AdvancedLearning Algorithms of Neural Networks

by

Hao Yu

A dissertation submitted to the Graduate Faculty of
Auburn University
in partial fulfilment of the
requirements for the Degree of
Doctor of Philosophy

Auburn, Alabama
Decemberd?2, 2011

Keywords:Artificial Neural Networks, Levenberg Marquardt Algorithm, NewmsaNeuron
Algorithm, ForwardOnly Algorithm, Improved Second Order Computation

Copyright 2011 by Hao Yu

Approved by

Bogdan M WilamowskiChair, Professoof Electrical an Computer Engineering
Hulya Kirkici, Professoof Electrical and Computer Engineering
Vishwani D. Agrawal Professoof Electrical and Computer Engineering
Vitaly Vodyanoy Professonf Anatomy Physiology and Pharmacy

Abstract

The <concaerpnt toof biiel heavwid descgption ef sunctioaalities of neural
networks. Specificallya group of observations, each of which considténputs anddesired
outputs aredirectly appliedto neuralnetworls,andt he net wor ks p airg@ahted @) s
are adjusted iteratively according with the differences a | | e dbetieen desired mgtwork
outputsand actual networloutput The parameter adjustment process is cdlidde ar ni ng o
At r a i Aiter iheedorsconverging toexpectedaccurag, thetrainednetworks can be used to
analyzethe input datset which are in the same range of observatidios, classification
recognition and prediction.

In neural network realm,atwork architectures and learning algorithms are the major
research togs, and both of them are essential in designing-eliaved neural networkis the
dissertation, we aréocused ornthe computational efficiency ofearning algorithms, especially
second order algorithm3wo algorithms are proposed to solve themory Imitation problem
and computational redundangyroblemin second order computations, includittge famous
Hagan andMenhaj Levenberg Marquardt algorithrand the recently developedeuronrby-
neuronalgorithm

The dissertation consists sévenchaptersThe first chapterdemonstrates the attractive
properties of neural network with two examples, by comparing satreralother methods of
computational intelligenceand human beingsThe secondchapterintroducesbackgroundof

neural networks, includinthe higory of neural networksbasic conceptsietwork architectures,

learning #gorithms generalization abilityand the recently developedneuronby-neuron
algorithm The third chapterdiscussgs the current problemg second order algorithmg§he
fourth chapér describesanother way of gradient vector andagi Hessian matrix computation
for implementing Levenberg Marquardt algorithWith the similar computational complexity,
theimproved second ordeomputation solves the memory limitation in second ortygrghms
The fifth chaptempresents the forwardnly algorithm.By replacing the backpropagation process
with extra calculation in forward process, tf@wardonly algorithmimproves the training
efficiency, especially for networks with multiple outpufdso, the forwardonly algorithmcan
handle networks consisting of arbitrarily connected neurdfise sixth chaptemtroduces the
computer software implementation of neural networks, using C++ based on Visual C++ 6.0
platform. All the algorithms intrasced in the dissertation are implemented in the softvidre

seventh chapter concludes the dissertation and also introduces our recent work.

Acknowledgments

First of all,| would like tosincerelyappreciate myonorific supevisor, Prof. Bogdan M
Wilamowski, for hisgreatpatience an@tnowledgeablguidance duringhte past three years Ph.D
study.His professional research experience teaches me how to be creative, how to find problems
and solve themHis active attitude of I encourages me working hard towards my destination.
His kindness andjreat sense of humor makes me feel warm and haypyhe things | have
learnt from him are marked deeply in my memory wiild benefit the rest of my lifeWithout
his help, | could nbhave finished my dissertati@and Ph.D studguccessfullyBesides, | would
like to express my special appreciation to both Mr. Bogdan Wilamowski and his wife, Mrs.
Barbara Wilamowski, fortheir kindness, caring about me and letting me feel like studging
home.

Special thanks are also given to my committee members, Rubya Kirkici, Prof.
Vishwani D. Agrawaland Prof.Vitaly Vodyanoy and the outside read@rof. Weikuan Yu
From their critical and valuable comments, | noticed the weakness in sgrtdison and made
the necessary improvements according to gajgestions

| would like toexpress my appreciation to ggod friendsvho have helped me with my
studyng and livingin Auburn. They areloel Hewlett, Nam Pham, Nicholas Cotton, Pradeep
Dandamudi, Steven Surgnier, Yuehai Jin,Haitao Zlao Hua Mu, Jinho Hyun, Qing DaYu
Zhang, Chao Han, Xin Jin, Jia Yao, Pengcheng Li, Fang LJawlYu. | am very luky to be

their friend.

Special thanks to Charles ElliBrof. David Irwinand Prof. Michael Hamiltgrfor their
professional guidance on the projeatsl papersve wokedtogether. It was mgreathonor to
haveworked with them. | also would like to thank Prof. John Hung, Prof. Fa FosterHDat,
Hulya Kirkici, Prof. Vishwani Agrawal, Prof. Stanley Reeves, Prof. Adit Sirigffof. Bogdan
Wilamowski and Prof. Thomas Bmgki, for their excellent teaching skills and professional
knowledge in their courses.

Last but not leastl am greatly indebted tony wife, Dr. Tiantian Xie,my newborn
daughter, AmyX Yu, and my parentand my parentfm-law. They are the backbone andgn
of my happiness. Being both a father and mother while | was struggling with my dissertation was
not an easy thing for my wife. Withober support and encouragementould never finish my
Ph.D studysuccessfullyl owe my &ery achievement to my faily.

Thanksto everyone.

Table of Contents

N 0111 = 1o PSP TP PP PPPPPPPPPPPPRPPRIY i
ACKNOWIEAGMENTS.o s e e e e e e e e e e s ammnsa e s e e e e e e eaaaaaeees v
LISt Of TADIES.....eiiiiiiiiiiiie et rmmee e e e e e e emmme e e s ennnnneeeeeeennen s M
LIS OF FIQUIES. ... et et e e e e e e e e emmmsa e e e e e e e eeeaeaaeeeees X.
Chapter IWhy Neural NEtWOIKS............uuuiiiiiii e eeeer e e e e e e e e e e e e aananas 1
0 £ o o [FTox 1o] o TP PP P PSR PPPP 1
1.2 Comparison of Different Nonlinear APproXimatorsS..............uuvveeeeeeeieemieveeneennne. 3
1.3Neural Networks for Image ReCOgNItioN...........cooooviiiiiiiiemre e 9
LA CONCIUSION. ... e 11
Chapter BaCKGIrOUNG.........ooiiiiiiiiei e eeeea bbb 13
2. L HISTOIY ettt 13
2.2BASIC CONCEPLS. ...ceeiiiiiiieieeee et eree bbb e e enensnne 14
2.3NEtWOrK ArChItECIUIES ... 16
2.4Learning AlgOrthmS. ... 26
2.5 Generalization ADIIIEY............uuuuiiiiiiiii e 39
2.6 Neuronrby-Neuron Algrithm ... 43
Chapter 3Problemsan Second Order Algorithms...........cciiiiiiiiiiiieeeeee e 47
Chapterd Improved Second Order COmMpPUtation............oeeeeieiiiiiicceriiee e e e e e eevvmmeeaaes 49
4.1 Problem DeSCHPLION........ciiiiiiiie e ee ettt e e e e e e ea s mmmr e e e e e eeraeeeeeeensd 49

Vi

4.2 IMpProvedCOmMPULALION..........cceiiiiiiieeeeiiteeee e e e as 51

7 1 g 0] =T 0 0 T=T] €= U1 o] o PSRRI 58
0 1= 11 =T LTRSS 61
4.5 CONCIUSION....ciiiiiiitiee e eee ettt rmm e e e e e e et e e emmme e e e 64
Chapters Forward-Only COMPULALION..........ccciiiiiiiiieiiiiieeee e e s 66
5.1 Computatiodl Fundamentals................eciiiiiiiiicccicieee e ereen e 67
5.2 ForwardOnly ComMpPULALION........ccceeeiiiiiiiiiiiiieeee e 72
5.3 Computation COMPATISO.......uuiiiieieeeeeeeeeeieeeiie e e e e e e e e e e e e e e et enneeeaeeeeeeeennnnn 80
I b d o =T] 4= | £ O PSPPPIN 83
5.5 CONCIUSION. ..ottt eea et e et e e e e e s rme e nbn e 91
Chapter6 C++ Implementation of Neural Network Trainer.............coovvvvvvivieeneeeeeeeeeeeeeians 93
6.1 File INSIIUCHDINeeiiiiiiiiiiiii e ecee et emme e e e e e e e e 94
6.2 Graphic User Interface INStruCtion..............ooovvviiiiiicccrie e 100
6.3 Implemented AlgOrtRMS..........cooiiiii e 104
6.4 Strategies for Improving Training Performance............ccccooeeviiiieecvicceeeennn. 105
6.5 Case Study USINg NBN 2.0.......cooiriiiiiiemre e 114
6.6 CONCIUSION ...ttt e et eeeet et eeni et e e e e e e e e e e s menaneee s 118
(@ gF=T o] (=] 7K O o [od (1] o o 1 PSSP 119
REIEIEINCES.....ceeeeieeeee e e eeens bbb er e e et e e e e e e e enn 122

vii

List of Tables

Table 21 Comparison of approximation accuracy using different methodsroputational
(=] 1o 1T Lo U UPPPRR 9

Table 12 Success rates of the designed counterpropagagioral network for digit image

[=ToTo o] 01 (o] o FO TSP P PRSP TTPPPPP 11
Table2-1 Different architetures for solving parityN problem.............cccoovvvviiiiiiicee e, 25
Table2-2 Specifications of different learning algorithms...........ccccoooiieiiieeeiiiii e 35
Table2-3 Comparison among different learning algorithms for padigroblem.................... 36
Table 24 Training/testing SSEs of different sizes of FCC networks.............ccccoovvvveeeenn. 41
Table 41 Computation COSt ANAIYSIS...........ouuuuiiiiiiiiiie e e e srrrr e e e e e e e eees 54
Table 42 Memory COSt @NalYSIS.......cccoiiiiiiiiiiiiicme e e e e e e e e e aeeaaan 54
Table 43 Memory comparison for parity problems...............cooovviiiieee e 62
Table 44 Memory comparison for MINST problem...............ceeeiiiiiiiecciiieeee e 62
Table 45 Time comparison for parity problems.............oeeiiiiiiiieccc e, 63

Table 51 Analysis ofcomputation cost in Hmn andvienhaj LM algorithm and

forward-only COMPUEATION.........cooiiiiiiiiii e 81
Table 52 Comparison for ASCII problem..............coiiiiiiiiee e 82
Table 53 Analytical relative time of the forwardnly computation of problems................... 82

Table 54 Training results of the twspiral problem with the proposddrward-only
implementation of LM algorithm, using MLP networks with two hidden layers;
maximum iteration is 1,000; desired error=0.01; there are 100 trials for each

viii

Table 55 Training results of the twepiral problen with the proposetbrward-only
implementation of LM algorithm, using FCC networks; maximum iteration is

1,000; desired error=0.01; there are 100 trials for each.case..................ccccee.. 84
Table 56 Training Results of peak surface problem using FCC architectures................. 86
Table 57 Comparison for ASCII characters recognition problem............cccccoovviiecceeneenn. 38
Table 58 Comparison for error correction Problem............oooiiiiiiiiiinec e 90
Table 59 Comparison for forward kinematics problem............cccccviiiiimee, a1
Table 61 Parameters fOr traiNiNg.........cueiiiiiiiiioii e eeee e 94
Table 62 Three types of neurons in thefsvare..............cooovvvviiiiiice e 97
Table 63 Available commands and related functionalities...............cccccvvvimmmnnniiciiinnnnee. 103
Table 64 Comparison of different EBP algorithms for solving XOR problem................ 107
Table 65 Testing results of parity problems using update ri8e®) @nd 6-4)cccco....... 111

Table 66 Testng results of paritN problems using diéirent activation functions with
the minimal network architecture analyzed in section.2.3.............ccccoeeevvemnnns 113

List of Figures

Figure 11 Surface approximation problem..............oooiiiiiiii e 3
Figure 12 Block diagram of the tevtypes of fuzzy systems.........ccccceeeeviiiievccecccccciieeeeee 4
Figure 13 Result surfaces obtained using fuzzy inference systems...............cccccceeee.. 4
FIgure 24 NeUrGFUZZY SYSIEIM.........ouuiiiiiiiiii e e e e areeia s s e e e e e e e e e e e e e e e e e eeaeaeees 5
Figure 15 Result surface of newfnizzy systems, SSE= 27.3356..........ccccevvvrrrriivimeneeeneenne. 6
Figure 16 Result surfaces obtained using support vett@achine............ccccceeeeeeeeerieeeeeeeen. 6
Figure 17 Result surfaces obtained using interpolation methods................ocevieeeiieieennn. 7
Figure 18 Neural network architecture and related testing result.................cceveeeeiiiieenennn. 8
Figure 19 Neural network architecture and related testing result..................ceoeeeeiiieeennnnn. 8

Figure 10 Digit images with diffeent noise levels fim 0 to 7 in lefito-right order

(ONE dAta IN 100 GIrOUPS) . .uuuuurrrrrerreerereeeteeeeseeereeeeeeaaaaeaeaeeaesssmmeeaeeeeeeeaasaaaaannns 10
Figure 111 The designed counterpropagation neuralvoet architecture for the digit

image recognition ProbIEmL............ooiiiiiiie s 10
Figure 112 Retrieval results of 7level noised digitmMages.ovveeeeeeverereeeeeeeerererens 11
Figure 21 Neural cell in human brain and its simplified model in neural netwarks.......... 15
Figure 22 Different types of activation fUNCONS.............c.iiiii e, 16
Figure 23 Training patterns simplification for par{y problem...............ciiiiiiiiceen e, 17
Figure 24 Two equivalent netwids for parity3 problem.............ccccoveeiiieiiieeee e, 18
Figure 25 Analyticd solution of parity2 problem.............cccooeiiiiiiiiceei s 18
Figure 26 Analyticd solution of parity3 problem............ccccooiiiiiiiiiccei s 19

X

Figure 27 Solving Parity7 problem using MP network with one hidden layer................... 19

Figure 28 Solve parity7 problemusing BMLPnetworks with one hidden layer.................. 21
Figure 29 Solve parityll problem using BMLP netorks with single hidden layer............. 21
Figure 210 Solve parityll problem using BMLP networks with two hidden layers,

0 U 22
Figure 211 Solve parityll problem using BMLP networks with two hidden layers,

I R TSP 23
Figure 212 Solve parity7 problem using FCC networks.............ooovvviiiiiiccreeeeeeeiivnn, 24
Figure 213 Solve parityl5 problem using FCC NetWOrKS.........ccoeeeeiiiieieeieeeiccciiee e 24

Figure2-14 Searching process of the steepest descent method witlediffearning
constants: yellow trajectoijeft) is for small learning constant which leads to
slow convergence; purple trajectofryght) is for large learning constant which

CcausSeDSCIllation (IVEIGENCE)........uuuiiiiiiiiiiiiiie ettt 26
Figure 215 Parity-3 data and network ar€dBCUIEoooiiiiriiiiiiesce e 35
Figure 216 Training results of paritd problem...........ooooiiiiiiiiiiiree e 36
Figure 217 Two-spiral problem: separation of two groups of poinis..............ccccuvvvvieeennnns 37

Figure 218 Comparison between EBP algorithm and bBMorithm, for different number
of neurons in fully connected aagle Networks..............vvvveiiiiiiiiccciiiceeees 38

Figure 219 Training results of the twepiral problem wit 16 neurons in fully connected

CASCAAE NEIWOIK ...ttt e e e e e e e e e e e e e rmmne s 39
Figure 220 Function approxXimation ProbIEML.............uuueeiiiiiiiieeeiiiiieieieeeee e s eeeee e 40
Figure 221 Approximation results of FCC networks with different number ofroesi........... 41
Figure2-22 Arbitrarily connected neural network indexed by NBN algorithm................... 44
Figure 41 Two ways of MUltiplyiNg MAtriXeS........ccvviiiiiiiiiiiiiiii e 53
Figure 42 Parity-2 problem: 4 patterns, 2 inputs and 1 OULPUL............oooeiiiiiienee s 58

Figure 43 Three neurons in MLP network used faaihing parity2 problem; weight
and neuron indexes are marked inthe figure.........cccoooe e, 58

Xi

Figure 44 Pseudo code of the improved computation for quasi Hessian matrix and
(o[£= o 11T 01 B VZ=T ot (o T ST PP PP PP PRTRPPPR 61

Figure45Some testing resul t.s..f.our..di.g.i.t..0.2.063r ecogn

Figure 51 Connection of a neurgrwith the rest of the network. Nodgg could
represents network inputs or outputs of other neuf@ngy;) is the nonlinear
relationship between the neuron output ngded the network outp@................ 68

Figure 52 Structure oflacobian matrix: (1) the number of columns is equal to the number
of weights; (2) each row is corresponding to a specified training patterd
[0 11110 1 | 1 0 PP 71

Figure 53 Pseudo code using traditional backpropagation of delta in second order
algorithms (cde in bold will be removed in the proposed computation)........... 72

Figure 54 Interpretation ofi jas a signal gain, where in feedforward network nepiron
must be located before NeUMON.............oooiriiiiiiiieee s 73

Figure 55 Four neurons in fully connected neural network, with 5 inputs and 3 outputs.74

Figure 56 Thed; parameters for the neural network of F5eb. Input and bias weights
are not used in the calculation of gain parameters..........cccceeeeiiivieecvvvvvneieennn. 74

Figure 57 Thennxnn computation table; gain matrikxcontains all the signal gains
between neurons; weight arraypresents only the connections between neurons,

while networkinput weights andibsing weights are not included...................... 76
Figure 58 Three different architectures with 6 Neurans............ccccoooviiieeeeviiiiiiiiee e, 79
Figure 59 Pseudo code of the forwaothly computation, in second order algorithms........ 80

Figure 510 Comparison of computation cost for Mibeétworks with one hidden layer;
x-axis is the number of neurons in hidden layeaxis is the time consumption
radiobetween the forwardnly computation and the forwatthckward
(ol0] 0 0] o8| £= Ui (o] o IHUU PP PRPP PR 83

Figure 511 Peak grfaceapproximatiorproblem............oooiiiiiiiiiimeen e 85
Figure5-12 The best training result in 100 trials, using LM algorithm, 8 neurons in FCC

network (52 weights); maximum training iteration is 1,000; $5E0.0044,
SSE/erity=0.0080 and training timMe=0.37..S............cccccerririiirrn e 87

Xii

Figure 513 The best training result in 100 trialssing EBP algorithm, 8 neurons in FCC
network (52 weights); maximum training iteration is 1,000,000;
SSEain=0.0764,SSE/eriy=0.1271 and training time=579.98 .s......................... 87

Figure 514 The best training result in 100 trials, using EBP algorithm, 13 neurorSGn F
network (117 weights); maximum training iteration is 1,000,000;

SSEin=0.0018, SSkiry,=0.4909 and training time=635.72.S..............cc........ 87
Figure 515 The first 90 images of ASCII characters.............oooooiiiiii e 39
Figure 516 Using neural networks to solve an error correctiorlem; errors in input
data can be corrected by well trained neural NnetwarksS..............ccoeeevieeeeeennnd 89
Figure 517 Tow-link planar Manipulator.............ccooeiiiie i iceeeiccece e 91
Figure 61 Commands and related neural network topologies............ccccevvvvvieeereeeeeeeeeeee, 96
Figure 62 Weight initialization for parity3 problem with 2 neuranin FCC network............ 96
Figure 63 Extract the number of inputs and the number of outputs from the data file
=T aTo (o] oTo] (o YN P PP PP PP PR URTRPPTTPP 98
Figure 64 A sample of training reSult file...........ooviiiiiiii e 99
Figure 65 A sample of training verification file for parid® problem...........ccccevvviiiiiiiiieenne. 99
Figure 66 The user interface of NBN 2.0........coiiiiiiiiiiiiiiiii e 100
Figure 67 Training process with and without MOMENTUM............cvviviiiiiiiceniiiieieeeeeeeeenn 106
Figure 68 Network architecture used for XOR problem...........ccccoooiiiiiiiccc s 107
Figure 69 Training results of XOR problem...............cccoiiiiee 107

Figure810 The dAafl at s p odlactivationdundtienm....i..n....s.i..g.mado8d

Figure61ll Test the modified s.l.ope..by.. Awaor.sl® caseo

Figure 612 Parameter adjustment in update rul@)6.............ooooiiiiiiiiimmmnnseiieee 110
Figure 613 Failures of gradient based optimization.............cccccoevviiiecceee 111
Figure 614 Two equivalent NEIWOIKS...........cuiiiiiiiii e e 114

Figure 615 Network construction commands: 15 neurons in FCC network with 2 inputs
= [0 ST o 0|1 01U | £ SRR 115

Figure 616 Data ClasSifiCatiON............cooiiiiiiiiiiiiemr e e e e e e e e e e e e 115

Figure 617 X-dimension surface of forward kinematics................iiiicceeeeveveeiniinennn, 116
Figure 618 Y-dimension surface of forward kinematics..............ccccoeiiiiceeeeviiiiiciieeeeennn. 117
Figure 619 X-dimension teSting reSUIS.........oovvviiiiiiiccr e 117
Figure 620 Y-dimension teStiNg reSUILS...........uuuiiiiii e eeeer e 117

Xiv

CHAPTER 1
WHY NEURAL NETWORKS

1.1Introduction
As rapid development of computational intelligence, the tendéecpmes more and more
apparenthat humarkind is going to be replaced by intelligent systems. Various algorithms of
computational intelligence have been waveloped based on different biological or statistic
models [-4], and they are paid great attentions in both scientific research and irddustria
applicatiors, such as nonlinear compensationg]j5motor control 8-12], dynamic distribution
systems [3B], robotic manipulators @-16], pattern recognition [2-19] and fault diagnosis [2
21].

Artificial neural networks (ANNSs) were extracted from tt@mplicated interconnections
of biological neurons and inherit the learning and reasoning properties of human Ibraass.
proven that neural networks could bensidered as a general modeingcapable of building
arbitrary linear/nonlinear relationigis between stimulus and respon&é] [It is still unknown
abou the internal computationsf neural networksso it is hard to desigimiemdirectly; instead,
researchers have developed smart algorithms to meunal networksError back propagation
(EBP) algorithm[23], developed byavid E. Rumelhartis the first algorithm which has ability
to train multilayer perceptron (MLP) networks. Levenberg Marquardt (LM) algofig#a25] is
regarded as one of the most efficient algorithms for neural netwamkig. Recently developed

second ordemeuronby-neuron (NBN) algorithm 36-27] is capable of training arbitrarily

connected neural (ACN) networkghich could be more efficient and powerful than traditional
MLP networks. Fault tolerance and generalizaabrlity are improved, when efficient network
architectures are applied for trainirZg].

Fuzzy inference systems were designed based on fuzzy logical28jeal[parameters
for designing fuzzy inference systems can be extracted from problems thesnsaid the
training process is not required. However, the tradeoff of the very simple design process is the
accuracy of approximation. Some hybrid architectud€ inherited from both neural networks
and fuzzy inference systems, are proposed to imptbgeperformance of fuzzy inference
systems. Another disadvantage of fuzzy inference systems is that, as the increase of input
dimensions, the computation cost increases exponentially.

Support vector machines (SVMs) were developed from statistical leah@ngy [31] to
solve d#a classification problems. The concept of SVidsvery similar withthe threelayer
MLP networks Differently, the layerby-layer architecture in SVMs$s organizedbased on
Co v er 0 s anddaehdayepariormsdifferent computadn. Unlike other learrby-examples
systems, SVMs do not face local minima problem and they can find optimized solutions by
constrained learning procedsater improvements3p] make SVMs also proper for solving
function approximation problems.

Other methals of computational intelligence, such selfganizing maps (SO8f [33],
principal component analysis (PCAB4, particle swarm optimization3p], ant colony
optimization B6] and genetic algorithm3[7], also attracts great interests in solving special
optimization problems. These methods are often combined with training algorithms so as to
improve their performanc&$-40].

In the followed two sections, we will have two examples to illustrate pibtential

advantages of neural networks oy&) severalother methals for function approximatiorand

(2) human being$or image recognition

1.2 Comparison of Different Nonlinear Approximators

In this section different methods of computational intelligence, including fuzzy inference
systems, neurfuzzy sysems ad support vector machines, interpolation and neural networks
are compared based on a nonlinear surface approximation problem. The purpose of the problem
is that, using the giverb>X6=25 points (Fig. 41a uniformly distributed in [0, 4] in botk andy
directiong to approximate thd1>x41=1,681 points (Fig. 11b) in the same input rangd@ll the
training/testing points are obtained by equationl)land visualized in Fig. 1. The

approximation will be evaluated by sum square €3&E)

z=4expl- 0.15(x- 4)? - 05(y- 3?)+10° (1-1)

0 o 0 o
(a) Training data, 5%6=25 points (b) Testing data, 4 1=1,681 points
Fig. 1-1 Surface approximation problem

1.2.1 Fuzzy Inference Systems
The most commonly used architectures for fuzzy system dawelot are the Mamdani fuzzy

system §11] and TSK (Takagi, Sugeno and Kang) fuzzy systdg}. [Both of them consist of
3

three blocks: fuzzification block, fuzzy rule block and defuzzification/normalization block, as

shown in Fig. 12 below.

] Rule selection cells
X':f:) <A % min operations
N » =]
S— 2 2 o 5 / S
L™ o © > = X, | R g ¥
! Q Q » N out Lgl_ —_— =
A 8. 8‘ ¢ g § E weighted
— » H(]__) L o sum
3] > — z
YEEE 2| |o .
N 2 p Y5 \'\}
oL > Fuzzy z
— rules]

(a) Mamdani fuzzy system (b) TSK fuzzy system
Fig. 1-2 Block diagram othe two types of fuzzy systems

For the given surface approximation problenithvé triangular membership figtions in
each directionfwo different fuzzyinferencesystems can obtain the approximated sudase

shown in Fig. 13.

4. i ‘:‘%::‘::““

,:zf},‘.“t L LA ‘13,
T RN, 5
i AR SRR S

0o 00

(a) Mamdani fuzzy system, SSE=319.7334 (b) TSK fuzzy system, SSE=35.1627
Fig. 1-3 Result surfaces obtained using futaferencesystems

The rawness of control surfaces (Fig3)lin fuzzy controllers leads to raw control and
instabilities @3]. Therefore, for resilient control systems fuzzy controllers are not used directly

in the control loop. Instead, traditional PIDntmllers @4-45] are often used and fuzayference

4

systems are justppliedto automatically adjust parameters of PID controlld6. [

1.2.2 NeuroFuzzy Systems

The neurefuzzy systemas shown in Fig. -4, attempts to present fuzzy inference system in
form of neural network47]. It consistsof four layers fuzzification, multiplication, summation
and division Notice that, in the second layer, product operatiars performed among fay
variables (from first layer), instead of the fuzzy rules (MIN/MAX @igms) in classic fuzzy
inference system3.he multiplication processnproves the performance of netftzzy system,

butit is moredifficult for hardware implementation

fuzzification multiplication sum division

all weights equal
expetted values

Fuzzifier

out

r
Fuzzifier

all \}{/eights
equal 1

Fuzzifier

Fig. 1-4 NeuroFuzzy System

For the given problem, i the same membership functions chosen for fuzzy inference
system design in section 1.2.Eig. 1-5 shows the approximatioresult of the neurfuzzy

system.

00
Fig. 1-5 Result surface of newfnizzy systemsSSE=27.3356

1.2.3 Support Vector MachingSVMs)

For the given problem, witthe software LIBSVM 48], the best results (as we tried) obtained
using radial basis function kernelexptou-v|?) with 2 8.7) and polynomial kernel
((0.1ub 1+0.1)" with n=7) separatelyreshown in Fig. 16. For other kernelsuch as linear and

sigmoid, the SVM does not work at all.

A%

3L ORISR
AR R RO KRR S
QRS

0o 00
(a) Radial basis function kerné&dSE=28.9595 (b) Polynomial kernelSSE=176.1520
Fig. 1-6 Result surfaces obtained using support vector machine

1.2.4 Interpolation

Interpolation isconsiderechsa commonly usednethodfor function approximation. MATLAB

provi des tintem2 f @ o-ditdnson int@rpolatioandthere are fouapproximation
methods used in this functiomearest (nearest neighbor interpolation), linear (bilinear
interpohtion), spline (spline interpolation) and cubic (bicubic interpolation as long as the data is
uniformly distributed). Fig. 47 presents the approximation results using the four different ways

of interpolation.

ey
%,
IS

47

% o
OISR

&"0“000 OIS

0D 0o
(c) Spline interpolation, SSH2.0874 (d) Cubic interpolation, SSB2791
Fig. 1-7 Result surfaces obtained usingerpolation methods

1.2.5 Neural Networks
For the given problem in Fig.-1, Hgs. 18 and 19 show the result surfaces using different

number of neurons with fully connected cascade (FCC) netwAikshe hiddenneurors use

unipola sigmoidal activation functions and the output neuron is linear. The software NBN 2.0
[49-51] wasused in the experiment arttie neuronby-neuron (NBN) algorithm42-53] in the

softwarewasselectedor training.

R
00

(a) Four neurons in FCC network (b) Result surface with SSE=2.3628
Fig. 1-8 Neural netwek architectue and related testing result

1

o no
(a) Five neurons in FCC network (b) Result surface with SSE=0.4648
Fig. 1-9 Neural network architeate and related testing result

Table 21 concludes thexperimental results of different nonlinear approximators. One
may notice that, from the point of approximating accuracy, neural networks can be the best

choice for the problem.

Table 21 Comparison of approximation accuracy using different methods ofutatignal

intelligence
Methods of Computational Intelligence | Sum Square Errors
Fuzzy inference systeimMamdani 319.7334
Fuzzy inference systeinTSK 35.1627
Neuroni fuzzy system 27.3356
Support vector machirieRBF kernel 28.9595
Support vector maahe i polynomial kernel 176.1520
Interpolationi nearest 197.7494
Interpolationi linear 28.6683
Interpolationi spline 11.0874
Interpolationi cubic 3.2791
Neural network 4 neurons in FCC netwo 2.3628
Neural network 5 neurons in FCC networ 0.4648

1.3Neural Networks for Image Recognition

It is common knowledge that computers are much superior to human beings in numerical
computation; however, it is still believed that human beings are superior to computers in areas of
image processing. In thisag, an examples usedto show the expertise of special designed
neural network for recognizing noised images which cannot be handledigal people.

The experiment was carried datthe following scheme. As shown in Figl0, for each
column,therar e 10 digit images, from fO0opixelowitii 906, e
normalized Jet degree betweenand 1 {1 for blue and 1 for red). The first column is the
original image data without noise; for the noised data from theafimn to the8™ column, the
strength of noise is increased according with equati€t): (1

NP =R +i3d (1-2
Where:Py is the original image data (th& &olumn);NP; is the image data withth level noise
i is the noise leveliis the randomly generated noise betwe®€rb| 0.5].
The purpose of this problem is to design tleeiralnetworks based on the image data in

the ' column and then test the generalization ability of the desigeadalnetworksusing the

9

noised image data, from th&2olumn to the 8 column. For each noise level, the testing will be

repeated for 100 times with randomly generated noise, in ordstatsstically obtain the

recognition success rate.

mEE
BilaEs
WG
HiEsE:
HEs
[k
e
e
Wi
L i

R e = e ke s S i g e
ISt e i s
R e R R

Fig. 1-10 Digit images withdifferent noise levels from 0 to 7 in lefi-right order (one data in
100 groups)

Using the enhanced counterpropagatieuralnetwork [54] as shown in Fig. -1, the

testing results are presented in Tabi@ helow. One may notice that the recognitierror

appears when patterns with level three noises are applied.

Image inputs

WTA Winner Takes All

unipolar summing
neurons circuits

o)
2
vivv
=}
| : | |
Image outputs

retrieval layer

Fig. 1-11 The designed counterpropagation neural network architecture for the digit image
recognition problem

10

Table 12 Success rates of the designed countegayafionneuralnetwork for digit image

recognition

Data Noise Noise Noise Noise Noise Noise Noise
Digit level 1 level 2 level 3 level 4 level 5 level 6 level 7
Digit 0 100% 100% 100% 100% 100% 96% 97%
Digit 1 100% 100% 100% 100% 100% 100% 94%
Digit 2 100% 100% 100% 95% 91% 77% 82%
Digit 3 100% 100% 99% 92% 88% 84% 65%
Digit 4 100% 100% 100% 100% 100% 98% 96%
Digit 5 100% 100% 100% 100% 100% 95% 93%
Digit 6 100% 100% 100% 100% 92% 91% 88%
Digit 7 100% 100% 100% 100% 100% 98% 88%
Digit 8 100% 100% 99% 98% 83% 76% 67%
Digit 9 100% 100% 100% 100% 94% 91% 72%

Comparinghuman beings and computers in redtign of those noisy characteisig. 1-
12 presents the retrieval results dt level noised digit images. Obviously it is totally anjzde
for human beings to retrieve most of those imagesthHautiesigned counterpropagation neural

networkscan do the job correctly.

el i e ol
ol =il ol e

Fig. 1-12 Retrieval results of"7level noised digit images

1.4 conclusion

The two examples above show the potelytigbad performance of neural networks in function
approximation and pattern recognition problenBecause of the attractive and powerful
nonlinear mapping abilityywe are very interested in the research of neural negyvor&luding
both network architecturesd learning algorithms. Besidef®r better understanding okeural
networks, we have also extended our resescdpeto severalother methods of computational
intelligence, such as fuzzy inference systems and radial basis function neural setark

recent publicationgat the end of the dissertatiorgs listed at the end of the dissertation,

11

somehow prove our achievement iegbrealns.

In the dissertation, we willliscusshow to design efficient and powerful algorithms for
neural network learningespecially, we will focus on the second order algorithms considering
their high training efficiency and powerful search ability over first order algorithms. Our recently
developedimproved second order computation and teewardonly algorithm will be
introduced as the recommended solutions to memory limitation prodheithe computation

redundancy problemespectively, in second order algorithms.

12

CHAPTER 2

BACKGROUND
2.1History
The history of the neural netnks can be traced back to 1942, wiWarren McCulloch and
Walter Pitts proposed McCullodpitts model, named Threshold Logic Unit (TLU%5].
Originally, TLU was designed to perform simpl
Donal d Hebb mentioned theioomcaspthbodky mamptei oo rn
b e h a v56]oThié colicept was considered as a milestone during the development of neural
networks It is very similar with the analytical neuron models used today. In 1956, Albert Uttley
reported that he successfullyhsed simple binary pattern classification problems using neural
networks b7]. In 1958, Frank Rosenblatt introduced the importantegmd¢ A Per cept rono
following four years, Frank Rosenblatt designed several learning algorithms for the perceptron
model, in order to do binary pattern classificati@®|[As another milestone, in 1960, Bernard
Wi drow and his student Ted Hoff proposed iAI
neurons. Least mean squares method was designed to adjust the parametéisiNEADodel.
Two years later (1962), as the expansion of ADALINE, Widrow and Hoff introduced
AMADALI NEO mod e |-layer lanchitdeturdt eultiplé ADALINE units arranged in
parallel as input layer and a single processor as output 18gerHased onADALINE and
MADALINE models, neural networks attracted lots of researcherswaamd throughvery fast

development. Until 1969, Marvin Minsky and Seymour Papert proved the very limited power of

13

neur al net wor ks i n 60.Ahey showedtab the sindleclayar pgoceptrann O
model was only capable of classifying the patterns which were linearly separable; for linearly
inseparable patterns, such as the very simple XOR problem, the single layer perceptron model
would be helpless. The theory propdsby Minsky and Papert stopped the development of
neural networks for almost 10 yeamsntil 1986, the invention of errorabkpropagation
algorithm, proposed by David E. Rumelh&1][Theerror kackpropagation algorithmispersed

the dark clouds on théeld of neural networks and could be regarded as one of the most
significant breakthroughs in neural network trainiBy. using the sigmoidal shape activation
function, such as tangent hyperbolic function, and incorporating with the gradient descent
concgt in numerical methodshe error backpropagation algorithemhanced the power of
neural networks significantly. Neural networks can not only be used for classifying binary linear
patterns, but also be applied to approximate any nomliretationships. i the following 10

years, various learning algorithm&2f68] and network models6P-70] came out like the
bamboo shoot after spring rairCurrently, error bckpropagation (EBP) algorithms and
multiplayer perceptron (MLP) networks are still the most populearning algorithm and

network architecture in practical applications.

2.2Basic Concepts

As the basic unit of human brain, neural cells play the roles of signal transmission and storage. A
neural cell mainly consists of cell body with lots of synapsesnar@s shown in Fig2-la.
Extracting from the human brain model, a single neuron is made up of the linear/nonlinear
activation functionf(x) (like cell body) and weighted connections (like synapses), as shown in

Fig. 2-1b.

14

[

(a) Neural cell /1] (b) Neural model
Fig. 2-1 Neural cell in human brain and its simplified mooheheural networks

Taking the neuron in Fi@-1b as an example, the two fundamental operations in a single
neuron carpe described as:

1 Calculate thenetvalue as sum of weighted input signals
!
net=g Xxw +Ww, (2-1)
i=1
9 Calculate the output
y = f(net) (2-2)
The activation functiorfi(x) in equation 2-2) can be either linear function (equati?#3)
or sigmoidal shape function (equatia#), as shown in Fig-2.
y =gain3 x (2-3)

2
1+exp(- 23 gain3 x)

y =tanHgain3 x) = -1 (2-4)

15

Linear Activation Function

Sigmaoidal Actvation Function

T 1 T T T r T =
. w545 7 _—
_ y=f(x)=tar(gairt x) /721 -
‘I y=f(x)=gair® x v [/ 7 s
3 08 "/
)) 04 I/ /
1 e {1 702 i1/
./- i _ E oy
P -~ gain =1 12 0
- L § /
1 -] E 02 /: ,'j
5 //_. o : ;J |
- i }(l
4 v
3 /,_/ 1 06 // /) ||
y s
-1 rd 1 0.8 - s
.x"/ T _,/F _,."J
5 ; Ry : - -

(a) Linear function (b) Sigmoidal function
Fig. 2-2 Different type of activation functios

It is quitestraightforward that linear neurons (Fi&j2a), such as ADALINE model, have
very limited power and can only handle patterns which are linear separable. On the other hand,
sigmoidal shape functions (Fig:2b), such as tangent hyperbolic funct{equation 2-4), can be
applied for nonlinear situations. It can be also noticed that, for sigmoidal shape functions, when
thegainvalue becomes larger, the function behaves more like a step function.

For more than one neuron interconnected together, the two basiputations in
equations Z-1) and @-2) for each neuron remain the same as for a single neuron. The only
difference is that the inputs of a neuron could be eitlb&rvork inputsor the outputs of neons

from the previous layers

2.3 Network Architectures

Neural networks consist of neurons and their interconnections. Technically, the interconnections
among neurons can be arbitratp the dissertation, we only discuss the feedforward neural
networks where signals are propagated from input layer to outgutiathout feedback.

In this section, different types of neural network architectures are studied and compared
16

from the point of network efficiency, based on parity problems.N4hé parity function can be
interpreted as a mapping (defined Bynaryvectors) that indicates whether the sum oflthe
elements of every binary vector is odd or even. Ratiproblem is also considered to be one of

the most difficult problems in neural network trainin@{74).

2.3.1 SimplifiedPatternsfor Parity Problems

Onemay notice that, in parity problems, input patterns which have the same sum of each input

are going to have the same output. Therefore, considering all the weights on network inputs as

fl10, the number of -Nprokéemean begedyédmi2btaNtls of par it
Fig. 23 shows both the original 8 training patterns andsinplified 4 training patterns

in parity-3 problem. The twaypes of training patterns aidentical.

Input Sum of Inputs Output

000 0 0

001 1 1

010 1 1 Input Output
011 2 0 0 0

100 1 1

101 2 0 1 1

110 2 0 2 0

111 3 1 3 1

(a) Original patterns (b) Simplified patterns

Fig. 23 Training patternssimplification for parity3 problem

Based on this pattern simplification strategy, for paBifgroblem, instead of the netvk
architecture in Fig.-2a, a linear neuron (with slope equal to 1) can be used as the network input
(see Fig. 24b). The Inear neuron works as a summator and it does not have bias input. All
weights connected to the linear neuron, including input lteignd output weights, are fixed as

~

nlo.

17

weights=1
’
Inputl
Input2
Input3
+1
+1
(a) Original parity3 inputs (b) Simplified linear neuron inputs

Fig. 24 Two equivalent networks for pari{y problem

2.3.2 MLP Networks wth One Hidden Layer

Multilayer perceptron (MLP) networks are the most popular networks because they are regularly
formed and easy for programming. In MLP networks, neurons are organized layer by layer and
there are no connections across layers.

Both pariyy-2 (XOR) and parity3 problems can be visually illustrated in two and three
dimensions respectively, as shown in Figh and 26. For parity2 problem, each hidden
neuron in Fig. b works as a separatitige as shown in Fig.-%a and the output undecides
the values of separation arégimilarly, for parity3 problem, each hidden unit in Fig-6®

represents a separatipanein Fig. 26a and the values of separation area are determined by the

output unit.
0 weights=1
@@“ A
X @)
NN
/ weights=(-0.5,-1.5)
(a) Graphical interpretation of separation (b) Designed neural network

Fig. 25 Analyticd solution of parity2 problem

18

@ weights=1
@ 3
AN \\
QK
=k
1) e
R K YO
O\\ *x\ +1 \\/\\
A?\\ hS weights=(-0.5,-1.5,-2.5)

(a) Graphical interpretation of separatio (bpesigned neural network
Fig. 2-6 Analyticd solution of parity3 problem

Using MLP networks with one hidden layer to solve the patiproblem, there could be
at least 7 neurons in the hidden layer to separate the 8 training pdtisimg the pattern
simplification strategy described in Figs32and 24), as shown in Fig.-Za.

In Fig. 27a, 8 patterng0, 1, 2, 3, 4, 5, 6, 7hare separated by 7 neurons (bold line). The
thresholds of the hidden neurons &, 1.5, 2.5, 3.5, 4.5.5, 6.5} Then summing the outputs
of hidden neurons weighted BY, -1, 1,-1, 1,-1, 1}, the net inputs at the output neurons could
be only{0, 1}, which can be separated by the neuron with threshold 0.5. Therefore;7parity

problem can be solved byetlarchitecture shown in Fig-7.

@ i N weights=1 @
1 @
@ - 15 -1 Inputl
2 Input2:\\! @
@ 25 +1 Input3,
3 0 Inputd -—N 4
@ -5 -1 — 05 Inputs ‘ @ ®
4 1 Inputé
(B) wmmss Input? © -0.5
5
@ -55 -1 ®
6 /
@ -5 +1 < @
+1
7

weights=(-0.5,-1.5,-2.5,-3.5,-4.5,-5.5,-6.5)

(a) Analysis (b) Architecture
Fig. 27 Solving Parity7 problem using MP network with one hidden layer

19

Generally,if there aren neurons in MLP networks with single hidden layer, the largest
possible parityN problem that can be solved is
N=n-1 (2-5)

Where:n is the number of neurons ahds the number of dimensions of the parity problem.

2.3.3 BMLP Networks
In MLP networks, if connections across layers are permitted, then networks have bridged
multilayer perceptron (BMLP) topologies. BMLP networks are more powerful than traditional

MLP networks ifthe number of neurons is the same.

2.3.3.1BMLP Networks with One Hidden Layer
Considering BMLP networks with only one hidden layer, all network inputs are connected to
both of the hidden neurons and the output neuron or neurons.

For parity7 problem, the 8 simglied training patterns can be separated by 3 neurons to
four sub pattern§, 1}, {2, 3}, {4, 5} and {6, 7}. The threshold of the hidden neurons should be
{1.5, 3.5, 5.5}. In ordetto transfer all sub patterns to the unique pat{érnl} for separation,
patterns {2, 3}, {4, 5} and {6, 7} should beeduce by 2, 4 and 6 separately, which determines
the weight values on connections between hidden neurons and output neurons. After pattern
transformation, the unique pattef® 1} can be separated by the outmeuron with threshold
0.5. The design process is shown in FigBa2and the corresponding solution architecture is

shown in Fig. 28b.

20

weights=1

Input? weights=(-1.5, -3.5, -5.5)

(a) Analysis (b) Architecture
Fig. 2-8 Solve parity7 problem using BMLmetworks with one hidden layer

For parityll problem, similar analysis and related BMLP networks with single hidden

layer solution architecture are presented in FHg. 2

weights=1

Al

‘”,

@ ® @O

[
. O'@ oo|\1 m'w .l>|oo I\)|I—‘ o

weights=(-1.5, -3.5, -5.5, -7.5, -9.5) 05
+1

(a) Analysis (b) Architecture
Fig. 2-9 Solve parityll problem using BMLP neforks with single hidden layer

Generally, forn neurons in BMLP networks with one hiddelyda, the largest paritix
problem that can be possibly solved is:

N=2n-1 (2-6)

2.3.3.2BMLP Networks with Multiple Hidden Layer

21

If BMLP networks have more than one hidden layers, thefutfteer reduction of the number of
neurons are possible, for solving the same problem.

For parity11 problem, using 4 neurons, in both 11=2=1=1 and 11=1=2=1 architectures,
can find solutions. Considering the 11=2=1=1 network, the 12 simplified trainitegnsatvould
be separated by two neurons at fiisto {0, 1, 2, 3}, {4, 5, 6, 7} and {8, 9, 10 11}; the
thresholds of the two neurons are 3.5 and 7.5 separately. Then, sub gétt&ries 7} and {8, 9,
10, 11} are transformed to {0, 1, 2, 3} by subtiag -4 and-8 separately, hich determines the
weight values on connections between the first hidden layer and followed layers. In the second
hidden layer, one neuron is introduced to sepd@tel, 2, 3} into {0, 1} and {2, 3}, with
threshold 1.5. Aftethat, sub pattern {2, 3} is transferred to {0, 1} by setting weight valu@ as
on the connection between the second layer and the output layer. At last, output neuron with

threshold 0.5 separates the pattern {0,Th}e whole procedure is presented ig.F210 below.

0 0 @&O 5
1 -—15 g S 1
2 2 } ey
3 3 Yy, / Inputl
@T Z / Input2
_ Input3
5 B / Input4
6 - / Input5
Input6
@L % 4 Input?
8 ~ Input8
9 - Input9
10 Input10’/ +1 f
Inputll® U .
11 weights=(-3.5, -7.5, -1.5)
(a) Analysis (b) Architecture

Fig. 210 Solve parityll problem using BMLP networks with two hidden layers, 11=2=1=1

Fig. 2211 shows tle 11=1=2=1 BMLP network with two hidden layers, for solving parity

11 problem.

22

=
,_\okooo\lovlo'l.bwr\ﬂ—\o

weights=(-5.5, -1.5, -3.5)

(a) Analysis (b) Architecture
Fig. 211 Solve parityll problem usig BMLP networks wih two hidden layers, 11=1=2=1
Generally, considering the BMLP network with two hidden layers, the largest-parity

problem can be possibly solved is:
N =2(m+1)(n+1)- 1 (2-7)
Where:mandn are the numbers of neurons in the two hidden layers, respectively.

For further derivation, one may notice that if there rdg@idden layers ana is the

number of neurons ithei-th hidden layerwherei is ranged from 1 t&, then

N=2(n+1)(n, +1)3 (n +1)3 (n +1)-1 (2-8)

2.3.4 FCC Networks
Fully connected cascade (FCC) networks can solve problems using the smallest possible number
of neurons. In the FCC networks, all possible routines are weighted, and each neuron contributes
to a layer.

For parity-7 problem, the simplified 8 training patterns are divided by one neuron at first,
as {0, 1, 2, 3} and {4, 5, 6, 7}; the threshold of the neuron is 3.5. Then the sub pattern {4, 5, 6, 7}

is transferred to {0, 1, 2, 3} by weights equal4o connead to the followed neurons. Again, by

23

using another neuron, the patterns in the second hidden layer {0, 1, 2, 3} can be separated as {0,
1} and {2, 3}; the threshold of the neuron is 1.5. In order to transfer the sub pattern {2, 3} to {1,
2}, 2 should be gbtracted from sub pattern {2, 3}, which determines that the weight between the
second layer and the output layer-& At last, output neurons with threshold 0.5 is used to

separate the pattern {0, 1}, see Figl2

0 0 @LO_S Inputl weights=1
1 @A 1.5)744 1 Input2
g ;2), Input3-.
@T-f5 Y // Input4—
5 /’b‘/ Input5
6 J\ - Input6”’y, ~‘\
7 Input? weights=(-3.5, -1.5, -0.5)

(a) Analysis (b) Architecture
Fig. 2-12 Solve parity7 problem using FCC networks

Fig. 2-13 shows the solution of pari#y5 problem using FCC networks.

0
1 - 0.5
2
3 Inputl
4 Input2
5 Input3
Input4
6 Input5
@L Input6
8 Input7
9 Input8
10 Input9
Input10
1; Inputll
! Input12
5: Input13
Inputl4 . _
15 InputL5 weights=(-7.5, -3.5, -1.5, -0.5)
(a) Analysis (b) Architecture

Fig. 213 Solve parityl5 problem using FCC networks

Considering the FCC networks as special BMLP networks with only one neuron in each
hidden layer, fon neurons in FCC networks, the largdsfor parity-N problem can be derived

from equation () as:

24

N =2y - @9)

n-1

or

N=2"-1 (2-10)

2.3.5 Comparison of Different Topologies

Table 21 concludes the analysid network efficiency above anthe largest parityN problem
that can be solved with a given network structifer example, with 5 neuronshe MLP
network withonly one hidden layer carolve parity4 problem (44-1 network; BMLP network
with a single hidden layer can solve pailiy problem (11=4=hetwork); BMLP network with
two hidden layers can solve paritp problem (15=3=1=hetworkor 15=1=3=1network or
parity-17 problem (17=2=21 network; FCC network can solve parl problem at most

(31=1=1=1=1=InetworK.

Table 21 Different architectures for solving parityproblem

Network Architectures | Parameters Parity-N Problem
MLP with single n neurons n-1
hidden layer

BMLP with single n neurons 2n+1
hidden layer

BMLP with multiple | k hidden layers, each 2(n, +1)(n, +1)3 (n_, +1)(n, +1)- 1
hidden layer with n; neurons]
FCC n neurons on_1

Based on the comparison results shown in TabHlede may draw the conclusion that
with more connections across layers, the networks become more powkeW®CC architecture

is the most powerfudnd can solve problems with much lessnber of neurons.

25

2.4Learning Algorithms
Many methods have already dve developed for neural networks trainifg2-68]. In this

dissertation, we wilfocus onthe gradientlescenbased optimization methed

2.4.1 Introduction
Steepest descent algbm, also known as error bgmopagation algorithm#@fl], is the most
popular algrithm for neural network traininghowever, it is also known as an inefficient
algorithm because of its slow convergence.

There are two main reasons for the slow convergence: the first reason is that its step sizes
should be adequate to the gradientshasve in Fig.2-14. Logically, small step size should be
taken where the gradient is steep, so as not to rattle out of the required minima (because of
oscillation). So if the step size is a constant, it needs to be chosen small. Then, in the place where
the gradient is gentle, the training process would be very slow. The second reason is that the
curvature of the error surface may not be the same in all directions, such Rgstrerock
function, so the <c¢l assi c 76 enay exist and anhyl resyltdoin ther stolw | e m

convergence.

EBP algorithm with
small constant step
size

EBP algorithm with

large constant step

size

Fig. 2-14 Searching process of the steepest descent method with different learning constants:

yellow trajectory(left) is for small l@rning constant which leads to slow convergence; purple
trajectory(right) is for large learning constant which causes oscillation (divergence)

26

http://en.wikipedia.org/wiki/Rosenbrock_function
http://en.wikipedia.org/wiki/Rosenbrock_function

The slow convergence of the steepest descent method can be greatly improved by Gauss
Newton algorithmT75. Using second order derivatives of err
the curvature of error surface, The Galeswton algorithm can find proper step sizes for each
direction and converge very fast. Especially, if the error function has a quadratic ,stirface
converge directly in the first iteration. But this improvement only happens when the quadratic
approximation of error function is reasonable. Otherwise, Gldasgon algorithm would be
mostly divergent.

Levenberg Marquardt algorithnm24-25][76] blends the steepest descent method and
GaussNewton algorithm. Fortunately, it inherits the speed advantage of the -Naugsn
algorithm and the stability of the steepest
Newton algorithm, because in many cagecan converge well even if the error surface is much
more complex than quadratic situation. Although Levenberg Marquardt algorithm tends to be a
bit slower than Gaussewton algorithm (in convergent situation), it converges much faser th
the steepéasiescent method.

The basic idea of Levenberg Marquardt algorithm is that it performs a combined training
process: around the area with complex curvature, Levenberg Marquardt algorithm switches to
steepest descent algorithm, until the local curvatureojggurto make a quadratic approximation;
then it approximately becomes Gadgswton algorithm which can speed up the convergence
significantly.

In the following sections, the four basic gradient descent methods will be introduced,
including (1) steepest demnt method; (2) Newton method; (3) Gaussimwton algorithm and
(4) Levenberg Marquardt algorithm.

Sum square error (SSH is defined to evaluate the training process, as the object

27

function. For all training patterns and network outputs, it is cakedlay
1P M
_ LI -u 2
E(x,w) =sa d ®m (2-11)
p=1m=1

Where:x andw are the input vector and weight vector respectivplis the index of training
patterns, from 1 t®, whereP is the number of traing patternsmis the index of outputs, from
1 to M, whereM is the number of outputs;, nis the trainingerror at outpum when applying

patternp and it is defined as
€pm=0pm= Opm (2-12)

Where d is the desired output vector aads the actual output vector.

2.4.2 Steepest Descent Algorithm

Steepest descent algorithm is a first order algorithm. It uses the first order derivative of total
error function to find the minima in error space. Normalhadientg is defined as the first order
derivative of total error functior2{11)

N T
g=PEWW) _GIE E o E 8
MW el W, HWn G

(2-13)

Where:N is the number of weights.
With the definition of gradieng in (2-13), the update rule of steepest dagcalgorithm

could be written as:
Wi = Wy - @ Gk (2-14)
Where:Uis the learning constant (step size) and k is the index of training iterations.

The training process of steepest descent algorithm is asymptotic convergence so it never

reaches the minima. Around the solution, all the elements of gradient gewstould be very
28

small and there would be very tiny weight changing.

2.4.3 Newton Method

Newtonmethod assumes that all the gradient comporgeHts;, € gy} are function of weights

and all weights are linearly independent:

eg

f o = Fz(W17W23 WN)

% 3 (2-15)
TQN = FN(W11W23 WN)

Where: {F1, F.é Fy} are nonlinear relationships between weights and related gradient

components.

Unfold eachg; (i=1, 22 N)in equations Z-15) by Taylor series and take the first order

approximation:

MOy MO, HO1
0;° 0yg+t—Dw +—=Dw, +3 + Dw,
v HWy ' HW, 2 HWy N
H92 H92 H92
0, ° g9 +—=Dw +—=Dw, +3 +—=Dw,
2" Y20] h , 2 ¥ N (2-16)
3

MO HON HON
In ® Onot Dw, + Dw, +3 + Dw
N N0 Wy W, ? UN N

——y =) =) —— — — (P

By combining the definition of gradient vectgpin (2-13), it could be determined that

o

Rl

M9i _ (;M‘“J’ _ W’E
= = (2-17)

HW; MW HW; IW

o

Where:i andj aretheindices of weights, from 1 tN.

By inserting egation @-17) to @-16):

29

& ’E = 2E

T O 91,0*'Ll > Dwy + H Dw, +3 + H Dwy

0 Wy HW; LW, MW W

7 2 2 2

1 9,°050 % W E D‘Nl"'—“EDWz"'?’ s ME Dwy

} W W, WS HW5 W (2-18)
- 3

1 2 2 2

10N ° Onpo * W E Dw, + WE DN2+3+HIZEDWN

|l MW Wy MWy MW, MWy

Comparing with the steepest descent method, the second order derivatives of the total
error function need to be calculated for each component of gradient vector.
In order to get the minimaf total error functiorg, each element of the gradient vector

should be zero. Therefore, left sides of the equati@i8) are all zero, then

& 2 2 2
T0°91,0+¥DW1+ W= Dw, +3 + HE Dwy
1 MW, HW; LW, MW W
i 2 2 2
10°gy0+ HTE DN1+“—EDW2+3 + WE Dwiy
% MW Wy MW, MW Wy (2-19)
- 3
! 2 2 2
10° gy + e Dw; + W= I:)Wz*'?’*‘HIZEDWN
{ MW By MW MW, N
By combining equation2(13) with (2-19)
& 2 2 2
T'E:'gl,oo_li[llvl+ L Dw, +3 + I= Dwy
0 HwWy Wy HW; LW, HW; W
i 2 2 2
b, HW [,y HW; HW2 W (2-20)
! 3
P LE W2E W2E W2E
1- =-0Ono° Dw; + ———Dw, +3 + —-Dwy
bpwy MW Wy MW BW3 MWy

There areN equations forN parameters so that adbv; can be calculated. With the
solutions, the weight syge can be updated iteratively.

Equationq2-20) can be also written in matrix form

30

& WE WE WE @

e HE o ¢ > 3 U
e 0,0 g H\ng é “‘2’1 MN12MN2 MlewN(J eDw, g
> o U & 0 & .
&g 6o u ¢ WE WE 5 WE | Shwy
é 3 u_g MW H_éuwzuwl HW5 MWW2lWN O 63 1 (2-21)
¢, Uug3 5 €3 3° 3 3 Ué
& Onva g HE ;€ 2 L2E 5 W2E 3 ebwy
8 MWD & 2 -
e gHWN EWy - W W, MWy i
Where: the square matrix is Hessian mattigiNxN):
e Y’E wE , _WE @
e —u
6 I HWW, WG Wy
¢ W°E T 3 u’E u
A =g w2 By (2:22)
e 3 3 3 3 u
¢ WE wE 5 WE U
EHWN LW LW W, Wy g
By Combining equation®2{13) and -22) with equationZ-21)
-g=HDw (2-23)
So
— -1
Dw=-H""g (2-24)
Therefore, update rule for Newtanethod is
Wiy =W - Hpt
k+1 = Wik k 9k (2-25)

As the second order derivatives of total error function, Hessian niigixes the proper
evaluation on the change of gradient vecBy comparing equation2{14) and 2-25), one may

notice that wellmatched step sizes are given by the inverted Hessian matrix.

2.4.4 GaussianNewton Algorithm

31

If Newton method is applied for weight updating, in order to get Hessian ntairtke second
orde derivatives of total error function have to be calculated and it could be very complicated. In

order to simplify the calculating process, Jacobian matisxintroduced as

e He;; He; 1 He, @
e— —— 3 U
é W, HW5 HWN
eHe, He, 5 Fe u
é u
& KWy HW> MVN
é 3 3 3 3 0
elerm Hem Hem U
é 3 G
! MW, MWN
J= 6 3 3 3 3 |
éHep1 Hep, Hep1 (2-26)
é 3 N
& M MW, HWN -
6Hepo HEp; 3 Hep 2 |
€ 1wy MW, Hwy U
€3 3 3 3 Y
é u
E}IJeP,M HEp 3 HEp N
g Hw, MW, Hwy H

By integratingequations Z-11) and @-13), elements of gradient vector can be calculated

as
é; P M o)
WE ey g by e 5
_ _ C p=1m=1 = _ . p,m
9i =—= = €pm8 2-27
I MW, MW, 21218(3”““ pmg ()

Combining equations2¢26) and -27), the relationship between Jacobian malrind

gradient vectog would be
g=J'e (2-28)

Where: error vectoe has the form

32

(2-29)

Inserting equation11) into 2-22), the element atth row andj-th column of Hessian

matrix can be calculated as

éael P M 5
5 a a. pmo P M

IJE ¢ p=lm-l aa’”‘pm“pm_'_S 2-30

h . = = = -
R TVTY ep TR (2:30)

Where S; is equal to
H epm

S, a a pm 2-31
—1m—1|JW'uWJ ()

As the basic assumpti on§; isfclosédtowerm and the met h c

relationship between Hessian matrxand Jacobian matrikcan be rewritten as

HoJ"J (2-32)
By combining equations2{25), (2-28) and 2-32), the update rule of Gauas-Newton

algorithm is presented as

— Ty Y147
Wi =Wy - (‘Jk‘Jk) Jy & (2-33)
Obviously, the advantage of GaiassNewton algorithm over the standahdewton

33

method (equatior2-25) i's that the f or mer tioo ofesecahed @dem 0 t
derivatives of the total error function, by introducing Jacobian maditrirstead. However,
Gausgan-Newton algorithm still faces the same convergent problem like Newton algorithm for
complex error space optimization. Mathematicalyg problem can be interpreted as: malfi

may be not invertible.

2.4.5 Levenberg Marquardt Algorithm
In order to make sure that the approximated Hessian maliixis invertible, Levenberg

Marquardt algorithm introduces anotfagaproximation to Hessian matri
HeJ'J+m (2-34)
Where:¢ is always positive, called combination coefficient anmglthe identity matrix.
From equation 2-34), one may notice that the elements on the main diagonal of the
approximated Hessian matrix will be larger than zero. Therefore, with this approximation
(equation2-34), it can be sure that matrik is always invertible.

By combining equations2{33) and 2-34), the update rule of Levenberg Marquardt

algorithm can be presented as:
-1
Wi =W, - (‘]-Ik_‘]k + /71) Ji& (2-35)

As the combiation of steepest descent algorithm and Gaoddewton algorithm,

Levenberg Marquardt algorithm switches between the two algorithms during the training process.

When combination coefficient is very small (nearly zero), equatio®35) is approaching to
equation 2-33) and Gausan-Newton algorithm is used. When combination coefficierd very

large, equation2-35) approximates to equatio2-{4) and the steepest descent method is used.

34

r

(

If the combination coefficienft in equation 2-35) is very big, i can be interpreted as

learning coefficient in the steepest descent metBdd):

a== (2-36)

2.4.6 Comparison of Different Algorithms

Table 22 summarizes the update rules and theperties of the four algorithms above.

Table2-2 Specifications of differenearningalgorithms

Learning Algorithms | Update Rules Convergent | Computation
Rate Complexity
EBP algorithm Wiy =W - & O Stable, slow | Gradient
Newton algorithm W =W, - H I;lgk Unstable, fasf Gradient and Hessian
Gaussan-Newton _ T+ V1.7 Unstable, fas{ Jacobian
algorithm Wiea =W (‘Jk‘]k) Ji€
Levenberg Marquardt| ,, —, . (JTJ + m)'lJTe Stable, fast | Jacobian
algorlthm k+1 k kY k k ~k

In order to compare the behavior of differentrféag algorithms, let us use the pasgy

problem as an example. The training patterns of p&rppyoblem are shown in Fig-15a.

Inputs Outputs

-1 -1 -1 -1

-1-11 1

11 -1 1

-1 11 -1

1-1-1 1

1-11 -1

11-1 -1

111 1

(a) Training patterns (b) MLP network 32-1

Fig. 215 Parity3 dataand network architecture

35

Three neurons i8-2-1 MLP network, as shown in Fig-I5b, are used for training and
the required training error is 0.01. Convergent rates are tested by repeatincasador 100

trials with randomly generated initial weights.

1.0E+01

1.0E-00
1.0E-01
1.0E-02
1.0E-03 1.0E-03
1.0E-04 1.0E-04

i] 200 400 600 SO0 1000 1200 1400 1600 1800 2000 o 50 100 150 200 250 300 350 400 450 500

Ieration lteration
(a) EBP algorithm (1) (b) EBP algorithm ()=100)
1.0E+01 sy R R P e 1.0E+01 —

1.0E-00 1.0E-00
1.0E-01 1.0E-01
1.0E-02 1.0E-02
1.0E-03 1.0E-03
1.0E-D4 1.0E-04
o 2 4 6 8 10 12 1] 2 4 6 8 10 12
Iteration Iteration
(c) GaussiarNewton algorithm (d) Levenberg Marquardt algorithm

Fig. 216 Training esults of parity3 problem

Table2-3 Comparison among differetgarningalgorithms for @rity-3 problem

Algorithms Convergence Ratd Average lteration| Average Time (ms)
EBP al gorit 100% 1646.52 320.6
EBP al gorit 79% 171.48 36.5
GaussNewton algorithm 3% 4.33 1.2
LM algorithm 100% 6.18 1.6

The training results are shown in Figl@ and the comparison is presented in Takde 2

It can be concluded that:
f For EBP algorithmthe larger the training constaldis, the faster and less bta the
training process will be (Figs-P6a and 216b);

1 GaussiarNewton algorithm computes very fast, but it seldom converges (Ri§cP

36

1 Levenberg Marquardt algorithm is much faster than EBP algorithm and more stable
than Gaussiaiewton algorithm (Fj. 2-16d).

For more complex paritil problems, GaussiaNewton algorithm cannot converge at
all, and EBP algorithm also becomm®re timeconsumingand harder to find solutions; while
Levenberg Marquardt algorithm can still perfosorccessful training.

Another example is the twspiral classification problenm/[] which is often considered
as a very complex benchmark to evaluate the efficiency of learning algorithms and network
architecturesAs shown in Fig. 217, the twespiral problem is purposed to segi@ two groups

of twisted points (red circles and blue stars).

8

O Class 1
Class2 |

6_

4_

2r * o + ©
* o *O
ot + O + 0
+ © * o

a
2r *o *O

-}

-8

Fig. 2-17 T_i/vo-s_EJiraI E)robl_(zem: sueparfationdof twso groaups of points
Fig. 2-18 presend the training resultghe two-spiral problem using EBP and LM
algorithns. In both cases, fully connectedscade (FCC) networks were used; the desired sum
squared error was 0.01; the maximum number of iteration was 1,000,000 for EBP algorithm and
1,000 for LM algorithmThe LM algorithm was implemented by NBN algorithi#8{79], so as
to be able to handle FCaetworks.EBP algorithmnot onlyrequires much more time than LM

algorithm (Fig. 2-18a), but alsos not able to solvéhe problem unless excessive number of

37

neurons is used. EBP algorithm requires at leastelironsand the second order algorithm can

solve it in much smaller networks, such7aseurongFig .2-18b).

(5]

107 ¢
T " 1
% , —®— EEP Algarithm
20 Ty Algarithm
£
=
= 1
E 10 F
=
|_
a
&’k
[k}
F
10" 1 ' ' .

1 1 1 1 1 1
7 g 9 10 1 12 13 14 15 16 Meurons

33 42 52 B3 75 BB 102 117 133 180 1B3 Weights
(a) Average training time

o

—8— EBP Algorithm
0.8F == |11 Algorithm

Success Rate

1.D 11 'll?_ 'll3 1:1 1I5 16 MNeurons
33 42 52 B3 7S BB 102 117 133 180 168 ‘Weights
(b) Success rate
Fig. 2-18 Comparison between EBP algorithm and LM algorithm, for different number of
neurons in fully connected cascade networks

i i
g 9

Fig. 219 showsthe training results of the twspiral problem, using 16 neurons in fully
connected cascade network, for both EBP algorithm and LM algorithm. One may notice that,
with the same topology, LM algorithm is able to find better solutions than those found using

EBP algorithm.

38

-0 10 -0 10
(a) EBP algorithm (b) LM algorithm
Fig. 219 Training results of the twspiral problem with 16 neurons in fully connected cascade
network

By conclusion, Levenberg Marquardtgorithm is the mosefficient gradient based
algorithm and it is recommendefbr neural network learning; however, it needs much more

challenging computation than first order gradient methods.

2.5Generalization Ability

Neural networksan work as universal approximat@2], but it happens only after successful
training/learning process. The generalization is defined to evaluate the ability of trained neural
networks to successfully handle new patterns which are not used for trémorder to obtain
neural networks with goodjeneralization abilitythe overfitting problems[28] should be

avoided during the training process.

2.5.1 TheOverfitting Problem
The oveffitting problem is criticalfor designing neural networks thi good generalization
ability. When oveffitting happensthe trained neural networks can fit the training pasteery

preciously, but they response plydior new patterns which are not used for training.

39

Let us have an example to illustrate the existence obvkefitting problems in neural
network trainirg. The purposef the examplés to approximate the function below
f(xy) = 2exp- 0.05x- 9) - 0.1(y- 5 +10°) (2-37)
As shown in the Fig.-20, the training patterns consist of 6>6=36 poiliEsg. 2-20a)
uniformly distributed in sampling rangef [0, 10] andy ¢ [0, 10]. After training, another
101x101=10,201 poirg (Fig. 220b, also uniformly distributed) in the same sampling range are

applied to test the trained neural networks.

(a) Training patterns, 6x6=36 points (b) Testing patterns, 101x101=10,201 points
Fig. 2-20 Function approximation problem
Using the most powerful neural network architecti@a® analyzed in section 2.3.5)lly

connected cascade (FCC) networks, the testing results of treetedrks consisting of different

number of neurons are shown in FigR R

2

(a) 2 neurons (b) 3 neurons (c) 4 neuros

40

0

(9) 8 neurons

Fig. 2-21 Approximation results of FCC networks with different number of neurons

Table 2-4 presents the training and testing sum square err@Eg)Sof FCC networks

with different number of neurons.

Table2-4 Training/testing SSEs of different sizes of FCC networks

2

(h) 9 neurons

Number of Neurons| Training SSEs| Testing SSES
2 2.43055 678.7768
3 1.17843 346.0761
4 0.13682 49.6832
5 0.00591 1.7712
6 0.00022 0.2809
7 0.00008 7.3590
8 0.00003 249.3378
9 0.00000008 142.3883

From the results presented in F@21 and Table2-4, one may notice that, as the
network size increases, the training errors keep decreasing stably; however, the testing errors

decreas at first (when the number of neurons is less than 6) and they turned to become

41

increasing and unpredictable when more neurons are added. When the FCRsnebnsist of

5 and éneurons, very good approximation results are obtained.

2.5.2 Analytical Solutions

Based on the experiment above, one may notice that the basic reason of Hfitérayeroblem

in neural network design can be ascribed as the mismatch between the size of training patterns
and the size of networks. Normallysing improperly large sizaetworks to train very simple
patterns may result in owéitting. From another way of speaking, in order to reduce the
probability of occurrence of the owétting in neural network design, there are two very
straightforward methods:

1 Increase the size tfaining patterns

1 Decrease the size of neural networks

For the first method, it is always good to get as many training patterns as possible;
however, this strategy is only proper in practical applications when extra measurement can be
performed.

For the gcond method, it could be notice thatorder to preserve the generalization
abilities of neural networks, the size of the networks should be as small as possible. From this
point of view, EBP algorithm is not a good choice design compact neural netiks because
of its slow convergence and poor search ability. In order to overcome the two main
disadvantages of EBP algorithms, networks with much larger than optimal size are often applied
for training.

Levenberg Marquardt (LM) algorithm is very efficiefir neural network training and

has much powerful search ability. With these properties, LM algorithm is proper to design

42

compact neural networks in practical applications. However, the most famous implementation of
LM algorithm, Hagan an®1enhajLM algorthm [80], is only for MLP networksvhich perform

much less efficiehy than networks witltonnections across layesich as BMLP networks and

FCC networks.

The recently developed neurby-neuron (NBN) algorithm[27] solves the network
limitation in Hagan and Menhaj LM algorithnand can handle arbitrgr connected neural
networks using second order update rdleerefore,the combination of NBN algorithm and
BMLP/FCC networks isecommendedh literature P8] for designingcompact neural netwosk

so ago reduce the probability of occurrence of the eftting problem.

2.6 Neuron-by-Neuron Algorithm
The neurorby-neuron(NBN) algorithm R7] was proposed to solve the network architecture
limitation in Hagan and Menhaj LM algorithm, so that second orderighgns can be applied to
train very efficient network architectures with connections across layers [74]

The NBN algorithm adopts the index technology used in SPICE problem, and it consists
of two stepsforward computation and backward computattorgaher the information required

for Jacobian matrix computation in equatior2@), using

d,,-0 Ho 0 | HNet
j _ He, _ P-(pm p,m) __ HO%m _ HOopm MO, et _. d, .Sy, (2-38)
p,mn p.m.j i,n
W W, MW, MO, pnet pw,

Where:j, mnis the element of Jacobian matrix in-48) related with patterp, outputm and
weight n. Equation (238) is deried from (212) and (226), using the chain rule of
differentiation.Vectoru is defined to measure the error backpropagation pro8ékarid vector

yi consists of the inputs of neurorwhich may be either the network inputs or the outputs of

43

other neuronss is the slope (derivative of activation function) of the given neuronis the
index of neurons.

In the forward computation, neurons are organized according to the direction of signal
propagation; while in backward computation, the analysis will follow the error backpropagation
procedureike in first order algorithmsin order to illustrate the computation process of NBN
algorithm, let us consider theetwork architecture with arbitrary connecti@sshownn Fig. 2

22,

©)

X1

X2

©)

+1 +1 +1 +1

Fig. 2-22 Arbitrarily connected neural network indexed by NBN algorithm

For the network in Fig.-22, using the NBN algorithm, the network topology can be

described as

N, 312
N, 412
N; 5 3 4
N,61245
Ns 7 356

Notice that each line represents the connectioasgiwenneuron. The first part, fra N;
to Ns, is the neuron index. Followed, the first digit of each line is the node index of the neuron.
The restof the digits of each lineaepresent the nodes connected to the specified neuron. With
these rules, one may notice that, for each neuronnphg nodes must have smaller indices than
the index of itself.

In the forward computation, the neurons connected to the network inputs are first

44

processed so that their outputs can be used as inputs to the subsequent neurons. The following
neurons are #n processed as all their input values become available. In other words, the
selected computing sequence has to follow the concept of feedforward signal propagation. If a
signal reaches the inputs of several neurons at the same time, then these neufm®s can
processed in any sequence. In the example in F&2, 2here are two possible ways in which
neurons can be processed in forward directMiftN3N4sNs or NoN;NsNsNs. The two procedures
have different computing processes, but lead to exactly the sauksréaVhen the forward
computation is donehoth of the vectoy andthe derivativevector s in equation (238) are
obtained

The sequence of the backward computation is opposite to the forward computation
sequence. The process starts with the last neamd continues toward to the inputs. In the case
of the network in Fig. 22, there are two possible backpropagation patigkl;NsN2N; and
NsNsNsN;No. Again, different paths willead tothe same result$n this example, let us use the
NsN4N3N2N; sequene to illustrate how to calculate the vectdin the backward computation.
Notice thatthe vectorl represents signal propagating from a network output to the inputs of all
other neurons, so the size of the vedias equal to the number of neurorir the output
neuronNs, it is initialed asls=1. For the neuro,, Us is propagated by the slope of neuidn
and then propagated by the weigWts connected between neuroNg andNs, so as to obtain
U=UsssWy 5. For the neurorNs, both of the parameten& and Us will be propagated in two
separate paths to the output of neurdiy and then summed together,@s 493 4+ ESsWs s.
Following the same rule, it can be obtained tlatlzSsWo s+ UsaWo 4 and Uh= gSsWy 3+ BS5Wy s.
After the backward computation, all the elements of vactorequation(2-38) are calculated.

With the forward and backward computati@f, the neuron outputg and slopes, and

45

vectorl are calculated. Then using equation3@), all the elements of Jacobian matrix can be
obtained.

In the NBN computation above, neuronseamnalyzed oney-one, following the
specified sequenacghich is decided by the network architectures. This property makes the NBN

algorithm capable of handling networks consisting of arbitrarily connected neurons.

46

CHAPTER 3
PROBLEMS IN SECOND ORDER ALGORITHMS
The very efficient second order Levenberg Marquardt (LM) algorittd?p] was adopted for
neural network training by Hagan and Menhd&)][8&nd later was implemented in MAAB
Neural Network tool box82]. The LM algorithm uses significantlyone parameters describing
the error surface than just gradient elements as in the EBP algorithm. As a consequence the LM
algorithm is not only fast but also it can train neural networks for which the EBP algorithm has
difficulty to converge [8]. Many resarchers now are using the Hagan and Menhaj LM
algorithm for neural network training, but thmplementatiorhas several disadvantages:
(1) TheHagan and MenhdjM algorithm requires the inversion of quasi Hessian matrix of
sizenwxnw in every iteration, wheraw is the number of weights. Because of the necessity
of matrix inversion in every iteration the speed advantage of LM algorithm over the EBP
algorithm is less evident as the network size increases.
(2) The Hagan and Menhaj LMalgorithm was developed only fonultilayer perceptron
(MLP) neural networks. Therefore, much more powerful and efficient networks, such as fully
connected cascade (FCC) or bridged multilayer perceptron (BMLP) architectumest be
trained
(3) The Hagan and Menhaj LMalgorithm cannot be sed for the problems with many
training patterns because the Jacobian matrix become prohibitively too large.

(4) The implementation othe Hagan and Menhaj LMalgorithm calculated elements of

a7

Jacobian matrix using basically the same routines as in the EBfthatgoThe different is

that the error backpropagation process (for Jacobian matrix computation) must be carried on
not only for every pattern but also for every output separately. So for network with multiple
outputs, the backpropagation process has tefxeated for each output.

The problem (1)nheritsproperty of the original Levenberg marquardt algoridama itis
still unsolved sathat the LM algorithm can be used only femall axd medium size neural
networks. Considering that LM algorithm often\szd problems with very efficient networks, so
that the problem (1) is somehow compensated by this powerful search ability.

The problem Z) was solvedby the recently developed neurbgneuron (NBN)
algorithm, as discussed in chapter, 6t this algoritim requires very complex computation.
The NBN algorithm also inherits the problems (3) and (4Jagan and Menhaj LMlIgorithm.

The problem J) is called memory limitation, which makes the second order algorithms
not proper for problems with larggzed pé#terns. This is a fatal issue for second order
algorithms, since in practical problems, the size of training patterns is very large and it is
encouraged to be as large as possible.

The problem (4) is also cell computational redundant, which makes seconder
algorithms relatively complicatednd inefficient for training networks with multiple outputs
Also, it is easier to handtae networks with arbitrarily connected neurons, when there is no need
for backward computation process in problem (4).

In the followed two chapters, we will introduce the two methods, improved second order
computationand the forwarenly algorithm, as the potential solutions to memory limitation

the problem (3) and computational redundarihe problem (4), respectively.

48

CHAPTER 4

IMPROVED SECOND ORDER COMPUTATION
The improved second order computation presented in this chapter is aimed to optimize the neural
networks learning process using Levenberg Marquardt (LM) algorithm. Quasi Hessian matrix
and gradient vectorra computed directly, without Jacobian matrix multiplication and storage.
The memory limitation problem for LM training is solved. Considering the symmetry of quasi
Hessian matrix, only elements in its upper/lower triangular array need to be calculatedor)
training speed is improved significantly, not only because of the smaller array stored in memory,
but also the reduced operations in quasi Hessian matrix calculation. The improved memory and
time efficiencies are especially true for laigjeed p#erns training.

In this chapter, firstly, computational fundamentals of LM algorithm are introduced to
address the memory problem. Secondly, the improved computations for both quasi Hessian
matrix and gradient vector are described in details. Thirdlyimpls problem is applied to
illustrate the implementation of the improved computation. Finally, several experimental results
are presented as the memory and training time comparison between the traditional computation

and the improved computation.

4.1 Problem Description
Derived from steepest descent method and Newton algorithm, the update rule of Levenberg

Marquardt algorithm is76]

49

Dw=(3T3+m) Te (4-1)
Where:w is weight vector] is identity matrx, € is combination coefficien(PxM)xN Jacobian

matrix J and(PxM)x1 error vectore are defined as

gp-e.l.l Hep 5 Hou g
e W BW; HWN ee, 2
éle, Hao 5 Mooy é Tl
S pw, pwy Y éelz u
g3 3 3 3 5 €3
etem Hewm 5 e e &
e pw Pw; MWy U eam
J=¢é3 3 3 3 ue=§¢€3 U
€ e e e, U u
éH P M 5 Hem a é€py U (4-2)
é bW, pW; MWN 0 €o . U
élep, Lep; 3 Mer u e 3F>2 u
guwl HW; MW 3 g 3
é 3 3 3 3 4 &rm U
éleem Heem 5 Hepm
8w W, Hwy H

Where:P is the number of training patterrid,is the number of outpgsi andN is the number of

weights. Elements in error vecteare calculated by

€m =dpm= Opm (4-3)
Where:dym and opn, are the desired output and actual output respectively, at network output
whentraining patterrp.

Traditionally, Jacobian matrid is calculated and stored at first; then Jacobian matrix
multiplications are performed for weight updating usidgl). For small and median size
patterns training, this method may work smoothly. Howefegrlargesized patterns, there is a
memory limitation for Jacobian matrixstorage.

For example, the pattern recognition problem in MNIST handwritten digit datal#sm[&ists

of 60,000 training patterns, 784 inputs and 10 outputs. Using only thpesinpossible neural
50

network with 10 neurons (one neuron per each output), the memory cost for the entire Jacobian
matrix storage is nearly 35 gigabytes. This huge memory requirement cannot be satisfied by any
32-bit Windows compliers, where there is ai§abytes limitation for single array storage. At

this point, with traditional computation, one may conclude that Levenberg Marquardt algorithm

cannot be used for problems with large number of patterns.

4.2 Improved Computation
In the following derivation, sm squared error (SSE) is used to evaluate the training process.

1R M

_ L] L 2
Ew)=>a & e (4-)
2
p=1 m=1

Where:eynis the error at outpuh obtained by training pattem defined by 4-3).

TheNxN Hessian matriy is

e YE WE WE @
é — 3 u
6 Mg MW, W, Wi Wy)
€ L’E ’E 2 U
H :é u u 2 3 M—l:l
é IWo Wy HW; MWW (4-5)
é 3 3 3 3 u
e WE W’E wE U
gHWN W MW PW; lJWﬁ g
Where:N is the number of weights.
Combining @-4) and 4-5), elements of Hessian matkkcan be obtained as
2 P M 3 2 0
WE _ & = Sepmbe,n Heyn, 9
——=ad + Comg (4-6)

MWW a mzlgeuwi HWj HW W
Where:i andj are weight indexes.

For LM algorithm, equation4(6) is approximated ag6]
51

2 P M 3 5
E P Mae e, 0
u—OaaaéJﬂ me:qij

4-7
MW, LW p=1 m=183|'1‘wi HW; 9 “-7)

Where:q; is the element of quasi Hessian matrix in iicamd columrj.
Combining @-2) and 4-7), quasi Hessianmatrix Q can be calculated as an

approximation of Hessian matrix

HeQ=J"J (4-8)
Nx1 gradient vectog is
R T
9= eé—“E HE 5 IE g 4-9
SHW W, Hwy *+9)

Inserting @-4) into @-9), elements of gradient can be calculated as

_ME _ g o2 Atepn 8
9i =—*= €pm8 _
| KW 21 ?:.1(%8“‘\“‘i pmg @10

From @-2) and 8-10), the relationship between gradient vegt@nd Jacobian matri

— 1T
g=J'e (4-11)
Combining é-8), (4-11) and 4-1), the update rule of Levenberg Marquardt algorithm can
be rewritten
-1
Dw=(Q+/m) *g (4-12)
One may notice that the size$ quasi Hessian matri)Q and gradient vectog are

proportional to number of weights in networks, but they are not associated with the number of

training patterns and outputs.

52

Equations 4-1) and 4-12) are producing identical results for weight updatige major
difference is that in4-12), quasi Hessian matrfQ and gradient vectay are calculated directly

without necessity to calculate and to store Jacobian nidba$xt is done in4-1).

4.2.1 Review of Matrix Algebra

There are two ways to multiply r@aaand columns of two matrixes. If the row of first matrix is
multiplied by the column of the second matrix, then we obtain a scalar, as shown 4nl&ig.
When the column of the first matrix is multiplied by the row of the second matrix then the result
is a partial matrixq (Fig. 4-1b) [84]. The number of scalars NxN, while number of partial

matricesq, which later have to be summed~isM.

T
“«— PXM —»
3 = N
J' Q

(a) Row-column multiplication results in a scalar
- N >

«— N —>

JT ’ J =

(b) Columnrow multi_plication resuF[s in a partial matnx
Fig. 4-1 Two ways of multiplying matrixes
WhenJ" is multiplied byJ using routine shown in Figd-1b, at first, partial matriceg

(size: NxN) need to be calculateexM times, then all ofPxM matricesq must be summed
53

together. The routine of Fig-1b seems complicated therefore almost all matrix multiplication
processes usthe routine of Fig4-1a, where only one element of resulted matrix is calculated
and stored at each time.

Even the routine of Figd-1b seems to be more complicated and it is used very seldom,
after detailed analysis, one may conclude that the numbeuraencal multiplications and
additions is exactly the same as that in Bida, but they are performed in different ordéne

computation cost analysis is presented in Takle 4

Table 41 Computation cost analysis

J'J Computation| Addition Multiplication
Original LM (PxM)XxNxN | (PxM)xNxN
Improved LM NXNx(PxM) | NxNx (P xM)

In a specific case of neural network training, only one rblelements) of Jacobian
matrix J (or one column o8") is calculated, when each pattern is appliduer&fore, if routine
from Fig. 4-1b is used then the process of creation of quasi Hessian matrix can start sooner
without necessity of computing and storing the entire Jacobian matrix for all patterns and all
outputs.

Table4-2 Memory costanalysis

Multip lication Methods| Elements for storage
Row-column (Fig4-1a)| (P xM) xN + NxN + N
Columnrow (Fig.4-1b) | N xN + N
Difference (P xM) xN
P is the number of training patterrid,is the number of outputs ailis the number of weights.

The andytical results in Tabled-2 show that the colummow multiplication (Fig.4-1b)

can save a lot of memory.

54

4.2.2 Improved Quasi Hessian Matrix Computation

Let us introduce quasi Hessian sub madjpix (size:NxN)

.. 5
& aleomT Pepm Mepm , Hepm Hepm{
géeuwl 2wy pw, Ly ung
° ~2
elepm Hepm EaA'lepmo Heom H€pmuU
o =& e I R
M gHWy (W ETW, 2 W, PWN (4-13)
é 3 3 3 3 X u
guepm Hepm Hepm Hpm égepmg 3
gHWN BWp HWN BW; S?lMN = f

Using @-7) and 4-13), theNxN quasi Hessian matri§) can be calculated as the sum of

sub matricesjpm

poM
Q=a a 9pm (4-14)

p=1m=1

By introducinglxN vectorjom

j _ é,p-epm M€pm 3 HEpm D
- € u -
al gk W, MWN (4-15)

sub matricesjym in (4-13) can be also written in the vector form (Figlb)

me = J;mj pm (4-16)
One may notice that for the computation of sub matmggsonly N elements of vecto
jom Need to be calculated and stored. All the sub matrixes can be calculated for eaclp patiern
outputm separately, and summed together, so as to obtain quasi HessiarQnatrix
Considering the independence among all patterns and outputs, thereeedrio store all
the quasi Hessian sub matricgs. Each sub matrix can be summed to a temporary matrix after

its computation. Therefore, during the direct computation of quasi Hessian Qaisirng @-14),

55

only memory forN elements is required, insté of that for the whole Jacobian matrix with
(PxM)xN elements (Tablg-2).

From equation4-13), one may notice that all the sub matriggsare symmetrical. With
this property, only upper (or lower) triangular elements of those sub matrixes need to be
calculated. Therefore, during the improved quasi Hessian nf@toa@mputation, multiplication

operations in4-16) and sum operations id-14) can be both reduced by half approximately.

4.2.3 Improved Gradient Vector Computation

Gradient sub vectatym (size:Nx1) is

e 2 eley, 0
(S] eme e u
ety MWy
ellepme u éde,nu
= pm[] = VE]
Qom = Span, P74, U Eom (4-17)
é e3 0 ég 0
emg o my
: md E—PTL
SN H euw, i

Combining ¢-10) and 4-17), gradient vectog can be calculated as the sum of gradient

sub vectodpm
N
g=aa d.pm (4-18)
p=1 m=1

Usingthe same vectgpm defined in §-15), gradient sub vector can be calculated using

— T
d.pm - meepm (4-19)
Similarly, gradient sub vectaf,» can be calculated for each pattern and output separately,

and simmed to a temporary vector. Since the same vggios calculated during quasi Hessian

matrix computation above, there is only an extra seglaneed to be stored.
56

With the improved computation, both quasi Hessian ma@iand gradient vectog can be
computed directly, without Jacobian matrix storage and multiplication. During the process, only
a temporary vectgpm with N elements needs to be stored; in other words, the memory cost for
Jacobian matrix storage is reducedByM) times. In the MINST mblem mentioned in section

4.1, the memory cost for the storage of Jacobian elements could be reduced from more than 35

gigabytes to nearly 30.7 kilobytes

424 Si mplified Oepm/ Owi computation
The key point of the improved computation above for quasi Hessatnx Q and gradient
vectorg is to calculate vectopm defined in 4-15) for each pattern and output. This vector is
equivalent of one row of Jacobian matdix

The elements of vectgy, can be calculated by

Hepm - u(opm' dpm) — Hopm “netpn
oy Hw pnety, pw

(4-20)

Where:d is the desired output aralis the actual outpuet,, is the sum of weighted inputs at

neuronn described as

|
net,, = a XpiM (4-21)
0

Where:x,; andw; are the inputs and reéd weights respectively at neuronl is the number of

inputs at neuron.

Inserting 4-20) and 4-21) into @-15), vectolj,m can be calculated by

. _€lop, HOpm 2
—é——|X 3 Xy 3] 3 X 3 Xyni 3| 3 U -
Jpm él-lnetpl [pll pLi] p'netpn pnl pni] i (4-22)

57

Where:Xpn,iis thei-th input of neurom, when training patterip.

Using the neuron by neuron computati@7][elementsx,niin (4-22) can be calculated in the
forward computation, whil® g/ O p, aré obtained in the backward computation. Again, since
only one vectol,m needs to be stored for each pattern and output in the improved computation,
the memory cost for all those temporary parameters can be redu¢eaNby times. All matrix

operations are simplified to vector operations.

4.3 Implementation
In order to better illustrate the direct computation process for both quasi HessianQ@naiiax
gradient vectog, let us analyze paritg problem as a simple example.
Parity-2 problem is Bo known as XOR problem. It has 4 training patterns, 2 inputs and 1
output. See Fig4-2.
patterns Inputs outputs
1 -1 1
2 -1 -1

3 1 -1 -1
4 1 1 1

Fig. 4-2 Parity2 problem: 4 patterns, 2 inputs and 1 output

The structure, 3 neurons in MLP topology (see #i8), is used.

Fig. 4-3 Three neurons in MLP neork used for training parit@ problem; weight and neuron
indexes are marked in the figure

58

As shown in Fig. 4-3 above, all weight values are initialed as the vector
W={ W1, Wo, Wa, Wi, W5, We, W7, Wg,Wo}. All elements in both quasi Hessian matxand gradient
vectorgar e set to A0O.
For the first pattern-{, -1), the forward computation is:
a) net;=1xw i+(-1) xwo+(-1) xw3
b) ou=f(netyy)
C) net=1>xw4+(-1) xws+(-1) xwe
d) oi=f(netyy)
e) Nnets=1xw7+011XWg+012XWg
f) o015=f(netys)
g) en=1-013
Then the backward computation is penfied to calculated g/ O p,eltg/ O p and
Oga/ O pim following steps:

h) With results of stepf) and(g), it can be calculated

5, = e, _ H{- f(nets)) _ pf (nets)

= 4-23
unet 5 unet; 3 unet; 3 (423)
i) With results of steffb) to step(g), using the chakmule in differential, one can

obtain

be, _ M (net12)3 W 3 uf (net, 5)

S; = 9
Hnet Hnet Hnet 5

(4-24)

_ ke, _ (net11)3 s Hf (net;5)
St Wg * ————
Hnet ; Hnet ; unet, 5

(4-25)

In this example, usingk22), the vectoy;; is calculated as

59

; ep-e_l_lgl 1 -1 p'e.l.131_ -1 ”’e.l.l31 4-26
ha= gunTtn [] wnet,, [] et 5 Lo, 012]u (4-26)

With (4-16) and 4-19), sub matrixg:1 and sub vectod;, can be calculated separately

2

gslz -sf - 3 550 S$5:0p, o

éo S12 312 3 -8830; - 3133012@

_¢o 0 312 3 -8830; - 3153012lxJ

0h=¢€ u
& 3 3 3 3 3 0 (4-27)

S0 0 0 3 3 55011015 ¢

60 0 0 3 0 s20%, {
dip=[s - - S 3 S50 S3010)% e (4-28)

One may notice that only upper triangular elements of sub ntgpirate calculated, since
all sub matrixe are symmetrical. This can save nearly half of computation.

The last step is to add sub matgx and sub vectod;; to quasi Hessian matriQ and

gradient vectog.

The analysis above is only for training the first pattern. For other patterns, the
compuation process is almost the same. During the whole process, there is no Jacobian matrix
computation; only the derivatives and outputs of activation functions are required to be

computed. All the temporary parameters are stored in vectors which havetimnsslip with

the number of patterns and outputs.

Generally, for the problem with patterns and/ outputs, the improved computation can

be organized as the pseudo code shown indrg.

60

% Initialization

Q=0;
g=0
% Improved computation
for p=1:P % Number of patterns
% Forward computation
é
for m=1:M % Number of outputs

% Backward computation
e

calculate vector j pm;
calculate sub matrix qym;
calculate sub vector dpm;

% Eq. (4-22)
% Eq. (4-16)
% Eq. (4-19)

Q=Q+0pm; % Eq. (4-14)
9=9+dpm; % Eq. (4-18)
end;
end;

Fig. 4-4 Pseudo code of the improveahtputation for quasi Hessian matrix and gradient vector

The same quasi Hessian matrices and gradient vectors are obtained in both traditional
computation (equatiorn4-8 and4-11) and the proposed computation (equatibiig and4-18).

Therefore, the proged computation does not affect the success rate.

4.4 Experiments

Several experiments are designed to test the memory and time efficiencies of the improved

computation, comparing with traditional computation. They are divided into two parts: (1)

Memory compason and (2) Time comparison.

4.4.1 Memory Comparison

Three problems, each of which has huge number of patterns, are selected to test the memory cost

of both the traditional computation and the improved computation. LM algorithm is used for

61

training and the tesresults are shown Tables3 and 4-4. In order to make more precise

comparison, memory cost for program code and input files were not used in the comparison.

Table4-3 Memory comparison for parity problems

Parity-N Problems N=14 N=16
Patterns 16,384 65,536
Structures* 15 neurons 17 neurons
Jacobian matrix sizg 5,406,720 27,852,800
Weight vector sizes 330 425
Average iteration 99.2 166.4
Success Rate 13% 9%
Algorithms Actual memory cost

Traditional LM 79.21Mb 385.22Mb
Improved LM 3.41Mb 4.30Mb

*All neurons are in fully connected cascade networks

Table4-4 Memory comparison for MINST problem

Problem MINST
Patterns 60,000
Structures 784=1 single layer network
Jacobian matrix size 47,100,000
Weight vector sizes 785
Algorithms Actual memoryost
Traditional LM 385.68Mb
Improved LM 15.67Mb

*In order to perform efficient matrix inversion during training, only one of ten digits is classified
each time.

From the test results in Tablds3 and4-4, it is clear that memory cost for training is
significantly reduced in the improved computation.

In the MNIST problem [82], there are 60,000 training patterns, each of which is a digit
(from O to 9) image made up of grayed 28 by 28 pixels. And also, there are another 10,000
patterns used to test ttraining results. With the trained network, our testing error rate for all the

digits is 7.68%. In this result, for compressed, stretched and moved digits, the trained neural

62

network can classify them correctly (see Fi¢ha); for seriously rotated or disted images, it is

hard to recognize them (see Hegbb).

(a) Recognized patterns

PRI

(b) Unrecognized patterns

Figd-5 Some testing results for digit

4.4.2 Time Comparison
Parity-N problems are presented to test the training time ftir traditional computation and the
improved computation using LM algorithm. The structures used for testing are all fully

connected cascade networks. For each problem, the initial weights and training parameters are

the same.

Table4-5 Time comparison foparity problems

Parity-N Problemsl N=9 N=11 N=13 N=15
Patterns 512 2,048 8,192 32,768
Neurons 10 12 14 16
Weights 145 210 287 376

Average lterationy 38.51 59.02 68.08 126.08

Success Rate | 58% 37% 24% 12%
Algorithms Averaged training time (S)

Traditional LM 0.78 68.01 1508.46 43,417.06
Improved LM 0.33 22.09 173.79 2,797.93

63

From Table4-5, one may notice that the improved computation can not only handle
much larger problems, but also computes much faster than traditional one, especially for large
sized patterns training. The larger the pattern size is, the more time efficient the improved
computation will be.

Obviously, the simplified quasi Hessian matrix computation is the one reason for the
improved computing speed (nearly two times faster forlgmablems). Significant computation
reductions obtained for larger problems are most likely due to the simpler way of addressing
elements in vectors, in comparison to addressing elements in huge matrices.

With the presented experimental results, one nodige that the improved computation is
much more efficient than traditional computation for training with Levenberg Marquardt

algorithm, not only on memory requirements, but also training time.

4.5Conclusion
In this chapter, the improved computation is idtroed to increase the training efficiency of
Levenberg Marquardt algorithm. The proposed method does not require to store and to multiply
large Jacobian matrix. As a consequence, memory requirement for quasi Hessian matrix and
gradient vector computatios decreased b§PxM) times, wherd is the number of patterrand
M is the number of outputs. Additional benefit of memory reduction is also a significant
reduction in computation time. Based on the proposed computation, calculating process of quasi
Hessia matrix is further simplified using its symmetrical property. Therefore, the training speed
of the improved algorithm becomes much faster than traditional computation.

In the proposed computation process, quasi Hessian matrix can be calculated on fly when

training patterns are applied. Moreover, the proposed method has special advantage for

64

applications which require dynamically changing the number of training patterns. There is no
need to repeat the entire multiplicationd8, but only add to or subtraérom quasi Hessian
matrix. The quasi Hessian matrix can be modified as patterns are applied or removed.

Second order algorithms have lots of advantages, but they require at each iteration
solution of large set of linear equations with number of unknagusl to number of weights.
Since in the case of first order algorithms, computing time is only proportional to the problem
size, first order algorithms (in theory) could be more useful for large neural networks. However,
as discussed in the previous cleapt first order algorithm (EBP algorithm) is not able to solve
some problems unless excessive number of neurons is used. But with excessive number of
neurons, networks lose their generalization ability and as a result, the trained networks will not
respom well for new patterns, which are not used for training.

One may conclude that both first order algorithms and second order algorithms have their
disadvantages and the problem of training extremely large networks with second order
algorithms is still undoed. The method presented in thisapterat least solved the problem of
training neural networks using second order algorithm with basically unlimited number of

training patterns.

65

CHAPTER 5

FORWARD-ONLY ALGORITHM
Following the neuroiby-neuron (NBN) computation proceduf27], the forwardonly algorithm
[78] is introduced in this chapter also allows for training arbitrarily connected neural networks;
therefore, more powerful network architectures with connections across layers, such e bridg
multilayer perceptron (BMLP) networks and fully connected cascade (FCC) networks, can be
efficiently trained.A further advantage of the proposed forwardy algorithm is that the
learning process requires only forward computation without the necedsitye backward
computations. Information needed for gradient vector (for first order algorithms) and Jacobian or
Hessian matrix (for second order algorithms) is obtained during forward computation. This way
the forwardonly method, in many cases, maycalsad to the reduction of the computation time,
especially for networks with multiple outputs.

In this chapter, we firstly introduce the traditional gradient vector and Jacobian matrix
computdion to address the computational redundapegblem for netwiks with multiple
outputs. Then, the forwamhly algorithm is proposed to solve the problem by removing
backward computation process. Thirdly, both analytical and experimental comparisons are
performed between the proposed forwardy algorithm and Haganand Menhaj Levenberg
Marquardt algorithm. Experimental results also show the ability of the forerdydalgorithm to

train networks consisting of arbitrarily connected neurons.

66

5.1 Computational Fundamentals
Before the derivation, let us introduce some camiyused indices in thishapter

1 pisthe index of patterns, from 1 np, wherenpis the number of patterns;

1 mis the index of outputs, from 1 tw, wherenois the number of outputs;

1 jandk are the indices of neurarfsom 1 to nn,wherennis the umber of neurons;

1 iis the index of neuron inputs, from 11g whereni is the number of inputs and it

may vary for different neurons.

Other indices will be explained in related places.

Sum square error (SSE)is defined to evaluate the training procdssr all patterns and
outputs, it is calculated by

1P,
) a_. a_. €p.m (5-1)
p=1m=1

Where:e, mis the error at outpuh defined as

€m =Opm~ dpm (5-2)
Where:d, nand o, mare desired output and actual output, respectively, at network outfmut
training patterrp.

In all training algorithms, the same computations are being repeated for one pattern at a
time. Therefore, in order to simplify notationbgetindexp for patterns will be skipped in the

following derivations, unless it is essential.

5.1.1 Review of Basic Concepts in Neural Network Training
Let us consider neurgrwith ni inputs, as shown in Fi$-1. If neuronj is in the first layer, all its

inputs would be connected to the inputs of the network; otherwise, its inputs can be connected to

67

out puts of other neurons or to networkso 1 npu

] Frnj(yj)h

Fig. 5-1 Connection of a neurgrwith therest of the network. Nodeg; could represents
network inputs or outputs of other neurofig,(y;) is the nonlinear relationship between the
neuron output nodg and the network outpwak,
Nodey is an important and flexible concept. It can ypg meaning thei-th input of
neuron;. It also can be used gsto define the output of neurgnin this chaptey if nodey has
one index then it is used as a neuron output node, but if it has two indices (neuron and input), it

is a neuron input node.

Outputnode of neuronis calculated using
y; = filnet) (5-3)
Where:fj is the activation function of neurgnand net valuaetis the sum of weighted input

nodes of neurop

ni
et =g Wiy +Wio (5-4)
i=1

Where:y;;iis thei-th input node of neurop weighted byw;;, andw; o is the bias weight.

Using 6-4) one may notice that derivative rod is:

ety _
HWj

Yii (5-5)

68

and slopes of activation functiorf; is:

WA uf net.
5 = M (]) (5-6)
unetj unetj

Between the output nodeof a hidden neuropand network outpuby, there is a compk

nonlinear relationship (Fids-1):
O = Fm; [y (57)
Where:onis themth output of the network.
The complexity of this nonlinear functidf(y;) depends on how many other neurons

arebetween neuropand network outpum. If neuronj is at network outpuin, thenoy,=y; and

F @(y;))=1, whereF @Q;is the derivative of nonlinear relationship between nepsord outpuim.

5.1.2 Gradient Vector and Jacobian Matrix Computation
For every patternin EBP algorithm only one backpropagation process is needed, while in
second order algorithms the backpropagation process has to be repeated for every output
separately in order to obtain consecutive rows of the Jacobian matrix 5jg. Another
difference in second order algorithms is that the concept of back propagatipgraimeter§1]
has to be modified. In EBP algorithm, output errors are patipafameter
no
d, =5 Fm,i&m (5-8)
m=1
In second order algorithms, tligparameters are calculated for each neuramd each

output m separately. Also, in the backpropagation proc8€k the error is replaced by a unit

value

mj = SjFm; (5-9)

69

Knowing Uy j, elements of Jacobian matrix are calculated as

Hep m
MW

=VY;i0mj =YjiSjFm,;j (5-10)
In EBP algorithm, elements of gradient vector are computed as
9 ==Y 9 (5-11)

Where:ij is obtained with errdoackpropagation process. In second order algorithms, gradient
can be obtained from partial results of Jacobian calculations
no
9ji =Yji @ %mi€m (5-12)
m=1
Where:mindicates a network output aig;is given by(5-9).
The update rule of EBP algorithm is
Wiag =W, - @ O (5-13)
Where:n is the index of iterationsy is weight vectorJis learning constanty is gradient vector.

Derived from Newton algorith and steepest descent method, the update rule of

Levenberg Marquardt (LM) algorithm i8Q)

=w,- (373, +m)
Whi =W - J n J nt mi On (5'14)
Where:g is the combination coefficient,is the identity matrix and is Jacobian matrix shown

in Fig.5-2.

70

L4 . [g
neuron 1 _5 neuron |
I

B -

e g

e e 5, e e g Ome1

6 W, W, MV W5 U

é u

S K M2 5, M e g =2 p=1

é MW, W, MWV HW o U,

é 3 3 3 3 3 3u3

gllemo M€ no 3 Mo HMeino 3 Hm:nc)

6wy g, Wi Wi g — 3

é 3 3 3 3 3 303

g p-ep,l |~'lep,1 3 uep,l uep,l 3 Hrn:]_

é W1 W, M1 W2 u, p=p
J=¢ 3 3 3 3 3 313

guep,m HEpm 3 M€ m e m 3 Hm:nc

e, W, Wi W, vy —3

é 3 3 3 3 3 303 -

g“enp,l “'enp,l 3 p'enp,l p'enp,l 3 Hmzl

e, W, MWi1 MW, u

guennz p'enpz 3 Uenpz p'enp,Z 3 gmzz p=np

e MW, W Wi HWjo u

4 3 3 3 3 3 35

éuenp,no p*enp,no 3 uenp,no p-enp,no 3 l;lm:nc

g, W, Wi M2 -

Fig. 5-2 Structure of Jacobian matrix: (1) the number of columns is equal to the number of
weights; (2) each row is corresponding to a specified training pgteard outpuim
From Fig.5-2, one may notice thator every patterrp, there areno rows of Jacobian
matrix whereno is the number of network outputs. The number of columns is equal to number of
weights in the networks and the number of rows is equgb*ao.
Traditional backpropagation computation, fitelta matrix fpxnoxnn) computation in

second order algorithms, can be organized as shown i6-Big.

71

for al patterns
% Forward computation
for al neurons (nn)
for al weights of the neuron (nx)
calculate net; % Eq. (5-4)
end;
calculate neuron output; % Eq. (5-7)
calculate neuron slope; % Eq. (5-6)
end;
for al outputs (no)
calculate error; % Eq. (5-2)
% Backwar d computation
initial delta as slope;
for all neurons starting from output neurons (nn)
for the weights connected to other neurons (ny)
multiply delta through weights
sum the backpropagated delta at proper nodes
end;
multiply delta by slope (for hidden neurons);
end;
end;
end;

Fig. 5-3 Pseudo code using traditional backpropagation of delta in second order algorithms (code
in bold will be removed ithe proposed computation)

5.2Forward-Only Computation

The proposed forwardnly method is designed to improve the efficiency of Jacobian matrix

computation, by removing the backpropagation process.

5.2.1 Derivation

The concept ofinjwas defined in equatio®{9). One may notice thak,j can be interpreted also
as a signal gain between net input of neyramd the network outpun. Let us extend this
concept to gain coefficients between all neurons in the network $Hgand kg. 5-6). The
notation ofl; is extension of equatiorb{9) and can be interpreted as signal gain between

neurong andk and it is given by

72

_WRGLY) R W
Hnet, by, Hnet,

a

i =Fy.iS; (5-15)

Where:k andj are indices of neurong(y;) is the nonlinear relationship between the output
node of neurotk and the output node of neurprNaturally in feedforward networkk, O f k=j,
then Uk =Sk, Wheres is the slope of activation functio®-6). Fig 5-4 illustrates this extended

concept ofli ; parameter as a signal gain.

U
4
| o
[y

network inputs
>
2
"V“‘
_!S
/
oL
= 3
~
LY)
N\, =
. '
/
=
O;b
O"‘
o
3
network outputs

Fig. 5-4 Interpretation ofi;as a signal gain, where in feedforward network nejironst be
located before neurdn
The matrixt has a triangular shape and its elements can be calculatbe iiorward only
process. Later, elements of gradient vector and elements of Jacobian can be obtained using
equations %-10) and $-12) respectively, where only the last rows of matriassociated with
network outputs are used. The key issue of the peapakjorithm is the method of calculating

of Uy j parameters in the forward calculation process and it will be described in the next section.
5.2.2 Calculation ofti Matrix for Fully Connected Cascade Architectures
Let us start our analysis with fully connecteglural networks (Figs-5). Any other architecture

could be considered as a simplification of fully connected neural networks by eliminating

73

connections (setting weights to zero). If the feedforward principle is enforced (no feedback),

fully connected nea networks must have cascade architectures.

Fig. 5-6 Thetyj parameters for the neural network of F3eb. Input and bias weights are not
used in the calculation of gain parameters
Slops of neuron activation functiogscan be also written in form afparameter ag;;=s;.
By inspecting Fig5-6, U parametes can be written as:
For the first neuron there is only oa@arameter
A1=9 (5-16)

For the second neuron there are timarameters
74

(5-17)

For the third neuron there are thiegarameters

(5-18)

One may notice that all parameters for third neuron can be also expressed as a function

of U parameters calculated for previous neurons. Equatieh8)(can be rewritten as

(5-19)

For the fourth neurothere are fouti parameters

(5-20)

The last parametel, ; can be also expressed in a compacted form by summing all terms

connected to other neurons (from 1 to 3)

(5-21)

The universal formula to calculaté&; parameters using already calculated data for

previous neurons is

(5-22)

75

