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Abstract 

This thesis focuses on analyzing the effect numerical error has on the accurate 

simulation of translunar trajectories.  The method of nearby problems is employed to 

estimate the numerical error.  A simulation is developed to generate translunar 

trajectories.  Analytical curve fit is generated to this numerical solution and this curve fit 

is used to compute analytical source terms.  The addition of these source terms to the 

governing equations defines a nearby problem, for which the curve fit serves as an exact 

solution.  By solving the nearby problem numerically, the numerical error in it can be 

calculated.  This facilitates the estimation of numerical error in the original problem. 
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CHAPTER 1 

INTRODUCTION 

 Numerical simulations play an important role in mathematical modeling of many 

systems in engineering.  They are of utmost importance when it comes to estimating the 

performance of systems too complex for analytical solutions.  Numerical simulations are 

imperative to the field of orbital mechanics as there are many differential equations and 

dynamical systems which cannot be solved analytically.  Numerical simulations in this 

field have been used since the era of the Apollo missions.   

 In numerical simulations, however, one must account for the numerical error as it 

affects the efficacy of the simulation scheme.  Previous studies on the numerical error in 

orbital mechanics simulations have included three types of numerical error - iteration 

error, round-off error, and discretization error.  Iteration error is the difference between 

the current iterative solution and the exact solution.  In Runge-Kutta simulation of 

translunar trajectories, however, iterative solutions are not used, and hence iteration error 

is not considered in this study.  Round-off error is caused by the fact that digital 

computers can store numbers with only a finite precision.  Discretization error is the 

difference between the solution of the discretized equation and the exact solution of the 

original differential equation.  

 Many researchers have studied numerical error in orbital mechanics simulations.   

Some of them have focused on the development of accuracy assessment techniques.  
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Huang and Innanen [1] showed that the traditional ways of checking the accuracy of the 

numerical solutions to the dynamical systems by the use of known integrals or the 

integral invariant relations are neither exact nor reliable due to the tendency of these 

numerical solutions to keep the integrals constant.  They suggested a revised technique to 

use the integral invariant relations for checking the accuracy of the numerical solutions to 

the dynamical systems. 

 Other researchers have focused on surveying the accuracy of various numerical 

integration schemes, often assessing the accuracy by comparison of the numerical 

solutions to known exact solutions.  Fox [2]
 
did an accuracy based comparative study of 

various categories of numerical integration methods applied to the solution of two-body 

problem.  Berry and Healy [3] compared the efficacy of various accuracy assessment 

techniques of numerical integrators using two-body problem with and without 

perturbations.  Montenbruck [4]
 
assessed the usefulness of various methods of numerical 

integration such as Runge-Kutta, multi-step and extrapolation based methods for 

generating numerical solutions to the problems involving solar system bodies or artificial 

satellites.  Hadjifotinou and Gousidou-Koutita [5] proposed a new method called the 

recurrent power series (RPS) method for the integration of the system of n satellites 

orbiting a point-mass planet. 

  One approach taken to check the numerical accuracy of a numerical solution is to 

construct a similar problem to the original problem of interest.  In this approach, the 

similar problem has an exact solution.  Therefore, error in the numerical solution to the 

similar problem is exactly known which is then used to estimate the error in the 

numerical solution to the original problem of interest.  Researchers studying orbital 
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mechanics as well as fluid dynamics have taken this approach.  Roach [6] proposed 

“method of manufactured solutions (MMS)”.  MMS involves manufacturing an exact 

solution to a set of equations which are a modified form of the original differential 

equations.  The solution obtained to this set of modified equations may not have physical 

significance.  Therefore, MMS is used only to verify the mathematics involved in solving 

the original equations, and does not verify the solution obtained by solving the original 

equations.   

 Other researchers have used their similar problem to actually validate the 

numerical solution to the original problem.  All these researchers use curve fit to the 

numerical solution of the original problem to construct the similar problem.  The way in 

which these curve fits are calculated and are then used to construct the similar problem 

might differ slightly in each case.  Zadunaisky [7, 8, 9, 10] suggested a technique in 

which he called his similar problem as a “pseudo-system” and applied it to the problems 

in orbital mechanics.  Junkins and Lee [11] constructed “benchmark problem” for hybrid 

coordinate systems of ordinary/partial differential equations.  Hopkins and Roy [12, 13] 

referred to their similar problem as “nearby problem” and the approach was called as “the 

method of nearby problems (MNP)”.  They applied this method to the problems in fluid 

dynamics.   

 MNP is based on constructing a problem near the original problem of interest.  

This nearby problem is constructed in such a way that it is both representative of the 

original problem and also has an exact known solution. This nearby problem is then 

solved numerically using the same numerical solution scheme that was used to 

numerically solve the original problem. Because the exact solution to the nearby problem 
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is known, error in its numerical solution can be calculated.  This information is then used 

to estimate the error in the numerical solution of the original problem.  MNP involves 

five steps. These steps are explained as follows:  

Establishing an Accurate Numerical Solution to the Original Problem 

Once the problem of interest is identified, the first step is to discretize this 

problem and produce an accurate numerical solution.      

Generating an Analytical Curve Fit to the Above Numerical Solution 

      Once the accurate numerical solution is computed in previous step, this step 

involves generating an analytical curve fit to this numerical solution.  One of the many 

curve fitting techniques is used to generate this curve fit.  It should be kept in mind that 

the technique used for curve fitting should provide a particular order of continuity which 

is problem dependent.  Once the curve fit is generated, it should be examined to see how 

good the fit approximates the numerical solution. This analytical curve fit will serve as 

the exact solution to the nearby problem.  

Generating Analytical Source Terms 

The nearby problem differs from the original problem by (hopefully) small source 

terms.  These source terms are obtained by operating the original equation on the analytic 

curve fit obtained from the previous step.  In the limit, as the magnitude of the source 

terms approaches zero, the nearby problem approaches the original problem. The 

nearness of the nearby problem to the original problem can be judged by the magnitude 

of the source terms. 



5 

 

Numerically Solving the Nearby Problem 

The nearby problem consists of original equations plus the analytical source 

terms.  This step involves solving the nearby problem numerically using the same 

numerical solution scheme that was used to solve the original problem. 

Estimating the Numerical Error in the Original Problem 

      Because both the exact and the numerical solution to the nearby problem are 

known, error in the numerical solution can be calculated for the nearby problem.  This 

information can then be used to estimate the error in the numerical solution to the original 

problem. 

 In this thesis, an effort is made to extend the application of MNP to the problems 

in orbital mechanics.  The objective is to demonstrate the usefulness of MNP in 

validating the accuracy of the numerical solutions to the problems in orbital mechanics 

by constructing a nearby problem to the Earth-spacecraft-Moon three-body problem.  

While this work also uses the curve fit to the numerical solution of the original problem 

to construct the nearby problem, unlike Zadunaisky, various curve fitting techniques are 

examined first and then the technique satisfying certain criteria is used to construct the 

nearby problem.  Moreover, the way in which this curve fit is used to construct the 

nearby problem differs from that of Zadunaisky’s.  

   Chapter 2 discusses the original problem studied in this work.  In this chapter, 

equations of motion of the n-body problem are derived first and these equations are then 

specialized for the case of the three-body problem.  System model for the Earth-

spacecraft-Moon three-body problem is also discussed and the equations of motion 

governing the motion of the spacecraft in the cis-lunar space are formed.  Chapter 3 
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discusses the numerical solution to the Earth-spacecraft-Moon three-body problem.  

Chapter 4 discusses various curve fitting techniques and their feasibility to construct the 

nearby problem.  Chapter 5 discusses the calculation of analytical source terms using the 

various curve fitting techniques studied in chapter 4.  In chapter 6, the nearby problem is 

constructed and the nearness of this nearby problem to the original problem is 

established.  This allows the exact error in the numerical solution to the nearby problem 

to be considered as a good estimation of the error in the numerical solution to the original 

problem.  The numerical error estimated by MNP is compared to that estimated by 

Richardson extrapolation using both global and local order of accuracy.  In chapter 7,      

a conclusion to this thesis is presented. 
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CHAPTER 2 

ORIGINAL PROBLEM 

The original problem studied in this work is the Earth-spacecraft-Moon three-

body problem.  One of the most fundamental problems of orbital mechanics is to 

accurately describe the motion of n gravitationally interacting massive particles also 

known as the n-body problem.  In this chapter, we will begin with the general n-body 

problem and then we will specialize to our three-body problem.    Newton introduced his 

three laws of motion in The Mathematical Principles of General Philosophy, or, more 

simply, the Principia, in 1687.  Newton’s law of universal gravitation along with the 

second law of motion can be used to describe the n-body problem.  The second law can 

be expressed mathematically in vector notation as follows: 

       ̈ (1) 

In Eq. (1),     is the vector sum of all forces acting on the mass   and  ̈ is the vector 

acceleration of the mass measured relative to an inertial reference frame.  Similarly, the 

universal law of gravitation can be expressed mathematically in vector notation as 

follows: 

     
       

   
 

 
   

   
 (2) 

In Eq. (2),     is the gravitational force exerted on mass    by mass        is the vector 

from    to    and   is the universal gravitational constant. 
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Figure 1.  n-body Problem [14] 

The n-body problem is illustrated in figure 1.  It shows a system of n 

bodies              .  Let us assume an inertial reference frame (X, Y, Z) in which 

the position vectors of these n masses are               respectively.  We wish to study 

the motion of one of these bodies.  Let us call this body as the jth body,   .  At any given 

time in its journey, this body is being acted upon by several gravitational masses and may 

be experiencing other forces such as drag, thrust, and solar radiation pressure.  Let us not 

consider all these other forces for the time being.  Applying Newton’s law of universal 

gravitation to the above system, the force     exerted on    by    is: 

     
       

   
 

     (3) 

In Eq. (3),          .   
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The vector sum,  , of all such gravitational forces acting on the jth body may be written 

as: 

        ∑ ( 
   

   
 
    ) 

     

   

 (4) 

Applying Newton’s second law of motion, 

     ̈  (5) 

Dividing both sides of Eq. (5) by    we get, 

 ̈     ∑ ( 
   

   
 
    )

     

   

 (6) 

Eq. (6) describes the inertial motion of the jth body.  For our purposes, we will be  

interested in describing the motion of a body relative to another body.  Consider figure 2.   

 

 

Figure 2.  Three-body Problem [16] 
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Equation of motion of m1 with respect to the inertial reference frame can be given by: 

 ̈     ( 
   

   
 
    )    ( 

   

   
 
    )  (7) 

Also the equation of motion of m2 with respect to the same reference frame is: 

 ̈     ( 
   

   
 
    )    ( 

   

   
 
    ) (8) 

By subtracting Eq. (7) from (8), equation of motion of    relative to    is given as: 

   ̈   ̈     ( 
   

   
 
      

   

   
 
      

   

   
 
     

   

   
 
    ) 

 

(9) 

Let                           as shown in figure 2.   

Thus, Eq. (9) can be simplified as: 

 ̈     ( 
         

  
  )      ( 

  

  
 

 

  
 ) (10) 

Similarly, equation of motion of    relative to    is given as: 

 ̈     ( 
         

  
  )      ( 

  

  
 

 

  
 ) (11) 

Considering       and         above equations can be rewritten as: 

 ̈    
    

  
       ( 

  

  
 

 

  
 ) (12) 

 ̈   
    

  
       ( 

  

  
 

 

  
 ) (13) 

In both the above equations, the first term on the right hand side is the central 

acceleration due to the primary body, while the second term on the right hand side is the 
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disturbing acceleration from the perturbing body.  As mentioned earlier, several external 

forces such as drag, thrust, and solar radiation pressure are not considered while deriving 

these equations of motion.  Also, Newton's law of gravitation applies only if the bodies 

are spherical and the mass is evenly distributed in spherical shells.  Thus, the non-

spherical shape of the bodies also results in a perturbing force.  Therefore, the governing 

equations derived above are approximations and inclusion of all the perturbing forces 

could facilitate a more accurate modeling of the trajectory. 

                                                                      S/C 

                                                         r                          d 

                                              E                                             M                                                                                                    

ρ 

Figure 3.  System Model 

For the Earth-spacecraft-Moon three-body problem, let m1 be the Earth, m2 be the 

spacecraft and m3 be the moon.  Figure 3 shows the system model for this problem.  The 

spacecraft motion is described either in the Earth-Centered (EC) reference frame or in the 

Moon-Centered (MC) reference frame.  Both EC and MC are non-rotating reference 

frames.  The EC frame has its origin at the center of mass of the Earth while the MC 

frame has its origin at the center of mass of the Moon.   The position vector of the 

spacecraft in the EC frame is given by r while in the MC frame it is given by d.  The 

equation of motion of the spacecraft in vector form in the EC frame is given by Eq. (12) 

rewritten below.  Here,    is the gravitational parameter for the Earth with a value of 

3.98600436 × 10
14 

m
3
/s

2
 and    is the gravitational parameter for the Moon with a value 

of 4.90266 × 10
12

 m
3
/s

2
.   



12 

 











3332

2

d

d




 ρd
r

r

drt
m

e

 

(14) 

In this equation, the Earth is the central body and the Moon causes the perturbative 

acceleration.  The Cartesian components of r in a non-rotating frame are written as 

X and Y, and the scalar components of the equation of motion are as follows.
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Similarly, the equation of motion of the spacecraft in vector form in the MC frame is 

given by Eq. (13) rewritten below. 
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(17) 

In this equation, the Moon is the central body and the Earth causes the perturbative 

acceleration.  The Cartesian components of d in a non-rotating frame are written as 

Xm and Ym, and the scalar components of the equation of motion are as follows.
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
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
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These two sets of equations in the EC and the MC reference frames represent analytically 

equivalent description of the three-body problem.  The numerical solution described in 

the next chapter will use switching between the two reference frames. 

 The problem description is completed by defining various initial conditions.  The 

starting location of the Moon is out from the Earth along the positive X-axis as shown in 

figure 3.  Because the mean eccentricity of the Moon’s orbit is only about 0.0549, it is 

considered to be a circular orbit with a radius (ρ) of 384,400 km.  The spacecraft 

trajectory is assumed to be coplanar with the Moon’s orbit.  The initial conditions for the 

translunar trajectory are specified by the injection criteria relative to the low Earth orbit 

(LEO): altitude (alt), ∆v, and angle (θ).  These initial conditions are given in table 1 and 

are illustrated in figure 4. [16]      

Parameter Value(Units) 

re 6372.797(km) 

alt 359750(m) 

∆v 3102.13(m/s) 

θ -36.890(degrees) 

 

Table 1.  LEO Conditions  

 

 

Figure 4.  The Earth, LEO, Point of ∆v and Initial Trajectory 
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CHAPTER 3 

NUMERICAL SOLUTION TO THE ORIGINAL PROBLEM 

 To numerically solve the Earth-spacecraft-Moon three-body problem, a 

MATLAB code (appendix A) implementing the fourth-order Runge-Kutta (RK4) 

numerical integration scheme is developed to propagate the initial conditions forward in 

time. [16] A trip time of 3.5 days is considered.  An integration time step of 20 seconds is 

used.  Consistent with the RK4 algorithm, the lunar ephemeris are updated every half 

time step.  Choice of the reference frame for describing the spacecraft motion affects the 

numerical error in the simulation.  In order to avoid precision loss due to round-off error, 

reference frame is switched from the EC to the MC at 2.905 days. [16] After the switch 

point, equation of motion in the MC frame is integrated for d.  This solution is then 

converted to output a solution for r at each instant in time.   

Figure 5 illustrates the resulting numerical solution of the original problem for the 

spacecraft’s trajectory along with the Moon’s trajectory.  Figures 6 and 7 show the plots 

of X and Y with respect to time.  Figures 8 and 9 show the plots of  ̇ and  ̇ with respect 

to time.  Figures 10 and 11 show the plots of  ̈ and  ̈ with respect to time.  It can be seen 

from the acceleration plots that the spacecraft experiences a higher acceleration when in 

proximity to the Earth and the Moon.  This is due to the strong nature of the gravitational 

forces exerted by the Earth and the Moon on the spacecraft.  The higher acceleration is 

also reflected in the position and the velocity plots.  The velocity of the spacecraft when 
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in proximity to the Earth and the Moon is higher, and it also changes rapidly.  High 

curvature of the trajectory during the initial and the final phases of the journey which 

indicates a rapid change in position during these phases can also be seen by a close 

examination of figures 5, 6 and 7.  This behavior will affect the accuracy of the curve fits 

calculated in the next chapter.   

 

                Figure 5.  Spacecraft and Moon Trajectories 
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        Figure 6.  Time vs. X Position 

 

     Figure 7.  Time vs. Y Position 
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Figure 8.  Time vs. X Velocity 

 
 

Figure 9.  Time vs. Y Velocity 
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Figure 10.  Time vs. X Acceleration 
 

 
 

Figure 11.  Time vs. Y Acceleration
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CHAPTER 4 

CURVE FITTING METHODS 

Generating an accurate curve fit to the numerical solution to the original problem 

is a critical step in MNP as subsequent analysis is based on this curve fit.  The curve-fit 

accuracy controls the nearness of the nearby problem.  An analytical curve fit has to 

satisfy two criteria in order to be considered accurate.  The magnitude of the source terms 

generated should be small, and the curve fit should maintain a particular order of 

continuity in order to maintain slope continuity of the source terms.  The order of 

continuity to be maintained is problem dependent.  The equations of motion of the three-

body dynamics are second order differential equations.  Therefore, C
3
 continuity is 

needed in the curve fit for this problem.  Various curve fitting methods are available.  The 

methods used for generating curve fits in this study are least squares, cubic splines, and 

fifth-degree Hermite splines.  The accuracy of these curve fits is indicated by both the 

residuals with respect to the numerical solution and the magnitude of the analytical 

source terms calculated.  The governing equations contain      ̈   ̈.  However, 

independent curve fits are only needed for   and            

Least Squares  

  The method of least squares is a standard approach to approximate the solution 

of over determined systems, i.e., sets of equations in which there are more equations than 

unknowns. "Least squares" means that the overall solution minimizes the sum of the 
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squares of the errors made in solving every single equation.  Assume that we want to 

approximate a function y(t), t being the independent variable.  Assume that there are m 

observations, i.e., values of y measured at specific values of t. [17] 

),( ii tyy 
 

mi ,...,1  (20) 

The idea is to model y(t) by a linear combination of n basis functions: 

)(...)()( 11 txtxty nn   (21) 

For example, a second degree polynomial can be written as 2

3

1

2

0

1 txtxtx  , i.e., as 

a linear combination of the basis functions t
0
, t

1
, and t

2
.  The design matrix H is a 

rectangular matrix of order m × n with elements 

)(, ijji th   (22) 

The design matrix generally has more rows than columns.  In matrix-vector notation: 

Hxy   (23) 

H is not invertible, but a pseudo inverse can be calculated as follows: 

HxHyH TT   
(24) 

yHHHx TT 1)(   
(25) 

In this study, the pseudo inverse is not calculated but instead the polyfit function in 

MATLAB is used.  The polyfit MATLAB file forms the Vandermonde matrix, H, whose 

elements are powers of t: 

 
jn

iji tH ,  (26) 
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It then uses the backslash operator to solve the least squares problem shown in Eq. (25).  

The backslash operator selects from a variety of algorithms depending upon the structure 

of the matrix H.  Function “polyfit (t, y, n)” finds the coefficients of a polynomial p(t) of 

degree n that fits the data y best in a least squares sense.  Various curve fits and their 

residuals with respect to the numerical solution are shown in the following figures. 

The residuals of these curve fits show that as the degree of the polynomial 

increases, the curve fits are more accurate.  However, as mentioned earlier, in MNP, in 

order to be considered accurate a curve fit has to satisfy one more criterion, i.e., the 

analytical source terms generated by these curve fits should be small in magnitude.  

Source terms are discussed in detail in chapter 5.       
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Figure 12. Curve Fit to X – Least Squares Using 3
rd

 Degree Polynomial 

 

Figure 13. Curve Fit Residuals for X - Least Squares Using 3
rd

 Degree Polynomial 
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Figure 14. Curve Fit to X – Least Squares Using 5
th

 Degree Polynomial 

 

Figure 15. Curve Fit Residuals for X - Least Squares Using 5
th

 Degree Polynomial 
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Figure 16. Curve Fit to X – Least Squares Using 20
th

 Degree Polynomial 

 

Figure 17. Curve Fit Residuals for X - Least Squares Using 20
th

 Degree Polynomial 
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Figure 18. Curve Fit to Y – Least Squares Using 3
rd

 Degree Polynomial 

 

Figure 19. Curve Fit Residuals for Y - Least Squares Using 3
rd

 Degree Polynomial 
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Figure 20. Curve Fit to Y – Least Squares Using 5
th

 Degree Polynomial 

 

Figure 21. Curve Fit Residuals for Y - Least Squares Using 5
th

 Degree Polynomial 
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Figure 22. Curve Fit to Y – Least Squares Using 20
th

 Degree Polynomial 

 

Figure 23. Curve Fit Residuals for Y - Least Squares Using 20
th

 Degree Polynomial 
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Cubic Splines 

Spline interpolation is a form of interpolation where piecewise functions called 

“splines” are used.  This has the advantage relative to a global least squares fit that 

similar accuracy can be achieved using local fits that are each lower order.   

                S1                             S2                                S3                                 Sn 

                                                                                                                                                                 

  t1                              t2                              t3                                 tn                                 tn+1 

Figure 24.  Schematic of Cubic Splines Interpolation  

The basic idea of cubic splines is to fit a cubic polynomial on each interval 

between points ti and ti+1 for i = 1,…, n. [18]     

32 )()()()( iiiiiiii ttdttcttbatS   (27) 

This system has n+1 spline points (ti for i = 1,…, n+1) and n spline zones                       

(Si for i = 1,…, n) as shown in figure 24.  The conditions that are used to construct these 

polynomials are explained below for given  ,  ̇,  ̈ data. 

    iii XtS                  i = 1,…., n                                   (28) 

    11   nnn XtS  

     iiii tStS 1          i = 2,…., n                                    (29) 

     iiii tStS 1           i = 2,…., n                                    (30) 

     iiii tStS 1           i =2,…., n                                     (31) 

    111 XtS                                                                        (32)
 

    11   nnn XtS 
 

Conditions (28) set the value at each node point.  Condition (29) makes the solution 0
th

 

order continuous.  Condition (30) makes the solution 1
st
 order continuous, while 
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condition (31) makes the solution 2
nd

 order continuous.  Conditions (32) are the two 

additional end point conditions.  

Curve fits to X and Y using cubic splines are calculated using 8, 63, 504 and 5040 

spline zones.  The number 5040 corresponds to one third of the total time instances at 

which the numerical solution is calculated.  It was seen that further increase in the 

number of spline zones did not improve the accuracy of the curve fit.  A MATLAB 

algorithm (appendix C) is developed to calculate the coefficients of these cubic splines. 

[18] Various curve fits and their residuals with respect to the numerical solution are 

shown in following figures.  The residuals of these curve fits show that as the number of 

spline zones increases, the curve fits are more accurate.   

It is also seen that the residuals are higher in the initial and the final phases of the 

trajectory.  As discussed in chapter 2, the spacecraft experiences higher acceleration 

during the initial and the final phases of the journey which results in the rapid change in 

the position during these phases.  The rapid change in the position results in high 

curvature of the trajectory during these phases.  Since the above cubic splines fit is 

calculated using fixed resolution throughout the entire trajectory, it fails to capture these 

high curvature regions precisely resulting in a less accurate curve fit in these regions.  

The source terms calculated using cubic splines fit (discussed in chapter 5) indicate lesser 

overall accuracy of cubic splines fit as compared to other methods discussed later in this 

chapter.  Therefore, no effort has been made to use a multi-resolution cubic splines fit in 

order to capture the high curvature regions more precisely.     



30 

 

        

Figure 25. Curve Fit to X - Cubic Splines Using 8 Spline Zones

        

Figure 26. Curve Fit Residuals for X - Cubic Splines Using 8 Spline Zones 
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Figure 27. Curve Fit to X - Cubic Splines Using 63 Spline Zones

         

Figure 28. Curve Fit Residuals for X - Cubic Splines Using 63 Spline Zones 
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Figure 29. Curve Fit to X - Cubic Splines Using 504 Spline Zones

         

Figure 30. Curve Fit Residuals for X - Cubic Splines Using 504 Spline Zones 
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Figure 31. Curve Fit to X - Cubic Splines Using 5040 Spline Zones 

 

 
 

Figure 32. Curve Fit Residuals for X - Cubic Splines Using 5040 Spline Zones 
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Figure 33. Curve Fit to Y - Cubic Splines Using 8 Spline Zones 

 

 
 

Figure 34. Curve Fit Residuals for Y - Cubic Splines Using 8 Spline Zones 
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Figure 35. Curve Fit to Y - Cubic Splines Using 63 Spline Zones 

 

 
 

Figure 36. Curve Fit Residuals for Y - Cubic Splines Using 63 Spline Zones 
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Figure 37. Curve Fit to Y - Cubic Splines Using 504 Spline Zones 

 

 
 

Figure 38. Curve Fit Residuals for Y - Cubic Splines Using 504 Spline Zones 
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Figure 39. Curve Fit to Y - Cubic Splines Using 5040 Spline Zones 

 

 
 

Figure 40. Curve Fit Residuals for Y - Cubic Splines Using 5040 Spline Zones 
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Fifth-degree Hermite Splines 

An alternative approach to spline interpolation is to use “fifth-degree Hermite 

splines” instead of “cubic splines”.  The schematic of spline interpolation using fifth-

degree Hermite splines is as shown in figure 41.   

                S1                             S2                                S3                                 Sn 

                                                                                                                                                                 

  t1                              t2                              t3                                 tn                                 tn+1 

Figure 41.  Schematic of Hermite Splines Interpolation  

Here, the basic idea is to fit a fifth degree polynomial on each interval between 

points ti and ti+1 for i = 1,…, n. [18] 

       

5432 )()()()()()( iiiiiiiiiiii ttfttettdttcttbatS 
                      

(33) 

This system has n+1 spline points (ti for i = 1,…, n+1) and n spline zones                      

(Si for i = 1,…, n).  The conditions that are used to construct these polynomials are 

explained below for given  ,  ̇,  ̈ data. 

  iii XtS                 i = 1,…., n                                      (34) 

  11   nnn XtS  

  iii XtS                  i = 1,…., n                                      (35) 

  11   nnn XtS                                                                   

   iiii tStS 1          i = 2,…., n                                     (36) 

   iiii tStS 1           i = 2,…., n                                     (37) 

   iiii tStS 1           i = 2,…., n                                     (38) 

   iiii tStS 1           i = 2,…., n                                     (39) 
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  111 XtS                                                                        (40)
 

  11   nnn XtS 
 

Conditions (34) set the value at each node point.  Conditions (35) set the first derivative 

at each node point.  Typically, the cubic Hermite spline form consists of two control 

points and two control tangents at the boundaries for each polynomial.  Conditions (34) 

and (35) make each polynomial of the spline fit to be in “Hermite” form.  Here, the 

additional degrees of freedom in the fifth degree polynomial are used to enforce 

additional continuity requirements.  Condition (36) makes the solution 0
th

 order 

continuous.  Condition (37) makes the solution 1
st
 order continuous.  Condition (38) 

makes the solution 2
nd

 order continuous, while condition (39) makes the solution 3
rd

 order 

continuous.  Conditions (40) are the two additional end point conditions.     

Curve fits to X and Y using fifth-degree Hermite splines are calculated using 8, 63, 

504 and 5040 spline zones.  A MATLAB algorithm (appendix D) is developed to 

calculate the coefficients of these fifth-degree Hermite splines. [18] Various curve fits 

and their residuals with respect to the numerical solution are shown in figures 42 to 57.  

The residuals of these curve fits show that as the number of spline zones increases, the 

curve fits are more accurate. 

The phenomenon of higher residuals in the initial and the final phases of the 

trajectory is also seen in the case of fifth-degree Hermite splines curve fit.  An effort has 

been made to address this phenomenon by using an iterative multi-resolution fifth-degree 

Hermite splines fit in order to capture the high curvature regions more precisely.  A 

MATLAB code (appendix E) is developed for this purpose.  In this code, the trajectory is 

divided into four regions of equal amounts of time with region 1 and 4 covering the initial 
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and the final phases of the trajectory respectively.  To start with, each region is divided 

into two spline zones (total of eight spline zones).  A curve fit is calculated using these 

spline zones and each region is checked for the maximum value of residual which should 

be below a selected threshold.  If the maximum value of residual in a particular region is 

below a selected threshold, addition of spline points to that particular region is 

terminated.  One additional spline point is added to each region where the threshold is not 

met.  For each iteration, the spline points within each region are evenly distributed.  

However, spline points falling in the middle of a time step are rounded to the nearest 

integer number of time steps.  In this manner, the maximum value of residual in each 

region is made to be somewhat consistent indicating that the curve fit exhibits nearly the 

same level of accuracy throughout the trajectory.   

It is seen that, if the selected threshold is below 10
-3

 meters, the maximum value 

of residual fails to converge.  Therefore, the threshold was selected to be 10
-3

 meters.  A 

reason for this is that the number of spline zones in certain regions began to approach the 

number of data points.  Tables 2 and 3 list, for the curve fits to X and Y, the number of 

spline zones required in each region so that the maximum value of residual in that region 

is below the selected threshold.  It can be seen that the number of spline zones required 

by regions 1 and 4 is much higher than that required by regions 2 and 3.     

Region No. of Spline Zones 

1 1708 

2 24 

3 17 

4 933 

Total 2682 

 

Table 2.  Region Wise Number of Spline Zones Using Multi-resolution Fifth-degree Hermite Splines 

Curve Fit to X 
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Region No. of Spline Zones 

1 1779 

2 20 

3 15 

4 1043 

Total 2857 

 

Table 3.  Region Wise Number of Spline Zones Using Multi-resolution Fifth-degree Hermite Splines 

Curve Fit to Y 

  

Figures 58 and 59 show the plot of the residuals with respect to time for X and Y 

using the above discussed multi-resolution curve fit.  It can be seen that, though this 

curve fit requires less number of total spline zones and also maintains the level of 

accuracy throughout the trajectory, the overall accuracy of this curve fit is fairly similar 

to that of the fixed-resolution curve fit discussed earlier. 
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Figure 42. Curve Fit to X – Fifth-degree Hermite Splines Using 8 Spline Zones 

 

 
 

Figure 43. Curve Fit Residuals for X - Fifth-degree Hermite Splines Using 8 Spline Zones
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Figure 44. Curve Fit to X – Fifth-degree Hermite Splines Using 63 Spline Zones 

 

 
 

Figure 45. Curve Fit Residuals for X - Fifth-degree Hermite Splines Using 63 Spline Zones
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Figure 46. Curve Fit to X – Fifth-degree Hermite Splines Using 540 Spline Zones 

 

 
 

Figure 47. Curve Fit Residuals for X - Fifth-degree Hermite Splines Using 540 Spline Zones
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Figure 48. Curve Fit to X – Fifth-degree Hermite Splines Using 5040 Spline Zones 

 

 
 

Figure 49. Curve Fit Residuals for X - Fifth-degree Hermite Splines Using 5040 Spline Zones
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Figure 50. Curve Fit to Y – Fifth-degree Hermite Splines Using 8 Spline Zones 

 

 
 

Figure 51. Curve Fit Residuals for Y - Fifth-degree Hermite Splines Using 8 Spline Zones
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Figure 52. Curve Fit to Y – Fifth-degree Hermite Splines Using 63 Spline Zones 

 

 
 

Figure 53. Curve Fit Residuals for Y - Fifth-degree Hermite Splines Using 63 Spline Zones



48 

 

 
 

Figure 54. Curve Fit to Y – Fifth-degree Hermite Splines Using 504 Spline Zones 

 

 
 

Figure 55. Curve Fit Residuals for Y - Fifth-degree Hermite Splines Using 504 Spline Zones
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Figure 56. Curve Fit to Y – Fifth-degree Hermite Splines Using 5040 Spline Zones 

 

 
 

Figure 57. Curve Fit Residuals for Y - Fifth-degree Hermite Splines Using 5040 Spline Zone 
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Figure 58. Curve Fit Residuals for X – Multi-resolution Fifth-degree Hermite Splines Fit  

 

 

Figure 59. Curve Fit Residuals for Y - Multi-resolution Fifth-degree Hermite Splines Fit 
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CHAPTER 5 

GENERATING ANALYTICAL SOURCE TERMS 

     As mentioned earlier, in MNP, for a curve fit to be considered accurate the 

analytical source terms generated by it should be small in magnitude.  The smaller the 

source terms, the nearer the nearby problem is to the original problem.  Source terms are 

calculated for all the curve fits discussed in the previous chapter.  Consider rewriting Eq. 

(14) in an operator form. 

   0
ρd

r
r

rL 









3332

2

d

d
,






drt
tt m

e
 (41) 

The curve fits for X and Y generated in the previous chapter can be assembled into a 

curve fit for the position vector, labeled  tr    Operating the original problem on this 

curve fit defines the source terms (appendix H),  ts .  

    ttt srL ,  (42) 

By construction, the curve fit is the exact solution of a modified equation, which is the 

nearby problem. 

     0srL  ttt ,  (43) 

Therefore, the source terms are equivalent to a set of time-dependent perturbing 

accelerations that result in a trajectory following the curve fit.  In Eq. (43), as  ts   

approaches zero, the nearby problem approaches the original problem.   
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We will now see the magnitude of the analytical source terms generated using 

various curve fits discussed in the previous chapter.  

Analytical Source Terms Using Least Squares  

Following figures show the source-term histories for both X and Y for the least- 

squares curve fits using varying degrees of polynomials.  It can be seen that the 

magnitude of the source terms increases as the degree of the polynomial increases.  Note 

that, though the curve fit using a higher-degree polynomial is more accurate than that 

using a lower-degree polynomial; the source terms generated by using the higher-degree 

polynomial curve fit are larger in magnitude than those generated by using the lower-

degree polynomial curve fit.  This can be attributed to the fact that the least-squares 

solution is trying to minimize errors only in position.  The derivatives of the position do 

not play any role in calculating the curve fit.  The larger magnitude of the source terms 

indicates that the least squares is not a feasible option for the construction of the nearby 

problem.   
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Figure 60.  Source Term Histories for X - Least Squares Using 3
rd

 Degree Polynomial 

 

Figure 61.  Source Term Histories for X - Least Squares Using 5
th

 Degree Polynomial  
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Figure 62.  Source Term Histories for X - Least Squares Using 20
th

 Degree Polynomial 

 

Figure 63.  Source Term Histories for Y - Least Squares Using 3
rd

 Degree Polynomial



55 

 

 

Figure 64.  Source Term Histories for Y - Least Squares Using 5
th

 Degree Polynomial 

 

Figure 65.  Source Term Histories for Y - Least Squares Using 20
th

 Degree Polynomial         
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Analytical Source Terms Using Cubic Splines     

Following figures show the source-term histories for both X and Y for the cubic 

splines curve fits using varying numbers of spline zones.  It can be seen that the 

magnitude of the source terms decreases as the number of spline zones increases.  Using 

moderate number of spline zones, the magnitude of the source terms generated is small.  

However, close examination of following figures shows that the source terms exhibit 

slope discontinuities at the spline points.  This is because cubic splines are only C
2
  

continuous.  As mentioned earlier, in MNP, the curve fit should maintain a particular 

order of continuity in order to maintain the slope continuity of the source terms.  The 

equations of motion of three-body dynamics are second order differential equations and 

demand C
3
 continuity in the curve fit.  Since the continuity criterion is not satisfied, cubic 

splines cannot be used to construct the nearby problem. 
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Figure 66.  Source Term Histories for X - Cubic Splines Using 8 Spline Zones

 

Figure 67.  Source Term Histories for X - Cubic Splines Using 63 Spline Zones
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Figure 68.  Source Term Histories for X - Cubic Splines Using 504 Spline Zones 

 

Figure 69.  Source Term Histories for X - Cubic Splines Using 5040 Spline Zones
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Figure 70.  Source Term Histories for Y - Cubic Splines Using 8 Spline Zones

 

Figure 71.  Source Term Histories for Y - Cubic Splines Using 63 Spline Zones
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Figure 72.  Source Term Histories for Y - Cubic Splines Using 504 Spline Zones 

 

Figure 73.  Source Term Histories for Y - Cubic Splines Using 5040 Spline Zones
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Analytical Source Terms Using Fifth-degree Hermite Splines     

Following figures show the source-term histories for both X and Y for the fifth-

degree Hermite splines curve fits using varying numbers of spline zones.  It can be seen 

that the magnitude of the source terms decreases as the number of spline zones increases.  

Using moderate number of spline zones, the magnitude of the source terms generated is 

extremely small.  Since the fifth-degree Hermite splines are C
3
 continuous, the source 

terms are found to be slope continuous; thus satisfying the continuity criterion required 

by MNP.  Extremely small magnitude of source terms indicates that the nearby problem 

constructed using these source terms can be considered to be a good representation of our 

original problem.  Therefore, the fifth-degree Hermite splines are a feasible option for 

constructing the nearby problem.  Because small source terms were achieved using a 

reasonable number of fixed-resolution spline zones, for simplicity this approach was used 

instead of the multi-resolution approach. Construction of the nearby problem using these 

fifth-degree Hermite splines is discussed in chapter 6. 
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Figure 74.  Source Term Histories for X – Fifth-degree Hermite Splines Using 8 Spline Zones

 

Figure 75.  Source Term Histories for X – Fifth-degree Hermite Splines Using 63 Spline Zones
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Figure 76.  Source Term Histories for X – Fifth-degree Hermite Splines Using 504 Spline Zones 

 

Figure 77.  Source Term Histories for X – Fifth-degree Hermite Splines Using 5040 Spline Zones
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Figure 78.  Source Term Histories for Y – Fifth-degree Hermite Splines Using 8 Spline Zones 

 

Figure 79.  Source Term Histories for Y – Fifth-degree Hermite Splines Using 63 Spline Zones
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Figure 80.  Source Term Histories for Y – Fifth-degree Hermite Splines Using 504 Spline Zones 

 

Figure 81.  Source Term Histories for Y – Fifth-degree Hermite Splines Using 5040 Spline Zones
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CHAPTER 6 

NEARBY PROBLEM TO THE ORIGINAL PROBLEM 

A nearby problem to our original problem of Earth-spacecraft-Moon three-body 

dynamics is constructed by adding the source terms obtained from the curve fit using the 

Fifth-degree Hermite splines to the governing equations of the original problem as shown 

in Eq. (43).  As discussed earlier, the curve fit serves as an exact solution to this nearby 

problem.  In order to be able to calculate the error in the numerical solution to the nearby 

problem, it is solved numerically using the same numerical scheme that was used for 

solving the original problem (appendix H).  Note that solving the nearby problem using 

RK4 with a time step of 20 seconds requires evaluating the source terms every 10 

seconds.  

Following figures show the construction of various nearby problems using Fifth-

degree Hermite splines with varying numbers of spline zones.  It is seen that as the 

number of spline zones increases, both the exact and the numerical solution to the nearby 

problem start nearing the solution of the original problem.  

The nearness of the nearby problem constructed using the Fifth-degree Hermite 

splines with moderate number of spline zones has already been established through 

previous chapters.  Therefore, this nearby problem can be considered to be a good 

representation of the original problem of interest.  Thus, the exact numerical error in the 

nearby problem can be used as an estimate of the numerical error in the original problem. 
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Figure 82. Nearby Problem to X - Using Fifth-degree Hermite Splines with 8 Spline Zones                                    

 

Figure 83. Nearby Problem to X - Using Fifth-degree Hermite Splines with 63 Spline Zones
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Figure 84. Nearby Problem to X - Using Fifth-degree Hermite Splines with 504 Spline Zones 

 

Figure 85. Nearby Problem to X - Using Fifth-degree Hermite Splines with 5040 Spline Zones
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Figure 86. Nearby Problem to Y - Using Fifth-degree Hermite Splines with 8 Spline Zones 

 

Figure 87. Nearby Problem to Y - Using Fifth-degree Hermite Splines with 63 Spline Zones 
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Figure 88. Nearby Problem to Y - Using Fifth-degree Hermite Splines with 504 Spline Zones 

 

Figure 89. Nearby Problem to Y - Using Fifth-degree Hermite Splines with 5040 Spline Zones
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Figures 90 and 91 show, for X and Y, the exact error in numerical solutions to the 

various nearby problems discussed above.  It is seen that using varying numbers of spline 

zones the exact solution to the nearby problem differs, but the error in the numerical 

solution to the nearby problem remains fairly consistent.  In general, the error tends to 

grow as the numerical solution is propagated forward in time.  In particular, the error 

tends to change quickly as the spacecraft reaches the Moon in the terminal portion of the 

trajectory.  From the combined results for X and Y, the accumulated error is 

approximately of the order of 10 meters. 

 

Figure 90. Exact Error in Nearby Problem to X Using Fifth-degree Hermite Splines  
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Figure 91. Exact Error in Nearby Problem to Y Using Fifth-degree Hermite Splines 

It is imperative to examine the reliability of these error estimates.  This could be 

done by comparing these estimates to the estimates given by some other methods.  

Checking for the reliability of the numerical scheme used is also a good idea. 

One of the best ways to verify the numerical scheme is to calculate the observed 

order of accuracy and see how well it matches the formal order of accuracy.  The RK4 

numerical integration scheme is a 4
th

 order accurate method i.e. the formal order of 

accuracy of RK4 method is four.  The observed order of accuracy, p, is computed for the 

various numerical solutions of the nearby problem (constructed using fifth-degree 

Hermite splines with 5040 spline zones) using different meshes.  A mesh is indicated by 

the step size used.  Thus, the fine mesh uses a smaller step size than the coarse mesh.  

Since the exact solution is known, the observed order of accuracy can be computed by the 

following relation [19]: 
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  (

  
  

)

     
 

(44) 

In Eq. (44), r is the grid refinement factor (the ratio between the coarse mesh and the fine 

mesh).  One of the tests used by Berry and Healy [3] to verify the accuracy of the 

numerical integrators is the step-size halving test.  For the step-size halving test, the 

reference integration is produced with the same integrator but with the step-size cut in 

half.  On this basis, here, a value of r=2 is used.  E2 is the L2 norm of the errors between 

the exact solution and the numerical solution calculated at each instant in time using the 

coarse mesh while E1 is the L2 norm of the errors between the exact solution and the 

numerical solution calculated at each instant in time using the fine mesh.  Figure 92 

shows the observed order of accuracies for various numerical solutions to the nearby 

problem (constructed using fifth-degree Hermite splines with 5040 spline zones) using 

various step sizes.  It can be seen that as the step size is reduced the observed order of 

accuracy approaches four (which is the formal order of accuracy).  This suggests that the 

numerical solution is reliable. 

 

Figure 92.  Observed Order of Accuracies for Various Numerical Solutions to the Nearby         

Problem using Different Step Sizes  



74 

 

Richardson extrapolation (RDE) can also be used to get an estimate of the exact 

solution. [20, 21]  RDE involves computation of numerical solutions on two or more 

meshes.  Solutions on these different meshes are then used to compute a higher-order 

estimate of the exact solution.  This estimate of the exact solution can then be used to 

estimate the numerical error.  For a pth order accurate scheme with solutions on a fine 

mesh (  ) and a coarse mesh (  ) with refinement factor r,        can be approximated 

as: [19]  

                                                                        
     

    
                                                                                                                                                                   

       can be calculated using both global and formal order of accuracies.  The error on 

the fine mesh can then be given as: 

                                                                                                                                           

Figures 93 and 94 show the comparison of error estimates using MNP, RDE with 

formal order of accuracy, and RDE with observed order of accuracy.  For MNP, a time 

step of 20 seconds is used and therefore for RDE the fine mesh uses a time step of 20 

seconds while the coarse mesh uses a time step of 40 seconds.  It can be seen that the 

error estimates using MNP and RDE match in the order of magnitude.        
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      Figure 93.  Numerical Error Estimates for X Using Various Methods 

 

        Figure 94.  Numerical Error Estimates for Y Using Various Methods 
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CHAPTER 7 

CONCLUSION AND RECOMMENDATIONS 

In orbital mechanics, analytical solutions to many systems do not exist and thus, 

an accurate numerical solution is imperative to mission planning.  One such system is the 

Earth-spacecraft-Moon three-body dynamics or the translunar trajectories.   The 

translunar trajectories are chaotic in nature.  They are extremely sensitive when the 

spacecraft is in proximity to the Earth and the Moon.  So the numerical solution needs to 

be as accurate as possible otherwise a small error can get escalated later on.  MNP is 

employed to validate the accuracy of this numerical solution by estimating the numerical 

error in it.  A nearby problem (having an exact solution to it) to the Earth-spacecraft-

Moon three-body problem is constructed.  Fifth-degree Hermite splines are found to be a 

feasible option to construct this nearby problem as it satisfies all the conditions necessary 

to demonstrate its nearness to the original problem.  This allows the exact error in the 

numerical solution to this nearby problem to be considered as a good estimation of the 

error in the numerical solution to the original problem.    

The MNP estimate of the magnitude of the numerical error in the simulation of 

translunar trajectories is of the order of 10 meters.  This accuracy may be sufficient for 

many aspects of mission planning; however, for critical mission phases higher accuracy 

may be desired.  Also, this error is accumulated when the propagation time is 3.5 days.  

The propagation time for other missions could range from a few days to even years. 
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During such long propagation times, substantial amount of error can be accumulated.  

This could lead to inaccurate results.  Of course, accurate simulation also depends on 

accurate modeling of the system dynamics.  Mission planning requires both the 

development of accurate models and the accurate numerical solution of those models.  

This thesis demonstrates the usefulness of MNP in providing reliable estimates of 

the error in the numerical solutions to the problems in orbital mechanics.  These error 

estimates, however, are dependent on the numerical scheme used and the type of problem 

studied.  The reliability of MNP can further be verified by using various numerical 

integration schemes and/or by studying problems involving forces of a more complex 

nature.    
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APPENDICES 

A.  MATLAB CODE TO NUMERICALLY SOLVE THE ORIGINAL PROBLEM 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%     NUMRICAL SOLUTION TO THE ORIGINAL PROBLEM     %%%%%%%%% 

%%%%%%%%%%%           PROPOGATION IN THE EC->MC FRAME         %%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
clear all; 
close all; 
clc; 
format long; 
format compact; 

  
%%%%%%%%%%%%%%%%%%%%%%%%% SETTING UP THE PROBLEM %%%%%%%%%%%%%%%%%%%%%% 

  
%%%%% USER INPUTS %%%%% 
alt = 359750; %meters 
angle = -36.890; %degrees 
dt = 20; %secs 
fprintf('alt = %6.0f, ang = %6.3f, dt = %6.3f \n\n', alt, angle, dt); 
deltav = 3102.13; %m/s 
t0 = 0; %secs 
tf = 3.5*86400; %302400 secs (1 day = 86400 secs)  
SP = 2.905*86400; % Switch Point at 250992 secs 
folder = char(['alt' int2str(alt) 'ang' int2str(abs(angle*1000)) 'dt' 

int2str(dt)]); 
fid = fopen([folder 'State_SP' '.txt'], 'w'); 
f = fopen([folder 'Moon_State_SP' '.txt'], 'w'); 

  
%%%%% CONSTANTS %%%%% 
GMm = 4.90266e12; %m3/s2 
GMe = 3.98600436e14; %m3/s2 
radE = 6372797; %meters 
EMdist = 384400000; %meters 
omega = sqrt((GMe+GMm)/EMdist^3); %rad/sec 
%Tm = 2*pi/omega = 27d 6h 49m 50.34879957310977s 
alpha = angle*pi/180; %radians 
h = radE + alt; %meters 
Vorbit = sqrt(GMe/h); %m/s 
V = Vorbit + deltav; %m/s 

  
%%%%% INITIAL CONDITIONS %%%%% 

%%%%% For the Spacecraft %%%%% 
rxi = h*sin(alpha); %meters 
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ryi = -h*cos(alpha); %meters 
vxi = V*cos(alpha); %m/s 
vyi = V*sin(alpha); %m/s 
x = [rxi;ryi;vxi;vyi]; 
fprintf(fid, '% 6.0f, % .16e, % .16e, % .16e, % .16e nn', t0, x); 

%%%%% For the Moon %%%%% 
xmt = EMdist*cos(omega*t0); 
ymt = EMdist*sin(omega*t0); 
fprintf(f, '% 6.0f, % .16f, % .16f nn', t0, xmt, ymt); 

  
%%%%%%%%%%%%%%%%%%%%%%%%% PERFORM THE PROPOGATION %%%%%%%%%%%%%%%%%%%%% 

  
%%%%% EARTH CENTERED FRAME %%%%% 
i = 1; 
for t = t0:dt:SP-dt 
    %Use the moon position at the end of the previous interval as the 
    %position at the start of this interval. 
    xm = xmt; 
    ym = ymt; 
    %Calculate the moon position at the middle and end of this    

    %interval.   

    xmh = EMdist*cos(omega*(t + 0.5*dt)); 
    ymh = EMdist*sin(omega*(t + 0.5*dt)); 
    xmt = EMdist*cos(omega*(t + dt)); 
    ymt = EMdist*sin(omega*(t + dt)); 
    t1 = t+dt; 
    fprintf(f, '% 6.0f, % .16f, % .16f nn', t1, xmt, ymt); 
    k1 = RK4_EC(x, xm, ym, GMm, GMe); 
    k2 = RK4_EC(x+(dt/2)*k1', xmh, ymh, GMm, GMe); 
    k3 = RK4_EC(x+(dt/2)*k2', xmh, ymh, GMm, GMe); 
    k4 = RK4_EC(x+(dt)*k3', xmt, ymt, GMm, GMe); 
    x = x + dt/6*(k1'+2*k2'+2*k3'+k4'); 
    fprintf(fid, '% 6.0f, % .16e, % .16e, % .16e, % .16enn', t1, x); 
    i = i+1; 
end 

  
%%%%% SWITCH POINT %%%%% 
%Convert state vector from EC to MC 
rho = [xmt; ymt]; 
xmt_dot = -EMdist*omega*sin(omega*(t+dt)); 
ymt_dot = EMdist*omega*cos(omega*(t+dt)); 
rho_dot = [xmt_dot; ymt_dot]; 
d_state = x - [rho; rho_dot]; 

  
%%%%% MOON CENTERED FRAME %%%%% 
j = 1; 
for t = SP:dt:tf-dt 
    %Use the moon position at the end of the previous interval as the 
    %position at the start of this interval. 
    xm = xmt; 
    ym = ymt; 
    %Calculate the moon position at the middle and end of this  

    %interval. 
    xmh = EMdist*cos(omega*(t + 0.5*dt)); 
    ymh = EMdist*sin(omega*(t + 0.5*dt)); 
    xmt = EMdist*cos(omega*(t + dt)); 
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    ymt = EMdist*sin(omega*(t + dt)); 

    t2 = t+dt; 
    fprintf(f, '% 6.0f, % .16f, % .16f nn', t2, xmt, ymt); 
    %Propogating the states forward in time 
    k1 = RK4_MC(d_state, xm, ym, GMm, GMe); 
    k2 = RK4_MC(d_state+(dt/2)*k1', xmh, ymh, GMm, GMe); 
    k3 = RK4_MC(d_state+(dt/2)*k2', xmh, ymh, GMm, GMe); 
    k4 = RK4_MC(d_state+(dt)*k3', xmt, ymt, GMm, GMe); 
    d_state = d_state + dt/6*(k1'+2*k2'+2*k3'+k4'); 
    %Compute the moon state at the end of interval 
    rho = [xmt; ymt]; 
    rho_dot = EMdist*omega*[-sin(omega*(t + dt)); cos(omega*(t + dt))]; 
    %Convert state vector from MC to EC 
    x = d_state + [rho; rho_dot]; 
    fprintf(fid, '% 6.0f, % .16e, % .16e, % .16e, % .16enn',t2,x); 
    j = j+1; 
end 
fclose(fid); 
fclose(f); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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B.  SUBROUTINES USED IN THE CODE GIVEN IN APPENDIX A 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%             SUBROUTINE TO INTEGRATE              %%%%%%%%%%%  

%%%%%%%%%%        THE EQUATION OF MOTION IN EC FRAME        %%%%%%%%%%%    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
 function x_dot  = RK4_EC(x,xmoon,ymoon,GMm,GMe) 

          
 r = x(1:2); 
 v = x(3:4); 
 rho = [xmoon; ymoon]; 
 d = r-rho; 
 x_dot(1:2) = v; 

 x_dot(3:4) = -GMe*r/norm(r)^3- 
     GMm*(d/norm(d)^3+rho/norm(rho)^3); 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%             SUBROUTINE TO INTEGRATE              %%%%%%%%%%%  

%%%%%%%%%%        THE EQUATION OF MOTION IN MC FRAME        %%%%%%%%%%%    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function d_dot = RK4_MC(d_state,xmoon,ymoon,GMm,GMe) 

  
         d = d_state(1:2);  
         v = d_state(3:4); 
         rho = [xmoon; ymoon]; 
         r = d+rho; 
         d_dot(1:2) = v;  
         d_dot(3:4) = -GMm*d/norm(d)^3-GMe*(r/norm(r)^3-  
                      rho/norm(rho)^3); 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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C.  MATLAB CODE TO CALCULATE THE COEFFICIENTS OF  

CUBIC SPLINES CURVE FIT 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%  MATLAB CODE TO CALCULATE THE COEFFICIENTS  %%%%%%%%%%% 
%%%%%%%%%%%%%%%         OF CUBIC SPLINES CURVE FIT          %%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function [X_fit Xd_fit Xdd_fit] = fCurveFit_Cu(time10,time20,X,Xdd) 

         
        % time10 => Time matrix with time step of 10 sec 
        % time20 => Time matrix with time step of 20 sec 
        % X => X position obtained from the simulation given in   

               Appendix A   
        % Xdd => X acceleration obtained from the simulation given in  

                 Appendix A 

  
        S = size(time20); m = S(2); j = 1; 
        %Calculating Coefficients a  
        for i = 1:3:m 
            x(j) = time20(i);  
            y(j) = X(i);  
            a(j) = y(j);  
            j = j+1; 
        end 
        S = size(x); n = S(2);  
        %Calculating Coefficient c 
        c = zeros(1,n); A = zeros(n-2); 
        alpha = Xdd(1); beta = Xdd(m); 
        c(1) = 0.5*alpha; c(n) = 0.5*beta; 
        for i = 1:n-2 
            h1 = x(i+1)-x(i); 
            h2 = x(i+2)-x(i+1); 
            A(i,i) = 2*(h1+h2); 
        end 
        for i = 2:n-2 
            h2 = x(i+1)-x(i); 
            A(i-1,i) = h2; 
            A(i,i-1) = h2; 
        end 
        for i = 1:n-2 
            h2 = x(i+2)-x(i+1); h1 = x(i+1)-x(i); 
            a3 = a(i+2); a2 = a(i+1); a1 = a(i); 
            if i == 1 
               g(i) = (3/h2*(a3-a2))-(3/h1*(a2-a1))-h1*(alpha/2); 
            elseif i == n-2 
               g(i) = (3/h2*(a3-a2))-(3/h1*(a2-a1))-h1*(beta/2); 
            else 
               g(i) = (3/h2*(a3-a2))-(3/h1*(a2-a1)); 
            end 
        end 
        C = fTRIDIAG(Amd,Ad,g,n-2); 
        for i = 2:n-1 
            c(i) = C(i-1); 
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        end 
        %Calculating Coefficients b and d 
        for i = 1:n-1 
            h1 = x(i+1)-x(i); 
            a2 = a(i+1); a1 = a(i); 
            c2 = c(i+1); c1 = c(i); 
            b(i) = (1/h1*(a2-a1))-(h1/3*(c2+2*c1)); 
            d(i) = (1/(3*h1))*(c2-c1); 
        end 
        %Evaluating Spline Fit 
        S = size(time10); m = S(2); 
        for i = 1:m 
            for j = 1:n-1 
                if time10(i) >= x(j) && time10(i) <= x(j+1)  

 
                    X_fit(i) = d(j)*(time10(i)-x(j))^3 +  

                               c(j)*(time10(i)-x(j))^2 +  

                               b(j)*(time10(i)-x(j)) + a(j); 

 
                    Xd_fit(i) = 3*d(j)*(time10(i)-x(j))^2 +  

                                2*c(j)*(time10(i)-x(j)) + b(j); 
 

                    Xdd_fit(i) = 6*d(j)*(time10(i)-x(j)) + 2*c(j); 
               end 
            end 
        end 

         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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D.  MATLAB CODE TO CALCULATE THE COEFFICIENTS OF  

FIFTH-DEGREE HERMITE SPLINES CURVE FIT 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%     MATLAB CODE TO CALCULATE THE COEFFICIENTS     %%%%%%%%%% 
%%%%%%%%%%     OF FIFTH-DEGREE HERMITE SPLINES CURVE FIT     %%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function [X_fit Xd_fit Xdd_fit] = fCurveFit_HS(time10,time20,X,Xd,Xdd) 

  
        % time10 => Time matrix with time step of 10 sec 
        % time20 => Time matrix with time step of 20 sec 
        % X => X position obtained from the simulation given in    

               Appendix A 
        % Xd => X velocity obtained from the simulation given in 

                Appendix A 
        % Xdd => X acceleration obtained from the simulation given in  

                 Appendix A        

         
        S = size(time20); m = S(2); j = 1; 
        %Calculating Coefficients a and b 
        for i = 1:3:m  
            x(j) = time20(i);  
            y(j) = X(i);  
            yPR(j) = Xd(i); 
            a(j) = y(j);  
            b(j) = yPR(j);  
            j = j+1; 
        end 
        S = size(x); n = S(2);  
        %Calculating Coefficient c 
        c = zeros(1,n); A = zeros(n-2); 
        c(1) = 0.5*Xdd(1); c(n) = 0.5*Xdd(m); 
        alpha = 1; Beta1 = Xdd(1)/(2*(x(2)-x(1)));  

        Beta2 = Xdd(m)/(2*(x(n)-x(n-1))); 
        for i = 1:n-2 
            h1 = x(i+1)-x(i); h2 = x(i+2)-x(i+1); 
            if i == 1 
               Amd(i) = 3*(alpha/h1+1/h2); 
            elseif i == n-2 
               Amd(i) = 3*(1/h1+alpha/h2); 
            else 
               Amd(i) = 3*(1/h1+1/h2); 
            end 
            A(i,i) = Amd(i); 
        end 
        for i = 2:n-2 
            h2 = x(i+1)-x(i); 
            Ad(i-1) = -1/h2; 
            A(i-1,i) = Ad(i-1); 
            A(i,i-1) = Ad(i-1); 
        end 
        for i = 1:n-2 
            a3 = a(i+2); a2 = a(i+1); a1 = a(i);  
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            b3 = b(i+2); b2 = a(i+1); b1 = b(i); 
            h2 = x(i+2)-x(i+1); h1 = x(i+1)-x(i); 
            if i == 1; 
               g(i) = 10*((a3-a2)/h2^3-(a2-a1)/h1^3)+4*(b1/h1^2-   

                      1.5*b2*(1/h2^2-1/h1^2)-b3/h2^2)+Beta1;                           
            elseif i == n-2 
               g(i) = 10*((a3-a2)/h2^3-(a2-a1)/h1^3)+4*(b1/h1^2- 

                      1.5*b2*(1/h2^2-1/h1^2)-b3/h2^2)+Beta2; 
            else 
               g(i) = 10*((a3-a2)/h2^3-(a2-a1)/h1^3)+4*(b1/h1^2- 

                      1.5*b2*(1/h2^2-1/h1^2)-b3/h2^2); 
            end 
        end 
        C = fTRIDIAG(Amd,Ad,g,n-2); 
        for i = 2:n-1 
            c(i) = C(i-1); 
        end 
        %Calculating Coefficients d 
        for i = 1:n 
            if i < n 
               h1 = x(i+1)-x(i); 
               a2 = a(i+1); a1 = a(i); 
               b2 = b(i+1); b1 = b(i); 
               c2 = c(i+1); c1 = c(i); 
               d(i) = 10/h1^3*(a2-a1)-2/h1^2*(2*b2+3*b1)+1/h1*(c2- 

                      3*c1); 
           else 
               d4 = d(i-1); h4 = x(n)-x(n-1); b5 = b(i); b4 = b(i-1); 

               c5 = c(i); c4 = c(i-1); 
               d(i) = d4-2/h4^2*(b5-b4)+2/h4*(c5+c4); 
            end 
        end 
        %Calculating Coefficients e and f 
        for i = 1:n-1 
            h1 = x(i+1)-x(i); b2 = b(i+1); b1 = b(i);  
            c2 = c(i+1); c1 = c(i); d2 = d(i+1); d1 = d(i); 
            e(i) = 0.5/h1^3*(b2-b1)-1/h1^2*c1-0.25/h1*(d2+5*d1); 
            e1 = e(i); 
            f(i) = 0.1/(h1^3)*(c2-c1-3*d1*h1-6*e1*h1^2); 
        end 
        %Evaluating Spline Fit 
        S = size(time10); m = S(2); 
        for i = 1:m 
            for j = 1:n-1 
                if time10(i) >= x(j) && time10(i) <= x(j+1)  

 
                    X_fit(i) = f(j)*(time10(i)-x(j))^5 +  

                               e(j)*(time10(i)-x(j))^4 +   

                               d(j)*(time10(i)-x(j))^3 +  

                               c(j)*(time10(i)-x(j))^2 +   

                               b(j)*(time10(i)-x(j)) + a(j); 

 

                Xd_fit(i) = 5*f(j)*(time10(i)-x(j))^4 +  
                               4*e(j)*(time10(i)-x(j))^3 +   

                               3*d(j)*(time10(i)-x(j))^2 +  

                               2*c(j)*(time10(i)-x(j)) + b(j); 
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                   Xdd_fit(i) = 20*f(j)*(time10(i)-x(j))^3 +  

                               12*e(j)*(time10(i)-x(j))^2 +   

                               6*d(j)*(time10(i)-x(j)) + 2*c(j);                                                                 

                end 
            end 
        end 

         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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E.  MATLAB CODE TO CALCULATE THE COEFFICIENTS OF 

MULTI-RESOLUTION  

FIFTH-DEGREE HERMITE SPLINES CURVE FIT 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%      MATLAB CODE TO CALCULATE THE COEFFICIENTS      %%%%%% 
%%%%%%%%%%%%    OF FIFTH-DEGREE HERMITE SPLINES CURVE FIT        %%%%%% 
%%%%%%%%%%%%              WITH ADAPTIVE ALGORITHM                %%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
clc; 
clear all; 
close all; 
format long E; 
format compact; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
dt = 20;  
[time10 time20 X Y Xd Yd Xdd Ydd] = fSimulation(dt); 

%Subroutine fSimulation is the same as Appendix A with dt as the 

parameter. 
S = size(time20); m20 = S(2);  
S = size(time10); m10 = S(2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
REGIONS = [0 75600 151200 226800 302400]; %4 regions 
%Initial No. of zones in each region 
nzones1 = 2; nzones2 = 2; nzones3 = 2; nzones4 = 2;  
iREGIONS = 1/dt*REGIONS; S = size(iREGIONS); n = S(2); 
for i = 1:n-1 
    diff(i) = iREGIONS(i+1)-iREGIONS(i); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Max_accept = 10^-3; 
p = Max_accept + 1; 
Max1 = p; Max2 = p; Max3 = p; Max4 = p; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
while Max1 >= Max_accept || Max2 >= Max_accept || Max3 >= Max_accept ||  

      Max4 >= Max_accept 
    %%%% SPLINE POINTS %%%%% 
    [x1 y1 yPR1] = 

fSplinePoints(time20,diff(1),iREGIONS(1),iREGIONS(2),nzones1,X,Xd,1); 
    [x2 y2 yPR2] = 

fSplinePoints(time20,diff(2),iREGIONS(2),iREGIONS(3),nzones2,X,Xd,2); 
    [x3 y3 yPR3] = 

fSplinePoints(time20,diff(3),iREGIONS(3),iREGIONS(4),nzones3,X,Xd,2);  
    [x4 y4 yPR4] = 

fSplinePoints(time20,diff(4),iREGIONS(4),iREGIONS(5),nzones4,X,Xd,2);  
    x = [x1 x2 x3 x4]; 
    y = [y1 y2 y3 y4]; 
    yPR = [yPR1 yPR2 yPR3 yPR4]; 
    %%%%% CALCULATING CURVE FIT %%%%% 
    [iX_fit iXd_fit iXdd_fit] = 

    fCurveFit_HS(time10,time20,x,y,yPR,Xdd); 
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    k = 1; 
    for i = 1:2:m10 
        X_fit(k) = iX_fit(i); 
        k = k+1; 
    end 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    X1 = X(iREGIONS(1)+1:iREGIONS(2)+1);  
    X_fit1 = X_fit(iREGIONS(1)+1:iREGIONS(2)+1);  
    X2 = X(iREGIONS(2)+2:iREGIONS(3)+1);  
    X_fit2 = X_fit(iREGIONS(2)+2:iREGIONS(3)+1); 
    X3 = X(iREGIONS(3)+2:iREGIONS(4)+1);  
    X_fit3 = X_fit(iREGIONS(3)+2:iREGIONS(4)+1); 
    X4 = X(iREGIONS(4)+2:iREGIONS(5)+1);  
    X_fit4 = X_fit(iREGIONS(4)+2:iREGIONS(5)+1); 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    S = size(X1); m1 = S(2); S = size(X2); m2 = S(2); 
    S = size(X3); m3 = S(2); S = size(X4); m4 = S(2); 
    %%%%% CALCULATING RESIDUALS %%%%% 
    %%%%% Entire Curve Fit %%%%%  
    [Residualx_CF RMSEx_CF Max_CF] = fResiduals(X,X_fit,m20); 
    %%%%% In Each Region %%%%% 
    [Residualx1 RMSEx1 Max1] = fResiduals(X1,X_fit1,m1); 
    [Residualx2 RMSEx2 Max2] = fResiduals(X2,X_fit2,m2); 
    [Residualx3 RMSEx3 Max3] = fResiduals(X3,X_fit3,m3); 
    [Residualx4 RMSEx4 Max4] = fResiduals(X4,X_fit4,m4); 
    %%%%% CHECKING FOR MAXIMUM RESIDUAL IN EACH REGION %%%%% 
    nzones1 = fCheck(Max1,Max_accept,nzones1); 
    nzones2 = fCheck(Max2,Max_accept,nzones2); 
    nzones3 = fCheck(Max3,Max_accept,nzones3); 
    nzones4 = fCheck(Max4,Max_accept,nzones4); 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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F. SUBROUTINES USED IN THE CODE GIVEN IN APPENDIX E 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [x y yPR] = fSplinePoints(time20,diff,m1,m2,nzones,X,Xd,k) 

  
div = diff/nzones; 
i = 1; 
for j = m1:div:m2 
    j = round(j); 
    ix(i)   = time20(j+1); 
    iy(i)   = X(j+1); 
    iyPR(i) = Xd(j+1); 
    i = i+1; 
end 
if k == 1 
    for i = 1:1:nzones+1 
        x(i)   = ix(i); 
        y(i)   = iy(i); 
        yPR(i) = iyPR(i); 
    end 
else 
    for i = 2:1:nzones+1 
        x(i-1)   = ix(i); 
        y(i-1)   = iy(i); 
        yPR(i-1) = iyPR(i); 
    end 
end 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [Residual RMSE Max] = fResiduals(X,X_fit,m) 

  
        k = 1; 
        for i = 1:m 
            Residual(k) = abs(X(k)-X_fit(k)); 
            k = k+1; 
        end 
        RMSE = sqrt(sum((X(:)-X_fit(:)).^2)/(m)); 
        Max = max(Residual); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function nzones = fCheck(Max,Max_accept,nzones) 

  
        if Max <= Max_accept 
           nzones = nzones + 0; 
        else 
           nzones = nzones + 1; 
        end 

         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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G.  TRIDIAGONAL SOLVER 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%                TRIDIAGONAL SOLVER                 %%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function x = fTRIDIAG(d,f,b,n) 

  
        alpha(1) = d(1); 
        gamma(1) = f(1)/alpha(1); 
        for i = 2:1:n-1 
            alpha(i) = d(i)-f(i-1)*gamma(i-1); 
            gamma(i) = f(i)/alpha(i); 
        end 
        alpha(n) = d(n)-f(n-1)*gamma(n-1); 
        z(1) = b(1); 
        for i = 2:1:n 
            z(i) = b(i)-gamma(i-1)*z(i-1); 
        end 
        for i = 1:1:n 
            c(i) = z(i)/alpha(i); 
        end 
        x(n) = c(n); 
        for i = n-1:-1:1 
            i; 
            x(i) = c(i)-gamma(i)*x(i+1); 
        end 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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H.  MATLAB CODE TO NUMERICALLY SOLVE THE NEARBY PROBLEM 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%       NUMERICAL SOLUTION TO THE NEARBY PROBLEM        %%%%%% 
%%%%%%%%%%          USING FIFTH-DEGREE HERMITE SPLINES           %%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
clc; 
clear all; 
close all; 
format long E; 
format compact; 

  
%%%%%%%%%%%%%% NUMERICAL SOLUTION TO THE ORIGINAL PROBLEM %%%%%%%%%%%%% 

  
dt = 20;   
[time10 time20 SP X Y Xd Yd Xdd Ydd Xmoon Ymoon Xdd_moon Ydd_moon] = 

fSimulation(dt); 
%Subroutine fSimulation is the same as Appendix A with dt as the 

parameter. 

  
%%%%%%%%%%% GENERATING CURVE FIT TO THE NUMERICAL SIMULATION %%%%%%%%%%    
            %%%%%% USING FIFTH-DEGREE HERMITE SPLINES %%%%%% 

                        
[X_fit Xd_fit Xdd_fit] = fCurveFit_HS(time10,time20,X,Xd,Xdd); 
[Y_fit Yd_fit Ydd_fit] = fCurveFit_HS(time10,time20,Y,Yd,Ydd); 
S10 = size(time10); m10 = S10(2);  
S20 = size(time20); m20 = S20(2);  

  
%%%%%%%%%%%%%%%%%%%%%%% CALCULATING SOURCETERMS %%%%%%%%%%%%%%%%%%%%%%% 

  
for k = 1:1:m10 
    GMm = 4.90266e12; GMe = 3.98600436e14;  
    rho = [Xmoon(k) Ymoon(k)];  
    r   = [X_fit(k) Y_fit(k)];  
    d   = r-rho; 
    if k <= SP 
        acc = -GMe*r/norm(r)^3-GMm*(d/norm(d)^3+rho/norm(rho)^3); 
        acc1(k) = acc(1); acc2(k) = acc(2); 
        Sourcetermx(k) = Xdd_fit(k)-acc1(k); 
        Sourcetermy(k) = Ydd_fit(k)-acc2(k); 
    else 
        acc = -GMm*d/norm(d)^3-GMe*(r/norm(r)^3-rho/norm(rho)^3);         
        acc3(k) = acc(1); acc4(k) = acc(2); 
        Sourcetermx(k) = Xdd_fit(k)-Xdd_moon(k)-acc3(k); 
        Sourcetermy(k) = Ydd_fit(k)-Ydd_moon(k)-acc4(k); 
    end 
end 

  
%%%%%%%%%%%%%%% NUMERICAL SOLUTION TO THE NEARBY PROBLEM   %%%%%%%%%%% 

  
%%%%% PROPOGATION IN THE EC->MC FRAME %%%%% 

  
%%%%% SETTING UP THE PROBLEM %%%%% 



95 

 

 
%%%%% USER INPUTS %%%%% 
alt = 359750; %meters 
angle = -36.890; %degrees 
fprintf('alt = %6.0f, ang = %6.3f, dt = %6.3f \n\n', alt, angle, dt); 
deltav = 3102.13; %m/s 
t0 = 0; %secs 
tf = 3.5*86400; %302400 secs (1 day = 86400 secs)  
SP = 2.905*86400; %Switch Point at 250992 secs  
folder = char(['alt' int2str(alt) 'ang' int2str(abs(angle*1000)) 'dt' 

int2str(dt)]); 
fid = fopen([folder 'State_SP' '.txt'], 'w'); 
f = fopen([folder 'Moon_State_SP' '.txt'], 'w'); 

  
%%%%% CONSTANTS %%%%% 
radE = 6372797; %meters 
EMdist = 384400000; %meters 
omega = sqrt((GMe+GMm)/EMdist^3); %rad/sec 
%Tm = 2*pi/omega = 27d 6h 49m 50.34879957310977s 
alpha = angle*pi/180; %radians 
h = radE + alt; %meters 
Vorbit = sqrt(GMe/h); %m/s 
V = Vorbit + deltav; %m/s 

  
%%%%% INITIAL CONDITIONS %%%%% 
%%%%% For Spacecraft %%%%% 
rxi = h*sin(alpha); %meters 
ryi = -h*cos(alpha); %meters 
vxi = V*cos(alpha); %m/s 
vyi = V*sin(alpha); %m/s 
x = [rxi;ryi;vxi;vyi]; 
fprintf(fid, '% 6.0f, % .16e, % .16e, % .16e, % .16e nn', t0, x); 
%%%%% For the Moon %%%%% 
xmt = EMdist*cos(omega*t0);  
ymt = EMdist*sin(omega*t0);  
fprintf(f, '% 6.0f, % .16f, % .16f nn', t0, xmt, ymt); 

  
%%%%% PERFORM THE PROPOGATION %%%%% 

  
%%%%% EARTH CENTERED FRAME %%%%% 
i = 1; m = 1; 
for t = t0:dt:SP-dt 
    %Use the moon position at the end of the previous interval as the 
    %position at the start of this interval. 
    xm = xmt; 
    ym = ymt; 
    %Calculate the moon position at the middle and end of this    

    interval. 
    xmh = EMdist*cos(omega*(t + 0.5*dt));  
    ymh = EMdist*sin(omega*(t + 0.5*dt)); 
    xmt = EMdist*cos(omega*(t + dt)); 
    ymt = EMdist*sin(omega*(t + dt)); 
    t1 = t + dt;  
    fprintf(f, '% 6.0f, % .16f, % .16f nn', t1, xmt, ymt); 
    %Propogating the states forward in time 

    k1 = RK4_EC_NP(x, xm, ym, GMm, GMe, Sourcetermx(m),  
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         Sourcetermy(m)); 
    k2 = RK4_EC_NP(x+(dt/2)*k1', xmh, ymh, GMm, GMe, Sourcetermx(m+1),  

         Sourcetermy(m+1)); 
    k3 = RK4_EC_NP(x+(dt/2)*k2', xmh, ymh, GMm, GMe, Sourcetermx(m+1),  

         Sourcetermy(m+1)); 
    k4 = RK4_EC_NP(x+(dt)*k3', xmt, ymt, GMm, GMe, Sourcetermx(m+2),  

         Sourcetermy(m+2)); 
    x = x + dt/6*(k1'+2*k2'+2*k3'+k4'); 
    fprintf(fid, '% 6.0f, % .16e, % .16e, % .16e, % .16enn', t1, x); 
    i = i+1; 
    m = m+2; 
end 

  
%%%%% SWITCH POINT %%%%% 
%Convert state vector from EC to MC 
rho = [xmt; ymt]; 
xmt_dot = -EMdist*omega*sin(omega*(t+dt)); 
ymt_dot = EMdist*omega*cos(omega*(t+dt)); 
rho_dot = [xmt_dot; ymt_dot]; 
d_state = x - [rho; rho_dot]; 

  
%%%%% MOON CENTERED FRAME %%%%% 
j = 1; n = m; 
for t = SPt:dt:tf-dt 
    %Use the moon position at the end of the previous interval as the 
    %position at the start of this interval. 
    xm = xmt; 
    ym = ymt; 
    %Calculate the moon position at the middle and end of this  

    interval. 
    xmh = EMdist*cos(omega*(t + 0.5*dt)); 
    ymh = EMdist*sin(omega*(t + 0.5*dt)); 
    xmt = EMdist*cos(omega*(t + dt)); 
    ymt = EMdist*sin(omega*(t + dt)); 
    t2 = t + dt;  
    fprintf(f, '% 6.0f, % .16f, % .16f nn', t2, xmt, ymt); 
    %Propogating the states forward in time 
    k1 = RK4_MC_MNP(d_state, xm, ym, GMm, GMe, Sourcetermx(n),  

         Sourcetermy(n)); 
    k2 = RK4_MC_MNP(d_state+(dt/2)*k1', xmh, ymh, GMm, GMe,  

         Sourcetermx(n+1), Sourcetermy(n+1)); 
    k3 = RK4_MC_MNP(d_state+(dt/2)*k2', xmh, ymh, GMm, GMe, 

         Sourcetermx(n+1), Sourcetermy(n+1));  
    k4 = RK4_MC_MNP(d_state+(dt)*k3', xmt, ymt, GMm, GMe,  

         Sourcetermx(n+2), Sourcetermy(n+2)); 
    d_state = d_state + dt/6*(k1'+2*k2'+2*k3'+k4'); 
    %Compute moon state at the end of interval 
    rho = [xmt; ymt]; 
    rho_dot = EMdist*omega*[-sin(omega*(t + dt)); cos(omega*(t + dt))]; 
    %Convert state vector from MC to EC 
    x = d_state + [rho; rho_dot]; 
    fprintf(fid, '% 6.0f, % .16e, % .16e, % .16e, % .16enn',t2,x); 
    j = j+1; n = n+2;     
end 
fclose(fid); fclose(f); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

I. SUBROUTINES USED IN THE CODE GIVEN IN APPENDIX H 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%% SUBROUTINE TO INTEGRATE THE EQUATION OF MOTION IN EC FRAME %%%%        
%%%%%%%                  FOR THE NEARBY PROBLEM                    %%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function x_dot  =  

         RK4_EC_NP(x,xmoon,ymoon,GMm,GMe,Sourcetermx,Sourcetermy) 

 
        r = x(1:2); 
        v = x(3:4); 
        rho = [xmoon; ymoon]; 
        d = r-rho; 
        Sourceterm = [Sourcetermx; Sourcetermy]; 
        x_dot(1:2) = v; 
        x_dot(3:4) = -GMe*r/norm(r)^3- 

                     GMm*(d/norm(d)^3+rho/norm(rho)^3)+Sourceterm; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%% SUBROUTINE TO INTEGRATE THE EQUATION OF MOTION IN MC FRAME %%%%        
%%%%%%%                  FOR THE NEARBY PROBLEM                    %%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function d_dot =  

         RK4_MC_NP(d_state,xmoon,ymoon,GMm,GMe,Sourcetermx,Sourcetermy) 

 
        d = d_state(1:2);  
        v = d_state(3:4); 
        rho = [xmoon; ymoon]; 
        r = d+rho; 
        Sourceterm = [Sourcetermx; Sourcetermy]; 
        d_dot(1:2) = v;  
        d_dot(3:4) = -GMm*d/norm(d)^3-GMe*(r/norm(r)^3- 

                     rho/norm(rho)^3)+Sourceterm; 

         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

 


