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Abstract

This dissertation is concerned with spatial spread and front propagation dynamics of

monostable equations with nonlocal dispersal in spatially periodic habitats. Such equations

arise in modeling the population dynamics of many species which exhibit nonlocal internal

interactions and live in spatially periodic habitats. The main results of the dissertation

consist of the following four parts.

Firstly, we establish a general principal eigenvalue theory for spatially periodic nonlocal

dispersal operators. Some sufficient conditions are provided for the existence of principal

eigenvalue and its associated positive eigenvector for such dispersal operators. It shows that a

spatially periodic nonlocal dispersal operator has a principal eigenvalue for the following three

special but important cases: (i) the nonlocal dispersal is nearly local; (ii) the periodic habitat

is nearly globally homogeneous or (iii) it is nearly homogeneous in a region where it is most

conducive to population growth. It also provides an example which shows that in general, a

spatially periodic nonlocal dispersal operator may not possess a principal eigenvalue, which

reveals some essential difference between random dispersal and nonlocal dispersal. The

principal eigenvalue theory established in this dissertation provides an important tool for

the study of the dynamics of nonlocal monostable equations and is of also great importance

in its own.

Secondly, applying the principal eigenvalue theory for nonlocal dispersal operators and

comparison principle for sub- and super-solutions, we obtain one of the important features

for monostable equations, that is, the existence, uniqueness, and global stability of spatially

periodic positive stationary solutions to a general spatially periodic nonlocal monostable

equation. In spite of the use of the principal eigenvalue theory for nonlocal dispersal operators

in the proof, this feature is generic for nonlocal monostable equations in the sense it is
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independent of the existence of the principal eigenvalue of the linearized nonlocal dispersal

operator at the trivial solution of the monostable equation, which is of great biological

importance.

Thirdly, applying the principal eigenvalue theory for nonlocal dispersal operators and

comparison principle for sub- and super-solutions, we obtain another important feature for

monostable equations, that is, the existence of a spatial spreading speed of a general spatially

periodic nonlocal equation in any given direction, which characterizes the speed at which a

species invades into the region where there is no population initially in the given direction.

It is also seen that this feature is generic for nonlocal monostable equations in the same sense

as above. Moreover, it is shown that spatial variation of the habitat speeds up the spatial

spread of the population.

Finally, this dissertation also deals with front propagation feature for monostable equa-

tions with non-local dispersal in spatially periodic habitats. It is shown that a spatially

periodic nonlocal monostable equation has in any given direction a unique stable spatially

periodic traveling wave solution connecting its unique positive stationary solution and the

trivial solution with all propagating speeds greater than the spreading speed in that direc-

tion for the special but important cases mentioned above, that is, (i) the nonlocal dispersal

is nearly local; (ii) the periodic habitat is nearly globally homogeneous or (iii) it is nearly

homogeneous in a region where it is most conducive to population growth. It remains open

whether this feature is generic or not for spatially periodic nonlocal monostable equations.
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Chapter 1

Introduction

This dissertation is devoted to the study of spatial spread and front propagation dynam-

ics of monostable equations with nonlocal dispersal in spatially periodic habitats. Monostable

equations are widely used to model the population dynamics of many species in biology and

ecology. In general, such an equation is of the following form,

∂u

∂t
= νDu+ u(t, x)f(x, u(t, x)), x ∈ Ω ⊆ RN , (1.1)

where u(t, x) represents the population density of a species at time t and spatial location

x, D is a dispersal operator which measures the diffusion or redistribution of the species,

ν > 0 is the dispersal rate, and the term f measures the growth rate of the population of the

species and satisfies the so called monostablility assumptions (that is, f(x, u) < 0 for u� 1,

∂f
∂u

(x, u) < 0 for u ≥ 0 and u ≡ 0 is linearly unstable in proper sense), the domain Ω ⊆ RN

(or ZN) may be bounded or unbounded. Without loss of generality, ν can be chosen 1 by

rescaling time t and changing f .

Among the dispersal operators often adopted in literature are nonlocal, random or

local, and discrete dispersal operators. In particular, (1.1) with D being a nonlocal dispersal

operator, that is,

∂u

∂t
=

∫
RN
k(y − x)u(t, y)dy − u(t, x) + u(t, x)f(x, u(t, x)), x ∈ Ω, (1.2)

is widely used to model the population dynamics of a species in which the movements or

interactions of the organisms occur between non-adjacent spatial locations, where k : RN →

R+ is a nonlocal dispersal kernel function with
∫
RN k(x)dx = 1. Classically, one assumes

that the internal interaction of the organisms in a species is random and local (i.e. species
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moves randomly between the adjacent spatial locations), which leads to (1.1) with D = ∆,

that is, reaction-diffusion equations of the following form,

∂u

∂t
= ∆u+ uf(x, u), x ∈ Ω. (1.3)

Another dispersal strategy is nearest neighbor interaction in a patchy environment modeled

by the lattice ZN . This leads to (1.1) with D being a discrete dispersal operator, that is,

the following lattice system of ordinary differential equations

u̇j =
∑

k=(k1,k2,··· ,kN )∈K

(uj+k − uj) + ujf(j, uj), j ∈ Ω (1.4)

where K = {(k1, k2, · · · , kN) ∈ ZN | k2
1 + · · ·+ k2

N = 1}.

Nonlocal, random, and discrete dispersal evolution equations are then of great interests

in their own. They are also related to each other. For example, (1.4) can be viewed as a

spatial discretization of (1.3). In order to indicate some relationship between nonlocal and

random dispersal, we take k(z) = 1
δN
k̃(z/δ) for some δ > 0 and k̃(·) : RN → R+ which is

smooth, symmetric, supported on B(0, 1) := {x ∈ RN | ‖x‖ < 1}, and
∫
RN k̃(x)dx = 1. Then

for any smooth function u(x),

∫
RN
k(y − x)u(y) dy − u(x)

=

∫
RN
k̃(z)

[
u(x) + δ(∇u(x) · z) +

δ2

2

N∑
i,j=1

uxixj(x)zizj +O(δ3)

]
dz − u(x)

=
δ2

2N

∫
RN
k̃(z)‖z‖2 dz∆u(x) +O(δ3).

Hence, the dispersal operator u 7→
∫
RN k(· − y)u(y)dy − u(·) “behaves” the same as the

operator u 7→ δ2

2N

∫
RN k̃(z)‖z‖2 dz∆u for δ � 1, and δ plays basically the role of a dispersal

rate.
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In this dissertation, we will focus on spatially periodic nonlocal monostable equations in

unbounded domains, that is, equations of the form (1.2) with f(x, u) being periodic in x and

being of the monostable properties (see (H2) and (H3) in Charter 2 for detail). We remark

that heterogeneities are present in many biological and ecological models. The periodicity

of f(x, u) in x takes into account the periodic heterogeneities of the media of the underlying

systems and monostablility assumptions reflect the natural feature for population growth

models.

Common and central dynamical issues about dispersal monostable equations in un-

bounded domains include the understanding of spatial spread and front propagation dynam-

ics. Here are two most fundamental dynamical problems associated to the spatial spread

and front propagation dynamics of monostable equations: how fast the population spreads

as time evolves? are there solutions which preserve the shape and propagate at some speed

along certain direction?

The study of spatial spread and front propagation dynamics of monostable equations

traces back to Fisher [19] and Kolmogorov, Petrowsky, and Piscunov [39]. In the pioneering

works of Fisher [19] and Kolmogorov, Petrowsky, Piscunov [39], they studied the spatial

spread and front propagation dynamics of the following special case of (1.3)

∂u

∂t
=
∂2u

∂x2
+ u(1− u), x ∈ R. (1.5)

Here u is the frequency of one of two forms of a gene. Fisher in [19] found traveling wave

solutions u(t, x) = φ(x − ct), (φ(−∞) = 1, φ(∞) = 0) of all speeds c ≥ 2 and showed that

there are no such traveling wave solutions of slower speed. He conjectured that the take-

over occurs at the asymptotic speed 2. This conjecture was proved in [39] by Kolmogorov,

Petrowsky, and Piscunov, that is, they proved that for any nonnegative solution u(t, x) of

(1.5), if at time t = 0, u is 1 near −∞ and 0 near ∞, then lim
t→∞

u(t, ct) is 0 if c > 2 and 1 if

c < 2 (i.e. the population invades into the region with no initial population with speed 2).
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Since then, the spatial speed and front propagation dynamics of (1.3) has been widely

studied (see [1], [2], [4], [5], [6], [18], [21], [26], [31], [36], [41], [42], [44], [47], [48], [51], [52],

[53], [61], [62], [63], and references therein). The spatial spreading dynamics of (1.5) has

been well extended to (1.3). To be more precise, assume that f(x, u) is periodic in x, that is

f(x + piei, u) = f(x, u) for some pi > 0 (i = 1, 2, · · · , N), ei denotes the vector with a 1 in

the ith coordinate and 0’s elsewhere, and satisfies the following monostablility assumptions:

f ∈ C1(RN × [0,∞),R), sup
x∈RN ,u≥0

∂f(x, u)

∂u
< 0, f(x, u) < 0 for x ∈ RN and u� 1, and the

principal eigenvalue of 
∆u+ a0(x)u = λu, x ∈ RN

u(x+ piei) = u(x), x ∈ RN

is positive, where a0(x) = f(x, 0). Without loss of generality, assume ν = 1. It has been

shown that (1.3) has exactly two spatially periodic equilibrium solutions, u = 0 and u = u+,

and u = 0 is linearly unstable and u = u+ is globally asymptotically stable with respect

to spatially periodic perturbations (which gives a reason which the above assumptions are

referred to monostability assumptions). Let ξ ∈ SN−1 := {ξ ∈ RN | ‖ξ‖ = 1}. It has also

been shown that for every ξ ∈ SN−1, there is a c∗(ξ) ∈ R such that for every c ≥ c∗(ξ), there

is a traveling wave solution connecting u+ and u− ≡ 0 and propagating in the direction of ξ

with speed c, and there is no such traveling wave solution of slower speed in the direction of

ξ. The minimal wave speed c∗(ξ) is of some important spreading properties, that is,

lim inf
t→∞

inf
x·ξ≤ct

(u(t, x;u0)− u+(x)) = 0 ∀c < c∗(ξ)

and

lim sup
t→∞

sup
x·ξ≥ct

u(t, x;u0) = 0 ∀c > c∗(ξ),

for all nonnegative uniformly continuous bounded function u0 satisfying that u0(x) ≥ δ0 for

some δ0 > 0 and x ∈ RN with x · ξ � −1 and u0(x) = 0 for x ∈ RN with x · ξ � 1. Here
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u(t, x;u0) denotes the solution of (1.3) with u(0, x;u0) = u0(x) and inf
x·ξ≤ct

( sup
x·ξ≥ct

) denotes the

infimum (supremum) taken over all the x ∈ RN satisfying that x · ξ ≤ ct (x · ξ ≥ ct) for

given ξ ∈ SN−1 and c, t ∈ R. Hence c∗(ξ) is also called the spreading speed of (1.3) in the

direction of ξ. Moreover, it has the following variational characterization. Let λ(ξ, µ) be the

eigenvalue of 
∆u− 2µ

∑N
i=1 ξi

∂u
∂xi

+ (a0(x) + µ2)u = λu, x ∈ RN

u(x+ piei) = u(x), x ∈ RN

(1.6)

with largest real part, where a0(x) = f(x, 0) (it is well known that λ(ξ, µ) is real and

algebraically simple. λ(ξ, µ) is called the principal eigenvalue of (1.6) in literature). Then

c∗(ξ) = inf
µ>0

λ(ξ, µ)

µ
. (1.7)

(See [4], [5], [6], [41], [47], [48], [63] and references therein for the above mentioned properties).

Spatial spread and front propagation dynamics is also quite well studied for monostbale

equations with discrete dispersal. We refer to [9], [10], [24], [32], [54], [59], [60], [62], [63],

[64], [65], etc. for the study of spatial spread and front propagation dynamics dynamics of

monostable equations with discrete dispersal of the form (1.4).

The objective of this dissertation is to investigate the spatial spread and front propaga-

tion of spatially periodic nonlocal monostable equations of the form (1.2).

Recently, various dynamical problems related to the spatial spread and front propagation

dynamics of nonlocal dispersal equations of the form (1.2) have also been studied by many

authors. See, for example, [3], [8], [11], [13], [15], [22], [23], [28], [29], [33], [34], [35], [37],

[55], for the study of spectral theory for nonlocal dispersal operators and the existence,

uniqueness, and stability of nontrivial positive stationary solutions. See, for example, [12],

[14], [16], [40], [45], [49], [62], [63], for the study of entire solutions and the existence of

spreading speeds and traveling wave solutions connecting the trivial solution u = 0 and a

nontrivial positive stationary solution for some special cases of (1.2). In particular, if f(x, u)
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is independent of x, then it is proved that (1.2) has a spreading speed c∗(ξ) in every direction

of ξ ∈ SN−1 (c∗(ξ) is indeed independent of ξ ∈ SN−1 in this case) and for every c ≥ c∗(ξ),

(1.2) has a traveling wave solution connecting u+ and 0 and propagating in the direction of

ξ with propagating speed c (see [12]).

However, most existing works on spatial spreading dynamics of monostable equations

with nonlocal dispersal deal with spatially homogeneous equations (i.e. f(x, u) in (1.2) is

independent of x). There is little understanding of the spatial spread and front propagation

dynamics of general nonlocal dispersal monostable equations. One major difference between

(1.3) and (1.2) is that the solution operator of (1.3) in proper phase space is compact with

respect to the uniform convergence on bounded subsets of RN (i.e., is compact with respect

to open compact topology), whereas the solution operator of (1.2) in a usual phase space

does not exhibit such compactness features. It appears to be difficult to adopt many existing

methods for the study of spatial spread and front propagation dynamics of random dispersal

monostable equations in dealing with (1.2) in general due to the lack of compactness of the

solution operator and the spatial inhomogeneity of the nonlinearity. In fact, there is even

a lack of general principal eigenvalue theory for nonlocal dispersal operators and a lack of

positive stationary solutions of spatially periodic nonlocal monostable equations, which are

important tools/ingredients in the study of spatial spread and front propagation dynamics

of monostable equations.

In this dissertation, we will then first establish a general principal eigenvalue theory

for spatially periodic nonlocal dispersal operators (see chapter 4). We show that a spatially

periodic nonlocal dispersal operator has a principal eigenvalue for following three special but

important cases: (i) the nonlocal dispersal is nearly local; (ii) the periodic habitat is nearly

globally homogeneous or (iii) it is nearly homogeneous in a region where it is most conducive

to population growth. It also provides an example which shows that in general, a spatially

periodic nonlocal dispersal operator may not possess a principal eigenvalue, which reveals

some essential difference between random dispersal and nonlocal dispersal. The principal
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eigenvalue theory established in this dissertation provides an important tool for the study of

the dynamics of nonlocal monostable equations and is of also great importance in its own.

Next, applying the principal eigenvalue theory for nonlocal dispersal operators and

comparison principle for sub- and super-solutions, we obtain one of the important features

for monostable equations, that is, the existence, uniqueness, and global stability of spatially

periodic positive stationary solutions to a general spatially periodic nonlocal monostable

equation (see chapter 5). In spite of the use of the principal eigenvalue theory for nonlocal

dispersal operators in the proof, this feature is generic for nonlocal monostable equations

in the sense it is independent of the existence of the principal eigenvalue of the linearized

nonlocal dispersal operator at the trivial solution of the monostable equation, which is of

great biological importance.

Furthermore, we then investigate the spatial spreading speeds of spatially periodic non-

local monostable equations (see chapter 6). Applying the principal eigenvalue theory for

nonlocal dispersal operators and comparison principle for sub- and super-solutions, we ob-

tain another important feature for monostable equations, that is, the existence of a spatial

spreading speed of a general spatially periodic nonlocal equation in any given direction,

which characterizes the speed at which a species invades into the region where there is no

population initially in the given direction. It is also seen that this feature is generic for non-

local monostable equations in the same sense as above. Moreover, it is shown that spatial

variation of the habitat speeds up the spatial spread of the population.

Finally, we deal with traveling wave solutions of monostable equations with non-local

dispersal in spatially periodic habitats (see chapter 7). It is shown that a spatially periodic

nonlocal monostable equation has in any given direction a unique stable spatially periodic

traveling wave solution connecting its unique positive stationary solution and the trivial

solution with all propagating speeds greater than the spreading speed in that direction for

the special but important cases mentioned above, that is, (i) the nonlocal dispersal is nearly

local; (ii) the periodic habitat is nearly globally homogeneous or (iii) it is nearly homogeneous
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in a region where it is most conducive to population growth. It remains open whether this

feature is generic or not for spatially periodic nonlocal monostable equations.

The rest of the dissertation is organized as follows. In chapter 2, we state some standing

notations, assumptions, definitions and the main results. In chapter 3, we develop some

basic tools or fundamental theory for the use in later chapters, such as semigroup theory,

comparison principle, sub- and super-solutions. We will investigate the spectral theory of

nonlocal dispersal operators in chapter 4. In chapter 5, we study the existence, uniqueness

and stability of stationary solutions of (1.2). In chapter 6, spatial spreading speeds of (1.2)

are investigated. In chapter 7, we study the existence,uniqueness and stability of the traveling

wave solutions of spatially periodic nonlocal monostable equations. The dissertation will end

up with remarks, open problems, and future plan in chapter 8.
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Chapter 2

Notations, Assumptions, Definitions and Main Results

In this chapter, we introduce first the standing notations, assumptions, and the defini-

tions of principal eigenvalue of nonlocal dispersal operators, spatial spreading speeds, and

traveling wave solutions of spatially periodic nonlocal monostable equations. We then state

the main results of the dissertation.

2.1 Notations, Assumptions and Definitions

In this section, we introduce the standing notations, assumptions, and the definitions of

principal eigenvalue of nonlocal dispersal operators, spatial spreading speeds, and traveling

wave solutions of spatially periodic nonlocal monostable equations.

Consider (1.2) with Ω = RN , that is,

∂u

∂t
=

∫
RN
k(y − x)u(t, y)dy − u(t, x) + u(t, x)f(x, u(t, x)), x ∈ RN .

We assume that f(x, u) is periodic in x, that is, there are pi > 0 (i = 1, 2, · · · , N) such

that f(x + piei) = f(x, u) for all x ∈ RN and u ∈ R. We assume that the nonlocal kernel

function k(·) satisfies the following assumption.

(H1) k(·) ∈ C1(RN ,R+),
∫
RN k(z)dz = 1, k(0) > 0 and

∫
RN k(z)eµ‖z‖dz <∞ for any µ > 0.

We remark that (H1) implies that the kernel function k(·) is actually a smooth probabil-

ity density function of some random variable X, and k(·) is strictly positive at the origin and

the expected value of eµ|X| is finite,that is, E(eµ|X|) <∞. There are a lot of such examples.
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For instance, the probability density functions of normal distributions and all smooth prob-

ability density functions which are positive at the origin and supported on a bounded set

satisfy (H1). The following is one example which has a bounded support: k(z) = 1
δN0
k̃(z/δ0)

k̃(z) =


C exp

(
1

‖z‖2−1

)
for ‖z‖ < 1

0 for ‖z‖ ≥ 1,

(2.1)

where C > 0 is chosen such that
∫
RN k̃(z)dz = 1.

Let

X = {u ∈ C(RN ,R) |u is uniformly continuous on RN and sup
x∈RN

|u(x)| <∞} (2.2)

with norm ‖u‖X = sup
x∈RN

|u(x)|, and

X+ = {u ∈ X |u(x) ≥ 0 ∀x ∈ RN}. (2.3)

Let

Xp = {u ∈ X |u(x+ piei) = u(x) ∀x ∈ RN , i = 1, 2, · · · , N} (2.4)

and

X+
p = {u ∈ Xp |u(x) ≥ 0 ∀x ∈ RN}. (2.5)

Let I be the identity map on Xp, and K, a0(·)I : Xp → Xp be defined by

(
Ku
)
(x) =

∫
RN
k(y − x)u(y)dy, (2.6)

(a0(·)Iu)(x) = a0(x)u(x), (2.7)

where a0(x) = f(x, 0).

10



Throughout this dissertation, a function h : RN ×R→ R is said to be smooth if h(x, u)

is CN in x ∈ RN and C1 in u ∈ R. We assume that f satisfies the following “monostablility”

assumptions:

(H2) f ∈ C1(RN × [0,∞),R), sup
x∈RN ,u≥0

∂f(x, u)

∂u
< 0 and f(x, u) < 0 for x ∈ RN and u� 1.

(H3) u ≡ 0 is linearly unstable in Xp, that is, λ0 := sup{Reλ |λ ∈ σ(K − I + a0(·)I)} is

positive, where σ(K − I + a0(·)I) is the spectrum of the operator K − I + a0(·)I on Xp.

A typical example for f(x, u) is f(x, u) = a(x) − u with a(·) ∈ X+
p \ {0}. Note that

(H2) and (H3) reflect the natural feature of population growth models.

Among the main techniques employed in this dissertation are the comparison principle,

sub- and super-solutions, and the principal eigenvalue theory of the eigenvalue problem,

(
Kξ,µ − I + a(·)I

)
v = λv, v ∈ Xp, (2.8)

where ξ ∈ SN−1, µ ∈ R, and a(·) ∈ Xp, the operator a(·)I has the same meaning as in (2.7)

with a0(·) being replaced by a(·), and Kξ,µ : Xp → Xp is defined by

(Kξ,µv)(x) =

∫
RN
e−µ(y−x)·ξk(y − x)v(y)dy. (2.9)

We point out the following relation between (1.2) and (2.8): if u(t, x) = e−µ(x·ξ−λ
µ
t)φ(x) with

φ ∈ Xp \ {0} is a solution of the linearization of (1.2) at u = 0,

∂u

∂t
=

∫
RN
k(y − x)u(t, y)dy − u(t, x) + a0(x)u(t, x), x ∈ RN , (2.10)

where a0(x) = f(x, 0), then λ is an eigenvalue of (2.8) with a(·) = a0(·) or Kξ,µ − I + a0(·)I

and v = φ(x) is a corresponding eigenfunction.

Definition 2.1 (Principal eigenvalue). Let σ(Kξ,µ− I +a(·)I) be the spectrum of Kξ,µ− I +

a(·)I on Xp.

11



(1) λ0(ξ, µ, a) := sup{Reλ |λ ∈ σ(Kξ,µ − I + a(·)I)} is called the principal spectrum point

of Kξ,µ − I + a(·)I.

(2) A number λ(ξ, µ, a) ∈ R is called the principal eigenvalue of (2.8) or Kξ,µ − I + a(·)I

if it is an algebraically simple eigenvalue of Kξ,µ − I + a(·)I with an eigenfunction

v ∈ X+
p , and for every λ ∈ σ(Kξ,µ − I + a(·)I) \ {λ(ξ, µ, a)}, Reλ < λ(ξ, µ, a).

Observe that if the principal eigenvalue λ(ξ, µ, a) ofKξ,µ−I+a(·)I exists, then λ(ξ, µ, a) =

λ0(ξ, µ, a). If µ = 0, (2.8) is independent of ξ and hence we put

λ0(a) := λ0(ξ, 0, a) ∀ ξ ∈ SN−1. (2.11)

Due to the lack of compactness of the semigroup generated by Kξ,µ − I + a(·)I on Xp

and the inhomogeneity of a(·), the existence of a principal eigenvalue and eigenfunction of

(2.8) cannot be obtained from standard theory (e.g. the Krein-Rutman theorem). It should

be pointed out that recently the principal eigenvalue problem for nonlocal dispersal has been

studied by several authors (see [35], [37], [55], etc.). However, the existing results cannot

be applied directly to (2.8). We will hence develop a principal eigenvalue theory for (2.8)

or Kξ,µ − I + a(·)I in chapter 4. At some places, we make the following assumption on the

existence of principal eigenvalues.

(H4) λ(ξ, µ, a) exists for all ξ ∈ SN−1 and µ ≥ 0.

In the following, inf
x·ξ≤r

( sup
x·ξ≥r

) represents the infimum (supremum) taken over all the

x ∈ RN satisfying that x · ξ ≤ r for given ξ ∈ SN−1 and r ∈ R. Similarly, the notations

inf
x·ξ≤ct

, inf
|x·ξ|≤ct

, inf
‖x‖≤ct

( sup
x·ξ≥ct

, sup
|x·ξ|≥ct

, sup
‖x‖≥ct

) represent the infima (suprema) taken over all the

x ∈ RN satisfying the inequalities in the notations for given ξ ∈ SN−1 and c, t ∈ R. For a

12



given ξ ∈ SN−1, and

X+(ξ) = {u ∈ X+ | lim inf
r→−∞

inf
x·ξ≤r

u(x) > 0,

u(x) = 0 for x ∈ RN with x · ξ � 1}. (2.12)

It follows from the general semigroup approach (see [27] or [50]) that (1.2) has a unique

(local) solution u(t, x;u0) with u(0, x;u0) = u0(x) for every u0 ∈ X. Moreover, a comparison

principle in the usual sense holds for solutions of (1.2), and u(t, x;u0) exists for all t ≥ 0 if

u0 ∈ X+ (see Proposition 3.1).

Definition 2.2 (Spatial spreading speed). Assume that (H1) - (H3) are fulfilled and that

ξ ∈ SN−1. We call a number c∗(ξ) ∈ R the spatial spreading speed of (1.2) in the direction

of ξ if the following properties are satisfied:

lim inf
t→∞

inf
x·ξ≤ct

u(t, x;u0) > 0 ∀c < c∗(ξ)

and

lim sup
t→∞

sup
x·ξ≥ct

u(t, x;u0) = 0 ∀c > c∗(ξ)

for every u0 ∈ X+(ξ).

Observe that our definition coincides with the notion of c∗(ξ) in [62] provided that f(x, u)

is independent of x. The construction based definition used in [44], [62], [63] is different in

the sense that our definition does not guarantee the existence of c∗(ξ). In fact, we focus in

this dissertation on investigating the existence and characterization of c∗(ξ) for ξ ∈ SN−1.

To this end, let

X̃ = {u : RN → R |u is Lebesgue measurable and bounded} (2.13)

endowed with the norm ‖u‖X̃ = sup
x∈RN

|u(x)| and
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X̃+ = {u ∈ X̃ |u(x) ≥ 0 ∀x ∈ RN}. (2.14)

Observe that Xp ⊂ X ⊂ X̃.

To study the spatial spreading and front propagation dynamics of (1.2), we sometime

need to consider the space shifted equation of (1.2)

∂u

∂t
=

∫
RN
k(y − x)u(t, y)dy − u(t, x) + u(t, x)f(x+ z, u(t, x)), x ∈ RN (2.15)

where z ∈ RN . Let u(t, x;u0, z) be the solution of (2.15) with u(0, x;u0, z) = u0(x) for

u0 ∈ X.

By general semigroup theory (see [27] and [50]), for any u0 ∈ X̃ and z ∈ R, (2.15) has

a unique (local) solution u(t, ·) ∈ X̃ with u(0, x) = u0(x). Let u(t, x;u0, z) be the solution

of (2.15) with u(0, x;u0, z) = u0(x). Note that if u0 ∈ Xp (resp. X), then u(t, ·;u0, z) ∈ Xp

(resp. X). If u0 ∈ X̃+, then u(t, x;u0, z) exists for all t ≥ 0.

Definition 2.3 (Entire solution). A measurable function u : R× RN :→ R is call an entire

solution of (1.2) if u(t, x) is differentiable in t ∈ R and satisfies (1.2) for all t ∈ R and

x ∈ RN .

Definition 2.4 (Traveling wave solution). Suppose that (1.2) has a spatially periodic positive

stationary solution u = u+(·) ∈ X+
P \ {0}.

(1) An entire solution u(t, x) of (1.2) is called a traveling wave solution connecting u+(·)

and 0 and propagating in the direction of ξ with speed c if there is a bounded measurable

function Φ : RN × RN → R+ such that u(t, ·; Φ(·, z), z) exists for all t ∈ R,

u(t, x) = u(t, x; Φ(·, 0), 0) = Φ(x− ctξ, ctξ) ∀t ∈ R, x ∈ RN , (2.16)

u(t, x; Φ(·, z), z) = Φ(x− ctξ, z + ctξ) ∀t ∈ R, x, z ∈ RN , (2.17)

lim
x·ξ→−∞

(
Φ(x, z)− u+(x+ z)

)
= 0, lim

x·ξ→∞
Φ(x, z) = 0 uniformly in z ∈ RN , (2.18)
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Φ(x, z − x) = Φ(x
′
, z − x′) ∀x, x′ ∈ RN with x · ξ = x

′ · ξ, (2.19)

and

Φ(x, z + piei) = Φ(x, z) ∀x, z ∈ RN . (2.20)

(2) A bounded measurable function Φ : RN×RN → R+ is said to generate a traveling wave

solution of (1.2) in the direction of ξ with speed c if it satisfies (2.17)-(2.20).

Remark 2.1. Suppose that u(t, x) = Φ(x − ctξ, ctξ) is a traveling wave solution of (1.2)

connecting u+(·) and 0 and propagating in the direction of ξ with speed c. Then u(t, x) can

be written as

u(t, x) = Ψ(x · ξ − ct, x) (2.21)

for some Ψ : R × RN → R satisfying that Ψ(η, z + piei) = Ψ(η, z), lim
η→−∞

Ψ(η, z) = u+(z),

and lim
η→∞

Ψ(η, z) = 0 uniformly in z ∈ RN . In fact, let Ψ(η, z) = Φ(x, z − x) for x ∈ RN

with x · ξ = η. Observe that Ψ(η, z) is well defined and has the above mentioned properties.

In some literature, the form (2.21) is adopted for spatially periodic traveling wave solutions

(see [41], [46], [63], and references therein).

2.2 Main Results

In this section, we state the main results of the dissertation. The first two theorems are

about the principal eigenvalue of (2.8).

Theorem A. (Sufficient conditions for the existence of principal eigenvalues)

(1) Support that k(z) = 1
δN
k̃( z

δ
) for some δ > 0 and k̃(·) with supp(k̃) = B(0, 1) := {z ∈

RN | ‖z‖ < 1}. There is δ0 > 0 such that for every 0 < δ ≤ δ0, the principal eigenvalue

λ(ξ, µ, a) of (2.8) exists for all ξ ∈ SN−1 and µ ∈ R.

(2) If a(x) satisfies that max
x∈RN

a(x)− min
x∈RN

a(x) < θ with θ = min{
∫
z·ξ<0

k(z)dz| ξ ∈ SN−1},

then the conclusions in (1) hold.
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(3) If a ∈ XP ∩ CN(RN) and the partial derivatives of a(x) up to order N − 1 at some x0

are zero, where x0 is such that a(x0) = max
x∈RN

a(x), then the conclusions in (1) hold.

Let λ(ξ, µ, a) be the principal eigenvalue of Kξ,µ − I + a(·). Note that if µ = 0, (2.8) is

independent of ξ and hence we put

λ(a) := λ(ξ, 0, a) ∀ ξ ∈ SN−1 (2.22)

(if λ(ξ, 0, a) exists).

Let ā = 1
|D|

∫
D
f(x, 0)dx with D =

N∏
i=1

[0, pi] and |D| =
N∏
i=1

pi where the period vector

p = (p1, ..., pN).

Theorem B. (Influence of spatial variation) Assume that λ(ξ, µ, a(x)) of Kξ,µ − I + a(·)I

exists for any ξ ∈ SN−1 and µ ∈ R. Then λ(ξ, µ, a(x)) ≥ λ(ξ, µ, ā) for any ξ ∈ SN−1 and

µ ∈ R. λ(ξ, µ, a(x)) = λ(ξ, µ, ā) for some ξ ∈ SN−1 and µ ∈ R iff a(x) ≡ ā.

We remark that the proof of Theorem A , the existence part of the principal eigenvalue,

relies on techniques from the perturbation theory of Burger [7] (see [7, Proposition 2.1 and

Theorem 2.2]) and on the arguments in [37, Theorem 2.6]. However, special care is required

in view of the dependence of Kξ,µ on ξ ∈ SN−1 and µ ∈ R. Note that the conclusions are

independent of ξ ∈ SN−1 and µ ∈ R (i.e. for proper δ > 0 and a, λ(ξ, µ, a) exists for every

ξ ∈ SN−1 and µ ∈ R). Theorem A (1) is proved in [37] for µ = 0 with the assumption

that k(·) is symmetric with a bounded support, that is, k(z) = k(−z) supported on a ball

for z ∈ RN . We extended A(1) to general kernel for all µ ∈ R. Theorem A(3) will play an

important role in proving the existence of positive stationary solution and generic spreading

speeds.

As it is well known, the principal eigenvalue of a random or local dispersal operator

always exists. By Theorem A(1), if the nonlocal dispersal operator Kξ,µ− I + a(·)I is nearly

local in the sense that the dispersal distance δ is sufficiently small, then we obtain a similar

principal eigenvalue theory as for random dispersal operators.

16



Observe that Kξ,µ : Xp → Xp is a compact and positive operator. If a(x) ≡ a is

independent of x, then it is not difficult to see that λ(ξ, µ, a) := a− 1 +
∫
RN e

−µz·ξk(z)dz is

the principal eigenvalue of Kξ,µ− I+a(·)I for ξ ∈ SN−1, and µ ∈ R. By Theorem A(2)(3), if

a(·) has certain homogeneity features, then the nonlocal dispersal operator Kξ,µ − I + a(·)I

also possesses a principal eigenvalue. More precisely, Theorem A (2) shows that if a(x)

is nearly globally homogeneous or globally flat in the sense that max
x∈RN

a(x) − min
x∈RN

a(x) < θ,

then the principal eigenvalue λ(ξ, µ, a) of the nonlocal dispersal operator Kξ,µ − I + a(·)I

exists for ξ ∈ SN−1, and µ ∈ R. Note that if Kξ,µ − I + a(·)I in (2.8) is replaced by

ν[Kξ,µ−I]+a(·)I with a general positive dispersal rate ν > 0, Theorem A (2) holds provided

that max
x∈RN

a(x)− min
x∈RN

a(x) < νθ. If k(·) is symmetric, then θ can be chosen 1. So A (2) holds

provided that max
x∈RN

a(x)− min
x∈RN

a(x) < ν, which means biologically that the variation in the

habitat is less than the dispersal rate of the nonlocal dispersal operator Kξ,µ − I. We say

a(·) is nearly homogeneous or flat in some region where it is most conducive to population

growth in the zero-limit population (which will be referred to as nearly locally homogeneous

in the following) if all partial derivatives of a(x) up to order N − 1 are zero at some x0 with

a(x0) = max
x∈RN

a(x). Theorem A (3) shows that if a(·) is nearly locally homogenous, then for

any ξ ∈ SN−1, and µ ∈ R, the principal eigenvalue λ(ξ, µ, a) of Kξ,µ − I + a(·)I exists, too.

It should be pointed out that a(x) is nearly globally homogeneous may not imply that it is

nearly locally homogeneous.

Clearly, the “flatness” condition for a(x) in Theorem A (3) is always satisfied for N = 1

or 2. Hence when N = 1 or 2, the principal eigenvalue of Kξ,µ − I + a(·)I exists for all

ξ ∈ SN−1, µ ∈ R. In general, if N ≥ 3 , the principal eigenvalue of (2.8) may not exist

(see example in chapter 4). This reveals an essential difference between nonlocal dispersal

operators and random dispersal operators.

How do spatial variations affect the principal eigenvalue (if exists)? In biological sense,

Theorem B shows that spatial variation cannot reduce the principal eigenvalue of a dispersal
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operator with nonlocal dispersal and periodic boundary condition, and indeed it is increased

except for degenerate cases.

After we established the spectral theory of the nonlocal dispersal operators, we can em-

ploy the comparison principle and construct sub- super-solutions to investigate the existence,

uniqueness and stability of positive equilibrium solutions of (1.2). More precisely, we will

prove the following theorem.

Theorem C. (Existence, uniqueness, and stability of positive stationary solutions)

(1) If (H1)- (H3) hold, then (1.2) has exactly two stationary solutions in X+
p , u− ≡ 0,

which is linearly unstable, and u+(·) ∈ X+
p \ {0}, which is globally asymptotically with

respect to perturbations in X+
p \ {0}.

(2) If ā > 0 and (H1)-(H2) are satisfied, where ā := 1
p1p2···pN

∫
D
f(x, 0)dx with D = [0, p1]×

[0, p2]× · · · × [0, pN ]. then (H3) is satisfied and the conclusions in (1) hold.

Let

u+
inf = inf

x∈RN
u+(x). (2.23)

The following four theorems are about the spatial spreading speeds of (1.2).

Theorem D. (Existence and symmetry of spreading speeds) Assume (H1) - (H3).

(1) The spreading speed c∗(ξ) of (1.2) in the direction of ξ ∈ SN−1 exists for every ξ ∈ SN−1

and

c∗(ξ) = inf
µ>0

λ0(ξ, µ)

µ
,

where λ0(ξ, µ) is the principal spectrum point of (2.8) with a(x) = f(x, 0).

(2) Assume that k(z) = k(−z) for z ∈ RN . c∗(ξ) = c∗(−ξ) for every ξ ∈ SN−1.

(3) For every u0 ∈ X+(ξ) and c < c∗(ξ),

lim inf
t→∞

inf
x·ξ≤ct

(u(t, x;u0, z)− u+(x+ z)) = 0 uniformly in z ∈ RN .
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(4) For every u0 ∈ X+(ξ) and c > c∗(ξ),

lim sup
t→∞

sup
x·ξ≥ct

u(t, x;u0, z) = 0 uniformly in z ∈ RN .

Theorem E. (Spreading features of spreading speeds) Assume (H1) - (H3).

(1) If u0 ∈ X+ satisfies that u0(x) = 0 for x ∈ RN with |x · ξ| � 1, then for each

c > max{c∗(ξ), c∗(−ξ)},

lim sup
t→∞

sup
|x·ξ|≥ct

u(t, x;u0, z) = 0 uniformly in z ∈ RN .

(2) Assume that ξ ∈ SN−1 and 0 < c < min{c∗(ξ), c∗(−ξ)}. Then for any σ > 0, and

r > 0,

lim inf
t→∞

inf
|x·ξ|≤ct

(u(t, x;u0, z)− u+(x+ z)) = 0 uniformly in z ∈ RN

for every u0 ∈ X+ satisfying u0(x) ≥ σ for all x ∈ RN with |x · ξ| ≤ r.

Theorem F. (Spreading features of spreading speeds) Assume (H1) - (H3).

(1) If u0 ∈ X+ satisfies that u0(x) = 0 for x ∈ RN with ‖x‖ � 1, then

lim sup
t→∞

sup
‖x‖≥ct

u(t, x;u0, z) = 0 uniformly in z ∈ RN .

for all c > sup
ξ∈SN−1

c∗(ξ).

(2) Assume that 0 < c < inf
ξ∈SN−1

{c∗(ξ)}. Then for any σ > 0, there is r > 0 such that

lim inf
t→∞

inf
‖x‖≤ct

(u(t, x;u0, z)− u+(x+ z)) = 0 uniformly in z ∈ RN

for every u0 ∈ X+ satisfying u0(x) ≥ σ for x ∈ RN with ‖x‖ ≤ r.
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To indicate the dependence of the spreading speeds on the growth rate function f ,

denote the spreading speed c∗(ξ, f). If no confusion exists, we still use c∗(ξ).

Let f̄(u) = 1
|D|

∫
D
f(x, u)dx, with D =

N∏
i=1

[0, pi] and |D| =
N∏
i=1

pi where the period vector

p = (p1, ..., pN).

Theorem G. (Effect of spatial variation) Assuming that f̄(0) > 0, c∗(ξ, f) ≥ c∗(ξ, f̄) for

any ξ ∈ SN−1. Moreover, assuming also (H4), c∗(ξ, f) = c∗(ξ, f̄) for some ξ ∈ SN−1 iff

f(x, 0) ≡ f̄(0) is independent of x.

Theorems D-G extend the spreading speed theory for (1.3) to (1.2) and establish some

fundamental theories for the further study of the spreading and propagating dynamics of

(1.2). The next natural and important problems to address include the existence, uniqueness,

and stability of traveling wave solutions of (1.2) in the direction of ξ connecting u+ and u−

with speed c ≥ c∗(ξ). To explore this, we assume the existence of the principal eigenvalue of

(2.8).

We now state the main results of the dissertation on traveling wave solutions. For given

ξ ∈ SN−1 and c > c∗(ξ), let µ ∈ (0, µ∗(ξ)) be such that

c =
λ0(ξ, µ, a0)

µ
.

and µ∗(ξ) is such that

c∗(ξ) =
λ0(ξ, µ∗(ξ), a0)

µ∗(ξ)
.

If (H4) holds, let φ(·) ∈ X+
p be the positive principal eigenfunction of Kξ,µ − I + a0(·)I with

‖φ(·)‖Xp = 1.

Theorem H. (Existence of traveling wave solutions) Assume (H1)-(H4). Then for any

ξ ∈ SN−1 and c > c∗(ξ), there is a bounded measurable function Φ : RN × RN → R+ such

that the following hold.

(1) Φ(·, ·) generates a traveling wave solution connecting u+(·) and 0 and propagating in the

direction of ξ with speed c. Moreover, lim
x·ξ→∞

Φ(x, z)

e−µx·ξφ(x+ z)
= 1 uniformly in z ∈ RN .
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(2) Let U(t, x; z) = u(t, x; Φ(·, z), z)(= Φ(x− ctξ, z + ctξ)). Then

Ut(t, x; z) > 0 ∀t ∈ R, x, z ∈ RN ,

lim
x·ξ−ct→−∞

Ut(t, x; z) = 0, and lim
x·ξ−ct→∞

Ut(t, x; z)

e−µ(x·ξ−ct)φ(x+ z)
= µc uniformly in z ∈ RN .

Remark 2.2. Let Φ(x, z) be as in Theorem H and Ψ(η, z) = Φ(ηξ, z−ηξ). Then U(t, x; z) =

Ψ(x · ξ − ct, z + x) and Ψ(η, z) is differentiable in η and Ψη(η, z) < 0.

Theorem I. (Uniqueness and continuity of traveling wave solutions) Assume the same con-

ditions as in Theorem H. Let Φ(·, ·) be as in Theorem H.

(1) Suppose that Φ1(·, ·) also generates a traveling wave solution of (1.2) in the direction of

ξ with speed c and lim
x·ξ→∞

Φ1(x, z)

Φ(x, z)
= 1 uniformly in z ∈ R. Then Φ1(x, z) ≡ Φ(x, z).

(2) Φ(x, z) is continuous in (x, z) ∈ RN .

Theorem J. (Stability of traveling wave solutions) Assume the same conditions as in The-

orem H.

Let U(t, x) = U(t, x; 0) = Φ(x− ctξ, ctξ), where Φ(·, ·) is as in Theorem H. For any u0 ∈ X+

satisfying that lim
x·ξ→∞

u0(x)

U(0, x)
= 1 and lim inf

x·ξ→−∞
u0(x) > 0, there holds

lim
t→∞

sup
x∈RN

∣∣∣u(t, x;u0, 0)

U(t, x)
− 1
∣∣∣ = 0.

We remark that by the spreading property of c∗(ξ), it is not difficult to see that (1.2)

has no traveling wave solutions in the direction of ξ ∈ SN−1 with propagating speed smaller

than c∗(ξ). Theorems H-J show the existence, uniqueness, and stability of traveling wave

solutions of (1.2) in any given direction with speed greater than the spreading speed in that

direction for the following three special but important cases, that is, the nonlocal dispersal is

nearly local; the periodic habitat is nearly globally homogeneous or it is nearly homogeneous

in a region where it is most conducive to population growth in the zero-limit population. It

should be pointed out that in the last case, for N = 1, 2, (H4) is automatically satisfied.
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It remains open whether a general spatially periodic monostable equation with nonlocal

dispersal in RN with N ≥ 3 has traveling wave solutions connecting the spatially periodic

positive stationary solution u+ and 0 and propagating with constant speeds.
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Chapter 3

Comparison Principle and Sub- and Super-solutions

In this chapter, we establish some basic properties of solutions of equation (1.2) and

some related nonlocal linear evolution equations, including the comparison principle and

monotonicity of solutions with respect to initial conditions, convergence of solutions on

compact sets.

3.1 Solutions of Evolution Equation and Semigroup Theory

For given ξ ∈ SN−1, µ ∈ R, and a(·) ∈ Xp, consider also

∂u

∂t
=

∫
RN
e−µ(y−x)·ξk(y − x)u(t, y)dy − u(t, x) + a(x)u(t, x), x ∈ RN . (3.1)

Let X and Xp be as in (2.2) and (2.4), respectively. For given ρ ≥ 0, let

X(ρ) = {u ∈ C(RN ,R) | the function x 7→ e−ρ‖x‖u(x) belongs to X} (3.2)

equipped with the norm ‖u‖X(ρ) = sup
x∈RN

e−ρ‖x‖|u(x)|. Note that X(0) = X.

It follows from the general linear semigroup theory (see [27] or [50]) that for every u0 ∈

X(ρ) (ρ ≥ 0), (3.1) has a unique solution u(t, ·;u0, ξ, µ) ∈ X(ρ) with u(0, x;u0, ξ, µ) = u0(x).

Put

Φ(t; ξ, µ)u0 = u(t, ·;u0, ξ, µ). (3.3)

Note that for every µ ∈ R and ρ ≥ 0, there is ω(µ, ρ) > 0 such that

‖Φ(t; ξ, µ)u0‖X(ρ) ≤ eω(µ,ρ)t‖u0‖X(ρ) ∀ t ≥ 0, ξ ∈ SN−1, u0 ∈ X(ρ). (3.4)
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Note also that if u0 ∈ Xp, then Φ(t; ξ, µ)u0 ∈ Xp for t ≥ 0.

By general nonlinear semigroup theory (see [27] or [50]), (1.2) has a unique (local)

solution u(t, x;u0) with u(0, x;u0) = u0(x) for every u0 ∈ X. Also if u0 ∈ Xp, then

u(t, x;u0) ∈ Xp for t in the existence interval of the solution u(t, x;u0).

Due to the spatial inhomogeneity of (1.2), it is sometime important to consider the

space shifted equation (2.15) of (1.2) and the following space shifted equation of (3.1),

∂u

∂t
=

∫
RN
e−µ(y−x)·ξk(y − x)u(t, y)dy − u(t, x) + a(x+ z)u(t, x), (3.5)

where z ∈ RN . Note that if µ = 0 and a(x) = a0(x)(:= f(x, 0)), then (3.5) reduces to the

space shifted equation of the linearization equation (2.10) of (1.2) at u = 0,

∂u

∂t
=

∫
RN
k(y − x)u(t, y)dy − u(t, x) + a0(x+ z)u(t, x), x ∈ RN . (3.6)

It is again a consequence of the general semigroup theory that (2.15) has a unique (local)

solution u(t, x;u0, z) with u(0, x;u0, z) = u0(x) (z ∈ RN) for every u0 ∈ X. Also given u0 ∈

X(ρ) (ρ ≥ 0), (3.5) has a unique solution u(t, x;u0, ξ, µ, z) with u(0, x;u0, ξ, µ, z) = u0(x).

We set

Φ(t; ξ, µ, z)u0 = u(t, ·;u0, ξ, µ, z). (3.7)

Sometimes we need study the solutions on the space X̃, where X̃ is as (2.13). For

example, to get a continuous solution of (2.15), we may first investigate the existence of

solution with u0 ∈ X̃ and then prove the continuity. It is again a consequence of the general

semigroup theory that (2.15) has a unique (local) solution u(t, x;u0, z) with u(0, x;u0, z) =

u0(x) (z ∈ RN) for every u0 ∈ X̃.

Throughout this chapter, we assume that ξ ∈ SN−1 and µ ∈ R are fixed, unless otherwise

specified.
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3.2 Sub- and Super-solutions

Let X+
p and X+ be as in (2.5) and (2.3), respectively. Let

Int(X+
p ) = {v ∈ Xp|v(x) > 0, x ∈ RN}. (3.8)

For v1, v2 ∈ Xp, we define

v1 ≤ v2 (v1 ≥ v2) if v2 − v1 ∈ X+
p (v1 − v2 ∈ X+

p ),

and

v1 � v2 (v1 � v2) if v2 − v1 ∈ Int(X+
p ) (v1 − v2 ∈ Int(X+

p )).

For u1, u2 ∈ X, we define

u1 ≤ u2 (u1 ≥ u2) if u2 − u1 ∈ X+ (u1 − u2 ∈ X+).

Definition 3.1. A bounded Lebesgue measurable function u(t, x) on [0, T )× RN is called a

super-solution (or sub-solution) of (2.15) if for any x ∈ RN , u(t,x) is absolutely continuous

on [0, T )(and so ∂u
∂t

exists a.e on [0,T)) and satisfies that for each x ∈ RN ,

∂u

∂t
≥ (or ≤)

∫
RN
k(y − x)u(t, y)dy − u(t, x) + f(x+ z, u)u(t, x)

for a.e. t ∈ (0, T ).

Sub and super-solutions of (3.5) are defined similarly.

3.3 Comparison Principle and Monotonicity

Proposition 3.1 (Comparison principle).

25



(1) If u1(t, x) and u2(t, x) are sub-solution and super-solution of (3.1) on [0, T ), respec-

tively, u1(0, ·) ≤ u2(0, ·), and u2(t, x) − u1(t, x) ≥ −β0 for (t, x) ∈ [0, T ) × RN and

some β0 > 0, then

u1(t, ·) ≤ u2(t, ·) for t ∈ [0, T ).

(2) If u1(t, x) and u2(t, x) are bounded sub- and super-solutions of (1.2) on [0, T ), respec-

tively, and u1(0, ·) ≤ u2(0, ·), then u1(t, ·) ≤ u2(t, ·) for t ∈ [0, T ).

(3) For every u0 ∈ X+, u(t, x;u0) exists for all t ≥ 0.

Proof. (1) We prove the proposition by modifying the arguments of [35, Proposition 2.4].

First let v(t, x) = ect
(
u2(t, x)− u1(t, x)

)
. Then v(t, x) satisfies

∂v

∂t
≥
∫
RN
e−µ(y−x)·ξk(y − x)v(t, y)dy + p(x)v(t, x), x ∈ RN (3.9)

for t ∈ (0, T ), where p(x) = a(x)− 1 + c. Take c > 0 such that p(x) > 0 for all x ∈ RN . We

claim that v(t, x) ≥ 0 for t ∈ [0, T ) and x ∈ RN .

Let p0 = sup
x∈RN

p(x). It suffices to prove the claim for t ∈ (0, T0) and x ∈ RN , where

T0 = min{T, 1
p0+M

} with M =
∫
RN e

−µz·ξk(z)dz. Assume that there are t̃ ∈ (0, T0) and

x̃ ∈ RN such that v(t̃, x̃) < 0. Then there is t0 ∈ (0, T0) such that

vinf := inf
(t,x)∈[0,t0]×RN

v(t, x) < 0.

Observe that there are tn ∈ (0, t0] and xn ∈ RN such that

v(tn, x
n)→ vinf as n→∞.
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By (3.9), we have

v(tn, xn)− v(0, xn) ≥
∫ tn

0

[ ∫
RN
e−µ(y−xn)·ξk(y − xn)v(t, y)dy + p(xn)v(t, xn)

]
dt

≥
∫ tn

0

[ ∫
RN
e−µ(y−xn)·ξk(y − xn)vinfdy + p0vinf

]
dt

= tn(M + p0)vinf

≥ t0(M + p0)vinf

for n = 1, 2, · · · . Note that v(0, xn) ≥ 0 for n = 1, 2, · · · . We then have

v(tn, xn) ≥ t0(M + p0)vinf

for n = 1, 2, · · · . Letting n→∞, we get

vinf ≥ t0(M + p0)vinf > vinf (since − β0 ≤ vinf < 0).

This is a contradiction. Hence v(t, x) ≥ 0 for (t, x) ∈ [0, T )×RN and then u1(t, x) ≤ u2(t, x)

for (t, x) ∈ [0, T )× RN .

(2) Let v(t, x) = ect(u2(t, x)− u1(t, x)). Then v(t, ·) ≥ 0 and v(t, x) satisfies

∂v

∂t
≥
∫
RN
k(y − x)v(t, y)dy + p(t, x)v(t, x), x ∈ RN

for t ∈ (0, T ), where

p(t, x) = c− 1 + f(x, u2(t, x)) +
[
u1(t, x) ·

∫ 1

0

fu(x, su1(t, x) + (1− s)u2(t, x))ds
]
v(t, x)

for t ∈ [0, T ), x ∈ RN . By the boundedness of u1(t, x) and u2(t, x), there is c > 0 such that

inf
t∈[0,T ),x∈RN

p(t, x) > 0.
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(2) then follows from the arguments in (1) with p(x) and p0 being replaced by p(t, x) and

sup
t∈[0,T ),x∈RN

p(t, x), respectively.

(3) By (H1), there is M > 0 such that

u0(x) ≤M and f(x,M) < 0 for x ∈ RN .

Let uM(t, x) ≡ M for x ∈ RN and t ∈ R. Then uM is a super-solution of (1.2) on [0,∞).

Let I(u0) ⊂ R be the maximal interval of existence of the solution u(t, ·;u0) of (1.2). Then

by (2), one obtains

0 ≤ u(t, x;u0) ≤M for x ∈ RN , t ∈ I(u0) ∩ [0,∞).

It then follows easily that [0,∞) ⊂ I(u0) and u(t, x;u0) exists for all t ≥ 0.

The following remark follows by the arguments similar to those in Proposition 3.1 (1).

Remark 3.1. Suppose that u1, u2 ∈ X(ρ) and u1 ≤ u2. Then Φ(t; ξ, 0, 0)u1 ≤ Φ(t; ξ, 0, 0)u2

for all t > 0.

Proposition 3.2 (Strong monotonicity). Suppose that u1, u2 ∈ Xp and u1 ≤ u2, u1 6= u2.

(1) Φ(t; ξ, µ)u1 � Φ(t; ξ, µ)u2 for all t > 0.

(2) u(t, ·;u1)� u(t, ·;u2) for every t > 0 at which both u(t, ·;u1) and u(t, ·;u2) exist.

Proof. (1) We apply the arguments in Theorem 2.1 of [37]. First, assume that u0 ∈ X+
p \{0}.

Then by Proposition 3.1 (1), Φ(t; ξ, µ)u0 ≥ 0 for t > 0.

We claim that eKξ,µtu0 � 0 for t > 0. In fact, note that

eKξ,µtu0 = u0 + tKξ,µu0 +
t2(Kξ,µ)2u0

2!
+ ...+

tn(Kξ,µ)nu0

n!
+ ...
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Let x0 ∈ RN be such that u0(x0) > 0. Then there is r > 0 such that u0(x0) > 0 for

x ∈ B(x0, r) := {y ∈ RN | ‖y − x0‖ < r}. This implies that

(Kξ,µu0)(x) =

∫
RN
e−µ(y−x)·ξk(y − x)u0(y)dy > 0 for x ∈ B(x0, r + δ).

By induction,

(Kξ,µu0)n(x) > 0 for x ∈ B(x0, r + nδ), n = 1, 2, · · · .

This together with the periodicity of u0(x) implies that eKξ,µtu0 � 0 for t > 0.

Let m > 1− min
x∈RN

a(x). Note that

Φ(t; ξ, µ)u0 = u(t, ·;u0) = e(Kξ,µ−I+a(·)I+mI−mI)tu0 = e−mIte(Kξ,µ−I+a(·)I+mI)tu0

and (e−mItv)(x) = e−mtv(x) for every x ∈ RN . Note also that

e(Kξ,µ−I+a(·)I+mI)tu0 = eKξ,µtu0 +

∫ t

0

eKξ,µ(t−s)(−I + a(·)I +mI)u(s, ·;u0)ds for t > 0.

It then follows that Φ(t; ξ, µ)u0 � 0 for all t > 0.

Now let u0 = u2 − u1. Then u0 ∈ X+
p \ {0}. Hence Φ(t; ξ, µ)u0 � 0 for t > 0 and

then Φ(t; ξ, µ)u1 � Φ(t; ξ, µ)u2 for t > 0.

(2) Let v(t, x) = u(t, x;u2)−u(t, x;u1) for t ≥ 0 at which both u(t, x;u1) and u(t, x;u2)

exist. Then v(0, ·) = u2 − u1 ≥ 0 and v(t, x) satisfies

∂v

∂t
=

∫
RN
k(y − x)v(t, y)dy − v(t, x) + f(x, u(t, x;u2))v(t, x)

+
[
u(t, x;u1) ·

∫ 1

0

fu(x, su(t, x;u1) + (1− s)u(t, x;u2))ds
]
v(t, x), x ∈ RN .

(2) then follows from the arguments similar to those in (1).
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3.4 Convergence on Compact Sets

In this section, we investigate the convergence of solutions of (1.2) or (3.1) on compact

sets.

First, we prove the following lemma.

Lemma 3.1. For given ρ0 ≥ 0 and {un} ∈ X(ρ0) with ‖un‖X(ρ0) ≤M for some M > 0 and

n = 1, 2, · · · , un(x)→ 0 as n→∞ uniformly for x in bounded subsets of RN if and only if

un(x)→ 0 in X(ρ) as n→∞ for every ρ > ρ0.

Proof. Suppose that un(x) → 0 as n → ∞ uniformly for x in bounded subsets of RN , that

is, for any ε > 0 and L > 0, there exists N0 ∈ N such that |un(x)| < ε for all n > N0 and

‖x‖ ≤ L. For given ρ > ρ0, pick ρ̂ ∈ (ρ0, ρ). Note that ‖un‖X(ρ0) ≤ M for some M > 0

and n = 1, 2, · · · . Then for any ε > 0, there exists an L > 0 such that |e−ρ̂‖x‖un(x)| < ε for

‖x‖ > L and n = 1, 2, · · · . It then follows that for any ε > 0, there is N0 ∈ N such that

|e−ρ̂‖x‖un(x)| < ε for all n > N0 and x ∈ RN . This implies that un → 0 in X(ρ) as n → ∞

for every ρ > ρ0.

Suppose that un(x) → 0 in X(ρ0) as n → ∞ for some ρ0 > 0, that is, ‖un‖X(ρ0) → 0

as n → ∞. For any ε > 0, L > 0, let ε0 = εe−ρ0L, then there exists a N0 ∈ N such that

|e−ρ0‖x‖un(x)| < ε0 for x ∈ RN and n ≥ N0, which implies that |un(x)| < eρ0(‖x‖−L)ε ≤ ε, for

all n ≥ N0 and ‖x‖ ≤ L, as required.

Proposition 3.3 (Convergence on compact sets).

(1) If un ∈ X and u0 ∈ X are such that ‖un‖X ≤ M for some M > 0 and n = 1, 2, · · · ,

and un(x) → u0(x) as n → ∞ uniformly for x in bounded subsets of RN , then(
Φ(t; ξ, µ)un

)
(x)→

(
Φ(t; ξ, µ)u0

)
(x) as n→∞ uniformly for (t, x) in bounded subsets

of [0,∞)× RN .

(2) If un ∈ X+ and u0 ∈ X+ are such that ‖un‖X ≤ M for some M > 0 and n =

1, 2, · · · and un(x) → u0(x) as n → ∞ uniformly for x in bounded subsets of RN ,
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then u(t, x;un) → u(t, x;u0) as n → ∞ uniformly for (t, x) in bounded subsets of

[0,∞)× RN .

Proof. (1) First of all, by Lemma 3.1, for every given ρ > 0, ‖un − u0‖X(ρ) → 0 as n → ∞.

By (3.4),

‖Φ(t; ξ, µ)un − Φ(t; ξ, µ)u0‖X(ρ) ≤ eω(µ,ρ)t‖un − u0‖X(ρ)

for t ≥ 0 and n = 1, 2, · · · . Then, ‖Φ(t; ξ, µ)un − Φ(t; ξ, µ)u0‖X(ρ) → 0 as n→∞ uniformly

for t in bounded subsets of [0,∞). This implies that

(
Φ(t; ξ, µ)un

)
(x)→

(
Φ(t; ξ, µ)u0

)
(x)

as n→∞ uniformly for (t, x) in bounded subsets of [0,∞)× RN .

(2) By Proposition 3.1 (3), u(t, x;u0) and u(t, x;un) exist on [0,∞) for any n ≥ 1 and

there is M∗ > 0 such that ‖u(t, ·;u0)‖X ≤ M∗ and ‖u(t, ·;un)‖X ≤ M∗ for t ≥ 0 and

n = 1, 2, · · · . Let vn(t, x) = u(t, x;un)−u(t, x;u0) for x ∈ RN , t ≥ 0, and n = 1, 2, · · · . Then

∂vn
∂t

=

∫
RN
k(y − x)vn(t, y)dy − vn(t, x) + an(t, x)vn(t, x), x ∈ RN ,

where

an(t, x) = f(x, u(t, x;un)) +
[
u(t, x;u0) ·

∫ 1

0

fu(x, su(t, x;u0) + (1− s)u(t, x;un))ds
]
vn(t, x).

Hence

vn(t, ·) = e(K−I)tvn(0, ·) +

∫ t

0

e(Kξ,µ−I)(t−s)an(s, ·)vn(s, ·)ds.

Note that for every ρ > 0 there are ω0(ρ) ∈ R and L0 > 0 such that

‖e(K−I)tv‖X(ρ) ≤ eω0(ρ)t‖v‖X(ρ) ∀v ∈ X(ρ)
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and

|an(t, x)| ≤ L0 ∀t ≥ 0, x ∈ RN .

It then follows from Gronwall’s inequality that

‖vn(t, ·)‖X(ρ) ≤ e(ω0(ρ)+L0)t‖vn(0, ·)‖X(ρ).

By the arguments in (1), we have vn(t, x)→ 0 and hence u(t, x;un)→ u(t, x;u0) as n→∞

uniformly for (t, x) in bounded subsets of [0,∞)× RN .
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Chapter 4

Spectral Theory of Dispersal Operators

In this chapter, we investigate the eigenvalue problem (2.8) and prove Theorems A and

B stated in the chapter 2 and some other related results which are used in the proof of the

existence of spreading speeds of (1.2) in later chapters. The results of this chapter in the

case that the nonlocal kernel function has compact support have already been published (see

[56], [57]).

Throughout this chapter, Xp is as in (2.4), a : RN → RN is a smooth function, a ∈ Xp,

and

amax = max
x∈RN

a(x), amin = min
x∈RN

a(x).

a(·)I : Xp → Xp has the same meaning as in (2.7) with a0(·) being replaced by a(·) and

Kξ,µ : Xp → Xp is understood as in (2.9), ξ ∈ SN−1, and µ ∈ R. We first introduce in 4.1

some important operators related to Kξ,µ−I+a(·)I or (2.8) and explore some basic properties

of the eigenvalue problems associated with these operators. We then prove Theorems A in

4.2 and derive in 4.3 from Theorems A some results on the spectral radius of some operator

related to Kξ,µ − I + a(·)I.

4.1 Evolution Operators and Eigenvalue Problems

In this section, we introduce some evolution operators related to the operator Kξ,µ−I+

a(·)I, explore the basic properties of the eigenvalue problems associated to these operators,

and discuss the relations between the eigenvalues of Kξ,µ−I+a(·)I and its related operators.

If no confusion occurs, we may write the principal eigenvalue λ(ξ, µ, a) of Kξ,µ− I + a(·)I (if

exists) as λ(ξ, µ).
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First of all, we introduce a compact operator associated to Kξ,µ based on the perturba-

tion idea in [7]. This operator plays an important role in the proofs of Theorems A in the

next section. For given α > −1 + amax, let Uξ,µ,α : Xp → Xp be defined as follows

(Uξ,µ,αu)(x) =

∫
RN

e−µ(y−x)·ξk(y − x)u(y)

α + 1− a(y)
dy. (4.1)

Observe that Uξ,µ,α is a compact and positive operator on Xp. Let r(Uξ,µ,α) be the spectral

radius of Uξ,µ,α.

Proposition 4.1. (1) α > −1 + amax is an eigenvalue of Kξ,µ − I + a(·)I or (2.8) iff 1 is

an eigenvalue of the eigenvalue problem

Uξ,µ,αv = λv.

(2) For α > −1 + amax, 1 is an eigenvalue of Uξ,µ,α with a positive eigenfunction iff

r(Uξ,µ,α) = 1.

(3) If there is α > −1+amax with r(Uξ,µ,α) > 1, then there is α0 > α such that r(Uξ,µ,α0) =

1.

(4) If α > −1 + amax is an eigenvalue of Kξ,µ − I + a(·)I or (2.8) with a positive eigen-

function, then it is the principal eigenvalue of (2.8).

Proof. (1) and (2) follow from Proposition 2.1 of [7].

(3) and (4) follow from Theorem 2.2 of [7].

By Proposition 4.1, the spectral radius of Uξ,µ,α provides a useful tool for the investiga-

tion of those eigenvalues of Kξ,µ− I + a(·)I which are greater than −1 + amax. The following

proposition shows that if Kξ,µ − I + a(·)I possesses a principal eigenvalue, then it must be

greater than −1 + amax.
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Proposition 4.2. If λ(ξ, µ) is the principal eigenvalue of Kξ,µ − I + a(·)I, then λ(ξ, µ) >

−1 + amax.

Proof. Since λ(ξ, µ) is the principal eigenvalue of Kξ,µ − I + a(·)I, there is an eigenfunction

ψ ∈ X+
p \ {0} such that

∫
RN
e−µ(y−x)·ξk(y − x)ψ(y)dy − ψ(x) + a(x)ψ(x) = λ(ξ, µ)ψ(x), x ∈ RN . (4.2)

Note that u(t, x) = eλ(ξ,µ)tψ(x) is a solution of (3.1). By Proposition 3.2, ψ ∈ Int(X+
p ).

Let x0 ∈ RN be such that a(x0) = amax. By ψ ∈ Int(X+
p ),

∫
RN
e−µ(y−x0)·ξk(y − x0)ψ(y)dy > 0.

This together with (4.2) implies that

λ(ξ, µ)ψ(x0) > −ψ(x0) + a(x0)ψ(x0).

Hence λ(ξ, µ) > −1 + amax.

Next, consider the evolution equation (3.1) associated with the operator Kξ,µ−I+a(·)I.

Let Φ(t; ξ, µ) be the solution operator of (3.1) given in (3.3) and Φp(t; ξ, µ) : Xp → Xp be

defined by

Φp(t; ξ, µ) = Φ(t; ξ, µ)|Xp (4.3)

for t ≥ 0, ξ ∈ SN−1 and µ ∈ R. Let r(Φp(1; ξ, µ)) and σ(Φp(1; ξ, µ)) be the spectral radius

and the spectrum of Φp(1; ξ, µ), respectively. The following lemma states the relationship

between the principal eigenvalue of Kξ,µ− I+a(·)I and the spectral radius of Φp(1; ξ, µ) and

follows easily (see [27, Theorems 1.5.2 and 1.5.3]).

Lemma 4.1. The principal eigenvalue λ(ξ, µ) of (2.8) exists if and only if r(Φp(1; ξ, µ)) is

an algebraically simple eigenvalue of Φp(1; ξ, µ) with an eigenfunction in X+
p and for every
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λ̃ ∈ σ
(
Φp(1; ξ, µ)

)
\ {r(Φp(1; ξ, µ))}, |λ̃| < r(Φp(1; ξ, µ)). Moreover, if λ(ξ, µ) exists, then

λ(ξ, µ) = ln r(Φp(1; ξ, µ)) .

Therefore, the spectral radius of Φp(1; ξ, µ) plays an important role in the investigation

of the principal eigenvalue of Kξ,µ − I + a(·)I or (2.8). We next establish some further

observations for r(Φp(1; ξ, µ)).

Note that Φ(t; ξ, 0) is independent of ξ ∈ SN−1. We put

Φ̃(t) = Φ(t; ξ, 0) (4.4)

for ξ ∈ SN−1.

For given u0 ∈ X and µ ∈ R, letting uξ,µ0 (x) = e−µx·ξu0(x), then uξ,µ0 ∈ X(|µ|). The

following lemma follows directly from the uniqueness of solutions of (3.1).

Lemma 4.2. For given u0 ∈ X, ξ ∈ SN−1, and µ ∈ R, Φ(t; ξ, µ)u0 = eµx·ξΦ̃(t)uξ,µ0 .

Observe that for each x ∈ RN , there is a measure m(x; y, dy) such that

(Φ̃(1)u0)(x) =

∫
RN
u0(y)m(x; y, dy). (4.5)

Moreover, by (Φ̃(1)u0(· − piei))(x) = (Φ̃(1)u0(·))(x− piei) for x ∈ RN and i = 1, 2, · · · , N ,

∫
RN
u0(y)m(x− piei; y, dy) =

∫
RN
u0(y − piei)m(x; y, dy) =

∫
RN
u0(y)m(x; y + piei, dy)

and hence

m(x− piei; y, dy) = m(x; y + piei, dy) (4.6)

for i = 1, 2, · · · , N .

By Lemma 4.2, we have

(Φ(1; ξ, µ)u0)(x) =

∫
RN
eµ(x−y)·ξu0(y)m(x; y, dy), u0 ∈ X.
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Proposition 4.3. For every u ∈ Int(X+
p ),

inf
x∈RN

∫
RN e

µ(x−y)·ξu(y)m(x; y, dy)

u(x)
≤ r(Φp(1; ξ, µ))

≤ sup
x∈RN

∫
RN e

µ(x−y)·ξu(y)m(x; y, dy)

u(x)
.

Proof. By [20, Theorems 3.6 and 4.3], the spectral radius of the nonnegative operator

Φp(1; ξ, µ) is bounded by the lower and upper Collatz-Wielandt numbers of u for every

u ∈ Int(X+
p ), which are defined by sup{λ ≥ 0 : λu ≤ Φp(1; ξ, µ)u} and inf{λ ≥ 0 : λu ≥

Φp(1; ξ, µ)u}, respectively. The inequality then follows.

In proving the existence of spreading speeds of (1.2) in chapter 6, properly truncated

operators of Φ(1; ξ, µ) are used. We therefore introduce them next.

Let ζ : R→ [0, 1] be a smooth function satisfying that

ζ(s) =


1 for |s| ≤ 1

0 for |s| ≥ 2.

(4.7)

For a given B > 0, define ΦB(1; ξ, µ) : X → X by

(ΦB(1; ξ, µ)u0)(x) =

∫
RN
eµ(x−y)·ξu0(y)ζ(‖y − x‖/B)m(x; y, dy). (4.8)

Define Φp
B(1; ξ, µ) : Xp → Xp by

Φp
B(1; ξ, µ) = ΦB(1; ξ, µ)|Xp . (4.9)

Similarly, let r(Φp
B(1; ξ, µ)) and σ(Φp

B(1; ξ, µ)) be the spectral radius and the spectrum of

Φp
B(1; ξ, µ), respectively.

Lemma 4.3.

‖Φp
B(1; ξ, µ)− Φp(1; ξ, µ)‖Xp → 0 as B →∞
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uniformly for µ in bounded sets and ξ ∈ SN−1.

Proof. It suffices to prove that

∫
‖y−x‖≥B

eµ‖y−x‖m(x; y, dy)→ 0 as B →∞

uniformly for µ in bounded sets and for x ∈ RN .

For given µ0 > 0 and n ∈ N, let un ∈ X(µ0 + 1) be such that

un(x) =


eµ0‖x‖ for ‖x‖ ≥ n

0 for ‖x‖ ≤ n− 1

and

0 ≤ un(x) ≤ eµ0n for ‖x‖ ≤ n.

Then ‖un‖X(µ0+1) → 0 as n→∞. Therefore, ‖Φ̃(1)un‖X(µ0+1) → 0 as n→∞. This together

with Lemma 3.1 implies that

∫
RN
un(y)m(x; y, dy)→ 0 as n→∞

uniformly for x in bounded subsets of RN and then

∫
‖y‖≥n

eµ0‖y‖m(x; y, dy)→ 0 as n→∞

uniformly for x in bounded subsets of RN . The later implies that

∫
‖y−x‖≥n

eµ‖y−x‖m(x; y, dy)→ 0 as n→∞
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uniformly for |µ| ≤ µ0 and x in bounded subset of RN . By (4.6), for every 1 ≤ i ≤ N ,

∫
‖y−(x+piei)‖≥n

eµ‖y−(x+piei)‖m(x+ piei; y, dy) =

∫
‖y−x‖≥n

eµ‖y−x‖m(x+ piei; y + piei, dy)

=

∫
‖y−x‖≥n

eµ‖y−x‖m(x; y, dy).

We then have ∫
‖y−x‖≥n

eµ‖y−x‖m(x; y, dy)→ 0 as n→∞

uniformly for |µ| ≤ µ0 and x ∈ RN . The lemma now follows.

4.2 Existence of the Principal Eigenvalue

In this section, we prove Theorems A. Throughout this section, Uξ,µ,a is understood as

in (4.1), and r(Uξ,µ,a) denotes the spectral radius of Uξ,µ,a. We may simply write Uα for Uξ,µ,a

if no confusion can occur.

Proof of Theorem A. (1) We prove the existence of a δ0 > 0 and the existence of a principal

eigenvalue λ(ξ, µ, a) for all 0 < δ < δ0, ξ ∈ SN−1 and µ ∈ R. By Proposition 4.1, it suffices

to prove the existence of δ0 > 0 such that for each 0 < δ < δ0, ξ ∈ SN−1, and µ ∈ R, there

exists an α > −1 + amax such that r(Uα) > 1.

Let

M0 = inf
ξ∈SN−1

( 2(amax − amin + 1)∫
z·ξ>0

(z · ξ)2k(z)dz

)1/2

.

We first prove the existence of an α > −1 + amax such that r(Uα) > 1 for every ξ ∈ SN−1,

δ > 0, and µ ∈ R with |µ| > M0

δ
.
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In fact, for v(x) ≡ 1 and every 0 < ε < 1 and µ > 0, we have

(U−1+amax+εv)(x) =

∫
RN

e−µ(y−x)·ξk(y − x)

amax + ε− a(y)
dy

≥
∫
RN

e−µ(y−x)·ξk(y − x)

amax − amin + ε
dy

≥
∫
z·ξ<0

e−µz·ξk(z)

amax − amin + ε
dz

≥ 1

amax − amin + ε

(
1 +

µ2δ2

2!

∫
z·ξ<0

(z · ξ)2k(z)dz

+
µ4δ4

4!

∫
z·ξ<0

(z · ξ)4k(z)dz + · · ·
)

≥ µ2δ2

M2
0

. (4.10)

Similarly, we have (U−1+amax+εv)(x) ≥ µ2δ2

M2
0

for µ < 0. Hence if |µ|δ > M0, then for

0 < ε� 1, there is γ > 1 such that

(U−1+amax+εv)(x) > γv(x) ∀x ∈ RN .

This implies that r(U−1+amax+ε) > 1.

We then only need to prove that there is a δ0 > 0 and an α > −1 +amax with r(Uα) > 1

for all 0 < δ < δ0, ξ ∈ SN−1, and µ ∈ R with µδ ≤M0. We prove this by applying arguments

similar to those in [37, Theorem 2.6].

Let D = [0, p1]× [0, p2]× · · · × [0, pN ]. Assume that x0 ∈ D is such that a(x0) = amax.

Without loss of generality, we may assume that x0 ∈ Int(D).

Then for every 0 < ε < 1, there is some η > 0 such that a(x0) − a(x) < ε for x ∈

B(η, x0) ⊂ D, where B(η, x0) = {x ∈ RN | ‖x − x0‖ < η}. Let v(·) ∈ Xp be such that
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v(x) = ψ(‖x− x0‖) for x ∈ D, where

ψ(r) =


cos(πr

2η
) if 0 ≤ r ≤ η

0 if r > η

Let 0 < δ < η
2

and 0 < ε1 < 1. Also let D1 = B(η
2
, x0) , D2 = B(η, x0) \D1. For x ∈ D2, let

D̃(δ, x) = B(δ, x) ∩B(‖x− x0‖, x0).

Observe that for x ∈ B(η
2
, x0), v(x) ≥

√
2

2
. For x ∈ D2 and y ∈ D̃(δ, x), v(y) ≥ v(x).

For x ∈ D \ B(η, x0), v(x) = 0. Observe also that there are C > 0 (independent of ε) and

δ1 > 0 such that

inf
x∈D1

∫
B(η/2,x0)

e−µ(y−x)·ξk(y − x)dy ≥ C, inf
x∈D2

∫
D̃(δ,x)

e−µ(y−x)·ξk(y − x)dy ≥ C

for 0 < δ < δ1, ξ ∈ SN−1, and 0 ≤ |µ|δ ≤M0.

Clearly, for each γ > 1,

(Uamax−ε1v)(x) ≥ γv(x) for x ∈ D \B(η, x0). (4.11)

If x ∈ D1, we have

(Uamax−ε1v)(x) ≥
∫
D

e−µ(y−x)·ξk(y − x)v(y)

1− a(y) + amax − ε1
dy

≥ 1

1− ε1 + ε

∫
B(η,x0)

e−µ(y−x)·ξk(y − x)v(y)dy

≥
√

2

2(1− ε1 + ε)

∫
B(η/2,x0)

e−µ(y−x)·ξk(y − x)dy

≥
√

2C

2(1− ε1 + ε)

≥
√

2C

2(1− ε1 + ε)
v(x). (4.12)
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If x ∈ D2, we have

(Uamax−ε1v)(x) ≥
∫
D

e−µ(y−x)·ξk(y − x)v(y)

1− a(y) + amax − ε1
dy

≥ 1

1− ε1 + ε

∫
D

e−µ(y−x)·ξk(y − x)v(y)dy

≥ v(x)

1− ε1 + ε

∫
D̃(δ,x)

e−µ(y−x)·ξk(y − x)dy

≥ Cv(x)

1− ε1 + ε
. (4.13)

Let M =
√

2C
2(1−ε1+ε)

. By (4.11)-(4.13) and the periodicity of v, we obtain

(Uamax−ε1v)(x) ≥Mv(x) for all x ∈ RN .

Choose ε and ε1 such that 0 < ε <
√

2
2
C and 1 > ε1 > 1 + ε −

√
2C
2

. Let δ0 = min{δ1,
η
2
}.

Then M > 1 and r(Uamax−ε1) ≥M > 1. Thus (1) is proved.

(2)

By the arguments in (4.10), we have for v(x) ≡ 1 and every 0 < ε < 1 that

(U−1+amax+εv)(x) =

∫
RN

e−µ(y−x)·ξk(y − x)

amax + ε− a(y)
dy

≥ θ

amax − amin + ε

for ξ ∈ SN−1, and µ ∈ R. Hence if amax − amin < θ, then for 0 < ε� 1, there is γ > 1 such

that

(U−1+amax+εv)(x) > γv(x).

This implies that r(U−1+amax+ε) > 1. It then follows from Proposition 4.1 that the principal

eigenvalue λ(ξ, µ, a) of (2.8) exists for ξ ∈ SN−1 and µ ∈ R.

(3)
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Let x0 ∈ D be such that a(x0) = amax. Also, without loss of generality, we may assume

that x0 ∈ Int(D). Since the partial derivatives of a(x) up to order N − 1 at x0 are zero,

there is M > 0 such that

a(x0)− a(y) ≤M‖x0 − y‖N for y ∈ RN . (4.14)

Fix ξ ∈ SN−1, and µ ∈ R. Let σ > 0 be such that σ < δ
2

and B(2σ, x0) ⊂ D. Let

v∗ ∈ X+
p be such that v∗(x) = 1 if x ∈ B(σ, x0) and v∗(x) = 0 if x ∈ D \B(2σ, x0).

Clearly, for every x ∈ D \B(2σ, x0) and γ > 1,

(U−1+amax+εv
∗)(x) > γv∗(x) = 0. (4.15)

For x ∈ B(2σ, x0), there is M̃ > 0 such that

e−µ(y−x)·ξk(y − x) ≥ M̃

for y ∈ B(σ, x0). It then follows that for x ∈ B(2σ, x0)

(U−1+amax+εv
∗)(x) ≥

∫
B(σ,x0)

e−µ(y−x)·ξk(y − x)

M‖x0 − y‖N + ε
dy ≥

∫
B(σ,x0)

M̃

M‖x0 − y‖N + ε
dy. (4.16)

Note that
∫
B(σ,x0)

M̃
M‖x0−y‖N dy =∞. This together with the periodicity of v∗(x) implies

that for 0 < ε� 1, there is γ > 1 such that

(U−1+amax+εv
∗)(x) > γv∗(x) for x ∈ RN . (4.17)

Hence r(U−1+amax+ε) > 1. It then follows from Proposition 4.1 that the principal eigenvalue

λ(ξ, µ, a) of (2.8) exists for ξ ∈ SN−1 and µ ∈ R.

43



Next we prove a proposition about the comparison of principal eigenvalue on the a(·)

of (2.8), which will also be used in the later chapters.

Proposition 4.4. Assume that a1(x) ≤ ã1(x). If for given µ ∈ R, and ξ ∈ SN−1, both,

λ(ξ, µ, a1) and λ(ξ, µ, ã1), exist, then

λ(ξ, µ, a1) ≤ λ(ξ, µ, ã1).

Proof. Consider the following two evolution equations,

∂u

∂t
=

∫
RN
e−µ(y−x)·ξk(y − x)u(t, y)dy − u(t, x) + a1(x)u(t, x) (4.18)

and

∂u

∂t
=

∫
RN
e−µ(y−x)·ξk(y − x)u(t, y)dy − u(t, x) + ã1(x)u(t, x). (4.19)

For given u0 ∈ Xp, let u(t, ·;u0) and ũ(t, ·;u0) be the solutions of (4.18) and (4.19) with

u(0, ·;u0) = u0 and ũ(0, ·;u0) = u0, respectively. Put

Ψ(t)u0 = u(t, ·;u0), Ψ̃(t)u0 = ũ(t, ·;u0).

Let r(Ψ(1)) and r(Ψ̃(1)) be the spectral radius of Ψ(1) and Ψ̃(1), respectively. By [56,

Lemma 3.1],

λ(ξ, µ, a1) = ln r(Ψ(1))

and

λ(ξ, µ, ã1) = ln r(Ψ̃(1)).

By the fact that a1 ≤ ã1 and Proposition 3.1, we have that for any u0 ≥ 0, Ψ(t, ·;u0) ≤

Ψ̃(t, ·;u0) for any t ≥ 0. It then follows that r(Ψ(1)) ≤ r(Ψ̃(1)) and then λ(ξ, µ, a1) ≤

λ(ξ, µ, ã1).
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Theorem 4.1. (1) For each ξ ∈ SN−1, λ(ξ, µ, a) is convex in µ;

(2) There are m > 0 and µ0 > 0 such that λ(ξ, µ, a) ≥ mµ2 for all µ ≥ µ0 and ξ ∈ SN−1;

(3) If λ(ξ, 0, a) > 0, then for every ξ ∈ SN−1, there is a µ∗(ξ) ∈ (0,∞) such that

λ(ξ, µ∗(ξ), a)

µ∗(ξ)
= inf

µ>0

λ(ξ, µ, a)

µ
(4.20)

and

λ(ξ, µ, a)

µ
>
λ(ξ, µ∗(ξ), a)

µ∗(ξ)
for 0 < µ < µ∗(ξ). (4.21)

Proof. (1) Fix ξ ∈ SN−1. By Lemma 4.1, λ̂(µi) := r(Φp(1; ξ, µi)) is an eigenvalue of

Φp(1; ξ, µi) with a positive eigenfunction ψi (i = 1, 2). Hence

λ̂(µi) =
(Φp(1; ξ, µi)ψi)(x)

ψi(x)
=

∫
RN e

µi(x−y)·ξψi(y)m(x; y, dy)

ψi(x)
∀x ∈ RN

for i = 1, 2. For given 0 ≤ t ≤ 1, let ψ3 = ψt1ψ
1−t
2 . By Hölder’s inequality,

[λ̂(µ1)]t[λ̂(µ2)]1−t = [

∫
RN e

µ1(x−y)·ξψ1(y)m(x; y, dy)

ψ1(x)
]t[

∫
RN e

µ2(x−y)·ξψ2(y)m(x; y, dy)

ψ2(x)
]1−t

≥
∫
RN

[
eµ1(x−y)·ξψ1(y)

ψ1(x)
]t[
eµ2(x−y)·ξψ2(y)

ψ2(x)
]1−tm(x; y, dy)

=

∫
RN e

(tµ1+(1−t)µ2)(x−y)·ξψ3(y)m(x; y, dy)

ψ3(x)
∀x ∈ RN .

Applying Proposition 4.3, we get

[λ̂(µ1)]t[λ̂(µ2)]1−t ≥ sup
x∈RN

∫
RN e

(tµ1+(1−t)µ2)(x−y)·ξψ3(y)m(x; y, dy)

ψ3(x)
≥ r(Φp(1; ξ, tµ1 +(1− t)µ2).

Thus,

ln[λ̂(µ1)]t[λ̂(µ2)]1−t ≥ ln(r(Φp(1; ξ, tµ1 + (1− t)µ2)).
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By Lemma 4.1 again,

tλ(ξ, µ1, a) + (1− t)λ(ξ, µ2, a) ≥ λ(ξ, tµ1 + (1− t)µ2, a),

that is, λ(ξ, µ, a) is convex in µ.

(2) Note that by Proposition 4.4 λ(ξ, µ, a) ≥ λ(ξ, µ, amin), and

λ(ξ, µ, amin) =

∫
RN
e−µy·ξk(y)dy − 1 + amin

with 1 as an eigenfunction. Let mn(ξ) =
∫
y·ξ<0

(−y·ξ)n
n!

k(y)dy. Then, for µ > 0

∫
RN
e−µy·ξk(y)dy − 1 + amin =

∞∑
n=0

∫
RN

(−µy · ξ)n

n!
k(y)dy − 1 + amin

≥ m2(ξ)µ2 +
∞∑
n=2

m2n(ξ)µ2n + amin

Let m := inf
ξ∈SN−1

m2(ξ)(> 0) and µ0 > 0 be such that
∑∞

n=2m2n(ξ)µ2n > |amin| for µ ≥ µ0.

Then m and µ0 have the required property.

(3) By (2), λ(ξ,µ,a)
µ
→ ∞ as µ → ∞. By λ(ξ, 0, a) > 0, λ(ξ,µ,a)

µ
→ ∞ as µ → 0+. This

implies that there is µ∗(ξ) > 0 such that (4.20) and (4.21) hold.

4.3 Spectral Radius of the Truncated Evolution Operator

In this section, we derive from Theorems A and B some important properties of the

spectral radius of the truncated operator Φp
B(1; ξ, µ) of Φp(1; ξ, µ) discussed in 3.1.

For a fixed ξ ∈ SN−1, let rB(ξ, µ) = r(Φp
B(1; ξ, µ)) and λB(ξ, µ) = ln r(Φp

B(1; ξ, µ)).

Denote by λ
′
B(ξ, µ) the partial derivative of λB(ξ, µ) with respect to µ. We establish the

following theorem for λB(ξ, µ), which is analogous to Theorem A for λ(ξ, µ).
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Theorem 4.2. Let ξ ∈ SN−1 be given. Assume that (2.8) has the principal eigenvalue

λ(ξ, µ) for µ ∈ R, that λ(ξ, 0) > 0, and that λ(ξ,µ∗(ξ))
µ∗(ξ)

< λ(ξ,µ∗(ξ)+k0)
µ∗(ξ)+k0

for some k0 > 0, where

µ∗(ξ) is as in Theorem A. Then we have:

(1) There is B0 > 0 such that for each B ≥ B0 and |µ| ≤ µ∗(ξ) + k0, r(Φp
B(1; ξ, µ)) is an

algebraically simple eigenvalue of Φp
B(1; ξ, µ) with a positive eigenfunction. Moreover,

λB(ξ, 0) > 0 and λB(ξ,µ∗(ξ))
µ∗(ξ)

< λB(ξ,µ∗(ξ)+k0)
µ∗(ξ)+k0

.

(2) For each B ≥ B0, ln r(Φp
B(1; ξ, µ)) (i.e. λB(ξ, µ)) is convex in µ for |µ| ≤ µ∗(ξ) + k0.

(3) For a given B ≥ B0, define

µ∗B(ξ) := inf
{
µ̃∗B(ξ)

∣∣ λB(ξ, µ̃∗B(ξ))

µ̃∗B(ξ)
= inf

0<µ≤µ∗(ξ)+k0

λB(ξ, µ)

µ

}
.

Then (i) µ∗B(ξ) > 0 and λ
′
B(ξ, µ) < λB(ξ,µ)

µ
for 0 < µ < µ∗B(ξ).

(ii) For every ε > 0, there exists some µε > 0 such that for µε < µ < µ∗B(ξ),

−λ′B(ξ, µ) < −λB(ξ, µ∗B(ξ))

µ∗B(ξ)
+ ε.

(iii) For every ε > 0, there is B1 ≥ B0 such that if B also satisfies B ≥ B1, then

|λ(ξ, µ∗(ξ))

µ∗(ξ)
− λB(ξ, µ∗B(ξ))

µ∗B(ξ)
| < ε.

Proof. (1) It follows from Lemma 4.3 and the perturbation theory of the spectrum of bounded

linear operators (see [38]).

(2) It follows from arguments similar to those in Theorem 4.1.

(3) Fixing ξ ∈ SN−1, we set λB(µ) = λB(ξ, µ) and rB(µ) = rB(ξ, µ) for simplifying

notations. By (1), 0 < µ∗B(ξ) < µ∗(ξ) + k0.
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For 0 < µ ≤ µ∗(ξ) + k0, let

Ψ(µ) =
λB(µ)

µ
and ψ(µ) = (µΨ(µ))

′ ≡ λ
′

B(µ) =
r
′
B(µ)

rB(µ)
.

By the convexity of λB(µ) in µ ∈ (−µ∗(ξ) − k0, µ
∗(ξ) + k0), ψ

′ ≥ 0 for 0 < µ < µ∗(ξ) + k0.

Note that

Ψ
′
(µ) =

1

µ
[ψ(µ)−Ψ(µ)], (4.22)

and

(µ2Ψ
′
)
′
= µψ

′
(µ) ≥ 0 (4.23)

for 0 < µ < µ∗(ξ) + k0.

By (4.22) and Ψ
′
(µ∗B(ξ)) = 0, we have

λ
′

B(µ∗B(ξ)) = ψ(µ∗B(ξ)) = Ψ(λ∗B(ξ)) =
λB(µ∗B(ξ))

µ∗B(ξ)
.

By the definition of µ∗B(ξ),

λB(µ)

µ
>
λB(µ∗B(ξ))

µ∗B(ξ)
for µ ∈ (0, µ∗B(ξ)).

By λ
′′
B(µ) ≡ ψ

′
(µ) ≥ 0 for µ ∈ (0, µ∗(ξ) + k0),

λ
′

B(µ) ≤ λ
′

B(µ∗B(ξ)) for µ ∈ (0, µ∗B(ξ)).

It then follows that

λ
′

B(µ) <
λB(µ)

µ
for µ ∈ (0, µ∗B(ξ)).

(i) is thus proved.
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By the continuity of λ
′
B(µ), for every ε > 0, there is µε > 0 such that

λ
′

B(µ∗B(ξ))− λ′B(µ) < ε for µ ∈ (µε, µ
∗
B(ξ)).

This together with λ
′
B(µ∗B(ξ)) =

λB(µ∗B(ξ))

µ∗B(ξ)
implies that

−λ′B(µ) < −λB(µ∗B(ξ))

µ∗B(ξ)
+ ε for µ ∈ (µε, µ

∗
B(ξ)).

Hence (ii) holds.

Note that for every 0 < ε� 1, there are 0 < µ̃−ε < µ∗(ξ) < µ̃+
ε < µ∗(ξ) + k0 such that

λ(ξ, µ̃−ε )

µ̃−ε
=
λ(ξ, µ̃+

ε )

µ̃+
ε

=
λ(ξ, µ∗(ξ))

µ∗(ξ)
+
ε

2
≥ λ(ξ, µ)

µ
≥ λ(ξ, µ∗(ξ))

µ∗(ξ)
for µ ∈ [µ̃−ε , µ̃

+
ε ].

Note also that there is B1 ≥ B0 such that if B ≥ B1, then

λ(ξ, µ)

µ
− λB(µ)

µ
<
ε

4
for µ ∈ [µ̃−ε , µ̃

+
ε ]

holds. This implies that

λB(µ∗(ξ))

µ∗(ξ)
< min{λB(µ̃−ε )

µ̃−ε
,
λB(µ̃+

ε )

µ̃+
ε

}.

By (4.23) and Ψ
′
(µ∗B(ξ)) = 0,

Ψ
′
(µ) ≤ 0 for µ ∈ (0, µ∗B(ξ)) and Ψ

′
(µ) ≥ 0 for µ ∈ (µ∗B(ξ), µ∗(ξ) + k0).

We thus must have

µ∗B(ξ) ∈ [µ̃−ε , µ̃
+
ε ]
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and then

|λ(ξ, µ∗(ξ))

µ∗(ξ)
− λB(µ∗B(ξ))

µ∗B(ξ)
| ≤ |λ(ξ, µ∗(ξ))

µ∗(ξ)
− λ(µ∗B(ξ))

µ∗B(ξ)
|+ |λ(µ∗B(ξ))

µ∗B(ξ)
− λB(µ∗B(ξ))

µ∗B(ξ)
| < ε,

i.e. (iii) holds.

4.4 Remarks

It is sometime important to study the space shifted equation (3.5) of (3.1). Let Φ(t; ξ, µ, z)

be the solution operator of (3.5) given in (3.7) and

Φp(t; ξ, µ, z) = Φ(t; ξ, µ, z)|Xp . (4.24)

Note that Φ(t; ξ, 0, z) is independent of ξ ∈ SN−1. Put

Φ̃(t; z) = Φ(t; ξ, 0, z) (4.25)

for ξ ∈ SN−1.

The following remarks are easy to derive.

Remark 4.1. For every z ∈ RN , (Φ(t; ξ, µ, z)u0)(x) = (Φ(t; ξ, µ)u0(· − z))(x + z) and

(Φ̃(t; z)u0)(x) = (Φ̃(t)u0(· − z))(x+ z).

Remark 4.2. For every z ∈ RN ,

(Φ̃(1; z)u0)(x) =

∫
RN
u0(y − z)m(x+ z; y, dy) (4.26)

and

(Φ(1; ξ, µ, z)u0)(x) =

∫
RN
eµ(x+z−y)·ξu0(y − z)m(x+ z; y, dy). (4.27)
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Remark 4.3. If the principal eigenvalue λ(ξ, µ) of (2.8) exists and φ(x; ξ, µ) is a correspond-

ing eigenfunction, then for every z ∈ RN , λ = λ(ξ, µ) is an eigenvalue and φ(x; ξ, µ, z) :=

φ(x+ z; ξ, µ) is a corresponding eigenfunction of the following space shifted eigenvalue prob-

lem of (2.8),


∫
RN e

−µ(y−x)·ξk(y − x)v(y)dy − v(x) + a(x+ z)v(x) = λv, x ∈ RN

v(x+ piei) = v(x), i = 1, 2, · · · , N, x ∈ RN .

(4.28)

Let ζ : R → [0, 1] be a smooth function satisfying (4.7). For a given B > 0, define

ΦB(1; ξ, µ, z) : X → X by

(ΦB(1; ξ, µ, z)u0)(x) =

∫
RN
eµ(x+z−y)·ξu0(y − z)ζ(‖y − x− z‖/B)m(x+ z; y, dy) (4.29)

Let

Φp
B(1; ξ, µ, z) = ΦB(1; ξ, µ, z)|Xp . (4.30)

Remark 4.4. It follows from the arguments of Lemma 4.3 that

‖Φp
B(1; ξ, µ, z)− Φp(1; ξ, µ, z)‖Xp → 0 as B →∞

uniformly for µ in bounded sets and z ∈ [0, p1]× [0, p2]× · · · × [0, pN ].

Remark 4.5. The spectral radius r(Φp
B(1; ξ, µ, z)) of Φp

B(1; ξ, µ, z) is independent of z ∈

RN . If r(Φp
B(1; ξ, µ)) is an eigenvalue and φB(x; ξ, µ) is a corresponding eigenfunction of

Φp
B(1; ξ, µ), then r(Φp

B(1; ξ, µ, z))(= r(Φp
B(1; ξ, µ))) is an eigenvalue of Φp

B(1; ξ, µ, z) with

the eigenfunction φB(x+ z; ξ, µ).
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4.5 An Example

In this section, we give an example which shows that the principal eigenvalue of (2.8)

may not exist in case that N ≥ 3.

Example. Let q(x) be a smooth p-periodic function defined as follows

q(x) =


e
‖x‖2

‖x‖2−σ2 for ‖x‖ < σ

0 for σ ≤ ‖x‖ ≤ 1/2,

where p = (1, 1, · · · , 1) (i.e. q(x + ei) = q(x) for i = 1, 2, · · · , N) and 0 < σ < 1/2. Note

that qmax = 1, q(x) decreases as ‖x‖ increases and q(x) ≤ e−
‖x‖2

σ2 for ‖x‖ ≤ 1/2. Let

k(z) = 1
δN
k̃( z

δ
), where k̃(·) be as in (2.1). Then for given M > 1, Kξ,µ − I + QM or (2.8)

with µ = 0 and a(x) = Mq(x) has no principal eigenvalue for 0 < σ � 1 and δ � 1, where

QM = Mq(·)I.

In fact, let UM
α = Uξ,0,α, where Uξ,0,α is as in (4.1) with µ = 0 and a(·) = Mq(·). If λ∗ is

the principal eigenvalue of Kξ,µ − I + QM , then by Propositions 4.1 and 4.2, λ∗ > −1 + M

and r(UM
λ∗ ) = 1. Observe that for every ε > 0 and u(x) ≡ 1,

(UM
−1+M+ε1)(x) =

∫
RN

k(y − x)

ε+M −Mq(y)
dy

≤ 1

ε+M

∫
RN
k(y − x)dy + C

N∗(δ)

δN

∫
‖y‖≤σ

1

ε+M
(
1− e−

‖y‖2
σ2
)dy

≤ 1

ε+M
+ C

N∗(δ)σN

δN

∫
‖y‖≤1

1

ε+M
(
1− e−‖y‖2

)dy,
where N∗(δ) is the total number of disjoint unit hypercubes in RN whose vertices have integer

coordinates and lie inside the ball B(x, δ +
√
N) = {y ∈ RN |‖y − x‖ ≤ δ +

√
N}. We then

have N∗(δ) = O(δN) as δ →∞ and hence

N∗(δ)

δN
= O(1) as δ →∞.
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Note that when N ≥ 3, there is M̃ such that

∫
‖y‖≤1

1

ε+M
(
1− e−‖y‖2

)dy ≤ M̃

M

for all ε > 0 and M > 0. This implies that for every ε > 0 and M > 0,

(UM
−1+M+ε1)(x) ≤ 1

ε+M
+ C

N∗(δ)σN

δN
M̃

M
.

Therefore when N ≥ 3, there is 0 < σ0 < 1 such that

UM
−1+M+ε1 ≤ 1− σ0

for 0 < σ < σ0, δ � 1 and any ε > 0. It then follows that

r(UM
−1+M+ε) ≤ 1− σ0

and hence r(UM
λ∗ ) ≤ 1− σ0, a contradiction. Therefore, for the given M > 1 and 0 < σ � 1,

Kξ,µ − I +QM has no principal eigenvalue for δ � 1.

We remark that the principal eigenvalue λ∗ of Kξ,µ − I +QM (if exists) depends on the

parameters δ, M , σ, and N . To see the dependence of λ∗ (if exists) on M , fix N ≥ 3, δ > 0,

and 0 < σ < 1/2 such that

CM̃
N∗(δ)σN

δN
< 1.

Let λ∗(M) = λ∗ (if λ∗ exists) and φM be the corresponding positive eigenfunction with

‖φM(·)‖Xp = 1. By Theorem B (1), if 0 < M < 1, then λ∗(M) exists. By the above

arguments, λ∗(M) does not exists for M � 1. We claim that there is M∗ > 1 such that

λ∗(M) exists for 0 < M < M∗ and λ∗(M) does not exists for M ≥M∗. Moreover,

lim
M→M∗−

λ∗(M) = −1 +M∗ (4.31)
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and

lim
M→M∗−

φM(x) = 0 ∀ x ∈ RN \ {
N∑
i=1

kiei | ki ∈ Z}. (4.32)

In fact, note that UM
α is well defined for α = −1 +M (since N ≥ 3). It follows directly

that r(UM
−1+M) decreases as M increases and there is M∗ > 1 such that

r(UM
−1+M)


> 1 for 0 < M < M∗

= 1 for M = M∗

< 1 for M > M∗.

We then have that for 0 < M < M∗, the principal eigenvalue λ∗(M) of Kξ,µ− I+QM exists,

λ∗(M) > −1+M , and the principal eigenvalue of Kξ,µ−I+QM does not exists for M ≥M∗.

Moreover, it is clear that lim
M→M∗−

r(UM
−1+M) = 1 and hence (4.31) holds. Note that for every

0 < M < M∗,

∫
RN
k(y − x)φM(y)dy = (1 + λ∗(M)−Mq(x))φM(x) ∀x ∈ RN (4.33)

and hence

0 ≤
∫
RN
k(y)φM(y)dy ≤ (1 + λ∗(M)−Mq(0))φM(0) ≤ 1 + λ∗(M)−M.

This implies that

lim
M→M∗−

∫
RN
k(y)φM(y)dy = 0

and then

lim
M→M∗−

φM(x) = 0 for a.e. x with ‖x‖ ≤ δ. (4.34)
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If x0 ∈ RN is such that limM→M∗− φ
M(x0) = 0, then by (4.33),

lim
M→M∗−

∫
RN
k(y − x0)φM(y)dy = lim

M→M∗−
(1 + λ∗(M)−Mq(x0))φM(x0) = 0

and hence

lim
M→M∗−

φM(x) = 0 for a.e. x with ‖x− x0‖ ≤ δ. (4.35)

By (4.34), (4.35) and induction, we have

lim
M→M∗−

φM(x) = 0 for a.e. x ∈ RN . (4.36)

By (4.33) and (4.36), for every x ∈ RN \ {
∑N

i=1 kiei | ki ∈ Z},

φM(x) =
1

1 + λ∗(M)−Mq(x)

∫
RN
k(y − x)φM(y)dy → 0,

and M →M∗−, that is, (4.32) holds.

4.6 Effects of Spatial Variation on Principal Eigenvalue

To explore the effects of spatial variations on principal eigenvalue, recall that λ(ξ, µ, a)(if

exists) is the principal eigenvalue of Kξ,µ − I + a(·)I.

Let ā = 1
|D|

∫
D
f(x, 0)dx with D =

N∏
i=1

[0, pi] and |D| =
N∏
i=1

pi where the period vector

p = (p1, ..., pN).

Assume that the principal eigenvalues of Kξ,µ − I + a(·)I exist. Let λ(ξ, µ, ā) be the

principal eigenvalues of Kξ,µ − I + āI and we have

λ(ξ, µ, ā) =

∫
RN
e−µz·ξk(z)dz − 1 + ā. (4.1)
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In this section, we prove Theorem B. Theorem B reveals the important fact that spatial

variations cannot reduce the principal eigenvalues of Kξ,µ − I + a(·)I, and they are indeed

increased except for degenerate cases.

The proof of Theorem B employs the Jensen’s inequality (see [43, Theorem 2.2])

F (
1

|D|

∫
D

g(x)dx) ≤ 1

|D|

∫
D

F (g(x))dx (4.2)

for any continuous function g : D → (c, d) and strictly convex function F : (c, d) → R with

equality occurring, iff g(x) is a constant function.

Proof of Theorem B. Suppose that φ(x) is a strictly positive principal eigenvector of Kξ,µ −

I + a(·)I. First we divide both sides of (2.8) by φ(x) and obtain

∫
RN e

−µ(y−x)·ξk(y − x)φ(y)dy − φ(x) + a(x)φ(x)

φ(x)
= λ(ξ, µ, a), x ∈ RN .

Integrating with respect to x over D yields

∫
D

[

∫
RN e

−µ(y−x)·ξk(y − x)φ(y)dy − φ(x) + a(x)φ(x)

φ(x)
]dx =

∫
D

λ(ξ, µ, a)dx

or

λ(ξ, µ, a) =
1

|D|

∫
D

∫
RN

e−µ(y−x)·ξk(y − x)φ(y)

φ(x)
dydx− 1 +

1

|D|

∫
D

a(x)dx.

Since λ(ξ, µ, ā) =
∫
RN e

−µy·ξk(y)dy − 1 + ā, λ(ξ, µ, a) ≥ λ(ξ, µ, ā) follows from

1

|D|

∫
D

∫
RN

e−µ(y−x)·ξk(y − x)φ(y)

φ(x)
dydx ≥

∫
RN
e−µz·ξk(z)dz

or

1

|D|

∫
D

∫
RN

e−µz·ξk(z)φ(x+ z)

φ(x)
dzdx ≥

∫
RN
e−µz·ξk(z)dz
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or

1

|D|

∫
RN
e−µz·ξk(z)

∫
D

φ(x+ z)

φ(x)
dxdz ≥

∫
RN
e−µz·ξk(z)dz. (4.3)

Moreover, λ(ξ, µ, a) = λ(ξ, µ, ā) iff

1

|D|

∫
RN
e−µz·ξk(z)

∫
D

φ(x+ z)

φ(x)
dxdz =

∫
RN
e−µz·ξk(z)dz. (4.4)

To prove (4.3), it suffices to prove that

1

|D|

∫
D

φ(x+ z)

φ(x)
dx ≥ 1 ∀z ∈ RN . (4.5)

Note that F (x) = − lnx is a strictly convex function on (0,∞). By (4.2),

− 1

|D|

∫
D

ln[
φ(x+ z)

φ(x)
]dx ≥ − ln[

1

|D|

∫
D

φ(x+ z)

φ(x)
dx]. (4.6)

By the periodicity of φ(x), we have
∫
D

lnφ(x+ z)dx =
∫
D

lnφ(x)dx for any z ∈ RN . Hence,

(4.6) implies that

ln[
1

|D|

∫
D

φ(x+ z)

φ(x)
dx] ≥ 1

|D|

∫
D

ln[
φ(x+ z)

φ(x)
]dx

=
1

|D|

∫
D

ln[φ(x+ z)]dx− 1

|D|

∫
D

ln[φ(x)]dx

= 0

Therefore, 1
|D|

∫
D
φ(x+z)
φ(x)

dx ≥ 1 and thus λ(ξ, µ, a) ≥ λ(ξ, µ, ā). Moreover, by (4.4), λ(ξ, µ, a) =

λ(ξ, µ, ā) iff

1

|D|

∫
D

φ(x+ z)

φ(x)
dx = 1 ∀z ∈ RN . (4.7)

By (4.2) again, the equality occurs in (4.6) iff φ(x+z)
φ(x)

≡ 1 for any z ∈ RN , which is equivalent

to φ(x) ≡ constant since z is arbitrary. This implies that λ(ξ, µ, a) = λ(ξ, µ, ā) iff a(x) ≡ ā.

The proof is thus completed.
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Chapter 5

Positive Stationary Solutions of Spatially Periodic Nonlocal Monostable Equations

In this chapter, we study the existence, uniqueness and stability of positive equilibrium

solutions of (1.2), and prove Theorem C. The results of this chapter in the case that the

nonlocal kernel function has compact support will be published in the Proceedings of the

American Mathematical Society (see [57]).

For convenience, we introduce the following assumption:

(H5) a(·) ∈ CN(RN) ∩Xp and the partial derivatives of a(x) up to order N − 1 at some x0

are zero, where x0 is such that a(x0) = max
x∈RN

a(x).

Suppose that u = u∗ is an equilibrium solution of (1.2) in X+
p \ {0}. u = u∗ is said to

be globally asymptotically stable in X+
p \ {0} if for any u0 ∈ X+

p \ {0}, u(t, ·;u0) → u∗ in

Xp as t → ∞. We first prove two lemmas, which will also be used to prove some theorems

in next chapter. Throughout this section, Xp is as in (2.4), a ∈ Xp, and amax = max
x∈RN

a(x),

amin = min
x∈RN

a(x). a(·)I : Xp → Xp has the same meaning as in (2.7) with a0(·) being replaced

by a(·) and Kξ,µ : Xp → Xp is understood as in (2.9), ξ ∈ SN−1, and µ ∈ R.

Lemma 5.1. Suppose that {an}, {an} ⊂ Xp satisfy that

an(·) ≤ a(·) ≤ an(·) for n ≥ 1 and ‖an − an‖Xp → 0 as n→∞.

Then for any ξ ∈ SN−1 and µ ∈ R,

λ0(ξ, µ, an) ≤ λ0(ξ, µ, a) ≤ λ0(ξ, µ, an) for n ≥ 1 (5.1)
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and

λ0(ξ, µ, an)− λ0(ξ, µ, an)→ 0 as n→∞. (5.2)

Proof. By Propositions 3.1 and 3.2,

r(Φ(1; ξ, µ, an)) ≤ r(Φ(1; ξ, µ, a)) ≤ r(Φ(1; ξ, µ, an)) ∀n ≥ 1, ξ ∈ SN−1, µ ∈ R.

This together with the spectral theorem for bounded linear operators (see [50]) implies (5.1).

By (5.1), for any ξ ∈ SN−1, µ ∈ R, and ε > 0,

λ0(ξ, µ, a− ε) ≤ λ0(ξ, µ, an) ≤ λ0(ξ, µ, a) ≤ λ0(ξ, µ, an) ≤ λ0(ξ, µ, a+ ε) ∀n� 1. (5.3)

This together with λ0(ξ, µ, a± ε) = λ0(ξ, µ, a)± ε implies (5.2).

Lemma 5.2. Given a ∈ Xp, λ0(ξ, µ, a) ≥ λ0(ξ, µ, ā) for any ξ ∈ SN−1 and µ ∈ R.

Proof. Take an ∈ CN(RN) ∩Xp such that an satisfies (H5) and

an(·) ≤ a(·) for n ≥ 1 and ‖an − a‖Xp → 0 as n→∞.

By Theorem A, λ(ξ, µ, an) exists and λ(ξ, µ, an) = λ0(ξ, µ, an) for n ≥ 1. By Theorem

B, λ0(ξ, µ, an) ≥ λ0(ξ, µ, ān) for n ≥ 1. The lemma follows by letting n → ∞ and applying

Lemma 5.1.

To prove the theorem, we will apply Proposition 3.1 and so first we provide a sub-solution

and a super-solution of (2.15).

Proposition 5.1. Assume (H4) and let φ be the positive principal eigenfunction of K− I +

a(·)I with ‖φ‖Xp = 1. Then for any z ∈ RN and 0 < b � 1, v̂(t, x; z, b) := bφ(x + z) is a

sub-solution of (2.15).

Proof. Fix z ∈ RN . Observe that
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∫
RN
k(y − x)φ(y + z)dy − φ0(x+ z) + f(x+ z, 0)φ(x+ z) = λ0φ(x+ z) ∀x ∈ RN .

Observe also that max
x∈RN

λ0φ(x+ z) > 0 and then

λ0bφ(x+ z) ≥ (f(x+ z, 0)− f(x+ z, bφ(x+ z)))bφ(x+ z) ∀0 < b� 1.

It then follows that∫
RN
k(y−x)bφ(y+z)dy− bφ(x+z)+f(x+z, bφ(x+z))bφ(x+z) ≥ 0 ∀x ∈ RN , 0 < b� 1.

Hence v̂(t, x; z, b) is a sub-solution of (2.15) for 0 < b� 1.

Since the positive principal eigenvalue of K− I+a0(·)I may not exist, we will construct

a new sub-solution by applying Lemma 5.1.

Proposition 5.2. There exists an ε and 0 < b� 1 such that for any z ∈ RN , v(t, x; z, b) :=

bφn(x + z) is a sub-solution of (2.15), where φn be the positive principal eigenfunction of

K − I + an(·)I with ‖φn‖Xp = 1, with ‖an − a0‖ < ε(> 0) and an is such that (H5) holds.

Proof. This follows by arguments similar to those in Proposition 5.1.

Proposition 5.3. For d� 1, z ∈ RN , v̄(t, x; z) ≡ d is a super-solution of (2.15).

Proof. By direct calculation, we have

∂v̄

∂t
− [

∫
RN
k(y − x)v̄(t, y; z)dy − v̄(t, x; z) + f(x+ z, v̄)v̄(t, x; z)]

≥− d[

∫
RN
k(y − x)dy − 1 + f(x+ z, d)]

≥0.

The proposition thus follows.

Lemma 5.3. Assume (H1) and (H2). (1.2) has at most one positive stationary solution u+(·)

in X+
p . If there is a positive stationary solution u+(·) ∈ X+

p , it is globally asymptotically

stable with respect to perturbations in X+
p .
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Proof. It follows from the arguments in [37, Lemma 3.3].

Proof of Theorem C. (1) It follows easily that u(t, ·; v̄) is monotonically decreasing as t in-

creasing, where v̄ is as in Proposition 5.3. Let u+(x) = lim
t→∞

u(t, x; v̄). Then u+(x) is upper

semicontinuous and satisfied that
∫
RN k(y − x)u+(y)dy − u+(x) + f(x + z, u+(x))u+(x) =

0. Then u+(x)[1 − f(x + z, u+(x))] =
∫
RN k(y − x)u+(y)dy > 0, which implies that

f(x+ z, u+(x)) < 1.

Let g(x) =
∫
RN k(y−x)u+(y)dy and y = u+(x). Let F (x, z, y) = g(x)− y+ f(x+ z, y)y

and then F (x, z, y) = 0. Since ∂F (x,z,y)
∂y

= −1 + f(x + z, y) + fu(x + z, y)y < 0, by Implicit

Function Theorem, u+(x) is continuous.

Similarly, let u−(x) = lim
t→∞

u(t, x; v) and then is also a positive stationary solution of

(2.15). By Lemma 5.3, u−(x) = u+(x)

For any u0 ∈ X+
p \ {0}, for t0 > 0, there exist v̄ and v such that v̄ > u(t0, x;u0) > v,

where v is as in Proposition 5.2. By Proposition 3.1, u(t, x; v̄) > u(t+ t0, x;u0) > u(t, x; v).

Then, u = u+ is a globally asymptotically stable stationary solutions with respect to

the perturbations in X+
p \ {0}. (1) then follows.

(2) By Lemma 5.2, we have λ0(a) ≥ λ0(ā) = ā¿0 and then (H3) is satisfied. Thus the

conclusions in (1) hold.

Remark 5.1. Assume (H1), (H2), and (H3). Then

lim
t→∞

(u(t, x;α+, z)− u+(x+ z)) = 0

holds uniformly in x ∈ RN and z ∈ RN for every α+ > 0. Here α+ in u(t, x;α+, z) stands

for the constant function with value α+.
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Chapter 6

Spreading Speeds of Spatially Periodic Nonlocal Monostable Equations

In this chapter, we investigate the spatial spreading speeds of (1.2) and prove Theorems

D-G. To do so, we first introduce a so-called spreading speed interval [c∗inf(ξ), c
∗
sup(ξ)] of (1.2)

in the direction of ξ ∈ SN−1 and establish basic properties. We will prove the existence of

spreading speed of (1.2) in the direction of ξ ∈ SN−1 by showing that [c∗inf(ξ), c
∗
sup(ξ)] is a

singleton and c∗inf(ξ)(= c∗sup(ξ)) is the spreading speed of (1.2) in the direction of ξ. The

results of this chapter in the case that the nonlocal kernel function has compact support

have been published (see [29], [56], [57]).

6.1 Spreading Speed Intervals

Throughout this section, Xp is as in (2.4), X is as in (2.2), and X+(ξ) is as in (2.12)

(ξ ∈ SN−1). We assume (H1) - (H3). and so, (1.2) has a unique positive stable periodic

equilibrium solution u+(x) in Xp. Let u+
inf be as in (2.23). For simplifying notations set

lim inf
x·ξ→−∞

u0(x) = lim
r→−∞

inf
x·ξ≤r

u0(x), lim sup
x·ξ→∞

u0(x) = lim
r→∞

sup
x·ξ≥r

u0(x)

for given u0 ∈ X and ξ ∈ SN−1. For given u(t, ·) ∈ X, ξ ∈ SN−1, and c ∈ R, put

lim inf
x·ξ≤ct,t→∞

u(t, x) = lim inf
t→∞

inf
x·ξ≤ct

u(t, x), lim sup
x·ξ≥ct,t→∞

u(t, x) = lim sup
t→∞

sup
x·ξ≥ct

u(t, x),

lim inf
|x·ξ|≤ct,t→∞

u(t, x) = lim inf
t→∞

inf
|x·ξ|≤ct

u(t, x), lim sup
|x·ξ|≥ct,t→∞

u(t, x) = lim sup
t→∞

sup
|x·ξ|≥ct

u(t, x),
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and

lim inf
‖x‖≤ct,t→∞

u(t, x) = lim inf
t→∞

inf
‖x‖≤ct

u(t, x), lim sup
‖x‖≥ct,t→∞

u(t, x) = lim sup
t→∞

sup
‖x‖≥ct

u(t, x).

Definition 6.1. For a given vector ξ ∈ SN−1, let

C∗inf(ξ) =
{
c | ∀ u0 ∈ X+(ξ), lim inf

x·ξ≤ct,t→∞
(u(t, x;u0)− u+(x)) = 0

}

and

C∗sup(ξ) =
{
c | ∀ u0 ∈ X+(ξ), lim sup

x·ξ≥ct,t→∞
u(t, x;u0) = 0

}
.

Define

c∗inf(ξ) = sup { c | c ∈ C∗inf(ξ)}, c∗sup(ξ) = inf { c | c ∈ C∗sup(ξ)}.

We call [c∗inf(ξ), c
∗
sup(ξ)] the spreading speed interval of (1.2) in the direction of ξ.

Observe that if c1 ∈ C∗inf(ξ) and c2 ∈ C∗sup(ξ), then c1 < c2. Hence c∗inf(ξ) ≤ c∗sup(ξ) for

all ξ ∈ SN−1.

To establish basic properties of the spreading speed intervals of (1.2), we first construct

some useful sub- and super-solutions of (1.2) and its space shifted equation (2.15). Recall

that u(t, x;u0, z) denotes the solution of (2.15) with u(0, x;u0, z) = u0(x) for u0 ∈ X and

z ∈ RN .

Let η(s) be the function defined by

η(s) =
1

2
(1 + tanh

s

2
), s ∈ R. (6.1)

Observe that

η
′
(s) = η(s)(1− η(s)), s ∈ R (6.2)
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and

η
′′
(s) = η(s)(1− η(s))(1− 2η(s)), s ∈ R. (6.3)

Without loss of generality, we may assume that f(x, u) = 0 for u � 0. For otherwise,

let ζ̃(·) ∈ C∞(R) be such that ζ̃(u) = 1 for u ≥ 0 and ζ̃(u) = 0 for u � 0. We replace

f(x, u) by f(x, u)ζ̃(u). Hence we may also assume that there is u− < 0 such that for any

u0 ∈ X with u− ≤ u0 ≤ 0 and z ∈ RN ,

u− ≤ u(t, ·;u0, z) ≤ 0 for t ≥ 0. (6.4)

Proposition 6.1. Assume (H1) - (H3). Let α± (u− ≤ α− ≤ 0 < α+ ≤ 2u+
inf) be given

constants. There is C0 > 0 such that for every C ≥ C0, every ξ ∈ SN−1 and every z ∈ RN ,

the following properties hold:

1) letting v±(t, x; z) = u(t, x;α±, z)η(x · ξ +Ct) + u(t, x;α∓, z)(1− η(x · ξ +Ct)), v+ and

v− are super- and sub-solutions of (2.15) on [0,∞), respectively;

2) letting w±(t, x; z) = u(t, x;α∓, z)η(x · ξ−Ct) +u(t, x;α±, z)(1− η(x · ξ−Ct)), w+ and

w− are super- and sub-solutions of (2.15) on [0,∞), respectively.

Proof. We prove that v+(t, x; z) with z = 0 is a super-solution of (1.2). Other statements

can be proved similarly. We write v+(t, x) for v+(t, x; 0).
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First, by Taylor expansion,

f(x, u(t, x;α+))η(x · ξ + Ct) + f(x, u(t, x;α−))(1− η(x · ξ + Ct))

− f
(
x, u(t, x;α+)η(x · ξ + Ct) + u(t, x;α−)(1− η(x · ξ + Ct)

)
= f(x, u(t, x;α+)− u(t, x;α−) + u(t, x;α−))η(x · ξ + Ct)

+ f(x, u(t, x;α−))(1− η(x · ξ + Ct))

− f(x, (u(t, x;α+)− u(t, x;α−))η(x · ξ + Ct) + u(t, x;α−))

=
(
fu(x, ũ

∗(t, x) + u(t, x;α−))− fu(x, ũ∗(t, x)η(x · ξ + Ct) + u(t, x;α−))
)
·

(u(t, x;α+)− u(t, x;α−))η(x · ξ + Ct)

= fuu(x, u
∗∗(t, x))

(
u∗(t, x)− u(t, x;α−)

)(
u(t, x;α+)− u(t, x;α−)

)
η
′
(x · ξ + Ct)

where u∗(t, x) = ũ∗(t, x) + u(t, x;α−) and u∗∗(t, x) and u∗(t, x) are between u(t, x;α−) and

u(t, x;α+). Then a direct computation yields

v+
t (t, x)− [

∫
RN
k(y − x)v+(t, y)dy − v+(t, x)]− f(x, v+(t, x))

= η
′
(x · ξ + Ct)

{
C
(
u(t, x;α+)− u(t, x;α−)

)
−
∫
RN
k(y − x)(u(t, y;α+)− u(t, y;α−))

η(y · ξ + Ct)− η(x · ξ + Ct)

η′(x · ξ + Ct)
dy

− fuu(x, u∗∗(t, x))
(
u∗(t, x)− u(t, x;α−)

)
(u(t, x;α+)− u(t, x;α−))

}
.

Note that there are M0 and M1 > 0 such that

u(t, x;α+)− u(t, x;α−) ≥M0 for all t ≥ 0, x ∈ RN ,

|η(y · ξ + Ct)− η(x · ξ + Ct)

η′(x · ξ + Ct)
| ≤M1 for all t ≥ 0, x, y ∈ RN , ‖y − x‖ ≤ δ.

65



It then follows that there is C0 > 0 such that for every C ≥ C0, v+(t, x) is a super-solution

of (1.2).

Proposition 6.2. Assume (H1) - (H3). For every ξ ∈ SN−1, the following properties hold:

(1) if there is u∗0 ∈ X+(ξ) such that

lim inf
x·ξ≤ct,t→∞

(
u(t, x;u∗0, z)− u+(x+ z)

)
= 0 uniformly in z ∈ RN ,

then c ≤ c∗inf(ξ);

(2) if c < c∗inf(ξ), then for each u0 ∈ X+(ξ),

lim inf
x·ξ≤ct,t→∞

(u(t, x;u0, z)− u+(x+ z)) = 0 uniformly in z ∈ RN .

Proof. It can be proved by arguments similar to those in [30, Lemma 3.4].

Proposition 6.3. Assume (H1) - (H3). For every ξ ∈ SN−1, the following properties hold:

(1) if there is u∗0 ∈ X+(ξ) such that

lim sup
x·ξ≥ct,t→∞

u(t, x;u∗0, z) = 0 uniformly in z ∈ RN ,

then c ≥ c∗sup(ξ);

(2) if c > c∗sup(ξ), then for every u0 ∈ X+(ξ),

lim sup
x·ξ≥ct,t→∞

u(t, x;u0, z) = 0 uniformly in z ∈ RN .

Proof. It can be proved by arguments similar to those in [30, Lemma 3.5].

Corollary 6.1. Assume (H1) - (H3). [c∗inf(ξ), c
∗
sup(ξ)] is a finite interval for all ξ ∈ SN−1.
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Proof. Fix ξ ∈ SN−1.

Let α− = 0 < α+ ≤ u+
inf be given constants. There is u∗0 ∈ X+(ξ) such that

w+(0, x; z) = α−η(x · ξ) + α+(1− η(x · ξ)) ≥ u∗0(x), x ∈ RN

for all z ∈ RN . Then by Propositions 3.1 and 6.1,

w+(t, x; z) = u(t, x;α−, z)η(x · ξ − C0t) + u(t, x;α+, z)(1− η(x · ξ − C0t))

≥ u(t, x; z, u∗0)

for t ≥ 0, and x, z ∈ RN . This implies that for C > C0,

lim sup
x·ξ≥Ct,t→∞

u(t, x; z, u∗0) = 0 uniformly in z ∈ RN .

Therefore by Proposition 6.3, c∗sup(ξ) ≤ C0.

Now let u+
inf > α+ > 0 > α− ≥ u− be a given constant, where u− satisfies (6.4). There

is u∗∗0 ∈ X+(ξ) such that

v−(0, x; z) = α−η(x · ξ) + α+(1− η(x · ξ)) ≤ u∗∗0 (x)

for x, z ∈ RN . Then by Propositions 3.1 and 6.1 again,

v−(t, x; z) = u(t, x;α−, z)η(x · ξ + C0t) + u(t, x;α+, z)(1− η(x · ξ + C0t))

≤ u(t, , x;u∗∗0 , z)

for t ≥ 0, and x, z ∈ RN . This implies that for C < −C0,

lim inf
x·ξ≤Ct,t→∞

(u(t, x;u0, z)− u+(x+ z)) = 0 uniformly in z ∈ RN .
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Therefore by Proposition 6.2, c∗inf(ξ) ≥ −C0.

Hence [c∗inf(ξ), c
∗
sup(ξ)] is a finite interval.

Let

X̃+(ξ) = {u ∈ X+ | lim inf
x·ξ→−∞

u0(x) > 0, lim sup
x·ξ→∞

u0(x) = 0}. (6.5)

Proposition 6.4. Assume (H1) - (H3).

(1) Let ξ ∈ SN−1, u0 ∈ X̃+(ξ), and c ∈ R be given. If there are δ0 and T0 > 0 such that

lim inf
x·ξ≤cnT0,n→∞

u(nT0, x;u0, z) ≥ δ0 uniformly in z ∈ RN , (6.6)

then for every c
′
< c,

lim inf
x·ξ≤c′ t,t→∞

(u(t, x;u0, z)− u+(x+ z)) = 0 uniformly in z ∈ RN .

(2) Let c ∈ R and u0 ∈ X with u0 ≥ 0 be given. If there are δ0 and T0 > 0 such that

lim inf
|x·ξ|≤cnT0,n→∞

u(nT, x;u0, z) ≥ δ0 uniformly in z ∈ RN , (6.7)

then for every c
′
< c,

lim inf
|x·ξ|≤c′ t,t→∞

(u(t, x;u0, z)− u+(x+ z)) = 0 uniformly in z ∈ RN .

(3) Let c ∈ R and u0 ∈ X with u0 ≥ 0 be given. If there are δ0 and T0 > 0 such that

lim inf
‖x‖≤cnT0,n→∞

u(nT, x;u0, z) ≥ δ0 uniformly in z ∈ RN , (6.8)
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then for every c
′
< c,

lim inf
‖x‖≤c′ t,t→∞

(u(t, x;u0, z)− u+(x+ z)) = 0 uniformly in z ∈ RN .

Proof. (1) First, for given c
′
< c, there is n0 ∈ N such that

u(nT0, x+ y;u0, z) ≥
δ0

2
for z ∈ RN , x · ξ ≤ (c− c′)nT0, y · ξ ≤ c

′
nT0, n ≥ n0. (6.9)

Let ũ0(x) ≡ δ0
2

. For each ε > 0, there exists n1 ≥ n0 such that

u(t, x; ũ0, z) ≥ u+(x+ z)− ε for t ≥ n1T0, x, z ∈ RN . (6.10)

For a given B > 1, let ũB(·) ∈ X be such that 0 ≤ ũB(x) ≤ δ0
2

for x ∈ RN , ũB(x) = δ0
2

for

x · ξ ≤ B− 1, and ũ0(x) = 0 for x · ξ ≥ B. By Proposition 3.3, Remark 5.1 and (6.10), there

is B̃0 > 1 such that for each B ≥ B̃0,

u(t, 0; ũB, z) ≥ u+(z)− 2ε for n1T0 ≤ t ≤ (n1 + 1)T0, z ∈ RN . (6.11)

Note that (c− c′)nT0 →∞ as n→∞. Hence there is n2 ≥ n1 such that

(c− c′)nT0 ≥ B̃0 + c
′
(n1 + 1)T0 for n ≥ n2.

This together with (6.9) implies that

u(nT0, ·+ x+ c
′
nT0ξ + c

′
τξ;u0, z) ≥ ũB̃0

(·)
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for all x ∈ RN with x · ξ ≤ 0, all τ with n1T0 ≤ τ ≤ (n1 + 1)T0, and all n ≥ n2. Given n ≥ n2

and (n+ n1)T0 ≤ t < (n+ n1 + 1)T0, let τ = t− nT0. Then n1T0 ≤ τ < (n1 + 1)T0 and

u(t, x+ c
′
tξ;u0, z) = u(τ, x+ c

′
tξ;u(nT0, ·;u0, z), z)

= u(τ, 0;u(nT0, ·+ x+ c
′
nT0ξ + c

′
τξ;u0, z), z + x+ c

′
tξ)

≥ u+(x+ z + c
′
tξ)− 2ε

for all x ∈ RN with x · ξ ≤ 0. It then follows that

u(t, x;u0, z) ≥ u+(x+ z)− 2ε for z ∈ RN , x · ξ ≤ c
′
t, t ≥ (n1 + n2)T0.

(1) is thus proved.

(2) It can be proved by arguments similar to those in (1).

(3) It can also be proved by arguments similar to those in (1). For the reader’s conve-

nience, we provide a proof in the following.

First, for a given c
′
< c, there is n0 ∈ N such that for n ≥ n0,

u(nT0, x+ y;u0, z) ≥
δ0

2
for z ∈ RN , ‖x‖ ≤ (c− c′)nT0, ‖y‖ ≤ c

′
nT0. (6.12)

Let ũ0(x) ≡ δ0
2

. Then, for each ε > 0, there is n1 ≥ n0 such that

u(t, x; ũ0, z) ≥ u+(x+ z)− ε for t ≥ n1T0, x, z ∈ RN . (6.13)

For a given B > 1, let ũB(·) ∈ X be such that 0 ≤ ũB(x) ≤ δ0
2

for x ∈ RN , ũB(x) = δ0
2

for

‖x‖ ≤ B− 1, and ũ0(x) = 0 for ‖x‖ ≥ B. By Proposition 3.3, Remark 5.1, and (6.12), there

exists B̃0 > 1 such that

u(t, 0; ũB, z) ≥ u+(z)− 2ε for n1T0 ≤ t ≤ (n1 + 1)T0, z ∈ RN (6.14)
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for all B ≥ B̃0.

Note that (c− c′)nT0 →∞ as n→∞. Hence there is n2 ≥ n1 such that

(c− c′)nT0 ≥ B̃0 + c
′
(n1 + 1)T0 for n ≥ n2.

This together with (6.12) implies that

u(nT0, ·+ x;u0, z) ≥ ũB̃0
(·)

for each n ≥ n2 and each x ∈ RN with ‖x‖ ≤ c
′
nT0 + c

′
(n1 + 1)T0. For given n ≥ n2 and

(n+ n1)T0 ≤ t < (n+ n1 + 1)T0, let τ = t− nT0. Then n1T0 ≤ τ < (n1 + 1)T0 and

u(t, x;u0, z) = u(τ, x;u(nT0, ·;u0, z), z)

= u(τ, 0;u(nT0, ·+ x;u0, z), z + x)

≥ u+(x+ z)− 2ε

for all x ∈ RN with ‖x‖ ≤ c
′
t(≤ c

′
(n+ n1 + 1)T0). This implies that

u(t, x;u0, z) ≥ u+(x+ z)− 2ε

for t ≥ (n1 + n2)T0 and ‖x‖ ≤ c
′
t. (3) is thus proved.

6.2 Spreading Speeds under the Assumption of the Existence of a Principal

Eigenvalue

In this section, we investigate the spreading speeds of (1.2) and prove Theorems D, E

and F stated in the chapter 2 under the assumptions (H1)-(H4).

Recall that u(t, x;u0) denotes the solution of (1.2) with u(0, ·;u0) = u0 ∈ X and

u(t, x;u0, z) denotes the solution of (2.15) with u(0, ·;u0, z) = u0 ∈ X. Note that u(t, x;u0, 0) =
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u(t, x;u0). In the following, Φ(t; ξ, µ, z) and ΦB(1; ξ, µ, z) denote the solution operators of

(3.5) with a(x) = a0(x)(= f(x, 0)) given in (3.7) and the truncated operator of Φ(1; ξ, µ, z)

given in (4.29), respectively.

Proof of Theorem D. (1) Fix ξ ∈ SN−1. Put λ(µ) = λ(ξ, µ). By Theorem 4.1, there is

µ∗ = µ∗(ξ) ∈ (0,∞) such that

inf
µ>0

λ(µ)

µ
=
λ(µ∗)

µ∗
.

It is easy to see that c∗(ξ) exists and c∗(ξ) = λ(µ∗)
µ∗

if and only if c∗inf(ξ) = c∗sup(ξ) = λ(µ∗)
µ∗

.

We first prove that c∗sup(ξ) ≤ λ(µ∗)
µ∗

.

Since f(x, u) = f(x, 0) + fu(x, η)u for some 0 ≤ η ≤ u, we have, by assumption (H2),

f(x, u) ≤ f(x, 0) for u ≥ 0. If u0 ∈ X+ , then

u(t, x;u0) ≤ (Φ(t; ξ, 0, 0)u0)(x) for x ∈ RN . (6.15)

Suppose that φ(µ, x) ∈ X+
p is a principal eigenvector of (2.8) with a(x) = a0(x)(=

f(x, 0), that is, (Kξ,µ − I + a0(·)I)φ(µ, x) = λ(µ)φ(µ, x) with µ > 0. It can easily be

verified that (Φ(t; ξ, 0, 0)ũ0)(x) = Me−µ(x·ξ−c̃t)φ(µ, x) with ũ0 = Me−µx·ξφ(µ, x) for c̃ =

λ(µ)
µ

and M > 0. For any u0 ∈ X+(ξ), choose M > 0 large enough such that ũ0 ≥

u0. Then by Proposition 3.1 and Remark 3.1 we have u(t, x;u0) ≤ (Φ(t; ξ, 0, 0)u0)(x) ≤

(Φ(t; ξ, 0, 0)ũ0)(x) = Me−µ(x·ξ−c̃t)φ(µ, x). Hence

lim sup
x·ξ≥ct,t→∞

u(t, x;u0) = 0 for every c > c̃.

This implies that c∗sup(ξ) ≤ λ(µ)
µ

for any µ > 0 and then

c∗sup(ξ) ≤ inf
µ>0

λ(µ)

µ
. (6.16)
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We then prove that c∗inf(ξ) ≥ infµ>0
λ(µ)
µ

. We will do so by modifying the arguments in

[44] and [62].

First of all, for every ε0 > 0, there is b0 > 0 such that

f(x, u) ≥ f(x, 0)− ε0 for 0 ≤ u ≤ b0, x ∈ RN . (6.17)

Choose B � 1 such that Theorem 4.2 holds. Observe that if u0 ∈ X+ is so small that

0 ≤ u(t, x;u0, z) ≤ b0 for t ∈ [0, 1], x ∈ RN and z ∈ RN , then

u(1, x;u0, z) ≥ e−ε0(Φ(1; ξ, 0, z)u0)(x) ≥ e−ε0(ΦB(1; ξ, 0, z)u0)(x) (6.18)

for x ∈ RN and z ∈ RN .

Let rB(µ) be the spectral radius of ΦB(1; ξ, µ, 0) and λB(µ) = ln rB(µ). By Theorem

4.2 (1), rB(µ) is an eigenvalue of ΦB(1; ξ, µ, 0) with a positive eigenfunction φ(µ, x) for

|µ| ≤ µ∗(ξ) + k0.

By Theorem 4.2 (3), for each ε1 > 0, there exists a B > 0 such that

−λB(µ∗B(ξ))

µ∗B(ξ)
≤ −λ(µ∗(ξ))

µ∗(ξ)
+ ε1, (6.19)

where µ∗B(ξ) is as in Theorem 4.2 (3). Moreover, there is µε1 such that

−λ′B(µ) < −λB(µ∗B(ξ))

µ∗B(ξ)
+ ε1 (6.20)

for µε1 < µ < µ∗B(ξ). In the following, we fix µ ∈ (µε1 , µ
∗
B(ξ)). By Theorem 4.2 (3) again,

we can choose ε0 > 0 so small that

λB(µ)− µr′B(µ)/rB(µ)− ε0 > 0. (6.21)
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Let

κ(µ, z) =
φµ(µ, z)

φ(µ, z)
.

For given γ > 0 and z ∈ RN , define

τ(γ, z) =
1

γ
tan−1

∫
RN φ(µ, y)e−µ(y−z)·ξζ(‖y − z‖/B) sin γ(−(y − z) · ξ + κ(µ, y))m(z; y, dy)∫
RN φ(µ, y)e−µ(y−z)·ξζ(‖y − z‖/B) cos γ(−(y − z) · ξ + κ(µ, y))m(z; y, dy)

.

It is not difficult to prove that

lim
γ→0

τ(γ, z) = λ
′

B(µ) + κ(µ, z) uniformly in z ∈ RN .

Choose γ > 0 so small that γ(B + |τ(z)|+ |κ(µ, z)|) < π for all z ∈ RN and

κ(µ, z)− τ(γ, z) < −λ′B(µ) + ε1 (6.22)

for z ∈ [0, p1]× [0, p2]× · · · × [0, pN ].

For given ε2 > 0 and γ > 0, define

v(s, x) =


ε2φ(µ, x)e−µs sin γ(s− κ(µ, x)), 0 ≤ s− κ(µ, x) ≤ π

γ

0, otherwise.

(6.23)

Let

v∗(x; s, z) = v(x · ξ + s− κ(µ, z) + τ(γ, z), x+ z).

Choose ε2 > 0 so small that

0 ≤ u(t, x; v∗(·; s, z), z) ≤ b0 for t ∈ [0, 1], x, z ∈ RN .

Let

η(γ, µ, z) = −κ(µ, z) + τ(γ, z).
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Then for 0 ≤ s− κ(µ, z) ≤ π
γ
, we have

u(1, 0; v∗(·; s, z), z)

≥ e−ε0ΦB(1; ξ, 0, z)v∗(·; s, z)

≥ ε2e
−ε0
∫
RN

[
φ(µ, y)e−µ[(y−z)·ξ+s+η(γ,µ,z)] · sin γ[(y − z)ξ + s+ η(γ, µ, z)− κ(µ, y)]

· ζ(‖y − z‖/B)
]
m(z; y, dy)

= e−ε0v(s, z)e−µη(γ,µ,z) sec γτ(γ, z)

φ(µ, z)

∫
RN

[
φ(µ, y)e−µ(y−z)·ξ · cos γ(−(y − z) · ξ + κ(µ, y))

· ζ(‖y − z‖/B)
]
m(z; y, dy).

Observe that

lim
γ→0

e−ε0e−µη(γ,µ,z) sec γτ(γ, z)

φ(µ, z)

∫
RN

[
φ(µ, y)e−µ(y−z)·ξ · cos γ(−(y − z) · ξ + κ(µ, y))

· ζ(‖y − z‖/B)
]
m(z; y, dy)

= e−ε0e−µr
′
B(µ)/rB(µ)rB(µ)

= eλB(µ)−µr′B(µ)/rB(µ)−ε0

> 1 (by (6.21)).

It then follows that for 0 ≤ s− κ(µ, z) ≤ π
γ
,

u(1, 0; v∗(·; s, z), z) ≥ v(s, z) = v∗((κ(µ, z)− τ(γ, z))ξ; s, (−k(µ, z) + τ(γ, z))ξ + z).

Clearly, the above equality holds for all s ∈ R.

Let s̄(x) be such that v(s̄(x), x) = maxs∈R v(s, x). Let

v̄(s, x) =


v(s̄(x), x), s ≤ s̄(x)− π

γ

v(s+ π
γ
, x), s ≥ s̄(x)− π

γ
.
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Set

v̄∗(x; s, z) = v̄(x · ξ + s− κ(µ, z) + τ(γ, z), x+ z).

We then have

u(1, 0; v̄∗(·; s, z), z) ≥ v̄(s, z) = v̄∗((κ(µ, z)− τ(γ, z))ξ; s, (−κ(µ, z) + τ(γ, z))ξ + z)

for s ∈ R and z ∈ RN .

Let

v0(x; z) = v̄(x · ξ, x+ z).

Note that v̄(s, x) is non-increasing in s. Hence we have

u(1, x; v0(·; z), z) = u(1, 0; v0(·+ x; z), x+ z)

= u(1, 0; v̄∗(·;x · ξ + κ(µ, x+ z)− τ(γ, x+ z), x+ z), x+ z)

≥ v̄(x · ξ + κ(µ, x+ z)− τ(γ, x+ z), x+ z)

≥ v̄(x · ξ − λ′B(µ) + ε1, x+ z) (by (6.22))

≥ v̄
(
x · ξ − λB(µ∗B(ξ))

µ∗B(ξ)
+ 2ε1, x+ z

)
(by (6.20))

≥ v̄
(
x · ξ − λ(µ∗(ξ))

µ∗(ξ)
+ 3ε1, x+ z

)
(by (6.19))

= v0

(
x− [

λ(µ∗(ξ))

µ∗(ξ)
− 3ε1)]ξ, [

λ(µ∗(ξ))

µ∗(ξ)
− 3ε1]ξ + z

)

for z ∈ [0, p1]× [0, p2]× · · · × [0, pN ]. Let c̃∗(ξ) = λ(µ∗(ξ))
µ∗(ξ)

− 3ε1. Then

u(1, x; v0(·, z), z) ≥ v0(x− c̃∗(ξ)ξ, c̃∗(ξ)ξ + z)
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for all z ∈ RN . We also have

u(2, x; v0(·, z), z) ≥ u(1, x; v0(· − c̃∗(ξ)ξ, c̃∗(ξ)ξ + z), z)

= u(1, x− c̃∗(ξ)ξ; v0(·, c̃∗(ξ)ξ + z), c̃∗(ξ)ξ + z)

≥ v0(x− 2c̃∗(ξ)ξ, 2c̃∗(ξ) + z)

for all z ∈ RN . By induction, we have

u(n, x; v0(·, z), z) ≥ v0(x− nc̃∗(ξ)ξ, nc̃∗(ξ) + z)

for n ≥ 1 and z ∈ RN . This together with Proposition 6.4 implies that

c∗(ξ) ≥ c̃∗(ξ) =
λ(µ∗(ξ))

µ∗(ξ)
− 3ε1.

Since ε1 is arbitrary, we must have

c∗inf(ξ) ≥ inf
µ>0

λ(µ)

µ
. (6.24)

By (6.16) and (6.24), we have c∗(ξ) exists and c∗(ξ) = infµ>0
λ(µ)
µ

.

(2) LetDi = [i1p1, (i1+1)p1]×[i2p2, (i2+1)p2]×...×[iNpN , (iN+1)pN ](i = (i1, i2, · · · , iN) ∈

ZN). Let λ1 = λ(ξ, µ) and λ2 = λ(−ξ, µ) be the principal eigenvalues of Kξ,µ− I + a(·)I and

K−ξ,µ− I+a(·)I with eigenfunctions ψ1, ψ2 ∈ Int(X+
p ), respectively. It suffices to prove that

λ1 = λ2. Observe that

∫
RN
e−µ(y−x)·ξk(y − x)ψ1(y)dy − ψ1(x) + a(x)ψ1(x) = λ1ψ1(x), x ∈ RN

and ∫
RN
eµ(y−x)·ξk(y − x)ψ2(y)dy − ψ2(x) + a(x)ψ2(x) = λ2ψ2(x), x ∈ RN .
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Multiplying the first equality by ψ2(x) and the second one by ψ1(x) and then integrating

both equations over D0, we get

∫
D0

[

∫
RN
e−µ(y−x)·ξk(y−x)ψ1(y)dyψ2(x)−ψ1(x)ψ2(x)+a(x)ψ1(x)ψ2(x)]dx = λ1

∫
D0

ψ1(x)ψ2(x)dx

and

∫
D0

[

∫
RN
eµ(y−x)·ξk(y−x)ψ2(y)dyψ1(x)−ψ2(x)ψ1(x)+a(x)ψ2(x)ψ1(x)]dx = λ2

∫
D0

ψ2(x)ψ1(x)dx.

Therefore, in order to derive λ1 = λ2, we only need to prove

∫
D0

∫
RN
e−µ(y−x)·ξk(y − x)ψ1(y)ψ2(x)dydx =

∫
D0

∫
RN
eµ(y−x)·ξk(y − x)ψ2(y)ψ1(x)dydx.

To this end, it suffices to prove that for each i = (i1, i2, · · · , iN) ∈ ZN , one has

∫
D0

∫
Di

e−µ(y−x)·ξk(y − x)ψ1(y)ψ2(x)dydx =

∫
D0

∫
D−i

eµ(y−x)·ξk(y − x)ψ2(y)ψ1(x)dydx.

For given i = (i1, i2, · · · , iN) ∈ ZN , let zl = yl− ilpl and wl = xl− ilpl, for l = 1, 2, ..., N . We

have

∫
D0

∫
Di

e−µ(y−x)·ξk(y − x)ψ1(y)ψ2(x)dydx

=

∫
Di

∫
D0

e−µ(y−x)·ξk(y − x)ψ1(y)ψ2(x)dxdy

=

∫
D0

∫
D−i

e−µ(z−w)·ξk(z − w)ψ1(z1 + i1p1, ..., zN + iNpN)ψ2(w1 + i1p1, ..., wN + iNpN)dwdz

=

∫
D0

∫
D−i

eµ(w−z)·ξk(z − w)ψ2(w)ψ1(z)dwdz.

This proves (2).

(3) It follows from (1) and Proposition 6.2 (2).

(4) It follows from (1) and Proposition 6.3 (2).
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Proof of Theorem E. (1) For given u0 in (1), there are u±0 ∈ X+(±ξ) such that

u0(·) ≤ u±0 (·).

By Proposition 6.3, for every c > c∗(ξ),

lim sup
x·ξ≤ct,t→∞

u(t, x;u+
0 , z) = 0, lim sup

x·(−ξ)≤ct,t→∞
u(t, x;u−0 , z) = 0

uniformly in z ∈ RN . By Proposition 3.1 and Proposition 3.2,

u(t, x;u0, z) ≤ u(t, x;u±0 , z) for t ≥ 0, x, z ∈ RN .

It then follows that

lim sup
|x·ξ|≥ct,t→∞

u(t, x;u0, z) = 0 uniformly in z ∈ RN .

(2) First, we claim that for each σ > 0, there is rσ > 0 such that

lim inf
t→∞

inf
|x·ξ|≤ct

(u(t, x;u0)− u+(x)) = 0 (6.25)

for every u0 ∈ X+ satisfying u0(x) ≥ σ for all x ∈ RN with |x · ξ| ≤ rσ. By Proposition 3.1

and Proposition 3.2, we only need to consider σ satisfying 0 < σ < u+
inf .

Given ξ ∈ SN−1, assume 0 < c < c∗(ξ). For 0 < σ < u+
inf , let ũσ(·) ∈ C(R,R) be such

that ũσ(r) ≥ 0 for r ∈ R and

ũσ(r) =


σ, r ≤ 0

0, r ≥ 1.

Let

uσ,±ξ(x) = ũσ(x · (±ξ)).
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By the definition of c∗(±ξ),

lim inf
x·(±ξ)≤ct,t→∞

(u(t, x;uσ,±ξ, z)− u+(x+ z)) = 0 uniformly in z ∈ RN .

Take any 0 < c̃ < c. For given B > 0, let ũσB ∈ C(R,R) be such that ũσB(r) ≥ 0 and

ũσB(r) =


ũσ(r), −B ≤ r

0, r ≤ −B − 1.

Let

uσ,±ξB (x) = ũσB(x · (±ξ)).

Then

u(t, x;uσ,±ξB , z)→ u(t, x;uσ,±ξ, z)

as B →∞ in open compact topology. This implies that there are T > 1
c−c̃ and B0 > 0 such

that given B ≥ B0,

u(T, x;uσ,±ξB , z) ≥ σ

for 0 ≤ x · (±ξ) ≤ cT , ‖x‖ ≤ 2cT , and z ∈ RN . Note that for each x ∈ RN with

0 ≤ x · (±ξ) ≤ cT , there is a vector q such that q · ξ = 0 and ‖(x− q)‖ ≤ 2cT . It then follows

that

u(T, x;uσ,±ξB , z) = u(T, x− q;uσ,±ξB , z + q) ≥ σ

for 0 ≤ x · (±ξ) ≤ cT , and z ∈ RN .

Let rσ > 0 be such that rσ > B0 + 1. Assume that u0 ≥ 0 satisfies u0(x) ≥ σ for

|x · ξ| ≤ rσ. Then

u0(· ± rξ) ≥ uσ,±ξB (·) for all r with 0 ≤ ±r ≤ rσ − 1.

80



It then follows from the above arguments that

u(T, x;u0, z) ≥ σ for − rσ − cT + 1 ≤ x · ξ ≤ rσ + cT − 1

for all z ∈ RN . This together with T > 1
c−c̃ implies that

u(T, x;u0, z) ≥ σ for |x · ξ| ≤ rσ + c̃T.

By induction, we have

u(nT, x;u0, z) ≥ σ for |x · ξ| ≤ rσ + c̃nT, n = 1, 2, · · · .

Then by Proposition 6.4, one obtains for each 0 < c
′
< c̃ that

lim inf
|x·ξ|≤c′ t,t→∞

(u(t, x;u0, z)− u+(x+ z)) = 0 uniformly in z ∈ RN .

By the arbitrariness of c
′

and c̃ with 0 < c
′
< c̃ < c(< c∗(ξ)), we have

lim inf
|x·ξ|≤ct,t→∞

(u(t, x;u0, z)− u+(x+ z)) = 0 uniformly in z ∈ RN .

Next we claim that (2) can be proved by arguments similar to those in [41, Corollary

2.16]. In fact, let σ > 0 and r > 0 be given. Suppose that u0 ∈ X+ satisfies u0(x) ≥ σ for

all x ∈ RN with |x · ξ| ≤ r. Note that there is m > 0 such that

−1 + f(x, u(t, x;u0)) ≥ −m ∀x ∈ RN , t ≥ 0.

Then

ut(t, x;u0) ≥
∫
RN
k(y − x)u(t, y;u0)dy −mu(t, x;u0)

81



and hence

(emtu(t, x;u0))t ≥
∫
RN
k(y − x)emtu(t, y;u0)dy.

This together with Proposition 3.1 implies that

emtu(t, ·;u0) ≥ eKtu0

where eKt = I + Kt + K2t2

2!
+ · · · and Ku is defined as in (2.6) with u ∈ Xp being replaced

by u ∈ X. It is then not difficult to see that there is ρ ∈ (0, 1) such that

ρσ < inf
x∈RN

u+(x) and u(1, x;u0) ≥ ρσ for |x · ξ| ≤ rρσ.

Let v0(x) = 1
ρ
u(1, x;u0). Then by (6.25),

lim inf
t→∞

inf
|x·ξ|≤ct

(u(t, x; v0)− u+(x)) = 0. (6.26)

By (H2) and Proposition 3.1, we have

u(t+ 1, x;u0) ≡ u(t, x; ρv0) ≥ ρu(t, x; v0). (6.27)

By (6.26) and (6.27), there is T > 0 such that

u(T, x;u0) ≥ ρσ for |x · ξ| ≤ rρσ. (6.28)

By (6.25) and (6.28),

lim inf
t→∞

inf
|x·ξ|≤ct

(u(t+ T, x;u0)− u+(x)) = 0. (6.29)

(2) then follows from the arbitrariness of c with 0 < c < min{c∗(ξ), c∗(−ξ)}.
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Proof of Theorem F. (1) Fix c > sup
ξ∈SN−1

c∗(ξ).

First, let u0 be as in (1). For every given ξ ∈ SN−1, there is ũ0(·; ξ) ∈ X+(ξ) such that

u0(·) ≤ ũ0(·; ξ). Then by Proposition 3.1 and Proposition 3.2,

0 ≤ u(t, x;u0, z) ≤ u(t, x; ũ0(·; ξ), z)

for t > 0, x ∈ RN , and z ∈ RN . It then follows from Proposition 6.3 that

0 ≤ lim sup
x·ξ≥ct,t→∞

u(t, x;u0, z) ≤ lim sup
x·ξ≥ct,t→∞

u(t, x; ũ0(·; ξ), z) = 0

uniformly in z ∈ RN .

Take any c
′
> c. Consider all x ∈ RN with ‖x‖ = c

′
. By the compactness of ∂B(0, c

′
) =

{x ∈ RN | ‖x‖ = c
′}, there are ξ1, ξ2, · · · , ξK ∈ SN−1 such that for every x ∈ ∂B(0, c

′
), there

is k (1 ≤ k ≤ K) such that x · ξk ≥ c. Hence for every x ∈ RN with ‖x‖ ≥ c
′
t, there is

1 ≤ k ≤ K such that x · ξk = ‖x‖
c′

(
c
′

‖x‖x
)
· ξk ≥ ‖x‖

c′
c ≥ ct. By the above arguments,

0 ≤ lim sup
x·ξk≥ct,t→∞

u(t, x;u0, z) ≤ lim sup
x·ξk≥ct,t→∞

u(t, x; ũ0(·; ξk), z) = 0

uniformly for z ∈ RN , k = 1, 2, · · ·K. This implies that

lim sup
‖x‖≥c′ t,t→∞

u(t, x;u0, z) = 0 uniformly in z ∈ RN .

Since c
′
> c and c > sup

ξ∈SN−1

c∗(ξ) are arbitrary, we have that for c > sup
ξ∈SN−1

c∗sup(ξ),

lim sup
‖x‖≥ct,t→∞

u(t, x;u0, z) = 0 uniformly in z ∈ RN .

(2) First of all, for given x0 ∈ RN and r > 0, let B(x0, r) = {x ∈ RN | ‖x−x0‖ < r}. Let

0 < σ < u+
inf and v0(s) be a smooth function satisfying that v

′
0(s) ≤ 0 for s ∈ R, v0(s) = σ
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for s ≤ −1, and v0(s) = 0 for s ≥ 0. Let

ṽ0(s) =


v0(s− 2) for s ≥ 0

v0(−s− 2) for s ≤ 0.

For a given B > 0, let

uB0 (x) =


ṽ0(‖x‖

B
) for ‖x‖ ≤ B

ṽ0(1 + ‖x‖ −B) for ‖x‖ > B.

Fix 0 < c < infξ∈SN−1 c∗(ξ) and take any c1, c2, c3, c4 with 0 < c4 < c3 < c2 < c1 < c. It then

suffices to prove for B � 1 that

lim inf
‖x‖≤c4t,t→∞

(u(t, x;uB0 , z)− u+(x+ z)) = 0 uniformly in z ∈ RN .

To this end, first, for a given ξ ∈ SN−1, let

uξ0(x) = v0(x · ξ).

We claim that there is T ∗ > max{ 1
c−c1 ,

1
c1−c2 ,

1
c2−c3 ,

1
c3−c4} such that for every ξ ∈ SN−1,

u(t, x;uξ0(·), z) > σ for t ≥ T ∗, x · ξ ≤ c3t, z ∈ RN . (6.30)

In fact, for every ξ ∈ SN−1, by Proposition 6.2, there is T (ξ) > 0 such that

u(t, x;uξ0(·), z) > σ for t ≥ T (ξ), x · ξ ≤ ct, z ∈ RN .

In particular,

u(T (ξ), x;uξ0(·), z) > σ for x · ξ ≤ cT (ξ), z ∈ RN .
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Let 0 < δ0 < (c− c1)T (ξ). Then

u(T (ξ), x;uξ0(·), z) > σ for x ∈ cl
(
B(c1T (ξ)ξ, δ0)

)
, z ∈ RN .

Note that for given ρ > 0, ξn ∈ SN−1, and zn ∈ RN with ξn → ξ and zn → z,

‖uξn0 (z − zn + ·)− uξ0(·)‖X(ρ) → 0

as n→∞. Observe also that

u(T (ξ), x;uξn0 , zn) = u(T (ξ), x;uξn0 , z + zn − z)

= u(T (ξ), x+ zn − z;uξn0 (z − zn + ·), z).

Then by Proposition 3.3,

u(T (ξ), x;uξn0 , zn)→ u(T (ξ), x;uξ0, z)

as n → ∞ uniformly for x in compact sets. This implies that there is δξ > 0 such that for

ξ̄ ∈ B(ξ, δξ) ∩ SN−1,

c1T (ξ)ξ̄ ∈ B(c1T (ξ)ξ, δ0)

and

u(T (ξ), x;uξ̄0, z) > σ

for x ∈ cl
(
B(c1T (ξ)ξ, δ0)

)
and z ∈ RN . Hence for ξ̄ ∈ B(ξ, δξ) ∩ SN−1,

u(T (ξ), c1T (ξ)ξ̄;uξ̄0, z) > σ for z ∈ RN . (6.31)
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Observe that

u(T (ξ), η + c1T (ξ)ξ̄;uξ̄0, z) = u(T (ξ), c1T (ξ)ξ̄;uξ̄0(·+ η), z + η)

= u(T (ξ), c1T (ξ)ξ̄;uξ̄0(·), z + η)

for all η ∈ RN with η · ξ̄ = 0. Then by (6.31), it follows for ξ̄ ∈ B(ξ, δξ) ∩ SN−1 that

U(T (ξ), x;uξ̄0, z) > σ for x · ξ̄ = c1T (ξ), z ∈ RN . (6.32)

Observe also that for each x ∈ RN with x · ξ̄ ≤ c1T (ξ), there is x
′ ∈ RN such that x

′ · ξ̄ ≥ 0,

(x+ x
′
) · ξ̄ = c1T (ξ), and

uξ̄0(· − x′) ≥ uξ̄0(·).

Then by (6.32), one has for ξ̄ ∈ B(ξ, δξ) ∩ SN−1 that

u(T (ξ), x;uξ̄0, z) = u(T (ξ), x+ x
′
;uξ̄0(· − x′), z − x′) > σ for x · ξ̄ ≤ c1T (ξ). (6.33)

Therefore, for ξ̄ ∈ B(ξ, δξ) ∩ SN−1,

u(T (ξ), x+ c2T (ξ)ξ̄;uξ̄0, z) > σ for x · ξ̄ ≤ (c1 − c2)T (ξ).

This implies that

U(T (ξ), ·+ c2T (ξ)ξ̄;uξ̄0, z) ≥ uξ̄0(·)

for ξ̄ ∈ B(ξ, δξ) ∩ SN−1. It then follows by induction, from Proposition 3.1 and Proposition

3.2 that

u(nT (ξ), ·+ nc2T (ξ)ξ̄;uξ̄0, z) ≥ uξ̄0(·)

for n = 1, 2, · · · and ξ̄ ∈ B(ξ, δξ) ∩ SN−1.
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By the arguments of Proposition 6.4 (1), there is T ∗(ξ) such that for ξ̄ ∈ B(ξ, δξ)∩SN−1,

u(t, x;uξ̄0, z) > σ for t ≥ T ∗(ξ), x · ξ̄ ≤ c3t, z ∈ RN .

Then by the compactness of SN−1, there is T ∗ such that (6.30) holds for every ξ ∈ SN−1.

This proves the claim.

Now given ξ ∈ SN−1 and B > c3T
∗, let

uB,ξ0 (x) = uB0 (x+ (B + 1)ξ),

ūB,ξ0 (x) = uB0 (x− c3T
∗ξ),

and

ũB,ξ0 (x) = min{ūB,ξ0 (x), uB,ξ0 (x)}.

Then for every ρ > 0,

‖ũB,ξ0 (x)− uξ0(x)‖X(ρ) → 0

as B →∞. Hence

u(T ∗, x; ũB,ξ0 , z)→ u(T ∗, x;uξ0, z)

as B → ∞ uniformly for x in bounded sets and z ∈ RN . By (6.30) and arguments similar

to those in (6.31), there is B+(ξ) and δ̃+
ξ > 0 such that for B ≥ B+(ξ) > c3T

∗ and ξ̃ ∈

B(ξ, δ̃+
ξ ) ∩ SN−1,

u(T ∗, c3ξ̃T
∗; ũB,ξ̃0 , z) > σ

for z ∈ RN .

Observe that for every β ∈ [−c3T
∗, B + 1] and ξ̃ ∈ B(ξ, δ̃+

ξ ) ∩ SN−1,

uB0 (·+ βξ̃) ≥ ũB,ξ̃0 (·)
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and

u(T ∗, c3ξ̃T
∗ + βξ̃;uB0 , z) = u(t, c3ξ̃T

∗;uB0 (·+ βξ̃), z + βξ̃).

It then follows that

u(T ∗, β̃ξ;uB0 , z) > σ for 0 ≤ β̃ ≤ B + 1 + c3T
∗.

Similarly, there is B−(ξ) > c3T
∗ and δ̃−ξ such that for B > B−(ξ) and ξ̃ ∈ B(ξ, δ̃−ξ ) ∩

SN−1,

u(T ∗, β̃ξ;uB0 , z) > σ for −B − 1− c3T
∗ ≤ β̃ ≤ 0.

Let B(ξ) = max{B+(ξ), B−(ξ)} and δ̃ξ = min{δ̃−ξ , δ̃
+
ξ }. Then we have that for every

ξ̃ ∈ B(ξ, δ̃ξ) ∩ SN−1,

u(T ∗, βξ̃;uB0 , z) > σ for −B − 1− c3T
∗ ≤ β ≤ B + 1 + c3T

∗.

By the compactness of SN−1, there is B∗ > c3T
∗ such that

u(T ∗, x;uB0 , z) > σ for ‖x‖ ≤ B + 1 + c3T
∗, z ∈ RN .

Hence for B ≥ B∗,

u(T ∗, ·;uB0 , z) ≥ uB+c3T ∗

0 (·) for z ∈ RN .

By induction, Proposition 3.1 and Proposition 3.2, one obtains for B ≥ B∗ that

u(nT ∗, ·;uB0 , z) ≥ uB+c3nT ∗

0 (·) for z ∈ RN .

This together with Proposition 6.4 (3) implies that for every B ≥ B∗,

lim inf
‖x‖≤c4t,t→∞

(u(t, x;uB0 , z)− u+(x+ z)) = 0
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uniformly in z ∈ RN .

Finally, we can prove that r can be chosen to be independent of σ by arguments similar

to those in Theorem E(2). This completes the proof.

6.3 Spreading Speeds in the General Case

In this section, we investigate the existence and characterization of the spreading speeds

of (1.2) without the assumption (H4).

Lemma 6.1. Assume (H1) - (H3). For every ξ ∈ SN−1, there is µ∗(ξ) ∈ (0,∞) such that

λ0(ξ, µ∗(ξ), a0)

µ∗(ξ)
= inf

µ>0

λ0(ξ, µ, a0)

µ
.

Proof. First, it is not difficult to see that λ0(ξ, µ, a0) is continuous in µ. By (H2), λ0(ξ, 0, a0) >

0 and hence lim
µ→0+

λ0(ξ, µ, a0)

µ
=∞. By Theorem 4.1 and Theorem B, lim

µ→∞

λ0(ξ, µ, a0)

µ
=∞.

The lemma then follows.

Proof of Theorem D. (1) First, we prove that c∗sup(ξ) ≤ inf
µ>0

λ0(ξ, µ, a0)

µ
.

Let an(·) ∈ CN(RN) ∩Xp be such that an satisfies (H5),

an ≥ a0 for n ≥ 1 and ‖an − a‖Xp → 0 as n→∞.

Then by Lemma 5.1,

λ0(ξ, µ, an)→ λ0(ξ, µ, a0) as n→∞.

Let φn be the positive eigenfunction of Kξ,µ − I + an(·)I corresponding to λ(ξ, µ, an) =

λ0(ξ, µ, an) with ‖φn‖Xp = 1. Note that

uf(x, u) ≤ uf(x, 0) ≤ an(x)u for x ∈ RN , u ≥ 0
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and (
Φ(t, ξ, 0, an)uξ,µ

)
(x) = e−µ(x·ξ−λ0(ξ,µ,a

n)
µ

t)φn(x),

where uξ,µ(x) = e−µx·ξφn(x). Hence by Proposition 3.1 and Proposition 3.2, for any µ > 0,

u(t, x;uξ,µ) ≤ e−µ(x·ξ−λ0(ξ,µ,a
n)

µ
t)φn(x) for t ≥ 0.

This implies that

c∗sup(ξ) ≤ λ0(ξ, µ, an)

µ
∀ µ > 0, n ≥ 1

and then

c∗sup(ξ) ≤ λ0(ξ, µ, a0)

µ
∀µ > 0.

Therefore,

c∗sup(ξ) ≤ inf
µ>0

λ0(ξ, µ, a0)

µ
. (6.34)

Next, we prove c∗inf(ξ) ≥ infµ>0
λ0(ξ,µ,a0)

µ
. For any ε > 0, there is δ0 > 0 such that such

that

f(x, u) ≥ f(x, 0)− ε for x ∈ RN , 0 < u < δ0.

Let an(·) ∈ CN(RN) ∩Xp be such that an satisfies (H5),

f(·, 0)− 2ε ≤ an(·) ≤ f(·, 0)− ε ∀n ≥ 1.

Let

c∗n(ξ) = inf
µ>0

λ(ξ, µ, an)

µ
.

Applying the arguments in Theorem D, there is u0(·; z) ∈ X+(ξ) such that

lim inf
x·ξ→−∞

inf
z∈RN

u0(x; z) > 0
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and

u(1, x;u0(·; z), z) ≥ u0(x− (c∗n(ξ)− ε)ξ; (c∗n(ξ)− ε)ξ + z) ∀z ∈ RN .

This implies that

u(m,x;u0(·; z), z) ≥ u0(x−m(c∗n(ξ)− ε)ξ;m(c∗n(ξ)− ε)ξ + z) ∀m ≥ 1, z ∈ RN .

Then by Proposition 6.4,

c∗inf(ξ) ≥ c∗n(ξ)− ε.

By Lemma 5.1,

c∗inf(ξ) ≥ inf
µ>0

λ0(ξ, µ, a0)− 2ε

µ
− ε.

Letting ε→ 0, by Lemma 6.1, we have

c∗inf(ξ) ≥ inf
µ>0

λ0(ξ, µ, a0)

µ
. (6.35)

By (6.34) and (6.35),

c∗sup(ξ) = c∗inf(ξ) = inf
µ>0

λ0(ξ, µ, a0)

µ
.

Hence c∗(ξ) exists and

c∗(ξ) = inf
µ>0

λ0(ξ, µ, a0)

µ
.

(2) (3) (4) They can be proved by arguments similar to those in last section.

Proof of Theorem E. (1) Fix c > max{c∗(ξ), c∗(−ξ)}. As in the proof of Theorem D (1), let

an(·) ∈ CN(RN) ∩Xp be such that an satisfies (H5),

an ≥ a0 for n ≥ 1 and ‖an − a‖Xp → 0 as n→∞.
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Choose µ > 0 and n� 1 such that

λ0(ξ, µ, an)

µ
< c.

Choose M > 1 such that

u0(x) ≤Me−µx·ξφn(x),

where φn(x) is the positive eigenfunction of Kξ,µ − I + an(·)I corresponding to λ(ξ, µ, an) =

λ0(ξ, µ, an) with ‖φn‖Xp = 1. By arguments similar to those in Theorem E (1),

u(t, x;u0) ≤ e−µ(x·ξ−λ0(ξ,µ,a
n)

µ
t)φn(x) for t ≥ 0.

This implies that

lim sup
t→∞

sup
x·ξ≥ct

u(t, x;u0) = 0. (6.36)

Similarly, it can be proved that

lim sup
t→∞

sup
x·ξ≤−ct

u(t, x;u0) = 0. (6.37)

(1) thus follows from (6.36) and (6.37).

(2) It follows from arguments in last section.

Proof of Theorem F. (1) It can be proved by arguments similar to those in last section.

(2) It can be proved by arguments similar to those in last section.

6.4 Effects of Spatial Variations on Spreading Speeds

In this section, we will investigate the effects of spatial variations on spreading speeds

and prove the Theorem G. Let

f̄(u) =
1

|D|

∫
D

f(x, u)dx.
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We assume that f̄ satisfy f̄(0) > 0 .

Then f̄ is also monostable type functions. Let c∗(ξ, f̄) be the spreading speeds of the

following averaged equations of (6.38),

∂u

∂t
=

∫
RN
k(y − x)u(t, y)dy − u(t, x) + uf̄(u). (6.38)

Proof of Theorem G. First, let a0(x) = f(x, 0), and by Theorem D, for any ξ ∈ SN−1, there

is µ∗(ξ) > 0 such that

c∗(ξ, f) =
λ0(µ∗(ξ), ξ, a0(x))

µ∗(ξ)
.

Then by Theorem B, Lemma 5.2 and Theorem D,

c∗(ξ, f) =
λ0(µ∗(ξ), ξ, a0(x))

µ∗(ξ)
≥ λ(µ∗(ξ), ξ, ā)

µ∗(ξ)
≥ c∗(ξ, f̄).

Now assuming (H4), for some ξ ∈ SN−1, c∗(ξ, f) = c∗(ξ, f̄), then we must have

λ(µ∗(ξ), ξ, a0(x))

µ∗(ξ)
=
λ(µ∗(ξ), ξ, ā)

µ∗(ξ)
.

By Theorem B again, we must have a0(x) ≡ ā.

Theorem G shows that it is a generic scenario that spatial variation increases the spread-

ing speed.
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Chapter 7

Traveling Wave Solutions of Spatially Periodic Nonlocal Monostable Equations

In this chapter, we explore the traveling wave solutions of (1.2) and prove Theorems

H-J. To this end, we first construct some sub- and super-solutions to be used in the proofs

of the main results. We then study the existence, uniqueness, and stability of traveling wave

solutions of (1.2). The results of this chapter have been submitted for publication (see [58]).

Throughout this chapter, we assume that (H1)-(H4). Biologically, we are only interested

in nonnegative solutions of (1.2). Hence, without loss of generality, we make the following

technical assumption throughout this chapter, f(x, u) = f(x, 0) for u ≤ 0.

7.1 Sub- and Super-solutions

Let a0(x) = f(x, 0).

For given ξ ∈ SN−1, let µ∗(ξ) be such that

c∗(ξ) =
λ0(ξ, µ∗(ξ), a0)

µ∗(ξ)
.

Fix ξ ∈ SN−1 and c > c∗(ξ). Let 0 < µ < µ1 < min{2µ, µ∗(ξ)} be such that c = λ0(ξ,µ,a0)
µ

and

λ0(ξ,µ,a0)
µ

> λ0(ξ,µ1,a0)
µ1

> c∗(ξ). Let φ(·) and φ1(·) be positive eigenfunctions of Kξ,µ−I+a0(·)I

associated to λ0(ξ, µ, a0) and λ0(ξ, µ1, a0) with ‖φ(·)‖Xp = 1 and ‖φ1(·)‖Xp = 1, respectively.

If no confusion occurs, we may write λ0(ξ, µ, a0) as λ(µ).

For given d1 > 0, let

v1(t, x; z, T, d1) = e−µ(x·ξ+cT−ct)φ(x+ z)− d1e
−µ1(x·ξ+cT−ct)φ1(x+ z). (7.1)

We may write v1(t, x; z, T ) for v1(t, x; z, T, d1) for fixed d1 > 0 or if no confusion occurs.
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Proposition 7.1. For any z ∈ RN and T > 0, v1(t, x; z, T ) is a sub-solution of (2.15)

provided that d1 is sufficiently large.

Proof. First of all, let ϕ = e−µ(x·ξ+cT−ct)φ(x + z) and ϕ1 = d1e
−µ1(x·ξ+cT−ct)φ1(x + z). Let

M = max
x∈RN

φ(x)(> 0). Let L > 0 be such that −fu(x + z, u) ≤ L for 0 ≤ u ≤ M . Let d0 be

defined by

d0 = max{
max
x∈RN

φ(x)

min
x∈RN

φ1(x)
,

Lmax
x∈RN

φ2(x)

(µ1c− λ(µ1)) min
x∈RN

φ1(x)
}

Fix z ∈ RN and T > 0. We prove that v1(t, x; z, T ) is a sub-solution of (2.15) for

d1 ≥ d0, that is, for any (t, x) ∈ R× RN ,

∂v1

∂t
− [

∫
RN
k(y − x)v1(t, y; z, T )dy − v1(t, x; z, T ) + f(x+ z, v1(t, x; z, T ))v1(t, x; z, T )] ≤ 0.

(7.2)

First, for (t, x) ∈ R × RN with v1(t, x; z, T ) ≤ 0, f(x + z, v1(t, x; z, T )) = f(x + z, 0).

Hence

∂v1

∂t
− [

∫
RN
k(y − x)v1(t, y; z, T )dy − v1(t, x; z, T ) + f(x+ z, v1(t, x; z, T ))v1(t, x; z, T )]

= −(µ1c− λ(µ1))ϕ1 ≤ 0.

Therefore (7.2) holds for (t, x) ∈ R× RN with v1(t, x; z, T ) ≤ 0.

Next, consider (t, x) ∈ R × RN with v1(t, x; z, T ) > 0. By d1 ≥ d0, we must have

x · ξ + cT − ct ≥ 0. Then v1(t, x; z, T ) ≤ e−µ(x·ξ+cT−ct)φ(x + z) ≤ φ(x + z) ≤ M . Note that

for 0 < y < M ,
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−(µ1c− λ(µ1))− fu(x+ z, y)
(ϕ)2

ϕ1

≤ −(µ1c− λ(µ1)) + L
(ϕ)2

ϕ1

= −(µ1c− λ(µ1)) +
Lφ2(x+ z)

d1φ1(x+ z)
e(µ1−2µ)(x·ξ+cT−ct)

≤ −(µ1c− λ(µ1)) +

Lmax
y∈RN

φ2(y)

d1 max
y∈RN

φ1(y)

≤ 0.

Therefore, for (t, x) ∈ R× RN with v1(t, x; z, T ) > 0,

∂v1

∂t
− [

∫
RN
k(y − x)v1(t, y; z, T )dy − v1(t, x; z, T ) + f(x+ z, v1)v1(t, x; z, T )]

=µcϕ− µ1cϕ1 − [

∫
RN
k(y − x)v1(t, y; z, T )dy − v1(t, x; z, T ) + f(x+ z, v1)v1(t, x; z, T )]

=(µc− λ(µ))ϕ− (µ1c− λ(µ1))ϕ1 + f(x+ z, 0)v1(t, x; z, T )− f(x+ z, v1)v1(t, x; z, T )

=− (µ1c− λ(µ1))ϕ1 − fu(x+ z, y)(ϕ− ϕ1)2
(
for some y ∈ (0,M)

)
≤− (µ1c− λ(µ1))ϕ1 − fu(x+ z, y)(ϕ)2

=[−(µ1c− λ(µ1))− fu(x+ z, y)
(ϕ)2

ϕ1

]ϕ1

≤0.

Hence (7.2) also holds for (t, x) ∈ R × RN with v1(t, x; z, T ) > 0. The proposition then

follows.

Let λ(0) be the principal eigenvalue and φ0 be the positive principal eigenfunction

of K − I + a0(·)I with ‖φ0‖Xp = 1. Observe that there exists sufficiently large M > 0

such that v1(t, x0; z, T ) ≥ 1
2
e−µ(x·ξ+cT−ct)φ(x + z) for x · ξ + cT − ct > M . Thus we have

v1(t, x0; z, T ) ≥ 1
2
e−µ(x·ξ+cT−ct) min

x∈RN
{φ(x)} for x · ξ + cT − ct > M . For any δ0 > 0, let

M1 be such that M1 −M > δ0 and b̂ = 1
2
e−µM1 min

x
φ(x). Then we have v1(t, x0; z, T ) ≥

1
2
e−µ(x·ξ+cT−ct) min

x∈RN
{φ(x)} ≥ b̂ for any M < x · ξ + cT − ct < M1. Let 0 < b� 1, such that

96



bmax
x∈RN

φ0(x) < b̂ and

−f2(x+ z, η)(bφ0(x+ z)) <
1

2
λ(0), (7.3)

where f2(·, ·) is the partial derivative of f(x, u) with respect to the second coordinate and

η is such that f(x + z, 0) − f(x + z, bφ0(x + z)) = −f2(x + z, η)(bφ0(x + z)). Therefore,

v1(t, x; z, T ) > bφ0(x+ z) for any M < x · ξ + cT − ct < M1.

Proposition 7.2. Let δ0 be such that

∫
‖z‖>δ0

k(z)dz ≤ σ̂ :=
1

2
λ(0) min

x∈RN
{φ0(x)}/max

x∈RN
{φ0(x)}.

Let 0 < b � 1 and M1 > M > 0 be such that v1(t, x0; z, T ) > bφ0(x + z) for any

M < x · ξ + cT − ct < M1 with M1 −M > δ0 and (7.3) holds. Let

u(t, x; z, T, d1, b) =


max{bφ0(x+ z), v1(t, x; z, T, d1)} for x · ξ + cT − ct < M

v1(t, x; z, T, d1) for x · ξ + cT − ct ≥M.

Then u(t, x; z, T, d1, b) is a sub-solution of (2.15).

Proof. First, it is not difficult to see that for any x, z ∈ RN , there are at most two ts such that

bφ0(x+ z) = v1(t, x; z, T ). Hence for any fixed x, z ∈ RN , u(t, x; z, T )(:= u(t, x; z, t, d1, b)) is

absolutely continuous in t and is differentiable in t for a.e. t. Moreover, we claim that for

any t at which u(t, x; z, T ) is differentiable, there holds

∂u(t, x; z, T )

∂t
≤
∫
RN
k(y − x)u(t, y; z, T )dy − u(t, x; z, T ) + u(t, x; z, T )f(x+ z, u(t, x; z, T )).

By observation, u(t, x; z, T, d1, b) ≥ v1(t, x; z, T, d1) for all x ∈ RN . If u(t, x; z, T, d1, b) =

v1(t, x; z, T, d1), it is easy to verify that,

∂u(t, x; z, T )

∂t
≤
∫
RN
k(y − x)u(t, y; z, T )dy − u(t, x; z, T ) + u(t, x; z, T )f(x+ z, u(t, x; z, T )).

(7.4)
Otherwise, u(t, x; z, T, d1, b) = bφ0(x + z) for x ∈ D0 , where D0 := {x|u(t, x; z, T, d1, b) =

bφ0(x + z), x · ξ + cT − ct ≤ M}. Note that bφ0(x + z) ≤ u(t, x; z, T, d1, b) for x ∈ D1 :=
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{x|x · ξ + cT − ct ≤M1}. Thus,

∫
D1

k(y − x)[bφ0(y + z)− u(t, y; z, T, d1, b)]dy ≤ 0. (7.5)

Let D2 := {x|x · ξ + cT − ct > M1}. Note that D0 ⊂ {x|x · ξ + cT − ct ≤ M}.

If x ∈ D0 and y ∈ D2, then ‖y − x‖ ≥ (y − x) · ξ ≥ M1 − M ≥ δ0, which implies

{y|y ∈ D2, x ∈ D0} ⊂ {y|‖y − x‖ > δ0}. Thus,∫
D2

k(y − x)[bφ0(y + z)− u(t, y; z, T, d1, b)]dy

≤
∫
‖y−x‖>δ0

k(y − x)bφ0(y + z)dy

≤
∫
‖z‖>δ0

k(z) max
x∈RN
{bφ0(x)}dy

≤σ̂ max
x∈RN
{bφ0(x)}

=
1

2
λ(0)b min

x∈RN
{φ0(x)}

Thus, for x ∈ D0,

∫
D2

k(y − x)[bφ0(y + z)− u(t, y; z, T, d1, b)]dy ≤
1

2
λ(0)bφ0(y + z). (7.6)

If x ∈ D0, we have
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∂u(t, x; z, T, d1, b)

∂t
− [

∫
RN
k(y − x)u(t, y; z, T, d1, b)dy − u(t, x; z, T, d1, b)

+ f(x+ z, u(t, x; z, T, d1, b))u(t, x; z, T, d1, b)]

=− [

∫
RN
k(y − x)u(t, y; z, T, d1, b)dy − bφ0(x+ z) + f(x+ z, bφ0(x+ z))bφ0(x+ z)]

=− [

∫
RN
k(y − x)bφ0(y + z)dy − bφ0(x+ z) + f(x+ z, 0)bφ0(x+ z)]

+

∫
RN
k(y − x)[bφ0(y + z)− u(t, y; z, T, d1, b)]dy

+ [f(x+ z, 0)bφ0(x+ z)− f(x+ z, bφ0(x+ z))bφ0(x+ z)]

=− λ(0)bφ0(x+ z) +

∫
RN
k(y − x)[bφ0(y + z)− u(t, y; z, T, d1, b)]dy − f2(x+ z, η)(bφ0(x+ z))2

=− λ(0)bφ0(x+ z) +

∫
D1

k(y − x)[bφ0(y + z)− u(t, y; z, T, d1, b)]dy

+

∫
D2

k(y − x)[bφ0(y + z)− u(t, y; z, T, d1, b)]dy − f2(x+ z, η)(bφ0(x+ z))2.

Together with the inequalities (7.3), (7.5) and (7.6), we have for x ∈ D0,

∂u(t, x; z, T )

∂t
≤
∫
RN
k(y − x)u(t, y; z, T )dy − u(t, x; z, T ) + u(t, x; z, T )f(x+ z, u(t, x; z, T )).

(7.7)
By (7.4) and (7.7), we proved the claim.

Therefore, u(t, x; z, T ) is a sub-solution of (2.15).

For given d2 ≥ 0, let

v̄(t, x; z, T, d2) = e−µ(x·ξ+cT−ct)φ(x+ z) + d2e
−µ1(x·ξ+cT−ct)φ1(x+ z)

and

ū(t, x; z, T, d2) = min{v̄(t, x; z, T, d2), u+(x+ z)}.

We may write v̄(t, x; z, T ) and ū(t, x; z, T ) for v̄(t, x; z, T, d2) and ū(t, x; z, T, d2), respectively,

if no confusion occurs.

Proposition 7.3. For any d2 ≥ 0, z ∈ RN , and T > 0, ū(t, x; z, T ) is a super-solution of

(2.15).
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Proof. It suffices to prove that v̄(t, x; z, T ) is a super-solution.

Let ϕ2 = d2e
−µ1(x·ξ+cT−ct)φ1(x+ z). By direct calculation, we have

∂v̄

∂t
− [

∫
RN
k(y − x)v̄(t, y; z, T )dy − v̄(t, x; z, T ) + f(x+ z, v̄)v̄(t, x; z, T )]

≥∂v̄
∂t
− [

∫
RN
k(y − x)v̄(t, y; z, T )dy − v̄(t, x; z, T ) + f(x+ z, 0)v̄(t, x; z, T )]

=(µ1c− λ(µ1))ϕ2

≥0.

The proposition thus follows.

In the rest of this section, we fix d∗1 � 1, d∗2 ≥ 0, and 0 < b∗ � 1. Let

u−0,z,T (x) = u(0, x; z, T, d∗1, b
∗) and u+

0,z,T (x) = ū(0, x; z, T, d∗2). (7.8)

Then by Proposition 7.2,

u(t, x;u−0,z,T , z) ≥ u(t, x; z, T )

= u(0, x; z, T − t)

= u−0,z,T−t(x).

Similarly,

u(t, x;u+
0,z,T , z) ≤ u+

0,z,T−t(x).

Proposition 7.4. For any given z ∈ RN , the following hold:

(1) For any t2 > t1 > 0,

u(t2 + t, x;u−0,z,t2 , z) ≥ u(t1 + t, x;u−0,z,t1 , z) ∀t > −t1, x ∈ RN ;

(2) u(t2 + t, x;u+
0,z,t2

, z) ≤ u(t1 + t, x;u+
0,z,t1

, z) ∀t > −t1, x ∈ RN .

Proof. (1) For given z ∈ RN and t2 > t1 > 0, by Proposition 7.2,
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u(t2 − t1, x;u−0,z,t2 , z) ≥ u(t2 − t1, x; z, t2)

= u−0,z,t2−(t2−t1)(x)

= u−0,z,t1(x).

Hence

u(t2 + t, x;u−0,z,t2 , z) = u(t1 + t, x;u(t2 − t1, ·;u−0,z,t2 , z), z)

≥ u(t1 + t, x;u−0,z,t1 , z).

(1) is thus proved.

(2) It follows by arguments similar to those in (1) and Proposition 7.3.

7.2 Existence and Uniqueness of Traveling Wave Solutions

In this section, we investigate the existence of traveling wave solutions of (1.2) and prove

Theorem H.

Let u±0,z,T be as in (7.8). Let

Φ±(x, z) = lim
τ→∞

u(τ, x;u±0,z,τ , z) (7.9)

and

U±(t, x; z) = lim
τ→∞

u(t+ τ, x;u±0,z,τ , z). (7.10)

By Proposition 7.4, the limits in the above exist for all t ∈ R and x, z ∈ RN . Moreover, it is

easy to see that Φ−(x, z) is lower semi-continuous in (x, z) ∈ RN ×RN and Φ+(x, z) is upper

semi-continuous.

We will show that u = U+(t, x; 0) and u = U−(t, x; 0) are traveling wave solutions of

(1.2) in the direction of ξ with speed c generated by Φ+(·, ·) and Φ−(·, ·), respectively, and

that Φ(·, ·) := Φ+(·, ·) satisfies Theorem H(1)-(2).

To this end, we first prove some lemmas.
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Lemma 7.1. For each z ∈ RN , u(t, x) = U±(t, x; z) are entire solutions of (2.15).

Proof. We prove the case that u(t, x) = U+(t, x; z). The other case can be proved similarly.

Fix z ∈ RN . Observe that for any x ∈ RN ,

u(t+ τ, x;u+
0,z,τ , z) = u(τ, x;u+

0,z,τ , z) +

∫ t

0

∫
RN
k(y − x)u(s+ τ, y;u+

0,z,τ , z)dyds

+

∫ t

0

[
− u(s+ τ, x;u+

0,z,τ , z) + u(s+ τ, x;u+
0,z,τ , z)f(x+ z, u(s+ τ, x;u+

0,z,τ , z))
]
ds

Letting τ →∞, we have

u(t, x) = u(0, x) +

∫ t

0

[ ∫
RN
k(y − x)u(s, y)dy − u(s, x) + u(s, x)f(x+ z, u(s, x))

]
ds.

This implies that u(t, x) is differentiable in t and satisfies (2.15) for all t ∈ R.

Observe that

U±(t, x; z) = u(t, x; Φ±(·, z), z) ∀t ∈ R, x, z ∈ RN .

Lemma 7.2. u(t, x; Φ±(·, z), z) = Φ±(x − ctξ, z + ctξ), lim
x·ξ→−∞

(Φ±(x, z) − u+(x + z)) = 0

and lim
x·ξ→∞

Φ±(x, z)

e−µx·ξφ(x+ z)
= 1 uniformly in z ∈ RN .

Proof. We prove the lemma for Φ+(·, ·). It can be proved similarly for Φ−(·, ·).

First of all, we have

u(t, x; Φ+(·, z), z) = lim
τ→∞

u(t, x;u(τ, x;u+
0,z,τ , z), z)

= lim
τ→∞

u(t+ τ, x;u+
0,z,τ , z)

= lim
τ→∞

u(t+ τ, x− ctξ;u+
0,z+ctξ,t+τ , z + ctξ)

= Φ+(x− ctξ, z + ctξ).

Note that
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e−µ(x·ξ−ct)φ(x+ z)− d1e
−µ1(x·ξ−ct)φ1(x+ z) ≤ u(t+ T, x; z, T )

≤ u(t, x; Φ+(·, z), z)

≤ ū(t+ T, x; z, T )

= e−µ(x·ξ−ct)φ(x+ z) + d2e
−µ1(x·ξ−ct)φ1(x+ z)

for t ∈ R and x, z ∈ RN . Thus lim
x·ξ−ct→∞

Φ+(x− ctξ, z + ctξ)

e−µ(x·ξ−ct)φ(x+ z)
= 1, which is equivalent to

lim
x·ξ→∞

Φ+(x, z)

e−µx·ξφ(x+ z)
= 1, uniformly in z ∈ RN .

We now prove that lim
x·ξ→−∞

(
Φ+(x, z) − u+(x + z)

)
= 0 uniformly in z ∈ RN . Observe

that there is M > 0 such that

U+(t, x, z) ≥ U−(t, x, z) ≥ b∗φ0(x+ z) for x · ξ − ct ≤M, z ∈ RN .

By Proposition 3.3, for any ε > 0, there are T > 0 and η∗ ∈ R such that

|U+(T, x, z)− u+(x+ z)| < ε for x · ξ ≤ η∗, z ∈ RN .

This implies that

|Φ+(x, z)− u+(x+ z)| ≤ ε for x · ξ ≤ η∗ + cT, z ∈ RN

and hence lim
x·ξ→−∞

(
Φ+(x, z)− u+(x+ z)

)
= 0 uniformly in z ∈ RN .

Corollary 7.1. Both Φ+(·, ·) and Φ−(·, ·) generate traveling wave solutions of (1.2) in the

direction of ξ with speed c.

Proof. First of all, by Lemmas 7.1 and 7.2, both Φ+(·, ·) and Φ−(·, ·) satisfy (2.17) and (2.18).

Next, for any x, x
′ ∈ RN with x · ξ = x

′ · ξ, z ∈ RN , and τ ∈ R, we have

u(τ, x
′
;u±

0,z−x′ ,τ (·), z − x
′
) = u(τ, x;u±

0,z−x′ ,τ (·+ x
′ − x), z − x′ + (x

′ − x))

= u(τ, x;u±0,z−x,τ (·), z − x).
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This implies that Φ±(·, ·) satisfies (2.19).

Observe now that u±0,z+piei,τ = u±0,z,τ for any τ ∈ R and z ∈ RN . It then follows that

Φ±(x, z + piei) = Φ±(x, z) and hence Φ±(·, ·) satisfies (2.20).

Therefore, both Φ+(·, ·) and Φ−(·, ·) generate traveling wave solutions of (1.2) in the

direction of ξ with speed c.

Lemma 7.3. lim
x·ξ−ct→−∞

U±t (t, x; z) = 0 uniformly in z ∈ RN .

Proof. Note that

U±t (t, x; z) =

∫
RN
k(y − x)U±(t, y; z)dy − U±(t, x; z) + U±(t, x; z)f(x+ z, U±(t, x; z))

and thus

lim
x·ξ−ct→−∞

U±t (t, x; z) = lim
x·ξ−ct→−∞

[
U±t (t, x; z)−

∫
RN
k(y)u+(y + x+ z)dy + u+(x+ z)

− u+(x+ z)f(x+ z, u+(x+ z))
]

= lim
x·ξ−ct→−∞

[ ∫
RN
k(y)

(
U±(t, x+ y; z)− u+(x+ y + z)

)
dy

−
(
U±(t, x; z)− u+(x+ z)

)
+
(
U±(t, x; z)f(x+ z, U±(t, x; z))− u±(x+ z)f(x+ z, u+(x+ z))

)]

It suffices to prove that lim
x·ξ−ct→−∞

∫
RN
k(y)

(
U±(t, x+y; z)−u+(x+y+z)

)
dy → 0 uniformly in

z ∈ RN . For any ε > 0. Since U±(t, x+y; z)−u+(x+y+z) is bounded and k(·) satisfies (H1),

then there exists a δ̂ > 0 such that

∫
‖y‖>δ̂

k(y)
(
U±(t, x+y; z)−u+(x+y+z)

)
dy <

ε

2
for z ∈

RN . Since lim
x·ξ−ct→−∞

[U±(t, x; z) − u+(x + z)] = 0 uniformly in z ∈ RN , there exists an

L > 0 such that U±(t, x; z) − u+(x + z) < ε
2

for x · ξ − ct < −L and z ∈ RN . Thus,∫
‖y‖≤δ̂

k(y)
(
U±(t, x+ y; z)−u+(x+ y+ z)

)
dy <

ε

2
for x · ξ− ct < −L− δ̂ and z ∈ RN .

Therefore,

∫
RN
k(y)

(
U±(t, x+y; z)−u+(x+y+z)

)
dy < ε for x·ξ−ct < −L−δ̂ and z ∈

RN . This completes the proof.
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Lemma 7.4. lim
x·ξ−ct→∞

U±t (t, x; z)

e−µ(x·ξ−ct)φ(x+ z)
= µc uniformly in z ∈ RN .

Proof. We prove the lemma for U+(t, x; z). It can be proved similarly for U−(t, x; z).

First, let U(t, x; z) = U+(t, x; z). By Lemma 7.2, for any ε > 0, there is M > 0 such

that for any x, z ∈ RN and t ∈ R with x · ξ − ct ≥M ,

∣∣ U(t, x; z)

e−µ(x·ξ−ct) − φ(x+ z)
∣∣ < ε (7.11)

and

|f(x+ z, U(t, x; z))− f(x+ z, 0)| < ε. (7.12)

Observe that

µcφ(x+ z) =

∫
RN
e−µ(y−x)·ξk(y − x)φ(y + z)dy − φ(x+ z) + a0(x+ z)φ(x+ z) (7.13)

for all x, z ∈ RN , where a0(x+ z) = f(x+ z, 0), and

Ut(t, x; z) =

∫
RN
k(y − x)U(t, y; z)dy − U(t, x; z) + U(t, x; z)f(x+ z, U(t, x; z)) (7.14)

for all t ∈ R and x, z ∈ RN . By (7.11)-(7.14), we have

∣∣ Ut(t, x; z)

e−µ(x·ξ−ct)φ(x+ z)
− µc

∣∣ =
1

φ(x+ z)

∣∣∣ ∫
RN
e−µ(y−x)·ξk(y − x)

( U(t, y; z)

e−µ(y·ξ−ct) − φ(y + z)
)
dy

−
( U(t, x; z)

e−µ(x·ξ−ct) − φ(x+ z)
)

+
( U(t, x; z)

e−µ(x·ξ−ct) − φ(x+ z)
)
f(x+ z, U(t, x; z))

+ φ(x+ z)
(
f(x+ z, U(t, x; z))− f(x+ z, 0)

)∣∣∣
≤ ε
[ ∫

RN
e−µ(y−x)·ξk(y − x)dy

+ 1 + |f(x+ z, U(t, x; z))|+ φ(x+ z)
]
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for all x, z ∈ RN and t ∈ R with x · ξ − ct ≥ M + δ0, where δ0 is the nonlocal dispersal

distance in (1.2). It then follows that

lim
x·ξ−ct→∞

U±t (t, x; z)

e−µ(x·ξ−ct)φ(x+ z)
= µc

uniformly in z ∈ RN .

Proof of Theorem H. Let Φ(x, z) = Φ+(x, z) and U(t, x; z) = U+(t, x; z). Note that U(t, x; z) =

u(t, x; Φ(·, z), z)). We show that Φ(·, ·) and U(·, ·; ·) satisfy Theorem H(1) and (2), respec-

tively.

(1) It follows from Corollary 7.1 and Lemma 7.2.

(2) By Lemmas 7.3 and 7.4, we only need to prove that Ut(t, x; z) > 0 for all (t, x, z) ∈

R× RN × RN .

For any t1 < t2, we have

u+
0,z,t1

(x) ≥ u+
0,z,t2

(x) ∀x, z ∈ RN .

Hence

u(t1, x; Φ+(·, z), z) = u(t2 + t1 − t2, x; Φ+(·, z), z)

= lim
n→∞

u(t2, x;u(n+ t1 − t2, ·;u+
0,z,n, z), z)

≤ lim
n→∞

u(t2, x;u(n+ t1 − t2, ·;u+
0,z,n+t1−t2 , z), z)

= u(t2, x; Φ+(·, z), z).

Therefore, U(t, x; z) = u(t, x; Φ+(·, z), z) is nondecreasing as t increases.

Let v(t, x; z) = ut(t, x; Φ+(·, z), z). Then v(t, x; z) ≥ 0. By Lemma 7.4, for any t ∈ R

and z ∈ RN , the set {x ∈ RN | v(t, x; z) > 0} has positive Lebesgue measure. Note that

v(t, x; z) satisfies

vt(t, x; z) =

∫
R
k(y − x)v(t, y; z)dy − v(t, x; z) + a(t, x; z)v(t, x; z) (7.15)
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where a(t, x; z) = f(x+ z, u(t, x; Φ+(·, z), z)) +u(t, x; Φ+(·, z), z)fu(x+ z, u(t, x; Φ+(·, z), z)).

Then by Proposition 3.1, we have

v(t, x; z) > 0 ∀t ∈ R, x, z ∈ RN .

This implies that Ut(t, x; z) > 0 for all t ∈ R and x, z ∈ RN .

Next, we investigate the uniqueness and continuity of traveling wave solutions of (1.2)

and prove Theorem I by the “squeezing” techniques developed in [9] and [25].

Throughout this section, we fix ξ ∈ SN−1 and c > c∗(ξ). Let µ∗ be such that

c∗(ξ) =
λ0(ξ, µ∗, a0)

µ∗
<
λ0(ξ̃, µ, a0)

µ̃
∀µ̃ ∈ (0, µ∗).

We fix c > c∗(ξ) and µ ∈ (0, µ∗) with λ0(ξ,µ,a0)
µ

= c and assume that U±(t, x; z) and Φ±(x, z)

are as in section 7.2. We put Φ(x, z) = Φ+(x, z) and U(t, x; z) = U+(t, x; z). Let U1(t, x; z) =

u(t, x; Φ1(·, z), z)(≡ Φ1(x− ctξ, z + ctξ)).

We first prove some lemmas, some of which will also be used in next section. By Lemmas

7.2 and 7.4, there is M0 > 0 such that

0 < sup
x·ξ−ct≥M0,z∈RN

U(t, x; z)

Ut(t, x; z)
<∞. (7.16)

Observe that there is σ0 > 0 such that

U(t, x; z) ≥ σ0 for x · ξ − ct ≤M0. (7.17)

Let

η0 = inf
0<u≤2u+sup

(−fu(x, u))σ0, (7.18)

where u+
sup = sup

x∈RN
u+(x). Throughout the rest of this section, M0, σ0, η0 are fixed and satisfy

(7.16)-(7.18).

Lemma 7.5. Let ε0 ∈ (0, 1) and η ∈ (0, (1 − ε0)η0). There is l > 0 such that for each

ε ∈ (0, ε0),
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H±(t, x; z) = (1± εe−ηt)U(t∓ lεe−ηt, x; z), ∀t ≥ 0 x, z ∈ RN

are super-/sub-solution of (2.15).

Proof. First we prove that H+(t, x; z) is a super-solution of (2.15). Let h = εe−ηt and

τ = t− lεe−ηt. Then

H+(t, x; z) = (1 + h)U(τ, x; z),∀t ≥ 0, x, z ∈ RN .

By direct calculation, we have

∂H+(t, x; z)

∂t
− [

∫
RN
k(y − x)H+(t, y; z)dy −H+(t, x; z) +H+(t, x; z)f(x+ z,H+(t, x; z))]

= −ηhU(τ, x; z) + (1 + lηh)[(K − I)H+ + f(x+ z, U)H+]− [(K − I)H+ + f(x+ z,H)H+]

= −ηhU(τ, x; z) + lηh[(K − I)H+ + f(x+ z, U)H+] + [f(x+ z, U)− f(x+ z,H)]H+

= −ηhU(τ, x; z) + lηh(1 + h)Ut(τ, x; z) + [f(x+ z, U)− f(x+ z,H+)](1 + h)U(τ, x; z)

= hηU(τ, x; z)[−1 + l(1 + h)
Ut(τ, x+ z)

U(τ, x+ z)
− fu(x+ z, u∗(τ, x; z))(1 + h)U(τ, x; z)/η],

where u∗(τ, x; z) is some number between U(τ, x; z) and H+(t, x; z). We only need to prove

that

−1 + l(1 + h)
Uτ (τ, x; z)

U(τ, x; z)
− fu(x+ z, U∗(τ, x; z))(1 + h)U(τ, x)/η ≥ 0 (7.19)

for all t ≥ 0 and x, z ∈ RN .

If t ≥ 0 and x ∈ RN are such that x · ξ − cτ ≤ M0, by (7.17), (7.18), and the fact that

Ut(τ, x, ; z) > 0, (7.19) holds.

If t ≥ 0 and x ∈ RN are such that x · ξ − cτ ≥ M0, and l ≥ sup
x·ξ−cτ≥M0

U(τ, x; z)

Ut(τ, x; z)
, then

(7.19) also holds.

By the similar arguments above, we can prove that H−(t, x; z) is a sub-solution of (2.15).

This completes the proof.
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Lemma 7.6. Let ε0 ∈ (0, 1) and η ∈ (0, (1− ε0)η0) be given and l be as in Lemma 7.5. For

any given 0 < ε1 ≤ ε0, there exists constant M1(ε1) > 0 such that for all ε ∈ (0, ε1]

(1−ε)U(t+3lε, x; z) ≤ U(t, x; z) ≤ (1+ε)U(t−3lε, x; z) ∀t ∈ R, x, z ∈ RN , x−ct ≤ −M1(ε1).

Proof. Let h(s) = (1+s)U(t−3ls, x; z). Then, h′(s) = U(t−3ls, x; z)−3lUt(t−3ls, x; z). By

Lemma 7.3, there exists a M(ε1) > 0 such that h′(s) > 0 for s ∈ [−ε1, ε1], x− ct ≤ −M1(ε1),

and z ∈ RN . Hence, the lemma follows.

Lemma 7.7. For any ε > 0, there exists a constant C(ε) ≥ 1 such that

U1(t− 2ε, x; z) ≤ U(t, x; z) ≤ U1(t+ 2ε, x; z) ∀t ∈ R, x, z ∈ RN , x · ξ − ct ≥ C(ε).

Proof. It follows from the fact that

lim
x·ξ−ct→∞

U1(t, x; z)

e−µ(x·ξ−ct)φ(x+ z)
= lim

x·ξ−ct→∞

U1(t, x; z)

U(t, x; z)

U(t, x; z)

e−µ(x·ξ−ct)φ(x+ z)

= lim
x·ξ−ct→∞

U(t, x; z)

e−µ(x·ξ−ct)φ(x+ z)

= 1

uniformly in z ∈ RN .

Lemma 7.8. Let ε0 ∈ (0, 1) and η0, l be as in Lemma 7.5. For any given ε ∈ (0, ε0), there

is τ > 0 such that

(1− εe−ηt)U(t− τ + lεe−ηt, x) ≤ U1(t, x; z) ≤ (1 + εe−ηt)U(t+ τ − lεe−ηt, x; z)

for all x, z ∈ RN and t ≥ 0.

Proof. First by Theorem C(1) and 3.1,

0 < U(t, x; z) < u+(x+ z) and 0 < U1(t, x; z) < u+(x+ z) ∀t ∈ R, x, z ∈ RN .
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Then by Lemma 7.7, there exists a constant C(1) such that

U1(t, x; z) ≥ U(t− 2, x; z) ∀t ∈ R x, z ∈ RN , x · ξ − ct ≥ C(1).

By (2.18), there is t1 ≥ 2 such that

U1(t, x; z) ≥ (1− ε)U(t− t1, x; z) ∀ t ∈ R, x, z ∈ RN , x · ξ − ct < C(1).

Thus

U1(0, x; z) ≥ (1− ε)U(−t1, x; z) = (1− ε)U(−(t1 + lε) + lε, x; z) ∀x, z ∈ RN .

It then follows Lemma 7.5 that

U1(t, x; z) ≥ (1− εe−ηt)U(t− (t1 + lε) + lεe−ηt, x; z) ∀t ≥ 0, x, z ∈ RN .

Similarly, it can be proved that there is t2 ≥ 2 such that

U1(t, x; z) ≤ (1 + εe−ηt)U(t+ t2 + lε− lεe−ηt, x; z) ∀t ≥ 0, x, z ∈ RN .

The lemma then follows with τ = max{t1 + lε, t2 + lε}.

Lemma 7.9. Let τ > 0, t1 > 0, and M ∈ R be given. Suppose that W±(t, x; t1, z) are the

solution of (2.15) with initial

W±(0, x; t1, z) = U(t1 ± τ, x; z)ς(x− ct1 −M) + U(t1 ± 2τ, x; z)(1− ς(x− ct1 −M)),

where ς(s) = 0 for s ≤ 0 and ς(s) = 1 for s > 0. Then

W+(1, x; t1, z) ≤ (1 + ε)U(t1 + 1 + 2τ − 3lε, x; z)

and

W−(1, x; t1, z) ≥ (1− ε)U(t1 + 1− 2τ + 3lε, x; z)

for all x, z ∈ RN with x− c(1 + t1) ≤M provided that 0 < ε� 1.
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Proof. We give a proof for W−(1, x; t1, z). The case of W+ can be proved similarly. Note

that

W−(0, x; t1, z) ≥ U(t1 − 2τ, x; z) ∀x, z ∈ RN .

It then follows that

W−(1, x; t1, z) > U(1 + t1 − 2τ, x; z) ∀x, z ∈ RN .

Take an ε1 ∈ (0, ε0]. By Lemma 7.6, for any ε ∈ (0, ε1],

W−(1, x; t1, z) > (1− ε)U(1 + t1 − 2τ + 3lε, x; z) ∀x · ξ − c(t1 + 1) ≤ −M(ε1), z ∈ RN .

We claim that for 0 < ε� 1,

W−(1, x; t1, z) > (1− ε)U(1 + t1 − 2τ + 3lε, x; z) ∀x · ξ − c(t1 + 1) ∈ [−M(ε1),M ], z ∈ RN .

In fact, let W (t, x; z) = W−(t, x; t1, z)− U(t+ t1 − 2τ, x; z) and

h = inf
t∈[0,1],x,z∈RN

{[W−(t, x; t1, z)f(x+ z, u(t, x;u0,z, z))

− U(t+ t1 − 2τ, x; z)f(x+ z, U(t+ t1 − 2τ, x; z))]

· 1

W−(t, x; t1, z)− U(t+ t1 − 2τ, x; z)
}.

Then

W (0, x; z) =


U(t1 − τ, x; z)− U(t1 − 2τ, x; z) for x · ξ − ct1 > M

0 for x · ξ − ct1 ≤M

and

Wt(t, x; z) ≥
∫
RN
k(y − x)W (t, y; z)dy −W (t, x; z) + hW (t, x; z) ∀t ∈ [0, 1], x, z ∈ RN .

It then follows that

W (1, ·; z) ≥ e−1+h(W (0, ·; z) +KW (0, ·; z) +
K2

2!
W (0, ·; z) + · · · ),
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where KW (0, ·; z) is defined as in (2.6) with u being replaced by W (0, ·; z). By Lemma 7.2,

there are σ̃ > 0 and M̃ > 0 such that

U(t1 − τ, x; z)− U(t1 − 2τ, x; z) ≥ σ̃ ∀x, z ∈ RN with M̃ ≤ x · ξ − ct1 ≤ M̃ + 1. (7.20)

This implies that

W (1, x; z) ≥ U(1 + t1 − 2τ + 3lε, x; z)− U(1 + t1 − 2τ, x; z) (7.21)

for x · ξ − c(t1 + 1) ∈ [−M(ε1),M ] and z ∈ RN provided that 0 < ε � 1. By (7.20) and

(7.21), we have

W−(1, x; t1, z) = W (1, x; z) + U(1 + t1 − 2τ, x; z)

≥ U(1 + t1 − 2τ + 3lε, x; z)

≥ (1− ε)U(1 + t1 − 2τ + 3lε, x; z)

for x · ξ − c(1 + t1) ≤M and z ∈ RN provided that 0 < ε� 1.

Proof of Theorem I. (1) Let

A+ = {τ ≥ 0 | lim sup
t→∞

sup
x,z∈RN

U1(t, x; z)

U(t+ 2τ, x; z)
≤ 1}

and

A− = {τ ≥ 0 | lim inf
t→∞

inf
x,z∈RN

U1(t, x; z)

U(t− 2τ, x; z)
≥ 1}.

By Lemma 7.8, A± 6= ∅. Let

τ+ = inf{τ | τ ∈ A+}, τ− = inf{τ | τ ∈ A−}.

We first claim that τ± ∈ A±. In fact, let τn ∈ A+ be such that τn → τ+. Then for any

0 < ε < 1, there are tn →∞ such that

U1(t, x; z)

U(t+ 2τn, x; z)
≤ 1 + ε ∀x, z ∈ RN , t ≥ tn
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and

U(t+ 2τ+, x; z)− U(t+ 2τn, x; z)

U(t+ 2τn, x; z)
> −ε ∀n� 1, t ∈ R, x, z ∈ RN .

Observe that

U1(t, x; z)

U(t+ 2τ+, x; z)
=

U1(t, x; z)

U(t+ 2τn, x; z)

U(t+ 2τn, x; z)

U(t+ 2τ+, x; z)

and

U(t+ 2τn, x; z)

U(t+ 2τ+, x; z)
=

1

1 + U(t+2τ+,x;z)−U(t+2τn,x;z)
U(t+2τn,x;z)

≤ 1

1− ε

≤ 1 + ε ∀n� 1.

Fix n� 1. Then

sup
x,z∈RN

U1(t, x; z)

U(t+ 2τ+, x; z)
≤ (1 + ε)2 ∀t ≥ tn.

This implies that τ+ ∈ A+. Similarly, we have τ− ∈ A−.

Next we claim that τ± = 0. Assume that τ− > 0. Note that

lim inf
t→∞

inf
x,z∈RN

U1(t, x; z)

U(t− 2τ−, x; z)
≥ 1.

Hence for any ε̄ > 0, there is t0 > 0 such that

U1(t0, x; z)

U(t0 − 2τ−, x; z)
≥ 1− ε̄ ∀x, z ∈ RN .

This implies that

U1(t0, x; z) ≥ (1− ε̄)U(t0 − 2τ−, x; z) ≥ U+(t0 − 2τ−, x; z)− ε̂

where ε̂ = ε̄maxt,x,z U
+(t, x, z). By Lemma 7.7, for x · ξ − ct0 ≥M := C(τ−/2),

U1(t0, x; z) ≥ U(t0 − τ−, x; z).
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This implies that

U1(t0, x; z) ≥ U(t0− 2τ−, x; z)(1− ζ(x · ξ− ct0−M)) +U(t0− τ−, x; z)ζ(x · ξ− ct0−M)− ε̂.

Note that there is K > 0 such that U1(t, x; z)+ ε̂eKt is a super-solution of (2.15) for t ∈ [0, 1]

provided that 0 < ε̂� 1. Then by Lemma 7.9, for 0 < ε̄� 1 and 0 < ε� 1,

U1(t0 + 1, x; z) + ε̂eK ≥ (1− ε)U(t0 + 1− 2τ− + 3lε, x; z) ∀x · ξ − c(t0 + 1) ≤M, z ∈ RN ,

where l is as in Lemma 7.5. Hence for 0 < ε̄� ε� 1,

U1(t0 + 1, x; z) ≥ (1− 2ε)U(t0 + 1− 2z− + 3lε, x; z) ∀x · ξ − c(t0 + 1) ≤M, z ∈ RN .

By Lemma 7.7 again, for x · ξ − c(t0 + 1) ≥M , z ∈ RN , and 0 < ε� 1,

U1(t0 + 1, x; z) > U(t0 + 1− τ−, x; z)

≥ (1− 2ε)U(t0 + 1− τ−, x; z)

≥ (1− 2ε)U(t0 + 1− 2τ− + 3lε, x; z).

Therefore for 0 < ε� 1,

U1(t0 + 1, x; z) ≥ (1− 2ε)U(t0 + 1− 2τ− + 3lε, x; z) ∀x, z ∈ RN .

By Lemma 7.5,

U1(t0 + t+ 1, x; z) ≥ (1− 2εe−τt)U(t0 + 1 + t− 2τ− + 2lεe−ηt + lε, x; z) ∀t ≥ 0, x, z ∈ RN .

It then follows that

τ− − lε

2
∈ A−.

this is a contradiction. Therefore τ− = 0. Similarly, we have τ+ = 0.
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We now prove that Φ1(x, z) = Φ(x, z). Recall that U1(t, x; z) = Φ1(x− ctξ, z+ ctξ) and

U(t, x; z) = Φ(x− ctξ, z + ctξ). Hence

inf
x,z∈RN

U1(t, x; z)

U(t, x; z)
= inf

x,z∈RN

Φ1(x− ctξ, z + ctξ)

Φ(x− ctξ, z + ctξ)

= inf
x,z∈RN

Φ1(x, z)

Φ(x, z)

and

sup
x,z∈RN

U1(t, x; z)

U(t, x; z)
= sup

x,z∈RN

Φ1(x− ctξ, z + ctξ)

Φ(x− ctξ, z + ctξ)

= sup
x,z∈RN

Φ1(x, z)

Φ(x, z)

This together with τ± = 0 implies that

inf
x,z∈RN

Φ1(x, z)

Φ(x, z)
= sup

x,z∈RN

Φ1(x, z)

Φ(x, z)
= 1.

We then must have Φ1(x, z) ≡ Φ(x, z).

(2) Let Φ1(x, z) = Φ−(x, z)(= U−(0, x; z)). By (1), Φ−(x, z) = Φ(x, z). Recall that

Φ−(x, z) is lower semi-continuous and Φ+(x, z) is upper semi-continuous. We then must

have that Φ(x, z) is continuous in (x, z) ∈ RN × RN .

Corollary 7.2. Let Φ(x, z) be as in Theorem H. Then

lim
τ→∞

u(τ, x;u(0, ·; z, τ, d1, b), z) = lim
τ→∞

u(τ, x; ū(0, ·; z, τ, d2), z) = Φ(x, z)

for all d1 � 1, d2 > 0, 0 < b� 1, and x, z ∈ RN .

Proof. By the arguments of Theorem I (1), for any d1 � 1 and 0 < b� 1,

lim
τ→∞

u(τ, x;u(0, ·; z, τ, d1, b), z) = Φ+(x, z)(= Φ(x, z)) ∀x, z ∈ RN ,
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and for any d2 � 1,

lim
τ→∞

u(τ, x; ū(0, ·; z, τ, d2), z) = Φ−(x, z)(= Φ(x, z)) ∀x, z ∈ RN .

The corollary then follows.

7.3 Stability of Traveling Wave Solutions

In this section, we investigate the stability of traveling wave solutions of (1.2) and prove

Theorem J. Throughout this section, we fix ξ ∈ SN−1 and c > c∗(ξ). Let µ∗ be such that

c∗(ξ) =
λ0(µ∗, ξ, a0)

µ∗
<
λ0(ξ̃, µ, a0)

µ̃
∀µ̃ ∈ (0, µ∗).

We fix c > c∗(ξ) and µ ∈ (0, µ∗) with λ0(ξ,µ,a0)
µ

= c. Let U(t, x; z) = U+(t, x; z), where

U+(t, x; z) is as in section 7.2. Put u(t, x) = u(t, x;u0, 0), where u0 is as in Theorem I, and

put U(t, x) = U+(t, x; 0). First we prove some lemmas, which are analogues of Lemmas

7.7-7.9.

Lemma 7.10. For any ε > 0, there exists a constant C0(ε) ≥ 1 such that

u(t− 2ε, x) ≤ U(t, x) ≤ u(t+ 2ε, x) ∀x · ξ − ct ≥ C0(ε), t ≥ 2ε.

Proof. This is an analogue of Lemma 7.7 and can be proved by properly modifying the

arguments in Lemma 7.7. For clarity, we provide a proof in the following.

First we prove that there exists a constant C1(ε) ≥ 1 such that U(t, x) ≤ u(t+ 2ε, x) for

all x · ξ − ct ≥ C1(ε). Note that for given ε > 0, there exists a L > 0 such that

e−µ(x·ξ+cε)φ(x) < u0(x) < e−µ(x·ξ−cε)φ(x) ∀x · ξ > L.

Choose d1 large enough such that v1 (see (7.1)) is a sub-solution of (1.2) and e−µ(x·ξ+cε)φ(x)−

d1e
−µ1(x·ξ+cε)φ1(x) ≤ 0 for all x ∈ RN with x · ξ ≤ L. Then by Proposition 3.1,
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u(t, x) ≥ e−µ(x·ξ−c(t−ε))φ(x)− d1e
−µ1(x·ξ−c(t−ε))φ1(x) ∀x ∈ RN , t ≥ 0.

Thus,

u(t+ ε, x) ≥ v1(t, x) = e−µ(x·ξ−ct)φ(x)− d1e
−µ1(x·ξ−ct)φ1(x) ∀x ∈ RN , t ≥ 0.

Observe that there exists a constant C1(ε) ≥ 1 such that

v1(t+ ε, x) ≥ U(t, x) ∀x− ct ≥ C1(ε).

Therefore,

u(t+ 2ε, x) ≥ v1(t+ ε, x) ≥ U(t, x) ∀x− ct ≥ C1(ε), t ≥ 0.

Next we prove that there exists a constant C2(ε) ≥ 1 such that U(t, x) ≥ u(t − 2ε, x)

for all x · ξ − ct ≥ C2(ε). Note that there are d2 > 0 and L > 0 such that

u0(x) ≤ min{e−µx·ξφ(x) + d2e
−µ1x·ξφ1(x), Lu+(x)} ∀x ∈ RN .

By Proposition 3.1,

u(t, x) ≤ min{e−µ(x·ξ−ct)φ(x) + d2e
−µ1(x·ξ−ct)φ1(x), u(t, x;Lu+(·), 0)} ∀x ∈ RN , t ≥ 0.

On the other hand, we have

lim
x·ξ−ct→∞

U(t, x)

e−µ(x·ξ−c(t−2ε))φ(x)
= e2µcε > 1

Therefore, there exists C2(ε) ≥ 1 such that

e−µ(x−c(t−2ε))φ(x) < U(t, x) ∀x · ξ − ct ≥ C2(ε)

Thus it follows that

u(t− 2ε, x) ≤ U(t, x) ∀x · ξ − ct ≥ C2(ε), t ≥ 2ε.
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The lemma then follows by choosing C0(ε) = max{C1(ε), C2(ε)}.

Lemma 7.11. Let ε0, η, and l be as in Lemma 7.5. For given ε ∈ (0, ε0), there are t± > 0

and τ± > 0 such that

(1− εe−η(t−t−))U(t− τ− + lεe−η(t−t−), x) ≤ u(t, x) ≤ (1 + εe−η(t−t+))U(t+ τ+ − lεe−η(t−t+), x)

for all x ∈ RN and t ≥ max{t−, t+}.

Proof. This is an analogue of Lemma 7.8 and can be proved by properly modifying the

arguments in Lemma 7.8. For clarity, we also provide a proof in the following.

By Lemma 7.10, there exists a constant C0(1) such that

u(t, x) ≥ U(t− 2, x) ∀x · ξ − ct ≥ C0(1), t ≥ 2.

Observe that there are t− > 2 and τ− > 2 + lε such that

u(t−, x) ≥ (1− ε)U(t− − (τ− − lε), x) ∀x · ξ − ct− ≤ C0(1).

Thus,

u(t−, x) ≥ (1− ε)U(t− − τ− + lε, x) ∀x ∈ RN .

By Lemma 7.5,

u(t, x) ≥ (1− εe−η(t−t−))U(t− τ− + lεe−η(t−t−), x) ∀t ≥ t−, x ∈ RN .

Similarly, by Lemma 7.10, there exists a constant C0(1) such that

u(t, x) ≤ U(t+ 2, x) ∀x− ct ≥ C0(1), t ≥ 2.

Observe that there are t+ > 0 and τ+ > 2 + lε such that

u(t+, x) ≤ (1 + ε)U(t+ + τ+ − lε, x) ∀x · ξ − ct0 ≤ C0(1)
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By Lemma 7.5 again,

u(t, x) ≤ (1 + εe−η(t−t+))U(t+ τ+ +−lεe−η(t−t+), x) ∀t ≥ t+, x ∈ RN .

The lemma then follows.

Lemma 7.12. Let τ > 0, t1 > 0, and M ∈ R be given. Suppose that w±(·, x; t1) are the

solution of (1.2) for t ≥ 0 with the initial conditions

w±(0, x; t1) = U(t1 ± τ, x)ς(x− ct1 −M) + U(t1 ± 2τ, x)(1− ς(x− ct1 −M)) ∀x ∈ RN ,

where ς(s) = 0 for s ≤ 0 and ς(s) = 1 for s > 0. Then

w+(1, x; t1) ≤ (1 + ε)U(t1 + 1 + 2τ − 3lε)

w−(1, x; t1) ≥ (1− ε)U(t1 + 1− 2τ + 3lε),

for all x · ξ − ct1 ≤M + c and 0 < ε� 1.

Proof. This is an analogue of Lemma 7.9 and can be proved by properly modifying the

arguments in Lemma 7.9. Again, for clarity, we provide a proof in the following.

First we consider w−. Note that

w−(0, x; t1) = U(t1 − 2τ, x) ∀x · ξ − ct1 ≤M,

and

w−(0, x; t1) = U(t1 − τ, x) > U(t1 − 2τ, x) ∀x · ξ − ct1 > M.

By Proposition 3.1,

w−(1, x; t1) > U(t1 + 1− 2τ, x) ∀x ∈ RN .

By Lemma 7.6, for 0 < ε ≤ ε1 < ε0,

U(t1 + 1− 2τ, x) ≥ (1− ε)U(t1 + 1− 2τ + 3lε, x) ∀x ∈ RN , x · ξ − c(t1 + 1) ≤ −M1(ε1).
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By arguments similar to those in Lemma 7.9, we can prove that

w−(1, x; t1) > (1− ε)U(t1 + 1− 2τ + 3lε, x) ∀x ∈ RN , x · ξ − c(t1 + 1) ∈ [−M1(ε1),M ]

provided that 0 < ε� 1. We then have

w−(1, x; t1) = w(1, x) + U(1 + t1 − 2τ, x)

≥ U(1 + t1 − 2τ + 3lε, x)

≥ (1− ε)U(1 + t1 − 2τ + 3lε, x)

for x ∈ RN with x · ξ − c(1 + t1) ≤M provided that 0 < ε� 1. The statement for w− then

follows.

Similarly, we can prove the case of w+. Hence, the lemma follows.

Proof of Theorem J. First of all, let

A+
0 := {τ ≥ 0| lim sup

t→∞
sup
x∈RN

u(t, x)

U(t+ 2τ, x)
≤ 1}

and

A−0 := {τ ≥ 0| lim inf
t→∞

inf
x∈RN

u(t, x)

U(t− 2τ, x)
≥ 1}.

Define

τ+
0 := inf{τ |τ ∈ A+

0 }, τ−0 := inf{τ |τ ∈ A−0 }.

By Lemma 7.11, A±0 6= ∅. Hence τ±0 are well defined.

By the similar arguments as in the proof of τ± ∈ A± in Theorem I, we have that

τ±0 ∈ A±0 .

It then suffices to prove that τ±0 = 0. This can be proved again by the similar arguments

as in the proof of τ± = 0 in Theorem I. For clarity, we provide a proof for the case of τ+
0 .

We prove τ+
0 = 0 by contradiction. Suppose for the contrary that τ+

0 > 0. Then by the

definition of τ+
0 , for any given ε̂ > 0, there exists t0 > 0 such that
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u(t0, x) ≤ U(t0 + 2τ+
0 , x) + ε̂, ∀x ∈ RN .

Let w+(t, x; t0) be the solution of (1.2) for t ≥ 0 with initial condition given by

w+(0, x; t0) = U(t0 + τ+
0 , x)ς(x · ξ − ct0 −M) + (1− ς(x · ξ − ct0 −M))U(t0 + 2τ+

0 , x),

where M = C0(
τ+0
2

) + cτ+
0 .

Then, w+(0, x; t0) = U(t0 + 2τ+
0 , x) for x · ξ − ct0 ≤M , which implies

u(t0, x) ≤ w+(0, x; t0) + ε̂, ∀x · ξ − ct0 ≤M.

On the other hand, by Lemma 7.10,

u(t0, x) ≤ U(t0 + τ+
0 , x) ∀x · ξ − c(t0 + τ+

0 ) ≥ C0(
τ+

0

2
).

Hence

u(t0, x) ≤ U(t0 + τ+
0 , x), ∀x · ξ − ct0 ≥M.

Therefore,

u(t0, x) ≤ w+(0, x; t0) + ε̂, ∀x ∈ RN .

Note that there is K > 0 such that w+(t, x; t0) + ε̂eKt is a super-solution of (1.2) for

t ∈ [0, 1] provided that 0 < ε̂� 1. By Proposition 3.1,

u(t0 + 1, x) ≤ w+(1, x; t0) + ε̂eK , ∀x ∈ RN .

Thus, by Lemma 7.12,

u(t0 + 1, x) ≤ (1 + ε)U(t0 + 1 + 2τ+
0 − 3lε, x) + ε̂eK , ∀x · ξ − ct0 ≤M + c

provided that 0 < ε̂� 1 and 0 < ε� 1. Choose ε̂ to be sufficiently small, we have

u(t0 + 1, x) ≤ (1 + 2ε)U(t0 + 1 + 2τ+
0 − 3lε, x), ∀x · ξ − ct0 ≤M + c.
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On the other hand, by Lemma 7.10 again,

u(t0 + 1, x) ≤ U(t0 + 1 + τ+
0 , x) ∀x · ξ − c(t0 + 1 + τ+

0 ) ≥ C0(
τ+

0

2
).

This implies that for 0 < ε� 1,

u(t0 + 1, x) < (1 + 2ε)U(t0 + 1 + 2τ+
0 − 3lε, x) ∀x · ξ − ct0 ≥ c+ cτ+

0 + C0(
τ+

0

2
) = c+M.

Hence, for 0 < ε� 1,

u(t0 + 1, x) ≤ (1 + 2ε)U(t0 + 1 + 2τ+
0 − 3lε, x), ∀x ∈ RN .

By Proposition 3.1 and Lemma 7.5,

u(t+ t0 + 1, x) ≤ (1 + 2εe−ηt)U(t+ t0 + 1 + 2τ+
0 − 2lε− lεe−ηt), ∀t > 0, x ∈ RN .

Letting t→∞, we have τ+
0 − lε ∈ A+ for 0 < ε� 1, which contradicts the definition of τ+

0 .

Hence we must have τ+
0 = 0.
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Chapter 8

Concluding Remarks, Open Problems, and Future Plan

In this dissertation, we studied the spatial spread and front propagation dynamics of

monostable equations with nonlocal dispersal in spatially periodic habitats. We first estab-

lished a general principal eigenvalue theory for spatially periodic nonlocal dispersal operators.

More precisely, we investigated the following eigenproblem,

∫
RN
k(y − x)v(y)dy − v(x) + a(x)v(x) = λv, v ∈ Xp,

where a(x) ∈ Xp, and provided some sufficient conditions for the existence of principal eigen-

value and its associated positive eigenvector. The principal eigenvalue theory established in

this dissertation provides an important tool for the study of nonlinear evolution equations

with nonlocal dispersal and is also of great interest in its own.

Applying the principal eigenvalue theory for nonlocal dispersal operators and compari-

son principle for sub- and super-solutions, we obtained the existence, uniqueness, and global

stability of spatially periodic positive stationary solutions to a general spatially periodic non-

local monostable equation. It should be pointed out that in [13], the authors also provided

some sufficient conditions for the existence of a principal eigenfunction of some nonlocal

operators on some bounded or unbounded domain. Similar statements to Theorem C(1) are

proved in [13] for time independent nonlocal KPP equations. We learned the work [13] while

the paper [57] was almost finished. The proof of Theorem C(1) in this dissertation or [57] is

different from that in [13].

Applying the principal eigenvalue theory for nonlocal dispersal operators and compar-

ison principle for sub- and super-solutions, we proved the existence of a spatial spreading
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speed of a general spatially periodic nonlocal equation in any given direction, which char-

acterizes the speed at which a species invades into the region where there is no population

initially in the given direction. Moreover, it is shown that spatial variation of the habitat

speeds up the spatial spread of the population.

We remark that though we used the principal eigenvalue theory for nonlocal disper-

sal operators in their proofs, the existence, uniqueness, and stability of spatially periodic

positive stationary solutions and the existence of spreading speeds are generic features for

nonlocal monostable equations in the sense that they are independent of the existence of the

principal eigenvalue of the linearized nonlocal dispersal operator at the trivial solution of the

monostable equation, which is of great biological importance.

Assuming the existence of the principal eigenvalues of certain nonlocal dispersal op-

erators related to the linearized nonlocal dispersal operator at the trivial solution of the

monostable equation, we showed that a spatially periodic nonlocal monostable equation has

in any given direction a unique stable spatially periodic traveling wave solution connecting

its unique positive stationary solution and the trivial solution with all propagating speeds

greater than the spreading speed in that direction. It should be pointed out that in [17], J.

Coville, J. Dávila and S. Mart́ınez proved the the existence of the traveling wave solutions

for nonlocal dispersal with KPP nonlinearity for speed c ≥ c∗(ξ). But they did not inves-

tigate the uniqueness and stability of the traveling wave solutions. We learned the work

[17], while I completed almost all the work of this dissertation with my adviser Dr W. Shen

and submitted the joint work [58]. We did not include the case with the speed c = c∗(ξ).

But in our work, we further investigated the uniqueness and stability of the traveling wave

solutions. Since we did independently, the methods in [17] and [58]are also different. We

remark that in [17], the kernel is symmetric with bounded support and in [58], the kernel

is also supported on a bounded ball. In this dissertation, we extended the kernel to a more

general case.
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Along the line of my dissertation, there are several important open problems. We discuss

the following three problems.

Open problem 1. In [17], assuming the existence of the principal eigenvalues of certain

nonlocal dispersal operators related to the linearized nonlocal dispersal operator at the trivial

solution of (1.2), the authors proved that (1.2) has a traveling wave solution in the given

direction of ξ ∈ SN−1 with speed c = c∗(ξ). It is an open question whether the traveling wave

solution in a given direction of ξ ∈ SN−1 with speed c = c∗(ξ) is unique and stable.

Among the main techniques in proving the existence of traveling wave solutions are

comparison principle and sub- and super-solutions. Recall that on the construction of sub-

or super- solutions, the positive principal eigenfunctions play important roles. We proved

the ”monstable” feature of our equation and the existence of spreading speed no matter (H4)

is satisfied or not. However, we only proved the case under the assumption (H4) for traveling

wave solutions and in [17], the authors also assumed (H4). Then the following is an open

question.

Open problem 2. It also remains open whether a general spatially periodic monostable

equation with nonlocal dispersal in RN with N ≥ 3 has traveling wave solutions connecting

the spatially periodic positive stationary solution u+ and 0 and propagating with constant

speeds.

If we add the temporal variable t to the growth rate function f , the following problem

is of great biological interest and is very challenging mathematically.

Open problem 3. How about the spatial spread and front propagation dynamics of the

nonlocal monostable equations involving both space and temporal variations, which is modeled

by the following equation,

∂u

∂t
=

∫
RN
k(y − x)u(t, y)dy − u(t, x) + u(t, x)f(t, x, u(t, x)), x ∈ Ω? (8.1)
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As for my future research plan, here are some of the problems I attempt to study in the

near future.

• I would like to continue my study on spatial spread and front propagation dynamics of

monostable stable equations with nonlocal dispersal, in particular, I plan to investigate the

open problems mentioned above.

• I would like to investigate the front propagation dynamics of other types of evolution

equations with nonlocal dispersal arising in applied problems, including nonlocal evolution

equations with combustion type and bistable type nonlinearities.

• I also would like to extend my study of evolution equations with deterministic inhomo-

geneity to equations with random inhomogeneity.
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