
 

 

 

 

 

 

Advanced Learning Algorithms of Neural Networks 
 

by 

 

Hao Yu 

 

 

 

 

A dissertation submitted to the Graduate Faculty of 

Auburn University 

in partial fulfillment of the 

requirements for the Degree of 

Doctor of Philosophy 

 

Auburn, Alabama 

December 12, 2011 

 

 

 

 

Keywords: Artificial Neural Networks, Levenberg Marquardt Algorithm, Neuron-by-Neuron 

Algorithm, Forward-Only Algorithm, Improved Second Order Computation 

 

 

Copyright 2011 by Hao Yu 

 

 

Approved by 

 

Bogdan M Wilamowski, Chair, Professor of Electrical and Computer Engineering 

Hulya Kirkici, Professor of Electrical and Computer Engineering 

Vishwani D. Agrawal, Professor of Electrical and Computer Engineering 

Vitaly Vodyanoy, Professor of Anatomy Physiology and Pharmacy 

 



ii  
 

 

 

 

 

 

 

Abstract 

 

 

The concept of ñlearn to behaveò gives very vivid description of functionalities of neural 

networks. Specifically, a group of observations, each of which consists of inputs and desired 

outputs, are directly applied to neural networks, and the networks parameters (called ñweightsò) 

are adjusted iteratively according with the differences (called ñerrorò) between desired network 

outputs and actual network output. The parameter adjustment process is called ñlearningò or 

ñtrainingò. After the errors converging to expected accuracy, the trained networks can be used to 

analyze the input dataset which are in the same range of observations, for classification, 

recognition and prediction. 

In neural network realm, network architectures and learning algorithms are the major 

research topics, and both of them are essential in designing well-behaved neural networks. In the 

dissertation, we are focused on the computational efficiency of learning algorithms, especially 

second order algorithms. Two algorithms are proposed to solve the memory limitation problem 

and computational redundancy problem in second order computations, including the famous 

Hagan and Menhaj Levenberg Marquardt algorithm and the recently developed neuron-by-

neuron algorithm. 

The dissertation consists of seven chapters. The first chapter demonstrates the attractive 

properties of neural network with two examples, by comparing with several other methods of 

computational intelligence and human beings. The second chapter introduces background of 

neural networks, including the history of neural networks, basic concepts, network architectures, 



iii  
 

learning algorithms, generalization ability and the recently developed neuron-by-neuron 

algorithm. The third chapter discusses the current problems in second order algorithms. The 

fourth chapter describes another way of gradient vector and quasi Hessian matrix computation 

for implementing Levenberg Marquardt algorithm. With the similar computational complexity, 

the improved second order computation solves the memory limitation in second order algorithms. 

The fif th chapter presents the forward-only algorithm. By replacing the backpropagation process 

with extra calculation in forward process, the forward-only algorithm improves the training 

efficiency, especially for networks with multiple outputs. Also, the forward-only algorithm can 

handle networks consisting of arbitrarily connected neurons.  The sixth chapter introduces the 

computer software implementation of neural networks, using C++ based on Visual C++ 6.0 

platform. All the algorithms introduced in the dissertation are implemented in the software. The 

seventh chapter concludes the dissertation and also introduces our recent work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

 

 

 

 

 

 

Acknowledgments 

 

 

First of all, I would like to sincerely appreciate my honorific supervisor, Prof. Bogdan M 

Wilamowski, for his great patience and knowledgeable guidance during the past three years Ph.D 

study. His professional research experience teaches me how to be creative, how to find problems 

and solve them. His active attitude of life encourages me working hard towards my destination. 

His kindness and great sense of humor makes me feel warm and happy. All the things I have 

learnt from him are marked deeply in my memory and will benefit the rest of my life. Without 

his help, I could not have finished my dissertation and Ph.D study successfully. Besides, I would 

like to express my special appreciation to both Mr. Bogdan Wilamowski and his wife, Mrs. 

Barbara Wilamowski, for their kindness, caring about me and letting me feel like studying at 

home. 

 Special thanks are also given to my committee members, Prof. Hulya Kirkici, Prof. 

Vishwani D. Agrawal and Prof. Vitaly Vodyanoy, and the outside reader Prof. Weikuan Yu. 

From their critical and valuable comments, I noticed the weakness in my dissertation and made 

the necessary improvements according to their suggestions. 

I would like to express my appreciation to my good friends who have helped me with my 

studying and living in Auburn. They are Joel Hewlett, Nam Pham, Nicholas Cotton, Pradeep 

Dandamudi, Steven Surgnier, Yuehai Jin, Haitao Zhao, Hua Mu, Jinho Hyun, Qing Dai, Yu 

Zhang, Chao Han, Xin Jin, Jia Yao, Pengcheng Li, Fang Li and Jiao Yu. I am very lucky to be 

their friend. 



v 
 

Special thanks to Charles Ellis, Prof. David Irwin and Prof. Michael Hamilton, for their 

professional guidance on the projects and papers we worked together. It was my great honor to 

have worked with them. I also would like to thank Prof. John Hung, Prof. Fa Foster Dai, Prof. 

Hulya Kirkici, Prof. Vishwani Agrawal, Prof. Stanley Reeves, Prof. Adit Singh, Prof. Bogdan 

Wilamowski and Prof. Thomas Baginski, for their excellent teaching skills and professional 

knowledge in their courses. 

Last but not least, I am greatly indebted to my wife, Dr. Tiantian Xie, my newborn 

daughter, Amy X Yu, and my parents and my parents-in-law. They are the backbone and origin 

of my happiness. Being both a father and mother while I was struggling with my dissertation was 

not an easy thing for my wife. Without her support and encouragement, I could never finish my 

Ph.D study successfully. I owe my every achievement to my family. 

 Thanks to everyone. 

 

 

 

  



vi 
 

 

 

 

 

 

 

Table of Contents 

 

 

Abstract   .......................................................................................................................................... ii  

 

Acknowledgments ......................................................................................................................... iv 

 

List of Tables  .............................................................................................................................. viii  

 

List of Figures  ................................................................................................................................ x 

 

Chapter 1 Why Neural Networks  ................................................................................................... 1 

 

  1.1 Introduction  ............................................................................................................... 1 
 

  1.2 Comparison of Different Nonlinear Approximators  ................................................. 3 

 

 1.3 Neural Networks for Image Recognition  .................................................................. 9 

  

 1.4 Conclusion  ............................................................................................................... 11 

 

Chapter 2 Background  ................................................................................................................. 13 

 

  2.1 History  ..................................................................................................................... 13 

 

 2.2 Basic Concepts  ........................................................................................................ 14 

  

 2.3 Network Architectures  ............................................................................................ 16 

 

 2.4 Learning Algorithms  ............................................................................................... 26 

  

 2.5 Generalization Ability  ............................................................................................. 39 

 

 2.6 Neuron-by-Neuron Algorithm ................................................................................. 43 

 

Chapter 3 Problems in Second Order Algorithms  ....................................................................... 47 

 

Chapter 4 Improved Second Order Computation  ........................................................................ 49 

 

  4.1 Problem Description  ................................................................................................ 49 



vii  
 

 

 4.2 Improved Computation  ........................................................................................... 51 

 

 4.3 Implementation ........................................................................................................ 58 

 

 4.4 Experiments  ............................................................................................................. 61 

 

 4.5 Conclusion  ............................................................................................................... 64 

 

Chapter 5 Forward-Only Computation  ........................................................................................ 66 

 

 5.1 Computational Fundamentals  .................................................................................. 67 

 

 5.2 Forward-Only Computation  .................................................................................... 72 

 

 5.3 Computation Comparison  ....................................................................................... 80 

 

 5.4 Experiments  ............................................................................................................. 83 

 

 5.5 Conclusion  ............................................................................................................... 91 

   

Chapter 6 C++ Implementation of Neural Network Trainer  ....................................................... 93 

 

  6.1 File Instruction  ........................................................................................................ 94 

 

 6.2 Graphic User Interface Instruction  ........................................................................ 100 

 

 6.3 Implemented Algorithms  ...................................................................................... 104 

 

 6.4 Strategies for Improving Training Performance  ................................................... 105 

 

 6.5 Case Study Using NBN 2.0  ................................................................................... 114 

 

 6.6 Conclusion  ............................................................................................................. 118 

 

Chapter 7 Conclusion  ................................................................................................................. 119 

 

References  .................................................................................................................................. 122 

 

 

 



viii  
 

 

 

 

 

 

 

List of Tables 

 

 

Table 1-1 Comparison of approximation accuracy using different methods of computational 

   intelligence  .................................................................................................................... 9 

 
Table 1-2 Success rates of the designed counterpropagation neural network for digit image 

   recognition  ................................................................................................................... 11 

 
Table 2-1 Different architectures for solving parity-N problem  .................................................. 25 

 

Table 2-2 Specifications of different learning algorithms  ........................................................... 35 

 

Table 2-3 Comparison among different learning algorithms for parity-3 problem  ..................... 36 

 

Table 2-4 Training/testing SSEs of different sizes of FCC networks  .......................................... 41 

 

Table 4-1 Computation cost analysis  ........................................................................................... 54 

 

Table 4-2 Memory cost analysis  .................................................................................................. 54 

 

Table 4-3 Memory comparison for parity problems  .................................................................... 62 

 

Table 4-4 Memory comparison for MINST problem  .................................................................. 62 

 

Table 4-5 Time comparison for parity problems  ......................................................................... 63 

 

Table 5-1 Analysis of computation cost in Hagan and Menhaj LM algorithm and 

   forward-only computation  ........................................................................................... 81 

 

Table 5-2 Comparison for ASCII problem  .................................................................................. 82 

 

Table 5-3 Analytical relative time of the forward-only computation of problems  ...................... 82 

 

Table 5-4 Training results of the two-spiral problem with the proposed forward-only  

   implementation of LM algorithm, using MLP networks with two hidden layers;  

   maximum iteration is 1,000; desired error=0.01; there are 100 trials for each  

   case  .............................................................................................................................. 84 

 
 



ix 
 

Table 5-5 Training results of the two-spiral problem with the proposed forward-only  

   implementation of LM algorithm, using FCC networks; maximum iteration is  

   1,000; desired error=0.01; there are 100 trials for each case  ...................................... 84 

 

Table 5-6 Training Results of peak surface problem using FCC architectures  ........................... 86 

 

Table 5-7 Comparison for ASCII characters recognition problem  .............................................. 88 

 

Table 5-8 Comparison for error correction problem  .................................................................... 90 

 

Table 5-9 Comparison for forward kinematics problem  .............................................................. 91 

 

Table 6-1 Parameters for training  ................................................................................................ 94 

 

Table 6-2 Three types of neurons in the software  ........................................................................ 97 

 

Table 6-3 Available commands and related functionalities  ....................................................... 103 

 

Table 6-4 Comparison of different EBP algorithms for solving XOR problem  ........................ 107 

 

Table 6-5 Testing results of parity problems using update rules (6-3) and (6-4)  ...................... 111 

 

Table 6-6 Testing results of parity-N problems using different activation functions with 

   the minimal network architecture analyzed in section 2.3  ........................................ 113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

 

 

 

 

 

 

List of Figures 

 

 

Figure 1-1 Surface approximation problem  ................................................................................... 3 

 

Figure 1-2 Block diagram of the two types of fuzzy systems  ........................................................ 4 

 

Figure 1-3 Result surfaces obtained using fuzzy inference systems .............................................. 4 

 

Figure 1-4 Neuro-Fuzzy System  .................................................................................................... 5 

 

Figure 1-5 Result surface of neuro-fuzzy systems, SSE= 27.3356  ............................................... 6 

 

Figure 1-6 Result surfaces obtained using support vector machine  .............................................. 6 

 

Figure 1-7 Result surfaces obtained using interpolation methods  ................................................. 7 

 

Figure 1-8 Neural network architecture and related testing result  ................................................. 8 

 

Figure 1-9 Neural network architecture and related testing result  ................................................. 8 

 

Figure 1-10 Digit images with different noise levels from 0 to 7 in left-to-right order 

      (one data in 100 groups)  ........................................................................................... 10 

 

Figure 1-11 The designed counterpropagation neural network architecture for the digit 

      image recognition problem ....................................................................................... 10 

 

Figure 1-12 Retrieval results of 7
th
 level noised digit images  ..................................................... 11 

 

Figure 2-1 Neural cell in human brain and its simplified model in neural networks  .................. 15 

 

Figure 2-2 Different types of activation functions  ....................................................................... 16 

 

Figure 2-3 Training patterns simplification for parity-3 problem  ............................................... 17 

 

Figure 2-4 Two equivalent networks for parity-3 problem .......................................................... 18 

 

Figure 2-5 Analytical solution of parity-2 problem  ..................................................................... 18 

 

Figure 2-6 Analytical solution of parity-3 problem  ..................................................................... 19 



xi 
 

 

Figure 2-7 Solving Parity-7 problem using MLP network with one hidden layer  ...................... 19 

 

Figure 2-8 Solve parity-7 problem using BMLP networks with one hidden layer  ...................... 21 

 

Figure 2-9 Solve parity-11 problem using BMLP networks with single hidden layer  ................ 21 

 

Figure 2-10 Solve parity-11 problem using BMLP networks with two hidden layers, 

      11=2=1=1  ................................................................................................................. 22 

 

Figure 2-11 Solve parity-11 problem using BMLP networks with two hidden layers, 

      11=1=2=1  ................................................................................................................. 23 

 

Figure 2-12 Solve parity-7 problem using FCC networks ............................................................ 24 

 

Figure 2-13 Solve parity-15 problem using FCC networks .......................................................... 24 

 

Figure 2-14 Searching process of the steepest descent method with different learning 

      constants: yellow trajectory (left) is for small learning constant which leads to  

      slow convergence; purple trajectory (right) is for large learning constant which  

      causes oscillation (divergence) ................................................................................. 26 

 

Figure 2-15 Parity-3 data and network architecture  .................................................................... 35 

 

Figure 2-16 Training results of parity-3 problem  ........................................................................ 36 

 

Figure 2-17 Two-spiral problem: separation of two groups of points  ......................................... 37 

 

Figure 2-18 Comparison between EBP algorithm and LM algorithm, for different number 

      of neurons in fully connected cascade networks  ...................................................... 38 

 

Figure 2-19 Training results of the two-spiral problem with 16 neurons in fully connected 

      cascade network  ....................................................................................................... 39 

 

Figure 2-20 Function approximation problem  ............................................................................. 40 

 

Figure 2-21 Approximation results of FCC networks with different number of neurons  ........... 41 

 

Figure 2-22 Arbitrarily connected neural network indexed by NBN algorithm  .......................... 44 

 

Figure 4-1 Two ways of multiplying matrixes  ............................................................................ 53 

 

Figure 4-2 Parity-2 problem: 4 patterns, 2 inputs and 1 output  ................................................... 58 

 

Figure 4-3 Three neurons in MLP network used for training parity-2 problem; weight 

    and neuron indexes are marked in the figure  ............................................................. 58 



xii  
 

 

Figure 4-4 Pseudo code of the improved computation for quasi Hessian matrix and 

    gradient vector  ............................................................................................................ 61 

 

Figure 4-5 Some testing results for digit ñ2ò recognition  ............................................................ 63 

 

Figure 5-1 Connection of a neuron j with the rest of the network. Nodes yj,i could 

    represents network inputs or outputs of other neurons. Fm,j(yj) is the nonlinear  

    relationship between the neuron output node yj and the network output om................ 68 

 

Figure 5-2 Structure of Jacobian matrix: (1) the number of columns is equal to the number 

    of weights; (2) each row is corresponding to a specified training pattern p and  

    output m  ...................................................................................................................... 71 

 

Figure 5-3 Pseudo code using traditional backpropagation of delta in second order  

    algorithms (code in bold will be removed in the proposed computation)  .................. 72 

 

Figure 5-4 Interpretation of ŭk,j as a signal gain, where in feedforward network neuron j  

    must be located before neuron k  ................................................................................. 73 

 

Figure 5-5 Four neurons in fully connected neural network, with 5 inputs and 3 outputs  .......... 74 

 

Figure 5-6 The ŭk,j parameters for the neural network of Fig. 5-5. Input and bias weights  

    are not used in the calculation of gain parameters  ..................................................... 74 

 

Figure 5-7 The nn×nn computation table; gain matrix ŭ contains all the signal gains  

    between neurons; weight array w presents only the connections between neurons,  

    while network input weights and biasing weights are not included  ........................... 76 

 

Figure 5-8 Three different architectures with 6 neurons  ............................................................. 79 

 

Figure 5-9 Pseudo code of the forward-only computation, in second order algorithms  .............. 80 

 

Figure 5-10 Comparison of computation cost for MLP networks with one hidden layer; 

      x-axis is the number of neurons in hidden layer; y-axis is the time consumption  

      radio between the forward-only computation and the forward-backward  

      computation  .............................................................................................................. 83 

 

Figure 5-11 Peak surface approximation problem ........................................................................ 85 

 

Figure 5-12 The best training result in 100 trials, using LM algorithm, 8 neurons in FCC 

      network (52 weights); maximum training iteration is 1,000; SSETrain=0.0044,  

      SSEVerify=0.0080 and training time=0.37 s  ............................................................... 87 

 
 



xiii  
 

Figure 5-13 The best training result in 100 trials, using EBP algorithm, 8 neurons in FCC  

      network (52 weights); maximum training iteration is 1,000,000;  

      SSETrain=0.0764, SSEVerify=0.1271 and training time=579.98 s  ............................... 87 

 

Figure 5-14 The best training result in 100 trials, using EBP algorithm, 13 neurons in FCC 

      network (117 weights); maximum training iteration is 1,000,000;  

      SSETrain=0.0018, SSEVerify=0.4909 and training time=635.72 s  ............................... 87 

 

Figure 5-15 The first 90 images of ASCII characters  .................................................................. 89 

 

Figure 5-16 Using neural networks to solve an error correction problem; errors in input  

      data can be corrected by well trained neural networks  ............................................ 89 

 

Figure 5-17 Tow-link planar manipulator .................................................................................... 91 

 

Figure 6-1 Commands and related neural network topologies  .................................................... 96 

 

Figure 6-2 Weight initialization for parity-3 problem with 2 neurons in FCC network  .............. 96 

 

Figure 6-3 Extract the number of inputs and the number of outputs from the data file  

    and topology  ............................................................................................................... 98 

 

Figure 6-4 A sample of training result file  ................................................................................... 99 

 

Figure 6-5 A sample of training verification file for parity-3 problem  ....................................... 99 

 

Figure 6-6 The user interface of NBN 2.0  ................................................................................. 100 

 

Figure 6-7 Training process with and without momentum  ........................................................ 106 

 

Figure 6-8 Network architecture used for XOR problem  .......................................................... 107 

 

Figure 6-9 Training results of XOR problem  ............................................................................ 107 

 

Figure 6-10 The ñflat spotò problem in sigmoidal activation function  ...................................... 108 

 

Figure 6-11 Test the modified slope by ñworst caseò training  .................................................. 109 

 

Figure 6-12 Parameter adjustment in update rule (6-4)  ............................................................. 110 

 

Figure 6-13 Failures of gradient based optimization  ................................................................. 111 

 

Figure 6-14 Two equivalent networks  ....................................................................................... 114 

 

Figure 6-15 Network construction commands: 15 neurons in FCC network with 2 inputs 

      and 5 outputs  .......................................................................................................... 115 



xiv 
 

 

Figure 6-16 Data classification  .................................................................................................. 115 

 

Figure 6-17 X-dimension surface of forward kinematics  .......................................................... 116 

 

Figure 6-18 Y-dimension surface of forward kinematics ........................................................... 117 

 

Figure 6-19 X-dimension testing results  .................................................................................... 117 

 

Figure 6-20 Y-dimension testing results ..................................................................................... 117 



1 
 

 

 

 

 

 

 

CHAPTER 1 

WHY NEURAL NETWORKS  

1.1 Introduction  

As rapid development of computational intelligence, the tendency becomes more and more 

apparent that human kind is going to be replaced by intelligent systems. Various algorithms of 

computational intelligence have been well-developed based on different biological or statistic 

models [1-4], and they are paid great attentions in both scientific research and industrial 

applications, such as nonlinear compensations [5-7], motor control [8-12], dynamic distribution 

systems [13], robotic manipulators [14-16], pattern recognition [17-19] and fault diagnosis [20-

21]. 

Artificial neural networks (ANNs) were extracted from the complicated interconnections 

of biological neurons and inherit the learning and reasoning properties of human brains. It was 

proven that neural networks could be considered as a general model being capable of building 

arbitrary linear/nonlinear relationships between stimulus and response [22]. It is still unknown 

about the internal computations of neural networks, so it is hard to design them directly; instead, 

researchers have developed smart algorithms to train neural networks. Error back propagation 

(EBP) algorithm [23], developed by David E. Rumelhart, is the first algorithm which has ability 

to train multilayer perceptron (MLP) networks. Levenberg Marquardt (LM) algorithm [24-25] is 

regarded as one of the most efficient algorithms for neural network learning. Recently developed 

second order neuron-by-neuron (NBN) algorithm [26-27] is capable of training arbitrarily 



2 
 

connected neural (ACN) networks which could be more efficient and powerful than traditional 

MLP networks. Fault tolerance and generalization ability are improved, when efficient network 

architectures are applied for training [28]. 

Fuzzy inference systems were designed based on fuzzy logical rules [29]. All parameters 

for designing fuzzy inference systems can be extracted from problems themselves, and the 

training process is not required. However, the tradeoff of the very simple design process is the 

accuracy of approximation. Some hybrid architectures [30], inherited from both neural networks 

and fuzzy inference systems, are proposed to improve the performance of fuzzy inference 

systems. Another disadvantage of fuzzy inference systems is that, as the increase of input 

dimensions, the computation cost increases exponentially. 

Support vector machines (SVMs) were developed from statistical learning theory [31] to 

solve data classification problems. The concept of SVMs is very similar with the three-layer 

MLP networks. Differently, the layer-by-layer architecture in SVMs is organized based on 

Coverôs theorem and each layer performs different computation. Unlike other learn-by-examples 

systems, SVMs do not face local minima problem and they can find optimized solutions by 

constrained learning process. Later improvements [32] make SVMs also proper for solving 

function approximation problems. 

Other methods of computational intelligence, such self-organizing maps (SOMs) [33], 

principal component analysis (PCA) [34], particle swarm optimization [35], ant colony 

optimization [36] and genetic algorithm [37], also attracts great interests in solving special 

optimization problems. These methods are often combined with training algorithms so as to 

improve their performance [38-40]. 

In the followed two sections, we will have two examples to illustrate the potential 



3 
 

advantages of neural networks over (1) several other methods for function approximation, and 

(2) human beings for image recognition. 

 

1.2 Comparison of Different Nonlinear Approximators 

In this section, different methods of computational intelligence, including fuzzy inference 

systems, neuro-fuzzy systems and support vector machines, interpolation and neural networks 

are compared based on a nonlinear surface approximation problem. The purpose of the problem 

is that, using the given 5×5=25 points (Fig. 1-1a, uniformly distributed in [0, 4] in both x and y 

directions) to approximate the 41×41=1,681 points (Fig. 1-1b) in the same input range. All the 

training/testing points are obtained by equation (1-1) and visualized in Fig. 1-1. The 

approximation will be evaluated by sum square error (SSE). 

( ) ( )( ) 922
1035.0415.0exp4 -+----= yxz                                (1-1) 

 
(a) Training data, 5×5=25 points                    (b) Testing data, 41×41=1,681 points 

Fig. 1-1 Surface approximation problem 

 

1.2.1 Fuzzy Inference Systems 

The most commonly used architectures for fuzzy system development are the Mamdani fuzzy 

system [41] and TSK (Takagi, Sugeno and Kang) fuzzy system [42]. Both of them consist of 



4 
 

three blocks: fuzzification block, fuzzy rule block and defuzzification/normalization block, as 

shown in Fig. 1-2 below. 
F

u
z
z
if
ie

r

M
IN

 o
p

e
ra

to
rs

M
A

X
 o

p
e

ra
to

rs

D
e

fu
z
z
if
ie

r

Fuzzy

rules

F
u

z
z
if
ie

r

out

X

Y

F
u

z
z
if
ie

r

X

Y

out

weighted

sum

N
o

rm
a

liz
a

ti
o

n

F
u

z
z
if
ie

r

Rule selection cells

min operations

 
(a) Mamdani fuzzy system                                      (b) TSK fuzzy system 

Fig. 1-2 Block diagram of the two types of fuzzy systems 

 

For the given surface approximation problem, with 5 triangular membership functions in 

each direction, two different fuzzy inference systems can obtain the approximated surfaces as 

shown in Fig. 1-3. 

 
(a) Mamdani fuzzy system, SSE=319.7334          (b) TSK fuzzy system, SSE=35.1627 

Fig. 1-3 Result surfaces obtained using fuzzy inference systems 

 

The rawness of control surfaces (Fig. 1-3) in fuzzy controllers leads to raw control and 

instabilities [43]. Therefore, for resilient control systems fuzzy controllers are not used directly 

in the control loop. Instead, traditional PID controllers [44-45] are often used and fuzzy inference 



5 
 

systems are just applied to automatically adjust parameters of PID controllers [46]. 

 

1.2.2 Neuro-Fuzzy Systems 

The neuro-fuzzy system, as shown in Fig. 1-4, attempts to present fuzzy inference system in 

form of neural network [47]. It consists of four layers: fuzzification, multiplication, summation 

and division. Notice that, in the second layer, product operations are performed among fuzzy 

variables (from first layer), instead of the fuzzy rules (MIN/MAX operations) in classic fuzzy 

inference systems. The multiplication process improves the performance of neuro-fuzzy system, 

but it is more difficult for hardware implementation. 

out

 

 multiplication

F
u

z
z
if
ie

r

X

F
u

z
z
if
ie

r

y

F
u

z
z
if
ie

r

z

P

P

P

P

sumfuzzification division

all weights 

equal 1

all weights equal 

expected values

 
Fig. 1-4 Neuro-Fuzzy System 

 

 For the given problem, with the same membership functions chosen for fuzzy inference 

system design in section 1.2.1, Fig. 1-5 shows the approximation result of the neuro-fuzzy 

system. 



6 
 

 
Fig. 1-5 Result surface of neuro-fuzzy systems, SSE= 27.3356 

 

1.2.3 Support Vector Machines (SVMs) 

For the given problem, with the software LIBSVM [48], the best results (as we tried) obtained 

using radial basis function kernel (exp(-ɔ|u-v|
2
) with ɔ=0.7) and polynomial kernel 

((0.1uôĬv+0.1)
n
 with n=7) separately are shown in Fig. 1-6. For other kernels, such as linear and 

sigmoid, the SVM does not work at all. 

 
(a) Radial basis function kernel, SSE=28.9595        (b) Polynomial kernel, SSE=176.1520 

Fig. 1-6 Result surfaces obtained using support vector machine 

 

1.2.4 Interpolation 

Interpolation is considered as a commonly used method for function approximation. MATLAB 



7 
 

provides the function ñinterp2ò for two-dimension interpolation and there are four approximation 

methods used in this function: nearest (nearest neighbor interpolation), linear (bilinear 

interpolation), spline (spline interpolation) and cubic (bicubic interpolation as long as the data is 

uniformly distributed). Fig. 1-7 presents the approximation results using the four different ways 

of interpolation. 

 
(a) Nearest interpolation, SSE=197.7494              (b) Linear interpolation, SSE=28.6683 

 
(c) Spline interpolation, SSE=11.0874                 (d) Cubic interpolation, SSE=3.2791 

Fig. 1-7 Result surfaces obtained using interpolation methods 

 

1.2.5 Neural Networks 

For the given problem in Fig. 1-1, Figs. 1-8 and 1-9 show the result surfaces using different 

number of neurons with fully connected cascade (FCC) networks. All the hidden neurons use 



8 
 

unipolar sigmoidal activation functions and the output neuron is linear. The software NBN 2.0 

[49-51] was used in the experiment and the neuron-by-neuron (NBN) algorithm [52-53] in the 

software was selected for training. 

+1

x

y Output

 
(a) Four neurons in FCC network                          (b) Result surface with SSE=2.3628 

Fig. 1-8 Neural network architecture and related testing result 

 

+1

x

y

Output

 
(a) Five neurons in FCC network                         (b) Result surface with SSE=0.4648 

Fig. 1-9 Neural network architecture and related testing result 

 

 Table 1-1 concludes the experimental results of different nonlinear approximators. One 

may notice that, from the point of approximating accuracy, neural networks can be the best 

choice for the problem. 

 



9 
 

Table 1-1 Comparison of approximation accuracy using different methods of computational 

intelligence 

Methods of Computational Intelligence Sum Square Errors 

Fuzzy inference system ï Mamdani 319.7334 

Fuzzy inference system ï TSK 35.1627 

Neuron ï fuzzy system 27.3356 

Support vector machine ï RBF kernel 28.9595 

Support vector machine ï polynomial kernel 176.1520 

Interpolation ï nearest 197.7494 

Interpolation ï linear 28.6683 

Interpolation ï spline 11.0874 

Interpolation ï cubic 3.2791 

Neural network ï 4 neurons in FCC network 2.3628 

Neural network ï 5 neurons in FCC network 0.4648 

 

1.3 Neural Networks for Image Recognition 

It is common knowledge that computers are much superior to human beings in numerical 

computation; however, it is still believed that human beings are superior to computers in areas of 

image processing. In this part, an example is used to show the expertise of special designed 

neural networks for recognizing noised images which cannot be handled by normal people. 

The experiment was carried out in the following scheme. As shown in Fig. 1-10, for each 

column, there are 10 digit images, from ñ0ò to ñ9ò, each of which consists of 8Ĭ7=56 pixels with 

normalized Jet degree between -1 and 1 (-1 for blue and 1 for red). The first column is the 

original image data without noise; for the noised data from the 2
nd

 column to the 8
th
 column, the 

strength of noise is increased according with equation (1-2): 

d³+= iPNPi 0                                                    (1-2) 

Where: P0 is the original image data (the 1
st
 column); NPi is the image data with i-th level noise; 

i is the noise level; ŭ is the randomly generated noise between [-0.5, 0.5]. 

 The purpose of this problem is to design the neural networks based on the image data in 

the 1
st
 column and then test the generalization ability of the designed neural networks using the 



10 
 

noised image data, from the 2
nd

 column to the 8
th
 column. For each noise level, the testing will be 

repeated for 100 times with randomly generated noise, in order to statistically obtain the 

recognition success rate. 

 
Fig. 1-10 Digit images with different noise levels from 0 to 7 in left-to-right order (one data in 

100 groups) 

 

Using the enhanced counterpropagation neural network [54] as shown in Fig. 1-11, the 

testing results are presented in Table 1-2 below. One may notice that the recognition error 

appears when patterns with level three noises are applied. 

unipolar
neurons

Hamming
   layer

Im
a
g
e 

in
p
u
ts

Im
a
g
e 

o
u
tp

u
ts

summing
 circuits

W
T

A
 W

in
n

er
 T

a
k
es

 A
ll

pattern

retrieval layer

linear

layer

ä

ä

ä

... ...

...

...

 
Fig. 1-11 The designed counterpropagation neural network architecture for the digit image 

recognition problem 

 



11 
 

Table 1-2 Success rates of the designed counterpropagation neural network for digit image 

recognition 

      Data 

Digit        

Noise 

level 1 

Noise 

level 2 

Noise 

level 3 

Noise 

level 4 

Noise 

level 5 

Noise 

level 6 

Noise 

level 7 

Digit 0 100% 100% 100% 100% 100% 96% 97% 

Digit 1 100% 100% 100% 100% 100% 100% 94% 

Digit 2 100% 100% 100% 95% 91% 77% 82% 

Digit 3 100% 100% 99% 92% 88% 84% 65% 

Digit 4 100% 100% 100% 100% 100% 98% 96% 

Digit 5 100% 100% 100% 100% 100% 95% 93% 

Digit 6 100% 100% 100% 100% 92% 91% 88% 

Digit 7 100% 100% 100% 100% 100% 98% 88% 

Digit 8 100% 100% 99% 98% 83% 76% 67% 

Digit 9 100% 100% 100% 100% 94% 91% 72% 

 

Comparing human beings and computers in recognition of those noisy characters, Fig. 1-

12 presents the retrieval results of 7
th
 level noised digit images. Obviously it is totally a gamble 

for human beings to retrieve most of those images, but the designed counterpropagation neural 

networks can do the job correctly. 

 
Fig. 1-12 Retrieval results of 7

th
 level noised digit images 

 

1.4 conclusion 

The two examples above show the potentially good performance of neural networks in function 

approximation and pattern recognition problems. Because of the attractive and powerful 

nonlinear mapping ability, we are very interested in the research of neural networks, including 

both network architectures and learning algorithms. Besides, for better understanding of neural 

networks, we have also extended our research scope to several other methods of computational 

intelligence, such as fuzzy inference systems and radial basis function neural networks. Our 

recent publications (at the end of the dissertation), as listed at the end of the dissertation, 



12 
 

somehow prove our achievement in these realms. 

In the dissertation, we will discuss how to design efficient and powerful algorithms for 

neural network learning. Especially, we will focus on the second order algorithms considering 

their high training efficiency and powerful search ability over first order algorithms. Our recently 

developed improved second order computation and the forward-only algorithm will be 

introduced as the recommended solutions to memory limitation problem and the computation 

redundancy problem, respectively, in second order algorithms. 

 

 

 

 



13 
 

 

 

 

 

 

 

CHAPTER 2 

BACKGROUND  

2.1 History  

The history of the neural networks can be traced back to 1942, when Warren McCulloch and 

Walter Pitts proposed McCulloch-Pitts model, named Threshold Logic Unit (TLU) [55]. 

Originally, TLU was designed to perform simple logic operations, such as ñ&ò and ñ|ò. In 1949, 

Donald Hebb mentioned the concept ñsynaptic modificationò in his book ñThe organization of 

behaviorò [56]. This concept was considered as a milestone during the development of neural 

networks. It is very similar with the analytical neuron models used today. In 1956, Albert Uttley 

reported that he successfully solved simple binary pattern classification problems using neural 

networks [57]. In 1958, Frank Rosenblatt introduced the important concept ñPerceptronò; in the 

following four years, Frank Rosenblatt designed several learning algorithms for the perceptron 

model, in order to do binary pattern classification [58]. As another milestone, in 1960, Bernard 

Widrow and his student Ted Hoff proposed ñADALINEò model which consisted of linear 

neurons. Least mean squares method was designed to adjust the parameters of ADALINE model. 

Two years later (1962), as the expansion of ADALINE, Widrow and Hoff introduced 

ñMADALINEò model which had two-layer architecture: multiple ADALINE units arranged in 

parallel as input layer and a single processor as output layer [59]. Based on ADALINE and 

MADALINE models, neural networks attracted lots of researchers and went through very fast 

development. Until 1969, Marvin Minsky and Seymour Papert proved the very limited power of 



14 
 

neural networks in their book ñPerceptronò [60]. They showed that the single layer perceptron 

model was only capable of classifying the patterns which were linearly separable; for linearly 

inseparable patterns, such as the very simple XOR problem, the single layer perceptron model 

would be helpless. The theory proposed by Minsky and Papert stopped the development of 

neural networks for almost 10 years, until 1986, the invention of error backpropagation 

algorithm, proposed by David E. Rumelhart [61]. The error backpropagation algorithm dispersed 

the dark clouds on the field of neural networks and could be regarded as one of the most 

significant breakthroughs in neural network training. By using the sigmoidal shape activation 

function, such as tangent hyperbolic function, and incorporating with the gradient descent 

concept in numerical methods, the error backpropagation algorithm enhanced the power of 

neural networks significantly. Neural networks can not only be used for classifying binary linear 

patterns, but also be applied to approximate any nonlinear relationships. In the following 10 

years, various learning algorithms [62-68] and network models [69-70] came out like the 

bamboo shoot after spring rain. Currently, error backpropagation (EBP) algorithms and 

multiplayer perceptron (MLP) networks are still the most popular learning algorithm and 

network architecture in practical applications. 

 

2.2 Basic Concepts 

As the basic unit of human brain, neural cells play the roles of signal transmission and storage. A 

neural cell mainly consists of cell body with lots of synapses around as shown in Fig. 2-1a. 

Extracting from the human brain model, a single neuron is made up of the linear/nonlinear 

activation function f(x) (like cell body) and weighted connections (like synapses), as shown in 

Fig. 2-1b. 



15 
 

)(xf
y

x1

x3

x2

x6

x5

x4

+1

net

x7

w
0

w
1w

2

w
3

w4

w5

w 6

w
7

 
(a) Neural cell [71]                                          (b) Neural model 

Fig. 2-1 Neural cell in human brain and its simplified model in neural networks 

 

Taking the neuron in Fig. 2-1b as an example, the two fundamental operations in a single 

neuron can be described as: 

¶ Calculate the net value as sum of weighted input signals 

0

7

1

wwxnet
i

ii +=ä
=

                                                   (2-1) 

¶ Calculate the output y 

( )netfy=                                                          (2-2) 

The activation function f(x) in equation (2-2) can be either linear function (equation 2-3) 

or sigmoidal shape function (equation 2-4), as shown in Fig. 2-2. 

xgainy ³=                                                           (2-3) 

( )
( )

1
2exp1

2
tanh -

³³-+
=³=

xgain
xgainy

                            (2-4) 



16 
 

() xgainxfy ³==

1=gain

() ( )xgainxfy ³== tan

 
(a) Linear function                                              (b) Sigmoidal function 

Fig. 2-2 Different types of activation functions 

 

It is quite straightforward that linear neurons (Fig. 2-2a), such as ADALINE model, have 

very limited power and can only handle patterns which are linear separable. On the other hand, 

sigmoidal shape functions (Fig. 2-2b), such as tangent hyperbolic function (equation 2-4), can be 

applied for nonlinear situations. It can be also noticed that, for sigmoidal shape functions, when 

the gain value becomes larger, the function behaves more like a step function. 

For more than one neuron interconnected together, the two basic computations in 

equations (2-1) and (2-2) for each neuron remain the same as for a single neuron. The only 

difference is that the inputs of a neuron could be either network inputs or the outputs of neurons 

from the previous layers. 

 

2.3 Network Architectures 

Neural networks consist of neurons and their interconnections. Technically, the interconnections 

among neurons can be arbitrary. In the dissertation, we only discuss the feedforward neural 

networks where signals are propagated from input layer to output layer without feedback. 

In this section, different types of neural network architectures are studied and compared 



17 
 

from the point of network efficiency, based on parity problems. The N-bit parity function can be 

interpreted as a mapping (defined by 2
N
 binary vectors) that indicates whether the sum of the N 

elements of every binary vector is odd or even. Parity-N problem is also considered to be one of 

the most difficult problems in neural network training [72-74]. 

 

2.3.1 Simplified Patterns for Parity Problems  

One may notice that, in parity problems, input patterns which have the same sum of each input 

are going to have the same output. Therefore, considering all the weights on network inputs as 

ñ1ò, the number of training patterns of parity-N problem can be reduced from 2
N
 to N+1.  

 Fig. 2-3 shows both the original 8 training patterns and the simplified 4 training patterns 

in parity-3 problem. The two types of training patterns are identical. 

                     

Input     Sum of Inputs    Output

0 0 0               0                      0

0 0 1               1                      1

0 1 0               1                      1

0 1 1               2                      0

1 0 0               1                      1

1 0 1               2                      0

1 1 0               2                      0

1 1 1               3                      1
                         

Input   Output

0        0

1        1

2        0

3        1        
 (a) Original patterns                             (b) Simplified patterns 

Fig. 2-3 Training patterns simplification for parity-3 problem 

 

Based on this pattern simplification strategy, for parity-3 problem, instead of the network 

architecture in Fig. 2-4a, a linear neuron (with slope equal to 1) can be used as the network input 

(see Fig. 2-4b). The linear neuron works as a summator and it does not have bias input. All 

weights connected to the linear neuron, including input weights and output weights, are fixed as 

ñ1ò. 



18 
 

+1
+1

Input1

Input2

Input3

weights=1

  

Input1

Input2

Input3

+1 +1

weights=1

Linear

 
(a) Original parity-3 inputs                      (b) Simplified linear neuron inputs 

Fig. 2-4 Two equivalent networks for parity-3 problem 

 

2.3.2 MLP Networks with One Hidden Layer 

Multilayer perceptron (MLP) networks are the most popular networks because they are regularly 

formed and easy for programming. In MLP networks, neurons are organized layer by layer and 

there are no connections across layers. 

Both parity-2 (XOR) and parity-3 problems can be visually illustrated in two and three 

dimensions respectively, as shown in Figs. 2-5 and 2-6. For parity-2 problem, each hidden 

neuron in Fig. 2-5b works as a separating line as shown in Fig. 2-5a and the output unit decides 

the values of separation area. Similarly, for parity-3 problem, each hidden unit in Fig. 2-6b 

represents a separating plane in Fig. 2-6a and the values of separation area are determined by the 

output unit. 

1

2

    

1

-1

-0.5

+1
+1

Input1

Input2

weights=(-0.5,-1.5)

1

2

weights=1

 
(a) Graphical interpretation of separation                (b) Designed neural network 

Fig. 2-5 Analytical solution of parity-2 problem 

 



19 
 

1

2
3

   

1

2

3

weights=1

Input1
Input2
Input3

+1

+1

1

-1

1

-0.5

weights=(-0.5,-1.5,-2.5)
 

(a) Graphical interpretation of separation                (b) Designed neural network 

Fig. 2-6 Analytical solution of parity-3 problem 

 

Using MLP networks with one hidden layer to solve the parity-7 problem, there could be 

at least 7 neurons in the hidden layer to separate the 8 training patterns (using the pattern 

simplification strategy described in Figs. 2-3 and 2-4), as shown in Fig. 2-7a. 

In Fig. 2-7a, 8 patterns {0, 1, 2, 3, 4, 5, 6, 7} are separated by 7 neurons (bold line). The 

thresholds of the hidden neurons are {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5}. Then summing the outputs 

of hidden neurons weighted by {1, -1, 1, -1, 1, -1, 1}, the net inputs at the output neurons could 

be only {0, 1} , which can be separated by the neuron with threshold 0.5. Therefore, parity-7 

problem can be solved by the architecture shown in Fig. 2-7b. 

0

1

2

3

4

5

6

7

0.5

1.5

2.5

3.5

5.5

4.5

6.5

0

1

0.5

+1

-1

+1

-1

+1

-1

+1

8

1

2

3

4

5

6

7
+1

Input1

Input2

Input3

Input5

Input4

Input7

Input6

weights=1

weights=(-0.5,-1.5,-2.5,-3.5,-4.5,-5.5,-6.5)

-1

-1

-1

+1

-0.5

1

1

1

1

1

2

6

7

5

4 8

3

 
(a) Analysis                                                  (b) Architecture 

Fig. 2-7 Solving Parity-7 problem using MLP network with one hidden layer 

 



20 
 

Generally, if there are n neurons in MLP networks with single hidden layer, the largest 

possible parity-N problem that can be solved is 

1-=nN                                                           (2-5) 

Where: n is the number of neurons and N is the number of dimensions of the parity problem. 

 

2.3.3 BMLP Networks 

In MLP networks, if connections across layers are permitted, then networks have bridged 

multilayer perceptron (BMLP) topologies. BMLP networks are more powerful than traditional 

MLP networks if the number of neurons is the same. 

 

2.3.3.1 BMLP Networks with One Hidden Layer 

Considering BMLP networks with only one hidden layer, all network inputs are connected to 

both of the hidden neurons and the output neuron or neurons. 

For parity-7 problem, the 8 simplified training patterns can be separated by 3 neurons to 

four sub patterns {0, 1},  {2, 3}, {4, 5} and {6, 7}. The threshold of the hidden neurons should be 

{1.5, 3.5, 5.5}. In order to transfer all sub patterns to the unique pattern {0, 1}  for separation, 

patterns {2, 3}, {4, 5} and {6, 7} should be reduce by 2, 4 and 6 separately, which determines 

the weight values on connections between hidden neurons and output neurons. After pattern 

transformation, the unique pattern {0, 1}  can be separated by the output neuron with threshold 

0.5. The design process is shown in Fig. 2-8a and the corresponding solution architecture is 

shown in Fig. 2-8b. 



21 
 

0

1

2

3

4

5

6

7

0

1
1

2

3

4

1.5

}

}

}
5.5

3.5

0.5

-2

-4

-6

         

+1

Input1

Input2

Input3

Input5

Input4

Input7

Input6

weights=1

weights=(-1.5, -3.5, -5.5)

1

2

4

3

+1

-0.5

-2

-4

-6

 
(a) Analysis                                                  (b) Architecture 

Fig. 2-8 Solve parity-7 problem using BMLP networks with one hidden layer 

 

For parity-11 problem, similar analysis and related BMLP networks with single hidden 

layer solution architecture are presented in Fig. 2-9. 

0

1

2

3

4

5

6

7

8

9

10

11

1

}

6

}

2

3

4

5

}

}

}
1.5

7.5

5.5

9.5

3.5

0.5
0

1

-4

-6

-8

-1
0

-2

+1

Input1

Input2

Input3

Input4

Input5

Input6

Input7

Input8

Input9

Input10

Input11

weights=1

weights=(-1.5, -3.5, -5.5, -7.5, -9.5)

1

2

3

4

5

6

+1
-0.5

-2

-4

-10

-6

-8

 
(a) Analysis                                              (b) Architecture 

Fig. 2-9 Solve parity-11 problem using BMLP networks with single hidden layer 

 

Generally, for n neurons in BMLP networks with one hidden layer, the largest parity-N 

problem that can be possibly solved is: 

12 -= nN                                                             (2-6) 

 

2.3.3.2 BMLP Networks with Multiple Hidden Layer 



22 
 

If BMLP networks have more than one hidden layers, then the further reduction of the number of 

neurons are possible, for solving the same problem. 

For parity-11 problem, using 4 neurons, in both 11=2=1=1 and 11=1=2=1 architectures, 

can find solutions. Considering the 11=2=1=1 network, the 12 simplified training patterns would 

be separated by two neurons at first, into {0, 1, 2, 3}, {4, 5, 6, 7} and {8, 9, 10 11}; the 

thresholds of the two neurons are 3.5 and 7.5 separately. Then, sub patterns {4, 5, 6, 7} and {8, 9, 

10, 11} are transformed to {0, 1, 2, 3} by subtracting -4 and -8 separately, which determines the 

weight values on connections between the first hidden layer and followed layers. In the second 

hidden layer, one neuron is introduced to separate {0, 1, 2, 3} into {0, 1} and {2, 3}, with 

threshold 1.5. After that, sub pattern {2, 3} is transferred to {0, 1} by setting weight value as -2 

on the connection between the second layer and the output layer. At last, output neuron with 

threshold 0.5 separates the pattern {0, 1}. The whole procedure is presented in Fig. 2-10 below. 

0

1

2

3

4

5

6

7

8

9

10

11

1

0

1
3

2

4

}
}

}

0

1

2

3
3.5

7.5

1.5
0.5

-2

-4
-4

-8 -8

 

+1

Input1

Input2

Input3

Input4

Input5

Input6

Input7

Input8

Input9

Input10

Input11

weights=1

weights=(-3.5, -7.5, -1.5)

1

2

3

4

-0.5

+1

-8 -8

-4
-4

-2

 
(a) Analysis                                                (b) Architecture 

Fig. 2-10 Solve parity-11 problem using BMLP networks with two hidden layers, 11=2=1=1 

 

Fig. 2-11 shows the 11=1=2=1 BMLP network with two hidden layers, for solving parity-

11 problem. 



23 
 

0

1

2

3

4

5

6

7

8

9

10

11

1

0

1

3

2

4

}

}

0

1

2

3

4

5 }
5.5

1.5

3.5

0.5

-6

-6

-6

-2

-4

 

+1

Input1

Input2

Input3

Input4

Input5

Input6

Input7

Input8

Input9

Input10

Input11

weights=1

weights=(-5.5, -1.5, -3.5)

1

2

3

4

+1
-0.5

-4

-2

weights=-6

 
(a) Analysis                                                      (b) Architecture 

Fig. 2-11 Solve parity-11 problem using BMLP networks with two hidden layers, 11=1=2=1 

 

Generally, considering the BMLP network with two hidden layers, the largest parity-N 

problem can be possibly solved is: 

( )( )1112 -++= nmN                                                  (2-7) 

Where: m and n are the numbers of neurons in the two hidden layers, respectively. 

For further derivation, one may notice that if there are k hidden layers and ni is the 

number of neurons in the i-th hidden layer, where i is ranged from 1 to k, then 

( )( ) ( ) ( )111112 21 -++++= ki nnnnN 33                        (2-8) 

 

2.3.4 FCC Networks 

Fully connected cascade (FCC) networks can solve problems using the smallest possible number 

of neurons. In the FCC networks, all possible routines are weighted, and each neuron contributes 

to a layer. 

For parity-7 problem, the simplified 8 training patterns are divided by one neuron at first, 

as {0, 1, 2, 3} and {4, 5, 6, 7}; the threshold of the neuron is 3.5. Then the sub pattern {4, 5, 6, 7} 

is transferred to {0, 1, 2, 3} by weights equal to -4, connected to the followed neurons. Again, by 



24 
 

using another neuron, the patterns in the second hidden layer {0, 1, 2, 3} can be separated as {0, 

1} and {2, 3}; the threshold of the neuron is 1.5. In order to transfer the sub pattern {2, 3} to {1, 

2}, 2 should be subtracted from sub pattern {2, 3}, which determines that the weight between the 

second layer and the output layer is -2. At last, output neurons with threshold 0.5 is used to 

separate the pattern {0, 1}, see Fig. 2-12. 

0

1

2

3

4

5

6

7

1

3
2

}

0

1

2

3 }

0

1

3.5

1.5
0.5

-2

-4

-4

 

+1

Input1

Input2

Input3

Input5

Input4

Input7

Input6

weights=1

weights=(-3.5, -1.5, -0.5)

1

2

3
-2

-4

-4

 
(a) Analysis                                                   (b) Architecture 

Fig. 2-12 Solve parity-7 problem using FCC networks 

 

Fig. 2-13 shows the solution of parity-15 problem using FCC networks. 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

3

2

}
}

0

1

2

3

4

5

6

7

0

1

2

3

0

1
4

7.5

3.5

1.5
0.5

-8

-8

-8

-4

-4

-2

+1

Input1

Input2

Input3

Input4

Input5

Input6

Input7

Input8

Input9

Input10

Input11

Input12

Input13

Input14

Input15

weights=1

weights=(-7.5, -3.5, -1.5, -0.5)

1

2

3

4

-8 -8
-8

-4
-4

-2

 
(a) Analysis                                                 (b) Architecture 

Fig. 2-13 Solve parity-15 problem using FCC networks 

 

Considering the FCC networks as special BMLP networks with only one neuron in each 

hidden layer, for n neurons in FCC networks, the largest N for parity-N problem can be derived 

from equation (2-8) as: 



25 
 

( )( )( )( )1111111112

1

-++++=

-

)))) ()))) '& 3

n

N                                      (2-9) 

or 

12 -= nN                                                       (2-10) 

 

2.3.5 Comparison of Different Topologies 

Table 2-1 concludes the analysis of network efficiency above and the largest parity-N problem 

that can be solved with a given network structure. For example, with 5 neurons: the MLP 

network with only one hidden layer can solve parity-4 problem (4-4-1 network); BMLP network 

with a single hidden layer can solve parity-11 problem (11=4=1 network); BMLP network with 

two hidden layers can solve parity-15 problem (15=3=1=1 network or 15=1=3=1 network) or 

parity-17 problem (17=2=2=1 network); FCC network can solve parity-31 problem at most 

(31=1=1=1=1=1 network). 

 

Table 2-1 Different architectures for solving parity-N problem 

Network Architectures Parameters Parity-N Problem 

MLP with single 

hidden layer 

n neurons 1-n  

BMLP with single 

hidden layer 

n neurons 12 +n  

BMLP with multiple 

hidden layer 

k hidden layers, each 

with ni neurons 
( )( ) ( )( )111112 121 -++++ - kk nnnn 3  

FCC n neurons 12 -n
 

   

Based on the comparison results shown in Table 2-1, one may draw the conclusion that, 

with more connections across layers, the networks become more powerful. The FCC architecture 

is the most powerful and can solve problems with much less number of neurons. 

 



26 
 

2.4 Learning Algorithms  

Many methods have already been developed for neural networks training [62-68]. In this 

dissertation, we will focus on the gradient descent based optimization methods. 

 

2.4.1 Introduction 

Steepest descent algorithm, also known as error backpropagation algorithm [61], is the most 

popular algorithm for neural network training; however, it is also known as an inefficient 

algorithm because of its slow convergence. 

There are two main reasons for the slow convergence: the first reason is that its step sizes 

should be adequate to the gradients as shown in Fig. 2-14. Logically, small step size should be 

taken where the gradient is steep, so as not to rattle out of the required minima (because of 

oscillation). So if the step size is a constant, it needs to be chosen small. Then, in the place where 

the gradient is gentle, the training process would be very slow. The second reason is that the 

curvature of the error surface may not be the same in all directions, such as the Rosenbrock 

function, so the classic ñerror valleyò problem [75] may exist and may result in the slow 

convergence. 

 
Fig. 2-14 Searching process of the steepest descent method with different learning constants: 

yellow trajectory (left) is for small learning constant which leads to slow convergence; purple 

trajectory (right) is for large learning constant which causes oscillation (divergence) 

 

http://en.wikipedia.org/wiki/Rosenbrock_function
http://en.wikipedia.org/wiki/Rosenbrock_function


27 
 

The slow convergence of the steepest descent method can be greatly improved by Gauss-

Newton algorithm [75]. Using second order derivatives of error function to ñnaturallyò evaluate 

the curvature of error surface, The Gauss-Newton algorithm can find proper step sizes for each 

direction and converge very fast. Especially, if the error function has a quadratic surface, it can 

converge directly in the first iteration. But this improvement only happens when the quadratic 

approximation of error function is reasonable. Otherwise, Gauss-Newton algorithm would be 

mostly divergent. 

Levenberg Marquardt algorithm [24-25][76] blends the steepest descent method and 

Gauss-Newton algorithm. Fortunately, it inherits the speed advantage of the Gauss-Newton 

algorithm and the stability of the steepest descent method. Itôs more robust than the Gauss-

Newton algorithm, because in many cases it can converge well even if the error surface is much 

more complex than quadratic situation. Although Levenberg Marquardt algorithm tends to be a 

bit slower than Gauss-Newton algorithm (in convergent situation), it converges much faster than 

the steepest descent method. 

The basic idea of Levenberg Marquardt algorithm is that it performs a combined training 

process: around the area with complex curvature, Levenberg Marquardt algorithm switches to 

steepest descent algorithm, until the local curvature is proper to make a quadratic approximation; 

then it approximately becomes Gauss-Newton algorithm which can speed up the convergence 

significantly. 

In the following sections, the four basic gradient descent methods will be introduced, 

including (1) steepest descent method; (2) Newton method; (3) Gaussian-Newton algorithm and 

(4) Levenberg Marquardt algorithm. 

Sum square error (SSE) E is defined to evaluate the training process, as the object 



28 
 

function. For all training patterns and network outputs, it is calculated by 

( ) ää
= =

=

P

1p

M

1m

mpe,E 2
,

2

1
wx                                                  (2-11) 

Where: x and w are the input vector and weight vector respectively; p is the index of training 

patterns, from 1 to P, where P is the number of training patterns; m is the index of outputs, from 

1 to M, where M is the number of outputs; ep,m is the training error at output m when applying 

pattern p and it is defined as 

mpmpmp ode ,,, -=                                                    (2-12) 

Where: d is the desired output vector and o is the actual output vector. 

 

2.4.2 Steepest Descent Algorithm 

Steepest descent algorithm is a first order algorithm. It uses the first order derivative of total 

error function to find the minima in error space. Normally, gradient g is defined as the first order 

derivative of total error function (2-11) 

( )
T

Nw

E

w

E

w

EE
ù
ú

ø
é
ê

è

µ

µ

µ

µ

µ

µ
=

µ

µ
= 3

21

,

w

wx
g                                  (2-13) 

Where: N is the number of weights. 

With the definition of gradient g in (2-13), the update rule of steepest descent algorithm 

could be written as: 

kk1k gww a-=+                                                  (2-14) 

Where: Ŭ is the learning constant (step size) and k is the index of training iterations. 

The training process of steepest descent algorithm is asymptotic convergence so it never 

reaches the minima. Around the solution, all the elements of gradient vector g would be very 



29 
 

small and there would be very tiny weight changing. 

 

2.4.3 Newton Method 

Newton method assumes that all the gradient components g={g1, g2égN} are function of weights 

and all weights are linearly independent: 

( )
( )

( )î
î

í

î
î

ì

ë

=

=

=

NNN

N

N

wwwFg

wwwFg

wwwFg

3

3

3

3

21

2122

2111

,

,

,

                                              (2-15) 

Where: {F1, F2éFN} are nonlinear relationships between weights and related gradient 

components. 

Unfold each gi (i= 1, 2éN) in equations (2-15) by Taylor series and take the first order 

approximation: 

î
î
î
î

í

îî
î
î

ì

ë

D
µ

µ
++D

µ

µ
+D

µ

µ
+º

D
µ

µ
++D

µ

µ
+D

µ

µ
+º

D
µ

µ
++D

µ

µ
+D

µ

µ
+º

N
N

NNN
NN

N
N

N
N

w
w

g
w

w

g
w

w

g
gg

w
w

g
w

w

g
w

w

g
gg

w
w

g
w

w

g
w

w

g
gg

3

3

3

3

2
2

1
1

0,

2
2

2

2
1

1

2
0,22

1
2

2

1
1

1

1
0,11

                          (2-16) 

By combining the definition of gradient vector g in (2-13), it could be determined that 

jij

j

j

i

ww

E

w

w

E

w

g

µµ

µ
=

µ

ö
ö

÷

õ

æ
æ

ç

å

µ

µ
µ

=
µ

µ 2

                                         (2-17) 

Where: i and j are the indices of weights, from 1 to N. 

By inserting equation (2-17) to (2-16): 



30 
 

î
î
î
î

í

î
î
î
î

ì

ë

D
µ

µ
++D

µµ

µ
+D

µµ

µ
+º

D
µµ

µ
++D

µ

µ
+D

µµ

µ
+º

D
µµ

µ
++D

µµ

µ
+D

µ

µ
+º

N

NNN
NN

N
N

N
N

w
w

E
w

ww

E
w

ww

E
gg

w
ww

E
w

w

E
w

ww

E
gg

w
ww

E
w

ww

E
w

w

E
gg

2

2

2
2

2

1
1

2

0,

2

2

22
2

2

1
12

2

0,22

1

2

2
21

2

12
1

2

0,11

3

3

3

3

              (2-18) 

Comparing with the steepest descent method, the second order derivatives of the total 

error function need to be calculated for each component of gradient vector. 

In order to get the minima of total error function E, each element of the gradient vector 

should be zero. Therefore, left sides of the equations (2-18) are all zero, then 

î
î
î
î

í

î
î
î
î

ì

ë

D
µ

µ
++D

µµ

µ
+D

µµ

µ
+º

D
µµ

µ
++D

µ

µ
+D

µµ

µ
+º

D
µµ

µ
++D

µµ

µ
+D

µ

µ
+º

N

NNN
N

N
N

N
N

w
w

E
w

ww

E
w

ww

E
g

w
ww

E
w

w

E
w

ww

E
g

w
ww

E
w

ww

E
w

w

E
g

2

2

2
2

2

1
1

2

0,

2

2

22
2

2

1
12

2

0,2

1

2

2
21

2

12
1

2

0,1

0

0

0

3

3

3

3

                  (2-19) 

By combining equation (2-13) with (2-19) 

î
î
î
î

í

î
î
î
î

ì

ë

D
µ

µ
++D

µµ

µ
+D

µµ

µ
º-=

µ

µ
-

D
µµ

µ
++D

µ

µ
+D

µµ

µ
º-=

µ

µ
-

D
µµ

µ
++D

µµ

µ
+D

µ

µ
º-=

µ

µ
-

N

NNN
N

N

N
N

N
N

w
w

E
w

ww

E
w

ww

E
g

w

E

w
ww

E
w

w

E
w

ww

E
g

w

E

w
ww

E
w

ww

E
w

w

E
g

w

E

2

2

2
2

2

1
1

2

0,

2

2

22
2

2

1
12

2

0,2
2

1

2

2
21

2

12
1

2

0,1
1

3

3

3

3

           (2-20) 

There are N equations for N parameters so that all æwi can be calculated. With the 

solutions, the weight space can be updated iteratively. 

Equations (2-20) can be also written in matrix form 



31 
 

ù
ù
ù
ù

ú

ø

é
é
é
é

ê

è

D

D

D

³

ù
ù
ù
ù
ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é
é
é
é
é

ê

è

µ

µ

µµ

µ

µµ

µ

µµ

µ

µ

µ

µµ

µ

µµ

µ

µµ

µ

µ

µ

=

ù
ù
ù
ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é
é
é
é

ê

è

µ

µ
-

µ

µ
-

µ

µ
-

=

ù
ù
ù
ù

ú

ø

é
é
é
é

ê

è

-

-

-

N

NNN

N

N

N

N w

w

w

w

E

ww

E

ww

E

ww

E

w

E

ww

E

ww

E

ww

E

w

E

w

E

w

E

w

E

g

g

g

3

3

3333

3

3

3
3

2

1

2

2

2

2

1

2

2

2

2
2

2

12

2

1

2

21

2

2
1

2

2

1

2

1

               (2-21) 

Where: the square matrix is Hessian matrix H (N×N): 

ù
ù
ù
ù
ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é
é
é
é
é

ê

è

µ

µ

µµ

µ

µµ

µ

µµ

µ

µ

µ

µµ

µ

µµ

µ

µµ

µ

µ

µ

=

2

2

2

2

1

2

2

2

2
2

2

12

2

1

2

21

2

2
1

2

NNN

N

N

w

E

ww

E

ww

E

ww

E

w

E

ww

E

ww

E

ww

E

w

E

3

3333

3

3

H
                             (2-22) 

By Combining equations (2-13) and (2-22) with equation (2-21) 

wHg D=-                                                     (2-23) 

So 

gHw
1--=D                                                   (2-24) 

Therefore, update rule for Newton method is 

kkkk gHww
1

1
-

+ -=                                            (2-25) 

As the second order derivatives of total error function, Hessian matrix H gives the proper 

evaluation on the change of gradient vector. By comparing equations (2-14) and (2-25), one may 

notice that well-matched step sizes are given by the inverted Hessian matrix. 

 

2.4.4 Gaussian-Newton Algorithm 



32 
 

If Newton method is applied for weight updating, in order to get Hessian matrix H, the second 

order derivatives of total error function have to be calculated and it could be very complicated. In 

order to simplify the calculating process, Jacobian matrix J is introduced as 

ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é

ê

è

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

=

N

MPMPMP

N

PPP

N

PPP

N

MMM

N

N

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

,

2

,

1

,

2,

2

2,

1

2,

1,

2

1,

1

1,

,1

2

,1

1

,1

2,1

2

2,1

1

2,1

1,1

2

1,1

1

1,1

3

3333

3

3

3333

3

3333

3

3

J

                                      (2-26) 

By integrating equations (2-11) and (2-13), elements of gradient vector can be calculated 

as 

ää
ää

= =

= =

ö
ö

÷

õ

æ
æ

ç

å

µ

µ
=

µ

ö
ö

÷

õ

æ
æ

ç

å
µ

=
µ

µ
=

P

p

M

m

mp
i

mp

i

P

1p

M

1m

mp

i
i e

w

e

w

e

w

E
g

1 1

,

,

2
,

2

1

                        (2-27) 

Combining equations (2-26) and (2-27), the relationship between Jacobian matrix J and 

gradient vector g would be 

eJg
T=                                                       (2-28) 

Where: error vector e has the form 



33 
 

ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é
é
é
é
é
é
é
é

ê

è

=

MP

P

P

M

e

e

e

e

e

e

,

2,

1,

,1

2,1

1,1

3

3

3

e

                                                      (2-29) 

Inserting equation (2-11) into (2-22), the element at i-th row and j-th column of Hessian 

matrix can be calculated as 

ji

P

p

M

m j

mp

i

mp

ji

P

1p

M

1m

mp

ji
ji S

w

e

w

e

ww

e

ww

E
h ,

1 1

,,

2
,

2

2

,

2

1

ää
ää

= =

= =
+

µ

µ

µ

µ
=

µµ

ö
ö

÷

õ

æ
æ

ç

å
µ

=
µµ

µ
=               (2-30)  

Where: Si,j is equal to 

ää
= =

µµ

µ
=

P

p

M

m

mp
ji

mp
ji e

ww

e
S

1 1

,

,
2

,                                          (2-31) 

As the basic assumption of Newtonôs method is that Si,j is closed to zero and the 

relationship between Hessian matrix H and Jacobian matrix J can be rewritten as 

JJH
Tº                                                          (2-32) 

By combining equations (2-25), (2-28) and (2-32), the update rule of Gaussian-Newton 

algorithm is presented as 

( ) k

T

kk

T

kkk eJJJww
1

1

-

+ -=                                       (2-33) 

Obviously, the advantage of Gaussian-Newton algorithm over the standard Newton 



34 
 

method (equation 2-25) is that the former one doesnôt require the calculation of second order 

derivatives of the total error function, by introducing Jacobian matrix J instead. However, 

Gaussian-Newton algorithm still faces the same convergent problem like Newton algorithm for 

complex error space optimization. Mathematically, the problem can be interpreted as: matrix J
T
J 

may be not invertible. 

 

2.4.5 Levenberg Marquardt Algorithm 

In order to make sure that the approximated Hessian matrix J
T
J is invertible, Levenberg 

Marquardt algorithm introduces another approximation to Hessian matrix 

IJJH m+º T
                                                    (2-34) 

Where: ɛ is always positive, called combination coefficient and I  is the identity matrix. 

From equation (2-34), one may notice that the elements on the main diagonal of the 

approximated Hessian matrix will be larger than zero. Therefore, with this approximation 

(equation 2-34), it can be sure that matrix H is always invertible. 

By combining equations (2-33) and (2-34), the update rule of Levenberg Marquardt 

algorithm can be presented as:  

( ) k

T

kk

T

kkk eJIJJww
1

1

-

+ +-= m                                   (2-35) 

As the combination of steepest descent algorithm and Gaussian-Newton algorithm, 

Levenberg Marquardt algorithm switches between the two algorithms during the training process. 

When combination coefficient µ is very small (nearly zero), equation (2-35) is approaching to 

equation (2-33) and Gaussian-Newton algorithm is used. When combination coefficient µ is very 

large, equation (2-35) approximates to equation (2-14) and the steepest descent method is used. 



35 
 

If the combination coefficient µ in equation (2-35) is very big, it can be interpreted as 

learning coefficient in the steepest descent method (2-14): 

m
a

1
=                                                           (2-36) 

 

2.4.6 Comparison of Different Algorithms 

Table 2-2 summarizes the update rules and their properties of the four algorithms above. 

 

Table 2-2 Specifications of different learning algorithms 

Learning Algorithms Update Rules  Convergent 

Rate 

Computation  

Complexity 

EBP algorithm 
kk1k gww a-=+  Stable, slow Gradient 

Newton algorithm 
kkkk gHww

1
1

-
+ -=  Unstable, fast Gradient and Hessian 

Gaussian-Newton 

algorithm 
( ) k

T

kk

T

kkk eJJJww
1

1

-

+ -=  
Unstable, fast  Jacobian 

Levenberg Marquardt 

algorithm 
( ) k

T

kk

T

kkk eJIJJww
1

1

-

+ +-= m  Stable, fast Jacobian 

 

In order to compare the behavior of different learning algorithms, let us use the parity-3 

problem as an example. The training patterns of pariry-3 problem are shown in Fig. 2-15a. 

                  

   Inputs     Outputs

  -1  -1  -1        -1

  -1  -1   1         1

  -1   1  -1         1

  -1   1   1        -1

   1  -1  -1         1

   1  -1   1        -1

   1   1  -1        -1

   1   1   1         1
    

+1

Input 1

Input 2

Input 3

Output

+1
 

(a) Training patterns                                        (b) MLP network 3-2-1 

Fig. 2-15 Parity-3 data and network architecture 

 

 



36 
 

Three neurons in 3-2-1 MLP network, as shown in Fig. 2-15b, are used for training and 

the required training error is 0.01. Convergent rates are tested by repeating each case for 100 

trials with randomly generated initial weights. 

 
(a) EBP algorithm (Ŭ=1)                                     (b) EBP algorithm (Ŭ=100) 

 
(c) Gaussian-Newton algorithm                  (d) Levenberg Marquardt algorithm 

Fig. 2-16 Training results of parity-3 problem 

 

Table 2-3 Comparison among different learning algorithms for parity-3 problem 
Algorithms Convergence Rate Average Iteration Average Time (ms) 

EBP algorithm (Ŭ=1) 100% 1646.52 320.6 

EBP algorithm (Ŭ=100) 79% 171.48 36.5 

Gauss-Newton algorithm 3% 4.33 1.2 

LM algorithm 100% 6.18 1.6 

 

The training results are shown in Fig. 2-16 and the comparison is presented in Table 2-3. 

It can be concluded that: 

¶ For EBP algorithm, the larger the training constant Ŭ is, the faster and less stable the 

training process will be (Figs. 2-16a and 2-16b); 

¶ Gaussian-Newton algorithm computes very fast, but it seldom converges (Fig. 2-16c); 



37 
 

¶ Levenberg Marquardt algorithm is much faster than EBP algorithm and more stable 

than Gaussian-Newton algorithm (Fig. 2-16d). 

For more complex parity-N problems, Gaussian-Newton algorithm cannot converge at 

all, and EBP algorithm also becomes more time-consuming and harder to find solutions; while 

Levenberg Marquardt algorithm can still perform successful training. 

 Another example is the two-spiral classification problem [77] which is often considered 

as a very complex benchmark to evaluate the efficiency of learning algorithms and network 

architectures. As shown in Fig. 2-17, the two-spiral problem is purposed to separate two groups 

of twisted points (red circles and blue stars). 

 
Fig. 2-17 Two-spiral problem: separation of two groups of points 

 

Fig. 2-18 presents the training results the two-spiral problem, using EBP and LM 

algorithms. In both cases, fully connected cascade (FCC) networks were used; the desired sum 

squared error was 0.01; the maximum number of iteration was 1,000,000 for EBP algorithm and 

1,000 for LM algorithm. The LM algorithm was implemented by NBN algorithm [78-79], so as 

to be able to handle FCC networks. EBP algorithm not only requires much more time than LM 

algorithm (Fig. 2-18a), but also is not able to solve the problem unless excessive number of 



38 
 

neurons is used. EBP algorithm requires at least 12 neurons and the second order algorithm can 

solve it in much smaller networks, such as 7 neurons (Fig .2-18b). 

 
(a) Average training time 

 
(b) Success rate 

Fig. 2-18 Comparison between EBP algorithm and LM algorithm, for different number of 

neurons in fully connected cascade networks 

 

Fig. 2-19 shows the training results of the two-spiral problem, using 16 neurons in fully 

connected cascade network, for both EBP algorithm and LM algorithm. One may notice that, 

with the same topology, LM algorithm is able to find better solutions than those found using 

EBP algorithm. 

 



39 
 

 
(a) EBP algorithm                                        (b) LM algorithm 

Fig. 2-19 Training results of the two-spiral problem with 16 neurons in fully connected cascade 

network 

 

By conclusion, Levenberg Marquardt algorithm is the most efficient gradient based 

algorithm and it is recommended for neural network learning; however, it needs much more 

challenging computation than first order gradient methods. 

 

2.5 Generalization Ability  

Neural networks can work as universal approximator [22], but it happens only after successful 

training/learning process. The generalization is defined to evaluate the ability of trained neural 

networks to successfully handle new patterns which are not used for training. In order to obtain 

neural networks with good generalization ability, the over-fitting problems [28] should be 

avoided during the training process. 

 

2.5.1 The Over-fitting Problem 

The over-fitting problem is critical for designing neural networks with good generalization 

ability. When over-fitting happens, the trained neural networks can fit the training patterns very 

preciously, but they response poorly for new patterns which are not used for training. 



40 
 

Let us have an example to illustrate the existence of the over-fitting problems in neural 

network training. The purpose of the example is to approximate the function below 

( ) ( ) ( )( )922
1051.0905.0exp2, -+----= yxyxf                          (2-37) 

 As shown in the Fig. 2-20, the training patterns consist of 6×6=36 points (Fig. 2-20a) 

uniformly distributed in sampling range x ⱦ [0, 10] and y ⱦ [0, 10]. After training, another 

101×101=10,201 points (Fig. 2-20b, also uniformly distributed) in the same sampling range are 

applied to test the trained neural networks. 

                           
(a) Training patterns, 6×6=36 points               (b) Testing patterns, 101×101=10,201 points 

Fig. 2-20 Function approximation problem 

 

Using the most powerful neural network architecture (as analyzed in section 2.3.5), fully 

connected cascade (FCC) networks, the testing results of trained networks consisting of different 

number of neurons are shown in Fig. 2-21. 

 
(a) 2 neurons                               (b) 3 neurons                           (c) 4 neurons 



41 
 

 
(d) 5 neurons                               (e) 6 neurons                           (f) 7 neurons 

            
(g) 8 neurons                                              (h) 9 neurons 

Fig. 2-21 Approximation results of FCC networks with different number of neurons 

 

Table 2-4 presents the training and testing sum square errors (SSEs) of FCC networks 

with different number of neurons. 

 

Table 2-4 Training/testing SSEs of different sizes of FCC networks 

Number of Neurons Training SSEs Testing SSEs 

2 2.43055 678.7768 

3 1.17843 346.0761 

4 0.13682 49.6832 

5 0.00591 1.7712 

6 0.00022 0.2809 

7 0.00008 7.3590 

8 0.00003 249.3378 

9 0.00000008 142.3883 

 

From the results presented in Fig. 2-21 and Table 2-4, one may notice that, as the 

network size increases, the training errors keep decreasing stably; however, the testing errors 

decrease at first (when the number of neurons is less than 6) and they turned to become 



42 
 

increasing and unpredictable when more neurons are added. When the FCC networks consist of 

5 and 6 neurons, very good approximation results are obtained. 

 

2.5.2 Analytical Solutions 

Based on the experiment above, one may notice that the basic reason of the over-fitting problem 

in neural network design can be ascribed as the mismatch between the size of training patterns 

and the size of networks. Normally, using improperly large size networks to train very simple 

patterns may result in over-fitting. From another way of speaking, in order to reduce the 

probability of occurrence of the over-fitting in neural network design, there are two very 

straightforward methods: 

¶ Increase the size of training patterns 

¶ Decrease the size of neural networks 

For the first method, it is always good to get as many training patterns as possible; 

however, this strategy is only proper in practical applications when extra measurement can be 

performed. 

For the second method, it could be notice that in order to preserve the generalization 

abilities of neural networks, the size of the networks should be as small as possible. From this 

point of view, EBP algorithm is not a good choice for design compact neural networks because 

of its slow convergence and poor search ability. In order to overcome the two main 

disadvantages of EBP algorithms, networks with much larger than optimal size are often applied 

for training. 

Levenberg Marquardt (LM) algorithm is very efficient for neural network training and 

has much powerful search ability. With these properties, LM algorithm is proper to design 



43 
 

compact neural networks in practical applications. However, the most famous implementation of 

LM algorithm, Hagan and Menhaj LM algorithm [80], is only for MLP networks which perform 

much less efficiently than networks with connections across layers, such as BMLP networks and 

FCC networks. 

The recently developed neuron-by-neuron (NBN) algorithm [27] solves the network 

limitation in Hagan and Menhaj LM algorithm, and can handle arbitrarily connected neural 

networks using second order update rule. Therefore, the combination of NBN algorithm and 

BMLP/FCC networks is recommended in literature [28] for designing compact neural networks, 

so as to reduce the probability of occurrence of the over-fitting problem. 

 

2.6 Neuron-by-Neuron Algorithm  

The neuron-by-neuron (NBN) algorithm [27] was proposed to solve the network architecture 

limitation in Hagan and Menhaj LM algorithm, so that second order algorithms can be applied to 

train very efficient network architectures with connections across layers [74]. 

The NBN algorithm adopts the index technology used in SPICE problem, and it consists 

of two steps, forward computation and backward computation, to gather the information required 

for Jacobian matrix computation in equation (2-26), using 

( )
niiimp

n

i

i

i

i

mp

n

mp

n

mpmp

n

mp

nmp ys
w

net

net

o

o

o

w

o

w

od

w

e
j ,.,.

,,,,,

., d-=
µ

µ

µ

µ

µ

µ
-=

µ

µ
-=

µ

-µ
=

µ

µ
=           (2-38) 

Where: jp,m,n is the element of Jacobian matrix in (2-26) related with pattern p, output m and 

weight n. Equation (2-38) is derived from (2-12) and (2-26), using the chain rule of 

differentiation. Vector ŭ is defined to measure the error backpropagation process [81] and vector 

yi consists of the inputs of neuron i which may be either the network inputs or the outputs of 



44 
 

other neurons. si is the slope (derivative of activation function) of the given neuron i.  i is the 

index of neurons. 

 In the forward computation, neurons are organized according to the direction of signal 

propagation; while in backward computation, the analysis will follow the error backpropagation 

procedure like in first order algorithms. In order to illustrate the computation process of NBN 

algorithm, let us consider the network architecture with arbitrary connections as shown in Fig. 2-

22. 

1

2

3

5x1

x2

+1 +1

1

2 4

5

6

73

4

+1 +1
 

Fig. 2-22 Arbitrarily connected neural network indexed by NBN algorithm 

 

 For the network in Fig. 2-22, using the NBN algorithm, the network topology can be 

described as 

N1  3  1  2 

N2  4  1  2 

N3  5  3  4 

N4  6  1  2  4  5 

N5  7  3  5  6 

 Notice that each line represents the connections to a given neuron. The first part, from N1 

to N5, is the neuron index. Followed, the first digit of each line is the node index of the neuron. 

The rest of the digits of each line represent the nodes connected to the specified neuron. With 

these rules, one may notice that, for each neuron, the input nodes must have smaller indices than 

the index of itself. 

 In the forward computation, the neurons connected to the network inputs are first 



45 
 

processed so that their outputs can be used as inputs to the subsequent neurons. The following 

neurons are then processed as all their input values become available. In other words, the 

selected computing sequence has to follow the concept of feedforward signal propagation. If a 

signal reaches the inputs of several neurons at the same time, then these neurons can be 

processed in any sequence. In the example in Fig. 2-22, there are two possible ways in which 

neurons can be processed in forward direction: N1N2N3N4N5 or N2N1N3N4N5. The two procedures 

have different computing processes, but lead to exactly the same results. When the forward 

computation is done, both of the vector y and the derivative vector s in equation (2-38) are 

obtained. 

 The sequence of the backward computation is opposite to the forward computation 

sequence. The process starts with the last neuron and continues toward to the inputs. In the case 

of the network in Fig. 2-22, there are two possible backpropagation paths: N5N4N3N2N1 and 

N5N4N3N1N2. Again, different paths will lead to the same results. In this example, let us use the 

N5N4N3N2N1 sequence to illustrate how to calculate the vector ŭ in the backward computation. 

Notice that, the vector ŭ represents signal propagating from a network output to the inputs of all 

other neurons, so the size of the vector ŭ is equal to the number of neurons. For the output 

neuron N5, it is initialed as ŭ5=1. For the neuron N4, ŭ5 is propagated by the slope of neuron N5 

and then propagated by the weight w4,5 connected between neurons N4 and N5, so as to obtain 

ŭ4=ŭ5s5w4,5. For the neuron N3, both of the parameters ŭ4 and ŭ5 will be propagated in two 

separated paths to the output of neuron N3 and then summed together, as ŭ3= ŭ4s4w3,4+ŭ5s5w3,5. 

Following the same rule, it can be obtained that ŭ2=ŭ3s3w2,3+ŭ4s4w2,4 and ŭ1=ŭ3s3w1,3+ŭ5s5w1,5. 

After the backward computation, all the elements of vector ŭ in equation (2-38) are calculated. 

 With the forward and backward computation, all the neuron outputs y and slope s, and 



46 
 

vector ŭ are calculated. Then using equation (2-38), all the elements of Jacobian matrix can be 

obtained. 

 In the NBN computation above, neurons are analyzed one-by-one, following the 

specified sequence which is decided by the network architectures. This property makes the NBN 

algorithm capable of handling networks consisting of arbitrarily connected neurons. 



47 
 

 

 

 

 

 

 

CHAPTER 3 

PROBLEMS IN SECOND ORDER ALGORITHMS  

The very efficient second order Levenberg Marquardt (LM) algorithm [24-25] was adopted for 

neural network training by Hagan and Menhaj [80], and later was implemented in MATLAB 

Neural Network tool box [82]. The LM algorithm uses significantly more parameters describing 

the error surface than just gradient elements as in the EBP algorithm. As a consequence the LM 

algorithm is not only fast but also it can train neural networks for which the EBP algorithm has 

difficulty to converge [28]. Many researchers now are using the Hagan and Menhaj LM 

algorithm for neural network training, but this implementation has several disadvantages: 

(1) The Hagan and Menhaj LM algorithm requires the inversion of quasi Hessian matrix of 

size nw×nw in every iteration, where nw is the number of weights. Because of the necessity 

of matrix inversion in every iteration the speed advantage of LM algorithm over the EBP 

algorithm is less evident as the network size increases. 

(2) The Hagan and Menhaj LM algorithm was developed only for multilayer perceptron 

(MLP) neural networks. Therefore, much more powerful and efficient networks, such as fully 

connected cascade (FCC) or bridged multilayer perceptron (BMLP) architectures cannot be 

trained. 

(3) The Hagan and Menhaj LM algorithm cannot be used for the problems with many 

training patterns because the Jacobian matrix become prohibitively too large. 

(4) The implementation of the Hagan and Menhaj LM algorithm calculated elements of 



48 
 

Jacobian matrix using basically the same routines as in the EBP algorithm. The different is 

that the error backpropagation process (for Jacobian matrix computation) must be carried on 

not only for every pattern but also for every output separately. So for network with multiple 

outputs, the backpropagation process has to be repeated for each output. 

The problem (1) inherits property of the original Levenberg marquardt algorithm and it is 

still unsolved so that the LM algorithm can be used only for small and medium size neural 

networks. Considering that LM algorithm often solves problems with very efficient networks, so 

that the problem (1) is somehow compensated by this powerful search ability. 

The problem (2) was solved by the recently developed neuron-by-neuron (NBN) 

algorithm, as discussed in chapter 2.6, but this algorithm requires very complex computation. 

The NBN algorithm also inherits the problems (3) and (4) in Hagan and Menhaj LM algorithm. 

The problem (3) is called memory limitation, which makes the second order algorithms 

not proper for problems with large-sized patterns. This is a fatal issue for second order 

algorithms, since in practical problems, the size of training patterns is very large and it is 

encouraged to be as large as possible. 

The problem (4) is also called computational redundant, which makes second order 

algorithms relatively complicated and inefficient for training networks with multiple outputs. 

Also, it is easier to handle the networks with arbitrarily connected neurons, when there is no need 

for backward computation process in problem (4). 

 In the followed two chapters, we will introduce the two methods, improved second order 

computation and the forward-only algorithm, as the potential solutions to memory limitation in 

the problem (3) and computational redundant in the problem (4), respectively. 



49 
 

 

 

 

 

 

 

CHAPTER 4 

IMPROVED SECOND ORDER COMPUTATION  

The improved second order computation presented in this chapter is aimed to optimize the neural 

networks learning process using Levenberg Marquardt (LM) algorithm. Quasi Hessian matrix 

and gradient vector are computed directly, without Jacobian matrix multiplication and storage. 

The memory limitation problem for LM training is solved. Considering the symmetry of quasi 

Hessian matrix, only elements in its upper/lower triangular array need to be calculated. Therefore, 

training speed is improved significantly, not only because of the smaller array stored in memory, 

but also the reduced operations in quasi Hessian matrix calculation. The improved memory and 

time efficiencies are especially true for large-sized patterns training. 

In this chapter, firstly, computational fundamentals of LM algorithm are introduced to 

address the memory problem. Secondly, the improved computations for both quasi Hessian 

matrix and gradient vector are described in details. Thirdly, a simple problem is applied to 

illustrate the implementation of the improved computation. Finally, several experimental results 

are presented as the memory and training time comparison between the traditional computation 

and the improved computation. 

 

4.1 Problem Description 

Derived from steepest descent method and Newton algorithm, the update rule of Levenberg 

Marquardt algorithm is [76] 



50 
 

( ) eJIJJw
TT 1-

+=D m                                                      (4-1) 

Where: w is weight vector, I  is identity matrix, ɛ is combination coefficient, (P×M)×N  Jacobian 

matrix J and (P×M)×1  error vector e are defined as 

ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é

ê

è

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

=

N

PMPMPM

N

PPP

N

PPP

N

MMM

N

N

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

3

3333

3

3

3333

3

3333

3

3

21

2

2

2

1

2

1

2

1

1

1

1

2

1

1

1

12

2

12

1

12

11

2

11

1

11

J

 

ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é
é
é
é
é
é
é
é

ê

è

=

PM

P

P

M

e

e

e

e

e

e

3

3

3

2

1

1

12

11

e

                                   (4-2) 

Where: P is the number of training patterns, M is the number of outputs and N is the number of 

weights. Elements in error vector e are calculated by 

pmpmpm ode -=                                                  (4-3) 

Where: dpm and opm are the desired output and actual output respectively, at network output m 

when training pattern p. 

Traditionally, Jacobian matrix J is calculated and stored at first; then Jacobian matrix 

multiplications are performed for weight updating using (4-1). For small and median size 

patterns training, this method may work smoothly. However, for large-sized patterns, there is a 

memory limitation for Jacobian matrix J storage. 

For example, the pattern recognition problem in MNIST handwritten digit database [83] consists 

of 60,000 training patterns, 784 inputs and 10 outputs. Using only the simplest possible neural 



51 
 

network with 10 neurons (one neuron per each output), the memory cost for the entire Jacobian 

matrix storage is nearly 35 gigabytes. This huge memory requirement cannot be satisfied by any 

32-bit Windows compliers, where there is a 3 gigabytes limitation for single array storage. At 

this point, with traditional computation, one may conclude that Levenberg Marquardt algorithm 

cannot be used for problems with large number of patterns. 

 

4.2 Improved Computation 

In the following derivation, sum squared error (SSE) is used to evaluate the training process. 

() ää
= =

=

P

p

M

m

pmeE

1 1

2

2

1
w                                                    (4-4) 

Where: epm is the error at output m obtained by training pattern p, defined by (4-3). 

The N×N  Hessian matrix H is 

  

ù
ù
ù
ù
ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é
é
é
é
é

ê

è

µ

µ

µµ

µ

µµ

µ

µµ

µ

µ

µ

µµ

µ

µµ

µ

µµ

µ

µ

µ

=

2

2

2

2

1

2

2

2

2
2

2

12

2

1

2

21

2

2
1

2

NNN

N

N

w

E

ww

E

ww

E

ww

E

w

E

ww

E

ww

E

ww

E

w

E

3

3333

3

3

H
                                        (4-5) 

Where: N is the number of weights. 

Combining (4-4) and (4-5), elements of Hessian matrix H can be obtained as 

ää
= =

ö
ö

÷

õ

æ
æ

ç

å

µµ

µ
+

µ

µ

µ

µ
=

µµ

µ
P

p

M

m

pm
ji

pm

j

pm

i

pm

ji

e
ww

e

w

e

w

e

ww

E

1 1

22

                               (4-6) 

Where: i and j are weight indexes. 

For LM algorithm, equation (4-6) is approximated as [76] 



52 
 

ij

P

p

M

m j

pm

i

pm

ji

q
w

e

w

e

ww

E
=
ö
ö

÷

õ

æ
æ

ç

å

µ

µ

µ

µ
º

µµ

µ
ää
= =1 1

2

                                      (4-7) 

Where: qij is the element of quasi Hessian matrix in row i and column j. 

Combining (4-2) and (4-7), quasi Hessian matrix Q can be calculated as an 

approximation of Hessian matrix 

JJQH
T=º                                                        (4-8) 

N×1  gradient vector g is 

T

Nw

E

w

E

w

E
ù
ú

ø
é
ê

è

µ

µ

µ

µ

µ

µ
= 3

21

g                                           (4-9) 

Inserting (4-4) into (4-9), elements of gradient can be calculated as 

ää
= =

ö
ö

÷

õ

æ
æ

ç

å

µ

µ
=

µ

µ
=

P

p

M

m

pm
i

pm

i
i e

w

e

w

E
g

1 1

                                          (4-10) 

From (4-2) and (4-10), the relationship between gradient vector g and Jacobian matrix J 

is 

eJg
T=                                                          (4-11) 

Combining (4-8), (4-11) and (4-1), the update rule of Levenberg Marquardt algorithm can 

be rewritten 

( ) gIQw
1-

+=D m                                                (4-12) 

One may notice that the sizes of quasi Hessian matrix Q and gradient vector g are 

proportional to number of weights in networks, but they are not associated with the number of 

training patterns and outputs. 



53 
 

Equations (4-1) and (4-12) are producing identical results for weight updating. The major 

difference is that in (4-12), quasi Hessian matrix Q and gradient vector g are calculated directly 

without necessity to calculate and to store Jacobian matrix J as it is done in (4-1). 

 

4.2.1 Review of Matrix Algebra 

There are two ways to multiply rows and columns of two matrixes. If the row of first matrix is 

multiplied by the column of the second matrix, then we obtain a scalar, as shown in Fig. 4-1a. 

When the column of the first matrix is multiplied by the row of the second matrix then the result 

is a partial matrix q (Fig. 4-1b) [84]. The number of scalars is N×N , while number of partial 

matrices q, which later have to be summed is P×M . 

³ =
P×M

P×MT
J J Q

N

N

 
(a) Row-column multiplication results in a scalar 

³ =

N

N

N

N T
J J

q

 
(b) Column-row multiplication results in a partial matrix q 

Fig. 4-1 Two ways of multiplying matrixes 

 

When J
T
 is multiplied by J using routine shown in Fig. 4-1b, at first, partial matrices q 

(size: N×N) need to be calculated P×M times, then all of P×M  matrices q must be summed 



54 
 

together. The routine of Fig. 4-1b seems complicated therefore almost all matrix multiplication 

processes use the routine of Fig. 4-1a, where only one element of resulted matrix is calculated 

and stored at each time. 

Even the routine of Fig. 4-1b seems to be more complicated and it is used very seldom, 

after detailed analysis, one may conclude that the number of numerical multiplications and 

additions is exactly the same as that in Fig. 4-1a, but they are performed in different order. The 

computation cost analysis is presented in Table 4-1. 

 
Table 4-1 Computation cost analysis 

J
T
J Computation Addition Multiplication 

Original LM (P × M) × N × N  (P × M) × N × N  

Improved LM N × N × (P × M)  N × N × (P × M)  

 

In a specific case of neural network training, only one row (N elements) of Jacobian 

matrix J (or one column of J
T
) is calculated, when each pattern is applied. Therefore, if routine 

from Fig. 4-1b is used then the process of creation of quasi Hessian matrix can start sooner 

without necessity of computing and storing the entire Jacobian matrix for all patterns and all 

outputs. 

 

Table 4-2 Memory cost analysis 

Multip lication Methods Elements for storage 

Row-column (Fig. 4-1a) (P × M) × N  +  N × N  +  N 

Column-row (Fig. 4-1b) N × N  +  N 

Difference (P × M) × N  

P is the number of training patterns, M is the number of outputs and N is the number of weights. 

 

The analytical results in Table 4-2 show that the column-row multiplication (Fig. 4-1b) 

can save a lot of memory. 

 



55 
 

4.2.2 Improved Quasi Hessian Matrix Computation 

Let us introduce quasi Hessian sub matrix qpm (size: N×N) 

ù
ù
ù
ù
ù
ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é
é
é
é
é
é

ê

è

ö
ö

÷

õ

æ
æ

ç

å

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

ö
ö

÷

õ

æ
æ

ç

å

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

ö
ö

÷

õ

æ
æ

ç

å

µ

µ

=

2

21

2

2

212

121

2

1

N

pmpm

N

pmpm

N

pm

N

pmpmpmpmpm

N

pmpmpmpmpm

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

3

3333

3

3

pmq
                          (4-13) 

Using (4-7) and (4-13), the N×N  quasi Hessian matrix Q can be calculated as the sum of 

sub matrices qpm 

ää
= =

=

P

p

M

m

pm

1 1

qQ
                                               (4-14) 

By introducing 1×N  vector jpm 

ù
ú

ø
é
ê

è

µ

µ

µ

µ

µ

µ
=

N

pmpmpm

w

e

w

e

w

e
3

21
pmj

                              (4-15) 

sub matrices qpm in (4-13) can be also written in the vector form (Fig. 4-1b) 

pm
T
pmpm jjq =                                             (4-16) 

One may notice that for the computation of sub matrices qpm, only N elements of vector 

jpm need to be calculated and stored. All the sub matrixes can be calculated for each pattern p and 

output m separately, and summed together, so as to obtain quasi Hessian matrix Q. 

Considering the independence among all patterns and outputs, there is no need to store all 

the quasi Hessian sub matrices qpm. Each sub matrix can be summed to a temporary matrix after 

its computation. Therefore, during the direct computation of quasi Hessian matrix Q using (4-14), 



56 
 

only memory for N elements is required, instead of that for the whole Jacobian matrix with 

(P×M)×N  elements (Table 4-2). 

From equation (4-13), one may notice that all the sub matrixes qpm are symmetrical. With 

this property, only upper (or lower) triangular elements of those sub matrixes need to be 

calculated. Therefore, during the improved quasi Hessian matrix Q computation, multiplication 

operations in (4-16) and sum operations in (4-14) can be both reduced by half approximately. 

 

4.2.3 Improved Gradient Vector Computation 

Gradient sub vector ɖpm (size: N×1 ) is 

pm

N

pm

pm

pm

pm

N

pm

pm

pm

pm

pm

pm e

w

e

w

e

w

e

e
w

e

e
w

e

e
w

e

³

ù
ù
ù
ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é
é
é
é

ê

è

µ

µ

µ

µ

µ

µ

=

ù
ù
ù
ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é
é
é
é

ê

è

µ

µ

µ

µ

µ

µ

=

33
2

1

2

1

ɖ                                     (4-17) 

Combining (4-10) and (4-17), gradient vector g can be calculated as the sum of gradient 

sub vector ɖpm 

ää
= =

=

P M

m

pm

1 1p

ɖg                                               (4-18) 

Using the same vector jpm defined in (4-15), gradient sub vector can be calculated using 

pm

T

pmpm ejɖ =                                              (4-19) 

Similarly, gradient sub vector ɖpm can be calculated for each pattern and output separately, 

and summed to a temporary vector. Since the same vector jpm is calculated during quasi Hessian 

matrix computation above, there is only an extra scalar epm need to be stored. 



57 
 

With the improved computation, both quasi Hessian matrix Q and gradient vector g can be 

computed directly, without Jacobian matrix storage and multiplication. During the process, only 

a temporary vector jpm with N elements needs to be stored; in other words, the memory cost for 

Jacobian matrix storage is reduced by (P×M)  times. In the MINST problem mentioned in section 

4.1, the memory cost for the storage of Jacobian elements could be reduced from more than 35 

gigabytes to nearly 30.7 kilobytes. 

 

4.2.4 Simplified Öepm/Öwi computation 

The key point of the improved computation above for quasi Hessian matrix Q and gradient 

vector g is to calculate vector jpm defined in (4-15) for each pattern and output. This vector is 

equivalent of one row of Jacobian matrix J. 

The elements of vector jpm can be calculated by 

( )
i

pn

pn

pm

i

pmpm

i w

net

net

o

w

do

w

e

µ

µ

µ

µ
=

µ

-µ
=

µ

µpm

                              (4-20) 

Where: d is the desired output and o is the actual output; netpn is the sum of weighted inputs at 

neuron n described as 

ä
=

=

I

i

ipipn wxnet

1

                                                   (4-21) 

Where: xpi and wi are the inputs and related weights respectively at neuron n; I is the number of 

inputs at neuron n. 

Inserting (4-20) and (4-21) into (4-15), vector jpm can be calculated by 

[ ]333
é
é
ê

è

µ

µ
= ipp

p

pm

pm xx
net

o
,11,1

1

j [ ]
ù
ù
ú

ø

µ

µ
333 ipnpn

pn

pm
xx

net

o
,1,         (4-22) 



58 
 

Where: xpn,i is the i-th input of neuron n, when training pattern p. 

Using the neuron by neuron computation [27], elements xpn,i in (4-22) can be calculated in the 

forward computation, while Öopm/Önetpn are obtained in the backward computation. Again, since 

only one vector jpm needs to be stored for each pattern and output in the improved computation, 

the memory cost for all those temporary parameters can be reduced by (P×M)  times. All matrix 

operations are simplified to vector operations. 

 

4.3 Implementation 

In order to better illustrate the direct computation process for both quasi Hessian matrix Q and 

gradient vector g, let us analyze parity-2 problem as a simple example.   

Parity-2 problem is also known as XOR problem. It has 4 training patterns, 2 inputs and 1 

output. See Fig. 4-2. 

 
Fig. 4-2 Parity-2 problem: 4 patterns, 2 inputs and 1 output 

 

The structure, 3 neurons in MLP topology (see Fig. 4-3), is used. 

 
Fig. 4-3 Three neurons in MLP network used for training parity-2 problem; weight and neuron 

indexes are marked in the figure 

 



59 
 

As shown in Fig. 4-3 above, all weight values are initialed as the vector 

w={ w1,w2,w3,w4,w5,w6,w7,w8,w9}.  All elements in both quasi Hessian matrix Q and gradient 

vector g are set to ñ0ò. 

For the first pattern (-1, -1), the forward computation is: 

a) net11=1×w 1+(-1) ×w2+(-1) ×w3 

b) o11=f(net11) 

c) net12=1×w 4+(-1) ×w5+(-1) ×w6 

d) o12=f(net12) 

e) net13=1×w 7+o11×w 8+o12×w 9 

f) o13=f(net13) 

g) e11=1-o13 

Then the backward computation is performed to calculate Öe11/Önet11, Öe11/Önet12 and 

Öe11/Önet13 in following steps: 

h) With results of steps (f) and (g), it can be calculated 

( )( ) ( )

13

13

13

13

13

11
3

1

net

netf

net

netf

net

e
s

µ

µ
-=

µ

-µ
=

µ

µ
=                                   (4-23) 

i) With results of step (b) to step (g), using the chain-rule in differential, one can 

obtain 

( ) ( )

13

13
9

12

12

12

11
2

net

netf
w

net

netf

net

e
s

µ

µ
³³

µ

µ
-=

µ

µ
=                                  (4-24) 

( ) ( )

13

13
8

11

11

11

11
1

net

netf
w

net

netf

net

e
s

µ

µ
³³

µ

µ
-=

µ

µ
=                                (4-25) 

In this example, using (4-22), the vector j11 is calculated as 



60 
 

[ ] [ ]111111
12

11

11

11
11 --³

µ

µ
é
ê

è
--³

µ

µ
=

net

e

net

e
j  [ ]ù

ú

ø
³

µ

µ
1211

13

11 1 oo
net

e
                 (4-26) 

With (4-16) and (4-19), sub matrix q11 and sub vector ɖ11 can be calculated separately 

ù
ù
ù
ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é
é
é
é

ê

è

--

--

--

=

2
12

2
3

1211
2
3

12311131
2
1

12311131
2
1

2
1

12311131
2
1

2
1

2
1

11

0000

000

00

0

os

oos

ossosss

ossossss

ossosssss

3

33

333333

3

3

3

q
                               (4-27) 

[ ] 1112311311111 eosossss ³--= 3ɖ                             (4-28) 

One may notice that only upper triangular elements of sub matrix q11 are calculated, since 

all sub matrixes are symmetrical. This can save nearly half of computation. 

The last step is to add sub matrix q11 and sub vector ɖ11 to quasi Hessian matrix Q and 

gradient vector g. 

The analysis above is only for training the first pattern. For other patterns, the 

computation process is almost the same. During the whole process, there is no Jacobian matrix 

computation; only the derivatives and outputs of activation functions are required to be 

computed. All the temporary parameters are stored in vectors which have no relationship with 

the number of patterns and outputs. 

Generally, for the problem with P patterns and M outputs, the improved computation can 

be organized as the pseudo code shown in Fig. 4-4. 



61 
 

% Initialization

Q=0;

g =0

% Improved computation

for p=1:P               % Number of patterns

   % Forward computation

   é

   for m=1:M           % Number of outputs

      % Backward computation

      é

      calculate vector j pm;          % Eq. (4-22)  

      calculate sub matrix qpm;  % Eq. (4-16)

      calculate sub vector ɖpm;  % Eq. (4-19)

      Q=Q+qpm;                        % Eq. (4-14)

      g=g+ɖpm;                         % Eq. (4-18)

   end;

end;
 

Fig. 4-4 Pseudo code of the improved computation for quasi Hessian matrix and gradient vector 

 

The same quasi Hessian matrices and gradient vectors are obtained in both traditional 

computation (equations 4-8 and 4-11) and the proposed computation (equations 4-14 and 4-18). 

Therefore, the proposed computation does not affect the success rate. 

 

4.4 Experiments 

Several experiments are designed to test the memory and time efficiencies of the improved 

computation, comparing with traditional computation. They are divided into two parts: (1) 

Memory comparison and (2) Time comparison. 

 

4.4.1 Memory Comparison 

Three problems, each of which has huge number of patterns, are selected to test the memory cost 

of both the traditional computation and the improved computation. LM algorithm is used for 



62 
 

training and the test results are shown Tables 4-3 and 4-4. In order to make more precise 

comparison, memory cost for program code and input files were not used in the comparison. 

 

Table 4-3 Memory comparison for parity problems 

Parity-N Problems N=14 N=16 

Patterns 16,384 65,536 

Structures* 15 neurons 17 neurons 

Jacobian matrix sizes 5,406,720 27,852,800 

Weight vector sizes 330 425 

Average iteration 99.2 166.4 

Success Rate 13% 9% 

Algorithms Actual memory cost  

Traditional LM 79.21Mb 385.22Mb 

Improved LM 3.41Mb 4.30Mb 

*All neurons are in fully connected cascade networks 

 

Table 4-4 Memory comparison for MINST problem 

Problem MINST 

Patterns 60,000 

Structures 784=1 single layer network* 

Jacobian matrix sizes 47,100,000 

Weight vector sizes 785 

Algorithms Actual memory cost 

Traditional LM 385.68Mb 

Improved LM 15.67Mb 

*In order to perform efficient matrix inversion during training, only one of ten digits is classified 

each time. 

 

From the test results in Tables 4-3 and 4-4, it is clear that memory cost for training is 

significantly reduced in the improved computation. 

In the MNIST problem [82], there are 60,000 training patterns, each of which is a digit 

(from 0 to 9) image made up of grayed 28 by 28 pixels. And also, there are another 10,000 

patterns used to test the training results. With the trained network, our testing error rate for all the 

digits is 7.68%. In this result, for compressed, stretched and moved digits, the trained neural 



63 
 

network can classify them correctly (see Fig. 4-5a); for seriously rotated or distorted images, it is 

hard to recognize them (see Fig. 4-5b). 

 
(a) Recognized patterns 

 
(b) Unrecognized patterns 

Fig. 4-5 Some testing results for digit ñ2ò recognition 

 

4.4.2 Time Comparison 

Parity-N problems are presented to test the training time for both traditional computation and the 

improved computation using LM algorithm. The structures used for testing are all fully 

connected cascade networks. For each problem, the initial weights and training parameters are 

the same. 

 

Table 4-5 Time comparison for parity problems 

Parity-N Problems N=9 N=11 N=13 N=15 

Patterns 512 2,048 8,192 32,768 

Neurons 10 12 14 16 

Weights 145 210 287 376 

Average Iterations 38.51 59.02 68.08 126.08 

Success Rate 58% 37% 24% 12% 

Algorithms Averaged training time (s) 

Traditional LM 0.78 68.01 1508.46 43,417.06 

Improved LM 0.33 22.09 173.79 2,797.93 

 



64 
 

From Table 4-5, one may notice that the improved computation can not only handle 

much larger problems, but also computes much faster than traditional one, especially for large-

sized patterns training. The larger the pattern size is, the more time efficient the improved 

computation will be. 

Obviously, the simplified quasi Hessian matrix computation is the one reason for the 

improved computing speed (nearly two times faster for small problems). Significant computation 

reductions obtained for larger problems are most likely due to the simpler way of addressing 

elements in vectors, in comparison to addressing elements in huge matrices. 

With the presented experimental results, one may notice that the improved computation is 

much more efficient than traditional computation for training with Levenberg Marquardt 

algorithm, not only on memory requirements, but also training time. 

 

4.5 Conclusion 

In this chapter, the improved computation is introduced to increase the training efficiency of 

Levenberg Marquardt algorithm. The proposed method does not require to store and to multiply 

large Jacobian matrix. As a consequence, memory requirement for quasi Hessian matrix and 

gradient vector computation is decreased by (P×M)  times, where P is the number of patterns and 

M is the number of outputs. Additional benefit of memory reduction is also a significant 

reduction in computation time. Based on the proposed computation, calculating process of quasi 

Hessian matrix is further simplified using its symmetrical property. Therefore, the training speed 

of the improved algorithm becomes much faster than traditional computation. 

In the proposed computation process, quasi Hessian matrix can be calculated on fly when 

training patterns are applied. Moreover, the proposed method has special advantage for 



65 
 

applications which require dynamically changing the number of training patterns. There is no 

need to repeat the entire multiplication of J
T
J, but only add to or subtract from quasi Hessian 

matrix. The quasi Hessian matrix can be modified as patterns are applied or removed. 

Second order algorithms have lots of advantages, but they require at each iteration 

solution of large set of linear equations with number of unknowns equal to number of weights. 

Since in the case of first order algorithms, computing time is only proportional to the problem 

size, first order algorithms (in theory) could be more useful for large neural networks. However, 

as discussed in the previous chapters, first order algorithm (EBP algorithm) is not able to solve 

some problems unless excessive number of neurons is used. But with excessive number of 

neurons, networks lose their generalization ability and as a result, the trained networks will not 

respond well for new patterns, which are not used for training. 

One may conclude that both first order algorithms and second order algorithms have their 

disadvantages and the problem of training extremely large networks with second order 

algorithms is still unsolved. The method presented in this chapter at least solved the problem of 

training neural networks using second order algorithm with basically unlimited number of 

training patterns. 

 

 

 

 

 

 

 



66 
 

 

 

 

 

 

 

CHAPTER 5 

FORWARD-ONLY ALGORITHM  

Following the neuron-by-neuron (NBN) computation procedure [27], the forward-only algorithm 

[78] is introduced in this chapter also allows for training arbitrarily connected neural networks; 

therefore, more powerful network architectures with connections across layers, such as bridged 

multilayer perceptron (BMLP) networks and fully connected cascade (FCC) networks, can be 

efficiently trained. A further advantage of the proposed forward-only algorithm is that the 

learning process requires only forward computation without the necessity of the backward 

computations. Information needed for gradient vector (for first order algorithms) and Jacobian or 

Hessian matrix (for second order algorithms) is obtained during forward computation. This way 

the forward-only method, in many cases, may also lead to the reduction of the computation time, 

especially for networks with multiple outputs. 

 In this chapter, we firstly introduce the traditional gradient vector and Jacobian matrix 

computation to address the computational redundancy problem for networks with multiple 

outputs. Then, the forward-only algorithm is proposed to solve the problem by removing 

backward computation process. Thirdly, both analytical and experimental comparisons are 

performed between the proposed forward-only algorithm and Hagan and Menhaj Levenberg 

Marquardt algorithm. Experimental results also show the ability of the forward-only algorithm to 

train networks consisting of arbitrarily connected neurons. 

 



67 
 

5.1 Computational Fundamentals 

Before the derivation, let us introduce some commonly used indices in this chapter: 

¶ p is the index of patterns, from 1 to np, where np is the number of patterns; 

¶ m is the index of outputs, from 1 to no, where no is the number of outputs; 

¶ j and k are the indices of neurons, from 1 to nn, where nn is the number of neurons; 

¶ i is the index of neuron inputs, from 1 to ni, where ni is the number of inputs and it 

may vary for different neurons. 

Other indices will be explained in related places. 

Sum square error (SSE) E is defined to evaluate the training process. For all patterns and 

outputs, it is calculated by 

ää
= =

=

np

1p

no

1m

mpeE 2
,

2

1
                                                    (5-1) 

Where: ep,m is the error at output m defined as 

mpmpmp doe ,,, -=                                                (5-2) 

Where: dp,m and op,m are desired output and actual output, respectively, at network output m for 

training pattern p. 

In all training algorithms, the same computations are being repeated for one pattern at a 

time. Therefore, in order to simplify notations, the index p for patterns will be skipped in the 

following derivations, unless it is essential. 

 

5.1.1 Review of Basic Concepts in Neural Network Training 

Let us consider neuron j with ni inputs, as shown in Fig. 5-1. If neuron j is in the first layer, all its 

inputs would be connected to the inputs of the network; otherwise, its inputs can be connected to 



68 
 

outputs of other neurons or to networksô inputs if connections across layers are allowed. 

)( jj netf )(, jjm yF mo2,jy

1,jw

jy
2,jw

ijw,

nijw,

0,jw

1+

1,jy

1, -nijwijy ,

1, -nijy

nijy ,

3
3

 
Fig. 5-1 Connection of a neuron j with the rest of the network. Nodes yj,i could represents 

network inputs or outputs of other neurons. Fm,j(yj) is the nonlinear relationship between the 

neuron output node yj and the network output om 

 

Node y is an important and flexible concept. It can be yj,i, meaning the i-th input of 

neuron j. It also can be used as yj to define the output of neuron j. In this chapter, if node y has 

one index then it is used as a neuron output node, but if it has two indices (neuron and input), it 

is a neuron input node. 

Output node of neuron j is calculated using  

( )jjj netfy =                                                             (5-3) 

Where: fj is the activation function of neuron j and net value netj is the sum of weighted input 

nodes of neuron j 

j,0

ni

i

ijijj wywnet +=ä
=1

,,                                                   (5-4) 

Where: yj,i is the i-th input node of neuron j, weighted by wj,i, and wj,0 is the bias weight. 

Using (5-4) one may notice that derivative of netj is:  

ij
ij

j
y

w

net
,

,

=
µ

µ
                                                           (5-5) 



69 
 

and slope sj of activation function fj is: 

( )
j

jj

j

j

j
net

netf

net

y
s

µ

µ
=

µ

µ
=                                                      (5-6) 

Between the output node yj of a hidden neuron j  and network output om there is a complex 

nonlinear relationship (Fig. 5-1): 

 ( )jjmm yFo ,=                                                        (5-7) 

Where: om is the m-th output of the network. 

The complexity of this nonlinear function Fm,j(yj) depends on how many other neurons 

are between neuron j and network output m. If neuron j is at network output m, then om=yj and 

Fôm,j(yj)=1, where Fôm,j is the derivative of nonlinear relationship between neuron j and output m. 

 

5.1.2 Gradient Vector and Jacobian Matrix Computation 

For every pattern, in EBP algorithm only one backpropagation process is needed, while in 

second order algorithms the backpropagation process has to be repeated for every output 

separately in order to obtain consecutive rows of the Jacobian matrix (Fig. 5-2). Another 

difference in second order algorithms is that the concept of back propagating of ŭ parameter [81] 

has to be modified. In EBP algorithm, output errors are parts of ŭ parameter 

 ä
=

=

no

m

mjmjj eFs

1

'
,d                                                       (5-8) 

In second order algorithms, the ŭ parameters are calculated for each neuron j and each 

output m separately. Also, in the backpropagation process [80] the error is replaced by a unit 

value 

'
,, jmjjm Fs=d                                                         (5-9) 



70 
 

Knowing ŭm,j, elements of Jacobian matrix are calculated as 

              
'
,,,,

,

,

jmjijjmij
ij

mp
Fsyy

w

e
==

µ

µ
d                                       (5-10) 

In EBP algorithm, elements of gradient vector are computed as 

jij
ij

ij y
w

E
g d,

,
, =
µ

µ
=                                                (5-11) 

Where: ŭj is obtained with error back-propagation process. In second order algorithms, gradient 

can be obtained from partial results of Jacobian calculations 

      m

no

m

jmijij eyg ä
=

=

1

,,, d                                                (5-12) 

Where: m indicates a network output and ŭm,j is given by (5-9). 

The update rule of EBP algorithm is 

  nnn gww a-=+1                                                  (5-13) 

Where: n is the index of iterations, w is weight vector, Ŭ is learning constant, g is gradient vector.  

Derived from Newton algorithm and steepest descent method, the update rule of 

Levenberg Marquardt (LM) algorithm is [80] 

( ) nn
T
nnn gIJJww

1

1

-

+ +-= m                                      (5-14) 

Where: ɛ is the combination coefficient, I  is the identity matrix and J is Jacobian matrix shown 

in Fig. 5-2. 



71 
 

ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é
é

ê

è

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

=

33

333333

33

33

333333

33

333333

33

333333

33

333333

33

33

2,

,

1,

,

2,1

,

1,1

,

2,

2,

1,

2,

2,1

2,

1,1

2,

2,

1,

1,

1,

2,1

1,

1,1

1,

2,

,

1,

,

2,1

,

1,1

,

2,

1,

1,

1,

2,1

1,

1,1

1,

2,

,1

1,

,1

2,1

,1

1,1

,1

2,

2,1

1,

2,1

2,1

2,1

1,1

2,1

2,

1,1

1,

1,1

2,1

1,1

1,1

1,1

j

nonp

j

nonpnonpnonp

j

np

j

npnpnp

j

np

j

npnpnp

j

mp

j

mpmpmp

j

p

j

ppp

j

no

j

nonono

jj

jj

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

J

neuron 1 neuron j

nom=

2=m

1=m

1=m

3

3

2=m

1=m

nom=

3

3

3
1=p

pp=

npp=

nom=
3

3

3 3

 
Fig. 5-2 Structure of Jacobian matrix: (1) the number of columns is equal to the number of 

weights; (2) each row is corresponding to a specified training pattern p and output m 

 

From Fig. 5-2, one may notice that, for every pattern p, there are no rows of Jacobian 

matrix where no is the number of network outputs. The number of columns is equal to number of 

weights in the networks and the number of rows is equal to np×no. 

Traditional backpropagation computation, for delta matrix (np×no×nn) computation in 

second order algorithms, can be organized as shown in Fig. 5-3. 



72 
 

for all patterns

% Forward computation

   for all neurons (nn)

      for all weights of the neuron (nx)

         calculate net;         % Eq. (5-4)

      end;

      calculate neuron output;   % Eq. (5-7)

      calculate neuron slope;    % Eq. (5-6)

   end;

   for all outputs (no)

      calculate error;           % Eq. (5-2)

%Backward computation

      initial delta as slope; 

      for  all neurons star ting from output neurons (nn)

         for  the weights connected to other  neurons (ny)

            multiply delta through weights

            sum the backpropagated delta at proper  nodes

         end;

         multiply delta by slope (for  hidden neurons);

      end;

   end;

end;

 
Fig. 5-3 Pseudo code using traditional backpropagation of delta in second order algorithms (code 

in bold will be removed in the proposed computation) 

 

5.2 Forward-Only Computation 

The proposed forward-only method is designed to improve the efficiency of Jacobian matrix 

computation, by removing the backpropagation process. 

 

5.2.1 Derivation 

The concept of ŭm,j was defined in equation (5-9). One may notice that ŭm,j can be interpreted also 

as a signal gain between net input of neuron j and the network output m. Let us extend this 

concept to gain coefficients between all neurons in the network (Fig. 5-4 and Fig. 5-6). The 

notation of ŭk,j is extension of equation (5-9) and can be interpreted as signal gain between 

neurons j and k and it is given by 



73 
 

() ()
jjk

j

j

j

jjk

j

jjk
jk sF

net

y

y

yF

net

yF
'
,

,,
, =

µ

µ

µ

µ
=

µ

µ
=d                                  (5-15) 

Where: k and j are indices of neurons; Fk,j(yj) is the nonlinear relationship between the output 

node of neuron k and the output node of neuron j. Naturally in feedforward networks, kÓj. If k=j , 

then ŭk,k=sk, where sk is the slope of activation function (5-6). Fig 5-4 illustrates this extended 

concept of ŭk,j parameter as a signal gain. 

netj sj

yj
netk sk yk

jm,d

jjkjk sF'
,, =d

km,d

jkF ,'

n
e

tw
o

rk
 i
n

p
u

ts

o1

om

n
e

tw
o

rk
 o

u
tp

u
ts

 
Fig. 5-4 Interpretation of ŭk,j as a signal gain, where in feedforward network neuron j must be 

located before neuron k 

 

The matrix ŭ has a triangular shape and its elements can be calculated in the forward only 

process. Later, elements of gradient vector and elements of Jacobian can be obtained using 

equations (5-10) and (5-12) respectively, where only the last rows of matrix ŭ associated with 

network outputs are used. The key issue of the proposed algorithm is the method of calculating 

of ŭk,j parameters in the forward calculation process and it will be described in the next section. 

 

5.2.2 Calculation of ŭ Matrix for Fully Connected Cascade Architectures 

Let us start our analysis with fully connected neural networks (Fig. 5-5). Any other architecture 

could be considered as a simplification of fully connected neural networks by eliminating 



74 
 

connections (setting weights to zero). If the feedforward principle is enforced (no feedback), 

fully connected neural networks must have cascade architectures. 

in
p

u
ts

  4

  1

  2

  3

2,1w

3,2w

4,3w

3,1w 4,1w

4,2w

+1
 

Fig. 5-5 Four neurons in fully connected neural network, with 5 inputs and 3 outputs 

 

2,1w

3,2w

4,3w

3,1w 4,1w

4,2w1,2d

2,3d

1,4d

1,3d

2,4d1,4d

s1

s2

s3

s4

 
Fig. 5-6 The ŭk,j parameters for the neural network of Fig. 5-5. Input and bias weights are not 

used in the calculation of gain parameters 

 

Slops of neuron activation functions sj can be also written in form of ŭ parameter as ŭj,j=sj. 

By inspecting Fig. 5-6, ŭ parameters can be written as: 

For the first neuron there is only one ŭ parameter 

11,1 s=d                                                                                        (5-16) 

For the second neuron there are two ŭ parameters 



75 
 

                                                                               (5-17) 

For the third neuron there are three ŭ parameters 

                                                           (5-18) 

One may notice that all ŭ parameters for third neuron can be also expressed as a function 

of ŭ parameters calculated for previous neurons. Equations (5-18) can be rewritten as  

                                                         (5-19) 

For the fourth neuron there are four ŭ parameters 

                                   (5-20) 

The last parameter ŭ4,1 can be also expressed in a compacted form by summing all terms 

connected to other neurons (from 1 to 3) 

                                                     (5-21) 

The universal formula to calculate ŭk,j parameters using already calculated data for 

previous neurons is 

                                                   (5-22) 


