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Abstract
Clatworthy described the eleven group divisible designs with three groups, block size
four, and replication number at most 10. Each of these can be generalized in natural ways.
In this dissertation neat constructions are provided for these new families of group divisible
designs. In a previous paper the existence of one such design was settled. Here we essentially
settle the existence of generalizations of eight of the remaining ten Clatworthy designs. In
each case (namely,  1 = 4 and  2 = 5,  1 = 4 and  2 = 2,  1 = 8 and  2 = 4,  1 = 2 and
 2 = 1,  1 = 10 and  2 = 5,  1 = 6 and  2 = 3,  1 = 3 and  2 = 1, and  1 = 6 and  2 = 2),
we have proved that the necessary conditions found are also su cient for the existence of
such GDD?s with block size four and three groups, with one possible exception.
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Chapter 1
Introduction
In this dissertation, a group divisible design GDD(n;m;k; 1; 2) is de ned to be an
ordered pair (V;B), where V is a set of mn elements called symbols, together with a partition
of V into m sets of size n, each element of which is called a group, and a collection B of
k-subsets of V called blocks, such that each pair of symbols occurring in the same group
appears together in precisely  1 blocks, while each pair of symbols occurring in di erent
groups appears together in exactly  2 blocks. Symbols occuring in the same or di erent
groups are known as  rst or second associates respectively. A restricted version of this
original de nition with  1 = 0 is more commonly used as the de nition of GDD in the
milieu of combinatorial designs; in this setting, a GDD(n;m;k; 0; ) is more commonly
known as a (k; )-GDD of type nm. The existence of a GDD(n;m;3; 1; 2) was completely
settled by Fu, Rodger, and Sarvate [5, 6]. The most di cult and novel constructions were
required when the number of groups, m, was less than k, namely when m = 2 [5]. The
existence of GDDs when m<k is, in general, a di cult case to solve. Indeed, when k = 4,
little is known about the existence of such GDDs. For example, when k = 4 Henson, Hurd,
and Sarvate [9, 11, 12] reported existence results for GDDs that are necessary and su cient
for small values of m and n, and were then used to construct some in nite families of GDDs.
They also considered a restricted version of the problem in which the number of symbols
in each block in any group had the same parity as in any other group. Hurd, Mishra, and
Sarvate [10] reported some results when k = 5 and m = 6. Clatworthy?s table from 1973 [2]
lists eleven such designs (all with replication number at most 10). (See Table 1)
Recently Henson and Sarvate [8] generalized one of these 11 designs, namely R127,
proving the following theorem.
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name n m k  1  2
S1 2 3 4 2 1
S2 2 3 4 4 2
S3 2 3 4 6 3
S4 2 3 4 8 4
S5 2 3 4 10 5
R96 2 3 4 4 5
R104 3 3 4 3 1
R105 3 3 4 6 2
R111 4 3 4 2 3
R117 5 3 4 1 2
R127 8 3 4 2 1
Table 1.1: Clatworthy?s Table
Theorem 1.1. There exists a GDD(n;3;4; 2;1) if and only if n 2 (mod 6).
In this dissertation we provide necessary and su cient conditions for the existence of
designs which generalize eight more designs in the Clatworthy table. The construction used
for two such designs, namely, R96 and S2 (see Theorem 3.1 and Theorem 4.1), is a neat
method that can also be used to provide another proof of Theorem 1.1. We also provide a
similar generalization of S4 in the Clatworthy table (see Corollary 4.1.1), easily following
from Theorem 4.1. Nestings are introduced and used in the generalizations of the rest of the
designs, namely, S1, S5, S3, R104, and R105 (see Theorem 5.1, Corollary 5.1.1, Theorem
6.1, Theorem 7.1, and Theorem 8.1 respectively). These results were successfully submitted
for review in two papers, one published in 2010 by the Journal of Statistical Planning and In-
ference [13], the other accepted for publication by the Journal of Combinatorial Mathematics
and Combinatorial Computing [14].
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Chapter 2
Preliminaries
The neat method mentioned in the previous section makes use of holey self orthogonal
latin squares(HSOLSs). For the purposes of this dissertation, it is convenient to de ne
H(n) =
8
>>>>
<
>>>>
:
ff2i;2i+ 1g f2i;2i+ 1gji2Zn=2g if n is even
ff2i 1;2ig f2i 1;2igji2(Zbn=2cnZ3)g[(Z5 Z5) if n is odd
and n 17
Each element h of H(n) is a subset of Zn Zn called a hole. A HSOLS of order n and
of type 2n=2 if n is even and of type 2(n 5)=251 if n is odd, on the set of symbols Zn with holes
in H(n), is an n n array, L, in which:
1. Each cell (x;y) in L contains at most one symbol, containing no symbols if and only
if (x;y) 2h for some h2H(n);
2. Each symbol x occurs in row y of L if and only if (x;y) =2h for all h2H(n);
3. Each symbol x occurs in column y of L if and only if (x;y) =2h for all h2H(n); and
4. For each (x;y) in no hole of H(n), there is exactly one ordered pair (k;l) such that in
L, cell (k;l) contains x and cell (l;k) contains y.
Throughout this dissertation we will adopt quasigroup notation by denoting the symbol
in cell (i;j) of a HSOLS by i j. The set H(n) will also be routinely used. From Existence
of frame SOLS of type anb1 by Xu, Zhang, and Zhu [16] (or Theorem 5.18 in [3] on page
214) we obtain the following result.
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Theorem 2.1. Let n 6. There exists a HSOLS of order n and
1. type 2n=2 if n is even; and
2. type 2(n 5)=251 if and only if n 17 and n is odd.
We also use the following design constructed by Brouwer, Schrijver, and Hanani [1] (for
a more general setting see also [17] and Theorem 4.6 in [7] on page 256).
Theorem 2.2. Necessary and su cient conditions for the existence of a (4; )-GDD of type
mu are:
1. u 4,
2.  (u 1)m 0 (mod 3), and
3.  u(u 1)m2  0 (mod 12),
with the exception of (m;u; )2f(2;4;1);(6;4;1)g, in which case no such GDD exists.
It is also fruitful to describe these designs as graph decompositions, each symbol being
represented by a vertex. Let G(n;3; 1; 2) be the graph with vertex set Zn Z3 in which
(u;i) is joined to (v;j) with
1.  1 edges if i = j, and
2.  2 edges if i6= j.
Then a GDD(n;3;4; 1; 2) is clearly equivalent to a partition of the edges of
G(n;3; 1; 2) into sets of size 6, each of which induces a copy of K4; for each i2Z3, Zn fig
is a group. These two notions will be used interchangeably throughout this dissertation.
To complete these designs we must  rst de ne the nesting of a GDD. A nesting of a
GDD(V;P;B) with associated graph G(n;3; 1; 2) is de ned to be a function of f : B!V
4
such that ffx;f(b)gjx2b2Bg= E(G(n;3; 1; 2)). More informally, a GDD with block
size 3 is said to be nested if a fourth point can be added to each block such that the edges
gained from the nesting cover precisely the same edges as the original GDD. So each pair
fu;vgof vertices occurs together in twice as many blocks of size 4 in the nested design as the
number of triples containingfu;vgin the original GDD. We will use the following theorem
provided by Jin Hua Wang [15].
Theorem 2.3. There exists a nesting of a GDD(t;n;3; 1 = 0; 2 =  ) if and only if
 t(n 1) 0 (mod 6) and n 4.
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Chapter 3
Generalizing Clatworthy Design R96
In this chapter we generalize R96-designs (see Figure 3.1), completely settling their
existence. For completeness, we present a cyclic construction for the smallest R96-design.
Figure 3.1: R96
Lemma 3.0.1. There exists a GDD(2;3;4; 4;5).
Proof. (Z6;B) with B =ffi;i+1;i+3;i+5g;fi;i+1;i+2;i+5gji2Z6gis such a design,
where the groups are (i;i+ 3) for each i2Z3. (See Figure 3.2.)
We now use this small R96-design to obtain the following result.
Theorem 3.1. There exists a GDD(n;3;4; 4;5) if and only if n 2 (mod 6).
Proof. We start by proving the necessity, so suppose there exists a GDD(n;3;4; 4;5). Let us
begin by looking at the number of blocks. Since each block contains six edges, the number
of blocks in any such design is
6
Figure 3.2: R96, n = 3
b = jE(G(n;3; 4;5))j6 = 3(
4n(n 1)
2 + 5n
2)
6 =
7n2 2n
2 :
Clearly the number of blocks is an integer, so n must be even.
Each time a vertex (u;i) is used in a block, 3 of its incident edges are used. So the
number of blocks containing (u;i) is
dG(n;3;4;5)(u;i) = 4(n 1) + 10n3 = 143 n 43;
which also must be an integer. So n 2 (mod 3). So n 2 (mod 6) is a necessary
condition.
Next we prove the su ciency, so suppose that n 2 (mod 6). We will show there exists
a GDD(n;3;4; 4;5), (Zn Z3;B) with groups Zn flg for each l2Z3. Since Lemma 3.0.1
produces a GDD(2;3;4; 4;5), we can assume that n 8. The design will be described as a
graph decomposition of the graph G(n;3; 4;5).
For each i2Zn=2 let B(i) be a copy of R96 on the vertices in C(i) =f2i;2i+ 1g Z3,
where for each l 2 Z3, f2i;2i + 1g flg is a group. Since n  8 > 6, by Theorem 2.1
we can let S be a HSOLS of order n and of type 2n=2 on the set of symbols, Zn with
holes in H(n). By Theorem 2.2 (since n  8 and u = n=2  4), for each l 2 Z3 let
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B0(l) be a copy of a (4;2)-GDD of type 2n=2 on the vertex set Zn  flg with groups in
H0(l) =ff2i;2i+ 1g flgji2Zn=2g. Then de ne the blocks in the design as follows:
B = (Si2Zn=2 B(i)) [ (Sl2Z3 B0(l))
[ff(i;a);(j;a);(i j;a+ 1);(j i;a+ 2)gj0 i;j <n;(i;j) =2h for each
h2H(n), a2Z3g,
reducing the sum in the second component of each vertex modulo 3.
We  rst count the number blocks we get in the construction to see if it equals b =
(7n2 2n)=2 (calculated above when proving the necessity).
jBj = j(Si2Zn=2 B(i))j+j(Sl2Z3 B0(l))j
+j(f(i;a);(j;a);(i j;a+ 1);(j i;a+ 2)j0 i;j <n;(i;j) =2h for each
h2H(n), a2Z3g)j
= (12)(n=2) + 3(n(n 1) n6 ) + 3(2( n2  (n=2)))
= 6n+ n(n 1) n2 + (3n)(n 1) (3n)
= 7n2 2n2
Since jBj = b it su ces to check that each edge occurs in at least the correct number
(that is,  1 or  2) of blocks in B. We consider each edge, e =f(x;a);(y;b)g, in turn.
1. Suppose e joins two vertices in C(i) for some i2Zn=2. Then clearly e occurs in  1 = 4
blocks in B(i) if e joins two vertices in the same group and e occurs in  2 = 5 blocks
in B(i) if e joins two vertices in di erent groups, as required.
2. Next suppose that e =f(x;a);(y;a)gfor some a2Z3 and 0 x;y<n where for each
i2Zn=2, e does not join two vertices in C(i). The  1 = 4 blocks containing the edge
f(x;a);(y;a)g are as follows:
f(x;a);(y;a);(x y;a + 1);(y x;a + 2)g, f(x;a);(y;a);(y x;a + 1);(x y;a + 2)g,
and two blocks in B0(a).
3. Finally suppose e =f(x;a);(y;b)g where a;b2Z3, a6= b and where for each i2Zn=2,
e does not join two vertices in C(i). We can assume that b  a + 1 (mod 3). By
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properties (2) and (3) of a HSOLS, there exist unique symbols z1;:::;z4 in S such that
x z1 = y, z2  x = y, y z3 = x, and z4  y = x. By property (4) of a HSOLS,
there exists a unique pair z5;z6 in S such that z5 z6 = x and z6 z5 = y. Therefore
e =f(x;a);(y;b = a+ 1)g occurs in the following  2 = 5 blocks:
f(x;a);(z1;a);(y = x z1;a+ 1);(z1 x;a+ 2)g,f(x;a);(z2;a);(y = z2 x;a+ 1);(x 
z2;a+2)g,f(y;a+1);(z3;a+1);(z3 y;a+2);(x = y z3;a)g,f(z4;a+1);(y;a+1);(y 
z4;a+2);(x = z4 y;a)g, andf(z5;a+2);(z6;a+2);(x = z5 z6;a);(y = z6 z5;a+1)g.
Thus, every edge is covered the correct number of times by the blocks, so n 2 (mod
6) is a su cient condition for a GDD(n;3;4; 4;5) to exist.
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Chapter 4
Generalizing Clatworthy Design S2
With one exception, the existence of generalized S2-designs (see Figure 4.1) is settled
in this section. We use a similar construction that is used in the previous section. As before,
we  rst  nd some small S2-designs.
Figure 4.1: S2
Lemma 4.0.2. There exists a GDD(2;3;4; 4;2), and a GDD(5;3;4; 4;2).
Proof. To produce a GDD(2;3;4; 4;2), let V = Z2 Z3 and B = ff(i;a);(i + 1;a);(i;a +
1);(i+ 1;a+ 1)gji2Z2;a2Z3g; for each l2Z3, Z2 flg is a group. (See Figure 4.2.)
When n = 5, 3 base blocks are provided that can be rotated \vertically and horizontally"
producing 45 blocks as required (see ( ) below). Formally, a GDD(5;3;4; 4;2) is produced
by (Z5 Z3;B), where
B = ff(i;a);(i + 1;a);(i + 2;a);(i + 3;a)g;f(i;a);(i + 2;a);(i + 1;a + 1);(i + 1;a +
2)g;f(i;a);(i+ 1;a);(i+ 3;a+ 1);(i+ 3;a+ 2)gji2Z5;a2Z3g,
and where for each l2Z3, Z5 flg is a group. (See Figure 4.3.)
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Figure 4.2: S2, n = 2
Figure 4.3: S2, n = 5
We now use these small S2-designs to obtain the following result.
Theorem 4.1. There exists a GDD(n;3;4; 4;2) if and only if n 2 (mod 3), except possibly
if n = 11.
Proof. Again, we start by proving the necessity, so suppose there exists a
GDD(n;3;4; 4;2). Each block containing a vertex (u;i) uses 3 of its incident edges. So
the number of blocks containing (u;i) is
dG(n;3;4;2)(u;i) = 4(n 1) + 4n3 = 8n 43 ;
which must be an integer. Thus n 2 (mod 3) is a necessary condition.
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To prove the su ciency we assume that n 2 (mod 3), n6= 11, and show there exists
a GDD(n;3;4; 4;2). We will consider two cases in turn: n 2 (mod 6) and n 5 (mod 6).
First, suppose n 2 (mod 6). Since Lemma 4.0.2 produces a GDD(2;3;4; 4;2), we can
assume that n 8.
For each i2Zn=2 let B(i) be a copy of S2 on the vertices in C(i) = f2i;2i + 1g Z3,
where for each l 2 Z3, f2i;2i + 1g flg is a group. Since n  8 > 6, by Theorem 2.1
we can let S be a HSOLS of order n and of type 2n=2 on the set of symbols, Zn, with
holes in H(n). By Theorem 2.2 (since n  8 and u = n=2  4), for each l 2 Z3 let
B0(l) be a copy of a (4;2)-GDD of type 2n=2 on the vertex set Zn  flg with groups in
H0(l) =ff2i;2i+ 1g flgji2Zn=2g. Then de ne the blocks in the design as follows:
B = (Si2Zn=2 B(i)) [ (Sl2Z3 B0(l))
[ff(i;a);(j;a);(i j;a+ 1);(j i;a+ 1)gj0 i<j <n;(i;j)62h for
each h2H(n), a2Z3g,
reducing the sum in the second component of each vertex modulo 3.
First we check to see the right number of blocks has been de ned. Since each block
contains six edges, the number of blocks in any such design is
b = jE(G(n;3; 4;2))j6 = 3(
4n(n 1)
2 + 2n
2)
6 = 2n
2 n: ( )
We now count the number of blocks we get in our construction to see if it equals
b = 2n2 n.
12
jBj = j(Si2Zn=2 B(i))j+j(Sl2Z3 B0(l))j
+j(f(i;a);(j;a);(i j;a+ 1);(j i;a+ 1)j0 i<j <n;(i;j)62h for
each h2H(n), a2Z3g)j
= (6)(n=2) + 3(((
n
2) 
n
2 )2
6 ) + 3(
 n
2
  (n=2))
= 3n+ n(n 1) n2 + 3(n(n 1) n2 )
= 3n+ 4(n(n 1) n2 )
= 3n+ 2n2 4n
= 2n2 n
Since jBj = b it su ces to check that each edge occurs in at least the correct number
(that is,  1 or  2) of blocks in B. We consider each edge, e, in turn.
1. Suppose e joins two vertices in C(i) for some i2Zn=2. Then clearly e occurs in  1 = 4
blocks in B(i) if e joins two vertices in the same group and e occurs in  2 = 2 blocks
in B(i) if e joins two vertices in di erent groups, as required.
2. Next suppose that e = f(x;a);(y;a)g for some a2Z3 and 0  x < y < n where for
each i2Zn=2, e does not join two vertices in C(i). By property (4) of a HSOLS there
exists a unique pair of symbols z1;z2 in S such that z1 z2 = x and z2 z1 = y. The
 1 = 4 blocks containing the edge f(x;a);(y;a)g are as follows:
f(x;a);(y;a);(x y;a+ 1);(y x;a+ 1)g, f(z1;a+ 2);(z2;a+ 2);(x = z1 z2;a);(y =
z2 z1;a)g, and in two blocks in B0(a).
3. Finally suppose e =f(x;a);(y;b)g where a;b2Z3, a6= b and where for each i2Zn=2,
e does not join two vertices in C(i), say b a+ 1 (mod 3). By properties (2) and (3)
of a HSOLS, there exist unique symbols z3;z4 in S such that x z3 = y and z4 x = y.
Then edge f(x;a);(y;b = a+ 1)g occurs in the following  2 = 2 blocks:
f(x;a);(z3;a);(y = x z3;a+ 1);(z3 x;a+ 1)gandf(x;a);(z4;a);(x z4;a+ 1);(y =
z4 x;a+ 1)g.
Thus, n 2 (mod 6) is a su cient condition for a GDD(n;3;4; 4;2) to exist.
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Now suppose n 5 (mod 6). Again, the smallest case when n = 5 is constructed in
Lemma 4.0.2, and the case n = 11 is excluded in the theorem, so we can assume that n 17.
For eachi2(Zbn=2cnZ3) letB(i) be a copy ofS2 on the vertices inC(i) =f2i 1;2ig Z3,
where for each l2Z3, f2i 1;2ig flg is a group. Let B(2) be the GDD(5;3;4; 4;2) from
Lemma 4.0.2. Since n  17 > 6, by Theorem 2.1 we can let S be a HSOLS of order n
and of type 2(n 5)=251 on the set of symbols Zn, with holes in H(n). By Theorem 2.2 (since
n 17 and u = (n 5)=2 6 > 4), for each l2Z3 let B0(l) be a copy of a (4;2)-GDD of
type 2(n 5)=251 on the vertex set Zn flg with groups in H0(l) = fff2i 1;2ig flgji2
Zbn=2cnZ3g[(Z5 flg)g. Then de ne the blocks in the design as follows:
B = (Si2(Zbn=2cnZ2)B(i)) [ (Sl2Z3 B0(l))
[ff(i;a);(j;a);(i j;a+ 1);(j i;a+ 1)gj0 i<j <n;(i;j)62h for
each h2H(n), a2Z3g,
reducing the sum in the second component of each vertex modulo 3.
We  rst count the number of blocks we get in our construction to see if it equals
b = 2n2 n (see ( )).
jBj = j(Si2(Zbn=2cnZ2)B(i))j+j(Sl2Z3 B0(l))j
+j(f(i;a);(j;a);(i j;a+ 1);(j i;a+ 1)j0 i<j <n;(i;j)62h for
each h2H(n), a2Z3g)j
= 45 + (6)(n 52 ) + 3(((
n
2) 
n 5
2  10)2
6 ) + 3(
 n
2
  n 5
2  10)
= 45 + 3n 15 + (n(n 1) n 152 ) + 3(n(n 1) n 152 )
= 30 + 3n+ 4(n2 2n 152 )
= 30 + 3n+ 2n2 4n 30
= 2n2 n
Since jBj = b it su ces to check that each edge occurs in at least the correct number
(that is,  1 or  2) of blocks in B; the proof is essentially identical to the previous case, so is
left to the reader.
Thus, n 5 (mod 6) is a su cient condition for a GDD(n;3;4; 4;2) to exist.
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4.1 A Corollary - Generalizing S4
It turns out that the necessary conditions for the existence of a GDD(n;3;4; 8;4),
generalizing the Clatworthy design S4, are the same as for the existence of a
GDD(n;3;4; 4;2) (i.e. S2-design). So we immediately obtain the following corollary.
Corollary 4.1.1. There exists a GDD(n;3;4; 8;4) if and only if n  2 (mod 3), except
possibly if n = 11.
Proof. The necessity follows since the degree of each vertex, namely (8(n 1) + 8n)=3 must
be an integer. The su ciency follows by taking two copies of the S2-design constructed in
Theorem 4.1.
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Chapter 5
Generalizing Clatworthy Design S1
We  rst  nd a small S1-design.
Figure 5.1: S1
Lemma 5.0.2. There exists a GDD(2;3;4; 2;1).
Proof. To produce a GDD(2;3;4; 2;1), let V = Z2  Z3 and B = ff(0;a);(1;a);(0;a +
1);(1;a+ 1)gja2Z3g; for each l2Z3, Z2 flg is a group. (See Figure 5.2.)
Figure 5.2: S1, n = 2
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Theorem 5.1. There exists a GDD(n;3;4; 2;1) if and only if n 2 (mod 6).
Proof. We start by proving the necessity, so suppose there exists a
GDD(n;3;4; 2;1). Since each block contains six edges, the number of blocks in any
such design is
b = jE(G(n;3; 2;1))j6 = 3(
2n(n 1)
2 + 3n
2)
6 = n
2 n
2:
Clearly the number of blocks is an integer, so n must be even.
For each block, each vertex contains 3 of its incident edges. So the number of blocks
containing each vertex v is
dG(n;3;2;1)(v) = 2(n 1) + 2n3 = 4n 23 ;
which must be an integer. Thus n 2 (mod 3). Since n must also be even, n 2 (mod
6) is a necessary condition.
Next we prove the su ciency, so suppose that n 2 (mod 6). We will show there exists
a GDD(n;3;4; 2;1), (Zn Z3;B) with groups Zn flg for each l2Z3. Since Lemma 5.0.2
produces a GDD(2;3;4; 2;1), we can assume that n 8. The design will be described as a
graph decomposition of the graph G(n;3; 2;1).
For each i2Zn=2, let B(i) be a copy of S2 on the vertices in C(i) =f2i;2i + 1g Z3,
where for each l2Z3, f2i;2i + 1g flg is a group. By Theorem 2.3, there exists a (3;1)-
GDD, (Zn;ff2i;2i + 1gj i 2 Zn=2g;B1), that has nesting f of type 2n=2. Let B1(l) =
ff(x;l);(y;l);(z;l);(f(b);l+ 1)g;f(x;l+ 1);(y;l+ 1);(z;l+ 1);(f(b);l)gjl2Z3;fx;y;zg2
B1g, reducing the sums in the second coordinate of each vertex modulo 3. Then de ne the
blocks in the design as follows:
B = (Si2Zn=2 B(i)) [ (Sl2Z3 B1(l))
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We  rst count the number of blocks we get in the construction to see if it equalsb = n2 n2
(calculated above when proving the necessity).
jBj = j(Si2Zn=2 B(i))j+j(Sl2Z3 B1(l))j
= (3)(n=2) + (2)(3)((n(n 1) n2 )=3)
= 3n2 + 2(n(n 1) n)2
= 3n+2n2 2n 2n2
= 2n2 n2
= n2 n2
Since jBj = b it su ces to check that each edge occurs in at least the correct number
(that is,  1 or  2) of blocks in B. We consider each edge, e =f(x;a);(y;b)g, in turn.
1. Suppose e joins two vertices in C(i) for some i2Zn=2. Then clearly e occurs in  1 = 2
blocks in B(i) if e joins two vertices in the same group and e occurs in  2 = 1 block in
B(i) if e joins two vertices in di erent groups, as required.
2. Next suppose that e =f(x;a);(y;a)gfor some a2Z3 and 0 x;y<n where for each
i2Zn=2, e does not join two vertices in C(i). Letfx;y;z1gbe the triple in B1(a) that
containsfx;yg, and suppose f(fx;y;z1g) = z2 is the vertex added to the triple by the
nesting. Then the  1 = 2 blocks containing the edge f(x;a);(y;a)g are as follows:
f(x;a);(y;a);(z1;a);(z2;a+ 1)g, f(x;a);(y;a);(z1;a);(z2;a+ 2)g.
3. Finally suppose e =f(x;a);(y;b)g where a;b2Z3, a6= b and where for each i2Zn=2,
e does not join two vertices in C(i). We can assume that b a + 1 (mod 3). Since
fx;yg2G(n;3; 2;1), exactly one of the following occurs: either there exists a triple
t1 = fx;z3;z4g2B1(a) such that f(t1) = y or there exists a triple t2 = fy;z3;z4g2
B1(a) such that f(t2) = x. Therefore e = f(x;a);(y;b = a + 1)g occurs in  2 = 1 of
the following blocks:
f(x;a);(z3;a);(z4;a);(y;a+ 1)g or f(x;a);(y;a+ 1);(z3;a+ 1);(z4;a+ 1)g.
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Thus, every edge is covered the correct number of times by the blocks, so n 2 (mod
6) is a su cient condition for a GDD(n;3;4; 2;1) to exist.
5.1 A Corollary - Generalizing S5
It turns out that the necessary conditions for the existence of a GDD(n;3;4; 10;5),
generalizing the Clatworthy design S5, are the same as for the existence of a
GDD(n;3;4; 2;1) (i.e. S1-design). So we immediately obtain the following corollary.
Corollary 5.1.1. There exists a GDD(n;3;4; 10;5) if and only if n 2 (mod 6).
Proof. The necessity follows since the degree of each vertex, namely (20n 10)=3 must be
an integer. The su ciency follows by taking  ve copies of the S1-design constructed in
Theorem 5.1.
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Chapter 6
Generalizing Clatworthy Design S3
To complete this design we will use the nesting described in the Preliminaries section,
as well as Theorem 2.3 provided by Jin Hua Wang [15].
Figure 6.1: S3
We  rst  nd a small S3-design.
Lemma 6.0.2. There exists a GDD(2;3;4; 6;3); and a GDD(4;3;4; 6;3).
Proof. To produce a GDD(2;3;4; 6;3), let V = Z2 Z3 and each l2Z3, Z2 flgis a group,
and take three copies of each block produced in the small S1-design described in the proof
of Lemma 5.0.2. (See Figure 6.2.)
When n = 4, four base blocks are provided that can be rotated \vertically and hor-
izontally" producing 42 blocks as required. Formally, a GDD(4;3;4; 6;3) is produced by
(Z4 Z3;B), where
B = ff(i;a);(i + 1;a);(i + 2;a);(i;a + 1)g;f(i;a);(i + 1;a);(i + 1;a + 1);(i + 2;a +
1)g;f(i;a);(i + 2;a);(i;a + 1);(i + 3;a + 2)gj i 2 Z4;a 2 Z3g[ff(i;a);(i + 1;a);(i +
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Figure 6.2: S3, n = 2 (Take 3 copies of each K4)
2;a);(i+ 3;a)gji2Z2;a2Z3g, and where for each l2Z3, Z4 flgis a group. (See Figure
6.3.)
Figure 6.3: S3, n = 4 (The top K4 only rotates halfway horizontally on each level)
Theorem 6.1. There exists a GDD(n;3;4; 6;3) if and only if n is even, except possibly if
n = 6.
Proof. We start by proving the necessity, so suppose there exists a
GDD(n;3;4; 6;3). Since each block contains six edges, the number of blocks in any
such design is
b = jE(G(n;3; 6;3))j6 = 3(
6n(n 1)
2 ) + 3(3n
2)
6 = 3n
2 3n
2 :
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Clearly the number of blocks is an integer, so n must be even.
For each block, each vertex contains 3 of its incident edges. So the number of blocks
containing each vertex v is
dG(n;3;6;3)(v) = 6(n 1) + 2(3n)3 = 4n 2;
which makes no restrictions on n. Thus n is even is a necessary condition.
To prove the su ciency we assume that n is even, n 6= 6, and show there exists a
GDD(n;3;4; 6;3). We will consider three cases in turn: n 2 (mod 6), n 4 (mod 6), and
n 0 (mod 6).
First suppose n  2 (mod 6). Since n  2 (mod 6) is the necessary condition for
the existence of a GDD(n;3;4; 2;1) (i.e. S1-design), we immediately obtain the following
corollary.
Corollary 6.0.3. There exists a GDD(n;3;4; 6;3) if and only if n 2 (mod 6)
Proof. The necessity follows since the number of blocks, namely 3n2 3n2 must be an integer.
The su ciency follows by taking three copies of the S1-design constructed in Theorem
5.1.
Now suppose n 4 (mod 6). Since Lemma 6.0.2 produces a GDD(4;3;4; 6;3), we can
assume that n 10. The design will be described as a graph decomposition of the graph
G(n;3; 6;3).
For each i2Zn=2, let B(i) be a copy of S3 on the vertices in C(i) =f2i;2i + 1g Z3,
where for each l2Z3, f2i;2i + 1g flg is a group. By Theorem 2.3, there exists a (3;3)-
GDD, (Zn;ff2i;2i + 1gj i 2 Zn=2g;B1), that has nesting f of type 2n=2. Let B1(l) =
ff(x;l);(y;l);(z;l);(f(b);l+ 1)g;f(x;l+ 1);(y;l+ 1);(z;l+ 1);(f(b);l)gjl2Z3;fx;y;zg2
B1g, reducing the sums in the second coordinate of each vertex modulo 3. Then de ne the
blocks in the design as follows:
22
B = (Si2Zn=2 B(i)) [ (Sl2Z3 B1(l))
We  rst count the number of blocks we get in the construction to see if it equals b =
3n2 3n2 (calculated above when proving the necessity).
jBj = j(Si2Zn=2 B(i))j+j(Sl2Z3 B1(l))j
= (9)(n=2) + (3)(2)(3)((n(n 1) n2 )=3)
= 9n2 + 6(n(n 1) n)2
= 9n+6n2 6n 6n2
= 6n2 3n2
= 3n2 3n2
Since jBj = b it su ces to check that each edge occurs in at least the correct number
(that is,  1 or  2) of blocks in B. We consider each edge, e =f(x;a);(y;b)g, in turn.
1. Suppose e joins two vertices in C(i) for some i2Zn=2. Then clearly e occurs in  1 = 6
blocks in B(i) if e joins two vertices in the same group and e occurs in  2 = 3 block in
B(i) if e joins two vertices in di erent groups, as required.
2. Next suppose that e = f(x;a);(y;a)g for some a 2 Z3 and 0  x;y < n where
for each i2 Zn=2, e does not join two vertices in C(i). Let fx;y;z1g;fx;y;z3g, and
fx;y;z5g be the triples in B1(a) that contain fx;yg, and suppose f(fx;y;z1g) = z2,
f(fx;y;z3g) = z4, and f(fx;y;z5g) = z6 are the vertices added to the triples by the
nesting. Then the  1 = 6 blocks containing the edge f(x;a);(y;a)g are as follows:
f(x;a);(y;a);(z1;a);(z2;a+ 1)g, f(x;a);(y;a);(z1;a);(z2;a+ 2)g, f(x;a);(y;a);
(z3;a);(z4;a + 1)g, f(x;a);(y;a);(z3;a);(z4;a + 2)g, f(x;a);(y;a);(z5;a);(z6;a + 1),
and f(x;a);(y;a);(z5;a);(z6;a+ 2).
3. Finally suppose e =f(x;a);(y;b)g where a;b2Z3, a6= b and where for each i2Zn=2,
e does not join two vertices in C(i). We can assume that b a + 1 (mod 3). Since
fx;yg2G(n;3; 6;3), exactly one of the following occurs for each of the  2 = 3 fx;yg
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edges: either there exists a triple t1 = fx;z7;z8g2 B1(a) such that f(t1) = y or
there exists a triple t2 = fy;z7;z8g2 B1(a) such that f(t2) = x. The same argu-
ment can be made for the other two fx;yg edges using fz9;z10;z11;z12g. Therefore
e =f(x;a);(y;b = a+ 1)g occurs in  2 = 3 of the following blocks:
f(x;a);(z7;a);(z8;a);(y;a+1)gorf(x;a);(y;a+1);(z7;a+1);(z8;a+1)g,f(x;a);(z9;a);
(z10;a);(y;a+1)gorf(x;a);(y;a+1);(z9;a+1);(z10;a+1)g, andf(x;a);(z11;a);(z12;a);
(y;a+ 1)g or f(x;a);(y;a+ 1);(z11;a+ 1);(z12;a+ 1)g.
Thus, n 4 (mod 6) is a su cient condition for a GDD(n;3;4; 6;3) to exist.
Now suppose n 0 (mod 6). Since n = 6 is the possible exception, we can assume that
n 12. Similarly to the n 4 (mod 6) case, there exists a (3;3)-GDD, (Zn;ff2i;2i + 1gj
i2Zn=2g;B1), that has nesting f of type 2n=2 by Theorem 2.3. Therefore, the arguments
for the n 0 (mod 6) case are essentially the same for the n 4 (mod 6) case.
Thus, n 0 (mod 6) is a su cient condition for a GDD(n;3;4; 6;3) to exist.
24
Chapter 7
Generalizing Clatworthy Design R104
With two possible exceptions, the existence of a generalized R104-design (see Figure
7.1) is settled in this section. We use a similar construction that is used in the previous
section. As before, we  rst  nd some small R104-designs.
Figure 7.1: R104
Lemma 7.0.4. There exists a GDD(3;3;4; 3;1), and a GDD(12;3;4; 3;1).
Proof. To produce a GDD(3;3;4; 3;1), let V = Z3  Z3 and B = ff(i;a);(i + 1;a);(i +
2;a);(i;a+ 1)gji2Z3;a2Z3g; for each l2Z3, Z3 flg is a group. (See Figure 7.2.)
When n = 12, 4 base blocks are provided that can be rotated producing 144 blocks
towards the required number of blocks. Let the 36 vertices be labeled 0;1;2;:::;35 and
partitioned into three groups such that vertices with labels that are 0 (mod 3) are one group, 1
(mod 3) are the second group, and 2 (mod 3) are the third group. Then consider the following
four blocks: f0;2;6;9g;f0;9;10;22g;f0;6;18;21g, and f0;8;20;25g. (See Figure 7.3; the
 rst block is depicted.) When these four blocks are rotated they cover the edges of di erence
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Figure 7.2: R104, n = 3
3;6;9;15;18 twice, di erence 12 three times, and di erences 1;2;4;5;7;8;10;11;13;14;16;17
once. In other words, we have covered the mixed edges the required one time and the pure
edges two of the required three times, with the exception of the pure edges of di erence 12
which are completely covered. Finally, to cover the pure edges that are left we use Theorem
2.2; this exists since n = 12 and u = n=3  4, to put a (4;1) GDD of type 3n=3 on each
level with group Gi. The edges of di erence 12 make 4 triangles so the vertices in each
triangle form a group in the (4;1) GDD of type 34. On each level, the (4;1) GDD of
type 3n=3 produces 9 blocks for a total of 27 blocks. Thus, the 144 + 27 = 171 which is the
required number of blocks (see ( ) below).
Figure 7.3: R104, n = 12; the  rst block of four base blocks is depicted
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Theorem 7.1. There exists a GDD(n;3;4; 3;1) if and only if n  0;3 (mod 12), except
possibly if n = 24;36.
Proof. We start by proving the necessity, so suppose there exists a
GDD(n;3;4; 3;1). Since each block contains six edges, the number of blocks in any
such design is
b = jE(G(n;3; 3;1))j6 = 3(
3n(n 1)
2 ) + 3(n
2)
6 =
5n2 3n
4 : ( )
Clearly the number of blocks is an integer, so n 0;3 (mod 12).
For each block, each vertex contains 3 of its incident edges. So the number of blocks
containing each vertex v is
dG(n;3;3;1)(v) = 3(n 1) + 2(n)3 = 53n 3;
which means n 0 (mod 3). Thus n 0;3 (mod 12) is a necessary condition.
To prove the su ciency we assume that n 0;3 (mod 12), n6= 24;36, and show there
exists a GDD(n;3;4; 3;1). We will consider two cases in turn: n 3 (mod 12) and n 0
(mod 12), n 48.
First suppose n 3 (mod 12). Since Lemma 7.0.4 produces a GDD(3;3;4; 3;1), we can
assume that n 15. The design will be described as a graph decomposition of the graph
G(n;3; 3;1).
For each i 2 Zn=3, let B(i) be a copy of R104 on the vertices in C(i) = f3i;3i +
1;3i + 2g Z3, where for each l 2 Z3, f3i;3i + 1;3i + 2g flg is a group. By Theorem
2.3, there exists a (3;1)-GDD, (Zn;ff3i;3i + 1;3i + 2gji2 Zn=3g;B1), that has nesting
f of type 3n=3. Let B1(l) = ff(x;l);(y;l);(z;l);(f(b);l + 1)g;f(x;l + 1);(y;l + 1);(z;l +
1);(f(b);l)gjl 2Z3;fx;y;zg2B1g, reducing the sums in the second coordinate of each
vertex modulo 3. By Theorem 2.2 (since n  15 and u = n=3  4), for each l 2 Z3 let
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B0(l) be a copy of a (4;1) GDD of type 3n=3 on the vertex set Zn flg with groups in
ff3i;3i+ 1;3i+ 2g flgji2Zn=3g. Then de ne the blocks in the design as follows:
B = (Si2Z3 B(i)) [ (Sl2Z3 B1(l)) [ (Sl2Z3 B0(l))
We  rst count the number of blocks we get in the construction to see if it equals b =
5n2 3n
4 (calculated above when proving the necessity).
jBj = j(Si2Z3 B(i))j+j(Sl2Z3 B1(l))j+j(Sl2Z3 B0(l))j
= (9)(n=3) + (2)(3)((n(n 1) 2n2 )=3) + 3(((
n
2) n)
6 )
= 9n3 +n2 n 2n+
n(n 1)
2  n
2
= 3n+n2 3n+ n2 n4  n2
= 4n2+n2 n 2n4
= 5n2 3n4
Since jBj = b it su ces to check that each edge occurs in at least the correct number
(that is,  3 or  1) of blocks in B. We consider each edge, e =f(x;a);(y;b)g, in turn.
1. Suppose e joins two vertices in C(i) for some i2Zn=3. Then clearly e occurs in  1 = 3
blocks in B(i) if e joins two vertices in the same group and e occurs in  2 = 1 block in
B(i) if e joins two vertices in di erent groups, as required.
2. Next suppose that e =f(x;a);(y;a)gfor some a2Z3 and 0 x;y<n where for each
i2Zn=2, e does not join two vertices in C(i). Letfx;y;z1gbe the triple in B1(a) that
containsfx;yg, and suppose f(fx;y;z1g) = z2 is the vertex added to the triple by the
nesting. Then the  1 = 3 blocks containing the edge f(x;a);(y;a)g are as follows:
f(x;a);(y;a);(z1;a);(z2;a+ 1)g, f(x;a);(y;a);(z1;a);(z2;a+ 2)g, and in one block in
B0(a).
3. Finally suppose e =f(x;a);(y;b)g where a;b2Z3, a6= b and where for each i2Zn=2,
e does not join two vertices in C(i). We can assume that b a + 1 (mod 3). Since
fx;yg2G(n;3; 3;1), exactly one of the following occurs: either there exists a triple
t1 = fx;z3;z4g2B1(a) such that f(t1) = y or there exists a triple t2 = fy;z3;z4g2
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B1(a) such that f(t2) = x. Therefore e = f(x;a);(y;b = a + 1)g occurs in  2 = 1 of
the following blocks:
f(x;a);(z3;a);(z4;a);(y;a+ 1)g or f(x;a);(y;a+ 1);(z3;a+ 1);(z4;a+ 1)g.
Thus, n 3 (mod 12) is a su cient condition for a GDD(n;3;4; 3;1) to exist.
Now suppose n 0 (mod 12), n 48.
For each i2Zn=12, let B(i) be a copy of the GDD(12;3;4; 3;1) created in Lemma 7.0.4
on the vertices in C(i) =f12i;12i+ 1;12i+ 2;12i+ 3;12i+ 4;12i+ 5;12i+ 6;12i+ 7;12i+
8;12i+ 9;12i+ 10;12i+ 11g Z3, where for each l2Z3,f12i;12i+ 1;12i+ 2;12i+ 3;12i+
4;12i+ 5;12i+ 6;12i+ 7;12i+ 8;12i+ 9;12i+ 10;12i+ 11g flg is a group. By Theorem
2.3, there exists a (3;1) GDD, (Zn;ff12i;12i + 1;12i + 2;12i + 3;12i + 4;12i + 5;12i +
6;12i + 7;12i + 8;12i + 9;12i + 10;12i + 11gji2Zn=12g;B1), that has nesting f of type
12n=12. Let B1(l) =ff(x;l);(y;l);(z;l);(f(b);l+1)g;f(x;l+1);(y;l+1);(z;l+1);(f(b);l)gj
l2Z3;fx;y;zg2B1g, reducing the sums in the second coordinate of each vertex modulo
3. By Theorem 2.2 (since n 48 and u = n=3 4), for each l2Z3 let B0(l) be a copy of a
(4;1) GDD of type 12n=12 on the vertex set Zn flg with groups in ff12i;12i + 1;12i +
2;12i+ 3;12i+ 4;12i+ 5;12i+ 6;12i+ 7;12i+ 8;12i+ 9;12i+ 10;12i+ 11g flgji2Zn=3g.
Then de ne the blocks in the design as follows:
B = (Si2Z12 B(i)) [ (Sl2Z3 B1(l)) [ (Sl2Z3 B0(l))
We  rst count the number of blocks we get in the construction to see if it equals b =
5n2 3n
4 (calculated above when proving the necessity).
jBj = j(Si2Z12 B(i))j+j(Sl2Z3 B1(l))j+j(Sl2Z3 B0(l))j
= (171)(n=12) + (2)(3)((n(n 1) 11n2 )=3) + 3((
n
2) (
(12)(11)
2 )(
n
12)
6 )
= 171n12 +n2 n 11n+
n(n 1)
2  
11n
2
2
= 57n4 +n2 12n+ n2 n4  11n4
= 57n+4n2 48n+n2 n 11n4
= 5n2 3n4
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Since jBj = b it su ces to check that each edge occurs in at least the correct number
(that is,  3 or  1) of blocks in B. We consider each edge, e =f(x;a);(y;b)g, in turn.
1. Suppose e joins two vertices in C(i) for some i2Zn=3. Then clearly e occurs in  1 = 3
blocks in B(i) if e joins two vertices in the same group and e occurs in  2 = 1 block in
B(i) if e joins two vertices in di erent groups, as required.
2. Next suppose that e =f(x;a);(y;a)gfor some a2Z3 and 0 x;y<n where for each
i2Zn=2, e does not join two vertices in C(i). Letfx;y;z1gbe the triple in B1(a) that
containsfx;yg, and suppose f(fx;y;z1g) = z2 is the vertex added to the triple by the
nesting. Then the  1 = 3 blocks containing the edge f(x;a);(y;a)g are as follows:
f(x;a);(y;a);(z1;a);(z2;a+ 1)g, f(x;a);(y;a);(z1;a);(z2;a+ 2)g, and in one block in
B0(a).
3. Finally suppose e =f(x;a);(y;b)g where a;b2Z3, a6= b and where for each i2Zn=2,
e does not join two vertices in C(i). We can assume that b a + 1 (mod 3). Since
fx;yg2G(n;3; 3;1), exactly one of the following occurs: either there exists a triple
t1 = fx;z3;z4g2B1(a) such that f(t1) = y or there exists a triple t2 = fy;z3;z4g2
B1(a) such that f(t2) = x. Therefore e = f(x;a);(y;b = a + 1)g occurs in  2 = 1 of
the following blocks:
f(x;a);(z3;a);(z4;a);(y;a+ 1)g or f(x;a);(y;a+ 1);(z3;a+ 1);(z4;a+ 1)g.
Thus, n  0 (mod 12), n  48, is a su cient condition for a GDD(n;3;4; 3;1) to
exist.
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Chapter 8
Generalizing Clatworthy Design R105
With one possible exception, the existence of a generalized R105-design (see Figure 8.1)
is settled in this chapter.
Figure 8.1: R105
Lemma 8.0.5. There exists a GDD(6;3;4; 6;2) and a GDD(9;3;4; 6;2).
Proof. To produce a GDD(6;3;4; 6;2), let V = Z9  Z2 where the groups are vertices 0
(mod 3) Z2, 1 (mod 3) Z2, and 2 (mod 3) Z2. Now, consider the following nine blocks
f(0;1);(1;1);(3;1);(4;2)g, f(0;1);(1;1);(5;1);(0;2)g, f(0;1);(3;1);(6;1);(0;2)g,
f(4;1);(0;2);(1;2);(3;2)g, f(3;1);(0;2);(1;2);(5;2)g, f(0;1);(0;2);(3;2);(6;2)g, f(0;1);
(2;1);(2;2);(5;2)g, f(0;1);(3;1);(1;2);(3;2)g, and f(0;1);(3;1);(0;2);(6;2)g. (See Figure
8.2; the  rst block is depicted.) When rotated, these nine blocks cover the edges within a
group the required six times and the edges between groups the required two times. Also, note
that each block produces nine blocks giving 81 total blocks, which is the required number of
blocks.
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Figure 8.2: R105, n = 6; the  rst block of nine base blocks is depicted
To produce a GDD(9;3;4; 6;2), let V = Z27 where the groups are vertices 0 (mod 3), 1
(mod 3), and 2 (mod 3). Then consider the following seven blocks: f0;1;3;9g;f0;3;9;13g;
f0;3;12;16g;f0;3;15;20g;f0;6;11;12g;f0;6;8;15g;f0;3;9;12g. (See Figure 8.3; the  rst
block is depicted.) When rotated, these seven blocks cover the edges of di erences 3;6;9;12
six times and the edges of di erences 1;2;4;5;7;8;10;11;13 twice. In other words, we have
covered the pure edges the required six times and the mixed edges the required two times.
Also, note that each of these seven blocks produces 27 blocks giving 189 total blocks, which
is the required number of blocks.
Theorem 8.1. There exists a GDD(n;3;4; 6;2) if and only if n 0 (mod 3).
Proof. We start by proving the necessity, so suppose there exists a
GDD(n;3;4; 6;2). Since each block contains six edges, the number of blocks in any
such design is
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Figure 8.3: R105, n = 9; the  rst of seven base blocks is depicted
b = jE(G(n;3; 6;2))j6 = 3(
6n(n 1)
2 ) + 3(2n
2)
6 =
5n2 3n
2 =
n(5n 3)
2 : ( )
Clearly the number of blocks is an integer, so there are no restrictions on n because
either n or 5n 3 is even.
For each block, each vertex contains 3 of its incident edges. So the number of blocks
containing each vertex v is
dG(n;3;6;2)(v) = 6(n 1) + 2(2n)3 = 103 n 2;
which means n 0 (mod 3) is a necessary condition.
To prove the su ciency we assume that n 0 (mod 3), n6= 9, and show there exists a
GDD(n;3;4; 6;2).
For each i 2 Zn=3, let B(i) be a copy of R105 on the vertices in C(i) = f3i;3i +
1;3i + 2g Z3, where for each l 2 Z3, f3i;3i + 1;3i + 2g flg is a group. By Theorem
2.3, there exists a (3;2)-GDD, (Zn;ff3i;3i + 1;3i + 2gji2 Zn=3g;B1), that has nesting
f of type 3n=3. Let B1(l) = ff(x;l);(y;l);(z;l);(f(b);l + 1)g;f(x;l + 1);(y;l + 1);(z;l +
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1);(f(b);l)gjl 2Z3;fx;y;zg2B1g, reducing the sums in the second coordinate of each
vertex modulo 3. By Theorem 2.2 (since n  12 and u = n=3  4), for each l 2 Z3 let
B0(l) be a copy of a (4;1) GDD of type 3n=3 on the vertex set Zn flg with groups in
ff3i;3i+ 1;3i+ 2g flgji2Zn=3g. Then de ne the blocks in the design as follows:
B = (Si2Z3 B(i)) [ (Sl2Z3 B1(l)) [ (Sl2Z3 B0(l))
We  rst count the number of blocks we get in the construction to see if it equals b =
5n2 3n
2 (calculated above when proving the necessity).
jBj = j(Si2Z3 B(i))j+j(Sl2Z3 B1(l))j+j(Sl2Z3 B0(l))j
= (18)(n=3) + (2)(2)(3)((n(n 1) 2n2 )=3) + (2)(3)(((
n
2) n)
6 )
= 18n3 + 2n2 2n 4n+ n(n 1) 2n2
= 6n+ 2n2 6n+ n2 3n2
= 4n2+n2 3n2
= 5n2 3n2
Since jBj = b it su ces to check that each edge occurs in at least the correct number
(that is,  3 or  1) of blocks in B. We consider each edge, e =f(x;a);(y;b)g, in turn.
1. Suppose e joins two vertices in C(i) for some i2Zn=3. Then clearly e occurs in  1 = 6
blocks in B(i) if e joins two vertices in the same group and e occurs in  2 = 2 block in
B(i) if e joins two vertices in di erent groups, as required.
2. Next suppose that e =f(x;a);(y;a)gfor some a2Z3 and 0 x;y<n where for each
i2Zn=2, e does not join two vertices in C(i). Letfx;y;z1gandfx;y;z3gbe the triples
in B1(a) that contain fx;yg, and suppose f(fx;y;z1g) = z2 and f(fx;y;z3g) = z4 are
the vertices added to the triples by the nesting. Then the  1 = 6 blocks containing the
edge f(x;a);(y;a)g are as follows:
f(x;a);(y;a);(z1;a);(z2;a+ 1)g, f(x;a);(y;a);(z1;a);(z2;a+ 2)g, f(x;a);(y;a);
(z3;a);(z4;a+ 1)g, f(x;a);(y;a);(z3;a);(z4;a+ 2)g and in two blocks in B0(a).
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3. Finally suppose e =f(x;a);(y;b)g where a;b2Z3, a6= b and where for each i2Zn=2,
e does not join two vertices in C(i). We can assume that b a + 1 (mod 3). Since
fx;yg2G(n;3; 6;2), exactly one of the following occurs: either there exists a triple
t1 = fx;z5;z6g2B1(a) such that f(t1) = y or there exists a triple t2 = fy;z5;z6g2
B1(a) such that f(t2) = x. The same argument can be made for the otherfx;ygedge
using fz7;z8g. Therefore e =f(x;a);(y;b = a + 1)g occurs in  2 = 2 of the following
blocks:
f(x;a);(z5;a);(z6;a);(y;a+1)gorf(x;a);(y;a+1);(z5;a+1);(z6;a+1)g, andf(x;a);
(z7;a);(z8;a);(y;a+ 1)g or f(x;a);(y;a+ 1);(z7;a+ 1);(z8;a+ 1)g.
Thus, n 6;9 (mod 12), n6= 6;9, is a su cient condition for a GDD(n;3;4; 6;2) to
exist.
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