030uni0030uni0031uni0020g1874g1867g1864g1872uni002Fg1870g1868g1865. 
Incorporating proportional control into the model produced realistic behavior. The results of 
one simulation are given in Figure 5-2 for a desired speed or set point of 945 rpm. 
 
Figure 5-2 Simulated Response with P Control 
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Notice from the figure that there is a time delay of 50 seconds before the rotor starts moving. 
This delay is caused by both the starting inertia of the system and the delay in initial valve 
movement as discussed in Chapter 4. Once moving, the speed of the rotor increases quickly 
and overshoots the set speed by 330 rpm. The steady-state speed equal to one percent of the 
desired is then reached in about 250 seconds. The actual rpm oscillates about the desired prior 
to reaching steady-state, but there is no steady-state offset from the desired speed. 
Oscillatory behavior is not expected from a first-order system but is present in the model. 
From Equation 4.4, the transfer function modeling the air turbine, rotor, flywheel and 
magnetic bearings is first order. It?s the operation of the valve that imparts the oscillations in 
rpm, and valve behavior is not incorporated in the transfer function. With proportional 
control, the control signal only changes sign when the measured speed moves above or below 
the desired set point. The valve too then only reverses direction with a change in sign of the 
control signal. Oscillations in speed result since valve position does not start to change until 
after the actual rpm has exceeded the desired or the actual has fallen below the set point. In 
effect, the valve has increased the order of the system model by one, and second order 
systems oscillate. The increase in system order results from the valve acting as an integrator 
(1/s). The lack of steady-state errors is also explained by the valve as integrator. 
5.2 Simulated and Actual Responses 
Simulated responses were compared with actual system responses to determine the accuracy 
of the model given in Figure 4-1. For these comparison tests, a Speed Control subsystem was 
added to the existing bearing controller. This subsystem is shown in blue in Figure 5-3. 
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Figure 5-3 Bearing and Speed Controller 
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At this point, the Speed Control block contained only a proportional controller like that shown 
in Figure 5-1. Tests were conducted with both the model and the actual system using as set 
points the steady-state speeds reached with different step inputs of air. These speeds were 
shown in Figure 4-3 and given in Table 4-1. Test results are summarized in Table 5-1 with 
data from the actual system shown in parentheses. 
Set Point 
(rpm) 
Valve 
Delay 
(sec) 
Peak Time 
(sec) 
Peak Speed 
(rpm) 
Overshoot 
(%) 
First Under 
Time  
(sec) 
First Under 
Speed  
(rpm) 
Time to SS 
1%  
(sec) 
945 47 
(53) 
94 
(87) 
1273 
(1265) 
35 
(34) 
131 
(112) 
814 
(791) 
242 
(263) 
1609 31 (47) 83 (90) 2015 (1955) 25 (22) 123 (114) 1477 (1458) 196 (227) 
2393 22 (35) 77 (83) 2840 (2610) 19 (9) 119 (105) 2276 (2271) 166 (190) 
3629 18 (28) 74 (86) 4021 (3797) 11 (5) 117 (102) 3550 (3525) 135 (146) 
4391 18 (27) 75 (92) 4680 (4463) 7 (2) 115 (108) 4336 (4378) 131 (110) 
6076 18 (?) 108 (?) 6073 (?) None (?) None (?) None (?) 108 (?) 
 
Table 5-1 Simulated and Actual Response Data 
All simulations and system tests were conducted with the proportional gain Kp set to 0.0001 
volt/rpm and the maximum stepping rate limited to 0.3 volt. This stepping rate produced the 
best results with respect to the design criteria given at the beginning of Chapter 5. The valve 
delay for the simulations was set to -20%, and a starting inertia equivalent to 10 scfm was 
used. Data from the actual system for a set point of 6076 rpm are not available due to a minor 
electrical problem with one bearing. 
A number of observations can be made from the data listed in Table 5-1. Using the actual 
system as the basis, the modeled valve begins to open from 8 to 37% sooner than the real 
valve. Peak rpm almost always arrives sooner (7 - 14%) than it actually does and at a slightly 
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higher (0.6 - 9%) speed. Overshoot is also greater in the simulated environment; overshoot is 
a maximum of 35% of the set speed at 945 rpm and just 7 % at 4391 rpm. In reality, 
overshoot is 34% and 2% at these same set points. The first valley in the modeled speed trace 
occurs later (6 -17 %) but at nearly the same rpm (0.2 - 3% higher). Finally, settling time 
taken at 1% of the set speed is generally faster (8 - 19%) in the model than with the actual 
magnetic-bearing system. 
Overall, the simulated environment provides a good representation of the actual system. The 
model accurately calculates rotor speed at the first peak and valley and at steady-state. There 
is no steady-state error in the actual system, and none is predicted by the model. Also, the 
modeled valve will oscillate forever trying to exactly maintain the set speed. This is true of 
the real system, and to reduce wear on the Aalborg valve, its operation will be automatically 
deactivated when actual speed is close to set speed. The user will specify a band of rpm (a 
dead band) around the set point for which control is turned off, and the valve?s position is 
held constant. The practice of limiting control around a set point is often done in industry to 
prolong the life of actuators [9]. 
The system model could be improved by adjusting simulated valve motion such that peaks 
and valleys in the velocity profile occur when they do in the real system. However, there is 
enough variability in the motion of the actual valve not to warrant additional development of 
the valve model. It was found during testing that the rate of valve movement was not always 
symmetric or repeatable. Given the same stepping rate in either direction, the valve closes 
more slowly than it opens. This is especially true at the low stepping rates required for smooth 
operation of the rotor. 
5.3 Proportional-Derivative Control 
It can be seen from Figure 5-2 and Table 5-1 that simulated and actual rotor speeds oscillate 
prior to achieving steady-state. To reduce oscillations, derivative control is often used with 
proportional to add damping to a system. Thus, derivative action was then tried on the model 
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prior to testing it on the actual system. The Control Subsystem pictured in Figure 5-1 was 
altered to form the proportional-derivative (PD) controller shown in Figure 5-4. 
 
Figure 5-4 PD Controller 
To test the model with PD control, the derivative gain Kd was set equal to the proportional 
gain Kp. With Kp and Kd set to 0.0001, the model?s response to a desired rpm of 2500 is 
shown in Figure 5-5. 
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Figure 5-5 Simulated Response with PD Control 
Regardless of set point, simulated system response curves with PD control all resemble that 
shown in Figure 5-5. The benefits of derivative control can be seen by comparing the 
system?s response using P-control (Figure 5-2) with that using PD-control (Figure 5-5). For a 
given set point, adding derivative action reduces peaks and valleys, limits oscillations and 
decreases the time to reach steady-state. Further reductions in these measures can be achieved 
by increasing the derivative gain Kd. Practically, if Kd is increased too much, system response 
becomes sluggish. To determine initial values of Kd for the actual system, the Good Gain 
method was applied to the results of numerous system simulations. 
5.4 Good Gain 
Recall from Chapter 1 that the Good Gain method does not require a process model. Since a 
model had been developed, it was used to provide initial estimates of Kd for the actual system. 
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Good Gain calls for adjusting the proportional gain Kp until the first undershoot is barely 
perceptible. When this is achieved, the time to the first peak or overshoot to and that to the 
first valley or undershoot tu are measured. The difference in these two times is g1846g3042g3048 g3404 g1872g3048 g3398g1872g3042, 
and it is used to find Kd. To illustrate Good Gain, the response curve for a set point of 2000 
rpm is shown in Figure 5-6. The times to and tu are shown on the graph along with the Good 
Gain formulas for calculating the derivative gain. These formulas are Ti = 1.5Tou, Td = Ti/4 
and Kd = KpTd. 
 
Figure 5-6 Determination of Good Gain  
Note from Figure 5-6 that the first valley is more than barely perceptible. With the system 
model, Kp could have been adjusted to any value until a barely perceptible first valley was 
achieved. The range of Kp is limited with the actual system since the minimum stepping rate 
of the Aalborg valve is 0.05 volt. To more accurately model reality, Kp for all simulations was 
set so that the modeled valve always stepped at 0.05 volt. This low rate results in the 
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minimum undershoot possible and more closely approximates conditions specified by Good 
Gain. For example, using the minimum stepping rate for a set point of 2000 rpm results in Kp 
= 0.05 volt/2000 rpm = 0.000025 volt/rpm. 
A series of simulations were conducted to determine initial estimates of Kd. For all these tests, 
the minimum possible stepping rate and the set point were used to set Kp. Simulations were 
run for desired speeds of from 500 to 6000 rpm in increments of 500 rpm, and test results are 
given in Table 5-2. 
Set Point 
(rpm) 
Kp x 10-5 
(volts/rpm) 
Tou  
(sec) 
Ti = 1.5Tou  
(sec) 
Td = Ti/4  
(sec) 
Kd = KpTd x 10-5 
(volt*sec/rpm) 
500 10.00 37.0 55.5 13.88 138.80 
1000 5.00 35.0 52.5 13.13 65.60 
1500 3.33 32.0 48.0 12.00 39.60 
2000 2.50 30.0 45.0 11.25 28.10 
2500 2.00 28.0 42.0 10.50 21.10 
3000 1.67 25.0 37.5 9.38 15.70 
3500 1.43 23.0 32.5 8.63 12.30 
4000 1.25 20.0 30.0 7.50 9.40 
4500 1.11 19.0 28.5 7.13 7.90 
5000 1.00 17.0 25.5 6.38 6.40 
5500 0.91 16.0 24.0 6.00 5.50 
6000 0.83 15.0 22.5 5.27 4.70 
 
Table 5-2 Good Gain Values for Kd 
It is seen from Table 5-2 that the calculated values of Kd using Good Gain are too high. The 
derivative gains are much greater than the proportional ones used in the simulations. In 
determining Kd, Good Gain suggests using an initial estimate of Ti/4 for the derivative time 
Td. However, if this results in unacceptable values of Kd, Good Gain recommends dividing Ti 
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by a number greater than 4. Before increasing this divisor, simulations were run using the 
derivative gains shown in Table 5-2. Regardless of set point, these gains added too much 
damping to the system. It was then decided to adjust Kd to minimize undershoot in the model. 
Simulations were then run at the same set points shown in Table 5-2 to determine derivative 
gains that minimize undershoot at each desired speed. For each set point, the proportional 
gains remained unchanged from those given in Table 5-2. Using minimum undershoot as the 
design criterion resulted in response curves like the one shown in Figure 5-7 (1500 rpm set 
point) and the derivative gains listed in Table 5-3. 
 
Figure 5-7 Simulated Response with Modified Good Gain PD Control 
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Set Point 
(rpm) 
Kp x 10-5 
(volts/rpm) 
Kd x10-5 
(volt*sec/rpm) 
500 10.00 30.0 
1000 5.00 16.0 
1500 3.33 11.0 
2000 2.50 7.0 
2500 2.00 5.0 
3000 1.67 4.0 
3500 1.43 3.0 
4000 1.25 2.0 
4500 1.11 2.0 
5000 1.00 1.0 
5500 0.91 1.0 
6000 0.83 1.0 
 
Table 5-3 Modified Good Gain Values for Kd 
The derivative gains listed in Table 5-3 can also be determined from the data in Table 5-2 if a 
derivative time equal to Ti/16 is used. Values of Kd found using Ti/16 are more realistic than 
those calculated from Ti/4. Even with a divisor of 16, the derivative gains are still higher than 
the proportional ones used in the simulations. However, no additional simulations were 
conducted to determine initial estimates of Kd. Their final values were found by tuning the 
controller of the actual system. 
5.5 Gain Scheduling 
Design criteria for the speed controller were given at the beginning of this chapter. Recall that 
the controller must limit large oscillations in rpm and achieve acceptable settling times. These 
design criteria were achieved in the just-performed simulations by limiting the stepping rate 
and incorporating derivative control. From Table 5-3, it is seen that desirable performance can 
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be attained at various speeds provided the controller gains Kp and Kd are varied with rpm. 
These gains can be dynamically altered through gain scheduling, a method used to adjust 
controller parameters as a function of a process variable. The concept of gain scheduling 
originated in connection with the development of flight control systems [28]. Today, gain 
scheduling is a standard technique for aircraft control, and it is also used in automobile engine 
control units [29]. For the magnetic-bearing system, the process variable is the desired speed 
of the rotor, and the controller parameters are the proportional and derivative gains. 
True gain scheduling was not implemented in the simulations, but the gains were 
automatically adjusted based on the desired speed. Actual gain scheduling would vary the 
controller parameters for each change in set point. However, the set point was not altered 
during a simulation. In the actual system, as in aircraft control, the set point can vary 
constantly. The goal with each simulation was to achieve the response shown in Figure 5-7 
for any given set point. As is evident from Table 5-3, a consistent response requires different 
gains for each desired speed. These gains were selected automatically using the same 
approach as that used in Chapter 4.3 to chose the coefficients for the transfer function. To 
select the appropriate gains, equations for Kp and Kd as functions of rpm were needed. 
To find these equations, curves were fit to the data in Table 5-6 using MATLAB?s cftool, and 
these curves are shown in Figure 5-8. 
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Figure 5-8 PD Gains vs Rotor Speed 
The equations for the gains are: 
g1837g3043 g3404 uni0035uni0030uni0030uni0031g1499g2033g2879g2869      (5.1) 
g1837g3031 g3404 uni0034uni0036uni002Euni0037uni0034g1499g1857g2879g2868uni002Eg2868g2868g2870g2872g2877g1499g3104 g3397uni0032uni0031uni002Euni0039uni0039g1499g1857g2879g2868uni002Eg2868g2868g2868g2873g2876g1499g3104    (5.2) 
To use Equations 5.1 and 5.2, the angular velocity of the rotor, ?, must be in units of rpm. 
Note from Figure 5-8 that for any speed below 500 rpm, the gains are determined using a set 
point of 500 rpm. Equations 5.1 and 5.2 were incorporated into the PD controller shown in 
Figure 5-4 to yield a controller, pictured in Figure 5-9, with automatic gain selection. The 
equations for Kp and Kd are contained in the embedded MATLAB function Schedule Gains. 
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Figure 5-9 PD Controller with Gain Selection 
With the automatic-gain-selection controller, the simulated system?s velocity profile is always 
the same regardless of set point. This profile is identical to that plotted previously in Figure 5-
7 for a desired speed of 1500 rpm. If the set point had been 3660 rpm or any other speed, the 
velocity plot would have looked the same as that in Figure 5-7. Thus, the automatic gain 
selection controller achieves the design objectives of limited overshoot/undershoot and 
reasonable settling time for all set points. 
Prior to discussing the implementation of the actual proportional/derivative controller, it is 
enlightening to examine a PD control signal. Figure 5-10 shows individual proportional and 
derivative signals plus the PD composite. 
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Figure 5-10 P, D and PD Control Signals 
Figure 5-10 was generated from a simulation without automatic gain selection using a desired 
speed of 3500 rpm and typical values of Kp and Kd. It can be seen from Figure 5-10 how 
derivative action anticipates future actuator response and adds damping to a system. The sign 
of the composite PD signal changes sooner than that for the proportional signal. When the 
control signal changes sign (i.e. crosses through zero volts), the direction of valve motion 
changes too. For this simulation, the proportional signal first changes sign at 89 seconds 
which as expected occurs at the set point of 3500 rpm. When derivative action is added to 
proportional, the PD signal changes sign at 83 seconds and 3380 rpm. The speeds were read 
from the velocity plot which is not shown. With just proportional control, the valve changes 
direction (starts to close) once the set point is reached, resulting in overshoot. The PD 
controller anticipates the set point and changes the direction of valve motion prior to reaching 
the desired rpm, thereby minimizing overshoot. Limiting overshoot has the same effect as 
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adding damping to a system - both act to slow response. If undershoot were present in the 
simulation, the anticipatory nature of PD control would be seen to minimize it also. 
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Chapter 6 - Controller Implementation 
The actual speed controller was designed using the knowledge gained from the simulated 
system. Using this system, it was determined that the following were required to regulate the 
speed of the magnetically-suspended rotor: 
1) provide proportional control for basic speed regulation, 
2) incorporate derivative action to minimize oscillations in speed, 
3) add adjustable gains to tailor response, 
4) limit stepping rates to provide consistent response, 
5) deactivate derivative control at higher speeds where overshoot is minimal, 
6) provide a ?dead band? to reduce wear on the flow-control valve, and 
7) allow manual operation of the valve for testing purposes. 
Simulations also showed that integral action was not necessary since the system displayed no 
steady-state error. Recall that the valve is acting as an integrator. 
6.1 Controller Design 
To meet the requirements for speed regulation, the controller shown in Figure 6-1 was 
constructed in Simulink. 
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Figure 6-1 Speed Controller 
This controller is contained within the blue Speed Control block of the complete magnetic-
bearing controller given previously in Figure 5-3. It was also explained earlier in Chapter 2.2 
how block diagrams are converted to executable code through Real-Time Workshop for use 
by dSPACE. 
The block diagram in Figure 6-1 is that for a PID controller of the form g4672g1837g3043 g3397 g3012g3284g3046 g3397g1837g3031g1871g4673. 
While integral action is not currently needed to regulate the speed of the rotor, it was added in 
case of a future requirement. There are numerous inputs to and outputs from the controller. 
Inputs are of two types - user and system. User inputs are entered through instrument panels 
to be discussed in the next chapter. Inputs from the magnetic-bearing system are read by the 
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controller via the A/D converter. Outputs are written to the system by the controller through 
the D/A converter. All input and output is summarized in Table 6-1. 
Variable Name I/O Type Units Function 
Act RPM system in rpm Current speed of the rotor measured by the tachometer shown in Figures 3-2 and 3-3. 
Pct Open system in % open Current position of valve determined by the LVDT shown in Figure 3-4; not used. 
Set RPM user in rpm Set point - desired speed of the rotor. 
ddcRPM user in rpm Rotor speed above which derivative action is turned off. 
Neg Error user in rpm Upper limit of dead band. 
Pos Error user in rpm Lower limit of dead band. 
OnOff user in none Switch for automatic speed control. 
Man OnOff user in none Switch for manual speed control. 
Man Dir user in none Direction of valve travel - open, close or hold - when in manual mode. 
Man Rate user in volts Stepping rate for valve when in manual mode. 
Max Volts user in volts  Maximum stepping rate allowed. 
Min Volts user in volts Minimum stepping rate allowed. 
Kp Power, Kp 
Slider user in  volts/rpm Proportional gain. 
Ki Power, Ki 
Slider user in  volts/rpm*sec Integral gain; not used. 
Kd Power, Kd 
slider user in  volts*sec/rpm Derivative gain. 
Direction controller out volts Direction of valve travel - open, close or hold. 
Step Rate controller out volts Stepping rate for valve. 
 
Table 6-1 Controller Input and Output 
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Most of the variables in Table 6-1 are self explanatory; however, a few require further 
explanation. The variables Neg Error and Pos Error together specify a band of rpm (a dead 
band) around the set point for which control is turned off, and the valve?s position is held. It 
was mentioned in Chapter 5.2 that dead bands are used in industry to reduce wear on 
actuators. For example, if the set point is 3600 rpm and Neg Error = 10 and Pos Error = 5, 
then the valve?s position is held constant between 3595 and 3610 rpm. It was found during 
initial testing of the controller that a properly specified dead band has the added benefit of 
reducing the amplitude of oscillations in speed. 
Variables Min Volts and Max Volts place limits on the stepping rate sent to the valve. The 
stepping rate (control signal) determined by the speed controller is often less than the 
minimum stepping rate of the valve. This rate is about 0.05 volt, and Min Volts ensures that 
the valve will always respond. Max Volts is used in place of automatic gain selection. It was 
also determined during testing that limited stepping rates (<= 0.3 volt) combined with small 
but constant controller gains provide more consistent response to changes in desired speed. 
Thus, the automatic adjustment of controller gains is not absolutely necessary. A big change 
in set point can result in high stepping rates even with the use of small gains. If stepping rates 
exceed 0.3 volt, large speed oscillations and temporary bearing instability result. The valve 
can step at 2.5 volts, but at this rate, it would be impossible to control the speed of the rotor. 
Addition blocks of the speed controller requiring explanation are the three embedded 
MATLAB functions, Check Ctrl, Check Int Windup and Deact Deriv Ctrl, the Digital Filter 
and Transport Delay. Function Check Ctrl determines stepping rate and valve direction based 
on controller input and the user inputs just described. Check Int Windup is part of an anti 
windup circuit that limits integrator output if integral action is used. For now, integral control 
is not needed and is disabled from the Control Parameters instrument panel by setting the 
value of the Ki slider to zero. This instrument panel and all others used to control the rotor 
will be fully described in the next chapter. Function Deact Deriv Ctrl turns off derivative 
control when rotor speed exceeds a user-specified rpm. Maximum rotor speed is limited by 
the supply of compressed air to about 6500 rpm. There is little overshoot or undershoot due to 
changing set points at high rpm, so derivative action has little use at high speeds. To keep 
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derivative control active at all times, set the Deact Deriv Control variable on the Control 
Parameters panel to an unattainable speed (e.g. 10,000 rpm). Refer to the program listings in 
Appendix B if more detailed explanations are needed of the embedded MATLAB functions. 
It was explained during the discussion of the simulated system that a Transport Delay was 
needed to eliminate algebraic loop errors from the model. A Transport Delay was used with 
the actual controller for the same reason. This delay had no effect on controller operation 
since integral action is not used. Recall that if a delay is needed, it should be slightly larger 
than the integration time step [27]. 
Pictured in Figure 6-2 is the low-pass filter added to remove noise from the tachometer signal 
and to improve the performance of derivative action. 
 
Figure 6-2 Low-Pass Filter 
MATLAB?s Filter Design and Analysis Tool fdatool was used to construct a filter having a 
pass frequency (end of pass band) of 140 Hz and a stop frequency (beginning of stop band) of 
200 Hz. A sampling rate of 400 Hz or twice the stop frequency is employed. The pass and 
stop frequencies correspond to rotor speeds of 8400 rpm and 12,000 rpm, respectively. With 
the current supply of compressed air, the rotor will spin to between 6000 (100 Hz) and 7000 
rpm (117 Hz). If additional air flow becomes available and raises the maximum rpm limit, a 
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new filter having higher pass and stop frequencies can easily be designed with the fdatool to 
replace the current filter. 
6.2 Testing and Tuning 
Through testing, a single controller configuration was established that accurately regulates the 
speed of the rotor for any set point from 200 rpm to maximum rpm. The variables and their 
values for this one configuration are listed in Table 6-2. 
Variable Name Value 
ddcRPM 10,000 rpm 
Neg Error 10 rpm 
Pos Error 5 rpm 
Max Volts 0.3 volt  
Min Volts 0.05 volt 
Kp Power, Kp 
Slider 
0.0001 
volt/rpm 
Ki Power, Ki 
Slider 0 
Kd Power, Kd 
slider 
0.0000005 
volt*sec/rpm 
 
Table 6-2 Controller Configuration 
The PD controller configured as shown in Table 6-2 provides excellent control when starting 
at rest and when changing from one set point to another (e.g. raising the speed from 932 to 
3145 rpm or lowering the speed from 5689 to 2166 rpm). Once steady-state is reached, rotor 
speed varies only a few rpm either way from the set point. Any set point equal to or greater 
than 200 rpm could be chosen to demonstrate the controller?s capabilities. For illustrative 
purposes, velocity versus time plots are shown for desired speeds of 800, 1750, 2500, 3300 
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and 4000 rpm. These plots were generated for a rotor initially at rest. There are two graphs for 
each set point - one where only proportional control is used and the other where derivative 
action is added to proportional. The advantages of PD over P control are evident from the 
figures. Velocity plots will also be shown for changing set points, and all graphs of velocity 
versus time were captured with ControlDesk. 
 
Figure 6-3 P Control - 800 rpm 
 
 
Figure 6-4 PD Control - 800 rpm 
No steady state. 
Steady state at 320 seconds. 
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Figure 6-5 P Control - 1750 rpm 
 
 
Figure 6-6 PD Control - 1750 rpm 
 
No steady state. 
Steady state at 300 seconds. 
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Figure 6-7 P Control - 2500 rpm 
 
 
Figure 6-8 PD Control - 2500 rpm 
 
No steady state. 
Steady state at 190 seconds. 
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Figure 6-9 P Control - 3300 rpm 
 
 
Figure 6-10 PD Control - 3300 rpm 
 
No steady state. 
Steady state at 150 seconds. 
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Figure 6-11 P Control - 4000 rpm 
 
 
Figure 6-12 PD Control - 4000 rpm 
It is seen from the data that proportional control alone cannot minimize or eliminate 
oscillations about the set point. These oscillations are especially noticeable at lower speeds 
and they persist for all set points shown. With just proportional control, a true steady-state 
condition is never reached except at 4000 rpm. However, PD control minimizes or eliminates 
Steady state at 120 seconds. 
Steady state at 190 seconds. 
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oscillations about the desired rpm, and steady-state is attained at the time shown on each 
graph. 
Velocity data for a change in set point are given in Figures 6-13 and 6-14. These figures begin 
with the rotor initially spinning at a steady-state speed. Figure 6-13 graphs the velocity 
response when the set point is reduced from 4000 to 1000 rpm. The speed response for an 
increase in desired speed from 500 to 2500 rpm is shown in Figure 6-14. Both plots were 
generated using the controller configuration given in Table 6-2. 
 
Figure 6-13 Changing Set Point - 4000 to 1000 rpm 
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Figure 6-14 Changing Set Point - 500 to 2500 rpm 
Note the slight oscillations about the final set point of Figures 6-13 and 6-14. These 
oscillations resulted from disturbances (i.e. pressure variations) in the air supply to the 
turbine. When Figures 6-13 and 6-14 were generated, other labs were using air from the 
common air supply serving the entire building. The responses of the rotor and controller to 
changing line pressures are seen in these minor speed oscillations about the final set point. It 
is evident from Figures 6-3 through 6-14 that the PD controller accurately regulates the speed 
of the rotor when starting from rest, when changing set points and when compensating for 
disturbances. 
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Chapter 7 - Operating the Rotor 
Operation and control of the rotor is accomplished through ControlDesk using a series of 
layouts or instrument panels. The functions of each panel will be discussed during or after the 
procedures are given for starting the system, activating the bearings, setting and changing 
rotor speeds and stopping the rotor. Note that some familiarity with ControlDesk is needed to 
execute these procedures. 
7.1 Starting the System 
To begin operation, 
1. Ensure the manual air supply valve is closed. 
2. Plug in the electronic tachometer shown in Figure 3-2 
3. Plug in the Aalborg flow-control valve pictured in Figure 3-4. If it is not already 
closed, this valve will close when plugged in. A green light on top of the valve body 
will be lit when the valve is fully closed. 
4. Slowly and completely open the manual air supply valve. 
5. Start ControlDesk, and load experiment mbcntrl_a found in directory 
C:\Users\Robert\Alex_New. All instrument panels will flash as they are activated. The 
panel layout_start shown in Figure 7-1 should be displayed in ControlDesk. If it isn?t, 
make layout_start the active panel. 
6. Start animation mode. 
7. Select full-screen viewing. At this point, the screen should look identical to Figure 7-
1. 
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Figure 7-1 layout_start Instrument Panel 
7.2 Activating the Bearings 
To activate the magnetic bearings, 
1. Click the On radio button in the Activate Rotor section of layout_start. The Rotor 
Status light will turn green, and the status message will change to On. 
2. Turn on the two amplifiers pictured in Figure 2-1. 
3. Turn on the two power supplies also shown in Figure 2-1. A ?clunk? sound may be 
heard from the bearings when the hardware is powered on. 
4. Lightly spin the rotor/flywheel by hand. If there is drag, use the knobs in Adjust 
Position to eliminate the drag. 
78 
 
To view the current position of the rotor as located between the magnets, enter a data capture 
Length of 5 (seconds) or less in the Capture Position dialog. Then, press the Start button in 
Capture Position, and the rotor?s position will be plotted on the two graphs contained in 
section Rotor Position. 
Each axis, Axis 1, Axis 2, Axis 3 and Axis 4, refers to a pair of magnets, and the orientation of 
each axis is shown on the Schematics layout. To view these axis definitions, press the 
Schematics button located at the top, right corner of layout_start. The Schematics layout 
shown in Figure 7-2 will then be displayed. 
 
Figure 7-2 Schematics Instrument Panel 
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To return to layout_start, press the bluish-green Return button at the top, left corner of the 
Schematics panel. For future reference, every panel except layout_start contains a Return 
button. Pressing this button will always return you to layout_start. 
7.3 Setting or Changing Speeds 
Once the rotor is properly positioned, it can be spun up to speed. To do so from layout_start, 
1. Choose either Elec or Mech in section Rotor Speed. The electronic tachometer 
pictured in Figure 3-2 will report the rotor?s speed if radio button Elec is chosen. If 
Mech is selected, rotor speed will be measured by the mechanical tachometer shown in 
Figure 2-1. It is recommended that Elec be used. 
2. Click the On radio button under Set Speed to activate automatic speed control. The 
Valve Status light will turn dark blue, and the status message will change to Hold. 
3. Enter the desired rpm in Set Speed by 1) typing a number into the RPM numeric input 
box, 2) scrolling to the set point using the up and down arrows located next to the 
RPM box or 3) dragging the RPM slider to the desired speed. The RPM box and slider 
will always display the same rpm regardless of which instrument was used to set the 
speed. How these instruments were synchronized will be discussed at the end of 
Chapter 7.3. Compressed air will begin flowing once the speed is set, and the rotor 
will begin turning when there is sufficient air flow to overcome the start up inertia 
discussed in Chapter 4.7. 
4. Wait for the rotor to reach the desired speed, or change to another set point as outlined 
in Step 3. The layout_start dialog will look as it does in Figure 7-3 for a desired speed 
of 2400 rpm. A graph of rotor rpm versus time may be viewed by pressing the 
Input/Output button at the top of layout_start. This velocity plot is contained in 
section Plotter Out of the Input/Output layout shown in Figure 7-4. This layout will be 
discussed in more detail later in Chapter 7. 
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Figure 7-3 Setting Rotor Speed 
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Figure 7-4 Viewing Velocity Plot 
Synchronizing the RPM box and slider was accomplished through a special program written 
in the Python interpretive language. ControlDesk provides a Python-based programming 
facility for the user to extend the functionality of layouts and instruments. This facility was 
used to keep the aforementioned instruments in sync. If a Python program is added to extend 
the operation of a layout, this program is automatically given the same name as the layout 
prepended with an underscore. Many lines of Python code were written to integrate the 
different layouts and to add safety and convenience features to rotor control. Some of these 
special features will be noted during the discussion of the remaining layouts. Complete 
listings of all Python programs are provided in Appendix C. These programs are identified by 
a .py extension. 
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7.4 Stopping the Rotor and System 
To stop the rotor, 
1. Click the Off radio button under Set Speed on layout_start (shown in Figures 7-1 and 
7-3). The rotor will slowly coast to a stop as the supply of compressed air is gradually 
shut off by the flow-control valve. 
2. Once the rotor COMPLETELY stops spinning, click the Off radio button under 
Activate Rotor. If you attempt to turn off or deactivate the rotor while it is spinning, a 
warning is displayed, and the rotor remains activated. Damage to the bearings could 
result if they are accidently turned off while the rotor is moving. Shown in Figure 7-5 
is the warning message, and it reads ?The rotor cannot be deactivated unless it is at 
rest.? The Python programming facility of ControlDesk was used to implement this 
safety feature. 
3. Return to the ControlDesk development environment by clicking on the icon 
immediately to the left of the Activate Rotor section. Refer to Figure 7-5 at the end of 
these steps for the location of the icon. 
4. Exit animation mode. 
5. Close the manual air supply valve. This is very important for safety reasons, so do not 
forget to close this valve. If you are done for the day, also complete Steps 6 through 9. 
6. Turn off the amplifiers. 
7. Turn off the power supplies. 
8. Unplug the electronic tachometer. 
9. Unplug the Aalborg flow-control valve. 
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Figure 7-5 Stopping the Rotor 
Thus far, three of the six instrument panels or layouts have been discussed within the context 
of rotor operation. An overview will now be provided of the three remaining layouts, All 
Parms, Amp Status/Cal and Control Parms. These panels are used to monitor and tune the 
magnetic-bearing system, and each panel is accessed by pressing the named button at the top 
of layout_start. Additional features of the Input/Output layout shown in Figure 7-4 will also 
be covered in the next sections. 
7.5 All Parms 
The All Parms layout was pictured earlier in Figure 2-6, and it is the original instrument panel 
created to control the magnetic bearings. All Parms was included with the new series of 
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panels to provide a reference to earlier work. While the original instrument panel is still 
functional, it should NOT be used to operate the rotor. All Parms does not include automatic 
speed control or any of the special features written for the new layouts. One such feature is 
that which prevents accidental deactivation of a spinning rotor. 
The extensive functionality provided by All Parms has been logically redistributed among the 
five new instrument panels. If additional functions are needed in the future, they can be 
included on a new layout. Access to the new panel would then be easily accomplished by 
adding another button to the top of layout_start. The ease by which the new system can be 
extended was lacking in the single panel of All Parms. Rotor operations would have been 
greatly complicated by adding even more instruments onto this single layout. 
7.6 Amplifier Status and Calibration 
Pictured in Figure 7-6 is layout Amp Status/Cal, and it is used to monitor and adjust the eight 
power amplifiers. This instrument panel is activated by pressing the Amp Status/Cal button on 
layout_start. 
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Figure 7-6 Amp Status/Cal Instrument Panel 
There are four columns labeled Axis 1, Axis 2, Axis 3 and Axis 4 shown in the Status section of 
this layout. Each column corresponds to one axis of a magnetic bearing. The location and 
orientation of each axis and the two amplifiers assigned to each are shown on the Schematics 
panel pictured in Figure 7-2. Each light or LED and gauge pair within a column displays the 
current read from and the current written to the named amplifier. The four knobs labeled 
Adjust Pos. and the Position plots are duplicates of the same instruments found on 
layout_start. These instruments are included on Amp Status/Cal to allow manual positioning 
of the rotor while observing changes in amplifier current. Awareness of these changes can 
help diagnose bearing problems if current overloads occur during rotor adjustment or 
operation. Note that any change in position made from either layout_start or Amp Status/Cal 
is reflected in both layouts. 
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Calibration was developed to eliminate rotor vibrations that occurred at certain speeds and to 
resolve collocation issues [5]. Collocation or arrangement issues arise since the proximity 
probes sensing rotor position are not in the same location as the magnetic actuators that 
position the rotor. Refer to [5] for a discussion of collocation and calibration. Calibration can 
also be better understood by studying the Python program _amp adjust.py given in Appendix 
C. Only a stepwise procedure for calibration will be outlined in the following discussion. 
Calibration can only be performed if the rotor is at rest and both automatic and manual speed 
control are off. If these conditions are not met, the Activate/Deactivate checkbox under 
Calibration will be automatically dimmed and not selectable as it is in Figure 7-6. The 
individual amplifier On/Off checkboxes in the Status section of Figure 7-6 will also be 
dimmed if the rotor is spinning. Deactivating these checkboxes is another safety feature 
implemented with the programming facility of ControlDesk. Calibration will vary the 
amplifiers on and off, and it has been noted that turning off an amplifier while the rotor is 
spinning could damage the magnetic bearings. 
To calibrate a system that is at rest, 
1. Click the Activate/Deactivate checkbox. This will turn off all amplifiers. 
2. Adjust the voltage in the Volts input box, and note changes to the values displayed on 
the gauges for each axis (also called a channel). 
3. Press the Amp 2/5 button under the Activate heading in the Calibration section. The 
checkboxes for amplifiers 2 and 5 will be selected and these amplifiers will be turned 
on. 
4. Press the Amp 2/5 button under the Save heading in the Calibration section. This 
operation will store calibration data in variables defined in the Python program _amp 
adjust.py. Appendix C contains the listings for all Python programs. 
5. Repeat steps 3 and 4 for Amp 4/7, Amp 1/6 and Amp 3/8. 
6. Press the Save Cal button to save the new calibration values to a file. Saving 
calibration data to a file is accomplished with a standard Windows save file dialog as 
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shown in Figure 7-7. Once the data are stored in a file, the Adjust Pos knobs are 
updated with the new calibration values. 
 
Figure 7-7 Saving Calibration Data 
If you want to use a previously saved calibration, press Load Cal. A standard Windows open 
file dialog will then be displayed from which any saved calibration can be selected. The save 
and load functions using Windows dialogs were also implemented with the programming 
capabilities of ControlDesk. 
7.7 Control Parameters 
All of the variables needed to adjust and tune the bearing and speed controllers are available 
on a separate layout. This instrument panel is shown in Figure 7-8, and it is displayed by 
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pressing the Control Parms button located at the top of layout_start. Note that Control Parms 
also contains the adjustable settings for the adaptive controller used for disturbance rejection. 
 
Figure 7-8 Control Parms Instrument Panel 
Since the development of the automatic speed controller did not involve adaptive disturbance 
rejection (ADR), the Off radio button in section Adaptive Control was always selected. ADR 
was used in prior studies to compensate for disturbances (e.g. vibration of the base supporting 
the magnetic bearings) acting on the system. The values of all Adaptive Control parameters 
shown in Figure 7-8 are those developed by Matras [5]. Select the On radio button to activate 
ADR, and then adjust the various values using [5] as a reference according to your needs. 
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The Load Vals and Save Vals buttons found in all three sections of Control Parms work 
exactly like the Load Cal and Save Cal buttons located on the Amp Status/Cal layout. All of 
the adjustable parameters displayed in an individual section of the Control Parms layout can 
be saved to a file by pressing Save Vals. Load Vals will set the instruments to the values read 
from a file saved previously with Save Vals. Both the save and load functions were 
implemented using Windows file dialogs. 
Instruments for displaying and adjusting the gains of the two magnetic-bearing controllers are 
given in section Bearing Control. All variable names containing the number 1 (e.g. Kp1 and 
Top1) apply to the bearing supporting the free end of the rotor. This end contains the 
hardware drive for the mechanical tachometer. Variable names ending with the number 2 (e.g. 
Kp2 and Top2) pertain to the bearing nearest the air turbine. The naming convention for the 
bearings was shown on the Schematics layout pictured in Figure 7-2. Since there is a 
controller per bearing, gains for one bearing may be tailored independently of those for the 
other bearing. However, the gains used for the development of the automatic speed controller 
are those determined by Matras and shown is Figure 7-8. Bias Voltages are used to further 
adjust rotor position, and the bias values shown are those developed previously and used 
throughout speed controller testing. 
The Deact on Error checkbox has been permanently dimmed (i.e. it cannot be selected). This 
feature automatically shuts off the bearings if an error (e.g. current overload) is detected. 
Deact on Error was included in the new instrument panels to maintain functional consistency 
with the original All Parms layout. Since automatic deactivation of the bearings could result 
in more damage than a current overload, this feature cannot for now be selected. 
Nearly all of the Speed Control variables and their values were discussed in Chapter 6. It is 
worthwhile though to review a few items. The gains Kp, Ki and Kd can be infinitely adjusted 
using a combination of instruments. Remember, the value of Ki displayed under Gains should 
be zero! Each gain is determined by multiplying the number from a slider by a power of 10 
from a numerical input box. This power is changed with the arrows located next to the box. 
The use of two instruments instead of one such as a knob provides for the selection of a much 
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greater range of values. This almost unlimited range reduced development time for the speed 
controller since gains could be quickly changed without the need to constantly redesign an 
instrument to include unforeseen values. 
Other variables worth noting are the Error Limits, Above Set RPM and Below Set RPM. These 
values specify the actuator dead band covered in Chapter 6.1and used to extend the life of the 
flow-control valve. The values of Tach Limits, Min RPM and Max RPM must match the 
values entered at the front panel of the electronic tachometer when it is configured. 
Tachometer configuration is covered in [24]. If these values do not match, the measured rpm 
of the rotor will be in error. Finally, Cur Step Rate reports the current stepping rate of the 
valve. This value is interesting to watch since the valve usually steps at the minimum rate 
specified by Step Rates, Min Volts. 
7.8 Input/Output 
The Input/Output instrument panel was pictured previously in Figure 7-4. This panel was 
introduced in Chapter 7.3 when the step-wise procedures were given for setting or changing 
the speed of the rotor. All operations available from the Input/Output layout will now be 
covered. 
The functions performed by Excitation In and Auxiliary In are linked together. Neither type of 
input is active unless the Activate/Deactivate checkbox under Excitation In is selected. 
Excitation In superimposes a sinusoidal signal onto the bearing control voltages. Each bearing 
axis seen in Figure 7-2 can be excited separately with a sine wave by selecting an amplitude 
for the wave from the input boxes labeled 1, 2, 3 and 4 under heading Amplitude - Axis. The 
frequency for all waves is common and is chosen from the input box below Frequency 
(rads/sec). These sinusoidal signals are used to test ADR. In addition, an auxiliary signal from 
an external source can be added to the sine waves. This signal would be input into the system 
through the A/D converter. To apply an external signal to a bearing axis or to one of the 
adaptive control gains, select the check boxes contained within the Auxiliary In section. These 
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boxes are labeled Axis 1, Axis 2, Axis 3 and Axis 4 and Gp In 1 and Gp In 2. The auxiliary 
signal will be displayed on the graph to the right of the check boxes. 
Estimator Out provides the ability to output on an axis basis the measured 5 Out (y) and 
estimated 6 Out (yh) positions of the rotor. Pressing one of the buttons labeled Axis 1, Axis 2 
Axis 3 or Axis 4 displays the selected axis number and routes the position signal for that axis 
to the D/A converter.  
Select the On radio button in section Valve In/Out to manually operate the Aalborg flow-
control valve. Manual operation is used for testing purposes and for calibrating the LVDT 
which measures valve position. Automatic speed control is turned off when in manual mode. 
Direction of valve travel or valve position is then determined by choosing one of the radio 
buttons Open, Close or Hold. The speed at which the valve opens or closes is specified in the 
Step Rate (volts) input box. None of the automatic speed control settings contained on layout 
Control Parms apply when the valve is operated manually. The valve will step at whatever 
rate is given in the Step Rate (volts) input box. 
Calibration of the LVDT pictured in Figure 3-4 is performed with the LVDT Limits (volts), 
Upper and Lower numerical input boxes. The Upper limit is set to the voltage value shown in 
the Valve Position, Volts display box when the valve is fully opened as indicated by the red 
light on top of the Aalborg flow-control valve. The Lower limit is set to the voltage displayed 
when the valve is completely closed as indicated by the green light on the valve. These two 
voltages are used to calculate the valve?s current position which is then displayed in the % 
Open display box. When calibration is complete, select the Off radio button to exit manual 
valve mode and to reactivate automatic speed control. The exclusion of one mode of valve 
operation from the other is accomplished with switch blocks seen at the upper right corner of 
the speed controller block diagram shown in Figure 6-1. 
The Plotter displayed in Figure 7-4 graphs rotor velocity as a function of time. However, a 
Plotter instrument can be easily and dynamically configured (i.e. while the rotor is spinning) 
to graph practically any variable in a Simulink block diagram. The Plotter on the Input/Output 
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layout was used during the development of the speed controller to display values of numerous 
variables providing visual proof of an idea?s success or failure. 
Plotter characteristics (e.g. axis labels) are customized using the Settings ... button found on 
the CaptureSettings dialog positioned to the left of the velocity plot. Any number of Plotters 
and CaptureSettings dialogs can be included in a series of layouts. Rotor positions are plotted 
on layout_start (Figures 7-1, 7-3 and 7-5), and rotor speed is graphed on the Input/Output 
layout. Unfortunately, the Length parameter specified in the individual CaptureSettings 
dialogs is shared among all plots. Length in seconds is the refresh rate at which all graphs are 
redrawn. The value of Length used by ControlDesk is that from the CaptureSettings dialog 
used to start data capture. With just a single refresh rate, some graphs may be redrawn more 
frequently than desired. 
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Chapter 8 - Conclusions and Future Work 
The simulated system provided direction for the design of the actual speed controller. 
Simulations showed that a maximum stepping rate of 0.3 volt and a proportional gain Kp of 
0.0001 would provide accurate speed control. These values were used in the final controller 
configuration. In addition, the model demonstrated the benefits of derivative action, and 
derivative control is part of the actual speed regulator. Simulated speed responses contained 
no steady-state errors and none exist in the real system. Thus, integral control was not 
necessary for regulating the speed of the rotor. The need for an actuator dead band was also 
determined from the model. While never shown, graphs of valve motion versus rotor speed 
from any simulation showed that the flow-control valve continually oscillates as it tries to 
maintain zero deviation from the set point. The Aalborg valve behaves identically to the 
simulated one, and to limit oscillations and increase valve life, a configurable dead band was 
included in the speed controller. 
A gain-scheduled controller was used in the simulations to maintain a consistent response for 
different set points. It was seen from velocity data that actual rotor response varies depending 
on the desired rpm. The magnitudes of the transient speed oscillations are more pronounced at 
lower speeds. These magnitudes could be reduced by altering the controller gains Kp and Kd 
depending on set point. Automatic gain selection was not included since maintaining a steady-
state speed is of the most importance. 
The simulated system did not provide a realistic estimate of the derivative gain Kd. This 
deficiency may be the result of the procedure used for estimating the gains since the Good 
Gain method applied to speed responses from the actual system also overestimated Kd. The 
minimum derivative gain found from simulations using modified Good Gain was 1 x 10-5. 
The actual value used for the single controller configuration was 5 x 10-7. This value is two 
orders of magnitude less than the estimated Kd. 
It is doubtful whether any of the methods mentioned in the introduction would have provided 
close estimates for the derivative gain. All methods except possibly Relay do not directly 
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include the actuators in determining gains. For the magnetic-bearing system, the electrical and 
mechanical characteristics of the Aalborg valve set Kd. When a Kd of 1 x 10-5 was used with 
this valve, it provided way too much anticipatory action or damping. The flow-control valve 
would begin closing too soon, and rotor speed could not even reach the set point. System 
testing established the actual value of Kd. The modified Good Gain method used in the 
simulations did however provide a starting point for determining the derivative gain for the 
actual system. 
A formal study of stability was not conducted in the development of the speed controller. It 
was determined through simulations and system testing that stepping rates greater than 0.3 
volt produced temporary instability in the bearings. The Routh or root-locus methods could be 
used to formally establish stability criteria. This task would be complicated since the 
magnetic-bearing system was only partially modeled with a transfer function. Valve action is 
responsible for system stability, and the valve was represented as a lookup table using an 
embedded MATLAB program. Automotive fuel-injection systems are modeled and 
implemented in a similar manner. The methods used to establish stability for these automotive 
systems could possibly be applied to the speed controller. It could be however, that in 
industry, stability is determined experimentally. 
Rotor response would be improved by decreasing transient speed oscillations. These 
transients are most pronounced with dramatic changes in set point. The severity of the 
oscillations could be reduced by using valve position and flow rate data or by using a gain 
scheduled controller. With the addition of the LVDT, the valve?s position is always known. 
From system testing, it is also known what quantity of air as a function of valve position is 
required to maintain a certain rpm. Using this data, if a big change in set point was required, 
the valve could be repositioned and held at the flow rate needed for the desired speed. Control 
would be reactivated once the new set point was reached. Oscillations in rpm would be 
reduced since flow rates would never become too little or too great at any one time. Very low 
stepping rates achievable with a gain scheduled controller could also improve transient 
response. However, the current valve will not step slower than 0.05 volt. 
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The use of adaptive disturbance rejection (ADR) techniques requires that rotor speed be 
precisely known. The new speed measurement and control system should facilitate ADR 
studies, and these would provide a good test of the new system?s capabilities. Other future 
work would involve incorporating automatic speed control with flywheel health and 
containment strategies. If defects were detected in a flywheel, the speed of the rotor could be 
automatically reduced to an rpm where the flywheel could be safely operated, or the flywheel 
could be completely stopped. 
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Appendix A 
MATLAB Utility Program 
plot3DStepRates.m 
%{ 
 
plot3DStepRates.m:  plots valve position as a function of time and stepping rate. Refer to 
Figure 4-10. 
  
%} 
  
%{ 
  X = to right = time axis. 
  Y = out of page = step rate axis = volts axis. 
  Z = up = % open axis. 
%} 
  
% Stepping rate in volts. 
rate = [ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 ]; 
  
% The following slopes were determined using MATLAB's cftool operating on data captured 
% with ControlDesk. Units of slope are (% open)/sec. Refer to Table 4-3. 
slope = [ 0.0 0.2372 0.4195 0.6012 0.8827 1.146 1.472 1.898 2.246 2.685 3.089 3.569 ... 
  3.991 4.460 4.935 5.408 ];  
  
% Calculate the time required to fully open the valve at each step rate. Skip slope = 0 since it  
% could result in division by 0 in the following loop. 
for i = 1:length(slope) 
  j = i + 1; 
  if j > length(slope) 
    break; 
  end 
  tOpen(i) = 100/slope(j); 
  fprintf('\n -> At a step rate of %2.1f, it takes %4.1f seconds ', i/10, tOpen(i)) 
  fprintf('to fully open the valve. \n') 
end 
  
% Determine the maximum time for the plot. 
tOpenMax = max(tOpen); 
tOpenMax = ceil(tOpenMax); 
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% Generate time data in increments of 1 second. 
clear x 
x(1) = 0; 
for i = 2:tOpenMax 
  x(i) = i; % Note, x at 1 second is skipped. 
end 
  
% Set the step rates at each second. Step rates are constant at each time interval. 
yVals = struct([]); 
for i = 1:length(rate) 
  clear yData; 
  for j = 1:tOpenMax 
    yData(j) = rate(i); 
  end 
  yVals(i).data = yData; 
end 
  
% Calculate % open at each second for each step rate. 
zVals = struct([]); 
for i = 1:length(slope) 
  clear zData; 
  for j = 1:tOpenMax 
    zData(j) = x(j)*slope(i); 
    if zData(j) > 100 
      zData(j) = 100; % Do not exceed 100% open. 
    end 
    zVals(i).data = zData; 
  end 
end 
  
% Generate the XZ planes for each step rate, and connect the planes with surfaces. 
clear X 
X = [x; x]; % Time. 
  
for i = 1:length(rate) 
  clear Y Z 
  j = i + 1; 
  if j > length(rate) 
    break; 
  end 
  Y = [ yVals(i).data; yVals(j).data ]; % Stepping rate. 
  Z = [ zVals(i).data; zVals(j).data ]; % Percent open. 
  surf(X, Y, Z) 
  hold on 
101 
 
end 
  
shading flat 
axis([0 max(x) 0 max(rate) 0 100]) 
set(gca,'XTick',[0 50 100 150 200 250 300 350 tOpenMax]) 
set(gca,'YTick',[0 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5]) 
  
grid on 
title('Valve % Open Lookup Table') 
xlabel('Time (seconds)') 
ylabel('Stepping Rate (volts)') 
zlabel('Valve Position (% Open)') 
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Appendix B 
Embedded MATLAB Functions 
Aalborg Valve 
function [pctNew,Q] = fcn(pct,ctrl,rMax,sTime) 
%{ 
Model of the Aalborg flow-control valve. 
%} 
  
% The minimum stepping rate is fixed by the design of the valve. This rate was determined 
% experimentally to be between 0.045 and 0.05 volts. 
rMin = 0.05; 
  
% The following slopes were determined using MATLAB's cftool operating on data captured 
% with ControlDesk. Units of slope are (% open)/sec. Refer to Table 4-3. 
slope = [ 0.2372 0.4195 0.6012 0.8827 1.146 1.472 1.898 2.246 2.685 3.089 3.569 ... 
3.991 4.460 4.935 5.408 ]; 
  
% Decide if interpolation is required.  
posFlag = -1;  
  
% Preallocate variables or this function will not compile. 
pctIncr = 0.0; 
x1 = 0.0; x3 = 0.0; 
y1 = 0.0; y2 = 0.0; y3 = 0.0; 
   
% Determine whether to open or close the valve. 
if ctrl < 0 
  dir = -1; % Close. 
elseif ctrl > 0 
  dir = 1; % Open. 
else 
  dir = 0; % Hold. 
end 
  
% The control signal must be positive for interpolation. 
ctrl = abs(ctrl);  
  
if ctrl == 0 
  pctIncr = 0; 
  posFlag = 1; 
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end 
   
% Do not exceed the maximum step rate set by the user. Do not step slower than possible 
% with the valve. 
if ctrl > rMax 
  ctrl = rMax; 
end 
  
if ctrl < rMin 
  ctrl = rMin; 
end 
  
% Determine the boundary curves for the interpolation. The following is a lookup table, and it 
is % shown graphically in Figure 4-10. 
if posFlag < 0 
  if 0 < ctrl && ctrl <= 0.1 
    x1 = 0; y1 = 0; 
    x3 = 0.1; y3 = slope(1); 
  elseif 0.1 < ctrl && ctrl <= 0.2 
    x1 = 0.1; y1 = slope(1); 
    x3 = 0.2; y3 = slope(2);  
  elseif 0.2 < ctrl && ctrl <= 0.3 
    x1 = 0.2; y1 = slope(2); 
    x3 = 0.3; y3 = slope(3); 
  elseif 0.3 < ctrl && ctrl <= 0.4 
    x1 = 0.3; y1 = slope(3); 
    x3 = 0.4; y3 = slope(4); 
  elseif 0.4 < ctrl && ctrl <= 0.5 
    x1 = 0.4; y1 = slope(4); 
    x3 = 0.5; y3 = slope(5); 
  elseif 0.5 < ctrl && ctrl <= 0.6 
    x1 = 0.5; y1 = slope(5); 
    x3 = 0.6; y3 = slope(6); 
  elseif 0.6 < ctrl && ctrl <= 0.7 
    x1 = 0.6; y1 = slope(6); 
    x3 = 0.7; y3 = slope(7); 
  elseif 0.7 < ctrl && ctrl <= 0.8 
    x1 = 0.7; y1 = slope(7); 
    x3 = 0.8; y3 = slope(8);  
  elseif 0.8 < ctrl && ctrl <= 0.9 
    x1 = 0.8; y1 = slope(8); 
    x3 = 0.9; y3 = slope(9); 
  elseif 0.9 < ctrl && ctrl <= 1.0 
    x1 = 0.9; y1 = slope(9); 
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    x3 = 1.0; y3 = slope(10); 
  elseif 1.0 < ctrl && ctrl <= 1.1 
    x1 = 1.0; y1 = slope(10); 
    x3 = 1.1; y3 = slope(11); 
  elseif 1.1 < ctrl && ctrl <= 1.2 
    x1 = 1.1; y1 = slope(11); 
    x3 = 1.2; y3 = slope(12); 
  elseif 1.2 < ctrl && ctrl <= 1.3 
    x1 = 1.2; y1 = slope(12); 
    x3 = 1.3; y3 = slope(13); 
  elseif 1.3 < ctrl && ctrl <= 1.4 
    x1 = 1.3; y1 = slope(13); 
    x3 = 1.4; y3 = slope(14); 
  elseif 1.4 < ctrl && ctrl <= 1.5 
    x1 = 1.4; y1 = slope(14); 
    x3 = 1.5; y3 = slope(15);  
  else % Greater than 1.5; use 1.5 volts for the step rate. 
    pctIncr = slope(15)*sTime; 
    posFlag = 1; 
  end 
end 
  
% If required, interpolate between the boundary curves. 
if posFlag < 0 
  % y2 = slope and x2 = ctrl 
  y2 = ((ctrl-x1)*(y3-y1))/(x3-x1) + y1; % Equation 4.15. 
  pctIncr = y2*sTime; 
end 
  
% Percent open = current position plus or minus percent increment. 
pctNew = pct + dir*pctIncr; 
  
% Check for valve saturation - the valve cannot be opened more than 100%. 
if pctNew > 100 
  pctNew = 100; 
end 
  
% Coefficients of the Flow Rate (SCFM) vs. Valve Position (% Open) curve (Figure 4-9). 
%. This curve was generated using MATLAB's cftool operating on data captured with  
% ControlDesk. 
a1 = 21.29; 
b1 = -0.0006; 
c1 = -21.29; 
d1 = -0.05416; 
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% Calculate how much air is currently flowing. pctNew can be less than zero since valve  
% delay is modeled as a negative initial value in 'Data Store Memory.' 
if pctNew < 0 
  Q = 0; 
else 
  Q = a1*exp(b1*pctNew) + c1*exp(d1*pctNew); % Equation 4.14. 
end 
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Appendix B 
Embedded MATLAB Functions 
Speed Controller 
Check Ctrl 
function [dir,rate] = fcn(act,negErr,posErr,err,ctrl,rMin,rMax) 
% This block supports the Embedded MATLAB subset. 
% See the help menu for details.  
  
%{ 
  This function determines the direction of valve motion (open, close or hold) and the rate of 
opening and closing. 
  inputs:  
          act = sets automatic speed control to on or off. 
          negErr = upper limit of dead band. 
          posErr = lower limit of dead band. 
          err = difference in set and measured rpm. 
          ctrl = stepping rate as determined by the controller. 
          rMin = minimum stepping rate allowed by the user. 
          rMax = maximum stepping rate allowed by the user. 
  outputs:  
          dir = direction of valve travel - open, close or hold. 
          rate = stepping rate in volts to valve. 
%} 
  
% Close the valve fairly rapidly if speed control is turned off. 
if act < 0.5 
  rate = rMax; % e.g. 0.3 volts. 
  dir = 1.5; % 1.5 volts to close.  
  return; 
end 
  
% Hold the valve's position if the measured rpm is within the range of the user-specified  
% allowable error (i.e. dead band). Remember that positive overshoot equals negative error  
% since error = set speed - measured speed. 
if err < 0 % Measured speed greater than set speed. 
  if err >= -negErr % Negative error is entered as a positive number. 
    rate = 0; 
    dir = 0; 
    return; 
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  end 
end 
  
if err > 0 % Measured speed less than set speed. 
  if err <= posErr  
    rate = 0; 
    dir = 0; 
    return; 
  end 
end 
  
if err == 0 % Measured speed equals set speed. 
  rate = 0; 
  dir = 0; 
  return; 
end 
 
% The sign of the control signal determines whether to open or close the valve. 
if ctrl < 0 
  dir = 1.5; % 1.5 volts to close. 
elseif ctrl > 0 
  dir = 8.5; % 8.5 volts to open. 
else 
  dir = 0; % 0 volts to hold the current position. 
end 
  
% The stepping rate must be a positive voltage. 
ctrl = abs(ctrl); 
  
% Limit the stepping rates according to user preferences. 
if ctrl <= rMin 
  rate = rMin; 
  return; 
end 
  
if ctrl >= rMax 
  rate = rMax; 
  return; 
end 
  
% Use the stepping rate determined by the controller. 
rate = ctrl; 
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Check Int Windup 
function [Ki,reset] = fcn(ctrl,rMax,KiSet) 
% This block supports the Embedded MATLAB subset. 
% See the help menu for details.  
  
if ctrl > rMax % Deactivate integral control. 
  Ki = 0; 
  reset = 1; 
else % Continue with integral action. 
  Ki = KiSet; 
  reset = 0; 
end 
 
 
Deact Deriv Ctrl 
function ddc = fcn(dRPM,aRPM) 
% This block supports the Embedded MATLAB subset. 
% See the help menu for details.  
  
% Deactivate derivative control when rotor speed exceeds a user-specified rpm. 
if aRPM >= dRPM 
  ddc = 0; % Turn off. 
else 
  ddc = 1; % Turn on. 
end 
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Appendix C 
Python Programs 
_amp adjust.py 
 
#  -*- coding: cp1252 -*- 
 
# NOTE:  All checkboxes on the "amp adjust" dialog are disabled if the rotor is spinning. 
 
def On_Instrumentation_ampadjust_btnCalMode_StateChanged(State): 
    """ 
    Syntax      : On_Instrumentation_ampadjust_btnCalMode_StateChanged(State) 
 
    Purpose     : StateChanged event handler; activate/deactivate calibration mode. 
 
    Parameters  : State 
    """ 
    from cdautomationlib import Instrumentation  
    
    cLayout = Instrumentation().Layouts.Item("control parms") 
    btnIGReset = cLayout.Instruments.Item("btnIGReset")  
    btnIGReset.CheckState = 1 
 
    Layout  = Instrumentation().Layouts.Item("amp adjust") 
    btnAmp1 = Layout.Instruments.Item("btnAmp1") 
    btnAmp2 = Layout.Instruments.Item("btnAmp2") 
    btnAmp3 = Layout.Instruments.Item("btnAmp3") 
    btnAmp4 = Layout.Instruments.Item("btnAmp4") 
    btnAmp5 = Layout.Instruments.Item("btnAmp5") 
    btnAmp6 = Layout.Instruments.Item("btnAmp6") 
    btnAmp7 = Layout.Instruments.Item("btnAmp7") 
    btnAmp8 = Layout.Instruments.Item("btnAmp8") 
 
    if State == 1: # Activate cal mode - turn off all amplifiers. 
      btnAmp1.CheckState = 0 
      btnAmp2.CheckState = 0 
      btnAmp3.CheckState = 0 
      btnAmp4.CheckState = 0 
      btnAmp5.CheckState = 0 
      btnAmp6.CheckState = 0 
      btnAmp7.CheckState = 0 
      btnAmp8.CheckState = 0 
      btnAmp8.CheckState = 0 
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    else: # Deactivate cal mode - turn on all amplifiers. 
      btnAmp1.CheckState = 1 
      btnAmp2.CheckState = 1 
      btnAmp3.CheckState = 1 
      btnAmp4.CheckState = 1 
      btnAmp5.CheckState = 1 
      btnAmp6.CheckState = 1 
      btnAmp7.CheckState = 1 
      btnAmp8.CheckState = 1 
      btnAmp8.CheckState = 1 
  
    return  # Just to mark the end of the function. 
 
 
# Determine if calibration can be performed. 
 
def calDim(): # Dim - the checkboxes are "dimmed" or disabled. 
   
  import win32con 
  import win32ui 
 
  from cdautomationlib import Instrumentation  
    
  aLayout  = Instrumentation().Layouts.Item("amp adjust") 
  btnCalMode = aLayout.Instruments.Item("btnCalMode") 
 
  if btnCalMode.CheckEnabled: 
    return False # Okay to calibrate. 
 
  # If calibration mode is not enabled, then no calibration can be performed. 
   
  msg1 = "Calibration cannot be performed unless the rotor is at rest and\n" 
  msg2 = "both 'Set Speed' and Valve In/Out 'Manual Operation' are off." 
  msg = msg1 + msg2 
  win32ui.MessageBox(msg, "Information", win32con.MB_OK | 
win32con.MB_ICONINFORMATION) 
  return True 
  
  
# Determine if calibration is activated. 
 
def calOff(): 
   
  import win32con 
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  import win32ui 
 
  from cdautomationlib import Instrumentation  
    
  aLayout  = Instrumentation().Layouts.Item("amp adjust") 
  btnCalMode = aLayout.Instruments.Item("btnCalMode") 
 
  if btnCalMode.Value == 1: 
    return False # Okay to calibrate. 
 
  # If calibration is not checked, then no calibration can be performed. 
   
  msg ="Please activate calibration mode." 
  win32ui.MessageBox(msg, "Information", win32con.MB_OK | 
win32con.MB_ICONINFORMATION) 
  return True 
 
 
def On_Instrumentation_ampadjust_btn25up_Click(): 
    """ 
    Syntax      : On_Instrumentation_ampadjust_btn25up_Click() 
 
    Purpose     : Click event handler; activate amps 2 and 5. 
 
    Parameters  : None 
 
    """ 
 
    if calDim(): 
      return 
 
    if calOff(): 
      return 
 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("amp adjust") 
   
    btnAmp2 = Layout.Instruments.Item("btnAmp2") 
    btnAmp5 = Layout.Instruments.Item("btnAmp5") 
 
    # Activate desired amplifiers. 
 
    btnAmp2.CheckState = 1 
    btnAmp5.CheckState = 1 
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    return 
 
 
def On_Instrumentation_ampadjust_btn47dn_Click(): 
    """ 
    Syntax      : On_Instrumentation_ampadjust_btn47dn_Click() 
 
    Purpose     : Click event handler; activate amps 4 and 7. 
 
    Parameters  : None 
 
    """ 
 
    if calDim(): 
      return 
 
    if calOff(): 
      return 
 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("amp adjust") 
     
    btnAmp4 = Layout.Instruments.Item("btnAmp4") 
    btnAmp7 = Layout.Instruments.Item("btnAmp7") 
 
    # Activate desired amplifiers. 
 
    btnAmp4.CheckState = 1 
    btnAmp7.CheckState = 1 
 
    return 
 
 
def On_Instrumentation_ampadjust_btn16up_Click(): 
    """ 
    Syntax      : On_Instrumentation_ampadjust_btn16up_Click() 
 
    Purpose     : Click event handler; activate amps 1 and 6. 
 
    Parameters  : None 
 
    """ 
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    if calDim(): 
      return 
 
    if calOff(): 
      return 
 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("amp adjust") 
     
    btnAmp1 = Layout.Instruments.Item("btnAmp1") 
    btnAmp6 = Layout.Instruments.Item("btnAmp6") 
 
    # Activate desired amplifiers. 
 
    btnAmp1.CheckState = 1 
    btnAmp6.CheckState = 1 
 
    return 
 
 
def On_Instrumentation_ampadjust_btn38dn_Click(): 
    """ 
    Syntax      : On_Instrumentation_ampadjust_btn38dn_Click() 
 
    Purpose     : Click event handler; activate amps 3 and 8. 
 
    Parameters  : None 
 
    """ 
    if calDim(): 
      return 
 
    if calOff(): 
      return 
 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("amp adjust") 
  
    btnAmp3 = Layout.Instruments.Item("btnAmp3") 
    btnAmp8 = Layout.Instruments.Item("btnAmp8") 
 
    # Activate desired amplifiers. 
 
    btnAmp3.CheckState = 1 
114 
 
    btnAmp8.CheckState = 1 
 
    return 
 
 
def On_Instrumentation_ampadjust_btnSave25_Click(): 
    """ 
    Syntax      : On_Instrumentation_ampadjust_btnSave25_Click() 
 
    Purpose     : Click event handler; save calibration values to global variables. 
 
    Parameters  : None 
 
    """ 
 
    if calDim(): 
      return 
 
    if calOff(): 
      return 
 
    global num24up 
    global num57up 
 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("amp adjust") 
 
    btnAmp2 = Layout.Instruments.Item("btnAmp2") 
    btnAmp5 = Layout.Instruments.Item("btnAmp5") 
 
    # Amps 2 and 4 equal axis 1/channel 1. 
    num24avg = Layout.Instruments.Item("Pos1")  
    # Amps 5 and 7 equal axis 3/channel 3. 
    num57avg = Layout.Instruments.Item("Pos3") 
 
    num24up = num24avg.Value 
    num57up = num57avg.Value 
 
    btnAmp2.CheckState = 0 
    btnAmp5.CheckState = 0 
 
    return 
 
 
115 
 
def On_Instrumentation_ampadjust_btnSave47_Click(): 
    """ 
    Syntax      : On_Instrumentation_ampadjust_btnSave47_Click() 
 
    Purpose     : Click event handler; save calibration values to global variables. 
 
    Parameters  : None 
 
    """ 
 
    if calDim(): 
      return 
 
    if calOff(): 
      return 
 
    global num24dn 
    global num57dn 
 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("amp adjust") 
 
    btnAmp4 = Layout.Instruments.Item("btnAmp4") 
    btnAmp7 = Layout.Instruments.Item("btnAmp7") 
 
    # Amps 2 and 4 equal axis 1/channel 1. 
    num24avg = Layout.Instruments.Item("Pos1") 
    # Amps 5 and 7 equal axis 3/channel 3. 
    num57avg = Layout.Instruments.Item("Pos3") 
 
    num24dn = num24avg.Value 
    num57dn = num57avg.Value 
 
    btnAmp4.CheckState = 0 
    btnAmp7.CheckState = 0 
 
    return 
 
 
def On_Instrumentation_ampadjust_btnSave16_Click(): 
    """ 
    Syntax      : On_Instrumentation_ampadjust_btnSave16_Click() 
 
    Purpose     : Click event handler; save calibration values to global variables. 
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    Parameters  : None 
 
    """ 
     
    if calDim(): 
      return 
 
    if calOff(): 
      return 
 
    global num13up 
    global num68up 
 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("amp adjust") 
 
    btnAmp1 = Layout.Instruments.Item("btnAmp1") 
    btnAmp6 = Layout.Instruments.Item("btnAmp6") 
 
    # Amps 1 and 3 equal axis 2/channel 2. 
    num13avg = Layout.Instruments.Item("Pos2") 
    # Amps 6 and 8 equal axis 4/channel 4. 
    num68avg = Layout.Instruments.Item("Pos4") 
  
    num13up = num13avg.Value 
    num68up = num68avg.Value 
     
    btnAmp1.CheckState = 0 
    btnAmp6.CheckState = 0 
 
    return 
 
 
def On_Instrumentation_ampadjust_btnSave38_Click(): 
    """ 
    Syntax      : On_Instrumentation_ampadjust_btnSave38_Click() 
 
    Purpose     : Click event handler; save calibration values to global variables. 
 
    Parameters  : None 
 
    """ 
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    if calDim(): 
      return 
 
    if calOff(): 
      return 
 
    global num13dn 
    global num68dn 
 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("amp adjust") 
 
    btnAmp3 = Layout.Instruments.Item("btnAmp3") 
    btnAmp8 = Layout.Instruments.Item("btnAmp8") 
   
    # Amps 1 and 3 equal axis 2/channel 2. 
    num13avg = Layout.Instruments.Item("Pos2") 
    # Amps 6 and 8 equal axis 4/channel 4. 
    num68avg = Layout.Instruments.Item("Pos4") 
 
    num13dn = num13avg.Value 
    num68dn = num68avg.Value 
 
    btnAmp3.CheckState = 0 
    btnAmp8.CheckState = 0 
 
    return 
 
 
# Display the given message and ask for yes or no response. 
 
def ShowMessageBoxYN(msg): 
   
  import win32con 
  import win32ui 
 
  rc = win32ui.MessageBox(msg, "Warning", win32con.MB_YESNO | 
win32con.MB_ICONWARNING) 
   
  return rc # Yes = 6; No = 7 
 
 
# Display Windows save file dialog. 
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def ShowSaveFileDialog(initPath): 
 
  import win32con 
  import win32ui 
  import os 
 
  # Use "None" for NULL. 
  Dlg = win32ui.CreateFileDialog(False, None, None, win32con.OFN_HIDEREADONLY| 
    win32con.OFN_FILEMUSTEXIST|win32con.OFN_PATHMUSTEXIST,  
    "Data Files (*.dat)|*.dat|Text Files (*.txt)|*.txt|All Files (*.*)|*.*||", None) 
                                    
  Dlg.SetOFNInitialDir(initPath) 
     
  # Save file; prompt to overwrite. 
  while True: 
    if Dlg.DoModal() == win32con.IDOK: 
      fName = Dlg.GetPathName() 
      if os.path.isfile(fName): # Does the file already exist? 
        msg = "File " + fName + " exists." 
        msg = msg + "\nDo you want to overwrite it?" 
        # If the file exists, ask permission to overwrite. 
        rc = ShowMessageBoxYN(msg) 
        if rc is 6: # Yes, overwrite. 
          return Dlg.GetPathName() 
        else: # No, do not overwrite; prompt for another name. 
          continue 
      else: # New file. 
        return Dlg.GetPathName() 
    else: 
      # Ensure that the string "None" is returned if Cancel is pressed. 
      return "None" 
 
 
# Display Windows open file dialog. 
 
def ShowOpenFileDialog(initPath): 
 
  import win32con 
  import win32ui 
 
  # Use "None" for NULL. 
  Dlg = win32ui.CreateFileDialog(TRUE, None, None, win32con.OFN_HIDEREADONLY| 
    win32con.OFN_FILEMUSTEXIST|win32con.OFN_PATHMUSTEXIST,  
    "Data Files (*.dat)|*.dat|Text Files (*.txt)|*.txt|All Files (*.*)|*.*||", None) 
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  Dlg.SetOFNInitialDir(initPath) 
  if Dlg.DoModal() == win32con.IDOK: 
    return Dlg.GetPathName()  
  else: 
    # Ensure that the string "None" is returned if Cancel is pressed. 
    return "None" 
 
 
# Display the given message. 
 
def ShowMessageBox(type, msg): 
   
  import win32con 
  import win32ui 
 
  if type == 0: # Error. 
    win32ui.MessageBox(msg, "Error", win32con.MB_OK | win32con.MB_ICONERROR) 
  elif type == 1: # Information. 
    win32ui.MessageBox(msg, "Information", win32con.MB_OK | 
win32con.MB_ICONINFORMATION) 
  else: # Warning. 
    win32ui.MessageBox(msg, "Warning", win32con.MB_OK | 
win32con.MB_ICONWARNING) 
 
  return # Used to mark the end of a function. 
 
 
def On_Instrumentation_ampadjust_btnSaveCal_Click(): 
    """ 
    Syntax      : On_Instrumentation_ampadjust_btnSaveCal_Click() 
 
    Purpose     : Click event handler; save calibration data to a file. 
 
    Parameters  : None 
 
    """ 
 
    global num13up 
    global num13dn 
    global num24up 
    global num24dn 
    global num57up 
    global num57dn 
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    global num68up 
    global num68dn 
 
    if calDim(): 
      return 
 
    if calOff(): 
      return 
 
    import os 
    fileName = ShowSaveFileDialog(os.getcwd()) 
 
    if fileName == "None": # The Cancel button was pressed. 
      return 
 
    import cdautomationlib 
    Inst = cdautomationlib.Instrumentation() 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("amp adjust") 
 
    knbCal1 = Layout.Instruments.Item("knbCal1") 
    knbCal2 = Layout.Instruments.Item("knbCal2") 
    knbCal3 = Layout.Instruments.Item("knbCal3") 
    knbCal4 = Layout.Instruments.Item("knbCal4") 
     
    """ 
    Note the following: 
      num13up - amps 1 and 6 on; num13dn - amps 3 and 8 on. 
      num24up - amps 2 and 5 on; num24dn - amps 4 and 7 on. 
      num57up - amps 2 and 5 on; num57dn - amps 4 and 7 on. 
      num68up - amps 1 and 6 on; num68dn - amps 3 and 8 on. 
    """ 
    adj13 = -(num13up + num13dn)/2 # Channel 2. 
    adj24 = -(num24up + num24dn)/2 # Channel 1. 
    adj57 = -(num57up + num57dn)/2 # Channel 3. 
    adj68 = -(num68up + num68dn)/2 # Channel 4. 
      
    """ 
    Save the calibration values to a file. The format of the file is: 
    channel 2 value 
    channel 1 value 
    channel 3 value 
    channel 4 value 
    """ 
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    error = 0 
    info = 1 
    import sys 
    try: 
      file = open(fileName, "w") 
      file.write("%f\n" % adj13) 
      file.write("%f\n" % adj24) 
      file.write("%f\n" % adj57) 
      file.write("%f" % adj68) 
      file.close() 
      msg = "%s \nsuccessfully written." % fileName 
      print msg 
      ShowMessageBox(info, msg) 
    except IOError, (errno, strerror): 
      msg = fileName 
      msg = msg + "\nIO error(%s): %s" % (errno, strerror) 
      print msg 
      ShowMessageBox(error, msg) 
      return 
     
    # Update each knob. 
 
    knbCal1.Value = adj24   
    knbCal2.Value = adj13  
    knbCal3.Value = adj57  
    knbCal4.Value = adj68  
 
    Inst.ConnectionController.ProcessAnimationEvent("amp adjust://knbCal1", "WriteData")  
    Inst.ConnectionController.ProcessAnimationEvent("amp adjust://knbCal2", "WriteData")  
    Inst.ConnectionController.ProcessAnimationEvent("amp adjust://knbCal3", "WriteData")  
    Inst.ConnectionController.ProcessAnimationEvent("amp adjust://knbCal4", "WriteData") 
     
    return # Used to mark the end of a function. 
 
 
def On_Instrumentation_ampadjust_btnLoadCal_Click(): 
    """ 
    Syntax      : On_Instrumentation_ampadjust_btnLoadCal_Click() 
 
    Purpose     : Click event handler; read calibration data from a file. 
 
    Parameters  : None 
 
    """ 
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    if calDim(): 
      return 
 
    if calOff(): 
      return 
 
    import os 
    fileName = ShowOpenFileDialog(os.getcwd()) 
 
    if fileName == "None": # The Cancel button was pressed. 
      return 
     
    import cdautomationlib 
    Inst = cdautomationlib.Instrumentation() 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("amp adjust")     
     
    knbCal1 = Layout.Instruments.Item("knbCal1") 
    knbCal2 = Layout.Instruments.Item("knbCal2") 
    knbCal3 = Layout.Instruments.Item("knbCal3") 
    knbCal4 = Layout.Instruments.Item("knbCal4") 
 
    error = 0 
    info = 1 
    numLines = 0 
 
    # Ensure there are only 4 lines in the file. This is a simple check to keep the user from 
    # selecting an erroneous file. 
 
    try: 
      file = open(fileName, "r") 
      for line in file: 
        numLines = numLines + 1 
      file.close() 
    except IOError, (errno, strerror): 
      msg = fileName 
      msg = msg + "\nIO error(%s): %s" % (errno, strerror) 
      print msg 
      ShowMessageBox(error, msg) 
      return 
 
    if numLines is not 4: 
      msg = fileName 
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      msg = msg + "\nis not a valid data file." 
      print msg 
      ShowMessageBox(error, msg) 
      return  
 
    """ 
    Read the calibration values from a file. The format of the file is: 
    channel 2 value 
    channel 1 value 
    channel 3 value 
    channel 4 value 
    """ 
    import string 
    try: 
      file = open(fileName, "r") 
      adj13 = float(string.strip(file.readline())) 
      adj24 = float(string.strip(file.readline())) 
      adj57 = float(string.strip(file.readline())) 
      adj68 = float(string.strip(file.readline())) 
      file.close() 
      msg = "%s \nsuccessfully read." % fileName 
      print msg 
      ShowMessageBox(info, msg) 
    except IOError, (errno, strerror): 
      msg = fileName 
      msg = msg + "\nIO error(%s): %s" % (errno, strerror) 
      print msg 
      ShowMessageBox(error, msg) 
      return 
      
    # Update each knob. 
 
    knbCal1.Value = adj24 
    knbCal2.Value = adj13 
    knbCal3.Value = adj57 
    knbCal4.Value = adj68 
 
    Inst.ConnectionController.ProcessAnimationEvent("amp adjust://knbCal1", "WriteData")  
    Inst.ConnectionController.ProcessAnimationEvent("amp adjust://knbCal2", "WriteData")  
    Inst.ConnectionController.ProcessAnimationEvent("amp adjust://knbCal3", "WriteData")  
    Inst.ConnectionController.ProcessAnimationEvent("amp adjust://knbCal4", "WriteData") 
       
    return # Used to mark the end of a function. 
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Appendix C 
Python Programs 
_aux input.py 
#  -*- coding: cp1252 -*- 
 
def manageAmps(Value): 
    """ 
    Perform the following depending on Value: 
      Value = 1:  enable the amplifier checkboxes. 
      Value = 2:  disable the amplifier checkboxes. 
      Value = 3:  enable the amplifier checkboxes, and turn on the amplifiers. 
 
    Note: this same function is in _layout_start.py 
    """ 
     
    from cdautomationlib import Instrumentation 
 
    aLayout  = Instrumentation().Layouts.Item("amp adjust") 
    btnAmp1 = aLayout.Instruments.Item("btnAmp1") 
    btnAmp2 = aLayout.Instruments.Item("btnAmp2") 
    btnAmp3 = aLayout.Instruments.Item("btnAmp3") 
    btnAmp4 = aLayout.Instruments.Item("btnAmp4") 
    btnAmp5 = aLayout.Instruments.Item("btnAmp5") 
    btnAmp6 = aLayout.Instruments.Item("btnAmp6") 
    btnAmp7 = aLayout.Instruments.Item("btnAmp7") 
    btnAmp8 = aLayout.Instruments.Item("btnAmp8") 
 
    if Value == 1 or Value == 3: 
      btnAmp1.CheckEnabled = True 
      btnAmp2.CheckEnabled = True 
      btnAmp3.CheckEnabled = True 
      btnAmp4.CheckEnabled = True 
      btnAmp5.CheckEnabled = True 
      btnAmp6.CheckEnabled = True 
      btnAmp7.CheckEnabled = True 
      btnAmp8.CheckEnabled = True 
 
    if Value == 2: 
      btnAmp1.CheckEnabled = False 
      btnAmp2.CheckEnabled = False 
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      btnAmp3.CheckEnabled = False 
      btnAmp4.CheckEnabled = False 
      btnAmp5.CheckEnabled = False 
      btnAmp6.CheckEnabled = False 
      btnAmp7.CheckEnabled = False 
      btnAmp8.CheckEnabled = False 
 
    if Value == 3: 
      btnAmp1.CheckState = 1 
      btnAmp2.CheckState = 1 
      btnAmp3.CheckState = 1 
      btnAmp4.CheckState = 1 
      btnAmp5.CheckState = 1 
      btnAmp6.CheckState = 1 
      btnAmp7.CheckState = 1 
      btnAmp8.CheckState = 1 
    
    return # Just marks the end of this function. 
 
 
def On_Instrumentation_auxinput_manCtrlRadioButton_UserInteraction 
(DispId,Value,EventId): 
    """ 
    Syntax:  On_Instrumentation_auxinput_manCtrlRadioButton_UserInteraction 
(DispId,Value,EventId) 
 
    Purpose:  UserInteraction event handler; activate manual operation of the flow control 
valve. 
 
    Parameters:  DispId,Value,EventId 
 
    """ 
 
    import win32con 
    import win32ui 
 
    from cdautomationlib import Instrumentation 
    import cdautomationlib 
  
    Inst = cdautomationlib.Instrumentation() 
    Layout  = Instrumentation().Layouts.Item("layout_start") 
    airButton = Layout.Instruments.Item("airOnOffRadioButton") 
    rotorStatus = Layout.Instruments.Item("rotorStatusMessage") 
    digitalTach = Layout.Instruments.Item("mainDigitalTachDisplay") 
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    rpm = digitalTach.Value 
 
    cpLayout  = Instrumentation().Layouts.Item("control parms") 
    limitADRButton = cpLayout.Instruments.Item("btnLimitDetectADR") 
    auxLayout  = Instrumentation().Layouts.Item("aux input") 
    manButton = auxLayout.Instruments.Item("manCtrlRadioButton") 
 
    # Turn off automatic speed control. 
    airButton.Value = 0 
 
    # Update the automatic "Set Speed" radio buttons. 
    Inst.ConnectionController.ProcessAnimationEvent("layout_start://airOnOffRadioButton",  
      "WriteData") 
 
    # Enable ADR limit detect only if the rotor is at rest and the air is off. 
 
    if airButton.Value == 0 and manButton.Value == 0: 
      checkVal = 0 
    else:  
      checkVal = 1 
 
    if rpm < 1 and checkVal == 0: 
      limitADRButton.CheckEnabled = True 
    else: 
      limitADRButton.CheckState = 0 
      limitADRButton.CheckEnabled = False 
 
    # The air can be turned off at anytime. 
    if manButton.Value == 0: 
      return 
 
    # Make sure the amplifiers are all on before spinning up the rotor. 
   
    aLayout  = Instrumentation().Layouts.Item("amp adjust") 
    btnCalMode = aLayout.Instruments.Item("btnCalMode") 
    btnCalMode.CheckEnabled = True 
    btnCalMode.CheckState = 0 
       
    # Arg = 3; enable the amplifier checkboxes, and turn on the amplifiers. 
    manageAmps(3) 
       
    return # Just marks the end of this function. 
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def On_Instrumentation_auxinput_manPosRadioButton_UserInteraction 
(DispId,Value,EventId): 
    """ 
    Syntax:  On_Instrumentation_auxinput_manPosRadioButton_UserInteraction 
(DispId,Value,EventId) 
 
    Purpose:  UserInteraction event handler; hold the valve's position when in manual mode. 
 
    Parameters:  DispId,Value,EventId 
 
    """ 
 
    from cdautomationlib import Instrumentation 
    import cdautomationlib 
  
    Inst = cdautomationlib.Instrumentation() 
     
    auxLayout  = Instrumentation().Layouts.Item("aux input") 
    posButton = auxLayout.Instruments.Item("manPosRadioButton") 
    rateNumInput = auxLayout.Instruments.Item("manStepRateNumericInput") 
 
    val = posButton.Value 
         
    # Set the step rate to zero if the hold button was pressed. 
    if val < 0.5: 
      rateNumInput.Value = 0 
 
      # Update the step rate in the numerical input box. 
      Inst.ConnectionController.ProcessAnimationEvent("aux 
input://manStepRateNumericInput", "WriteData") 
 
    return # Just marks the end of this function. 
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Appendix C 
Python Programs 
_control parms.py 
#  -*- coding: cp1252 -*- 
 
def On_Instrumentation_controlparms_actADRRadioButton_UserInteraction 
(DispId,Value,EventId): 
    """ 
    Syntax:  On_Instrumentation_controlparms_actADRRadioButton_UserInteraction 
(DispId,Value,EventId) 
 
    Purpose     : UserInteraction event handler; activate adaptive control. 
 
    Parameters  : DispId,Value,EventId 
 
    """ 
 
    from cdautomationlib import Instrumentation 
     
    cLayout  = Instrumentation().Layouts.Item("control parms") 
    ADRButton = cLayout.Instruments.Item("actADRRadioButton") 
    btnGpAct = cLayout.Instruments.Item("btnGpAct") 
    btnHpAct = cLayout.Instruments.Item("btnHpAct") 
    limitADRButton = cLayout.Instruments.Item("btnLimitDetectADR") 
    manButton = cLayout.Instruments.Item("manCtrlRadioButtion") 
 
    sLayout  = Instrumentation().Layouts.Item("layout_start") 
    airButton = sLayout.Instruments.Item("airOnOffRadioButton") 
    digitalTach = sLayout.Instruments.Item("mainDigitalTachDisplay") 
    rpm = digitalTach.Value 
 
    # Value = 0.0 if "Off" was pressed; Value = 1.0 if "On" was pressed. 
    if ADRButton.Value == 0: 
      btnGpAct.CheckState = 0 
      btnHpAct.CheckState = 0 
      limitADRButton.CheckState = 0 
 
    elif ADRButton.Value == 1: 
      btnGpAct.CheckState = 1 
      btnHpAct.CheckState = 1 
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      limitADRButton.CheckState = 0 
 
      """ Direct from Alex: 
      Important Note:  limit detect should not be used when the motor is running. 
      Shutting off the bearing while spinning can cause equipment damage. 
      """ 
      # Therefore, enable ADR limit detect only if the rotor is at rest and the air is off. 
       
      if airButton.Value == 0 and manButton.Value == 0: 
        checkVal = 0 
      else: 
        checkVal = 1 
 
      if rpm < 1 and checkVal == 0: 
        limitADRButton.CheckEnabled = True 
      else: 
        limitADRButton.CheckState = 0 
        limitADRButton.CheckEnabled = False 
 
    else: 
      return 
 
    return # Just marks the end of this function. 
 
 
# Return True if the rotor is stopped; return False if the rotor is still moving. 
 
def rotorStopped(): 
 
  from cdautomationlib import Instrumentation  
 
  sLayout  = Instrumentation().Layouts.Item("layout_start") 
  airButton = sLayout.Instruments.Item("airOnOffRadioButton") 
  digitalTach = sLayout.Instruments.Item("mainDigitalTachDisplay") 
  rpm = digitalTach.Value 
 
  auxLayout  = Instrumentation().Layouts.Item("aux input") 
  manButton = auxLayout.Instruments.Item("manCtrlRadioButton") 
  
  if airButton.Value == 0 and manButton.Value == 0: 
    checkVal = 0 
  else: 
    checkVal = 1 
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  if rpm < 1 and checkVal == 0: 
    return True 
  
  # The the user why bearing control values cannot be loaded or saved at this time. 
   
  msg1 ="Cannot Load/Save values unless the rotor is at rest,\n"  
  msg2 = "and both 'Set Speed' and 'Man. Valve Control' are off." 
  msg = msg1 + msg2 
  ShowMessageBox(1, msg) 
  return False 
 
 
# Display the given message. 
 
def ShowMessageBox(type, msg): 
   
  import win32con 
  import win32ui 
 
  if type == 0: # Error. 
    win32ui.MessageBox(msg, "Error", win32con.MB_OK | win32con.MB_ICONERROR) 
  elif type == 1: # Information. 
    win32ui.MessageBox(msg, "Information", win32con.MB_OK | 
win32con.MB_ICONINFORMATION) 
  else: # Warning. 
    win32ui.MessageBox(msg, "Warning", win32con.MB_OK | 
win32con.MB_ICONWARNING) 
 
  return # Used to mark the end of a function. 
 
 
# Display the given message and ask for yes or no response. 
 
def ShowMessageBoxYN(msg): 
   
  import win32con 
  import win32ui 
 
  rc = win32ui.MessageBox(msg, "Warning", win32con.MB_YESNO | 
win32con.MB_ICONWARNING) 
   
  return rc # Yes = 6; No = 7 
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# Display Windows open file dialog. 
 
def ShowOpenFileDialog(initPath): 
 
  import win32con 
  import win32ui 
 
  # Use "None" for NULL. 
  Dlg = win32ui.CreateFileDialog(TRUE, None, None, win32con.OFN_HIDEREADONLY| 
    win32con.OFN_FILEMUSTEXIST|win32con.OFN_PATHMUSTEXIST,  
    "Data Files (*.dat)|*.dat|Text Files (*.txt)|*.txt|All Files (*.*)|*.*||", None) 
 
  Dlg.SetOFNInitialDir(initPath) 
  if Dlg.DoModal() == win32con.IDOK: 
    return Dlg.GetPathName()  
  else: 
    # Ensure that the string "None" is returned if Cancel is pressed. 
    return "None" 
 
 
# Display Windows save file dialog. 
 
def ShowSaveFileDialog(initPath): 
 
  import win32con 
  import win32ui 
  import os 
 
  # Use "None" for NULL. 
  Dlg = win32ui.CreateFileDialog(False, None, None, win32con.OFN_HIDEREADONLY| 
    win32con.OFN_FILEMUSTEXIST|win32con.OFN_PATHMUSTEXIST,  
    "Data Files (*.dat)|*.dat|Text Files (*.txt)|*.txt|All Files (*.*)|*.*||", None) 
 
  Dlg.SetOFNInitialDir(initPath) 
     
  # Save file; prompt to overwrite. 
  while True: 
    if Dlg.DoModal() == win32con.IDOK: 
      fName = Dlg.GetPathName() 
      if os.path.isfile(fName): # Does the file already exist? 
        msg = "File " + fName + " exists." 
        msg = msg + "\nDo you want to overwrite it?" 
        # If the file exists, ask permission to overwrite. 
        rc = ShowMessageBoxYN(msg) 
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        if rc is 6: # Yes, overwrite. 
          return Dlg.GetPathName() 
        else: # No, do not overwrite; prompt for another name. 
          continue 
      else: # New file. 
        return Dlg.GetPathName() 
    else: 
      # Ensure that the string "None" is returned if Cancel is pressed. 
      return "None" 
 
 
def On_Instrumentation_controlparms_loadBCValsPushButton_Click(): 
    """ 
    Syntax      : On_Instrumentation_controlparms_loadBCValsPushButton_Click() 
 
    Purpose     : Click event handler; read bearing control settings from a file. 
 
    Parameters  : None 
 
    """ 
     
    if rotorStopped() is False: 
      return 
 
    import os 
    fileName = ShowOpenFileDialog(os.getcwd()) 
 
    # The Cancel button was pressed. 
    if fileName == "None": 
      return 
     
    import cdautomationlib 
    Inst = cdautomationlib.Instrumentation() 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("control parms")     
     
    sldBt1 = Layout.Instruments.Item("Bt1") 
    sldBb1 = Layout.Instruments.Item("Bb1") 
    sldKp1 = Layout.Instruments.Item("Kp1") 
    sldKd1 = Layout.Instruments.Item("Kd1") 
    sldKi1 = Layout.Instruments.Item("Ki1") 
    sldBt2 = Layout.Instruments.Item("Bt2") 
    sldBb2 = Layout.Instruments.Item("Bb2") 
    sldKp2 = Layout.Instruments.Item("Kp2") 
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    sldKd2 = Layout.Instruments.Item("Kd2") 
    sldKi2 = Layout.Instruments.Item("Ki2") 
 
    error = 0 
    info = 1 
    numLines = 0 
 
    # Ensure there are only 10 lines in the file. This is a simple check to keep the user from  
    # selecting an erroneous file. 
 
    try: 
      file = open(fileName, "r") 
      for line in file: 
        numLines = numLines + 1 
      file.close() 
    except IOError, (errno, strerror): 
      msg = fileName 
      msg = msg + "\nIO error(%s): %s" % (errno, strerror) 
      print msg 
      ShowMessageBox(error, msg) 
      return 
 
    if numLines is not 10: 
      msg = fileName 
      msg = msg + "\nis not a valid data file." 
      print msg 
      ShowMessageBox(error, msg) 
      return  
 
    import string 
    try: 
      # Read the control settings from a file, and convert each value to a floating 
      # point decimal number. 
      file = open(fileName, "r") 
      # Bt1.Value = float(string.strip(file.readline())) <- This will not work. Each  
      # line must be first read into a separate variable. This variable can then be  
      # assigned to the instrument. 
      valBt1 = float(string.strip(file.readline())) 
      valBb1 = float(string.strip(file.readline())) 
      valKp1 = float(string.strip(file.readline())) 
      valKd1 = float(string.strip(file.readline())) 
      valKi1 = float(string.strip(file.readline())) 
      valBt2 = float(string.strip(file.readline())) 
      valBb2 = float(string.strip(file.readline())) 
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      valKp2 = float(string.strip(file.readline())) 
      valKd2 = float(string.strip(file.readline())) 
      valKi2 = float(string.strip(file.readline())) 
      file.close() 
      msg = "%s \nsuccessfully read." % fileName 
      print msg 
      ShowMessageBox(info, msg) 
    except IOError, (errno, strerror): 
      msg = fileName 
      msg = msg + "\nIO error(%s): %s" % (errno, strerror) 
      print msg 
      ShowMessageBox(error, msg) 
      return 
 
    # Now, the values read from the file can be assigned to the instruments. 
 
    sldBt1.Value = valBt1 
    sldBb1.Value = valBb1 
    sldKp1.Value = valKp1 
    sldKd1.Value = valKd1 
    sldKi1.Value = valKi1 
    sldBt2.Value = valBt2 
    sldBb2.Value = valBb2 
    sldKp2.Value = valKp2 
    sldKd2.Value = valKd2 
    sldKi2.Value = valKi2 
 
    # Update the instruments. 
 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://Bt1", "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://Bb1", "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://Kp1", "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://Kd1", "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://Ki1", "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://Bt2", "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://Bb2", "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://Kp2", "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://Kd2", "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://Ki2", "WriteData") 
       
    return # Used to mark the end of a function. 
 
 
def On_Instrumentation_controlparms_saveBCValsPushButton_Click(): 
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    """ 
    Syntax      : On_Instrumentation_controlparms_saveBCValsPushButton_Click() 
 
    Purpose     : Click event handler; save bearing control settings to a file. 
 
    Parameters  : None 
 
    """ 
 
    if rotorStopped() is False: 
      return 
 
    import os 
    fileName = ShowSaveFileDialog(os.getcwd()) 
 
    if fileName == "None": 
      return 
 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("control parms") 
 
    sldBt1 = Layout.Instruments.Item("Bt1") 
    sldBb1 = Layout.Instruments.Item("Bb1") 
    sldKp1 = Layout.Instruments.Item("Kp1") 
    sldKd1 = Layout.Instruments.Item("Kd1") 
    sldKi1 = Layout.Instruments.Item("Ki1") 
    sldBt2 = Layout.Instruments.Item("Bt2") 
    sldBb2 = Layout.Instruments.Item("Bb2") 
    sldKp2 = Layout.Instruments.Item("Kp2") 
    sldKd2 = Layout.Instruments.Item("Kd2") 
    sldKi2 = Layout.Instruments.Item("Ki2") 
          
    error = 0 
    info = 1 
    import sys 
    try: 
      # Write the control settings to a file. For consistency, the order in which the 
      # values are written is identical to that used by Alex. 
      file = open(fileName, "w") 
      file.write("%f\n" % sldBt1.Value) 
      file.write("%f\n" % sldBb1.Value) 
      file.write("%f\n" % sldKp1.Value) 
      file.write("%f\n" % sldKd1.Value) 
      file.write("%f\n" % sldKi1.Value) 
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      file.write("%f\n" % sldBt2.Value) 
      file.write("%f\n" % sldBb2.Value) 
      file.write("%f\n" % sldKp2.Value) 
      file.write("%f\n" % sldKd2.Value) 
      file.write("%f\n" % sldKi2.Value) 
      file.close() 
      msg = "%s \nsuccessfully written." % fileName 
      print msg 
      ShowMessageBox(info, msg) 
    except IOError, (errno, strerror): 
      msg = fileName 
      msg = msg + "\nIO error(%s): %s" % (errno, strerror) 
      print msg 
      ShowMessageBox(error, msg) 
      return 
    
    return # Used to mark the end of a function. 
 
 
def On_Instrumentation_controlparms_loadCruiseValsPushButton_Click(): 
    """ 
    Syntax      : On_Instrumentation_controlparms_loadCruiseValsPushButton_Click() 
 
    Purpose     : Click event handler; read speed control settings from a file.. 
 
    Parameters  : None 
 
    """ 
    if rotorStopped() is False: 
      return 
 
    import os 
    fileName = ShowOpenFileDialog(os.getcwd()) 
     
    # The Cancel button was pressed. 
    if fileName == "None": 
      return 
     
    import cdautomationlib 
    Inst = cdautomationlib.Instrumentation() 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("control parms")     
     
    KpSlider = Layout.Instruments.Item("KpCruiseSlider") 
137 
 
    KiSlider = Layout.Instruments.Item("KiCruiseSlider") 
    KdSlider = Layout.Instruments.Item("KdCruiseSlider") 
    KpPower = Layout.Instruments.Item("KpCruisePowerSelection") 
    KiPower = Layout.Instruments.Item("KiCruisePowerSelection") 
    KdPower = Layout.Instruments.Item("KdCruisePowerSelection") 
    stepMin = Layout.Instruments.Item("stepRateMin") 
    stepMax = Layout.Instruments.Item("stepRateMax") 
    negErr = Layout.Instruments.Item("negErrorLimit") 
    posErr = Layout.Instruments.Item("posErrorLimit") 
    tachMin = Layout.Instruments.Item("tachRPMMin") 
    tachMax = Layout.Instruments.Item("tachRPMMax") 
    ddcRPM = Layout.Instruments.Item("ddcAboveRPM") 
 
    error = 0 
    info = 1 
    numLines = 0 
 
    # Ensure there are only 13 lines in the file. This is a simple check to keep the 
    # user from selecting an erroneous file. 
 
    try: 
      file = open(fileName, "r") 
      for line in file: 
        numLines = numLines + 1 
      file.close() 
    except IOError, (errno, strerror): 
      msg = fileName 
      msg = msg + "\nIO error(%s): %s" % (errno, strerror) 
      print msg 
      ShowMessageBox(error, msg) 
      return 
 
    if numLines is not 13: 
      msg = fileName 
      msg = msg + "\nis not a valid data file." 
      print msg 
      ShowMessageBox(error, msg) 
      return  
 
    import string 
    try: 
      # Read the control settings from a file, and convert each value to a floating 
      # point decimal number. 
      file = open(fileName, "r") 
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      # Bt1.Value = float(string.strip(file.readline())) <- This will not work. Each  
      # line must be first read into a separate variable. This variable can then be  
      # assigned to the instrument. 
      valKpS = float(string.strip(file.readline())) 
      valKiS = float(string.strip(file.readline())) 
      valKdS = float(string.strip(file.readline())) 
      valKpP = float(string.strip(file.readline())) 
      valKiP = float(string.strip(file.readline())) 
      valKdP = float(string.strip(file.readline())) 
      valSMin = float(string.strip(file.readline())) 
      valSMax = float(string.strip(file.readline())) 
      valNErr = float(string.strip(file.readline())) 
      valPErr = float(string.strip(file.readline())) 
      valTMin = float(string.strip(file.readline())) 
      valTMax = float(string.strip(file.readline())) 
      valDDC = float(string.strip(file.readline())) 
      file.close() 
      msg = "%s \nsuccessfully read." % fileName 
      print msg 
      ShowMessageBox(info, msg) 
    except IOError, (errno, strerror): 
      msg = fileName 
      msg = msg + "\nIO error(%s): %s" % (errno, strerror) 
      print msg 
      ShowMessageBox(error, msg) 
      return 
 
    # Now, the values read from the file can be assigned to the instruments. 
 
    KpSlider.Value = valKpS 
    KiSlider.Value = valKiS 
    KdSlider.Value = valKdS 
    KpPower.Value = valKpP 
    KiPower.Value = valKiP 
    KdPower.Value = valKdP 
    stepMin.Value = valSMin 
    stepMax.Value = valSMax 
    negErr.Value = valNErr 
    posErr.Value = valPErr 
    tachMin.Value = valTMin 
    tachMax.Value = valTMax 
    ddcRPM.Value = valDDC 
 
    # Update the instruments. 
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    Inst.ConnectionController.ProcessAnimationEvent("control parms://KpCruiseSlider", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://KiCruiseSlider", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://KdCruiseSlider", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control 
parms://KpCruisePowerSelection", "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control 
parms://KiCruisePowerSelection", "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control 
parms://KdCruisePowerSelection", "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://stepRateMin", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://stepRateMax", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://negErrorLimit", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://posErrorLimit", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://tachRPMMin", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://tachRPMMax", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://ddcAboveRPM", 
"WriteData") 
       
    return # Used to mark the end of a function. 
 
 
def On_Instrumentation_controlparms_saveCruiseValsPushButton_Click(): 
    """ 
    Syntax      : On_Instrumentation_controlparms_saveCruiseValsPushButton_Click() 
 
    Purpose     : Click event handler; save speed control settings to a file.. 
 
    Parameters  : None 
 
    """ 
    if rotorStopped() is False: 
      return 
 
    import os 
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    fileName = ShowSaveFileDialog(os.getcwd()) 
 
    if fileName == "None": # The Cancel button was pressed. 
      return 
 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("control parms") 
 
    KpSlider = Layout.Instruments.Item("KpCruiseSlider") 
    KiSlider = Layout.Instruments.Item("KiCruiseSlider") 
    KdSlider = Layout.Instruments.Item("KdCruiseSlider") 
    KpPower = Layout.Instruments.Item("KpCruisePowerSelection") 
    KiPower = Layout.Instruments.Item("KiCruisePowerSelection") 
    KdPower = Layout.Instruments.Item("KdCruisePowerSelection") 
    stepMin = Layout.Instruments.Item("stepRateMin") 
    stepMax = Layout.Instruments.Item("stepRateMax") 
    negErr = Layout.Instruments.Item("negErrorLimit") 
    posErr = Layout.Instruments.Item("posErrorLimit") 
    tachMin = Layout.Instruments.Item("tachRPMMin") 
    tachMax = Layout.Instruments.Item("tachRPMMax") 
    ddcRPM = Layout.Instruments.Item("ddcAboveRPM") 
      
    error = 0 
    info = 1 
    import sys 
    try: 
      # Write the speed control settings to a file.  
      file = open(fileName, "w") 
      file.write("%f\n" % KpSlider.Value) 
      file.write("%f\n" % KiSlider.Value) 
      file.write("%f\n" % KdSlider.Value) 
      file.write("%f\n" % KpPower.Value) 
      file.write("%f\n" % KiPower.Value) 
      file.write("%f\n" % KdPower.Value) 
      file.write("%f\n" % stepMin.Value) 
      file.write("%f\n" % stepMax.Value) 
      file.write("%f\n" % negErr.Value) 
      file.write("%f\n" % posErr.Value) 
      file.write("%f\n" % tachMin.Value) 
      file.write("%f\n" % tachMax.Value) 
      file.write("%f\n" % ddcRPM.Value) 
      file.close() 
      msg = "%s \nsuccessfully written." % fileName 
      print msg 
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      ShowMessageBox(info, msg) 
    except IOError, (errno, strerror): 
      msg = fileName 
      msg = msg + "\nIO error(%s): %s" % (errno, strerror) 
      print msg 
      ShowMessageBox(error, msg) 
      return 
    
    return # Used to mark the end of a function. 
 
 
def On_Instrumentation_controlparms_loadACValsPushButton_Click(): 
    """ 
    Syntax      : On_Instrumentation_controlparms_loadACValsPushButton_Click() 
 
    Purpose     : Click event handler; read adaptive control settings from a file. 
 
    Parameters  : None 
 
    """ 
    if rotorStopped() is False: 
      return 
 
    import os 
    fileName = ShowOpenFileDialog(os.getcwd()) 
     
    # The Cancel button was pressed. 
    if fileName == "None": 
      return 
     
    import cdautomationlib 
    Inst = cdautomationlib.Instrumentation() 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("control parms")     
     
    gLim = Layout.Instruments.Item("GSatLimit") 
    bLim = Layout.Instruments.Item("BetaSatLimit") 
    freq1 = Layout.Instruments.Item("rejectFreq1") 
    freq2 = Layout.Instruments.Item("rejectFreq2") 
    freq3 = Layout.Instruments.Item("rejectFreq3") 
    gGain = Layout.Instruments.Item("DgGain") 
    hGain = Layout.Instruments.Item("DhGain") 
 
    error = 0 
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    info = 1 
    numLines = 0 
 
    # Ensure there are only 7 lines in the file. This is a simple check to keep the 
    # user from selecting an erroneous file. 
 
    try: 
      file = open(fileName, "r") 
      for line in file: 
        numLines = numLines + 1 
      file.close() 
    except IOError, (errno, strerror): 
      msg = fileName 
      msg = msg + "\nIO error(%s): %s" % (errno, strerror) 
      print msg 
      ShowMessageBox(error, msg) 
      return 
 
    if numLines is not 7: 
      msg = fileName 
      msg = msg + "\nis not a valid data file." 
      print msg 
      ShowMessageBox(error, msg) 
      return  
 
    import string 
    try: 
      # Read the control settings from a file, and convert each value to a floating 
      # point decimal number. 
      file = open(fileName, "r") 
      # Bt1.Value = float(string.strip(file.readline())) <- This will not work. Each  
      # line must be first read into a separate variable. This variable can then be  
      # assigned to the instrument. 
      valGLim = float(string.strip(file.readline())) 
      valBLim = float(string.strip(file.readline())) 
      valFreq1 = float(string.strip(file.readline())) 
      valFreq2 = float(string.strip(file.readline())) 
      valFreq3 = float(string.strip(file.readline())) 
      valGGain = float(string.strip(file.readline())) 
      valHGain = float(string.strip(file.readline())) 
      file.close() 
      msg = "%s \nsuccessfully read." % fileName 
      print msg 
      ShowMessageBox(info, msg) 
143 
 
    except IOError, (errno, strerror): 
      msg = fileName 
      msg = msg + "\nIO error(%s): %s" % (errno, strerror) 
      print msg 
      ShowMessageBox(error, msg) 
      return 
 
    # Now, the values read from the file can be assigned to the instruments. 
 
    gLim.Value = valGLim 
    bLim.Value = valBLim 
    freq1.Value = valFreq1 
    freq2.Value = valFreq2 
    freq3.Value = valFreq3 
    gGain.Value = valGGain 
    hGain.Value = valHGain 
  
    # Update the instruments. 
     
    Inst.ConnectionController.ProcessAnimationEvent("control parms://GSatLimit", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://BetaSatLimit", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://rejectFreq1", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://rejectFreq2", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://rejectFreq3", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://DgGain", 
"WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://DhGain", 
"WriteData") 
          
    return # Used to mark the end of a function. 
 
 
def On_Instrumentation_controlparms_saveACValsPushButton_Click(): 
    """ 
    Syntax      : On_Instrumentation_controlparms_saveACValsPushButton_Click() 
 
    Purpose     : Click event handler; write adaptive control settings to a file. 
 
    Parameters  : None 
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    """ 
    if rotorStopped() is False: 
      return 
 
    import os 
    fileName = ShowSaveFileDialog(os.getcwd()) 
     
    if fileName == "None": 
      return 
 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("control parms") 
 
    gLim = Layout.Instruments.Item("GSatLimit") 
    bLim = Layout.Instruments.Item("BetaSatLimit") 
    freq1 = Layout.Instruments.Item("rejectFreq1") 
    freq2 = Layout.Instruments.Item("rejectFreq2") 
    freq3 = Layout.Instruments.Item("rejectFreq3") 
    gGain = Layout.Instruments.Item("DgGain") 
    hGain = Layout.Instruments.Item("DhGain") 
          
    error = 0 
    info = 1 
    import sys 
    try: 
      # Write the adaptive control settings to a file.  
      file = open(fileName, "w") 
      file.write("%f\n" % gLim.Value) 
      file.write("%f\n" % bLim.Value) 
      file.write("%f\n" % freq1.Value) 
      file.write("%f\n" % freq2.Value) 
      file.write("%f\n" % freq3.Value) 
      file.write("%f\n" % gGain.Value) 
      file.write("%f\n" % hGain.Value) 
      file.close() 
      msg = "%s \nsuccessfully written." % fileName 
      print msg 
      ShowMessageBox(info, msg) 
    except IOError, (errno, strerror): 
      msg = fileName 
      msg = msg + "\nIO error(%s): %s" % (errno, strerror) 
      print msg 
      ShowMessageBox(error, msg) 
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      return 
    
    return # Used to mark the end of a function. 
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Appendix C 
Python Programs 
_layout_start.py 
#  -*- coding: cp1252 -*- 
 
def On_Instrumentation_layout_start_setSpeedSlider_Changing(Value): 
    """ 
    Syntax      : On_Instrumentation_layout_start_setSpeedSlider_Changing(Value) 
 
    Purpose     : Changing event handler; synchronize speed input instruments. 
 
    Parameters  : Value 
 
    """ 
 
    from cdautomationlib import Instrumentation 
    Layout = Instrumentation().Layouts.Item("layout_start") 
    comboBox = Layout.Instruments.Item("setSpeedNumericalInput") 
    slider = Layout.Instruments.Item("setSpeedSlider") 
    
    rpm = slider.Value 
    rpm = round(rpm) # Eliminate everything to the right of the decimal point. 
 
    # Ensure the combo box stays in sync with the slider. 
    comboBox.Value = rpm 
 
    return # Just marks the end of this function. 
 
 
def 
On_Instrumentation_layout_start_setSpeedNumericalInput_UserInteraction(DispId,Val
ue,EventId): 
    """ 
    Syntax:  On_Instrumentation_layout_start_setSpeedNumericalInput_UserInteraction 
(DispId,Value,EventId) 
 
    Purpose     : UserInteraction event handler; synchronize speed input instruments. 
 
    Parameters  : DispId,Value,EventId 
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    """ 
 
    from cdautomationlib import Instrumentation     
    Layout = Instrumentation().Layouts.Item("layout_start") 
    comboBox = Layout.Instruments.Item("setSpeedNumericalInput") 
    slider = Layout.Instruments.Item("setSpeedSlider") 
    
    # Ensure the slider stays in sync with the combo box. 
    slider.Value = comboBox.Value 
 
    return # Just marks the end of this function. 
 
 
def manageAmps(Value): 
    """ 
    Perform the following depending on Value: 
      Value = 1:  enable the amplifier checkboxes. 
      Value = 2:  disable the amplifier checkboxes. 
      Value = 3:  enable the amplifier checkboxes, and turn on the amplifiers. 
 
    Note: this same function is in _control parms.py 
    """ 
     
    from cdautomationlib import Instrumentation 
 
    aLayout  = Instrumentation().Layouts.Item("amp adjust") 
    btnAmp1 = aLayout.Instruments.Item("btnAmp1") 
    btnAmp2 = aLayout.Instruments.Item("btnAmp2") 
    btnAmp3 = aLayout.Instruments.Item("btnAmp3") 
    btnAmp4 = aLayout.Instruments.Item("btnAmp4") 
    btnAmp5 = aLayout.Instruments.Item("btnAmp5") 
    btnAmp6 = aLayout.Instruments.Item("btnAmp6") 
    btnAmp7 = aLayout.Instruments.Item("btnAmp7") 
    btnAmp8 = aLayout.Instruments.Item("btnAmp8") 
 
    if Value == 1 or Value == 3: 
      btnAmp1.CheckEnabled = True 
      btnAmp2.CheckEnabled = True 
      btnAmp3.CheckEnabled = True 
      btnAmp4.CheckEnabled = True 
      btnAmp5.CheckEnabled = True 
      btnAmp6.CheckEnabled = True 
      btnAmp7.CheckEnabled = True 
      btnAmp8.CheckEnabled = True 
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    if Value == 2: 
      btnAmp1.CheckEnabled = False 
      btnAmp2.CheckEnabled = False 
      btnAmp3.CheckEnabled = False 
      btnAmp4.CheckEnabled = False 
      btnAmp5.CheckEnabled = False 
      btnAmp6.CheckEnabled = False 
      btnAmp7.CheckEnabled = False 
      btnAmp8.CheckEnabled = False 
 
    if Value == 3: 
      btnAmp1.CheckState = 1 
      btnAmp2.CheckState = 1 
      btnAmp3.CheckState = 1 
      btnAmp4.CheckState = 1 
      btnAmp5.CheckState = 1 
      btnAmp6.CheckState = 1 
      btnAmp7.CheckState = 1 
      btnAmp8.CheckState = 1 
    
    return # Just marks the end of this function. 
 
 
def  On_Instrumentation_layout_start_actRotorRadioButton_UserInteraction 
(DispId,Value,EventId): 
    """ 
    Syntax      : On_Instrumentation_layout_start_actRotorRadioButton_UserInteraction 
(DispId,Value,EventId) 
 
    Purpose     : UserInteraction event handler; activate magnetic bearings. 
 
    Parameters  : DispId,Value,EventId 
 
    """ 
 
    # NOTE - a MATLAB function has been included in the Error model block to ensure that 
    # the rotor cannot be deactivated unless it is at rest. 
 
    import win32con 
    import win32ui 
 
    from cdautomationlib import Instrumentation 
    import cdautomationlib 
149 
 
  
    Inst = cdautomationlib.Instrumentation() 
    cLayout  = Instrumentation().Layouts.Item("control parms") 
    actADRButton = cLayout.Instruments.Item("actADRRadioButton") 
    limitADRButton = cLayout.Instruments.Item("btnLimitDetectADR") 
 
    auxLayout  = Instrumentation().Layouts.Item("aux input") 
    manButton = auxLayout.Instruments.Item("manCtrlRadioButton") 
 
    Layout  = Instrumentation().Layouts.Item("layout_start") 
    actButton = Layout.Instruments.Item("actRotorRadioButton") 
    airButton = Layout.Instruments.Item("airOnOffRadioButton") 
    digitalTach = Layout.Instruments.Item("mainDigitalTachDisplay") 
              
    if actButton.Value == 0: # Deactivate the rotor. 
 
      # Set the button to "On" if the rotor cannot be deactivated. 
      if digitalTach.Value > 0: 
        actButton.Value = 1 
        
Inst.ConnectionController.ProcessAnimationEvent("layout_start://actRotorRadioButton",  
          "WriteData") # Update the button with the new value. 
         
        # Tell the user why the bearing cannot be deactivated. 
        msg ="The rotor cannot be deactivated\nunless it is at rest." 
        win32ui.MessageBox(msg, "Warning", win32con.MB_OK | 
win32con.MB_ICONWARNING) 
        return 
 
      # Deactivate adaptive control; activate integral gain. 
 
      btnGpAct = cLayout.Instruments.Item("btnGpAct") 
      btnHpAct = cLayout.Instruments.Item("btnHpAct") 
      btnIGReset = cLayout.Instruments.Item("btnIGReset") 
    
      actADRButton.Value = 0 
      btnGpAct.CheckState = 0 
      btnHpAct.CheckState = 0 
      btnIGReset.CheckState = 1 
         
      # Update the original "pid" layout. 
      
      pLayout  = Instrumentation().Layouts.Item("pid") 
      btnOnOff = pLayout.Instruments.Item("btnOnOff") 
150 
 
      btnOnOff.CheckState = 0 
       
    elif actButton.Value == 1: # Activate the rotor. 
  
      # Deactivate ADR limit detect. 
      limitADRButton.CheckState = 0 
 
      # If the air is on, gray-out ADR limit detect. 
 
      if airButton.Value == 1 or manButton.Value == 1: 
        checkVal = 1 
      else:  
        checkVal = 0 
       
      if checkVal == 1: 
        limitADRButton.CheckEnabled = False 
      else: # Air is off. 
        limitADRButton.CheckEnabled = True 
        
      # Turn on the amplifiers to activate the rotor. 
 
      aLayout  = Instrumentation().Layouts.Item("amp adjust") 
      btnCalMode = aLayout.Instruments.Item("btnCalMode") 
      btnCalMode.CheckEnabled = True 
      btnCalMode.CheckState = 0 
       
      # Arg = 3; enable the amplifier checkboxes, and turn the amps on. 
      manageAmps(3) 
 
    else: 
      return 
       
    return # Just marks the end of this function. 
 
 
def On_Instrumentation_layout_start_airOnOffRadioButton_UserInteraction 
(DispId,Value,EventId): 
    """ 
    Syntax  : On_Instrumentation_layout_start_airOnOffRadioButton_UserInteraction 
(DispId,Value,EventId) 
 
    Purpose     : UserInteraction event handler; activate automatic speed control. 
 
    Parameters  : DispId,Value,EventId 
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    """ 
 
    from cdautomationlib import Instrumentation 
    import cdautomationlib 
  
    Inst = cdautomationlib.Instrumentation() 
    Layout  = Instrumentation().Layouts.Item("layout_start") 
    airButton = Layout.Instruments.Item("airOnOffRadioButton") 
    rotorStatus = Layout.Instruments.Item("rotorStatusMessage") 
 
    auxLayout  = Instrumentation().Layouts.Item("aux input") 
    manButton = auxLayout.Instruments.Item("manCtrlRadioButton") 
 
    # Turn off manual valve control. 
    manButton.Value = 0 
    Inst.ConnectionController.ProcessAnimationEvent("aux input://manCtrlRadioButton",  
          "WriteData") # Update the button with the new value. 
 
    # The air can be turned off at anytime. 
    if airButton.Value == 0: 
      return 
     
    # "Rotor Status" must be "On" before the air can be turned on. 
    status = rotorStatus.Value 
 
    # Make sure the amplifiers are all on before spinning up the rotor. 
   
    aLayout  = Instrumentation().Layouts.Item("amp adjust") 
    btnCalMode = aLayout.Instruments.Item("btnCalMode") 
    btnCalMode.CheckEnabled = True 
    btnCalMode.CheckState = 0 
       
    # Arg = 3; enable the amplifier checkboxes, and turn on the amplifiers. 
    manageAmps(3) 
       
    return # Just marks the end of this function. 
 
 
def  On_Instrumentation_layout_start_ampStatusPushButton_UserInteraction 
(DispId,Value,EventId): 
    """ 
    Syntax: On_Instrumentation_layout_start_ampStatusPushButton_UserInteraction 
(DispId,Value,EventId) 
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    Purpose     : UserInteraction event handler; configure "amp adjust" instruments. 
 
    Parameters  : DispId,Value,EventId 
 
    """ 
 
    from cdautomationlib import Instrumentation 
     
    Layout  = Instrumentation().Layouts.Item("layout_start") 
    digitalTach = Layout.Instruments.Item("mainDigitalTachDisplay") 
    rpm = digitalTach.Value 
 
    airButton = Layout.Instruments.Item("airOnOffRadioButton") 
 
    aLayout = Instrumentation().Layouts.Item("amp adjust") 
    btnCalMode = aLayout.Instruments.Item("btnCalMode") 
 
    auxLayout = Instrumentation().Layouts.Item("aux input") 
    manButton = auxLayout.Instruments.Item("manCtrlRadioButton") 
    
    # Enable calibration mode and amplifier checkboxes only if the rotor is at rest, 
    # and the air is turned off. 
 
    if airButton.Value == 0 and manButton.Value == 0: 
      checkVal = 0 
    else:  
      checkVal = 1 
       
    if rpm < 1 and checkVal == 0: 
      btnCalMode.CheckEnabled = True 
      manageAmps(1) # Arg = 1;  enable the amplifier checkboxes. 
    else: 
      btnCalMode.CheckEnabled = False 
      manageAmps(2) # Arg = 2;  disable the amplifier checkboxes. 
               
    return # Just marks the end of this function. 
 
 
def  On_Instrumentation_layout_start_controlParmsPushButton_UserInteraction 
(DispId,Value,EventId): 
    """ 
    Syntax:  On_Instrumentation_layout_start_controlParmsPushButton_UserInteraction 
(DispId,Value,EventId) 
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    Purpose     : UserInteraction event handler; configure "control parms" instruments. 
 
    Parameters  : DispId,Value,EventId 
 
    """ 
 
    from cdautomationlib import Instrumentation 
    import cdautomationlib 
 
    Inst = cdautomationlib.Instrumentation() 
 
    cLayout  = Instrumentation().Layouts.Item("control parms") 
    limitADRButton = cLayout.Instruments.Item("btnLimitDetectADR") 
 
    auxLayout  = Instrumentation().Layouts.Item("aux input") 
    manButton = auxLayout.Instruments.Item("manCtrlRadioButton") 
 
    sLayout  = Instrumentation().Layouts.Item("layout_start") 
    actButton = sLayout.Instruments.Item("actRotorRadioButton") 
    airButton = sLayout.Instruments.Item("airOnOffRadioButton") 
    digitalTach = sLayout.Instruments.Item("mainDigitalTachDisplay") 
    rpm = digitalTach.Value 
 
    # Enable ADR limit detect only if the rotor is at rest and the air is off. 
 
    if airButton.Value == 0 and manButton.Value == 0: 
      checkVal = 0 
    else:  
      checkVal = 1 
 
    if rpm < 1 and checkVal == 0: 
      limitADRButton.CheckEnabled = True 
    else: 
      limitADRButton.CheckState = 0 
      limitADRButton.CheckEnabled = False 
 
    return # Just marks the end of this function. 
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Appendix C 
Python Programs 
_mbcntrl_a.py 
 
def On_ExperimentManager_ExperimentOpened(ExperimentFilePath): 
    """ 
    Syntax      : On_ExperimentManager_ExperimentOpened(ExperimentFilePath) 
 
    Purpose     : Fired after an experiment is opened. 
 
    Parameters  : ExperimentFilePath 
 
    """ 
  
     
def On_Instrumentation_StartAnimation(): 
    """ 
    Syntax      : On_Instrumentation_StartAnimation() 
 
    Purpose     : Fired when animation is started. 
 
    Parameters  : None 
 
    """ 
   
    # The following globals are used for calibration in the "amp adjust" layout. 
    global num13up 
    global num13dn 
    global num24up 
    global num24dn 
    global num57up 
    global num57dn 
    global num68up 
    global num68dn 
 
    # Initialize global variables. 
    num13up = 0 
    num13dn = 0 
    num24up = 0 
    num24dn = 0 
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    num57up = 0 
    num57dn = 0 
    num68up = 0 
    num68dn = 0 
 
    # names - contains all layouts in this experiment. 
    names = [ "amp adjust", "aux input", "bearing schematic", "control parms", 
      "layout_start", "pid" ] 
        
    from cdautomationlib import Instrumentation 
    import cdautomationlib   
     
    # Count the number of open layouts. 
    Inst = cdautomationlib.Instrumentation(); 
    numOpen = Inst.Layouts.Count 
 
    # Determine which layouts need to be opened. 
    i = 0 
    if numOpen > 0: 
      for i in range(0, numOpen): 
        obj = Inst.Layouts[i] 
        name = obj.Name 
        names.remove(name) 
 
    # A full pathname is needed to open a layout. 
    import os 
    pathname = os.getcwd() 
 
    # Open layouts which are not already opened. 
    numClose = len(names) 
    if numClose > 0: 
      i = 0 
      for i in range(0, numClose): 
        name = names[i]  
        fullName = pathname + "\\" + name + ".lay" 
        Instrumentation().Layouts.Add(fullName) 
 
    # For now, never allow the bearing to be totally deactivated when an error occurs. 
    # Total deactivation while the rotor is spinning can result in bearing damage. Refer 
    # to Alex's doctoral thesis. 
 
    cLayout = Instrumentation().Layouts.Item("control parms") 
    limitDetect = cLayout.Instruments.Item("btnLimitDetect") 
    limitDetect.CheckState = 0 
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    limitDetect.CheckEnabled = False 
 
    limitDetectADR = cLayout.Instruments.Item("btnLimitDetectADR") 
    limitDetectADR.CheckState = 0 
    limitDetectADR.CheckEnabled = False 
   
    pLayout = Instrumentation().Layouts.Item("pid") 
    limitDetect = pLayout.Instruments.Item("btnLimitDetect") 
    limitDetect.CheckState = 0 
    limitDetect.CheckEnabled = False 
 
    # Deactivate adaptive control. 
 
    ADRButton = cLayout.Instruments.Item("actADRRadioButton") 
    ADRButton.Value = 0 
    GpButton = cLayout.Instruments.Item("btnGpAct") 
    GpButton.Value = 0 
    HpButton = cLayout.Instruments.Item("btnHpAct") 
    HpButton.Value = 0 
     
    # Deactivate calibration mode. 
     
    aLayout = Instrumentation().Layouts.Item("amp adjust") 
    calButton = aLayout.Instruments.Item("btnCalMode") 
    calButton.Value = 0 
     
    # Make the top-level layout, layout_start, the active layout. 
 
    Layout = Instrumentation().Layouts.Item("layout_start") 
    Layout.Activate()    
     
    # When animation starts, turn off speed control, and set the rpm to 0. 
 
    button = Layout.Instruments.Item("airOnOffRadioButton") 
    button.Value = 0 
    comboBox = Layout.Instruments.Item("setSpeedNumericalInput") 
    comboBox.Value = 0 
    slider = Layout.Instruments.Item("setSpeedSlider") 
    slider.Value = 0 
 
    auxLayout = Instrumentation().Layouts.Item("aux input") 
    manButton = auxLayout.Instruments.Item("manCtrlRadioButton") 
    manButton.Value = 0 
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    # Call events to update variables. 
 
    Inst.ConnectionController.ProcessAnimationEvent("amp adjust://btnCalMode",  
      "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://actADRRadioButton",  
      "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://btnLimitDetect",  
      "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://btnLimitDetectADR", 
      "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://btnGpAct", 
      "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("control parms://btnHpAct", 
      "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("aux input://manCtrlRadioButton", 
      "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("layout_start://airOnOffRadioButton",  
      "WriteData") 
    
Inst.ConnectionController.ProcessAnimationEvent("layout_start://setSpeedNumericalInput",  
      "WriteData") 
    Inst.ConnectionController.ProcessAnimationEvent("layout_start://setSpeedSlider",  
      "WriteData") 
        
    return # Just marks the end of this function. 
 
 

