

Characterization of Numerical Error in the Simulation of Translunar Trajectories

Using the Method of Nearby Problems

by

Ashish Ashok Jagat

A thesis submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

 Master of Science

Auburn, Alabama

May 9, 2011

Copyright 2011 by Ashish Ashok Jagat

Approved by

Andrew J. Sinclair, Chair, Associate Professor of Aerospace Engineering

David Cicci, Professor of Aerospace Engineering

Andrew Shelton, Assistant Professor of Aerospace Engineering

ii

Abstract

This thesis focuses on analyzing the effect numerical error has on the accurate

simulation of translunar trajectories. The method of nearby problems is employed to

estimate the numerical error. A simulation is developed to generate translunar

trajectories. Analytical curve fit is generated to this numerical solution and this curve fit

is used to compute analytical source terms. The addition of these source terms to the

governing equations defines a nearby problem, for which the curve fit serves as an exact

solution. By solving the nearby problem numerically, the numerical error in it can be

calculated. This facilitates the estimation of numerical error in the original problem.

iii

Acknowledgments

This work could not have been completed without the help and support of many

individuals. I am especially grateful to my advisor, Dr. Andrew Sinclair, for his constant

encouragement, guidance, and support. He went above and beyond to help me succeed.

His suggestions from time to time have been imperative to this work. Working with him

has been a tremendous learning experience for me. I am very thankful for the insights

and valuable time of my committee members Dr. David Cicci and Dr. Andrew Shelton. I

would also like to thank Mr. Dave Patrick of the Department of Physics at Auburn

University for giving me the opportunity to work as a teaching assistant. I can’t imagine

life without friends and have no words for their tremendous support both during good and

tough times. Finally, the support of my parents, my sister Anagha, and the rest of my

family in whatever I do is invaluable to me.

iv

Table of Contents

Abstract ... ii

Acknowledgments.. iii

List of Tables ... vi

List of Figures ... vii

1. Introduction ...1

2. Original Problem ...7

3. Numerical Solution to the Original Problem ..14

4. Curve Fitting Methods ..19

 Least Squares ...19

Cubic Splines ...28

Fifth-degree Hermite Splines ...38

5. Generating Analytical Source Terms ..51

 Using Least Squares ...52

Using Cubic Splines ...56

Using Fifth-degree Hermite Splines ..61

6. Nearby Problem to the Original Problem ...66

7. Conclusion and Recommendations ...76

References ...78

v

Appendices

A. MATLAB Code to Numerically Solve the Original Problem 81

B. Subroutines Used in the Code Given in Appendix A 84

C. MATLAB Code to Calculate the Coefficients of Cubic Splines Curve Fit85

D. MATLAB Code to Calculate the Coefficients of

Fifth-degree Hermite Splines Curve Fit ..87

E. MATLAB Code to Calculate the Coefficients of

 Multi-resolution Fifth-degree Hermite Splines Curve Fit 90

F. Subroutines Used in the Code Given in Appendix E 92

G. Tridiagonal Solver ..93

H. MATLAB Code to Numerically Solve the Nearby Problem 94

I. Subroutines Used in the Code Given in Appendix H 97

vi

List of Tables

1. LEO Parameters ...13

2. Region Wise Number of Spline Zones Using Multi-resolution

Fifth-degree Hermite Splines Curve Fit to X ...40

3. Region Wise Number of Spline Zones Using Multi-resolution

Fifth-degree Hermite Splines Curve Fit to Y ...41

vii

List of Figures

1. n-body Problem ..8

2. Three-body Problem ..9

3. System Model ...11

4. The Earth, LEO, Point of ∆v and Initial Trajectory ...13

5. Spacecraft and Moon Trajectories ..15

6. Time vs. X Position ...16

7. Time vs. Y Position ...16

8. Time vs. X Velocity ..17

9. Time vs. Y Velocity ...17

10. Time vs. X Acceleration ..18

11. Time vs. Y Acceleration ..18

12. Curve Fit to X - Least Squares Using 3
rd

 Degree Polynomial 22

13. Curve Fit Residuals for X - Least Squares Using 3
rd

 Degree Polynomial22

14. Curve Fit to X - Least Squares Using 5
th

 Degree Polynomial 23

15. Curve Fit Residuals for X - Least Squares Using 5
th

 Degree Polynomial23

16. Curve Fit to X - Least Squares Using 20
th

 Degree Polynomial 24

17. Curve Fit Residuals for X - Least Squares Using 20
th

 Degree Polynomial24

18. Curve Fit to Y - Least Squares Using 3
rd

 Degree Polynomial25

19. Curve Fit Residuals for Y - Least Squares Using 3
rd

 Degree Polynomial25

viii

20. Curve Fit to Y - Least Squares Using 5
th

 Degree Polynomial 26

21. Curve Fit Residuals for Y - Least Squares Using 5
th

 Degree Polynomial26

22. Curve Fit to Y - Least Squares Using 20
th

 Degree Polynomial 27

23. Curve Fit Residuals for Y - Least Squares Using 20
th

 Degree Polynomial27

24. Schematic of Cubic Splines Interpolation ...28

25. Curve Fit to X - Cubic Splines Using 8 Spline Zones ...30

26. Curve Fit Residuals for X - Cubic Splines Using 8 Spline Zones30

27. Curve Fit to X - Cubic Splines Using 63 Spline Zones ...31

28. Curve Fit Residuals for X - Cubic Splines Using 63 Spline Zones31

29. Curve Fit to X - Cubic Splines Using 504 Spline Zones ..32

30. Curve Fit Residuals for X - Cubic Splines Using 504 Spline Zones32

31. Curve Fit to X - Cubic Splines Using 5040 Spline Zones ...33

32. Curve Fit Residuals for X - Cubic Splines Using 5040 Spline Zones33

33. Curve Fit to Y - Cubic Splines Using 8 Spline Zones ..34

34. Curve Fit Residuals for Y - Cubic Splines Using 8 Spline Zones34

35. Curve Fit to Y - Cubic Splines Using 63 Spline Zones ..35

36. Curve Fit Residuals for Y - Cubic Splines Using 63 Spline Zones35

37. Curve Fit to Y - Cubic Splines Using 504 Spline Zones ..36

38. Curve Fit Residuals for Y - Cubic Splines Using 504 Spline Zones36

39. Curve Fit to Y - Cubic Splines Using 5040 Spline Zones ..37

40. Curve Fit Residuals for Y - Cubic Splines Using 5040 Spline Zones37

41. Schematic of Hermite Splines Interpolation ...38

42. Curve Fit to X - Fifth-degree Hermite Splines Using 8 Spline Zones 42

ix

43. Curve Fit Residuals for X - Fifth-degree Hermite Splines Using 8 Spline Zones42

44. Curve Fit to X - Fifth-degree Hermite Splines Using 63 Spline Zones 43

45. Curve Fit Residuals for X - Fifth-degree Hermite Splines Using 63 Spline Zones43

46. Curve Fit to X - Fifth-degree Hermite Splines Using 504 Spline Zones 44

47. Curve Fit Residuals for X - Fifth-degree Hermite Splines

 Using 504 Spline Zones ..44

48. Curve Fit to X - Fifth-degree Hermite Splines Using 5040 Spline Zones 45

49. Curve Fit Residuals for X - Fifth-degree Hermite Splines Using

 5040 Spline Zones...45

50. Curve Fit to Y - Fifth-degree Hermite Splines Using 8 Spline Zones 46

51. Curve Fit Residuals for Y - Fifth-degree Hermite Splines Using 8 Spline Zones46

52. Curve Fit to Y - Fifth-degree Hermite Splines Using 63 Spline Zones 47

53. Curve Fit Residuals for Y - Fifth-degree Hermite Splines Using 63 Spline Zones47

54. Curve Fit to Y - Fifth-degree Hermite Splines Using 504 Spline Zones 48

55. Curve Fit Residuals for Y - Fifth-degree Hermite Splines

 Using 504 Spline Zones ..48

56. Curve Fit to Y - Fifth-degree Hermite Splines Using 5040 Spline Zones 49

57. Curve Fit Residuals for Y - Fifth-degree Hermite Splines

 Using 5040 Spline Zones ..49

58. Curve Fit Residuals for X - Multi-resolution Fifth-degree Hermite Splines Fit50

59. Curve Fit Residuals for Y - Multi-resolution Fifth-degree Hermite Splines Fit50

60. Source Term Histories for X - Least Squares Using 3
rd

 Degree Polynomial53

61. Source Term Histories for X - Least Squares Using 5
th

 Degree Polynomial53

62. Source Term Histories for X - Least Squares Using 20
th

 Degree Polynomial54

63. Source Term Histories for Y - Least Squares Using 3
rd

 Degree Polynomial54

x

64. Source Term Histories for Y - Least Squares Using 5
th

 Degree Polynomial55

65. Source Term Histories for Y - Least Squares Using 20
th

 Degree Polynomial55

66. Source Term Histories for X - Cubic Splines Using 8 Spline Zones57

67. Source Term Histories for X - Cubic Splines Using 63 Spline Zones57

68. Source Term Histories for X - Cubic Splines Using 504 Spline Zones58

69. Source Term Histories for X - Cubic Splines Using 5040 Spline Zones58

70. Source Term Histories for Y - Cubic Splines Using 8 Spline Zones59

71. Source Term Histories for Y - Cubic Splines Using 63 Spline Zones59

72. Source Term Histories for Y - Cubic Splines Using 504 Spline Zones60

73. Source Term Histories for Y - Cubic Splines Using 5040 Spline Zones60

74. Source Term Histories for X - Fifth-degree Hermite Splines

 Using 8 Spline Zones ..62

75. Source Term Histories for X - Fifth-degree Hermite Splines

 Using 63 Spline Zones ..62

76. Source Term Histories for X - Fifth-degree Hermite Splines

 Using 504 Spline Zones ..63

77. Source Term Histories for X - Fifth-degree Hermite Splines

 Using 5040 Spline Zones ..63

78. Source Term Histories for Y - Fifth-degree Hermite Splines

 Using 8 Spline Zones ..64

79. Source Term Histories for Y - Fifth-degree Hermite Splines

 Using 63 Spline Zones ..64

80. Source Term Histories for Y - Fifth-degree Hermite Splines

 Using 504 Spline Zones ..65

81. Source Term Histories for Y - Fifth-degree Hermite Splines

 Using 5040 Spline Zones ..65

82. Nearby Problem to X - Using Fifth-degree Hermite Splines

 with 8 Spline Zones ..67

xi

83. Nearby Problem to X - Using Fifth-degree Hermite Splines

 with 63 Spline Zones ..67

84. Nearby Problem to X - Using Fifth-degree Hermite Splines

 with 504 Spline Zones ..68

85. Nearby Problem to X - Using Fifth-degree Hermite Splines

 with 5040 Spline Zones ..68

86. Nearby Problem to Y - Using Fifth-degree Hermite Splines

 with 8 Spline Zones ..69

87. Nearby Problem to Y - Using Fifth-degree Hermite Splines

 with 63 Spline Zones ..69

88. Nearby Problem to Y - Using Fifth-degree Hermite Splines

 with 504 Spline Zones ..70

89. Nearby Problem to Y - Using Fifth-degree Hermite Splines

 with 5040 Spline Zones ..70

90. Exact Error in Nearby Problem to X Using Fifth-degree Hermite Splines71

91. Exact Error in Nearby Problem to Y Using Fifth-degree Hermite Splines72

92. Observed Order of Accuracies for Various

 Numerical Solutions to the Nearby Problem Using Various Step Sizes73

93. Numerical Error Estimates for X Using Various Methods ...75

94. Numerical Error Estimates for Y Using Various Methods ..75

1

CHAPTER 1

INTRODUCTION

 Numerical simulations play an important role in mathematical modeling of many

systems in engineering. They are of utmost importance when it comes to estimating the

performance of systems too complex for analytical solutions. Numerical simulations are

imperative to the field of orbital mechanics as there are many differential equations and

dynamical systems which cannot be solved analytically. Numerical simulations in this

field have been used since the era of the Apollo missions.

 In numerical simulations, however, one must account for the numerical error as it

affects the efficacy of the simulation scheme. Previous studies on the numerical error in

orbital mechanics simulations have included three types of numerical error - iteration

error, round-off error, and discretization error. Iteration error is the difference between

the current iterative solution and the exact solution. In Runge-Kutta simulation of

translunar trajectories, however, iterative solutions are not used, and hence iteration error

is not considered in this study. Round-off error is caused by the fact that digital

computers can store numbers with only a finite precision. Discretization error is the

difference between the solution of the discretized equation and the exact solution of the

original differential equation.

 Many researchers have studied numerical error in orbital mechanics simulations.

Some of them have focused on the development of accuracy assessment techniques.

2

Huang and Innanen [1] showed that the traditional ways of checking the accuracy of the

numerical solutions to the dynamical systems by the use of known integrals or the

integral invariant relations are neither exact nor reliable due to the tendency of these

numerical solutions to keep the integrals constant. They suggested a revised technique to

use the integral invariant relations for checking the accuracy of the numerical solutions to

the dynamical systems.

 Other researchers have focused on surveying the accuracy of various numerical

integration schemes, often assessing the accuracy by comparison of the numerical

solutions to known exact solutions. Fox [2]

did an accuracy based comparative study of

various categories of numerical integration methods applied to the solution of two-body

problem. Berry and Healy [3] compared the efficacy of various accuracy assessment

techniques of numerical integrators using two-body problem with and without

perturbations. Montenbruck [4]

assessed the usefulness of various methods of numerical

integration such as Runge-Kutta, multi-step and extrapolation based methods for

generating numerical solutions to the problems involving solar system bodies or artificial

satellites. Hadjifotinou and Gousidou-Koutita [5] proposed a new method called the

recurrent power series (RPS) method for the integration of the system of n satellites

orbiting a point-mass planet.

 One approach taken to check the numerical accuracy of a numerical solution is to

construct a similar problem to the original problem of interest. In this approach, the

similar problem has an exact solution. Therefore, error in the numerical solution to the

similar problem is exactly known which is then used to estimate the error in the

numerical solution to the original problem of interest. Researchers studying orbital

3

mechanics as well as fluid dynamics have taken this approach. Roach [6] proposed

“method of manufactured solutions (MMS)”. MMS involves manufacturing an exact

solution to a set of equations which are a modified form of the original differential

equations. The solution obtained to this set of modified equations may not have physical

significance. Therefore, MMS is used only to verify the mathematics involved in solving

the original equations, and does not verify the solution obtained by solving the original

equations.

 Other researchers have used their similar problem to actually validate the

numerical solution to the original problem. All these researchers use curve fit to the

numerical solution of the original problem to construct the similar problem. The way in

which these curve fits are calculated and are then used to construct the similar problem

might differ slightly in each case. Zadunaisky [7, 8, 9, 10] suggested a technique in

which he called his similar problem as a “pseudo-system” and applied it to the problems

in orbital mechanics. Junkins and Lee [11] constructed “benchmark problem” for hybrid

coordinate systems of ordinary/partial differential equations. Hopkins and Roy [12, 13]

referred to their similar problem as “nearby problem” and the approach was called as “the

method of nearby problems (MNP)”. They applied this method to the problems in fluid

dynamics.

 MNP is based on constructing a problem near the original problem of interest.

This nearby problem is constructed in such a way that it is both representative of the

original problem and also has an exact known solution. This nearby problem is then

solved numerically using the same numerical solution scheme that was used to

numerically solve the original problem. Because the exact solution to the nearby problem

4

is known, error in its numerical solution can be calculated. This information is then used

to estimate the error in the numerical solution of the original problem. MNP involves

five steps. These steps are explained as follows:

Establishing an Accurate Numerical Solution to the Original Problem

Once the problem of interest is identified, the first step is to discretize this

problem and produce an accurate numerical solution.

Generating an Analytical Curve Fit to the Above Numerical Solution

 Once the accurate numerical solution is computed in previous step, this step

involves generating an analytical curve fit to this numerical solution. One of the many

curve fitting techniques is used to generate this curve fit. It should be kept in mind that

the technique used for curve fitting should provide a particular order of continuity which

is problem dependent. Once the curve fit is generated, it should be examined to see how

good the fit approximates the numerical solution. This analytical curve fit will serve as

the exact solution to the nearby problem.

Generating Analytical Source Terms

The nearby problem differs from the original problem by (hopefully) small source

terms. These source terms are obtained by operating the original equation on the analytic

curve fit obtained from the previous step. In the limit, as the magnitude of the source

terms approaches zero, the nearby problem approaches the original problem. The

nearness of the nearby problem to the original problem can be judged by the magnitude

of the source terms.

5

Numerically Solving the Nearby Problem

The nearby problem consists of original equations plus the analytical source

terms. This step involves solving the nearby problem numerically using the same

numerical solution scheme that was used to solve the original problem.

Estimating the Numerical Error in the Original Problem

 Because both the exact and the numerical solution to the nearby problem are

known, error in the numerical solution can be calculated for the nearby problem. This

information can then be used to estimate the error in the numerical solution to the original

problem.

 In this thesis, an effort is made to extend the application of MNP to the problems

in orbital mechanics. The objective is to demonstrate the usefulness of MNP in

validating the accuracy of the numerical solutions to the problems in orbital mechanics

by constructing a nearby problem to the Earth-spacecraft-Moon three-body problem.

While this work also uses the curve fit to the numerical solution of the original problem

to construct the nearby problem, unlike Zadunaisky, various curve fitting techniques are

examined first and then the technique satisfying certain criteria is used to construct the

nearby problem. Moreover, the way in which this curve fit is used to construct the

nearby problem differs from that of Zadunaisky’s.

 Chapter 2 discusses the original problem studied in this work. In this chapter,

equations of motion of the n-body problem are derived first and these equations are then

specialized for the case of the three-body problem. System model for the Earth-

spacecraft-Moon three-body problem is also discussed and the equations of motion

governing the motion of the spacecraft in the cis-lunar space are formed. Chapter 3

6

discusses the numerical solution to the Earth-spacecraft-Moon three-body problem.

Chapter 4 discusses various curve fitting techniques and their feasibility to construct the

nearby problem. Chapter 5 discusses the calculation of analytical source terms using the

various curve fitting techniques studied in chapter 4. In chapter 6, the nearby problem is

constructed and the nearness of this nearby problem to the original problem is

established. This allows the exact error in the numerical solution to the nearby problem

to be considered as a good estimation of the error in the numerical solution to the original

problem. The numerical error estimated by MNP is compared to that estimated by

Richardson extrapolation using both global and local order of accuracy. In chapter 7,

a conclusion to this thesis is presented.

7

CHAPTER 2

ORIGINAL PROBLEM

The original problem studied in this work is the Earth-spacecraft-Moon three-

body problem. One of the most fundamental problems of orbital mechanics is to

accurately describe the motion of n gravitationally interacting massive particles also

known as the n-body problem. In this chapter, we will begin with the general n-body

problem and then we will specialize to our three-body problem. Newton introduced his

three laws of motion in The Mathematical Principles of General Philosophy, or, more

simply, the Principia, in 1687. Newton’s law of universal gravitation along with the

second law of motion can be used to describe the n-body problem. The second law can

be expressed mathematically in vector notation as follows:

 ̈ (1)

In Eq. (1), is the vector sum of all forces acting on the mass and ̈ is the vector

acceleration of the mass measured relative to an inertial reference frame. Similarly, the

universal law of gravitation can be expressed mathematically in vector notation as

follows:

 (2)

In Eq. (2), is the gravitational force exerted on mass by mass is the vector

from to and is the universal gravitational constant.

8

 Z

 mj

 m1 F1j

 rj F2j Fnj

 r1

 Y

 r2 rn

 mn

 X m2

Figure 1. n-body Problem [14]

The n-body problem is illustrated in figure 1. It shows a system of n

bodies . Let us assume an inertial reference frame (X, Y, Z) in which

the position vectors of these n masses are respectively. We wish to study

the motion of one of these bodies. Let us call this body as the jth body, . At any given

time in its journey, this body is being acted upon by several gravitational masses and may

be experiencing other forces such as drag, thrust, and solar radiation pressure. Let us not

consider all these other forces for the time being. Applying Newton’s law of universal

gravitation to the above system, the force exerted on by is:

 (3)

In Eq. (3), .

9

The vector sum, , of all such gravitational forces acting on the jth body may be written

as:

 ∑ (

)

 (4)

Applying Newton’s second law of motion,

 ̈ (5)

Dividing both sides of Eq. (5) by we get,

 ̈ ∑ (

)

 (6)

Eq. (6) describes the inertial motion of the jth body. For our purposes, we will be

interested in describing the motion of a body relative to another body. Consider figure 2.

Figure 2. Three-body Problem [16]

10

Equation of motion of m1 with respect to the inertial reference frame can be given by:

 ̈ (

) (

) (7)

Also the equation of motion of m2 with respect to the same reference frame is:

 ̈ (

) (

) (8)

By subtracting Eq. (7) from (8), equation of motion of relative to is given as:

 ̈ ̈ (

)

(9)

Let as shown in figure 2.

Thus, Eq. (9) can be simplified as:

 ̈ (

) (

) (10)

Similarly, equation of motion of relative to is given as:

 ̈ (

) (

) (11)

Considering and above equations can be rewritten as:

 ̈

 (

) (12)

 ̈

 (

) (13)

In both the above equations, the first term on the right hand side is the central

acceleration due to the primary body, while the second term on the right hand side is the

11

disturbing acceleration from the perturbing body. As mentioned earlier, several external

forces such as drag, thrust, and solar radiation pressure are not considered while deriving

these equations of motion. Also, Newton's law of gravitation applies only if the bodies

are spherical and the mass is evenly distributed in spherical shells. Thus, the non-

spherical shape of the bodies also results in a perturbing force. Therefore, the governing

equations derived above are approximations and inclusion of all the perturbing forces

could facilitate a more accurate modeling of the trajectory.

 S/C

 r d

 E M

ρ

Figure 3. System Model

For the Earth-spacecraft-Moon three-body problem, let m1 be the Earth, m2 be the

spacecraft and m3 be the moon. Figure 3 shows the system model for this problem. The

spacecraft motion is described either in the Earth-Centered (EC) reference frame or in the

Moon-Centered (MC) reference frame. Both EC and MC are non-rotating reference

frames. The EC frame has its origin at the center of mass of the Earth while the MC

frame has its origin at the center of mass of the Moon. The position vector of the

spacecraft in the EC frame is given by r while in the MC frame it is given by d. The

equation of motion of the spacecraft in vector form in the EC frame is given by Eq. (12)

rewritten below. Here, is the gravitational parameter for the Earth with a value of

3.98600436 × 10
14

m
3
/s

2
 and is the gravitational parameter for the Moon with a value

of 4.90266 × 10
12

 m
3
/s

2
.

12











3332

2

d

d




 ρd
r

r

drt
m

e

(14)

In this equation, the Earth is the central body and the Moon causes the perturbative

acceleration. The Cartesian components of r in a non-rotating frame are written as

X and Y, and the scalar components of the equation of motion are as follows.











3332

2

d

d






 xm
m

e

d

X
X

rt

X
 (15)













3332

2

d

d






 ym
m

e

d

Y
Y

rt

Y
 (16)

Similarly, the equation of motion of the spacecraft in vector form in the MC frame is

given by Eq. (13) rewritten below.











3332

2

d

d




 ρr
d

d

rdt
e

m

(17)

In this equation, the Moon is the central body and the Earth causes the perturbative

acceleration. The Cartesian components of d in a non-rotating frame are written as

Xm and Ym, and the scalar components of the equation of motion are as follows.











3332

2

d

d






 x

em

mm

r

X
X

dt

X
 (18)













3332

2

d

d






 y

em

mm

r

Y
Y

dt

Y
 (19)

13

These two sets of equations in the EC and the MC reference frames represent analytically

equivalent description of the three-body problem. The numerical solution described in

the next chapter will use switching between the two reference frames.

 The problem description is completed by defining various initial conditions. The

starting location of the Moon is out from the Earth along the positive X-axis as shown in

figure 3. Because the mean eccentricity of the Moon’s orbit is only about 0.0549, it is

considered to be a circular orbit with a radius (ρ) of 384,400 km. The spacecraft

trajectory is assumed to be coplanar with the Moon’s orbit. The initial conditions for the

translunar trajectory are specified by the injection criteria relative to the low Earth orbit

(LEO): altitude (alt), ∆v, and angle (θ). These initial conditions are given in table 1 and

are illustrated in figure 4. [16]

Parameter Value(Units)

re 6372.797(km)

alt 359750(m)

∆v 3102.13(m/s)

θ -36.890(degrees)

Table 1. LEO Conditions

Figure 4. The Earth, LEO, Point of ∆v and Initial Trajectory

14

CHAPTER 3

NUMERICAL SOLUTION TO THE ORIGINAL PROBLEM

 To numerically solve the Earth-spacecraft-Moon three-body problem, a

MATLAB code (appendix A) implementing the fourth-order Runge-Kutta (RK4)

numerical integration scheme is developed to propagate the initial conditions forward in

time. [16] A trip time of 3.5 days is considered. An integration time step of 20 seconds is

used. Consistent with the RK4 algorithm, the lunar ephemeris are updated every half

time step. Choice of the reference frame for describing the spacecraft motion affects the

numerical error in the simulation. In order to avoid precision loss due to round-off error,

reference frame is switched from the EC to the MC at 2.905 days. [16] After the switch

point, equation of motion in the MC frame is integrated for d. This solution is then

converted to output a solution for r at each instant in time.

Figure 5 illustrates the resulting numerical solution of the original problem for the

spacecraft’s trajectory along with the Moon’s trajectory. Figures 6 and 7 show the plots

of X and Y with respect to time. Figures 8 and 9 show the plots of ̇ and ̇ with respect

to time. Figures 10 and 11 show the plots of ̈ and ̈ with respect to time. It can be seen

from the acceleration plots that the spacecraft experiences a higher acceleration when in

proximity to the Earth and the Moon. This is due to the strong nature of the gravitational

forces exerted by the Earth and the Moon on the spacecraft. The higher acceleration is

also reflected in the position and the velocity plots. The velocity of the spacecraft when

15

in proximity to the Earth and the Moon is higher, and it also changes rapidly. High

curvature of the trajectory during the initial and the final phases of the journey which

indicates a rapid change in position during these phases can also be seen by a close

examination of figures 5, 6 and 7. This behavior will affect the accuracy of the curve fits

calculated in the next chapter.

 Figure 5. Spacecraft and Moon Trajectories

16

 Figure 6. Time vs. X Position

 Figure 7. Time vs. Y Position

17

Figure 8. Time vs. X Velocity

Figure 9. Time vs. Y Velocity

18

Figure 10. Time vs. X Acceleration

Figure 11. Time vs. Y Acceleration

19

CHAPTER 4

CURVE FITTING METHODS

Generating an accurate curve fit to the numerical solution to the original problem

is a critical step in MNP as subsequent analysis is based on this curve fit. The curve-fit

accuracy controls the nearness of the nearby problem. An analytical curve fit has to

satisfy two criteria in order to be considered accurate. The magnitude of the source terms

generated should be small, and the curve fit should maintain a particular order of

continuity in order to maintain slope continuity of the source terms. The order of

continuity to be maintained is problem dependent. The equations of motion of the three-

body dynamics are second order differential equations. Therefore, C
3
 continuity is

needed in the curve fit for this problem. Various curve fitting methods are available. The

methods used for generating curve fits in this study are least squares, cubic splines, and

fifth-degree Hermite splines. The accuracy of these curve fits is indicated by both the

residuals with respect to the numerical solution and the magnitude of the analytical

source terms calculated. The governing equations contain ̈ ̈. However,

independent curve fits are only needed for and

Least Squares

 The method of least squares is a standard approach to approximate the solution

of over determined systems, i.e., sets of equations in which there are more equations than

unknowns. "Least squares" means that the overall solution minimizes the sum of the

20

squares of the errors made in solving every single equation. Assume that we want to

approximate a function y(t), t being the independent variable. Assume that there are m

observations, i.e., values of y measured at specific values of t. [17]

),(ii tyy 

mi ,...,1 (20)

The idea is to model y(t) by a linear combination of n basis functions:

)(...)()(11 txtxty nn  (21)

For example, a second degree polynomial can be written as 2

3

1

2

0

1 txtxtx  , i.e., as

a linear combination of the basis functions t
0
, t

1
, and t

2
. The design matrix H is a

rectangular matrix of order m × n with elements

)(, ijji th  (22)

The design matrix generally has more rows than columns. In matrix-vector notation:

Hxy  (23)

H is not invertible, but a pseudo inverse can be calculated as follows:

HxHyH TT 
(24)

yHHHx TT 1)(
(25)

In this study, the pseudo inverse is not calculated but instead the polyfit function in

MATLAB is used. The polyfit MATLAB file forms the Vandermonde matrix, H, whose

elements are powers of t:

jn

iji tH , (26)

21

It then uses the backslash operator to solve the least squares problem shown in Eq. (25).

The backslash operator selects from a variety of algorithms depending upon the structure

of the matrix H. Function “polyfit (t, y, n)” finds the coefficients of a polynomial p(t) of

degree n that fits the data y best in a least squares sense. Various curve fits and their

residuals with respect to the numerical solution are shown in the following figures.

The residuals of these curve fits show that as the degree of the polynomial

increases, the curve fits are more accurate. However, as mentioned earlier, in MNP, in

order to be considered accurate a curve fit has to satisfy one more criterion, i.e., the

analytical source terms generated by these curve fits should be small in magnitude.

Source terms are discussed in detail in chapter 5.

22

Figure 12. Curve Fit to X – Least Squares Using 3
rd

 Degree Polynomial

Figure 13. Curve Fit Residuals for X - Least Squares Using 3
rd

 Degree Polynomial

23

Figure 14. Curve Fit to X – Least Squares Using 5
th

 Degree Polynomial

Figure 15. Curve Fit Residuals for X - Least Squares Using 5
th

 Degree Polynomial

24

Figure 16. Curve Fit to X – Least Squares Using 20
th

 Degree Polynomial

Figure 17. Curve Fit Residuals for X - Least Squares Using 20
th

 Degree Polynomial

25

Figure 18. Curve Fit to Y – Least Squares Using 3
rd

 Degree Polynomial

Figure 19. Curve Fit Residuals for Y - Least Squares Using 3
rd

 Degree Polynomial

26

Figure 20. Curve Fit to Y – Least Squares Using 5
th

 Degree Polynomial

Figure 21. Curve Fit Residuals for Y - Least Squares Using 5
th

 Degree Polynomial

27

Figure 22. Curve Fit to Y – Least Squares Using 20
th

 Degree Polynomial

Figure 23. Curve Fit Residuals for Y - Least Squares Using 20
th

 Degree Polynomial

28

Cubic Splines

Spline interpolation is a form of interpolation where piecewise functions called

“splines” are used. This has the advantage relative to a global least squares fit that

similar accuracy can be achieved using local fits that are each lower order.

 S1 S2 S3 Sn

 t1 t2 t3 tn tn+1

Figure 24. Schematic of Cubic Splines Interpolation

The basic idea of cubic splines is to fit a cubic polynomial on each interval

between points ti and ti+1 for i = 1,…, n. [18]

32)()()()(iiiiiiii ttdttcttbatS  (27)

This system has n+1 spline points (ti for i = 1,…, n+1) and n spline zones

(Si for i = 1,…, n) as shown in figure 24. The conditions that are used to construct these

polynomials are explained below for given , ̇, ̈ data.

   iii XtS  i = 1,…., n (28)

   11   nnn XtS

    iiii tStS 1 i = 2,…., n (29)

    iiii tStS 1  i = 2,…., n (30)

    iiii tStS 1  i =2,…., n (31)

   111 XtS   (32)

   11   nnn XtS 

Conditions (28) set the value at each node point. Condition (29) makes the solution 0
th

order continuous. Condition (30) makes the solution 1
st
 order continuous, while

29

condition (31) makes the solution 2
nd

 order continuous. Conditions (32) are the two

additional end point conditions.

Curve fits to X and Y using cubic splines are calculated using 8, 63, 504 and 5040

spline zones. The number 5040 corresponds to one third of the total time instances at

which the numerical solution is calculated. It was seen that further increase in the

number of spline zones did not improve the accuracy of the curve fit. A MATLAB

algorithm (appendix C) is developed to calculate the coefficients of these cubic splines.

[18] Various curve fits and their residuals with respect to the numerical solution are

shown in following figures. The residuals of these curve fits show that as the number of

spline zones increases, the curve fits are more accurate.

It is also seen that the residuals are higher in the initial and the final phases of the

trajectory. As discussed in chapter 2, the spacecraft experiences higher acceleration

during the initial and the final phases of the journey which results in the rapid change in

the position during these phases. The rapid change in the position results in high

curvature of the trajectory during these phases. Since the above cubic splines fit is

calculated using fixed resolution throughout the entire trajectory, it fails to capture these

high curvature regions precisely resulting in a less accurate curve fit in these regions.

The source terms calculated using cubic splines fit (discussed in chapter 5) indicate lesser

overall accuracy of cubic splines fit as compared to other methods discussed later in this

chapter. Therefore, no effort has been made to use a multi-resolution cubic splines fit in

order to capture the high curvature regions more precisely.

30

Figure 25. Curve Fit to X - Cubic Splines Using 8 Spline Zones

Figure 26. Curve Fit Residuals for X - Cubic Splines Using 8 Spline Zones

31

Figure 27. Curve Fit to X - Cubic Splines Using 63 Spline Zones

Figure 28. Curve Fit Residuals for X - Cubic Splines Using 63 Spline Zones

32

Figure 29. Curve Fit to X - Cubic Splines Using 504 Spline Zones

Figure 30. Curve Fit Residuals for X - Cubic Splines Using 504 Spline Zones

33

Figure 31. Curve Fit to X - Cubic Splines Using 5040 Spline Zones

Figure 32. Curve Fit Residuals for X - Cubic Splines Using 5040 Spline Zones

34

Figure 33. Curve Fit to Y - Cubic Splines Using 8 Spline Zones

Figure 34. Curve Fit Residuals for Y - Cubic Splines Using 8 Spline Zones

35

Figure 35. Curve Fit to Y - Cubic Splines Using 63 Spline Zones

Figure 36. Curve Fit Residuals for Y - Cubic Splines Using 63 Spline Zones

36

Figure 37. Curve Fit to Y - Cubic Splines Using 504 Spline Zones

Figure 38. Curve Fit Residuals for Y - Cubic Splines Using 504 Spline Zones

37

Figure 39. Curve Fit to Y - Cubic Splines Using 5040 Spline Zones

Figure 40. Curve Fit Residuals for Y - Cubic Splines Using 5040 Spline Zones

38

Fifth-degree Hermite Splines

An alternative approach to spline interpolation is to use “fifth-degree Hermite

splines” instead of “cubic splines”. The schematic of spline interpolation using fifth-

degree Hermite splines is as shown in figure 41.

 S1 S2 S3 Sn

 t1 t2 t3 tn tn+1

Figure 41. Schematic of Hermite Splines Interpolation

Here, the basic idea is to fit a fifth degree polynomial on each interval between

points ti and ti+1 for i = 1,…, n. [18]

5432)()()()()()(iiiiiiiiiiii ttfttettdttcttbatS 

(33)

This system has n+1 spline points (ti for i = 1,…, n+1) and n spline zones

(Si for i = 1,…, n). The conditions that are used to construct these polynomials are

explained below for given , ̇, ̈ data.

  iii XtS  i = 1,…., n (34)

  11   nnn XtS

  iii XtS   i = 1,…., n (35)

  11   nnn XtS 

   iiii tStS 1 i = 2,…., n (36)

   iiii tStS 1  i = 2,…., n (37)

   iiii tStS 1  i = 2,…., n (38)

   iiii tStS 1  i = 2,…., n (39)

39

  111 XtS   (40)

  11   nnn XtS 

Conditions (34) set the value at each node point. Conditions (35) set the first derivative

at each node point. Typically, the cubic Hermite spline form consists of two control

points and two control tangents at the boundaries for each polynomial. Conditions (34)

and (35) make each polynomial of the spline fit to be in “Hermite” form. Here, the

additional degrees of freedom in the fifth degree polynomial are used to enforce

additional continuity requirements. Condition (36) makes the solution 0
th

 order

continuous. Condition (37) makes the solution 1
st
 order continuous. Condition (38)

makes the solution 2
nd

 order continuous, while condition (39) makes the solution 3
rd

 order

continuous. Conditions (40) are the two additional end point conditions.

Curve fits to X and Y using fifth-degree Hermite splines are calculated using 8, 63,

504 and 5040 spline zones. A MATLAB algorithm (appendix D) is developed to

calculate the coefficients of these fifth-degree Hermite splines. [18] Various curve fits

and their residuals with respect to the numerical solution are shown in figures 42 to 57.

The residuals of these curve fits show that as the number of spline zones increases, the

curve fits are more accurate.

The phenomenon of higher residuals in the initial and the final phases of the

trajectory is also seen in the case of fifth-degree Hermite splines curve fit. An effort has

been made to address this phenomenon by using an iterative multi-resolution fifth-degree

Hermite splines fit in order to capture the high curvature regions more precisely. A

MATLAB code (appendix E) is developed for this purpose. In this code, the trajectory is

divided into four regions of equal amounts of time with region 1 and 4 covering the initial

40

and the final phases of the trajectory respectively. To start with, each region is divided

into two spline zones (total of eight spline zones). A curve fit is calculated using these

spline zones and each region is checked for the maximum value of residual which should

be below a selected threshold. If the maximum value of residual in a particular region is

below a selected threshold, addition of spline points to that particular region is

terminated. One additional spline point is added to each region where the threshold is not

met. For each iteration, the spline points within each region are evenly distributed.

However, spline points falling in the middle of a time step are rounded to the nearest

integer number of time steps. In this manner, the maximum value of residual in each

region is made to be somewhat consistent indicating that the curve fit exhibits nearly the

same level of accuracy throughout the trajectory.

It is seen that, if the selected threshold is below 10
-3

 meters, the maximum value

of residual fails to converge. Therefore, the threshold was selected to be 10
-3

 meters. A

reason for this is that the number of spline zones in certain regions began to approach the

number of data points. Tables 2 and 3 list, for the curve fits to X and Y, the number of

spline zones required in each region so that the maximum value of residual in that region

is below the selected threshold. It can be seen that the number of spline zones required

by regions 1 and 4 is much higher than that required by regions 2 and 3.

Region No. of Spline Zones

1 1708

2 24

3 17

4 933

Total 2682

Table 2. Region Wise Number of Spline Zones Using Multi-resolution Fifth-degree Hermite Splines

Curve Fit to X

41

Region No. of Spline Zones

1 1779

2 20

3 15

4 1043

Total 2857

Table 3. Region Wise Number of Spline Zones Using Multi-resolution Fifth-degree Hermite Splines

Curve Fit to Y

Figures 58 and 59 show the plot of the residuals with respect to time for X and Y

using the above discussed multi-resolution curve fit. It can be seen that, though this

curve fit requires less number of total spline zones and also maintains the level of

accuracy throughout the trajectory, the overall accuracy of this curve fit is fairly similar

to that of the fixed-resolution curve fit discussed earlier.

42

Figure 42. Curve Fit to X – Fifth-degree Hermite Splines Using 8 Spline Zones

Figure 43. Curve Fit Residuals for X - Fifth-degree Hermite Splines Using 8 Spline Zones

43

Figure 44. Curve Fit to X – Fifth-degree Hermite Splines Using 63 Spline Zones

Figure 45. Curve Fit Residuals for X - Fifth-degree Hermite Splines Using 63 Spline Zones

44

Figure 46. Curve Fit to X – Fifth-degree Hermite Splines Using 540 Spline Zones

Figure 47. Curve Fit Residuals for X - Fifth-degree Hermite Splines Using 540 Spline Zones

45

Figure 48. Curve Fit to X – Fifth-degree Hermite Splines Using 5040 Spline Zones

Figure 49. Curve Fit Residuals for X - Fifth-degree Hermite Splines Using 5040 Spline Zones

46

Figure 50. Curve Fit to Y – Fifth-degree Hermite Splines Using 8 Spline Zones

Figure 51. Curve Fit Residuals for Y - Fifth-degree Hermite Splines Using 8 Spline Zones

47

Figure 52. Curve Fit to Y – Fifth-degree Hermite Splines Using 63 Spline Zones

Figure 53. Curve Fit Residuals for Y - Fifth-degree Hermite Splines Using 63 Spline Zones

48

Figure 54. Curve Fit to Y – Fifth-degree Hermite Splines Using 504 Spline Zones

Figure 55. Curve Fit Residuals for Y - Fifth-degree Hermite Splines Using 504 Spline Zones

49

Figure 56. Curve Fit to Y – Fifth-degree Hermite Splines Using 5040 Spline Zones

Figure 57. Curve Fit Residuals for Y - Fifth-degree Hermite Splines Using 5040 Spline Zone

50

Figure 58. Curve Fit Residuals for X – Multi-resolution Fifth-degree Hermite Splines Fit

Figure 59. Curve Fit Residuals for Y - Multi-resolution Fifth-degree Hermite Splines Fit

51

CHAPTER 5

GENERATING ANALYTICAL SOURCE TERMS

 As mentioned earlier, in MNP, for a curve fit to be considered accurate the

analytical source terms generated by it should be small in magnitude. The smaller the

source terms, the nearer the nearby problem is to the original problem. Source terms are

calculated for all the curve fits discussed in the previous chapter. Consider rewriting Eq.

(14) in an operator form.

   0
ρd

r
r

rL 









3332

2

d

d
,






drt
tt m

e
 (41)

The curve fits for X and Y generated in the previous chapter can be assembled into a

curve fit for the position vector, labeled  tr Operating the original problem on this

curve fit defines the source terms (appendix H),  ts .

    ttt srL , (42)

By construction, the curve fit is the exact solution of a modified equation, which is the

nearby problem.

     0srL  ttt , (43)

Therefore, the source terms are equivalent to a set of time-dependent perturbing

accelerations that result in a trajectory following the curve fit. In Eq. (43), as  ts

approaches zero, the nearby problem approaches the original problem.

52

We will now see the magnitude of the analytical source terms generated using

various curve fits discussed in the previous chapter.

Analytical Source Terms Using Least Squares

Following figures show the source-term histories for both X and Y for the least-

squares curve fits using varying degrees of polynomials. It can be seen that the

magnitude of the source terms increases as the degree of the polynomial increases. Note

that, though the curve fit using a higher-degree polynomial is more accurate than that

using a lower-degree polynomial; the source terms generated by using the higher-degree

polynomial curve fit are larger in magnitude than those generated by using the lower-

degree polynomial curve fit. This can be attributed to the fact that the least-squares

solution is trying to minimize errors only in position. The derivatives of the position do

not play any role in calculating the curve fit. The larger magnitude of the source terms

indicates that the least squares is not a feasible option for the construction of the nearby

problem.

53

Figure 60. Source Term Histories for X - Least Squares Using 3
rd

 Degree Polynomial

Figure 61. Source Term Histories for X - Least Squares Using 5
th

 Degree Polynomial

54

Figure 62. Source Term Histories for X - Least Squares Using 20
th

 Degree Polynomial

Figure 63. Source Term Histories for Y - Least Squares Using 3
rd

 Degree Polynomial

55

Figure 64. Source Term Histories for Y - Least Squares Using 5
th

 Degree Polynomial

Figure 65. Source Term Histories for Y - Least Squares Using 20
th

 Degree Polynomial

56

Analytical Source Terms Using Cubic Splines

Following figures show the source-term histories for both X and Y for the cubic

splines curve fits using varying numbers of spline zones. It can be seen that the

magnitude of the source terms decreases as the number of spline zones increases. Using

moderate number of spline zones, the magnitude of the source terms generated is small.

However, close examination of following figures shows that the source terms exhibit

slope discontinuities at the spline points. This is because cubic splines are only C
2

continuous. As mentioned earlier, in MNP, the curve fit should maintain a particular

order of continuity in order to maintain the slope continuity of the source terms. The

equations of motion of three-body dynamics are second order differential equations and

demand C
3
 continuity in the curve fit. Since the continuity criterion is not satisfied, cubic

splines cannot be used to construct the nearby problem.

57

Figure 66. Source Term Histories for X - Cubic Splines Using 8 Spline Zones

Figure 67. Source Term Histories for X - Cubic Splines Using 63 Spline Zones

58

Figure 68. Source Term Histories for X - Cubic Splines Using 504 Spline Zones

Figure 69. Source Term Histories for X - Cubic Splines Using 5040 Spline Zones

59

Figure 70. Source Term Histories for Y - Cubic Splines Using 8 Spline Zones

Figure 71. Source Term Histories for Y - Cubic Splines Using 63 Spline Zones

60

Figure 72. Source Term Histories for Y - Cubic Splines Using 504 Spline Zones

Figure 73. Source Term Histories for Y - Cubic Splines Using 5040 Spline Zones

61

Analytical Source Terms Using Fifth-degree Hermite Splines

Following figures show the source-term histories for both X and Y for the fifth-

degree Hermite splines curve fits using varying numbers of spline zones. It can be seen

that the magnitude of the source terms decreases as the number of spline zones increases.

Using moderate number of spline zones, the magnitude of the source terms generated is

extremely small. Since the fifth-degree Hermite splines are C
3
 continuous, the source

terms are found to be slope continuous; thus satisfying the continuity criterion required

by MNP. Extremely small magnitude of source terms indicates that the nearby problem

constructed using these source terms can be considered to be a good representation of our

original problem. Therefore, the fifth-degree Hermite splines are a feasible option for

constructing the nearby problem. Because small source terms were achieved using a

reasonable number of fixed-resolution spline zones, for simplicity this approach was used

instead of the multi-resolution approach. Construction of the nearby problem using these

fifth-degree Hermite splines is discussed in chapter 6.

62

Figure 74. Source Term Histories for X – Fifth-degree Hermite Splines Using 8 Spline Zones

Figure 75. Source Term Histories for X – Fifth-degree Hermite Splines Using 63 Spline Zones

63

Figure 76. Source Term Histories for X – Fifth-degree Hermite Splines Using 504 Spline Zones

Figure 77. Source Term Histories for X – Fifth-degree Hermite Splines Using 5040 Spline Zones

64

Figure 78. Source Term Histories for Y – Fifth-degree Hermite Splines Using 8 Spline Zones

Figure 79. Source Term Histories for Y – Fifth-degree Hermite Splines Using 63 Spline Zones

65

Figure 80. Source Term Histories for Y – Fifth-degree Hermite Splines Using 504 Spline Zones

Figure 81. Source Term Histories for Y – Fifth-degree Hermite Splines Using 5040 Spline Zones

66

CHAPTER 6

NEARBY PROBLEM TO THE ORIGINAL PROBLEM

A nearby problem to our original problem of Earth-spacecraft-Moon three-body

dynamics is constructed by adding the source terms obtained from the curve fit using the

Fifth-degree Hermite splines to the governing equations of the original problem as shown

in Eq. (43). As discussed earlier, the curve fit serves as an exact solution to this nearby

problem. In order to be able to calculate the error in the numerical solution to the nearby

problem, it is solved numerically using the same numerical scheme that was used for

solving the original problem (appendix H). Note that solving the nearby problem using

RK4 with a time step of 20 seconds requires evaluating the source terms every 10

seconds.

Following figures show the construction of various nearby problems using Fifth-

degree Hermite splines with varying numbers of spline zones. It is seen that as the

number of spline zones increases, both the exact and the numerical solution to the nearby

problem start nearing the solution of the original problem.

The nearness of the nearby problem constructed using the Fifth-degree Hermite

splines with moderate number of spline zones has already been established through

previous chapters. Therefore, this nearby problem can be considered to be a good

representation of the original problem of interest. Thus, the exact numerical error in the

nearby problem can be used as an estimate of the numerical error in the original problem.

67

Figure 82. Nearby Problem to X - Using Fifth-degree Hermite Splines with 8 Spline Zones

Figure 83. Nearby Problem to X - Using Fifth-degree Hermite Splines with 63 Spline Zones

68

Figure 84. Nearby Problem to X - Using Fifth-degree Hermite Splines with 504 Spline Zones

Figure 85. Nearby Problem to X - Using Fifth-degree Hermite Splines with 5040 Spline Zones

69

Figure 86. Nearby Problem to Y - Using Fifth-degree Hermite Splines with 8 Spline Zones

Figure 87. Nearby Problem to Y - Using Fifth-degree Hermite Splines with 63 Spline Zones

70

Figure 88. Nearby Problem to Y - Using Fifth-degree Hermite Splines with 504 Spline Zones

Figure 89. Nearby Problem to Y - Using Fifth-degree Hermite Splines with 5040 Spline Zones

71

Figures 90 and 91 show, for X and Y, the exact error in numerical solutions to the

various nearby problems discussed above. It is seen that using varying numbers of spline

zones the exact solution to the nearby problem differs, but the error in the numerical

solution to the nearby problem remains fairly consistent. In general, the error tends to

grow as the numerical solution is propagated forward in time. In particular, the error

tends to change quickly as the spacecraft reaches the Moon in the terminal portion of the

trajectory. From the combined results for X and Y, the accumulated error is

approximately of the order of 10 meters.

Figure 90. Exact Error in Nearby Problem to X Using Fifth-degree Hermite Splines

72

Figure 91. Exact Error in Nearby Problem to Y Using Fifth-degree Hermite Splines

It is imperative to examine the reliability of these error estimates. This could be

done by comparing these estimates to the estimates given by some other methods.

Checking for the reliability of the numerical scheme used is also a good idea.

One of the best ways to verify the numerical scheme is to calculate the observed

order of accuracy and see how well it matches the formal order of accuracy. The RK4

numerical integration scheme is a 4
th

 order accurate method i.e. the formal order of

accuracy of RK4 method is four. The observed order of accuracy, p, is computed for the

various numerical solutions of the nearby problem (constructed using fifth-degree

Hermite splines with 5040 spline zones) using different meshes. A mesh is indicated by

the step size used. Thus, the fine mesh uses a smaller step size than the coarse mesh.

Since the exact solution is known, the observed order of accuracy can be computed by the

following relation [19]:

73

 (

)

(44)

In Eq. (44), r is the grid refinement factor (the ratio between the coarse mesh and the fine

mesh). One of the tests used by Berry and Healy [3] to verify the accuracy of the

numerical integrators is the step-size halving test. For the step-size halving test, the

reference integration is produced with the same integrator but with the step-size cut in

half. On this basis, here, a value of r=2 is used. E2 is the L2 norm of the errors between

the exact solution and the numerical solution calculated at each instant in time using the

coarse mesh while E1 is the L2 norm of the errors between the exact solution and the

numerical solution calculated at each instant in time using the fine mesh. Figure 92

shows the observed order of accuracies for various numerical solutions to the nearby

problem (constructed using fifth-degree Hermite splines with 5040 spline zones) using

various step sizes. It can be seen that as the step size is reduced the observed order of

accuracy approaches four (which is the formal order of accuracy). This suggests that the

numerical solution is reliable.

Figure 92. Observed Order of Accuracies for Various Numerical Solutions to the Nearby

Problem using Different Step Sizes

74

Richardson extrapolation (RDE) can also be used to get an estimate of the exact

solution. [20, 21] RDE involves computation of numerical solutions on two or more

meshes. Solutions on these different meshes are then used to compute a higher-order

estimate of the exact solution. This estimate of the exact solution can then be used to

estimate the numerical error. For a pth order accurate scheme with solutions on a fine

mesh () and a coarse mesh () with refinement factor r, can be approximated

as: [19]

 can be calculated using both global and formal order of accuracies. The error on

the fine mesh can then be given as:

Figures 93 and 94 show the comparison of error estimates using MNP, RDE with

formal order of accuracy, and RDE with observed order of accuracy. For MNP, a time

step of 20 seconds is used and therefore for RDE the fine mesh uses a time step of 20

seconds while the coarse mesh uses a time step of 40 seconds. It can be seen that the

error estimates using MNP and RDE match in the order of magnitude.

75

 Figure 93. Numerical Error Estimates for X Using Various Methods

 Figure 94. Numerical Error Estimates for Y Using Various Methods

76

CHAPTER 7

CONCLUSION AND RECOMMENDATIONS

In orbital mechanics, analytical solutions to many systems do not exist and thus,

an accurate numerical solution is imperative to mission planning. One such system is the

Earth-spacecraft-Moon three-body dynamics or the translunar trajectories. The

translunar trajectories are chaotic in nature. They are extremely sensitive when the

spacecraft is in proximity to the Earth and the Moon. So the numerical solution needs to

be as accurate as possible otherwise a small error can get escalated later on. MNP is

employed to validate the accuracy of this numerical solution by estimating the numerical

error in it. A nearby problem (having an exact solution to it) to the Earth-spacecraft-

Moon three-body problem is constructed. Fifth-degree Hermite splines are found to be a

feasible option to construct this nearby problem as it satisfies all the conditions necessary

to demonstrate its nearness to the original problem. This allows the exact error in the

numerical solution to this nearby problem to be considered as a good estimation of the

error in the numerical solution to the original problem.

The MNP estimate of the magnitude of the numerical error in the simulation of

translunar trajectories is of the order of 10 meters. This accuracy may be sufficient for

many aspects of mission planning; however, for critical mission phases higher accuracy

may be desired. Also, this error is accumulated when the propagation time is 3.5 days.

The propagation time for other missions could range from a few days to even years.

77

During such long propagation times, substantial amount of error can be accumulated.

This could lead to inaccurate results. Of course, accurate simulation also depends on

accurate modeling of the system dynamics. Mission planning requires both the

development of accurate models and the accurate numerical solution of those models.

This thesis demonstrates the usefulness of MNP in providing reliable estimates of

the error in the numerical solutions to the problems in orbital mechanics. These error

estimates, however, are dependent on the numerical scheme used and the type of problem

studied. The reliability of MNP can further be verified by using various numerical

integration schemes and/or by studying problems involving forces of a more complex

nature.

78

REFERENCES

1. Huang, T.-Y. and Innanen, K. A., “The accuracy check in numerical integration of

dynamical systems,” Astronomical Journal, Vol. 88, No. 6, 1983, pp. 870–876, June

1983.

2. Fox, K., “Numerical integration of the equations of motion of celestial mechanics,”

Celestial Mechanics, Vol. 33, No. 2, 1984, pp. 127-142, June 1984.

3. M. Berry, L. Healy, “Comparison of accuracy assessment techniques for numerical

integration,” 13
th

 AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico,

9-13 February 2003.

4. Montenbruck, O., “Numerical Integration Methods for Orbital Motion,” Celestial

Mechanics and Dynamical Astronomy, Vol. 53, pp. 59–69, 1992.

5. Hadjifotinou, K. G. and Gousidou-Koutita, M., “Comparison of Numerical Methods

for the Integration of Natural Satellite Systems,” Celestial Mechanics and Dynamical

Astronomy, Vol. 70, No. 2, 1998, pp. 99–113, 1998.

6. Roache, P.J., “Code Verification by the Method of Manufactured Solutions,” ASME

Journal of Fluids Engineering, Vol. 124, March 2002, pp. 4-10.

7. Zadunaisky, P. E., “A Method for the Estimation of Errors Propagated in the

Numerical Solution of a System of Ordinary Differential Equations,” In Contopoulos,

79

G., editor, The Theory of Orbits in the Solar System and in Stellar Systems, pp. 281–

287, New York, 1966. International Astronomical Union, Academic Press.

8. Zadunaisky, P. E., “On the Estimation of Errors Propagated in the Numerical

Integration of Ordinary Differential Equations,” Numerische Mathematik, Vol. 27,

No. 1, 1976, pp. 21–39, 1976.

9. Zadunaisky, P. E., “On the Accuracy in the Numerical Solution of the N-Body

Problem,” Celestial Mechanics, Vol. 20, pp. 209–230, 1979.

10. Zadunaisky, P. E., “On the Accuracy in the Numerical Computation of Orbits,” In

Giacaglia, G.E. O., editor, Periodic Orbits, Stability and Resonances, pp. 216–227,

Dordrecht, Holland, 1970.D. Reidel Publishing Company.

11. Junkins, J.L., and Lee. S., “Validation of Finite-Dimensional Approximate Solutions

for Dynamics of Distributed-Parameter Systems,” Journal of Guidance, Control, and

Dynamics, Vol. 18, No. 1, 1995, pp. 87-95.

12. M.M. Hopkins and C.J. Roy, "Introducing the Method of Nearby Problems."

European Congress on Computational Methods in Applied Sciences and Engineering,

ECCOMAS 2004, P. Neittaanmaki, T. Rossi, S. Korotov, E. Onate, J. Periaux, and

D. Knorzer (eds.), July 24-28, 2004.

13. Roy, C. J., and Hopkins, M. M., “Discretization Error Estimates using Exact

Solutions to Nearby Problems,” AIAA Paper 2003-0629, January 2003

14. Bate R., Mueller D., White J., Fundamentals of Astrodynamics, Dover Publications,

New York, 1971.

15. V. Chobotov, "Orbital Mechanics," AIAA Education Series, Virginia 2002.

80

16. M.P. Vautier and A.J. Sinclair, “Coordinate Switching for Accurate Simulation of

Chaotic Trajectories”, AAS 08-271, F. Landis Markley Astronautics Symposium,

Cambridge, Maryland, 29 June – 2 July 2008.

17. C.B. Moler, "Numerical Computing with MATLAB." SIAM, Philadelphia 2004.

18. G.E. Mulleges and F. Uhlig, "Numerical Algorithms with Fortran," Springer-Verlag,

Berlin 1996

19. Roy, C. J., “Review of Code and Solution Verification Procedures for Computational

Simulation” Journal of Computational Physics, Vol. 205, 2005, pp. 131-156

20. L.F. Richardson, The approximate arithmetical solution by finite differences of

physical problems involving differential equations with an application to the stresses

in a masonry dam, Trans. Royal Society London, Ser. A 210 (1910) 307–357.

21. L.F. Richardson, The deferred approach to the limit, Trans. Royal Society London,

Ser. A 226 (1927) 229–361.

81

APPENDICES

A. MATLAB CODE TO NUMERICALLY SOLVE THE ORIGINAL PROBLEM

%%%
%%%%%%%%%%% NUMRICAL SOLUTION TO THE ORIGINAL PROBLEM %%%%%%%%%

%%%%%%%%%%% PROPOGATION IN THE EC->MC FRAME %%%%%%%%%
%%%

clear all;
close all;
clc;
format long;
format compact;

%%%%%%%%%%%%%%%%%%%%%%%%% SETTING UP THE PROBLEM %%%%%%%%%%%%%%%%%%%%%%

%%%%% USER INPUTS %%%%%
alt = 359750; %meters
angle = -36.890; %degrees
dt = 20; %secs
fprintf('alt = %6.0f, ang = %6.3f, dt = %6.3f \n\n', alt, angle, dt);
deltav = 3102.13; %m/s
t0 = 0; %secs
tf = 3.5*86400; %302400 secs (1 day = 86400 secs)
SP = 2.905*86400; % Switch Point at 250992 secs
folder = char(['alt' int2str(alt) 'ang' int2str(abs(angle*1000)) 'dt'

int2str(dt)]);
fid = fopen([folder 'State_SP' '.txt'], 'w');
f = fopen([folder 'Moon_State_SP' '.txt'], 'w');

%%%%% CONSTANTS %%%%%
GMm = 4.90266e12; %m3/s2
GMe = 3.98600436e14; %m3/s2
radE = 6372797; %meters
EMdist = 384400000; %meters
omega = sqrt((GMe+GMm)/EMdist^3); %rad/sec
%Tm = 2*pi/omega = 27d 6h 49m 50.34879957310977s
alpha = angle*pi/180; %radians
h = radE + alt; %meters
Vorbit = sqrt(GMe/h); %m/s
V = Vorbit + deltav; %m/s

%%%%% INITIAL CONDITIONS %%%%%

%%%%% For the Spacecraft %%%%%
rxi = h*sin(alpha); %meters

82

ryi = -h*cos(alpha); %meters
vxi = V*cos(alpha); %m/s
vyi = V*sin(alpha); %m/s
x = [rxi;ryi;vxi;vyi];
fprintf(fid, '% 6.0f, % .16e, % .16e, % .16e, % .16e nn', t0, x);

%%%%% For the Moon %%%%%
xmt = EMdist*cos(omega*t0);
ymt = EMdist*sin(omega*t0);
fprintf(f, '% 6.0f, % .16f, % .16f nn', t0, xmt, ymt);

%%%%%%%%%%%%%%%%%%%%%%%%% PERFORM THE PROPOGATION %%%%%%%%%%%%%%%%%%%%%

%%%%% EARTH CENTERED FRAME %%%%%
i = 1;
for t = t0:dt:SP-dt
 %Use the moon position at the end of the previous interval as the
 %position at the start of this interval.
 xm = xmt;
 ym = ymt;
 %Calculate the moon position at the middle and end of this

 %interval.

 xmh = EMdist*cos(omega*(t + 0.5*dt));
 ymh = EMdist*sin(omega*(t + 0.5*dt));
 xmt = EMdist*cos(omega*(t + dt));
 ymt = EMdist*sin(omega*(t + dt));
 t1 = t+dt;
 fprintf(f, '% 6.0f, % .16f, % .16f nn', t1, xmt, ymt);
 k1 = RK4_EC(x, xm, ym, GMm, GMe);
 k2 = RK4_EC(x+(dt/2)*k1', xmh, ymh, GMm, GMe);
 k3 = RK4_EC(x+(dt/2)*k2', xmh, ymh, GMm, GMe);
 k4 = RK4_EC(x+(dt)*k3', xmt, ymt, GMm, GMe);
 x = x + dt/6*(k1'+2*k2'+2*k3'+k4');
 fprintf(fid, '% 6.0f, % .16e, % .16e, % .16e, % .16enn', t1, x);
 i = i+1;
end

%%%%% SWITCH POINT %%%%%
%Convert state vector from EC to MC
rho = [xmt; ymt];
xmt_dot = -EMdist*omega*sin(omega*(t+dt));
ymt_dot = EMdist*omega*cos(omega*(t+dt));
rho_dot = [xmt_dot; ymt_dot];
d_state = x - [rho; rho_dot];

%%%%% MOON CENTERED FRAME %%%%%
j = 1;
for t = SP:dt:tf-dt
 %Use the moon position at the end of the previous interval as the
 %position at the start of this interval.
 xm = xmt;
 ym = ymt;
 %Calculate the moon position at the middle and end of this

 %interval.
 xmh = EMdist*cos(omega*(t + 0.5*dt));
 ymh = EMdist*sin(omega*(t + 0.5*dt));
 xmt = EMdist*cos(omega*(t + dt));

83

 ymt = EMdist*sin(omega*(t + dt));

 t2 = t+dt;
 fprintf(f, '% 6.0f, % .16f, % .16f nn', t2, xmt, ymt);
 %Propogating the states forward in time
 k1 = RK4_MC(d_state, xm, ym, GMm, GMe);
 k2 = RK4_MC(d_state+(dt/2)*k1', xmh, ymh, GMm, GMe);
 k3 = RK4_MC(d_state+(dt/2)*k2', xmh, ymh, GMm, GMe);
 k4 = RK4_MC(d_state+(dt)*k3', xmt, ymt, GMm, GMe);
 d_state = d_state + dt/6*(k1'+2*k2'+2*k3'+k4');
 %Compute the moon state at the end of interval
 rho = [xmt; ymt];
 rho_dot = EMdist*omega*[-sin(omega*(t + dt)); cos(omega*(t + dt))];
 %Convert state vector from MC to EC
 x = d_state + [rho; rho_dot];
 fprintf(fid, '% 6.0f, % .16e, % .16e, % .16e, % .16enn',t2,x);
 j = j+1;
end
fclose(fid);
fclose(f);

%%%

84

B. SUBROUTINES USED IN THE CODE GIVEN IN APPENDIX A

%%%
%%%%%%%%%% SUBROUTINE TO INTEGRATE %%%%%%%%%%%

%%%%%%%%%% THE EQUATION OF MOTION IN EC FRAME %%%%%%%%%%%
%%%

 function x_dot = RK4_EC(x,xmoon,ymoon,GMm,GMe)

 r = x(1:2);
 v = x(3:4);
 rho = [xmoon; ymoon];
 d = r-rho;
 x_dot(1:2) = v;

 x_dot(3:4) = -GMe*r/norm(r)^3-
 GMm*(d/norm(d)^3+rho/norm(rho)^3);

%%%

%%%
%%%%%%%%%% SUBROUTINE TO INTEGRATE %%%%%%%%%%%

%%%%%%%%%% THE EQUATION OF MOTION IN MC FRAME %%%%%%%%%%%
%%%

function d_dot = RK4_MC(d_state,xmoon,ymoon,GMm,GMe)

 d = d_state(1:2);
 v = d_state(3:4);
 rho = [xmoon; ymoon];
 r = d+rho;
 d_dot(1:2) = v;
 d_dot(3:4) = -GMm*d/norm(d)^3-GMe*(r/norm(r)^3-
 rho/norm(rho)^3);

%%%

85

C. MATLAB CODE TO CALCULATE THE COEFFICIENTS OF

CUBIC SPLINES CURVE FIT

%%%
%%%%%%%%%%%%%%% MATLAB CODE TO CALCULATE THE COEFFICIENTS %%%%%%%%%%%
%%%%%%%%%%%%%%% OF CUBIC SPLINES CURVE FIT %%%%%%%%%%%
%%%

function [X_fit Xd_fit Xdd_fit] = fCurveFit_Cu(time10,time20,X,Xdd)

 % time10 => Time matrix with time step of 10 sec
 % time20 => Time matrix with time step of 20 sec
 % X => X position obtained from the simulation given in

 Appendix A
 % Xdd => X acceleration obtained from the simulation given in

 Appendix A

 S = size(time20); m = S(2); j = 1;
 %Calculating Coefficients a
 for i = 1:3:m
 x(j) = time20(i);
 y(j) = X(i);
 a(j) = y(j);
 j = j+1;
 end
 S = size(x); n = S(2);
 %Calculating Coefficient c
 c = zeros(1,n); A = zeros(n-2);
 alpha = Xdd(1); beta = Xdd(m);
 c(1) = 0.5*alpha; c(n) = 0.5*beta;
 for i = 1:n-2
 h1 = x(i+1)-x(i);
 h2 = x(i+2)-x(i+1);
 A(i,i) = 2*(h1+h2);
 end
 for i = 2:n-2
 h2 = x(i+1)-x(i);
 A(i-1,i) = h2;
 A(i,i-1) = h2;
 end
 for i = 1:n-2
 h2 = x(i+2)-x(i+1); h1 = x(i+1)-x(i);
 a3 = a(i+2); a2 = a(i+1); a1 = a(i);
 if i == 1
 g(i) = (3/h2*(a3-a2))-(3/h1*(a2-a1))-h1*(alpha/2);
 elseif i == n-2
 g(i) = (3/h2*(a3-a2))-(3/h1*(a2-a1))-h1*(beta/2);
 else
 g(i) = (3/h2*(a3-a2))-(3/h1*(a2-a1));
 end
 end
 C = fTRIDIAG(Amd,Ad,g,n-2);
 for i = 2:n-1
 c(i) = C(i-1);

86

 end
 %Calculating Coefficients b and d
 for i = 1:n-1
 h1 = x(i+1)-x(i);
 a2 = a(i+1); a1 = a(i);
 c2 = c(i+1); c1 = c(i);
 b(i) = (1/h1*(a2-a1))-(h1/3*(c2+2*c1));
 d(i) = (1/(3*h1))*(c2-c1);
 end
 %Evaluating Spline Fit
 S = size(time10); m = S(2);
 for i = 1:m
 for j = 1:n-1
 if time10(i) >= x(j) && time10(i) <= x(j+1)

 X_fit(i) = d(j)*(time10(i)-x(j))^3 +

 c(j)*(time10(i)-x(j))^2 +

 b(j)*(time10(i)-x(j)) + a(j);

 Xd_fit(i) = 3*d(j)*(time10(i)-x(j))^2 +

 2*c(j)*(time10(i)-x(j)) + b(j);

 Xdd_fit(i) = 6*d(j)*(time10(i)-x(j)) + 2*c(j);
 end
 end
 end

%%%

87

D. MATLAB CODE TO CALCULATE THE COEFFICIENTS OF

FIFTH-DEGREE HERMITE SPLINES CURVE FIT

%%%
%%%%%%%%%% MATLAB CODE TO CALCULATE THE COEFFICIENTS %%%%%%%%%%
%%%%%%%%%% OF FIFTH-DEGREE HERMITE SPLINES CURVE FIT %%%%%%%%%%
%%%

function [X_fit Xd_fit Xdd_fit] = fCurveFit_HS(time10,time20,X,Xd,Xdd)

 % time10 => Time matrix with time step of 10 sec
 % time20 => Time matrix with time step of 20 sec
 % X => X position obtained from the simulation given in

 Appendix A
 % Xd => X velocity obtained from the simulation given in

 Appendix A
 % Xdd => X acceleration obtained from the simulation given in

 Appendix A

 S = size(time20); m = S(2); j = 1;
 %Calculating Coefficients a and b
 for i = 1:3:m
 x(j) = time20(i);
 y(j) = X(i);
 yPR(j) = Xd(i);
 a(j) = y(j);
 b(j) = yPR(j);
 j = j+1;
 end
 S = size(x); n = S(2);
 %Calculating Coefficient c
 c = zeros(1,n); A = zeros(n-2);
 c(1) = 0.5*Xdd(1); c(n) = 0.5*Xdd(m);
 alpha = 1; Beta1 = Xdd(1)/(2*(x(2)-x(1)));

 Beta2 = Xdd(m)/(2*(x(n)-x(n-1)));
 for i = 1:n-2
 h1 = x(i+1)-x(i); h2 = x(i+2)-x(i+1);
 if i == 1
 Amd(i) = 3*(alpha/h1+1/h2);
 elseif i == n-2
 Amd(i) = 3*(1/h1+alpha/h2);
 else
 Amd(i) = 3*(1/h1+1/h2);
 end
 A(i,i) = Amd(i);
 end
 for i = 2:n-2
 h2 = x(i+1)-x(i);
 Ad(i-1) = -1/h2;
 A(i-1,i) = Ad(i-1);
 A(i,i-1) = Ad(i-1);
 end
 for i = 1:n-2
 a3 = a(i+2); a2 = a(i+1); a1 = a(i);

88

 b3 = b(i+2); b2 = a(i+1); b1 = b(i);
 h2 = x(i+2)-x(i+1); h1 = x(i+1)-x(i);
 if i == 1;
 g(i) = 10*((a3-a2)/h2^3-(a2-a1)/h1^3)+4*(b1/h1^2-

 1.5*b2*(1/h2^2-1/h1^2)-b3/h2^2)+Beta1;
 elseif i == n-2
 g(i) = 10*((a3-a2)/h2^3-(a2-a1)/h1^3)+4*(b1/h1^2-

 1.5*b2*(1/h2^2-1/h1^2)-b3/h2^2)+Beta2;
 else
 g(i) = 10*((a3-a2)/h2^3-(a2-a1)/h1^3)+4*(b1/h1^2-

 1.5*b2*(1/h2^2-1/h1^2)-b3/h2^2);
 end
 end
 C = fTRIDIAG(Amd,Ad,g,n-2);
 for i = 2:n-1
 c(i) = C(i-1);
 end
 %Calculating Coefficients d
 for i = 1:n
 if i < n
 h1 = x(i+1)-x(i);
 a2 = a(i+1); a1 = a(i);
 b2 = b(i+1); b1 = b(i);
 c2 = c(i+1); c1 = c(i);
 d(i) = 10/h1^3*(a2-a1)-2/h1^2*(2*b2+3*b1)+1/h1*(c2-

 3*c1);
 else
 d4 = d(i-1); h4 = x(n)-x(n-1); b5 = b(i); b4 = b(i-1);

 c5 = c(i); c4 = c(i-1);
 d(i) = d4-2/h4^2*(b5-b4)+2/h4*(c5+c4);
 end
 end
 %Calculating Coefficients e and f
 for i = 1:n-1
 h1 = x(i+1)-x(i); b2 = b(i+1); b1 = b(i);
 c2 = c(i+1); c1 = c(i); d2 = d(i+1); d1 = d(i);
 e(i) = 0.5/h1^3*(b2-b1)-1/h1^2*c1-0.25/h1*(d2+5*d1);
 e1 = e(i);
 f(i) = 0.1/(h1^3)*(c2-c1-3*d1*h1-6*e1*h1^2);
 end
 %Evaluating Spline Fit
 S = size(time10); m = S(2);
 for i = 1:m
 for j = 1:n-1
 if time10(i) >= x(j) && time10(i) <= x(j+1)

 X_fit(i) = f(j)*(time10(i)-x(j))^5 +

 e(j)*(time10(i)-x(j))^4 +

 d(j)*(time10(i)-x(j))^3 +

 c(j)*(time10(i)-x(j))^2 +

 b(j)*(time10(i)-x(j)) + a(j);

 Xd_fit(i) = 5*f(j)*(time10(i)-x(j))^4 +
 4*e(j)*(time10(i)-x(j))^3 +

 3*d(j)*(time10(i)-x(j))^2 +

 2*c(j)*(time10(i)-x(j)) + b(j);

89

 Xdd_fit(i) = 20*f(j)*(time10(i)-x(j))^3 +

 12*e(j)*(time10(i)-x(j))^2 +

 6*d(j)*(time10(i)-x(j)) + 2*c(j);

 end
 end
 end

%%%

90

E. MATLAB CODE TO CALCULATE THE COEFFICIENTS OF

MULTI-RESOLUTION

FIFTH-DEGREE HERMITE SPLINES CURVE FIT

%%%
%%%%%%%%%%%% MATLAB CODE TO CALCULATE THE COEFFICIENTS %%%%%%
%%%%%%%%%%%% OF FIFTH-DEGREE HERMITE SPLINES CURVE FIT %%%%%%
%%%%%%%%%%%% WITH ADAPTIVE ALGORITHM %%%%%%
%%%

clc;
clear all;
close all;
format long E;
format compact;

%%%
dt = 20;
[time10 time20 X Y Xd Yd Xdd Ydd] = fSimulation(dt);

%Subroutine fSimulation is the same as Appendix A with dt as the

parameter.
S = size(time20); m20 = S(2);
S = size(time10); m10 = S(2);
%%%
REGIONS = [0 75600 151200 226800 302400]; %4 regions
%Initial No. of zones in each region
nzones1 = 2; nzones2 = 2; nzones3 = 2; nzones4 = 2;
iREGIONS = 1/dt*REGIONS; S = size(iREGIONS); n = S(2);
for i = 1:n-1
 diff(i) = iREGIONS(i+1)-iREGIONS(i);
end
%%%
Max_accept = 10^-3;
p = Max_accept + 1;
Max1 = p; Max2 = p; Max3 = p; Max4 = p;
%%%
while Max1 >= Max_accept || Max2 >= Max_accept || Max3 >= Max_accept ||

 Max4 >= Max_accept
 %%%% SPLINE POINTS %%%%%
 [x1 y1 yPR1] =

fSplinePoints(time20,diff(1),iREGIONS(1),iREGIONS(2),nzones1,X,Xd,1);
 [x2 y2 yPR2] =

fSplinePoints(time20,diff(2),iREGIONS(2),iREGIONS(3),nzones2,X,Xd,2);
 [x3 y3 yPR3] =

fSplinePoints(time20,diff(3),iREGIONS(3),iREGIONS(4),nzones3,X,Xd,2);
 [x4 y4 yPR4] =

fSplinePoints(time20,diff(4),iREGIONS(4),iREGIONS(5),nzones4,X,Xd,2);
 x = [x1 x2 x3 x4];
 y = [y1 y2 y3 y4];
 yPR = [yPR1 yPR2 yPR3 yPR4];
 %%%%% CALCULATING CURVE FIT %%%%%
 [iX_fit iXd_fit iXdd_fit] =

 fCurveFit_HS(time10,time20,x,y,yPR,Xdd);

91

 k = 1;
 for i = 1:2:m10
 X_fit(k) = iX_fit(i);
 k = k+1;
 end
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 X1 = X(iREGIONS(1)+1:iREGIONS(2)+1);
 X_fit1 = X_fit(iREGIONS(1)+1:iREGIONS(2)+1);
 X2 = X(iREGIONS(2)+2:iREGIONS(3)+1);
 X_fit2 = X_fit(iREGIONS(2)+2:iREGIONS(3)+1);
 X3 = X(iREGIONS(3)+2:iREGIONS(4)+1);
 X_fit3 = X_fit(iREGIONS(3)+2:iREGIONS(4)+1);
 X4 = X(iREGIONS(4)+2:iREGIONS(5)+1);
 X_fit4 = X_fit(iREGIONS(4)+2:iREGIONS(5)+1);
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 S = size(X1); m1 = S(2); S = size(X2); m2 = S(2);
 S = size(X3); m3 = S(2); S = size(X4); m4 = S(2);
 %%%%% CALCULATING RESIDUALS %%%%%
 %%%%% Entire Curve Fit %%%%%
 [Residualx_CF RMSEx_CF Max_CF] = fResiduals(X,X_fit,m20);
 %%%%% In Each Region %%%%%
 [Residualx1 RMSEx1 Max1] = fResiduals(X1,X_fit1,m1);
 [Residualx2 RMSEx2 Max2] = fResiduals(X2,X_fit2,m2);
 [Residualx3 RMSEx3 Max3] = fResiduals(X3,X_fit3,m3);
 [Residualx4 RMSEx4 Max4] = fResiduals(X4,X_fit4,m4);
 %%%%% CHECKING FOR MAXIMUM RESIDUAL IN EACH REGION %%%%%
 nzones1 = fCheck(Max1,Max_accept,nzones1);
 nzones2 = fCheck(Max2,Max_accept,nzones2);
 nzones3 = fCheck(Max3,Max_accept,nzones3);
 nzones4 = fCheck(Max4,Max_accept,nzones4);
end

%%%

92

F. SUBROUTINES USED IN THE CODE GIVEN IN APPENDIX E

%%%

function [x y yPR] = fSplinePoints(time20,diff,m1,m2,nzones,X,Xd,k)

div = diff/nzones;
i = 1;
for j = m1:div:m2
 j = round(j);
 ix(i) = time20(j+1);
 iy(i) = X(j+1);
 iyPR(i) = Xd(j+1);
 i = i+1;
end
if k == 1
 for i = 1:1:nzones+1
 x(i) = ix(i);
 y(i) = iy(i);
 yPR(i) = iyPR(i);
 end
else
 for i = 2:1:nzones+1
 x(i-1) = ix(i);
 y(i-1) = iy(i);
 yPR(i-1) = iyPR(i);
 end
end

%%%

function [Residual RMSE Max] = fResiduals(X,X_fit,m)

 k = 1;
 for i = 1:m
 Residual(k) = abs(X(k)-X_fit(k));
 k = k+1;
 end
 RMSE = sqrt(sum((X(:)-X_fit(:)).^2)/(m));
 Max = max(Residual);

%%%

function nzones = fCheck(Max,Max_accept,nzones)

 if Max <= Max_accept
 nzones = nzones + 0;
 else
 nzones = nzones + 1;
 end

%%%

93

G. TRIDIAGONAL SOLVER

%%%
%%%%%%%%%% TRIDIAGONAL SOLVER %%%%%%%%%%
%%%

function x = fTRIDIAG(d,f,b,n)

 alpha(1) = d(1);
 gamma(1) = f(1)/alpha(1);
 for i = 2:1:n-1
 alpha(i) = d(i)-f(i-1)*gamma(i-1);
 gamma(i) = f(i)/alpha(i);
 end
 alpha(n) = d(n)-f(n-1)*gamma(n-1);
 z(1) = b(1);
 for i = 2:1:n
 z(i) = b(i)-gamma(i-1)*z(i-1);
 end
 for i = 1:1:n
 c(i) = z(i)/alpha(i);
 end
 x(n) = c(n);
 for i = n-1:-1:1
 i;
 x(i) = c(i)-gamma(i)*x(i+1);
 end

%%%

94

H. MATLAB CODE TO NUMERICALLY SOLVE THE NEARBY PROBLEM

%%%
%%%%%%%%%% NUMERICAL SOLUTION TO THE NEARBY PROBLEM %%%%%%
%%%%%%%%%% USING FIFTH-DEGREE HERMITE SPLINES %%%%%%
%%%

clc;
clear all;
close all;
format long E;
format compact;

%%%%%%%%%%%%%% NUMERICAL SOLUTION TO THE ORIGINAL PROBLEM %%%%%%%%%%%%%

dt = 20;
[time10 time20 SP X Y Xd Yd Xdd Ydd Xmoon Ymoon Xdd_moon Ydd_moon] =

fSimulation(dt);
%Subroutine fSimulation is the same as Appendix A with dt as the

parameter.

%%%%%%%%%%% GENERATING CURVE FIT TO THE NUMERICAL SIMULATION %%%%%%%%%%
 %%%%%% USING FIFTH-DEGREE HERMITE SPLINES %%%%%%

[X_fit Xd_fit Xdd_fit] = fCurveFit_HS(time10,time20,X,Xd,Xdd);
[Y_fit Yd_fit Ydd_fit] = fCurveFit_HS(time10,time20,Y,Yd,Ydd);
S10 = size(time10); m10 = S10(2);
S20 = size(time20); m20 = S20(2);

%%%%%%%%%%%%%%%%%%%%%%% CALCULATING SOURCETERMS %%%%%%%%%%%%%%%%%%%%%%%

for k = 1:1:m10
 GMm = 4.90266e12; GMe = 3.98600436e14;
 rho = [Xmoon(k) Ymoon(k)];
 r = [X_fit(k) Y_fit(k)];
 d = r-rho;
 if k <= SP
 acc = -GMe*r/norm(r)^3-GMm*(d/norm(d)^3+rho/norm(rho)^3);
 acc1(k) = acc(1); acc2(k) = acc(2);
 Sourcetermx(k) = Xdd_fit(k)-acc1(k);
 Sourcetermy(k) = Ydd_fit(k)-acc2(k);
 else
 acc = -GMm*d/norm(d)^3-GMe*(r/norm(r)^3-rho/norm(rho)^3);
 acc3(k) = acc(1); acc4(k) = acc(2);
 Sourcetermx(k) = Xdd_fit(k)-Xdd_moon(k)-acc3(k);
 Sourcetermy(k) = Ydd_fit(k)-Ydd_moon(k)-acc4(k);
 end
end

%%%%%%%%%%%%%%% NUMERICAL SOLUTION TO THE NEARBY PROBLEM %%%%%%%%%%%

%%%%% PROPOGATION IN THE EC->MC FRAME %%%%%

%%%%% SETTING UP THE PROBLEM %%%%%

95

%%%%% USER INPUTS %%%%%
alt = 359750; %meters
angle = -36.890; %degrees
fprintf('alt = %6.0f, ang = %6.3f, dt = %6.3f \n\n', alt, angle, dt);
deltav = 3102.13; %m/s
t0 = 0; %secs
tf = 3.5*86400; %302400 secs (1 day = 86400 secs)
SP = 2.905*86400; %Switch Point at 250992 secs
folder = char(['alt' int2str(alt) 'ang' int2str(abs(angle*1000)) 'dt'

int2str(dt)]);
fid = fopen([folder 'State_SP' '.txt'], 'w');
f = fopen([folder 'Moon_State_SP' '.txt'], 'w');

%%%%% CONSTANTS %%%%%
radE = 6372797; %meters
EMdist = 384400000; %meters
omega = sqrt((GMe+GMm)/EMdist^3); %rad/sec
%Tm = 2*pi/omega = 27d 6h 49m 50.34879957310977s
alpha = angle*pi/180; %radians
h = radE + alt; %meters
Vorbit = sqrt(GMe/h); %m/s
V = Vorbit + deltav; %m/s

%%%%% INITIAL CONDITIONS %%%%%
%%%%% For Spacecraft %%%%%
rxi = h*sin(alpha); %meters
ryi = -h*cos(alpha); %meters
vxi = V*cos(alpha); %m/s
vyi = V*sin(alpha); %m/s
x = [rxi;ryi;vxi;vyi];
fprintf(fid, '% 6.0f, % .16e, % .16e, % .16e, % .16e nn', t0, x);
%%%%% For the Moon %%%%%
xmt = EMdist*cos(omega*t0);
ymt = EMdist*sin(omega*t0);
fprintf(f, '% 6.0f, % .16f, % .16f nn', t0, xmt, ymt);

%%%%% PERFORM THE PROPOGATION %%%%%

%%%%% EARTH CENTERED FRAME %%%%%
i = 1; m = 1;
for t = t0:dt:SP-dt
 %Use the moon position at the end of the previous interval as the
 %position at the start of this interval.
 xm = xmt;
 ym = ymt;
 %Calculate the moon position at the middle and end of this

 interval.
 xmh = EMdist*cos(omega*(t + 0.5*dt));
 ymh = EMdist*sin(omega*(t + 0.5*dt));
 xmt = EMdist*cos(omega*(t + dt));
 ymt = EMdist*sin(omega*(t + dt));
 t1 = t + dt;
 fprintf(f, '% 6.0f, % .16f, % .16f nn', t1, xmt, ymt);
 %Propogating the states forward in time

 k1 = RK4_EC_NP(x, xm, ym, GMm, GMe, Sourcetermx(m),

96

 Sourcetermy(m));
 k2 = RK4_EC_NP(x+(dt/2)*k1', xmh, ymh, GMm, GMe, Sourcetermx(m+1),

 Sourcetermy(m+1));
 k3 = RK4_EC_NP(x+(dt/2)*k2', xmh, ymh, GMm, GMe, Sourcetermx(m+1),

 Sourcetermy(m+1));
 k4 = RK4_EC_NP(x+(dt)*k3', xmt, ymt, GMm, GMe, Sourcetermx(m+2),

 Sourcetermy(m+2));
 x = x + dt/6*(k1'+2*k2'+2*k3'+k4');
 fprintf(fid, '% 6.0f, % .16e, % .16e, % .16e, % .16enn', t1, x);
 i = i+1;
 m = m+2;
end

%%%%% SWITCH POINT %%%%%
%Convert state vector from EC to MC
rho = [xmt; ymt];
xmt_dot = -EMdist*omega*sin(omega*(t+dt));
ymt_dot = EMdist*omega*cos(omega*(t+dt));
rho_dot = [xmt_dot; ymt_dot];
d_state = x - [rho; rho_dot];

%%%%% MOON CENTERED FRAME %%%%%
j = 1; n = m;
for t = SPt:dt:tf-dt
 %Use the moon position at the end of the previous interval as the
 %position at the start of this interval.
 xm = xmt;
 ym = ymt;
 %Calculate the moon position at the middle and end of this

 interval.
 xmh = EMdist*cos(omega*(t + 0.5*dt));
 ymh = EMdist*sin(omega*(t + 0.5*dt));
 xmt = EMdist*cos(omega*(t + dt));
 ymt = EMdist*sin(omega*(t + dt));
 t2 = t + dt;
 fprintf(f, '% 6.0f, % .16f, % .16f nn', t2, xmt, ymt);
 %Propogating the states forward in time
 k1 = RK4_MC_MNP(d_state, xm, ym, GMm, GMe, Sourcetermx(n),

 Sourcetermy(n));
 k2 = RK4_MC_MNP(d_state+(dt/2)*k1', xmh, ymh, GMm, GMe,

 Sourcetermx(n+1), Sourcetermy(n+1));
 k3 = RK4_MC_MNP(d_state+(dt/2)*k2', xmh, ymh, GMm, GMe,

 Sourcetermx(n+1), Sourcetermy(n+1));
 k4 = RK4_MC_MNP(d_state+(dt)*k3', xmt, ymt, GMm, GMe,

 Sourcetermx(n+2), Sourcetermy(n+2));
 d_state = d_state + dt/6*(k1'+2*k2'+2*k3'+k4');
 %Compute moon state at the end of interval
 rho = [xmt; ymt];
 rho_dot = EMdist*omega*[-sin(omega*(t + dt)); cos(omega*(t + dt))];
 %Convert state vector from MC to EC
 x = d_state + [rho; rho_dot];
 fprintf(fid, '% 6.0f, % .16e, % .16e, % .16e, % .16enn',t2,x);
 j = j+1; n = n+2;
end
fclose(fid); fclose(f);

97

%%%

I. SUBROUTINES USED IN THE CODE GIVEN IN APPENDIX H

%%%
%%%%%%% SUBROUTINE TO INTEGRATE THE EQUATION OF MOTION IN EC FRAME %%%%
%%%%%%% FOR THE NEARBY PROBLEM %%%%
%%%

function x_dot =

 RK4_EC_NP(x,xmoon,ymoon,GMm,GMe,Sourcetermx,Sourcetermy)

 r = x(1:2);
 v = x(3:4);
 rho = [xmoon; ymoon];
 d = r-rho;
 Sourceterm = [Sourcetermx; Sourcetermy];
 x_dot(1:2) = v;
 x_dot(3:4) = -GMe*r/norm(r)^3-

 GMm*(d/norm(d)^3+rho/norm(rho)^3)+Sourceterm;

%%%

%%%
%%%%%%% SUBROUTINE TO INTEGRATE THE EQUATION OF MOTION IN MC FRAME %%%%
%%%%%%% FOR THE NEARBY PROBLEM %%%%
%%%

function d_dot =

 RK4_MC_NP(d_state,xmoon,ymoon,GMm,GMe,Sourcetermx,Sourcetermy)

 d = d_state(1:2);
 v = d_state(3:4);
 rho = [xmoon; ymoon];
 r = d+rho;
 Sourceterm = [Sourcetermx; Sourcetermy];
 d_dot(1:2) = v;
 d_dot(3:4) = -GMm*d/norm(d)^3-GMe*(r/norm(r)^3-

 rho/norm(rho)^3)+Sourceterm;

%%%

