

Analysis and Implementation of Built-In Self-Test for Block Random Access Memories in
Virtex-5 Field Programmable Gate Arrays

by

Justin Lewis Dailey

A thesis submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the
requirements for the Degree of
Master of Science

Auburn, Alabama
August 6, 2011

Keywords: Build-In Self-Test, Field Programmable Gate Array, Block RAM, Fault Coverage

Copyright 2011 by Justin Lewis Dailey

Approved by

Charles E. Stroud, Chair, Professor of Electrical and Computer Engineering
Victor P. Nelson, Professor of Electrical and Computer Engineering
Chwan-Hwa Wu, Professor of Electrical and Computer Engineering
ii

Abstract

 In order to ensure the proper operation of the embedded Block Random Access
Memories (BRAMs) in Xilinx Virtex-5 Field-Programmable Gate Arrays (FPGAs) a dependable
and resource efficient test is needed so that the integrity of the memory can be guaranteed in a
timely manner. The approach that is described in this thesis is based on a Built-In Self-Test
(BIST) approach initially proposed by Garimella in [1] for Xilinx Virtex-1 and Virtex-2 FPGAs.
It was later expanded upon by Milton in [2] for Xilinx Virtex-4 FPGAs. The work was continued
by Garrison as detailed in [3] for Virtex-4 in order to improve BIST generation and execution
time. Garrison also proposed a design for BRAM BIST for Virtex-5 FPGAs in [3]. Garrison?s
proposal for Virtex-5 FPGAs is expanded upon and implemented in this thesis.
 The testing approach for these BRAMs is described along with testing configurations and
details. The BIST configurations are implemented using five unique Test Pattern Generators
(TPGs) running testing algorithms on a combination of 19 separate RAM configurations in order
to fully test the memories. All of the BIST configurations have been generated using two C
programs developed as part of this thesis which are capable of generating configurations for any
Virtex-5 device. These configurations were downloaded to various Virtex-5 FPGAs and tested
on these devices. The fault detection capabilities of the BIST have been verified by using fault
iii
injection within the BIST configurations that are downloaded to the FPGA to emulate physical
faults within the configuration memory bits of the BRAMs. With fault injection, it was verified
that this BIST approach was able to successfully detect 100% of detectable configuration
memory faults in the BRAMs present in Virtex-5 devices.

iv
Acknowledgments

 I would like to thank Dr. Charles Stroud for his guidance throughout my undergraduate
and graduate studies. He has helped me develop the skills I need to become a successful
engineer once I graduate through personal advice, class work, and research. I would also like to
thank Dr. Victor Nelson and Dr. Chwan-Hwa Wu for their guidance and for serving on my
graduate committee. I also owe a great deal of thanks to my research colleague Alex Lusco for
giving valuable help and advice on countless occasions throughout both my undergraduate and
graduate studies. I would like to thank my other research colleagues Neil Da Cunha and Jie Qin
as well. I would also especially like to thank my friends and family for supporting me
throughout my educational process and giving me the excellent opportunities I have been
fortunate enough to receive.

v

Table of Contents

Abstract ... ii
Acknowledgments.. iv
List of Tables ... viii
List of Figures ... x
List of Abbreviations .. xii
Chapter 1 Introduction ... 1
1.1 Field Programmable Gate Arrays ... 1
1.1.1 FPGA Architecture ... 2
1.1.2 Block Random Access Memory ... 3
1.1.3 Benefits and Drawbacks of FPGA Usage ... 4
1.2 Built-In Self-Test.. 5
1.2.1 Pros and Cons of a BIST Approach .. 6
1.2.2 BIST within FPGAs .. 8
1.3 Thesis Statement .. 9
Chapter 2 Background Information ... 10
2.1 Fault Modeling ... 10
2.2 Random Access Memories ... 13
2.2.1 SRAM Faults .. 16
vi
2.2.2 RAM Test Algorithms .. 17
2.3 Virtex-5 Architecture ... 28
2.3.1 Virtex-5 Configurable Logic Blocks .. 28
2.3.2 Virtex-5 Block RAMs ... 30
2.4 Virtex-4 Block RAM BIST .. 36
2.4.1 Dedicated Carry Chain .. 37
2.4.2 TPG Architecture .. 39
2.5 Thesis Statement .. 47
Chapter 3 Virtex-5 Block RAM BIST ... 48
3.1 Virtex-5 RAM BIST... 48
3.2 TPG Design and Implementation ... 49
3.2.1 BRAM ... 50
3.2.2 ECC ... 51
3.2.3 FIFO .. 52
3.2.4 FIFOECC .. 54
3.2.5 CASC .. 55
3.2.6 Test Configurations Summary .. 56
3.3 ORA Design ... 57
3.3.1 ORA Comparison Routing .. 58
3.4 BIST Implementation ... 65
3.4.1 Cascade Routing ... 67
3.5 Programming Tools .. 70
3.6 Configuration File Generation ... 71
vii
3.6.1 BIST Generation Program .. 72
3.6.2 Modification Program ... 72
3.7 Results and Analysis .. 73
3.7.1 Fault Detection .. 75
3.7.2 File Size Reduction ... 79
3.7.3 Timing Analysis .. 82
Chapter 4 Summary and Conclusions ... 86
4.1 Summary of Virtex-5 BRAM BIST ... 86
4.2 Future Work ... 87
Bibliography ... 88
Appendix ... 91
viii

List of Tables

Table 2-1 ? 4-Bit BDS Components ... 21
Table 2-2 ? 4-Bit BDS Sequence .. 21
Table 2-3 - CLB Resources in Virtex-5 [7] .. 28
Table 2-4 - Virtex-5 BRAM Port Aspect Ratio (18K-bit RAM) [7] .. 31
Table 2-5 ? Virtex-5 BRAM Port Aspect Ratio (36K-bit RAM) [7] ... 31
Table 2-6 - FIFO Input and Output Ports [7] .. 34
Table 2-7 ? Virtex-5 FIFO Port Aspect Ratio [7] ... 35
Table 2-8 ? Virtex-5 FIFO Data Depth [7] ... 35
Table 2-9 - BRAM BIST Configurations [7] .. 41
Table 2-10 ? Proposed Control String Values for BRAM TPG [3] ... 42
Table 2-11 - Proposed Configuration Settings for BRAM TPG [3] ... 42
Table 2-12 ? Proposed Control String Values for ECC TPG [3] ... 44
Table 2-13 ? Proposed Configuration Settings for ECC TPG [3] .. 45
Table 2-14 ? Proposed Configuration Settings for FIFO TPG [3] ... 46
Table 2-15 ? Proposed Configuration Settings for FIFOECC TPG [3].. 47
Table 3-1 - Final BRAM Configuration Settings ... 51
ix
Table 3-2 - Final ECC Configuration Settings ... 52
Table 3-3 - Final Control String Values for ECC TPG .. 52
Table 3-4 ? Final FIFO Test Phases and Control String Values... 53
Table 3-5 ? Final Configuration Settings for FIFO TPG .. 53
Table 3-6 - Final FIFOECC Test Phases .. 55
Table 3-7 ? Final Configuration Settings for FIFOECC TPG .. 55
Table 3-8 ? Final CASC Test Phases .. 56
Table 3-9 ? Final Configuration Settings for CASC TPG .. 56
Table 3-10 - BIST TPG Resource Usage .. 56
Table 3-11 ? Complete Virtex-5 BIST Procedure .. 57
Table 3-12 - Compared Outputs for Configuration Modes .. 58
Table 3-13 - ORA Input Routing Tables .. 61
Table 3-14 - Complete BRAM BIST .. 75
Table 3-15 - BIST Configuration File Sizes for LX30 ... 80

x

List of Figures

Figure 2-1 ? Gate Level Stuck-at Fault Behavior for AND Gate ... 12
Figure 2-2 - Two-Dimensional SRAM Model [6] .. 14
Figure 2-3 - Functional model of a multi-port memory [6] .. 15
Figure 2-4 - Slice arrangement within Virtex-5 CLBs [7] .. 29
Figure 2-5 - Virtex-5 Dual-Port Flow [7] ... 30
Figure 2-6 - Top Level View of Virtex-5 BRAM ECC [7] .. 33
Figure 2-7 - Virtex-5 BRAMs in Cascade Configuration [7] ... 36
Figure 2-8 - BRAM BIST Architecture [2] .. 37
Figure 2-9 - Comparison Based ORA with Carry Chain [3] .. 38
Figure 2-10 - Additional Dummy ORAs [3] ... 38
Figure 2-11 - Iterative OR-Chain Functionality [3] .. 39
Figure 2-12 - Shift Register Control String for BRAM TPGs [3] .. 43
Figure 2-13 - Placement and Routing on TPGs in LX30 .. 43
Figure 3-1 - BRAM TPG Area Constraints in LX30 .. 50
Figure 3-2 - ORA Map .. 60
Figure 3-3 ? BRAM BIST Configuration Routed on Virtex-5 LX30 .. 66
xi
Figure 3-4 ? Virtex-5 Cascade ORA Routing... 69
Figure 3-5 - BIST Configuration Process [16] ... 71
Figure 3-6 - V5RAMBIST Command Line Instructions .. 72
Figure 3-7 - V5RAMMOD Command Line Instructions ... 73
Figure 3-8 ? BRAM Configuration Mode Fault Detections ... 77
Figure 3-9 ? Entire BIST Sequence Fault Detections ... 78
Figure 3-10 - BIST Configuration File Size Reduction for LX30 .. 81
Figure 3-11 - Maximum BIST Clock Frequencies for LX30T ... 84
Figure 3-12 ? Maximum BIST Clock Frequency for select Virtex-5 Devices 85
xii

List of Abbreviations

ASIC Application Specific Integrated Circuit
BDS Background Data Sequence
BIST Built-In Self-Test
BRAM Block Random Access Memory
BSCAN Boundary Scan
CASC Cascade Configuration Mode
CLB Configurable Logic Block
CMOS Complementary Metal-Oxide Semiconductor
CUT Circuit Under Test
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
ECC Error Correction Code
FIFO First-In First-Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
HDL Hardware Design Language
I/O Input/Output
xiii
LSB Least Significant Bit
LUT Look Up Table
MPGA Mask Programmable Gate Array
MSB Most Significant Bit
NMOS N-type Metal-Oxide Semiconductor
ORA Output Response Analyzer
PIP Programmable Interconnect Point
RAM Random Access Memory
SOC System-on-Chip
SRAM Static Random Access Memory
TDI Test Data In
TDO Test Data Out
TEMAC Tri-mode Ethernet Media Access Controller
TPG Test Pattern Generator
VHDL VHSIC Hardware Design Language
VHSIC Very-High-Speed Integrated Circuit
VLSI Very Large Scale Integration

1

Chapter 1 Introduction

1.1 Field Programmable Gate Arrays
A Field Programmable Gate Array (FPGA) is a prefabricated integrated circuit that can be
dynamically programmed by a user in the field rather than having permanent programming from
the manufacturer, like such devices as Mask Programmable Gate Arrays (MPGAs) or
Application Specific Integrated Circuits (ASICs) [4]. FPGAs contain programmable logic
blocks that allow a user to designate the functionality of the device with both combinational
logic using logic gates such as AND or XOR gates and sequential logic using elements such as a
flip-flop [4]. Many FPGAs also contain embedded components that provide users with a
convenient method for implementing more complicated circuits. Commonly included embedded
devices include digital signal processors (DSPs), random access memories (RAMs), and
embedded microprocessors [4]. FPGAs also contain configurable interconnection resources that
are user programmable. The configurable routing allows circuit elements to be placed and
routed in accordance with the user designed circuit. The functional behavior for a specific
design is usually created using a Hardware Design Language (HDL) such as VHDL or Verilog
which is then used to generate a configuration for the device [4].
2
FPGAs gained popularity due to their versatility for implementing circuit designs. FPGA
circuits can be designed, implemented, and tested very quickly and are also very forgiving of
design error because they can be easily reprogrammed repeatedly [4]. The complexity of FPGAs
has grown from only a few thousand logic gates in their infancy to tens of millions of logic gates
in modern chips [4].
An ASIC implementation is generally much smaller in size and much better in performance
than an FPGA implementation. The circuit design of an ASIC cannot be modified once it is
manufactured and must be specially designed. An ASIC circuit is expected to have a time delay
that is four to five times less than that of the same circuit implemented on an FPGA while also
consuming on average 14 times less power [5]. However, FPGAs offer the ability to reprogram
that an ASIC cannot. A design error in an ASIC means that an entirely new ASIC device must
be created where a design error in an FPGA only means the design must be modified and re-
downloaded into the FPGA. Use of an FPGA allows a designer to save time and costs
throughout the design process and reduces the penalty of having a design error in a prototype [4].
The extent to which an FPGA is programmable eliminates it from being able to compete with
ASICs and MPGAs in size and performance.
1.1.1 FPGA Architecture
The components generally contained within an FPGA are [4]:
? Configurable Logic Blocks (CLBs)
? Input/Output (I/O) Cells
? Programmable Interconnect Points (PIPs) and Wire Segments
? Special Cores
3
Each CLB is usually made up of multiple Look Up Tables (LUTs) and flip-flops. The LUTs
contain the binary data necessary to implement the combinational logic truth table of the
programmed design and the flip-flops are used in the implementation of sequential logic [4].
The I/O Cells allow the devices to connect peripherally, and special cores in the form of
microprocessors, RAMs, and DSPs are commonly included. All of these components are
interconnected internally by utilizing a system of PIPs and wire segments for signal connection.
1.1.2 Block Random Access Memory
With the inclusion of specialized cores, FPGAs have started to resemble a full System-
On-Chip (SOC) [4]. These specialized cores such as RAMs, DSPs, and microprocessors make
memory and arithmetic implementations less cumbersome to the user and reduce the
programmable logic resources demanded [4].
The two types of RAMs are Dynamic Random Access Memory (DRAM) and Static
Random Access Memory (SRAM) [6]. The Block Random Access Memories (BRAMs) within
a Xilinx FPGA are classified as SRAM. These memories require more area than DRAMs, but
provide the fastest possible access speed of any RAM (usually 2 nanoseconds) [6]. SRAM cells
have two separate stable states used to represent logic level zero and one [6]. The cells retain
their state as long as they remain connected to a power supply and do not require a periodical
refresh. However, the memory is volatile meaning if the power supply is disconnected from the
cell the logic state will be lost.
The RAMs contained in a Virtex-5 FPGA can be configured to operate with a data width
from 1 bit to 72 bits corresponding with an address space ranging from 32K to 512 data words
[7]. The number of BRAMs supplied in a given Virtex-5 device spans from 26 in the smallest
4
device to 516 in the largest device [7]. The memories can be configured to function in different
operational modes including the ability to be connected together in order to extend the address
space to 64K. The BRAMs also have the ability to function with one address port and one data
port in single port mode, or they are capable of using a pair of address ports and a pair of data
ports to function in dual port mode. In dual port mode each port of the BRAM may be used to
write or read from the memory independently and concurrently as long as they are not attempting
to write to the same address simultaneously [7]. The BRAMs may also be configured to operate
in a First In, First Out (FIFO) mode. When operating in the FIFO mode the BRAM functions
similar to a queue line that is storing data. In this mode the BRAM has separate read and write
clocks. When a write operation is triggered a data word will be added to the end of the queue,
and when a read operation is triggered the data word at the front of the queue will be retrieved.
Each BRAM also contains Error Correction Code (ECC) circuitry which is capable of correcting
any single-bit error in the memory or detecting any double-bit error using Hamming code [7].
1.1.3 Benefits and Drawbacks of FPGA Usage
Use of FPGAs in circuit design and implementation gives the designer many advantages
but also has a few drawbacks. The advantages of FPGA use stem mostly from its flexibility [4]:
? User programmability and re-programmability
? Accelerated design implementation and prototyping process
The user programmability and re-programmability gives a designer the ability to easily create
a physical prototype of a digital circuit [4]. This allows users to comprehensively test their
design before spending time and money to have an ASIC created for the circuit, and eliminates
5
much of the risk of having an unanticipated error in the circuit show up in the ASIC that will
require refabrication of the entire device.
There are also some distinct disadvantages to FPGA usage compared to using an ASIC [4]:
? Higher production cost
? Higher power consumption
? Lower performance
? Volatile configuration memory
FPGA production is efficient for a low to medium volume design and expedited time-market-
systems [4]. However when mass production of a device is needed the cost of an FPGA cannot
compete with the cost of an equivalent ASIC [8].
1.2 Built-In Self-Test
As the complexity of Very Large Scale Integration (VLSI) devices continues to increase, the
need for an efficient and economical testing method such as Built-In Self-Test (BIST) grows as
well [4]. The general idea behind BIST is to design a circuit that is capable of verifying itself as
being either faulty or fault-free. A standard BIST architecture contains three major components
[9]:
? Test Pattern Generator (TPG)
? Circuit Under Test (CUT)
? Output Response Analyzer (ORA)
The TPG serves as a stimulus to the CUT, providing a set of inputs that will cause the CUT
to generate an expected output. The resulting data from the CUT is analyzed by the ORA and is
6
simplified into some sort of pass/fail status depending on whether the ORA saw the expected
output or an erroneous one [9]. Other components may be needed for system level
implementation of the BIST such as a testing controller and input isolation circuitry. The BIST
circuitry may contain an output bit to indicate success or failure to an external device and
optionally a BIST done flag to indicate a finished testing sequence. The effectiveness of a BIST
test is determined by the testing time and the number of faults that are detectable compared with
the total amount of faults possible in a system known as fault coverage.
1.2.1 Pros and Cons of a BIST Approach
Using a BIST approach has many advantages associated with it when compared to other
testing approaches such as external testing. These advantages include, but are not limited to [9]:
? Vertical Testability
? High Diagnostic Resolution
? At-Speed Testing
? Reduced Amount of External Testing Equipment
? Reduced Test Development Time and Effort
? Reduced Manufacturing Test Time and Cost
? Reduced Time-to-Market
Vertical testability means that a BIST can be applied to a device in any stage of production to
determine its validity. A BIST that is applied to a system that gives an incorrect result reveals
the system as faulty. It also inherently shows that a CUT associated with the device has faulty
operation. Additionally, many times the specific faulty CUT can be identified, meaning that
BIST has a high diagnostic resolution [9]. BIST is also able to use a system?s internal clock for
7
at-speed testing which enables it to detect delay faults that are only visible when operating at
system speed. The need for expensive external testing equipment is also eliminated. The only
external I/O pins that must be provided are power, ground, a method for initializing the BIST, a
method for retrieving BIST results, and a clock [9]. The savings in time and cost on test
development resulting from internal TPG and ORA circuitry outweigh additional BIST design
time in most cases and, consequentially, a reduced overall time-to-market [9].
Using a BIST approach also has drawbacks [9]:
? Larger Area Overhead
? Performance Penalties
? Additional Design Time and Effort
? Additional Project Risk
The additional circuitry that must be included in the design to implement the BIST means
that the overall chip area will be larger, and therefore there will be a higher cost per chip as well
as an increased area for defects to occur. The incorporation of the BIST circuitry may also cause
the circuitry of the CUT to be spread out, or it may introduce additional gates into the CUT?s
critical path [9]. These cases will result in increased signal delay due to a longer routing path
and increased gate delay which can be largely significant in some systems and negligible in
others [9]. Additional time must also be taken to design and implement the BIST circuitry and
testing technique. When using BIST another problem arises in design verification. By adding
another entire system on top of the already existing system the project risk is increased as proper
function of both of these systems is essential. Despite these drawbacks case studies have shown
8
that the benefits of using a BIST approach are more than enough to account for the costs incurred
in a majority of scenarios [9].
1.2.2 BIST within FPGAs
Using a BIST approach offers even more of an advantage due to the programmable
nature of FPGAs, making the BIST option even more enticing. In contrast, the implementation
of a BIST for an ASIC requires design of the circuitry as well as additional components being
added to the ASIC. FPGAs require testing in multiple configurations to achieve a high fault
coverage, meaning the device must be tested in all modes of operation [4]. This causes the
testing time to become mainly a function of the number of configurations that must be tested and
also the configuration time. In order to optimize the testing time it is critical that the number of
test configurations is kept at a minimum [4].
In an FPGA testing scenario the device inherently provides an abundance of configurable
hardware that can be utilized for implementing BIST circuitry. There will be no area overhead
or performance penalties present in the device after testing since the configuration is erasable [4].
However, the drawbacks associated with designing a functional test circuit are still applicable.
The testing circuitry consisting of TPGs and ORAs is created by programming the CLBs, I/O
cells, and routing resources within the FPGA in order to detect faults in the various components
of the device [4]. This approach may be used to detect faults within CLBs, routing resources,
and the specialized cores which may be found on the chip [4]. With respect to FPGAs, a BIST
approach proves to be an extremely practical and efficient testing approach for verifying the
integrity of the device and its individual components. The BIST method gains most of its
effectiveness from the inherently configurable nature of FPGAs and its ability to have no effect
on the device after testing has concluded.
9
1.3 Thesis Statement
This thesis will detail a testing approach derived from the BIST approach for FPGA
embedded memory resources proposed by Garimella in [1] and later referenced and improved
upon by Milton in [2] and later by Garrison in [3]. These previous FPGA BIST approaches were
targeted at BRAMs contained within the Xilinx Virtex [1], Virtex-2 [1], and Virtex-4 [2][3]
series of FPGAs, and an initial proposal for testing of the BRAMs within the Xilinx Virtex-5
series of FPGAs was provided by Garrison in [3]. The main focus of this thesis will be to
implement, expand, and improve upon Garrison?s initial proposal for BIST testing of BRAMs
embedded in the Xilinx Virtex-5 devices and to detail a complete BIST approach and
implementation for these memories.
This thesis will discuss the background material for the BRAM BIST in Chapter 2.
Chapter 3 will detail the testing configurations for the BIST as well as the implementation of the
BIST within the FPGA architecture and the method of fault injection used to measure the
effectiveness of the test. Chapter 4 will present a summary and areas in which future research
may be made to improve this testing approach.

10

Chapter 2 Background Information

 This chapter will begin by discussing general fault detection techniques along with the
basics of fault modeling within a circuit. Next, the circuitry and fault types that may be present
within Static Random Access Memories (SRAMs) will be detailed. Then the different test
algorithms used to detect the various types of faults in these memories will be described. The
chapter will then describe the architecture of the Virtex-5 devices along with the embedded
BRAMs and their modes of operation. Finally, the various components of the BIST architecture
will be described along with previously proposed BIST configurations.
2.1 Fault Modeling
In order to test a circuit to determine its integrity a set of input stimuli is applied to the
circuit and the output produced as a result of the stimuli is then compared with the expected
output. A matching pair assumes the circuit as good while mismatched results will expose the
CUT as faulty [9]. The input stimuli that are applied to the CUT during the test are usually a set
of input vectors that are selected in order to ensure that the CUT performs as expected with no
structural or functional faults [9].
 In order to have an effective evaluation of the quality of a set of tests for a device and to
evaluate the effectiveness of a BIST as it applies to the device, fault models must be used for
11
emulation of faults or defects during simulation [9]. In order for a fault model to be beneficial it
must meet two requirements [9]:
? The model provides an accurate representation of the behavior of actual defects that may
occur during the fabrication, manufacturing, and system operation of the device.
? The model must be computationally efficient.
These two requirements are often contradicting and make the creation of useful fault models
difficult. Some of the most widely used fault models are the ones that can be emulated in a
simulation environment efficiently and that provide close approximations of actual faults which
may occur in a physical device are [9]:
? Gate-Level Stuck-at Faults
? Transistor-Level Faults
? Bridging Faults
? Delay Faults
The gate-level stuck fault model allows any of the inputs or outputs of a gate to be either
stuck-at-0 (sa0) or stuck-at-1 (sa1). The behavior of the gate is then determined by treating the
gate input or output which is being tested as either sa0 or sa1 as being disconnected and tied to
either a logic zero or a logic one [9]. The results of a fault-free AND gate are compared with the
results from each case of a sa0 or sa1 that may occur with that particular gate in the Figure 2-1.
The cases that will be detected as faults are highlighted with grey. In the case of an AND gate
each fault contains an instance where the output of the faulty gate differs from that of the fault
free gate so each fault will be detected if sufficient input combinations are tested [9].
12

AND A B Z
AB Z sa0 sa1 sa0 sa1 sa0 sa1
00 0 0 0 0 0 0 1
01 0 0 1 0 0 0 1
10 0 0 0 0 1 0 1
11 1 0 1 0 1 0 1
Figure 2-1 ? Gate Level Stuck-at Fault Behavior for AND Gate
Only gate-level fault models are required to simulate N-type metal-oxide-semiconductor
(NMOS) circuits. However when using Complementary Metal-Oxide Semiconductor (CMOS)
circuits, a transistor-level fault model is needed to obtain accurate results [9]. Bridging fault
models are used to emulate shorted wire segments within a circuit [9]. Delay fault models are
used to represent the case of a circuit that performs logically correct operations but does not meet
the timing requirements [9].
 When performing fault emulation a set of input vectors are applied to a circuit for each of
a series of faults that have been artificially injected into the circuit [9]. With the fault injected
into the circuit, the circuit will behave as if this fault has actually occurred. The output of this
circuit will then be compared with the output of a fault free circuit. If a mismatch between the
two outputs is found using the test vectors then the fault injected circuit has produced an
erroneous result and the fault is considered to be detected [9]. If the complete set of test vectors
is applied to the pair of circuits without a mismatch occurring then the fault is considered to be
undetected [9]. The results of applying the entire set of test vectors to each of the possible faults
in a circuit will determine the fault coverage of the test vectors. The fault coverage for a set of
A
B
Z
13
vectors is a representation of the effectiveness of those vectors in detecting faults [9]. The
calculation for determining fault coverage is given by [9]:

2-1

2.2 Random Access Memories
Static Random Access Memories (SRAMs) are made up of bi-stable memory cells which
are capable of holding either a logic zero state or a logic one state. A memory cell holds only a
single bit of information and will retain its value as long as the power remains connected to the
cell without the need for a periodic refresh. However, the cells are volatile and will not retain
their logic value after the power has been disconnected [6]. A general SRAM will contain input
connections for controls, addresses, and data-in as well as output connections for data-out [6]. A
common model for representing an SRAM is the two-dimensional model shown in Figure 2-2.
This model displays the basic inputs for controls, addresses, and data-in and outputs for the data-
out bits [6]. The data-in and data-out ports will be N bits wide where N will be the width of the
data words in the RAM.
14

Figure 2-2 - Two-Dimensional SRAM Model [6]
 The RAMs contained within the Virtex-5 FPGAs function as multi-port SRAMs. A
multi-port RAM has multiple input and output ports. These ports may be read-only, write-only,
or capable of both read and write operations [6]. The detailed functional operating model of an
SRAM can be seen in Figure 2-3. This model illustrates how the row and column decoders will
be used in order to select the memory location [6]. The control circuitry, read/write circuits, and
data registers are then used to either extract or insert bits into the array [6]. In the multi-port
SRAM the ports are able to read and write simultaneously in all but a few circumstances in
which ports may be trying to read and write to the same address [6]. The ports share a common
memory cell array that is constructed of individual memory cells. The address inputs are used by
the row and column decoders in order to select a cell in the memory on which the read or write
operation will be executed. When a write instruction is executed the data word on the data-in
pins is written into the SRAM memory cells at the selected address. When a read instruction is

Memory
cell array
Memory Ports
Controls

Addr
esses

Da
ta-
in
Da
ta-
out

N N
Row Access
Colum
n Ac
cess

15
executed the data word saved at the selected address is retrieved from the memory and displayed
on the data-out pins [6].

Figure 2-3 - Functional model of a multi-port memory [6]

SRAM
Memory Cell Array
Row
Decoder 0
Read/Write Circuits
and Data Registers
Read/Write Circuits
and Data Registers
Data Flow and
Control Circuitry
Data Flow and
Control Circuitry
Column Decoder 0 Column Decoder n
Row
Decoder n
Row A
ddre
sses

Addr
ess 0

Addr
ess
n
Da
ta-
wo
rd I
n

Column Address
Da
ta-
Out

Da
ta-
wo
rd O
ut

Da
ta I
n
Control

Da
ta-
Out

Da
ta-
In
Control

16
2.2.1 SRAM Faults
In order to simplify fault testing in a memory a reduced functional memory model is used
to model the operation of the memory [6]. This reduced model only consists of the address
decoder, the memory cell array, and the read/write logic. These three subsystems are common to
almost all mainstream memory devices [6]. In order to describe failures within a memory a set
of functional fault models is defined. The functional models are described as the difference
between the observed behavior and the expected behavior under a set of performed operations
[6]. This means that to define any fault model two things are needed [6]:
? A list of performed memory operations
? A list of the differences in behavior observed when performing the operations
The behavior of these fault models is described by fault primitives. Each primitive is used in
order to describe a fault and consists of the pattern of inputs used to sensitize the fault and the
resulting faulty behavior [6]. An extremely limited subset of the most relevant primitives is
selected to describe the faulty behavior of the memory rather than testing all functional
specifications [6]. The fault primitives are classified according to four separate criteria, as
follows.
2.2.1.1 Static vs. Dynamic Faults
Static faults are fault primitives which only require a single read or write operation in
order to detect [6]. Examples of static faults are cell values being stuck-at-1 or stuck-at-0.
Dynamic faults require more than a single read or write operation to expose and can be classified
further by the number of operations required [6].

17
2.2.1.2 Simple vs. Linked Faults
Simple faults are faults that are unable to influence each other in any way. However,
when faults are able to influence the behavior of other faults they are classified as linked faults
[6]. This behavior means that linked faults are capable of masking each other [6]. When
masking occurs, the effect of one fault will result in the faulty result of another becoming
unobservable [6].
2.2.1.3 Single-port vs. Multi-port Faults
Single-port faults are fault primitives that only require usage of, at the most, one port of
the RAM. Multi-port faults require the use of two or possibly more ports in order to sensitize the
fault. These faults may be further classified based on the number of ports that are needed [6].
2.2.1.4 Single-cell vs. Multi-cell Faults
A fault is characterized as a single-cell fault if the cell that is used for sensitizing the fault
is also the same cell in which the fault is observed [6]. Multi-cell or coupling faults involve
more than a single cell to sensitize. For multi-cell faults the cell in which the operation is
performed is different than the cell in which the fault is observed [6].
2.2.2 RAM Test Algorithms
In the standard dual-port mode of operation of the BRAMs in Virtex-5 devices, two
known RAM tests are used to test the memories: March s2pf/d2pf and MATS+ [6]. These tests
are executed on the RAM with various port widths in this configuration.

18
The notation that will be used to describe the RAM test algorithms is as follows [6]:
? ?,?: Used to indicate the direction traveled through the address space (? indicates
that the address space may be traversed in either direction).
? r, w: Used to denote between read and write operations. These characters will be
directly follow by the values to be written or the values expected to be read.
? Each group of operations within parenthesis is known as a march element. All
operations in these parentheses will be performed on a single address.
? Example: ? (r0, w1) indicates that the test will traverse the address space from
the maximum address to the minimum. At each location address a Read ? 0
operation will be performed followed by a Write ? 1 operation.
Some additional notations are used for dual port RAM tests [6]:
? A colon (:) separates operations of the separate ports
? n : Used to indicate that no operation is to be applied on a port.
? - : Used to indicate that any operation may be used, as long as it is not in conflict
(i.e. dual write operations to the same address location with different values)
? n = 0N-1: Used to indicate that an operation is performed on either a row or
column range. Where N will be R for a row range and C for a column range.

 The MATS+ algorithm was chosen to be used on the various port widths of this RAM
configuration. It was selected because it is a simple algorithm which can quickly verify the
address and data widths and the programmable address decoding circuitry [4]. MATS+ is order
O(5N) and the full algorithm can be seen in Equation 2-2 [6]. This algorithm is used to test the
19
programmable address and data widths, write modes, the active levels of the clock, port enable,
output register clock, and the set/reset signals [3].

MATS+ =
{? (w0);
? (r0, w1);
? (r1, w0)}
 2-2

When testing word-oriented memories, such as the BRAMs in Virtex-5 devices,
background data sequences (BDS) are needed to detect faults within the memory words. The
number of BDS required for testing a memory can be seen in Equation 2-3 where K is the
number of bits in the data word [4].

2-3
 For example in order to incorporate a 4-bit BDS into the MarchLR algorithm, first
replace all single bit elements in Equation 2-4 with 4-bit words. The r0, r1, w0, and w1 elements
will be replaced with r0000, r1111, w0000, and w1111 respectively. Then by using Equations
2-5 and 2-6 along with Table 2-1 and Table 2-2, the BDS can be constructed using the following
process [10]:
20
MarchLR =
{? (w0);
? (r0, w1);
? (r1, w0, r0, w1);
? (r1, w0);
? (r0, w1, r1, w0);
? (r0)}
 2-4

2-5

 2-6

21
Table 2-1 ? 4-Bit BDS Components
Normal Inverse
0000 1111
0101 1010
0011 1100

Table 2-2 ? 4-Bit BDS Sequence
i D
0 0000
1 1111
2 0000
3 0101
4 1010
5 0101
6 0011
7 1100
8 0011

1. Starting with i = 0 in Table 2-2, use Equation 2-5 to get and the resulting
march element ? .
2. Using i = 1, the equation results in and the next march element is
 ? .
3. Using i = 2, notice that from i = 2 to i = 3 there is a transition from the first row of Table
2-1 to the second row. Therefore Equation 2-6 is used to create the march element rather
than Equation 2-5. The resulting equation is and the march element will
be ? . When a transition such as this occurs i will be
incremented by 2.
4. Using i = 4 Equation 2-5 is used because there is no transition of rows between i = 4 and i
= 5. The resulting equation will be and the march element will be
 ? .
5. Using i = 5, Equation 2-6 will be used due to the transition between i = 5 and i = 6, which
22
results in the equation and the march element
 ? .
6. Using i = 6, Equation 2-5 will be used to get and the march element will be
 ? .
7. The final march element will be a read operation of the final i value: ? .

The resulting MarchLR w/4-bit BDS algorithm is O(35N). However, the seventh and eight
march elements of this generated test algorithm repeat march elements contained within the
initial MarchLR algorithm [10]. In order to optimize our MarchLR w/BDS algorithm we may
eliminate these duplicated elements and we will be left with the optimized algorithm which is
O(30N). The optimized algorithm is shown in Equation 2-7 [10].
23
MarchLR w/4-bit BDS =
{? (w0000);
? (r0000, w1111);
? (r1111, w0000, r0000, r0000, w1111);
? (r1111, w0000);
? (r0000, w1111, r1111, r1111, w0000);
? (r0000, w0101, w1010, r1010);
? (r1010, w0101, r0101);
? (r0101, w0011, w1100, r1100);
? (r1100, w0001, r0011);
? (r0011)}
 2-7

The March Y algorithm is used in order to test the programmable address decoding circuitry
of the BRAM [4]. This algorithm will also detect destructive read faults within the BRAM [4].
The March Y algorithm is order O(8N) and can be seen in Equation 2-8 [4]. In order to test the
FIFO mode of operation, as well as the programmable flags in this mode, the March X algorithm
is used [4]. This algorithm is O(6N) and is shown in Equation 2-9 [4].
24
March Y =
{? (w0);
? (r0, w1, r1);
? (r1, w0, r0);
? (r0)}
2-8

March X =
{? (w0);
? (r0, w1);
? (r1, w0);
? (r0)}
2-9
 In order to fully test the programmable ?almost? full and ?almost? empty in the First-In-
First-Out (FIFO) mode of operation the RAM must be reconfigured multiple times as described
in [4]. The steps in the FIFOX algorithm are shown below:
Step 1. Reset the FIFO, check that Empty flag is active
Step 2. Repeat N times: write FIFO with all 0?s, check that Empty flag goes inactive after
first write cycle, Full flag goes active after last write cycle, and that Almost Empty flag
25
goes inactive and Almost Full flag goes active at the appropriate points in the sequence.
Perform one additional write if the FIFO has a Write Error signal to indicate an
attempted write when the FIFO is full.
Step 3. Repeat N times: read FIFO expecting all 0?s and write FIFO with all 1?s, check
that Full flag toggles after each read and write cycle.
Step 4. Repeat N times: read FIFO expecting all 1?s and write FIFO with all 0?s, check
that Full flag toggles after each read and write cycle.
Step 5. Repeat N times: read FIFO expecting all 0?s, check that Full flag goes inactive
after first read cycle, Empty flag goes active after last read cycle, and that Almost Empty
flag goes active and Almost Full flag goes inactive at the appropriate points in the read
sequence. Perform one additional read if FIFO has a Read Error signal to indicate an
attempted read when the FIFO is empty.

The March s2pf/d2pf algorithms were chosen because they are able to detect all realistic
single and double addressing faults within a dual port RAM [6]. March s2pf is order O(14N),
and March d2pf is order O(9N) where N represents the number of addresses in the memory. The
March s2pf and d2pf algorithms may be seen in Equation 2-10 and 2-11 respectively [6]. These
algorithms are responsible for testing the dual-port functionality of the BRAMs [6].

26
March s2pf =
{? (w0 : n);
? (r0 : r0, r0: -, w1 : r0);
? (r1 : r1, r1 : -, w0: r1);
? (r0 : r0, r0 : -, w1 : r0);
? (r1 : r1, r1 : -, w0 : r1);
? (r0 : -)}
2-10

March d2pf =
{? (w0 : n);
? c = 0C-1 (r = 0R-1 (w1r,c : r0r+1,c, r1r,c : w1r+1,c, w0r,c : r1r+1,c, r0r,c+1 : w0r+1,c));
? c = 0C-1 (r = 0R-1 (w1r,c : r0r+1,c, r1r,c : w1r+1,c, w0r,c : r1r+1,c, r0r,c+1 : w0r+1,c))}
 2-11

 The ECC (Write) and ECC (Read) algorithms both use an ECC testing algorithm
described in [4] which achieves 100% coverage of an XOR parity tree circuit which the ECC
circuitry is surmised to be. The ECC Write algorithm is responsible for testing the parity
generation circuitry while the ECC Read algorithm is responsible for testing the error detection
and correction circuitry [4].
27

ECC (Write) =
All 0?s; walk 1-thru-0?s
All 1?s
Walk two 1?s-thru-0?s
2-12

ECC (Read) =
Output of ECC generate vectors
Init: Walk 1-thru-0?s; all 1?s; all hamming values w/data = 0?s
Init: Walk two 1?s-thru-0?s
(Note: Init indicates that the test vectors are initialized in the ECC RAM during download)
2-13

28
2.3 Virtex-5 Architecture
This section will detail the structural architecture of the Virtex-5 devices. The
programmable logic resources available to the user will be discussed along with information
about the design and functionality of the BRAMs contained in the devices.
2.3.1 Virtex-5 Configurable Logic Blocks
The primary resources in the Virtex-5 for implementing sequential and combinational
logic circuits are the Configurable Logic Blocks (CLBs) [7]. The resource count within these
CLBs is shown in Table 2-3. Each CLB contains a pair of slices. These two slices are not
interconnected and are arranged in two columns containing a dedicated carry chain as
summarized in Figure 2-4. The slices are also connected to a switching matrix, granting them
access to the general routing matrix [7].

Table 2-3 - CLB Resources in Virtex-5 [7]
Component Virtex-5 CLB
Slices 2
Look-Up-Tables 8
(6-input)
Flip-Flips 8
Arithmetic and Carry Chains 2
Distributed RAM 256-bits
Shift Registers 256-bits

29

Figure 2-4 - Slice arrangement within Virtex-5 CLBs [7]

30
2.3.2 Virtex-5 Block RAMs

Figure 2-5 - Virtex-5 Dual-Port Flow [7]
The BRAMs contained within Virtex-5 devices are capable of operating in two main
modes, single-port and dual-port [7]. The inputs and outputs available to the BRAMs can be
seen in Figure 2-5 [7]. Each RAM may be used as be used as two separate 18 K-bit RAMs or as
a single 36 K-bit RAM [7]. The RAMs contain two input ports, Port A and Port B. These two
ports may be used independently to synchronously read data from and write data to the RAM.
The RAMs may be configured to use one of three write configurations [7]. In the WRITE_FIRST
mode, data will be immediately displayed on the output of the RAM as it is written. The
31
READ_FIRST mode will display the previous contents of the RAM on the output as new data is
written. Finally, the NO_CHANGE mode will leave the outputs unchanged upon a write
operation. When using this mode the data output remains the last read data and is unaffected by
write operations [7]. Additionally, the RAMs may be used in either a single-port or dual-port
RAM mode [7]. This option is available whether the RAMs are being used as a single 36 K-bit
memory or two independent 18 K-bit memories [7]. The RAMs are also able to be configured
with various port sizes and depths. The different configuration types available to be used for the
independent 18 K-bit configurations are shown in Table 2-4 [7]. The configuration types
available for use with the single 36 K-bit configurations are shown in Table 2-5 [7]. An option is
also provided to enable a pipeline register on the output of a RAM, allowing a higher operating
frequency while sacrificing an additional clock cycle of latency [7].
Table 2-4 - Virtex-5 BRAM Port Aspect Ratio (18K-bit RAM) [7]
Address
Width
Address
Bits
Memory Depth Data
Width
Data-In/Out
Bits
Data-In/Out
Parity Bits
14 13:0 16K 1 0 n/a
13 13:1 8K 2 1:0 n/a
12 13:2 4K 4 3:0 n/a
11 13:3 2K 9 7:0 0
10 13:4 1K 18 15:0 1:0
9 13:5 512 36 31:0 3:0

Table 2-5 ? Virtex-5 BRAM Port Aspect Ratio (36K-bit RAM) [7]
Address
Width
Address
Bits
Memory Depth Data
Width
Data-In/Out
Bits
Data-In/Out
Parity Bits
15 14:0 32K 1 0 n/a
14 14:1 16K 2 1:0 n/a
13 14:2 8K 4 3:0 n/a
12 14:3 4K 9 7:0 0
11 14:4 2K 18 15:0 1:0
10 14:5 1K 36 31:0 3:0
9 14:6 512 72 63:0 7:0

32
The RAMs also may be used with ECC parity bits. In this mode of operation an 8-bit
Hamming code is generated by the ECC circuitry present with each RAM which can be seen in
Figure 2-6 [7]. The ECC circuitry may be used fully or in an encoder-only or decoder-only
mode. The configurable EN_ECC_WRITE option allows the ECC bits to be provided on the
parity input pins of the RAM or optionally generated by the included encoding circuitry.
Similarly the EN_ECC_READ option may be used to bypass the decoding and correction
circuitry [7]. This ECC circuitry is capable of detecting and correcting any single-bit error or
detecting any double-bit error without correction in the data being read from the RAM [7].
33

Figure 2-6 - Top Level View of Virtex-5 BRAM ECC [7]

 The RAMs may also be configured in a First-In-First-Out (FIFO) mode of operation. In
this mode of operation the FIFO is equipped with the inputs and outputs shown in Table 2-6 [7].
The FIFO provides separate read and write enables as well as individual clocks for each
operation. The read and write addresses are displayed on outputs, and there are also flags
indicating a read error or a write error. A pair of flags indicating that the FIFO is full or empty is
present. Also, the FIFO features configurable almost full and almost empty flags which are
controlled via a 13-bit hexadecimal value [7]. A configuration option called
34
FIRST_WORD_FALL_THROUGH also optionally allows the first word written into the FIFO to
be immediately displayed on the output. If this option is selected the capacity of the FIFO will
be increased by one [7]. The FIFO may also be used with the same ECC circuitry that is
available to the standard BRAM configuration. This allows any single bit error in the FIFO data
to be detected and corrected or any double bit error in the FIFO data to be detected [7]. The
various port aspect ratios and memory depths that are available for use in this mode are shown in
Table 2-7 [7]. Additionally, the actual capacity of the FIFO when it is used with these different
port aspect ratios is shown in Table 2-8 [7].
Table 2-6 - FIFO Input and Output Ports [7]
 Port Width Description
Inputs
DI 32 Data input
DIP 4 Parity-bit input
RDEN 1 Read enable
RDCLK 1 Read domain clock
WREN 1 Write enable
WRCLK 1 Write domain clock
RST 1 Asynchronous reset
Outputs
DO 32 Data output
DOP 4 Parity-bit output
WRCOUNT 13 Data write pointer
RDCOUNT 13 Data read pointer
FULL 1 Full flag
EMPTY 1 Empty flag
ALMOSTFULL 1 Configurable almost full flag
ALMOSTEMPTY 1 Configurable almost empty flag
RDERR 1 Read error flag
WRERR 1 Write error flag

35
Table 2-7 ? Virtex-5 FIFO Port Aspect Ratio [7]
18K-bit Mode 36K-bit Mode
Memory Depth Data Width Memory Depth Data Width
4K 4 8K 4
2K 9 4K 9
1K 18 2K 18
512 36 1K 36
- - 512 72

Table 2-8 ? Virtex-5 FIFO Data Depth [7]
Data Width Block RAM
Memory
FIFO Capacity
18K-bit 36K-bit Standard FWFT
- 4 8192 8193 8194
4 9 4096 4097 4098
9 18 2048 2049 2050
18 36 1024 1025 1026
36 72 512 513 514

 Finally, the BRAMs are able to be configured in a cascade mode which allows two
adjacent RAMs to be connected together and used as one larger RAM. The circuitry which
allows this is shown in Figure 2-7 [7]. This option is available for any two adjacent RAMs in a
column on the device [7]. The only port width available for this operating mode is 64K x 1-bit
where two 32K x 1-bit RAMs are combined. The upper RAM has its RAM_EXTENSION
configuration bit set to UPPER (0) and the lower ram has its RAM_EXTENSION bit set to
LOWER (1) [7]. Output data is only displayed on the upper RAM. The data output of the RAM
configured as the lower RAM is routed into a multiplexer by connecting the CASCADEIN and
CASCADEOUT of the two RAMs as shown in Figure 2-7 [7]. This multiplexer is controlled by
address bit A15 which selects the appropriate output [7].
36

Figure 2-7 - Virtex-5 BRAMs in Cascade Configuration [7]
2.4 Virtex-4 Block RAM BIST
This section will discuss the FPGA RAM BIST procedures developed by Milton in [2] and
by Garrison in [3] for Virtex-4 which are expanded upon in this work for a Virtex-5
implementation. Milton?s original approach used the CLBs available within the FPGA to create
the TPG and ORAs while the BRAMs served as the Circuits Under Test (CUTs). Milton also
used a pair of identical TPGs which provide test vectors to alternating RAMs in the columns [2].
The ORAs are implemented using a circular comparison based approach that results in an
increase in fault detection capability and diagnostic resolution [2]. These ORAs are placed in the
CLB columns which neighbor the BRAMs. A layout of Milton?s BIST architecture along with
the TPG, CUT, and ORA connections can be seen in Figure 2-8 [2].
37

Figure 2-8 - BRAM BIST Architecture [2]
2.4.1 Dedicated Carry Chain
Milton?s original ORA design was improved upon by Dutton in [11] and later used by
Garrison in [3] to take advantage of the built in carry logic provided in the Configurable Logic
Blocks (CLBs) of Virtex-4 and Virtex-5 devices. In order to implement this, the ORA circuitry
was modified to that shown in Figure 2-9 [3]. To indicate a fault has been detected a Logic 0 is
latched into the flip-flop [3]. This bit is used to select the input of a multiplexor in the carry
chain which in turn provides a Logic 1 on the carry-out in the case of a failure. Alternatively,
the input that is provided from the previous multiplexor via carry-in is forwarded to the carry-
out [3].
ORAs ORAs
BRAMs BRAMs
TPG0 TPG1
38

Figure 2-9 - Comparison Based ORA with Carry Chain [3]

 In order to ensure the propagation of the test result through the entire built-in carry logic,
several dummy ORAs must be implemented in the ORA columns[3]. This is necessary because
some of the ORA columns do not span the entire height of the FPGA. In this case, the dummy
ORAs are added to the configuration to complete these columns as seen in Figure 2-10. No logic
is implemented in the dummy ORAs aside from the built-in carry chain [3].

Figure 2-10 - Additional Dummy ORAs [3]

B
R
A
M
Dummy
ORAs
ORAs
D
Ai
Bi
Clk
 0 1
1
carry-out
carry-in
39
 The functionality of the carry logic can be expressed as an iterative OR-chain as seen in
Figure 2-11 where the boxes containing ?O?s are the ORAs [3]. If no mismatch is detected
within the ORA then the input from the previous ORA will be selected. If a mismatch is detected
a Logic 1 will be output by the detecting ORA and propagated through the chain [3].

Figure 2-11 - Iterative OR-Chain Functionality [3]
The OR-chain is connected to the boundary scan interface provided on the device, with
the initial input being provided by the Test Data In (TDI) pin. The final output of the chain is
connected to the Test Data Out (TDO) pin of the interface [3]. The OR-chain effectively
provides a single Pass/Fail bit to observe the test result. Once the test has concluded the user is
able to toggle TDI and observe the behavior of TDO [3]. If TDO matches TDI during this
process then no fault has been detected by any of the ORAs, and it is unnecessary to perform a
configuration memory read back [3]. If TDO is observed as being constantly a Logic 1 through
this process, then a configuration memory read back may be performed in order to retrieve the
results from the flip-flops in the ORAs if desired [3]. If TDO is observed as being constantly a
Logic 0 while toggling TDI then it must be assumed that there is a fault within the logic used to
construct the OR-chain meaning TDI and the ORA comparison results are not being properly
propagated.
2.4.2 TPG Architecture
 The original designs for the Virtex-5 BRAM TPGs were proposed by Garrison in [3].
Garrison proposed that four different Xilinx BRAM primitive models be used in developing and
40
testing the TPGs. These models describe the operation of the BRAMs in different configuration
modes and behave exactly as the physical BRAMs in simulation [7]. The TPGs are created with
an aim to test the BRAMs in these modes of operation, and the operation of the TPGs is verified
with these models in simulation. The models for the first four test configurations are as follows
[3]:
1. BRAM (32K + 4K parity) ? true dual-port BRAM that supports widths of x1, x2,
x3, x4, x9, x18, and x36.
2. ECC (512 x 72-bit) ? simple dual-port BRAM with 64-bit ECC.
3. FIFO (32K + 4K parity) ? synchronous/asynchronous FIFO BRAM that supports
widths x1, x2, x4, x9, and x18.
4. FIFOECC (512 x 72-bit) ? synchronous/asynchronous FIFO with 64-bit ECC.

2.4.2.1 BRAM TPG
 The TPG proposed by Garrison for testing the RAM in the BRAM configuration is
responsible for testing the dual-port functionality of the BRAM and would require seven
different BIST configurations [3]. The proposed test algorithm, address space, and data width
used for each configuration can be seen in Table 2-9 [7]. The desired test to be run is selected by
a user-supplied control string that is shifted into the TPG using the boundary scan interface as
shown in Figure 2-12 [3]. The values proposed for the control strings for the various tests are
shown in Table 2-10 along with the configuration settings in Table 2-11 [3]. The three Mode bits
in the control string correspond to the BRAM Configuration Number and the Level Control bit
allows us to control the active level for the TPGs [3].
41
Execution of the RAM test algorithms is implemented using a Finite State Machine
(FSM) in a VHDL model for the BRAM TPG as well as the other BIST TPGs. The TPG model
is synthesized using area constraints to restrict the placement of the resources to the smallest area
possible in the lower left hand corner of the device [3]. In the BIST configurations, the TPG
designs will be offset from the bottom left hand corner to achieve the desired placement in the
six CLB columns directly to the right of the rightmost column of BRAMs, excluding the
columns of BRAMs located in a Tri-mode Ethernet Media Access Controller (TEMAC) column
in Virtex-5 devices that contain them [3]. The columns are selected for TPG placement because
they are not used for any other purpose in the Virtex-5 BRAM BIST [3]. In these columns, one
TPG will be placed at the bottom of the device and the other TPG will be placed exactly halfway
up the device [3]. The TPGs are placed in this manner in order to minimize routing distance
from each TPG to alternating BRAMs in columns spanning the entire height of the device. An
example of the TPG placement and routing on the LX30 device may be seen in Figure 2-13.
Table 2-9 - BRAM BIST Configurations [7]
BRAM
Config
Test
Algorithm
Address
Space
Data
Width
1 March s2pf 1K 36
2 March d2pf 1K 36
3
MATS+
2K 18
4 4K 9
5 8K 4
6 16K 2
7 32K 1

42
Table 2-10 ? Proposed Control String Values for BRAM TPG [3]
BRAM
Config
Test
Algorithm
Address
Space
Level
Control Mode 2 Mode 1 Mode 0
Hex
Control
String
1 March s2pf 1K 0 0 0 0 0x0
2 March d2pf 1K 0 0 0 1 0x1
3
MATS+
2K 1 0 1 0 0xA
4 4K 1 0 1 1 0xB
5 8K 1 1 0 0 0xC
6 16K 1 1 0 1 0xD
7 32K 1 1 1 0 0xE

Table 2-11 - Proposed Configuration Settings for BRAM TPG [3]
(a) Settings Part 1
BRAM
Config
Test
Algorithm
DO (A/B)
REG
READ
Width
(A/B)
WRITE
Width
(A/B)
WRITE Mode
(A/B)
SAVE
DATA
1 March s2pf 1 36 36 READ_FIRST FALSE
2 March d2pf 1 36 36 READ_FIRST FALSE
3
MATS+
0 18 18 READ_FIRST FALSE
4 0 9 9 WRITE_FIRST FALSE
5 0 4 4 NO_CHANGE FALSE
6 0 2 2 WRITE_FIRST FALSE
7 0 1 1 NO_CHANGE FALSE

(b) Settings Part 2
BRAM
Config
Test
Algorithm
CLK, EN,
SSR
REGCLK
(A/B)(U/L)
INV
RAM EXT INIT VAL SRVAL
INIT
(A/B)
VAL
1 March s2pf INV NONE AAAA 5555 0
2 March d2pf not INV NONE 5555 AAAA FFFF
3
MATS+
not INV NONE AAAA 5555 0
4 not INV NONE 5555 AAAA FFFF
5 not INV NONE AAAA 5555 0
6 not INV NONE 5555 AAAA FFFF
7 not INV NONE AAAA 5555 0
43

Figure 2-12 - Shift Register Control String for BRAM TPGs [3]

Figure 2-13 - Placement and Routing on TPGs in LX30
TPGs
BSCAN TDI

LEVEL
CTRL

MODE[2]

MODE[1]

MODE[0]
44
2.4.2.2 ECC TPG
 The proposed ECC TPG is responsible for testing the memory core and the ECC read and
write capabilities of the BRAM [3]. By using the largest data width available in this
configuration, all memory elements within the BRAMs may be accessed [3]. This TPG is
implemented using an FSM as well, and the algorithm to be run is also selected using a control
string shifted in via the boundary scan interface. The control values used for selecting the
algorithm are shown in Table 2-12 along with the entirety of the proposed configuration settings
in Table 2-13 [3]. The RAM test algorithm March LR w/72-bit BDS (described in the Appendix)
is used in this configuration since all memory elements are available. The background data
sequence is used to ensure that all intra-word coupling faults will be detected [6]. The
configurations labeled ECC (read) and ECC (write) are responsible for detecting any faults
within the ECC check and correction circuitry on the BRAMs [4]. This TPG is also synthesized
using area constraints to control TPG area and placement.
Table 2-12 ? Proposed Control String Values for ECC TPG [3]
ECC
Config
Test
Algorithm
Level
Control Mode 1 Mode 0
Hex
Control
String
1 MarchLR w/BDS 0 0 0 0x0
2 ECC (read) 0 0 1 0x1
3 ECC (write) 1 1 0 0x6

45
Table 2-13 ? Proposed Configuration Settings for ECC TPG [3]
(a) ECC Settings Part 1
ECC
Config
Test
Algorithm
DO
REG
EN_ECC
READ
EC_ECC
WRITE
EN_ECC
SCRUB
INIT
VAL
SR
VAL
INIT
(A/B)
VAL
SAVE
DATA
1 MarchLR w/BDS 0 FALSE FALSE FALSE AAAA 5555 0 FALSE
2 ECC (read) 1 TRUE FALSE FALSE AAAA 5555 0 FALSE
3 ECC (write) 1 FALSE TRUE FALSE 5555 AAAA FFFF FALSE

(b) ECC Settings Part 2
ECC
Config
Test
Algorithm
RDCLK
(U/L)
INV
RDEN
(U/L) INV
RDRCLK
(U/L) INV
WRCLK
(U/L) INV
WREN
(U/L)
INV
SSR
(U/L)
INV
1 MarchLR w/BDS not INV not INV not INV not INV not INV not INV
2 ECC (read) not INV not INV not INV not INV not INV not INV
3 ECC (write) INV INV INV INV INV INV

2.4.2.3 FIFO TPG
 The TPG for testing the BRAM in the FIFO configuration mode is responsible for testing
all the FIFO functionality and is designed like the previously described BRAM and ECC TPGs.
This TPG will use the RAM test algorithm FIFOX [4]. The proposed configuration settings for
this mode can be seen in Table 2-14 [3].

46
Table 2-14 ? Proposed Configuration Settings for FIFO TPG [3]
(a) FIFO Settings Part 1
ECC
Config
Test
Algorithm
DO
REG
DATA
WIDTH EN SYN FWFT
RDCLK
(U/L)
INV
RDEN INV RST INV
1
FIFOX
1 36 TRUE TRUE INV INV INV
2 1 18 FALSE FALSE not INV not INV not INV
3 0 9 TRUE TRUE not INV not INV not INV
4 0 4 FALSE FALSE not INV not INV not INV

(b) FIFO Settings Part 2
ECC
Config
Test
Algorithm
WRCLK
(U/L) INV WREN INV
ALMOST
FULL
OFFSET
ALMOST
EMPTY
OFFSET
1
FIFOX
INV INV 5555 AAAA
2 not INV not INV AAAA 5555
3 not INV not INV 5555 AAAA
4 not INV not INV AAAA 5555

2.4.2.4 FIFOECC TPG
 The TPG for this mode is responsible for testing the ECC circuitry of the BRAM when it
is configured for FIFOECC operation. This TPG will be designed similar to the previously
described TPGs. The proposed test algorithm that will be used in this TPG is FIFOX [4]. The
proposed configuration settings may be seen in Table 2-15.
47
Table 2-15 ? Proposed Configuration Settings for FIFOECC TPG [3]
(a) FIFOECC Settings Part 1
FIFOECC
Config
Test
Algorithm
DO
REG
EN_ECC
READ
EN_ECC
WRITE EN SYN FWFT RST INV
1 FIFOX 1 TRUE FALSE FALSE TRUE INV
2 FIFOX 0 FALSE TRUE TRUE FALSE not INV

(b) FIFOECC Settings Part 2
FIFOECC
Config
Test
Algorithm
ALMOST
EMPTY
OFFSET
ALMOST
FULL
OFFSET
RDCLK
(U/L)
INV
RDRCLK
(U/L)
INV
RDEN
INV
WRCLK
(U/L)
INV
WREN
INV
1 FIFOX 5555 AAAA INV INV INV INV INV
2 FIFOX AAAA 5555 not INV not INV not INV not INV not INV

2.5 Thesis Statement
 This chapter has presented the basics of fault modeling in SRAM memories. It has also
shown and detailed the various test algorithms used when testing these memories. An overview
of the architecture of Virtex-5 devices is also given along with a description of the embedded
BRAMs and their modes of operation. The components of the BIST structure are also described
with proposed configuration modes and settings for the BRAMs.
 This thesis aims to implement and expand upon the configurations proposed by Garrison
in [3] for the Virtex-5. Garrison?s proposed configuration settings to test the first four
configuration modes of the BRAMs are shown in this chapter, but the design was not
implemented in his work. In Chapter 3, this thesis will describe the implementation of BIST for
the Virtex-5 BRAMs which includes Garrison?s proposed configurations and settings which have
been expanded upon to completely test the embedded BRAMs in these devices.

48

Chapter 3 Virtex-5 Block RAM BIST

 This chapter will describe the design and implementation of the BIST for Virtex-5
BRAMs and the results obtained from actual generation and execution of the BIST sequence.
This will include TPG development for all BIST configurations as well as the configuration
settings for each of the operating modes. The design, placement, and routing of the ORAs is also
shown along with an overview of the complete Virtex-5 BIST architecture. The process for
generation and modification of the BIST configurations and the software tools used are also
described. Finally the results and analysis will be presented including optimization, timing
analysis, and fault coverage results.
3.1 Virtex-5 RAM BIST
 The BIST architecture builds upon the architecture used by Milton and Garrison for
Virtex-4 as described in Section 2.4. The same basic architecture is used where a pair of
identical TPGs is used to drive the alternating BRAMs in the columns as shown in Figure 2-8.
All BRAMs will be configured identically so any mismatch detected by an ORA is known to be
a fault in a BRAM. The redundancy of the TPGs prevents fault aliasing that may occur when
using a single TPG that has been synthesized containing a fault [12]. In the case of a fault being
present in a TPG it will produce failures. These failures will be detected when the results of the
49
BRAMs being driven by the faulty TPG are compared with those from the BRAMs being driven
by the fault-free TPG [12]. A circular comparison architecture which will be described later in
this chapter is used for the ORA routing in order to prevent additional fault aliasing that may
occur if adjacent BRAMs have identical faults.

3.2 TPG Design and Implementation
The TPGs for the five BIST configuration modes were designed as Finite State Machines
(FSMs) to accommodate the multiple test phases that each TPG must run. The TPG designs
were written as VHDL models and synthesized for insertion into the BIST configurations. Area
constraints were used during synthesis of all the TPG models in order to minimize the resource
usage of each one and restrict placement to the lower left hand corner of the device as shown in
Figure 3-1. Designs are offset from this position to specify placement as described in Section
2.4.2. Prior to running the BIST procedure it is necessary to shift in the appropriate control
string value for the desired phase of the test to be run. This is done via the BSCAN interface of
the device. The data shifted in is consists of a level control value to specify the active level of
the clocks and mode values to specify the phase of BIST the TPG will execute.
The TPG models for the BRAM, ECC, FIFO, and FIFOECC test configurations were all
implemented based on the TPG models proposed by Garrison in [3] which are described in
Chapter 2.
50

Figure 3-1 - BRAM TPG Area Constraints in LX30
3.2.1 BRAM
The final implementation of the BRAM TPG was based on Garrison?s design in [3] with
some minor modifications. The BIST configurations and control string values proposed by
Garrison are used, but the proposed configuration settings were modified slightly by changing
Constrained
TPG
Placement
Area
51
the write mode of the last configuration to READ_FIRST. The final configuration settings for the
BRAM TPG can be seen in Table 3-1. Prior to the BIST being run a control string value must be
shifted in via the BSCAN interface in order to specify which phase of the test is to be run. For
the BRAM TPG, the appropriate value for each test phase is shown in Table 2-10.
Table 3-1 - Final BRAM Configuration Settings
 (a) Settings Part 1
BRAM
Config
Test
Algorithm
DO (A/B)
REG
READ
Width
(A/B)
WRITE
Width
(A/B)
WRITE Mode
(A/B)
SAVE
DATA
1 March s2pf 1 36 36 READ_FIRST FALSE
2 March d2pf 1 36 36 READ_FIRST FALSE
3
MATS+
0 18 18 READ_FIRST FALSE
4 0 9 9 WRITE_FIRST FALSE
5 0 4 4 NO_CHANGE FALSE
6 0 2 2 WRITE_FIRST FALSE
7 0 1 1 READ_FIRST FALSE

(b) Settings Part 2
BRAM
Config
Test
Algorithm
CLK, EN,
SSR
REGCLK
(A/B)(U/L)
INV
RAM EXT INIT VAL SRVAL
INIT
(A/B)
VAL
1 March s2pf INV NONE AAAA 5555 0
2 March d2pf not INV NONE 5555 AAAA FFFF
3
MATS+
not INV NONE AAAA 5555 0
4 not INV NONE 5555 AAAA FFFF
5 not INV NONE AAAA 5555 0
6 not INV NONE 5555 AAAA FFFF
7 not INV NONE AAAA 5555 0

3.2.2 ECC
 The ECC TPG was created directly from the design proposed by Garrison. This
configuration mode uses a fixed 72-bit data word length for each configuration with a fixed
address space of 512. The final configuration settings used in this TPG are shown in Table 3-2.
52
The remaining specifications are implemented directly from those proposed by Garrison which
are shown in Chapter 2. The ECC TPG also requires that a control string be shifted in via the
BSCAN interface prior to beginning to test. The final control strings for this configuration are
shown in Table 3-3.
Table 3-2 - Final ECC Configuration Settings
 (a) ECC Settings Part 1
ECC
Config
Test
Algorithm
DO
REG
EN_ECC
READ
EC_ECC
WRITE
EN_ECC
SCRUB
INIT
VAL
SR
VAL
INIT
(A/B)
VAL
SAVE
DATA
1 MarchLR w/BDS 0 FALSE FALSE FALSE AAAA 5555 0 FALSE
2 ECC (read) 1 TRUE FALSE FALSE AAAA 5555 0 FALSE
3 ECC (write) 1 FALSE TRUE FALSE 5555 AAAA FFFF FALSE

(b) ECC Settings Part 2
ECC
Config
Test
Algorithm
RDCLK
(U/L)
INV
RDEN
(U/L) INV
RDRCLK
(U/L) INV
WRCLK
(U/L) INV
WREN
(U/L)
INV
SSR
(U/L)
INV
1 MarchLR w/BDS not INV not INV not INV not INV not INV not INV
2 ECC (read) not INV not INV not INV not INV not INV not INV
3 ECC (write) INV INV INV INV INV INV

Table 3-3 - Final Control String Values for ECC TPG
ECC
Config
Test
Algorithm
Level
Control Mode 2 Mode 1 Mode 0
Hex
Control
String
1 MarchLR w/BDS 0 0 0 0 0x0
2 ECC (read) 0 0 0 1 0x1
3 ECC (write) 0 0 1 0 0x2

3.2.3 FIFO
 The FIFO TPG is an FSM developed from Garrison?s initially proposed FIFO TPG.
However an additional fifth test phase has been added. This additional phase is required in order
to test the most significant bit of the configurable almost empty and almost full flags. When the
BRAM is configured as a FIFO with data width 4 it is the only time the most significant bit of
53
the flag configuration is used. To detect faults for the MSB being stuck-at-0 and stuck-at-1 two
separate test phases for this data width are necessary. The final test phases and the
corresponding control string values of this TPG are shown in Table 3-4. The final test
configuration settings along with the modified almost empty and almost full configuration values
are shown in Table 3-5.
Table 3-4 ? Final FIFO Test Phases and Control String Values
FIFO
Config
Test
Algorithm
Address
Space
Data
Width
Level
Control Mode 2 Mode 1 Mode 0
Hex
Control
String
1
FIFOX
1K 36 1 0 0 0 0x8
2 2K 18 0 0 0 1 0x1
3 4K 9 0 0 1 0 0x2
4 8K 4 0 0 1 1 0x3
5 8K 4 0 0 1 1 0x3

Table 3-5 ? Final Configuration Settings for FIFO TPG
(a) FIFO Settings Part 1
ECC
Config
Test
Algorithm
DO
REG
DATA
WIDTH EN SYN FWFT
RDCLK
(U/L)
INV
RDEN INV RST INV
1
FIFOX
1 36 TRUE TRUE INV INV INV
2 1 18 FALSE FALSE not INV not INV not INV
3 0 9 TRUE TRUE not INV not INV not INV
4 0 4 FALSE FALSE not INV not INV not INV
5 0 4 FALSE FALSE not INV not INV not INV

(b) FIFO Settings Part 2
ECC
Config
Test
Algorithm
WRCLK
(U/L) INV WREN INV
ALMOST
EMPTY
OFFSET
ALMOST
FULL
OFFSET
1
FIFOX
INV INV 2AA 155
2 not INV not INV 555 2AA
3 not INV not INV AAA 555
4 not INV not INV 1555 AAA
5 not INV not INV AAA 1555

54
3.2.4 FIFOECC
 The FIFOECC TPG has been improved from Garrison?s initially proposed design. The
testing algorithm used by the FIFOECC TPG is a modified version of the FIFOX algorithm
designated FIFOD. This algorithm forces toggling of all of the ECC bits as it is executed by
writing changing values to the FIFO. The value that is written into each address of the FIFO is a
write or read count value which is repeated as many times as necessary to fill the data width
being tested. This count value is incremented upon each write or read operation performed and
reset at the beginning of each step. This algorithm is executed as follows:
Step 1. Reset the FIFO.
Step 2. Repeat N times: write FIFO with count value repeated to match data width, check
that Almost Empty flag goes inactive and Almost Full flag goes active at the appropriate
points in the sequence.
Step 3. Repeat N times: read FIFO expecting repeated count value and write FIFO with
the inversion of repeated count
Step 4. Repeat N times: read FIFO expecting inverted repeated count value, check that
Almost Full flag goes inactive and Almost Empty flag goes active at the appropriate
points in the read sequence.

 The final test phases for this test mode and the final configuration settings may be seen in
Table 3-6 and Table 3-7. Control string values are not necessary for this TPG because the same
algorithm is executed for both test phases and only the BRAM configuration is modified.

55
Table 3-6 - Final FIFOECC Test Phases
FIFOECC
Config
Test
Algorithm
Address
Space
Data
Width
Level
Control
1 FIFOD (read) 512 72 0
2 FIFOD (write) 512 72 0

Table 3-7 ? Final Configuration Settings for FIFOECC TPG
(a) FIFOECC Settings Part 1
ECC
Config
Test
Algorithm
DO
REG
EN_ECC
READ
EN_ECC
WRITE EN SYN FWFT RST INV
1 FIFOD (read) 1 TRUE FALSE FALSE TRUE not INV
2 FIFOD (write) 0 FALSE TRUE TRUE FALSE not INV

(b) FIFOECC Settings Part 2
ECC
Config
Test
Algorithm
ALMOST
EMPTY
OFFSET
ALMOST
FULL
OFFSET
RDCLK
(U/L)
INV
RDRCLK
(U/L)
INV
RDEN
INV
WRCLK
(U/L)
INV
WREN
INV
1 FIFOD (read) 155 AA not INV not INV not INV not INV not INV
2 FIFOD (write) AA 155 not INV not INV not INV not INV not INV

3.2.5 CASC
 The CASC TPG executes a March Y based algorithm designed strictly to test the
functionality of the cascade circuitry. The March Y algorithm simply performs the algorithm
operations on one address in the UPPER BRAM and one address in the LOWER BRAM. By
doing this all the cascade circuitry can be verified quickly.
 The final CASC test phases can be seen in Table 3-8. No control string values are
necessary for this TPG as the same test is run for both phases. The final configuration settings
for this TPG can be seen in Table 3-9.

56
Table 3-8 ? Final CASC Test Phases
CASC
Config
Test
Algorithm
Address
Space
Data
Width
Level
Control
1 March Y 1K 64 0
2 1K 64 0

Table 3-9 ? Final Configuration Settings for CASC TPG
CASC
Config
Test
Algorithm
DOA/B
REG
RD
WIDTH
A/B
WR
WIDTH
A/B
RAM
EXT A
RAM
EXT B
1 March Y 1 1 1 UPPER LOWER
2 1 1 1 LOWER UPPER

3.2.6 Test Configurations Summary
 Each of these TPGs is FSM based and is restricted to the smallest area possible on the
FPGA devices. The resource usage for all the TPGs after synthesis can be seen in Table 3-10. It
is important to note that each TPG is placed twice in each BIST configuration and that the
resource usage per is independent of the device being tested. The 19 phases of the BIST
sequence for the Virtex-5 devices are displayed in Table 3-11. The various configuration
address spaces and data widths are shown along with the hexadecimal representation of the 4-bit
control string required to run each test phase.

Table 3-10 - BIST TPG Resource Usage
TPG Slices Slice Registers Slice LUTs CLB Area (column x row)
BRAM 148 242 587 8 x 20
ECC 205 566 808 8 x 30
FIFO 34 58 135 8 x 5
FIFOECC 43 162 122 8 x 10
CASC 4 10 9 8 x 1

57

Table 3-11 ? Complete Virtex-5 BIST Procedure
BIST
Config
BRAM
Mode
Test
Algorithm
Address
Space
Data
Width
Control
String
1
BRAM
March s2pf 1K 36 0x0
2 March d2pf 1K 36 0x1
3
MATS+
2K 18 0xA
4 4K 9 0xB
5 8K 4 0xC
6 16K 2 0xD
7 32K 1 0xE
8
ECC
MarchLR w/BDS 512 72 0x0
9 ECC (read) 512 72 0x1
10 ECC (write) 512 72 0x2
11
FIFO FIFOX
1K 36 0x8
12 2K 18 0x1
13 4K 9 0x2
14 8K 4 0x3
15 8K 4 0x3
16 FIFOECC FIFOD (read) 512 72 0x0
17 FIFOD (write) 512 72 0x0
18 CASC March Y 1K 64 0x0
19 1K 64 0x0

3.3 ORA Design
 The ORAs are designed to use a double comparison of BRAM outputs and a circular
comparison routing architecture. The iterative OR-chain described in Section 2.4.1 is also
implemented to accommodate results retrieval and an instantaneous Pass/Fail indicator. The
ORAs in the BIST are placed in two columns of five CLBs immediately adjacent to the BRAMs.
Each of these groups of 10 CLBs is responsible for comparing all the outputs of two distinct
BRAMs as shown in Figure 2-8 where each ORA block represents one group of CLBs. Each
58
ORA slice is equipped with four 6-input LUTs that are used to compare the outputs of the
BRAMs. The inputs to these LUTS are used for comparison of up to two pairs of BRAM
outputs. This architecture provides a total of up to 160 possible comparisons per BRAM.
 The number of observed outputs for the BRAM, ECC, FIFO, and CASC configurations is
less than 80 (half of the total comparisons) as shown in Table 3-12. This means that each ORA
performs a comparison of a single pair of BRAM outputs. The number of observed outputs for
the FIFOECC is greater than 80 such that some ORAs perform a comparison of two pairs of
outputs. A failure in an ORA making a double comparison is only traceable to be one of the two
outputs that are routed to it.

Table 3-12 - Compared Outputs for Configuration Modes
Configuration
Mode
Compared
Outputs
BRAM 72
ECC 74
FIFO 68
FIFOECC 106
CASC 4

3.3.1 ORA Comparison Routing
 The outputs of each pair of BRAMs to be compared are routed to a group of two columns
of five CLBs immediately to the left of one of the BRAMs. Each of these groups contains 20
slices organized as shown in Figure 3-2. Each one of these slices contains ORAs designated A
through D. Table 3-13 summarizes the routing of the BRAM outputs to the ORAs within these
groups. Each configuration mode of the BIST is shown in this table, and this routing is
59
consistent for each group of ORAs in a BIST configuration as they span the entire height of the
device. This routing information may be used in order to diagnose a fault location by using
configuration memory read back to locate the flip-flop which has latched a fault. Once the
failing flip-flop(s) is located it can be matched to a specific ORA whose inputs are known.

60

Figure 3-2 - ORA Map

SLICE 1
SLICE 2
SLICE 3
SLICE 4
SLICE 5
SLICE 6
SLICE 7
SLICE 8
SLICE 9
SLICE
10
SLICE
11
SLICE
12
SLICE
13
SLICE
14
SLICE
15
SLICE
16
SLICE
17
SLICE
18
SLICE
19
SLICE
20
ORA
Column 2
ORA
Column 1
61

Table 3-13 - ORA Input Routing Tables
(a) BRAM ORA Routing
Output Slice ORA Output Slice ORA Output Slice ORA
DOA0
1
A DOA24
7
A DOB12
14
A
DOA1 B DOA25 B DOB13 B
DOA2 C DOA26 C DOB14 C
DOA3 D DOA27 D DOB15 D
DOA4
2
A DOA28
8
A DOB16
15
A
DOA5 B DOA29 B DOB17 B
DOA6 C DOA30 C DOB18 C
DOA7 D DOA31 D DOB19 D
DOA8
3
A DOPA0
9
A DOB20
16
A
DOA9 B DOPA1 B DOB21 B
DOA10 C DOPA2 C DOB22 C
DOA11 D DOPA3 D DOB23 D
DOA12
4
A DOB0
11
A DOB24
17
A
DOA13 B DOB1 B DOB25 B
DOA14 C DOB2 C DOB26 C
DOA15 D DOB3 D DOB27 D
DOA16
5
A DOB4
12
A DOB28
18
A
DOA17 B DOB5 B DOB29 B
DOA18 C DOB6 C DOB30 C
DOA19 D DOB7 D DOB31 D
DOA20
6
A DOB8
13
A DOPB0
19
A
DOA21 B DOB9 B DOPB1 B
DOA22 C DOB10 C DOPB2 C
DOA23 D DOB11 D DOPB3 D

62
(b) ECC ORA Routing

Output Slice ORA Output Slice ORA Output Slice ORA
DO0
1
A DO24
7
A DO48
14
A
DO1 B DO25 B DO49 B
DO2 C DO26 C DO50 C
DO3 D DO27 D DO51 D
DO4
2
A DO28
8
A DO52
15
A
DO5 B DO29 B DO53 B
DO6 C DO30 C DO54 C
DO7 D DO31 D DO55 D
DO8
3
A DO32
9
A DO56
16
A
DO9 B DO33 B DO57 B
DO10 C DO34 C DO58 C
DO11 D DO35 D DO59 D
DO12
4
A SBITERR 10 A DO60
17
A
DO13 B DO36
11
A DO61 B
DO14 C DO37 B DO62 C
DO15 D DO38 C DO63 D
DO16
5
A DO39 D DOP0
18
A
DO17 B DO40
12
A DOP1 B
DO18 C DO41 B DOP2 C
DO19 D DO42 C DOP3 D
DO20
6
A DO43 D DOP4
19
A
DO21 B DO44
13
A DOP5 B
DO22 C DO45 B DOP6 C
DO23 D DO46 C DOP7 D
 DO47 D DBITERR 20 A

63
 (c) FIFO ORA Routing
Output Slice ORA Output Slice ORA Output Slice ORA
DO0
1
A DO24
7
A WRCOUNT10
14
A
DO1 B DO25 B WRCOUNT11 B
DO2 C DO26 C WRCOUNT12 C
DO3 D DO27 D RDCOUNT0 D
DO4
2
A DO28
8
A RDCOUNT1
15
A
DO5 B DO29 B RDCOUNT2 B
DO6 C DO30 C RDCOUNT3 C
DO7 D DO31 D RDCOUNT4 D
DO8
3
A DOP0 9 A RDCOUNT5
16
A
DO9 B DOP1 B RDCOUNT6 B
DO10 C DOP2
11
A RDCOUNT7 C
DO11 D DOP3 B RDCOUNT8 D
DO12
4
A WRCOUNT0 C RDCOUNT9
17
A
DO13 B WRCOUNT1 D RDCOUNT10 B
DO14 C WRCOUNT2
12
A RDCOUNT11 C
DO15 D WRCOUNT3 B RDCOUNT12 D
DO16
5
A WRCOUNT4 C FULL
18
A
DO17 B WRCOUNT5 D EMPTY B
DO18 C WRCOUNT6
13
A ALMOSTFULL C
DO19 D WRCOUNT7 B ALMOSTEMPTY D
DO20
6
A WRCOUNT8 C RDERR 19 A
DO21 B WRCOUNT9 D WRERR B
DO22 C
DO23 D

64
(d) FIFOECC ORA Routing
Output Slice ORA Output Slice ORA Output Slice ORA
DO0
1
A DO32
5
A DOP6
12
A
DO1 A DO33 A DOP7 B
DO2 B DO34 B SBITERR C
DO3 B DO35 B DBITERR D
DO4 C DO36 C FULL
13
A
DO5 C DO37 C EMPTY B
DO6 D DO38 D ALMOSTFULL C
DO7 D DO39 D ALMOSTEMPTY D
DO8
2
A DO40
6
A RDERR
14
A
DO9 A DO41 A WRERR B
DO10 B DO42 B RDCOUNT0 C
DO11 B DO43 B RDCOUNT1 D
DO12 C DO44 C RDCOUNT2
15
A
DO13 C DO45 C RDCOUNT3 B
DO14 D DO46 D RDCOUNT4 C
DO15 D DO47 D RDCOUNT5 D
DO16
3
A DO48
7
A RDCOUNT6
16
A
DO17 A DO49 A RDCOUNT7 B
DO18 B DO50 B RDCOUNT8 C
DO19 B DO51 B RDCOUNT9 D
DO20 C DO52 C RDCOUNT10
17
A
DO21 C DO53 D RDCOUNT11 B
DO22 D DO54
8
A RDCOUNT12 C
DO23 D DO55 B WRCOUNT0 D
DO24
4
A DO56 C WRCOUNT1
18
A
DO25 A DO57 D WRCOUNT2 B
DO26 B DO58
9
A WRCOUNT3 C
DO27 B DO59 B WRCOUNT4 D
DO28 C DO60 C WRCOUNT5
19
A
DO29 C DO61 D WRCOUNT6 B
DO30 D DO62
10
A WRCOUNT7 C
DO31 D DO63 B WRCOUNT8 D
 DOP0 C WRCOUNT9
20
A
 DOP1 D WRCOUNT10 B
 DOP2
11
A WRCOUNT11 C
 DOP3 B WRCOUNT12 D
 DOP4 C
 DOP5 D
65
 (e) CASC ORA Routing
Output Slice ORA
DOA0 1 A
DOPA0 B
DOB0 11 A
DOPB0 B

3.4 BIST Implementation
 The fully routed BIST configuration on a physical device is shown in Figure 3-3. This
design was created for the LX30, one of the smaller devices in the Virtex-5 family, and is for the
BRAM configuration mode. In this device there are two columns of BRAMs running vertically
on the device. The ORAs are placed directly to the left of the BRAMs in the immediately
adjacent CLB columns, and the BRAM outputs are routed directly to the appropriate ORAs. The
two TPGs are visible on the right side of the device. The bottom TPG is placed on the lowest
row of CLBs available and in the six columns of CLBs to the right of the rightmost BRAM
column. The second TPG is placed in these same six columns above the first TPG, beginning
exactly half way up the device. The TPG outputs are then each routed to alternating BRAMs in
the columns. The routing from the boundary scan interface is located directly in the center of the
device.
66

Figure 3-3 ? BRAM BIST Configuration Routed on Virtex-5 LX30
RAMs
&
ORAs
TPGs
67

3.4.1 Cascade Routing
 The cascade configuration mode presents a unique situation for ORA routing. When the
BRAMs are functioning in this mode of operation two of the memories are cascaded together in
order to form one larger memory, and the output of this memory is only displayed on the output
port of the BRAM configured in the UPPER mode. The output of the BRAM configured in the
LOWER mode is routed to the output of the UPPER memory as shown in Figure 2-7. This
means that the outputs of every other BRAM in a column will be identical, rather than all BRAM
outputs being identical. Therefore, the outputs of each BRAM are routed to properly reflect this
change, and every other BRAM will be compared.
 Using this approach presents another problem during the second cascade testing phase.
In the first testing phase BRAMs are configured as LOWER and UPPER alternating starting at
the bottom of the column. In the second testing phase these configurations will be reversed such
that the bottom BRAM will be configured as an UPPER, and the configurations will alternate
from there up the column. When this occurs the BRAMs located without another BRAM
directly beneath them are configured as UPPER and are used to output data, but will not output
any data that is expected from the LOWER memory because there is no CASCADEIN routing
available for these components. This will produce failures, even with fault free circuitry, if the
cascade routing approach described above is used.
 A solution used by Milton and Garrison for Virtex-4 devices in a similar cascade mode of
operation is described in [2] and [3]. The solution used by them accounts for these expected
failures by using clock enable controls in the ORAs to avoid clocking the result from an expected
68
failure into the flip-flips of the ORAs. This approach required tedious modifications to the TPG
in order to enable the ORA flip-flops during some clock cycles and disable them during others
when the failures were expected. It also requires that the ORA design be modified to include
these clock enables. A simpler solution is implemented for the Virtex-5 devices which
eliminates any expected failures from the design.
 The solution requires modification to the initial routing from the BRAMs to the ORAs.
Instead of routing all BRAM outputs to ORAs, the routing from any BRAM that does not have
an available CASCADEIN input is omitted completely as shown in Figure 3-4. Additionally, the
output of the BRAM that would normally be compared to these outputs to complete the circular
comparison is routed to the next ORA in the column to maintain the circular comparison. This
situation occurs for any BRAMs located at the bottom of columns, directly above a PowerPC
module, or some BRAMs in the special TEMAC columns which are present in some Virtex-5
devices [13]. This omission of routing will not result in any reduction in fault coverage because
there is no need to observe the outputs of these BRAMs in the cascade mode. When they are
configured in the LOWER mode the output is routed to the UPPER BRAM and displayed on its
outputs. These specific BRAMs do not need to be observed when configured in the UPPER
mode because should never be used with this configuration in practice because there is no
available CASCADEIN routing.
 The ORAs located at the bottom of these columns that do not have BRAM outputs routed
to them still retain their OR-chain routing. In this case, these ORAs are made into dummy ORAs
that simply propagate the carry chain result. This solution eliminates the need for special
modifications to the TPG or ORAs for the cascade BIST configuration by eliminating the
69
expected failures all together. All fault detection and diagnosis ability is retained and the circular
comparison ORA architecture is maintained.

Figure 3-4 ? Virtex-5 Cascade ORA Routing

Up
pe
r
Lo
we
r
Up
pe
r
Lo
we
r

Up
pe
r
Lo
we
r
BRAMs ORAs
Dummy
ORA
70
3.5 Programming Tools
 A series of programming tools are used to aid in the development, implementation, and
simulation of the BRAM BIST configurations. The way in which each of these tools is used in
the BIST development will be described in subsequent sections. A brief statement on the
capabilities of these tools is given below:
? ISE ? a Xilinx design suite for creating, synthesizing, and implementing VHDL
models for use in Xilinx FPGAs. Allows area constraints to be created to specify
placement of a design [14].
? FPGA Editor ? a Xilinx tool that provides of graphical user interface (GUI) for
visual examination and editing of designs on the FPGA [14].
? Place and Route (PAR) ? a Xilinx tool that performs placement and routing of FPGA
designs [14].
? XDL ? a Xilinx tool which converts between Xilinx file formats: NCD (FPGA
Editor files) and XDL (Xilinx netlist description files) [14].
? BitGen ? a Xilinx tool which generates BIT or RBT files from NCD files. These
BIT and RBT files contain the configuration information which is downloaded into
the FPGA [14].
? TRCE ? A Xilinx tool for timing analysis of a design. Specifically, it determines the
maximum clock frequency at which a design may be run [14].
? ModelSim Xilinx Edition ? A simulator made by Mentor Graphics which is able to
simulate VHDL models using Xilinx primitives [15].

71
3.6 Configuration File Generation
 The entire generation procedure using the two BIST generation programs and the tools
mentioned in Section 3.5 is diagramed in Figure 3-5 [16]. The initial generation of all the
Virtex-5 BRAM BIST configurations is done using two separate programs which are both
written in the C programming language. These two programs are responsible for the creation of
the XDL files containing exact placement and routing information for the entire BIST
configuration [16]. The synthesized VHDL models of the TPGs are converted into XDL format
and inserted into the generated XDL file. The XDL file is then converted into an NCD file which
is able to be graphically displayed within FPGA Editor. FPGA Editor is used in order to
automatically route the unrouted nets which have been designated in the design [16]. After the
design has been completely routed it will be converted into a configuration BIT file capable of
being downloaded directly into the FPGA device [16].

Figure 3-5 - BIST Configuration Process [16]
72
3.6.1 BIST Generation Program
 The program responsible for the generation of the XDL file containing the BIST design is
called V5RAMBIST.exe. This program is run by the user and several parameters are provided in
order to specify the target device and type for the BIST as well as several other details. The
exact command line formatting may be seen in Figure 3-6.

V5RAMbist (v1.6) - generates template file for block RAM BIST config in any Virtex 5
command line format:
V5RAMbist <xdlfile> <startrow> <startcol> <endrow> <endcol> <dev> <part> <type> [n,a,p]
 where type = bram (RAMB36 mode BIST)
 fifo (FIFO36 mode BIST)
 ecc (RAMB36SDP mode BIST)
 fifecc (FIFO36_72 mode BIST)
 casc (Cascade RAM mode BIST)
 dev part rows cols dev part rows cols dev part rows cols
 lxt 20 60 33
 lx/t 30 80 38 sxt 35 80 50 fxt 30 80 50
 lx/t 50 120 38 sxt 50 120 50 fxt 70 160 50
 lx/t 85 120 64 sxt 95 160 68 fxt 100 160 73
 lx/t 110 160 64 sxt 240 240 104 fxt 130 200 70
 lx/t 155 160 87 fxt 200 240 87
 lx/t 220 160 121 txt 150 200 70
 lx/t 330 240 121 txt 240 240 91
 n: this option runs xdl2ncd with -nodrc option
 a: runs 'n' option followed by FPGA Editor routing with no pinswap and converts back to XDL
 p: this option uses system-level pins instead of Boudary Scan interface
 PLUS runs xdl2ncd with -nodrc option
 note: all parameters can be upper or lower case (but not mixed)

Figure 3-6 - V5RAMBIST Command Line Instructions

3.6.2 Modification Program
 The second C program called V5RAMMOD.exe is responsible for the modification of the
configuration settings in the XDL files. In order to run this program the user specifies the generic
73
input XDL file which has been generated using the generation program and the name of the
desired output file. The BRAM configuration mode must also be specified along with the phase
of the test and several other parameters seen in Figure 3-7.

V5RAMmod (ver 1.2) - modifies routed XDLs for Block RAM to subseuqent BIST configs
command line format:
V5RAMmod <xdl_in> <xdl_out> <phase> <type> [ncd,bit]
where the type is defined as:
 Type: bram(RAMB36) ecc(RAMB36SDP) fifo(FIFO36) fifecc(FIFO36_72) casc(RAMB36)
--
 Phase 1: S2PF MarchLR FIFOx 1K FIFOx_ECC_RD CASC_RD
 Phase 2: D2PF ECC_RD FIFOx 2K FIFOx_ECC_WR CASC_WR
 Phase 3: MATS+ 2K ECC_WR FIFOx 4K
 Phase 4: MATS+ 4K FIFOx 9K
 Phase 5: MATS+ 8K FIFOx 9K-SWAP
 Phase 6: MATS+ 16K
 Phase 7: MATS+ 32K
--
Generation Options:
- ncd option runs XDL -XDL2NCD
- bit option runs XDL -XDL2NCD and BITGEN -D -B -G COMPRESS
- if no option is selected, only the XDL file will be generated

Figure 3-7 - V5RAMMOD Command Line Instructions

3.7 Results and Analysis
 In this section the results of the BRAM BIST will be presented. This will include the
fault detection capabilities of the BIST, size optimizations for the configurations, and analysis of
the timing capabilities of the configurations. The complete BIST procedure consists of 19
separate configurations. All configurations were generated for all Virtex-5 devices using the
BIST programs, and the configurations for LX30T, LX50T, SX35T, SX50T, FX30T, and FX70T
74
FGPAs were downloaded to and verified on actual devices. All 19 test phases are displayed in
Table 3-14. The number of clock cycles required to run each phase of the test is also shown in
the table in terms of the total number of clock cycles for the BIST. These running times are
negligible when compared to the time taken to download the configurations to the devices, which
becomes the dominant factor in total test time. This places a high emphasis on reducing
configuration file size to improve test time.

75
Table 3-14 - Complete BRAM BIST
BIST
Config
BRAM
Mode
Test
Algorithm
Address
Space
Data
Width
Clock
Cycles
1 (C)
BRAM
March s2pf 1K 36 20,000
2 (P) March d2pf 1K 36 15,000
3 (P)
MATS+
2K 18 25,000
4 (P) 4K 9 45,000
5 (P) 8K 4 85,000
6 (P) 16K 2 165,000
7 (P) 32K 1 330,000
8 (C)
ECC
MarchLR w/BDS 512 72 23,000
9 (P) ECC (read) 512 72 7,000
10 (P) ECC (write) 512 72 7,000
11 (C)
FIFO FIFOX
1K 36 8,500
12 (P) 2K 18 34,000
13 (P) 4K 9 66,000
14 (P) 8K 4 131,500
15 (P) 8K 4 131,500
16 (C) FIFOECC FIFOD (read) 512 72 10,000
17 (P) FIFOD (write) 512 72 10,000
18 (C) CASC March Y 1K 64 36
19 (P) 1K 64 36
Total BIST Clock Cycles = 1,113,572
(C) = Compressed Configuration (P) = Partial Configuration

3.7.1 Fault Detection
 The most important factor when evaluating the effectiveness of a test procedure is the
fault coverage. In order to evaluate the fault coverage of the BRAM BIST physical fault
injection was applied to the bits in the configuration memory of the BRAMs. There are a total of
488 possible configuration memory faults associated with each of the BRAMs. This number
results from each BRAM having 244 total configuration bits which may each either be stuck-at-0
or stuck-at-1. Each of these faults was emulated by overwriting the desired configuration bit
76
with the stuck-at value of the desired fault before performing the entire BIST sequence. This
process is repeated for each of the 488 configuration memory bit faults. The Pass/Fail result of
each test phase was recorded after the injection of each fault.
 The individual and cumulative fault coverage for the seven BRAM BIST configurations
is shown in Figure 3-8. This graph displays the individual number of fault detections from each
of BRAM test phases. The line displayed above the bars is a representation of the cumulative
fault coverage of the phases. Each of the phases detects between 100 and 200 of the
configuration memory bit faults. The sequence results in a fault coverage of 84% from running
only the BRAM BIST configurations.
 The overall fault coverage of configuration memory bits obtained from running the entire
BIST sequence is shown in Figure 3-9. This graph also shows both the faults detected by each
phase of the test and the cumulative detections. The entire test was able to detect 481 of the
configuration memory faults resulting in a fault coverage of 98.57%. The other seven undetected
faults are non-functional faults, which gives the BIST a 100% fault coverage of detectable faults
in the BRAM configuration memory.
 Fault injection with the configuration memory bits was used to verify the fault detection
capabilities of the BIST since it is not possible to emulate actual SRAM faults that may occur
within the BRAMs of a Virtex-5 device such as those described in Section 2.2.1. The injected
configuration memory faults produce faulty outputs on the BRAMs that mimic those that would
be produced by a BRAM containing SRAM faults. Thus, the fault coverage of the configuration
memory bit faults gives an accurate representation of the fault coverage of the BIST for SRAM
faults [17].
77

Figure 3-8 ? BRAM Configuration Mode Fault Detections
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0
50
100
150
200
250
300
350
400
450
March s2pf- March d2pf MATS+ 2k MATS+ 4k MATS+ 8k MATS+ 16k MATS+ 32k
Fault Cov
erag
e P
ercentag
e
Num
ber
 of
Faults
Dete
cted
Faults Detected Cumulative Detections
78

Figure 3-9 ? Entire BIST Sequence Fault Detections
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0
50
100
150
200
250
300
350
400
450
1 2 3 4 5 6 7 1 2 3 1 2 3 4 5 1 2 1 2
BRAM ECC FIFO FIFOECC CASC
Fault Cov
erag
e P
ercentag
e
Num
ber
 of
Faults
Dete
cted
Faults Detected Cumulative Detections
79
3.7.2 File Size Reduction
 Once the fully routed NCD files for each BIST configuration have been generated, the
Xilinx BitGen.exe tool mentioned in Section 3.5 is then used to create the configuration BIT file
that will be downloaded directly to the FPGA. This tool is capable of generating three different
types of configuration files: full, compressed, and partial [14]. The full configurations have no
compression and contain values for every configuration memory bit within the device.
Compressed configuration files take advantage of a feature in the Virtex-5 FPGAs called
multiple frame writing. This feature allows identical frames of data to be stored as a single
frame in the configuration file and written to multiple addresses in the configuration memory
[14]. This allows for a significant reduction in configuration file size for designs containing
many identical components, such as the BRAM BIST. The Virtex-5 device also supports partial
reconfiguration, which can be utilized to provide the greatest reduction in configuration file size.
These partial reconfiguration files are created by comparing two NCD file designs and the partial
reconfiguration file will be created that details only the differences between the two designs [14].
Knowing this, the BIST configurations were designed in an extremely regular manner in order to
minimize the differences between sequential configurations and configuration file size. Only
compressed configurations and partial reconfigurations are used for the BIST in order to fully
minimize download size. A compressed configuration is used for the first test phase of each of
the five configuration modes, and partial reconfiguration is used for the remaining phases. The
final file sizes of the BIST generated for the LX30 are shown in Table 3-15. The file size
reduction achieved from the use of the compression methods mentioned is shown in Figure 3-10.

80
Table 3-15 - BIST Configuration File Sizes for LX30
BIST
Config
File Size
K-bytes
BIST
Config
File Size
K-bytes
BIST
Config
File Size
K-bytes
1 (C) 583 7 (P) 49 13 (P) 4
2 (P) 55 8 (C) 592 14 (P) 4
3 (P) 49 9 (P) 3 15 (P) 4
4 (P) 49 10 (P) 50 16 (C) 564
5 (P) 49 11 (C) 532 17 (P) 4
6 (P) 49 12 (P) 4 18 (C) 387
Total File Size = 3,034 K-bytes 19 (P) 3
81

Figure 3-10 - BIST Configuration File Size Reduction for LX30
0
100
200
300
400
500
600
700
1 2 3 4 5 6 7 1 2 1 2 3 1 2 1 2 3 4 5
BRAM CASC ECC FIFOECC FIFO
Do
wnlo
ad
Siz
e (K
-by
tes)
Compressed Partial Partial Compressed
82
3.7.3 Timing Analysis
 By using the Xilinx timing analysis tool trce.exe mentioned in Section 3.5 the maximum
BIST clock frequency for each of the BIST configurations on all Virtex-5 devices has been
determined. The results of this analysis on the LX30T device are shown in Figure 3-11. The
FIFOECC and the CASC configurations are able to be run at the fastest clock frequency in this
device. It can also be seen that for the different configurations the clock frequency remains in a
consistent range except for the third ECC configuration and the first FIFO configuration. This
results from the inversion of the BRAM clocks for testing in these two phases. When the clocks
are inverted it presents a case where opposite edge clocking occurs which effectively halves the
maximum BIST clock frequency.
 This problem is overcome by inverting the TPG and ORA clocks in the CLBs during
these two BIST configurations. These configurations with the inverted TPG and ORA clocks are
positioned at either the beginning or end of a configuration mode sequence so that the inversion
is only performed once. This is done to minimize download and test time.
 The final maximum clock frequencies obtained from the analysis of select devices in the
Virtex-5 family are shown in Figure 3-12. These frequencies reflect the speeds after the change
which accounts for opposite edge clocking was applied. For each of the five configuration
modes the lowest maximum BIST clock frequency is displayed in the figure. It can also be seen
that the larger devices have a much slower maximum clock frequency due to longer routing
requirements in these devices. By comparing the data in Figure 3-11 to the final data for the
LX30T device in Figure 3-12 it can be seen that after inverting the clocks to account for opposite
edge clocking the maximum speed of the ECC and FIFO configurations for the LX30T device
83
increases from just over 40 MHz to over 80 MHz, putting these configuration modes in a range
similar to the others.
84

Figure 3-11 - Maximum BIST Clock Frequencies for LX30T
0
20
40
60
80
100
120
140
160
180
1 2 3 4 5 6 7 1 2 3 1 2 3 4 5 1 2 1 2
BRAM ECC FIFO FIFOECC CASC
M
ax
. BI
ST
 Clock
 Fr
equency
 (MHz
)
85

Figure 3-12 ? Maximum BIST Clock Frequency for select Virtex-5 Devices
0
20
40
60
80
100
120
140
160
M
ax
. BI
ST
 Clock
 Fr
eq.
(MHz
)
BRAM ECC FIFO FIFOECC CASC
86

Chapter 4 Summary and Conclusions

4.1 Summary of Virtex-5 BRAM BIST
 This thesis presents the development and verification of a BIST for the BRAMs
contained in Virtex-5 FPGAs. The work done in this thesis is largely based on the BRAM BIST
designs for Virtex-4 presented by Milton in [2] and Garrison in [3]. This design of the Virtex-5
BRAM BIST builds directly on the test design proposed by Garrison in [3].
 In order to sufficiently test the embedded BRAMs, tests are run on the memories in five
separate configuration modes. The BRAM mode of operation requires seven total test
configurations. The ECC mode requires three test configurations. The FIFO mode demands five
separate test configurations. Finally, the FIFOECC and CASC modes require two configurations
each, for a total of 19 test configurations. These BIST configurations each contain a pair of
identical TPGs designed to perform the required tests on the RAM along with ORAs to observe
the results of the tests. The configurations also contain a boundary scan interface for
communication with the BIST circuitry and retrieval of the test results.
 By using the compressed configuration and partial reconfiguration features of the Virtex-
5 FPGAs, the BIST configurations have been optimized in terms of download size. This in turn
reduces the total testing time by a substantial amount as a majority of testing time is attributed to
87
configuration downloads. Timing analysis has also been performed on the configurations to
determine what the maximum BIST clock frequency is for each device.
 Each BIST configuration was generated for and tested on the LX30T, LX50T, SX35T,
SX50T, FX30T, and FX70T Virtex-5 devices. In order to verify the fault detection capability of
the BIST, faults were injected into the BRAM configuration memory of the devices and the
BIST was executed. The results of these fault injections show that the BRAM BIST detects 481
of the 488 possible BRAM configuration memory faults which gives a fault coverage of 98.57%.
The BIST configurations can be downloaded and executed in-system during off-line operation
and are applicable for high reliability/availability systems as well as fault-tolerant applications
4.2 Future Work
 For future work in this area, this BRAM BIST design could be applied to the Spartan 6
and other families of FPGAs. Additionally, some improvements that have been made with this
BIST approach may be applied to the previous approaches for the Virtex-4 device. The
modification to the BRAM output routing in the cascade mode of operation could be applied to
these previous test approaches. Using this improvement would simplify the TPG used for this
configuration mode. It would also allow the removal of the clock enables that had been added to
the Virtex-4 ORA flip-flops to prevent the expected faults from being recorded.

88

Bibliography

[1] S. Garimella, "Built-In Self Test for Regular Structure Embedded Cores in System-on-
Chip," Auburn University, MS Thesis 2005.
[2] D. Milton, "Built-In Self Test of Configurable Memory Resources in Field Programmable
Gate Arrays," Auburn University, MS Thesis 2007.
[3] B. Garrison, "Analysis and Improvement of Virtex-4 Block RAM Built-In Self-Test and
Introduction to Virtex-5 Block RAM Built-In Self-Test," Auburn University, MS Thesis
2009.
[4] L. Wang, C. Stroud, and N. Touba, System-On-Chip Test Architectures.: Morgan Kaufmann
Publishers, 2008.
[5] I. Kuon, "Measuring the Gap Between FPGAs and ASICs," IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203-215, February
2007.
[6] S. Hamdioui, Testing Static Random Access Memories.: Kluwer Academic Publishers, 2004.
[7] "Virtex-5 FPGA User Guide," Xilinx Inc., 2010.
[8] M. Smith, Application-Specific Integrated Circuits.: Addison Wesley, 1997.
89
[9] C. Stroud, A Designer's Guide to Built-In Self-Test.: Kluwer Academic Publishers, 2002.
[10] A. van de Goor and I. Tlili, "March Tests for Word-Oriented Memories," Trans. Design,
Automation and Test in Europe, pp. 501-508, 1998.
[11] B. Dutton and C. Stroud, "Built-In Self-Test of Configurable Logic Blocks in Virtex-5
FPGAs," Proc. IEEE Southeastern Symp. on System Theory, pp. 230-234, 2009.
[12] M. Abromovici and C. Stroud, "BIST-Based Test and Diagnosis of FPGA Logic Blocks,"
IEEE Trans. on VLSI Systems, vol. 9, no. 1, pp. 159-172, February 2001.
[13] "Virtex-5 Family Overview," Xilinx Inc., 2009.
[14] "Xilinx Development System Reference Guide," Xilinx Inc., 2008.
[15] Xilinx Inc. ModelSim Xilinx Edition-III Details. [Online].
http://www.xilinx.com/ise/verification/mxe_details.html
[16] B. Garrison, D. Milton, and C. Stroud, "Built-In Self-Test for Memory Resources in Virtex-
4 Field Programmable Gate Arrays," Proc. ISCA International Conf. on Computers and
Their Applications, pp. 63-68, 2009.
[17] B. Dutton, A. Mustafa, C. Stroud, and J. Sunwoo, "Embedded Processor Based Fault
Injection and SEU Emulation for FPGAs," International Conf. on Embedded Systems and
Applications, pp. 183-189, 2009.
[18] "Virtex-5 FPGA Configuration User Guide," Xilinx Inc., 2010.
[19] S. Dhingra, D. Milton, and C. Stroud, "BIST for Logic and Memory Resources in Virtex-4
FPGAs," Proc. IEEE North Atlantic Test Workship, pp. 19-27, 2006.
[20] C. Stroud and S. Garimella, "A System for Automated Built-In Self-Test of Embedded
Memory Cores in System-on-Chip," Proc. IEEE Southeastern Symp. on System Theory, pp.
90
50-54, 2005.
[21] C. Stroud and S. Garimella, "Built-In Self-Test and Diagnosis of Multiple Embedded Cores
in SoCs," Proc. International Conf. on Embedded Systems and Applications, pp. 130-136,
2005.
[22] M. Pulukuri, "Built-In Self Test for Digital Signal Processor Cores in Virtex-4 and Virtex-5
Field Programmable Gate Arrays," Auburn University, MS Thesis, 2010.
[23] A. Sarvi and J. Fan, "Automated BIST-based diagnostic solution for SOPC," Proc.
International Conf. on Design and Test of Integrated Systems in Nanoscale Technology, pp.
263-267, 2006.
[24] A. van de Goor, I. Tlili, and S. Hamdioui, "March LR: A Test for Realisted Linked Faults,"
Proc. IEEE VLSI Test Symp., pp. 272-280, 1996.

91

Appendix

 The following is the MarchLR testing algorithm with a 72-bit BDS sequence which is
used to test Virtex-5 BRAMs. This algorithm was developed using the BDS method described in
[10]. This sequence is created after optimizing the algorithm by removing duplicate elements as
described in [10]. This optimization will result in a reduction in test time from O(70N) to
O(64N), where N represents the number of address locations.

92
 March Element Address Direction RAM Operation Data Hex Value
MarchLR
1 up/down write 000000000000000000
2 down read
write
000000000000000000
FFFFFFFFFFFFFFFFFF
3 up read
write
read
write
FFFFFFFFFFFFFFFFFF
000000000000000000
000000000000000000
FFFFFFFFFFFFFFFFFF
4 up read
write
FFFFFFFFFFFFFFFFFF
000000000000000000
5 up read
write
read
write
000000000000000000
FFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFF
000000000000000000
6 up read 000000000000000000
BDS
7 up read
write
write
read
000000000000000000
555555555555555555
AAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA
8 down read
write
read
AAAAAAAAAAAAAAAAAA
555555555555555555
555555555555555555
9 up read
write
write
read
555555555555555555
333333333333333333
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
10 down read
write
read
CCCCCCCCCCCCCCCCCC
333333333333333333
333333333333333333
11 up read
write
write
read
333333333333333333
0F0F0F0F0F0F0F0F0F
F0F0F0F0F0F0F0F0F0
F0F0F0F0F0F0F0F0F0
12 down read
write
read
F0F0F0F0F0F0F0F0F0
0F0F0F0F0F0F0F0F0F
0F0F0F0F0F0F0F0F0F
13 up read
write
write
read
0F0F0F0F0F0F0F0F0F
FF00FF00FF00FF00FF
00FF00FF00FF00FF00
00FF00FF00FF00FF00
14 down read
write
read
00FF00FF00FF00FF00
FF00FF00FF00FF00FF
FF00FF00FF00FF00FF

93
BDS
March Element Address Direction RAM Operation Data Hex Value
15 up read
write
write
read
FF00FF00FF00FF00FF
FF0000FFFF0000FFFF
00FFFF0000FFFF0000
00FFFF0000FFFF0000
16 down read
write
read
00FFFF0000FFFF0000
FF0000FFFF0000FFFF
FF0000FFFF0000FFFF
17 up read
write
write
read
FF0000FFFF0000FFFF
FF00000000FFFFFFFF
00FFFFFFFF00000000
00FFFFFFFF00000000
18 down read
write
read
00FFFFFFFF00000000
FF00000000FFFFFFFF
FF00000000FFFFFFFF
19 up read
write
write
read
FF00000000FFFFFFFF
00FFFFFFFFFFFFFFFF
FF0000000000000000
FF0000000000000000
20 down read
write
read
FF0000000000000000
00FFFFFFFFFFFFFFFF
00FFFFFFFFFFFFFFFF
21 up read 00FFFFFFFFFFFFFFFF

