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Abstract 
 
 
 In order to ensure the proper operation of the embedded Block Random Access 
Memories (BRAMs) in Xilinx Virtex-5 Field-Programmable Gate Arrays (FPGAs) a dependable 
and resource efficient test is needed so that the integrity of the memory can be guaranteed in a 
timely manner.  The approach that is described in this thesis is based on a Built-In Self-Test 
(BIST) approach initially proposed by Garimella in [1] for Xilinx Virtex-1 and Virtex-2 FPGAs. 
It was later expanded upon by Milton in [2] for Xilinx Virtex-4 FPGAs. The work was continued 
by Garrison as detailed in [3] for Virtex-4 in order to improve BIST generation and execution 
time.  Garrison also proposed a design for BRAM BIST for Virtex-5 FPGAs in [3].  Garrison?s 
proposal for Virtex-5 FPGAs is expanded upon and implemented in this thesis. 
 The testing approach for these BRAMs is described along with testing configurations and 
details.  The BIST configurations are implemented using five unique Test Pattern Generators 
(TPGs) running testing algorithms on a combination of 19 separate RAM configurations in order 
to fully test the memories.  All of the BIST configurations have been generated using two C 
programs developed as part of this thesis which are capable of generating configurations for any 
Virtex-5 device.  These configurations were downloaded to various Virtex-5 FPGAs and tested 
on these devices.  The fault detection capabilities of the BIST have been verified by using fault 
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injection within the BIST configurations that are downloaded to the FPGA to emulate physical 
faults within the configuration memory bits of the BRAMs.  With fault injection, it was verified 
that this BIST approach was able to successfully detect 100% of detectable configuration 
memory faults in the BRAMs present in Virtex-5 devices. 
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Chapter 1 Introduction 
 
 
1.1 Field Programmable Gate Arrays 
A Field Programmable Gate Array (FPGA) is a prefabricated integrated circuit that can be 
dynamically programmed by a user in the field rather than having permanent programming from 
the manufacturer, like such devices as Mask Programmable Gate Arrays (MPGAs) or 
Application Specific Integrated Circuits (ASICs) [4].  FPGAs contain programmable logic 
blocks that allow a user to designate the functionality of the device with both combinational 
logic using logic gates such as AND or XOR gates and sequential logic using elements such as a 
flip-flop [4].  Many FPGAs also contain embedded components that provide users with a 
convenient method for implementing more complicated circuits.  Commonly included embedded 
devices include digital signal processors (DSPs), random access memories (RAMs), and 
embedded microprocessors [4].  FPGAs also contain configurable interconnection resources that 
are user programmable.  The configurable routing allows circuit elements to be placed and 
routed in accordance with the user designed circuit.  The functional behavior for a specific 
design is usually created using a Hardware Design Language (HDL) such as VHDL or Verilog 
which is then used to generate a configuration for the device [4]. 
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FPGAs gained popularity due to their versatility for implementing circuit designs.  FPGA 
circuits can be designed, implemented, and tested very quickly and are also very forgiving of 
design error because they can be easily reprogrammed repeatedly [4].  The complexity of FPGAs 
has grown from only a few thousand logic gates in their infancy to tens of millions of logic gates 
in modern chips [4]. 
An ASIC implementation is generally much smaller in size and much better in performance 
than an FPGA implementation.  The circuit design of an ASIC cannot be modified once it is 
manufactured and must be specially designed.  An ASIC circuit is expected to have a time delay 
that is four to five times less than that of the same circuit implemented on an FPGA while also 
consuming on average 14 times less power [5].  However, FPGAs offer the ability to reprogram 
that an ASIC cannot.  A design error in an ASIC means that an entirely new ASIC device must 
be created where a design error in an FPGA only means the design must be modified and re-
downloaded into the FPGA.  Use of an FPGA allows a designer to save time and costs 
throughout the design process and reduces the penalty of having a design error in a prototype [4].  
The extent to which an FPGA is programmable eliminates it from being able to compete with 
ASICs and MPGAs in size and performance.   
1.1.1 FPGA Architecture 
The components generally contained within an FPGA are [4]: 
? Configurable Logic Blocks (CLBs) 
? Input/Output (I/O) Cells 
? Programmable Interconnect Points (PIPs) and Wire Segments 
? Special Cores 
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Each CLB is usually made up of multiple Look Up Tables (LUTs) and flip-flops.  The LUTs 
contain the binary data necessary to implement the combinational logic truth table of the 
programmed design and the flip-flops are used in the implementation of sequential logic [4].  
The I/O Cells allow the devices to connect peripherally, and special cores in the form of 
microprocessors, RAMs, and DSPs are commonly included.  All of these components are 
interconnected internally by utilizing a system of PIPs and wire segments for signal connection. 
1.1.2 Block Random Access Memory 
With the inclusion of specialized cores, FPGAs have started to resemble a full System-
On-Chip (SOC) [4].  These specialized cores such as RAMs, DSPs, and microprocessors make 
memory and arithmetic implementations less cumbersome to the user and reduce the 
programmable logic resources demanded [4].   
The two types of RAMs are Dynamic Random Access Memory (DRAM) and Static 
Random Access Memory (SRAM) [6].  The Block Random Access Memories (BRAMs) within 
a Xilinx FPGA are classified as SRAM. These memories require more area than DRAMs, but 
provide the fastest possible access speed of any RAM (usually 2 nanoseconds) [6].  SRAM cells 
have two separate stable states used to represent logic level zero and one [6].  The cells retain 
their state as long as they remain connected to a power supply and do not require a periodical 
refresh.  However, the memory is volatile meaning if the power supply is disconnected from the 
cell the logic state will be lost. 
The RAMs contained in a Virtex-5 FPGA can be configured to operate with a data width 
from 1 bit to 72 bits corresponding with an address space ranging from 32K to 512 data words 
[7].  The number of BRAMs supplied in a given Virtex-5 device spans from 26 in the smallest 
4 
device to 516 in the largest device [7].  The memories can be configured to function in different 
operational modes including the ability to be connected together in order to extend the address 
space to 64K.  The BRAMs also have the ability to function with one address port and one data 
port in single port mode, or they are capable of using a pair of address ports and a pair of data 
ports to function in dual port mode.  In dual port mode each port of the BRAM may be used to 
write or read from the memory independently and concurrently as long as they are not attempting 
to write to the same address simultaneously [7].  The BRAMs may also be configured to operate 
in a First In, First Out (FIFO) mode.  When operating in the FIFO mode the BRAM functions 
similar to a queue line that is storing data.  In this mode the BRAM has separate read and write 
clocks.  When a write operation is triggered a data word will be added to the end of the queue, 
and when a read operation is triggered the data word at the front of the queue will be retrieved.  
Each BRAM also contains Error Correction Code (ECC) circuitry which is capable of correcting 
any single-bit error in the memory or detecting any double-bit error using Hamming code [7]. 
1.1.3 Benefits and Drawbacks of FPGA Usage 
Use of FPGAs in circuit design and implementation gives the designer many advantages 
but also has a few drawbacks.  The advantages of FPGA use stem mostly from its flexibility [4]: 
? User programmability and re-programmability 
? Accelerated design implementation and prototyping process 
The user programmability and re-programmability gives a designer the ability to easily create 
a physical prototype of a digital circuit [4].  This allows users to comprehensively test their 
design before spending time and money to have an ASIC created for the circuit, and eliminates 
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much of the risk of having an unanticipated error in the circuit show up in the ASIC that will 
require refabrication of the entire device. 
There are also some distinct disadvantages to FPGA usage compared to using an ASIC [4]: 
? Higher production cost 
? Higher power consumption 
? Lower performance 
? Volatile configuration memory 
FPGA production is efficient for a low to medium volume design and expedited time-market-
systems [4].  However when mass production of a device is needed the cost of an FPGA cannot 
compete with the cost of an equivalent ASIC [8]. 
1.2 Built-In Self-Test 
As the complexity of Very Large Scale Integration (VLSI) devices continues to increase, the 
need for an efficient and economical testing method such as Built-In Self-Test (BIST) grows as 
well [4]. The general idea behind BIST is to design a circuit that is capable of verifying itself as 
being either faulty or fault-free.  A standard BIST architecture contains three major components 
[9]: 
? Test Pattern Generator (TPG) 
? Circuit Under Test (CUT) 
? Output Response Analyzer (ORA) 
The TPG serves as a stimulus to the CUT, providing a set of inputs that will cause the CUT 
to generate an expected output.  The resulting data from the CUT is analyzed by the ORA and is 
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simplified into some sort of pass/fail status depending on whether the ORA saw the expected 
output or an erroneous one [9].  Other components may be needed for system level 
implementation of the BIST such as a testing controller and input isolation circuitry.  The BIST 
circuitry may contain an output bit to indicate success or failure to an external device and 
optionally a BIST done flag to indicate a finished testing sequence.  The effectiveness of a BIST 
test is determined by the testing time and the number of faults that are detectable compared with 
the total amount of faults possible in a system known as fault coverage. 
1.2.1 Pros and Cons of a BIST Approach 
Using a BIST approach has many advantages associated with it when compared to other 
testing approaches such as external testing.  These advantages include, but are not limited to [9]: 
? Vertical Testability 
? High Diagnostic Resolution 
? At-Speed Testing 
? Reduced Amount of External Testing Equipment 
? Reduced Test Development Time and Effort 
? Reduced Manufacturing Test Time and Cost 
? Reduced Time-to-Market 
Vertical testability means that a BIST can be applied to a device in any stage of production to 
determine its validity.  A BIST that is applied to a system that gives an incorrect result reveals 
the system as faulty. It also inherently shows that a CUT associated with the device has faulty 
operation. Additionally, many times the specific faulty CUT can be identified, meaning that 
BIST has a high diagnostic resolution [9].  BIST is also able to use a system?s internal clock for 
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at-speed testing which enables it to detect delay faults that are only visible when operating at 
system speed.  The need for expensive external testing equipment is also eliminated.  The only 
external I/O pins that must be provided are power, ground, a method for initializing the BIST, a 
method for retrieving BIST results, and a clock [9].  The savings in time and cost on test 
development resulting from internal TPG and ORA circuitry outweigh additional BIST design 
time in most cases and, consequentially, a reduced overall time-to-market [9]. 
Using a BIST approach also has drawbacks [9]: 
? Larger Area Overhead 
? Performance Penalties 
? Additional Design Time and Effort 
? Additional Project Risk 
The additional circuitry that must be included in the design to implement the BIST means 
that the overall chip area will be larger, and therefore there will be a higher cost per chip as well 
as an increased area for defects to occur.  The incorporation of the BIST circuitry may also cause 
the circuitry of the CUT to be spread out, or it may introduce additional gates into the CUT?s 
critical path [9].  These cases will result in increased signal delay due to a longer routing path 
and increased gate delay which can be largely significant in some systems and negligible in 
others [9].  Additional time must also be taken to design and implement the BIST circuitry and 
testing technique.  When using BIST another problem arises in design verification.  By adding 
another entire system on top of the already existing system the project risk is increased as proper 
function of both of these systems is essential.  Despite these drawbacks case studies have shown 
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that the benefits of using a BIST approach are more than enough to account for the costs incurred 
in a majority of scenarios [9]. 
1.2.2 BIST within FPGAs 
Using a BIST approach offers even more of an advantage due to the programmable 
nature of FPGAs, making the BIST option even more enticing.  In contrast, the implementation 
of a BIST for an ASIC requires design of the circuitry as well as additional components being 
added to the ASIC.  FPGAs require testing in multiple configurations to achieve a high fault 
coverage, meaning the device must be tested in all modes of operation [4].  This causes the 
testing time to become mainly a function of the number of configurations that must be tested and 
also the configuration time.  In order to optimize the testing time it is critical that the number of 
test configurations is kept at a minimum [4]. 
In an FPGA testing scenario the device inherently provides an abundance of configurable 
hardware that can be utilized for implementing BIST circuitry.  There will be no area overhead 
or performance penalties present in the device after testing since the configuration is erasable [4].  
However, the drawbacks associated with designing a functional test circuit are still applicable.  
The testing circuitry consisting of TPGs and ORAs is created by programming the CLBs, I/O 
cells, and routing resources within the FPGA in order to detect faults in the various components 
of the device [4].  This approach may be used to detect faults within CLBs, routing resources, 
and the specialized cores which may be found on the chip [4].  With respect to FPGAs, a BIST 
approach proves to be an extremely practical and efficient testing approach for verifying the 
integrity of the device and its individual components.  The BIST method gains most of its 
effectiveness from the inherently configurable nature of FPGAs and its ability to have no effect 
on the device after testing has concluded. 
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1.3 Thesis Statement 
This thesis will detail a testing approach derived from the BIST approach for FPGA 
embedded memory resources proposed by Garimella in [1] and later referenced and improved 
upon by Milton in [2] and later by Garrison in [3].  These previous FPGA BIST approaches were 
targeted at BRAMs contained within the Xilinx Virtex [1], Virtex-2 [1], and Virtex-4 [2][3] 
series of FPGAs, and an initial proposal for testing of the BRAMs within the Xilinx Virtex-5 
series of FPGAs was provided by Garrison in [3].  The main focus of this thesis will be to 
implement, expand, and improve upon Garrison?s initial proposal for BIST testing of BRAMs 
embedded in the Xilinx Virtex-5 devices and to detail a complete BIST approach and 
implementation for these memories. 
This thesis will discuss the background material for the BRAM BIST in Chapter 2.  
Chapter 3 will detail the testing configurations for the BIST as well as the implementation of the 
BIST within the FPGA architecture and the method of fault injection used to measure the 
effectiveness of the test.  Chapter 4 will present a summary and areas in which future research 
may be made to improve this testing approach. 
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Chapter 2 Background Information 
 
 
 This chapter will begin by discussing general fault detection techniques along with the 
basics of fault modeling within a circuit.  Next, the circuitry and fault types that may be present 
within Static Random Access Memories (SRAMs) will be detailed.  Then the different test 
algorithms used to detect the various types of faults in these memories will be described.  The 
chapter will then describe the architecture of the Virtex-5 devices along with the embedded 
BRAMs and their modes of operation.  Finally, the various components of the BIST architecture 
will be described along with previously proposed BIST configurations. 
2.1 Fault Modeling 
In order to test a circuit to determine its integrity a set of input stimuli is applied to the 
circuit and the output produced as a result of the stimuli is then compared with the expected 
output.  A matching pair assumes the circuit as good while mismatched results will expose the 
CUT as faulty [9].  The input stimuli that are applied to the CUT during the test are usually a set 
of input vectors that are selected in order to ensure that the CUT performs as expected with no 
structural or functional faults [9].   
 In order to have an effective evaluation of the quality of a set of tests for a device and to 
evaluate the effectiveness of a BIST as it applies to the device, fault models must be used for 
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emulation of faults or defects during simulation [9].  In order for a fault model to be beneficial it 
must meet two requirements [9]: 
? The model provides an accurate representation of the behavior of actual defects that may 
occur during the fabrication, manufacturing, and system operation of the device. 
? The model must be computationally efficient. 
These two requirements are often contradicting and make the creation of useful fault models 
difficult.  Some of the most widely used fault models are the ones that can be emulated in a 
simulation environment efficiently and that provide close approximations of actual faults which 
may occur in a physical device are [9]: 
? Gate-Level Stuck-at Faults 
? Transistor-Level Faults 
? Bridging Faults 
? Delay Faults 
The gate-level stuck fault model allows any of the inputs or outputs of a gate to be either 
stuck-at-0 (sa0) or stuck-at-1 (sa1).  The behavior of the gate is then determined by treating the 
gate input or output which is being tested as either sa0 or sa1 as being disconnected and tied to 
either a logic zero or a logic one [9]. The results of a fault-free AND gate are compared with the 
results from each case of a sa0 or sa1 that may occur with that particular gate in the Figure 2-1.  
The cases that will be detected as faults are highlighted with grey.  In the case of an AND gate 
each fault contains an instance where the output of the faulty gate differs from that of the fault 
free gate so each fault will be detected if sufficient input combinations are tested [9]. 
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AND A B Z 
AB Z sa0 sa1 sa0 sa1 sa0 sa1 
00 0 0 0 0 0 0 1 
01 0 0 1 0 0 0 1 
10 0 0 0 0 1 0 1 
11 1 0 1 0 1 0 1 
Figure 2-1 ? Gate Level Stuck-at Fault Behavior for AND Gate 
Only gate-level fault models are required to simulate N-type metal-oxide-semiconductor 
(NMOS) circuits.  However when using Complementary Metal-Oxide Semiconductor (CMOS) 
circuits, a transistor-level fault model is needed to obtain accurate results [9].  Bridging fault 
models are used to emulate shorted wire segments within a circuit [9].  Delay fault models are 
used to represent the case of a circuit that performs logically correct operations but does not meet 
the timing requirements [9]. 
 When performing fault emulation a set of input vectors are applied to a circuit for each of 
a series of faults that have been artificially injected into the circuit [9].  With the fault injected 
into the circuit, the circuit will behave as if this fault has actually occurred.  The output of this 
circuit will then be compared with the output of a fault free circuit.  If a mismatch between the 
two outputs is found using the test vectors then the fault injected circuit has produced an 
erroneous result and the fault is considered to be detected [9].  If the complete set of test vectors 
is applied to the pair of circuits without a mismatch occurring then the fault is considered to be 
undetected [9].  The results of applying the entire set of test vectors to each of the possible faults 
in a circuit will determine the fault coverage of the test vectors.  The fault coverage for a set of 
A 
B 
Z 
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vectors is a representation of the effectiveness of those vectors in detecting faults [9].  The 
calculation for determining fault coverage is given by [9]: 
 
                                                      
2-1 
 
2.2 Random Access Memories 
Static Random Access Memories (SRAMs) are made up of bi-stable memory cells which 
are capable of holding either a logic zero state or a logic one state.  A memory cell holds only a 
single bit of information and will retain its value as long as the power remains connected to the 
cell without the need for a periodic refresh.  However, the cells are volatile and will not retain 
their logic value after the power has been disconnected [6]. A general SRAM will contain input 
connections for controls, addresses, and data-in as well as output connections for data-out [6].  A 
common model for representing an SRAM is the two-dimensional model shown in Figure 2-2.  
This model displays the basic inputs for controls, addresses, and data-in and outputs for the data-
out bits [6].  The data-in and data-out ports will be N bits wide where N will be the width of the 
data words in the RAM. 
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Figure 2-2 - Two-Dimensional SRAM Model [6] 
 The RAMs contained within the Virtex-5 FPGAs function as multi-port SRAMs.  A 
multi-port RAM has multiple input and output ports.  These ports may be read-only, write-only, 
or capable of both read and write operations [6].  The detailed functional operating model of an 
SRAM can be seen in Figure 2-3.  This model illustrates how the row and column decoders will 
be used in order to select the memory location [6].  The control circuitry, read/write circuits, and 
data registers are then used to either extract or insert bits into the array [6].  In the multi-port 
SRAM the ports are able to read and write simultaneously in all but a few circumstances in 
which ports may be trying to read and write to the same address [6].  The ports share a common 
memory cell array that is constructed of individual memory cells.  The address inputs are used by 
the row and column decoders in order to select a cell in the memory on which the read or write 
operation will be executed.  When a write instruction is executed the data word on the data-in 
pins is written into the SRAM memory cells at the selected address.  When a read instruction is 
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executed the data word saved at the selected address is retrieved from the memory and displayed 
on the data-out pins [6]. 
 
Figure 2-3 - Functional model of a multi-port memory [6] 
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2.2.1 SRAM Faults 
In order to simplify fault testing in a memory a reduced functional memory model is used 
to model the operation of the memory [6].  This reduced model only consists of the address 
decoder, the memory cell array, and the read/write logic.  These three subsystems are common to 
almost all mainstream memory devices [6].  In order to describe failures within a memory a set 
of functional fault models is defined.  The functional models are described as the difference 
between the observed behavior and the expected behavior under a set of performed operations 
[6].  This means that to define any fault model two things are needed [6]: 
? A list of performed memory operations 
? A list of the differences in behavior observed when performing the operations 
The behavior of these fault models is described by fault primitives.  Each primitive is used in 
order to describe a fault and consists of the pattern of inputs used to sensitize the fault and the 
resulting faulty behavior [6].  An extremely limited subset of the most relevant primitives is 
selected to describe the faulty behavior of the memory rather than testing all functional 
specifications [6].  The fault primitives are classified according to four separate criteria, as 
follows. 
2.2.1.1 Static vs. Dynamic Faults 
Static faults are fault primitives which only require a single read or write operation in 
order to detect [6].  Examples of static faults are cell values being stuck-at-1 or stuck-at-0.  
Dynamic faults require more than a single read or write operation to expose and can be classified 
further by the number of operations required [6]. 
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2.2.1.2 Simple vs. Linked Faults 
Simple faults are faults that are unable to influence each other in any way.   However, 
when faults are able to influence the behavior of other faults they are classified as linked faults 
[6].  This behavior means that linked faults are capable of masking each other [6].  When 
masking occurs, the effect of one fault will result in the faulty result of another becoming 
unobservable [6]. 
2.2.1.3 Single-port vs. Multi-port Faults 
Single-port faults are fault primitives that only require usage of, at the most, one port of 
the RAM.  Multi-port faults require the use of two or possibly more ports in order to sensitize the 
fault.  These faults may be further classified based on the number of ports that are needed [6]. 
2.2.1.4 Single-cell vs. Multi-cell Faults 
A fault is characterized as a single-cell fault if the cell that is used for sensitizing the fault 
is also the same cell in which the fault is observed [6].  Multi-cell or coupling faults involve 
more than a single cell to sensitize.  For multi-cell faults the cell in which the operation is 
performed is different than the cell in which the fault is observed [6]. 
2.2.2 RAM Test Algorithms 
In the standard dual-port mode of operation of the BRAMs in Virtex-5 devices, two 
known RAM tests are used to test the memories:  March s2pf/d2pf and MATS+ [6].  These tests 
are executed on the RAM with various port widths in this configuration. 
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The notation that will be used to describe the RAM test algorithms is as follows [6]: 
? ?,?:  Used to indicate the direction traveled through the address space (? indicates 
that the address space may be traversed in either direction). 
? r, w:  Used to denote between read and write operations.  These characters will be 
directly follow by the values to be written or the values expected to be read. 
? Each group of operations within parenthesis is known as a march element.  All 
operations in these parentheses will be performed on a single address. 
? Example:  ? (r0, w1) indicates that the test will traverse the address space from 
the maximum address to the minimum.  At each location address a Read ? 0 
operation will be performed followed by a Write ? 1 operation.   
Some additional notations are used for dual port RAM tests [6]: 
? A colon (:) separates operations of the separate ports 
? n : Used to indicate that no operation is to be applied on a port. 
? - : Used to indicate that any operation may be used, as long as it is not in conflict 
(i.e. dual write operations to the same address location with different values) 
?  n = 0N-1:  Used to indicate that an operation is performed on either a row or 
column range.  Where N will be R for a row range and C for a column range. 
 
 The MATS+ algorithm was chosen to be used on the various port widths of this RAM 
configuration.  It was selected because it is a simple algorithm which can quickly verify the 
address and data widths and the programmable address decoding circuitry [4].  MATS+ is order 
O(5N) and the full algorithm can be seen in Equation 2-2 [6].  This algorithm is used to test the 
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programmable address and data widths, write modes, the active levels of the clock, port enable, 
output register clock, and the set/reset signals [3]. 
 
MATS+ = 
{? (w0); 
? (r0, w1); 
? (r1, w0)} 
          2-2 
 
When testing word-oriented memories, such as the BRAMs in Virtex-5 devices, 
background data sequences (BDS) are needed to detect faults within the memory words.  The 
number of BDS required for testing a memory can be seen in Equation 2-3 where K is the 
number of bits in the data word [4]. 
                      
2-3 
 For example in order to incorporate a 4-bit BDS into the MarchLR algorithm, first 
replace all single bit elements in Equation 2-4 with 4-bit words.  The r0, r1, w0, and w1 elements 
will be replaced with r0000, r1111, w0000, and w1111 respectively.  Then by using Equations 
2-5 and 2-6 along with Table 2-1 and Table 2-2, the BDS can be constructed using the following 
process [10]: 
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MarchLR = 
{? (w0); 
? (r0, w1); 
? (r1, w0, r0, w1); 
? (r1, w0); 
? (r0, w1, r1, w0); 
? (r0)} 
       2-4 
 
 
                      
2-5 
 
 
                            
 2-6 
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Table 2-1 ? 4-Bit BDS Components 
Normal Inverse 
0000 1111 
0101 1010 
0011 1100 
 
Table 2-2 ? 4-Bit BDS Sequence 
i D 
0 0000 
1 1111 
2 0000 
3 0101 
4 1010 
5 0101 
6 0011 
7 1100 
8 0011 
 
1. Starting with i = 0 in Table 2-2, use Equation 2-5 to get            and the resulting 
march element  ?                   . 
2. Using i = 1, the equation results in            and the next march element is 
 ?                   . 
3. Using i = 2, notice that from i = 2 to i = 3 there is a transition from the first row of Table 
2-1 to the second row.  Therefore Equation 2-6 is used to create the march element rather 
than Equation 2-5.  The resulting equation is               and the march element will 
be  ?                         .  When a transition such as this occurs i will be 
incremented by 2. 
4. Using i = 4 Equation 2-5 is used because there is no transition of rows between i = 4 and i 
= 5.  The resulting equation will be            and the march element will be 
 ?                   . 
5. Using i = 5, Equation 2-6 will be used due to the transition between i = 5 and i = 6, which 
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results in the equation               and the march element 
 ?                         . 
6. Using i = 6, Equation 2-5 will be used to get            and the march element will be 
 ?                   . 
7. The final march element will be a read operation of the final i value:  ?       . 
 
The resulting MarchLR w/4-bit BDS algorithm is O(35N).  However, the seventh and eight 
march elements of this generated test algorithm repeat march elements contained within the 
initial MarchLR algorithm [10].  In order to optimize our MarchLR w/BDS algorithm we may 
eliminate these duplicated elements and we will be left with the optimized algorithm which is 
O(30N).  The optimized algorithm is shown in Equation 2-7 [10].   
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MarchLR w/4-bit BDS = 
{? (w0000); 
? (r0000, w1111); 
? (r1111, w0000, r0000, r0000, w1111); 
? (r1111, w0000); 
? (r0000, w1111, r1111, r1111, w0000); 
? (r0000, w0101, w1010, r1010); 
? (r1010, w0101, r0101); 
? (r0101, w0011, w1100, r1100); 
? (r1100, w0001, r0011); 
? (r0011)} 
  2-7 
 
The March Y algorithm is used in order to test the programmable address decoding circuitry 
of the BRAM [4].  This algorithm will also detect destructive read faults within the BRAM [4].  
The March Y algorithm is order O(8N) and can be seen in Equation 2-8 [4].  In order to test the 
FIFO mode of operation, as well as the programmable flags in this mode, the March X algorithm 
is used [4].  This algorithm is O(6N) and is shown in Equation 2-9 [4]. 
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March Y = 
{? (w0); 
? (r0, w1, r1); 
? (r1, w0, r0); 
? (r0)} 
2-8 
 
March X  =  
{? (w0); 
? (r0, w1); 
? (r1, w0); 
? (r0)} 
2-9 
 In order to fully test the programmable ?almost? full and ?almost? empty in the First-In-
First-Out (FIFO) mode of operation the RAM must be reconfigured multiple times as described 
in [4].  The steps in the FIFOX algorithm are shown below: 
Step 1. Reset the FIFO, check that Empty flag is active 
Step 2. Repeat N times: write FIFO with all 0?s, check that Empty flag goes inactive after 
first write cycle, Full flag goes active after last write cycle, and that Almost Empty flag 
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goes inactive and Almost Full flag goes active at the appropriate points in the sequence.  
Perform one additional write if the FIFO has a Write Error signal to indicate an 
attempted write when the FIFO is full. 
Step 3. Repeat N times: read FIFO expecting all 0?s and write FIFO with all 1?s, check 
that Full flag toggles after each read and write cycle. 
Step 4. Repeat N times: read FIFO expecting all 1?s and write FIFO with all 0?s, check 
that Full flag toggles after each read and write cycle. 
Step 5. Repeat N times: read FIFO expecting all 0?s, check that Full flag goes inactive 
after first read cycle, Empty flag goes active after last read cycle, and that Almost Empty 
flag goes active and Almost Full flag goes inactive at the appropriate points in the read 
sequence.  Perform one additional read if FIFO has a Read Error signal to indicate an 
attempted read when the FIFO is empty. 
 
The March s2pf/d2pf algorithms were chosen because they are able to detect all realistic 
single and double addressing faults within a dual port RAM [6].  March s2pf is order O(14N), 
and March d2pf is order O(9N) where N represents the number of addresses in the memory.  The 
March s2pf and d2pf algorithms may be seen in Equation 2-10 and 2-11 respectively [6].  These 
algorithms are responsible for testing the dual-port functionality of the BRAMs [6]. 
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March s2pf = 
{? (w0 : n); 
? (r0 : r0, r0: -, w1 : r0); 
? (r1 : r1, r1 : -, w0: r1); 
? (r0 : r0, r0 : -, w1 : r0); 
? (r1 : r1, r1 : -, w0 : r1); 
? (r0 : -)} 
2-10 
 
March d2pf = 
{? (w0 : n); 
? c = 0C-1 (r = 0R-1 (w1r,c : r0r+1,c, r1r,c : w1r+1,c, w0r,c : r1r+1,c, r0r,c+1 : w0r+1,c)); 
? c = 0C-1 (r = 0R-1 (w1r,c : r0r+1,c, r1r,c : w1r+1,c, w0r,c : r1r+1,c, r0r,c+1 : w0r+1,c))} 
  2-11 
 
 The ECC (Write) and ECC (Read) algorithms both use an ECC testing algorithm 
described in [4] which achieves 100% coverage of an XOR parity tree circuit which the ECC 
circuitry is surmised to be.  The ECC Write algorithm is responsible for testing the parity 
generation circuitry while the ECC Read algorithm is responsible for testing the error detection 
and correction circuitry [4]. 
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ECC (Write) = 
All 0?s; walk 1-thru-0?s 
All 1?s 
Walk two 1?s-thru-0?s 
2-12 
 
ECC (Read) = 
Output of ECC generate vectors 
Init: Walk 1-thru-0?s; all 1?s; all hamming values w/data = 0?s 
Init: Walk two 1?s-thru-0?s 
(Note: Init indicates that the test vectors are initialized in the ECC RAM during download) 
2-13 
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2.3 Virtex-5 Architecture 
This section will detail the structural architecture of the Virtex-5 devices.  The 
programmable logic resources available to the user will be discussed along with information 
about the design and functionality of the BRAMs contained in the devices. 
2.3.1 Virtex-5 Configurable Logic Blocks 
The primary resources in the Virtex-5 for implementing sequential and combinational 
logic circuits are the Configurable Logic Blocks (CLBs) [7].  The resource count within these 
CLBs is shown in Table 2-3.  Each CLB contains a pair of slices.  These two slices are not 
interconnected and are arranged in two columns containing a dedicated carry chain as 
summarized in Figure 2-4.  The slices are also connected to a switching matrix, granting them 
access to the general routing matrix [7]. 
 
Table 2-3 - CLB Resources in Virtex-5 [7] 
Component Virtex-5 CLB 
Slices 2 
Look-Up-Tables 8 
(6-input) 
Flip-Flips 8 
Arithmetic and Carry Chains 2 
Distributed RAM 256-bits 
Shift Registers 256-bits 
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Figure 2-4 - Slice arrangement within Virtex-5 CLBs [7] 
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2.3.2 Virtex-5 Block RAMs 
 
Figure 2-5 - Virtex-5 Dual-Port Flow [7] 
The BRAMs contained within Virtex-5 devices are capable of operating in two main 
modes, single-port and dual-port [7].  The inputs and outputs available to the BRAMs can be 
seen in Figure 2-5 [7].  Each RAM may be used as be used as two separate 18 K-bit RAMs or as 
a single 36 K-bit RAM [7].  The RAMs contain two input ports, Port A and Port B.  These two 
ports may be used independently to synchronously read data from and write data to the RAM.  
The RAMs may be configured to use one of three write configurations [7].  In the WRITE_FIRST 
mode, data will be immediately displayed on the output of the RAM as it is written.  The 
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READ_FIRST mode will display the previous contents of the RAM on the output as new data is 
written.  Finally, the NO_CHANGE mode will leave the outputs unchanged upon a write 
operation.  When using this mode the data output remains the last read data and is unaffected by 
write operations [7].  Additionally, the RAMs may be used in either a single-port or dual-port 
RAM mode [7].  This option is available whether the RAMs are being used as a single 36 K-bit 
memory or two independent 18 K-bit memories [7].  The RAMs are also able to be configured 
with various port sizes and depths.  The different configuration types available to be used for the 
independent 18 K-bit configurations are shown in Table 2-4 [7].  The configuration types 
available for use with the single 36 K-bit configurations are shown in Table 2-5 [7].  An option is 
also provided to enable a pipeline register on the output of a RAM, allowing a higher operating 
frequency while sacrificing an additional clock cycle of latency [7]. 
Table 2-4 - Virtex-5 BRAM Port Aspect Ratio (18K-bit RAM) [7] 
Address 
Width 
Address 
Bits 
Memory Depth Data 
Width 
Data-In/Out 
Bits 
Data-In/Out 
Parity Bits 
14 13:0 16K 1 0 n/a 
13 13:1 8K 2 1:0 n/a 
12 13:2 4K 4 3:0 n/a 
11 13:3 2K 9 7:0 0 
10 13:4 1K 18 15:0 1:0 
9 13:5 512 36 31:0 3:0 
 
Table 2-5 ? Virtex-5 BRAM Port Aspect Ratio (36K-bit RAM) [7] 
Address 
Width 
Address 
Bits 
Memory Depth Data 
Width 
Data-In/Out 
Bits 
Data-In/Out 
Parity Bits 
15 14:0 32K 1 0 n/a 
14 14:1 16K 2 1:0 n/a 
13 14:2 8K 4 3:0 n/a 
12 14:3 4K 9 7:0 0 
11 14:4 2K 18 15:0 1:0 
10 14:5 1K 36 31:0 3:0 
9 14:6 512 72 63:0 7:0 
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The RAMs also may be used with ECC parity bits.  In this mode of operation an 8-bit 
Hamming code is generated by the ECC circuitry present with each RAM which can be seen in 
Figure 2-6 [7].  The ECC circuitry may be used fully or in an encoder-only or decoder-only 
mode.  The configurable EN_ECC_WRITE option allows the ECC bits to be provided on the 
parity input pins of the RAM or optionally generated by the included encoding circuitry.  
Similarly the EN_ECC_READ option may be used to bypass the decoding and correction 
circuitry [7].  This ECC circuitry is capable of detecting and correcting any single-bit error or 
detecting any double-bit error without correction in the data being read from the RAM [7]. 
33 
 
Figure 2-6 - Top Level View of Virtex-5 BRAM ECC [7] 
 
 The RAMs may also be configured in a First-In-First-Out (FIFO) mode of operation.  In 
this mode of operation the FIFO is equipped with the inputs and outputs shown in Table 2-6 [7].  
The FIFO provides separate read and write enables as well as individual clocks for each 
operation.  The read and write addresses are displayed on outputs, and there are also flags 
indicating a read error or a write error.  A pair of flags indicating that the FIFO is full or empty is 
present.  Also, the FIFO features configurable almost full and almost empty flags which are 
controlled via a 13-bit hexadecimal value [7].  A configuration option called 
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FIRST_WORD_FALL_THROUGH also optionally allows the first word written into the FIFO to 
be immediately displayed on the output.  If this option is selected the capacity of the FIFO will 
be increased by one [7].  The FIFO may also be used with the same ECC circuitry that is 
available to the standard BRAM configuration.  This allows any single bit error in the FIFO data 
to be detected and corrected or any double bit error in the FIFO data to be detected [7].  The 
various port aspect ratios and memory depths that are available for use in this mode are shown in 
Table 2-7 [7].  Additionally, the actual capacity of the FIFO when it is used with these different 
port aspect ratios is shown in Table 2-8 [7]. 
Table 2-6 - FIFO Input and Output Ports [7] 
 Port Width Description 
Inputs 
DI 32 Data input 
DIP 4 Parity-bit input 
RDEN 1 Read enable 
RDCLK 1 Read domain clock 
WREN 1 Write enable 
WRCLK 1 Write domain clock 
RST 1 Asynchronous reset 
Outputs 
DO 32 Data output 
DOP 4 Parity-bit output 
WRCOUNT 13 Data write pointer 
RDCOUNT 13 Data read pointer 
FULL 1 Full flag 
EMPTY 1 Empty flag 
ALMOSTFULL 1 Configurable almost full flag 
ALMOSTEMPTY 1 Configurable almost empty flag 
RDERR 1 Read error flag 
WRERR 1 Write error flag 
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Table 2-7 ? Virtex-5 FIFO Port Aspect Ratio [7] 
18K-bit Mode 36K-bit Mode 
Memory Depth Data Width Memory Depth Data Width 
4K 4 8K 4 
2K 9 4K 9 
1K 18 2K 18 
512 36 1K 36 
- - 512 72 
 
Table 2-8 ? Virtex-5 FIFO Data Depth [7] 
Data Width Block RAM 
Memory 
FIFO Capacity 
18K-bit 36K-bit Standard FWFT 
- 4 8192 8193 8194 
4 9 4096 4097 4098 
9 18 2048 2049 2050 
18 36 1024 1025 1026 
36 72 512 513 514 
 
 Finally, the BRAMs are able to be configured in a cascade mode which allows two 
adjacent RAMs to be connected together and used as one larger RAM.  The circuitry which 
allows this is shown in Figure 2-7 [7].  This option is available for any two adjacent RAMs in a 
column on the device [7].  The only port width available for this operating mode is 64K x 1-bit 
where two 32K x 1-bit RAMs are combined.  The upper RAM has its RAM_EXTENSION 
configuration bit set to UPPER (0) and the lower ram has its RAM_EXTENSION bit set to 
LOWER (1) [7].  Output data is only displayed on the upper RAM.  The data output of the RAM 
configured as the lower RAM is routed into a multiplexer by connecting the CASCADEIN and 
CASCADEOUT of the two RAMs as shown in Figure 2-7 [7].  This multiplexer is controlled by 
address bit A15 which selects the appropriate output [7]. 
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Figure 2-7 - Virtex-5 BRAMs in Cascade Configuration [7] 
2.4 Virtex-4 Block RAM BIST 
This section will discuss the FPGA RAM BIST procedures developed by Milton in [2] and 
by Garrison in [3] for Virtex-4 which are expanded upon in this work for a Virtex-5 
implementation.  Milton?s original approach used the CLBs available within the FPGA to create 
the TPG and ORAs while the BRAMs served as the Circuits Under Test (CUTs).  Milton also 
used a pair of identical TPGs which provide test vectors to alternating RAMs in the columns [2].  
The ORAs are implemented using a circular comparison based approach that results in an 
increase in fault detection capability and diagnostic resolution [2].  These ORAs are placed in the 
CLB columns which neighbor the BRAMs.  A layout of Milton?s BIST architecture along with 
the TPG, CUT, and ORA connections can be seen in Figure 2-8 [2]. 
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Figure 2-8 - BRAM BIST Architecture [2] 
2.4.1 Dedicated Carry Chain 
Milton?s original ORA design was improved upon by Dutton in [11] and later used by 
Garrison in [3] to take advantage of the built in carry logic provided in the Configurable Logic 
Blocks (CLBs) of Virtex-4 and Virtex-5 devices.  In order to implement this, the ORA circuitry 
was modified to that shown in Figure 2-9 [3].  To indicate a fault has been detected a Logic 0 is 
latched into the flip-flop [3].  This bit is used to select the input of a multiplexor in the carry 
chain which in turn provides a Logic 1 on the carry-out in the case of a failure.  Alternatively, 
the input that is provided from the previous multiplexor via carry-in is forwarded to the carry-
out [3]. 
ORAs ORAs 
BRAMs BRAMs 
TPG0 TPG1 
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Figure 2-9 - Comparison Based ORA with Carry Chain [3] 
 
 In order to ensure the propagation of the test result through the entire built-in carry logic, 
several dummy ORAs must be implemented in the ORA columns[3].  This is necessary because 
some of the ORA columns do not span the entire height of the FPGA.  In this case, the dummy 
ORAs are added to the configuration to complete these columns as seen in Figure 2-10.  No logic 
is implemented in the dummy ORAs aside from the built-in carry chain [3]. 
 
Figure 2-10 - Additional Dummy ORAs [3] 
 
 
B 
R 
A 
M 
Dummy 
ORAs 
ORAs 
D 
Ai 
Bi 
Clk 
 0 1 
1 
carry-out 
carry-in 
39 
 The functionality of the carry logic can be expressed as an iterative OR-chain as seen in 
Figure 2-11 where the boxes containing ?O?s are the ORAs [3].  If no mismatch is detected 
within the ORA then the input from the previous ORA will be selected. If a mismatch is detected 
a Logic 1 will be output by the detecting ORA and propagated through the chain [3]. 
 
Figure 2-11 - Iterative OR-Chain Functionality [3] 
The OR-chain is connected to the boundary scan interface provided on the device, with 
the initial input being provided by the Test Data In (TDI) pin.  The final output of the chain is 
connected to the Test Data Out (TDO) pin of the interface [3].  The OR-chain effectively 
provides a single Pass/Fail bit to observe the test result.  Once the test has concluded the user is 
able to toggle TDI and observe the behavior of TDO [3].  If TDO matches TDI during this 
process then no fault has been detected by any of the ORAs, and it is unnecessary to perform a 
configuration memory read back [3].  If TDO is observed as being constantly a Logic 1 through 
this process, then a configuration memory read back may be performed in order to retrieve the 
results from the flip-flops in the ORAs if desired [3].  If TDO is observed as being constantly a 
Logic 0 while toggling TDI then it must be assumed that there is a fault within the logic used to 
construct the OR-chain meaning TDI and the ORA comparison results are not being properly 
propagated. 
2.4.2 TPG Architecture 
 The original designs for the Virtex-5 BRAM TPGs were proposed by Garrison in [3].  
Garrison proposed that four different Xilinx BRAM primitive models be used in developing and 
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testing the TPGs.  These models describe the operation of the BRAMs in different configuration 
modes and behave exactly as the physical BRAMs in simulation [7].  The TPGs are created with 
an aim to test the BRAMs in these modes of operation, and the operation of the TPGs is verified 
with these models in simulation.  The models for the first four test configurations are as follows 
[3]: 
1. BRAM (32K + 4K parity) ? true dual-port BRAM that supports widths of x1, x2, 
x3, x4, x9, x18, and x36. 
2. ECC (512 x 72-bit) ? simple dual-port BRAM with 64-bit ECC. 
3. FIFO (32K + 4K parity) ? synchronous/asynchronous FIFO BRAM that supports 
widths x1, x2, x4, x9, and x18. 
4. FIFOECC (512 x 72-bit) ? synchronous/asynchronous FIFO with 64-bit ECC. 
 
2.4.2.1 BRAM TPG 
 The TPG proposed by Garrison for testing the RAM in the BRAM configuration is 
responsible for testing the dual-port functionality of the BRAM and would require seven 
different BIST configurations [3].  The proposed test algorithm, address space, and data width 
used for each configuration can be seen in Table 2-9 [7].  The desired test to be run is selected by 
a user-supplied control string that is shifted into the TPG using the boundary scan interface as 
shown in Figure 2-12 [3].  The values proposed for the control strings for the various tests are 
shown in Table 2-10 along with the configuration settings in Table 2-11 [3].  The three Mode bits 
in the control string correspond to the BRAM Configuration Number and the Level Control bit 
allows us to control the active level for the TPGs [3]. 
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Execution of the RAM test algorithms is implemented using a Finite State Machine 
(FSM) in a VHDL model for the BRAM TPG as well as the other BIST TPGs.  The TPG model 
is synthesized using area constraints to restrict the placement of the resources to the smallest area 
possible in the lower left hand corner of the device [3].  In the BIST configurations, the TPG 
designs will be offset from the bottom left hand corner to achieve the desired placement in the 
six CLB columns directly to the right of the rightmost column of BRAMs, excluding the 
columns of BRAMs located in a Tri-mode Ethernet Media Access Controller (TEMAC) column 
in Virtex-5 devices that contain them [3].  The columns are selected for TPG placement because 
they are not used for any other purpose in the Virtex-5 BRAM BIST [3].  In these columns, one 
TPG will be placed at the bottom of the device and the other TPG will be placed exactly halfway 
up the device [3].  The TPGs are placed in this manner in order to minimize routing distance 
from each TPG to alternating BRAMs in columns spanning the entire height of the device.  An 
example of the TPG placement and routing on the LX30 device may be seen in Figure 2-13. 
Table 2-9 - BRAM BIST Configurations [7] 
BRAM 
Config 
Test 
Algorithm 
Address 
Space 
Data 
Width 
1 March s2pf 1K 36 
2 March d2pf 1K 36 
3 
MATS+ 
2K 18 
4 4K 9 
5 8K 4 
6 16K 2 
7 32K 1 
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Table 2-10 ? Proposed Control String Values for BRAM TPG [3] 
BRAM 
Config 
Test 
Algorithm 
Address 
Space 
Level 
Control Mode 2 Mode 1 Mode 0 
Hex 
Control 
String 
1 March s2pf 1K 0 0 0 0 0x0 
2 March d2pf 1K 0 0 0 1 0x1 
3 
MATS+ 
2K 1 0 1 0 0xA 
4 4K 1 0 1 1 0xB 
5 8K 1 1 0 0 0xC 
6 16K 1 1 0 1 0xD 
7 32K 1 1 1 0 0xE 
 
Table 2-11 - Proposed Configuration Settings for BRAM TPG [3] 
(a) Settings Part 1 
BRAM 
Config 
Test 
Algorithm 
DO (A/B) 
REG 
READ 
Width 
(A/B) 
WRITE 
Width 
(A/B) 
WRITE Mode 
(A/B) 
SAVE 
DATA 
1 March s2pf 1 36 36 READ_FIRST FALSE 
2 March d2pf 1 36 36 READ_FIRST FALSE 
3 
MATS+ 
0 18 18 READ_FIRST FALSE 
4 0 9 9 WRITE_FIRST FALSE 
5 0 4 4 NO_CHANGE FALSE 
6 0 2 2 WRITE_FIRST FALSE 
7 0 1 1 NO_CHANGE FALSE 
 
(b) Settings Part 2 
BRAM 
Config 
Test 
Algorithm 
CLK, EN, 
SSR 
REGCLK 
(A/B)(U/L) 
INV 
RAM EXT INIT VAL SRVAL 
INIT 
(A/B) 
VAL 
1 March s2pf INV NONE AAAA 5555 0 
2 March d2pf not INV NONE 5555 AAAA FFFF 
3 
MATS+ 
not INV NONE AAAA 5555 0 
4 not INV NONE 5555 AAAA FFFF 
5 not INV NONE AAAA 5555 0 
6 not INV NONE 5555 AAAA FFFF 
7 not INV NONE AAAA 5555 0 
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Figure 2-12 - Shift Register Control String for BRAM TPGs [3] 
 
Figure 2-13 - Placement and Routing on TPGs in LX30 
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2.4.2.2 ECC TPG 
 The proposed ECC TPG is responsible for testing the memory core and the ECC read and 
write capabilities of the BRAM [3].  By using the largest data width available in this 
configuration, all memory elements within the BRAMs may be accessed [3].  This TPG is 
implemented using an FSM as well, and the algorithm to be run is also selected using a control 
string shifted in via the boundary scan interface.  The control values used for selecting the 
algorithm are shown in Table 2-12 along with the entirety of the proposed configuration settings 
in Table 2-13 [3].  The RAM test algorithm March LR w/72-bit BDS (described in the Appendix) 
is used in this configuration since all memory elements are available.  The background data 
sequence is used to ensure that all intra-word coupling faults will be detected [6].  The 
configurations labeled ECC (read) and ECC (write) are responsible for detecting any faults 
within the ECC check and correction circuitry on the BRAMs [4].  This TPG is also synthesized 
using area constraints to control TPG area and placement. 
Table 2-12 ? Proposed Control String Values for ECC TPG [3] 
ECC 
Config 
Test 
Algorithm 
Level 
Control Mode 1 Mode 0 
Hex 
Control 
String 
1 MarchLR w/BDS 0 0 0 0x0 
2 ECC (read) 0 0 1 0x1 
3 ECC (write) 1 1 0 0x6 
 
  
45 
Table 2-13 ? Proposed Configuration Settings for ECC TPG [3] 
(a) ECC Settings Part 1 
ECC 
Config 
Test 
Algorithm 
DO 
REG 
EN_ECC 
READ 
EC_ECC 
WRITE 
EN_ECC 
SCRUB 
INIT 
VAL 
SR 
VAL 
INIT 
(A/B) 
VAL 
SAVE 
DATA 
1 MarchLR w/BDS 0 FALSE FALSE FALSE AAAA 5555 0 FALSE 
2 ECC (read) 1 TRUE FALSE FALSE AAAA 5555 0 FALSE 
3 ECC (write) 1 FALSE TRUE FALSE 5555 AAAA FFFF FALSE 
 
(b) ECC Settings Part 2 
ECC 
Config 
Test 
Algorithm 
RDCLK 
(U/L) 
INV 
RDEN 
(U/L) INV 
RDRCLK 
(U/L) INV 
WRCLK 
(U/L) INV 
WREN 
(U/L) 
INV 
SSR 
(U/L) 
INV 
1 MarchLR w/BDS not INV not INV not INV not INV not INV not INV 
2 ECC (read) not INV not INV not INV not INV not INV not INV 
3 ECC (write) INV INV INV INV INV INV 
 
 
2.4.2.3 FIFO TPG 
 The TPG for testing the BRAM in the FIFO configuration mode is responsible for testing 
all the FIFO functionality and is designed like the previously described BRAM and ECC TPGs.  
This TPG will use the RAM test algorithm FIFOX [4].  The proposed configuration settings for 
this mode can be seen in Table 2-14 [3]. 
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Table 2-14 ? Proposed Configuration Settings for FIFO TPG [3] 
(a) FIFO Settings Part 1 
ECC 
Config 
Test 
Algorithm 
DO 
REG 
DATA 
WIDTH EN SYN FWFT 
RDCLK 
(U/L) 
INV 
RDEN INV RST INV 
1 
FIFOX 
1 36 TRUE TRUE INV INV INV 
2 1 18 FALSE FALSE not INV not INV not INV 
3 0 9 TRUE TRUE not INV not INV not INV 
4 0 4 FALSE FALSE not INV not INV not INV 
 
(b) FIFO Settings Part 2 
ECC 
Config 
Test 
Algorithm 
WRCLK 
(U/L) INV WREN INV 
ALMOST 
FULL 
OFFSET 
ALMOST 
EMPTY 
OFFSET 
1 
FIFOX 
INV INV 5555 AAAA 
2 not INV not INV AAAA 5555 
3 not INV not INV 5555 AAAA 
4 not INV not INV AAAA 5555 
 
2.4.2.4 FIFOECC TPG 
 The TPG for this mode is responsible for testing the ECC circuitry of the BRAM when it 
is configured for FIFOECC operation.  This TPG will be designed similar to the previously 
described TPGs.  The proposed test algorithm that will be used in this TPG is FIFOX [4].  The 
proposed configuration settings may be seen in Table 2-15.  
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Table 2-15 ? Proposed Configuration Settings for FIFOECC TPG [3] 
(a) FIFOECC Settings Part 1 
FIFOECC 
Config 
Test 
Algorithm 
DO 
REG 
EN_ECC 
READ 
EN_ECC 
WRITE EN SYN FWFT RST INV 
1 FIFOX 1 TRUE FALSE FALSE TRUE INV 
2 FIFOX 0 FALSE TRUE TRUE FALSE not INV 
 
(b) FIFOECC Settings Part 2 
FIFOECC 
Config 
Test 
Algorithm 
ALMOST 
EMPTY 
OFFSET 
ALMOST 
FULL 
OFFSET 
RDCLK 
(U/L) 
INV 
RDRCLK 
(U/L) 
INV 
RDEN 
INV 
WRCLK 
(U/L) 
INV 
WREN 
INV 
1 FIFOX 5555 AAAA INV INV INV INV INV 
2 FIFOX AAAA 5555 not INV not INV not INV not INV not INV 
 
2.5 Thesis Statement 
 This chapter has presented the basics of fault modeling in SRAM memories.  It has also 
shown and detailed the various test algorithms used when testing these memories.  An overview 
of the architecture of Virtex-5 devices is also given along with a description of the embedded 
BRAMs and their modes of operation.  The components of the BIST structure are also described 
with proposed configuration modes and settings for the BRAMs. 
 This thesis aims to implement and expand upon the configurations proposed by Garrison 
in [3] for the Virtex-5.  Garrison?s proposed configuration settings to test the first four 
configuration modes of the BRAMs are shown in this chapter, but the design was not 
implemented in his work.  In Chapter 3, this thesis will describe the implementation of BIST for 
the Virtex-5 BRAMs which includes Garrison?s proposed configurations and settings which have 
been expanded upon to completely test the embedded BRAMs in these devices. 
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Chapter 3 Virtex-5 Block RAM BIST 
 
 
 This chapter will describe the design and implementation of the BIST for Virtex-5 
BRAMs and the results obtained from actual generation and execution of the BIST sequence.  
This will include TPG development for all BIST configurations as well as the configuration 
settings for each of the operating modes.  The design, placement, and routing of the ORAs is also 
shown along with an overview of the complete Virtex-5 BIST architecture.  The process for 
generation and modification of the BIST configurations and the software tools used are also 
described.  Finally the results and analysis will be presented including optimization, timing 
analysis, and fault coverage results. 
3.1 Virtex-5 RAM BIST 
 The BIST architecture builds upon the architecture used by Milton and Garrison for 
Virtex-4 as described in Section 2.4.  The same basic architecture is used where a pair of 
identical TPGs is used to drive the alternating BRAMs in the columns as shown in Figure 2-8.  
All BRAMs will be configured identically so any mismatch detected by an ORA is known to be 
a fault in a BRAM.  The redundancy of the TPGs prevents fault aliasing that may occur when 
using a single TPG that has been synthesized containing a fault [12].  In the case of a fault being 
present in a TPG it will produce failures.  These failures will be detected when the results of the 
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BRAMs being driven by the faulty TPG are compared with those from the BRAMs being driven 
by the fault-free TPG [12].  A circular comparison architecture which will be described later in 
this chapter is used for the ORA routing in order to prevent additional fault aliasing that may 
occur if adjacent BRAMs have identical faults. 
 
3.2 TPG Design and Implementation 
The TPGs for the five BIST configuration modes were designed as Finite State Machines 
(FSMs) to accommodate the multiple test phases that each TPG must run.  The TPG designs 
were written as VHDL models and synthesized for insertion into the BIST configurations.  Area 
constraints were used during synthesis of all the TPG models in order to minimize the resource 
usage of each one and restrict placement to the lower left hand corner of the device as shown in 
Figure 3-1.  Designs are offset from this position to specify placement as described in Section 
2.4.2.  Prior to running the BIST procedure it is necessary to shift in the appropriate control 
string value for the desired phase of the test to be run.  This is done via the BSCAN interface of 
the device.  The data shifted in is consists of a level control value to specify the active level of 
the clocks and mode values to specify the phase of BIST the TPG will execute. 
The TPG models for the BRAM, ECC, FIFO, and FIFOECC test configurations were all 
implemented based on the TPG models proposed by Garrison in [3] which are described in 
Chapter 2. 
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Figure 3-1 - BRAM TPG Area Constraints in LX30 
3.2.1 BRAM 
The final implementation of the BRAM TPG was based on Garrison?s design in [3] with 
some minor modifications.  The BIST configurations and control string values proposed by 
Garrison are used, but the proposed configuration settings were modified slightly by changing 
Constrained 
TPG 
Placement 
Area 
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the write mode of the last configuration to READ_FIRST.  The final configuration settings for the 
BRAM TPG can be seen in Table 3-1.  Prior to the BIST being run a control string value must be 
shifted in via the BSCAN interface in order to specify which phase of the test is to be run.  For 
the BRAM TPG, the appropriate value for each test phase is shown in Table 2-10. 
Table 3-1 - Final BRAM Configuration Settings 
 (a) Settings Part 1 
BRAM 
Config 
Test 
Algorithm 
DO (A/B) 
REG 
READ 
Width 
(A/B) 
WRITE 
Width 
(A/B) 
WRITE Mode 
(A/B) 
SAVE 
DATA 
1 March s2pf 1 36 36 READ_FIRST FALSE 
2 March d2pf 1 36 36 READ_FIRST FALSE 
3 
MATS+ 
0 18 18 READ_FIRST FALSE 
4 0 9 9 WRITE_FIRST FALSE 
5 0 4 4 NO_CHANGE FALSE 
6 0 2 2 WRITE_FIRST FALSE 
7 0 1 1 READ_FIRST FALSE 
 
(b) Settings Part 2 
BRAM 
Config 
Test 
Algorithm 
CLK, EN, 
SSR 
REGCLK 
(A/B)(U/L) 
INV 
RAM EXT INIT VAL SRVAL 
INIT 
(A/B) 
VAL 
1 March s2pf INV NONE AAAA 5555 0 
2 March d2pf not INV NONE 5555 AAAA FFFF 
3 
MATS+ 
not INV NONE AAAA 5555 0 
4 not INV NONE 5555 AAAA FFFF 
5 not INV NONE AAAA 5555 0 
6 not INV NONE 5555 AAAA FFFF 
7 not INV NONE AAAA 5555 0 
 
3.2.2 ECC 
 The ECC TPG was created directly from the design proposed by Garrison.  This 
configuration mode uses a fixed 72-bit data word length for each configuration with a fixed 
address space of 512.  The final configuration settings used in this TPG are shown in Table 3-2. 
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The remaining specifications are implemented directly from those proposed by Garrison which 
are shown in Chapter 2.  The ECC TPG also requires that a control string be shifted in via the 
BSCAN interface prior to beginning to test.  The final control strings for this configuration are 
shown in Table 3-3. 
Table 3-2 - Final ECC Configuration Settings 
 (a) ECC Settings Part 1 
ECC 
Config 
Test 
Algorithm 
DO 
REG 
EN_ECC 
READ 
EC_ECC 
WRITE 
EN_ECC 
SCRUB 
INIT 
VAL 
SR 
VAL 
INIT 
(A/B) 
VAL 
SAVE 
DATA 
1 MarchLR w/BDS 0 FALSE FALSE FALSE AAAA 5555 0 FALSE 
2 ECC (read) 1 TRUE FALSE FALSE AAAA 5555 0 FALSE 
3 ECC (write) 1 FALSE TRUE FALSE 5555 AAAA FFFF FALSE 
 
(b) ECC Settings Part 2 
ECC 
Config 
Test 
Algorithm 
RDCLK 
(U/L) 
INV 
RDEN 
(U/L) INV 
RDRCLK 
(U/L) INV 
WRCLK 
(U/L) INV 
WREN 
(U/L) 
INV 
SSR 
(U/L) 
INV 
1 MarchLR w/BDS not INV not INV not INV not INV not INV not INV 
2 ECC (read) not INV not INV not INV not INV not INV not INV 
3 ECC (write) INV INV INV INV INV INV 
 
Table 3-3 - Final Control String Values for ECC TPG 
ECC 
Config 
Test 
Algorithm 
Level 
Control Mode 2 Mode 1 Mode 0 
Hex 
Control 
String 
1 MarchLR w/BDS 0 0 0 0 0x0 
2 ECC (read) 0 0 0 1 0x1 
3 ECC (write) 0 0 1 0 0x2 
 
3.2.3 FIFO 
 The FIFO TPG is an FSM developed from Garrison?s initially proposed FIFO TPG.  
However an additional fifth test phase has been added.  This additional phase is required in order 
to test the most significant bit of the configurable almost empty and almost full flags.  When the 
BRAM is configured as a FIFO with data width 4 it is the only time the most significant bit of 
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the flag configuration is used.  To detect faults for the MSB being stuck-at-0 and stuck-at-1 two 
separate test phases for this data width are necessary.  The final test phases and the 
corresponding control string values of this TPG are shown in Table 3-4.  The final test 
configuration settings along with the modified almost empty and almost full configuration values 
are shown in Table 3-5. 
Table 3-4 ? Final FIFO Test Phases and Control String Values 
FIFO 
Config 
Test 
Algorithm 
Address 
Space 
Data 
Width 
Level 
Control Mode 2 Mode 1 Mode 0 
Hex 
Control 
String 
1 
FIFOX 
1K 36 1 0 0 0 0x8 
2 2K 18 0 0 0 1 0x1 
3 4K 9 0 0 1 0 0x2 
4 8K 4 0 0 1 1 0x3 
5 8K 4 0 0 1 1 0x3 
 
Table 3-5 ? Final Configuration Settings for FIFO TPG 
(a) FIFO Settings Part 1 
ECC 
Config 
Test 
Algorithm 
DO 
REG 
DATA 
WIDTH EN SYN FWFT 
RDCLK 
(U/L) 
INV 
RDEN INV RST INV 
1 
FIFOX 
1 36 TRUE TRUE INV INV INV 
2 1 18 FALSE FALSE not INV not INV not INV 
3 0 9 TRUE TRUE not INV not INV not INV 
4 0 4 FALSE FALSE not INV not INV not INV 
5 0 4 FALSE FALSE not INV not INV not INV 
 
(b) FIFO Settings Part 2 
ECC 
Config 
Test 
Algorithm 
WRCLK 
(U/L) INV WREN INV 
ALMOST 
EMPTY 
OFFSET 
ALMOST 
FULL  
OFFSET 
1 
FIFOX 
INV INV 2AA 155 
2 not INV not INV 555 2AA 
3 not INV not INV AAA 555 
4 not INV not INV 1555 AAA 
5 not INV not INV AAA 1555 
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3.2.4 FIFOECC 
 The FIFOECC TPG has been improved from Garrison?s initially proposed design.  The 
testing algorithm used by the FIFOECC TPG is a modified version of the FIFOX algorithm 
designated FIFOD.  This algorithm forces toggling of all of the ECC bits as it is executed by 
writing changing values to the FIFO.  The value that is written into each address of the FIFO is a 
write or read count value which is repeated as many times as necessary to fill the data width 
being tested.  This count value is incremented upon each write or read operation performed and 
reset at the beginning of each step.  This algorithm is executed as follows: 
Step 1. Reset the FIFO. 
Step 2. Repeat N times: write FIFO with count value repeated to match data width, check 
that Almost Empty flag goes inactive and Almost Full flag goes active at the appropriate 
points in the sequence. 
Step 3. Repeat N times: read FIFO expecting repeated count value and write FIFO with 
the inversion of repeated count 
Step 4. Repeat N times: read FIFO expecting inverted repeated count value, check that 
Almost Full flag goes inactive and Almost Empty flag goes active at the appropriate 
points in the read sequence. 
 
 The final test phases for this test mode and the final configuration settings may be seen in 
Table 3-6 and Table 3-7.  Control string values are not necessary for this TPG because the same 
algorithm is executed for both test phases and only the BRAM configuration is modified. 
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Table 3-6 - Final FIFOECC Test Phases 
FIFOECC 
Config 
Test 
Algorithm 
Address 
Space 
Data 
Width 
Level 
Control 
1 FIFOD (read) 512 72 0 
2 FIFOD (write) 512 72 0 
 
 
Table 3-7 ? Final Configuration Settings for FIFOECC TPG 
(a) FIFOECC Settings Part 1 
ECC 
Config 
Test 
Algorithm 
DO 
REG 
EN_ECC 
READ 
EN_ECC 
WRITE EN SYN FWFT RST INV 
1 FIFOD (read) 1 TRUE FALSE FALSE TRUE not INV 
2 FIFOD (write) 0 FALSE TRUE TRUE FALSE not INV 
 
(b) FIFOECC Settings Part 2 
ECC 
Config 
Test 
Algorithm 
ALMOST 
EMPTY 
OFFSET 
ALMOST 
FULL 
OFFSET 
RDCLK 
(U/L) 
INV 
RDRCLK 
(U/L) 
INV 
RDEN 
INV 
WRCLK 
(U/L) 
INV 
WREN 
INV 
1 FIFOD (read) 155 AA not INV not INV not INV not INV not INV 
2 FIFOD (write) AA 155 not INV not INV not INV not INV not INV 
 
3.2.5 CASC 
 The CASC TPG executes a March Y based algorithm designed strictly to test the 
functionality of the cascade circuitry.  The March Y algorithm simply performs the algorithm 
operations on one address in the UPPER BRAM and one address in the LOWER BRAM.  By 
doing this all the cascade circuitry can be verified quickly. 
 The final CASC test phases can be seen in Table 3-8.  No control string values are 
necessary for this TPG as the same test is run for both phases.  The final configuration settings 
for this TPG can be seen in Table 3-9. 
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Table 3-8 ? Final CASC Test Phases 
CASC 
Config 
Test 
Algorithm 
Address 
Space 
Data 
Width 
Level 
Control 
1 March Y 1K 64 0 
2 1K 64 0 
 
Table 3-9 ? Final Configuration Settings for CASC TPG 
CASC 
Config 
Test 
Algorithm 
DOA/B 
REG 
RD 
WIDTH 
A/B 
WR 
WIDTH 
A/B 
RAM 
EXT A 
RAM 
EXT B 
1 March Y 1 1 1 UPPER LOWER 
2 1 1 1 LOWER UPPER 
 
3.2.6 Test Configurations Summary 
 Each of these TPGs is FSM based and is restricted to the smallest area possible on the 
FPGA devices.  The resource usage for all the TPGs after synthesis can be seen in Table 3-10.  It 
is important to note that each TPG is placed twice in each BIST configuration and that the 
resource usage per is independent of the device being tested.  The 19 phases of the BIST 
sequence for the Virtex-5 devices are displayed in Table 3-11.  The various configuration 
address spaces and data widths are shown along with the hexadecimal representation of the 4-bit 
control string required to run each test phase.   
 
Table 3-10 - BIST TPG Resource Usage 
TPG Slices Slice Registers Slice LUTs CLB Area (column x row) 
BRAM 148 242 587 8 x 20 
ECC 205 566 808 8 x 30 
FIFO 34 58 135 8 x 5 
FIFOECC 43 162 122 8 x 10 
CASC 4 10 9 8 x 1 
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Table 3-11 ? Complete Virtex-5 BIST Procedure 
BIST 
Config 
BRAM 
Mode 
Test 
Algorithm 
Address 
Space 
Data 
Width 
Control 
String 
1 
BRAM 
March s2pf 1K 36 0x0 
2 March d2pf 1K 36 0x1 
3 
MATS+ 
2K 18 0xA 
4 4K 9 0xB 
5 8K 4 0xC 
6 16K 2 0xD 
7 32K 1 0xE 
8 
ECC 
MarchLR w/BDS 512 72 0x0 
9 ECC (read) 512 72 0x1 
10 ECC (write) 512 72 0x2 
11 
FIFO FIFOX 
1K 36 0x8 
12 2K 18 0x1 
13 4K 9 0x2 
14 8K 4 0x3 
15 8K 4 0x3 
16 FIFOECC FIFOD (read) 512 72 0x0 
17 FIFOD (write) 512 72 0x0 
18 CASC March Y 1K 64 0x0 
19 1K 64 0x0 
 
3.3 ORA Design 
 The ORAs are designed to use a double comparison of BRAM outputs and a circular 
comparison routing architecture.  The iterative OR-chain described in Section 2.4.1 is also 
implemented to accommodate results retrieval and an instantaneous Pass/Fail indicator.  The 
ORAs in the BIST are placed in two columns of five CLBs immediately adjacent to the BRAMs.  
Each of these groups of 10 CLBs is responsible for comparing all the outputs of two distinct 
BRAMs as shown in Figure 2-8 where each ORA block represents one group of CLBs.  Each 
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ORA slice is equipped with four 6-input LUTs that are used to compare the outputs of the 
BRAMs.  The inputs to these LUTS are used for comparison of up to two pairs of BRAM 
outputs. This architecture provides a total of up to 160 possible comparisons per BRAM. 
 The number of observed outputs for the BRAM, ECC, FIFO, and CASC configurations is 
less than 80 (half of the total comparisons) as shown in Table 3-12.  This means that each ORA 
performs a comparison of a single pair of BRAM outputs.  The number of observed outputs for 
the FIFOECC is greater than 80 such that some ORAs perform a comparison of two pairs of 
outputs.  A failure in an ORA making a double comparison is only traceable to be one of the two 
outputs that are routed to it. 
 
Table 3-12 - Compared Outputs for Configuration Modes 
Configuration 
Mode 
Compared 
Outputs 
BRAM 72 
ECC 74 
FIFO 68 
FIFOECC 106 
CASC 4 
 
3.3.1 ORA Comparison Routing 
 The outputs of each pair of BRAMs to be compared are routed to a group of two columns 
of five CLBs immediately to the left of one of the BRAMs.  Each of these groups contains 20 
slices organized as shown in Figure 3-2.  Each one of these slices contains ORAs designated A 
through D.  Table 3-13 summarizes the routing of the BRAM outputs to the ORAs within these 
groups.  Each configuration mode of the BIST is shown in this table, and this routing is 
59 
consistent for each group of ORAs in a BIST configuration as they span the entire height of the 
device.  This routing information may be used in order to diagnose a fault location by using 
configuration memory read back to locate the flip-flop which has latched a fault.  Once the 
failing flip-flop(s) is located it can be matched to a specific ORA whose inputs are known. 
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Figure 3-2 - ORA Map 
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Table 3-13 - ORA Input Routing Tables 
(a) BRAM ORA Routing 
Output Slice ORA Output Slice ORA Output Slice ORA 
DOA0 
1 
A DOA24 
7 
A DOB12 
14 
A 
DOA1 B DOA25 B DOB13 B 
DOA2 C DOA26 C DOB14 C 
DOA3 D DOA27 D DOB15 D 
DOA4 
2 
A DOA28 
8 
A DOB16 
15 
A 
DOA5 B DOA29 B DOB17 B 
DOA6 C DOA30 C DOB18 C 
DOA7 D DOA31 D DOB19 D 
DOA8 
3 
A DOPA0 
9 
A DOB20 
16 
A 
DOA9 B DOPA1 B DOB21 B 
DOA10 C DOPA2 C DOB22 C 
DOA11 D DOPA3 D DOB23 D 
DOA12 
4 
A DOB0 
11 
A DOB24 
17 
A 
DOA13 B DOB1 B DOB25 B 
DOA14 C DOB2 C DOB26 C 
DOA15 D DOB3 D DOB27 D 
DOA16 
5 
A DOB4 
12 
A DOB28 
18 
A 
DOA17 B DOB5 B DOB29 B 
DOA18 C DOB6 C DOB30 C 
DOA19 D DOB7 D DOB31 D 
DOA20 
6 
A DOB8 
13 
A DOPB0 
19 
A 
DOA21 B DOB9 B DOPB1 B 
DOA22 C DOB10 C DOPB2 C 
DOA23 D DOB11 D DOPB3 D 
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(b) ECC ORA Routing 
 
Output Slice ORA Output Slice ORA Output Slice ORA 
DO0 
1 
A DO24 
7 
A DO48 
14 
A 
DO1 B DO25 B DO49 B 
DO2 C DO26 C DO50 C 
DO3 D DO27 D DO51 D 
DO4 
2 
A DO28 
8 
A DO52 
15 
A 
DO5 B DO29 B DO53 B 
DO6 C DO30 C DO54 C 
DO7 D DO31 D DO55 D 
DO8 
3 
A DO32 
9 
A DO56 
16 
A 
DO9 B DO33 B DO57 B 
DO10 C DO34 C DO58 C 
DO11 D DO35 D DO59 D 
DO12 
4 
A SBITERR 10 A DO60 
17 
A 
DO13 B DO36 
11 
A DO61 B 
DO14 C DO37 B DO62 C 
DO15 D DO38 C DO63 D 
DO16 
5 
A DO39 D DOP0 
18 
A 
DO17 B DO40 
12 
A DOP1 B 
DO18 C DO41 B DOP2 C 
DO19 D DO42 C DOP3 D 
DO20 
6 
A DO43 D DOP4 
19 
A 
DO21 B DO44 
13 
A DOP5 B 
DO22 C DO45 B DOP6 C 
DO23 D DO46 C DOP7 D 
   DO47 D DBITERR 20 A 
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 (c) FIFO ORA Routing 
Output Slice ORA Output Slice ORA Output Slice ORA 
DO0 
1 
A DO24 
7 
A WRCOUNT10 
14 
A 
DO1 B DO25 B WRCOUNT11 B 
DO2 C DO26 C WRCOUNT12 C 
DO3 D DO27 D RDCOUNT0 D 
DO4 
2 
A DO28 
8 
A RDCOUNT1 
15 
A 
DO5 B DO29 B RDCOUNT2 B 
DO6 C DO30 C RDCOUNT3 C 
DO7 D DO31 D RDCOUNT4 D 
DO8 
3 
A DOP0 9 A RDCOUNT5 
16 
A 
DO9 B DOP1 B RDCOUNT6 B 
DO10 C DOP2 
11 
A RDCOUNT7 C 
DO11 D DOP3 B RDCOUNT8 D 
DO12 
4 
A WRCOUNT0 C RDCOUNT9 
17 
A 
DO13 B WRCOUNT1 D RDCOUNT10 B 
DO14 C WRCOUNT2 
12 
A RDCOUNT11 C 
DO15 D WRCOUNT3 B RDCOUNT12 D 
DO16 
5 
A WRCOUNT4 C FULL 
18 
A 
DO17 B WRCOUNT5 D EMPTY B 
DO18 C WRCOUNT6 
13 
A ALMOSTFULL C 
DO19 D WRCOUNT7 B ALMOSTEMPTY D 
DO20 
6 
A WRCOUNT8 C RDERR 19 A 
DO21 B WRCOUNT9 D WRERR B 
DO22 C       
DO23 D       
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(d) FIFOECC ORA Routing 
Output Slice ORA Output Slice ORA Output Slice ORA 
DO0 
1 
A DO32 
5 
A DOP6 
12 
A 
DO1 A DO33 A DOP7 B 
DO2 B DO34 B SBITERR C 
DO3 B DO35 B DBITERR D 
DO4 C DO36 C FULL 
13 
A 
DO5 C DO37 C EMPTY B 
DO6 D DO38 D ALMOSTFULL C 
DO7 D DO39 D ALMOSTEMPTY D 
DO8 
2 
A DO40 
6 
A RDERR 
14 
A 
DO9 A DO41 A WRERR B 
DO10 B DO42 B RDCOUNT0 C 
DO11 B DO43 B RDCOUNT1 D 
DO12 C DO44 C RDCOUNT2 
15 
A 
DO13 C DO45 C RDCOUNT3 B 
DO14 D DO46 D RDCOUNT4 C 
DO15 D DO47 D RDCOUNT5 D 
DO16 
3 
A DO48 
7 
A RDCOUNT6 
16 
A 
DO17 A DO49 A RDCOUNT7 B 
DO18 B DO50 B RDCOUNT8 C 
DO19 B DO51 B RDCOUNT9 D 
DO20 C DO52 C RDCOUNT10 
17 
A 
DO21 C DO53 D RDCOUNT11 B 
DO22 D DO54 
8 
A RDCOUNT12 C 
DO23 D DO55 B WRCOUNT0 D 
DO24 
4 
A DO56 C WRCOUNT1 
18 
A 
DO25 A DO57 D WRCOUNT2 B 
DO26 B DO58 
9 
A WRCOUNT3 C 
DO27 B DO59 B WRCOUNT4 D 
DO28 C DO60 C WRCOUNT5 
19 
A 
DO29 C DO61 D WRCOUNT6 B 
DO30 D DO62 
10 
A WRCOUNT7 C 
DO31 D DO63 B WRCOUNT8 D 
   DOP0 C WRCOUNT9 
20 
A 
   DOP1 D WRCOUNT10 B 
   DOP2 
11 
A WRCOUNT11 C 
   DOP3 B WRCOUNT12 D 
   DOP4 C    
   DOP5 D      
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 (e) CASC ORA Routing 
Output Slice ORA 
DOA0 1 A 
DOPA0 B 
DOB0 11 A 
DOPB0 B 
 
3.4 BIST Implementation 
 The fully routed BIST configuration on a physical device is shown in Figure 3-3.  This 
design was created for the LX30, one of the smaller devices in the Virtex-5 family, and is for the 
BRAM configuration mode.  In this device there are two columns of BRAMs running vertically 
on the device.  The ORAs are placed directly to the left of the BRAMs in the immediately 
adjacent CLB columns, and the BRAM outputs are routed directly to the appropriate ORAs.  The 
two TPGs are visible on the right side of the device.  The bottom TPG is placed on the lowest 
row of CLBs available and in the six columns of CLBs to the right of the rightmost BRAM 
column.  The second TPG is placed in these same six columns above the first TPG, beginning 
exactly half way up the device.  The TPG outputs are then each routed to alternating BRAMs in 
the columns.  The routing from the boundary scan interface is located directly in the center of the 
device. 
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Figure 3-3 ? BRAM BIST Configuration Routed on Virtex-5 LX30 
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3.4.1 Cascade Routing 
 The cascade configuration mode presents a unique situation for ORA routing.  When the 
BRAMs are functioning in this mode of operation two of the memories are cascaded together in 
order to form one larger memory, and the output of this memory is only displayed on the output 
port of the BRAM configured in the UPPER mode.  The output of the BRAM configured in the 
LOWER mode is routed to the output of the UPPER memory as shown in Figure 2-7.  This 
means that the outputs of every other BRAM in a column will be identical, rather than all BRAM 
outputs being identical.  Therefore, the outputs of each BRAM are routed to properly reflect this 
change, and every other BRAM will be compared. 
 Using this approach presents another problem during the second cascade testing phase.  
In the first testing phase BRAMs are configured as LOWER and UPPER alternating starting at 
the bottom of the column.  In the second testing phase these configurations will be reversed such 
that the bottom BRAM will be configured as an UPPER, and the configurations will alternate 
from there up the column.  When this occurs the BRAMs located without another BRAM 
directly beneath them are configured as UPPER and are used to output data, but will not output 
any data that is expected from the LOWER memory because there is no CASCADEIN routing 
available for these components.  This will produce failures, even with fault free circuitry, if the 
cascade routing approach described above is used. 
 A solution used by Milton and Garrison for Virtex-4 devices in a similar cascade mode of 
operation is described in [2] and [3].  The solution used by them accounts for these expected 
failures by using clock enable controls in the ORAs to avoid clocking the result from an expected 
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failure into the flip-flips of the ORAs.  This approach required tedious modifications to the TPG 
in order to enable the ORA flip-flops during some clock cycles and disable them during others 
when the failures were expected.  It also requires that the ORA design be modified to include 
these clock enables.  A simpler solution is implemented for the Virtex-5 devices which 
eliminates any expected failures from the design. 
 The solution requires modification to the initial routing from the BRAMs to the ORAs.  
Instead of routing all BRAM outputs to ORAs, the routing from any BRAM that does not have 
an available CASCADEIN input is omitted completely as shown in Figure 3-4.  Additionally, the 
output of the BRAM that would normally be compared to these outputs to complete the circular 
comparison is routed to the next ORA in the column to maintain the circular comparison.  This 
situation occurs for any BRAMs located at the bottom of columns, directly above a PowerPC 
module, or some BRAMs in the special TEMAC columns which are present in some Virtex-5 
devices [13].  This omission of routing will not result in any reduction in fault coverage because 
there is no need to observe the outputs of these BRAMs in the cascade mode.  When they are 
configured in the LOWER mode the output is routed to the UPPER BRAM and displayed on its 
outputs.  These specific BRAMs do not need to be observed when configured in the UPPER 
mode because should never be used with this configuration in practice because there is no 
available CASCADEIN routing. 
 The ORAs located at the bottom of these columns that do not have BRAM outputs routed 
to them still retain their OR-chain routing.  In this case, these ORAs are made into dummy ORAs 
that simply propagate the carry chain result.  This solution eliminates the need for special 
modifications to the TPG or ORAs for the cascade BIST configuration by eliminating the 
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expected failures all together.  All fault detection and diagnosis ability is retained and the circular 
comparison ORA architecture is maintained. 
 
Figure 3-4 ? Virtex-5 Cascade ORA Routing 
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3.5 Programming Tools 
 A series of programming tools are used to aid in the development, implementation, and 
simulation of the BRAM BIST configurations.  The way in which each of these tools is used in 
the BIST development will be described in subsequent sections.  A brief statement on the 
capabilities of these tools is given below: 
? ISE ? a Xilinx design suite for creating, synthesizing, and implementing VHDL 
models for use in Xilinx FPGAs.  Allows area constraints to be created to specify 
placement of a design [14]. 
? FPGA Editor ? a Xilinx tool that provides of graphical user interface (GUI) for 
visual examination and editing of designs on the FPGA [14]. 
? Place and Route (PAR) ? a Xilinx tool that performs placement and routing of FPGA 
designs [14]. 
? XDL ? a Xilinx tool which converts between Xilinx file formats: NCD (FPGA 
Editor files) and XDL (Xilinx netlist description files) [14]. 
? BitGen ? a Xilinx tool which generates BIT or RBT files from NCD files.  These 
BIT and RBT files contain the configuration information which is downloaded into 
the FPGA [14]. 
? TRCE ? A Xilinx tool for timing analysis of a design.  Specifically, it determines the 
maximum clock frequency at which a design may be run [14]. 
? ModelSim Xilinx Edition ? A simulator made by Mentor Graphics which is able to 
simulate VHDL models using Xilinx primitives [15]. 
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3.6 Configuration File Generation 
 The entire generation procedure using the two BIST generation programs and the tools 
mentioned in Section 3.5 is diagramed in Figure 3-5 [16].  The initial generation of all the 
Virtex-5 BRAM BIST configurations is done using two separate programs which are both 
written in the C programming language.  These two programs are responsible for the creation of 
the XDL files containing exact placement and routing information for the entire BIST 
configuration [16].  The synthesized VHDL models of the TPGs are converted into XDL format 
and inserted into the generated XDL file.  The XDL file is then converted into an NCD file which 
is able to be graphically displayed within FPGA Editor.  FPGA Editor is used in order to 
automatically route the unrouted nets which have been designated in the design [16].  After the 
design has been completely routed it will be converted into a configuration BIT file capable of 
being downloaded directly into the FPGA device [16]. 
 
Figure 3-5 - BIST Configuration Process [16] 
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3.6.1 BIST Generation Program 
 The program responsible for the generation of the XDL file containing the BIST design is 
called V5RAMBIST.exe.  This program is run by the user and several parameters are provided in 
order to specify the target device and type for the BIST as well as several other details.  The 
exact command line formatting may be seen in Figure 3-6. 
 
V5RAMbist (v1.6) - generates template file for block RAM BIST config in any Virtex 5 
command line format: 
V5RAMbist <xdlfile> <startrow> <startcol> <endrow> <endcol> <dev> <part> <type> [n,a,p] 
 where type = bram (RAMB36 mode BIST) 
              fifo (FIFO36 mode BIST) 
              ecc  (RAMB36SDP mode BIST) 
              fifecc  (FIFO36_72 mode BIST) 
              casc (Cascade RAM mode BIST) 
   dev  part rows cols   dev part rows cols   dev part rows cols 
   lxt    20    60    33 
   lx/t   30    80    38     sxt   35    80    50     fxt   30   80   50 
   lx/t   50   120   38     sxt   50   120   50     fxt   70  160   50 
   lx/t   85   120   64     sxt   95   160   68     fxt  100  160   73 
   lx/t  110  160   64     sxt  240  240  104    fxt  130  200   70 
   lx/t  155  160   87                                      fxt  200  240   87 
   lx/t  220  160   121   txt  150   200   70 
   lx/t  330  240   121   txt  240   240   91 
 n: this option runs xdl2ncd with -nodrc option 
 a: runs 'n' option followed by FPGA Editor routing with no pinswap and converts back to XDL 
 p: this option uses system-level pins instead of Boudary Scan interface 
    PLUS runs xdl2ncd with -nodrc option 
 note: all parameters can be upper or lower case (but not mixed) 
 
Figure 3-6 - V5RAMBIST Command Line Instructions 
 
3.6.2 Modification Program 
 The second C program called V5RAMMOD.exe is responsible for the modification of the 
configuration settings in the XDL files.  In order to run this program the user specifies the generic 
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input XDL file which has been generated using the generation program and the name of the 
desired output file.  The BRAM configuration mode must also be specified along with the phase 
of the test and several other parameters seen in Figure 3-7. 
 
V5RAMmod (ver 1.2) - modifies routed XDLs for Block RAM to subseuqent BIST configs 
command line format:  
V5RAMmod <xdl_in> <xdl_out> <phase> <type> [ncd,bit] 
where the type is defined as: 
  Type:    bram(RAMB36) ecc(RAMB36SDP) fifo(FIFO36) fifecc(FIFO36_72) casc(RAMB36) 
---------------------------------------------------------------------------------- 
  Phase 1: S2PF  MarchLR FIFOx 1K     FIFOx_ECC_RD CASC_RD 
  Phase 2: D2PF  ECC_RD FIFOx 2K     FIFOx_ECC_WR CASC_WR 
  Phase 3: MATS+ 2K      ECC_WR        FIFOx 4K 
  Phase 4: MATS+ 4K                      FIFOx 9K 
  Phase 5: MATS+ 8K          FIFOx 9K-SWAP 
  Phase 6: MATS+ 16K 
  Phase 7: MATS+ 32K 
---------------------------------------------------------------------------------- 
Generation Options: 
- ncd option runs XDL -XDL2NCD 
- bit option runs XDL -XDL2NCD and BITGEN -D -B -G COMPRESS 
- if no option is selected, only the XDL file will be generated 
 
Figure 3-7 - V5RAMMOD Command Line Instructions 
 
3.7 Results and Analysis 
 In this section the results of the BRAM BIST will be presented.  This will include the 
fault detection capabilities of the BIST, size optimizations for the configurations, and analysis of 
the timing capabilities of the configurations.  The complete BIST procedure consists of 19 
separate configurations.  All configurations were generated for all Virtex-5 devices using the 
BIST programs, and the configurations for LX30T, LX50T, SX35T, SX50T, FX30T, and FX70T 
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FGPAs were downloaded to and verified on actual devices.  All 19 test phases are displayed in 
Table 3-14.  The number of clock cycles required to run each phase of the test is also shown in 
the table in terms of the total number of clock cycles for the BIST.  These running times are 
negligible when compared to the time taken to download the configurations to the devices, which 
becomes the dominant factor in total test time.  This places a high emphasis on reducing 
configuration file size to improve test time. 
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Table 3-14 - Complete BRAM BIST 
BIST 
Config 
BRAM 
Mode 
Test 
Algorithm 
Address 
Space 
Data 
Width 
Clock 
Cycles 
1 (C) 
BRAM 
March s2pf 1K 36 20,000  
2 (P) March d2pf 1K 36 15,000  
3 (P) 
MATS+ 
2K 18 25,000  
4 (P) 4K 9 45,000  
5 (P) 8K 4 85,000  
6 (P) 16K 2 165,000  
7 (P) 32K 1 330,000  
8 (C) 
ECC 
MarchLR w/BDS 512 72 23,000  
9 (P) ECC (read) 512 72 7,000  
10 (P) ECC (write) 512 72 7,000  
11 (C) 
FIFO FIFOX 
1K 36 8,500  
12 (P) 2K 18 34,000  
13 (P) 4K 9 66,000  
14 (P) 8K 4 131,500  
15 (P) 8K 4 131,500  
16 (C) FIFOECC FIFOD (read) 512 72 10,000  
17 (P) FIFOD (write) 512 72 10,000  
18 (C) CASC March Y 1K 64 36  
19 (P) 1K 64 36  
Total BIST Clock Cycles = 1,113,572 
(C) = Compressed Configuration       (P) = Partial Configuration 
 
3.7.1 Fault Detection 
 The most important factor when evaluating the effectiveness of a test procedure is the 
fault coverage.  In order to evaluate the fault coverage of the BRAM BIST physical fault 
injection was applied to the bits in the configuration memory of the BRAMs.  There are a total of 
488 possible configuration memory faults associated with each of the BRAMs.  This number 
results from each BRAM having 244 total configuration bits which may each either be stuck-at-0 
or stuck-at-1.  Each of these faults was emulated by overwriting the desired configuration bit 
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with the stuck-at value of the desired fault before performing the entire BIST sequence.  This 
process is repeated for each of the 488 configuration memory bit faults.  The Pass/Fail result of 
each test phase was recorded after the injection of each fault. 
 The individual and cumulative fault coverage for the seven BRAM BIST configurations 
is shown in Figure 3-8.  This graph displays the individual number of fault detections from each 
of BRAM test phases.  The line displayed above the bars is a representation of the cumulative 
fault coverage of the phases.  Each of the phases detects between 100 and 200 of the 
configuration memory bit faults.  The sequence results in a fault coverage of 84% from running 
only the BRAM BIST configurations. 
 The overall fault coverage of configuration memory bits obtained from running the entire 
BIST sequence is shown in Figure 3-9.  This graph also shows both the faults detected by each 
phase of the test and the cumulative detections.  The entire test was able to detect 481 of the 
configuration memory faults resulting in a fault coverage of 98.57%.  The other seven undetected 
faults are non-functional faults, which gives the BIST a 100% fault coverage of detectable faults 
in the BRAM configuration memory. 
 Fault injection with the configuration memory bits was used to verify the fault detection 
capabilities of the BIST since it is not possible to emulate actual SRAM faults that may occur 
within the BRAMs of a Virtex-5 device such as those described in Section 2.2.1.  The injected 
configuration memory faults produce faulty outputs on the BRAMs that mimic those that would 
be produced by a BRAM containing SRAM faults.  Thus, the fault coverage of the configuration 
memory bit faults gives an accurate representation of the fault coverage of the BIST for SRAM 
faults [17]. 
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Figure 3-8 ? BRAM Configuration Mode Fault Detections 
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Figure 3-9 ? Entire BIST Sequence Fault Detections 
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3.7.2 File Size Reduction 
 Once the fully routed NCD files for each BIST configuration have been generated, the 
Xilinx BitGen.exe tool mentioned in Section 3.5 is then used to create the configuration BIT file 
that will be downloaded directly to the FPGA.  This tool is capable of generating three different 
types of configuration files: full, compressed, and partial [14].  The full configurations have no 
compression and contain values for every configuration memory bit within the device.  
Compressed configuration files take advantage of a feature in the Virtex-5 FPGAs called 
multiple frame writing.  This feature allows identical frames of data to be stored as a single 
frame in the configuration file and written to multiple addresses in the configuration memory 
[14].  This allows for a significant reduction in configuration file size for designs containing 
many identical components, such as the BRAM BIST.  The Virtex-5 device also supports partial 
reconfiguration, which can be utilized to provide the greatest reduction in configuration file size.  
These partial reconfiguration files are created by comparing two NCD file designs and the partial 
reconfiguration file will be created that details only the differences between the two designs [14].  
Knowing this, the BIST configurations were designed in an extremely regular manner in order to 
minimize the differences between sequential configurations and configuration file size.  Only 
compressed configurations and partial reconfigurations are used for the BIST in order to fully 
minimize download size.  A compressed configuration is used for the first test phase of each of 
the five configuration modes, and partial reconfiguration is used for the remaining phases.  The 
final file sizes of the BIST generated for the LX30 are shown in Table 3-15.  The file size 
reduction achieved from the use of the compression methods mentioned is shown in Figure 3-10. 
 
 
80 
Table 3-15 - BIST Configuration File Sizes for LX30 
BIST 
Config 
File Size 
K-bytes 
BIST 
Config 
File Size 
K-bytes 
BIST 
Config 
File Size 
K-bytes 
1 (C) 583 7 (P) 49 13 (P) 4 
2 (P) 55 8 (C) 592 14 (P) 4 
3 (P) 49 9 (P) 3 15 (P) 4 
4 (P) 49 10 (P) 50 16 (C) 564 
5 (P) 49 11 (C) 532 17 (P) 4 
6 (P) 49 12 (P) 4 18 (C) 387 
Total File Size = 3,034 K-bytes 19 (P) 3 
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Figure 3-10 - BIST Configuration File Size Reduction for LX30
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3.7.3 Timing Analysis 
 By using the Xilinx timing analysis tool trce.exe mentioned in Section 3.5 the maximum 
BIST clock frequency for each of the BIST configurations on all Virtex-5 devices has been 
determined.  The results of this analysis on the LX30T device are shown in Figure 3-11.  The 
FIFOECC and the CASC configurations are able to be run at the fastest clock frequency in this 
device.  It can also be seen that for the different configurations the clock frequency remains in a 
consistent range except for the third ECC configuration and the first FIFO configuration.  This 
results from the inversion of the BRAM clocks for testing in these two phases.  When the clocks 
are inverted it presents a case where opposite edge clocking occurs which effectively halves the 
maximum BIST clock frequency. 
 This problem is overcome by inverting the TPG and ORA clocks in the CLBs during 
these two BIST configurations.  These configurations with the inverted TPG and ORA clocks are 
positioned at either the beginning or end of a configuration mode sequence so that the inversion 
is only performed once.  This is done to minimize download and test time. 
 The final maximum clock frequencies obtained from the analysis of select devices in the 
Virtex-5 family are shown in Figure 3-12.  These frequencies reflect the speeds after the change 
which accounts for opposite edge clocking was applied.  For each of the five configuration 
modes the lowest maximum BIST clock frequency is displayed in the figure.  It can also be seen 
that the larger devices have a much slower maximum clock frequency due to longer routing 
requirements in these devices.  By comparing the data in Figure 3-11 to the final data for the 
LX30T device in Figure 3-12 it can be seen that after inverting the clocks to account for opposite 
edge clocking the maximum speed of the ECC and FIFO configurations for the LX30T device 
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increases from just over 40 MHz to over 80 MHz, putting these configuration modes in a range 
similar to the others. 
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Figure 3-11 - Maximum BIST Clock Frequencies for LX30T
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Figure 3-12 ? Maximum BIST Clock Frequency for select Virtex-5 Devices 
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Chapter 4 Summary and Conclusions 
 
 
4.1 Summary of Virtex-5 BRAM BIST 
 This thesis presents the development and verification of a BIST for the BRAMs 
contained in Virtex-5 FPGAs.  The work done in this thesis is largely based on the BRAM BIST 
designs for Virtex-4 presented by Milton in [2] and Garrison in [3].  This design of the Virtex-5 
BRAM BIST builds directly on the test design proposed by Garrison in [3]. 
 In order to sufficiently test the embedded BRAMs, tests are run on the memories in five 
separate configuration modes.  The BRAM mode of operation requires seven total test 
configurations.  The ECC mode requires three test configurations.  The FIFO mode demands five 
separate test configurations.  Finally, the FIFOECC and CASC modes require two configurations 
each, for a total of 19 test configurations.  These BIST configurations each contain a pair of 
identical TPGs designed to perform the required tests on the RAM along with ORAs to observe 
the results of the tests.  The configurations also contain a boundary scan interface for 
communication with the BIST circuitry and retrieval of the test results. 
 By using the compressed configuration and partial reconfiguration features of the Virtex-
5 FPGAs, the BIST configurations have been optimized in terms of download size.  This in turn 
reduces the total testing time by a substantial amount as a majority of testing time is attributed to 
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configuration downloads.  Timing analysis has also been performed on the configurations to 
determine what the maximum BIST clock frequency is for each device.  
 Each BIST configuration was generated for and tested on the LX30T, LX50T, SX35T, 
SX50T, FX30T, and FX70T Virtex-5 devices.  In order to verify the fault detection capability of 
the BIST, faults were injected into the BRAM configuration memory of the devices and the 
BIST was executed.  The results of these fault injections show that the BRAM BIST detects 481 
of the 488 possible BRAM configuration memory faults which gives a fault coverage of 98.57%.  
The BIST configurations can be downloaded and executed in-system during off-line operation 
and are applicable for high reliability/availability systems as well as fault-tolerant applications 
4.2 Future Work 
 For future work in this area, this BRAM BIST design could be applied to the Spartan 6 
and other families of FPGAs.  Additionally, some improvements that have been made with this 
BIST approach may be applied to the previous approaches for the Virtex-4 device.  The 
modification to the BRAM output routing in the cascade mode of operation could be applied to 
these previous test approaches.  Using this improvement would simplify the TPG used for this 
configuration mode.  It would also allow the removal of the clock enables that had been added to 
the Virtex-4 ORA flip-flops to prevent the expected faults from being recorded. 
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Appendix 
 
 
 The following is the MarchLR testing algorithm with a 72-bit BDS sequence which is 
used to test Virtex-5 BRAMs.  This algorithm was developed using the BDS method described in 
[10].  This sequence is created after optimizing the algorithm by removing duplicate elements as 
described in [10].  This optimization will result in a reduction in test time from O(70N) to 
O(64N), where N represents the number of address locations. 
  
92 
 March Element Address Direction RAM Operation Data Hex Value 
MarchLR 
1 up/down write 000000000000000000 
2 down read 
write 
000000000000000000 
FFFFFFFFFFFFFFFFFF 
3 up read 
write 
read 
write 
FFFFFFFFFFFFFFFFFF 
000000000000000000 
000000000000000000 
FFFFFFFFFFFFFFFFFF 
4 up read 
write 
FFFFFFFFFFFFFFFFFF 
000000000000000000 
5 up read 
write 
read 
write 
000000000000000000 
FFFFFFFFFFFFFFFFFF 
FFFFFFFFFFFFFFFFFF 
000000000000000000 
6 up read 000000000000000000 
BDS 
7 up read 
write 
write 
read 
000000000000000000 
555555555555555555 
AAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAA 
8 down read 
write 
read 
AAAAAAAAAAAAAAAAAA 
555555555555555555 
555555555555555555 
9 up read 
write 
write 
read 
555555555555555555 
333333333333333333 
CCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCC 
10 down read 
write 
read 
CCCCCCCCCCCCCCCCCC 
333333333333333333 
333333333333333333 
11 up read 
write 
write 
read 
333333333333333333 
0F0F0F0F0F0F0F0F0F 
F0F0F0F0F0F0F0F0F0 
F0F0F0F0F0F0F0F0F0 
12 down read 
write 
read 
F0F0F0F0F0F0F0F0F0 
0F0F0F0F0F0F0F0F0F 
0F0F0F0F0F0F0F0F0F 
13 up read 
write 
write 
read 
0F0F0F0F0F0F0F0F0F 
FF00FF00FF00FF00FF 
00FF00FF00FF00FF00 
00FF00FF00FF00FF00 
14 down read 
write 
read 
00FF00FF00FF00FF00 
FF00FF00FF00FF00FF 
FF00FF00FF00FF00FF 
 
  
93 
BDS 
March Element Address Direction RAM Operation Data Hex Value 
15 up read 
write 
write 
read 
FF00FF00FF00FF00FF 
FF0000FFFF0000FFFF 
00FFFF0000FFFF0000 
00FFFF0000FFFF0000 
16 down read 
write 
read 
00FFFF0000FFFF0000 
FF0000FFFF0000FFFF 
FF0000FFFF0000FFFF 
17 up read 
write 
write 
read 
FF0000FFFF0000FFFF 
FF00000000FFFFFFFF 
00FFFFFFFF00000000 
00FFFFFFFF00000000 
18 down read 
write 
read 
00FFFFFFFF00000000 
FF00000000FFFFFFFF 
FF00000000FFFFFFFF 
19 up read 
write 
write 
read 
FF00000000FFFFFFFF 
00FFFFFFFFFFFFFFFF 
FF0000000000000000 
FF0000000000000000 
20 down read 
write 
read 
FF0000000000000000 
00FFFFFFFFFFFFFFFF 
00FFFFFFFFFFFFFFFF 
21 up read 00FFFFFFFFFFFFFFFF 
 

