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The heterogeneity and mobility inherent in large-scale ad-hoc sensor network accounts 
for the difficulty in developing applications in such environment. The difficulty primarily 
arises from weak and intermittent disconnection, dynamic reconfiguration, and limited 
power availability. The challenge in building a distributed service that simplifies 
adaptation to environmental change therefore lies in the degree to which communication 
and adaptation of these nodes can be automated or made transparent to applications.  
Most applications in sensor networks involve group of sensor nodes coordinating 
to perform one task. Distributed composition service enables application to compose 
sensors to form a dynamic task group and maintains the group of sensors to achieve 
 v 
 
higher task availability. In this document, we describe the composition service and its 
implementation in detail and show how the process of re-organization can be automated 
via an adaptation server in collaboration with the composition service. Our testing and 
simulation validates the framework of the composition service and performance 
improvement in terms of service availability and energy preserving brought about by our 
adaptation algorithm, which is implemented with the support of the composition service.
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CHAPTER 1: INTRODUCTION
 
The last few years have seen an explosion in the field of microelectronics. 
Devices are getting not just smaller but also more powerful in terms of their capabilities. 
A typical mobile phone today encompasses the functionality of a PDA, a camera and 
access to the Internet. The IT industry is moving fast towards the 
human/machine/network breakpoint ? the point at which the number of networked 
interactive devices will surpass the number of people on the planet. However, according 
to Dr. Tennenhouse in [1], the bulk of the industry is still focused on office automation, 
e-commerce and the associated networking of these devices. It is believed that the 
distribution of new computers will be dominated by millions of new laptops, desktops 
and server nodes that will power the growth of interactive computation. Although these 
numbers are impressive, they are miniscule in comparison to the vast number of 
computational nodes that will be embedded in other objects. Rather than being in direct 
contact with humans, they will be in contact with their environments, able to sense and 
affect physical phenomena. These sensor nodes have a variety of applications; from 
sensing hostile vehicles in the battlefield to monitoring animal habitats. Dr. Tennenhouse 
envisions a future in which sensors will be integrated into our daily lives, working 
proactively and responding to external stimuli in a seamless manner. 
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Unlike traditional computer networks where connecting devices to the network 
use relatively static network configuration, in a sensor network, sensor nodes are 
networked in an ad-hoc manner with no fixed infrastructure. Although sensor nodes are 
equipped with a power supply and an embedded processor that makes them autonomous 
and self-aware, the functionality and capability of a single node is very limited. A large 
number of sensor devices must be deployed in most impromptu networks for each sensor 
device to organize itself in the overall community of sensors and perform coordinated 
activities with global objectives. In such a large network, users do not interact with any 
one device, but rather avail of the service offered by a set of sensors. Collaboration 
between nodes to offer certain services is thus essential to deliver relevant and useful data 
in a ubiquitous setting.  
Till now, most of the research for sensor networks has concentrated on operating 
platforms for sensors or defining more efficient routing protocols. The results of these 
efforts are milestones such as Berkeley SmartDust [3], TinyOS [4] and routing protocols 
such as Directed Diffusion [5] and Dynamic Source routing [6]. Though advances in 
these areas are a great step forward in moving towards the vision of pervasive computing 
described in [1], the heterogeneous nature of the development environment is a big factor 
when it comes to implementing applications for a sensor network. Software is written for 
target platforms and cannot be easily ported to different hardware or operating systems. 
The blurry demarcation between software and hardware also means that developers have 
to take into account specific routing protocols along with other low-level system details 
and incorporate these into their applications. These factors are deterrents to implementing 
a sensor network that aims to be self-organizing via inter-sensor communication. A 
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framework that provides developers with a conceptual view of the network and insulates 
them from the lower layers is needed. 
In [2] Dr. Lim defines some of the characteristics for creating such self-
organizing sensor networks as agility, self-awareness, self-configurability and autonomy. 
Nodes are aware of their own capabilities and those of others around them which may 
provide the services or resources they need. A group of these sensors may communicate 
and cooperate to deliver coordinated services while other nodes may be deployed or 
removed from the community spontaneously. However, building such networks is 
difficult for the following reasons. First, there are many different types of sensor with 
different capabilities which may be deployed with specialized and possibly non-
interoperable network protocols and application requirements. Secondly, sensor nodes 
may be deployed incrementally with little or no pre-planning. The network must survive 
harsh environmental conditions, changes in sensor composition, task requirements, 
device failure and mobility of sensors. 
The underlying principles that can overcome the above challenges are to provide 
the fundamental services upon which other networking services may be spontaneously 
specified and reconfigured. In [2] Dr. Lim describes three fundamental mechanisms, 
namely, the lookup service, the composition service and dynamic adaptation service.   
The lookup service enables new system and network services to be made 
available to other sensor nodes. The composition service allows clusters of sensor nodes 
to be formed and managed. The adaptation service allows nodes and clusters to 
reconfigure dynamically as a result of node mobility, failure and deployment. All these 
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services are designed to simplify and facilitate application development, insulating them 
from network dynamics.  
Some of the applications being considered for sensor networks are multi-sensor 
fusion, collaborative target tracking and distributed query processing. In order for these 
applications to perform their tasks in an efficient manner, all the participating nodes need 
to set up and maintain connections among themselves. When dealing with such an 
environment, there are some issues that must be considered. Firstly, nodes may need to 
find and communicate with specific, and possibly remote, nodes for the application to 
give better results. Secondly, target nodes or intermediate nodes may fail, negatively 
affecting the application. Even if new nodes are available to replace the failed ones, 
existing nodes will have to be aware of their availability. 
To ameliorate some of the above problems, applications should be able to depend 
on the distributed composition service providing the following services. 
1. Efficient Task Group Composition: Multiple nodes of different types and 
specifications can contact the composition server to form a group of sensors 
participating in a common task, like target tracking.  
2. Automatic adaptation to failure: The configuration data stored by the 
composition server can be used by some adaptation service to adapt to device and 
network failures. 
3. Optimize task performance: The stored configuration data can also be used by 
the adaptation server to optimize and reconfigure all entities involved for better 
performance during runtime. 
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This research will aim to successfully undertake the following tasks 
? To design and implement a usable API for group composition and communication. 
The API will provide software developers with a look and feel consistent to current 
network programming paradigms. 
? To investigate the issues involved in applying the composition service to accomplish 
distributed task executing over a sensor network. 
 
Chapter 2 presents some of the related technologies needed to construct a 
composition service. Chapter 3 discusses the architecture of the composition service and 
implementation of the application programming interface is presented in Chapter 4. The 
performance of the composition service under various scenarios is presented in Chapter 
5.  Chapter 6 concludes by giving a summary of this research and suggesting further work 
that could be done. 
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CHAPTER 2: RELATED TECHNOLOGIES
 
There are a number of separate areas of research on which this work is based, and 
we discuss related technologies in the following areas. 
 
1. Directed Diffusion 
Directed Diffusion [5] is a routing protocol for autonomous sensor networks developed at 
the University of Southern California. A departure from other routing protocols, data is 
named using attribute-value pairs which makes directed diffusion a data-centric routing 
protocol. 
2. Distributed Services 
As presented in the previous chapter, distributed services provide the foundation on 
which other application can be built. Some examples of distributed services are lookup 
service, adaptation service and composition service. 
3. ISEE 
ISEE is a runtime framework for the execution and monitoring of sensor network 
services, which makes allowance for simulated, emulated and real sensor network control 
and access. It allows for extensibility, scenario creation and experiment repeatability, 
providing a visibility to sensor network experiments. 
 
 7
4. Component Based Design Methodology 
Being able to find, adapt and incorporate disparate components to form working, 
reliable applications is the goal of component based software engineering. This fits in 
well with the heterogeneous nature of a sensor network environment where nodes require 
special consideration in terms of their physical resources and computing power. 
Modeling sensor types, their interfaces and a specification of the patterns of interaction 
between sensor types will help to build an efficient service framework. 
 
2.1 Directed Diffusion Protocol 
Directed diffusion is a data-centric routing protocol in the sense that routing 
decisions are made on the basis of the data requested rather than specific end points of the 
data. Directed diffusion is also a localized protocol; nodes know and interact only with 
their neighbors. Data generated by a node is named using attribute-value pairs. A sink 
node sends out an interest for the kind of data it is interested in. This initial interest is 
broadcasted and spreads through the network until some node has the data that matches 
the interest. Intermediate nodes establish gradients towards every neighboring node that 
forwards this interest. The source node has data that matches this interest and sends out 
this data on the preferred gradient to its neighbor, which then follows the same rules for 
forwarding this data. In this manner, interests and data diffuse throughout the network. 
Once the data reaches the sink node, it sends out a positive reinforcement with a higher 
data rate than the exploratory initial interest to the neighbor with the lowest delay. Other 
nodes may be sent a negative reinforcement to inhibit them from forwarding data packets. 
The process is shown in Figure 2.1 
  
Figure 2.1 A simplified schematic for directed diffusion 
 
For this research, we used directed diffusion implemented by the Information 
Science Institute, University of Southern California. Their implementation provides 
access to the diffusion core behavior through the publish and subscribe API functions. A 
sink sends out interest messages by subscribing to the kind of data it is looking for and 
listens to incoming data via publish. Likewise the source node uses subscribe to listen for 
interest messages and publishes matching data. Detailed explanation of the API and 
usage techniques is given in [7] and was used effectively in Yu?s thesis [8]. 
 
2.2 Distributed Services 
The three fundamental services described by Dr. Lim in [2] are the lookup service, the 
adaptation service and composition service. Through the implementation of these 
services, other network and system services can be defined spontaneously in the network. 
The distributed systems architecture is illustrated in Figure 2.2. 
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Figure 2.2 Architecture of self-organizing sensor networks 
 
Lookup Service: The primary function of the lookup service is to store information about 
the services offered in the network and distribute this information. The lookup service is 
available to an application via the lookup service API. If an application provides a 
service, it uses the service_register() call to register itself with the lookup server. A 
service-seeking application, given a service name, calls lookup_service() to obtain the 
service details ? the type of and the order of the arguments needed to invoke the service. 
A client can also obtain the interfaces to all service providers that provide the same kind 
of service it is seeking and choose one among them to request the service from. This 
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function enhances the availability and usability of the lookup service as the client can still 
avail of the service even if the specific service name is not known. Lookup servers are 
distributed over the entire network so that there is not excessive demand on one server 
and a demand-supply bottleneck is avoided. The information stored by one particular 
server can be exchanged with other servers when requested. Further information about 
lookup service implementation and improvements are found in [8]. 
Adaptation Service: An adaptive distributed system is one that modifies its behavior 
based on changes in the environment. The adaptation system is based on a general 
distributed system model consisting of three phases: change awareness, consensus and 
system behavior modification. The change detection phase monitors the possible change 
in the environment. All units affected by the change communicate with the adaptation 
service and decide on the action to be taken in the consensus phase. Once a suitable 
course of action is determined, the adaptation service then initiates a series of steps that 
results in system changing its behavior. Using the adaptation service, algorithms can be 
devised that complement the dynamic and changing sensor network environment. The 
composition service works in hand with the adaptation service to mask node failure due 
to environmental or network changes and incorporate fault tolerance into its operation. 
Adaptation service details are found in [9]. 
 
2.3 Integrated Sensor Network Execution Environment (ISEE) 
Sensor networks are a relatively new area of research and it is not always possible to 
obtain actual sensors to carry out experiments. The solution is to simulate a sensor 
network by setting up nodes over fixed and easily available infrastructure and run 
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distributed applications on top of that. These projects need a simple runtime framework 
for repeatable experimentation that allows for easy transfer to on-site set ups. Such an 
environment is necessary as simulation tends to present a misleading picture when 
environment sensitive and resource constrained networks are being simulated, simply 
because the infrastructure is not bound by these constraints.  
A runtime framework that transparently supports testing simulated, emulated and 
real sensor networks is needed. Along with this requirement comes the necessity of event 
capturing and measurement to portray an accurate view of real world sensor events. 
The Interactive Sensor Network Execution Environment ISEE [12] developed by 
Mark Ivester at Auburn University which serves to address such issues, is composed of 
four main modules, shown in Figure 2.3. 
1. Isview: The Isview module handles the user interaction and sensor network 
visualization. Through Isview the user can direct the formation of the network, create 
processes on a single target node and view the sensor network status. State 
information is retrieved from the network through the Ethernet back channels every 
second and is used to update the information displays. Aspects of the network that 
can be monitored include application state, debug information, resource load and 
network load, among others. Isview also provides the interface for defining services 
that will run within the netwok. 
 
 
Figure 2.3 ISEE Architecture Overview 
 
2. Ismanage: Ismanage has three responsibilities: running sensor network management, 
sensor network communication and runtime plugin management. Management of the 
network involves maintaining state information of the nodes and the processes 
running within the sensor network. State information includes individual link statuses, 
node status and traffic status. Communication with the sensor network is the means 
by which control information is sent into the network and feedback information is 
obtained from the network. Control information is either a set of commands to be run 
on multiple nodes or state information to be injected into the network. Feedback 
information may include sensor network state information or specific application 
information. Management of plugins is the key to the extensibility of ISEE and 
comprises of two steps. The loading of plugins consists of retrieving the particular 
plugin from predefined global and user directories. Once loaded, the plugin is 
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activated when the user issues a directive. A plugin may proactively or reactively 
affect the ismanage maintained representation of the sensor network state based on 
the feedback obtained from ismanage. 
3. Isplugin: An isplugin is dynamic code that extends the ismanage module, enabling it 
to deal with different sensor network processes or protocols. An isplugin may also 
extend the capability of the isview module. Though isplugin is managed by the 
ismanage module, it may interact directly with the ismanage or isview module. 
4. Isproxy: The isproxy module is remote code that can manage the individual nodes in 
the sensor network, although it can handle the responsibility of handling multiple 
nodes in practice. Management of individual nodes includes starting, stopping and 
monitoring processes, information about which is collected and sent to ismanage as 
feedback data. The domain of isproxy?s responsibility is flexible and user-defined to 
be either physical or gateway. In the physical mode, the isproxy module is 
responsible for all the virtual nodes running within the context of execution, a 
physical machine or real sensor node. In the gateway mode, isproxy is concerned with 
a subset of the sensor network, using the network to send control messages to and 
receive feedback from applications running on other sensor nodes. 
 
2.4 Component Based Engineering 
The motivation for adopting component based engineering methodology for any 
project is increased productivity obtained by using pre-constructed components for 
development. However, the advantage of applying this design methodology to embedded 
devices goes beyond that; a developer should be able to concentrate on creating 
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functionality that best serves the task at hand and delegate the responsibility of complex 
low-level interaction to components [10] constructed specifically for that purpose. A 
component is an independent and replaceable part of the system that fulfills a clear 
function in the context of the architecture. Components are described in terms of the 
interface that provides access to component functionality. Adopting the component based 
methodology in building a sensor network system will allow developers to rely on 
underlying existing APIs for device interaction and data transport.   
Conventional interface specifications define the functional properties which 
express the service provided by that component and the signature of the service. But in 
order to achieve mobility and adaptability, a sensor environment needs to make optimal 
use of the available resources. For this to happen, components need to not only publish 
their interfaces and protocols for interaction, but also make known their resource 
requirements such as required bandwidth, available power, computational load, 
associated delay etc. Such quality of service attributes will enable sensor nodes to adapt 
in a better way to network dynamics and will also help the composition service in 
organizing nodes with compatible interfaces. Interfaces of components are compatible 
only if they have the same data format, complementary data flow direction and matching 
quality of service requirements. 
An advantage of sensor networks is the possibility of implementing cooperative, 
possibly localized, algorithms for potential applications like target tracking and 
resolution, distributed query processing etc [13]. In all cases, when a cooperative function 
is required to exact information about a specific target, a local network comprising of a 
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small set of nodes near the target location is built and communication is facilitated 
between them.  
The composition service handles forming and managing this task group, 
controlling runtime resource binding. For this to happen, nodes need to communicate 
with the composition server and each other. However, unlike in a traditional Internet 
architecture, in a sensor network nodes are aware only about their own neighbors. 
 Additionally, nodes may not possess unique identification like an IP address for 
two reasons: there is no central authority handing out a unique ID and since the network 
is data driven, it makes sense to use a data-centric addressing scheme to target nodes for 
communication. 
To provide higher level abstractions to application programmers, we model a 
node as a sensor object with its own interface. A connector specifies a data sharing 
relationship between compatible interfaces of such nature, and has a name and type. A 
description of this model will be given in the next chapter. 
Traditional component-based techniques deal with finding and integrating 
components in a static configuration which usually run in a tightly-coupled set up such as 
a node or cluster. However, sensor networks have to deal with dynamic availability of 
data sources and make allowance for inherent distribution of sensors, constrained 
resources and environmental impediments. The sensor composition process model should 
be robust and transparent to the application developer, providing encapsulation of 
network complexity. A detailed explanation of this model in provided in the next chapter. 
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2.5 Related Work 
Wireless sensor networks are an increasingly attractive means to monitor 
environmental condition and to map the bridge between the physical and virtual world. 
The network consists of a large number of cooperating small nodes capable of limited 
computation, wireless communication and sensing. By matching the output of several 
nodes, the network as a whole can provide functionality a single node cannot. However 
there are hurdles with deployment beyond the hardware limitations. There are chances for 
dynamic link failure, node failure and node mobility, all of which result in changing 
network conditions. The focus of much of the research in sensor networks has thus turned 
to defining middleware that sit above the operating system and below the application, 
abstracting lower-level functionality such as network connectivity and providing a 
coordination interface to the application. Much of the work has targeted the development 
of middleware platforms specifically designed to meet the challenge of the resource-
constrained aspect of these sensor networks. We discuss some of the common 
middleware in the following section. 
 
2.5.1 MiLAN (Middleware Linking Applications and Networks) 
Wendi Heizelman et. al. describe the MiLAN middleware platform developed at 
the University of Rochester in [14]. The idea behind MiLAN is that additional savings 
can be achieved if the middleware varies the actual parameters of the network over time 
while simultaneously meeting the requirements of the application, increasing the lifetime 
of the network. Applications represent their requirements to MiLAN through specialized 
graphs that incorporate state-based changes in application needs. Based on this 
information, MiLAN makes decisions about how to control the network and the sensors 
to balance application QoS and energy efficiency, lengthening the lifetime of the 
application. 
 
 
Figure 2.4 MiLAN protocol stack 
 
Unlike traditional middleware, the MiLAN architecture, seen in Figure 2.4, 
extends into the network protocol stack. An abstraction layer is provided that allows 
network specific plug-ins to convert MiLAN commands into protocol specific commands 
that are passed through the usual network protocol stack. MiLAN can thus continuously 
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adapt to the specific features of whichever network is being used to communicate to best 
meet the application?s needs over time.  
MiLAN deals with the application?s interoperability with the network and does 
not inherently support any clustering techniques. In addition, the existence of a plug-in 
for MiLAN that supports Directed Diffusion or any other routing protocol commonly 
used in sensor networks is not confirmed. The storage requirements on the node for 
handling the MiLAN state-based graph for a complicated and dynamic network 
application are also not specified.  
 
2.5.2 Impala 
The Impala system [15] is a part of the ZebraNet project [16] at Princeton 
University. It is a mobile sensor network system aimed at improving tracking technology 
via energy-efficient tracking nodes and peer-to-peer communication techniques. The 
main focus of ZebraNet is wildlife tracking across large regions with little 
communication infrastructure. 
While middleware like MiLAN, presented in the previous section, focus on the 
form of data presented to user applications, Impala considers the application itself, 
exploiting mobile code techniques to change the functionality of middleware executing at 
the remote sensor. Since many sensor networks will be deployed in harsh environments, 
they are intended to run without user intervention for long amounts of time. Impala 
advocates considering long-term management of the sensor application as an integral part 
of the design process. 
 
Figure 2.5 Impala system architecture 
 
 
Figure 2.5 shows the Impala architecture. The upper layer contains all the 
application protocols and programs for ZebraNet. These applications use various 
strategies to achieve a common task of gathering the environment information and 
routing it to a centralized base station via peer-to-peer transmission. Only one application 
is running at a time. 
The lower layer contains three middleware agents: the Application Adapter, the 
Application Updater, and the Event Filter. The Application Adapter adapts the 
application protocols to different runtime conditions to improve performance, energy-
efficiency and robustness. The Application Updater receives and propagates software 
updates and installs them on the node. The Event Filter captures and dispatches events to 
the above system units and initiates chains of processing. Impala has five types of events. 
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A Timer Event signals that a timer has gone off. Impala has three timers owned, 
respectively, by the current active application, the Application Adapter, and the 
Application Updater. The owner of the timer handles these events. Packet Event signals 
that a network packet has arrived. Impala has two types of packets, application-to-
application packets and updater-to-updater packets. The intended receiver of the packet 
handles these events. Send Done Event signals that a network packet has been sent or 
has failed to send. It allows asynchronous network transmission. The original sender of 
the packet handles these events. Data Event signals that a data sample from the sensing 
device is ready to read. The current active application handles these events. Device Event 
signals that a device failure is detected. The Application Adapter handles these events. 
When multiple events arrive at the same time, they are processed sequentially.  
The layered approach of Impala has several advantages. 
? Modularity: Applications can be independent and do not need to coordinate with 
each other for updates with the middleware layer also handling the update issues.  
? Correctness: Impala makes application correctness easier to achieve because 
programming individual applications is simpler than programming a complex 
application with many interacting and updating components. 
? Ease of Updates: Software changes such as adding, deleting and modifying an 
application can be simpler because they can involve only local code changes 
within a module.  
? Energy Efficiency: Software updates are comparatively smaller program 
modules. Since the network transmitter is the most power hungry component, this 
offers significant energy savings. 
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   As said above, Impala concentrates on the mechanisms to change middleware 
behavior by using mobile code updates. The key to energy efficiency in Impala is for the 
sensor node applications to be as modular as possible, thus enabling small updates that 
require little transmission energy. Applications must be then written specifically using the 
event-handling interfaces provided by the middleware, limiting the complexity of the 
application. No constructs for clustering or grouping of individual nodes are present in 
the Impala programming API. 
 
2.5.3 DSWare 
The Data Services Middleware [17] is based on the notion of events, whereby the 
application specifies interest in certain state changes of the physical world, called basic 
events.  Upon detecting an event, the node sends an event notification towards interested 
applications. The application can also specify a certain pattern of events such that the 
application is only notified if occurred events match this pattern. The real data generated 
by the sensors can be stored or forwarded to other nodes for processing. Since this 
functionality will be desired for all types of sensor applications, a data-services 
middleware can avoid the re-implementation the common data service part of various 
applications. The DSWare layer exists between the application layer and network layer. 
The architecture of DSWare is illustrated in Figure 2.6. 
 
Figure 2.6 DSWare Framework 
 
? Data Storage: The data storage module provides mechanisms to store 
information according to its semantics with efficient data lookup and supports 
robustness during node failures by supporting data-centric protocols. Data that 
describes different occurrences of some type of activity can be mapped to certain 
locations so that future queries for this type are not flooded to the whole network. 
The data lookup scheme uses hashing to map data to physical storage nodes using 
the unique identifier for the data. When a base station sends queries for this data, 
the information is fetched from one of these physical locations. Data is also 
replicated in several physical locations that map to one logical node. Queries are 
directed to any one of these locations to avoid high load on any one node, 
providing a degree of robustness to the system. 
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?  Data Caching: The data caching service provides multiple copies of the data 
most requested. This data is spread out over the routing path to reduce 
communication, increase availability and fasten query execution. 
? Group Management: The group management component provides localized 
cooperation among sensor nodes to achieve a more global objective. Mostly, 
groups are formed as the query is sent out and dissolved when the query is 
expired or the task is accomplished. Hence, the group formulation criterion is sent 
to the queried area first and nodes decide whether to join this group by checking 
whether they match the criterion. For a dynamic group, changed criterion is 
broadcast persistently in a small area whose center is the current group. Hence, 
nodes can join and leave the group when the target moves. Groups not sensitive to 
tasks can be formulated during system deployment or when explicitly specified by 
the applications. 
? Event Detection: In the event detection service, events are pre-registered 
according to the specific application. Event detection is a common and important 
service in sensor networks. 
? Data Subscription: As a type of data dissemination service, Data Subscription 
queries are very common in sensor networks. These queries have their own 
characteristics, including relatively fixed data feeding paths, stable traffic loads 
for nodes on the paths, and possible merges of multiple data feeding paths. When 
several base stations subscribe for the data from the same node at different rates, 
the Data Subscription Service places copies of the data at some intermediate 
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nodes to minimize the total amount of communication. It changes the data feeding 
paths when necessary. 
? Scheduling: The Scheduling component is a special component because it 
provides the scheduling service for all components in DSWare. Two most 
important scheduling options are energy-aware and real-time scheduling. By 
default, a real-time scheduling mechanism is applied as the main scheduling 
scheme because most queries in sensor networks are inherently real-time tasks. 
Applications can specify the actual scheduling schema in the sensor networks 
based on the most important concerns. 
 
DSWare meets most of the goals specified for the distributed composition service 
by providing support for group creation. Additionally, it also supports data-centric 
routing protocols like Directed Diffusion and though computationally intensive, provides 
facilities for information storage and retrieval. However, the creation of a group is 
triggered by a real-world event and requires the node to correctly identify and categorize 
an event. In the heterogeneous sensor network, not all nodes may possess the 
computational capability for this task. There is also no single entity to manage the group 
formation and handle group information storage. This ability is vital for the composition 
service to inter-operate with the adaptation service.  
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CHAPTER 3: COMPOSITION SERVICE ARCHITECTURE 
 
This chapter presents the design methodology and architecture of the composition 
service. Efforts have been made to ensure the design is simple and the system is inter-
operable with other network services.   
 
3.1 Design Goals 
Over the past decade, various technologies have been devised to alleviate the 
complexities associated with developing software for distributed applications. Some of 
the most successful of these technologies have centered on distributed object computing 
(DOC) middleware. Distribution middleware defines higher-level programming models 
whose reusable APIs and components automate and extend the native network 
programming capabilities such as connection establishment or interprocess 
communication and synchronization. Some examples of DOC middleware are OMG?s 
CORBA and Sun?s RMI. A complete list, brief descriptions and requirements to construct 
systems using the mechanisms provided by these platforms are found in [22]. However, 
the basic mode of operation of wireless sensor networks is significantly different from 
traditional computer networks, primarily due to their resource-constrained nature and 
tight integration with the physical world.  
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From a study of DOC middleware and an understanding of sensor network 
characteristics, a set of design goals can be formulated, as given below.  
1. Shield software developers from low-level, tedious and error-prone platform 
details, like socket-level network programming 
2. Provide a consistent set of higher-level network oriented abstractions that are 
much closer to application requirements in order to simplify the development of 
distributed systems. 
3. Provide a wide array of developer-oriented services such as event capturing and 
logging that have proven necessary to operate effectively in a networked 
environment. 
 
3.2 Composition Service Mechanism 
Section 2.2 introduced the architecture of distributed system services for sensor 
networks. By using these services, smart nodes may simultaneously provide services to 
other smart nodes and be clients of services that other such nodes provide. Nodes may be 
dynamically composed into impromptu networked clusters under the management of a 
compositional server. The clustered nodes can then cooperate to provide abstract services 
to the dynamic sensor network, such as data filtering and aggregating summary 
information.  
Clustered smart nodes encapsulate the networking and system capabilities 
provided cooperatively by the group of smart nodes. There will be a head node in the 
cluster that is responsible for the control of the cluster and inter-cluster communications 
and networking functions. Group communication to nodes in a cluster can be efficiently 
implemented by sending a message first to the cluster head which then multicasts it to the 
member nodes. Smart nodes in a cluster may cooperate to perform the networking and 
system functions for the cluster.  
The composition service will also manage the various smart nodes that may be 
added or removed from the clusters in the agile sensor network. This composition 
request-response process is explained using Figure 3.1 in a series of steps.  
 
Figure 3.1 Composition Service Mechanism 
 
1. A group of sensor nodes decide to form a group, either in response to some 
external stimuli such as target detection or nodes in close proximity decide to 
form a group in anticipation of future events. If the node holds the capability to 
accurately discern the event, it can send this information to the server. The event 
is described in terms of its event category and has a type, value and timestamp. 
For example, a tank detection event has category ?vehicle, type ?tank?, a value 
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which possibly might indicate the confidence of the reading and the associated 
timestamp. 
2. The node(s) desirous of group formation contact the composition server 
requesting to join/create a group. Details about the event can be communicated to 
the composition server which may or may not use it. If the identity of the 
composition server is unknown, the lookup service is queried for that information. 
3. The composition server receives this request and keeps a record of all the nodes it 
receives group creation requests from. The information in the server is time-
sensitive; the event information may not be necessarily applicable after a certain 
amount of time has passed, especially in the case of mobile objects. 
4. Within the prescribed time limit, if the composition service gets requests from 
sizeable number of nodes, it assigns a group ID and chooses a group leader 
among the nodes. Only nodes in close proximity to each other are chosen to be 
included in a group; this implies some location information is known to each 
node. Group information, group leader identity and status of all the other nodes in 
the group is communicated to the nodes in the group in the reply from the server. 
5. The nodes receive this group ID and can then communicate among themselves to 
perform coordinated activities, using this group ID to uniquely identify the group 
they are currently part of.  
 
3.3 Sensor Object Model 
In the sensor network environment, use of data-centric protocols necessitates the 
addressing of nodes by the data they generate rather than by unique network 
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identification. The sensor object model facilitates inter-sensor communication by 
categorizing nodes based on the data they generate and the services they offer, treating 
nodes as data handling entities. An application can use the sensor object model to 
encapsulate the properties of the node it is running on. The following describes the model 
in detail. The representation of node characteristics is shown in Table 3.1. 
1. Every sensor object has an ID which is passed to the composition server when a 
join group request is sent. This ID is used for unique identification purposes along 
with the sensor node properties. 
2. A real world event is encapsulated by the Event object, illustrated in Table 3.2. 
The composition server associates a SensorObject with an Event object and uses 
this information to make group creation decisions, grouping together objects that 
sense similar events. Event objects have a category, description, value and a 
confidence reading. The category and type of an Event depend on the data 
generated or processed by that node. The naming of these categories and types is 
thus an important task since it facilitates efficient data-centric routing and 
resource location. Naming techniques are discussed in [19]. 
3. Some method of energy conserving geographical routing like GEAR [20] can be 
applied in conjunction with directed diffusion for achieving higher routing 
efficiency. Thus, every object has location information specified by the latitude 
and longitude properties of that object. Location information can be obtained from 
a Global Positioning System and updated as and when the sensor node moves. 
This information is also used by the composition server when assigning groups as 
nodes within a predefined, flexible region are included in a group.  
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class SensorObject{ //representation of a sensor node 
public: 
 static const int INACTIVE = 0; 
 static const int ACTIVE = 1; 
 static const int PRODUCER = 0; 
 static const int CONSUMER = 1; 
 static const int PEER = 2; 
 
SensorObject(int ID); 
 SensorObject(int status, float latitude, float longitude, QosParams*, int role); 
 SensorObject(int status, float latitude, float longitude, int role); 
 SensorObject(float latitude, float longitude,int role); 
 SensorObject (NRAttrVec*); 
 
float getLatitude(); 
 float getLongitude(); 
 int getStatus(); 
 NRAttrVec getSensorAttributes(); 
 
 void setLatitude(float latitude); 
 void setLongitude(float longitude); 
 void setStatus(int status); 
 void setRole(int role); 
 void setQosParams(QosParams*); 
 void setGroupID(int); 
 
 int getID(); 
 int getGroupID(); 
 QosParams* getQosParams(); 
 int getRole(); 
 
 void print(); 
 int size(); 
 int compareTo(SensorObject*); 
 
private: 
int ID; 
int groupID; 
float latitude;  
float longitude; 
int status;                           //0 for inactive, 1 for active 
int role;                                     //0, 1 or 2 for producer, consumer and peer         
QosParams *currentQos;       //the QOS parameters for this node 
} 
 
Table 3.1 Representation of a sensor node as a SensorObject 
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class Event{ 
public: 
 Event(char*, char*, float); 
 Event(char*, char*, float, int); 
 Event(NRAttrVec*); 
 
char* getCategory(); 
 char* getDescription(); 
 float getValue(); 
 int getConfidence(); 
 int getValidity(); 
 NRAttrVec getEventAttributes(); 
 
 void setCategory(char*); 
 void setDescription(char*); 
 void setValue(float); 
 void setConfidence(int); 
 void setValidity(int); 
 void print(); 
 int compareTo (Event*); 
 
private: 
int valid; 
 char *category; 
 char* type; 
 float value; 
 int confidence; 
} 
 
Table 3.2 Representation of an event as an Event object 
 
4. Some method of energy conserving geographical routing like GEAR [20] can be 
applied in conjunction with directed diffusion for achieving higher routing 
efficiency. Thus, every object has location information specified by the latitude 
and longitude properties of that object. Location information can be obtained from 
a Global Positioning System and updated as and when the sensor node moves. 
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This information is also used by the composition server when assigning groups as 
nodes within a predefined, flexible region are included in a group.  
5. Nodes can also publish their current quality of service attributes by way of a 
QosParams object as shown in Table 3.3. One example of a quality of service 
attribute is the power level, indicating the current power of that node. Additional 
attributes are the maximum data rate the sensor node can transmit/receive at and 
the delay experienced by the node as a result of its queue length. These extra-
functional properties can be used by the composition server to match compatible 
sensors in a group to enable more efficient application operation. 
 
class QosParams{ 
public: 
 QosParams();                               //no-arg constructor 
 QosParams(int,int,int);       //initialize to respective  values 
private: 
 unsigned int powerLevel;            // current power level of node 
 unsigned int maxDataRate;        //data rate supported by node 
 unsigned int delay;                //delay in milliseconds 
} 
 
Table 3.3 Representation of Quality of Service parameters as an QosParams object 
 
6. In a sensor network, nodes fulfill a clear function in the context of the 
environment; some sink nodes query the network for certain types of data while 
source nodes generate data and send this data to the sink nodes. A sensor object 
can specify the role it plays in the set up via the role attribute which can have 
three values 
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a. PRODUCER ? This sensor object is a data producing source 
b. CONSUMER ? This sensor object is a data consuming sink 
c. PEER ? An intermediate node 
7. In addition, a sensor node can mark itself ACTIVE or INACTIVE using the status 
attribute. Some examples of why a node may decide to be INACTIVE are if it 
experiences problems with its physical sensors or if its power level goes below a 
certain threshold. This is for inter-operation with the adaptation server and will be 
explained in a later section. 
 
3.4 The Connector Model 
A sensor network experiences extreme dynamics by virtue of the sensor nodes 
and the entire system being tied to the physical world. In particular, environmental 
factors influence the characteristics of the RF communication channel, creating 
inaccessibility or mobility even in stable configurations. Device failure due to power 
outage or the node being physically destroyed is an additional factor which can cause 
interruption of the data flow in the network. The connector abstraction serves to mask 
these problems and provides the application with a consistent view of the underlying 
network. 
A connector represents a data exchanging relationship between two or more 
sensor objects. Using connectors, sensor objects can establish connections with other 
sensor objects for the duration of the task. Connectors are reconfigurable in the sense that 
the adaptation server can replace inactive sensor objects with other sensor objects to 
 34
achieve reliable data association between existing sensor objects. The model is as 
described below. 
1. A connector maintains a reference to the invoking sensor object and the group ID 
to which the sensor object belongs. Using the group ID, the connector can 
establish a data path with other sensor objects in the same group. The sensor 
object can then use the connector reference to communicate with other sensor 
objects in the group. In a way, connectors are similar to sockets in an IP-based 
network; they are the endpoints of the communication. It is also possible that 
some computationally superior sensor objects form a group to offer services such 
as in-network data aggregation and location triangulation. Service seeking nodes 
can avail of these services by using the group ID once the group information is 
registered with the lookup service. The attributes of the connector object are 
shown in Table 3.4 
2. A connector is made up of links from the current sensor to other sensors. A Link 
is the physical representation of the connection between two or more sensor 
objects. Links contain information about the endpoints of the connection and 
work with the routing protocol to identify these endpoints and efficiently discover 
and/or maintain paths to them. Figure 3.2 illustrates the relationship between a 
connector and link. A connector can contain links to more than one sensor objects 
depending on the type of the connector.  
 
 
 
class Connector 
{ 
public: 
 Connector(){}; 
int addEndPoint(SensorObject *addNew); 
 int removeEndPoint(SensorObject *oldEnd); 
 CommunicationInterface* getCommunicationInterface(); 
 void setCommunicationInterface(CommunicationInterface*); 
 int send(NRAttrVec); 
 NRAttrVec receive(); 
protected: 
 int ID; 
 int groupID; 
 CommunicationInterface *dataSend; 
 SensorObject *thisSensor; 
 int status; 
 int linkCounter; 
} 
 
Table 3.4 Representation of connector as a Connector object 
 
 
Figure 3.2 Relationship between Connector and Link 
 
Links can be destroyed or additional links can be added to a connector if 
the situation so demands. For example, a sensor node may fail, prompting the 
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removal of the link from the connector. The adaptation service may then be 
queried to find a replacement node with similar properties to the unavailable 
node, and a new link to that node is added to the connector. Alternately, sensor 
nodes may be added to an existing group. Figure 3.3 illustrates addition of a new 
node to a pre-existing group. 
 
 
Figure 3.3 Operations on Links 
 
Hence, connectors have the power of being reconfigurable in a transparent 
manner to the application, ensuring application requirements are not compromised 
and any service offered by the application is available to the network. 
3. Associated with each connector is the connector type described in terms of the 
number of endpoints addressed by that connector. Presently we identify two types 
of connectors, both shown in Figure 3.4. 
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Figure 3.4 Two Types of Connectors 
 
a. One to One ? This type of connector has only two endpoints; the sink and 
the source. 
b. One to N ? A connector of this type has multicast behavior; data is 
communicated to all the endpoints in the connector. 
In comparison with traditional IP-based networks, we can say that a One 
to One connector behaves similar to a TCP socket while the One to N connector is 
like a multicast socket.  
4. At the heart of the connector is the Communication Interface, which interfaces the 
connector with the routing protocol. The communication interface also provides 
mechanisms for receiving and sending data which are used by the connector; the 
application does not interact with the communication interface. In this manner, 
the routing protocol can be changed without propagating changes to the 
application layer and affecting the behavior of the connector. Communication 
interface is of three types: 
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a. RPC ? Provides the synchronous behavior associated with a remote 
procedure call. A call to send does not return till some form of 
acknowledgement is received and a call to receive does not return until 
data is received from the routing layer. 
b. Multicast -  Data is sent to all the parties in the group 
c. P2P ? A Peer to Peer type communication interface. Data is simply 
received from one endpoint and relayed to the other endpoint. 
Though at first glance it would seem that a RPC type communication 
interface would be associated with a One to One connector and a Multicast 
communication interface with a One to N connector, it is also possible for a One 
to N type connector to have a RPC communication interface to multiple nodes if 
that is more efficient and appropriate under the circumstances. 
 
3.5 System Architecture 
The system architecture is shown in Figure 3.5. The composition service comprises the 
composition server which makes use of the Composition Service API to listen to 
incoming requests for joining or leaving a group. Applications use the Composition 
Service API to join or leave a group. 
 
Figure 3.5 System Architecture 
 
If two sensor objects wish to interact on a short term basis without the additional 
overhead associated with forming a group, they can use the Connector API directly for 
this purpose. As long as the attributes for the participating entities are common 
knowledge, both the sensor nodes can set up communication channels meant for 
interaction with each other. 
 
3.5.1 The Application Layer 
As the name suggests, applications supporting a variety of distributed tasks, such 
as collaborative clustering, target tracking and in-network aggregation can operate in the 
application layer. Once the concerned nodes have established the channel of 
communication between themselves by means of the Connectors, they can maintain data 
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flow between themselves in accordance with the particular application?s needs. A group 
of such nodes can be formed by nodes in physical proximity to each other and possibly 
detecting the same type of event. Other nodes can join this group depending on their 
location, detected event type or to replace failed nodes in the original group. However, in 
a sensor network, nodes are deployed in an ad-hoc manner and are not aware of other 
nodes in the network. The task of group formation and maintaining this group formation 
is thus undertaken by an autonomous node which provides this service to the other nodes 
in the network. Service seeking nodes can avail of this service by making service calls to 
this particular node. The composition service is thus divided into two distinct 
applications; composition server and the service client. 
 
3.5.2 The Composition Server 
As discussed above, a task group consists of sensor nodes near each other and 
possibly detecting similar events, sharing data between themselves. The type of events 
detected by a node can be numerous, with different categories and of different types. For 
example, a node can detect an event of category ?vehicle? and type ?car?. Another node 
can detect an event of type ?vehicle? but having type ?tank?, and yet another can sense an 
?animal? of type ?deer?. It is necessary to separate these events based on their categories 
and types.  
Another factor that must be considered during group formation is the location of 
the nodes; communication should only be facilitated between nodes close to each other. 
Once the task group is formed, all participating nodes can then start communicating with 
each other using the group identification parameter. The composition server must thus 
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also communicate the group information to the nodes contained in that group. There are 
two feasible approaches for broadcasting group information. The first approach suggests 
giving information about the other nodes in the group to only the group leader. It is then 
the responsibility of the group leader to communicate with fellow group members and 
inform them about their inclusion into the group. In the second approach, the server 
broadcasts group membership to all the nodes.  
Though the first approach is more cost-effective in a resource constrained sensor 
network environment, a problem arises when the group leader is not able to carry out its 
duties for whatever reason. For this reason, it is better for all the group members to 
receive group membership status of all nodes in the group. This approach will also 
benefit reconfiguration of the group in case of node failure. New links can be established 
with another node having similar characteristics as the failed node. 
 
With this in mind, the responsibilities of the composition server can be given as follows. 
? Assist with group formation based on location and event characteristics. Incoming 
requests for group creation may result in a new group being created or the sensor 
node sending that request will be integrated into an existing group if all the 
characteristics of the SensorObject match the ones in the group.  
? Inform the nodes in the group about their status and that of other nodes in their 
group. 
? Maintain time-sensitive group information and inter-operate with the adaptation 
server for task group reconfiguration in case of node failure using this group 
information. 
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For constructing the composition server we use a hash map with the event 
category as the key. The value corresponding to this key is a table containing the 
relationship of an Event and SensorObject, collectively called EventRecord. The 
EventRecord object representation is done in Table 3.4. 
 
Class EventRecord  
{ 
public: 
 EventRecord(Event*,SensorObject*); 
 Event* getEvent(); 
 SensorObject* getSensorObject(); 
private: 
 Event* event; 
 SensorObject* recSensor; 
} 
 
Table 3.5 Representation of Event-Sensor Object relationship as EventRecord 
 
The composition server uses a centralized approach to group composition and 
management in a distributed network environment. The server is more than a simple 
collection of Events and SensorObjects; it also manages changes in the group 
structure in response to changes in the real sensor network. 
 
3.5.3 The Service Client 
The service client detects an event and sends a request to the composition server 
to join a group using the composition service API. The reply that arrives from the server 
contains the group number, the ID of the sensor node that is the group leader and 
identification of all the other nodes in that group. The group leader then sets up a 
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multicast channel through which group members send details of detected events to each 
other. This is done by constructing a Multicast connector to the group members. The 
group leader again uses the composition service API for this purpose. Once this channel 
is set up, an application can perform its duties and depend on the connector to provide a 
reliable path of interaction and mask network inconsistencies. 
 
3.5.4 The Composition Service API 
The application uses the composition service API for all the instances it has to 
interact with the composition server. The API masks the complexity of sending and 
receiving messages from the network using the appropriate routing protocol from the 
application.  
 
3.5.4.1 Join/Leave a Group 
The service client can use the joinGroup() and leaveGroup() methods to 
join and/or leave a group respectively. The prototypes of the joinGroup() function are 
as follows. 
 
int joinGroup(char* serviceType, int minGroupSize, int xSpan, int 
ySpan, SensorObject* thisSensor, NRAttrVec* 
receive); 
int joinGroup(char* serviceType, int minGroupSize, int xSpan, int 
ySpan, SensorObject* thisSensor, Event* 
senseEvent,NRAttrVec* receive); 
int joinGroup(char *serviceType, SensorObject* thisSensor, int 
groupID, NRAttrVec* receiveAttrs); 
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Input parameters: 
? serviceType - indicates the service the application is looking for, generally 
?composition?. The exact value is decided by the server and can be obtained from 
the lookup service as part of the composition service registration details. 
? minGroupSize ? The minimum number of group members that will constitute the 
entire group. This number will be decided by the application as per its needs. 
? thisSensor ? A pointer to the properties of the sensor the application is running 
on. The composition server will keep a record of all the sensor nodes it receives the 
request from. 
? receiveAttrs ? A vector where the return values extracted from the reply are to 
be put. Return values include group ID, identity of group leader and identities of 
other group members. 
? xSpan ? The location bounds for the group in the horizontal direction. 
? ySpan ? The location bounds for the group in the vertical direction. 
Return value: 
The return value of joinGroup() is an integer that returns 1 or 0 depending on the 
success or failure of the operation. 
Applications can call leaveGroup() to leave the current group once group 
interaction is not needed or if the node detects a different kind of event and wants to join 
another group. The prototype is as follows. 
 
int leaveGroup(char* serviceType, int groupID, SensorObject 
*thisSensor, NRAttrVec* receive); 
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Input Parameters: 
The input parameters have the same purposes as those for joinGroup(). In addition, 
the application needs to pass both group ID and sensor node properties to the server since 
the server stores a record of the sensor nodes and events seen by them in an 
EventRecord object. 
Return value: 
The return value of leaveGroup() is an integer that returns 1 or 0 depending on the 
success or failure of the operation. 
 
Both joinGroup() and leaveGroup() are synchronous in the sense that they 
will wait until a reply arrives from the server. There are versions of joinGroup() and 
leaveGroup() in the API which allow the application to pass a timeout value to the 
function, which will force the function to return after that particular amount of time has 
passed. 
 
3.5.4.2 Building a Connector 
Connectors are built by calling the buildConnector() method and the 
application can then use the Connector interfaces to maintain a stable data flow to any 
other application on another sensor node. The type of Connector object constructed will 
depend on the requirement and role the application plays in the group, as defined by the 
role attribute explained in Section 3.3. The remote endpoints of the connector have to be 
known to the application before the Connector object can be constructed. These can be 
obtained from the reply sent by the server.  
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Alternately, if the node simply wants to contact another node with matching 
properties, the application can create the appropriate SensorObject and invoke 
buildConnector(). The prototype of the functions is as follows. 
 
Connector* buildConnector(int groupID, SensorObject *thisSensor, 
SensorObject* toSensor, NRAttrVec 
matchAttrs);  
Connector* buildConnector(int groupID, SensorObject *thisSensor, 
SensorObject* to[], NRAttrVec 
matchAttrs);  
Input Parameters: 
? groupID ? the identification of the group this sensor node is a part of. 
? thisSensor ? encapsulation of the properties of this sensor. 
? toSensor/toSensor[] ? the properties of the sensor node(s) to which is 
connector is being built 
? matchAttrs - only requests that match the attributes defined in matchAttrs are 
passed by the diffusion routing protocol. The application can choose to limit the 
broadcasting of data beyond a certain location. Nodes that were part of the group 
but have since possibly moved out of that location will not receive that data. 
Return value: 
The buildConnector() returns a handle to a Connector object, the type of which is 
decided by the toSensor input parameter. 
 
 
 47
3.5.4.3 Deleting a Connector 
A connector can be deleted by using the deleteConnector() API method. The 
prototype is as given. 
 
int deleteConnector(Connector* deleteConn); 
Input Parameters: 
? deleteConn ? the handle to the connector to be deleted 
Return value: 
It returns 1 or 0 depending on success or failure respectively. 
 
It is necessary to use deleteConnector() instead of using language defined 
ways to delete an object because certain operations were carried out in conjunction with 
diffusion, for example, subscribing to particular data. These matching rules will not be 
modified if the object is simply deleted and the application might keep on receiving old 
data from the routing layer. 
 
3.5.4.4 Listening To Requests 
The composition service API also provides the server with the means of listening 
to incoming requests for group operations. This is done via the ServerConnection 
class. This class contains only one method - the listen() method, the prototype of 
which is given below. 
 
Connector* listen (char *service, NRAttrVec *matchAttrs); 
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Input Parameters: 
? service ? the service offered by this server, generally ?composition?. The server 
decides under what name it registers, however, it must provide the lookup server 
with details of its service. 
? matchAttrs ? only requests that match the attributes defined in matchAttrs are 
passed by the diffusion routing protocol. The server may choose to reject requests 
from sensor nodes that are distant from its position, as there may be another nearby 
composition server to handle them. 
 
3.5.5 The Connector Layer API 
The connector layer lies just below the Application layer in the system 
architecture. A connector has dual responsibilities. On one side, the connectors provides 
applications with a consistent feel of the network and maintains relationship with 
members of the group even if group composition changes. On the other hand, connectors 
also work with lower layers dealing with transport and routing.  
A connector has functions for sending and receiving data from other sensor nodes. 
Before that happens, the connector must construct links to these other sensors. The 
concept of a link and the relationship between connectors and links has been explained in 
Section 3.4. A Link object encapsulates the properties of a physical link to another 
sensor node. 
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class Link 
{ 
public: 
 Link(SensorObject* sink, SensorObject* source, int linkID); 
private: 
 int linkID; 
 SensorObject *sink, *source; 
} 
 
Table 3.6 Representation of a link as a Link object 
 
A link has an ID which is used to identify the link and two endpoints. The first 
endpoint is the current sensor node and the other is the sensor node to which this link is 
made. Link objects work with the routing protocol to discover efficient paths to these 
other sensor nodes. 
 
3.5.5.1 Creating/Removing a Link 
An application can add an endpoint to the connector to increment the number of 
end points by using the addEndPoint() function which is a member of the connector 
class. The operation of adding an end point involves creating a link to the sensor node to 
be added. The prototype of the function is as follows. 
int addEndPoint(SensorObject *addNew); 
Input Parameters: 
? addNew ? a reference to the SensorObject to be added 
Return value: 
The function returns 1 or 0 depending on if the end point was added successfully. 
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When dealing with one to one connectors, there are simply two endpoints 
attached to the connector. In that case, when the connector is completely populated with 
links, adding a new end point is not possible. A one to N type connector is not under any 
such restrictions, however, the number of links created to other nodes will depend on the 
application. This number is usually obtained as a parameter in the reply received from the 
composition server. 
The counterpart to addEndPoint() is the removeEndPoint() function 
applications can use to deconstruct a particular link.  
 
int removeEndPoint(SensorObject *oldEnd); 
 
Input Parameters: 
oldEnd ? a reference to the SensorObject to which the link is to be removed 
Return value: 
The function returns 1 or 0 depending on if the end point was added successfully. 
 
For a one to one type connector, deleting an end point will simply mean 
reconfiguration of that connector. For a one to N type connector, this function can be 
called only till all the established links are deleted. Once this happens, reconfiguration of 
the connector will take place. 
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3.5.5.2 Sending/Receiving Data 
Applications can use the send() and receive() functions to send and receive 
data from the Communication Interface layer respectively. 
 
int send(NRAttrVec data); 
NRAttrVec receive(); 
Input Parameters: 
? data ? the attribute vector that contains the attributes to be sent into the network. 
Return values: 
? The send() function returns a integer that specifies success or failure of the send 
operation. 
? The receive() function returns an attribute vector containing the data sent by the 
remote sensor node represented as attributes supported by the diffusion routing 
protocol. 
 
3.5.6 The Communication Interface Layer 
The communication interface bears the responsibility of interacting with the 
routing layer to discover efficient paths to remote nodes. Sending and receiving of data or 
interest packets that match the diffusion protocol standards is also done at this layer. 
 
3.5.6.1 Setting up Interests and Data Matching 
Before an application can start communicating with applications on other sensor 
nodes, it has to send out a diffusion Interest specifying the type of data it is interested 
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in. This can be done using the setupSubscription() function, the prototype of which 
is given below. This function is called by the joinGroup() and leaveGroup() 
functions of the composition service API. 
 
void setupSubscription(NRAttrVec interest); 
Input parameters: 
? interest ? a vector carrying the diffusion attributes that constitute the Interest. 
Other nodes will match the data they have to this interest using matching rules 
specified by directed diffusion. 
 
If a sensor node produces certain type of data, it must look for interests that seek 
that data before the node can send out its data. For this purpose, applications can use the 
setupPublication() function. 
 
void setupPublication(NRAttrVec matchAttrs); 
Input Parameters: 
? matchAttrs ? the attributes that are matched to the incoming interest. 
 
3.5.6.2 Sending/Receiving Data 
Once interests are sent out on the network and the type of data a node offers has 
been advertised, data can be sent and received by using the send() and receive() 
functions respectively. 
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int send(NRAttrVec data); 
NRAttrVec receive(); 
Input Parameters: 
? data ? the vector containing the data to be sent represented as diffusion attributes. 
Return values: 
? The send() function returns a integer that specifies success or failure of the send 
operation. 
? The receive() function returns an attribute vector containing the data sent by the 
remote sensor node represented as attributes supported by the diffusion routing 
protocol. 
 
3.5.7 Directed Diffusion Routing Protocol Layer 
Fabio Silva et al. have explained the diffusion API [7] in detail. A quick overview 
of the diffusion routing protocol has also been provided in Section 2.1. However, the 
aspect of how diffusion handles data and transfers it over the network needs to be seen in 
order to complete the discussion about the composition service. 
Data requests and responses are composed of data attributes that describe the data. 
Each piece of the subscription i.e. the attribute, is described by means of a key-value-
operation trio, and implemented by the built-in class Attribute. A key indicates what 
the attribute stands for (temperature, speed etc.) and are simply constants (integers) that 
are defined in the application header. Type indicates the primitive type the key will be 
and will determine the type of matching algorithms run. The available types are 
INT32_TYPE (32 bit signed integer), FLOAT32_TYPE (32 bit), FLOAT64_TYPE (64 bit), 
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STRING_TYPE (UTF-8 format) and BLOB_TYPE (un-interpreted binary data). The 
operator describes how the attribute will match when two attributes with the same type 
and key are compared. Available attributes are IS, EQ (equal), NE (not equal), GT (greater 
than), GE (greater than or equal to), LT (less than), LE (less than or equal to), EQ_ANY. In 
addition, attributes have values, which themselves have types and contents. 
In diffusion, data is exchanged when there are matching subscriptions and 
publications and the publisher data. For example, a sensor node may publish the 
following set of attribute to signify detection of an ?animal? and its own position. 
LATITUDE_KEY IS 32.67 
LONGITUDE_KEY IS 35.6 
TARGET_KEY IS animal 
Any user interested in receiving data about the animals in the region might send 
out an interest of the following format. 
TARGET_KEY EQ animal 
 
While the above will result in data about animals being reported from all over the 
network, the user might want to narrow the search to a particular region. This might be 
accomplished by sending out an interest having the format given below. 
TARGET_KEY EQ animal 
LATITUDE_KEY GE 32 
LATITUDE_KEY LE 33 
LONGITUDE_KEY GE 33 
LONGITUDE_KEY LE 38 
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In order to simplify the creation and manipulation of attributes, the diffusion API 
provides factories to create attributes. An example of the definition and creation of an 
attribute is as shown below. 
#define TEMPERATURE_KEY 5050    //defines key value 
NRSimpleAttributeFactory<float> TemperatureAttr (TEMPERATURE_KEY, 
NRAttribute::FLOAT32_TYPE); 
NRAttribute *temp = TemperatureAttr.make(NRAttribute::IS, 55.75);  
 
Table 3.7 Definition and Creation of Diffusion Attributes 
 
Since several types of data need a set of attributes for its definition, the API 
defines the NRAttrVec structure, which is a C++ STL vector of pointers to attributes. 
For example, the state of a region can be described by using the following parameters: 
temperature, humidity, latitude, longitude and time. By creating their diffusion equivalent 
attributes and giving them the respective values, all of them can be grouped together and 
sent as the data for a matching interest. 
Since our composition service uses directed diffusion as the routing protocol, it 
makes judicious use of the built in types and factories provided by diffusion as seen in the 
previous sections. Though this makes the application somewhat dependent on directed 
diffusion, it eliminates the extra processing needed to convert application defined 
attributes to diffusion attributes. 
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//define key values here 
TEMPERATURE_KEY 5050 
HUMIDITY_KEY 5051 
?? 
//define attributes here 
NRSimpleAttributeFactory<float> TemperatureAttr (TEMPERATURE_KEY, 
NRAttribute::FLOAT32_TYPE); 
NRSimpleAttributeFactory<int> HumidityAttr (HUMIDITY_KEY, 
NRAttribute::INT32_TYPE); 
?.. 
NRAttrVec state; 
state.push_back(TemperatureAttr.make(NRAttribute::IS,55.76)); 
state.push_back(HumidityAttr.make(NRAttribute::IS,65)); 
 
Table 3.8 Creating an NRAttrVec structure 
 
3.6 Relationship Between Composition Service and Diffusion Attributes 
As seen above, any packet traveling on a diffusion network must contain 
attribute-value pairs. It thus becomes necessary to convert the information needed by the 
application into such attribute-value pairs before sending and receiving operations are 
carried out. The application needs to define the required attributes using the attribute 
factories provided by diffusion according to its needs.  
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For the composition server, it is important to identify sensor nodes along with the 
events they sense and form groups based on this information. Group formation 
information then has to be conveyed back to these nodes so they can start communicating 
with other nodes in their group. It is thus necessary to define attributes that represent the 
current state of the above mentioned entities in order to support the composition service 
mechanism. 
 
3.6.1 The SensorObject Attributes 
The data members that constitute a SensorObject are shown in Section 3.3. 
Since the data members give the current state of the node, attributes that correspond to 
every member are necessary. The attributes and their types are shown in Table 3.8. 
Attribute Name Attribute type 
SensorIDAttr INT32_TYPE 
SensorRoleAttr INT32_TYPE 
SensorStatusAttr INT32_TYPE 
LatitudeAttr FLOAT32_TYPE 
LongitudeAttr FLOAT32_TYPE 
GroupAttr INT32_TYPE 
QosPowerAttr INT32_TYPE 
QosDataRateAttr INT32_TYPE 
QosDelayAttr INT32_TYPE 
 
Table 3.9 Attributes for a SensorObject 
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3.6.2 The Event Object Attributes 
The data members that constitute an Event object are shown in Section 3.3. The 
attributes and their types are shown below in Table 3.9. 
Attribute Name Attribute Type 
EventCategoryAttr STRING_TYPE 
EventDescriptionAttr STRING_TYPE 
EventValueAttr FLOAT32_TYPE 
EventConfidenceAttr INT32_TYPE 
 
Table 3.10 Attributes for a Event object 
3.6.3 Other Important Attributes 
Other than the attributes needed for the node and event data, there are some 
attributes needed for the working of the composition service, listed in Table 3.10. 
 
Attribute Name Attribute Type 
TargetAttr STRING_TYPE 
TaskAttr STRING_TYPE 
GroupLeaderAttr INT32_TYPE 
ServerIDAttr INT32_TYPE 
ServerGroupDetails STRING_TYPE 
 
Table 3.11 Other essential attributes 
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The use of all the attributes mentioned above will be made clear when the system 
implementation is discussed. The application is free to declare any other attributes as it 
may seem fit. 
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CHAPTER 4: SYSTEM IMPLEMENTATION
 
The previous chapter provided a wide view of the overall architecture and 
individual components of the composition service. Some ideas about the underlying 
structures needed to support an application were also presented. This chapter shall take a 
deeper look into the composition service API and the mechanisms that together constitute 
the composition service. 
As can be seen from the architecture, the composition service implementation is 
spread across several layers. Each layer provides a set of interfaces to the layer above it. 
These interfaces shield the upper layer from the functional complexity encapsulated by 
the current layer and also allow it to invoke the desired behavior from the current layer. 
The responsibilities of each layer have been discussed in the previous chapter; here we 
will explain in detail the construction of these layers. 
 
4.1 Implementation Issues 
Chapters 2 and 3 gave the overview of the system architecture and the 
technologies used in connection with the composition service. Section 3.5.7 explains the 
Directed Diffusion data handling mechanism and the concept of diffusion attributes.  
 Directed diffusion is significantly different from IP-style communication where 
nodes are identified by the data they offer, and inter-node communication is supported by 
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an end-to-end delivery service provided in the network. Diffusion adopts a 
publish/subscribe based API for communication. To receive data, users subscribe to 
a particular set of attributes, becoming data sinks. This takes the form of an Interest 
message which is broadcasted to all the neighbors. A callback function is then invoked 
whenever relevant data arrives at the node. Other sensors publish what data they can offer 
that matches the interest attributes. In both cases, what data is provided or received is 
distinguished by the attribute-based naming scheme described in Section 3.5.7. Diffusion 
also uses the attribute-based naming scheme to associate source and sinks of data. This 
naming scheme is data-centric, allowing applications to focus on desired data instead 
individual nodes. The exact process of determining which publications and subscriptions 
are related is called matching, which is driven by rules defined in the Directed Diffusion 
core program. 
This has important implications for any client-server application running on top of 
the diffusion protocol. In an IP-based network a client can directly contact a server using 
only the IP address of the server and all intermediate routers know exactly where to 
forward the data. Since nodes are addressed by the data (or services) they offer in a 
diffusion network, the client has to obtain the properties of the server node and send out 
an interest message with those properties. The composition server can register with the 
lookup service [2] in order to enable the service-seeking nodes to discover it.  
Secondly, the Interest message generated by the client will be initially flooded 
over the entire network.  In case the composition server is at a distant location from the 
client(s), every intermediate node will receive and have to forward these packets, 
resulting in power consumption for that node. The region filter [25] can be used with 
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directed diffusion to limit this initial flooding since the location of the server is known 
from the lookup service. 
It also becomes necessary for any application to convert any message that needs 
to be passed over the network into diffusion-level attributes. All the attributes required 
thus need to be pre-defined, including those for group creation and management. 
Matching rules for diffusion, explained in Section 3.5.7, also need to be set up as per the 
application?s desire to send or receive data. The composition service API provides 
methods for these purposes so that the application can concentrate on its task. 
For the composition server, in addition to the above, there are other things that 
must be considered. Some responsibilities, like that of the composition server, are well 
defined and easy to implement. The composition server needs to simply accept any 
interest packet from other nodes which contain information about these nodes and are for 
the specific purposes of group activities. Hence the server is just required to set up a 
matching rule with local scope for the above purpose. The responsibility of a composition 
client however, is multifold. Initially, the client broadcasts Interest messages with the 
intent on joining or creating a group. The server replies to the client?s request with group 
information. The setting up of connectors in the group depends on the application. 
Accordingly, a group member can either produce data, offer in-group services, or be the 
data consuming end point of the group. This translates to setting up different attributes to 
be matched for each node and possibly for different types of network traffic. Though the 
composition service programming constructs provide the means for the application to 
define its needs, the application will still need to take into account its requirements. 
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4.2 Implementing the Composition Server 
The composition server listens for interest messages from event sensing nodes 
using the ServerConnection listen() function. The server also publishes its own 
attributes to be included when a reply to a join group or leave group request is to be sent. 
The listen() function returns a OneToOne type connector through which the server 
sends a reply to each of the nodes from which it received a matching interest. For all its 
essential operations, the server defines its own internal (private) member functions and 
uses them extensively. The sequence of events for joining and leaving groups and 
associated mechanisms needed to send a reply are explained below. 
1. On receiving a join group request the server first checks for the presence of a pre-
existing group whose members have matching properties such as location to the node 
from which the request was sent. This step is necessary to prevent a multitude of new 
groups being formed for the same purpose.  
2. A group is created between nodes that are physically close to each other. The server 
matches the latitude and longitude of the events for all the nodes involved. If such a 
group is found, the reply is sent to the new node with the group ID and group 
members. If a group does not exist, a new group is created at the server. 
3. The server employs a structure for storing the properties of the nodes that must be 
indexed by group identity for easy retrieval of group member information. It does this 
by means of Hash Map, the structure of which is as shown in Figure 4.1. 
 
Figure 4.1 Server storage structure 
 
4. As can be seen from Figure 4.1, all incoming requests are grouped together into a 
special group. This group maps to a list of EventRecord objects, explained in 
Section 3.5.2. This list will be scanned for all nodes that fall within the limits of a 
prescribed area and do not already belong to a group. 
5. When the server receives a request to join a particular group, it checks for the 
presence of a group ID in the message. If a group ID is found and such a group exists, 
the sensor node is added to that group. If there is no group ID, the server attempts to 
add it to the list for the special group number. This can be done by using the 
insertEntry() server member method.  
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int insertEntry(EventRecord* currentRec ,int xSpan ,int ySpan, 
list<EventRecord*> * matchEntries) 
Input Parameters: 
? currentRec ? the EventRecord of the incoming sensor and Event sensed (if 
present) 
? xSpan ? the area to be scanned for matching nodes in the horizontal direction 
? ySpan ? the area to be scanned for matching nodes in the vertical direction 
? matchEntries ? the list of all nodes that match the current node the request 
was received from. 
Return Value: 
insertEntry() returns an integer specifying the number of nodes of similar type 
that exist in the list. 
 
The return value is compared by the server to the maximum number of nodes 
value supplied by the application to the server through the joinGroup()function. If 
such a value is not specified by the application, a default value of 4 is used by the 
server.  
Before inserting an EventRecord object in the storage, the insertEntry() 
function checks if the same record already exists in the storage since the current 
request may be a duplicate one. Duplicate requests can occur due to the inherent 
broadcast nature of directed diffusion or because the originating node sent out more 
than one interest messages. A check for the existence of duplicate information can be 
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done using the server member contains() method. This method will use the 
sensor ID to distinguish one sensor node from another.  
int Server::contains(EventRecord* currentRec) 
Input Parameters: 
Same as those for insertEntry(). 
Return Value: 
1 or 0 signifying the presence or absence of record in storage respectively. 
 
6. Once a sufficient number of similar nodes have been obtained from the special group 
list, the server will then form a group and assign a group number to the concerned 
nodes. The exact span of the area to be considered depends on the server; currently 
we include all nodes that lie within 50 units (for example, 50 meters) of the present 
node. The server uses the member formGroup() function for this purpose. The 
group number and list of nodes in the group will be entered into the server storage. 
 
void formGroup (int groupID, list <EventRecord*> groupEntries) 
Input Parameters: 
? groupID ? the new group number 
? groupEntries ? the EventRecord list of all nodes in the group 
 
7. The server then composes a reply using the attributes defined by the application and 
sends the reply to all the nodes in the newly formed group. The exact attributes used 
and their purpose are given in Table 4.1. 
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Attribute Name Type Purpose 
ServerIDAttr INT32_TYPE The identity of the server. 
GroupAttr INT32_TYPE The group identification number. 
GroupLeaderAttr INT32_TYPE The identity of the node that is the 
group leader for this group. 
TaskAttr STRING_TYPE Specifies the reason for sending the 
reply; ?join group reply? in this case. 
ServerGroupDetails STRING_TYPE The identities of all the other nodes in 
the group. 
 
Table 4.1 Join group reply attributes and their purpose 
 
8. The reply attributes are packed into a NRAttrVec vector and passed to the connector 
send() function which sends the packet using the functions provided by the 
underlying CommunicationInterface object.  
9. If a leave group request is received, the node in question is obtained from the map 
and deleted by using the member removeEntry()function. 
 
int removeEntry(int groupID,EventRecord *existEntry) 
Input Parameters: 
? groupID ? the group number the node was a part of  
? existEntry ? the EventRecord corresponding to the sensor node to be 
deleted 
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Return Value: 
It returns 1 or 0 depending on the success or failure of the remove operation. 
 
10. The server then composes a leave group reply addressed to the node from which it 
received the request. The attributes used are shown below in Table 4.2. 
 
Attribute Name Type Purpose 
ServerIDAttr INT32_TYPE The identity of the server. 
TaskAttr STRING_TYPE Specifies the reason for sending the 
reply; ?leave group reply? in this case. 
 
Table 4.2 Leave group reply attributes and their purpose 
 
The server API is also used to maintain or reconfigure group information when 
nodes are unable to communicate due to failure or when their power runs out. The 
composition server will then work with the adaptation server to discover new nodes 
and add them to pre-existing groups. 
 
4.3 The Composition Service API 
An overview of the composition service API functions was given in Section 3.5.4. 
The main goal of the API is to make the task of communicating with the server as 
seamless for the application as possible. The API also aims to use the underlying 
connector interface and set up a stable communication channel to the server. This channel 
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is to be maintained for as long as the application needs to interact with the server. In the 
context of directed diffusion, efforts must be made to minimize flooding of interest 
messages when discovering a reliable path to the composition server and other nodes in 
the group. The packets sent over the network also have to be as small as possible, as radio 
transmission is the single most expensive operation on a sensor node [4,19].   
 
4.3.1 Joining a Group 
The joinGroup() API function undertakes the task of translating the object 
references sent by the application into diffusion attributes and sending the appropriate 
interest message over the sensor network. The prototype for the function is given below. 
 
int joinGroup(char* serviceType, int maxGroupSize, int xSpan, int 
ySpan, SensorObject* targetSensor, SensorObject* 
thisSensor, NRAttrVec* receive); 
int joinGroup(char* serviceType, int maxGroupSize, int xSpan, int 
ySpan, SensorObject* targetSensor, SensorObject* 
thisSensor, Event* senseEvent,NRAttrVec* receive); 
int joinGroup(char *serviceType, SensorObject* thisSensor, int 
groupID, NRAttrVec* receiveAttrs); 
 
The semantics for the joinGroup() API function were explained in Section 3.5.4.1. 
The function uses member methods from the SensorObject and Event classes; these 
methods are highlighted in boldface in the working description given. 
1. The application calls joinGroup() passing in the service to be invoked, the 
references to the calling and target sensor node objects along with a reference to a 
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NRAttrVec where the return values are to be stored. A version of the function also 
allows for passing the Event information to the server if the application and sensor 
node are able to accurately categorize the sensed event. 
2. A NRAttrVec structure is created which holds the attributes to be sent out with the 
interest message. The contents of this vector are given in Table 4.3. 
Attribute 
Name 
Type Purpose 
NRClassAttr INT32_TYPE Specifies the type of the message to be sent is 
an interest Message. The value is thus 
NRAttribute::INTEREST_TYPE. 
TargetAttr STRING_TYPE The service to be found. The value is usually 
?composition? unless composition server 
registers with the lookup server using some 
other value. 
TaskAttr STRING_TYPE The task for which this interest message is 
being created, in this case, ?join group? 
GroupAttr INT32_TYPE The group to which node belongs 
XSpanAttr INT32_TYPE The span in the horizontal direction 
YSpanAttr INT32_TYPE The span in the vertical direction 
 
Table 4.3 Join Group Attributes 
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The message also contains the details of the node on which the application is running 
and the event which triggered the sequence of events. The joinGroup() function 
can get these properties from the getSensorAttributes() member function of 
the SensorObject class and the getEventAttributes() function of the Event 
class. Both these functions return a NRAttrVec containing the which is then copied 
into the send vector using the AddAttrs() diffusion API function. 
3. The application then calls the setupSubscription() method of the 
communication interface which belongs to the member Connector object of the 
API, passing in the entire NRAttrVec vector containing all the attributes to be sent. 
The setupSubscription() method will send out an interest message on the 
network.  
4. The function then calls the receive() function of the OneToOne connector class to 
receive matching data for the interest sent. The receive() function queries the 
member communication interface which in turn queries incoming packet queue set up 
between the communication interface layer and the routing layer and returns the 
packet on top of the queue. The operation is a blocking one, i.e. the function does not 
return until a packet is received from the diffusion routing layer. 
5. When joinGroup() receives data, it checks the data to ensure the packet is a join 
group reply from the server and is meant for the current node. This is necessary as a 
node might receive join group replies meant for some other node in another unrelated 
group. Until both of the above match, the received packet is discarded, receive() is 
called and the checking process continues. 
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6. Once a valid packet is obtained, the joinGroup() function then copies all the 
attributes from the packet into the receiveAttrs vector passed as an argument to it. 
The control will now pass to the application which has the join group reply from the 
server and all the necessary attributes it needs. 
 
4.3.2 Leaving a Group 
The leaveGroup() API function allows the application to convey its intention 
of disassociating itself from a group to the server. There may be many reasons why a 
node might want to leave a group; it wants to join another group, the event data that 
prompted group creation is no longer being sensed etc. In any case, an interest message 
must be created and sent to the server requesting a node delete operation at its end. 
 
int leaveGroup(char* serviceType, int groupID, SensorObject 
*thisSensor, NRAttrVec* receive); 
 
The input parameters and return values for leaveGroup() were presented in Section 
3.5.4.1. The mechanism is described below. 
1. Since the server uses a group-node association to store records in the map, we need to 
pass the group ID and the sensor node ID to the server in order to enable it to make a 
match.  
2. An NRAttrVec vector is used to hold the attributes that make up the interest message 
to be sent over the network to the composition server. The attributes utilized in 
creating this message are given in Table 4.4. 
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Attribute Type Value 
NRClassAttr INT32_TYPE Specifies the type of the message to be sent 
is an interest Message. The value is thus 
NRAttribute::INTEREST_TYPE. 
TargetAttr STRING_TYPE The service to be found. The value is usually 
?composition? unless composition server 
registers with the lookup server using some 
other value. 
TaskAttr STRING_TYPE The task for which this interest message is 
being created. The value in this case will be 
?leave group? 
GroupAttr INT32_TYPE The group to which this sensor belongs to. 
SensorIDAttr INT32_TYPE The ID of this sensor which wants to leave 
the group. 
 
Table 4.4 Leave Group attributes 
 
3. Once all the attributes are created and entered using the push_back() vector 
member function, leaveGroup() calls the setupSubscription() member 
function of the OneToOne type connector which will send the interest package in a 
similar way to the joinGroup() function. 
4.  When leaveGroup() receives data, it checks the data to ensure the packet is a join 
group reply from the server and is meant for the current node. This is necessary as a 
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node might receive join group replies meant for some other node in another unrelated 
group. Until both of the above match, the received packet is discarded, receive() is 
called and the checking process continues. 
5. Once a valid packet is obtained, the leaveGroup() function then copies all the 
attributes from the packet into the receiveAttrs vector passed as an argument to it. 
The control will now pass to the application which has the leave group reply from the 
server. The application then must either delete the Connector object (see Section 
3.5.4.3 ) or reconfiguring it using the Connector API. 
 
4.4 Listening to Incoming Requests 
There can be a multitude of services offered by nodes in the sensor network 
environment like the adaptation service, lookup service and so on. The server needs a 
way of filtering out requests meant for its offered service type and respond to these 
requests. The ServerConnection class implements the listen() function for this 
purpose. 
 
Connector* listen (char *service, NRAttrVec *matchAttrs); 
 
The input parameters and return value were explained in Section 3.5.4.4. The mechanism 
is described below. 
1. Like the joinGroup() and leaveGroup() API functions, the server expresses a 
desire for receiving packets that match a particular criteria. However, unlike both 
those operations, this match is not required to travel out into the network as an 
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interest packet. Rather, it is kept local to the node and every packet received is 
matched to the attributes specified. On a match, a Connector object reference is 
passed to the application. 
2. An NRAttrVec vector is used to hold the attributes that are to be matched to the 
attributes in the incoming packet. In addition, the application can also pass additional 
attributes to the function for matching purposes. attribute name, types and values, if 
any, are described in Table 4.5. 
 
Attribute Type Value 
NRClassAttr INT32_TYPE Specifies the type of the message to be received is 
an interest Message. The value is thus anything 
that is not NRAttribute::DATA_CLASS 
NRScopeAttr INT32_TYPE The interest expressed is to be kept local to the 
node. The value is 
NRAttribute::NODE_LOCAL_SCOPE 
TargetAttr STRING_TYPE The service to be offered. The value is usually 
?composition? unless composition server registers 
with the lookup server using some other value. 
 
Table 4.5 Listen attributes 
 
In this case, the scope for the interest is to be given explicitly, since the default scope 
used by directed diffusion is the global scope which will propagate the interest over 
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the network. Since this was the intention for joinGroup() and leaveGroup(), the 
NRScopeAttr is not required to be included in the packets they send out. 
3. All the above attributes and the extra attributes specified by the application are copied 
into a NRAttrVec structure after which the subscription is set up in the same way as 
the joinGroup() and leaveGroup() functions. The connector reference is 
returned to the application which can be used to always receive messages from the 
service-seeking nodes. 
 
4.5 The Connector API 
The function and purpose of a connector has been explained in Section 3.4. In this 
section we present the construction of the connector interface utilized by the composition 
service API and applications. The creation of a Connector object has been explained in 
Section 3.5.4.2. 
 
4.5.1 Sending and Receiving Data 
The send() and receive() functions were presented in Section 3.5.5.2. Both 
functions call the send()and receive() of the member communication interface 
respectively. 
 
4.5.2 Adding and Deleting Endpoints 
A connector provides the application with the means of communicating with other 
sensor nodes via a reliable channel. The node the application is running on and other 
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nodes constitute the endpoints. The connector API provides the addEndPoint() and 
removeEndPoint() functions for manipulating the end points of the connector.  
 
int addEndPoint(SensorObject *addNew); 
int removeEndPoint(SensorObject *oldEnd); 
Input Parameters: 
? addNew ? the sensor object to which a connection is to be made 
? oldEnd - the sensor object to which the established connection is to be broken 
Return Parameters: 
Both functions return 1 or 0 based on the success or failure of the operation. 
 
The exact implementation of these functions may differ for different types of 
connectors. As explained in Section 3.4, the two types of connectors are OneToOne and 
OneToN. An OneToOne connector represents a connection between just two endpoints, 
hence it is not possible to add an endpoint without removing the existing remote endpoint 
first. The OneToOne type connector thus keeps track of the number of active endpoints 
and imposes a maximum limit of two endpoints. On the other hand, an OneToN type 
connector can have a number of remote endpoints, the exact number of which depends on 
the application. A OneToN connector needs a data structure for tracking all the active 
nodes it presently has communications channels set up to.  
When all other conditions are satisfied, the addEndPoint() operation results in 
the creation of a new Link object. An internal link counter is incremented, which is used 
by the connector to report the number of active links it presently contains. Conversely, 
the removeEndPoint() operation results in the appropriate Link object being deleted. 
Both operations have been illustrated in Section 3.4. 
 
4.5.3 Redirecting a Connector 
The task of redirection or reconfiguration of a connector is performed in the case 
of failure of one or more nodes in the group. The composition server works with the 
adaptation server to discover operational nodes within the vicinity the original group 
members and replaces the failed node. This entire operation is transparent to the 
application which only sees and uses the connector resource for its communication 
purposes. 
 
Figure 4.2 Redirecting a Connector 
 
All the nodes in the group (S1 and S2) already have connectors set up to each 
other. In Figure 4.2 we have shown just two nodes to be part of the group for the sake of 
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clarity. In reality there could be up to six nodes in the group. The following is a sequence 
of actions for managing node failure and reconfiguration. 
1. One of the nodes in the group goes down, which is detected by the other node(s) 
receiving data from this node. 
2. These ?downstream? nodes send a node failure message to the adaptation server. 
3. The adaptation server communicates with the composition server to get information 
about the task structure of the group to determine the possible failed upstream node. 
4. The composition server returns the structure of the group. 
5. The adaptation server will query the lookup server to obtain information about all 
nodes that match location criteria and offer a similar service. 
6. The lookup server returns a list of possible replacement nodes to adaptation server. 
7. The adaptation server will choose the most appropriate node as replacement for failed 
node. It will also initiate the operation for the new node to replace the failed node. 
This decision will be conveyed to the composition server. 
8. The composition server shall make the requisite changes in its local database. 
9. Composition server reconfigures the endpoints of the connectors of all concerned 
nodes. 
10. Upon successful reconfiguration, the composition server returns the status to the 
adaptation server. 
 
At first glance, it looks like the replacement node can be chosen by the 
composition server instead of the adaptation server, minimizing communication overhead 
between these two services. However, the main purpose of the composition server is to 
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form groups based on sensor location. The algorithm of which node is to be designated as 
the replacement should be best implemented by the adaptation server. 
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CHAPTER 5: PERFORMANCE EVALUATION
 
The previous chapters covered the thought process, architecture and 
implementation of the composition server. This chapter attempts to demonstrate the 
benefits of the composition service in real-world scenarios by considering two different 
areas; mobile target tracking and automatic failure recovery. Applications concerned with 
both areas need to be independent from the effects of sensor node mobility and the 
unreliability of sensor network environment. 
Most of the applications designed for sensor networks require some form of 
sensor clustering to achieve a degree of accuracy in reporting the sensed data. This 
chapter presents the performance of a target tracking application which uses our 
composition service API extensively. 
A sensor node in an ad-hoc sensor network is also subject to failure from a variety 
of reasons like hostile environmental conditions or drop in battery power level of the 
node. Since every node contributes in routing decisions, at the very least node failure may 
result in loss of data for data-seeking nodes. The situation is exacerbated if the faulty 
node was a service offering node; some way for dynamically obtaining similar nodes and 
replacing the faulty node transparently must be devised. The composition server can 
work with the adaptation server to discover replacements and initiate them into the set up. 
 To optimize the recovery process, the adaptation server implements some 
constraint satisfaction algorithms with the help of the composition server [25]. 
  
5.1 Dynamic Sensor Clustering 
Richard Brooks gives a high level view of a multi-sensor tracking system [21], 
also shown below in Figure 5.1.  
 
 
 
Figure 5.1 High level view of a target tracking system 
 
Each sensor node continuously monitors its environment and tries to detect events 
as they occur within the sensor?s field of operation. Target information is then used by 
the node to create a detection event by matching it with the node?s known target type 
database. Local collaboration is performed to create a accurate categorization of the 
target, and includes only nodes within a dynamically determined geographic 
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neighborhood and time frame. Results of this local collaboration are then used to initiate 
and maintain tracking of the target. Tracking information may also be stored in a 
distributed database which is possibly part of a complex query processing system and is 
tied to a user interface. 
As can be deduced, detection and in-node processing is the first step for target 
tracking. Robustness and reliability are also important factors one must consider in this 
process of sensor fusion. In this context, the number of sensor failures the network can 
tolerate becomes crucial, as is the manner in which data from fit sensors is separated from 
the unfit ones. Richard Brooks, et al, give a solution [22] that satisfies the requirements of 
inexact agreement problem by merging the sensor fusion algorithm with Mahaney and 
Schneider?s Fast Convergence algorithm [23].  The solution assumes the self-
organization of sensor nodes into clusters. The sensor fusion algorithm runs on the cluster 
head, which collects the processed data from the group members and inputs this into the 
algorithm.  
 
Figure 5.2 Target tracking process flow chart 
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A flowchart for the process of target tracking is shown in Figure 5.2. The 
initialization phase consists of publish-subscribe calls. The methodology in [22] proposes 
two waves of publish-subscribe calls propagated in four directions. 
 
 
Figure 5.3 Regions in which candidate tracks are published 
 
Figure 5.3 illustrates the near (dark grey) and far regions for a node, where both 
terms differ in the distance between the node broadcasting track information and the node 
receiving this information. Each node sends subscription messages to all nodes in the 
eight regions. If a node detects a target in the north-west direction, it will transmit 
tracking information to near/far nodes with subscriptions in the north-west area. Nodes in 
this region can receive multiple candidate tracks from a multitude of nodes. Local 
collaboration then determines the exact position of the target in the vicinity of a nearby 
cluster. Candidate tracks that are inconsistent are filtered out and promising tracks are 
retained. A Euclidean metric is then used to determine the best-fit track. Merging the new 
detection with track is done using an Extended Kalman filter [24]. A rectangular region is 
constructed enclosing the places the target is likely to visit in a short time period. 
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The above concepts were successfully applied to a multi-target, multi-sensor 
tracking application set up at the 29 Palms Base in Southern California [21].  However, if 
the network starts to become large-scale (more than 1000 nodes) with the directed 
diffusion routing protocol, some problems are apparent. 
The most obvious problem is packet flooding. An interest packet is broadcasted 
over the entire network for the sink to find some source node with the requested data. For 
the scheme illustrated in Figure 5.3, each node needs to send out eight interests, each 
corresponding to a different region. Since each node has the ability to subscribe to needed 
data, the total number of packets can be least approximated by multiplying these eight 
interests by the number of nodes in the network.  
Scalability of a diffusion network is also restricted by the size of the gradient table 
of each node. Gradients directly correspond to the number of distinct interest messages 
received by the node. Greater the number of such messages, greater is the gradient table, 
which might eventually exceed the capacity of the node. It must also be noted that 
transmission of interest messages is also done as reinforcements to maintain established 
paths of communication. As long as tracking collaboration exists in the network, interest 
packets will be re-broadcasted after a certain interval.  
For a sensor node, the expense incurred for communication is several orders more 
than for computation [4]. Reducing the number of messages transmitted and received 
thus goes a long way in increasing the longevity of the entire network. Equally important 
is to limit the number of nodes traversed by interest messages; more the number of hops, 
more the nodes that spend energy in re-transmission. All packets that are exchanged 
between nodes for collaboration should be limited within one or several clusters instead 
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of propagating across the entire network. Subscription rules should also be as specific as 
possible to enable finding the appropriate nodes within the specified region. The region 
filter developed at Auburn University [12] as an enhancement to directed diffusion works 
to contain message re-transmission within a specific region. A detailed explanation of the 
mechanism is given in [25].  
 
5.1.1 Evaluation for thirty nodes with multiple groups 
This section will give the performance of the composition service mechanism 
using diffusion broadcasting techniques over the sensor network. The metrics used are 
the average number of interest and data packets in the network relative to the number of 
groups and network size. The data is collected over a series of time intervals. The testing 
environment provided by ISEE [12] was utilized and results are obtained using the metric 
filter. The region filter [25] has been used to limit the flooding of packets in the network. 
The number of messages includes the interest messages sent from the clients to the 
composition server and the data messages sent as the reply from the server to the clients. 
 
Figure 5.4 Network topology in ISEE 
 
 
Figure 5.5 Interest and Data messages for 30 nodes with 1 group 
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Figure 5.6 Interest and Data messages for 30 nodes with 2 groups 
 
As seen from Figure 5.5 and Figure 5.6, interest packets are flooded into the 
network initially as the nodes contact the composition server for joining a group, while 
there is virtually no data packet traffic. As the nodes are grouped by the server and start 
communicating between themselves, the data packet traffic increases as the average 
interest packets gradually remain the same or start decreasing as negative reinforcements 
are sent by group members using the composition service API. The number of data 
packets will actually depend on the application; our test application sends 10 data 
messages between each other. Other applications may use the set up to collaborate for a 
far longer time. 
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5.2 Automatic Failure Recovery 
The previous section presented an application that required node collaboration in 
a sensor network and the performance of the application with respect to directed 
diffusion. However, nodes in a sensor network are susceptible to failure and/or mobility, 
introducing the element of unpredictability into the set up. Irrespective of whether the 
failed node is a service-providing or service-seeking node, the task at hand will be 
interrupted in case of a node failure. The network is expected to adapt and survive these 
conditions, recovering by replacing failed nodes with others suitable to take its place. In a 
large network there might be many such nodes providing a similar kinds of service and 
registered with the lookup server or composition server.  
Consider a target tracking scenario illustrated in Figure 5.7. Nodes 1, 2, 3, 4 and 5 
form a group and exchange data between themselves. The solid lines indicate the data 
flow between the nodes. Nodes 1 and 2 sense the raw data (such as images) and forward 
it to Node 3 which provides a data filtering service before forwarding to Node 4, a data 
caching service. Node 5 is entrusted with the responsibility of implementing data 
transformation for improving transmission efficiency. It also assembles the data 
fragments into a complete image before forwarding it to a base station. Node 4 is the 
faulty node which fails when the connectors have been set up and stable data flows are 
established. 
 
Figure 5.7 Service Node Replacement 
 
Some degree of adaptability to node failure is in-built in Directed Diffusion. 
Every sink node has a positive gradient towards its stable data-sending neighbor in the 
gradient table. When data stops arriving at the sink Node 5, as will happen when Node 4 
goes down, directed diffusion will respond by flooding similar interest packets in the 
whole network to try and find other sources of data. Other source nodes will respond by 
sending matching data which will eventually reach the sink node. The sink node will then 
send out a positive reinforcement to one source after which the source will send data at 
the requested rate. This basic form of adaptability is adequate for simple query-response 
systems but not sufficient for complex applications. The time required to find a 
replacement is one deterrent factor; the physical location of the replacement is another. 
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The new node may be in a distant location to the group, increasing the number of hops 
the data has to go through, resulting in energy expenditure of a greater number of 
intermediate nodes The replacement node must also have matching characteristics to the 
one it is going to replace. Additionally, the task of reconfiguring the upstream nodes such 
as 1 and 2 above is not addressed by this scheme. A faster and better replacement method 
can be implemented by using an adaptation server. The goal of the adaptation process is 
to achieve highly efficient reconfiguration which may extend the lifetime of the task and 
save overall group energy. 
 
5.2.1 Automatic Failure Recovery with Adaptation and Composition Services 
The adaptation server will need some basic meta-data about the sensor nodes in 
order to make a decision about replacing a failed node with a suitable replacement. There 
are two approaches to gathering this information. The adaptation server can extract 
sensor node data from all the distinct interest packets it sees and use a local repository to 
store and access this information. This approach?s attractiveness lies in its ability to 
minimize communication overhead for adaptation purposes. However, a problem arises if 
the adaptation server is at a far off location from the failed nodes. In that case, the server 
might not see all the packets sent by the concerned nodes and has to resort to the random 
method for obtaining the replacements. The other way is for the adaptation server to 
access some repository that maintains sensor node information like service provided, or 
group details and so on. Such information is already maintained by the lookup and 
composition servers. The adaptation server will thus need some mechanism to access the 
stores of these other services and obtain the needed information, indicating a degree of 
communication and data exchange between two services. Section 4.4.3 explained the 
procedure of this interaction. In this chapter we are concerned with the cost-effectiveness 
of that method. 
 
5.2.2 Performance Evaluation 
We implemented a basic application described in the scenario presented in the 
previous section on a sensor network with 30 nodes. The data is collected by 
implementing groups with 6 nodes in the group and measured over time intervals. The 
metrics used for the comparison are the time it takes for the node replacement, called 
Recovery Time, and the increase in the average number of packets in the network. 
 
 
Figure 5.8 Adaptation using Directed Diffusion for one group 
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Figure 5.9 Adaptation using Composition server and Adaptation server for one group 
 
As seen in Figure 5.8, after the node fails, there is a dramatic increase in the 
average number of interest packets in the network as diffusion tries to cope with the loss 
of data. Data packets are still arriving at the sink node but at a slower rate. The average 
number of data packets then drops as the source is simply not sending any new data. A 
new source is available, albeit at an unknown location which may be far-off from the 
other sink nodes. The recovery process is thus a slow one, as can be gauged from the 
lengthy recovery time. The application suffers from data loss for a relatively long time. 
 Comparatively, Figure 5.9 shows the adaptation process using the Adaptation and 
Composition servers. After the upstream node fails, the downstream node sends a failure 
indication to the adaptation server with the failed node characteristics, causing an 
increase in the number of interest packets, while the data rate suffers. The adaptation 
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server then contacts the lookup server which responds with all candidate nodes in the 
vicinity of the other group members. The adaptation server chooses a suitable node and 
informs the composition server with its decision. All these tasks cause an increase in the 
number of interest packets. The composition server then sends an indication to the 
replacement node, which takes over the task of the failed node, explaining the resumption 
of the data packet flow. The system recovery time for directed diffusion is 14 seconds as 
compared to 6 seconds with the addition of the adaptation server; a significant difference. 
The distributed services combined with the region filter also result in controlled flooding 
of exploratory packets, as can be seen from the lower interest packet level in Figure 5.9. 
The test results for the adaptation process with 3 groups with a sensor network of 
30 nodes are illustrated in Figure 5.10 and Figure 5.11. 
 
 
Figure 5.10 Adaptation using Directed Diffusion for three groups 
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Figure 5.11 Adaptation using Composition server and Adaptation server for three groups 
 
As can be deduced from Figures 5.10 and 5.11, the adaptation with the distributed 
services support results in a considerably smaller recovery time (16 seconds) than with 
directed diffusion (31 seconds). Applications constructed to take advantage of these 
system services can recover from failure fairly quickly.  
Directed diffusion tries to cope with loss of data by flooding the initial interest 
over the entire network until an alternate data source is found. This detection and 
replacement discovery phase is done only after data loss is confirmed after some period 
and generates extra traffic in the sensor network. In comparison, an application has to 
simply send one indication to the adaptation service about node failure and the whole 
replacement discovery process is carried out by the services using controlled flooding. 
This results in a much shorter recovery time. There may be slight increase in the density 
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of interest packets which occurs due to the communication between all services and 
includes the messages sent from the downstream nodes to the adaptation server. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK
 
An ad-hoc sensor network is composed of resource-constrained nodes working in 
an unpredictable and possibly hostile environment. Although each sensor node can 
generate a fair amount of data when tasked, a node by itself cannot guarantee the fidelity 
of the generated data. Several nodes in collaboration with each other can support more 
realistic and flexible applications in the dynamic sensor network. Distributed system 
services provide the bridge between complex communication-intensive user applications 
and individual sensor characteristics. The composition service allows groups of nodes to 
be formed and manages them to enable proper coordination among the nodes. 
Some of the goals the composition service accomplishes are given below. 
? Applications can use the composition service API to send group formation or 
creation requests to the composition server. Likewise, the server uses the API to 
listen to requests and respond to them. The API thus frees the application from 
any diffusion routing protocol specifics. 
? Nodes that have matching characteristics are grouped together into one group. 
Some of these characteristics are close physical proximity, node status, power 
level and so on. The individual characteristics of each node are thus taken into 
account in order to provide maximum benefit to the application. 
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? The stored configuration data can be used by the adaptation service to restore the 
task group in a transparent manner to the application. Task group reconfiguration 
can also be done for higher performance at runtime.   
    
This document described the architecture and implementation of the composition 
service which was tested on a sensor network of considerable size. The composition 
service framework provides an API for all the requirements of the application. 
? Joining/Leaving a group 
? Building/deleting/modifying connectors 
? Sending/receiving messages through connectors 
 
The higher-level interfaces provided by the composition service framework such 
as SensorObject, Event and QosParams allow for easy representation of the sensor 
node properties. Moreover, these interfaces take into account the memory limitations of a 
sensor node and are lightweight ? the SensorObject is of 32 bytes, the QosParams is 
16 bytes and the Event is of variable size because it depends on category and type. 
The composition service also inter-operates with other distributed services in the 
network for dynamic adaptation to node failure and reconfiguration of the task cluster. 
The service was tested on 30 nodes with multiple clusters and significant performance 
improvement was observed as compared to the adaptation provided by directed diffusion. 
? For a cluster of 5 nodes, the replacement node is discovered and the replacement 
is done in 6 seconds from the time the node fails when the composition server 
works with the lookup service and adaptation service. In contrast, it takes 14 
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seconds for directed diffusion to discover an alternate source of data. There is a 
drop in the interest packet density when distributed services are used for node 
replacement because of controlled flooding, whereas diffusion floods interest 
packets over the whole network. 
? For three clusters each of 5 nodes, the first replacement node is found in 11 
seconds and the last replacement is found within 16 seconds from the time node 
failure occurs. By comparison, it takes 31 seconds for diffusion to find the first 
alternate data source. 
Future improvements to the composition service are proposed in the following 
directions. 
? Current implementation supports the operation of one composition server in the 
network. The behavior of the system when several such services operate in the 
network needs to be studied. A protocol for server to server communication and 
synchronization needs to be defined. 
? The current grouping process needs to be upgraded to exhibit dynamic re-
clustering. In the current scenario, it is possible to have clusters within clusters. 
Dynamic re-clustering will result in more efficient task group configuration.   
? The connector layer API uses some constructs specific to the directed diffusion 
routing protocol. A way of eliminating this dependence and employing those 
constructs completely in the Communication Interface layer needs to be devised.
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