
Improving Energy Efficiency and Security in Cluster Computing Systems

by

Xiaojun Ruan

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
Aug 6th, 2011

Keywords: Energy-Efficient, Cluster Computing Systems, Parallel and Distributed
Computing, Real-Time Systems, Storage Systems, Computer Security

Copyright 2011 by Xiaojun Ruan

Approved by

Xiao Qin, Chair, Associate Professor of Computer Science and Software Engineering
David A. Umphress, Associate Professor of Computer Science and Software Engineering
Richard O. Chapman, Associate Professor of Computer Science and Software Engineering

Abstract

Cluster computing systems are widely used in parallel and distributed computing re-

search. Besides performance, energy cost and security should also be carefully concerned in

large scale cluster computing systems to reduce budget and to avoid information leak. In

this dissertation, I proposed a Time Aware Dynamic Voltage Scaling scheduling algorithm to

conserve energy cost of processors in parallel computing systems and a design of an energy-

efficient I/O System with write buffer disks to conserve energy cost of large scale storage

systems. To explain when the energy consumption could be reduced in cluster computing

systems, I analyzed the CPU and I/O system performance in a security-aware storage sys-

tem. Security is another issue which has not been well explored in cluster computing systems.

I implemented a transparent encryption/decryption layer in a popular Message Passing In-

terface implementation: MPICH2. Then I quantitatively evaluate the system performance

on two cluster computing systems.

ii

Acknowledgments

It is a great pleasure to thank those who made this dissertation possible.

First and foremost, I am heartily thankful to my advisor, Dr. Xiao Qin, whose encour-

agement, guidance, and support from the preliminary to the concluding level enabled me to

complete this Ph.D. dissertation. I have been working for Dr. Qin for almost five years since

we met in 2006 when we were still in New Mexico Institute of Mining and Technology. Then

I following him moved to Auburn University in 2007. Under his supervision, I learned how

to do research and how to write technical papers from scratch. Without him, it would be

impossible for me to finish this dissertation.

I would gratefully thank my dissertation committee members, Dr. David A. Umphress

and Dr. Richard O. Chapman, who gave me valuable advices not only for this dissertation,

but also my entire Ph.D. program in Auburn University. I took Software Engineering for

Internet Applications lectured by Dr. Umphress in summer 2008. From the course I learned

the knowledge related to the topic and also the way of being a good teacher. Dr. Umphress

gave me a lot of advices for my research and job hunting. I really appreciate the help I

gained from him in the past 4 years. I met Dr. Chapman in the Software for Space and

Satellite Systems class from where I learned what cube satellites are and how to build one.

Dr. Chapman brought the question about how to validate the storage system design. The

question made me rethink about the experiments on our storage system.

I also gratefully thank Dr. Guofu Niu from the Department of Electrical and Com-

puter Engineering for serving as my dissertation outside reader, reading my dissertation,

and picking a time slot from his busy schedule to join my dissertation defense.

I have been working in a great research group.

iii

I would like to thank the formal group members: Ziliang Zong, Kiranmai Bellam, and

Adam Manzanares who have helped me a lot in my research and study. Ziliang helped me

to know the process of writing a paper and how to organize data. Kiran and I worked on

several papers together. And I have worked with Adam for about 3 years and collaborated

in several projects supported by NSF.

I would also like to thank my current group members: Shu Yin, Zhiyang Ding, James

Majors, Jiong Xie, Yun Tian, Yixian Yang, and Jianguo Lu. Working with them is beneficial

and pleasant. I enjoyed my life in this research group every day. This group provides both

happiness and research productivity which rarely coexist.

Furthermore, I gained help from other students also from the Department of Computer

Science and Software Engineering. Hence, I would like to thank Qing Yang, Chengjun Wang,

and Haiquan Chen for their help in my research.

My deepest gratitude goes to my parents Tongjun Ruan and Shumin Li for their selfless

support.

iv

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . viii

List of Tables . xvi

1 Introduction . 1

2 Literature Review . 7

2.1 Related Work on Time-Aware Dynamic Voltage Scaling 7

2.2 Related Work on Energy-Efficient Storage Systems 9

2.3 Related Work on Energy-Efficient Cluster Storage Systems 10

2.4 Related Work on Security-Aware Storage Systems 12

2.5 Related Work on Enhanced Security MPICH2 14

2.6 Summary . 16

3 Scheduling Parallel Applications on Dynamic Voltage Scaling-Enabled Clusters . 17

3.1 Introduction . 17

3.1.1 Motivation . 17

3.1.2 Contributions and Paper Organization 19

3.2 Modeling Energy Consumption . 21

3.3 Voltage Scheduling for Parallel Applications 25

3.4 Performance Evaluation and Simulation Results 32

3.5 Summary . 50

4 Design and Performance Evaluation of Energy-EfficientParallel I/O Systems With

Write Buffer Disks . 51

4.1 Introduction . 51

v

4.2 Architecture with Write Buffers . 53

4.2.1 Parallel Storage Systems with Buffer Disks 56

4.2.2 The DARAW Algorithm . 57

4.2.3 Energy Consumption Analysis . 61

4.3 Performance Evaluation . 64

4.4 Summary . 83

5 An Energy-Efficient Cluster Storage System . 88

5.1 Introduction . 88

5.2 Design and Implimentation of ECOS . 91

5.2.1 Detailed Design . 92

5.2.2 Implementation Issues . 98

5.3 Experimental Results . 103

5.3.1 Experiment Details . 103

5.3.2 Performance Evaluation . 106

5.4 Summary . 113

6 Can We Improve Energy Efficiency of Secure Disk Systems without Modifying

Security Mechanisms? . 114

6.1 Introduction . 114

6.2 Overview of the BUD Disk Systems . 116

6.3 Experimental Setup . 117

6.4 Experimental Results and Analysis . 121

6.5 Summary and Future Work . 135

7 ES-MPICH2: A Message Passing Interface with Enhanced Security 138

7.1 Introduction . 138

7.2 Threat Model . 141

7.3 MPICH2 Overview . 143

7.4 Description of ES-MPICH2 . 144

vi

7.4.1 Motivation . 144

7.4.2 The Design of ES-MPICH2 . 145

7.5 Implementation Details . 147

7.5.1 Ciphers in the Channel Layer . 148

7.5.2 Block Ciphers . 149

7.5.3 Key Management . 151

7.5.4 Socket Programming . 152

7.5.5 Usage . 152

7.5.6 Incorporating Integrity Services in ES-MPICH2 153

7.6 Experimental Evaluation . 154

7.6.1 A 6-node Cluster of Intel Celeron Processors 155

7.6.2 A 10-node Cluster of Intel Pentium II Processors 167

7.7 Summary and Future Work . 175

8 Conclusion and Future Work . 177

8.1 Main Contributions . 177

8.1.1 Time-Aware Dynamic Voltage Scaling 177

8.1.2 Energy-Efficient Storage Systems . 178

8.1.3 Energy-Efficient Cluster Storage Systems 178

8.1.4 Security-Aware Storage Systems . 179

8.1.5 Enhanced-Security MPICH2 . 179

8.2 Future Work . 179

8.2.1 Solid State Drives - Internal Parallelism and Reliability 179

8.2.2 Hybrid Storage Systems . 180

Bibliography . 181

vii

List of Figures

1.1 Contributions . 5

3.1 Utilizable Time Period . 28

3.2 Task Graph of SPA . 34

3.3 The task graph of the Gaussian application . 35

3.4 Energy consumption of SPA on the cluster with Intel Pentium 4 processors . . . 35

3.5 Energy saving rates for SPA on the cluster with Intel Pentium 4 processors . . . 36

3.6 Energy consumption of the Gaussian application on the cluster with Intel Pen-

tium 4 Processors . 37

3.7 Energy saving rates for the Gaussian application on the cluster with Intel Pentium

4 Processors . 37

3.8 Energy consumption of SPA on a cluster with Intel XScale processors 38

3.9 Energy saving rates for SPA on a cluster with Intel XScale processors 39

3.10 Energy consumption of the Gaussian application on a cluster with Intel XScale

processors . 39

3.11 Energy saving rates for the Guassian application on a cluster with Intel 40

3.12 Energy consumption of the lu decomp application on the cluster with Intel XScale

processors . 41

viii

3.13 Energy saving rates for the lu decomp application on the cluster with Intel XScale

processors . 41

3.14 Energy consumption of the lu decomp application on the cluster with Intel Pen-

tium 4M processors . 42

3.15 Energy saving rates for the lu decomp application on the cluster with Intel Pen-

tium 4 processors . 42

3.16 Energy consumption of the Gaussian application on the cluster with Intel XScale

processors using mul-plus parameters to calculate 44

3.17 Energy saving rate of the Gaussian application on the cluster with Intel XScale

processors using mul-plus parameters to calculate 44

3.18 Energy consumption of the SPA application on the cluster with Intel XScale

processors using mul-plus parameters to calculate 45

3.19 Energy saving rate of the SPA application on the cluster with Intel XScale pro-

cessors using mul-plus parameters to calculate 45

3.20 Energy consumption of the Gaussian application on the cluster with Intel Pen-

tium 4 processors using mul-plus parameters to calculate 46

3.21 Energy saving rate of the Gaussian application on the cluster with Intel Pentium

4 processors using mul-plus parameters to calculate 46

3.22 Energy consumption of the SPA application on the cluster with Intel Pentium 4

processors using mul-plus parameters to calculate 47

3.23 Energy saving rate of the SPA application on the cluster with Intel Pentium 4

processors using mul-plus parameters to calculate 47

ix

3.24 Processor frequencies of the Intel XScale processors under the TADVS scheduling

algorithm when the CCR value is set to 0.5 . 49

4.1 Classic Data Stripping . 53

4.2 Basic BUD Idea . 54

4.3 BUD Data Flow . 55

4.4 The architecture of parallel storage system with buffer disks 56

4.5 Buffer-disk layer scheduling in the dynamic request allocation algorithm for writes 58

4.6 Traditional Storage System Structure . 65

4.7 Trace Arrival Time . 66

4.8 Non-BUD Average Response Time . 66

4.9 Non-BUD Spin Times . 67

4.10 Non-BUD Energy Consumption . 67

4.11 BUD Travelstar Energy Consumption . 69

4.12 BUD Travelstar Average Response Time . 69

4.13 BUD Travelstar Spin Times . 70

4.14 BUD Travelstar Energy Conservation Rate . 70

4.15 BUD Ultrastar Energy Consumption . 71

4.16 BUD Ultrastar Average Response Time . 72

4.17 BUD Ultrastar Spin Times . 72

x

4.18 BUD Ultrastar Energy Conservation Rate . 73

4.19 BUD Ultrastar Data Disk Travelstar Buffer Disk, Average Response Time . . . 74

4.20 BUD Ultrastar Data Disk Travelstar Buffer Disk, Spin Times 74

4.21 Ultrastar Data Disk Travelstar Buffer Disk, Spin Times 75

4.22 Ultrastar Data Disk Travelstar Buffer Disk, Energy Conservation Rate 75

4.23 IBM 36Z15 Ultrastar. Energy consumption . 77

4.24 IBM 36Z15 Ultrastar. Average response time 78

4.25 IBM 36Z15 Ultrastar. Energy consumption . 78

4.26 IBM 36Z15 Ultrastar. Average response time 79

4.27 IBM 40GNX Travelstar. Energy Consumption 80

4.28 IBM 40GNX Travelstar. Average Response Time 80

4.29 IBM 40GNX Travelstar. Energy Consumption 81

4.30 IBM 40GNX Travelstar. Average Response Time 81

5.1 The architecture of ECOS - an energy efficient cluster storage system. Each I/O

node in ECOS contains a buffer disk and multiple data disks. Large files are

striped across a number of I/O nodes connected through a high-speed network.

Alternatively, large files might be distributed across a number of data disks within

one I/O node. 93

5.2 Test Platform without Buffer Disks . 103

5.3 Test Platform with Buffer Disks . 104

xi

5.4 Energy Conservation Rate . 107

5.5 Energy Consumption in I/O Nodes, idle time gap is 50s 108

5.6 Energy Conservation Rate in I/O Nodes, idle time gap is 50s 108

5.7 Energy Consumption in I/O Nodes, idle time gap is 100s 109

5.8 Energy Conservation Rate in I/O Nodes, idle time gap is 100s 110

5.9 Energy Consumption in I/O Nodes, idle time gap is 200s 111

5.10 Energy Conservation Rate in I/O Nodes, idle time gap is 200s 111

5.11 Energy Consumption in I/O Nodes, idle time gap is 300s 112

5.12 Energy Conservation Rate in I/O Nodes, idle time gap is 300s 112

6.1 The buffer-disk architecture or BUD for parallel disk systems 117

6.2 CPU usage (measured in percentage) of the testbed when MD5 is evaluated . . 121

6.3 Read/write bandwidth of the testbed when MD5 is evaluated 122

6.4 CPU usage (measured in terms of percentage) of the testbed when SHA-1 is

evaluated . 124

6.5 Read/write bandwidth of the testbed when SHA-1 is evaluated 125

6.6 CPU usage (measured in terms of percentage) of the testbed when SHA-2 is

evaluated . 126

6.7 Read/write bandwidth of the testbed when SHA-2 is evaluated 127

6.8 CPU usage (measured in terms of percentage) of the testbed when RSA Verifi-

cation is evaluated . 128

xii

6.9 Read/write bandwidth of the testbed when RSA Verification is evaluated 129

6.10 CPU usage (measured in terms of percentage) of the testbed when AES is evaluated131

6.11 Read/write bandwidth of the testbed when AES is evaluated 132

6.12 CPU usage (measured in terms of percentage) of the testbed when 3DES is

evaluated . 133

6.13 Read/write bandwidth of the testbed when 3DES is evaluated 134

7.1 Hierarchical Structure of MPICH2 [40] . 143

7.2 Message passing implementation structure in MPICH2. 148

7.3 Message passing implementation structure in ES-MPICH2 with encryption and

decryption processes. A cryptosystem is implemented in the TCP socket layer to

achieve the design goal of complete transparency. 149

7.4 The interface between the encryption/decryption processes and the TCP socket.

ES-MPICH2 maintains the same API as that of MPICH2. 150

7.5 Key management in ES-MPICH2. Public key cryptography employed in ES-

MPICH2 relies on interchange keys (i.e., public and private keys) to exchange

data encipherment keys (DEK) in a secure way. 151

7.6 ES-MPICH2 Socket Details . 153

7.7 Sandia Micro Benchmark iter time . 157

7.8 Sandia Micro Benchmark Message Size is 2KB 157

7.9 Sandia Micro Benchmark Message Size is 16KB 158

xiii

7.10 Sandia Micro Benchmark Message Size is 128KB 158

7.11 Sandia Micro Benchmark Message Size is 1024KB 159

7.12 Intel MPI Single Transfer Benchmark PingPong 161

7.13 Intel MPI Single Transfer Benchmarks PingPing 162

7.14 Intel MPI Parallel Benchmarks PingPong . 162

7.15 Intel MPI Parallel Benchmarks PingPing . 163

7.16 Intel MPI Benchmarks Collective Group A, Message Size is 1KB, nodes amount

is 6 . 164

7.17 Intel MPI Benchmarks Collective Group A, Message Size is 8KB, nodes amount

is 6 . 165

7.18 Intel MPI Benchmarks Collective Group A, Message Size is 16KB, nodes is 6 . . 165

7.19 Intel MPI Benchmarks Collective Group B, Message Size is 1KB, nodes amount

is 6 . 166

7.20 Intel MPI Benchmark Collective Group B, Message Size is 8KB, nodes amount is 6166

7.21 Intel MPI Benchmark Collective Group B, Message Size is 16KB, nodes amount

is 6 . 167

7.22 Intel Micro Benchmark Window 6 nodes . 168

7.23 Sandia Micro Benchmark time Message Size=1KB 169

7.24 Sandia Micro Benchmark time Message Size=16KB 169

7.25 Sandia Micro Benchmark time Message Size=32KB 170

xiv

7.26 Intel MPI Benchmark PingPong . 171

7.27 Intel MPI Benchmark PingPing . 171

7.28 Intel MPI Benchmark SendRecv 10 nodes . 172

7.29 Intel MPI Benchmark Exchange 10 nodes . 172

7.30 Performance Degradation of 2 clusters (AES). Benchmark is SMB 173

7.31 Performance Degradation of 2 clusters (3DES). Benchmark is SMB 174

xv

List of Tables

3.1 Symbolic Notations . 29

3.2 Pentium 4 System Parameters . 33

3.3 Intel XScale System Parameters . 33

3.4 High-Performance Clusters vs. Mobile Clusters Energy Saving Rate for the
lu decomp Applications . 43

4.1 Definitions of Notation . 85

4.2 IBM 36z15 Ultrastar . 86

4.3 IBM 40GNX Travelstar . 86

4.4 Experimental Values for Baseline Experiment 86

4.5 Experimental Values for Both Buffer disks and Data Disks are low performance
disks . 86

4.6 Experimental Values for Both Buffer disks and Data Disks are high performance
disks . 87

4.7 Experimental Values for High Buffer disks And Low Data Disks 87

5.1 Notation for Modeling Energy Consumption in the ECOS and non-ECOS systems100

5.2 Disks Configuration . 105

6.1 System Parameters of the Testbed . 118

6.2 Summary of the CPU usage, read/write load of the testbed running the six
encryption algorithms and hash functions. The two rightmost columns show
possibilities of employing the BUD architecture to save energy for secure disk
systems without modifying the security mechanisms. (L: Low, M: Medium, H:
High, VH: Very High EH: Extremely High) . 136

7.1 The Configuration of A 6-Node
Cluster of Intel Celeron Processors . 155

xvi

7.2 Performance Metrics used in the Sandia Micro Benchmark Suite (SMB) 156

7.3 Intel MPI Benchmarks . 160

7.4 The Configuration of A 10-Node Cluster
of Intel Pentium II Processors . 168

xvii

Chapter 1

Introduction

This dissertation addresses two major issues in cluster computing systems: energy effi-

ciency and security. Cluster Computing systems cost a significant amount of energy every

year. According to the information from Dell’s Texas Data Center, 37% electricity is cost

by storage systems (mainly hard drive disks) and 40% is cost by processors including CPUs

and GPUs. Hence, I designed a Time Aware Dynamic Voltage Scaling algorithm to conserve

energy in parallel applications and design a storage system called BUD to reduce energy

cost in parallel storage systems. In the research, I observed that I/O is reduced to im-

prove data confidentiality in security-aware storage systems. I analyzed the possibility of

energy conservation in a security-aware storage system. Then I implemented two crypto-

graphic algorithms in a Message Passing Interface implementation and evaluated the system

performance downgrade.

In the past decade, cluster computing platforms have been deployed to support a variety

of parallel computing applications. Scheduling parallel applications on large-scale clusters

is technically challenging due to communication latencies and high energy consumption. As

such, shortening schedule lengths and saving energy are two major concerns in the design

of economical and environmentally friendly clusters. Although the existing dynamic voltage

scaling technique (a.k.a., DVS) can be employed to reducing energy consumption of paral-

lel applications running on clusters, DVS can inevitably lead to increased execution times

of parallel tasks by lowering processor voltages. To solve this performance problem while

improving energy efficiency of clusters, I propose in this dissertation a scheduling algorithm

called TADVS to judiciously exploiting processor idle times among parallel tasks to pro-

vide energy savings for both high-performance clusters and mobile clusters. The TADVS

1

algorithm first aims to discover idle time intervals incurred by tasks precedence constraints.

Then, TADVS applies DVS to lower voltages when processors are sitting idle due to the

precedence constraints. Therefore, TADVS makes use of DVS to conserve energy provided

that the schedule lengths of parallel applications are not increased. Experimental results

clearly show that TADVS is capable of reducing energy dissipation in large-scale clusters

without adversely affecting system performance.

Parallel disk systems have been developed to address the problem of I/O performance

in the past years. A critical challenge with modern parallel I/O systems is that parallel

disks consume a significant amount of energy in servers and high performance computers.

To conserve energy consumption in parallel I/O systems, one can immediately spin down

disks when disk are idle; however, spinning down disks might not be able to produce energy

savings due to penalties of spinning operations. Unlike powering up CPUs, spinning down

and up disks need physical movements. Therefore, energy savings provided by spinning down

operations must offset energy penalties of the disk spinning operations. To substantially

reduce the penalties incurred by disk spinning operations, I developed a novel approach

to conserving energy of parallel I/O systems with write buffer disks, which are used to

accumulate small writes using a log file system. Data sets buffered in the log file system

can be transferred to target data disks in a batch way. Thus, buffer disks aim to serve a

majority of incoming write requests, attempting to reduce the large number of disk spinning

operations by keeping data disks in standby for long period times. Interestingly, the write

buffer disks not only can achieve high energy efficiency in parallel I/O systems, but also can

shorten response times of write requests. To evaluate the performance and energy efficiency

of our parallel I/O systems with buffer disks, I implemented a prototype using a cluster

storage system as a test bed. Experimental results show that under light and moderate I/O

load, buffer disks can be employed to significantly reduce energy dissipation in parallel I/O

systems without adverse impacts on I/O performance.

2

Cluster storage systems are essential building blocks for many high-end computing in-

frastructures. Although energy conservation techniques have been intensively studied in the

context of clusters and disk arrays, improving energy efficiency of cluster storage systems

remains an open issue. To address this problem, I describe in this dissertation an approach

to implementing an energy-efficient cluster storage system or ECOS for short. ECOS relies

on the architecture of cluster storage systems in which each I/O node manages multiple disks

- one buffer disk and several data disks. Given an I/O node, the key idea behind ECOS

is to redirect disk requests from data disks to the buffer disk. To balance I/O load among

I/O nodes, ECOS might redirect requests from one I/O node into the others. Redirecting

requests is a driving force of energy saving, and the reason is two-fold. First, ECOS makes an

effort to keep buffer disks active while placing data disks into standby in a long time period

to conserve energy. Second, ECOS reduces the number of disk spin downs/ups in I/O nodes.

The idea of ECOS was implemented in a Linux cluster, where each I/O node contains one

buffer disk and two data disks. Experimental results show that ECOS improves the energy

efficiency of traditional cluster storage systems where buffer disks are not employed. Adding

one extra buffer disk into each I/O node seemingly has negative impact on energy saving.

Interestingly, our results indicate that ECOS equipped with extra buffer disks is more energy

efficient than the same cluster storage system without the buffer disks. The implication of

the experiments is that using existing data disks in I/O nodes to perform as buffer disks can

achieve even higher energy efficiency.

Improving energy efficiency of security-aware storage systems is challenging, because

security and energy efficiency are often two conflicting goals. The first step toward mak-

ing the best tradeoffs between high security and energy efficiency is to profile encryption

algorithms to decide if storage systems would be able to produce energy savings for security

mechanisms. I was focused on encryption algorithms rather than other types of security

services, because encryption algorithms are usually computation-intensive. In this study,

I used the XySSL libraries and profiled operations of several test problems using Conky -

3

a lightweight system monitor that is highly configurable. Using our profiling techniques I

concluded that although 3DES is much slower than AES encryption, it more likely to save

energy in security-aware storage systems using 3DES than AES. The CPU is the bottleneck

in 3DES, allowing us to take advantage of dynamic power management schemes to conserve

energy at the disk level. After profiling several hash functions, I noticed that the CPU is not

the bottleneck for any of these functions, indicating that it is difficult to leverage the dy-

namic power management technique to conserve energy of a single disk where hash functions

are implemented for integrity checking.

An increasing number of commodity clusters are connected to each other by public

networks, which have become a potential threat to security sensitive parallel applications

running on the clusters. To address this security issue, I developed an MPI (Message Pass-

ing Interface) implementation to preserve confidentiality of messages communicated among

nodes of clusters in an unsecured network. I focus on MPI rather than other protocols,

because MPI is one of the most popular communication protocols for parallel computing on

clusters. Our MPI implementation - called ES-MPICH2 - was built based on MPICH2 devel-

oped by the Argonne National Laboratory. Like MPICH2, ES-MPICH2 aims at supporting

a large variety of computation and communication platforms like commodity clusters and

high-speed networks. I integrated encryption and decryption algorithms into the MPICH2

library with the standard MPI interface and; thus, data confidentiality of MPI applications

can be readily preserved without a need to change the source codes of the MPI applications.

MPI-application programmers can fully configure any confidentiality services in MPICHI2,

because a secured configuration file in ES-MPICH2 offers the programmers flexibility in

choosing any cryptographic schemes and keys seamlessly incorporated in ES-MPICH2. I

used the Sandia Micro Benchmark and Intel MPI Benchmark suites to evaluate and com-

pare the performance of ES-MPICH2 with the original MPICH2 version. Our experiments

show that overhead incurred by the confidentiality services in ESMPICH2 is marginal for

small messages. The security overhead in ES-MPICH2 becomes more pronounced with

4

Performance of Secure Disk
Systems [IEEE NAS 2009]

Message Passing Interface
with Enhanced Security

[IPCCC 2010]

Energy-Efficient Distributed
Storage Systems [IPCCC

2009]

Design, Model, Simulate, And
Evaluate Disk Systems with

Buffer Disks [ACM SAC
2009][ICPP 2009]

Performance of Secure Disk
Systems [IEEE NAS 2009]

Security Energy Efficiency

Figure 1.1: Contributions

larger messages. Our results also show that security overhead can be significantly reduced

in ES-MPICH2 by high-performance clusters.

Fig. 1.1 presents the research covered in this dissertation. Both security and energy

efficiency issues will be discussed in this dissertation. And the two issues are related to each

other based on different performance impacts.

This dissertation is organized into the following chapters: Chapter 2 introduces the

previous research related to this dissertation. Chapter 3 proposes a Time Aware Dynamic

Voltage Scaling scheduling algorithm to conserve energy cost of processors in Cluster systems;

Chapter 4 presents a design of an energy-efficient I/O system with write buffer disks; a

clustered energy-efficient storage system prototype is implemented in Chapter 5; to explain

5

when the energy consumption could be reduced in I/O systems, I analyze the CPU and I/O

system performance in a security-aware storage system in Chapter 6; Chapter 7 presents a

Message Passing Interface with Enhanced Security; Chapter 8 presents conclusion and future

work.

6

Chapter 2

Literature Review

In this chapter, I briefly summarize the previous literatures which are most relevant to

the research in terms of energy efficiency and security in cluster computing systems. Sec-

tion 2.1 introduces related work on energy efficient parallel scheduling; Section 2.2 presents

the related work on energy efficient parallel storage systems; Section 2.3 introduces the re-

search related to energy-efficient cluster storage systems; Section 2.4 presents the related

work on security-aware cluster storage systems; Section 2.5 presents the related work on

enhanced security MPICH2.

2.1 Related Work on Time-Aware Dynamic Voltage Scaling

A cluster is a group of computers, which are connected together to provide fast and

reliable services. [52] There are a wide range of parallel applications developed to be running

on cluster computing platforms. In the last decade, energy saving techniques has made it

possible to develop energy-efficient cluster computing platforms. The issue of energy conser-

vation for parallel application running on large-scale clusters has attracted little attention.

Recently, researchers have started to pay attention to energy conservation techniques for

clusters. For example, Kim et al. investigated the dynamic voltage scaling scheme (DVS).

Doing so, they developed a novel algorithm called dynamic link shutdown (DLS), which

makes use of an appropriate adaptive routing algorithm to shut down links in a judicious

way [58]. Kim et al. proposed an optimized buffer design to reduce energy consumption in

cluster interconnects [16]. Juan et al. designed a protocol called cluster-based Energy-Saving

Routing Algorithm (CERA), which allows mobile computing nodes to autonomously create

7

clusters that minimize energy dissipation in mobile nodes based on the clusters layout in

wired or wireless network [10].

Scheduling strategies deployed in clusters have a large impact on overall system per-

formance. Scheduling algorithms for clusters can be generally classified into three camps:

priority-based scheduling [10], group-based scheduling [94], and duplication-based schedul-

ing. In a priority-based scheduling algorithm, tasks are assigned priorities before being

mapped to the computing nodes of a cluster according to their assigned priorities. In con-

trast, group-based scheduling algorithms group tasks communicating frequently with one

another into a set. This task set is allocated to a computing node, thereby eliminating com-

munication overheads [82]. Duplication-based scheduling schemes exhibit high performance

by redundantly executing tasks to eliminate communication overheads.

Very recently, I developed several duplication-based scheduling algorithms to reduce en-

ergy dissipation in cluster interconnects. Our scheduling approaches are especially beneficial

for communication-intensive parallel applications [122].

The communication-to-computation ratio or CCR plays an important role in achieving

high performance of clusters running parallel applications. The CCR of a parallel application

is defined as the ratio between the average communication cost and the average computation

cost of the application on a given cluster. Thus, CCR quantitatively expresses t he relation-

ship between communication cost and computing time of a parallel application. It is worth

noting that the computing times of parallel tasks largely depend on processor frequencies

(see Eq. 1). Without loss of generality, in this study I use the highest processor frequency to

determine the computing times of parallel tasks. Once the computing times are measured,

I can quantify the CCR values of parallel applications.

There are some studies focusing on DVS techniques on applied in real-time systems [7]

and high performance clusters. [36]

In the previous research, the DVS or Power Scalable technique is considered as one of

the most efficient ways to conserve energy on cluster systems. [50][35] In CMOS circuits, by

8

completing the same quantity of CPU circles, the energy consumption of applying a lower

voltage level in a longer time is much less than the energy consumption of applying a higher

energy consumption in a short time [65]. Schmitz proposed an approach for energy efficient

mapping and scheduling for DVS-enabled distributed embedded system [101]. However,

for parallel applications in clusters, precedence-constraint issues must be addressed since in

parallel applications could not start without their prerequisites are completed. Similarly, one

task itself could also be the prerequisite of other tasks. Zhang proposed a similar idea, which

applies DVS to reduce energy consumption by lowering down voltage levels. [117] Zhang’s

approach achieves a significant energy conservation rate at the cost of increased scheduling

lengths. In a short length of tasks this is not a problem; however, in a huge cluster working

on millions of tasks, this issue may lead to a significant performance reduction because each

task has its corresponding prerequisites and it also is the others’ prerequisites. TADVS will

not affect the performance of the cluster system.

2.2 Related Work on Energy-Efficient Storage Systems

Energy conservation techniques for disk systems have attracted much attention in the

past few years. For example, energy dissipation in disk I/O can be efficiently reduced by

applying multi-speed disks as the power-state transition penalties are relatively small [28].

Song and Kandemir developed novel energy-aware compilers for multi-speed disks [106].

Although next-generation disks are likely having multiple speeds, most disks utilized to-

day are non-multi-speed disks. It is expected that future generation multi-speed disks are

more expensive than conventional disks. The energy conservation technique investigated in

this study does not rely on multi-speed disks. Nevertheless, further energy savings can be

achieved by integrating our approach with the above techniques based on multi-speed disks.

Modern disks make use of cache to substantially improve disk I/O performance [34].

Our storage system architecture use disks as I/O buffer. Compared with cache, disks are

slower and less energy efficient. However, disks are very cost effective and could buffer much

9

more data than cache. Moreover, disks are non-volatile storage, meaning that once data is

buffered on disks, it could be considered as safe even a power failure occurs. A research

for non-volatile caches is done by Gill and Modha [38]; the research focused on single disk,

RAID-10 and RAID-5. It is possible to expend the research to energy-aware parallel storage

systems.

To improve parallel disk buffer management, Kallahalla and Varman leveraged a shared

buffer to improve I/O performance [57]. Rangaswami et al. investigated a way of em-

ploying disks to buffer data for streaming media servers in order to bridge the widening

performance gap between dynamic random access memory and disk drives in the memory

hierarchy [95]. Goyal et al. explored the issue of quality of service in the context of storage

system caches [39]. The fundamental difference between our research and the above three

studies is that the goal of our approach is reducing energy consumption in parallel I/O

systems.

If the data size of each request is so large that it is worth to spin up and spin down disks

for each request, the traditional power management strategy is an efficient energy conserva-

tion technique. However, small and sequential data requests in modern scientific applications

are very prevalent [47]. Moreover, small writes cause not only an energy consumption prob-

lem but also an efficiency problem [9]. Hence, it is imperative for us to develop an energy

saving technique that is suitable to small writes issued to parallel I/O systems.

Please note that our approach can be readily applied to distributed network storage sys-

tems, where storage nodes are aggregated together into a larger cohesive storage system [20].

2.3 Related Work on Energy-Efficient Cluster Storage Systems

An array of techniques were developed to save energy in single disk systems storage sys-

tems. Energy consumption of single disks can be reduced at either I/O level (e.g., dynamic

power management [27] [66] and multi-speed disks [43] [46] [60]) or operating system

level (e.g., power-aware cache management strategies [118], power-aware prefetching schemes

10

[105]). Apart from energy-saving techniques at the levels of I/O and operating systems, en-

ergy efficiency can be optimized at the application level [107] [112]. For example, Weiel et

al. developed an I/O semantics called Cooperative I/O for energy-aware applications. The

design of our ECOS is orthogonal to the aforementioned schemes and; therefore, incorporat-

ing these techniques in ECOS can ultimately improve the energy efficiency of cluster storage

systems.

Buffer management has been widely used to boost performance of parallel disk systems

[1] [109]. Previous studies showed that data buffers significantly reduce the number of disk

accesses in parallel disk systems [114]. More importantly, it is observed from the previous

studies that traffic of small reads and writes becomes a performance bottleneck of disk sys-

tems, especially when RAM sizes for data buffers are increased rapidly [114]. It is expected

that small disk requests dominate energy dissipation in cluster storage systems supporting

data-intensive applications like remote-sensing applications and on-line transaction process-

ing systems [64] [108]. Our approach differs itself from the traditional buffer management

schemes in the sense that the goal of ECOS is to leverage buffer disks to reduce energy

dissipation in cluster storage systems.

Colarelli and Grunwald proposed the Massive Array of Idle Disks (MAID) as a replace-

ment for old tape backup archives with hundreds or even thousands of tapes [21]. It is

observed that only a small part of the archive would be active at a time, the idea behind

MAID is to copy the required data to a set of cache diskswhile placing all the other disks in

the standby mode to conserve energy. I/O accesses to the archive may retrieve data from

the cache disks rather than from standby disks. Pinheiro and Bianchini designed a Popu-

lar Data Concentration (PDC) scheme to reduce energy consumption in a network server

by skewing I/O load toward a few of all the disks in the server [85]. The design of PDC

is based on an observation that network server workloads in many cases exhibit files with

widely different popularities (e.g., Web server workloads exhibit highly skewed popularity

11

towards a small set of files.). Taking into account the skewed data popularity, PDC dynam-

ically migrates frequently accessed data to a subset of disks in a disk array. However, the

bandwidth of disks limits the performance of PDC system. The reason is that PDC moves

popular data to one disk which means the workload is extremely unbalanced. I observed

from our experiments that data migration overhead is non-negligible in a highly dynamic

I/O workloads [97] [74]. In addition, the popular data disk is has a strong likelihood to

become I/O bottleneck. ECOS attempts to balance I/O load by evenly distributing popular

data among multiple buffer disks. It is worth noting that both MAID and PDC are focused

on energy efficiency issues in tightly-coupled parallel disks like disk arrays. Unlike MIAD

and PDC, ECOS is an energy-efficient cluster storage system where I/O nodes are loosely

connected to provide high aggregate I/O bandwidth.

Flash drives can be employed to buffer and cache popular data for I/O nodes in clusters

[51] [56]. Flash-drive-based cluster storage systems are likely to be the most energy efficient

storage systems for cluster computing infrastructures, because flash drives have a very low

power consumption compared to hard drives. However, due to limited access times, the

reliability of flash drives will have to be addressed when one integrates flash drives into

cluster storage systems. A recent study shows that intensive and dynamic accesses for a

long period of time can substantially shorten the lifetime of a flash drive [77].

2.4 Related Work on Security-Aware Storage Systems

Chandramouli et al. investigated battery power-aware Encryption algorithms [1]. The

main conclusions they reached was that the power consumption changes linearly with the

number of rounds of several popular cryptographic algorithms. Their experimental test bed

had a laptop connected to a power supply. The power supply was connected to a com-

puter running the Lab VIEW software to graph changes in voltage and current from the

power supply. These changes were graphed during the life of the encryption algorithms [17].

Chandramouli et al. paid attention on improving energy efficiency of security mechanisms

12

in mobile devices systems [17]. Our research is radically different from theirs in the sense

that I focused on energy-efficient disk systems without modifying existing security mecha-

nisms. Potlapally et. al characterized the energy consumption of cryptographic algorithms

and security protocols [88]. The work undertaken by Potlapally et. al [88] was very similar

to the research project conducted by Chandramouli et al. [17] Potlapally et. al used IPAQ

PDA’s instead of using a laptop to measure power consumption [88]. They connected the

IPAQ to a power supply that was connected to a computer running the Lab VIEW soft-

ware. This allowed them to measure the energy differences between various cryptographic

algorithms. Potlapally et. al obtained an array of interesting results related to the SSL

Protocol processing. For example, they determined that for small data sizes asymmetric

algorithms dominated symmetric algorithms in terms of energy consumption. For large data

sizes symmetric algorithms consume significantly more energy than asymmetric algorithms.

Network protocol energy consumption, defined as non-cryptographic processing necessary to

establish the SSL protocol, does not vary much for different data sizes. Their main observa-

tions are that asymmetric algorithms consume the most energy with hash algorithms having

the smallest energy footprint. Potlapally et. al also stated that asymmetric algorithms en-

ergy consumption is dependent on the key size used. They also determined that the level of

security and energy consumption can be tuned using key size and number of rounds [88].

Our research differs from the aforementioned research because I focused on the energy

impact of encryption algorithms and hash functions on disk systems rather than mobile de-

vices. Furthermore, the goal of our work is to characterize the I/O behavior of encryption

algorithms and hash functions in the context of parallel disk systems (e.g., the BUD archi-

tecture). I intended to find the existing security mechanisms that produce the most energy

savings in an energy-efficient parallel disk system. Rather than implementing energy-efficient

security mechanisms by updating the existing security services, I made the first step towards

seamlessly integrating security services with energy-efficient disk systems without changing

13

the source code of the existing security mechanisms. More importantly, our research is or-

thogonal to the above work in that energy-efficient security mechanisms can be incorporated

into our energy-efficient parallel disk architecture to achieve both high security and energy

efficiency for parallel disk systems.

2.5 Related Work on Enhanced Security MPICH2

Message Passing Interface. The Message Passing Interface standard (MPI) is a

message passing library standard used for the development of message-passing parallel pro-

grams [42]. The goal of MPI is to facilitate an efficient, portable, and flexible standard

for parallel programs using message passing. MPICH2 - developed by the Argonne National

Laboratory - is one of the most popular and widely deployed MPI implementations in cluster

computing environments. MPICH2 provides an implementation of the MPI standard while

supporting a large variety of computation and communication platforms like commodity

clusters, high-performance computing systems, and high-speed networks [41].

As early as 1997, Brightwell et al. from the Sandia National Laboratory insightfully

pointed out barriers to creating a secure MPI framework [14]. The barriers include control

and data in addition to cryptographic issues. In a secure MPI, both control and data mes-

sages must be protected from unauthorized access of attackers and malicious users. Although

there is a wide range of implementations of the MPI and MPI-2 standards (e.g., MPICH and

MPICH2 are two freely -available implementations from the Argonne National Laboratory),

there is a lack of secure MPI frameworks developed for large-scale clusters distributed across

wide area networks.

Data confidentiality in MPI-I/O. Prabhakar et al. designed and implemented a

secure interface called MPISec I/O for the MPI-I/O framework [90]. MPISec I/O preserves

the advantages of both parallel I/O and data confidentiality without significantly impacting

performance of MPI applications. It is flexible for MPI programmers to manually set encryp-

tion rules in MPISec I/O. Data can be encrypted and written onto disks in MPISec I/O, then

14

encrypted data can be read from the disks before being decrypted. There are two interesting

features of MPISec I/O. First, MPISec I/O programmers need to carefully set up encryption

and decryption rules in their MPI programs. Otherwise, some data may be either stored

on disks without encryption or read without decryption and as a result, the MPI programs

are unable to function properly until the rules are set in a correct way. Second, MPISec is

not completely compatible with non-secure MPI libraries. In other words, preserving data

confidentiality in MPISec I/O is not transparent to MPI application programmers. One has

to modify the source code of conventional MPI programs to improve security of the MPI

programs. Apart from updating the source code of the MPI programs before MPISec I/O

can be used properly, disk-resident data must be marked as encrypted or unencrypted.

Block ciphers. The Data Encryption Standard (DES) provides a relatively simple

method of encryption. 3DES encrypts data three times instead of one using the DES stan-

dard [22]. 3DES is a block and symmetric cipher chosen by the U.S. National Bureau of

Standards as an official Federal Information Processing Standard in 1976. 3DES increases

the key size of DES to protect against brute force attacks without relying on any new

block cipher algorithm. A hardware implementation of 3DES is significantly faster than

the best software implementations of 3DES [30] [45]. A software implementation of 3DES

was integrated in ES-MPICH2. A hardware 3DES can substantially improve performance of

3DES-based ES-MPICH2.

In November 2001, the symmetric block cipher Rijndael was standardized by the Na-

tional Institute of Standards and Technology as the Advanced Encryption Standard (AES) [24].

AES - the successor of the Data Encryption Standard (DES) - has been widely employed

to prevent confidential data from being disclosed by unauthorized attackers. AES can be

used in high-performance servers as well as small and mobile consumer products. AES is the

preferred cryptographic algorithm to be implemented in ES-MPICH2, which was built based

on symmetric block ciphers. Although AES introduces overhead due to additional security

operations in ES-MPICH2, the overhead caused by AES in ES-MPICH2 can be significantly

15

reduced by AES hardware architectures (see [72] for details of a highly regular and scalable

AES hardware architecture).

Security enhancement in clusters. There are several research works focusing on se-

curity enhancement in commodity clusters. For example, Lee and Kim developed a security

framework in the InfiniBand architecture (IBA) [63]. For confidentiality and authentication,

Lee and Kim proposed the partition-level and QP-level secret key management schemes. The

security in IBA is improved with minor modifications to the IBA specification. Ramsurrun

and Soyjaudah constructed a highly available transparent Linux cluster security model, which

offers a new approach to enhancing cluster security [93]. Koenig et. al. implemented a tool

that monitors processes across computing nodes in a cluster [59]. The tool delivers real-time

alerts when there are immediate threats. Similarly, Pourzandi et al. investigated the security

issues of detecting threats and hazards in distributed clusters [89]. The aforementioned secu-

rity solutions developed for clusters are inadequate to directly support security-sensitive MPI

programs, because the existing security solutions generally require application developers to

implement security functionality in their MPI programs.

2.6 Summary

The objective of this dissertation is to present the solutions to reduce energy consump-

tion and to improve security in cluster computing systems. This chapter overviewed a variety

of existing techniques related to dynamic voltage scaling, energy-efficient storage systems,

security-aware storage system, and enhanced security MPI. The strategies presented in this

dissertation have been modelled, simulated, or real implemented on a cluster computing

platform. The experimental results have been quantitatively evaluated.

16

Chapter 3

Scheduling Parallel Applications on Dynamic

Voltage Scaling-Enabled Clusters

3.1 Introduction

With the advancement of computers and networks, large-scale clusters have been widely

applied to support scientific and commercial applications, among which many happen to be

parallel applications. Examples of this type of parallel applications include, but are not

limited to, 3-D perspective rendering [49], molecular dynamics simulation [44], quantum

chemical reaction dynamics simulations [33], and 2-D fluid flow using the vortex [100]. In

the past decade, most research work has focused on achieving high performance of clus-

ters. Scheduling parallel applications on large-scale clusters is technically challenging due

to significant communication latencies and high energy consumption rates of clusters. Re-

ducing schedule lengths and conserving energy are two important goals in the design of

high-performance and energy-efficient cluster computing platforms.

3.1.1 Motivation

One effective approach to saving energy consumption in clusters is to make use of

cutting-edge energy-efficient processors, because processors in computing nodes are con-

sumers of large amounts of energy. Among the various energy conservation techniques for

processors, the dynamic voltage scaling scheme or DVS is one of the more attractive ways

to provide significant energy savings [15]. DVS has been implemented in modern processors

like AMD’s Mobile Athlon [53] and Intel’s XScale [54]. The basic idea behind the DVS

technique is to dynamically reduce a processor’s supply voltage while guaranteeing proper

17

operations. Significant energy savings can be achieved by DVS, because the power dissipa-

tion in a processor is proportional to the product of total circuit capacity c, supply voltage

V, and system clock frequency f. Thus, the energy dissipation P can be expressed as:

P = c · V 2 · f (3.1)

Let us consider tasks to be executed on a processor during the time interval [t1, t2].

Suppose P(t) is the power dissipation at time t ∈ [t1, t2], I can express the total energy

consumption E in the processor as

E =

∫ t2

t1

P (t) · dt (3.2)

A variety of DVS-based scheduling algorithms have been developed for real-time systems

(see, for example [84] and [8]). Existing DVS-based real-time scheduling algorithms dynami-

cally determine when and to which level operating voltages must be scaled. The DVS-based

schedulers aim to conserve energy by running real-time systems at the lowest possible volt-

age provided that deadlines of real-time tasks can be guaranteed. The existing DVS-based

real-time scheduling algorithms - proven to be effective in achieving substantial energy sav-

ings (from 1.4% to as high as 90% [115]) - are normally implemented in real-time operating

systems. Although DVS is a promising and powerful technique providing significant energy

savings in real-time systems without sacrificing real-time performance, the energy savings

achieved by DVS come at the cost of reduced performance in non-real-time systems. More

importantly, performance degradation incurred by DVS is unacceptable for parallel appli-

cations running on high-end computing systems like clusters. Conserving energy in clusters

at the cost of decreased performance is an undesirable approach, because improving perfor-

mance of parallel applications is the primary goal of high-performance cluster design. This

research is motivated by a challenging issue - can we reduce energy dissipation in DVS-

enabled clusters without degrading performance of parallel applications? This Chapter is

18

the first step towards tackling this problem. I seek to answer fundamental questions such as

how to discover idle times among a group of parallel tasks, what idle times can be utilized by

DVS, and how to determine the supply voltage of processors in computing nodes of a clus-

ter without affecting starting times of parallel tasks. This research is also motivated by an

unrealistic assumption (i.e., supply voltages can be changed simultaneously with no physical

constraints) commonly used in theoretical studies [48][19]. To implement an energy-efficient

scheduler for parallel applications running on practical DVS-enabled clusters, I focus on

multiple-voltage-based clusters, where only a number of predesigned operating voltages are

readily available in computing nodes of the clusters. Such DVS-enabled clusters only allow

the computing nodes to choose any one of these voltages and clock frequency at run time.

It is worth nothing that we are unable to realize the full energy-saving potential of DVS in

the context of practical multiple-voltage-based clusters.

3.1.2 Contributions and Paper Organization

The issue of applying the dynamic voltage scaling technique or DVS to parallel ap-

plications running on large-scale clusters has not been well addressed, mainly because the

primary goal of building clusters is to achieve high performance rather than energy efficiency

for parallel applications. However, the lack of energy conservation techniques for clusters

supporting parallel applications is a critical problem. Without energy saving techniques for

parallel applications with precedence constraints, the development of energy-efficient clusters

seems unlikely.

In this Chapter, I address the issue of conserving energy consumption in DVS-enabled

clusters without sacrificing the performance of parallel applications running on the clusters.

The major contributions of this study are:

•An energy-efficient scheduling algorithm (TADVS). Existing DVS-based scheduling

algorithms designed for real-time systems are inadequate for clusters, because the existing

DVS algorithms are incapable of improving energy efficiency of clusters without degrading

19

system performance. Our TADVS aims at (1) exploiting idle times among parallel tasks

with precedence constraints, (2) choosing idle intervals that can be used by DVS to conserve

energy, and (3) determining the supply voltage of processors without having negative impacts

on completion times of parallel applications. I also quantitatively evaluate energy savings

provided by the TADVS algorithm.

•Energy consumption modeling. I developed an energy consumption model for multiple-

voltage-based computing nodes in modern clusters. This model relaxes the unrealistic as-

sumption - supply voltages in computing nodes can be simultaneously adjusted with no

physical constraints. The model can be widely employed to estimate energy dissipation in a

cluster’s computing nodes where a number of predesigned operating voltages are physically

available.

•Second these DVS-enabled systems are simulated in a secure wireless communication

network. The results demonstrate that: 1) all DVS systems are effective in energy saving

over the fixed voltage system; 2) multiple, pessimistic feasible, optimistic feasible, and ideal

DVS systems, in that order, become more energy efficient as the physical constraints on

how voltage may vary are relaxed; and 3) optimistic and pessimistic feasible DVS systems

only consume a little more energy than the ideal DVS system, which suggests that the full

potential of DVS in energy saving can (almost) be reached.

The rest of the Chapter is organized as follows. Section 3.2 describes a way to measure

energy dissipation in a cluster running parallel applications. Section 3.3 presents the TADVS

scheduling algorithm using the DVS technique. In Section 3.4, I evaluate the performance

of the proposed scheduling algorithm by comparing it with a baseline scheduling algorithm

where the DVS technique is not employed. Finally, Section 3.5 concludes the research with

future research opportunities.

20

3.2 Modeling Energy Consumption

In this section, I model the energy dissipation of a cluster running a parallel application

represented by a DirectedAcyclicGraph (DAG) [120][92]. Throughout this Chapter, a DAG

is denoted by a pair (U,E). U = {u1, u2, ..., un} represents a set of precedence constrained

parallel tasks, and ti is the ith task’s computation requirement showing the number of time

units to compute vi, 1 ≤ i ≤ n. It is assumed that all the tasks in U are non-preemptive and

are indivisible work units [122].

Let eni be the energy consumption caused by task vi running on a computing node.

The computing node energy consumption rate is P = c · V 2 · f (see Eq. 3.1), and the energy

dissipation of task vi can be expressed by Eq. 3.2. Note that ti in Eq. 3.3 depends on

frequency fi. In order to avoid confusion of V , in all following equations, U refers to set U ;

Vi refers to the voltage for the ith task; ui refers to the ith task in the precedence constrained

parallel tasks’ set U . n is for the number of tasks in set U , and m is for the number of all

computing nodes in the cluster system.

eni = c · V 2
i · fi · ti (3.3)

Given a parallel application with a task set U and allocation matrix X, we can calculate

the total energy consumed by all the tasks in U using Eq. 3.4, where n is the number of

tasks, m is the number of computing nodes in the cluster system.

ENactive =
|U |∑
i=1

eni =
n∑

i=1

(c · V 2
i · fi · ti)

= c ·
n∑

i=1

(V 2
i · fi · ti) (3.4)

Let PNidle be the energy consumption rate of a computational node when it is inactive,

and φi be the completion time of task ui. The energy consumed by an inactive node is a

21

product of the idle energy consumption rate PNidle and an idle period. Thus, we can make

use of Eq. 3.5 to measure the energy consumed by the jth computing node in a cluster when

the node is sitting idle.

ENactive =
|U |∑
i=1

eni =
n∑

i=1

(c · V 2
i · fi · ti)

= c ·
n∑

i=1

(V 2
i · fi · ti) (3.5)

where
n

max
i=1

(ϕi) is the schedule length, and
n

max
i=1

(ϕi) −
n∑

i=1

xij · ti is the total idle time

on the jth node.
n

max
i=1

(ϕi) represents the completion time of the task that is completed

last. Thus, is the completion time of tasks in set U . Thus
n∑

i=1

(xij · ti) computes the run

time summation of all tasks allocated to the jth computing node. xij is set to 1 if task vi

is allocation to the jth computing node; otherwise, xij is set to 0. The total idle energy

consumption of the cluster is written as

ENidle =
m∑
j=1

enj
idle

= PNidle ·
m∑
j=1

(
n

max
i=1

(ϕi)−
n∑

i=1

(xij · ti)
)

= PNidle ·
(
m · n

max
i=1

(ϕi)−
m∑
j=1

n∑
i=1

(xij · ti)
)
. (3.6)

The total energy consumption EN incurred by the computing nodes of the cluster

running the parallel application is the summation of the nodes’ energy when the nodes are

active and idle. Consequently, energy consumption EN can be derived from Eqs. 3.4 and 3.6

as

EN = ENactive + ENidle (3.7)

22

We denote elij as the energy consumed by the transmission of message (ti, tj) ∈ E. We

can compute the energy consumption of the message as below

elij = PLactive · wij (3.8)

where PLactive is the power of the link when it is active, and wij is the transmission

time. In this study, I assume that cluster interconnects are homogeneous. All messages are

transmitted over the interconnection network at the same transmission rate. The energy

consumed by a network link between pa and pb is the cumulative energy consumption total

caused by all messages transmitted over the link. Then, the link’s energy consumption is

obtained as follows, where Lab is a set of messages delivered on the link, and Lab can be

written as Lab = {∀(ui, uj) ∈ E, 1 ≤ a, b ≤ m |xia = 1 ∧ xjb = 1}.

ELab
active =

∑
(ui,uj)∈Lab

elij =
∑

(ui,uj)∈Lab

(PLactive · wij)

=
n∑

i=1

n∑
j=1,j �=i

(xia · xjb · PLactive · wij) (3.9)

The energy consumption of the whole interconnection network is expressed by Eq. 3.10,

which is the summation of all the links’ energy consumption. Thus, we have

ELactive =
m∑
a=1

m∑
b=1,b�=a

ELab
active

=
n∑

i=1

n∑
j=1,j �=i

m∑
a=1

m∑
b=1,b�=a

(xia · xjb · PLactive · wij) . (3.10)

We can express the energy consumed by a link when it is inactive as a product of the

consumption rate and the idle period of the link.

23

ELab
idle = PLidle ·

(
n

max
i

(ϕi)−
n∑

i=1

n∑
j=1,j �=i

(xia · xjb · wij)

)
(3.11)

where PLidle is the power of the link when it is inactive, and
n

max
i

(ϕi)−
n∑

i=1

n∑
j=1,j �=i

(xia · xjb · wij)

is the total idle time of link. The energy incurred by the whole interconnection network dur-

ing the idle periods is expressed by

ELidle =
m∑
a=1

m∑
b=1,b�=a

ELab
idle (3.12)

The total energy consumption EL exhibited by the cluster interconnect can be straight-

forwardly derived from Eqs. 3.9 and 3.11. Hence, we have

EL = ELactive + ELidle (3.13)

The energy dissipation E of a cluster running a parallel application is the summation

of the energy caused by computing nodes and interconnects. Therefore, energy E can be

derived from Eqs. 3.7 and 3.13. Thus, we have

EL = ELactive + ELidle (3.14)

Furthermore, in the experimental result part, we are going to use one parameter called

CCR which is mentioned in Section 3.2 also. CCR is the acronym for the Communication-

to-Computation Ratio. The communication-to-computation ratio or CCR of a parallel ap-

plication is defined as the ratio between the average communication cost of the application

and the average computation cost on a given cluster. Formally, the CCR of an application

(V,E) is given by the following Eq. 3.15. [121]

24

CCR(U,E) =

1
|E|
∑

cij
(ui,uj)∈E

1
|U |

|U |∑
i=1

ti

(3.15)

3.3 Voltage Scheduling for Parallel Applications

Now I present the energy-efficient TADVS scheduling algorithm. Due to precedence

constraints, parallel tasks are unable to start execution until their parent tasks have been

completed. In each computing node of a cluster, there is a high probability that there are

some idle time intervals among tasks allocated to this node. In other words, after having

finished executing a task, a computing node may not immediately start the execution of the

next task. The idle period is caused by precedence constraints forcing the computing node

to sit idle for a period of time. The basic premise of the TADVS scheduling algorithm is

to exploit idle processor time intervals in each computing node of a cluster. This makes

it possible to leverage idle time intervals to dynamically reduce the supply voltage of the

computing node. This allows us to substantially conserve energy. More specifically, comput-

ing nodes are not supposed to be running with the highest frequency when the nodes are

sitting idle. Given a set of idle processor time intervals, it is unnecessary for the computing

nodes to process all allocated parallel task as soon as possible using the highest frequency.

Rather, processor frequencies can be judiciously lowered during idle periods, provided that

the overall schedule lengths of parallel applications are not adversely affected.

Let us first introduce three important parameters to be used in TADVS. The first

parameter for each parallel task is the earliest start time (EST). EST of an entry task is

0. The EST of all the other tasks can be calculated in a top-down manner by recursively

applying the second term on the right side of Eq. 3.16.

25

EST (ui) =

⎧⎪⎨
⎪⎩

0, if ∀1 ≤ j ≤ n : (uj, ui) /∈ E

min
(uj ,ui)∈E

(
max

(uk ,ui)∈E,uk �=uj

(ECT (uj), ECT (uk) + wki)

)
, otherwise

(3.16)

where ECT (ui) is the second important parameter, which quantifies the earliest com-

pletion time of task ui. ECT (ui) can be derived from Eq. 3.17 as the summation of its

earliest start time and execution time.

ECT (ui) = EST (ui) + ti (3.17)

The third parameter LACT (ui) is the latest allowable completion times of all the other

tasks. LACT (ui) can be calculated in a top-down manner by recursively applying the second

term on the right side of Eq. 3.18.

LACT (ui) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ECT (ui), if ∀1 ≤ j ≤ n : (ui, uj) /∈ E

min

⎛
⎜⎝ min

(ui,uj)∈E
ui �=FP (uj)

(LAST (uj)− wij) , min
(ui,uj)∈E
ui=FP (uj)

(LAST (uj))

⎞
⎟⎠ , otherwise

(3.18)

We can make use of these three parameters to dynamically choose processor frequency

and supply voltage for each computing node. Note that the execution time of a task lies in its

complexity and the corresponding processor frequency. The processor frequency determined

on the fly can be derived from the aforementioned three parameters. Given a task vi, its

shortest execution time tmin
i is the time interval between ECT (ui) and EST (ui). Task

ui will experience the shortest execution time if its computing node is processing the task

with the highest frequency. In contrast, the execution time of task vi can be increased up

to tmax
i = LACT (ui) − EST (ui) if the processor frequency is dynamically reduced with

respect to task ui. Now our goal is to choose the processor frequency that can lead to the

26

maximum execution time tmax
i without adversely affecting system performance. Determining

the optimal frequency is a challenge because processors frequencies are not continuously

tunable. Task ui must be accomplished before LACT (ui) therefore, the frequency fi must

be higher than or equal to fbest. As such, the most appropriate frequency can be determined

by Eq. 3.19.

fbest =
fHighest(ECT − EST)

LACT −EST
(3.19)

Eq. 3.20 measures the energy savings gained by TADVS for a given parallel application.

Power Rate =

∑n
i=1 cV

2
i fi(LACTi − ESTi)

fbest i

fi∑n
i=1 c(VHighest)

2fHighest(ECTi −ESTi)
(3.20)

Given processor power Pi at different supply voltages, we can substitute Pi and PHighest

for cV 2
i fi and c(VHighest)

2fHighest respectively, in Eq. 3.20 to further simply Eq. 3.20. Thus,

we have

Power Rate =

∑n
i=1 Pi(LACTi − ESTi)

fbest i

fi∑n
i=1 PHighest(ECTi −ESTi)

(3.21)

Given the maximum power, the highest frequency, and voltage of processors in comput-

ing nodes, we can readily derive the constant c (i.e., the capacity) using Eq. 3.1. Provided

supply voltages and processor frequencies, we can use the constant c and Eq. 3.1 compute

energy consumption rate Pi. Now we calculate processing time of the computing nodes using

Eq. 3.22 as follows.

Running T imeTADV S =

n∑
i=1

(LACT −EST)
fbest i

fi
(3.22)

It is insufficient to demonstrate cluster energy savings only using processors. We also

consider energy dissipation in network interconnects. Eq. 3.23 below quantifies the overall

energy savings achieved by our TADVS compared with a non-TADVS-based scheme.

27

t1 t2

t1+t2

Earliest Start Time Earliest Completion Time Latest Allowable Completion Time

Normal

TADVS

Utilizable Time Period

Figure 3.1: Utilizable Time Period

TPCSR =

∑n
i=1 Pi(LACTi − ESTi)

fbest i

fi
+ w + CPUidle ∗ (tall − runningNon−TADV S)∑n

i=1 PHighest(ECTi − ESTi) + w +
m∑
j=1

EN j
idle

(3.23)

where tall is
m∑
j=1

(EN j
idle), w represents communication energy consumption. Since our

algorithm does not affect the data size and transmitting speed, the transmitting energy

consumption in our algorithm is as same as the transmitting energy consumption before.

After introducing the algorithm, let us to prove the correctness of this strategy. The

strategy of TADVS is illustrated in Fig. 3.1. In existing algorithm, if one task could be

completed as quickly as in t1, CPU will use the highest working frequency to finish the task,

and then turn off CPU in t2 in order to conserve energy consumption. Although this is a

very straightforward way to conserve energy, there is a better way to do this. According to

the definition of LACT, the CPU will not reduce the performance of entire cluster system

28

if it could complete the current task before LACT. In another word, we can utilize t2 to

increase working time and choose a lower frequency and voltage level to conserve energy.

This strategy is not very straightforward; hence, I am going to prove its correctness in

Eq. 3.23 for each task.

Table 3.1: Symbolic Notations

System Parameters Values
WN,T Energy consumption by normal way for T
WTA,T Energy Consumption by TADVS for T

c Capacity of CPU, constant value
Vh Highest working voltage of CPU
Vl lower working voltage TADVS chose
fh corresponding working frequency of vh
fa frequency level we finally apply
fl corresponding working frequency of vl
t1 Shortest working time period
t2 extendable time period
T Task No.
LT Work load of the task T
EST Earliest Start Time
ECT Earliest Completion Time
LACT Latest Allowable Completion Time

The following two theorems illustrate that our strategy will reduce the energy consump-

tion when there is a gap, which is t2 in Fig. 3.1, and equals to Latest Allowable Completion

time minus Earliest Completion Time.

Theorem 3.1. For a task Ui on a processor, strategy 1 is that the processor choose the

highest frequency to complete the task Ui as quickly as possible, then turn the processor off

until LACT; strategy 2 is that the processor choose a lower voltage level whose corresponding

frequency can let the processor complete Ui just before LACT. The energy consumption of

strategy 2 is always less than the energy consumption of strategy 1 if ti is not 0.

Proof. Given task Ui, t1–the shortest period of working time, or (Earliest Completion Time

- Earliest Start Time); t2–extendable period of time, or (Latest Allowable Completion Time

- Earliest Start Time).

29

In order to prove that the energy consumption WTA of TADVS is always smaller than

the energy consumption WN of normal strategy, we need to prove the quotient of WTA and

WN is always smaller than 1. Energy consumption is the product of Power and time. Hence,

the proof starts from q. 3.24 (24).

WTA

WN
=

Pl(t1 + t2)

Pht1
(3.24)

According to Eq. 3.1, the power of CPU can be computed by capacity, frequency and voltage,

so I come up with Eq. 3.25.

Pl(t1 + t2)

Pht1
=

cV 2
l fl(t1 + t2)

cV 2
h fht1

(3.25)

Because the workload for different strategy is the same, the necessary CPU cycles are the

same. So we can get Eq. 3.26 and get Eq. 3.27 furthermore.

fht1 = fl(t1 + t2) (3.26)

fl =
t1

(t1 + t2)
fh (3.27)

Use Eq. (27) to replace f in Eq. (25) and then get Eq. (28).

cV 2
l fl(t1 + t2)

cV 2
h fht1

=
cV 2

l fh

(
t1

t1+t2

)
(t1 + t2)

cV 2
h fht1

(3.28)

Eliminate the same elements in right part of Eq. 3.28 and get Eq. 3.29.

cV 2
l fh

(
t1

t1+t2

)
(t1 + t2)

cV 2
h fht1

=

(
Vl

Vh

)2

(3.29)

Hence, the ratio of energy consumption between strategy 1 and strategy 2 only depends on

the voltage levels of the two strategies. Since Vl is defined as the lower voltage level, Vl <Vh.

30

Therefore, WTA

WN
=
(

Vl

Vh

)2
< 1. So finally we obtain that WTA <WA which completes the

proof of Theorem 1.

In Theorem 1, I proved that for each task, once it has extra time space between ECT

and LACT, we could conserve energy. Since each task has its own ECT, EST, and LACT, we

could promote Theorem 1 from one task case to all tasks. Then we need to prove Theorem

2.

Theorem 3.2. if ∃ti ∈ (LACTi −ECTi) and ti >0, then applying strategy 2 consumes less

energy than applying strategy 2 to complete all vi in set U.

Proof. Since ∀ui ∈ (U,E), WTA,u < WN,u, and ∃ti ∈ (LACTi − ECTi). therefore,

⎛
⎜⎜⎝

n∑
i=1

WTA,ui

n∑
i=1

WN,ui

⎞
⎟⎟⎠ < 1 (3.30)

Hence, for all task in set U , total energy consumed by strategy 2 to complete all tasks

in cluster system is less than the energy consumed by strategy 1.

Therefore, energy consumption could be reduced for all tasks the cluster needs to work

on if there is a free time between ECT and LACT. This is not a problem since in parallel

cluster system there are plenty of free time period between ECT and LACT because of the

restrains of prerequisite conditions of each task. Furthermore, since LACT(ui) is defined as

latest allowable completion time which means if task ui can be completed before LACT(ui)

the completion time of set U will not be affect, the performance of cluster system is not going

to be reduced by applying TADVS because TADVS requires all tasks must be completed

before LACT(ui). For a single ui, the completion time might be delayed. Hence, how much

energy does TADVS could conserve for one task ui depends on how much free time we have

between LACT(ui) and ECT(ui), but no matter how much energy we could save or there is

31

even no energy could be conserved at all, the performance of the cluster for entire set U will

not be affected at all.

The following algorithm represents the preferred CPU voltage decision process. Earliest

Start Time, Earliest Completion Time and Latest Allowable Time are assumed as known or

predicted before the frequency level decision process. If Latest Allowable Completion Time

is later than Earliest Completion time, we could utilize the time difference between them

to conserve energy consumption. Then Eq. 3.19 will be applied to compute fbest which is a

theoretically optimized CPU frequency level which can fit the time gap between LACT and

ECT perfectly. However, CPUs only have fixed number of frequency levels; hence, we need

to choose the frequency level which is just higher than fbest. In this case, the real completion

time of task after scaling will be earlier than LACT, and it could equals ECT if the gap is

too short for CPU to scaling.

Algorithm 1 Task Allocating Dynamic Voltage

for Each Task i in set V do
Collect LACT(vi), ECT(vi) and EST(vi)
if (LACT (vi)−ECT (vi)) ≥ 0 then
use Eq. (19) to compute fbest
choose the CPU frequency level just higher than fbest
fa = the frequency level just higher than fbest

else
apply the highest working frequency
fa = fhighest

end if
end for

3.4 Performance Evaluation and Simulation Results

To evaluate the performance of TADVS, I conduct extensive experiments using various

parallel applications. Further, I compare TADVS with an existing energy aware scheduling

algorithm NDS [122]. The system parameters are shown in Table 3.2. The performance met-

rics used to evaluate system performance include: (1) Processor energy: Energy consumption

incurred by computing nodes. (2) Total Energy: Energy caused by a set of parallel tasks.

32

Table 3.2: Pentium 4 System Parameters

System Parameters Values
CPU Pentium 4, 1.4GHz

Idle power 5W-22W
Frequency 1400MHz,1200MHz,1000MHz,

800MHz, 600MHz
Voltage 1.484V,1.463V,1.308V,

1.180V, 0.956V
Execution time for DFA 3s, 3s, 4s, 2s, 1s, 10s, 20s, 7s, 5s, 8s

Execution time for the Guassian application 5s, 4s, 1s, 1s, 1s, 1s, 10s, 2s, 3s, 3s,
3s, 7s, 8s, 6s, 6s, 20s, 30s, 30s

Network busy 33.6w

Figs. 1 and 2 show the synthetic parallel application (SPA) [67] and the Gaussian applica-

tion [61], which were used to evaluate the performance of TADVS algorithm.

Table 3.3: Intel XScale System Parameters

System Parameters Values
CPU Intel XScale

Idle power 80mW
Frequency 1000Hz, 800Hz, 600Hz,

400Hz, 150Hz
Voltage 1.8V, 1.6V, 1.3V, 1.0V, 0.75V

Execution time for DFA 3s, 3s, 4s, 2s, 1s, 10s, 20s, 7s, 5s, 8s
Execution time for the Guassian application 5s, 4s, 1s, 1s, 1s, 1s, 10s, 2s, 3s, 3s,

3s, 7s, 8s, 6s, 6s, 20s, 30s, 30s
Network busy 0.66w

In the first set of experiments, I varied CCR from 0.1 to 1 to examine the performance

impacts of communication intensity on our TADVS scheduling strategy. Figs. 3 and 4

demonstrate that compared with the NDS scheme, TADVS consistently consumes less energy

regardless of the value of CCR. For example, TADVS conserves the energy consumption for

the SPA application by up to 16.8% with an average of 10.7%. When one increases CCR from

0.1 to 1, the energy consumption gradually goes up. This can be explained by the fact that

a high CCR results in high communication cost, which in turn leads to the increased total

energy consumption. More interestingly, I observe from Fig. 4 that energy savings achieved

33

1

2 43

5 6 7

8 9

10

3

3 4 2

1 10 20

7 5

8

Figure 3.2: Task Graph of SPA

34

T1

T2 T3 T4 T5 T6

T7

T8 T9 T10 T11

T12

T13 T14 T15

T16

T17 T18

Figure 3.3: The task graph of the Gaussian application

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

0.1 0.2 0.3 0.5 0.8 1

Jo
ul

e

CCR

Pentium 4 SPA Energy Consumption Compare

Energy Consumpition TADVS
Energy Consumption NDS

Figure 3.4: Energy consumption of SPA on the cluster with Intel Pentium 4 processors

35

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

 18%

0.1 0.2 0.3 0.5 0.8 1

CCR

Pentium 4 Example Tree Saving Rate

Figure 3.5: Energy saving rates for SPA on the cluster with Intel Pentium 4 processors

by the TADVS strategy become more pronounced when the communication intensity is

relatively low. This result clearly indicates that low communication intensity offers more

space for TADVS to reduce voltage supplies of computing nodes to significantly conserve

energy. In other words, applications with low communication intensities can greatly benefit

from the TADVS scheduling scheme.

Fig. 3.6 shows the energy consumption caused by the Gaussian application (see Fig. 3.3

on the cluster with Intel Pentium 4 processors, whereas Fig. 3.7 reveals the energy savings

offered by TADVS with respect to the Gaussian application on the cluster uses the TADVS

and NDS scheduling algorithms. First of all, the experimental results reveal that TADVS

can save energy consumption for the Gaussian application by up to 14.8% with an average

of 9.6%. Second, the results plotted in Figs. 3.6 and 3.7 shows that compared the Gaussian

application with the SPA application, the energy saving rate of TADVS is less sensitive to

the communication intensity. The empirical results suggest that the sensitivity of the en-

ergy saving rate of TADVS on communication intensity partially relies on the characteristics

of parallel applications. Note that parallel applications’ characteristics include parallelism

degrees, number of messages, average message size, and the like. Compared with the SPA

36

 0

 2,000

 4,000

 6,000

 8,000

 10,000

0.1 0.2 0.3 0.5 0.8 1

Jo
ul

e

CCR

Pentium 4 Gaussian Application Energy Consumption Compare

Energy Consumpition TADVS
Energy Consumption NDS

Figure 3.6: Energy consumption of the Gaussian application on the cluster with Intel Pen-
tium 4 Processors

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

 18%

0.1 0.2 0.3 0.5 0.8 1

CCR

Pentium 4 Gaussian Application Saving Rate

Figure 3.7: Energy saving rates for the Gaussian application on the cluster with Intel Pentium
4 Processors

37

 0

 20

 40

 60

 80

 100

 120

 140

0.1 0.2 0.3 0.5 0.6 0.8 1

Jo
ul

e

CCR

XScale SPA Energy Consumption Compare

Energy Consumpition TADVS
Energy Consumption NDS

Figure 3.8: Energy consumption of SPA on a cluster with Intel XScale processors

application (Fig. 3.2), the Gaussian application has a higher parallelism degree. More specif-

ically, I concluded from the experimental results shown in Figs. 3.5 and 3.7 that the energy

saving rate of TADVS is less sensitive to the communication intensity of parallel applica-

tions with higher parallel degrees. Moreover, parallel applications with higher parallelism

degrees are able to take more advantages from the TADVS in terms of energy conservation.

A practical implication of this observation is that although high communication intensities

of parallel applications tends to reduce energy saving rates of TADVS, increasing parallel

degrees of the parallel applications can potentially and noticeably boost up the energy saving

rates.

Figs. 3.7, 3.8, 3.9, 3.10 plot experimental results for both the SPA and Gaussian ap-

plications running on a cluster with Intel XScale processors in each computing node. The

goal of this set of experiments is to evaluate the performance of TADVS using embedded

processors. XScale processors are very suitable for next-generate mobile clusters (see, for

example, [121]), where it is indispensable to conserve energy since mobile clusters are pow-

ered by batteries. Now I focus on the performance impacts of TADVS on mobile clusters.

The empirical results shown in Figs. 3.7, 3.8, 3.9, 3.10 suggest that TADVS is conducive

38

 0%

 5%

 10%

 15%

 20%

 25%

0.1 0.2 0.3 0.5 0.6 0.8 1

CCR

XScale Example Tree Saving Rate

Figure 3.9: Energy saving rates for SPA on a cluster with Intel XScale processors

 0

 50

 100

 150

 200

 250

 300

 350

0.1 0.2 0.3 0.5 0.6 0.8 1

Jo
ul

e

CCR

XScale Gaussian Application Energy Consumption Compare

Energy Consumpition TADVS
Energy Consumption NDS

Figure 3.10: Energy consumption of the Gaussian application on a cluster with Intel XScale
processors

39

 0%

 5%

 10%

 15%

 20%

 25%

0.1 0.2 0.3 0.5 0.6 0.8 1

CCR

XScale Gaussian Application Saving Rate

Figure 3.11: Energy saving rates for the Guassian application on a cluster with Intel

to conserving energy consumption in mobile clusters equipped with Intel Xscale processors.

For example, TADVS saves energy for the SPA and Gaussian applications by up to 22.6%

and 20.4% with averages of 19.2% and 16.2%. Again, I observe from Figs. 3.9 and 3.11

when the value of CCR increases, the energy saving rate drops gradually. This trend is

consistent with the results plotted in Figs. 3.5 and 3.7. It is worth noting that the energy

saving rates of TADVS are noticeably high, meaning that employing TADVS to schedule

parallel applications on mobile clusters can ultimately save a huge amount of energy. The

evidence from these experiments implies that TADVS is capable of considerably enlarging

battery life. More importantly, the results (see Table 3.4) confirms that compared with

traditional high-performance clusters, mobile clusters powered by batteries can enjoy a lot

more energy-saving benefits provided by TADVS. Thus, the results suggest that clusters

built with computing nodes with low CPU voltage supplies can fully leverage the dynamic

voltage scaling technique to reduce energy dissipation in the clusters.

Figs. 3.11, 3.12, 3.13, 3.14 plot experimental results for the LU decomposition applica-

tion, which is modeled using a task graph. The goal of this set of experiments is to evaluate

40

 0

 50

 100

 150

 200

 250

 300

 350

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Jo
ul

e

CCR

XScale lu_decomp Tree Energy Consumption Compare

Energy Consumpition TADVS
Energy Consumption NDS

Figure 3.12: Energy consumption of the lu decomp application on the cluster with Intel
XScale processors

 0%

 5%

 10%

 15%

 20%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CCR

XScale lu_decomp Tree Saving Rate

Figure 3.13: Energy saving rates for the lu decomp application on the cluster with Intel
XScale processors

41

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Jo
ul

e

CCR

Pentium 4 lu_decomp Tree Energy Consumption Compare

Energy Consumpition TADVS
Energy Consumption NDS

Figure 3.14: Energy consumption of the lu decomp application on the cluster with Intel
Pentium 4M processors

 0%

 5%

 10%

 15%

 20%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CCR

Pentium 4 lu_decomp Tree Saving Rate

Figure 3.15: Energy saving rates for the lu decomp application on the cluster with Intel
Pentium 4 processors

42

Table 3.4: High-Performance Clusters vs. Mobile Clusters Energy Saving Rate for the
lu decomp Applications

lu decomp High-Performance Clusters Mobile Clusters
Maximum Energy Saving Rate 14.8% 20.4%
Minimum Energy Saving Rate 9.6% 16.2%

the performance of TADVS on a mobile cluster with the Intel XScale processors and a high-

performance cluster with the Intel Pentium 4 processors. Specifically, Figs. 3.12 and 3.13

show the results gathered using the XScale processor, whereas Figs. 3.14 and 3.15 show the

results when the applications are running on a high-performance cluster where Intel Pen-

tium processors are used. With respect to the LU decomposition application, the TADVS

strategy achieves more energy savings on the mobile cluster than on the high-performance

cluster (see Table 3.4 for details). Mobile clusters with XScale processors benefit better from

the TADVS scheme because the voltage supplies for XScale processors are lower than those

for Pentium processors. In order to show the generality of this algorithm, I added an extra

parameter, which is called mul-plus parameter (mpp or calculating parameter), to calculate

the computing time for each task. This parameter was added to generate different power

consumption data for each task, so I can estimate the effect of TADVS algorithm on energy

consumption. I use Eq. 3.23 to calculate the new computing time for each task. Specifically,

when Eq. 3.31 is applied, the total communication cost for each test is set to be a constant

number.

New Computing T imei = Old Computing timei ∗mpp+mpp (3.31)

Figs. 3.16, 3.17, 3.18, 3.19, 3.20, 3.21, 3.22, 3.23 show the experimental results when I

apply the ”mul-plus parameter” to calculate computing times of tasks in the two parallel

applications. The results shown in these eight figures are for the Gaussian and SPA appli-

cations. Again, I evaluate TADVS’s performance in terms of energy efficiency on the two

clusters with Intel XScale and Intel Pentium 4 processors, respectively. Note that the eight

43

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

1 2 3 4 5 6 7 8 9 10

Jo
ul

e

Mul−Plus Parameter

XScale Gaussian Application Energy Consumption Compare

Energy Consumpition TADVS
Energy Consumption NDS

Figure 3.16: Energy consumption of the Gaussian application on the cluster with Intel XScale
processors using mul-plus parameters to calculate

 0%

 5%

 10%

 15%

 20%

 25%

1 2 3 4 5 6 7 8 9 10

CCR

XScale Gaussian Application Saving Rate

Figure 3.17: Energy saving rate of the Gaussian application on the cluster with Intel XScale
processors using mul-plus parameters to calculate

44

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

1 2 3 4 5 6 7 8 9 10

Jo
ul

e

Mul−Plus Parameter

XScale SPA Application Energy Consumption Compare

Energy Consumpition TADVS
Energy Consumption NDS

Figure 3.18: Energy consumption of the SPA application on the cluster with Intel XScale
processors using mul-plus parameters to calculate

 0%

 5%

 10%

 15%

 20%

 25%

1 2 3 4 5 6 7 8 9 10

CCR

XScale SPA Application Saving Rate

Figure 3.19: Energy saving rate of the SPA application on the cluster with Intel XScale
processors using mul-plus parameters to calculate

45

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

1 2 3 4 5 6 7 8 9 10

Jo
ul

e

Mul−Plus Parameter

Pentium 4 Gaussian Application Energy Consumption Compare

Energy Consumpition TADVS
Energy Consumption NDS

Figure 3.20: Energy consumption of the Gaussian application on the cluster with Intel
Pentium 4 processors using mul-plus parameters to calculate

 0%

 5%

 10%

 15%

 20%

 25%

1 2 3 4 5 6 7 8 9 10

CCR

Pentium 4 Gaussian Application Saving Rate

Figure 3.21: Energy saving rate of the Gaussian application on the cluster with Intel Pentium
4 processors using mul-plus parameters to calculate

46

 0

 5,000

 10,000

 15,000

 20,000

 25,000

1 2 3 4 5 6 7 8 9 10

Jo
ul

e

Mul−Plus Parameter

Pentium 4 SPA Application Energy Consumption Compare

Energy Consumpition TADVS
Energy Consumption NDS

Figure 3.22: Energy consumption of the SPA application on the cluster with Intel Pentium
4 processors using mul-plus parameters to calculate

 0%

 5%

 10%

 15%

 20%

1 2 3 4 5 6 7 8 9 10

CCR

Pentium 4 SPA Application Saving Rate

Figure 3.23: Energy saving rate of the SPA application on the cluster with Intel Pentium 4
processors using mul-plus parameters to calculate

47

figures have four groups: the Gaussian application on the cluster with Intel XScale proces-

sors (see Figs. 3.16, 3.17); the SPA application on the cluster with Intel XScale processors

(see Figs. 3.18, 3.19); the SPA application on the cluster with Intel XScale processors (see

Figs. 3.20, 3.21); and the Gaussian application on the cluster with Pentium 4 processors

(see Figs. 3.22, 3.23). I make the following observations from the results plotted. First,

Figs. 3.16, 3.18, 3.20, and 3.22 show that regardless of the applications and processor types,

energy dissipation in clusters soars when the calculating parameter increases. This is mainly

because a high calculating parameter gives rise to long CPU processing times, which in turn

lead to a high CPU energy demand. Second, after comparing the results shown in Figs. 3.17

and 3.21, I conclude that energy savings provided by TADVS is more significant on mobile

clusters with Intel XScale processors than on high-performance clusters with Intel Pentium 4

processors. The results depicted in Figs. 3.19 and 3.23 can further confirm this observation.

Third, when the calculating parameter is smaller than 6, the saving rate of TADVS gradually

rises when one increase the calculating parameter (see Figs. 3.17, 3.19, 3.21, 3.23). However,

the every saving rate is stabilized after the calculating parameter exceeds 5. In other words,

though the computing time of each task is changed significantly, the energy saving rates

literally remain unchanged. It is worth noting that the total amount of energy conserved by

TADVS continues growing with an increasing value of the calculating parameter.

In the last set of experiments, I evaluate the processor frequency levels for each parallel

task using the Gaussian application. For comparison purposes Fig. 3.24 includes NDS, where

the highest frequency level is chosen to finish tasks as soon as possible. I also show the optimal

frequency levels which maximize the energy saving rate. Since processor frequencies are not

continuously tunable, TADVS is unable to achieve the optimal energy savings. However,

Fig. 3.24 demonstrates that energy savings achieved using TADVS is close to the optimal

solution. These results reveal that TADVS produces sub-optimal energy savings for parallel

applications on both high-performance clusters using Intel Pentium 4 processors and mobile

clusters using Intel XScale processors.

48

Compare frequency levels
Xscale, Gaussian Tree, CCR = 0.5

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17
Task No.

Level Switching
The perfect frequency level
Highest Frequency

Figure 3.24: Processor frequencies of the Intel XScale processors under the TADVS schedul-
ing algorithm when the CCR value is set to 0.5

49

3.5 Summary

In the past decade clusters have been applied to a variety of parallel applications.

Scheduling parallel applications on both clusters, especially large-scale clusters, is challeng-

ing. This is due to significant communication latencies and high energy consumption rates.

Reducing schedule lengths and energy conservation are two major factors in the design of

environmentally and economical friendly clusters. In this Chapter, I proposed a schedul-

ing algorithm call TADVS. It makes use of the dynamic voltage scaling technique (DVS)

to provide significant energy savings for both high-performance and mobile clusters. Our

TADVS scheme aims to judiciously leverage processor idle times to lower processor voltages.

This in turn, reduces the energy consumption of parallel applications running on clusters.

However, decreasing supply voltages can inevitably lead to increased execution times. The

novel feature of TADVS is that it employs DVS only to parallel tasks that are followed

by idle processor times. This decreases energy consumption without increasing the sched-

ule lengths of parallel applications. Experimental results show that TADVS is capable of

conserving energy without adversely affecting performance of high-performance clusters and

mobile clusters.

50

Chapter 4

Design and Performance Evaluation of Energy-Efficient

Parallel I/O Systems With Write Buffer Disks

4.1 Introduction

In the past few years, large-scale storage systems have been developed to achieve high

I/O performance and large storage capacity for a wide variety of data-intensive applica-

tions [91] [62] [71] [47]. Much attention has been paid to the issues of performance and

security in storage systems [116] [103] [11]. Making data disks active even when they are

sitting idle is an important avenue to maintain high performance, because disks can im-

mediately start serving newly arriving disk requests. This is a practical approach in some

cases where there are high-end computing servers require extremely high performance at

the cost of high energy consumption. However, this approach can waste a huge amount of

energy in large-scale parallel disk systems; this is true especially when there are many long

idle periods. Traditional energy conservation techniques (e.g., dynamic power management)

improve disk I/O energy efficiency by turning disks into the low-power state if the disks

are sitting idle. Unfortunately, the conventional dynamic power management strategies for

single disk systems are inadequate for parallel disk systems because of the following three

reasons. First, idle periods under some workload conditions are too short to turn disks into

a low-power state to conserve energy. Second, although energy can be conserved by fre-

quently place disks into the low-power state, an excessive number of power-state transitions

inevitably have adverse impacts on the reliability of parallel I/O systems. Third, numerous

power-state transitions impose significant energy overhead as well as response time penalties.

Making the traditional strategy energy effective largely depends on workload conditions. If

workload of disk requests is relatively low and energy consumption of spinning operations

51

is much lower, then it makes sense to apply the traditional power management strategy to

aggressively spin down idle disks. Unfortunately, disk request arrival rates of most parallel

I/O systems are usually high, leaving few opportunities for the dynamic power management

strategies to conserve energy in most cases.

It is evident that the existing dynamic power management strategies ultimately en-

counter the problem of long power-state transition times and noticeable power state tran-

sition energy overhead. Although disk active times in the parallel storage system can be

shortened, energy dissipation in the storage system may not necessarily be reduced. This is

due the fact that power-state transitions introduce a significant amount of energy overhead,

which is refers to as penalties of spin-up and spin-down operations. Turning on a disk in a

low-power mode does not only need to power the disk up, but also requires the disk to speed

up its rotation speed - a physical movement, which in turn consumes much more energy than

electrical operations. In addition, if a new request arrives when the disk has been recently

shut down, the new request has to wait for an unnecessary period of spin-up time. To rem-

edy this deficiency, in this research I aim to design an innovative approach to significantly

reducing unnecessary spinning operations while shortening response times of disk requests.

Recognizing that energy overhead and response time penalties induced by power-state

transitions negatively affect energy efficiency of parallel I/O, in this study I seek to reduce

the number of power-state transitions for writes processed by a parallel disk system. I focus

on write requests, because there are a considerable number of write-intensive applications

like transaction processing, log file updates, and data collection [81]. In this research, I

present the design and implementation of parallel storage systems with buffer disks processing

write requests. Specifically, I aim to develop a dynamic request allocation algorithm for

writes or DARAW, which dynamically and energy efficiently allocates buffer disks or data

disks to serve write requests. Request allocations depend on not only data sets residing

in buffer disks contain but also the power states of data disks. Data sets cached in buffer

disks will be transferred to corresponding data disks when a set of conditions are satisfied.

52

Figure 4.1: Classic Data Stripping

These conditions may be configured by system administrators to tune the performance of

storage systems. Experimental results show that DARAW is conducive to conserving energy

consumption in parallel storage systems while efficiently reducing response times of write

requests.

4.2 Architecture with Write Buffers

In this section, I first introduce our energy-efficient disk architecture. Then, I present

a dynamic request allocation algorithm for writes or DARAW. Finally, I build an energy

consumption model to quantify energy dissipation in parallel I/O systems.

53

Figure 4.2: Basic BUD Idea

54

Figure 4.3: BUD Data Flow

55

Figure 4.4: The architecture of parallel storage system with buffer disks

4.2.1 Parallel Storage Systems with Buffer Disks

Traditionally, data striping is deployed to enhance inter-disk parallelism for higher data

transfer rate. Fig. 4.1 presents the classic data striping technology in which design all disks

are active all the time. Fig. 4.2 presents the basic design of BUD. A small number of buffer

disks buffer incoming writes for data disks. When workload is high, data disks are active

most of time, so requests could go to data disks directly without going through buffer disks

(Fig. 4.3).

Let us present our energy-efficient disk architecture with buffer disks (see Fig. 4.4). This

architecture is unique when compared to traditional parallel storage system architectures. I

classify disks in a parallel storage system into two categories: buffer disks and data disks.

All disks in the system are separated into two distinct layers. Requests issued to the parallel

storage system are written temporally into buffer disks first and then be transferred into

data disks at appropriate time periods.

56

Each disk, regardless of buffer or data disks, has its own queue to store incoming re-

quests. In addition, there is an overall request queue, in which all requests enter when they

are submitted to the storage system. In most cases, the number of buffer disks is less than

the number of data disks. This is because our target goal in this study is to save energy by

keeping a small number of active buffer disks while placing a large number of data disks into

the low-power state. The ratio of the number of data disks and the number of buffer disks

can largely affect the energy efficiency of the parallel storage system. Ideally, the ratio needs

to be adjusted on the fly in accordance with workload conditions. In this study, I evaluate

impacts of this ratio on energy efficiency of parallel I/O systems.

4.2.2 The DARAW Algorithm

Now I describe the dynamic request allocation algorithm for writes or DARAW, which

was designed in light of the novel disk architecture depicted in Fig. 4.4 DARAW is an on-line

algorithm, which can handle input disk requests without knowing disk access patterns in a

priori. In a parallel I/O system with buffer disks, there is a buffer-disk layer and a data disk

layer. This indicates that the first phase in the DARAW algorithm is to decide a buffer disk

by which a request should be served. After requests are responded by a buffer disk, it is

essential to determine when to transfer the data set from the buffer disk to a corresponding

data disk. Therefore, DARAW contains two parts: a buffer-disk layer scheduling scheme

and a data-disk layer scheduling scheme. Buffer-disk layer scheduling in DARAW focuses on

choosing the most appropriate buffer disks to serve writes. DARAW is an on-line algorithm

that has to make a scheduling decision based on the current status of the system. Therefore,

the decision made by DARAW might not be the optimal one. Scheduling decisions made in

the buffer-disk layer are affected by the status of the data disks. For example, if a targeted

data disk of a write request is active, the request can be responded by the targeted data

disk. In doing so, unnecessary data transfer from the buffer disk to the target data disk can

be eliminated.

57

Figure 4.5: Buffer-disk layer scheduling in the dynamic request allocation algorithm for
writes

58

Fig. 4.5 outlines the buffer-disk layer scheduling scheme in DARAW and Fig. 4.6 shows

. When a write request enters into a buffer-disk queue or is about to be served by a buffer

disk, DARAW can process the request in two ways: the request can be served by the buffer

disk; or the request can be allocated to and served by the corresponding data disk. DARAW

directly allocates the request to the data disk without having the data buffered in the buffer

disk if the data disk is active, thereby keeping the data disk in the active-power state without

turning off the data disk until all requests in its queue are completed. Hence, the requests

targeting at this data disk could be written in the data disk neither going through buffer

disk layer nor affording transition penalty. However, if the targeting data disk of a request is

sleeping when the request needs to be served, DARAW has to either put the requests into the

queue of a buffer disk or have the buffer disk immediately process the request. In this case,

DARAW picks up a buffer disk that contains a list of pending requests targeting at the same

data disk as the current request. The goal of choosing a buffer disk for the current request

in this way is to make the data movement from buffer disks to data disks more efficient. In

other words, buffering requests with the same target data disk into one buffer disk makes

it possible to move data back to the target data disk in a batch manner. If there is no

such a buffer disk, DARAW will pick a buffer disk that has the lightest workload, which is

quantified by the data size of queued requests. In Fig. 4.5, there is a dashed arrow between

”write buffer disk” and ”write data disk” because this is where Data-Disk scheduling works.

To facilitate the development of DARAW, in what follows I define an important scheduling-

control parameter called Sum of Requests in Buffer, which is referred to as SRB throughout

this research. Note that incoming write requests are separated into two groups with different

writing paths which are illustrated in Fig. 4.4. The first processing path, shown by the blue

arrows, illustrate that requests are served by buffer disks and then data sets are transferred

to data disks. The second processing path, shown by red arrows, indicates that requests

are directly handled by the data disk layer. When a request going through the first path is

written on a buffer disk, I say it is buffered. Each data disk has its own SRB which contains

59

the number of buffered requests targeting the data disk. When a request is buffered, the

corresponding SRB will be increased by 1. When requests are transferred from a buffer

disk to a data disk, the corresponding SRB will be decreased. It is clear that requests going

through the second path will not be counted in SRB, because these requests are not buffered.

I set up a threshold value SRBth for SRB to decide when DARAW should transfer requests

to data disks. For example, if the SRB value of a data disk exceeds SRBth, then DARAW

needs to wake up the data disk, to which buffered data should be transferred from buffer

disks.

Algorithm 2 The dynamic request allocation algorithm for writes or DARAW

if targeting data disk is not sleeping then
if targeting data disk is not sleeping then
write the request into targeting data disk

else
if buffer disk i having same targeting requests then
write the request in buffer disk i
Corresponding SRB ++

else
write the lowest load buffer disk

end if
end if

end if
if more than 3 working buffer disks are blank then
turn off 1

end if
while Each Disk j in PSS do
if SRBj >= SRBth then
turn on data disk j
write all requests targeting at j into disk j
turn off data disk i
clear SRBj

end if
end while

Recall that each data disk has a corresponding SRB value to track how many data sets

have been buffered. This parameter plays a vital role in minimizing energy consumption of

parallel disk systems. It is evident that energy overhead incurred by power-state transitions

may diminish energy conserved by placing disks into the low-power state. Keeping track of

60

the number of buffered write requests, DARAW aims to substantially reduce the number of

unnecessary power transitions in data disks.

Once a request is written into a buffer disk, SRB of the target data disk will be increased

by 1. If there are enough number of buffered requests for measured by the SRB value of

a data disk, DARAW writes all the buffered requests into the data disk at one time after

turning the data disk into the active state. To judge whether the SRB value is large enough, I

need to compare SRB of each data disk with a threshold value SRBth. The larger the SRBth

is set, the greater the reduction in the number of power-state transitions, which ultimately

lead to lower energy consumption. Let SRBi denote the SRB value of data disk i ; let SRBij

be the number of requests targeting on data disk i while being buffered in buffer disk j.

SRBj can be derived from SRBij . In other words, SRBj is the sum of SRBij of all the

buffer disks. Thus, we have

SRBj =

n∑
j=1

SRBj
i (4.1)

where n is the number of buffer disks. Note that each SRB value in a parallel I/O system

is updated continuously. In the following sections, i represents the ith buffer disk number; j

represents the jth data disk number; n is number of buffer disks; m is the number of data

disk.

4.2.3 Energy Consumption Analysis

In a process of building an energy consumption model, I consider two types of energy

dissipation in parallel I/O systems with buffer disks. The first one is energy consumption of

disks when they are either in the active or sleep state. Another is energy dissipation induced

by power-state transitions, including disk spinning down and spinning up. When a disk

transitions between power states, the energy consumption penalty and time penalty may

become a dominating factor that negatively affect energy savings. This is because I need to

perform mechanical operations, e.g. speed up the disk from 0 RPM (Round per Minutes) to

its standard working RPM and vice versa.

61

Concretely, I analyze energy consumption of parallel disk systems with DARAW by

developing an energy consumption model as follows. Total energy consumption in a parallel

disk system is comprised of energy consumption for serving all requests in data disks and

buffer disks, idle energy consumption of all data disks and buffer disks, and penalty energy

consumption of spinning up and down operations in all disks. In the case of small writes,

both seek times and rotational delays are very small. Therefore, I model seek time and

rotational delay using their average values. In previous studies, similar approaches were

used to model seek times and rotational delays for small disk requests [113]

Let etotal be the total energy dissipation in a parallel disk system. etotal can be expressed

by Eq. 4.2 below:

etotal = eBA + eBI + eBS + eDA + eDI + eDS + eDO + eDO (4.2)

where eS,B and eI,B are energy consumption of buffer disks when they are in the active and

low-power state; eS,D and eI,D are energy consumption of data disks when they are in the

active and low-power state; eP,B and eP,D are the energy overhead experienced by buffer and

data disks.

The energy consumption of buffer and data disks when they are active can be written

as:

eS,B + eS,D

=
m∑
i=1

l∑
k=1

xk,B,iPA,B,iTA,B,i +
n∑

j=1

l∑
k=1

xk,D,jPA,D,jTA,D,j

=
m∑
i=1

l∑
k=1

(
xk,B,i

(
PA,B,i

(
tSK,k,B,i + tRT,k,B,i +

sk
BB,i

)))
+

n∑
j=1

l∑
k=1

(
xk,D,j

(
PA,D,j

(
tSK,k,D,j + tRT,k,D,j +

sk
BD,j

)))

(4.3)

62

where element xk,B,i is ”1” if request k is responded by the ith buffer disk and is ”0”,

otherwise. Similarly, xk,D,j is ”1” if request k is responded by the j th data disk and is ”0”,

otherwise. TA,B,i and TA,D,j are the service times of requests i and j. TA,B,i is the summation

of tSK,k,B,i, tRT,k,B,i, and sk/BB,i, which are the seek time and rotational latency of the

request, and the data transfer time depending on the data size sij and the transfer rate Bi

of the disk. Similarly, TA,D,j is the summation of tSK,k,D,j, tRT,k,D,j, and sk/BD,j, which are

the seek time and rotational latency of the request, and the data transfer time.

In idle energy consumption largely depends on idle time periods that can be derived

from the serving time and the last request’s finishing time. Eqs. 4.4- 4.6 describe a way of

quantifying energy consumption when disks are idle. The function max() returns the finishing

time of the last request written on a data disk (not a buffer disk). Since all disks working in

parallel, the total working time for all disks would be the value returned by max() multiple

the number of disks. Moreover, the spinning up and spinning down operations penalty time

needs to be subtract from max().

eI,B + eI,D =

m∑
i=1

PI,B,iTI,B,i +

n∑
j=1

PA,D,jTA,D,j (4.4)

TI,B,i =
l

max
k=1

(xk,D,jfk)

−
l∑

k=1

xk,B,i

(
tSK,k,B,i + tRT,k,B,i +

sk
BB,i

)
−

l∑
k=1

(yk,B,U,i × tP,U,B,i + yk,B,D,i × tP,D,B,i)

(4.5)

TI,D,j =
l

max
k=1

(xk,D,jfk)

−
l∑

k=1

xk,D,j

(
tSK,k,D,j + tRT,k,D,j +

sk
BD,j

)
−

l∑
k=1

(zk,B,U,i × tP,U,B,i + zk,B,D,i × tP,D,B,i)

63

(4.6)

The energy overhead from power-state transitions can be calculated by Eqs. 4.7 and 4.8,

where yk,B,U,i, yk,B,D,i, zk,D,U,j, and zk,D,D,j are the number of spinning up and spinning down

times. Ek,B,U,i, Ek,B,D,i, Ek,B,U,j, and Ek,D,D,j are the energy consumed by each power-state

transition.

eP,B =
m∑
i=1

l∑
k=1

yk,B,U,i ×EP,B,U,i

+
m∑
i=1

l∑
k=1

yk,B,D,i ×EP,B,D,i

(4.7)

eP,D =
n∑

j=1

l∑
k=1

zk,D,U,j × EP,D,U,j

+
n∑

j=1

l∑
k=1

zk,D,D,j × EP,D,D,j

(4.8)

4.3 Performance Evaluation

To evaluate the performance of DARAW scheme, I conducted extensive experiments

using various disk I/O traces representing real-world workload conditions. Please note that

the experimental results hereafter largely rely on the small writes. The trace file used in our

simulation contains several important parameters such as arrival time, data size, cylinder

number, targeting data disk, and arrival time. The interval time decides the workload of

one trace, which is calculated by Eq.4.9. Here R is a random number between 0 and 1, λ is

larger than 0, e is the base of natural logarithm and parameter λ is used to control arrival

rate. The larger λ is, the heavier the work load the trace provides.

Interval T ime = −loge(
R/λ) (4.9)

64

Figure 4.6: Traditional Storage System Structure

The function AT(Ri), which is shown in Eq. 4.10, is defined to generate the arrival time

of request i.

AT (Ri) =

⎧⎪⎨
⎪⎩

0, i = 0

AT (Ri−1) + Interval T ime, i ≥ 1

(4.10)

The architecture of baseline algorithm used for comparison is illustrated in Fig.4, which

is essentially the traditional storage system architecture without buffer disks layer. In this

algorithm, I will spin up the targeting disks once a request comes. Similarly, when the

request is completed, the disk will be immediately spun down unless there are more requests

waiting in the queue. Table 4.2 and Table 4.3 summarize the important parameters of two

real world disks (IBM 36z15 Ultrastar and IBM 40GNX Travelstar) used in our experiments.

This group of experimental results plots the trend for baseline algorithms in terms of

average response time, disk transition times and energy consumption. From Fig. 4.7, I can

see that the workload of traces increases significantly asλgrows. For example, 1000 requests

access the storage system in 100,000 milliseconds when λ=0.01 and 50,000 milliseconds when

λ=0.02. The workload when λ=0.01 is around twice of the workload of λ=0.02. An inter-

esting observation from Fig. 4.8 is that the average responding time of higher performance

65

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120
Traces Arrival Time

A
rr

iv
al

 T
im

e
(s

ec
on

d)

Requests # in traces

Lambda=0.01
Lambda=0.02
Lambda=0.03
Lambda=0.04
Lambda=0.05
Lambda=0.06
Lambda=0.07
Lambda=0.08
Lambda=0.09
Lambda=0.1

Figure 4.7: Trace Arrival Time

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2

3

4

5

6

7

8

9
Non−Buffer Storage System Average Response Time (Data Size=100KB)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

on
d)

Lambda

IBM 36z15 Ultrastar
IBM 40GNX TravelStar

Figure 4.8: Non-BUD Average Response Time

66

UltraStar
TravelStar

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Sp
in

 U
p

T
im

es

Figure 4.9: Non-BUD Spin Times

UltraStar
TravelStar

 0

 50,000

 100,000

 150,000

 200,000

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

)

Figure 4.10: Non-BUD Energy Consumption

67

disk (IBM 36z16 Ultrastar) is even worse than IBM 40GNX Travelstar, which is the low

performance disk. The rationale behind is that the spin up and spin down time of Ultrastar

is much higher than Travelstar’s. Since I generate small writes in our experimental results,

the overhead of spin up and spin down are much higher than the time for transmitting data.

In other words, the overhead of spin up and spin down dominates the average response time

of the storage system. As you can see from Fig. 4.9, the total spin up times of Ultrastar disk

are much lower than the spin up times of Travelstar. This is because the spinning up delay of

Ultrastar is much longer than the delay of Travelstar. Therefore, a Ultrastar disk has more

opportunities to receive another request between the time period of starting to spin up and

starting to spinning down. Asλincreases, the average inter-arrival time between each pair of

two continuous requests decreases, which will lead to the decrease of spinning up times of

both Ultrastar and Travelstar. Fig. 4.10 depicts the energy consumption trend for these two

types of disks. Here I have two important observations. First, I find that the overall energy

consumption of Ultrastar is higher than that of Travelstar. Second, asλincreases (i.e. heavy

workload), the energy consumption is reduced for both type of disks.

This group of results is to compare our proposed DARAW with the baseline algorithms

in terms of average response time, disk transition times and energy consumption. These

results are generated based upon the parameters shown in Table 4.5. In this simulation,

I use the low performance disks, IBM 40GNX Travelstar, as both buffer disks and data

disks. As you can see from Fig. 4.11 and Fig. 4.14, whenλis small, DARAW algorithm and

architecture could save significant energy. The energy conservation rate is as high as 50% to

60%. However, whenλis getting larger (i.e. workload is getting heavier), there is not much

space for energy conservation. This is simply because I do not have enough opportunities to

switch disks to low power states when the workload is really heavy.

Fig. 4.13 clearly shows that DARAW can greatly reduce the spinning up and spinning

down times. The entire storage system could benefit from reduced transition times because

frequent transitions will not only consume huge energy but also degrade the performance.

68

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

2

4

6

8

10

12

14

16

18
Energy Consumption Under Different Lambda SRB=5,DataSize=100KB

E
ne

rg
y

C
on

su
m

pt
io

n
(1

03 J
ou

le
)

Lambda

Non−Buffer
Buffer#=5
Buffer#=15
Buffer#=40
Buffer#=80

Figure 4.11: BUD Travelstar Energy Consumption

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

25

30
Average Response Time Under Different Lambda SRB=5,DataSize=100KB

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

on
d)

Lambda

Non−Buffer
Buffer#=5
Buffer#=15
Buffer#=40
Buffer#=80

Figure 4.12: BUD Travelstar Average Response Time

69

DARAW
NonBuffer

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

T
ot

al
 S

pi
nn

in
g

U
p

T
im

es

Figure 4.13: BUD Travelstar Spin Times

 0%

 20%

 40%

 60%

 80%

 100%

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

E
ne

rg
y

C
on

se
rv

at
io

n
R

at
e

%

Figure 4.14: BUD Travelstar Energy Conservation Rate

70

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

20

40

60

80

100

120

140

160
Energy Consumption Under Different SRB=5,DataSize=100KB

E
ne

rg
y

C
on

su
m

pt
io

n
(1

03 J
ou

le
)

Lambda

Non−Buffer
Buffer#=5
Buffer#=15
Buffer#=40
Buffer#=80

Figure 4.15: BUD Ultrastar Energy Consumption

Fig. 4.11 and Fig. 4.12 show the impact of buffer disk number. In Fig. 4.12, I conclude that

the more buffer disks I use, the more bandwidth I can achieve. Consequently, the average

response time is decreased. However, Fig. 4.11 also shows that the energy consumption will

increase due to large number of buffer disks. There is always a tradeoff between performance

and energy conservation. A small number of buffer disks may limit the bandwidth and

degrade the performance and a large number of buffer disks will consume more energy. In

the worst case, the request waiting queue may overflow when requests’ coming speed is faster

than the storage systems’ writing speed. When the workload is light (λ=0.01), DARAW can

significantly improve both energy conservation rate and average response time compared

with the traditional storage systems. However, the overall performance will be degraded

when workload is very high for small number of buffer disks. To tackle this problem, we

can add more buffer disk thereby increasing the bandwidth and improve the performance.

Correspondingly, the energy consumption will be increased as well.

71

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

25

30

35
Average Response Time Under Different Lambda SRB=5,DataSize=100KB

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

on
d)

Lambda

Non−Buffer
Buffer#=5
Buffer#=15
Buffer#=40
Buffer#=80

Figure 4.16: BUD Ultrastar Average Response Time

DARAW
NonBuffer

 0%

 100%

 200%

 300%

 400%

 500%

 600%

 700%

 800%

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

T
ot

al
 S

pi
nn

in
g

U
p

T
im

es

Figure 4.17: BUD Ultrastar Spin Times

72

 −80%

 −60%

 −40%

 −20%

 0%

 20%

 40%

 60%

 80%

 100%

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

E
ne

rg
y

C
on

se
rv

at
io

n
R

at
e

%

Figure 4.18: BUD Ultrastar Energy Conservation Rate

This group of experimental results are very similar with the previous results expect that

we use high performance disks, IBM 36z15 Ultrastar, as both buffer disks and data disks.

Fig. 4.15 shows the similar energy consumption trends to Fig. 4.15. The energy consumption

trend goes up even faster in Fig. 4.15 because the spinning up and spinning down overhead

of IBM 36z15 Ultrastar is even higher than the IBM 40GNX Travelstar’s overhead. Whenλis

really high, DARAW even consumes more energy than traditional strategy. However, for low

work load (λ=0.01), DARAW is able to conserve roughly about 50% energy compared with

the traditional strategy. In addition, the average response time and spinning up times are also

reduced. Fig. 4.16 tells us that it is not wise to have large number of buffer disks in DARAW

since more buffer disks consume more energy and increase the budget. Actually, whenλis

around 0.01, 1 to 5 buffer disks could serve the requests with impressing performance. That

indicates that DARAW will likely be accepted by the market because it will not cost lots of

money to purchase many buffer disks.

In this simulation results, I use the high performance disks, IBM 36z15 Ultrastar as

buffer disks and low performance disks, IBM 40GNX Travelstar as the data disks. Since

I found that in DARAW storage system architecture, buffer disk is the data transmitting

73

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

25

30

35

40
Energy Consumption Under Different SRB=5,DataSize=100KB

E
ne

rg
y

C
on

su
m

pt
io

n
(1

03 J
ou

le
)

Lambda

Non−Buffer
Buffer#=1
Buffer#=5
Buffer#=10
Buffer#=15

Figure 4.19: BUD Ultrastar Data Disk Travelstar Buffer Disk, Average Response Time

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

25

30

35

40
Average Response Time Under Different Lambda SRB=5,DataSize=100KB

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

on
d)

Lambda

Non−Buffer
Buffer#=1
Buffer#=5
Buffer#=10
Buffer#=15

Figure 4.20: BUD Ultrastar Data Disk Travelstar Buffer Disk, Spin Times

74

DARAW
NonBuffer

 0%

 100%

 200%

 300%

 400%

 500%

 600%

 700%

 800%

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

T
ot

al
 S

pi
nn

in
g

U
p

T
im

es

Figure 4.21: Ultrastar Data Disk Travelstar Buffer Disk, Spin Times

 0%

 20%

 40%

 60%

 80%

 100%

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

E
ne

rg
y

C
on

se
rv

at
io

n
R

at
e

%

Figure 4.22: Ultrastar Data Disk Travelstar Buffer Disk, Energy Conservation Rate

75

bottleneck, so I come up with an idea that instead of adding more disks as the same as data

disks into buffer layer, I add few higher performance disks into buffer disks. This strategy

needs to be applied very carefully because higher performance also means higher energy con-

sumption rate and higher overhead. Hence, I just add very small number high performance

buffer disks in the storage system to avoid obvious energy consumption increasing cause by

high performance disks. From Fig. 4.19 4.20, and 4.21, I can see that the average response

time is reduced by more than 60% if I add one high performance buffer disk and spinning up

times are reduced by more than 66%. The energy conservation rate is almost 60% as well.

Figs. 4.11 to 4.22 show that DARAW works well for parallel I/O systems with both high

performance disks and mobile disks. DARAW achieves promising results when the arrival

rate is low. When the request arrival rate rises, I can either use high-performance hard drives

or add more buffer disks to boost I/O performance. If the arrival rate is high, all data disks

are busy serving requests, leaving no opportunity to save energy. As the SRB parameter

grows, DARAW is given a greater window of opportunity to conserve energy. However, if

the SRB is too large, it may cause a ”traffic jam” inside the parallel I/O system with buffer

disks. In the following part, I am going to present the result I collected from our simulation

with different SRC value.

In the part of simulation, I am going to present how the system performance will be affect

under different SRB. Figs. 4.23, 4.24, 4.25, 4.26, show the energy consumption and average

response time of a parallel disk system with DARAW and the same disk system without

DARAW. Because non-buffer disk storage system has no buffer disks and all requests will

go to data disks directly, neither response time nor energy consumption will be affect by

changing SRB. The results plotted in Fig. 4.23 and Fig. 4.25 indicate that when I increase

SRB, more energy can be saved. However, since the simulation I did in Fig. 4.25 has more

buffer disks, DARAW needs a larger SRB than in Fig. 4.23 to make its energy consumption

less than traditional way. The results were expected since when the SRB grows, the system

can write more requests into data disks with reduced number of power state transitions.

76

1 2 3 4 5 6 7 8 9 10

0.8

1

1.2

1.4

1.6

1.8

2

IBM 36Z15 Ultrastar
SRB 1 to 10, lamda = 0.01, Data Size = 100KB, Buffer Disk Number = 5

E
ne

rg
y

C
on

su
m

pt
io

n
(1

05 J
O

U
LE

)

SRB

BUD System
Non−Buffer Disk System

Figure 4.23: IBM 36Z15 Ultrastar. Energy consumption

However, I also observe that when the SRB equals to 1, the energy consumption is even

greater than the disk system without DARAW. This interesting tend can be explained as

follows. Our parallel disk system has a buffer-disk layer that also consumes energy. If there

is insufficient number of requests written into a data disk when a power-state transition

occurs, energy conserved cannot offset energy overhead introduced by the buffer disk. When

I did the experiment with a trace generated by increasing values of λ, I observe that energy

consumptions in both the non-DARAW parallel disk system and the system with DARAW

decrease. Note that all the traces have the same number of disk requests.

This implies the fact that whenλis high, all requests are arriving at the system within a

shorter period of time, making all the disks stay in the active state for a shortened time inter-

val. This is the reason behind the result that energy consumption of the system with DARAW

whenλis set to 0.02 is slightly smaller than that of the system whenλis 0.01. However, the

power consumption of the non-DARAW disk system is significantly smaller whenλis 0.01

as compared toλ= 0.02. Once the arrival rate goes up, each data disk in the non-DARAW

77

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

IBM 36Z15 Ultrastar
SRB 1 to 10, lamda = 0.01, Data Size = 100KB, Buffer Disk Number = 5

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

on
d)

SRB

BUD System
Non−Buffer Disk System

Figure 4.24: IBM 36Z15 Ultrastar. Average response time

1 2 3 4 5 6 7 8 9 10

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

IBM 36Z15 Ultrastar
SRB 1 to 10, lamda = 0.02, Data Size = 100KB, Buffer Disk Number = 20

E
ne

rg
y

C
on

su
m

pt
io

n
(1

05 J
O

U
LE

)

SRB

BUD System
Non−Buffer Disk System

Figure 4.25: IBM 36Z15 Ultrastar. Energy consumption

78

1 2 3 4 5 6 7 8 9 10
6.5

7

7.5

8

8.5

9

9.5

IBM 36Z15 Ultrastar
SRB 1 to 10, lamda = 0.02, Data Size = 100KB, Buffer Disk Number = 20

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

on
d)

SRB

BUD System
Non−Buffer Disk System

Figure 4.26: IBM 36Z15 Ultrastar. Average response time

system has greater probability to receive a request when it is working. Thus, the number

of power-state transitions can be noticeably reduced. Whenλis set to 0.02, there is less of

an opportunity to simultaneously save energy and satisfy response times. When I increase

the number of buffer disks from 5 to 20, DARAW can conserve energy while guaranteeing

reasonably short response times.

An appealing result shown in Fig. 4.23 to Fig. 4.26 is that compared with the parallel

I/O system without DARAW, our approach not only achieves significant energy savings, but

also reduces response times. This is because whenλis small (e.g., 0.01), data disks in the non-

DARAW parallel I/O system frequently spin up to serve coming requests then immediately

spin down, thereby introducing an increased power-transition overhead that leads to longer

response times. In DARAW, the response time is the time when a request is written in

to a data or buffer disk. Since buffer disks can serve coming requests when data disks are

sleeping, the response time can be noticeably shortened.

79

1 2 3 4 5 6 7 8 9 10

0.8

1

1.2

1.4

1.6

1.8

2

IBM 40GNX Travelstar
SRB 1 to 10, lamda = 0.01, Data Size = 100KB, Buffer Disk Number = 5

E
ne

rg
y

C
on

su
m

pt
io

n
(1

05 J
O

U
LE

)

SRB

BUD System
Non−Buffer Disk System

Figure 4.27: IBM 40GNX Travelstar. Energy Consumption

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

IBM 36Z15 Ultrastar
SRB 1 to 10, lamda = 0.01, Data Size = 100KB, Buffer Disk Number = 5

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

on
d)

SRB

BUD System
Non−Buffer Disk System

Figure 4.28: IBM 40GNX Travelstar. Average Response Time

80

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

IBM 40GNX Travelstar
SRB 1 to 10, lamda = 0.02, Data Size = 100KB, Buffer Disk Number = 15

E
ne

rg
y

C
on

su
m

pt
io

n
(1

05 J
O

U
LE

)

SRB

BUD System
Non−Buffer Disk System

Figure 4.29: IBM 40GNX Travelstar. Energy Consumption

1 2 3 4 5 6 7 8 9 10
1.5

2

2.5

3

3.5

4

IBM 36Z15 Ultrastar
SRB 1 to 10, lamda = 0.02, Data Size = 100KB, Buffer Disk Number = 15

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

on
d)

SRB

BUD System
Non−Buffer Disk System

Figure 4.30: IBM 40GNX Travelstar. Average Response Time

81

There is a very interesting observation concerning the average response time whenλis

fixed to 0.02 and the number of buffer disks is 20. If I use a small SRB, some buffer disks will

transition many times to serve the large amount of requests in buffer disks. When the SRB

value is increased, buffer disks tend to serve more write requests while keeping data buffered

until the next appropriate requests without spinning down. Hence, when SRB is larger,

DARAW can save more energy. When SRB is too high, however, an increasing number of

requests with the same target data disk are more likely to be served by one buffer disk. This

means the requests will be jammed in buffer disk because of the high value of SRB.

IBM 40GNX is a hard disk whose performance is not as high as IBM 36Z1, but its

spinning penalty is much smaller. I conducted extensive experiments using IBM 40GNX to

evaluate the impacts of DARAW on mobile disks like IBM 40GNX. Experimental results

shown in Fig. 4.27 to Fig. 4.30illustrate that DARAW can significantly reduce energy dissi-

pation of parallel I/O systems with mobile disks while providing reasonably short response

times.

The trends in energy consumption comparisons in Fig. 4.27 to Fig. 4.30 are similar to

those in Fig. 4.23 to Fig. 4.26. Interestingly, when it comes to mobile disks such as IBM

40GNX, significant energy savings can be achieved with a small number of buffer disks. For

example, I only need 15 buffer disks, as compared to 20 buffer disks when the IBM 36Z15

disks are used, to save energy and maintain small response times.

It is interesting to observe that since IBM 40GNX does not perform as fast as IBM

36Z15, buffer disks do not experience many power-state transitions under light workload

conditions. Therefore, the average response time is short when SRB is small. When SRB

is in an ideal range, average response time is acceptable. Once SRB becomes too large, the

response time will increase as incoming requests are stuck in buffer queues for longer time

intervals.

Fig. 4.23 to Fig. 4.30 show that DARAW works well for parallel I/O systems with both

high performance disks and mobile disks. DARAW achieves promising results when the

82

arrival rate is low. When the request arrival rate rises, I can either use high-performance

hard drives or add more buffer disks to boost I/O performance. If the arrival rate is high,

all data disks are busy serving requests, leaving no opportunity to save energy. As the SRB

parameter grows, DARAW is given a greater window of opportunity to conserve energy.

However, if the SRB is too large, it may cause a ”traffic jam” inside the parallel I/O system

with buffer disks.

4.4 Summary

In this research, I first presented the design of parallel I/O systems with buffer disks.

To conserve energy in parallel I/O systems serving write requests, I developed an algorithm

- dynamic request allocation algorithm for writes or DARAW - to energy efficiently allocate

and schedule disk requests. This goal is achieved by making use of buffer disks in parallel

I/O systems to accumulate small writes to form a log, which can be transferred to data

disks in a batch way. DARAW is able to improve parallel I/O energy efficiency by the virtue

of employing a small number of buffer disks to serve a majority of write requests, thereby

keeping a large number of data disks in low-power state for longer period times. For each

data disk in a parallel I/O system, DARAW keeps track of an important parameter called

Sum of Requests in Buffer or SRB, which is the number of buffered requests targeting the

data disk. The concept of SRB makes it possible to determine how many buffered write

requests should DARAW transfer into the corresponding data disk at one time. When SRB

is increased, energy savings and response times may both increase. When response times

increase due to high workload, I can either use high-performance hard drives or add more

buffer disks to boost I/O performance. To quantify the energy efficiency and performance

of DARAW, I carried out experiments using parallel I/O systems with buffer disks. In

order to analyze how DARAW works under different workload and different types of hard

disks, I did extensive experiments to prove that DARAW could significantly conserve energy

and shorten average response time when the workload is low. Experimental results show

83

that DARAW is conducive to reducing energy dissipation in parallel disk systems while

maintaining reasonably low response times. Compared to parallel I/O systems with high-

performance disks, parallel I/O systems with mobile disks can achieve better energy efficiency

by the virtue of DARAW.

In this research, I focused on parallel I/O systems with homogeneous disks. Currently,

I am developing write-buffer schemes to improve energy efficiency of parallel I/O systems

with heterogeneous disks.

If workload is so high that it is not necessary to turn off any disk to conserve energy,

no strategy is better than keeping all disks on. If workload is low, it is not worthwhile

neither spinning up and spinning down for each request, nor keep all disks on to wait coming

requests.

84

Table 4.1: Definitions of Notation
Notation Definition
SRBj Sum of Request targeting at the jth data disk in all buffer disk

SRBj
i Sum of Requests targeting at the jth data disk in ith Buffer disk

etotal total energy consumption of the whole storage system
eS,B energy consumption of buffer disk in active state(serving)
eS,D energy consumption of data disk in active state(serving)
eI,B energy consumption of buffer disk in lower-power state
eI,D energy consumption of data disk in lower-power state
eP,B energy overhead or penalty experienced by buffer disk
eP,D energy overhead or penalty experienced by data disk
xk,B,i 1 if request k is responsed by the ith buffer disk, 0 otherwise
xk,D,j 1 if request k is responsed by the jth data disk, 0 otherwise
PA,B,i active power of the ith buffer disk
PA,D,j active power of the jth data disk
TA,B,i total service time of the ith buffer disk
TA,D,j total service time of the jth data disk
tSK,k,B,i seek time of request k on the ith buffer disk
tSK,k,D,j seek time of request k on the jth data disk
tRK,k,B,i rotational latency of request k on the ith buffer disk
tRK,k,D,j rotational latency of request k on the jth data disk

Sk the data size of request k
BB,i data transfer bandwidth of the ith buffer disk
BD,j data transfer bandwidth of the jth data disk
yk,B,U,i spin up times of the ith buffer disk to finish all k requests
yk,B,D,i spin down times of the ith buffer disk to finish all k requests
zk,D,U,j spin up times of the jth data disk to finish all k requests
zk,D,D,j spin down times of the jth data disk to finish all k requests
Ek,B,U,i energy consumption of spinning up the ith buffer disk
Ek,B,D,i energy consumption of spinning down the ith buffer disk
Ek,D,U,j energy consumption of spinning up the jth data disk
Ek,D,U,j energy consumption of spinning down the jth data disk

e the base of natural logarithm
R a random number
λ rate parameter in exponential distribution

85

Table 4.2: IBM 36z15 Ultrastar
System Parameter Values

Rotations Per Minute 10000 RPM
Working Power 13.5W
Standby Power 2.5W
Spin up Energy 135 Joule

Spin down Energy 13 Joule
Spin up Time 10.9 sec

Spin down Time 1.5 sec
Transfer Rate 52.8 MB/s

Table 4.3: IBM 40GNX Travelstar
System Parameter Values

Rotations Per Minute 5400 RPM
Working Power 3 W
Standby Power 0.25 W
Spin up Energy 8.7 Joule

Spin down Energy 0.4 Joule
Spin up Time 3.5 sec

Spin Down Time 0.5 sec
Transfer Rate 25 MB/s

Table 4.4: Experimental Values for Baseline Experiment

System Parameter Values
Disk Type IBM 36Z15 and IBM 40GNX

λ 0.010.10
Data Size/request 100KB

SRB 5
Buffer Disk Amount 0 (NonBuffer Disk System)
Data Disk Amount 100

Trace Size 1000 requests

Table 4.5: Experimental Values for Both Buffer disks and Data Disks are low performance
disks

System Parameter Values
Disk Type IBM 40GNX Travelstar

λ 0.010.10
Data Size/request 100KB

SRB 5
Buffer Disk Amount 0, 5, 15, 40,80
Data Disk Amount 100

Trace Size 1000 requests

86

Table 4.6: Experimental Values for Both Buffer disks and Data Disks are high performance
disks

System Parameter Values
Disk Type IBM 36Z15 Ultrastar

λ 0.010.10
Data Size/request 100KB

SRB 5
Buffer Disk Amount 0 , 5, 15, 40, 80
Data Disk Amount 100

Trace Size 1000 requests

Table 4.7: Experimental Values for High Buffer disks And Low Data Disks

System Parameter Values
Disk Type IBM 36Z15 Ultrastar IBM 40GNX Travelstar

λ 0.010.10
Data Size/request 100KB

SRB 5
Buffer Disk Amount 0, 1,5, 10, 15
Data Disk Amount 100

Trace Size 1000 requests

87

Chapter 5

An Energy-Efficient Cluster Storage System

5.1 Introduction

Cluster storage systems - essential building blocks in many high-performance comput-

ers - have been widely adopted to support data-intensive applications running on high-

performance computing platforms. Optimizing energy consumption in cluster storage sys-

tems has strong impacts on the cost of backup power-generation and cooling equipment

in cost-effective cluster computing infrastructures. I was motivated to address the energy

saving issues in cluster storage systems, because a significant fraction of the operation cost

of data centers is due to energy consumption in storage systems. For example, the average

power consumption of TOP 10 supercomputing systems is 1.32 Mwatt, in which a large por-

tion is contributed by storage systems [5]. Dell Texas Data Center reported that 37 percent

of the energy consumed by supercomputers is cost by storage systems [4]. In addition to

emerging high-performance disk drives with high power needs, increasing storage require-

ments imposed by data-intensive applications make it desirable to design energy-efficient

cluster storage systems. Several novel techniques proposed to conserve energy in storage

systems include dynamic power management schemes [27] [66], power-aware cache man-

agement strategies [118], power-aware prefetching schemes [105], software-directed power

management techniques [107], redundancy techniques [87], and multi-speed settings [43]

[46] ‘[60]. A few innovative techniques have been developed to substantially reduce energy

dissipation in traditional server clusters [86] [55] [18] [13] [31] [32]. However, the research

on the improvement of energy efficiency in cluster storage systems is still in its infancy. It

is imperative to develop new cluster storage systems that can exhibit high energy efficiency

and I/O performance for high-end data-intensive computing.

88

In this Chapter, I detail an approach to implementing an energy-efficient cluster storage

system called ECOS. To achieve high aggregate I/O bandwidth under heavey workloads, I

design a clsuter storage system where each I/O node embraces multiple disks - one buffer

disk and several data disks. The basic idea behind ECOS is to redirect disk requests from

data disks to buffer disks within I/O nodes. Redirecting requests to buffer disks is a driving

force of energy saving, because I/O load is skewed toward buffer disks so that data disks

can be placed into standby in a long time period to conserve energy. Spinning down/up

disks inevitably introduce extra energy overhead. As such, adding a buffer disk in each I/O

node aims to reduce the number of disk spin downs/ups. To balance I/O load among I/O

nodes, ECOS attempts to redirect disk requests from a heavily loaded I/O node into other

I/O nodes with light load.

The ECOS storage system treats read and write requests differently. Let us first outline

the approach to processing reads in ECOS. Then, I summarize how ECOS handles writes

in an energy efficient way. Given an I/O node with one buffer disk and multiple data

disks, ECOS dynamically fetches popular blocks from data disks into the buffer disk. The

prefetching strategy in ECOS was developed in the recognition of data access history and

power modes of disks. Since read requests can be serviced from both buffer disks or data

disks, a consistency mechanism was created in ECOS to ensure that the data cached in

the buffer disks is consistent with the original data stored in the data disks. Each buffer

disk performs as a cache of popular data and an LRU (Least-Recently-Used) policy was

implemented as a replacement scheme. If a replace data is clean, it can be simply discarded.

Otherwise, the data must be written back to its home data disk.

One of our recent studies was focused on an algorithm - DARAW - handling writes in

parallel storage systems with buffer disk [97]. Having been extended to deal with writes in

the context of cluster storage systems, the DARAW algorithm was implemented as a core

component in the ECOS system. When it comes to large write requests (e.g., larger than

500MB), data should be be issued directly to data disks. In contrast, small write requests

89

have to be sent to an active buffer disk. Once the data of a write request is transferred

to buffer or data disks, an acknowledgement is returned to an application that issued the

request.

When a buffer disk in an I/O node is overloaded, then the corresponding data disks

within the I/O node need to be spinned up to balance I/O accesses. The challenging issue

in this component of the research is to determine the optimal number of standby data disks

to be activated in respond to high I/O traffic. The goal is to spin up as few data disks as

possible, keeping the utilization of each disk below 100 percent.

MAID [21], PDC [85], [110], and BUD [97] [74] - four existing energy-efficient parallel

disk systems - are conducive to achieving high energy efficiency with a small fraction of I/O

delays. Our ECOS system is fundamentally different from these parallel storage systems,

because ECOS is a cluster storage system with loosely-coupled parallel disks cross multiple

I/O nodes whereas the other four systems contain tightly-coupled parallel disks (e.g., disk

arrays).

Compared with other disk energy conservation techniques, the ECOS cluster storage

sytsem has the following three unique features.

• First of all, it has no need to modify data-intensive applications when they are ported

from traditional cluster storage systems to ECOS.

• Second, there is no necessity to add extra hardware such as flash drives into cluster

storage systems.

• Third, ECOS maintains an acceptable level of I/O performance by the virtue of parallel

buffer disks across multiple I/O nodes.

A prototype of ECOS was implemented in a Linux cluster, where each I/O node contains

one buffer disk and two data disks. The power manager in ECOS relies on a system call

in the Linux kernel to spin down and spin up disk drives. Experimental results show that

ECOS improves the energy efficiency of traditional cluster storage systems without using

buffer disks. Adding one extra buffer disk into each I/O node seemingly has negative impact

90

on energy saving. Interestingly, our results indicate that ECOS equipped with extra buffer

disks is more energy efficient than the same cluster storage system without the buffer disks.

The implication of the experiments is that using existing data disks in I/O nodes to perform

as buffer disks can achieve even higher energy efficiency.

In summary, the main contributions of this study are:

• I designed an energy-efficient disk architecture to reduce energy dissipation in cluster

storage disk systems;

• I developed a disk power model for cluster storage systems; and

• I implemented an energy-efficient cluster storage system that consists of modules like

disk request processing, data movement, data replacement, and power management for I/O

nodes.

The remainder of this Chapter is organized as follows. After the presentation of an

energy-efficient architecture for cluster storage systems, Section 5.2 details our evaluation

methodology and a testbed used to implement ECOS. Section 5.3 presents experimental

results. Finally, Section 5.4 concludes this research with future research directions.

5.2 Design and Implimentation of ECOS

A cluster storage system is comprised of an array of I/O nodes connected by a high-

speed network. In recent years, most research efforts on reducing energy consumption in

parallel disk systems. However, the issue of using buffer-disk architectures to reduce energy

consumption in cluster storage systems is not well investigated. Our long-term goal is to

develop fundamental techniques to save energy of large-scale cluster storage systems. The

objective of this study, which is paving a way towards that goal, is to design and implement

the ECOS system - an energy-efficient cluster storage system in which disk request process-

ing, data movement/placement strategies, power management, and prefetching schemes are

holistically integrated to save energy. The rationale for this study is that the development of

91

ECOS will promote more energy-efficient resource management techniques for storage sys-

tems in general and cluster storage systems in particular. In this section, I first detail design

issues including the system architecture and hardware configuration of the ECOS storage

system. Then, I describe various implementation issues in ECOS.

5.2.1 Detailed Design

The architecture of ECOS (see Fig. 5.1) is an extension of the architecture of traditional

cluster storage systems, where each I/O node manages one local disk. Like the traditional

cluster storage systems, ECOS has large files striped across a number of I/O nodes connected

through a high-speed network. Since each I/O node in ECOS contains a buffer disk and mul-

tiple data disks, files might be distributed across a number of disks within one I/O node.

All the compute nodes in the system can directly access I/O nodes through the nextwork.

Hardware Configurations. Disk I/O parallelisms can be provided in forms of inter-

request and intra-request parallelism. Inter-request parallelism allows multiple independent

requests to be served simultaneously by multiple I/O nodes in ECOS, whereas intra-request

parallelism enables a single disk request to be processed by multiple I/O nodes in parallel.

A parallelism degree of a data request is the number of I/O nodes to which the requested

data is striped. In the design of ECOS, I consider two different configurations to deal with

inter-request and intra-request I/O parallelisms, respectively.

The first ECOS configuration - aiming to support inter-request parallelisms - consists

of four major components: a RAM buffer residing in compute nodes, m buffer disks, n data

disks, and an energy-aware buffer-disk controller. The RAM buffer with a size ranging from

several megabytes to gigabytes is residing in the main memory. The buffer-disk controller

carefully coordinates disk request processing, data movement/placement strategies, data

striping, power management, and prefetching schemes. Please refer to the next subsection

for details of how the controller is developed. It is to be noted that in most cases, the number

92

Network Interface

CPU

Memory

Data Disks

…..

metadata

Buffer Disk

CPU

Memory

Data Disks

…..

metadata

Buffer Disk

CPU

Memory

Data Disks

…..

metadata

Buffer Disk

…………..
….

I/O Server I/O Server I/O Server

Compute Node

CPU

Memory

Data Disk

Compute Node

CPU

Memory

Data Disks

Compute Node

CPU

Memory

Data Disks

…………………..

Figure 5.1: The architecture of ECOS - an energy efficient cluster storage system. Each I/O
node in ECOS contains a buffer disk and multiple data disks. Large files are striped across
a number of I/O nodes connected through a high-speed network. Alternatively, large files
might be distributed across a number of data disks within one I/O node.

93

of buffer disks m is smaller than the number of data disks n, and values of m and n are

independent of one another for workloads with inter-request parallelisms.

The second ECOS configuration is designed for disk workloads with intra-request par-

allelisms. This configuration is similar to the previous one except that all the data disks in

ECOS are conceptually partitioned into k groups of parallel disks each of which has m disk

drives. Given m buffer disks, the second configuration is capable of serving disk requests

with parallelism degrees as high as up to m.

There are two general ways of placing buffer disks. In the first approach, each I/O node

only contains a single buffer disk serving all the other data disks within the I/O node. Al-

ternatively, all the buffer disks can be grouped and placed into one or more I/O nodes. I/O

nodes containing only buffer disks are called buffer I/O nodes; I/O nodes equipped with data

disks are referred to as data I/O nodes. Comparing these two approaches, I advocate for the

first one and the reason is two-fold. First, large popular files can be striped across multiple

buffer disks residing in multiple I/O nodes. In doing so, any I/O node is most unlikely to

become a performance bottleneck. Second, a buffer disk within an I/O node can dedicate

to data disks within the same I/O node, eliminating unnecessary communications between

the buffer disk and data disks in other I/O nodes. Enforcing buffer disks to serve data disks

within the same I/O node can reduce data transfers among I/O nodes through the network.

As a result, evenly placing buffer disks across all the I/O node not only can achieve high

aggregate I/O bandwidth, but also can improve network performance by reducing network

traffic.

Buffer Disk Controller. The buffer disk controller, a centerpiece in the ECOS storage

system, critically affects the overall performance and energy efficiency of I/O nodes. There-

fore, I address several challenging issues related to the design of an energy-aware buffer disk

controller. The buffer disk controller be designed and implemented to achieve the following

specific goals. First, the buffer disk controller aims to minimize the number of active buffer

94

disks while maintaining reasonably quick response times for disk requests. Second, the con-

troller has to energy-efficiently deal with read and write requests issued to I/O nodes. Third,

the controller must move data from buffer disks to home data disks in an energy-efficient

way. Fourth, the controller is intended to incorporate an energy-aware prefetching strategy

to dynamically fetch the most popular data into buffer disks, thereby allowing most data

disks to be in the sleep mode to save energy. Design issues of the energy-aware buffer disk

controller are discussed as follows.

Disk Request Processing. Recall that ECOS treats large and small writes in different

ways. Large write requests are issued directly to data disks, whereas small write requests

may be redirect to the corresponding active buffer disk if the home data disk is placed in

standby. Ideally, the buffer disk handling the small write requests and their home data disks

should reside in the same I/O node. If requested data of a read operation is not in the RAM

buffer in a compute node, the request must be processed by I/O nodes in ECOS. In this

case, the result data of the request must be returned from one or more buffer disks if the

data is residing in the buffer disks. Otherwise, the request will have to be passed on to the

home data disks. If the home data disks are in the active mode, then the read request can

be quickly responded. In cases where the corresponding data disks are in the standby state,

it is not an energy-efficient way to immediately wake up the standby data disks to handle

a single read request. Immediately spinning up data disks upon the arrival of a single read

request ultimately result in a large number of power state transitions while shortening idle

times.

To provide energy savings, ECOS aims to judiciously change power states of data disks

to handle read requests. To make the best tradeoffs between energy conservation and quick

response times, the power management strategy in ECOS make an effort to enable data

disks to stay in the standby state for longer periods of time by clustering read requests to-

gether and providing long disk idle times. This goal is achieved by delaying the responses

95

of incoming read requests if their home data disks are standby. Specifically, I consider the

following two scenarios when . First, if read requests arrive to data disks at the time when

the data disks are being accessed by other disk requests, the newly arrived read requests

will be inserted to the waiting queues of data disks. Second, when read requests arrive to

data disks that are placed in the standby mode, the processes of the read requests are de-

layed for a certain amount of time as long as the requestsquality of service can be guaranteed.

Data Movement Strategies. There are two advantages of buffering data first in buffer

disks and moving the data to data disks later on. First, only buffer disks need to stay active

to efficiently process a large number of write requests during bursty periods. Active buffer

disks make it possible for data disks to be kept in the standby state for long period of time

to conserve energy. Second, when buffer disks are sitting idle or less busy, buffered data can

be moved from buffer disks to home data disks. Thus, busty access patterns are created for

data disks in a way many disk requests are clustered together. The data disks can effectively

handle many data requests issued from the buffer disks during the active periods.

Data movement strategies determine conditions under which data movement processes

are initiated by spinning up home data disks. Data movement strategies play an impor-

tant role in the ECOS storage system; therefore, I designed a data movement mechanism

to energy-efficiently move data from buffer disks back to home disks. Our initial design is

straightforward. Thus, buffered data sets will be moved back to their home data disks when

buffer disks are sitting idle. To determine whether a buffer disk is sitting idle, I simply detect

if there is any request waiting in the processing queue of the buffer disk. This data move-

ment strategy is suitable for disk traffic where there is a period of long idle time between

two subsequent request bursts.

Data Placement. Data placement, allocation of all popular files into buffer disks, can

96

significantly affect energy efficiency and performance of ECOS. To fully exploit the capac-

ity of parallel I/O, researchers have extensively investigated data placement algorithms for

parallel disk systems. Conventional wisdom in the design of data placement mechanisms is

to minimize a cost function while allocating data onto an array of independent disks. Most

cost functions were focused on performance metrics (e.g., mean response time), ignoring the

issue of energy saving. It is appealing to design data placement strategies to achieve high

energy efficiency and quick response times in the context of cluster storage systems.

Son et al. investigated disk layout algorithms to reduce energy consumption in disks

[104]. Their algoirthms decide the most appropriate set of disks to store a given disk-resident

array, allowing other disks to run in a low speed. Son’s disk layout approach is capable

of reducing disk systems supporting array-based scientific applications. To apply et al.’s

algorithms, one need to modify the source code of applications to make the applications be

aware of disk layout information. Our data placement scheme are orthogonal to the existing

strategy in that combining ours with Son et al.’s disk layout approach can further reduce

energy consumption caused by array-based scientific applications.

Let us consider the problem of moving q popular files f1, f2, fq from data disks into

m buffer disks of in ECOS. The data placement mechanism relies on an online access rate

monitor, which estimates the mean access rate λi of file fi (1 ≤ i ≤ q). Compared with large

files, small files usually have higher access rates. The data placement issue in ECOS can be

represented as a partition problem of a set F = 1, · · · , m designated as {F1, F2, · · · , Fm},
where Fj is a set of files placed in the buffer disk of the jth I/O node. The data placement

process aims to solve the partitioning problem while enhancing energy efficiency and reducing

I/O response time. The data placement mechanism helps in improving I/O perofrmance by

fetching files with similar access rates into the same buffer disk. More importantly, this

mechanism is energy efficient because buffer disks holding files with low access rates might

be placed into the standby mode to conserve energy.

97

The data placement algorithm performs. First, all the popular files in F are sorted

in descending order of their access rates λi. Next, the algorithm assigns a contiguous files

of F to the buffer disk in an I/O node until its utilization reaches a threshold. This file

assignment process is repeatedly executed until all files in F are placed into buffer disks.

The data placement mechanism can be periodically accutated to place the most popular

data in buffer disks. Choosing the most appropriate value for the period largely depends on

dynamically changing I/O workloads.

5.2.2 Implementation Issues

The software modules of ECOS were built in Ubuntu 8.04, where the Linux kernel ver-

sion is 2.6.24. I chose to use Linux as the runtime environment, because Linux provides

system calls to spin down/up disks.

Data Transfer. The communication module that is in charge of data transfer among

I/O nodes and compute nodes in the tested cluster was implemented using the TCP/IP

protocol. In each I/O node, there is a daemon process that performs the following functions.

First, upon the arrival of an incoming request sent from a compute node, the daemon process

creates a process receiving data from the compute node while waiting for other incoming

requests. Second, the daemon checks the power status of all the disks within the I/O node.

Third, the daemon process coordinates with the data movement module to move buffered

data back to home data disks.

Log Disks. Evidence from previous studies suggested that seek times of small disk re-

quest dominates. To alleviate this situation, I choose to use sequential access disks (a.k.a.,

log disks) as buffer disks, thereby making the seek time of most write requests to be zero.

Data can be written onto the log disks in a sequential manner to improve performance of

the buffer disks in I/O nodes. Disk head of a log disk is, in most cases, positioned on an

98

empty track that is available for incoming write requests. The seek times of write requests

handled by buffer disks are zero unless the buffer disks are in a process of moving data to

data disks or responding read requests.

Power Management. A dynamic power management policy is designed for ECOS to

minimize the number of active buffer disks while maintaining reasonably quick response

times. An approach to conserving energy of I/O nodes in cluster storage systems is to ag-

gressively transit more buffer disks to the standby mode during periods of low disk load.

More standby buffer disk can be spinned up to serve if demand for buffer disk bandwidth

is high. Previous studies showed that disk access patterns are bursty in nature, indicating

that waking up some standby buffer disks can quickly absorb a large number of disk requests

during bursty periods.

It is important to quantify disk workload activities, because the appropriate number

of active buffer disk largely depends on disk workloads. To simply the implementation of

the dynamic power mangement policy, I enforce the timeout policy that places disks into

the standby state if they are sitting idle for a certain amount of time (e.g., 10 seconds). A

standby buffer disk needs to be spinned up to serve if the utilization of one of the active

buffer disks exceeds the maximum threshold (e.g., 90%).

Energy Consumption Model. An energy cosumption model was implemented in ECOS

to calculate energy dissipation in I/O nodes. I chose to use a model rather than an instru-

ment to measure energy consumed by I/O nodes because the model allows us to evaluate

impacts of a wide variety of disk drives on energy efficiency of ECOS.

For comparison purpose, I also implement an energy consumption model for a cluster

storage system without employing buffer disks in I/O nodes. Before presenting the energy

consumption models of the ECOS and non-ECOS systems, I first summarize the notation in

Table 5.1.

99

Table 5.1: Notation for Modeling Energy Consumption in the ECOS and non-ECOS systems

Notation Definition
n Number of data disks
m Number of buffer disks

EECOS Total energy consumption of ECOS
ED

i Energy consumption of data disk i
EB

j Energy consumption of buffer disk j
αD,i Energy penalty of spinning up data disk i
βD,i Energy penalty of spinning down data disk i
αB,i Energy penalty of spinning up data disk i
βB,i Energy penalty of spinning down data disk i

Enon−ECOS Total energy consumption of non-ECOS
PA

D,i Active power of data disk i
PS

D,i Standby power of data disk i

PA
B,j Active power of buffer disk j

PS
B,i Standby power of buffer disk i

TA
D,i Active time of data disk i

T S
D,i Standby time of data disk i

TA
B,j Active time of buffer disk j

T S
B,j Standby time of buffer disk j

N up
D,i Number of spin-ups of data disk i

N down
D,i Number of spin-downs of data disk i

N up
B,i Number of spin-ups of buffer disk i

N down
B,i Number of spin-downs buffer disk i
R energy conservation Rate

Let ED
i and EB

j be the energy dissipation in the ith data disk and jth buffer disk,

respectively. The total energy consumption EECOS of the ECOS system is the sum of energy

dissipation in n data disks and m buffer disks. Thus, the energy consumption in ECOS can

be expressed by Eq. (5.1).

EECOS =

n∑
i=1

ED
i +

m∑
j=1

EB
j (5.1)

The energy consumption ED
i of data disk i in the ECOS system is the summation of

the energy incurred by the data disk when it is in the active, idle, standby, and transition

states. Thus, ED
i can be calculated by Eq. (5.2)).

100

ED
i = PA

D,iT
A
D,i + PI

D,iT
I
D,i + PS

D,iT
S
D,i +

+Nup
D,iαD,i +Ndown

D,i βD,i (5.2)

where PA
D,i, P

I
D,i, and P S

D,i are the power of data disk i when the disk is in the active, idle,

and standby mode; TA
D,i, T

I
D,i, and T S

D,i are time intervals when the disk is in the three power

states, NupD,i and NdownD,i are the numbers of spin-ups and spin-downs; and αD,i and βD,i

are the energy penalty of spin-ups/downs. I observed that active power and idle power of

many hard drives are very close and; therefore, I can simply the above equation by assuming

that active power and idle power are identical (i.e., PA
D,i = P I

D,i. Thus, Eq. (5.2)) can be

simplied as Eq. (5.3):

ED
i = PA

D,iT
A
D,i + PS

D,iT
S
D,i +Nup

D,iαD,i +Ndown
D,i βD,i (5.3)

Energy dissipation EB
j of buffer disk j in ECOS can be derived in the same means as

that of data disks. Hence, EB
j in Eq. (5.1) can be written as:

EB
i = PA

B,iT
A
B,i + PI

B,iT
I
B,i + PS

B,iT
S
B,i +

+Nup
B,iαB,i +Ndown

B,i βB,i (5.4)

Under relatively high I/O workloads, it is unlikely to spin down any buffer disks. As a

results, buffer disks are not placed into standby; all the buffer disks are kept in the active

mode. The numbers of buffer disk spin-ups/downs are zero; there is no power penalty of

101

spin-ups/downs. Consequently, the Eq. 5.5 can be simply as:

EB,j = PA
B,jT

A
B,j (5.5)

Now I am positioned to consider the energy consumption of a non-ECOS system. To

make fair and conservation comparisons, I model a non-ECOS systems with n data disks.

In other words, I remove m buffer disks from the ECOS system in order to turn the cluster

storage system into a non-ECOS system. Let Ei denote the energy consumption of the ith

disk in non-ECOS. Then, Ei can be derived from the energy incurred by the disk when it is

in the active, idle, standby, and transition states. In case where the active power and idle

power are very close, I can express the total energy consumption of the non-ECOS system

using Eq. (5.6)

Enon−ECOS =

n∑
i=1

Ei

=

n∑
i=1

(PA
i T

A
i + PI

iT
I
i + PS

i T
S
i +Nup

i αi +Ndown
i βi)

≈
n∑

i=1

(PA
i T

A
i + PS

i T
S
i +Nup

i αi +Ndown
i βi) (5.6)

where PA
i , P

I
i , and P S

i are the power of disk i when the disk is in the active, idle, and

standby mode; TA
i , T I

i , and T S
i are time intervals when the disk is in the three power states,

Nupi and Ndowni are the numbers of spin-ups and spin-downs; and αi and βi are the energy

penalty of spin-ups/downs.

102

Sender

CPU

Memory

Data Disks

CPU

Memory

Data Disks

Network Interface

Receiver

CPU

Memory

Data Disks

Receiver

Figure 5.2: Test Platform without Buffer Disks

5.3 Experimental Results

In this section, I first describe a way of setting up a cluster as a testbed. Second, Last,

experimental results are comprehensively analyzed.

5.3.1 Experiment Details

In the implemention of ECOS (Fig. 5.2), each I/O node consists of three local disks in-

cluding one buffer disk and two data disks. Buffer disks under relatively high I/O workloads

are never spinned down; as a result, idle buffer disks can serve any incoming disk request

immediately without paying spin-up panelty. To reduce network traffic incurred by commu-

nications among I/O nodes, I implemented the request processing module to ensure that a

buffer disk within an I/O node gives high priorty to data disks within the same I/O node.

By default, disk requests are redirected from a data disk to a buffer disk within the same

103

Sender

CPU

Memory

Data DisksBuffer Disk

CPU

Memory

Data Disks

Network Interface

Receiver

CPU

Memory

Data DisksBuffer Disk

Receiver

Figure 5.3: Test Platform with Buffer Disks

104

I/O node. If one I/O node is heavily loaded while another one has hight I/O load, requests

might be redirected from the data disks in the heavily loaded node to the buffer disk in the

lightly loaded one. Fig. 5.3 presents the implementation of the traditional design which has

no buffer disks.

I developed a micro-benchmark running on a compute node. The microbench randomly

issues disk requests based on the Poisson process. To reflect real-world I/O access patterns,

I intentionally inserted idle periods between two consective request groups sent to I/O nodes

in ECOS. In doing so, the micro-benchmark can issue a large number of disk requests repre-

senting I/O burstiness. It is observed that idle periods significantly affect energy efficiency

of ECOS.

There is an important parameter referred to as Sum of Requests in Buffer or SRB, which

affects the energy efficiency of ECOS. Hence, in our experiments, I focus on the impacts of

SRB on the energy efficiency of the ECOS systems.

In addition to energy efficiency, energy conservation rate defined by Eq. (5.7) is used as

a metric to quantitatively compare ECOS with non-ECOS.

R = (1− EECOS

EnonECOS
)×100% (5.7)

Table 5.2 summarizes the disk configuration of the tested cluster.

Table 5.2: Disks Configuration
Disk Category I/O Node 1

Buffer Disk Maxtor DiamondMax Plus 9 80GB
Data Disk 1 WesternDigital 400 20GB
Data Disk 2 WeaternDigital 400 20GB

Disk Category I/O Node 2
Buffer Disk Seagate Barracuda 7200.7 80GB
Data Disk 1 WesternDigital 400 20GB
Data Disk 2 Maxtor D740X-6L 20GB

105

5.3.2 Performance Evaluation

In this subsection, let us present energy dissipation and energy conservation rate of

ECOS. I first evalute the impacts of the SRB value and idle gap on energy conservation rate.

In this experiment, SRB is decrease from 400 down to 25; the idle gap is varied from 50 to

300 Sec. Results plotted in Fig. 5.4 reveals that when I/O workloads are low, ECOS can

significantly improve energy efficiency over non-ECOS. For example, ECOS conserves energy

by up to more than 20% when the idle gap between two consective request groups is 300 or

200 Sec.

Recall that each I/O node in ECOS contains one buffer disk and two data disks. To

make fair comparisons between ECOS and non-ECOS, I implemented a timeout policy in

non-ECOS to place a disk into the standby mode if the disk has been sitting idle for a period

of time (e.g., 20 Seconds). Compared with I/O nodes in non-ECOS, each I/O node in ECOS

contains an extra buffer disk. Although adding an buffer disk in each I/O node seemingly

imposes negative impact on energy efficiency, the results show that extra buffer disks can

save a significant amount of energy. I contribute this trend to the fact that energy saved

by the buffer disks is larger than the energy overhead introduced by the extra buffer disks.

In constrast to light I/O workloads, an extremely high I/O load can prevent ECOS from

producing energy savings. High I/O workloads eliminate long idle periods in both buffer and

data disks, thereby reducing the number of opportunities for data disks to be placed in the

standby mode.

It is intriguing to observe from Fig. 5.4 that when the idle gap is as short as 50 Sec., the

energy conservation rate becomes even negative, meaning that ECOS consumes more energy

than non-ECOS. Recall that if the number of bufferred requests targeting at the same data

disk equal to SRB, then the corresponding data disk must spin up so that the bufferred data

can be moved back to this data disk. The data disk is spinned down to the standby mode

under the following two conditions. (1) No read request is retriving data from the data disk;

and (2) no write requests are currently being handled by the disk. The larger the SRB value,

106

400 300 200 100 50 25
−10

−5

0

5

10

15

20

25
Energy Conservation Rate

C
on

se
rv

at
io

n
R

at
e

%

SRB

Gap=300s
Gap=200s
Gap=100s
Gap=50s

Figure 5.4: Energy Conservation Rate

the more energy can be conserved in ECOS. However, I/O access patterns can greatly affect

the energy conservation rate. The best time to transfer data between a buffer disk and data

disks within an I/O node is at the time when the node is idle. ECOS forces buffer disks to

copy data back to data disks when the SRB requirements are satisfied. Fig. 5.4 confirms

that high frequency of data movement during I/O burstiness can reduce conservation rate.

It is worth noting that I implemented ECOS on a heterogenous cluster storage system,

where the hard drives in the tested I/O nodes are not identical. As such, the goal of the

second experiment is two-fold. First, I intend to show our approach can achieve high energy

efficient for both homogeneous and heterogeneous cluster storage systems. Second, I plan

to observe how overall system energy saving is affected by energy conservation provided in

each I/O node. In what follows, I plot eight figures showing the energy consumption and

energy conservation rate of the two individual I/O nodes in ECOS. Please note that the

hard drives in I/O node 2 are more power consuming and faster than those in I/O node 1.

Results depicted in Figs. 5.5-5.12 show although energy efficiency of the two I/O nodes are

different, the energy-efficiency trends of the two nodes are quite similar.

107

400 300 200 100 50 25
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25
ECOS Energy Consumption on Each I/O Node

E
ne

rg
y

C
on

su
m

pt
io

n
(1

04 J
ou

le
)

SRB

Node 1
Node 2

Figure 5.5: Energy Consumption in I/O Nodes, idle time gap is 50s

400 300 200 100 50 25
−15

−10

−5

0

5

10

15
Energy Conservation Rate on Each I/O Node

pe
rc

en
ta

ge
 %

SRB

Node 1
Node 2

Figure 5.6: Energy Conservation Rate in I/O Nodes, idle time gap is 50s

108

400 300 200 100 50 25

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7
ECOS Energy Consumption on Each I/O Node

E
ne

rg
y

C
on

su
m

pt
io

n
(1

04 J
ou

le
)

SRB

Node 1
Node 2

Figure 5.7: Energy Consumption in I/O Nodes, idle time gap is 100s

Fig. 5.5 shows that the energy dissipation in I/O node 1 is larger than that of I/O

node 2. The buffer disk in node 2 saves more energy than the buffer disk in node 1, because

of the following four reasons. First, the workload is high due to a small value of idle gap

(i.e., 50 Seconds). Second, the performance of the buffer disk in node 2 is higher than that

of the buffer disk in node 1. Third, compared with node 1, node 2 can quickly move data

back to the home data disks. This trend is more pronounced under high I/O workloads with

enormous I/O bustiness. Last, data disks in node 1 are more likely to stay in the active

state due to the slow process of moving data back to the home disks. Fig. 5.6 shows the

energy consumption rate of I/O node 2 is higher than that of I/O node 1. This is mainly

because time spent in moving data from a buffer disk to data disks in node 2 is shorter than

that spent in moving data in node 1. The implication behind this result is that fast data

movement between a buffer disk and data disks can help in achieving high energy efficiency.

Figs. 5.7 and 5.8 plot energy consumption and energy conservation rate of the two I/O

nodes. I observe from Figs. 5.7 and 5.8 that for a medium workload (e.g., idle gap is set to

100 Seconds), there is a low propability of transferring data between buffer and data disks

109

400 300 200 100 50 25
2

4

6

8

10

12

14

16

18
Energy Conservation Rate on Each I/O Node

pe
rc

en
ta

ge
 %

SRB

Node 1
Node 2

Figure 5.8: Energy Conservation Rate in I/O Nodes, idle time gap is 100s

during I/O burstiness. Therefore, the discrepancy between the data movement times of the

two I/O nodes starts diminishing with decreasing I/O workload. Unlike high I/O load that

makes node 2 more energy efficient than node 1, medium I/O allows node 1 exhibit more

energy-efficient than node 2 (see Fig. 5.7). Furthermore, Fig. 5.7 indicates that node 1

is more sensitive to SRB than node 2; the sensitivity can be analyzed as follows. First,

decreasing the SRB value increases the frequency of data movement between buffer disks

and their corresponding data disks. Second, the high data movement frequency leads to a

high probability of transferring data back and forth between a buffer disk and data didks

during I/O bustiness.

When the idle gap increases to 200 Seconds, a small SRB does not significantly affect

the energy consumption in both I/O nodes. Fig. 5.9 illustrates that energy consumption

slowly increases when SRB decreases. Fig. 5.10 shows that under condition that SRB is

400 or 200, the data movement operations tend to occur within an idle gap between two

consecutive request groups. This result indicates that to deliever the high performance,

the data movement mechaism must be actuated at the time between two consecutive I/O

110

400 300 200 100 50 25
5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2
ECOS Energy Consumption on Each I/O Node

E
ne

rg
y

C
on

su
m

pt
io

n
(1

04 J
ou

le
)

SRB

Node 1
Node 2

Figure 5.9: Energy Consumption in I/O Nodes, idle time gap is 200s

400 300 200 100 50 25
16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

21
Energy Conservation Rate on Each I/O Node

pe
rc

en
ta

ge
 %

SRB

Node 1
Node 2

Figure 5.10: Energy Conservation Rate in I/O Nodes, idle time gap is 200s

111

400 300 200 100 50 25
8

8.5

9

9.5

10

10.5
ECOS Energy Consumption on Each I/O Node

E
ne

rg
y

C
on

su
m

pt
io

n
(1

04 J
ou

le
)

SRB

Node 1
Node 2

Figure 5.11: Energy Consumption in I/O Nodes, idle time gap is 300s

400 300 200 100 50 25
15

16

17

18

19

20

21
Energy Conservation Rate on Each I/O Node

pe
rc

en
ta

ge
 %

SRB

Node 1
Node 2

Figure 5.12: Energy Conservation Rate in I/O Nodes, idle time gap is 300s

112

bustiness. Fig. 5.12 shows that energy conservation rate when idle gap is set to 300 Seconds.

The curves plotted in Fig. 5.12 are consistent to those depicted in Figs. 5.10 and 5.6.

5.4 Summary

Cluster storage systems are cost-effective building blocks for many high-end computing

infrastructures. Optimizing energy efficiency of cluster storage systems remains an open

issue. In this reserach, I designed and implemented an energy-efficient cluster storage system

called ECOS. Each I/O node in ECOS controls multiple disks - one buffer disk and several

data disks. The key idea behind ECOS is to redirect disk requests from data disks to the

buffer disks. To improve I/O performance of buffer disks, ECOS attempts to balance I/O

load among all I/O nodes in the cluster storage system. Redirecting requests is a driving

force of energy saving and the reason is two-fold. First, ECOS makes an effort to keep buffer

disks active while placing data disks into standby in a long time period to conserve energy.

Second, ECOS reduces the number of disk spin downs/ups in I/O nodes.

The ECOS system was implemented in a Linux cluster, where each I/O node contains

one buffer disk and two data disks. Results show that ECOS improves energy efficiency

of traditional cluster storage systems without using buffer disks. Interestingly, our results

indicate that ECOS equipped with extra buffer disks is more energy efficient than the same

cluster storage system without the buffer disks. Using existing data disks in I/O nodes to

perform as buffer disks can achieve even higher energy efficiency.

113

Chapter 6

Can We Improve Energy Efficiency of Secure Disk Systems without Modifying Security

Mechanisms?

6.1 Introduction

In the past decade, energy efficiency has become an ever increasing priority in computer

science research [88]. Computers have traditionally been designed with performance metrics

being the main focus of the design. Since our sources of energy to power computers are not

limitless, it is imperative to design energy efficient computer architectures. Disk systems

tend to be large consumers of energy consumption [70] and; therefore, I have designed an

energy efficient parallel disk framework (see [119] for details of our disk framework). Apart

from high energy efficiency, security mechanisms are equally important for disk systems to

support a wide range of data-intensive applications that are security sensitive. Although

previous research has focused on producing a relationship between energy efficiency and

security strength for mobile devices (see, for example, [17]), it is challenging to make good

tradeoffs between high security and energy efficiency for storage systems in general and for

disk systems in particular.

The long-term goal of this research is to develop energy-efficient security mechanisms

for disk systems without significantly degrading disk performance. Similar design goals can

be found in the literature (see, for example, [70] and [75]). This study started off with having

a goal of developing a matrix that would outline the tradeoffs between energy efficiency and

security in the context of large-scale disk systems.

Generally speaking, there are two approaches to implementing energy-efficient security-

aware disk systems. The first one is to improve the energy efficiency of security mechanisms in

114

disk systems (see, for example, [17]); the second approach advocates for integrating conven-

tional security services with energy-efficient disk architectures. The first approach makes an

effort to implement energy-efficient security mechanisms in traditional disk systems, whereas

the second one is focused on energy-efficient disk systems without modifying existing security

mechanisms. In this study, I focus on the second general approach. Thus, I attempt to an-

swer an intriguing question of whether it is possible to seamlessly integrate security services

with energy-efficient disk systems without modifying the source code of security services.

To determine if it is possible to conserve energy consumption of existing security ser-

vices using new energy-efficient disk systems, I will have to investigate I/O access patterns of

encryption and integrity checking algorithms. Studying I/O access patterns of disk requests

issued by the security services requires knowledge of encryption algorithms and hash func-

tions. In this research, I first investigate the I/O characteristics of encryption algorithms

and hash functions. Next, I apply these I/O characteristics within the energy-efficient buffer

disk architecture or BUD (see [98] for detailed information concerning BUD) to investigate

the possibility of leveraging BUD to reduce energy dissipation caused by the existing en-

cryption algorithms and hash functions. Very recently, I had designed and implemented

software modules to separately handle read [73] and write [98] requests within the BUD ar-

chitecture, which will be briefly described in the next Section. In addition, I had made some

generalizations about the BUD architecture. One of our previous studies showed that the

BUD architecture is extremely sensitive to hard disks’ Break Even Time, which is defined

as the size of an idle time required for a disk to energy efficiently transition from the active

state to the standby state. In hard disks, for example, the break even time often exceeds 10

seconds. Such a large disk break even time indicates that the BUD architecture is maximally

energy efficient in applications that are not disk intensive. Any software module that leaves

an opportunity for these break even times to be met allows the BUD architecture to save

energy. Hence, security modules that can take full advantage of BUD to conserve energy

should not bottlenecked at disk I/O operations. In other words, disk requests issued by the

115

security modules must be sufficiently sparse to produce noticeable energy savings. To answer

the fundamental question of whether I can improve energy efficiency of secure parallel disk

systems without modifying security mechanisms in the disk systems, I choose the BUD disk

architecture as target energy-efficient disk systems. A vital part of this study is to profile

encryption algorithms and hash functions in the context of disk systems. I intend to figure

out if I/O access patterns of the encryption algorithms and hash functions would allow the

energy-efficient BUD disk architecture to conserve energy. The key I/O features I focused

on were arrival patterns of disk request operations issued by the encryption algorithms and

hash functions. I aimed to determine if the disk operations can yield sufficient idle periods

for the BUD disk architecture to reduce disk energy consumption using the energy-efficient

data management strategies I have previously studied.

The rest of the Chapter is organized as follows. Section 6.2 provides an overview of

an energy-efficient disk architecture. Section 6.3 describes our test bed setup. Section 6.4

presents the experimental results and explanations of the trends in our results. Finally I end

with a summary and some future work possibilities.

6.2 Overview of the BUD Disk Systems

Although a significant amount of energy can be saved if idle disks are turned to the

standby mode, short idle periods (i.e., smaller than the disk break even time) prevents

idle disks to be switched to standby to conserve energy. This problem can be solved by

aggregating smaller idle periods into idle times that are larger than the disk break even

time. I implemented an idle time aggregation process in the buffer-disk architecture or BUD

(see Fig. 6.1 below) using buffer disks to temporally buffer disk requests while keeping data

disks to standby as long as possible.

The buffer disk controller - a center piece in the BUD architecture - is responsible for the

dynamic power management in both buffer and data disks. The two areas where our previous

studies have focused is the buffer disk controller [119] and energy-efficient prefetching [73].

116

RAM Buffer

m buffer disks n data disks

Buffer Disk
Controller

 Data Partitioning

 Security Model

Load balancing

Power Management

Prefetching

Disk Requests

 Energy-Related Reliability Model

Figure 6.1: The buffer-disk architecture or BUD for parallel disk systems

Moreover, I have extensively investigated a disk write buffer strategy to improve parallel I/O

energy efficiency [98]. There has been work on load balancing the buffer disks and controlling

writes to the data disks [78]. For example, buffering write requests in the buffer disks and

writing out data when certain criteria are met [98][78]. To further improve energy efficiency

of parallel disk systems, I have developed energy-efficient data partitioning schemes, data

placement strategies, and data movement algorithms [80][68]. It is worth noting that the

BUD architecture embraces a security component, which not only provides security services

but also measures security overhead imposed by the integrated security mechanisms. The

detailed information concerning the BUD architecture along with a set of energy-efficient

data management strategies can be found in [119][98][73].

6.3 Experimental Setup

In the BUD architecture prefetching and data buffering are closely related to total

capacity of buffer disks as well as the arrival rate of disk requests. The buffer disks can,

117

literally speaking, prefetch and buffer data aggressively until the disk capacity is reached.

When the buffer disks become full, either a portion of buffered data must be moved to the

standby data disks or part of prefetched data has to be evicted from the buffer disks. The

time taken for the buffer disks to reach their capacity largely depends on request arrival rates,

data size, and storage capacity. Since the total buffer disk storage space is managed by with

the BUD controller, this study was not meant to address the issue of buffer disk capacity.

Thus, let us focus on access patterns (e.g., disk request arrival rates and I/O processing

time) to explore the possibilities of achieving high energy efficiency in secure parallel disk

systems without modifying security mechanisms.

To capture access patterns of disk requests issued by confidentiality and integrity ser-

vices, I have to profile encryption algorithms and hash functions. I chose to use a Linux

computer because of the open source nature of Linux and availability of free software like

GkrellM, Conky and XySSL. The first software monitor used in our experiments is GkrellM.

Although GkrellM is capable of providing disk, memory, and CPU usage statistics, I were

unable to find a quick method to produce the output in a text file. Hence, I moved to using

Conky, which is a lightweight system monitor that is highly configurable and supports text

output. After making use of the XySSL libraries to evaluate an array of security mechanisms,

I generated disk trace files for further analysis.

Our created a testbed using one Linux PC. Table 6.1 outlines the important properties

of the testbed. The CPU speed of the testbed is high enough that the CPU will probably

Table 6.1: System Parameters of the Testbed
CPU Speed Pentium 4 2.4 GHZ
Memory 512 MB

Operating System Ubuntu 7.10
USB 1.1 2 Mb/s
HD Bus IDE

not be the performance bottleneck for the evaluated security mechanisms. The bandwidth

of the memory component in our testbed is relatively low for a Pentium 4 computer. I chose

118

to connect a flash drive to the testbed by a USB port, because the USB interface was used

to emulate a network interface card in our experiments. A hard drive is connected to a SCSI

Bus with the bandwidth of at least 5MB/s.

The Linux operating system was used to perform our experiments, because it is probably

a bit easier to find the required software needed to profile encryption algorithms and hash

functions. The Linux-based software tools used in our experiments allow us to make any

changes to the software to monitor and study access patterns of security services.

Once I have our OS chosen, I am in a position to identify software that allow us to test

our encryption algorithms and hash functions. An ideal software tool should include the

implementation of a wide range of popular encryption algorithms and hash functions. Apart

from a security software tool, I have to choose a software tool enabling us to monitor the

CPU, memory, and read/write performance of the hard drive and flash drive connected to

the USB port. After I found software to fulfill the above requirements, I was ready to profile

encryption algorithms and hash functions.

The first software tool I chose to use is XySSL, which implements a set of well-known

encryption algorithms accompanied by testing programs. In this study, I pay particular

attention to two encryption algorithms - 3DES [79] and AES [2]. 3DES - slow in software -

was developed in response to the weakness of DES. 3DES is a strong encryption algorithm,

but it is typically slower than AES. 3DES uses a 64 bit block size to encrypt data [83]; it

uses a 192 bit key that is split into three different keys. In the 3DES algorithm, these three

64 bit keys are required to encrypt and decrypt data using DES. Each of these 64 bit keys

uses 8 bits for parity checking leaving 3DES with an effective key strength of 168 bits.

AES is the current standard for data encryption widely adopted by the US Govern-

ment [83]. AES is typically employed with a 192-bit encryption key. Block size in AES is

128-bit in length, meaning that AES encrypts twice as much data as 3DES at each call of the

function implementing the encryption. AES is not only fast in software but also requiring a

small amount of memory. In addition to encryption algorithms, several hash functions were

119

implemented in XySSL. To this end, I decided to evaluate MD5 [96] and SHA (1-2) [3]. MD5

is an algorithm that produces a hash output value of 128 bits. SHA-1 generates 160-bit hash

values, whereas SHA-2 can provide a hash bit varying in size between 224 and 512 bits. I

also evaluated RSA verification implemented in XySSL. Please note that all of the aforemen-

tioned encryption algorithms and hash functions, except for 3DES, are coupled with testing

programs in XySSL. Thus, I had to implement a testing program for 3DES based on the

AES testing program.

To monitor our testbed computer, I take full advantage of GKrellM - a software monitor

that is capable of monitoring the CPU, memory, and disk I/O subsystems. GKrellM seems

to be a promising software tool. The only problem with GKrellM, however, is the lack of

well defined text output. There is no straightforward way to produce text output. Hence,

I would have to dig into the source code of GKrellM and implement a module to deal with

text output. Alternatively, I would have to find another system monitor that has some kinds

of text output. I chose the second approach due to time constraints and began our search

for a system monitor with text output.

Fortunately, Conky - a lightweight system monitor that is highly configurable - is able

to yield a text output file. There is a listing of all the variables that Conky keeps track

of. If I need to output of these variables to a text file, I simply specify the variable in a

configuration file. The configuration file allows us to format output files, making it possible

for us to put our desired variables in the csv format readable by Microsoft Excel. In our

experiments, the variables that are kept track of include events of CPU, memory, and disk

read/writes in the testbed. Since I substituted a USB-based flash drive for a networked disk

system, all data reads are initiated from the USB drive. I was able to control the testing

programs in XySSL to guarantee all disk writes are physically issued to the hard disk in our

testbed. In doing so, I was capable of separately monitoring I/O access patterns of the flash

drive and hard drive where the encryption algorithms and hash functions are evaluated.

120

500 1000 1500 2000
0

10

20

30

40

50

60

70

80

90

100
MD5 CPU Monitor

C
P

U
 U

sa
ge

Time (ms)

Figure 6.2: CPU usage (measured in percentage) of the testbed when MD5 is evaluated

6.4 Experimental Results and Analysis

Now I am positioned to present experiment results and analysis in the this sections.

i evaluated three different types of system events, namely, CPU usage, flash drive read

bandwidth, and hard disk write bandwidth. Recall that I extensively investigated three hash-

function algorithms, one RSA signature verification algorithm, and two block and stream

encryption algorithms in our experiment.

In our experiment, I use a flash drive to emulate source data retrieved from a remote

disk system connected to the testbed through a network. The size of the source data set

is 900Mbyte; the data was organized and stored in 78 files residing in the USB-based flash

drive.

121

500 1000 1500 2000
0

2

4

6

8

10

12

14

16

18
x 10

7 MD5 I/O Monitor

C
P

U
 U

sa
ge

Time (ms)

Reads on Flash
Writes on HD

Figure 6.3: Read/write bandwidth of the testbed when MD5 is evaluated

122

MD5 used to be one of the most popular hash functions for data integrity checking

services. Although MD5 is no longer considered as the most secure algorithm for integrity

checking [15], it is still a good representative hash function to be considered in this research.

Hence, I started our experiment by exhibiting the workload of CPU and I/O of the testbed

when MD5 is running to ensure that a file has not been tampered with. Fig. 6.2 shows

the CPU usage when the testbed is using MD5 for integrity checking. Since the MD5 hash

function is not CPU-intensive, I observed from Fig. 6.2 that the CPU usage is almost always

lower than 60% and very rarely exceeds 80%. Hence, I concluded that CPU is not the

performance bottleneck of MD5.

Fig. 6.3 shows the read/write bandwidth of the disk subsystem in the testbed. It is

observed from Fig. 6.3 that 15MB/Sec. is the maximum I/O read bandwidth achieved by

the testbed MD5 is evaluated. Such a maximum read bandwidth is apparently the upper

bound of the bandwidth exhibited by the USB-based flash drive. A second observation drawn

from Fig. 6.3 is that the average write bandwidth of the disk subsystem is 32MB/Sec., which

rarely reach the maximum write bandwidth. More interestingly, the flash drive experiences

a limited number of idle periods during the execution of MD5. Compared with read access

patterns, write access patterns contain more and longer idle times. Fig. 6.3 reveals that

data read bandwidth becomes the performance bottleneck of the disk system where MD5

is applied for data integrity checking. More importantly, Fig. 6.3 suggests that without

modifying MD5, I can apply the BUD architecture to reduce energy consumption of disk

systems integrated with MD5 for data integrity checking. BUD can conserve energy for

MD5, because many small idle periods in disks can be grouped to form large idle periods,

which in turn allow disks to be switched to the standby mode to save energy.

SHA-1 is a second hash function evaluated in our testbed. The access patterns of SHA-1

are very similar to those of MD5. SHA-1 is more secure than MD5 (see [111] for detailed

comparisons), because SHA-1 is more complicated in implementation than MD5. Fig. 6.4

123

200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100
SHA−1 CPU Monitor

C
P

U
 U

sa
ge

Time (ms)

Figure 6.4: CPU usage (measured in terms of percentage) of the testbed when SHA-1 is
evaluated

124

200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10
x 10

7 SHA−1 I/O Monitor

C
P

U
 U

sa
ge

Time (ms)

Reads on Flash
Writes on HD

Figure 6.5: Read/write bandwidth of the testbed when SHA-1 is evaluated

125

200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100
SHA−2 CPU Monitor

C
P

U
 U

sa
ge

Time (ms)

Figure 6.6: CPU usage (measured in terms of percentage) of the testbed when SHA-2 is
evaluated

indicates that the average CPU usage of the testbed when SHA-1 is evaluated is higher than

that of the same testbed when MD5 is running.

Fig. 6.5 shows that in almost all the cases, the testbed keeps reading data from the flash

drive at the highest bandwidth. There is only very small number of gaps among reading

events, meaning that idle periods rarely occur in SHA-1. Unlike read requests, disk write

operations (see Fig. 6.5) in SHA-1 demonstrate more idle periods. This is mainly because

with respect to SHA-1, reading data from the flash drive is the performance bottleneck of the

testbed system. Like Fig. 6.3, Fig. 6.5 indicates that the SHA-1 can be seamlessly integrated

with the BUD architecture to achieve both high energy efficiency and data integrity. Such

integration can be straightforwardly realized by employing a software module of the existing

SHA-1 service on top of BUD without even changing the source code of SHA-1.

126

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5
x 10

8 SHA−2 I/O Monitor

C
P

U
 U

sa
ge

Time (ms)

Reads on Flash
Writes on HD

Figure 6.7: Read/write bandwidth of the testbed when SHA-2 is evaluated

SHA-2 is comprised of a group of hash functions. Without loss of generality, in this

experiment let us evaluate SHA-256, which can be considered as one of the most secure hash

functions in this study. Fig. 6.6 shows that when SHA-2 is evaluated, the CPU usage of

the testbed system is slightly higher than that of the same testbed with SHA-1. Fig. 6.7

indicates that disk I/O characteristics of SHA-2 are very close to those of SHA-1. In other

words, data read bandwidth of the flash drive is the performance bottleneck of SHA-2. An

implication of this result is that without changing the source code of SHA-2, it is possible

to leverage the BUD architecture to improve energy efficiency of disk systems where SHA-2

is employed.

RSA - widely adopted as a public-key encryption scheme. - has signature generation

and verification functions. In this experiment, I evaluate RSA’s signature and verification

functions in our testbed. Before I started the test, I generated signature files for each file

127

200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

90

100
RSA Verification CPU Monitor

C
P

U
 U

sa
ge

Time (ms)

Figure 6.8: CPU usage (measured in terms of percentage) of the testbed when RSA Verifi-
cation is evaluated

128

200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6
x 10

7 RSA Verification I/O Monitor

C
P

U
 U

sa
ge

Time (ms)

Reads on Flash
Writes on HD

Figure 6.9: Read/write bandwidth of the testbed when RSA Verification is evaluated

129

residing in the USB-based flash drive. In this case, each input data file is coupled with a

corresponding signature file.

I observed from Figs. 8 and 9 that RSA processes the input data set faster than the other

three hash functions, suggesting that the CPU and I/O load imposed by RSA verification

function is lower than those of the above studied hash functions.

Since the CPU load in RSA is reduced compared with the other three hash functions,

Fig. 6.9 confirms that the read bandwidth of the flash drive is the performance bottleneck of

the testbed. Due to the fact that very few idle periods exist in the flash drive, it is unlikely

to leverage the BUD architecture to reduce energy dissipation of reads in RSA. Fortunately,

the results obtained from Fig. 6.9 indicate that executing RSA in the BUD disk architecture

can provide energy savings for writes issued to the hard drive. The energy savings become

possible for writes in RSA, because there are a large number of small idle periods that can

be aggregated by BUD to form larger idle periods.

Next, let us study the access patterns of AES and 3DES - two block/stream encryption

algorithms. The AES (Advanced Encryption Standard) is a block cipher standard published

by the US government in November 2001. After input data is retrieved from the flash drive

in the testbed, AES encrypts the input data with 256-bit keys and stores cipher text on

local hard drive in the testbed. Results plotted in Figs. 10 and 11 show that the CPU and

I/O load caused by AES are very well balanced. For example, the CPU usage, read/write

bandwidth of the testbed running AES tend to reach their upper bounds. When it comes

to reads, there is almost no idle period found during the course AES’s execution. Although

AES does not issue writes as intensively as reads, idle periods in the hard drive are smaller

than those of cases for MD5, SHA-1/SHA-2, and RSA.

3DES, CPU-intensive in nature, is very slow in software. For example, it took approxi-

mately 190 Sec. for AES to encrypt all the 78 files in the flash drive; 3DES spent more than

25,000 Sec. in processing the same set of files. Fig. 6.12 clearly shows that the CPU load is

extremely high and CPU becomes the performance bottleneck in our testbed running 3DES.

130

200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

90

100

110
AES CPU Monitor

C
P

U
 U

sa
ge

Time (ms)

Figure 6.10: CPU usage (measured in terms of percentage) of the testbed when AES is
evaluated

131

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
7 AES I/O Monitor

C
P

U
 U

sa
ge

Time (ms)

Reads on Flash
Writes on HD

Figure 6.11: Read/write bandwidth of the testbed when AES is evaluated

132

0.5 1 1.5 2 2.5

x 10
4

0

10

20

30

40

50

60

70

80

90

100

110
3DES CPU Monitor

C
P

U
 U

sa
ge

Time (ms)

Figure 6.12: CPU usage (measured in terms of percentage) of the testbed when 3DES is
evaluated

133

0.5 1 1.5 2 2.5

x 10
4

0

1

2

3

4

5

6

7

8

x 10
6 3DES I/O Monitor

C
P

U
 U

sa
ge

Time (ms)

Reads on Flash
Writes on HD

Figure 6.13: Read/write bandwidth of the testbed when 3DES is evaluated

134

Results depicted in Fig. 6.13 suggest that the BUD disk architecture can be seamlessly inte-

grated with 3DES to cluster small disk idle periods together in large idle time frames, which

enable disks to be operated in the standby mode for long time intervals to save energy.

6.5 Summary and Future Work

Achieving both high energy efficiency and security in disk systems is challenging, because

energy efficiency and data security are often two conflicting goals. There are two general

approaches to improving security and energy-efficiency in disk systems. The first approach

is to modify existing security mechanisms to enhance energy efficiency of security services

in disk systems. In contrast, the second approach is to seamlessly integrate security services

with energy-efficient disk systems without modifying security mechanisms. In this research,

I took the first step toward the second approach by answering an intriguing question of

whether I can improve energy efficiency of security mechanisms in disk systems without

changing the source code of security services.

Target energy-efficient disk systems considered in this study is the buffer disk architec-

ture or BUD (see [98] for detailed information regarding BUD). The BUD disk architecture

aims at aggregating many small idle periods in disks into a few large idle intervals so that

disks can be turned into the standby mode and kept in standby as long as possible to con-

serve energy. In this research, I first built a testbed containing a disk subsystem, USB-based

flash drive, Linux operating systems, and six encryption modules and hash functions. Next,

I captured CPU usage and I/O access patterns of a disk system where the encryption mod-

ules and hash functions were tested and evaluated. Finally, I analyzed the possibility of

leveraging the BUD disk architecture to reduce energy consumption incurred by the existing

encryption algorithms and hash functions in the context of disk systems.

Table 6.2 summarizes the CPU utilization and read/write bandwidth of the testbed

running the six security services. Table 6.2 shows that except for 3DES, the CPU is not a

performance bottleneck for the other five security services. Among the six evaluated security

135

Table 6.2: Summary of the CPU usage, read/write load of the testbed running the six
encryption algorithms and hash functions. The two rightmost columns show possibilities of
employing the BUD architecture to save energy for secure disk systems without modifying
the security mechanisms. (L: Low, M: Medium, H: High, VH: Very High EH: Extremely
High)

CPU Load Read Load Write Load Save Energy(Reads)? Save Energy(Writes)?
MD5 M H M Unlikely Yes
SHA1 M VH M Unlikely Yes
SHA2 M VH M Unlikely Yes
RSA M VH M No Yes
AES VH VH M No Yes
3DES EH M L Yes Yes

services, 3DES is the only one that can make use of BUD to improve energy efficiency for

disk reads and writes. This is mainly because 3DES is very slow in software, leaving many

small idle periods in the hard disks and flash drive. Although I was unable to conclude that

3DES is the most energy efficient security service on BUD, it is certain that 3DES is a good

representative security mechanism that can benefit a whole lot from BUD. Furthermore,

BUD can be employed to reduce energy consumption of writes issued by the MD5, SHA-

1, SHA-2, RSA, AES modules (see the rightmost column in Table 6.2). It is unlikely to

minimize energy consumption of reads for MD5, SHA-1, SHA-2 using BUD. Even worse, it

is almost impossible for BUD to reduce energy consumption of reads for RSA and AES. Now

I am positioned to conclude that the BUD disk architecture can provide an ideal energy-

efficient data storage platform for security mechanisms, which have high CPU usage and

issue sparse disk requests.

As part of future work, I will take full advantage from the generated I/O traces to drive

our BUD disk simulator, which allows us to quantitatively study how BUD can produce

energy savings for security mechanisms. Currently, i am in a process of building a cluster

storage system based on the BUD architecture to investigate if BUD can be applied to

clusters to conserve energy. For a large cluster storage system with sufficiently large CPU

and disk capacities, it is intriguing to evaluate the energy efficiency of a variety of hash

136

functions and encryption algorithms on the BUD-based cluster storage system. For the

I/O-intensive security services, I will implement a dynamic resource manager in BUD to

keep parallel data disks active to achieve high aggregated read bandwidth while allocating a

limited number of CPUs to perform integrity checking. In doing so, BUD will be capable of

conserving energy dissipation in processors in the cluster storage system. When it comes to

CPU-intensive security services, the dynamic resource manager will save energy by keeping

all CPUs active to carry out encryption while force a small number of buffer disks to buffer

data.

137

Chapter 7

ES-MPICH2: A Message Passing Interface with Enhanced Security

7.1 Introduction

Large cluster computing systems have been widely deployed and utilized by national

laboratories, corporations, and government research centers. Some clusters are usually built

upon local area networks, which are physically isolated from public networks like the In-

ternet; therefore, the security issue of information exchanging among computing nodes in a

locally operated cluster is not a major concern. Without any security mechanism to preserve

confidentiality, messages transferred among the computing nodes are just plain-texts that

can be easily manipulated. Due to the fast development of the Internet, however, an increas-

ing number of universities and companies are connecting their cluster computing systems to

public networks to provide high accessibility. Those networks connecting to the Internet can

be accessed by anyone from anywhere. This opens a possibility for security leakages if there

is no information assurance protection on classified or confidential data transmitted to and

from cluster computing nodes.

Recently, a geographically distributed cluster system proposed by Sun Microsystems

has attracted many interests from both academia and industry communities. In largely dis-

tributed clusters, computing nodes are geographically deployed in various computing sites.

Information processed in a distributed cluster is shared among a group of distributed pro-

cesses or users by the virtue of message passing protocols (e.g. message passing interface -

MPI) running on a public network like the Internet.

Public networks have increasingly become a potential threat to distributed cluster com-

puting environments. Security of clusters connected by a public network must address four

138

aspects, namely, confidentiality, integrity, availability, and authentication. Rather than ad-

dressing all the security aspects, I focus on preserving confidentiality of messages passed

among computing nodes in a unsecured cluster. Nevertheless, an integrity checking service

can be readily incorporated into our security framework by applying a public-key cryptog-

raphy scheme. In an MPI framework equipped with the public-key scheme, sending nodes

can encode messages using their private keys. In the message receiving procedure, any nodes

can use public keys corresponding to the private keys to decode messages. Please refer to

Section 7.5.6 for details of how to add integrity checking services in our MPI framework

called ES-MPICH2.

Since there is an open accessible nature of the open networks, providing confidentiality

services for these large-scale distributed clusters becomes a non-trivial and challenging prob-

lem. To address this issue, I enhanced the security of the MPI (Message Passing Interface)

protocol by encrypting and decrypting messages sent and received among computing nodes.

In this study I focus on MPI rather than other protocols, because MPI is one of the most

popular communication protocols for cluster computing environments. Numerous scientific

and commercial applications running on clusters were developed using the MPI protocol.

Among a variety of MPI implementations, I picked MPICH2 developed by the Argonne Na-

tional Laboratory. The design goal of MPICH2 - a widely used MPI implementation - is

to combine portability with high performance [42]. I integrated encryption algorithms into

the MPICH2 library Thus, data confidentiality of MPI applications can be readily preserved

without a need to change the source codes of the MPI applications. Data communications of

a conventional MPI program can be secured without converting the program into the corre-

sponding secure version, since I provide a security enhanced MPI-library with the standard

MPI interface. In what follows, I summarize the four major contributions of this study.

• I implemented a standard MPI mechanism called ES-MPICH2 to offer data confiden-

tiality for secure network communications in message passing environments. Our proposed

139

security technique incorporated in the MPICH2 library can be very useful for protecting

data transmitted in open networks like the Internet.

• The ES-MPICH2 mechanism allows application programmers to easily write secure

MPI applications without additional code for data-confidentiality protection. I seek an

channel-level solution in which encryption and decryption functions are included into the

MPICH2 library. Our ES-MPICH2 maintains a standard MPI interface to exchange messages

while preserving data confidentiality.

• The implemented ES-MPICH2 framework provides a secured configuration file that

enables application programmers to selectively choose any cryptographic algorithm and

symmetric-key in ES-MPICH2. This feature makes it possible for programmers to easily

and fully control the security services incorporated in the MPICHI2 library. To demonstrate

this feature, I implemented the AES and Triple DES algorithms in ES-MPICH2. I also show

in this research how to add other cryptographic algorithms in to the ES-MPICH2 framework.

• I have used ES-MPICH2 to perform a detailed case study using the Sandia Micro

Benchmarks and the Intel MPI benchmarks. I focus on runtime performance overhead

introduced by the cryptographic algorithms.

This Chapter is organized as follows: Section 7.2 demonstrates the vulnerabilities of

existing MPI implementations by describing a security threat model for clusters connected

by public networks. Section 7.3 not only provides a reason for focusing on the confidentiality

issue of MPICH2 rather than other MPI implementations, but also gives an overview of

the MPICH2 implementation. Section 7.4 presents the motivation of this work by showing

why secured MPI is an important issue and also outlines the design of ES-MPICH2 - the

message passing interface with enhanced security. Section 7.5 describes the corresponding

implementation details of ES-MPICH2. Section 7.6 discusses some experimental results and

compares the performance of ES-MPICH2 with that of MPICH2. Finally, Section 7.7 states

the summary and future work of this study.

140

7.2 Threat Model

A geographically distributed cluster system is one in which computing components

at local cluster computing platforms communicate and coordinate their actions by passing

messages through public networks like the Internet. To improve the security of clusters

connected to the public networks, one may build a private network to connect an array

of local clusters to form a large scale cluster. Building a private network, however, is not

a cost-effective way to secure distributed clusters. The Internet - a very large distributed

system - can be used to support large-scale cluster computing. Being a public network, the

Internet becomes a potential threat to distributed cluster computing environments.

Confidentiality, integrity, availability, and authentication are four important security

issues to be addressed in clusters connected by an unsecured public network. In this study,

I pay particular attention to confidentiality services for messages passed among computing

nodes in a unsecured cluster. Although preserving confidentiality is our primary concern, an

integrity checking service can be seamlessly incorporated into the ES-MPICH2 framework

by applying a public-key cryptography scheme (see Section 7.5.6 for an approach to incor-

porating integrity services in ES-MPICH2). For example, sending nodes encode messages

using private keys. If one alters the messages, the ciphertext can not be deciphered correctly

using public keys corresponding to the private keys. Thus, the receiving nodes can perform

message integrity check without the secure exchange of secret keys.

I first describe the confidentiality aspect of security in clusters followed by three specific

attack instances. I believe new attacks are likely to emerge, but the confidentiality aspect

will remain unchanged. Confidentiality attacks attempts to expose messages being trans-

mitted among a set of collaborating processes in a cluster. For example, if attackers gain

network administrator privilege, they can intercept messages and export the messages to a

database file for further analysis. Even without legitimate privilege, an attacker still can

sniff and intercept all messages in a cluster on the public network. Such attacks result in

141

the information leakage of messages passed among computing nodes in geographically dis-

tributed clusters. Cryptography and access control are widely applied to computer systems

to safeguard against confidentiality attacks.

I identify the following three confidentiality attacks on MPI programs running on dis-

tributed clusters:

• Sniffing Message Traffic: Message traffic of an MPI program can be sniffed. For

example, when MPCH2 is deployed in a cluster connected by a Gigabit Ethernet network,

attackers can sniff plaintext messages transmitted through the TCP socket. Message sniffing

can reveal security-sensitive data, metadata, and information.

• Snooping on Message Buffer : In an MPI program, buffers are employed to send

and receive messages. Regardless of specific MPI implementations, message buffers are

created before the send and receive primitives are invoked. Attackers who snoop into the

message buffers in memory can access data and information without being given specific

access privileges.

• Message Traffic Profiling : Message traffic profiling attacks seek to use message type,

timestamps, message size, and other metadata to analyze message exchange patterns and

types of protocols being used in message transmissions. For example, an attacker can monitor

the network connection of a cluster running an MPI program. If a message has been regularly

transmitted, the attacker can speculate the importance of the message and intercept the

content of the message.

Confidentiality services can effectively counter the aforementioned threats in MPI ap-

plications running on clusters connected by a public network. In this research, I encode

messages using the Advanced Encryption Standard (AES) and the Triple Data Encryption

Standard (Triple-DES or 3DES). In the case that attackers intercept messages in an MPI

program, they are unable to transform the ciphertext into the original plaintext due to the

lack of data encipherment keys.

142

MPI Implementation

Channel Implementation of ADI−3

[. . .]

Interfaces
Low−Level

Channel
Interface 3

Interface 2
Message Passing

(TCP/IP)
Ethernet shared

memory [. . .]
Infini−
Band

Interface 3
Abstract Device

Communication System

Device−Layer

MPID−Layer

MPI−Layer

User Application

Figure 7.1: Hierarchical Structure of MPICH2 [40]

7.3 MPICH2 Overview

MPICH - one of the most popular MPI implementations - were developed at the Argonne

National Laboratory [42]. The early MPICH version supports the MPI-1 standard. MPICH2

- a successor of MPICH - not only provides support for the MPI-1 standard, but also facili-

tates the new MPI-2 standard, which specifies functionalities like one-sided communication,

dynamic process management, and MPI I/O [40]. Compared with the implementation of

MPICH, MPICH2 was completely redesigned and developed to achieve high performance,

maximum flexibility, and good portability.

Fig. 7.1 shows the hierarchical structure of the MPICH2 implementation, where there

are four distinct layers of interfaces to make the MPICH2 design portable and flexible. The

four layers, from top to bottom, are the message passing interface 2 (MPI-2), the abstract

device interface (ADI3), the channel interface (CH3), and the low-level interface. ADI3 - the

third generation of the abstract device interface - in the hierarchical structure (see Fig. 7.1)

allows MPICH2 to be easily ported from one platform to another. Since it is non-trivial to

implement ADI3 as a full-featured abstract device interface with many functions, the CH3

layer simply implements a dozen functions in ADI3 [69].

143

As shown in Fig. 7.1, the TCP socket Channel, the shared memory access (SHMEM)

channel, and the remote direct memory access (RDMA) channel are all implemented in the

layer of CH3 to facilitate the ease of porting MPICH2 on various platforms. Note that

each one of the aforementioned channels implements the CH3 interface for a corresponding

communication architecture like TCP sockets, SHMEM, and RDMA. Unlike an ADI3 device,

a channel is easy to implement since one only has to implement a dozen functions relevant

for with the channel interface.

To address the issues of message snooping in the message passing environments on

clusters, I seek to implement a standard MPI mechanism with confidentiality services to

counter snooping threats in MPI programs running on a cluster connected an unsecured

network. More specifically, I aim to implement cryptographic algorithms in the TCP socket

channel in the CH3 layer of MPICH2 (see Fig. 7.2 and section 7.5 for details of how to

construct a cryptosystem in the channel layer).

7.4 Description of ES-MPICH2

7.4.1 Motivation

Computing nodes in a distributed cluster are geographically deployed in several com-

puting sites on an open network. Processes within a communication group need to transmit

security-sensitive messages through unsecured communication channels. Preserving data

confidentiality in a message passing environment over an untrusted network is critical for

a wide spectrum of security-aware MPI applications, because unauthorized access to the

security-sensitive messages by untrusted processes can lead to serious security breaches.

Hence, it is imperative to protect confidentiality of messages exchanged among a group of

trusted processes.

There are three common approaches to improving security of MPI applications. In first

approach, application programmers can add source code to address the issue of message con-

fidentiality. Such an application-level security approach not only makes the MPI applications

144

error-prone, but also reduce the portability and flexibility of the MPI applications. In the

second approach, the MPI interface can be extended in the way that new security-aware APIs

are designed and implemented (see, for example, MPISec I/O [90]). This MPI-interface-level

solution enables programmers to write secure MPI applications with minimal changes to the

interface. Although the second approach is better than the first one, this MPI-interface-level

solution typically requires extra code to deal with data confidentiality. The third approach

- a channel-level solution - is proposed in this study to address the drawbacks of the above

two approaches. The channel-level solution aims at providing message confidentiality in a

communication channel that implements the Channel Interface 3 in MPICH2 (see Fig. 7.1).

7.4.2 The Design of ES-MPICH2

The goal of the development of the ES-MPICH2 mechanism is to enable application pro-

grammers to easily implement secure enhanced MPI applications without additional code

for data-confidentiality protection. In our programming model, processes belonging to a

communication group trust each other. Any process that is outside of this communication

group is not trusted by the member processes in the group. In other words, trusted processes

within a communication group (i.e., a group of processes spawned in an MPI application)

can efficiently encrypt and decrypt messages delivered among the trusted processes. The

communication group as a whole will have to control the encryption and decryption proce-

dures. With ES-MPICH2 in place, secure MPI application programmers are able to flexibly

choose a cryptographic algorithm, key size, and data block size for each MPI application

that needs data confidentiality protection.

ES-MPICH2 offers message confidentiality in an MPI programming environment by in-

corporating MPICH2 with encryption and decryption algorithms. In the process of designing

ES-MPICH2, I integrated the AES and 3DES algorithms into the MPICH2 library. Unlike

the application-level and MPI-interface-level security solutions, ES-MPICH2 encrypts and

145

decrypts messages at the transmission layer without modifying the MPI interface or appli-

cation source code. ES-MPICH2 maintains a standard MPI interface to exchange messages

while preserving data confidentiality. Thus, this feature of ES-MPICH2 allows application

programmers to easily write secure MPI applications with no requirement of additional code

to deal with message confidentiality protection.

The ES-MPICH2 implementation has the following four design goals:

• Message Confidentiality: ES-MPICH2 aims to preserve message confidentiality

from unauthorized accesses by untrusted processes. I leverage the AES to protect the con-

fidentiality of messages, because AES is an encryption standard adopted by the U.S. gov-

ernment. For comparison purpose, I also consider 3DES in the design of ES-MPICH2. AES

with 128-bit keys can provide adequate protection for classified messages up to the SECRET

level. The implementation of AES in products intended to protect national security systems

and/or information must be reviewed and certified by NSA prior to their acquisition and

use [6]. In the next section (i.e., Section 7.5), I will explain why I paid particular atten-

tion on block ciphers like AES. In this study, I integrated data confidentiality services with

MPICH2 by implementing the cryptographic algorithms in a CH3 channel. I will also discuss

in section 7.5 the integration of security services with the TCP socket channel in the CH3

layer of MPICH2.

• Complete Transparency: ES-MPICH2 is intended to improve the security of any

conventional MPI program without adding extra code to perform message protection. Thus,

preserving message confidentiality in MPICH2 is entirely transparent to application pro-

grammers. Such confidentiality transparency is feasible and the reason is two-fold. First,

the encryption and decryption processes can be built in the MPICH2 library at the chan-

nel transmission layer. Second, I maintain the same interface as the APIs of the MPICH2

implementation. Therefore, I can enhance the security of conventional MPI applications

by running the applications in the ES-MPICH2 environment without modifying the source

code.

146

• Compatibility and Portability: Ideally, ES-MPICH2 needs to be easily ported

from one platform to another with no addition to the application source code. ES-MPICH2

is an extension of MPICH2 and; thus, ES-MPICH2 should have the same level of porta-

bility as MPICH2. However, it is challenging to achieve high portability in ES-MPICH2,

because I have to implement a cryptographic subsystem in each channel in the CH3 layer

in MPICH2. In the current version of ES-MPICH2, only a secured TCP socket channel has

been implemented and tested. Thus, ES-MPICH2 should work without modifications on

any parallel and distributed computing system that supports TCP communications and the

MPICH2 library. The SHMEM and RDMA channels have not been completely supported in

ES-MPICH2 and; therefore, the focus of this research is the TCP socket channel in MPICH2.

Nevertheless, one can take a similar approach described in Section 7.5 to integrating data

confidentiality services with the SHMEM and RDMA channels in the CH3 layer of MPICH2.

• Extensibility: ES-MPICH2 must allow application programmers to selectively choose

any cipher techniques and keys incorporated in MPICH2. This design goal makes it pos-

sible for programmers to flexibly select any cryptographic algorithm implemented in ES-

MPICHI2. Although I implemented AES and 3DES in the channel layer of MPICH2, I will

show in the next section how to add other cryptographic algorithms (e.g., Elliptic Curve

Cryptography, [12]) to the ES-MPICH2 environment.

7.5 Implementation Details

During the implementation of ES-MPICH2, I addressed the following five development

questions: (1) Among the multiple layers in the hierarchical structure of MPICH2, in which

layer should I implement cryptographic algorithms? (2) Which cryptosystem should I choose

to implement? (3) How to implement secure key management? (4) How to use the imple-

mented ES-MPICH2? (5) How to add integrity checking services to ES-MPICH2?

147

Plaintext

TCP Socket

CH3

ADI3

Sender

Transmit
Message

Network Receiver

Plaintext

TCP Socket

CH3

ADI3

Figure 7.2: Message passing implementation structure in MPICH2.

7.5.1 Ciphers in the Channel Layer

Fig. 7.2 outlines the message passing implementation structure in the original version of

MPICH2. In such a hierarchical structure of MPICH2, messages are passed from a sending

process to a receiving process through the abstract device interface (ADI3), the channel

interface (CH3), and the TCP socket channel. Cryptographic subsystems may be imple-

mented in one of the three layers (i.e., ADI3, CH3, or the TCP socket channel). To achieve

the design goal of complete transparency, I chose to implement cryptographic algorithms in

the TCP socket channel. Compared with ADI3 and CH3, the TCP socket channel is the

lowest layer of the MPICH2 hierarchy. Implementing cryptosystems in the lowest layer can

preserve message confidentiality in any conventional MPI program without adding extra code

to protect messages. Fig. 7.3 depicts the implementation structure of ES-MPICH2, where

a cryptosystem is implemented in the TCP socket layer. Thus, messages are encrypted and

decrypted in the TCP socket channel rather than the ADI3 and CH3 layers.

Fig. 7.4 shows that the encryption and decryption functions in ES-MPICH2 interact

with the TCP socket to provide message confidentiality protection in the TCP socket layer.

Before a message is delivered through the TCP socket channel, data contained in the message

148

Plaintext
Encrypted

Text

Encrypt
Message

TCP Socket

CH3

ADI3

Encrypted
Text

Plaintext

Decrypt
Message

TCP Socket

CH3

ADI3

Sender

Transmit
Message

Network Receiver

Figure 7.3: Message passing implementation structure in ES-MPICH2 with encryption and
decryption processes. A cryptosystem is implemented in the TCP socket layer to achieve
the design goal of complete transparency.

is encrypted by a certain cryptographic algorithm like AES and 3DES. Upon the arrival of

an encrypted message in a receiving node, the node invokes the corresponding decryption

function to decrypt the message. Fig. 7.4 demonstrates that ES-MPICH2 maintains the

same application programming interface or API as that of MPICH2 by implementing the

encryption and decryption algorithms in the TCP socket level. The confidentiality services of

ES-MPICH2 were implemented in the MPICH2 libraries, thereby being totally transparent

to MPI application programmers.

7.5.2 Block Ciphers

In the ES-MPICH2 framework, I implemented the AES and 3DES cryptographic al-

gorithms in MPICH2 version 1.0.7. I focus on block ciphers in the implementation of ES-

MPICH2, because a block cipher transforms a fixed-length block of plaintext into a block

of ciphertext of the same length. If the case where ciphertext and plaintext are different in

length, MPI applications have to be aware of such a difference in order to correctly decode

ciphers. Keeping in mind that securely passing messages should be transparent to MPI

application programmers, I advocate the use of block ciphers rather than non-block-ciphers

that force programmers to be aware of the lengths of plaintext and ciphertext.

149

MPI

MPI_Send

Socket
Reading

Socket
Writing

DecryptionEncryption

Socket

MPI_ISend MPI_Recv MPI_Reduce.....

Figure 7.4: The interface between the encryption/decryption processes and the TCP socket.
ES-MPICH2 maintains the same API as that of MPICH2.

150

Master Node

Symmetric Key for ES-MPICH2

Computing Node 1

Computing Node 2

Node 1’s Public Key
Node 2’s Public Key
Node 3’s Public Key
Node 4’s Public Key
Node 5’s Public Key

Computing Node 3

Computing Node 4

Computing Node 5

Send DEK

Figure 7.5: Key management in ES-MPICH2. Public key cryptography employed in ES-
MPICH2 relies on interchange keys (i.e., public and private keys) to exchange data enci-
pherment keys (DEK) in a secure way.

7.5.3 Key Management

The goal of key management is to dynamically establish secure message-passing chan-

nels by distributing cryptographic keys. ES-MPICH2 maintains two types of keys - data

encipherment keys (a.k.a., session keys) and interchange keys. A session key is a randomly

generated cryptographic key associated with message passing among computing nodes. A

interchange key is a cryptographic key bound to a particular computing node. In the MPI

initialization phase of each MPI application, a data encipherment key is created and shared

among all the communicating processes.

Fig. 7.5 presents the key management infrastructure in ES-MPICH2. Public key cryp-

tography employed in ES-MPICH2 relies on interchange keys (i.e., public and private keys)

to securely exchange session keys in an unsecured network. More specifically, when a master

node attempts to share new session keys with other slave nodes, the master node uses the

slave nodes’ public keys to encrypt the session keys. The slave nodes make use of their

private keys to decipher messages containing the session keys. Then, the master node and

slave nodes can securely communicate using the MPI framework.

Please note that the key management infrastructure in ES-MPICH2 is different from

that in MPISec I/O because I put the exchange keys into configuration files in each node. In

151

this infrastructure, I use operating system access control mechanism to protect and encrypt

files storing keys. Enciphering the configuration files containing the interchange keys may

not work in a cluster connected by an unsecured network because an attacker may trick

system administrators into downloading a malware program that captures keystrokes as well

as the configuration files and delivers them to the attacker. A more secure solution is to store

interchange keys on physical devices like smart card and ROM. Please refer to [25][29][76]

for details of how to store and protect interchange keys.

7.5.4 Socket Programming

In socket programming, there is a buffer containing data sent and received through the

TCP socket channel. Fig. 7.6 demonstrates the encryption and decryption process in ES-

MPICH2. Originally, MPICH2 fills the socket buffer with data in plaintext. The data is

written to the socket of a sending node and; then, a receiving node fills its receiving buffer

with the plaintext data read from socket. In ES-MPICH2, plaintext data is initially stored

in the sending buffer. Next, ES-MPICH2 encrypts the plaintext data in the sending buffer.

Thus, the plaintext is replaced by the ciphertext. Finally, the data written in the socket of

the sending node is encrypted using a specific encryption algorithm. The socket buffer in

the receiving node is filled with the encrypted data directly received from the socket. Then,

MPICH2 decrypts the ciphertext, which is replaced by the plaintext in the receiving buffer.

Because the plaintext and ciphertext are identical in length in block cipher algorithms, the

sizes of the buffers in both the sending and receiving nodes remain unchanged after the

encryption and decryption processes.

7.5.5 Usage

The security features of ES-MPICH2 can be configured without modifying any MPI

application source code. To securely pass messages using ES-MPCH2, the following config-

urations must be set before MPI initialization. First, a security option should be enabled

152

Socket Buffer

Socket Buffer

Socket Buffer

Socket

Socket Buffer

Encrypt

Write Socket Read Socket

Decrypt

Figure 7.6: ES-MPICH2 Socket Details

or disabled. If the security feature disabled, ES-MPICH2 gracefully degrades to the original

version of MPICH2 (v1.0.7). Second, one has to select a specific cryptographic algorithm

implemented in ES-MPICH2. In the current version of ES-MPICH2, MPI application users

can choose one out of two cryptographic schemes - AES and 3DES. The extensibility feature

of ES-MPICH2 allows programmers to choose other cryptography techniques other than

AES and 3DES by implementing and adding a wide range of block cipher algorithms in ES-

MPICH2. Third, exchange keys must be securely stored in a configuration file or a physical

device in each node (see Section 7.5.3 for details on the key management issue.) After a

particular security feature is configured, users can run their MPI programs in the same way

as they should run the programs in MPICH2. Thus, if an MPI program can be executed in

MPICH2, one can also run the MPI program in ES-MPICH2 without modifying the source

code of the program.

7.5.6 Incorporating Integrity Services in ES-MPICH2

In addition to confidentiality services, integrity checking services can be seamlessly in-

corporated into the ES-MPICH2 framework. In what follows, I address the implementation

issue of how to integrate integrity checking services in ES-MPICH2.

153

Spreading feature of block encryption algorithms: Block encryption algorithms

have a spreading feature in which means if even 1 bit is changed in ciphertext, the decrypted

text will be completely different from the original plaintext. Altered messages causing fatal

errors can not be interpreted. Although using the spreading feature is not a reliable solution,

the spreading feature does provide an integrity checking method. Since both AES and 3DES

are block encryption algorithms, ES-MPICH2 may rely on the spreading feature to perform

integrity checking.

Public Key: An integrity service can be added into ES-MPICH2 using a public-key

encryption scheme, in which sending nodes encode messages using private keys whereas

receiving nodes use the corresponding public keys to decipher the ciphertext. Before a node

delivers an encrypted message in ES-MPICH2, the node encrypts the message using the

private key of the sending node. To check the integrity of the cipher message, a receiving

node simply needs to decode the cipher message by applying the public key of the sending

node.

Hash Functions: Hash functions are widely used in integrity checking and digital

signatures. MD5, SHA-1, and SHA-2 can be implemented to check the integrity of encrypted

messages in ES-MPICH2. The hash is a cryptographic checksum or message integrity code

that sending and receiving nodes must compute to verify messages. For example, a sending

node can use a hash function and a shared key to compute the checksum for a message. A

receiving node needs to perform the same hash function on the received message using the

shared key. A hash function is applied after a message is encrypted in a sending node. The

same hash function is used before the ciphertext is decoded in a receiving node. In doing so,

the integrity of encrypted messages can be checked.

7.6 Experimental Evaluation

To evaluate the features and performance of ES-MPICH2, I implemented ES-MPICH2

and deployed it on two clusters with different configurations. The first cluster has six nodes

154

of 2.2 GHz Intel Celeron processors with 2 GB memory. The second cluster contains ten

nodes. The master node has a 3.0 GHz Intel Pentium Core 2 Duo processor with 1 GB

memory, whereas the nine slave nodes have 333 MHz Intel Pentium II processors with 64

MB memory. The six nodes in the first cluster are connected by a 1 Gbps Ethernet LAN.

The 10 nodes in the second cluster are connected by a 100 Mbps Ethernet LAN. Apparently,

the overall performance of the first cluster is higher than that of the second cluster.

Table 7.1: The Configuration of A 6-NodeCluster of Intel Celeron Processors

Node ×6
CPU Intel Celeron 450 2.2GHz

Memory 2GB
OS Ubuntu 9.04 Jaunty Jackalope

Kernel version 2.6.28-15-generic
Network 1000Mbps

7.6.1 A 6-node Cluster of Intel Celeron Processors

Experimental Testbed

Let us first evaluate the performance of both MPICH2 and ES-MPICH2 on a 6-node

cluster. Table 7.1 reports the configuration of the first cluster with six identical computing

nodes of Intel Celeron processors. The operating system used in the six nodes is Ubuntu

9.04 Jaunty Jackalope. The computing nodes are connected by a 1 Gbps network. All the

slave nodes share a disk on the master node through the network file system (NFS) [102].

The MPI library used in the 6-node cluster is MPICH2 version 1.0.7. I run the Sandia

Micro Benchmarks and the Intel MPI Benchmarks to evaluate and compare the performance

of MPICH2 and ES-MPICH2. When I test ES-MPICH2 in each experiment, I set the

cryptographic service to AES and 3DES, respectively. The length of data encipherment keys

generated and distributed in ES-MPICH2 is 192-bit.

155

Table 7.2: Performance Metrics used in the Sandia Micro Benchmark Suite (SMB)

Metric Explanation
iter t total amount of time for the loop to complete
work t for each iteration of the post-work-wait loop

the amount of work performed
overhead t the length of time that a processor is engaged in the

transmission or reception of each message
base t message transfer time calculation threshold

SMB: Sandia Micro Benchmark

The Sandia National Laboratory developed the Sandia Micro Benchmark Suite (a.k.a.,

SMB) to evaluate and test high-performance network interfaces and protocols. Table 7.2

described the four performance metrics used in the SMB benchmark suite. These metrics

include total execution time (i.e., iter t), CPU execution time for iterations (i.e., work t),

message passing overhead (i.e, overhead t), and message transfer time calculation thresh-

old (i.e, threshold or base t). The detailed information on these metrics can be found at

http://www.cs.sandia.gov/smb. Please note that the message passing overhead can be de-

rived by subtracting the CPU execution time from the total execution time. Each benchmark

has 1000 iterations.

Fig. 7.7 shows the total execution time of the SMB benchmark running on the original

MPI implementation (i.e., MPICH2) as well as AES-based ES-MIPCH2 and 3DES-based

ES-MPICH2. I observe from this figure that when the message size is small (e.g., 1 KB), the

performance of ES-MPICH2 is very close to that of MPICH2. These results indicate that

ES-MPICH2 can preserve confidentiality of small messages with negligible overhead.

Fig. 7.8, Fig. 7.9, Fig. 7.10, and Fig. 7.11 show the total execution time, CPU time,

overhead, and threshold of MPICH2 and ES-MPICH2 when the message size is set to 2

KB, 16 KB, 128 KB, 512 KB, and 1024 KB, respectively. The results plotted in Fig. 7.8

show that AES-based ES-MPICH2 and MPICH2 have similar performance in the case of

small messages. However, when 3DES is employed in ES-MPICH2, the security overhead of

ES-MPICH2 becomes noticeable even for small messages. Figs. 7.9- 7.11 illustrate that both

156

0 2 4 6 8 10 12 14 16 18 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

2n Bytes

Sandia Micro Benchmark Iter_t

T
im

e
(m

s)

Original MPI
AES
3DES

Figure 7.7: Sandia Micro Benchmark iter time

iter_t work_t overhead_t base_t
0

200

400

600

800

1000

1200

1400

1600

1800
Sandia Micro Benchmark Msg Size=1024KB

T
im

e
(m

s)

Original MPI
AES
3DES

Figure 7.8: Sandia Micro Benchmark Message Size is 2KB

157

iter_t work_t overhead_t base_t
0

1000

2000

3000

4000

5000

6000
Sandia Micro Benchmark Msg Size=16KB

T
im

e
(m

s)

Original MPI
AES
3DES

Figure 7.9: Sandia Micro Benchmark Message Size is 16KB

iter_t work_t overhead_t base_t
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4 Sandia Micro Benchmark Msg Size=128KB

T
im

e
(m

s)

Original MPI
AES
3DES

Figure 7.10: Sandia Micro Benchmark Message Size is 128KB

158

iter_t work_t overhead_t base_t
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5 Sandia Micro Benchmark Msg Size=1024KB

T
im

e
(m

s)

Original MPI
AES
3DES

Figure 7.11: Sandia Micro Benchmark Message Size is 1024KB

AES and 3DES in ES-MPICH2 introduce much overhead that makes ES-MPICH2 performs

worse than MPICH2 - the original MPI implementation. Security overhead in ES-MPICH2

becomes more pronounced with increasing message size. Since AES has better performance

than 3DES, AES-based ES-MPICH2 is superior to 3DES-based ES-MPICH2. I recommend

the following two approaches to lowering overhead caused by encryption and decryption

modules in ES-MPICH2. First, one can reduce the security overhead in ES-MPICH2 by en-

hancing the performance of block cipher algorithms. Second, multicore processors can boost

efficiency of the encryption and decryption modules, thereby benefiting the performance of

ES-MPICH2.

IMB: Intel MPI Benchmarks

The Intel MPI benchmark suite or IMB was developed for testing and evaluating imple-

mentations of both MPI-1 [26] and MPI-2 [37] standards. IMB contains approximately 10,000

159

Table 7.3: Intel MPI Benchmarks
Benchmarks Classification Semantics
PingPong Single Transfer MPI-1
PingPing Single Transfer MPI-1
Sendrecv Parallel Transfer MPI-1
Exchange Parallel Transfer MPI-1
Bcast Collective MPI-1
Allgather Collective MPI-1
Allgatherv Collective MPI-1
Scatter Collective MPI-1
Scatterv Collective MPI-1
Gather Collective MPI-1
Gatherv Collective MPI-1
Alltoall Collective MPI-1
Alltoallv Collective MPI-1
Reduce Collective MPI-1
Reduce Scatter Collective MPI-1
Allreduce Collective MPI-1
Window Other MPI-2

lines of code to measure the performance of important MPI functions [23][99]. I have evalu-

ated the performance of ES-MPICH2 and the original MPICH2 by running the benchmarks

on the 6-node cluster. Table 7.3 lists all the Intel benchmarks used to measure the perfor-

mance of ES-MPI2 and MPICH2. The benchmarks in IMB-MPI1 can be categorized in three

groups: single transfer, parallel transfer, and collective benchmarks. Single transfer bench-

marks are focusing on a single message transferred between two communicating processes.

Unlike single transfer benchmarks, parallel transfer benchmarks aim at testing patterns

and activities in a group of communicating processes with concurrent actions. Collective

benchmarks are implemented to test higher level collective functions, which involve pro-

cessors within a defined communicator group. Please refer to http://software.intel.com/en-

us/articles/intel-mpi-benchmarks for more information concerning IMB.

Figs. 7.12 and 7.13 show the performance of PingPong and PingPing - two single transfer

benchmarks in IMB. Since single transfer benchmarks are used to test a pair of two active

processes, I run PingPong and PingPing on two nodes of the 6-node cluster. The total

160

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

T
im

e
(m

s)

Msg Size 2n Bytes

IMB PingPong

Original MPI
AES
3DES

Figure 7.12: Intel MPI Single Transfer Benchmark PingPong

execution times of PingPong and PingPing go up when the message size increases because

larger messages give rise to higher encryption and decryption overheads. Compared with

MPICH2, the execution times of AES-based and 3DES-based ES-MPICH2 are more sensitive

to message size.

Now I analyze the performance of Sendrecv and Exchange - two parallel transfer bench-

marks in IMB - running on ES-MPICH2 and MPICH2 on the 6-node cluster. Sendrecv, in

which the main purpose is to test the MPI Sendrecv function, consists of processes forming

a periodic communication chain. Similarly, Exchange is a benchmark focusing on the evalu-

ation of the MPI ISend, MPI Waitall, and MPI Recv functions. Unlike the aforementioned

single transfer benchmarks, message passing operations in these two parallel benchmarks are

performed in parallel.

Fig. 7.14 plots the performance results of the SendRecv benchmark on the cluster, where

each node receives data from its left neighbor and then sends data to its right neighbor. The

total execution time of the SendRecv benchmark does not noticeably change when I vary the

161

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

T
im

e
(m

s)

Msg Size 2n Bytes

IMB PingPing

Original MPI
AES
3DES

Figure 7.13: Intel MPI Single Transfer Benchmarks PingPing

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

T
im

e
(m

s)

Msg Size 2n Bytes

IMB Exchange

Original MPI
AES
3DES

Figure 7.14: Intel MPI Parallel Benchmarks PingPong

162

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

T
im

e
(m

s)

Msg Size 2n Bytes

IMB PingPing

Original MPI
AES
3DES

Figure 7.15: Intel MPI Parallel Benchmarks PingPing

number of computing nodes in the cluster. I attribute this trend to the factor that message

passing in multiple nodes are carried out in parallel rather than serially. Thus, increasing the

number of nodes does not affect SendRecv’s total execution time. With respect to parallel

transfers, the performance of AES-based and 3DES-based MPICH2 is close to that of the

original version of MIPCH2 when message size is relatively small. When it comes to large

messages, AES-based ES-MPICH2 has better parallel transfer performance than 3DES-based

MPICH2.

Fig. 7.15 depicts the total execution time of the Exchange benchmark. Comparing

Fig. 7.15 with Fig. 7.14, I realize that regardless of the MPI implementations, the execution

time of the Exchange benchmark is longer than that of the SendRecv benchmark under the

condition of same message size. This is mainly because in Exchange each node transfer data

to both left and right neighbours in the communication chain. Thus, communication time in

Exchange is larger than that in SendRecv. As a result, the total execution time of Exchange

is approximately two times higher than that of Sendrecv when message size is large.

163

Bcast AllgatherAllgatherv Scatter Scatterv Gather Gatherv Alltoall Alltoallv
0

200

400

600

800

1000

1200

1400

1600

1800

T
im

e
(m

s)

Msg Size=1KB

IMB Collective process#=6

Original MPI
AES
3DES

Figure 7.16: Intel MPI Benchmarks Collective Group A, Message Size is 1KB, nodes amount
is 6

Let us vary message size and evaluate the performance of collective benchmarks. I

run the benchmark 10 times on each MPI implementation and report the average execution

times. Figs. 7.16-7.17 show the performance of the first group of nine collective benchmarks.

I observe from these figures that the total execution time of each collective benchmark

continually increases with increasing message size. MPICH2 has better performance than

AES-based and 3DES-based ES-MPICH2 across all the collective benchmarks, because the

confidentiality is preserved at the cost of message passing performance. Figs. 7.19-7.20 plot

the execution times of the second group of three benchmarks. The performance results of

the second benchmark group are consistent with those of the first benchmark group reported

in Figs. 7.16-7.17.

Fig. 7.22 shows the results of the Window benchmark, which aims to test MPI-2 func-

tions like MPI Win create, MPI Win fence, and MPI Win free. In this benchmark, a window

size message is transferred to each node, which in turn creates a window using a specified

164

Bcast AllgatherAllgatherv Scatter Scatterv Gather Gatherv Alltoall Alltoallv
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
im

e
(m

s)

Msg Size=8KB

IMB Collective process#=6

Original MPI
AES
3DES

Figure 7.17: Intel MPI Benchmarks Collective Group A, Message Size is 8KB, nodes amount
is 6

Bcast AllgatherAllgatherv Scatter Scatterv Gather Gatherv Alltoall Alltoallv
0

2000

4000

6000

8000

10000

12000

14000

16000

T
im

e
(m

s)

Msg Size=16KB

IMB Collective process#=6

Original MPI
AES
3DES

Figure 7.18: Intel MPI Benchmarks Collective Group A, Message Size is 16KB, nodes is 6

165

Reduce Reduce_Scatter Allreduce
0

200

400

600

800

1000

1200

1400

T
im

e
(m

s)

Msg Size=1KB

IMB Collective process#=6

Original MPI
AES
3DES

Figure 7.19: Intel MPI Benchmarks Collective Group B, Message Size is 1KB, nodes amount
is 6

Reduce Reduce_Scatter Allreduce
0

1000

2000

3000

4000

5000

6000

T
im

e
(m

s)

Msg Size=8KB

IMB Collective process#=6

Original MPI
AES
3DES

Figure 7.20: Intel MPI Benchmark Collective Group B, Message Size is 8KB, nodes amount
is 6

166

Reduce Reduce_Scatter Allreduce
0

2000

4000

6000

8000

10000

12000

T
im

e
(m

s)

Msg Size=16KB

IMB Collective process#=6

Original MPI
AES
3DES

Figure 7.21: Intel MPI Benchmark Collective Group B, Message Size is 16KB, nodes amount
is 6

size. Fig. 7.22 indicates that the execution time of the benchmark is not sensitive to message

size. The results confirm that AES-based ES-MPICH2 improves the security of the Window

benchmark on MPICH2 with marginal overhead.

7.6.2 A 10-node Cluster of Intel Pentium II Processors

Experimental Testbed

Now I evaluate the performance of MPICH2 and ES-MPICH2 on a 10-node cluster of

Intel Pentium II processors. The cluster configuration is summarized in Table 7.4. The

operating system running on this cluster is Fedora Core release 4 (Stentz). Although the

processors of the nine slave nodes are 333 MHz Intel Pentium II, the master node contains

a 3.0 GHz Intel Pentium Core 2 Duo processor, which is almost ten times faster than the

processors in the slave nodes. Each slave node has only 64 MB memory, whereas the master

node has 1 GB memory. All the ten nodes are connected by a 100 Mbps Ethernet network.

167

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200
IMB Window process#=6

T
im

e
(m

s)

Window 2 n Bytes

Original MPI
AES
3DES

Figure 7.22: Intel Micro Benchmark Window 6 nodes

Like the first cluster, all nodes in the 10-node cluster share disk space on the master node

through the network file system (NFS).

Table 7.4: The Configuration of A 10-Node Clusterof Intel Pentium II Processors

Master ×1 Slaves ×9
CPU Pentium Core Pentium II

2 Duo 3.00GHz 333MHz
Memory 1GB 64MB

OS Fedora Core Fedora Core
release 4 release 4

Kernel 2.6.12− 1.1456 2.6.17− 1.2142
FC4smp FC4

Network Adapter 100Mbps 100Mbps

SMB: Sandia Micro Benchmark

Figs. 7.23-7.25 reveal the total execution time, CPU time, overhead, and threshold

of MPICH2 and ES-MPICH2 when the message size is set to 1 KB, 16 KB, and 32 KB,

168

iter_t work_t overhead_t base_t
0

1000

2000

3000

4000

5000

6000
Sandia Micro Benchmark Msg Size = 1KB

T
im

e
(m

s)

Original MPI
AES
3DES

Figure 7.23: Sandia Micro Benchmark time Message Size=1KB

iter_t work_t overhead_t base_t
0

1

2

3

4

5

6

7
x 10

4 Sandia Micro Benchmark Msg Size = 16KB

T
im

e
(m

s)

Original MPI
AES
3DES

Figure 7.24: Sandia Micro Benchmark time Message Size=16KB

169

iter_t work_t overhead_t base_t
0

2

4

6

8

10

12

14
x 10

4 Sandia Micro Benchmark Msg Size = 32KB

T
im

e
(m

s)

Original MPI
AES
3DES

Figure 7.25: Sandia Micro Benchmark time Message Size=32KB

respectively. The results show that the performance of AES-based and 3DES-based ES-

MPICH2 is noticeably worse than that of MPICH2, because encryption and decryption

modules in ES-MPICH2 introduce security overhead. This trend is true even when messages

are small (e.g., 1 KB). Comparing Fig. 7.23 and Fig. 7.8, I observed that the first cluster is

significantly faster than the second one. As a result, the performance of AES-based MPICH2

on the first cluster is very close to that of MPICH2 when message size is smaller than 2 KB.

Thus, I conclude that improving processor speed in a cluster can substantially reduce the

security overhead in ES-MPICH2.

170

0 2 4 6 8 10 12 14 16 18 20 22
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
im

e
(m

s)

Msg Size 2n Bytes

IMB PingPong

Original MPI
AES
3DES

Figure 7.26: Intel MPI Benchmark PingPong

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

T
im

e
(m

s)

Msg Size 2n Bytes

IMB PingPing

Original MPI
AES
3DES

Figure 7.27: Intel MPI Benchmark PingPing

171

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

T
im

e
(m

s)

Msg Size 2n Bytes

IMB SendRecv process#=10

Original MPI
AES
3DES

Figure 7.28: Intel MPI Benchmark SendRecv 10 nodes

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

T
im

e
(m

s)

Msg Size 2n Bytes

IMB Exchange process#=10

Original MPI
AES
3DES

Figure 7.29: Intel MPI Benchmark Exchange 10 nodes

172

0 2 4 6 8 10 12 14 16 18 20 22
0

200

400

600

800

1000

1200

1400
Performance Degradation on 2 clusters (AES)

Message Size 2n Bytes

%

10−node Cluster of Intel Pentium II
6−node Cluster of Intel Celeron

Figure 7.30: Performance Degradation of 2 clusters (AES). Benchmark is SMB

IMB: Intel MPI Benchmarks

Figs. 7.26-Fig. 7.29 depict the performance of the PingPong, PingPing, SendRecv, and

Exchange benchmarks in IMB. The total execution times of the four IMB benchmarks in-

creases with increasing message size. Compared with MPICH2, the execution time of ES-

MPICH2 is more sensitive to message size. More importantly, Figs. 7.26-Fig. 7.29 demon-

strate that when ES-MPICH2 is deployed on a slow cluster, ES-MPICH2 preserves message

confidentiality by substantially degrading the performance of the original MPICH2. By

comparing the Intel benchmark performance on both the 6-node cluster (see Figs. 7.12-

Fig. 7.15and 10-node clusters (see Figs. 7.26-Fig. 7.29), I observe that the performance gap

between MPICH2 and ES-MPICH2 on the fast cluster is much smaller than the perfor-

mance gap on the slow cluster. An implication of this observation is that security overhead

in ES-MPICH2 can be significantly reduced by deploying ES-MPICH2 in a high-end cluster.

173

0 2 4 6 8 10 12 14 16 18 20 22
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Performance Degradation on 2 clusters (3DES)

Message Size 2n Bytes

%

10−node Cluster of Intel Pentium II
6−node Cluster of Intel Celeron

Figure 7.31: Performance Degradation of 2 clusters (3DES). Benchmark is SMB

To intuitively evaluate the impact of cluster computing capacity on ES-MPICH2, I com-

pared the two clusters in terms of the performance degradation due to additional overhead

associated with the confidentiality services. The performance degradation is calculated as

the performance differences between ES-MPICH2 and MPICH2 divided by the performance

of MPICH2.

Figs. 7.30 and 7.31 graphically depict the performance degradation of AES-based ES-

MPICH2 and 3DES-based ES-MPICH2 when the SMB benchmark suite is executed on the

two Linux clusters. The results plotted in Figs. 7.30 and 7.31 reveal that the performance

degradation of ES-MPICH2 is marginal when the message size is small (e.g., < 256 Bytes).

The performance degradation becomes more severe with larger messages. Comparing the

performance degradation of ES-MPICH2 on two clusters, I confirmed that using a high-end

cluster can substantially minimize the performance degradation caused by security overhead

in ES-MPICH2. For example, when the message size is larger than 256 KB, the performance

174

degradation of AES-based ES-MPICH2 is reduced by more than half when the 6-node cluster

of Intel Celeron is used instead of the 10-node cluster of Intel Pentium II (see Figs. 7.30).

7.7 Summary and Future Work

To address the issue of providing confidentiality services for large-scale clusters con-

nected by an open unsecured network, I aim at improving the security of the message passing

interface (MPI) protocol by encrypting and decrypting messages communicated among com-

puting nodes. In this study, I implemented the ES-MPICH2 framework, which is based on

MPICH2. ES-MPICH2 is a secure, compatible, and portable implementation of the message

passing interface standard. Compared with the original version of MPICH2, ES-MPICH2

preserves message confidentiality in MPI applications by integrating encryption techniques

like AES and 3DES into the MPICH2 library.

In light of ES-MPICH2, programmers can easily write secure MPI applications with-

out additional source code for data-confidentiality protection in open public networks. The

security feature of ES-MPICH2 is entirely transparent to MPI programmers because encryp-

tion and decryption functions are implemented at the channel-level in the MPICH2 library.

MPI-application programmers can fully configure any confidentiality services in MPICHI2,

because a secured configuration file in ES-MPICH2 offers the programmers flexibility in

choosing any cryptographic schemes and keys seamlessly incorporated in ES-MPICH2. Be-

sides the implementation of AES and 3DES in ES-MPICH2, other cryptographic algorithms

can be readily integrated in the ES-MPICH2 framework. I used the Sandia Micro Bench-

marks and the Intel MPI benchmarks to evaluate and analyze the performance of MPICH2.

Confidentiality services in ES-MPICH2 do introduce additional overhead because of

security operations. In the case of small messages, the overhead incurred by the security

services is marginal. The security overhead caused by AES and 3DES becomes more pro-

nounced in ES-MPICH2 with larger messages (e.g., the message size is larger than 256 KB).

175

Our experimental results show that the security overhead in ES-MPICH2 can be signifi-

cantly reduced by high-performance clusters. For example, the overhead added by AES in

ES-MPICH2 is reduced by more than half when the 6-node cluster of Intel Celeron is used

instead of the 10-node cluster of Intel Pentium II. In addition to high-end clusters, the fol-

lowing two solutions can be applied to further reduced overhead caused by confidentiality

services in ES-MPICH2. First, AES/3DES hardware implementations can lower security

overhead in ES-MPICH2. Second, security co-processors can hide the overhead by allowing

the encryption and decryption processes to be executed in parallel with the message passing

processes.

I am currently investigating varies means of reducing security overhead in ES-MPICH2.

For example, I plan to study if multicore processors can substantially lower the overhead of

confidentiality services in ES-MPICH2.

Another interesting direction for future work is to consider several strong and efficient

cryptographic algorithms like the Elliptic Cureve Cryptography (ECC) in ES-MPICH2.

Since ECC is an efficient and fast cryptographic solution, both the performance and the

security of ES-MPICH2 are likely to be improved by incorporating ECC.

A third promising direction for further work is to integrate encryption and decryption

algorithms in other communication channels like SHMEM and InfiniBand in MPICH2 be-

cause an increasing number of commodity clusters are built using standalone and advanced

networks such as Infiniband and Myrinet.

176

Chapter 8

Conclusion and Future Work

In this dissertation, I proposed a group of designs, algorithms, and implementations to

deal with energy efficiency issues and security issues in cluster computing systems. This

chapter concludes the dissertation by summarizing the contributions and describing future

directions. The chapter is organized as follows: Section 8.1 highlights the main contribu-

tions of the dissertation. In section 8.2, we concentrate on some future directions, which

are extensions of our past and current research on green computing for high-performance

computing platforms.

8.1 Main Contributions

Cluster computing is a large research area including high-performance computing, real-

time scheduling, parallel processing, high-performance network, large scale storage systems,

and data confidentiality. Electricity bills are getting hugh because clustered computers cost

a significant amount of energy by both processors and disks. Data confidentiality is another

big issue in data centers. In a security-aware storage system, performance is lower due to

the cryptographic algorithms cost. To make it easier to secure data in a cluster computing

system, we developed Enhanced-Security MPICH2 based on MPICH2 developed by Argonne

National Laboratory.

8.1.1 Time-Aware Dynamic Voltage Scaling

In this chapter, I proposed a time-aware dynamic voltage scaling algorithm to conserve

energy consumption for parallel applications in parallel computing systems. It makes use

of the dynamic voltage scaling technique (DVS) to provide significant energy savings for

177

both high-performance and mobile clusters. The novel feature of TADVS is that it employs

DVS only to parallel tasks that are followed by idle processor times. Experimental results

show that TADVS is capable of conserving energy without adversely affecting performance

of high-performance clusters and mobile clusters.

8.1.2 Energy-Efficient Storage Systems

In this chapter, I first presented the design of parallel I/O systems with buffer disks.

To conserve energy in parallel I/O systems serving write requests, I developed an algorithm

- dynamic request allocation algorithm for writes or DARAW - to energy efficiently allocate

and schedule disk requests. This goal is achieved by making use of buffer disks in parallel

I/O systems to accumulate small writes to form a log, which can be transferred to data

disks in a batch way. DARAW is able to improve parallel I/O energy efficiency by the virtue

of employing a small number of buffer disks to serve a majority of write requests, thereby

keeping a large number of data disks in low-power state for longer period times. In this

research, I focused on parallel I/O systems with homogeneous disks.

8.1.3 Energy-Efficient Cluster Storage Systems

In this chapter, I designed and implemented an energy-efficient cluster storage system

called ECOS. Each I/O node in ECOS controls multiple disks - one buffer disk and several

data disks. The key idea behind ECOS is to redirect disk requests from data disks to the

buffer disks. To improve I/O performance of buffer disks, ECOS attempts to balance I/O

load among all I/O nodes in the cluster storage system. The ECOS system was implemented

in a Linux cluster, where each I/O node contains one buffer disk and two data disks. Results

show that ECOS improves energy efficiency of traditional cluster storage systems without

using buffer disks.

178

8.1.4 Security-Aware Storage Systems

Achieving both high energy efficiency and security in disk systems is challenging, because

energy efficiency and data security are often two conflicting goals. In this chapter, I took

the first step toward the second approach by answering an intriguing question of whether I

can improve energy efficiency of security mechanisms in disk systems without changing the

source code of security services.

8.1.5 Enhanced-Security MPICH2

To address the issue of providing confidentiality services for large-scale clusters con-

nected by an open unsecured network, I aim at improving the security of the message passing

interface (MPI) protocol by encrypting and decrypting messages communicated among com-

puting nodes. In this chapter, I implemented the ES-MPICH2 framework, which is based on

MPICH2. ES-MPICH2 is a secure, compatible, and portable implementation of the message

passing interface standard. Compared with the original version of MPICH2, ES-MPICH2

preserves message confidentiality in MPI applications by integrating encryption techniques

like AES and 3DES into the MPICH2 library.

8.2 Future Work

we have found several interesting issues which have not been well dressed. This section

overviews some of these open issues that need further investigation. These open issues

present opportunities for my future research.

8.2.1 Solid State Drives - Internal Parallelism and Reliability

Most research of Solid State Drives architectures rely on Flash Translation Layer (FTL)

algorithms and wear-leveling. However, internal parallelism in Solid State Drives has not

been well explored.

179

Reliability is a critical issue for all flash based storage. In this study, we showed that

could update data in buffer. Updating data in the write buffer of an SSD can reduce the

number of erasures, thereby improving the reliability of the SSD. We plan to quantitatively

evaluate the reliability impact of our write buffers on SSDs

8.2.2 Hybrid Storage Systems

The storage system combined with different storage media is a future direction. The

collaboration of different storage devices will decide performance. Hybrid storage systems

could reduce cost, improve performance and reliability. We plan to explore the research on

hybrid storage systems

180

Bibliography

[1] Striping and buffer caching for software raid file systems in workstation clusters. In
ICDCS ’99: Proceedings of the 19th IEEE International Conference on Distributed
Computing Systems, page 544, Washington, DC, USA, 1999. IEEE Computer Society.

[2] Specification for the advanced encryption standard (aes). Federal Information Pro-
cessing Standards Publication 197, 2001.

[3] Secure hash standard. National Institute of Standards and Technology, Washington,
2002. Note: Federal Information Processing Standard 180-1.

[4] Where does power go. http://www.greendataproject.org/index.php?option=

com_content&task=view&id=44&Itemid=60, 2007.

[5] Power consumption of supercomputers. http://www.top500.org/lists/2008/06/

highlights/power, June 2008.

[6] National Security Agency. National policy on the use of the advanced encryption
standard (aes) to protect national security systems and national security information
cnss policy no. 15 fact sheet no. 1, June 2003.

[7] Tarek A. AlEnawy and Hakan Aydin. On energy-constrained real-time scheduling. In
Proceedings of the 16th Euromicro Conference on Real-Time Systems, pages 165–174,
Washington, DC, USA, 2004. IEEE Computer Society.

[8] Hakan Aydi, Pedro Mej́ıa-Alvarez, Daniel Mossé, and Rami Melhem. Dynamic and
aggressive scheduling techniques for power-aware real-time systems. In Proceedings
of the 22nd IEEE Real-Time Systems Symposium, RTSS ’01, pages 95–, Washington,
DC, USA, 2001. IEEE Computer Society.

[9] Sung Hoon Baek and Kyu Ho Park. Matrix-stripe-cache-based contiguity transform
for fragmented writes in raid-5. IEEE Trans. Comput., 56(8):1040–1054, 2007.

[10] S. Bansal, P. Kumar, and K. Singh. An improved duplication strategy for scheduling
precedence constrained graphs in multiprocessor systems. Parallel and Distributed
Systems, IEEE Transactions on, 14(6):533 – 544, 2003.

[11] Rakesh Barve, Mahesh Kallahalla, Peter J. Varman, and Jeffrey Scott Vitter. Compet-
itive parallel disk prefetching and buffer management. In IOPADS ’97: Proceedings of
the fifth workshop on I/O in parallel and distributed systems, pages 47–56, New York,
NY, USA, 1997. ACM.

181

[12] Ian F. Blake, G. Seroussi, and N. P. Smart. Elliptic curves in cryptography. Cambridge
University Press, New York, NY, USA, 1999.

[13] P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDowell, and R. Raja-
mony. The Case for Power Management in Web Servers. Kluwer Academic Publishers,
Norwell, MA, USA, 2002.

[14] Ron Brightwell, David S. Greenberg, Brian J. Matt, and George I. Davida. Barriers
to creating a secure mpi, 1997.

[15] T. Burd, T. Pering, A. Stratakos, and R. Brodersen. A dynamic voltage scaled micro-
processor system. In Solid-State Circuits Conference, 2000. Digest of Technical Papers.
ISSCC. 2000 IEEE International, 2000.

[16] Juan-Carlos Cano, Dongkyun Kim, and Pietro Manzoni. Cera: Cluster-based energy
saving algorithm to coordinate routing in short-range wireless networks. In ICOIN,
pages 306–315, 2003.

[17] R. Chandramouli, S. Bapatla, K. P. Subbalakshmi, and R. N. Uma. Battery power-
aware encryption. ACM Trans. Inf. Syst. Secur., 9:162–180, May 2006.

[18] J. Chase, D. Anderson, P. Thackar, A. Vahdat, and R. Boyle. Managing energy and
server resources in hosting centers. Proc. 18th Symp. on Operating Systems Principles,
October 2001.

[19] Chunhong Chen and Majid Sarrafzadeh. Provably good algorithm for low power con-
sumption with dual supply voltages. In ICCAD99: IEEE/ACM International Confer-
ence on Computer-Aided Design, pages 76–79, 1999.

[20] John Chung-I Chuang and Marvin A. Sirbu. Distributed network storage service
with quality-of-service guarantees. Journal of Network and Computer Applications,
23(3):163 – 185, 2000.

[21] D. Colarelli and D. Grunwald. Massive arrays of idle disks for storage archives. Proc.
ACM/IEEE Conf. on Supercomputing, pages 1–11, 2002.

[22] D. Coppersmith, D. B. Johnson, S. M. Matyas, T. J. Watson, Don B. Johnson, and
Stephen M. Matyas. Triple des cipher block chaining with output feedback masking,
1996.

[23] Intel Corporation. Intel mpi benchmarks user guide and methodology description,
2008.

[24] Joan Daemen and Vincent Rijmen. The design of rijndael, 2002.

[25] Dorothy E. Denning. Secure personal computing in an insecure network. Commun.
ACM, 22(8):476–482, 1979.

[26] Jack J. Dongarra, Steve W. Otto, Marc Snir, and David Walker. An introduction to
the mpi standard. Technical report, Knoxville, TN, USA, 1995.

182

[27] Fred Douglis, P. Krishnan, and Brian Marsh. Thwarting the power-hungry disk. In
WTEC’94: Proceedings of the USENIX Winter 1994 Technical Conference on USENIX
Winter 1994 Technical Conference, pages 23–23, Berkeley, CA, USA, 1994. USENIX
Association.

[28] E. Pinheiro E. V. Carrera and R. Bianchini. Conserving disk energy in network servers.
Proc. Int’l Conf. on Supercomputing, 2003.

[29] W. Ehrsam, S. Matyas, C. Meyer, and W. Tuchman. A cryptographic key manage-
ment scheme for implementing the data encryption standard. IBM Systems Journal,
17(2):106–125, 1978.

[30] Adam J. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An fpga-based performance
evaluation of the aes block cipher candidate algorithm finalists. IEEE Trans. Very
Large Scale Integr. Syst., 9(4):545–557, 2001.

[31] E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient server clusters. Proc.
2nd Workshop on Power-Aware Computing Systems, February 2002.

[32] M. Elnozahy, M. Kistler, and R. Rajamony. Energy conservation policies for web
servers. Proc. 4th USENIX Symp. on Internet Technologies and Systems, March 2003.

[33] M. J. Field, Paul A. Bash, and Martin Karplus. A combined quantum mechanical
and molecular mechanical potential for molecular dynamics simulations. J. Comput.
Chem., 11:700–733, May 1990.

[34] B. Forney, A. Arpaci-Dusseau, and R. Arpaci-Dusseau. Storage-aware caching: Revis-
iting caching for heterogeneous storage systems, 2002.

[35] V.W. Freeh, Feng Pan, N. Kappiah, D.K. Lowenthal, and R. Springer. Exploring
the energy-time tradeoff in mpi programs on a power-scalable cluster. In Parallel
and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International,
page 4a, 2005.

[36] R. Ge, Xizhou Feng, and K.W. Cameron. Performance-constrained distributed dvs
scheduling for scientific applications on power-aware clusters. In Supercomputing, 2005.
Proceedings of the ACM/IEEE SC 2005 Conference, page 34, 2005.

[37] Al Geist, William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing L. Lusk,
William Saphir, Tony Skjellum, and Marc Snir. Mpi-2: Extending the message-passing
interface. In Euro-Par ’96: Proceedings of the Second International Euro-Par Confer-
ence on Parallel Processing, pages 128–135, London, UK, 1996. Springer-Verlag.

[38] Binny S. Gill and Dharmendra S. Modha. Wow: wise ordering for writes - combining
spatial and temporal locality in non-volatile caches. In FAST’05: Proceedings of the
4th conference on USENIX Conference on File and Storage Technologies, pages 10–10,
Berkeley, CA, USA, 2005. USENIX Association.

183

[39] Pawan Goyal, Divyesh Jadav, Dharmendra S. Modha, and Renu Tewari. Cachecow:
Qos for storage system caches. In Eleventh International Workshop on Quality of
Service (IWQoS 03), Monterey, CA, 2003.

[40] R. Grabner, F. Mietke, and W. Rehm. Implementing an mpich-2 channel device over
vapi on infiniband. In Parallel and Distributed Processing Symposium, 2004. Proceed-
ings. 18th International, pages 184–, April 2004.

[41] Ren Grabner, Frank Mietke, and Wolfgang Rehm. Implementing an mpich-2 chan-
nel device over vapi on infiniband. Parallel and Distributed Processing Symposium,
International, 9:184a, 2004.

[42] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the mpi message passing interface standard.
Parallel Comput., 22(6):789–828, 1996.

[43] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke. Drpm: dynamic
speed control for power management in server class disks. pages 169–179, June 2003.

[44] J. M. Haile. Molecular dynamics simulation: elementary methods. Wiley-Interscience,
New York, NY, 1992.

[45] P. Hamalainen, M. Hannikainen, T. Hamalainen, and J. Saarinen. Configurable hard-
ware implementation of triple-des encryption algorithm for wireless local area network.
In ICASSP ’01: Proceedings of the Acoustics, Speech, and Signal Processing, 200. on
IEEE International Conference, pages 1221–1224, Washington, DC, USA, 2001. IEEE
Computer Society.

[46] David P. Helmbold, Darrell D. E. Long, Tracey L. Sconyers, and Bruce Sherrod. Adap-
tive disk spin—down for mobile computers. Mob. Netw. Appl., 5(4):285–297, 2000.

[47] Dean Hildebrand, Lee Ward, and Peter Honeyman. Large files, small writes, and pnfs.
In ICS ’06: Proceedings of the 20th annual international conference on Supercomputing,
pages 116–124, New York, NY, USA, 2006. ACM Press.

[48] Inki Hong, Gang Qu, M. Potkonjak, and M.B. Srivastavas. Synthesis techniques for
low-power hard real-time systems on variable voltage processors. In Real-Time Systems
Symposium, 1998. Proceedings., The 19th IEEE, pages 178 –187, December 1998.

[49] L. Hong, Z. Liang, A. Viswambharant, A. Kaufman, and M. Wax. Reconstruction and
visualization of 3d models of colonic surface. Nuclear Science, IEEE Transactions on,
44(3):1297 –1302, June 1997.

[50] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and D. Takahashi. Profile-
based optimization of power performance by using dynamic voltage scaling on a pc
cluster. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International, page 8 pp., 2006.

184

[51] J. W. Hsieh, T. W. Kuo, P. L. Wu, and Y. C. Huang. Energy-efficient and performance-
enhanced disk using flash-memory cache. Proc. Int’l Symp. on Low Power Electronics
and Design, pages 334–339, 2007.

[52] Yennun Huang. Developing reliable applications on cluster systems. In Proceedings of
the 15th Symposium on Reliable Distributed Systems, SRDS ’96, pages 165–, Washing-
ton, DC, USA, 1996. IEEE Computer Society.

[53] AMD Inc. AMD PowerNow Technology. 2000.

[54] Intel Inc. The Intel XScale Microarchitecture Technical Summary. 2000.

[55] S. Jin and A. Bestavros. Gismo: A generator of internet streaming media objects and
workloads. ACM SIGMETRICS Performance Evaluation Review, November 2001.

[56] N. Joukov and J. Sipek. Greenfs: Making enterprise computers greener by protecting
them better. Proc. ACM SIGOPS Operating Systems Review, pages 69–80, 2008.

[57] Mahesh Kallahalla and Peter J. Varman. Improving parallel-disk buffer management
using randomized writeback. In Proc. Int’l Conf. Parallel Processing, pages 270–277,
1998.

[58] E.J. Kim, G.M. Link, K.H. Yum, N. Vijaykrishnan, M. Kandemir, M.J. Irwin, and C.R.
Das. A holistic approach to designing energy-efficient cluster interconnects. Computers,
IEEE Transactions on, 54(6):660 – 671, June 2005.

[59] Gregory A. Koenig, Xin Meng, Adam J. Lee, Michael Treaster, Nadir Kiyanclar, and
William Yurcik. Cluster security with nvisioncc: Process monitoring by leveraging
emergent properties. In In IEEE Cluster Computing and Grid (CCGrid, 2005.

[60] P Krishnan, M P Long, and Scott J Vitter. Adaptive disk spindown via optimal
rent-to-buy in probabilistic environments. Technical report, Durham, NC, USA, 1995.

[61] Yu-Kwong Kwok and I. Ahmad. Dynamic critical-path scheduling: an effective tech-
nique for allocating task graphs to multiprocessors. Parallel and Distributed Systems,
IEEE Transactions on, 7(5):506 –521, May 1996.

[62] Subramanian Lakshmanan, Mustaque Ahamad, and H. Venkateswaran. Responsive
security for stored data. IEEE Transactions on Parallel and Distributed Systems,
14(9):818–828, 2003.

[63] Manhee Lee and Eun Jung Kim. A comprehensive framework for enhancing security in
infiniband architecture. IEEE Trans. Parallel Distrib. Syst., 18(10):1393–1406, 2007.

[64] SangKeun Lee and Chong-Sun Hwang. Efficient, energy conserving transaction pro-
cessing in wireless data broadcast. IEEE Trans. on Knowl. and Data Eng., 18(9):1225–
1238, 2006. Member-Kitsuregawa,, Masaru.

185

[65] Yann-Hang Lee, Yoonmee Doh, and C. M. Krishna. Edf scheduling using two-mode
voltage-clock-scaling for hard real-time systems. In Proceedings of the 2001 inter-
national conference on Compilers, architecture, and synthesis for embedded systems,
CASES ’01, pages 221–228, New York, NY, USA, 2001. ACM.

[66] Kester Li, Roger Kumpf, Paul Horton, and Thomas Anderson. A quantitative analysis
of disk drive power management in portable computers. In WTEC’94: Proceedings of
the USENIX Winter 1994 Technical Conference on USENIX Winter 1994 Technical
Conference, pages 22–22, Berkeley, CA, USA, 1994. USENIX Association.

[67] Chun-Hsien Liu, Chia-Feng Li, Kuan-Chou Lai, and Chao-Chin Wu. A dynamic critical
path duplication task scheduling algorithm for distributed heterogeneous computing
systems. In Parallel and Distributed Systems, 2006. ICPADS 2006. 12th International
Conference on, 0 2006.

[68] Cong Liu, Xiao Qin, S. Kulkarni, Chengjun Wang, Shuang Li, A. Manzanares, and
S. Baskiyar. Distributed energy-efficient scheduling for data-intensive applications with
deadline constraints on data grids. In Performance, Computing and Communications
Conference, 2008. IPCCC 2008. IEEE International, pages 26 –33, 2008.

[69] J. Liu, W. Jiang, P. Wyckoff, D.K. Panda, D. Ashton, D. Buntinas, W. Gropp, and
B. Toonen. Design and implementation of mpich2 over infiniband with rdma support.
In Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th Interna-
tional, pages 16–, April 2004.

[70] Lanyue Lu, P. Varman, and Jun Wang. Diskgroup: Energy efficient disk layout for
raid1 systems. In Networking, Architecture, and Storage, 2007. NAS 2007. Interna-
tional Conference on, pages 233 –242, 2007.

[71] M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen,
R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger. Highly parallel data storage
system based on scanning probe arrays. Applied Physics Letters, 77:3299–+, November
2000.

[72] Stefan Mangard, Manfred Aigner, and Sandra Dominikus. A highly regular and scal-
able aes hardware architecture. IEEE Trans. Comput., 52(4):483–491, 2003.

[73] A. Manzanares, K. Bellam, and Xiao Qin. A prefetching scheme for energy conservation
in parallel disk systems. In Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on, pages 1 –5, 2008.

[74] Adam Manzanares, Xiaojun Ruan, Shu Yin, and Mais Nijim. Energy-aware prefetching
for parallel disk systems: Algorithms, models, and evaluation. IEEE Int’l Symp. on
Network Computing and Applications, 2009.

[75] Bo Mao, Dan Feng, Hong Jiang, Suzhen Wu, Jianxi Chen, and Lingfang Zeng. Graid:
A green raid storage architecture with improved energy efficiency and reliability. In
Modeling, Analysis and Simulation of Computers and Telecommunication Systems,
2008. MASCOTS 2008. IEEE International Symposium on, pages 1 –8, 2008.

186

[76] S. Matyas and C. Meyer. Generation, distribution, and installation of cryptographic
keys. IBM Systems Journal, 17(2):126–137, 1978.

[77] Inc. Micron Technology. Wearing-leveling techniques in nand flash devices. Micron
Technology, Inc. Specification, 2008.

[78] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write off-loading:
Practical power management for enterprise storage. Trans. Storage, 4:10:1–10:23,
November 2008.

[79] National Institute of Standards and Technology. FIPS PUB 46-3: Data Encryption
Standard (DES). October 1999. supersedes FIPS 46-2.

[80] M. Nijim, A. Manzanares, and Xiao Qin. An adaptive energy-conserving strategy for
parallel disk systems. In Distributed Simulation and Real-Time Applications, 2008.
DS-RT 2008. 12th IEEE/ACM International Symposium on, pages 75 –82, 2008.

[81] Mais Nijim, Xiao Qin, and Tao Xie. Modeling and improving security of a local disk
system for write-intensive workloads. Trans. Storage, 2(4):400–423, 2006.

[82] S. Pande, D.P. Agrawal, and J. Mauney. A scalable scheduling scheme for functional
parallelism on distributed memory multiprocessor systems. Parallel and Distributed
Systems, IEEE Transactions on, 6(4):388 –399, April 1995.

[83] C. Parikh and P. Patel. Performance evaluation of aes algorithm on various devel-
opment platforms. In Consumer Electronics, 2007. ISCE 2007. IEEE International
Symposium on, pages 1 –6, 2007.

[84] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling for low-
power embedded operating systems. In Proceedings of the eighteenth ACM symposium
on Operating systems principles, SOSP ’01, pages 89–102, New York, NY, USA, 2001.
ACM.

[85] E. Pinheiro and R. Bianchini. Energy conservation techniques for disk array-based
servers. Int’l Conf. on Supercomputing, pages 68–78, 2004.

[86] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Load balancing and unbalancing
for power and performance in cluster-based systems. Proc. Workshop on Compilers
and Operating Systems for Low Power, September 2001.

[87] Eduardo Pinheiro, Ricardo Bianchini, and Cezary Dubnicki. Exploiting redundancy to
conserve energy in storage systems. SIGMETRICS Perform. Eval. Rev., 34(1):15–26,
2006.

[88] Nachiketh R. Potlapally, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jha. A
study of the energy consumption characteristics of cryptographic algorithms and secu-
rity protocols. IEEE Transactions on Mobile Computing, 5:128–143, February 2006.

187

[89] M. Pourzandi, D. Gordon, W. Yurcik, and G.A. Koenig. Clusters and security: dis-
tributed security for distributed systems. In Cluster Computing and the Grid, 2005.
CCGrid 2005. IEEE International Symposium on, volume 1, pages 96–104 Vol. 1, May
2005.

[90] Ramya Prabhakar, Christina Patrick, and Mahmut Kandemir. Mpisec i/o: Providing
data confidentiality in mpi-i/o. Cluster Computing and the Grid, IEEE International
Symposium on, 0:388–395, 2009.

[91] Xiao Qin. Performance comparisons of load balancing algorithms for i/o-intensive
workloads on clusters. J. Netw. Comput. Appl., 31(1):32–46, 2008.

[92] Xiao Qin and Hong Jiang. A dynamic and reliability-driven scheduling algorithm
for parallel real-time jobs executing on heterogeneous clusters. J. Parallel Distrib.
Comput., 65:885–900, August 2005.

[93] V. Ramsurrun and K.M.S. Soyjaudah. A highly available transparent linux cluster
security model. In Performance, Computing and Communications Conference, 2008.
IPCCC 2008. IEEE International, pages 69–76, Dec. 2008.

[94] S. Ranaweera and D.P. Agrawal. A task duplication based scheduling algorithm for het-
erogeneous systems. In Parallel and Distributed Processing Symposium, 2000. IPDPS
2000. Proceedings. 14th International, 2000.

[95] Raju Rangaswami, Zoran Dimitrijevic, Edward Chang, and Klaus E. Schauser. Mems-
based disk buffer for streaming media servers. Data Engineering, International Con-
ference on, 0:619, 2003.

[96] R. Rivest. The MD5 Message-Digest Algorithm. RFC Editor, United States, 1992.

[97] X. J. Ruan, A. Manzanares, K. Bellam, Z. L. Zong, and X. Qin. Daraw: A new
write buffer to improve parallel i/o energy-efficiency. Proc. ACM Symp. on Applied
Computing, 2009.

[98] Xiaojun Ruan, Adam Manzanares, Kiranmai Bellam, Xiao Qin, and Ziliang Zong.
Daraw: a new write buffer to improve parallel i/o energy-efficiency. In Proceedings of
the 2009 ACM symposium on Applied Computing, SAC ’09, pages 299–304, New York,
NY, USA, 2009. ACM.

[99] Subhash Saini, Robert Ciotti, Brian T. N. Gunney, Thomas E. Spelce, Alice Koniges,
Don Dossa, Panagiotis Adamidis, Rolf Rabenseifner, Sunil R. Tiyyagura, and Matthias
Mueller. Performance evaluation of supercomputers using hpcc and imb benchmarks.
J. Comput. Syst. Sci., 74(6):965–982, 2008.

[100] D. A. Schecter, D. H. E. Dubin, K. S. Fine, and C. F. Driscoll. Vortex crystals from
2d euler flow: Experiment and simulation. Physics of Fluids, 11:905–914, April 1999.

188

[101] M. Schmitz, B. Al-Hashimi, and P. Eles. Energy-efficient mapping and scheduling for
dvs enabled distributed embedded systems. In Proceedings of the conference on Design,
automation and test in Europe, DATE ’02, pages 514–, Washington, DC, USA, 2002.
IEEE Computer Society.

[102] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and
D. Noveck. Network file system (nfs) version 4 protocol. 2003.

[103] Willy Sisilo, Fangguo Zhang, and Yi Mu. Privacy-enhanced internet storage. In AINA
’05: Proceedings of the 19th International Conference on Advanced Information Net-
working and Applications, pages 603–608, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[104] S. W. Son, G. Chen, and M. Kandemir. Disk layout optimization for reducing energy
consumption. In ICS ’05: Proceedings of the 19th annual international conference on
Supercomputing, pages 274–283, New York, NY, USA, 2005. ACM.

[105] Seung Woo Son and Mahmut Kandemir. Energy-aware data prefetching for multi-
speed disks. In CF ’06: Proceedings of the 3rd conference on Computing frontiers,
pages 105–114, New York, NY, USA, 2006. ACM.

[106] S.W. Son, M. Kandemir, and A. Choudhary. Software-directed disk power management
for scientific applications. pages 4b–4b, April 2005.

[107] S.W. Son, M. Kandemir, and A. Choudhary. Software-directed disk power management
for scientific applications. pages 4b–4b, April 2005.

[108] Daniel Stodolsky, Mark Holland, William V. Courtright, II, and Garth A. Gibson.
Parity logging disk arrays. ACM Trans. Comput. Syst., 12(3):206–235, 1994.

[109] Peter J. Varman and Rakesh M. Verma. Tight bounds for prefetching and buffer
management algorithms for parallel i/o systems. IEEE Trans. Parallel Distrib. Syst.,
10(12):1262–1275, 1999.

[110] Jun Wang, Huijun Zhu, and Dong Li. eraid: Conserving energy in conventional disk-
based raid system. IEEE Transactions on Computers, 57(3):359–374, 2008.

[111] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full sha-1.
In In Proceedings of Crypto, pages 17–36. Springer, 2005.

[112] Andreas Weissel, Björn Beutel, and Frank Bellosa. Cooperative i/o: a novel i/o seman-
tics for energy-aware applications. In OSDI ’02: Proceedings of the 5th symposium on
Operating systems design and implementation Due to copyright restrictions we are not
able to make the PDFs for this conference available for downloading, pages 117–129,
New York, NY, USA, 2002. ACM.

[113] Ravi Wijayaratne and A. L. Narasimha Reddy. Integrated qos management for disk
i/o. In ICMCS ’99: Proceedings of the IEEE International Conference on Multimedia
Computing and Systems, page 9487, Washington, DC, USA, 1999. IEEE Computer
Society.

189

[114] Qing Yang and Yiming Hu. Dcd — disk caching disk: A new approach for boosting
i/o performance. pages 169–169, May 1996.

[115] Lin Yuan and Gang Qu. Analysis of energy reduction on dynamic voltage scaling-
enabled systems. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 24(12):1827 – 1837, 2005.

[116] Hu Zhang, Weiguo Wu, Xiaoshe Dong, Depei Qian, and Luogeng Dai. A study on
data placement of extensible parallel storage system. pages 610–615, July 2007.

[117] Yumin Zhang, Xiaobo Hu, and D.Z. Chen. Task scheduling and voltage selection for
energy minimization. In Design Automation Conference, 2002. Proceedings. 39th, 2002.

[118] Qingbo Zhu, Francis M. David, Christo F. Devaraj, Zhenmin Li, Yuanyuan Zhou,
and Pei Cao. Reducing energy consumption of disk storage using power-aware cache
management. In HPCA ’04: Proceedings of the 10th International Symposium on High
Performance Computer Architecture, page 118, Washington, DC, USA, 2004. IEEE
Computer Society.

[119] Z. Zong, M. Briggs, N. O’Connor, and X. Qin. An energy-efficient framework for large-
scale parallel storage systems. In Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International, pages 1 –7, 2007.

[120] Ziliang Zong, Mais Nijim, Adam Manzanares, and Xiao Qin. Energy efficient schedul-
ing for parallel applications on mobile clusters. Cluster Computing, 11:91–113, March
2008.

[121] Ziliang Zong, Mais Nijim, Adam Manzanares, and Xiao Qin. Energy efficient schedul-
ing for parallel applications on mobile clusters. Cluster Computing, 11:91–113, March
2008.

[122] Ziliang Zong, Xiao Qin, Xiaojun Ruan, Kiranmai Bellam, Yiming Yang, and Adam
Manzanares. A simulation framework for energy efficient data grids. In Proceedings
of the 39th conference on Winter simulation: 40 years! The best is yet to come, WSC
’07, pages 1417–1423, Piscataway, NJ, USA, 2007. IEEE Press.

190

