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Abstract

This dissertation considers rank based methods for one sample and two sample repeated

measurement data. As a specific example, in Chapter 2, this dissertation considers nonpara-

metric tests for selective predation. [1] proposed a nonparametric tests for selective predation

using the linear score function. Motivated by this method, general rank tests are given for

the case of one predatory species and prey characterized by a binary feature of interest and

the case of two predatory species and prey characterized by either a continuous or a categori-

cal feature of interest. The score functions used to construct the test statistics are monotone

and hence the test is designed to detect simple ordered alternatives. The results based on

the asymptotic Gaussian distribution of the test statistics show that the tests retain nominal

Type-I error rates. The results also show that power of the asymptotic test depends on the

chosen score function. In Chapter 2, we study the one sample and two sample repeated

measurement data with random censoring and the simulation results show that we can take

the asymptotic distribution as the underlying distribution of the test statistic even with a

high censoring rate and a small sample size.

In Chapter 3, this dissertation considers using rank based methods to test the trend

of the difference between two samples for two sample repeated measurement data. As a

specific example, we consider nonparametric methods for testing whether the rate of prey

feature change in the selection of one species is faster than that of another species. Although

the Page test is used in conjunction with a single randomized complete block design, we

extend it to the situation where we have two randomized complete block designs. We derive

the asymptotic distribution of a general test statistic which includes the Page statistic as a

special case. The results based on the asymptotic Gaussian distribution of the test statistics

show that the tests retain nominal Type-I error rates.
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In Chapter 4, the finite sample performance of the rank estimator of regression coeffi-

cients obtained using the iteratively reweighted least squares (IRLS) of Sievers and Abebe

(2004) is evaluated. Efficiency comparisons show that the IRLS method does quite well in

comparison to least squares or the traditional rank estimates in cases of moderate tailed er-

ror distributions; however, the IRLS method does not appear to be suitable for heavy tailed

data. Moreover, the results show that the IRLS estimator will have an unbounded influence

function even if we use an initial estimator with a bounded influence function.

In Chapter 5, this dissertation study how to test the trend of the difference in the

two sample repeated measurement data using two generalized estimating equation (GEE)

models: the likelihood based GEE model proposed by Liang and Zeger (1986) and the IRLS

Rank-based GEE model proposed by [2]. The results show that the GEE model proposed by

[2] is robust to outliers in response space and can be used to analyze data with small sample

sizes compared to the GEE model proposed by Liang and Zeger (1986).
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Chapter 1

Introduction

In the 70+ years since their origin in the mid-1930s, nonparametric statistical methods

have flourished and have emerged as valuable methodology for statisticians and other scien-

tists performing data analysis. Roughly speaking, a nonparametric procedure is a statistical

procedure that has certain desirable properties that hold under relatively mild assumptions

regarding the underlying population from which the data are obtained. Nonparametric tech-

niques have the following advantages compared to parametric techniques:

1. Nonparametric methods require few assumptions about the underlying population from

which the data are drawn. In particular, nonparametric procedures forgo the tradi-

tional normality assumption.

2. Nonparametric procedures enable the user to obtain exact p-values for tests, exact

coverage probabilities for confidence intervals, exact experimentwise error rates for

multiple comparison procedures, and exact coverage probabilities for confidence bands

without relying on assumptions that the underlying populations are normal.

3. Nonparametric techniques are often (although not always) easier to apply than their

normal theory counterparts.

4. Usually the nonparametric procedures are only slightly less efficient than their normal

theory competitors when the underlying populations are normal, and they can be

mildly or wildly more efficient than these competitors when the underlying populations

are not normal.

5. Nonparametric methods are widely used for studying populations that take on a ranked

order (such as movie reviews receiving one to four stars). The use of nonparametric
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methods may be necessary when data have a ranking but no clear numerical interpre-

tation, such as when assessing preference; in terms of levels of measurement, for data

on an ordinal scale.

6. Due to the reliance on fewer assumptions, nonparametric methods are relatively robust

to outlying observations and other violations.

In this dissertation, we discuss the nonparametric techniques in repeated measurement data.

Repeated measurement data, in which the same response variable is recorded on each ob-

servational unit on several different occasions, occur frequently in many different disciplines.

One example is that sequential experiments for treatment comparisons are widely used in

clinical (e.g., a new treatment and a control or placebo) or pharmaceutical trials and in many

other applied contexts. There are two possible inferential goals in these studies. One goal

is to establish a significant overall difference between the two treatments under study, the

other goal is after we conclude that there does exist a difference between the two treatments,

to check if the difference stays the same, decays, or expands over time.

Several approaches have been considered in the past to deal with comparison of two

groups with respect to their repeated measures. A useful and common initial step in the

analysis of repeated measures data is to graph the data in some way. A method often

employed, particularly in medical publications, is to plot means by treatment group for

every time point. An example of such a plot for the data from the trail of two treatments

for the control of intestinal parasites in cattle can be found in [3].

Another commonly used method of analysis for repeated measures that involve a number

of treatment groups, particularly in medical and related research, is to compare the groups

at each time point, by using either t-test or some nonparametric equivalent. [4] suggested

that this approach may be quite useful if the occasions are few and the intervals between

them are large.

A more relevant, but still relatively straightforward, approach to the analysis of repeated

measures data is that involving the use of summary measures, and sometimes known as
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response feature analysis. Here the responses for each subject are used to construct a single

number that summarizes some aspect of the subject’s response profile. (In some cases more

than a single summary measure may be used). The summary measure to be used needs to

be chosen before the analysis of the data and should, of course, be relevant to the particular

questions of interest in the study. [5] gave a list of potentially useful summary measures. [6]

suggest three methods of analysis using summary statistics, which are post-treatment means

(POST), mean changes (CHANGE) and analysis of covariance (ANCOVA).

The multivariate procedure involves testing on a set of transformed variables represent-

ing the within-subject difference of each within-subject factor and their interactions. The

hypothesis that the means of a set of transformed variables representing a within-subject

factor, or an interaction between within-subject factors, are zero can be tested by using

Hotelling’s T 2 statistics which is introduced in [7]. To deal with the cases when the variables

are not normally distributed or the sample size is small, [8] proposed numerous nonparamet-

ric approaches.

The repeated measures data most appropriately analysed by the methods described

above are those from designed experiments where all subjects have the same number of ob-

servations measured at equivalent time interval. Since these conditions often do not hold in

clinical trials, methods to accommodate missing data have been developed ([9]). Many of

these are likelihood-based methods ([10], [11]). When values are missing completely at ran-

dom, non-parametric and semiparametric methods have been developed to analyze such data

([10], [12], [13]). When the missing values are not random, [14] propose a semiparametric

estimation procedure for treatment differences over time based on repeated measurements

of an outcome variable when the patient’s follow-up time may depend on observed and/or

missing measurements. They examine the effect of switching to didanosine(ddI) from zi-

dovudine(AZT) for HIV-infected patients who had tolerated AZT for at least 16 weeks, 304

patients were randomly chosen to continue AZT therapy and 298 patients were assigned to
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take ddI at a daily dose of 500 mg. The patient’s CD4 cell count, a proxy for the progres-

sion of HIV infection, was obtained periodically during the trial. In addition to the usual

clinical endpoint analysis, they also evaluate the group difference based on such repeated

measurements.

Apart from clinical trials, another important application field of repeated measurements

is to study the predation patterns in evolutionary Biology. In Chapter 2 of this dissertation,

we use the Wilcoxon signed rank statistic to study the repeated measurement data model

in [1]. Our intention is to develop nonparametric hypothesis tests for selective predation as

a result of values taken by prey feature of interest. We do this by extending the method of

[1] to allow for differing gradients in prey selection and random censoring. We also extend

the method to study the two sample predation preference.

If we conclude that the two predator species do have different prey preference, in order

to test whether the rate of prey feature change in the selections of one species is faster than

that of another species, in Chapter 3, we need to use theory of long memory processes.

The phenomenon of long memory had been known long before suitable stochastic mod-

els were developed. Scientists in diverse fields of statistical applications observed empirically

that correlations between observations that are far apart (in time or space) decay to zero at

a slower rate than one would expect from independent data or data following classic Markov-

type models. As a result of Mandelbrot’s pioneering work, self-similar and related stationary

processes with long memory were later introduced to statistics, to provide a sound mathe-

matical basis for statistical inference. Since then, long memory (or long-range dependence)

has become a rapidly developing subject. Because of the diversity of applications, the litera-

ture on the topic is broadly scattered in a large number of journals, including those in fields

such as agronomy, astronomy, chemistry, economics, engineering, environmental sciences,

mathematics, physics, geosciences, hydrology, and statistics. Best known is the occurrence

of long-range dependence in geophysics and hydrology (for a review, see [15]). In particular,

the so-called Hurst Effect ([16]) can be explained by slowly decaying correlations. However,
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there are many other fields of application where this type of correlation occurs. As early

as 1895 the astronomer Newcomb discussed the phenomenon of long-range dependence in

astronomical data sets and called it ”semi-systematic” errors. He also proposed a heuristic

explanation by superposition of independent random errors and constant systematic errors.

In 1902, Karl Pearson observed slowly decaying correlations in simulated astronomical obser-

vations. Further examples are discussed, for instance, by [17] and [18] for economical data,

[19] for data from biology, geophysics, meteorology and hydrology, [20] for meteorological

data, [21] for telecommunication data and [22] and [23] for agricultural data.

In Chapter 3, using stationary process with long-memory theory, we propose a procedure

that is analogous to the Page test [24] to study the trend of the difference between two

samples of repeated measurement data. Although the Page test is used in conjunction with

a single randomized complete block design, we extend it to the situation where we have two

randomized complete block designs. We derive the asymptotic distribution of a general test

statistic that includes the Page statistic as a special case. This provides an approximate α

level test for the changing rates in the simple ordering case.

For the repeated measurement data, when the outcome variable is approximately Gaus-

sian, statistical methods are well developed, e.g. [25] and [26]. For non-Gaussian outcomes,

however, less development has taken place. For binary data, repeated measures models in

which observations for a subject are assumed to have exchangeable correlations have been

proposed by [27] using a probit link, by [28] using a logit link and by [29] using log linear

models. Only the model proposed by [28] allows for time-dependent covariates. [10] pro-

posed an extension of generalized linear models to the analysis of longitudinal data. They

introduce a class of estimating equations that give consistent estimates of the regression pa-

rameters and of their variance under mild assumptions about the time dependence. Using a

working generalized linear model for the marginal distribution of the response, the estimating

equations are derived without specifying the joint distribution of a subject’s observations yet
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they reduce to the score equations for multivariate Gaussian outcomes. Asymptotic theory

is presented for the general class of estimators.

The methods, however, are not robust against outliers since they are based on score

equations from the maximum likelihood method of estimation. A solution proposed by [30]

is to use M -type estimation by involving downweighting schemes. Another solution is one

given by [31] who proposed an adaptation of the Wilcoxon-Mann-Whitney method of esti-

mating linear regression parameters for use in longitudinal data analysis under the working

independence model. They used joint ranking (JR) of all observations in their development.

[32] consider the same model as [31] but they use separate between-subject and within-

subject ranks to specify their Wilcoxon-Mann-Whitney estimating equation. [2] provided a

direct rank estimation analogue of the GEE model of [10] obtained via the minimization of

rank dispersion function of [33]. This is a generalization of the work of [31]. Their develop-

ment used the iterated reweighted least squares (IRLS) formulation of the rank dispersion

function given in [34].

In Chapter 4 of this dissertation, we evaluate the finite sample performance of the IRLS

estimate of β̂R and its variance. We discuss the IRLS formulation, provide computational

algorithms as well as simulation results pertaining to the estimator, its variance, and its

influence function.

In Chapter 5, Using the LS based GEE model in [10] and the IRLS Rank-Based GEE

model proposed by [2] (see also [35]), we study the problem of selective predation patterns.
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Chapter 2

Rank Tests for Selective Predation

2.1 Introduction

Repeated measurement data, in which the same response variable is recorded on each

observational unit on several different occasions, occur frequently in many different disci-

plines. One major field that generates a great deal of repeated measures data is in Biology,

when people study the predatory preference. In this chapter we will study the predatory

preference problem as a special case of repeated measure data. All the test statistics we

used and the corresponding asymptotic properties can be used for similar repeated measures

data.

Predation is necessary for life to exist. It is a force in evolution of species as natural

selection is biased in favor of effective predators and elusive prey. We are interested in the

case where predatory behavior is guided by certain features of the prey. Dating back to the

time of Darwin, scientists have long recognized that signals used by animals to attract mates

can have the unintended consequence of attracting predators and resulting in gender selective

predation [36]. Conversely, as a recent study of [37] shows, in some species, signaling places

the receiver of the signal at a higher risk of predation than the signaler. Several methods

have been given in the past to quantify these types of selective predation [38]. As pointed out

in [39] and [1], many of these methods have major shortcomings in that they ignore the order

in which the predator selects its prey. To that end, [39] proposed a test procedure, based on

the maximum likelihood principle, that accounts for the order of selection. The performance

of this method was unsatisfactory for small sample sizes. As a remedy, [1] suggested to

use a Wilcoxon signed rank statistic to test for predatory preference. Their approach takes

into account not only the selection of prey but also the order of in which they are selected.
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Further, as most nonparametric methods, the method provides satisfactory results for small

samples. However, this method, by using a linear score function, assumes that changes in

consecutive prey selections are equally important regardless of when the selection is made.

In this chapter, it will be assumed that there is only one feature of the prey that

determines predatory preference. Hereafter, we will refer to this as “prey feature of interest.”

Our intention is to develop nonparametric hypothesis tests for selective predation as a result

of values taken by prey feature of interest. We will do this by extending the method of [1]

in three directions:

1. We provide a class of general rank tests for the experiment considered by [1]; that

is, testing for selective predation of one random sample of predators where the prey

feature of interest takes one of only two possible values. Examples of dichotomous prey

features of interest are gender and size categorized as “large” and “small”. General

rank tests will allow one to place varied emphasis on selections at different stages of

the selection experiment. This could be helpful in controlling the manner in which

extraneous variables, such as the level of hunger of predators, can affect selection

preference at the beginning versus at the end of the experiment.

2. We propose a class of general rank score tests for the difference in predation patterns

of two random samples of predators (eg. two species). In this case, we treat the case

where the prey feature of interest is continuous (“surface area”, for example). We then

give the test where prey feature is a categorical variable with m classes (m ≥ 2). The

test statistic for this case becomes equivalent to that of the continuous case when there

are no ties in the data.

3. If we look at our data as a repeated measures data, Xrj denote the measurement of the

rth experimental subject in population X at condition or time point j, similar for Ysj,

we may not have a complete data frame, i.e. some observations of the experimental

subjects maybe missing, which is often the case in clinical trials. We propose the
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test statistic for randomly missing data for the cases of one sample problem and two

samples problem in repeated measures data.

In all the three cases, we study the asymptotic distributions of the test statistics as the

number of predators increases while the number of allowed selections remains constant for

all predators.

2.2 Data and Model in [1]

2.2.1 Experiment Frame and Data

The purpose of this chapter is to suggest a test statistic that can be useful to establish

preference between two response in repeated measures experimental design settings. The

context for this study was experimental work conducted at the University of Florida aimed at

conservation of naturally occurring enemies of crop pests as a means of improving biological

control of cropping systems. At issue was whether birds could be useful in crop pest control

due to their consumption of pests that escape mortality from other agents of biological

control. Specially, the research investigated aspects of pest insects that would make them

more attractive food sources for birds. Trails were conducted using red-winged blackbirds

with fall armyworms as their food source. The purpose of the trails was to determine whether

the birds preferred larger versus smaller armyworms and whether the birds preferred non-

parasitized armyworms to parasitized armyworms of the same size. The parasite used was

larva of E.plathypenae, a species common in Florida and previously investigated for its

biological control value. A description of the experiment can be found in [40].

In this experiment, a plastic chamber divided into two equal sized parts was used to

present each bird with two food choices. The positions of the two foods in the subchambers

(left or right) were varied over the trials and no directional preference was observed. In trials

to determine preference for food size, for example, each bird was presented with five large

armyworms in one subchamber and five small armyworms in the other. The researchers
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recorded the first five choices made by the bird, including the order in which the armyworms

were selected by the birds. One of the data sets from this experiments is presented in

Table 2.1. It displays the selection by each bird: large (L) or small (S), in the order in which

they were selected (left to right).

Table 2.1: Selections of five large or small armyworms in bird trials

Trial number Choice: 1 2 3 4 5
Score: 5 4 3 2 1

1 L L L L S
2 L L S L S
3 S L L L S
4 L S L S S
5 L L L L S
6 L L L S L
7 L L L S S
8 L S L L S
9 S S L L L
10 L L S L L
11 L L L S S
12 L L L L S
13 L L L L S
14 L L L S S
15 L L L S S
16 S L S S L
17 L L S L S
18 L L S L S
19 L L L S S
20 S L L S L
21 L L S S L

2.2.2 Test Statistic

When testing for preference, the null hypothesis is ”no preference”, i.e. that the bird

randomly selects its food type (L or S) and the five selections made by each bird are indepen-

dent. In other words, each no preference selection by a bird is like a coin toss with probability

p = 1
2

of selection L over S and with independence between selections. A Wilcoxon signed

rank statistic can be used to describe the selections made in each trial. A ”+” is assigned to

10



each large armyworm selected and a ”−” is assigned to each small armyworm. The score of

5 is assigned to the first selection made by the bird, 4 to the second selection,. . . , and 1 to

the fifth selection made by the bird. Using these scores means that early selection of a food

type and more selections of that food type, will both contribute to increasing the indication

of preference for that food type. Under the alternative that the birds exhibit a preference

for one of the two food types, we would expect p 6= 1
2
. For example, p > 1

2
would indicate

a preference for L, and p < 1
2

would indicate a preference for S. Because of the particular

design of this experiment, abundance of the two types of food is not an issue. If the two food

types were mixed together in one food chamber, abundance would play a more important

role in the analysis. However, in this setting they were in separate subchambers and the

researchers recorded only which subchamber was chosen by the bird in each selection.

In the jth bird trial we let

T+
j = (sum of the scores assigned to +(L) food selections)

and

T−j = (sum of the scores assigned to -(S) food selections)

Summing over the trials on different birds produces the test statistic

T+ =
n∑
j=1

T+
j

where n denotes the number of birds used in the experiment.

In general, suppose there are k selections made by each subject in the experimental

situation and n subjects in the experiment. Then under the null hypothesis, T+ has the

distribution of the sum of n independent Wilcoxon signed rank statistics in which k is the

11



largest rank assigned in each of the signed rank statistics. It is clear that

EH0 [T
+] =

nk(k + 1)

4
and V arH0 [T

+] =
nk(k + 1)(2k + 1)

24

When n is large and k is fixed, the null distribution of T+ can be approximately by a normal

distribution. This follows from the usual Central Limit Theorem because under the null, T+

is the sum of n independent and identically distributed statistics, Tj, each with finite mean

and variance. From the data in Table 2.1, the exact p-value is 0.0001510.

2.3 General Rank Test for Preference: One-Sample

Suppose that we have an experiment in which there is a random sample of n predators

(n > 1) and that each predator is allowed to select k preys (k > 1). We shall assume that

relative abundance of prey remains unchanged during successive selections, or equivalently,

that successive selections are made with replacement. Let ωij represent the feature of interest

(eg. color, size, etc) of the jth prey selected by predator i, where 1 ≤ i ≤ n and 1 ≤ j ≤ k. It

will be assumed that predators make their selections independently of each other. As in [1],

we will focus on the case where the prey feature of interest is categorized into two classes (2

sizes, 2 genders etc). In this case, we can define a random variable X = 0 or X = 1 depending

on the category. We will write Xij for X(ωij) and {X = c} for {ω : X(ω) = c}, c = 0, 1.

Then, under the null hypothesis that there is no preferential predation and selections are

independent, Xi1, . . . , Xik are independently and identically distributed according to the

Bernoulli distribution with probability of success p = 1/2, 1 ≤ i ≤ n. A value of p > 1/2

indicates preference for {X = 1} prey. We will confine our attention to testing whether

{X = 1} is the preferred prey feature in that predators tend to select {X = 1} prey more

than {X = 0} prey at the beginning of the selection experiment than at the end.

12



[1] gave a test statistic for detecting such selection patterns. In our notation, the

Wilcoxon signed rank test statistic given by [1] is

T+ =
n∑
i=1

k∑
j=1

(k − j + 1)Xij . (2.3.1)

As intended, the test rejects the null if T+ is large; that is, if there are more {X = 1}

prey selections at the beginning of selection than at the end. This is done by giving less

importance to later {X = 1} prey selections than earlier selections using the score function

ψ(j) ≡ k − j + 1. However, the importance gradient remains constant since ψ(j) decreases

linearly as j goes from 1 to k. This does not allow investigators to factor in extraneous

variables (such as time of day, predator’s hunger level, location, etc) that can potentially

influence the selection process. Using a general score function [35] in the definition of the test

statistic provides investigators the flexibility to decide on a gradient. To that end, let ψ be

a non-increasing function defined on the interval (0, 1) such that
∑k

j=1 ψ
2{j/(k + 1)} <∞.

We now define the generalized Wilcoxon signed rank test statistic for preference patterns as

T+
ψ =

n∑
i=1

k∑
j=1

ψjXij , (2.3.2)

where ψj = ψ {j/(k + 1)}. The following theorem gives the first two moments and the

asymptotic distribution of the test statistic T+
ψ . The proof is straightforward and may be

found, for instance, in [35].

Theorem 2.1 Assume that the null hypothesis is true. Then for k <∞ fixed and
∑k

j=1 ψ
2
j <

∞ we have
T+
ψ − E0(T+

ψ )

{var0(T+
ψ )}1/2

→ N(0, 1) in distribution as n→∞ ,

where E0(T+
ψ ) = 2−1n

∑k
j=1 ψj and var0(T+

ψ ) = 4−1n
∑k

j=1 ψ
2
j .

13



The score function ψ can be normalized such that
∑k

j=1 ψj = 0 and
∑k

j=1 ψ
2
j = 1. One way

to obtain normalized score functions is to take

ψ {j/(k + 1)} = c [b− h {j/(k + 1)}] (2.3.3)

and to solve for b and c using the constraints
∑k

j=1 ψj = 0 and
∑k

j=1 ψ
2
j = 1. Here b and

c are scalars and h(u) is a nondecreasing function defined on [0, 1] depending on u alone.

The score function leading to a test statistic equivalent to (2.3.1) of [1] may be obtained by

taking h(u) = u. Other simple score functions use h(u) = u2 and h(u) = sgn(u).

Taking h(u) = u in (2.3.3) gives b = 1/2 and c = [{12(k + 1)}/{k(k − 1)}]1/2. For

the data given in [1], one obtains a p-value of 3.14× 10−5 for h(u) = u and 1.22× 10−5 for

h(u) = u2 using the asymptotic test in Theorem 2.1. [1] found a p-value of 1.51× 10−5 using

a permutation test.

2.4 Two Sample Comparison of Preference Patterns

Suppose now that we have two predatory species X and Y and record the first k choices

made by these two species. As earlier, we will assume that there is only one prey feature

of interest. However, in this case, we will not restrict our analyses to the case where this

feature is categorized into two classes. Instead, we will consider a case where the feature is

continuously measured and also the case of an arbitrary number of categories. To simplify

our argument, we will assume that prey are infinitely abundant or that selection is made with

replacement. Our goal is to test whether there is a significant difference in the predatory

preferences of these two species.

The data from this experiment are presented as Xrj (r = 1, . . . , n1; j = 1, . . . , k) and

Ysj (s = 1, . . . , n2; j = 1, . . . , k). Here Xrj and Ysj denote the feature of interest of the jth

prey selected by the rth individual from species X and the sth individual from species Y ,

respectively. When there is no confusion, we will use X and Y as generic random variables

14



denoting prey feature selected by species X and Y , respectively. We are in particular

interested in testing whether the X species prefer larger values of the particular feature

than the Y species. This will be characterized by larger values of pr(X > Y ) at the

beginning of the experiment than at the end.

We propose the following test statistic for comparing two species selection patterns:

W+
ψ =

n1∑
r=1

n2∑
s=1

k∑
j=1

ψjϕ(Xrj − Ysj) , (2.4.1)

where

ϕ (x) =


1 (x > 0) ,

1/2 (x = 0) ,

0 (x < 0) .

In the following we will study the null asymptotic behavior of W+
ψ for continuous and cate-

gorical prey feature, respectively. All proofs are given in the Appendix.

2.4.1 Continuous Prey Feature

Assume that X and Y are measured continuously. Under the null hypothesis that

there is no preferential selection, pr(ϕ(X − Y ) = 1) = 0.5 = pr(ϕ(X − Y ) = 0). The null

asymptotic distribution of W+
ψ is given in the following theorem.

Theorem 2.2 Under the null hypothesis that there is no difference in preferences, k < ∞

fixed, and
∑k

j=1 ψ
2
j <∞ we have

W+
ψ − E0(W+

ψ ){
var0(W+

ψ )
}1/2

→ N(0, 1) in distribution as min(n1, n2)→∞ ,

where E0(W+
ψ ) = 2−1n1n2

∑k
j=1 ψj and var0(W+

ψ ) = 12−1n1n2(n1 + n2 + 1)
∑k

j=1 ψ
2
j .

Proof 2.3 Write W+
ψ =

∑k
j=1 ψjUn1n2j, where Un1n2j =

∑n1

r=1

∑n2

s=1 ϕ (Xrj − Ysj) for j =

1, . . . , k. For j = 1, . . . , k fixed, under the null hypothesis, Un1n2j is just the Mann-Whitney
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U-statistic and thus [41]

E0(Un1n2j) =
n1n2

2
and var0(Un1n2j) =

n1n2(n1 + n2 + 1)

12
.

Moreover, as min(n1, n2)→∞

Un1n2j − n1n2/2

{n1n2(n1 + n2 + 1)/12}1/2
→ N(0, 1)

in distribution whenever the null hypothesis is true. Thus

W+
ψ − (n1n2/2)

∑k
i=1 ψj

{n1n2(n1 + n2 + 1)/12}1/2
=

k∑
j=1

ψj

{
Un1n2j − n1n2/2

{n1n2(n1 + n2 + 1)/12}1/2

}
→ N

(
0,

k∑
j=1

ψ2
j

)

in distribution since k <∞ and
∑k

j=1 ψ
2
j <∞.

Once again, in applications, standardizing the score function ψ such that
∑k

j=1 ψj = 0 and∑k
j=1 ψ

2
j = 1 will simplify the expressions for mean and variance.

2.4.2 Categorical Prey Feature

Assume that the prey feature of interest is categorized into m disjoint classes. We wish

to extend the two sample selective predation problem to this case where selections are being

made with replacement. Under the null hypothesis of no selective predation, the combined

sample {X1j, . . . , Xn1j, Y1j, . . . , Yn2j} has a multinomial distribution with mass function

P (T1 = tj1, . . . , Tm = tjm) = (n1 + n2)!
m∏
l=1

p
tjl
l

tjl!
,

where
∑m

l=1 pl = 1 and
∑m

l=1 tjl = n1 + n2 (j = 1, . . . , k). In this case, we may have ties in

our data that need to be taken into account. The following theorem gives the asymptotic

normality of W+
ψ .
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Theorem 2.4 Suppose prey feature is categorical with m possible outcomes (m > 1) and

that the null hypothesis is true. Let tjl be the observed frequencies for selection j (j =

1, . . . , k; l = 1, . . . ,m). Then

W+
ψ − E0(W+

ψ ){
var0(W+

ψ )
}1/2

→ N(0, 1) in distribution as min(n1, n2)→∞ ,

where E0(W+
ψ ) = 2−1n1n2

∑k
j=1 ψj and

var0(W+
ψ ) =

n1n2(n1 + n2 + 1)

12

k∑
j=1

ψ2
j −

n1n2

12(n1 + n2)(n1 + n2 − 1)

k∑
j=1

m∑
l=1

ψ2
j (t

3
jl − tjl) .

Proof 2.5 The proof follows from the proof of Theorem 2.2. The only difference is in the

computation of the null variance of Un1n2j which is given by [42] as

var0(Un1n2j) =
n1n2(n1 + n2 + 1)

12
− n1n2

12(n1 + n2)(n1 + n2 − 1)

m∑
l=1

(t3jl − tjl) .

We remark here that the added complexity presented by a discrete prey feature is the in-

troduction of ties in X and X that one needs to take into account. As in most nonpara-

metric statistics, although ties affect the null variance, they do not usually affect the null

expected value of the statistic [41]. It can be easily seen that the null variance of the dis-

crete case is the same as the null variance of the continuous prey feature case when tjl = 1

(j = 1, . . . , k; l = 1, . . . ,m).

2.5 Censored Data

In repeated measurement data study, especially in clinical trials, if the repeated mea-

surements are taken over time during the study, some experimental subjects may not have a

complete vector of observations. some of the observations may be censored. In this section

we assume all the censored observations are censored completely at random.
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Define the i.i.d censor indicators εrj and ξsj to be:

εrj =


1, if Xrj is observed,

0, otherwise.

and

ξsj =


1, if YSj is observed,

0, otherwise.

for r = 1, . . . , n1, s = 1, . . . , n2 and j = 1, . . . , k

we also assume:

P (εrj = 1) = pj and P (ξsj = 1) = qj

2.5.1 One-sample Selection Problem

The problem in Section 2.3 can be considered as a one sample repeated measures prob-

lem. Let Xr = (Xr1, . . . , Xrk)
′ denote independent random samples for the rth subject, and

j = 1, . . . , k are indices representing a set of conditions or a series of prespecified condi-

tions or time points for which repeated measurements from each experimental subject are

obtained. Some experimental subjects may not have a complete vector of observations. We

use εrj to indicate if the jth observation of rth experimental subject in group X is censored

or not. Then the test statistic in (2.3.2) can be modified as:

T c =
k∑
j=1

n∑
r=1

ψjεrjXrj (2.5.1)

It is easy to see that

E0(T c) =
n

2

k∑
j=1

ψjE(εj) =
n

2

k∑
j=1

pjψj

18



V ar0(T c) =
k∑
j=1

ψ2
jV ar0(

n∑
r=1

εrjXrj)

=
k∑
j=1

ψ2
jnV ar0(εrjXrj)

=
k∑
j=1

(E0(ε2
rjX

2
rj)− E2

0(εrjXrj))

=
k∑
j=1

(E(ε2
rj)E0(X2

rj)− E2(εrj)E
2
0(Xrj))

= n
k∑
j=1

(
1

2
E(ε2

rj)−
1

4
E2(εrj))ψ

2
j

= n
k∑
j=1

(
1

2
pj −

1

4
p2
j)ψ

2
j

Then because
∑n

r=1 ψjεrjXrj are independently and identically distributed for j = 1, . . . , k,

using the Central limit theorem, we can get the asymptotic normality of T c similar as the

result in Theorem 2.1.

2.5.2 Two Sample Selection Problem

For the two sample predation preference problem, we also can look it as a two sample

repeated measures problem. For example, in clinical trials, we have control group X and

the new treatment group Y . We record the data of the experimental subjects in both groups

under some conditions or at some prespecified time points j = 1, . . . , k. The investigator

wishes to draw an overall conclusion whether the new treatment constitutes an ”improve-

ment” over the control for the entire study. As defined in Section 2.4, we use X and Y to

denote the two populations for the two groups and we use εrj to denote if the jth observation

of rth experimental subject in group X is censored or not, similar for ξsj. Then the test

statistic in (2.4.1) can be rewritten as:

W c
ψ =

n1∑
r=1

n2∑
s=1

k∑
j=1

ψjεrjξsjϕ(Xrj − Ysj) (2.5.2)
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We can calculate the null expectation and variance of W c
ψ

E0(W c
ψ) =

n1n2

2

k∑
j=1

ψjE(εrj)E(ξsj)

=
n1n2

2

k∑
j=1

ψjpjqj

V ar0(W c
ψ) =

k∑
j=1

ψ2
jV ar0[

n1∑
r=1

n2∑
s=1

εrjξsjϕ(Xrj − Ysj)]

if we denote Qrsj = εrjξsjϕ(Xrj − Ysj)

V ar0(W c
ψ) =

k∑
j=1

ψ2
j

n1∑
r=1

n2∑
s=1

V ar0(Qrsj) +
k∑
j=1

ψ2
j

n1∑
r=1

n2∑
s=1

n1∑
r1=1

n2∑
s1=1

Cov0(Qrsj, Qr1s1j)

=
k∑
j=1

ψ2
j [n1n2V ar0(Q11j) + n1n2(n2 − 1)Cov0(Q11j, Q12j)

+ n1n2(n1 − 1)Cov0(Q11j, Q21j)]

Where:

V ar0(Q11j) = E(Q2
rsj)− E2(Qrsj)

= E0(ε1jξ1jϕ(X1j − Y1j))
2 − [E(ε1j)E(ξ1j)E0(ϕ(X1j − Y1j))]

2

=
1

2
E(ε2

1j)E(ξ2
1j)−

1

4
E2(ε1j)E

2(ξ1j)

=
1

2
E(ε1j)E(ξ1j)−

1

4
E2(ε1j)E

2(ξ1j)

=
1

2
pjqj −

1

4
p2
jq

2
j
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Cov0(Q11j, Q12j) = E0(Q11jQ12j)− E0(Q11j)E0(Q12j)

= E0(ε1jξ1jϕ(X1j − Y1j)ε1jξ2jϕ(X1j − Y2j))− E2
0(ε1jξ1jϕ(X1j − Y2j))

= E(ε2
1j)E(ξ1jξ2j)E0(ϕ(X1j − Y1j)ϕ(X1j − Y2j))

− E2(ε1j)E
2(ξ1j)E

2
0(ϕ(X1j − Y1j))

=
1

3
E(ε2

1j)E(ξ1jξ2j)−
1

4
E2(ε1jξ1j)

=
1

3
pjq

2
j −

1

4
p2
jq

2
j

and similarly

Cov(Q11j, Q21j) =
1

3
E(ε1jε2j)E(ξ2

1j)−
1

4
E2(ε1jξ1j)

=
1

3
p2
jqj −

1

4
p2
jq

2
j

Then because
∑n1

r=1

∑n2

s=1Qrsj are independently and identically distributed for j = 1, . . . , k,

using the Central limit theorem, we can get the asymptotic property of W c
ψ following similar

steps as in Theorem 2.2.

2.6 Monte Carlo Simulation

We performed a large scale simulation to evaluate the finite sample performance of the

asymptotic distribution of the statistics W+
ψ and W c

ψ.

2.6.1 Null Simulation

First we performed a null simulation for the two-sample continuous prey feature case

under the nominal α = 0.05. For this study, independent, identically distributed samples

were generated from the standard Cauchy (C), central t with 5 degrees of freedom (t5),

standard normal (N), and the standard Laplace (L) distributions. We considered all
(

4
2

)
= 10

possible combinations of the distributions for the two samples. For the sample sizes we took
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(n1, n2) combinations of (3, 10), (3, 3), (10, 3), and (10, 10). For the number of selections of

each subject we took k = 3, 6, and 12. The asymptotic distribution given in Theorem 2.2

is used to determine the null rejection rates. We performed 104 repetitions and found the

proportion of cases for which {W+
ψ − E0(W+

ψ )}/{var0(W+
ψ )}1/2 > 1.645. The results for

ψ(t) = Φ−1(1 − t) were quite similar to the results for ψ(t) = 1 − t which we report in

Table 2.2. We note that for most distribution combinations, the rejection rates were very

Table 2.2: Simulated null rejection rates of W+
ψ using its asymptotic normal critical constant for

continuous distributions, ψ(t) ∝ t, α = .05.

k N,N C,N t5, N N,L C,C C, t5 C,L t5, t5 t5, L L, L
n1 = 10, n2 = 10

3 0.0482 0.0513 0.0496 0.0484 0.0470 0.0559 0.0538 0.0479 0.0508 0.0457
6 0.0518 0.0556 0.0490 0.0483 0.0484 0.0534 0.0528 0.0499 0.0532 0.0477
12 0.0496 0.0545 0.0510 0.0456 0.0517 0.0557 0.0531 0.0478 0.0500 0.0493

n1 = 3, n2 = 10
3 0.0449 0.0785 0.0576 0.0445 0.0487 0.0661 0.0671 0.0502 0.0472 0.0507
6 0.0469 0.0743 0.0572 0.0488 0.0516 0.0717 0.0701 0.0521 0.0508 0.0544
12 0.0492 0.0695 0.0548 0.0452 0.0480 0.0679 0.0667 0.0487 0.0510 0.0509

n1 = 3, n2 = 3
3 0.0440 0.0471 0.0435 0.0468 0.0454 0.0454 0.0481 0.0481 0.0472 0.0479
6 0.0514 0.0499 0.0542 0.0467 0.0524 0.0526 0.0495 0.0493 0.0560 0.0506
12 0.0509 0.0507 0.0502 0.0490 0.0458 0.0503 0.0502 0.0508 0.0481 0.0480

n1 = 10, n2 = 3
3 0.0483 0.0281 0.0473 0.0575 0.0488 0.0361 0.0342 0.0505 0.0529 0.0499
6 0.0531 0.0316 0.0439 0.0556 0.0480 0.0387 0.0347 0.0533 0.0516 0.0515
12 0.0487 0.0296 0.0454 0.0566 0.0488 0.0355 0.0345 0.0520 0.0494 0.0517

close to the nominal α = 0.05 despite using the asymptotic distribution for such small

samples. In the hybrid distribution cases where the two samples were drawn from two

different distributions, when the sample size from the heavier tailed distribution is smaller

than the sample size from the lighter tailed one, we found that the rejection rates were higher

than 0.05. The reverse phenomenon occurs when the sample sizes are reversed. It appears

that the asymptotic variances are under- and over-estimated, respectively, for the two cases.

We can see the pattern more clearly from Figure 2.1.
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Figure 2.1: Figure for Null Rejection Rates in Table 2.2
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In Figure 2.1, the horizontal axis denotes different distributional settings and the vertical

axis denotes null rejection rate. Different color denotes different sample size combinations

and the flat line in the middle denotes the nominal α = 0.05. The Figure shows the null

rejection rate for different distributional settings and different sample size combinations.

From this Figure, we can see some clear patterns: First, for most distributional settings, the

null rejection rates are fairly close to 0.05 despite using the asymptotic distribution for such

small sample size. Second, the red line is the most preferred line since overall, it’s the closed

one to the flat line which denotes the nominal α = 0.05. This indicates the test statistic

performs the best for equal large sample size (n1 = n2 = 10) which meets our expectation.

Third, there are some abnormality due to including the extremely heavy tailed Cauchy

distribution to generate the sample. If the sample size generated using Cauchy distribution

is relatively larger compared to the other sample size, the asymptotic variance tends to be

over-estimated, which would lead to a smaller null rejection rate. Similarly, if the sample
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size generated using Cauchy distribution is relatively smaller compared to the other sample

size, the asymptotic variance tends to be under-estimated, which would lead to a larger null

rejection rate.

2.6.2 Power Simulation

To determine the power of the test based on the asymptotic distribution in Theorem 2.2,

we generated independent samples for the jth selection as Xj ∼ N(µj, 1) and Yj ∼ N(0, 1)

(j = 1, . . . , k). We study the performance of the asymptotic test under simple ordering

µ1 ≥ · · · ≥ µk and umbrella ordering µ1 ≤ · · · ≤ µq ≥ · · · ≥ µk, q ∈ {1, . . . , k}, of the X

means. We used Wilcoxon scores ψ(t) = 1 − t and normal scores ψ(t) = Φ−1(1 − t), where

Φ is the standard normal cdf. The proportion of cases out of 104 in which the standardized

statistic exceeded 1.645 were recorded. In the first part of the simulation, we generated the

X samples by drawing the values of the first approximately k/2 selections from the N(0.5, 1)

distribution and the remaining selections from the N(0, 1) distribution. For the second part,

the first k/3 X selections were drawn from the N(1, 1) distribution, the middle k/3 were

from the N(0.5, 1) distribution, and the final k/3 were from the N(0, 1) distribution. Finally,

the third part used the first k/3 selections from N(0, 1), the middle k/3 from N(0.5, 1) and

the final k/3 from N(0, 1) creating an umbrella pattern. The results are given in Table 2.3.

It is evident that the rejection rates were increasing with increasing k or increasing n1 and n2

for both score functions. It also appears that the test’s ability to detect simple ordered mean

patterns increased when the number of means used to generate the X sample was larger.

This goes hand in hand with our intuition that the test statistic becomes better trained to

detect patterns when there are more distinct classes. The test based Wilcoxon scores was

more powerful than the test based on normal scores. This is expected since the means are

arranged in a linearly decreasing pattern where linear scores are optimal. Normal scores are

optimal for the case where the means are quickly decreasing at the beginning and at the end

but slowly decreasing in the middle.
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Table 2.3: The simulated power of W+
ψ using its asymptotic normal distribution where Xj ∼

N(µj , 1), Yj ∼ N(0, 1), 1 ≤ j ≤ k, α = 0.05

ψ(t) = 1− t ψ(t) = Φ−1(1− t)
n1 = n2 n1 = n2

Mean pattern k 2 5 7 2 5 7
{0.5 0.5 0} 3 0.111 0.138 0.164 0.046 0.112 0.134

12 0.240 0.492 0.624 0.154 0.273 0.350

{1 0.5 0} 3 0.248 0.453 0.567 0.072 0.220 0.286
12 0.569 0.939 0.984 0.270 0.562 0.711

{0 0.5 0} 3 0.099 0.109 0.112 0.026 0.046 0.047
12 0.115 0.185 0.228 0.055 0.050 0.051

The power of the test was low in detecting an umbrella ordered pattern in the alternative.

We note that the test is not designed to detect such patterns since the score function is

monotone non-increasing with each successive selection. If one is interested in such patterns,

then the test of [43] for umbrella alternatives may be adapted for this case in a straightforward

manner.

If the populations that generated the samples are as in Table 2.3 but the X mean

configuration is {1, 1/4, 0, 0}, then a test using linear scores will not be as powerful as one

using a score function that is decreasing fast at first and slowly at the end. One such

score function is ψ(t) = G−1(1 − t), where G is the Gamma(1/5, 4) distribution. Using the

Wilcoxon score function, for k = 4 selections, 103 replications gave rejection rates of 29%,

and 40% for n1 = n2 values of 5 and 7, respectively. The corresponding rejection rates

for the gamma score function were 40% and 54%. Clearly, the choice of score functions is

important. It is possible to select bent scores as discussed on p. 100 of [44] or Section 4 of

[45]. Alternatively, nonparametric estimates of the optimal score function may be obtained

using the methods of [46] and [47].

Finally, we performed a simulation study with the selections were correlated. This was

done by generating the X sample from a trivariate normal distribution with mean (1, 1/2, 0)
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and an order one autoregressive (AR(1)) covariance matrix with (i, j)th entry ρ|i−j| for

ρ = 0, 0.2, 0.5, 0.9. The rejection rates were nearly the same as the ones in Table 2.3.

2.6.3 Null Simulation for Two Sample Case with Censoring

Similar to the null simulation for the two-sample continuous prey feature case, for this

study, under the nominal α = 0.05, independent, identically distributed samples were gen-

erated from the standard Cauchy (C), central t with 5 degrees of freedom (t5), standard

normal (N), and the standard Laplace (L) distributions. We considered all
(

4
2

)
= 10 possible

combinations of the distributions for the two samples. For the sample sizes we took (n1, n2)

combinations of (3, 10), (3, 3), and (10, 3). For the number of repeated measurements of each

subject we took k = 3, 12. For the censor probability, we took (pj = qj = 0.5) The asymptotic

distribution of W c
ψ is used to determine the null rejection rates. We performed 104 repetitions

and found the proportion of cases for which {W c
ψ − E0(W c

ψ)}/{var0(W c
ψ)}1/2 > 1.645.

Table 2.4: Simulated null rejection rates of W+
ψ using its asymptotic normal critical constant,

ψ(t) ∝ t, α = .05, P (εrj = 1) = P (ξsj = 1) = .5.

k N,N C,N t5, N N,L C,C C, t5 C,L t5, t5 t5, L L, L
n1 = 3, n2 = 10

3 0.0436 0.0479 0.0427 0.0413 0.0431 0.0476 0.0521 0.0402 0.0439 0.0449
12 0.0459 0.0589 0.0460 0.0453 0.0481 0.0572 0.0526 0.0476 0.0469 0.0420

n1 = 3, n2 = 3
3 0.0504 0.0487 0.0509 0.0498 0.0512 0.0523 0.0451 0.0468 0.0524 0.0499
12 0.0469 0.0461 0.0460 0.0441 0.0437 0.0454 0.0431 0.0480 0.0444 0.0446

n1 = 10, n2 = 3
3 0.0445 0.0380 0.0401 0.0472 0.0421 0.0403 0.0404 0.0451 0.0447 0.0445
12 0.0482 0.0383 0.0449 0.0546 0.0460 0.0444 0.0365 0.0466 0.0493 0.0490

It is evident from Table 2.4, Although the same size is very small, n1, n2 just takes

3 and 10, for a very large censor probability pj = qj = 0.5, for all the distribution settings,

the null rejection rate is still fairly close to the nominal α = 0.05.
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Finally, we performed simulations for different censoring probabilities (pj = 0.1, qj =

0.1), (pj = 0.1, qj = 0.9), (pj = 0.25, qj = 0.25), (pj = 0.25, qj = 0.75) and (pj = 0.9, qj =

0.9) . In all these cases, the null rejection rates are all close to the nomial 0.05, with less

censoring probability corresponding to closer to 0.05, which meets our expectation.

2.7 Conclusion

This chapter gave nonparametric rank based test statistics for detecting preference pat-

terns in selective predation by extending the method of [1]. This test statistics can be used

broadly in repeated measures data study. We provided a class of general rank score tests for

the one sample case where we only have one species of predators and prey have two features

of interest. This gives the flexibility to place varied emphasis on consecutive selections at

different stages of the selection experiment. This could be helpful in controlling the manner

in which extraneous variables can affect selection preference patterns.

This chapter also proposes a class of general rank score tests for the difference in preda-

tion patterns of two predatory species, which is a special case for the two-sample repeated

measures data. In this case, prey feature of interest can be continuous or categorical. It is

shown that the test statistic for the categorical case becomes equivalent to the continuous

case if the data have no ties. In both cases, the asymptotic distribution of the test statistic is

Gaussian. We also study the test statistics and its asymptotic properties for the one-sample

and two-sample repeated measures data with random censoring. The results of a simulation

study using the asymptotic Gaussian distribution but small samples shows that the test has

a satisfactory finite-sample performance. The null simulation shows that null rejection rates

are close to nominal α values. The asymptotic test is powerful in detecting simple-ordered

alternatives.
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Chapter 3

Testing the Difference Trend in Two Sample Repeated Measurement Data

3.1 Motivation of the Method

Consider the predator-prey relationship discussed in the previous chapter. The manner

in which the predator selects its prey is crucial for its survival. Several methods have been

given in the past to quantify selective predation. As pointed out in [1], one drawback of

most existing methods is that they do not take into account the order in which different

preys are taken. [1] suggest to use a Wilcoxon statistic to test for food preference while

taking into account the order in which different prey are taken. The use of the Wilcoxon

statistic means that the gradient of selection remains the same throughout the experiment.

In the previous chapter we gave a generalized form of the Wilcoxon statistic used by [1] to

allow experimenters place varied emphasis on the selection gradient at different parts of the

experiment. Further we proposed a method to test the difference in preference patterns of

two different species of predators, where prey feature can be either continuous or categorical.

In this chapter, we are in particular interested in testing whether the rate of prey feature

change in the consecutive selections of one species is faster than that of another species.

Another problem we consider involves an experiment conducted by the Department of

Kinesiology at Auburn University. Let us consider part of the study by [48] concerning the

effect of a single session of high intensity aerobic exercise on inflammatory markers of subjects

taken over time. Eighteen subjects were placed into two groups (High Fitness and Moderate

Fitness) depending on their fitness levels, nine in each group. The response here is the C-

Reactive protein (CRP). Elevated CRP levels are a marker of low-grade chronic inflammation

and may predict a higher risk for cardiovascular disease. Our effect of interest is the trend

of difference of CRP levels between the two groups (High Fitness - Moderate Fitness), we
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are interested in testing whether the difference stays the same over time or decays to zero

over time. Each individual in the two groups was required to finish an exercise session which

consumes 500 kcal. CRP levels were obtained 24 hours and immediately prior to the acute

bout of exercise and subsequently 24, 72 and 120 hours following exercise.

Table 3.1: CRP levels in [48]

id group -24 0 24 72 120
1 LO 1.79 0.78 0.68 0.86 0.83
2 LO 0.09 0.14 0.07 0.14 0.51
3 LO 1.13 0.99 1.06 0.91 0.92
4 LO 2.94 2.07 1.51 1.05 1.03
5 LO 1.82 2.28 2.99 1.95 1.78
6 LO 0.17 0.08 0.29 0.3 0.22
7 LO 0.38 0.19 0.29 0.49 0.26
8 LO 1.32 0.96 1.8 0.82 1.68
9 LO 0.4 0.11 0.25 0.2 0.31
10 HI 0.11 0.19 0.21 0.22 0.08
11 HI 0.15 0.17 0.15 0.11 0.21
12 HI 0.06 0.05 0.05 0.06 0.16
13 HI 0.31 0.2 0.28 0.14 0.24
14 HI 0.21 0.28 0.35 0.1 0.2
15 HI 0.36 0.37 4.54 1.8 1.1
16 HI 0.92 1.23 1.47 0.96 0.81
17 HI 0.52 0.52 0.51 0.31 0.35
18 HI 2.05 1.61 1.35 0.73 0.67

In this example, the data sample size is small, we only have 9 subjects in each group

and each subject has only 5 repeated measurement data. The data are highly skewed and

contain outliers, which we can see from Figure 3.1.

Both the two-sample selective predation problem and the CRP level problem are specific

examples for two sample repeated measurement data, and the problem we are interested in

can be generalized as studying the trend difference between the two samples over repeated

measurements. In the current chapter, we propose a procedure that is analogous to the Page

test [24] to study the trend of the difference between two samples in a repeated measurement

data. Although the Page test is used for randomized complete block designs, we extend it

to the situation where we have two randomized complete block designs. We derive the
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Figure 3.1: Boxplots for CRP levels at time 0 and time 24 for the two groups HI and LO
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asymptotic distribution of a general test statistic that includes the Page statistic as a special

case. This provides an approximate α level test for the changing rates in the simple ordering

case.

3.2 Test Statistic and Theory

Suppose now that we have two populations of repeated measurement data represented

by X and Y , and each subject in the two groups has k repeated measurements. We

will assume that the repeated measurements for each subject are continuously measured.

Suppose we have a random sample n1 from X and n2 = N − n1 from Y to participate in

the experiment. The data from this experiment are presented as an n1 × k matrix X and

n2 × k matrix Y. In both cases, rows represent individuals and columns represent repeated

measurements. Let U = [X′ Y′]′ be the N × k matrix of responses. In the following Jp×q

denotes a p× q matrix of ones and 0p×q ≡ Jp×q − Jp×q is a p× q matrix of zeros.
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Consider the following multivariate linear model

U = αJN×k + C∆ + E , (3.2.1)

α ∈ R is an unknown intercept parameter, C = [J′n1×k 0′n2×k]
′, ∆ = diag(∆1, . . . ,∆k) is a

diagonal matrix of k real unknown parameters, and E is an N × k matrix of random error

terms. In the model in (3.2.1), if we assume that E[E] = 0N×k, then, for any r = 1, . . . , n1

and s = 1, . . . , n2, E(Xrj − Ysj) = ∆j, for j = 1, . . . , k. Thus ∆ is a shift parameter.

We are interested in testing

H0 : ∆1 = · · · = ∆k

HA : ∆1 ≤ · · · ≤ ∆k , with at least one strict inequality.

Rejecting H0 in favor of HA means that the gap between two groups is increasing over time.

Let N∗ = n1n2 and define N∗ × k matrix Z = X⊗ Jn2×1 − Jn1×1 ⊗Y. Let R be the N × k

matrix of row-ranks with (i, j)th element of R is Rij =
∑k

t=1 I{Zit ≤ Zij}. Selection ranks

are

R̃ = R′ × JN∗×1 .

[24] introduced a rank test of H0 versus HA for the case where the ∆’s are parameters of a

randomized complete block design by modifying the Friedman test. Extending this to our

situation, we define an equivalent of the Page L statistic for testing H0 versus H1 as

W = A′kR̃ ,

where A′k = (1, . . . , k). A level α test rejects H0 in favor of HA if W > wα where wα is chosen

to satisfy P0(W > wα) = α. Here P0 stands for the probability measure under the restriction

imposed by H0. The exact value of wα can be determined; however, this is a very tedious

process. So, we opt for deriving an asymptotic test based on the asymptotic distribution of
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W .

We will derive the asymptotic distribution of a more general test statistic of which W is one

special case. To that end, let Ψ = (ψ1, . . . , ψk)
′ be a vector of contrast coefficients such that

ψ1 ≤ · · · ≤ ψk and normalized such that J′k×1Ψ = 0 and Ψ′Ψ = 1.

We then define our “generalized” Page test statistic as

WΨ = Ψ′R̃ . (3.2.2)

The following theorem gives the null expectation and variance of WΨ. The proof is

quite long and is found in the appendix.

Theorem 3.1 Assume that the null hypothesis is true and the score function Ψ are normal-

ized. Then E0(WΨ) = 0 and

var0(WΨ) = Ψ′VΨ

= n1n2
k(k + 1)

12
+ n1n2(n1 + n2 − 2){−(2k − 4)A

− (k − 2)B + (k − 1)(k − 2)C +
3k2 − 11k + 16

12
}

where

A =

∫
P0(U11 − U(n1+1)1 + U(n1+1)2 > t){1− P0(U11 − U11 + U(n1+1)2 > t)}dF (t); ,

B =

∫
{P0(U11 − U(n1+1)1 + U(n1+1)2 > t)}2dF (t) , and

C =

∫
{P0(U11 − U(n1+1)1 + U(n1+1)2 < t)}2dF (t) .

For practical purposes, the quantities A,B, and C in the expression for var0(Wψ) have to be

estimated from available data. One can use the nonparametric estimators Ân1n2 , B̂n1n2 , and

Ĉn1n2 by using the empirical distribution function in the defining integrals. This is equivalent

to using the Riemann sum of the integrals.
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Let Zi, i = 1, . . . , n be a stationary time series, let Zn = 1
n

∑n
i=1 Zi. Assuming the

variance of Zn decay to zero proportional to n−α for some 0 < α ≤ 1, that is, assuming

V ar(Zn) ≈ Cvarn
−α for some constant Cvar > 0. We have short-range dependence in the

case α = 1 and long-range dependence (or long memory) in the case α < 1. It is usual

to characterize a long-memory process by the number H = 1 − α/2, the so called Hurst

parameter. In the following, we will show that test statistic WΨ is a sum of a long-memory

process. We can write

V ar0(WΨ) = n1n2C1(k) + n1n2(n1 + n2 − 2)C2(k)

V ar0(WΨ) =
1

N∗
C1(k) +

N − 2

N∗
C2(k)

where C1(k) and C2(k) are functions of k and N∗ = n1n2. When N∗ tends to ∞, we can

rewrite V ar0(WΨ) as:

V ar0(WΨ) ≈ C2(k)N∗(2H−2)

where the Hurst parameter H = 1
2

(
log(n1+n2)

log(n1)+log(n2)
+ 1
)

with α = 2− 2H < 1 and

H → 3/4 as min(n1, n2)→∞ .

If we rewrite the test statistic (3.2.2) as

WΨ =

n1∑
i=1

n2∑
j=1

Ψ′Rij =

n1∑
i=1

Ti

then

WΨ =
1

N∗

n1∑
i=1

n2∑
j=1

Ψ′Rij =

n1n2∑
i=1

Ti
n1n2

where we assume Ti, i = 1, . . . , n1 is a stationary process. So we conclude WΨ is a sum of

long-memory process.
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To continue our discussion, we need to assume that there is a function G ∈ L2(R), such

that Ti/n2 = G(Xi), where Xi is a stationary Gaussian process with long memory. The

Hurst parameter is now m = inf{k > 0 : ck 6= 0}, where k is the coefficient in the Hermite

polynomial expansion of G as G(x) =
∑∞

k=0
ck
k!
Hk(x) .

Theorem 3.2 Let Gm be the class of all functions in L2(R) with Hermite rank m. Let

G ∈ Gm and Xt is a stationary Gaussian process with long-range correlation and Sn =∑n
t=1 G(Xt). Then the following holds:

• If 1/2 < H < 1− 1/(2m), then

σ2
S = lim

n→∞
n−1

n∑
j,l=1

E[G(Xj)G(Xl)]

exists and

S∗n = n−
1
2Sn → S in distribution as n→∞

where S is a normal random variable with zero mean and variance σ2
S

• If 1− 1/(2m) < H < 1, then

S∗n = n−1−m(H−1)Sn →
√
cm
am
m!
Zm in distribution,

where

cm =
2cmγ m!

(1−m(2− 2H))(2−m(2− 2H))

cmγ is a dealing with Xt and Zm is a nondegenerate random variable.

Let us discuss the possible values of m.
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1. If m > 2, 1/2 < 3/4 = H < 1 − 1/(2m), which falls under case 1 of Theorem 3.2, in

which σ2
S = lim

n→∞
n−1

n∑
j,l=1

E[G(Xj)G(Xl)] exists. In our case,

lim
n→∞

n−1

n∑
j,l=1

E[G(Xj)G(Xl)] = lim
n1→∞

n−1
1

n1∑
j,l=1

E[
Tjn
n

Tln
n

] ≈ lim
n1→∞

(n1 − 1)Gk =∞

where Gk is a function of k. So we conclude that this can not be the case, m > 2 is

not true.

2. If m = 2, which falls under case 2 of Theorem 3.2, but in this case, the distribution of

Zm is complicated.

3. If m = 1, which still falls in case 2 of Theorem 3.2. In our case, we can get that

N∗HWΨ
D−→
√
cmamN(0, 1)

where
√
cmam is a constant we need to estimate. Since V ar0(WΨ) ≈ C2(k)N∗(2H−2),

we get V ar0(W) = C2(k)N∗2H , we can use
√
C2(k) as an estimator of the constant

√
cmam.

We will use simulation to show this is the case.

3.3 Monte Carlo Simulation

3.3.1 Null Simulation

First we perform a null simulation for the two-sample continuous prey feature case

under the nominal α = 0.05. For this study, independent, identically distributed samples

are generated from the standard Cauchy (C), central t with 5 degrees of freedom (t5),

standard normal (N), and the standard Laplace (L) distributions. For the sample sizes we

take combinations (n1, n2) as (2, 2), (2, 4),(2, 7),(2, 10),(4, 4),(4, 7),(4, 10),(7, 7),(7, 10), and

(10, 10). For the number of selections of each subject we take k = 5. The asymptotic
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distribution given in Theorem 3.2 is used to determine the null rejection rates. We perform

104 repetitions and find the proportion of cases for which (n1n2)HWψ/
√
C2(k) > 1.645.

We note that for all the distribution combinations, the null rejection rate are all close to

Table 3.2: Simulated null rejection rates of Wψ using its asymptotic normal critical constant,
ψ(t) ∝ t, α = .05 and k = 5.

(n1, n2) N,N C,C t5, t5 L,L

2,2 0.0555 0.0590 0.0537 0.0574
2,4 0.0550 0.0613 0.0539 0.0580
2,7 0.0577 0.0554 0.0612 0.0553
2,10 0.0601 0.0586 0.0575 0.0616
4,4 0.0611 0.0558 0.0569 0.0569
4,7 0.0507 0.0522 0.0548 0.0571
4,10 0.0512 0.0529 0.0549 0.0548
7,7 0.0551 0.0536 0.0520 0.0548
7,10 0.0524 0.0591 0.0547 0.0509
10,10 0.0545 0.0524 0.0521 0.0522

and a little above the nominal α = 0.05 despite using the asymptotic distribution as the

underlying distribution for such small samples. We can conclude that in Theorem 3.2, we

should take m = 1, and
√
C2(k) is a fine although not perfect estimate of the constant

√
cmam. To improve the simulation result, we need to find a better estimate than

√
C2(k)

for the constant
√
cmam.

3.3.2 Results for the data in [48]

For the data set in [48], we are interested in testing the following hypothesis:

• H0 : The difference between two groups stays the same.

• Ha : The difference between two groups decays to zero.

Using the nondecreasing normalized linear score function and the asymptotic Gaussian dis-

tribution of the test statistic Wψ, we find that the p− value=.466. We would not reject H0

using this p− value and we conclude that the difference between the two groups (Moderate

Fitness and High Fitness) does not decay to zero, which we can also see from the Figure 3.2

.
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Figure 3.2: Mean and median profiles for the CRP levels in two groups HI and LO
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In both the two figures, the horizontal axis denotes the times at which we obtain the

CRP values for each individual. The first figure shows the mean CRP levels in each group

(Moderate Fitness and High Fitness) at the five time points. The second figure shows the

median CRP levels in each group (Moderate Fitness and High Fitness) at the five time

points. Since from figure 3.1 we know the data is highly skewed and there are outliers

in this data, we prefer to use the median profile, which clearly verify our result that the

difference of CRP levels between the two groups does not decay to zero over time.

3.4 Conclusion

If we already have enough evidence to conclude that two species of predator tend to

choose different prey, then we may want to study the difference further, for example, to

compare the trends of the two selection patterns. In this chapter, we proposed a rank

based method to test the trend between two samples in repeated measurement data. We
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establish the asymptotic normality of the test statistic. Our simulation study showed that

the asymptotic test retains the nominal Type I error rate. If we want to test the trend of

the difference of the opposite direction, that is, Ha : ∆1 ≥ ∆2 ≥ . . . ≥ ∆k with at least

one strict inequality, then we can just multiply the generalized normalized non-decreasing

weight function by -1. This will not affect the asymptotic properties of the test statistic.
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Chapter 4

Iteratively Reweighted Rank Regression Estimator

4.1 Introduction

In this chapter, we introduce and study IRLS rank estimators. This method of es-

timating rank regression parameters is essential in developing a general rank approach to

generalized estimating equations (GEE). We shall reconsider testing in the two-sample re-

peated measures problems using rank GEE methods in the next chapter. Moreover, using

the rank GEE approach we will develop a program for rank testing and estimation of treat-

ment effects for repeated measurement models with the response distribution assumed to be

continuous and in the exponential family of distributions.

Consider the general linear model

Y = Xβ + e , (4.1.1)

where β ∈ Rp is a vector of unknown parameters, Y ∈ Rn denotes the response vector, and

X denotes the n× p design matrix of predictors. The random error vector e = (e1, . . . , en)T

is such that e1, . . . , en are independent and identically distributed according to a distribution

function F with density f .

Least squares (LS) procedures are widely used for the analysis of linear models such

as the one given in (4.1.1). In addition to their mathematical clarity, they offer the user a

unified methodology with which to attack many diverse problems. The LS estimator of β in

(4.1.1) is given by

β̂LS = Argmin
β∈Rp

‖Y −Xβ‖2 ,
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where ‖ · ‖2 is the squared Euclidean norm; that is ‖v‖2
LS =

∑n
i=1 v

2
i for v ∈ Rn. The LS

estimator is given by β̂LS = (X
′
X)−1X

′
Y. Under regularity conditions, the large sample

distribution is given by

β̂LS
D−→N(β, σ2(X

′
X)−1) .

Since the LS estimator minimizes the Euclidean distance between the response vector and the

space defined by the linear model, the LS estimator is not robust to outliers and skewness.

There are several classes of robust estimators that are analogous to the traditional LS

estimators. They are usually obtained by replacing the Euclidean norm with another norm.

Furthermore, depending on the selected norm, the analysis can be made robust and highly

efficient compared to the LS analysis. A popular rank-based estimator uses the rank semi-

norm instead of the Euclidean norm. The rank semi-norm on Rn is given by

‖v‖R =
n∑
i=1

a(R(vi))vi , v ∈ Rn

where R(vi) denotes the rank of vi among v1, . . . , vn, a(i) = φ(i/(n + 1)) and φ(u) is the

score function, which can be any nondecreasing function on (0, 1). The fact that this is a

semi-norm is shown in [49]. The rank estimate of β is a vector β̂R such that

β̂R = Argmin
β∈Rp

‖Y −Xβ‖R .

This method was proposed by [33]. Under regularity conditions found in Chapter 3 of [44],

the asymptotic distribution of the rank estimator is given by

β̂R
D−→N(β,VR) , (4.1.2)

where VR = τ 2(X
′
X)−1 with

τ−1 =

∫ 1

0

φ(u)

{
−f

′(F−1(u))

f(F−1(u))

}
du . (4.1.3)
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A common rank estimator is the Wilcoxon estimator that uses φ(u) =
√

12(u− 0.5). In this

case, τ−1 =
√

12
∫∞
−∞ f

2(t)dt.

It can be shown that the rank estimate solves the estimating equations X
′
a(Y−Xβ) =

0, where a(Y−Xβ) denotes the n-vector with ith component a[R(Yi− x
′
iβ)]. The solution

cannot be obtained in closed form, but there are some algorithms available for obtaining an

approximate solution [44]. One approach proposed by [34] uses iteratively reweighted least

squares (IRLS) to estimate β̂R. The appeal of this method is its simplicity and that it can

be obtained using any package that can compute LS estimates.

The purpose of this chapter is to evaluate the finite sample performance of the IRLS

estimate of β̂R and its variance. We provide computational algorithms as well as simulation

results pertaining to the estimator, its variance, and its influence function.

4.2 Reweighted Least Squares Formulation

For any β ∈ Rp, let ri(β) denote the ith residual Yi−xTi β and r(β) = (r1(β), . . . , rn(β))T .

Now β̂n minimizes the dispersion function

Dn(β) := ‖r(β)‖R =
n∑
i=1

φ

{
R(ri(β))

n+ 1

}
ri(β) . (4.2.1)

We will assume that the score generating function φ is standardized so that
∫ 1

0
φ(u)du = 0

and
∫ 1

0
φ2(u)du = 1. Since φ is nondecreasing, φ(ν) = 0 for some ν ∈ (0, 1) and ν is such

that φ(u) ≤ 0 (≥ 0) whenever u ≤ ν (u ≥ ν). Let mν(β) be the νth quantile of the

ri(β), i = 1, . . . , n. The dispersion function in (4.2.1) may be written as

Dn(β) =
n∑
i=1

φ

{
R(ri(β))

n+ 1

}
[ri(β)−mν(β)]

=
n∑
i=1

wi(β)[ri(β)−mν(β)]2
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where

wi(β) =


φ
{
R(ri(β))

n+1

}
ri(β)−mν(β)

, if |ri(β)−mν(β)| 6= 0 ,

0 , if |ri(β)−mν(β)| = 0 .

Due to the centering of the residuals by mν(β), the weights, wi(β), are nonnegative. The

expression above suggests an iterative scheme. Given the kth step estimate, β̂k, the (k+1)th

step estimate β̂k+1 minimizes the (k + 1)th step dispersion given by

D∗n(β|β̂k) =
n∑
i=1

wi(β̂k)((Yi − xTi β)−mν(β̂k))
2, k = 0, 1, . . . , (4.2.2)

that is

β̂k+1 = Argmin
β

D∗n(β|β̂k) .

Such algorithms have been considered in the past for computing estimators. [50] used such a

method to obtain least absolute deviation estimators. [51] used a similar strategy to obtain

M-estimates of regression coefficients. [52] develop an IRLS algorithm for the dispersion

function given by (4.2.1) but centering using the mean of the residuals at every step.

It is shown in [34] that
√
n‖β̂k − β̂n‖ → 0 in probability as n → ∞ for every k ≥ 1

under some regularity conditions including the consistency of the initial estimator β̂0. They

argued that since the asymptotic properties of β̂n are known, the asymptotic properties of

β̂k are also known and equivalent to those of β̂n for every k ≥ 1. What are not known,

however, are the finite sample properties of β̂k.

It is well known that the LS estimator is more efficient than the rank estimator when

the error distribution is normal and the rank estimator has higher asymptotic efficiency than

the LS estimator when the error distribution has long tails [44]. For finite samples, however,

we expect the IRLS estimator discussed in this chapter to borrow some of its properties from

LS. As such, we hypothesize that the IRLS estimator will have higher efficiency than both

the LS and the rank estimators for error distributions with moderate tail thicknesses.
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4.3 Computational Details and Results

4.3.1 Algorithm for Estimating Regression Coefficients

Let Y ∗i (β) = Yi −mν(β). Taking the derivative of equation (4.2.2) with respect to β

and setting the resulting expression equal to 0 we obtain

∑
i

wi(β̂k)[Y
∗
i (β̂k)− xTi β]xi = 0 (4.3.1)

which is the weighted LS estimating equation for the model Y ∗i (β̂k) = xTi β+εi , 1 ≤ i ≤ n.

Given an initial estimate β̂0, we find the (k + 1)th step IRLS estimate as

β̂k+1 = (X′W(β̂k)X)−1X′W(β̂k)(Y −mν(β̂k)) (4.3.2)

for k = 0, 1, . . ..

Here we describe the algorithm used for computing the rank estimate of β using IRLS.

Algorithm 4.1

1. Let the initial estimator β̂0 be given. Set cw and cβ to small positive numbers (usually

10−5) and set k = 1.

2. If |ri(β̂k−1)−mν(β̂k−1)| < cw, then set wi(β̂k−1) = 0 for i = 1, . . . , n. Set W(β̂k−1) =

diag(w1(β̂k−1), . . . , wn(β̂k−1)).

3. Calculate β̂k = (X
′
W(β̂k−1)X)−1X

′
W(βk−1)(Y −mν(β̂k−1))

4. If ‖β̂k − β̂k−1‖ > cβ‖β̂k−1‖, then set k = k + 1 and return to step 2; else, stop.

We compare our approach to that of the traditional approach of obtaining the rank estimate

of β. The traditional approach uses the quasi-Newton algorithm proposed by [53]. It per-

forms a Newton step starting with an initial estimate. It then checks if the step is successful

in reducing the dispersion function. If the step is successful, then it will continue Newton
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step iterations. Otherwise, it performs a linear search to bracket the solution. We will use

the Wilcoxon semi-norm and the R code given by [54] that uses quantile regression methods

of [55] to compute the estimate using the traditional approach. This code is available at

http://www.stat.wmich.edu/mckean/HMC/Rcode. We will refer to the estimate obtained

using this method the HM estimate.

The simulation considers estimating β = (β2, β3, β4)T in the model

Yi = β1 + β2x2i + β3x3i + β4x4i + ei , i = 1, . . . , n .

We generated xji from the Uniform(0, 10j) distribution, j = 2, 3, 4. The errors ei were

randomly generated from the t distribution or the contaminated normal distribution in each

repetition. We shall set the true parameter β = (0, 0, 0)T ; that is we take Yi = ei.

In repetition b, let the estimates of β obtained using IRLS, HM, and LS be β̂
(b)
Ij , β̂

(b)
HMj,

and β̂
(b)
LSj, respectively, for j = 2, 3, 4 and b = 1, . . . , B. The average mean squared error

estimates IRLS, HM, and LS are found as

M̂SEI =
1

3B

3∑
j=1

B∑
b=1

(β̂
(b)
Ij − β)2 ,

M̂SEHM =
1

3B

3∑
j=1

B∑
b=1

(β̂
(b)
HMj − β)2 , and

M̂SELS =
1

3B

3∑
j=1

B∑
b=1

(β̂
(b)
LSj − β)2 ,

respectively. The estimated relative efficiencies of IRLS with respect to HM and LS are

RE(I,HM) =
M̂SEHM

M̂SEI

and RE(I, LS) =
M̂SELS

M̂SEI

,

where RE > 1 indicates that IRLS is more efficient than the corresponding procedure.
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The t distribution was chosen as an error distribution since it covers a wide range of

tail thicknesses starting with the Cauchy (t1) to the normal (t∞). The contaminated normal

distribution is ideal for studying the effect of outliers on estimates. We will consider a scale

contamination of the N(0, 1) distribution which is created by sampling a proportion 1 − ε

of the time from the N(0, 1) distribution and a proportion ε of the time from the N(0, σ2)

distribution. We will use CN(ε, σ) to represent the contaminated normal distribution whose

distribution function is given by

Fε,σ(x) = (1− ε)Φ(x) + εΦ(x/σ) ,

where Φ is the standard normal distribution function. Table 4.1 and 4.2 give the results of our

simulation study for B = 5000 repetitions. As can be seen in Table 4.1, when the errors are

Table 4.1: Relative efficiencies of IRLS versus HM and LS when the errors follow a tdf distribution

df = 3 df = 6 df = 12
n HM LS HM LS HM LS
10 0.981 1.267 1.051 1.042 1.057 .987
15 0.965 1.474 1.024 1.040 1.046 .993
20 0.945 1.433 1.011 1.065 1.039 1.005

generated from the tdf distribution, HM is more efficient than LS and IRLS when the error

distribution is heavy tailed (df = 3). LS is more efficient than HM and IRLS when the tail

of the distribution approaches the tails of the normal distribution (df = 12). IRLS is more

efficient than HM and LS for a moderate-tailed distribution (df = 6). Table 4.2 contains

Table 4.2: Relative efficiencies of IRLS versus HM and LS when the errors follow a CN(ε, 3) dis-
tribution

ε = 0 ε = .05 ε = .10
n HM LS HM LS HM LS
10 1.096 .970 1.040 1.062 1.041 1.022
15 1.059 .968 1.011 1.094 .984 1.146
20 1.057 .974 .996 1.117 .957 1.182

results of the case where the error distribution is N(ε, 3). The results for CN(ε, 5) were
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similar; hence omitted. It is clear that LS is the most efficient of the three when the error

distribution is normal (ε = 0). For large contamination (ε = .10), HM is more efficient than

LS and IRLS except for very small sample sizes. IRLS seems to have superior performance

for such cases. IRLS is the most efficient of the three for moderate contamination (ε = .05).

4.3.2 Variance Estimator

Suppose β̂k is the consistent kth step IRLS estimator of β. Given β̂k, the variance of

β̂k+1 given in (4.3.2) is

V̂ = E[V ar(β̂k+1|β̂k)] + V ar[E(β̂k+1|β̂k)] ,

where

V ar(β̂k+1|β̂k) = [(X′W(β̂k)X)−1X′W(β̂k)]V ar(Y)[(X′W(β̂k)X)−1X′W(β̂k)]
′ (4.3.3)

and

E(β̂k+1|β̂k) = (X′W(β̂k)X)−1X′W(β̂k)(X
′β −mν(β̂k))

= β − (X′W(β̂k)X)−1X′W(β̂k)mν(β̂k) (4.3.4)

We will use the leave-one-out procedure described below to obtain estimates of (4.3.3) and

(4.3.4).

Algorithm 4.2

1. For i = 1, . . . , n, leave the ith observation out, calculate the regression coefficient β̂
(i)

using the (n − 1) observations in Algorithm 4.1. Let the number of steps required to

converge be k(i) + 1.

2. Use (4.3.3) and (4.3.4) to calculate V ar(β̂
(i)

k(i)+1|β̂
(i)

k(i)) and E(β̂
(i)

k(i)+1|β̂
(i)

k(i))
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3. Set V̂1 = 1
n

∑n
i=1 V ar(β̂

(i)

k(i)+1|β̂
(i)

k(i)) and V̂2 = V ar( 1
n

∑n
i=1E(β̂

(i)

k(i)+1|β̂
(i)

k(i))).

4. Take V̂ = V̂1 + V̂2 as estimate of V.

In the literature, there are a number of proposed methods to estimate V = τ 2(X′X)−1. All

of them are based on estimating τ from the set of residuals via either considering lengths of

nonparametric intervals based on the Walsh averages of the residuals [53] or nonparametric

density estimation [56]. We shall compare our estimates of V obtained through Algorithm 4.2

to that of [56]. The algorithm of [56], described briefly here, is implemented in the R code

of [54].

The method of [56] uses kernel density estimates with rectangular kernels. Let ê1, . . . , ên

be the estimated residuals and let

Ĥn(y) =
1

n

n∑
i=1

n∑
j=1

[φ∗(j/n)− φ∗(i/n)]I(|ê(i) − ê(j)| ≤ y),

where

φ∗(u) =
φ(u)− φ(0)

φ(1)− φ(0)
.

A consistent estimator of τ is given by

τ̂ =

√
n

n− p− 1

{
[φ(1)− φ(0)]Ĥn(Ĥ−1

n (δ))/
√
n

2Ĥ−1
n (δ)/

√
n

}−1

.

The recommended values of δ are 0.8 if n > 5p and 0.9 otherwise. Similar to the case of

coefficients, we will refer to the estimate of the variance obtained this way as HM.

In the following, we perform a Monte Carlo comparison of the variances of the IRLS

method to HM. The setting of the study is the same as the one used in Subsection 4.3.1

and the MSEs are computed in a similar fashion. Since the distribution of the errors is

specified in the simulation, the true value of τ is found via exact or numerical integration

using τ−1 =
√

12
∫∞
−∞ f

2(t)dt. The relative efficiencies of IRLS versus HM using the average

MSEs are given in Tables 4.3 and 4.4. We can see from Table 4.3 that when the errors
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Table 4.3: REs of V̂ of IRLS vs HM when ei ∼ tdf

n df = 3 df = 6 df = 12
10 .481 6.608 3.674
15 .391 2.200 2.482
20 .044 1.413 1.710

follow the tdf distribution, HM is more efficient for heavier tailed distributions (df = 3)

and IRLS is more efficient for moderate and light tailed distributions (df = 6, 12). From

Table 4.4: REs of V̂ of IRLS vs HM when ei ∼ CN(ε, 3)

n ε = 0 ε = .05 ε = .10
10 9.907 2.827 3.809
15 3.871 1.775 1.916
20 2.431 .855 .347

Table 4.4, we observe that for the CN(ε, 3) distribution, HM is more efficient for larger

contamination (ε = .05, .10) when the sample size is relatively large (n = 20). Generally

IRLS gives more efficient estimates when there is no contamination ε = 0 or the sample size

is small (n = 10, 15).

4.3.3 Influence Function

One measure of robustness is the influence function [57] which measures the amount of

change in the estimator that can be brought about by an infinitesimal local contamination.

Following the approach of [58], we can derive the influence function of β̂k+1 given in (4.3.2)

at a given point (x0, y0). Let r = y−x′β and define Aw = Γ−1
w Λw and z(x0, y0) = Γ−1

w w(y0−

x′0β)(y0 − x′0β)x0, where

Λw = −E
[
r
∂w

∂r
xx′
]

and Γw = E[wxx′] .
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Now the influence function of β̂k+1 at (x0, y0) is

IF(β̂k+1; x0, y0) =
k∑
i=0

Aiwz(x0, y0) + Ak+1
w IF(β̂0; x0, y0) .

Note that for our weights

z(x0, y0) = Γ−1
w φ(F (y0 − x′0β))x0 .

So, IF(β̂k+1; x0, y0) will be bounded in the y-direction if we use a bounded score function

φ and IF(β̂0; x0, y0) is bounded in the y-direction. However, IF(β̂k+1; x0, y0) remains un-

bounded in the x-direction regardless of the boundedness of IF(β̂0; x0, y0). This is in fact

true for rank estimates. Rank estimates that achieve bounded influence have been given by

[47] and [59]. These use the so-called weighted Wilcoxon dispersion function proposed by

[60]. The resulting dispersion function is not the same as the one in (4.2.1).

To evaluate the robustness of the IRLS estimator in finite sample cases, we performed

a Monte Carlo analysis using the sensitivity curve of the estimator. The sensitivity curve is

the empirical influence function defined by [61, 62]

SCn(z) =
β̂(z,Z1, . . . ,Zn)− β̂(Z1, . . . ,Zn)

1/(n+ 1)
,

where Zi = (Xi, Yi) for i = 1, . . . , n, z ∈ Rp+1, and β̂(Z1, . . . ,Zn) represents the estimator

of β based on the observations Z1, . . . ,Zn. This is used to get an idea of the sensitivity of

β̂ to local changes.

We performed a Monte Carlo analysis of the sensitivity of the IRLS estimator. In our

simulation, we considered a simple linear model through the origin given by

Yi = βXi + εi , i = 1, . . . , 100 ,
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where Xi ∼ N(0, 1), εi ∼ N(0, 16−1), and the true value of β was taken to be zero. We

obtained 1000 IRLS estimates of β, each time using the generated data and after a point

(x, y) ∈ {(−15,−15), (−14.9,−14.9), . . . , (15, 15)} was added. As initial values, we used

the least squares estimate of β as well as the high-breakdown and bounded influence MM

estimate of [63]. The average sensitivity curve of the initial (left panel) and the fully iterated

IRLS estimate (right panel) are given in Figure 4.1. It is clear from the figure that MM is

Figure 4.1: Sensitivity Curves
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a robust estimator while LS has an unbounded sensitivity curve. It is also clear that, even

when we start with a highly robust estimator, the IRLS estimate of β remains sensitive to

outlying values in the data.
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4.4 Tests of Linear Hypotheses

Consider testing a general linear hypothesis of the form

H0 : Aβ = 0 versus H1 : Aβ 6= 0 (4.4.1)

where A is a q× p hypothesis matrix with rank q. For example, when A is the p× p identity

matrix, H1 corresponds to regression significance. The Wald test rejects H0 if

T 2 = (Aβ̂)′(AV̂A′)−1(Aβ̂) (4.4.2)

is larger than χ2
1−α(q). However, as shown in [64], for finite samples, a better test rejects

H0 if T 2/q > F1−α(q, n − p − 1), where F1−α(q, n − p − 1) corresponds to the (1 − α)100%

percentile of the F distribution with q and n− p− 1 degrees of freedom.

We now perform a small Monte Carlo simulation to compare the performance of T 2

obtained via IRLS and HM. To this end, we consider the model used in Subsection 4.3.1

with n = 30. We are interested in testing

H0 : β = 0 versus H0 : β 6= 0 .

This is equivalent to using A = I3, the 3 × 3 identity matrix, in the general linear hypoth-

esis (4.4.1). Table 4.5 contains the proportion of rejections under H0 in 1000 repetitions.

Table 4.5 shows that the Wald test based on IRLS appears to overestimate the nominal α

Table 4.5: Empirical α levels for IRLS vs HM

N(0, 1) CN(.1, 3)
.01 .05 .10 .01 .05 .10

IRLS .024 .072 .129 .012 .063 .083
HM .004 .035 .074 .005 .037 .070
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and the Wald test based on HM underestimates α. IRLS comes closer to the nominal α in

the case of contaminated normal errors.

4.5 Conclusion

For linear models, the least squares estimator of the regression coefficient is optimal

if the error distribution is normal. For distributions with longer tails than the normal,

however, rank estimators are more efficient than the least squares estimator. [34] proposed

an IRLS method for estimating rank estimators. In this chapter, we study the finite sample

performance of the IRLS method. For Wilcoxon scores, using the LS estimate as an initial

estimate, we find that the IRLS algorithm leads to estimates whose efficiency is between

those of the LS and rank estimates obtained using the algorithm of [54]. The LS estimates

are efficient when the distribution of the error is short-tailed. The algorithm of [54] gives

efficient estimates when the distribution of the error is long-tailed while the IRLS algorithm

gives efficient estimates when the distribution of the error is moderate-tailed. It is also

observed that there is a need for an IRLS formulation of bounded influence rank estimators

[47]. The boundedness of the initial estimator is a necessary condition for the boundedness

of the influence function of IRLS estimator, but it is not sufficient.
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Chapter 5

IRLS Estimation of Rank Generalized Estimation Equations Model

5.1 Introduction

The analysis of data resulting from repeated measurement designs such designs often be-

comes complicated because of the non-zero within-subject correlation. To avoid this problem

[10] proposed the Generalized Estimation Equations (GEE) Model, an extension of general-

ized linear models to the analysis of longitudinal data. They introduced a class of estimating

equations that give consistent estimates of the regression parameters and of their variance

under mild assumptions about the time dependence. The estimating equations are derived

without specifying the joint distribution of a subject’s observations yet they reduce to the

score equations for multivariate Gaussian outcomes. The GEE specify only the relation-

ship between the marginal mean of the response variable and covariates. Within-subject

correlation is then accounted for through a ’working’ correlation matrix.

Since then, the GEE model has been used to deal with many specific data models, for

example, for binary models [65] [66], in nonlinear regression models [67], in proportional

odds model [68], in Binomial model [69] [70], in logistic model [71], in contingency tables

[72], in mixed logistic models [73], in normally distributed models [74].

However, the solution of GEEs proposed by [10] is obtained using an iterated reweighted

least squares fitting which is not robust. One solution proposed by [30] is by introducing a

diagonal weight matrix for the within-subject correlation into the estimating equations. An-

other solution is one given by [31] who proposed an adaption of the Wilcoxon-Mann-Whitney

method of estimating linear regression parameters for use in longitudinal data analysis under

the working independence model. They used joint ranking (JR) of all observations in their

development. [32] consider the same model as [31] but they use separate between-subject
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and within-subject ranks to specify their Wilcoxon-Mann-Whitney estimating equation. [2]

proposed a rank-based fitting procedure that only involves substituting a norm based on a

score function for the Euclidean norm used by [10]. Their subsequent fitting, while also an

iterated reweighted least squares solution to GEEs, is robust to outliers in response space

and further the weights can easily be adapted for robustness in factor space.

In this Chapter, we will first introduce the ordinary Least Square based GEE models

proposed by [10] and the Iterated Reweighted Rank-Based Estimates for GEE models. Then

under similar assumptions, we introduce our selective predation pattern problem as a special

case of the two different GEEs.

5.2 Ordinary LS based GEE models

Consider a longitudinal set of observations over K subjects, let yij denote the jth re-

sponse for the ith subject for j = 1, 2 . . . , ni and i = 1, 2, . . . , K. Assume that xij is a p× 1

vector of corresponding covariates. Let N =
∑K

i=1 ni denote the total sample size. Assume

that the marginal distribution of yij is of the exponential class of distributions and is given

by

f(yij) = exp[yijθij − a(θij) + b(yij)]φ (5.2.1)

where φ > 0, θij = h(ηij) and ηij = xTijβ. Thus the mean and variance are given by

E(yij) = a
′
(θij) and V ar(yij) = a

′′
(θij)/φ

In this notation, the link function is h−1 ◦ (a
′
)−1.

Let Yi = (yi1, . . . , yini) and Xi = (xi1, . . . , xini) denote the ni×1 vector of response and

the ni × p matrix of covariates, respectively, for the ith individual. We consider the general

case where the components of the vector of responses for the ith subject, Yi, are dependent.

Let θi = (θi1, θi2, . . . , θini)
T , so that E(Yi) = a′(θi) = (a′(θi1), . . . , a′(θini))

T . For a s × 1

vector of unknown parameters α, let Ri = Ri(α) denote a ni×ni correlation matrix. Define
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the matrix

Vi = A
1/2
i Ri(α)A

1/2
i /φ (5.2.2)

where Ai = diag(a
′′
(θi1), . . . , a

′′
(θini)). We refer to Ri as the working correlation matrix. Vi

will be equal to cov(Yi) if Ri(α) is the true correlation matrix for the Yi. For estimation, let

V̂i be an estimate of Vi and R̂i be an estimate of Ri, which, in general, requires estimation

of α and often an initial estimate of β. In general, we will denote the estimator of α by

α̂(β, φ) to reflect its dependence on β and φ.

Liang and Zeger (1986) defined their estimate in terms of general estimation equations

(GEE). Define the ni × p Hessian matrix,

Di =
∂a′(θi)

∂β
, i = 1, . . . , K

Then their GEE estimator β̂LS is the solution to the equations

∑K

i=1
DT
i V̂−1

i [Yi − a′(θi)] = 0. (5.2.3)

which we denoted by ∑K

i=1
Ui[β, α̂{β, φ̂(β)}] = 0

We can define the dispersion function in terms of the Euclidean norm.

DLS(β) =
∑K

i=1
[Yi − a′(θi)]

T V̂−1
i [Yi − a′(θi)]

=
∑K

i=1
[V̂
− 1

2
i Yi − V̂

− 1
2

i a′(θi)]
T [V̂

− 1
2

i Yi −V
− 1

2
i a′(θi)]

=
∑K

i=1

∑ni

j=1
[y∗ij − dij(β)]2
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where Y∗i = V̂
− 1

2
i Yi = (y∗i1, . . . , y

∗
ik)

T , dij(β) = cTj a′(θi), and cTj is the jth row of V̂
− 1

2
i . The

gradient of DLS(β) is

∇DLS(β) = −
∑K

i=1
DT
i V̂−1

i [Yi − a′(θi)]. (5.2.4)

Thus the solution to (5.2.3) also can be expressed as

β̂LS = ArgminDLS(β) (5.2.5)

From this point of view, β̂LS is a nonlinear least squares (LS) estimator. The following

theorem given by [10] establishes the asymptotic normality of β̂LS.

Theorem 5.1 Under mild regularity conditions and given that:

A.1 α̂ is K
1
2 -consistent given β and φ.

A.2 φ̂ is K
1
2 -consistent given β; and

A.3 |∂α̂(β, φ)/∂φ| ≤ H(Y, β) which is Op(1).

Then K
1
2 (β̂LS − β) is asymptotically multivariate Gaussian with zero mean and covariance

matrix VLS given by

VLS = lim
K→∞

K(
∑K

i=1
DT
i V−1

i Di)
−1{
∑K

i=1
DT
i V−1

i cov(YiV
−1
i Di)}(

∑K

i=1
DT
i V−1

i Di)
−1

5.3 Iterated Reweighted Rank-Based Estimates for GEE Models

[75] developed a class of nonlinear robust estimators. Similar to nonlinear LS estimators,

these estimators minimize a norm of the residuals where, for a vector v ∈ Rn, the norm is

defined by

‖v‖ =
n∑
i=1

ψ[r(vi)/(n+ 1)]vi

56



where r(vi) denote the rank of vi among v1, . . . , vn and the score function ψ(u) is a nonde-

creasing, square-integrable function defined on the interval (0, 1), Without loss of generality,

we standardized ψ so that

∫
ψ(u)du = 0 and

∫
ψ(u)2du = 1

For nonnegative weights, we need one other assumption on the score function. For discussion,

we also assume that the score function is odd about 1/2; that is

ψ(1− u) = −ψ(u)

let Y∗i = V̂
1
2
i Yi = (y∗i1, . . . , y

∗
ik)

T ,gij(β) = cTj a
′
(θi), where cTj is the jth row of V̂

1
2
i , and let

G∗i = [gij]. The rank-based dispersion function is given by

DR(β) =
∑K

i=1

∑ni

j=1
ψ[r(y∗ij − gij(β))/(n+ 1)][y∗ij − gij(β)] (5.3.1)

We next write the R estimator as weighted LS estimator. From this representation the

asymptotic theory of the R estimator can be derived. Furthermore, it naturally suggests

an IRLS algorithm. Let eij = y∗ij − gijβ denote the (i, j)th residual and let m(β) =

med(i,j){eij(β)} denote the median of all the residuals. Then because the scores sum to

0, we have the identity,

DR(β) =
∑K

i=1

∑ni

j=1
ψ[r(eij(β))/(n+ 1)][eij(β)−m(β)]

=
∑K

i=1

∑ni

j=1

ψ[r(eij(β))/(n+ 1)]

eij(β)−m(β)
[eij(β)−m(β)]

=
∑K

i=1

∑ni

j=1
wij(β)[eij(β)−m(β)]2

where wij(β) = ψ[r(eij(β))/(n+ 1)]/[eij(β)−m(β)] is a weight function. As usual, we take

wij(β) = 0 if eij(β)−m(β) = 0. Note that the weights are nonnegative.
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Now let β̂
(0)

R denote an initial estimator of β. As estimates of the weights, we use

ŵij(β̂
(0)

R ); i.e., the weight function evaluated at β̂
(0)

, we have the dispersion function

D∗R(β|β̂
(0)

R ) =
∑K

i=1

∑ni

j=1
ŵij(β̂

(0)

R )[eij(β)−m(β̂
(0)

R )]2

=
∑K

i=1

∑ni

j=1
[

√
ŵij(β̂

(0)

R )eij(β)−
√
ŵij(β̂

(0)

R )m(β̂
(0)

R )]2

Let

β̂
(1)

R = ArgminD ∗ (β|β̂
(0)

R )

This establishes a sequence of IRLS estimates, β̂
(k)

R }, k = 1, 2, . . .

After some algebraic simplification, we can obtain the gradient

∇D∗R(β|β̂
(k)

R ) = −2
∑K

i=1
DT
i V̂

− 1
2

i ŴiV̂
− 1

2
i [Yi − a′(θ)−m∗(β̂

(k)

R )] (5.3.2)

where m∗(β̂
(k)

R ) = V̂
1
2
i m(β̂

(k)

R )1,1 denotes a ni × 1 vector all of whose elements are 1, and

Ŵ = diag{ŵi1, . . . , ŵini} is the diagonal matrix of weights for the ith subject. Hence β̂
(k+1)

R

satisfies the general estimating equations (GEE) given by,

∑K

i=1
DT
i V̂

− 1
2

i ŴiV̂
− 1

2
i [Yi − a

′
(θ)−m∗(β

(k)
R )] = 0 (5.3.3)

Which we denoted by ∑K

i=1
Zi(β,α ∗ (β)) = 0

Theorem 5.2 Under these assumptions,

A.1
√
K|φ̂(β)− φ| = Op(1), as K →∞, when β is known.

A.2
√
K|α̂(β, φ)−α| = Op(1) when β and φ are known.

A.3 |∂α̂(β, φ)/∂φ| ≤ H(Y,β) which is Op(1)
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A.4 (Lindeberg-Feller Conditions): For i = 1, . . . , K, let Ui = V
− 1

2
i and UN = [UT

1 UT
2 . . .U

T
K ]T .

Denote the (l, j)th entry of UN by ulj,l = 1, 2, . . . , n; j = 1, 2, . . . , ni. Then

max
1≤l≤K

u2
lj∑n
m=1

u2
mj → 0, for all j = 1, . . . , ni

and

lim
K→∞

1

n
UT
NUN exists and is positive definite.

A.5 The score function ϕ(u) is bounded and satisfies the standardizing conditions.

A.6 The marginal pdf of e†ij = yij − gij(β) is continuous and variance-covariance matrix

given in the following is positive definite.

Assume that the initial estimate satisfies
√
K(β̂

0

R − β) = Op(1). Then under the above

assumptions, for k ≥ 1,
√
K(β̂

(k)

R − β) has an asymptotic normal distribution with mean 0

and covariance matrix,

lim
K→∞

K{
∑K

i=1
DT
i V

− 1
2

i WiV
− 1

2
i Di}−1{

∑K

i=1
DT
i V

− 1
2

i V ar(ϕ†i )V
− 1

2
i Di}{

∑K

i=1
DT
i V

− 1
2

i WiV
− 1

2
i Di}

where ϕi denotes the ni × 1 vector (ϕ[r(e†i1/(n+ 1))], . . . , ϕ[r(e†ini)/(n+ 1)])T and where

Y†i = V
−1/2
i Yi = (y†i1, . . . , y

†
ik)

T

G†i (β) = V
−1/2
i a

′

i(θ) = [g†ij]

e†ij = y†ij − g
†
ij(β)

5.4 Our Case for the Ordinary LS based GEE Model

In our case of studying two sample predation preference, we are considering a longitudi-

nal set of observations over n1 +n2 subjects, Using the notation in Section 5.2, K = n1 +n2
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and ni = k. let uijdenote the jth response for ith subject for j = 1, 2 . . . , k and i = 1, 2, . . . , K

then we can write the model as:

uij = α∗ + xTijβ

where β = (β1, β2, . . . , βk)
T , α∗ is a known intercept. If α∗ is unknown here, use the median

of xij, where n1 < i ≤ K. Here xij = I(i ≤ n1)Ij, where Ij is a k × 1 vector with the jth

item equal to 1, and all the other items equal to 0. If we denote uij − α by yij then our

model becomes:

yij = xTijβ (5.4.1)

Let N = (n1 + n2)k denote the total sample size. Assume that the marginal distribution of

yij is of the exponential class of distributions and is given by (5.2.1). In our case, θij = ηij =

xTijβ. the link function h−1 ◦ (a
′
)−1 = I and the mean and variance are given by

E(yij) = a
′
(θij) = xTijβ and V ar(yij) = a

′′
(θij)/φ =

1

φ

Ai = diag{a′′(θi1), . . . , a′′(θik)} = I

Vi = A
1/2
i Ri(α)A

1/2
i /φ = Ri(α)/φ

a
′
(θi) = XT

i β, which means

Di =


I, if i ≤ n1 ,

0, if n1 + 1 ≤ i ≤ K .

So the GEE estimator β̂LS actually is the solution to the equations

∑n1

i=1
V̂−1
i [Yi −XT

i β] = 0. (5.4.2)
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which we denote by ∑n1

i=1
Ui[β, α̂{β, φ̂(β)}] = 0

and the gradient of DLS(β) is

∇DLs(β) = −
∑n1

i=1
V̂−1
i [Yi −XT

i β]

We have the similar theorem as Theorem 5.1. The proof is given in the appendix.

Theorem 5.3 Under mild regularity conditions and given that:

A.1 α̂ is K
1
2 -consistent given β and φ.

A.2 φ̂ is K
1
2 -consistent given β; and

A.3 |∂α̂(β, φ)/∂φ| ≤ H(Y,β) which is Op(1).

Then K
1
2 (β̂LS − β) is asymptotically multivariate Gaussian with zero mean and covariance

matrix VLS given by

VLS = lim
n1→∞

n1(
∑n1

i=1
V−1
i )−1{

∑n1

i=1
V−1
i cov(Yi)V

−1
i }(

∑n1

i=1
V−1
i )−1

5.5 Our Case for the Iterated Reweighted Rank-Based Estimators for GEE

Models

In our case, first we need an initial intercept α̂∗ which is given by median(uij − xTijβ0
R),

where β0
R is the initial βR satisfying

√
K(β̂

0

R − β) = Op(1) and n1 < i ≤ K.

the gradient is given by

D∗R(β|β̂
(k)

V ) = −2

n1∑
i=1

V̂
− 1

2
i ŴiV̂

− 1
2

i [Yi −X′β −m∗(β̂
(k)

R )]
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where Wi is the same as defined in Section 5.3, Yi = Uk
i −α∗(k) and Vi = Ri(α)/φ

The GEE for β̂
(k+1)

R is given by

n1∑
i=1

V̂
− 1

2
i ŴiV̂

− 1
2

i [Yi − a
′
(θ)−m∗(β(k)

R )] = 0 (5.5.1)

which we denote by
n1∑
i=1

Zi(β, α ∗ (β)) = 0 .

The following theorem gives the asymptotic distribution of β̂
(k)

R . The proof is given in

the appendix.

Theorem 5.4 Under these assumptions,

A.1
√
K|φ̂(β)− φ| = Op(1), as K →∞, when β is known.

A.2
√
K|α̂(β, φ)−α| = Op(1) when β and φ are known.

A.3 |∂α̂(β, φ)/∂φ| ≤ H(Y,β) which is Op(1)

A.4 (Lindeberg-Feller Conditions): For i = 1, . . . , K, let Ui = V
− 1

2
i and Un = [UT

1 UT
2 . . .U

T
n1

]T .

Denote the (l, j)th entry of Un by ulj,l = 1, 2, . . . , K; j = 1, 2, . . . , k. Then

max
1≤l≤K

u2
lj∑K
m=1

u2
mj → 0, for all j = 1, . . . , k

and

lim
K→∞

1

K
UT
NUN exists and is positive definite.

A.5 The score function ϕ(u) is bounded and satisfies the standardizing conditions.

A.6 The marginal pdf of e†ij = yij − gij(β) is continuous and variance-covariance matrix

given in the following is positive definite.
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Assume that the initial estimate satisfies
√
K(β̂

0

R − β) = Op(1). Then under the above

assumptions, for k ≥ 1,
√
K(β̂

(k)

R − β) has an asymptotic normal distribution with mean 0

and covariance matrix,

lim
n1→∞

n1{
∑n1

i=1
V
− 1

2
i WiV

− 1
2

i }−1{
∑n1

i=1
V
− 1

2
i V ar(ϕ†i )V

− 1
2

i }{
∑n1

i=1
V
− 1

2
i WiV

− 1
2

i }

where ϕi denotes the k × 1 vector (ϕ[r(e†i1/(n+ 1))], . . . , ϕ[r(e†ik)/(n+ 1)])T and where

Y†i = V
−1/2
i Yi = (y†i1, . . . , y

†
ik)

T

G†i (β) = V
−1/2
i a

′

i(θ) = [g†ij]

e†ij = y†ij − g
†
ij(β)

5.6 Example

Let us consider once again the study of [48] concerning the effect of a single session of

high intensity aerobic exercise on inflammatory markers of subjects taken over time. Recall

that 18 subjects were placed into two groups (High Fitness and Moderate Fitness) depending

on their fitness levels, 9 in each group, and the response of interest here is the C-Reactive

protein (CRP). Our effect of interest is the trend of difference in CRP beween the two groups

(High Fitness - Moderate Fitness), we are intereted in testing will the difference stay the

same over time or decay to zero over time. In particular, we are interested in testing the

following hypothesis:

• H0 : The difference between two groups remains the same.

• Ha : The difference between two groups is not the same.

Using the ordinary LS based GEE model, we get p− value = 0.0087 and using the iterated

reweighted rank-based estimators for GEE model, we get p−value = 0.443 and the estimate
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of difference is (0.594, 0.331, 0.003, 0.254, 0.413). We draw two different conclusions using

these two p − values. We tend to believe in the p − value of the iterated reweighted rank-

based estimators for GEE model because from Figure 3.2, it is clear that from either the

mean profile or the median profile, the difference between the two groups HI and LO is not

zero over time.

For the data we used in [48], Figure 5.1 shows the residual values versus fitted response

Figure 5.1: Residul plots for The ordinary GEE and rank-based GEE
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values for the two different GEE models: The LS based GEE model and the Rank based

GEE model. It is clear that the LS fit is adversely affected by the outlying observations.

We find that overall the residuals are closer to 0 for the Rank Deviance Residual plot and it

is easier to identify the two outliers in this plot. This is not the case with the LS deviance

plot.
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5.7 Conclusion

Repeated measurement designs occur in many areas of statistical research. The analy-

sis of data resulting from such designs often becomes complicated because of the non-zero

within-subject correlation. To avoid this problem [10] proposed the Generalized Estimation

Equations Model (GEE). However, the solution of GEEs proposed by igns often becomes

complicated because of the non-zero within-subject correlation, To avoid this problem [10]

is not robust because it is based on iterated reweighted least squares fitting. [2] proposed a

rank-based fitting procedure which is robust to outliers in response space. In this chapter,

we used these two GEE models to analyze the selective predation pattern problem, as a

special case of the two sample repeated measurement data. We were able to simplify some

assumptions and derive the asymptotic normality of our estimates.
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Chapter 6

Summary

In Chapter 2, this dissertation gave nonparametric test statistics for detecting preference

patterns in selective predation by extending the method of [1]. We provided a class of general

rank score tests for the one sample case where we only have one species of predators and prey

have two features of interest. This gives the flexibility to place varied emphasis on consecutive

selections at different stages of the selection experiment. This could be helpful in controlling

the manner in which extraneous variables can affect selection preference patterns.

This dissertation also proposes a class of general rank score tests for the difference in

predation patterns of two predatory species. In this case, prey feature of interest can be

continuous or categorical. It is shown that the test statistic for the categorical case becomes

equivalent to the continuous case if the data have no ties. In both cases, the asymptotic

distribution of the test statistic is Gaussian. The results of a simulation study using the

asymptotic Gaussian distribution but small samples shows that the test has a satisfactory

finite-sample performance. The null simulation shows that null rejection rates are close to

nominal α values. We also demonstrate that the asymptotic test is powerful in detecting

simple-ordered alternatives.

If we already have evidence to conclude that two species of predator tend to choose

different prey, then one might be interested in comparing the change in speed and the change

in direction of the two overall patterns. We proposed a method to compare the change in

the trends of prey selection patterns of the two species. The trend in the opposite direction

can be tested by multiplying the generalized normalized weight function by -1 in the test

statistic.
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For linear models, the least squares estimator of the regression coefficient is optimal

if the error distribution is normal. For distributions with longer tails than the normal,

however, rank estimators are more efficient than the least squares estimator. [34] proposed

an IRLS method for estimating rank estimators. In Chapter 4, we studied the finite sample

performance of the IRLS method. For Wilcoxon scores, using the LS estimate as an initial

estimate, we found that the IRLS algorithm leads to estimates whose efficiency is between

those of the LS and rank estimates obtained using the algorithm of [54]. The LS estimates

are efficient when the distribution of the error is short-tailed. The algorithm of [54] gives

efficient estimates when the distribution of the error is long-tailed while the IRLS algorithm

gives efficient estimates when the distribution of the error is moderate-tailed.

It is also observed that there is a need for an IRLS formulation of bounded influence

rank estimators [47]. The boundedness of the initial estimator is a necessary condition for

the boundedness of the influence function of IRLS estimator, but it is not sufficient.

In Chapter 5, we used the IRLS representation of rank estimation to propose a rank

analogue of the GEE model proposed by Liang and Zegar (1986). We used these two GEE

methods to study the changing trend problem studied in Chapter 3. The results show that

the rank based GEE method gives superior performance than the GEE method of [10] for

small datasets with outliers.
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Appendix: Proofs

Proof of Theorem 3.1

Under H0, ∆1 = · · · = ∆k = ∆. So, the expectations of all row ranks are equal

and equal to (k + 1)/2. Then E0(R̃) = (N∗(k + 1)/2)Jk×1. So, E0(WΨ) = Ψ′E0(R̃) =

(N∗(k + 1)/2)Ψ′Jk×1 = 0. Now var0(WΨ) = Ψ′cov0(R̃)Ψ. But the (t, s)th element of

cov0(R̃) is

vts =
N∗∑
i=1

N∗∑
j=1

cov0(Rit, Rjs)

When t = s, we have

vts = N∗var(Rit) +N∗(N − 2){ 1

12
(k − 1) + (C − 1

4
)(k − 1)(k − 2)}

= N∗
k2 − 1

12
+N∗(N − 2){ 1

12
(k − 1) + (C − 1

4
)(k − 1)(k − 2)}

Whent 6= s, we have

vts = N∗cov(R1t, R1s) +N∗(N − 2){− 1

12
+ 2(k − 2)(A− 1

4
) + (B − 1

4
)(k − 2)}

= N∗(−k + 1

12
) +N∗(N − 2){− 1

12
+ 2(k − 2)(A− 1

4
) + (B − 1

4
)(k − 2)}

where

A =

∫
P0(U11 − U(n1+1)1 + U(n1+1)2 > t)1− P0(U11 − U11 + U(n1+1)2 > t)dF (t); ,

B =

∫
P0(U11 − U(n1+1)1 + U(n1+1)2 > t)2dF (t) , and

C =

∫
{P0(U11 − U(n1+1)1 + U(n1+1)2 < t)}2dF (t) .

74



Denote
∑k

s=1 ψs(
s

k+1
)Ris = Qi, where ψs = ψ( s

k+1
), we have:

V ar(Wψ) =

n1n2∑
i=1

var(Qi) +

n1n2∑
i=1

n1n2∑
l=1

Cov[Qi, Ql]

= n1n2var(Q1) + n1n2(n1 + n2 − 2)Cov[Q1, Q2]

We obtain

Cov(Q1,Q2) = Cov(
k∑
s=1

ψsR1s,
k∑
s=1

ψsR2s, )

=
k∑

u=1

k∑
v=1

ψuψvCov(R1u, R2v)

=
k∑

u=1

k∑
v=1

ψuψvCov(
k∑

p=1,p 6=u

I(U1p − U(n1+1)p < U1u − U(n1+1)u) + 1,

k∑
q=1,q 6=v

I(U1q − U(n1+2)q < U1v − U(n1+1)v) + 1)

=
k∑

u=1

k∑
v=1

ψuψv

k∑
p=1,p 6=u

k∑
q=1,q 6=v

E[I(U1p − U(n1+1)p < U1u − U(n1+1)u)

I(U1q − U(n1+2)q < U1v − U(n1+2)v)]

−
k∑

u=1

k∑
v=1

ψuψv

k∑
p=1,p 6=u

k∑
q=1,q 6=v

E2(I(U1p − U(n1+1)p < U1u − U(n1+1)u))

The calculation of the first term in the above equation is as the following four cases:

Case 1. p 6= q, u 6= v,

(1) p 6= v, q 6= u,

E2(I(U1p − U(n1+1)p < U1u − U(n1+1)u)) =
1

4
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(2) p = v, q = u

E[I(U1p − U(n1+1)p < U1u − U(n1+1)u)I(U1u − U(n1+2)u < U1p − U(n1+2)p]

=

∫ ∫
P0(U(n1+1)u − U(n1+1)p < t1 − t2)(1− P (U(n1+1)u − U(n1+1)p < t1 − t2))dFt1dFt2

=
1

6

(3) p = v, q 6= u

E[I(U1p − U(n1+1)p < X1u − U(n1+1)u)I(U1u−(n1+2)u < U1p − U(n1+2)p]

=

∫
P0(U11 − U(n1+1)1 + U(n1+1)2 > t)1− P0(U11 − U(n1+1)1 + U(n1+1)2 > t)dF (t)

= A

(4) p 6= v, q = u

E[I(U1p − U(n1+1)p < U1u − U(n1+1)u)I(U1u − U(n1+2)u < U1p − U(n1+2)p]

=

∫
P0(U11 − U(n1+1)1 + U(n1+1)2 > t)1− P0(U11 − U(n1+1)1 + U(n1+1)2 > t)dF (t)

= A

Thus

k∑
u=1

k∑
v=1,u 6=v

ψuψv

k∑
p=1,p 6=u

k∑
q=1,q 6=v

E[I(X1p − Y1p < X1u − Y1u)I(X1q − Y2q < X1v − Y2v)]

= −[(2k − 4)A+ (k − 2)(k − 3)
1

4
+

1

6
]
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Case 2. p = q, u = v

E[I(U1p − U(n1+1)p < U1u − U(n1+1)u)I(U1q − U(n1+2)q < U1v − U(n1+2)v)]

=

∫ ∫
P 2

0 (U(n1+1)u − U(n1+1)p < t1 − t2)dFt1dFt2

= 1
3

Thus

k∑
u=1

k∑
v=1

ψuψu

k∑
p=1,p 6=u

k∑
p=1,p 6=v

E[I(U1p − U(n1+1)p < U1u − U(n1+1)u)

I(U1q − U(n1+2)q < U1v − U(n1+2)v)]

=
1

3
(k − 1)

Case 3. p = q, u 6= v

E[I(U1p − U(n1+1)p < U1u − U(n1+1)u)I(U1q − U(n1+2)q < U1v − U(n1+2)v)]

=

∫
P0(U11 − U(n1+1)1 + U(n1+1)2 > t)2dF (t)

= B

Thus

k∑
u=1

k∑
v=1

ψuψv

k∑
p=1,p 6=u

k∑
q=1,q 6=v

E[I(X1p − Y1p < X1u − Y1u)I(X1q − Y2q < X1v − Y2v)]

= −(k − 2)B
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Case 4. p 6= q, u = v

E[I(U1p − U(n1+1)p < U1u − U(n1+1)u)I(U1q − U(n1+2)q < U1v − U(n1+2)v)]

=

∫
{P0(U11 − U(n1+1)1 + U(n1+1)2 < t)}2dF (t)

= C

Thus

k∑
u=1

k∑
v=1

ψuψu

k∑
p=1,p 6=u

k∑
q=1,q 6=v

E[I(U1p − U(n1+1)p < U1u − U(n1+1)u)

I(U1q − U(n1+2)q < U1v − Y(n1+2)v)]

= (k − 1)(k − 2)C

The second term

k∑
u=1

k∑
v=1

ψuψv

k∑
p=1,p 6=u

k∑
q=1,q 6=v

E2(I(U1p − U(n1+1)p < U1u − U(n1+1)u))

=
k∑

u=1

k∑
v=1

ψuψv

k∑
p=1,p 6=u

k∑
q=1,q 6=v

1

4
(k − 1)2

Plug the result of Cov(Q1,Q2) in V ar(Wψ), we proved the first part in Theorem 3.1, then

using the Central Limit Theorem, we proved the second part in Theorem 3.1.

Proof of Theorem 5.3

Write α∗(β) = α̂{β, φ̂(β)}. We first expand
∑K

i=1 Ui(β,α
∗(β)) in a Taylor series about

the true parameter β and evaluated at β̂LS. By the chain rule, the gradient in this expansion
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is give by

∇i =
δUi{β,α∗(β)}

δβ

=
∂Ui{β,α∗(β)}

∂β
+
∂Ui{β,α∗(β)}

∂α∗
∂α∗(β)

∂β

= Ai + BiC

Because β̂LS solves equation
∑K

i=1 Ui(β,α
∗(β)) = 0, we have

0 =
K∑
i=1

Ui(β,α
∗(β)) +

K∑
i=1

∇i(β̂LS − β)

Solving for
√
K(β̂LS − β), we obtain

√
K(β̂LS − β) = [− 1

K

K∑
i=1

∇i]
−1[

1√
K

K∑
i=1

Ui{β, α̂∗(β)}]

Secondly, we fix β and expand 1√
K

∑K
i=1 Ui(β,α

∗(β)) about the true parameter α and

evaluated at α∗ to get

1√
K

K∑
i=1

Ui(β,α
∗(β)) =

1√
K

K∑
i=1

Ui(β,α)

+
1

K

n∑
i=1

∂Ui(β,α)

∂α

√
K(α∗ −α) + op(1)

= A∗ + B∗C∗ + op(1)
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Now, B∗ = op(1), Using Law of Large Number and ∂Ui(β,α)/∂α are linear functions of

Yi −XT
i β, whose means are zeros, and condition (A.1) to (A.3) give

C∗ =
√
n1(α∗ −α)

=
√
K[α̂{β, φ̂(β)} − α̂(β, φ) + α̂(β, φ)−α]

=
√
K[

∂α̂

∂φ
(β, φ)(φ̂− φ) + α̂(β, φ)−α]

= Op(1)

Consequently, 1√
n1

∑K
i=1 Ui(β,α

∗(β)) is asymptotically equivalent to A∗ whose asymptotic

distribution is multivariate Gaussian with zero mean and covariance matrix

lim
K→∞

{
K∑
i=1

V−1cov{Yi}V−1/K}

Finally,
∑K

i=1 = op(K) because ∂Ui(β,α
∗)/∂α∗ are also linear functions of Yi−XT

i β’s whose

means are zero. because

∂α∗(β)

∂β
=
∂α∗(β)

∂φ

∂φ

∂β

and then using condition (A.3), we can get C = Op(1), and that
∑K

i=1
Ai

K
converges as

K →∞ to −
∑K

i=1 V−1/K. This completes the proof.

Proof of Theorem 5.4

This proof is quite similar to the previous one.

Let α∗(β) = α̂(β, φ̂(β)). Let k ≥ 1 be arbitrary but fixed. For i = 1, . . . , K, let

Zi(β,α
∗(β)) = V̂

− 1
2

i WiV̂
− 1

2
i [Yi −XT

i β −m∗(β)]

= V̂
− 1

2
i WiV̂

1
2
i [Yi −XT

i β −m∗(β)]

= V̂
− 1

2
i Wi[Y

∗
i −G∗i (β)−ml]
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We first expand K−1/2
∑K

i=1 Zi(β,α ∗ (β)) in a Taylor series about the true parameter β

and evaluated at β̂
(k)

R , we can get that

√
K(β̂

(k)

R − β) = {− 1

K

K∑
i=1

∇i}−1[
1√
K

K∑
i=1

Zi(β,α
∗(β))]

where

∇i =
∂Zi(β,α ∗ (β))

∂β
+
∂Zi(β,α ∗ (β))

∂α

∂α

∂β
= Ai + BiC

Secondly, we fixed β and expand K−1/2
∑K

i=1 Zi(β,α
∗(β)) about the true parameter α and

evaluated at α∗ to get

1√
K

K∑
i=1

Zi(β,α
∗(β)) =

1√
K

K∑
i=1

Zi(β,α) +
1

K

K∑
i=1

∂

∂α
Zi(β,α)

√
K(α∗ −α) + op(1)

=
1√
K

K∑
i=1

Zi(β,α) +B∗C∗ + op(1)

Where the op(1) term is due to regularity conditions which imply that the remainder term is

1
K
Op(1). Note that the weights are evaluated at the true parameters in this expansion too.

Because Zi(β,α) is evaluated at the true parameters, letting hTij be the jth row of the V
−1/2
i ,

we then have

1√
K

K∑
i=1

Zi(β,α) =
1√
K

K∑
i=1

k∑
j=1

hTijwij[y
†
ij − g

†
ij −m(β)]

=
1√
K

K∑
i=1

k∑
j=1

hTija[r(y†ij − g
†
ij(β))]

=
1√
K

K∑
i=1

V
−1/2
i a[r(Y †i −G

†
i (β))]

The second equality holds because the weights are evaluated at the true parameters.

By Assumption [A.5] and [A.6], it follows from Theorem 3.1 of Brunner and Denker (1994)

and the usual Cramer-Wold device that 1√
n1

∑n1

i=1 Zi(β,α) is asymptotically normal with
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mean 0 and variance-covariance matrix

M =
1

K

K∑
i=1

V
−1/2
i V ar(ϕ†i )V

−1/2
i

The remainder of the proof follows from the previous proof. In particular, the results that

B∗ = op(1) and C∗ = Op(1) hold here, the proof of Theorem 5.4 is complete.
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