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Abstract

Cross docking plays a vital role in supply chain management. Cross docks can reduce

the lead time of the product from supplier to retailer. The benefit of the cross dock would

be reduced without efficient vehicle routing and scheduling. This research work proposes a

mixed integer linear programming formulation to obtain feasible vehicle routes and sched-

ules. The vehicle routing problem is characterized by heterogeneous vehicles, split deliveries,

discrete time windows, linehaul, and backhaul operations. The problem is modeled to facil-

itate the pick up of empty pallets at the retailer during the linehaul operation and delivery

of empty pallets to the suppliers during the backhaul operation. The mathematical formula-

tion is solved using CPLEX. The research work also proposes an algorithm to obtain initial

feasible vehicle routes.
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Chapter 1

Introduction

Today in many industries, logistics is one of the major cost factors. For example, Bayer

AG, a chemical company with annual sales equivalent to $25 billion, has a logistics budget of

$5 billion; it involves 3,000 different distribution points with handling about 740,000 different

shipments (Johnson and Wood 1990). Trucking accounts for 83% of freight transportation

in the US alone (Wilson 2002). A continuous surge in oil prices and increasing competition

have forced industries to implement novel cost-reduction strategies.

Distribution centers are important components of the logistics distribution network.

They facilitate the consolidation of goods from a variety of suppliers to a variety of retail-

ers. According to the functions of the distribution center, there is a distinction between an

inventory coordination point and an inventory storage point. The former is a cross docking

strategy, while the latter is a traditional warehousing strategy (Kreng and Chen 2008). The

cross docking strategy has been acknowledged as having great potential to reduce trans-

portation costs and delivery times without increasing inventory (Sung and Song 2003).

Two critical requirements of cross docking are simultaneous arrival and consolidation.

If all vehicles do not arrive at the cross dock simultaneously, some vehicles have to wait.

Therefore, the timing for all vehicles in the pickup process must be synchronized to reduce

waiting times. According to the destination, all products are classified and loaded to each

vehicle in the cross dock. Then, all vehicles leave the cross dock to distribute products to

their destinations. If simultaneous arrival and consolidation can be easily accomplished in a

supply chain’s physical flow, all products can be moved from suppliers to customers without

any interruptions. Therefore, we can expect to reduce inventory levels and lead times for
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delivery (Lee et al. 2006). In the case of Wal-Mart, cross docking is often regarded as a key

driver of the retailer’s superior logistics management (Hammer 2004).

The benefits of cross docks do not come without some risks. For example, Apte and

Viswanathan (2000) caution that, “cross docking inherently leads to a minimal level of in-

ventory at the warehouse, and thereby strips the system of safety stocks traditionally held at

the warehouse. Consequently, cross docking raises the probability of stock-out situations.”

Fortunately, this issue may be addressed by utilizing the concept of vendor managed inven-

tory (VMI). With VMI, the supplier (which is often a manufacturer) controls the buyer’s

(retailer’s) inventory levels, so as to ensure that predetermined customer service levels are

maintained. In such a relationship, the supplier takes the replenishment decision for the

buyer, dispatching a quantity of product that may be fixed (Waller et al. 2006). Replen-

ishment occurs when the stock level at the buyer reaches a specified level, based on both

the average demand during transportation lead time and a safety stock to cover for demand

variations (Kaipia et al. 2002). VMI brings a number of benefits to all parties participating

in the supply chain. First, the impact of demand amplification is dampened, as the man-

ufacturer now receives a direct view of end consumer demand patterns and can use this in

forecasting (Disney et al. 2003). This generates cost benefits through a reduction in buffer

stocks at the buyer and supplier (Sabath 1995). Further, there are improvements in service

levels as product availability is increased (Waller et al. 2006). Finally, VMI can, in the long

run, increase the profitability of both the supplier and buyer in supply chain (Dong and Xu

2002). The buyer benefits from lower inventory costs and can offer a price reduction. This

then increases sales volume, which benefits both parties in terms of increased profitability

(Disney et al. 2003).

Motivated by the usefulness of the cross docks, several authors have focused on im-

proving the performance within the cross dock itself. Some of the notable studies include

the design of the cross dock layout (Bartholdi and Gue 2000; Bartholdi and Gue 2004),

benefits of the cross dock layout when compared to traditional warehouse (Kreng and Chen

2



2008), analysis of retailer inventory levels when cross docks are used (Waller et al. 2006) and

scheduling of trucks at cross dock doors (Boysen and Fliedner 2010). However, less work has

been done on the problem of routing and scheduling in a cross dock distribution network.

The distribution network has several key components. These include suppliers, con-

sumers (retailers), cross docks, and the vehicles that transport goods between nodes in the

network. It is important to select the proper mix of vehicles, and to schedule them ap-

propriately. The vehicles may be routed in a truckload operation or a less-than-truckload

operation. Less-than-truckload operations are observed if the loaded capacity of the vehicle

for a particular route will be less than the capacity of the vehicle. Transportation costs

may increase if less-than-truckload operations are frequently scheduled. If the customers

are willing to receive goods in multiple shipments, a practice known as “split delivery”, the

occurrence of less-than-truckload operations may be reduced. The operations of the truck

may have only linehaul operations or it may have both linehaul and backhaul operations.

In linehaul operations, the goods are either picked up or delivered. In backhaul operations,

after goods are delivered to customers, trucks are routed for pick up from the suppliers. The

combination of the linehaul and the backhaul operation is considered efficient, as it may

reduce the occurrence of vehicles travelling empty (dead heading).

This research effort makes several contributions. A mathematical model is developed

for the vehicle routing problem (VRP) for cross docks. Some work has been reported on the

VRP for cross docks, with extensions like time windows, split deliveries, heterogeneous fleet

of vehicles, and multiple cross docks. All the reported work has one of the above mentioned

extensions, or a combination of only a couple of extensions to the VRP for cross docks. In this

thesis, the proposed VRP model is built with all the above mentioned extensions, in addition

to three new extensions. First, to improve the vehicle utilization, a feature to allow pick

up during a linehaul operation is added. Second, backhaul operations are added. Finally, a

feature to allow delivery during a backhaul operation is added. In addition to developing a

mathematical model, a heuristic approach is proposed for determining feasible vehicle routes.
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The solution from the heuristic approach can be used within a broader solution approach,

like tabu search, to obtain better solutions. Moreover, a procedure is explained to develop

test problems for this model.

The remainder of this thesis is organized as follows. A formal description of the dis-

tribution problem involving cross docks, backhaul operations, and multiple use of vehicles

is presented in Chapter 2. Chapter 3 contains a review of relevant literature. In Chapter

4, parameters and decision variables used in the development of the mixed integer linear

programming formulation for the model are explained. Moreover, network constraints, cross

dock constraints, supplier pick up constraints and retailer delivery constraints of the model

are also explained. In Chapter 5, a numerical example is provided to further explain the

details of the mathematical model. A heuristic approach for obtaining initial feasible vehicle

routes is explained in Chapter 6. Numerical analysis of the mathematical model for different

parameter values is included in Chapter 7. Finally, concluding remarks and suggestions for

future research are given in Chapter 8.
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Chapter 2

Problem Description

The problem of interest involves a distribution network consisting of retailers, suppliers,

cross docks, and vehicles of potentially-differing capacities. Goods must be delivered from

suppliers to retailers through one or more cross docks. Within each cross dock, goods arriving

on multiple inbound trucks are sorted and consolidated onto multiple outbound trucks. To

facilitate efficient flow of goods through the cross dock, orders are assumed to be loaded onto

pallets of uniform size.

Each retailer has a known demand of goods from each supplier. The allowable times

in which deliveries may be made to each retailer are defined by one or more time windows,

such that deliveries may not be scheduled outside of these windows. Split deliveries, in

which multiple vehicles may deliver goods at separate times, are allowed in this system in

an effort to maximize vehicle utilization. The delivery of goods to retailers is described by

a linehaul operation. As goods are delivered to retailers, an inventory of empty pallets may

accumulate. These empty pallets must be returned to the appropriate suppliers as part of a

backhaul operation.

As with retailers, vehicles may pick up goods from suppliers only within pre-defined time

windows. These time windows also define the allowable times in which vehicles may return

empty pallets, which were delivered as full pallets to retailers as part of the linehaul operation,

to a given supplier. Split deliveries of empty pallets are permissible, and may be necessary

due to vehicle capacity limitations, time window constraints, or vehicle coordination issues

at the cross dock.

The actual quantity of each retailer’s demand is assumed to be determined by the

application of vendor managed inventory (VMI). As such, the demand of each retailer is
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known, and there is no need to maintain inventory levels in the distribution centers (in this

case, the cross docks). By assumption, there is no space to store inventory in the cross

dock. In order to operate an inventory-free cross dock, the transfer operation within cross

docks requires the applicable vehicles to arrive at the cross dock simultaneously. Goods are

assumed to travel directly from inbound to outbound trucks.

There may be multiple cross docks in pre-defined (fixed) locations. Each cross dock con-

sists of a set of terminals for inbound trucks (containing pallets from suppliers) and another

set of terminals for outbound trucks (to be loaded with pallets for delivery to retailers). It is

important to note that the problem of interest here is not concerned with the scheduling of

vehicles to particular terminals in the cross dock. Therefore, it is not practical to consider

terminal-specific transfer times between incoming and outgoing shipments.

A heterogeneous fleet of vehicles (trucks) is available, such that each vehicle may have a

unique capacity. Vehicles may be assigned to multiple routes over the course of the planning

horizon. Each truck is assumed to begin empty at its current location at the beginning

of the planning horizon. Trucks may travel from their initial locations to either a supplier

(where the pickup process for goods commences) or to the outbound terminal of a cross dock

(where trucks wait to be loaded with goods picked up by other trucks visiting suppliers).

Less-than-truckload (LTL) operations are allowed. Because all goods bound for retailers

must pass through a cross dock, vehicles may not travel directly from suppliers to retailers.

However, vehicles may deliver empty pallets directly from retailers to suppliers as part of a

backhaul operation.

The objective of the problem is to determine the minimum-cost vehicle schedules, where

the total cost may be calculated in multiple ways. For example, there may be a cost associ-

ated with the number of vehicles utilized. To facilitate more equitable numbers of routes for

each vehicle, a cost may be included for each route taken by each vehicle. Additionally, a

preference may be given for delivering to retailers as early as possible within their allowable

time windows. Although VMI is used to establish demand values, it is possible that not all

6



demand can be satisfied. This may be due to vehicle capacity limitations, cross dock avail-

ability issues, or time window limitations. As such, another cost may be associated with

the quantity of unmet demand, both for goods needed by retailers and for empty pallets

requested by suppliers.
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Chapter 3

Literature Review

The problem of interest here may be considered as a vehicle routing problem (VRP) with

multiple side constraints. Such constraints include, but are not limited to, split deliveries,

time windows, and heterogeneous vehicles in a cross docking environment. Many studies

have been done separately on the VRP with varying constraints, and on cross docking.

However, very little research exists on the integration of the VRP with cross docking. This

literature review is divided into two parts. First, literature describing the VRP with cross

docks is considered. Next, relevant vehicle routing problems in non-cross dock environments

are reviewed.

3.1 VRP and Cross Docking

This section contains a review of articles involving vehicle routing, sequencing, and

scheduling of trucks in a cross docking environment. A summary of the literature appears in

Table 3.1, which also contrasts aspects of the existing literature with the model proposed in

this thesis. In Table 3.1, the “Backhaul Operation” column indicates whether vehicles are

permitted to visit suppliers after making delivery to retailers. The “Pick up at Linehaul”

column indicates whether vehicles may pick up empty pallets during the time of delivery of

full pallets to retailers.
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Multiple Split Time Hetero. Backhaul Pick up at

Author Cross Dock Delivery Windows Vehicle Operation Linehaul

Sung and Song (2003) Yes No No Yes No No

Gumus and Bookbinder (2004) Yes Yes No No No No

Chen et al. (2006) Yes No Yes No No No

Lee et al. (2006) No No No No No No

Wen et al. (2008) No No Yes No No No

Liao et al. (2010) No No No No No No

Miao et al. (2010) Yes No Yes No No No

Musa et al. (2010) Yes No No No No No

Soltani and Sadjadi (2010) No No No No No No

Ma et al. (2011) Yes Yes Yes No No No

This Thesis Yes Yes Yes Yes Yes Yes

Table 3.1: A comparison of cross dock models

Sung and Song (2003) develop an integrated service network design problem based

on a path based formulation. The authors have chosen a path based formulation approach

instead of an arc-flow based formulation approach on the possibility of getting an efficient and

effective formulation. The authors give a predefined cut off time at the origin nodes within

which all packages should be loaded and a predefined critical entry time at the destination

nodes after which all the packages should be delivered. The consolidation of the packages

should take place between those times. The problem is modeled considering multiple cross

docks and multiple origin and destination nodes. The problem is solved using a tabu search

heuristic, and a separation heuristic was developed for identifying violated valid inequalities.

Gumus and Bookbinder (2004) studied cross docking and its implications in the location

distribution system. A model was developed to determine the best locations to operate the

cross docks. The model was built taking into consideration transportation costs, facility

costs, inventory costs at the manufacturers and retailers, and in-transit inventory costs. The

research work also addresses the issue of the location for product consolidation.
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Lim et al. (2005) developed transshipment models with time window constraints and

addressed the issue of the just-in-time objective to the cross docks. The time windows

considered in this work include both fixed and flexible time windows. In a fixed time window,

shipping and delivery at suppliers and customers are allowed only at a particular time. In a

flexible time window, shipping and delivery are allowed at any time within the time window.

The authors also used mixed time windows, a mixture of fixed and flexible time windows.

The aim of this research is to minimize inventory delay and to find optimal schedule for

trucks in the transshipment centers.

Chen et al. (2006) proposed a cross docking problem to minimize the total cost in the

distribution plan within the specified time windows. In this model, capacity constraints were

considered at the cross docks and an inventory holding cost was assigned for the amount

of inventory held at the cross dock. The initial solution to this problem was obtained by a

greedy method. The authors used simulated annealing, tabu search, and a hybrid heuristic

method to solve the problem.

Lee et al. (2006) developed a mathematical model and proposed a heuristic algorithm

based on tabu search with an objective of minimizing the transportation cost and fixed cost

of vehicles, and to determine the number of vehicles, optimal vehicle routing, and scheduling

with cross docks. The assumptions of the model include homogeneous vehicles with no split

deliveries, with all vehicles starting and returning to a cross dock. Time window constraints

were developed only at the cross dock to facilitate simultaneous arrival of vehicles and the

consolidation process, and to reduce the waiting time of vehicles. No time windows were

considered for the suppliers and retailers. Separate vehicles were used for the pickup and

delivery operation. The proposed algorithm first finds the initial solution, which gives the

possible nodes to which each vehicle may travel from the existing position by selecting the

route which has a ratio of transportation cost to minimum transportation cost less than a

tolerance value α of 1.5. Then the remaining nodes are allotted randomly. The solution was

improved by exchanging the nodes with corresponding vehicle routes. This algorithm was
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tested for up to 50 nodes. Results were compared with results obtained from the enumeration

process. Effects of tolerance value α on results were analyzed.

Wen et al. (2008) developed a mixed integer programming formulation to solve the VRP

with cross docking and time window constraints on the nodes with the objective of reducing

the total travel time. The authors solved the problems using a tabu search heuristic em-

bedded within an adaptive memory procedure (AMP). Instead of simultaneous arrival and

departure of vehicles at the cross dock, as proposed by Lee et al. (2006), the authors deter-

mined the dependency among the vehicles based on consolidation decisions. A homogeneous

set of vehicles was considered. In the consolidation process a set of vehicles pick up materials

from the suppliers and deliver to the cross dock. This same set of vehicles deliver materials

from the cross dock to retailers. Time windows were considered only at the nodes with no

split deliveries. The authors considered a time horizon for whole transportation operation.

In the AMP, the set of vehicle tours made by vehicles was stored in adaptive memory and

the initial solution was formed by combining the vehicle tours. In the neighborhood search

phase, the authors proposed two approaches: small neighborhood search and large neigh-

borhood search. In small neighborhood search, the algorithm tries to find the best solution

by moving the nodes from a small subset of nodes to a small subset of vehicles. If the

best solution is not found, the algorithm alternates to find the best solution from the large

neighborhood (i.e., from the whole solution space). Aspiration criterion was used to avoid

repeated assignment of nodes to the same vehicles. The algorithm was tested for up to 200

nodes. To reduce the computational time, the authors used the aggressive skip technique,

where, when a feasible route is identified for a vehicle, this skip applies. This method led

to a considerable reduction in computational time when compared to the conservative skip

technique.

Liao et al. (2010) extended the work of Lee et al. (2006) and proposed a heuristic

algorithm based on tabu search, with the aim of reducing the computational time and the

number of vehicles used. The objective of the problem was to reduce the transportation and
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operational cost. The initial solution was developed in two steps. In the first step, the pick up

process was considered. The algorithm calculated the minimum number of vehicles required

and assigned the nodes to the vehicles. The same procedure was followed in step two for the

delivery process. In the neighborhood search phase, total cost was minimized by continuously

arranging the nodes from one vehicle to another. In order to reduce the operational cost,

only full truck load capacities were considered. The tabu search algorithm removed empty

vehicles from the system, while it was disallowed in Lee et al. (2006). Moreover, this paper

showed differences in the assignment of nodes to vehicles. The authors showed improved

performance of their algorithm by considering the same parameters of Lee et al. (2006) and

by comparing the computational time. However, the model has its own limitations. One of

the limitations is that each supplier or retailer can be picked up only once and the quantity

picked up must not exceed the capacity of the vehicle. If the demand of the product at a

retailer from the supplier is greater than the capacity of the truck, this model cannot be

used.

Miao et al. (2010) developed a VRP problem with soft and hard time windows. The

hard time window is the allowable time a node can be serviced and the soft time window is

the preferred time window for the node within the hard time window. The authors developed

a transshipment model with cross docks to develop a transportation schedule with the aim

of minimizing the transportation cost, inventory handling, and penalty costs. A penalty cost

is added to the cost factor if cargo is not delivered to the customer within the soft time

window. The model consists of multiple cross docks with multiple suppliers and customers.

The authors employ a three stage assignment process to develop initial solutions, where

stage one is the supplier cross dock route assignment, stage two is customer cross dock route

assignment, and stage three is a deterministic repair strategy to adjust schedules to obtain

feasible solutions. The problem was solved using two heuristic approaches, adaptive tabu

search and adaptive genetic algorithm.
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Musa et al. (2010) developed an integer programming formulation for solving a VRP in

a cross docking environment. The objective of the article was to reduce the transportation

cost by routing the vehicles directly from suppliers to retailers or through the cross dock.

The authors proposed a new ant colony optimization algorithm (ACO) to solve the model.

The authors used more than one cross docking facility in this problem. The authors have

considered a homogeneous fleet with unlimited supply of trucks. The less than truck load is

assumed for direct supply to the retailers from suppliers with no time window constraints and

split deliveries. The problem did not mention the coordination of the trucks in the cross docks

or the movement of goods between the cross docks. By using the ACO technique, the authors

were able to determine the number of trucks required to travel directly from suppliers to

retailers and the trucks that visit the cross dock(s) and to determine the transportation cost.

Like most optimization algorithms, the authors embedded a local search algorithm in the

ACO algorithm which searches for neighboring solutions to get the improved transportation

cost. The parameters for the ACO algorithm were found by using design of experiments

(DOE), a statistical method. D-optimal design was used to reduce the computational time,

by reducing the number of runs at the same time to get better results. The factors in this

experiment were analyzed using regression and ANOVA techniques. The computations were

performed for up to 75 origin and destination points and for up to 50 cross docks. The

proposed algorithm was able to outperform the branch and bound algorithm in the case of

large problem instances.

Soltani and Sadjadi (2010) developed a model to optimize the scheduling of trucks in

cross docking systems (i.e., to find the matching pairs of inbound and outbound trucks and

sequence them). The authors used a metaheuristic approach, hybrid simulated annealing,

and hybrid simulated variable neighborhood search to find the truck pairs. The model was

built taking into consideration one cross dock, multiple suppliers, multiple retailers, and

multiple products. The idea behind the paper is to minimize the flow time of products in

the cross dock by sequencing and scheduling the transportation facilities. For larger problems
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the authors expected an exponential growth of variables and constraints, so the mixed integer

formulation is not used. Moreover, for the mathematical models the computational time was

expected to be more. The authors expected the computational complexity to increase with

the increase of inbound and outbound trucks and product types when heuristics were used.

Therefore, the authors used a metaheuristic approach to solve the problem. The robustness

of the proposed algorithm was tested using the Taguchi scheme. The Taguchi parameter

design method and ANOVA were used to find the parameters that had significant impact on

the algorithm. The algorithm was tested for up to 20 inbound trucks, 20 outbound trucks

and 12 product types.

Ma et al. (2011) developed a model to study the issue of shipment consolidation and

transportation in a cross docking environment. The model was developed taking into con-

sideration the transportation costs, truck setup costs, the number of trucks used, and their

trade-offs. The model was formulated as an integer programming model and solved using

a two-stage heuristic algorithm. In the first stage, the truck load plan was developed to

determine a less-than-truckload plan. In the second stage, the supply and demand at the

nodes that are not satisfied are quantified.

3.2 VRP and Non Cross Docking Environment

This section contains a review of articles of VRP in a non cross docking environment.

The review contains studies on the vehicle routing problem with constraints such as time

windows, split deliveries, and use of a heterogeneous fleet.

Yano et al. (1987) developed vehicle routing software with an objective of minimizing

the total cost of routes and to make sure that all the transportation requirements are fulfilled.

The authors proposed a set covering approach based on Lagrangian relaxation in a branch

and bound framework. The constraints were framed to minimize the total number of trucks.

The authors considered the pickup and delivery process by the same vehicles, while the

linehaul operation is completed before the backhaul operation starts. In this problem, the
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total number of deliveries and pick ups were restricted to four, with no split deliveries or

time window constraints. Moreover, the authors have considered the origin and destination

of the trucks as the warehouse.

The authors used two heuristics to find good initial feasible solutions. The first heuristic

was used to find the routes that did not completely satisfy the transportation requirements

and to find an initial feasible solution. The second heuristic was used to minimize the

cost difference between the initial feasible solution and the optimal solution. A branch and

bound procedure was used in the optimization process. The algorithm used an efficient

lower bounding technique and the nodes in the branch were characterized by unordered

Cartesian products. Subgradient optimization was used to determine appropriate Lagrangian

multipliers at the nodes. The database created by the authors consists of 50 stores and

200 suppliers. The algorithm was able to work effectively with problems containing 20

to 40 transport requirements only. One transportation requirement was considered as the

movement of one truck from warehouse to retailers to suppliers and back to warehouse.

Toth and Vigo (1997) proposed the asymmetric version of the VRP with backhauls,

where the distance between each pair of locations is not same in both directions. Symmetric

versions were also considered. The objective function was to minimize the transportation

cost. The authors proposed an integer linear programming model with vertices consisting of

depot, linehaul, and backhaul nodes. The arc set was disjointed into three subsets (i.e., arcs

from depot to linehaul vertices, backhaul vertices to depot, and linehaul vertices to backhaul

vertices). Arcs connecting backhaul to linehaul vertices were not allowed.

The authors used three different relaxation techniques. The purpose of the first relax-

ation technique is to lead to the solution of the transportation problem by dropping the

capacity cut constraints. The second relaxation was based on the projection of the feasible

solution space by determining the shortest spanning tree or arborescence and optimal solu-

tion to the minimal cost flow problems. Third, a Lagrangian lower bound was derived by

including the relaxed degree constraints in the objective function. The lower first branch
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and bound algorithm was used to find the optimal solution for the vehicle routing problem.

Variable reduction and feasibility checks were used to improve the performance of the branch

and bound algorithm. The authors were able to provide computational results for up to 100

customers.

Mingozzi et al. (1999) proposed a new integer programming formulation for solving the

VRP with backhauls. The authors proposed a procedure to calculate the lower bound to

the optimal solution by combining different heuristic methods. This procedure was used to

solve the dual of the LP relaxation. The authors considered a homogeneous fleet with no

constraints on time windows or split deliveries. All backhaul customers were visited before

the linehaul customers. Depot, linehaul, and backhaul customers were considered as vertices

on a directed graph with non-negative costs on the arcs. The authors found the lower bound

for this problem by solving the dual problem of the LP relaxation using heuristic procedures.

The authors used the dual solution to obtain a feasible route and then an optimal solution by

reducing the number of routes. A procedure was proposed to reduce the number of variables

for solving using the branch and bound method. The authors used CPLEX, an LP solver,

to solve the problem for up to 100 customers.

Privé et al. (2005) considered a VRP with the distribution center for a soft drink industry

with heterogeneous fleet, time windows, capacity, and volume constraints. The objective of

the problem was to minimize the routing costs minus the revenue derived from the collection

of empty recyclable containers. The vehicle movement is between the distribution center

(DC) and the retailers with origin and destination of the vehicles at the DC. The authors

did not consider the pick up process from the bottling center (suppliers) to the DC. The

pick up process in this problem is the pickup of empty cans from the retailers to the DC.

No split deliveries were allowed and the time horizon is one day. The problem formulation

is based on graph theory, where the DC and the retailers were considered as vertices and

arcs the routes. The authors solved the problem using three heuristics, one is neighborhood

search and the other two are improvement procedures which use a combination of 3-opt and
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2-interchange moves and route mergers. The nearest neighborhood search was used to find

the set of feasible routes and finds the route and vehicle with smallest cost per customer

visited. The first petal heuristic considers the problem as a set partitioning problem and

second petal heuristics considers till the route expansion phase in first petal heuristics and

finds an optimal selection from the possible routes based on nearest neighborhood search.

The improved solution was obtained by applying 3-opt and 2-interchange techniques.

Vehicle routing problem with backhauls (VRPB) is a variant of VRP where the same

vehicle performs both the linehaul and backhaul operations in a single route. Normally

the backhaul operation is performed once the linehaul operation is completed. Linehaul

operation is the delivery process and backhaul is the pickup process. The backhaul operation

proposed in this article is relevant to the delivery of empty pallets and pickup of full pallets

in the proposed thesis work.

Gulczynski et al. (2011) proposed a new variant of vehicle routing problems called the

“multiple depot split delivery vehicle routing problem.” A mixed integer programming based

model is developed, where a set of customers is served from multiple depots, and all customers

accept split deliveries. The objective is to reduce the travel distance. A comparison study

is performed to determine the reduction in distance travelled, by allowing split deliveries

among vehicles based at the same depot and vehicles based at different depots. A heuristic

is proposed to solve the problem. First, each customer is assigned to the nearest depot

based on distance. Second, a heuristic is developed with constraints such that customers

will receive goods only from their assigned depot. Third, a heuristic is developed that allows

customers to receive goods from multiple depots. The authors, through their numerical

analysis, identified that the benefits obtained by allowing split deliveries to customers served

by vehicles from multiple depots are higher.

Zhong and Aghezzaf (2011) proposed a new variant of the vehicle routing problem

called the “single vehicle cyclic inventory routing problem.” The problem is formulated

as a mixed integer programming model with linear constraints and a non-linear objective
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function. In this model, repeated distribution of a product from a single depot to a selected

subset of retailers having stable demands takes place. The objective of this model is to

determine the subset of retailers and quantity to be delivered to each retailer, and to minimize

the total distribution and inventory cost. The authors proposed an optimization approach

combining DC programming and branch-and-bound with a steep descent hybrid algorithm.

The proposed algorithm worked efficiently for small problem sizes.
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Chapter 4

Mathematical Formulation

In this chapter, a mixed integer linear programming (MILP) formulation of the problem

is proposed. First, the required notation, including parameters and decision variables, are

defined. Next, the complete MILP formulation is presented.

4.1 Notation – Parameters

In this formulation, R represents the set of all retailers and S represents the set of all

suppliers. Each retailer r ∈ R has a demand for products (goods) provided by supplier

s ∈ S. This demand is given by Dprod
rs , and is expressed in units of pallets. Under a VMI

system, where it is assumed that each supplier has a sufficient availability of goods, it is

unnecessary to define a parameter for each supplier’s available inventory levels. In other

words, it is assumed that each retailer’s stated demand may be satisfied by the suppliers.

However, the same assumption is not made for pallets. The reason for this difference

is that accurate counts of empty pallet inventory may not be available, possibly due to the

absence of a tracking mechanism, damage or theft of pallets, or the re-use of pallets by the

retailer for other purposes. Thus, each retailer is responsible for reporting its availability of

empty pallets. As a result, it is possible that a supplier’s demand for empty pallets exceeds

the available supply.

Each supplier s ∈ S has a demand for empty pallets, Dpal
s . This demand may be

satisfied by transporting available empty pallets from each retailer r ∈ R. The corresponding

parameter is represented by Apal
rs . The scaling parameter α captures the fraction of a fully-

loaded pallet that is consumed by an empty pallet. For example, α = 1/10 if 10 empty

pallets occupy the space of 1 loaded pallet.
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To facilitate the appropriate assignment of vehicles to cross docks, each cross dock is

represented by two nodes in the network. The inbound node may be visited only by loaded

vehicles, while the outbound node may be visited only by empty vehicles. The sets of all

inbound and outbound nodes are given by CDin and CDout, respectively. Thus, the set of

all cross dock nodes, represented by CD, is such that CD = {CDin ∪ CDout}.

The proposed formulation utilizes a discretized time approach, such that the planning

horizon is partitioned into discrete time intervals of equal duration. The width of each time

interval may be a function of the length of the planning horizon. For example, 15-minute

intervals may be appropriate for planning over an 8-hour horizon, while multi-day horizons

may be more appropriately modeled with longer intervals. Let T represent the set of discrete

time intervals comprising the planning horizon, where the interval t0 = min{T} represents

the start of the planning horizon. All vehicles are assumed to be at their initial locations

and ready for service at time t0. Although not considered in this formulation, it is possible

to customize the model to account for a situation where each vehicle is ready for service at

a unique time by changing this parameter to t0,v, where v represents a particular vehicle.

Each supplier, retailer, and cross dock has an allowable time window in which service

may begin. The time window for node j is represented by the set Tj. Because Tj is a discrete

set, it is possible to include multiple disjoint time windows. This is a primary motivation for

employing a discrete time formulation for this problem, as demonstrated in the constraints

below.

Because the proposed model allows vehicles to travel multiple routes (or tours), a mech-

anism for tracking the number of routes assigned to each vehicle is required. This is ac-

complished by designating a unique identification (ID) number to each vehicle, such that

this ID indicates the physical vehicle itself, as well as the route number. The identification

scheme is managed as follows. First, let set V ′ represent each physical vehicle in the het-

erogeneous fleet, such that the cardinality of V ′ indicates the total number of vehicles in

the fleet. Throughout this manuscript, elements of set V ′ may be referenced as “original”
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vehicles. For each vehicle v ∈ V ′, a corresponding set, denoted as V ′′v contains unique vehicle

ID numbers for each additional route that may be taken by vehicle v. Vehicle IDs in set

V ′′v may be referenced as vehicle “copies.” Thus, vehicle v’s first route will be attributed to

vehicle ID v, and v’s second route will be attributed to the vehicle ID contained in the first

element of V ′′v . The cardinality of V ′′v represents the number of additional routes that may

be taken by vehicle v ∈ V ′. Finally, the set V is defined to be the set of all unique vehicle

IDs, such that V = {V ′ ∪ V ′′v } for all v ∈ V ′. Vehicle v ∈ V has a capacity of Cv loaded

pallets.

For an example of these vehicle sets, suppose a fleet contains two vehicles, such that

V ′ = {1, 2}. Further, suppose vehicle 1 may take three additional tours, and vehicle 2 may

take two additional tours. Thus, V ′′1 = {3, 4, 5} and V ′′2 = {6, 7}.

The time required for vehicle v to travel from node i to node j is given by τvij, and is

expressed in units of discrete time intervals. Any service duration required at node i (such

as loading or unloading times) should be included in the value of τvij.

4.2 Notation – Network Description

To facilitate a complete description of the underlying network, additional notation char-

acterizing the network nodes is beneficial. First, let ∆0
v represent the initial location (at time

t0) of each vehicle v ∈ V ′. Recall that V ′ is the set of all “original” vehicles. Because the

“copies” of each vehicle have yet to be assigned, their initial locations are unknown a priori.

This node may represent any location in space, and is not associated with any other node

in the network.

Each vehicle is required to terminate each route to which it is assigned at a node in the

set ∆1. When vehicle v ∈ V reaches a node in ∆1, the vehicle receives a new identification

number (from the set V ′′v ), and the vehicle is ready to start a new route. For example, vehicle

v ∈ V ′ starts at its initial location, ∆0
v. It may visit several nodes in its first tour before

terminating that tour at some node in the set ∆1. The vehicle will then be assigned to the

21



first element of the set V ′′v , as its second tour will be attributed to the first “copy” of the

vehicle. This first copy will begin its route at the node in ∆1 where the “original” vehicle

terminated, and it will terminate this route at any node in ∆1. Upon returning to a node

in ∆1, the vehicle will be assigned to the next unique number in V ′′v . This process repeats

until all vehicle copies in V ′′v have been assigned.

By assumption (construction), each element j ∈ ∆1 should correspond to a cross dock

location. Thus, three nodes are associated with each cross dock – a particular node j ∈ CDin,

a particular node j ∈ CDout, and a particular node j ∈ ∆1.

Each vehicle route is defined to be a sequence of arcs in the network. For example,

if a vehicle traverses arc (i, j) it departs from node i and travels directly to node j. Due

to the specific nature of this problem, not all nodes in the network are directly connected.

Therefore, two additional sets of nodes are defined to simplify the characterization of valid

network arcs. The first such set, ∆+
v , represents all nodes in the network to which vehicle v

may travel. To afford maximum flexibility in the model, we define ∆+
v ⊆ {∆1 ∪ CD ∪ R ∪ S}

for all v ∈ V . Note that ∆0
v /∈ ∆+

v because vehicles may not travel to (i.e., return to) their

initial location. The second set, ∆−vj, represents all nodes in the network from which vehicle

v may travel to node j ∈ ∆+
v . The nodes contained in ∆−vj depend upon the classification of

vehicle v (e.g., whether it is an “original” or “copy” vehicle) as well as the type of node j

(e.g., whether it is a retailer or supplier node). Table 4.1 contains the definitions of ∆−vj for

all possible v and j.

Vehicle Classification

Destination Node v ∈ V ′ v ∈ V ′′

j ∈ ∆1 ∆−vj ⊆ {∆
0
v ∪ R ∪ S ∪ CDin} ∆−vj ⊆ {j ∪ R ∪ S ∪ CDin}

j ∈ R ∆−vj ⊆ {∆
0
v ∪ R ∪ CDout} ∆−vj ⊆ {∆

1 ∪ R ∪ CDout}

j ∈ S ∆−vj ⊆ {∆
0
v ∪ R ∪ S} ∆−vj ⊆ {∆

1 ∪ R ∪ S}

j ∈ CDin ∆−vj ⊆ {S} ∆−vj ⊆ {S}

j ∈ CDout ∆−vj = ∆0
v ∆−vj ⊆ {∆

1}

Table 4.1: Possible definitions for ∆−vj
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Figure 4.1: Sample network

Figure 4.1 shows a sample network, which includes four retailers (R = {1, 2, 3, 4}),

four suppliers (S = {5, 6, 7, 8}), and one cross dock, decomposed into CDin = {9} and

CDout = {10}. The ∆1 node, which is the node affiliated with the cross dock where vehicles

are assigned new ID numbers, is represented by node ∆1 = {11}. The sample network has

four original vehicles whose initial locations are defined by ∆0
v nodes, for all v ∈ V . The

node numbers of the initial location are represented as ∆0
1 = 12, ∆0

2 = 13, ∆0
3 = 14, ∆0

4 = 15.

Node 1 (retailer r1) is to receive full pallets from suppliers s1, s2, and s3. In Figure 4.1, this

is denoted as (s1, s2, s3) above node 1. Similarly, node 2 (r2) receives full pallets from s2 and

s3, node 3 (r3) from s1, and node 4 from s3.

The routes taken by vehicles 1 and 2 are explained as follows. In Figure 4.1, vehicle

1 starts from its initial location (i.e., ∆0
1 node), picks up full pallets from suppliers s1, and
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s2, and reaches CDin. Vehicle 2 starts from its initial location (i.e., ∆0
2 node), picks up full

pallets from suppliers s4, s3, and s2 and reaches the CDin node. Node 6 (s2) is served by

both vehicles 1 and 2 as part of a split pick up process.

Simultaneous arrival of vehicles at the cross dock is shown in Figure 4.2. Vehicles 1 and

2 travel from node 6 (s2) to node 9 (CDin). Meanwhile, vehicles 3 and 4 travel from their

initial locations (i.e., ∆0
3 and ∆0

4, respectively) to node 10 (CDout). At the cross dock, goods

from incoming vehicles 1 and 2 are unloaded, consolidated, and loaded to the outbound

vehicles 3 and 4. Since no inventory storage is allowed at the cross dock, consolidated goods

are directly moved to the outbound trucks. For this event to happen, all vehicles should

reach the cross dock at the same time interval, tmaxj , where j ∈ CD.

In Figure 4.3, vehicles 1 and 2 leave node 9 (CDin) after unloading the full pallets, and

travel to node 11 (∆1) to get assigned new vehicle numbers. The vehicles that leave the ∆1

node are the copies of vehicles that enters the ∆1 node. The vehicles coming out from the

∆1 node will start the new cycle in similar manner to the assignments of vehicle 3 and 4.

The route taken by vehicle 3 is shown in Figure 4.4. Vehicle 3 starts from node 14 (∆0
3),

visits retailers r1, r2, and r3 to deliver full pallets picked up from CDout. In Figure 4.4, (s1,

s2, s3) mentioned above the node 1 (r1) explains that vehicle 3 delivers full pallets picked
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Figure 4.5: Route taken by vehicle 4

up from nodes s1, s2 and s3 to r1, as a result of consolidation process. The route taken by

vehicle 4 is shown in Figure 4.5. Vehicle 4 starts from node 15 (∆0
4), visits retailers r4 and

r3, to deliver full pallets picked up from CDout. From Figures 4.4 and 4.5, it is observed

that demand at node 3 (r3), is fulfilled by both vehicles 3 and 4. This is an example of a

split delivery operation. During the time of delivery of full pallets to retailers, empty pallets

are picked up from the retailers. Then vehicles 3 and 4 follow the similar pattern of route of

vehicles 1 and 2, to visit the supplier nodes to pick up full pallets and deliver empty pallets.

4.3 Notation – Decision Variables

Several types of decision variables are required to determine the route taken by each

vehicle, the quantity of loaded pallets delivered from suppliers to retailers, the quantity

of pallets transferred at the cross docks, and the quantity of empty pallets delivered from

retailers to suppliers. Additionally, there are decision variables that capture the quantity
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of unmet demand requested by retailers and the number of empty pallets that cannot be

delivered to suppliers. The decision variables are listed below.

xtvij Binary decision variable, such that xtvij = 1 if vehicle v ∈ V travels from node i to node

j and begins service at node j at time interval t ∈ T . Otherwise, xtvij = 0.

atvsr Quantity of loaded pallets picked up from supplier s ∈ S by vehicle v ∈ V at time t ∈ Ts

that are bound for retailer r ∈ R.

btvsrj Quantity of loaded pallets that are delivered by vehicle v ∈ V to cross dock j ∈ CDin

at time t ∈ Tj from supplier s ∈ S bound for retailer r ∈ R.

ctvsrj Quantity of loaded pallets that are picked up by vehicle v ∈ V at cross dock j ∈ CDout

at time t ∈ Tj from supplier s ∈ S bound for retailer r ∈ R.

qtvsr Quantity of loaded pallets delivered by vehicle v ∈ V from supplier s ∈ S to retailer

r ∈ R.

etvsr Quantity of empty pallets picked up by vehicle v ∈ V at retailer r ∈ R at time t ∈ Tr

bound for supplier s ∈ S.

f tvs Quantity of empty pallets delivered by vehicle v ∈ V to supplier s ∈ S at time t ∈ Ts.

Zprod
rs Quantity of unmet demand by retailer r ∈ R for products not delivered from supplier

s ∈ S. Zprod
rs is expressed in units of pallets.

Zpal
s Number of empty pallets requested by supplier s ∈ S that cannot be delivered.

4.4 Mathematical Model

The MILP formulation of this problem may be divided into five classes of constraints.

These include network constraints describing valid routes for each vehicle, supplier con-

straints addressing the quantity of goods picked up from each supplier, retailer constraints
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ensuring appropriate deliver of goods to retailers, backhaul constraints relating empty pallets

picked up from retailers to those delivered to suppliers, and cross dock constraints governing

the coordination of vehicles at the cross dock locations. In a slight departure from convention,

the objective function will be described after an explanation of the necessary constraints.

4.4.1 Network Constraints

The following network constraints ensure that each vehicle is assigned to valid routes,

starting from the vehicle’s initial location and ending with the last “copy” of each vehicle

terminating at a node in ∆1. These constraints are analogous to those found in traditional

vehicle routing problems, and are adapted from the formulation of Murray and Karwan

(2010), who studied the problem of unmanned aircraft routing.

The first two network constraints are concerned only with the initial route taken by

each vehicle. In other words, only the “original” instance of each vehicle is considered, not

“copies.”

∑
j∈{∆+\CDin}

∑
t∈Tj

xtv,∆0
v ,j

= 1 ∀ v ∈ V ′ (4.1)

∑
j∈{∆+:∆0

v∈∆−vj}

∑
t∈Tj

t<t0+τ
v,∆0

v,j

xtv,∆0
v ,j

= 0 ∀ v ∈ V ′ (4.2)

Constraint (4.1) states that each vehicle v ∈ V ′ must start at its initial location, ∆0
v, and

may travel to CDout, a supplier in S, a retailer in R, or a final location in set ∆1. Note that

a vehicle may not travel directly from its initial location to a loading bay of a cross dock

(CDin) because the vehicle would arrive empty (nothing to unload). Also, if a vehicle is

dispatched from its initial location to a retailer in R, the vehicle would arrive at the retailer

with an empty truck. This would allow for the event that the vehicle is dispatched for the

sole purpose of picking up empty pallets from one or more retailers (and then to deliver
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these empty pallets to one or more suppliers). If a vehicle is not assigned to any retailer or

supplier nodes, it may be routed directly to a node in ∆1.

Constraint (4.2) ensures that the first task assigned to each vehicle v ∈ V ′ is at a feasible

time. This takes into account both the allowable time windows for each node and the travel

time required for a vehicle to travel from its initial location to a destination node.

The next constraint states that each vehicle in V ′ ∪ V ′′ must end at a node in the set

∆1:

∑
j∈∆1

∑
i∈∆−vj

∑
t∈Tj

xtvij = 1 ∀ v ∈ V (4.3)

Note that ∆−vj contains the sets CDin, R, and S. It also contains the vehicle’s initial location,

∆0
v, if v ∈ V ′ or the nodes in ∆1 if v ∈ V ′′. However, ∆−vj does not contain CDout because

we do not want to allow a fully-loaded vehicle to travel to a “final” location. Also, since the

set S is included, it is possible for a vehicle to have visited suppliers without picking up any

goods. This might occur if a vehicle is assigned only to deliver empty pallets to one or more

suppliers.

Allowing vehicles to travel multiple routes necessitates specialized constraints to main-

tain the proper relationship among all routes. In these constraints, the “parent” vehicle is

considered to be the instance of a vehicle that arrives at some node in ∆1, while the “child”

vehicle is the copy of that vehicle as it departs from the node in which the parent vehicle

terminated. These constraints differ slightly between the case where the parent vehicle is

an “original” vehicle and the case where the parent vehicle is a “copy.” The constraints for
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managing the multiple use of vehicles are as follows:

∑
i∈∆−

v′j

∑
t∈Tj

xtv′ij =
∑

k∈{∆+
v′′\CD

in}

∑
t∈Tk

xtv′′jk ∀ v′ ∈ V ′, v′′ = V ′′v′(1), j ∈ ∆1 (4.4)

∑
j∈∆1

∑
i∈∆−

v′j

∑
t∈Tj

txtv′ij ≤
∑
j∈∆1

∑
k∈{∆+

v′′ :j∈∆−
v′′k}

∑
t∈Tk

(t− τv′′jk)xtv′′jk ∀ v′ ∈ V ′, v′′ = V ′′v′(1)

(4.5)∑
i∈∆−

v′j

∑
t∈Tj

xtv′ij =
∑

k∈{∆+
v′′\CD

in}

∑
t∈Tk

xtv′′jk

∀ v ∈ V ′,m ∈ [1, |V ′′v | − 1], v′ = V ′′v (m), v′′ = V ′′v (m+ 1), j ∈ ∆1

(4.6)∑
j∈∆1

∑
i∈∆−

v′j

∑
t∈Tj

txtv′ij ≤
∑
j∈∆1

∑
k∈{∆+

v′′ :j∈∆−
v′′k}

∑
t∈Tk

(t− τv′′jk)xtv′′jk

∀ v ∈ V ′,m ∈ [1, |V ′′v | − 1], v′ = V ′′v (m), v′′ = V ′′v (m+ 1) (4.7)

Constraints (4.4) and (4.5) address the case where a vehicle terminates its first route and

the first “copy” of the vehicle begins its route, such that V ′′v′(1) indicates the first element in

the set V ′′v′ . Constraint (4.4) states that the first copy of vehicle v′ must start at the same ∆1

node where the corresponding original vehicle previously ended. Thus, this constraint ties

the final location of a vehicle’s first route with the initial location of its second route. Note

that k ∈ {∆+
v′′ \ CD

in} is equivalent to k ∈ {∆+
v′′ : j ∈ ∆−v′′k}. Constraint (4.5) prohibits the

vehicle’s second route from commencing before the termination of its first route. By itself,

this constraint does not ensure that the “child” vehicle departs from the same location to

which the “parent” vehicle terminated its tour. However, this requirement is handled by

constraint (4.4).

Constraints (4.6) and (4.7) are the corresponding analogues for the subsequent case of

both parent and child vehicles being copies. In these constraints, parameter m is employed

to identify the proper element of the set V ′′v .
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An additional constraint is required to ensure that travel time is considered when cre-

ating vehicle routes, as described in constraint (4.8) below:

∑
i∈∆−vj

∑
t∈Tj

txtvij ≤
∑

k∈{∆+
v :j∈∆−vk}

∑
t∈Tk

(t− τvjk)xtvjk ∀ v ∈ V, j ∈ {∆+
v \∆1} (4.8)

If vehicle v travels arcs (i, j) and (j, k), service at node k cannot begin until the vehicle has

traveled from j to k. Note that node j ignores nodes in the set ∆1 because the same vehicle

ID cannot be used to travel both to and from a final node. Travel time restrictions for these

nodes are addressed in constraint (4.5).

Finally, the following three constraints complete the requirements for valid vehicle

routes:

∑
j∈{∆+

v \∆1:t∈Tj}

∑
i∈∆−vj

xtvij ≤ 1 ∀ v ∈ V, t ∈ T (4.9)

∑
i∈∆−vj

∑
t∈Tj

xtvij =
∑

k∈{∆+
v :j∈∆−vk}

∑
t∈Tk

xtvjk ∀ v ∈ V, j ∈ {∆+
v \∆1} (4.10)

∑
i∈∆−vj

∑
t∈Tj

xtvij ≤ 1 ∀ v ∈ V, j ∈ ∆+
v (4.11)

Constraint (4.9) prohibits multitasking by ensuring that, at any time, a vehicle may visit no

more than one node in the network. Constraint (4.10) states that vehicle v must enter and

leave each node an equal number of times (possibly zero). This constraint works because we

assume that a vehicle cannot revisit a node during a single tour. Constraint (4.11) prohibits

vehicles from re-visiting any node during the course of a tour. Note that a particular vehicle

may re-visit a node during a later tour, where the vehicle number is incremented when the

vehicle passes through some node in ∆1.
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4.4.2 Supplier Pickup Constraints

The first supplier-specific constraint, (4.12) below, states that a vehicle cannot pickup

goods at a supplier at time t unless the vehicle visits the supplier at time t:

αf tvs +
∑
r∈R

atvsr ≤M4.12

∑
i∈∆−vs

xtvis ∀ v ∈ V, s ∈ S, t ∈ Ts (4.12)

In this constraint, M4.12 is a sufficiently-large number, and is given by M4.12 = Cv for a given

v.

The following constraint ensures that vehicle capacity limitations are observed when a

vehicle loads goods from a supplier location:

∑
r∈R

atvsr ≤ Cv −
∑
s′∈S

∑
r∈R

∑
t′∈Tr
t′<t

αet
′

vs′r +
∑
s′∈S

∑
t′∈Ts′
t′≤t

αf t
′

vs′ −
∑
s′∈S
s′ 6=s

∑
r∈R

∑
t′∈Ts
t′<t

at
′

vs′r

∀ v ∈ V, s ∈ S, t ∈ Ts (4.13)

This constraint captures the fact that vehicles may load goods from suppliers as part of a

linehaul operation, and may have also previously loaded empty pallets from retailers via a

backhaul operation. In other words, the quantity of full pallets loaded at a supplier must

not exceed (the capacity of the vehicle) − (the number of empty pallets that were picked

up from retailers) + (the number of empty pallets that have been delivered to suppliers) −

(full pallets that have already been loaded at other suppliers).
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4.4.3 Retailer Delivery Constraints

The following constraints describe the delivery of products to retailers:

∑
v∈V

∑
t∈Tr

qtvsr + Zprod
rs = Dprod

rs ∀ r ∈ R, s ∈ S (4.14)

∑
s∈S

(
qtvsr + αetvsr

)
≤M4.15

∑
i∈{CDout ∪ R}

xtvir ∀ v ∈ V, r ∈ R, t ∈ Tr (4.15)

In constraint (4.14), each retailer expects to receive its full quantity of demand within its al-

lowable time window, although split deliveries are permitted. In the event that it is infeasible

to satisfy the retailer’s demand, perhaps due to vehicle capacity limitations or time window

conflicts, the value of Zprod
rs becomes non-zero. This decision variable allows the constraint to

be satisfied, but with a heavy penalty in the objective function. It should be noted that while

the proper application of vendor managed inventory should guarantee that sufficient supplier

inventory exists to satisfy the retailer’s stated demand, other factors in the logistics system

may prevent the delivery of some units. Constraint (4.15) states that delivery of goods to

the retailer, and pickup of empty pallets from the retailer, may only occur when a vehicle

visits the retailer. For this constraint, we may let M4.15 = dmin

{
Cv,
∑
s∈S

Dprod
rs +Dpal

s

}
e for

a given r and v.

4.4.4 Backhaul Constraints

The incorporation of backhaul activities, where vehicles may pickup and deliver items

at the same location, is a unique feature of this cross dock problem. The first three of four
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necessary constraints are as follows:

∑
v∈V

∑
t∈Tr

etvsr ≤ Apal
rs ∀ r ∈ R, s ∈ S (4.16)

∑
s∈S

∑
t∈Ts

f tvs =
∑
r∈R

∑
s∈S

∑
t∈Tr

etvsr ∀ v ∈ V (4.17)

∑
v∈V

∑
t∈Ts

f tvs + Zpal
s = Dpal

s ∀ s ∈ S (4.18)

Constraint (4.16) prevents a vehicle from picking up empty pallets in excess of what is

available at each retailer, while constraint (4.17) requires that the quantity of empty pallets

returned to a supplier by a particular vehicle must equal the quantity of empty pallets picked

up from retailers by that vehicle. Finally, constraint (4.18) captures each supplier’s demand

for empty pallets, which must either be satisfied by actual pallets or covered by a non-zero

value of Zpal
s . Any positive value of Zpal

s will be heavily penalized in the objective function.

The fourth backhaul constraint, which is analogous to constraint (4.13), prevents each

vehicle from exceeding its capacity when loading empty pallets.

∑
s∈S

etvsr ≤ α−1Cv −
∑
s∈S

∑
r′∈R


 ∑
j∈CDout

∑
t′∈Tj

α−1ct
′

vsr′j

−
∑
t′∈Tr′
t′≤t

α−1qt
′

vsr′

+

∑
t′∈Tr′
t′<t

et
′

vsr′




∀ v ∈ V, r ∈ R, t ∈ Tr (4.19)

Here, the quantity of empty pallets picked up by a vehicle must not exceed (the capacity of

the vehicle) − (the quantity of full pallets that were loaded on the vehicle at the cross dock)

+ (the quantity of full pallets that have already been delivered) − (the quantity of empty

pallets that have already been picked up).
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4.4.5 Cross Dock Constraints

The final set of constraints describe the coordination of vehicles, and the flow of goods,

at the cross docks. These constraints are as follows:

btvsrj ≤
∑

t′∈Ts:t′≤(t−τvsj)

at
′

vsr ∀ v ∈ V, r ∈ R, s ∈ S, j ∈ CDin, t ∈ Tj (4.20)

∑
s∈S

∑
r∈R

btvsrj ≤M4.21

∑
s∈S

xtvsj ∀ v ∈ V, j ∈ CDin, t ∈ Tj (4.21)

∑
s∈S

∑
r∈R

ctvsrj ≤M4.22

∑
i∈∆−vj

xtvij ∀ v ∈ V, j ∈ CDout, t ∈ Tj (4.22)

∑
v∈V

ctvsrj =
∑
v′∈V

btv′srj′ ∀ s ∈ S, r ∈ R, (j, j′) ∈ (CDout, CDin), t ∈ {Tj ∩ Tj′}

(4.23)∑
r∈R

∑
s∈S

∑
t∈Tr

qtvsr ≤ Cv ∀ v ∈ V (4.24)

∑
t∈Tr

qtvsr =
∑

j∈CDout

∑
t′∈Tj

t′≤max{Tr}

ct
′

vsrj ∀ v ∈ V, s ∈ S, r ∈ R (4.25)

Constraint (4.20) states that goods cannot be delivered to a cross dock unless they are first

picked up from a supplier. Constraint (4.21) ensures that goods may only be delivered to

the cross dock at time t if the vehicle visits the cross dock at time t. Similarly, constraint

(4.22) prevents goods from being loaded at the cross dock at time t unless the vehicle visits

the cross dock at time t. The values may be chosen such that M4.21 = M4.22 = Cv for a given

v.

One critical assumption of this model is that the cross dock does not hold any inventory.

In other words, items must pass directly from the receiving docks to the shipping docks. To

accomplish this, both the inbound and outbound trucks associated with a transfer of goods

must be located at the cross dock simultaneously. This requirement is conveyed in constraint

(4.23), which ensures that the appropriate quantity of goods are transferred at the cross dock

at the proper time.
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Once the vehicles are coordinated at the cross dock, constraint (4.24) prevents each

vehicle from being loaded beyond capacity when receiving goods for delivery to retailers.

Finally, constraint (4.25) ensures that the quantity of goods delivered to a retailer by a

particular vehicle equals the quantity of goods picked up by that vehicle at the cross dock.

All decision variable definitions are described in (4.26) – (4.34), below:

xtvij ∈ {0, 1} ∀ v ∈ V, j ∈ {∆+
v }, i ∈ {∆−vj}, t ∈ Tj (4.26)

qtvsr ∈ Z+ ∀ v ∈ V, s ∈ S, r ∈ R, t ∈ Tr (4.27)

atvsr ∈ Z+ ∀ v ∈ V, s ∈ S, r ∈ R, t ∈ Ts (4.28)

btvsrj ∈ Z+ ∀ v ∈ V, s ∈ S, r ∈ R, j ∈ CD, t ∈ Tj (4.29)

ctvsrj ∈ Z+ ∀ v ∈ V, s ∈ S, r ∈ R, j ∈ CD, t ∈ Tj (4.30)

etvsr ∈ Z+ ∀ v ∈ V, s ∈ S, r ∈ R, t ∈ Tr (4.31)

f tvs ∈ Z+ ∀ v ∈ V, s ∈ S, t ∈ Ts (4.32)

Zprod
rs ∈ Z+ ∀ r ∈ R, s ∈ S (4.33)

Zpal
s ∈ Z+ ∀ s ∈ S (4.34)

4.4.6 Objective Function

The objective of this problem is to determine minimum-cost vehicle routes and schedules,

subject to the aforementioned constraints. The exact determination of the total cost may be

application-specific. As such, the following definition of the objective function may require

modification to support a particular organization’s goals. One proposed calculation of total
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cost, TC, is as follows:

TC =
∑
v∈V ′

|V ′′v |∑
k=1

∑
i∈∆1

∑
j∈∆+

V ′′v (k)

j 6=i

∑
t∈Tj

kPxtV ′′v (k),i,j +
∑
v∈V

∑
j∈R

∑
i∈∆−vj

∑
t∈Tj

(t−min{Tj})xtvij

+
∑
r∈R

∑
s∈S

AZprod
rs +

∑
s∈S

AZpal
s (4.35)

The first term in this objective function reflects an increasing penalty for each extra tour

made by a vehicle. In this term, k represents the index number of vehicle “copies,” such

that V ′′v (k) is the kth copy of vehicle v, and P represents a penalty for re-using vehicles.

This term increases the vehicle utilization by minimizing the number of vehicle routes. The

second term indicates our preference for serving each retailer at the earliest possible time

within its allowable time window. This term is added to minimize the lead time.

The last two terms incorporate penalties for not meeting the demand of goods by retail-

ers, and the demand of empty pallets by suppliers, respectively. In these terms, A represents

the penalty for not meeting the demand. The value of A should be considered greater than

the value of P . The main aim must be to transfer as many pallets as possible from suppliers

to retailers. The cost of not having a product at a retailer when a consumer comes to buy

a product will always be higher. Thus, the penalty for not delivering a pallet should always

be higher. The P and A values may vary from one customer (i.e., a retail chain) to another.

Other objectives are possible, such as minimizing the number of “original” vehicles used,

minimizing total travel distance, or minimizing the total cost of travel (where each arc on

the network has an associated cost for each vehicle).

The MILP formulation for this cross dock-based distribution network may be stated as:

Min TC

s.t. Constraints (4.1) – (4.34)
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Chapter 5

Numerical Example

In this chapter, a sample problem is created to explain the mathematical model proposed

in the previous chapter. This chapter is divided into two sections. Input data to the problem

are explained in Section 5.1, while solutions are interpreted in Section 5.2.

5.1 Input Data

The sample problem includes four retailers, two suppliers, one cross dock, and four initial

vehicles. Each vehicle may be reused one time (one “copy”). Each discrete time interval is

assumed to be 15 minutes, and α is chosen as 0.1 (i.e., each full pallet consumes the same

space as ten empty pallets).

The cross dock is decomposed into two nodes, CDin and CDout, such that CDin is the

location where full pallets are delivered and CDout is the location where the consolidated

full pallets are picked up.

Table 5.1 contains the unique node numbers assigned to all the nodes in the network.

Tj represents the earliest and the latest time interval the vehicle can visit each node. ∆0
v is

the notation for initial location of the vehicles. ∆0
v nodes do not have time intervals, because

the vehicles cannot visit an initial location.

Figure 5.1 shows the location of nodes in the network, where R = {1, 2, 3, 4}, S = {5, 6},

CDin = {7}, CDout = {8}, ∆1 = {9}, ∆0
1 = 10, ∆0

2 = 11, ∆0
3 = 12, and ∆0

4 = 13.

Table 5.2 contains the Apal
rs values. These values represent the demand for empty pallets

that are available for pick up at retailer r to be delivered to supplier s.

Table 5.3 contains the Dprod
rs values. These values represent the demand for full pallets

that are available for pick up at supplier s to be delivered to retailer r.

37



1
r1

2
r2

3
r3

4
r4

5
s1

6
s2

7

CD 1

8
9 ∆1

1

10

∆0
1

11

∆0
2

12∆0
3

13

∆0
4

Figure 5.1: Nodes in the network
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Node Name Node # Tj
Retailer # 1 1 [24,68]
Retailer # 2 2 [28,72]
Retailer # 3 3 [24,68]
Retailer # 4 4 [24,72]
Supplier # 1 5 [20,88]
Supplier # 2 6 [24,92]

CDin # 1 7 [4,96]
CDout # 1 8 [4,96]
∆1 # 1 9 [4,96]
∆0

1 10
∆0

2 11
∆0

3 12
∆0

4 13

Table 5.1: Location and time interval details

s ∈ S
5 6

r ∈ R

1 32 38
2 38 25
3 2 35
4 31 3

Table 5.2: Apal
rs values

s ∈ S
5 6

r ∈ R

1 3 2
2 7 13
3 6 12
4 11 7

Table 5.3: Dprod
rs values
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Vehicle #
V’ V ′′v Cv
1 5 28
2 6 28
3 7 26
4 8 25

Table 5.4: Cv values

j
1 2 3 4 5 6 7 8 9 10

i

1 - 3 2 7 4 7 - - 5 -
2 3 - 4 7 6 8 - - 4 -
3 2 4 - 6 2 5 - - 5 -
4 7 7 6 - 7 5 - - 3 -
5 - - - - - 5 6 - 6 -
6 - - - - 5 - 6 - 6 -
7 - - - - - - - - 1 -
8 5 4 5 3 6 6 - - 1 -
9 5 4 5 3 6 6 1 1 0 -
10 5 2 5 7 7 9 - 4 4 -

Table 5.5: τ1ij values

Table 5.4 contains the Cv values, which reflect the capacity of each vehicle in terms of

the number of full pallets. In this table, V ′ represents the original vehicles and V ′′v represents

the vehicle copy. In this problem V ′ = {1,2,3,4} and V ′′v = {5,6,7,8}.

Table 5.5 contains the τ1ij values. It represents the time taken by the vehicle 1 to

travel from start node i to destination node j. In the table, certain τ1ij values are undefined

(represented as “-”) due to travel restrictions. Some of the travel restrictions include, a

vehicle cannot travel between same nodes (i.e., τ1,1,1), with an exception for ∆1 node. A

vehicle cannot travel from a supplier node to a retailer node (i.e., τ1,5,1), a vehicle cannot

travel from CDin to R (i.e., τ1,7,3), a vehicle cannot travel from CDin to S (i.e., τ1,7,5), a

vehicle cannot travel from CDin to CDout (i.e., τ1,7,8) and a vehicle cannot travel from initial

location (∆0
1) to CDin (i.e., τ1,10,7).
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j
1 2 3 4 5 6 7 8 9 11

i

1 - 3 2 7 3 7 - - 5 -
2 3 - 4 6 6 8 - - 4 -
3 2 4 - 6 2 5 - - 5 -
4 7 6 6 - 6 5 - - 3 -
5 - - - - - 4 6 - 6 -
6 - - - - 4 - 6 - 6 -
7 - - - - - - - - 1 -
8 5 4 5 3 6 6 - - 1 -
9 5 4 5 3 6 6 1 1 0 -
11 6 7 4 5 3 1 - 6 6 -

Table 5.6: τ2ij values

j
1 2 3 4 5 6 7 8 9 12

i

1 - 4 2 8 4 8 - - 6 -
2 4 - 5 8 7 9 - - 5 -
3 2 5 - 7 3 6 - - 6 -
4 8 8 7 - 7 5 - - 4 -
5 - - - - - 5 7 - 7 -
6 - - - - 5 - 7 - 7 -
7 - - - - - - - - 1 -
8 6 5 6 4 7 7 - - 1 -
9 6 5 6 4 7 7 1 1 0 -
12 6 8 5 7 3 3 - 7 7 -

Table 5.7: τ3ij values
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j
1 2 3 4 5 6 7 8 9 13

i

1 - 3 2 7 4 7 - - 6 -
2 3 - 4 7 6 8 - - 4 -
3 2 4 - 6 2 5 - - 5 -
4 7 7 6 - 7 5 - - 3 -
5 - - - - - 5 6 - 6 -
6 - - - - 5 - 6 - 6 -
7 - - - - - - - - 1 -
8 6 4 5 3 6 6 - - 1 -
9 6 4 5 3 6 6 1 1 0 -
13 7 8 6 3 6 3 - 5 5 -

Table 5.8: τ4ij values

Tables 5.6 – 5.8 contain the τvij values for vehicles 2, 3 and 4, respectively. The only

difference between these tables and Table 5.5 is in the initial location node, ∆0
v, that occupies

the last row and first column in the tables. The initial location for vehicles 2, 3 and 4 are

11, 12 and 13, respectively. The conditions for undefined values of τvij remain as previously

described.

Since vehicles 5 – 8 are the copies of vehicles 1 – 4, respectively, the travel times for these

vehicle copies are the same as the travel times for their corresponding “original” vehicles.

5.2 Solution

In this section, the solution generated by the CPLEX is explained. First, the route

taken by each vehicle is explained. Sequentially in the following tables, the quantity of full

pallets and empty pallets that are picked up and delivered by the vehicles in their route are

explained.

Figure 5.2 and Table 5.9 show the route taken by each vehicle in the system. Addition-

ally, Table 5.9 shows the sequence in which nodes are visited by each vehicle, as represented

by xtvij variables that are assigned values of one. For example x20
1,10,5 shows that vehicle 1

travels from node 10 and reaches node 5 at time 20. Next, x25
1,5,6 shows vehicle 1 travels from
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node 5 and reaches node 6 at time 25. Each row in Table 5.9 shows the route taken by each

vehicle. From the table we can infer that, in this problem, vehicles 1 – 5 are used for pick

up and delivery operations, while vehicles 6, 7 and 8 are unused (their positions are shown

at the ∆1 node).

Vehicle # Stop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 6 Stop 7 Stop 8

1 x20
1,10,5 x25

1,5,6 x31
1,6,7 x34

1,7,9

2 x24
2,11,6 x31

2,6,7 x32
2,7,9

3 x31
3,12,8 x35

3,8,4 x42
3,4,3 x45

3,3,5 x50
3,5,6 x58

3,6,7 x84
3,7,9

4 x31
4,13,8 x36

4,8,3 x38
4,3,1 x41

4,1,2 x47
4,2,5 x52

4,5,6 x58
4,6,7 x64

4,7,9

5 x58
5,9,8 x62

5,8,2 x66
5,2,9

6 x56
6,9,9

7 x96
7,9,9

8 x96
8,9,9

Table 5.9: Vehicle route sequence: xtvij

When a vehicle travels from one node to another, it performs either a pickup or delivery

operation (or possibly both). From Table 5.9, x20
1,10,5 shows that vehicle 1 travels from node

10 and reaches node 5 at time 20. From Table 5.10, we can see exactly what happens when

the vehicle reaches node 5. For example a20
1,5,1 = 3 shows 3 full pallets of material are picked

up by vehicle 1 at node 5 (a supplier) for node 1 (a retailer). Likewise, Table 5.10 shows the

quantity of full pallets picked up by vehicle v for retailer r at supplier s at time t, shown as

atv,s,r.
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Figure 5.2: Routes taken by the vehicles in the network
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atvsr # of Pallets

a20
1,5,1 3

a20
1,5,2 7

a20
1,5,3 6

a20
1,5,4 11

a24
2,6,1 2

a24
2,6,2 3

a24
2,6,3 12

a24
2,6,4 7

a50
3,6,2 10

Table 5.10: Supplier full pallet pickup sequence

In Table 5.11, btvsrj shows the quantity of full pallets delivered to cross dock j at time

t by vehicle v that are picked up for retailer r at supplier s, and ctvsrj shows the quantity

of full pallets picked up at the cross dock out j at time t by vehicle v for retailer r from

supplier s. The events taking place at the cross dock can be explained as follows. If b31
1,5,1,7 =

3, then at time 31, vehicle 1 delivers 3 full pallets to node 7 (a cross dock), which is bound

for node 1 (a retailer) from node 5 (a supplier). At the same time, event c31
4,5,1,8 = 3 takes

place. This indicates that vehicle 4 picks up 3 full pallets at node 8 (a cross dock), which

is bound for node 1 (a retailer) from node 5 (a supplier). From this table we can observe

that goods brought by vehicle 1 are loaded to both vehicles 3 and 4, due to the consolidation

process.
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btvsrj # of Pallets ctvsrj # of Pallets

b31
1,5,1,7 3 c31

4,5,1,8 3

b31
1,5,2,7 7 c31

4,5,2,8 7

b31
1,5,3,7 6 c31

3,5,3,8 6

b31
1,5,4,7 11 c31

3,5,4,8 11

b31
2,6,1,7 2 c31

4,6,1,8 2

b31
2,6,2,7 3 c31

4,6,2,8 3

b31
2,6,3,7 12 c31

4,6,3,8 10

c31
3,6,3,8 2

b31
2,6,4,7 7 c31

3,6,4,8 7

b58
3,6,2,7 10 c58

5,6,2,8 10

Table 5.11: Cross dock in full pallet delivery and pick up sequence

qtvsr # of Pallets

q42
3,5,3 6

q35
3,5,4 11

q42
3,6,3 2

q35
3,6,4 7

q38
4,5,1 3

q41
4,5,2 7

q38
4,6,1 2

q41
4,6,2 3

q36
4,6,3 10

q62
5,6,2 10

Table 5.12: Retailer full pallet delivery sequence

Table 5.12 shows the quantity of full pallets delivered to retailer r picked up from

supplier s by vehicle v at time t, shown as qtvsr. Table 5.13 shows the quantity of empty
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pallets picked up at retailer r at time t to be delivered to supplier s by vehicle v, shown as

etvsr. The events taking place at the retailer node are explained as follows. From q38
4,5,1 = 3

and e38
4,5,1 = 32, we can infer that vehicle 4 reaches node 1 at time 38, delivers 3 full pallets

and picks up 32 empty pallets. Events q42
3,5,3 and q36

4,6,3 are examples of split deliveries because

demand at node 3 is satisfied by vehicles 3 and 4 at different time intervals.

etvsr # of Pallets

e35
3,5,4 31

e42
3,6,3 35

e35
3,6,4 3

e38
4,5,1 32

e41
4,5,2 38

e36
4,5,3 2

e38
4,6,1 38

e41
4,6,2 25

Table 5.13: Empty pallet pick up sequence

Table 5.14 shows the quantity of empty pallets delivered at supplier s by vehicle v at

time t, shown as f tvs. For example f 50
3,6 shows that at time 50, 38 empty pallets are delivered

by vehicle 3 to node 6.

f tvs # of Pallets

f 45
3,5 31

f 50
3,6 38

f 47
4,5 72

f 52
4,6 63

Table 5.14: Empty pallet delivery sequence
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Chapter 6

Heuristic Approach for Determining Initial Solutions

In this chapter a heuristic approach is proposed to obtain the initial feasible routes.

During the validation stage, CPLEX gave no solution to the test problems, when stopped

at the maximum run time of 30 minutes. The main reason for developing the heuristic is

to obtain solutions at a faster rate when compared to CPLEX. The goal of the proposed

heuristic is to determine an initial feasible, although likely sub-optimal, solution to the

problem. Such a solution may be beneficial in the first step of a metaheuristic approach,

such as tabu search.

The heuristic contains three functions:

1. Pickup: In this function, the vehicles are routed to the supplier to pick up full pallets

of material.

2. DeliveryAndPickup: In this function, vehicles are routed to deliver full pallets to

retailers and pick up empty pallets for the suppliers from the same retailer node. The

vehicles are further routed to suppliers, to deliver empty pallets and pick up full pallets.

3. VehicleCopy: This function guides how the vehicle copies should behave.

This heuristic is restricted by three limitations. First, the number of “original” vehicles

considered should always be an even number. Second, supplier and retailer nodes with the

earliest time windows are visited first. For example, even if supplier s1 with Drs
prod > 0, is

enroute to supplier s2 (which has an earlier time window), supplier s1 will not be visited.

Finally, in a cycle, or wave, only half of the vehicle fleet is utilized. For example, if 10

vehicles are available, only 5 vehicles are used in a cycle for pick up and delivery operations

while the other 5 vehicles will wait in their ∆1 nodes. As per the cross dock constraint in
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the mathematical model, the transfer of pallets at a cross dock must take place from the

inbound truck to outbound truck. To facilitate this feature, in this heuristic some vehicles

are forced to wait at the cross dock. However in future research, the vehicles waiting at the

cross dock can be utilized to make shorter routes, in addition to satisfying the cross dock

constraints. This wave phenomenon occurs because all vehicles are assumed to be initially

empty.

The heuristic begins by initializing several variables. First, the set of all “original”

vehicles, V ′, is partitioned into two subsets, such that set PV represents the set of all

vehicles that are available to be assigned to pickup full pallets from suppliers and set DV is

the set of vehicles that are available to pickup goods from a cross dock and deliver these to

retailers. These sets are initialized as follows:

PV =

{
1, 2, . . . ,

⌊
|V ′|

2

⌋}
,

DV = V ′ \ PV.

Every cycle will end at the ∆1 node and a new vehicle ID number is generated for each

vehicle at this node. Set DV 1 contains the copies of vehicles that are created at the end

of function Pickup, and DV 2 contains the copies of vehicle created at the end of function

DeliveryAndPickup.

Next, the initial location and the starting time for each vehicle must be initialized:

myPrevNodev = ∆0
v ∀ v ∈ V ′,

tv = t0 ∀ v ∈ V ′.

Third, let D′prod
r,s represent the unsatisfied demand of goods by retailer r from supplier s. This

value will be updated as the heuristic progresses, and is initialized to equal the corresponding
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value of Dprod
r,s :

D′prod
r,s = Dprod

r,s ∀ r ∈ R, s ∈ S.

Fourth, let A′pal
r,s represent the unsatisfied demand of empty pallets by supplier s from retailer

r. This value will be updated as the heuristic progresses, and is initialized to equal the

corresponding value of Apal
r,s :

A′pal
r,s = Apal

r,s ∀ r ∈ R, s ∈ S.

Finally, to facilitate the coordinated arrival of vehicles at each cross dock, let tmax
j represent

the latest time that an active vehicle is assigned to visit cross dock j ∈ CDin. This value

will be updated by the heuristic, and is initialized to equal the starting time interval of the

planning horizon:

tmax
j = t0 ∀ j ∈ CDin.

The remainder of this chapter provides detailed descriptions of the three functions em-

ployed by the proposed heuristic.

6.1 The Pickup function

Step 1. In this step, each vehicle in set PV will be assigned to pick up full pallets from

suppliers. Goods will be loaded onto each of these vehicles until either the vehicle

contains no excess capacity, or there are no more goods to pick up. When vehicle v

is assigned to visit a particular eligible supplier j ∈ S ′, after having previously visited

node i ∈ ∆−v,j, the heuristic sets the value of xtv,i,j, where t represents the earliest feasi-

ble time that the vehicle can visit node j. Here, the set S ′ represents all suppliers that

may be visited within their time windows and which hold goods for retailers whose
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time windows have yet to close. The process of assigning the vehicle to suppliers re-

peats until the vehicle has no further suppliers to visit, at which point the vehicle is

routed to the nearest cross dock. Once all vehicles have been routed to a cross dock,

the vehicles are routed to the appropriate node in set ∆1, where the vehicle ends its

route and is assigned a new vehicle number.

for all v ∈ PV do

i = myPrevNodev; // Set the initial location for this vehicle.

LQv = 0; // Loaded quantity of vehicle v is zero.

while LQv < cv do

// Define the set of eligible suppliers:

S ′ =

s ∈ S : tv + τv,i,s ≤ max{Ts},
∑
r∈R

tv≤max{Tr}

D′prod
r,s > 0

;

// Choose the eligible supplier that can be visited earliest.

// Break ties by selecting the eligible supplier with the smallest ID:

j ← min

{
s ∈ S ′ : min{Ts} = min

k∈S′
{min{Tk}}

}
;

// Load goods bound for retailer r from supplier j:

for all r ∈ R do

if (tv ≤ max{Tr}) then

LQv ← LQv+min{D′prod
r,j , cv−LQv}; // Update loaded quantity on vehicle

v.

Qpick
v,r,j ← Qpick

v,r,j + min{D′prod
r,j , cv − LQv}; // Update quantity picked up.

D′prod
r,j ← D′prod

r,j −Qpick
v,r,j; // Update remaining availability.

end if

end for

tv ← max{tv + τv,i,j,min{Tj}}; // Find earliest feasible time to visit supplier j.

Set xtvv,i,j = 1; // Assign v to visit supplier j at a feasible time.
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i← j; // Update the current location.

end while

// Find nearest cross dock j ∈ CDin such that τv,i,j = min
k∈CDin

{τv,i,k}.

myCDv ← j; // Store the node number of the chosen CD for Step 2.

myPrevNodev ← i; // Store the previous node for Step 2.

tmax
j ← max{tmax

j , tv + τv,i,j}; // Update the latest time a vehicle is assigned to

this CD.

end for

Step 2. At this point, we have determined the earliest possible time that each “pickup”

vehicle may be routed to a cross dock. Now, we must coordinate the arrival times of

these vehicles at each cross dock. After visiting the cross dock, the vehicles are routed

to a ∆1 node to get assigned a new vehicle ID number. Each of the vehicles in set PV,

after getting assigned a new number, is added to set DV1. The set DV1 contains the

copies of vehicle, and is updated every cycle (when new vehicle copies are generated).

Qin
j,r,s = 0 ∀ j ∈ CDin, r ∈ R, s ∈ S; // Initialize the quantity of goods arriving at

the cross dock.

for all v ∈ PV do

i← myPrevNodev; // Last supplier visited.

j ← myCDv; // Selected cross dock.

tv ← tmax
j ; // Coordinated time for visiting this cross dock.

Set xtvv,i,j = 1; // Assign v to visit cross dock at appropriate time.

// Route v to the appropriate ∆1 node, ending its tour:

tv ← tv + τv,j,∆1
j
; // Updated time.

Set xtv
v,j,∆1

j
= 1; // Assign v to final node.

v′ ← next copy of vehicle v;

tv′ = tv; // Initialize the starting time of vehicle v′.
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myPrevNodev′ = ∆1
j ; // Initialize starting node of v′.

// Add the vehicle copy to the set DV1.

Set DV 1← v′; //Update DV 1, to be used in Function Vehicle Copy

end for

Step 3. In a cross dock, no storage of pallets are allowed, by assumption. Therefore, all

pallets brought by the inbound trucks must be transferred to outbound trucks. To

satisfy this condition, the total quantity of pallets brought by the inbound trucks

should not exceed the total capacity of the outbound trucks at a cross dock. The

vehicles are paired, such that if the first vehicle in set PV reaches CDin
1 , then the first

vehicle in set DV should reach CDout
1 . To satisfy this condition, first the quantity of full

pallets brought by the inbound trucks to each CDin is calculated, and then the quantity

of pallets that can be loaded to the outbound trucks is calculated. The excess pallets

(i.e., the difference between the loaded quantity of vehicles and the capacity of their

paired vehicle at a particular cross dock) that cannot be loaded to outbound trucks

are added back to D′prod
r,j . For example, if 25 pallets are brought by vehicle 1 and 28 by

vehicle 2 to CDin
1 , and if the maximum capacity of both outbound truck is 26 pallets

each, then the difference in capacity of 1 pallet (i.e., 26+26-28-25) is again added back

to the respective D′prod
r,j value.

// Initialize the quantity of pallets in CD

QCDout
j = 0 ∀ j ∈ CDout; // Initialize the quantity of goods in the cross dock out.

// Calculate the full pallets brought to CDin and quantity that can be loaded at

CDout

for all v ∈ PV do

for all v′ ∈ DV do

if (v and v’ are the nth vehicle in the sequence) then

j ← myCDv; // Selected cross dock.

QCDin
j = QCDin

j + LQv; // Update quantity in CDin
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QCDout
j = QCDout

j + Cv′ ; // Update available capacity at CDout

end if

end for

end for

// Transfer the excess capacity to D′prod
r,s .

for all v ∈ PV do

for all j ∈ CDin do

while ((QCDin
j > QCDout

j )) do

// Choose the eligible supplier to update the D′prod
b,a value

// Break ties by selecting the eligible supplier with the largest ID:

a← max

{
s ∈ S : min{Ts} = max

k∈S
{min{Tk}}

}
;

// Choose the eligible retailer to update the D′prod
b,a value

// Break ties by selecting the eligible retailer with the largest ID:

b← max

{
r ∈ R : min{Tr} = max

n∈R
{min{Tn}}

}
;

if ((QCDin
j −QCDout

j ) ≥ Qpick
v,b,a) then

// If full pallets picked up at a supplier for a retailer is less than the quantity

to be transferred, then

D′prod
b,a ← D′prod

b,a + Qpick
v,b,a; // Update the D′prod

b,a value

QCDin
j ← QCDin

j - Qpick
v,b,a ; // Update the full pallet capacity at CDin

Qpick
v,b,a =0; // Update the full pallet quantity picked up.

else

// If full pallets picked up at a supplier for a retailer is greater than the

quantity to be transferred, then

D′prod
b,a ← D′prod

b,a + (QCDin
j - QCDout

j ); // Update the D′prod
b,a value

QCDin
j ← QCDin

j - (QCDin
j - QCDout

j ) ; // Update the full pallet capacity at

CDin
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Qpick
v,b,a ← Qpick

v,b,a - (QCDin
j - QCDout

j ) ; // Update the full pallet quantity picked

up.

end if

end while

end for

end for

//Update the quantity of goods arriving at CD

Qin
j,r,s = 0 ∀ j ∈ CDin, r ∈ R, s ∈ S; // Initialize the quantity of goods arriving at

the cross dock.

for all v ∈ PV do

j ← myCDv; // Selected cross dock.

for all r ∈ R do

for all s ∈ S do

Qin
j,r,s ← Qin

j,r,s +Qpick
v,r,s; // Update quantity of goods arriving at cross dock.

end for

end for

end for

6.2 The DeliveryAndPickup function

Step 1. In this step, goods are first transferred from the unloading to loading bay of the

cross dock. Then, each vehicle in set DV will be assigned to pick up full pallets from the

cross dock. For example, if there are two cross docks and, from the previous function,

if two vehicles reach CDin
1 and three vehicles reach CDin

2 , then in this function two

vehicles should be routed to CDout
1 and three vehicles to CDout

2 . The vehicles should

reach the corresponding cross dock at time tmax
j , j ∈ CD. Goods are then loaded onto

each of these vehicles until either the vehicle contains no excess capacity, or there are

no more goods to pick up. The set R′ represents all retailers that should be visited to
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deliver the full pallets. At the cross dock, goods are first loaded for the retailer with

the earliest time window. After goods are loaded, the heuristic first sets the value of

xtv,i,j for vehicles with LQv > 0, where t represents the coordinated time for visiting

the cross dock, and i is the previous node for the vehicle, and j ∈ CDout. Next, for all

vehicles such that LQv = 0, the heuristic sets the value of xtv,i,j in Step 4. Here i and

j refer to the ∆1 node. Only vehicles which are loaded with full pallets must start the

route. A variable, Counterv, is introduced to differentiate the loaded and unloaded

vehicles. Counterv is initialized as 1 if the vehicle is loaded, and as 0 if the vehicle is

not loaded.

// Transfer the goods from CDin to CDout

for all k ∈ CDin do

for all l ∈ CDout do

if (k and l are the CDin and CDout values of same cross dock) then

for all r ∈ R do

for all s ∈ S do

Qout
l,r,s ← Qin

k,r,s ; // Transfer goods from CDin to CDout.

end for

end for

// Find the appropriate CD for vehicles.

for all v′ ∈ PV do

for all v ∈ DV do

i← myPrevNodev; // Set the initial location for this vehicle.

LQv = 0; // Loaded quantity of vehicle v is zero.

if (v and v’ are the nth vehicle in the sequence) then

if (k == myCDin
v′ ) then

myCDout
v ← l; // Initialize the Cross dock.

j ← myCDout
v ; // Initialize the Cross dock.
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tmax
j ← tmax

k ; // Assign the max time value at CDout

tv ← tmax
j ; // Coordinated time for visiting this cross dock

// Load goods bound for retailer r from CD:

// Define the set of eligible retailers

R′ =

{
r ∈ R :

∑
s∈S

∑
l∈CDout

Qout
l,r,s > 0

}
;

for all r ∈ R′ do

for all s ∈ S do

while LQv < cv do

Qpick
v,r,s ← min{Qout

l,r,s, Cv − LQv} ; // Update quantity picked

up by vehicle

Qout
l,r,s ← Qout

l,r,s −Qpick
v,r,s ;// Update quantity at cross dock.

LQv ← LQv +Qpick
v,r,s ; // Update loaded quantity in vehicle

end while

end for

end for

if (LQv > 0) then

Set xtvv,i,j = 1; // Assign v to visit cross dock at appropriate time.

myPrevNodev ← j; // Set the previous node for Step 2.

Counterv = 1; // Initialize the Counterv value.

end if

if (LQv == 0) then

Counterv = 0; // Initialize the Counterv value.

end if

end if

end if

end for

end for
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end if

end for

end for

Step 2. In this step, each vehicle in set DV will be assigned to deliver full pallets and

pick up empty pallets at retailers. Goods will be loaded onto each of these vehicles

until either the vehicle contains no excess capacity, or there are no more empty

pallets to pick up. When vehicle v is assigned to visit a particular eligible retailer

j ∈ R′, after having previously visited node i ∈ ∆−v,j, the heuristic sets the value of

xtv,i,j, where t represents the earliest feasible time that the vehicle can visit node j.

Here, the set R′ represents all retailers for whom the full pallets are picked up. The

process of assigning the vehicle to retailers repeats until all the full pallets picked

up by the vehicles are delivered. Empty pallets are only picked up from the retailers

who also receive full pallets. After all the full pallets are delivered, the vehicles are

routed to the appropriate nodes in the set ∆+
v .

for all v ∈ DV do

if (Counterv > 0) then

// Choose the eligible retailer that can be visited earliest from set R’.

// Break ties by selecting the eligible retailer with the smallest ID:

j ← min

{
r ∈ R′ : min{Tr} = min

k∈R′
{min{Tk}}

}
;

t′v=max{(tv + τvij), min{Tj}};

if (t′v ≤ max{Tj}) then

// Deliver full pallets to retailers.

for all s ∈ S do

if (Qpick
v,j,s > 0) then

LQv ← LQv −Qpick
v,j,s; // Update loaded quantity in vehicle

Qpick
v,j,s ← 0; // Reset the full pallet quantity to zero

// If current time is less than the maximum time interval at S
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if (t′v ≤ max{Ts}) then

// Pick up empty pallets at retailers.

if (A′pal
j,s > 0) then

while LQv < cv do

// Update loaded quantity on vehicle v:

LQv ← LQv + min{(A′pal
j,s ∗ α), cv − LQv};

// Update empty pallets picked up:

Qempty
v,j,s ← min{(A′pal

j,s ∗ α), cv − LQv};

// Update remaining empty pallet quantity:

A′pal
j,s ← A′pal

j,s − ((min{(A′pal
j,s ∗ α), cv − LQv})/α);

end while

end if

end if

// Assign the xtvv,i,j values if vehicle visits retailer.

if (Qpick
v,j,s == 0) then

i← myPrevNodev; // Set the previous node for Step 2.

// Coordinated time for visiting this cross dock

tv ← max{(tv + τvij),min{Tj}};

Set xtvv,i,j = 1; // Assign v to visit retailer at appropriate time.

myPrevNodev ← j; // Set the previous node for Step 3.

end if

end if

end for

end if

end if

end for
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Step 3. In this step, two sets, S ′′ and S ′′′ are first defined. Here set S ′′ represents all

suppliers for whom the empty pallets are picked up at retailers, and set S ′′′ represents

the set of suppliers for whom no empty pallets are picked up at retailers. Each vehicle

in set DV will be assigned to deliver empty pallets and pick up full pallets first at

the supplier S ′′. If LQv < Cv, vehicles are then assigned to visit suppliers in set S ′′′

for pick up. Here the goods will be loaded onto each of these vehicles until either

the vehicle contains no excess capacity, or there are no more empty pallets to pick

up. The process of assigning the vehicle to suppliers repeats until either the vehicle

contains no excess capacity or has no further suppliers to visit. When vehicle v is

assigned to visit a particular eligible supplier j ∈ S, where S = {S ′′ ∪ S ′′′}, after

having previously visited node i ∈ ∆−v,j, the heuristic sets the value of xtv,i,j, where t

represents the earliest feasible time that the vehicle can visit node j.

for all v ∈ DV do

if (Counterv > 0) then

// Define the sets of eligible suppliers

S ′′ =

{
s ∈ S :

∑
r∈R

∑
v∈DV

Qempty
v,r,s > 0

}
;

S ′′′ =

{
s ∈ S :

∑
r∈R

∑
v∈DV

Qempty
v,r,s = 0

}
;

// Deliver empty pallets to suppliers in set S ′′ and pick up full pallets.

// Choose the eligible supplier that can be visited earliest from set S”.

// Break ties by selecting the eligible retailer with the smallest ID:

j ← min

{
s ∈ S ′′ : min{Ts} = min

k∈S′′
{min{Tk}}

}
;

t′v=max{(tv + τvij), min{Tj}};

if (t′v ≤ max{Tj}) then

for all r ∈ R do

if (Qempty
v,r,j > 0) then

LQv ← LQv −Qempty
v,r,j ; // Update loaded quantity in vehicle
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Qempty
v,r,j ← 0; // Reset the empty pallet quantity to zero

// Load goods bound for retailer r from supplier j:

while (LQv < cv) do

if (t′v ≤ max{Tr}) then

// Update loaded quantity on vehicle v.

LQv ← LQv + min{D′prod
r,j , cv − LQv};

// Update quantity picked up at each supplier.

Qpick
v,r,j ← Qpick

v,r,j + min{D′prod
r,j , cv − LQv};

// Update remaining availability.

D′prod
r,j ← D′prod

r,j −min{D′prod
r,j , cv − LQv};

end if

end while

end if

// Assign the xtvv,i,j values only if empty pallets are delivered to suppliers

if (Qempty
v,j,s == 0) then

i← myPrevNodev; // Set the previous node for Step 3.

tv ← max{(tv + τvij), min{Tj}}; // Appropriate time for visiting this

supplier

Set xtvv,i,j = 1; // Assign v to visit supplier at appropriate time.

myPrevNodev ← j; // Set the previous node for Step 3.

end if

end for

end if

If there are empty pallets in the vehicle that are not delivered to suppliers due

to time window constraints, then the Qempty
v,r,s value is reduced from the LQv

value. These values need not be added back to A′pal
r,s values, because, if the
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empty pallets are not delivered in this cycle, they cannot be delivered in future

cycles because the upper limit of the time interval is already crossed.

// Assign Qempty
v,j,s values to zero.

for all s ∈ S ′′ do

for all r ∈ R do

// Checks for undelivered empty pallets

if (Qempty
v,r,s > 0) then

LQv = LQv −Qempty
v,r,s ; // update the loaded quantity

Qempty
v,r,s = 0; // Assign empty pallet quantity to zero

end if

end for

end for

// Pick up full pallets from suppliers in set S ′′′.

// Choose the eligible supplier that can be visited earliest from set S ′′′.

// Break ties by selecting the eligible retailer with the smallest ID:

j ← min

{
s ∈ S ′′ : min{Ts} = min

k∈S′′′
{min{Tk}}

}
;

t′v =max{(tv + τvij), min{Tj}};

if (t′v ≤ max{Tj}) then

for all r ∈ R do

if (t′v ≤ max{Tr}) then

while LQv < cv do

// Update loaded quantity on vehicle v.

LQv ← LQv + min{D′prod
r,j , cv − LQv};

// Update quantity picked up.

Qpick
v,r,j ← Qpick

v,r,j + min{D′prod
r,j , cv − LQv};

// Update remaining availability.

D′prod
r,j ← D′prod

r,j −min{D′prod
r,j , cv − LQv};
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end while

end if

// Assign the xtvv,i,j values only if full pallets are picked up

if (Qpick
v,r,j > 0, j ∈ S ′′′) then

i← myPrevNodev; // Set the previous node for Step 3.

tv ← max{(tv + τvij), min{Tj}}; // Coordinated time for visiting this

supplier

Set xtvv,i,j = 1; // Assign v to visit supplier at appropriate time.

myPrevNodev ← j; // Set the previous node for Step 4.

end if

end for

end if

end if

end for

Step 4. In this step, each vehicle in set DV is routed to either a ∆1 node or the nearest

CDin. If LQv = 0, the vehicle is routed to ∆1. If LQv > 0, the vehicle is routed

to CDin. In cases where the vehicle is routed to CDin, after delivering goods at

CDin, the vehicles are routed to the appropriate node in set ∆1. Each vehicle ends

its route at the ∆1 node, where it is assigned a new vehicle number.

for all v ∈ DV do

if (LQv = 0) then

i← myPrevNodev; // Store the previous node for Step 4.

// Find nearest node, j ∈ ∆1, such that τv,i,j = min
k∈∆1
{τv,i,k}.

tv ← {tv + τv,i,j}; // Update the latest time a vehicle is assigned to this ∆1

node.

Set xtvv,i,j = 1; // Assign v to visit cross dock at appropriate time.

v′ ← Next copy of vehicle v;
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tv′ = tv; // Initialize the starting time of vehicle v′.

myPrevNodev′ = ∆1
j ; // Initialize starting node of v′.

end if

if (LQv > 0) then

// Find nearest cross dock j ∈ CDin such that τv,i,j = min
k∈CDin

{τv,i,k}.

myCDv ← j; // Store the node number of the chosen CD for Step 4.

myPrevNodev ← i; // Store the previous node for Step 4.

tmax
j ← max{tmax

j , tv + τv,i,j}; // Update latest time a vehicle is assigned to this

CD.

// At this point, we have determined the earliest possible time that each

“pickup” vehicle may be routed to a cross dock. Now, we must coordinate

the arrival times of these vehicles at each cross dock.

Qin
j,r,s = 0 ∀ j ∈ CDin, r ∈ R, s ∈ S; // Initialize the quantity of goods arriving

at the cross dock.

i← myPrevNodev; // Last supplier visited.

j ← myCDv; // Selected cross dock.

tv ← tmax
j ; // Coordinated time for visiting this cross dock.

Set xtvv,i,j = 1; // Assign v to visit cross dock at appropriate time.

// In a cross dock, no storage of pallets are allowed, so all the pallets brought by

the inbound trucks should be transferred to outbound trucks. Thus, the total

quantity of pallets brought by the inbound trucks should not exceed the total

capacity of the outbound trucks at a cross dock. To satisfy this condition, the

heuristic adds the difference in quantity to D′prod
r,j .

QCDin
j = 0 ∀ j ∈ CDin; // Initialize the quantity of goods in the cross dock in.

QCDout
j = 0 ∀ j ∈ CDout; // Initialize the quantity of goods in the cross dock

out.

for all v ∈ DV do
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for all v′ ∈ DV 2 do

if (v and v’, are the nth vehicle in the sequence) then

QCDin
j = QCDin

j + LQv; // Update quantity in CDin

QCDout
j = QCDout

j + Cv′ ; // Update available capacity at CDout

end if

end for

end for

for all v ∈ DV do

for all j ∈ CDin do

while ((QCDin
j > QCDout

j )) do

// Choose the eligible supplier to be visited

// Break ties by selecting the eligible supplier with the largest ID:

a← max

{
s ∈ S : min{Ts} = max

k∈S
{min{Tk}}

}
;

// Choose the eligible retailer to be visited

// Break ties by selecting the eligible retailer with the largest ID:

b← max

{
r ∈ R : min{Tr} = max

n∈R
{min{Tn}}

}
;

if ((QCDin
j −QCDout

j ) ≥ Qpick
v,b,a) then

// If full pallets picked up at a supplier for a retailer is less than the

quantity to be transferred, then

D′prod
b,a ← D′prod

b,a + Qpick
v,b,a; // Update the D′prod

b,a value

QCDin
j ← QCDin

j - Qpick
v,b,a ; // Update full pallet capacity at CDin

Qpick
v,b,a =0; // Update full pallet quantity picked up.

else

D′prod
b,a ← D′prod

b,a + (QCDin
j - QCDout

j ); // Update the D′prod
b,a value

QCDin
j ← QCDin

j - (QCDin
j - QCDout

j ) ; // Update the full pallet capacity

at CDin
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Qpick
v,b,a ← Qpick

v,b,a - (QCDin
j - QCDout

j ) ; // Update the full pallet quantity

picked up.

end if

end while

end for

end for

// Update quantity of goods arriving at cross dock

Qin
j,r,s = 0 ∀ j ∈ CDin, r ∈ R, s ∈ S; // Initialize quantity of goods arriving at

the CD.

for all r ∈ R do

for all s ∈ S do

Qin
j,r,s ← Qin

j,r,s +Qpick
v,r,s; // Update quantity of goods arriving at cross dock.

end for

end for

// Route v to the appropriate ∆1 node, ending its tour:

tv ← tv + τv,j,∆1
j
; // Updated time.

Set xtv
v,j,∆1

j
= 1; // Assign v to final node.

v′ ← next copy of vehicle v;

tv′ = tv; // Initialize the starting time of vehicle v′.

myPrevNodev′ = ∆1
j ; // Initialize starting node of v′.

end if

// Add the vehicle copy to the set DV2.

set DV 2← v′; // Update set DV 2, to be used in VehicleCopy function

end for

66



6.3 The VehicleCopy function

Step 1. In this step, first the contents of set DV are updated with the values in set DV 1.

Next, the contents of setDV 1 are replaced by setDV 2. The function DeliveryAndPickup

is repeated with the updated DV . This process continues until all vehicle copies are

used. Let numCopy be the number of vehicle copies and numCycle be the number of

cycles that function DeliveryAndPickup should be repeated.

numCycle = numCopy * 2;

for all numCycle do

// Transfer the contents of set DV 1 to set DV

DV ← DV 1

// Transfer the contents of set DV 2 to set DV 1

DV 1← DV 2

Execute function DeliveryAndPickup;

end for

The idea behind the development of this heuristic is the expectation that, if the xtvij values for

each vehicle are added as constraints to the existing model, then CPLEX would determine

the pick up and delivery quantities for vehicles at the retailer and supplier nodes in the

network. The initial solution heuristic can be improved by using metaheuristic approaches,

such as tabu search, to select among candidate routes for each vehicle.
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Chapter 7

Numerical Analysis

This chapter contains a numerical analysis on generated test problems for the math-

ematical model. First, analysis is performed for test problems solved via CPLEX. Next,

analysis is conducted on test problems solved using CPLEX with the incorporation of the

heuristic proposed in the previous chapter. In addition, a procedure to develop test problems

is discussed. Numerical analysis helps to identify the time taken to solve the problem, to

compare the solutions generated using the heuristic against CPLEX, and to suggest possible

improvements to be incorporated in future research.

7.1 Generation of Test Problems

The examples provided in the literature do not provide sufficient numerical values for

all of the input parameters required for this thesis work. Therefore, the input parameters

are programmed to generate randomly using the software Octave, version 3.2.4. Table 7.1

shows how input parameter values are created.
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Parameter Value

|R| Hard coded

|S| Hard coded

|CD| Hard coded

|V ′| Hard coded

|V ′′v |, where v ∈ V ′ Hard coded

α Hard coded

Cv U(24,30)

Speed of V U(50,70) [miles/hr]

Dprod
rs U(l,u)

Apal
rs U(0,40)

x coordinate for nodes U(0,500)[miles]

y coordinate for nodes U(0,500)[miles]

τvij Programmed to calculate

Table 7.1: Input parameters

The parameter values for the number of retailers, suppliers, cross docks, vehicles, number

of vehicle copies, and α are hard-coded in the program in order to test the model under

different scenarios. The capacity and speed of each vehicle is randomly generated and follow

a uniform distribution. The demand of full pallets, Dprod
rs , follows a uniform distribution,

U(l,u), where the lower limit (l) is assumed to be 0 and the upper limit (u) is calculated

using the following expression. In the expression, UDemand represents the total demand

value at the upper limit:

UDemand = (# of vehicle copies) *
∑
v∈V ′

Cv,

Upper limit = UDemand/(# of retailers * # of suppliers).
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The demand of empty pallets Apal
rs , is randomly generated for each supplier/retailer

combination and follows a uniform distribution. The location of the nodes in the network are

represented as (x, y) coordinates. Depending on the number of nodes in the network, separate

(x, y) coordinates are generated randomly for each node and follow a uniform distribution.

With the help of the coordinates, the distance between two nodes in the network is calculated.

The speed of each vehicle is randomly generated and the average speed of all vehicles is

assumed to have a lower limit of 50 [miles/hr] and an upper limit of 70 [miles/hr], and

follows a uniform distribution. With the two data (i.e., the distance between two nodes and

average speed of the vehicle), τvij values, which represent the travel time by vehicle v from

node i to destination node j, are calculated.

Table 7.2 shows how the lower limit and the upper limit for the time intervals are

randomly generated. One time interval is assumed to be 15 minutes. (i.e., for one hour, four

time intervals are considered). The upper limit for the suppliers are considered higher than

the retailers to facilitate the back haul operation.

Parameter Time Interval Time Interval

Lower Limit Upper Limit

Retailer U(5,7) U(16,18)

Supplier U(4,6) U(21,23)

Cross Dock 1 24

∆1 1 24

Table 7.2: Time interval Tj

All the parameter values are randomly generated only for the calculation purposes. Any user

can vary the lower and upper limits and the hard coded values to suit a particular scenario.
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7.2 Initial Solution Scheme

Using the aforementioned problem generator, 30 “small” test problems were created for

problem sizes shown in Table 7.3, where | · | represents the cardinality of the given set. Ten

problems were generated for each row of this table.

Average # of Average # of

|R| |S| |V | Copies |CD| Decision Variables Constraints

5 3 3 1 1 77,486 22,190

10 6 5 1 1 281,044 67,494

20 10 10 1 2 3,130,490 *

Table 7.3: Summary of small problem sizes

CPLEX was unable to find a feasible solution to any of the 30 problem instances within

30 minutes. The reason might be due to the large number of decision variables and con-

straints. In Table 7.3, columns 6 and 7 give the average number of decision variables and

constraints developed for the test problems. It can be inferred that, as the size of the test

problem increases, the number of decision variables and constraints also increases drastically.

On average, approximately 3 million decision variables were required for problems with

20 retailers. CPLEX, in the process of solving the problem with 20 retailers, encountered

computer memory issues. One reason for this computer memory issue might be due to large

number of decision variables. Because of this memory issue, CPLEX was not able to generate

the constraints required to find a solution to 20-retailer problems.

Next, the problems were tested with the heuristic explained in Chapter 6. Although

the proposed heuristic cannot solve the computer memory issues for larger problems, it was

expected to give a solution to smaller problems.
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Average # of Average # of Average

|R| |S| |V | Copies |CD| Decision Variables Constraints Run Time [sec]

5 3 4 1 1 77,486 22,190 5.923

10 6 4 1 1 281,044 67,494 37.395

20 10 10 1 2 3,130,490 * *

Table 7.4: Summary of heuristic solution

Table 7.4 shows the summary of results for the problems solved with the help of the pro-

posed heuristic. Using the heuristic, CPLEX was able to find the solution for test problems

with 5 and 10 retailers. Column 8 in Table 7.4 shows the average time taken to solve the

problem. An average time of approximately 6 seconds to solve problems with 5 retailers is

found to be reasonable. However, for problems with 10 retailers, the average run time of 37

seconds is very high. Because the solution developed by the heuristic is only an initial solu-

tion, in future research, this solution should be used in a metaheuristic approach to develop

better solutions. For every iteration in a metaheuristic approach, CPLEX should be used to

check whether the solution developed is a better solution. For example, if a metaheuristic

approach performs 100 iterations, then the solution time will be 3700 seconds, which will be

approximately 1 hour. For larger problems, the solution time may increase significantly.

The results for all the individual problems of 5 and 10 retailers are shown in Tables 7.5

and 7.6. For some problems it can be noted that the size of the objective function value is

high. For these problems we may infer that some of the nodes are not visited within the

given time windows. To reduce the number of undelivered full pallets and empty pallets

to their destination nodes, one solution is to increase the number of original vehicles in the

system. Column 6 refers to the average number of time intervals considered in each node.

Column 7 gives the details of average time window size in percentage. It can be inferred

that, for 5-retailer problems, on average, each node is open for delivery or pick up 67% of

the available time. For 10-retailer problems, this figure is 61%. The average number of time

intervals is calculated by taking into consideration retailer, supplier, CDin, CDout, and ∆1
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nodes. The CD and ∆1 nodes are open for almost the entire time period. So, when average

time window size is calculated only taking into consideration supplier and retailer node, the

average time window size is only 53%.

Test Objective Solution # of decision # of Avg. # of Avg. Time

Problem # Function Value Time [sec] Variables Constraints Time Int. Window Size [%]

1 6165 6.681834 77474 22198 63.6363 66.28

2 174 4.680644 76834 22070 70.5454 73.48

3 210 5.122504 76322 22006 62.5454 65.15

4 3323 5.83187 78434 22324 64.3636 67.05

5 10136 5.964095 77474 22197 63.6363 66.28

6 112 7.498031 78818 22389 64.7272 67.42

7 10957 6.281562 77026 22133 63.2727 65.90

8 10517 5.045159 75874 21941 62.1818 64.77

9 176 5.550253 77026 22133 63.2727 65.90

10 2122 6.573162 79586 22516 65.4545 68.18

Table 7.5: Details of heuristic performance on problems with 5 retailers

Test Objective Solution # of decision # of Avg. # of Avg. Time

Problem # Function Value Time [sec] Variables Constraints Time Int. Window Size [%]

1 8803 72.470761 279562 67363 58.9474 61.40

2 14713 31.846418 277098 67167 58.3157 60.74

3 15047 27.31317 280042 67424 59.1578 61.22

4 15831 32.395646 282634 67617 59.7894 62.28

5 13824 34.230393 283370 67683 60.0000 62.50

6 17061 32.975578 280906 67484 59.3684 61.84

7 17847 34.551907 284714 67806 60.4210 62.93

8 11117 31.887243 281034 67488 59.3684 61.84

9 17070 44.365912 280042 67419 59.1578 61.62

10 15009 31.912833 281034 67490 59.3684 61.84

Table 7.6: Details of heuristic performance on problems with 10 retailers
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Two main problems that were experienced in this modeling approach are computer

memory issues and long runtimes to solve the problem. Some of the recommendations to

address these issues are as follows. First, in order to solve the problem related to computer

memory issues, the mathematical problem must be modeled with fewer decision variables.

If the number of decision variables is reduced, the memory space consumed may also be

reduced. Second, the problem should have narrow time windows. For the test problems,

the average time window size considered is approximately 63%. If the time windows are

narrowed, then the number of decision variables in the model will get reduced. Third, the

current model has a time slice for every 15 minutes. If the time slice is increased (i.e, a

time slice for every 30 minutes or 1 hour), then the number of decision variables may also be

reduced. Fewer decision variables may in turn reduce the time taken to solve the problem.

From this numerical analysis, it can be concluded that a more efficient mathematical

model must be developed with fewer decision variables. This may help to overcome the

computer memory problems, and may reduce the time taken to solve the problem.
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Chapter 8

Conclusions & Future Research

8.1 Conclusions

The research work tries to integrate the vehicle routing problem in a cross docking en-

vironment, to provide better utilization of the vehicle fleet. This research introduces new

formulations to solve vehicle routing problem with pick up during the linehaul operation

and delivery during the backhaul operation. The entire problem is based on a cross docking

environment with allowable split deliveries and time window constraints using a heteroge-

neous fleet. The research work carried out to date by various authors addresses the VRP

model with cross docks with only a subset of the different characteristics mentioned above.

In this research work the mathematical model is developed using all of the above mentioned

characteristics. The goal of this research work is to build a mathematical model with the

above mentioned criteria and to produce a feasible solution.

The problem is modeled as a mixed integer linear programming (MILP) model. The

model was validated using CPLEX. During the validation stage it was found that CPLEX

was not able to solve the problem within the test time of 30 minutes. However, it was found

that if the schedules were modeled as constraints to the model, CPELX was able to find

a feasible solution to the problem (although not optimal) and it was able to determine the

quantity of full and empty pallets that must be transferred from one node to another. This

motivated the need to develop a heuristic solution approach. The goal of the heuristic was

to determine feasible routes and schedules for every vehicle in the system. The output of the

heuristic is a collection of xtvij values, where i is the starting node and j is the destination

node of vehicle v, and t is the time the vehicle reaches node j. These xtvij values are treated

as constraints of the model, in addition to the already existing node and network constraints.
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A sample problem was generated as an example to demonstrate the different features

in the model. A procedure to develop the test problems is described in this thesis, as well.

The existing literature does not provide test problems with numerical values for all of the

parameter values described in this model, thus forcing the development of a procedure to

generate test problems with maximum flexibility.

Numerical analysis was conducted on three sets of test problems with retailer node sizes

of 5, 10 and 20. Each set contained 10 test problems, totalling 30 test problems. All of

the test problems were first solved using CPLEX with a maximum run time of 30 minutes.

CPLEX was not able to find a feasible solution. Next, all of the problems were solved using

CPLEX with the help of the heuristic and CPLEX was able to find solutions for problem

sizes of 5 and 10 retailers. During this stage computer memory issues were encountered when

large problems were solved. Recommendations for overcoming the computer memory issues

were also discussed.

At the end of the numerical analysis, it was concluded that the present mathematical

model and the developed heuristic work well for the small problem sizes, but there is a need

for a better model with fewer decision variables and time intervals to solve larger problems.

8.2 Future Research

The research work can be extended by incorporating metaheuristic approaches to solve

the problem, and by developing a mathematical model with fewer decision variables. Instead

of empty pallets that are considered in this model, a more realistic reverse logistic operation

of transporting returned or damaged products back to the supplier for service or replacement

can be considered.

Currently, constant transfer time is assumed for transferring pallets at the cross dock,

regardless of the quantity of pallets transferred or the location of the inbound and outbound

trucks. In future research, more realistic transfer time of pallets can be introduced to the

model depending on the number of pallets to be transferred and travel time of pallets from
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the inbound to outbound doors of the cross dock. Moreover, the model can be improved by

including a separate optimization procedure to assign trucks to the cross dock to reduce the

travel time of pallets inside the cross dock.

Currently, by assumption, there is no space to store inventory in the cross dock and pal-

lets must be transferred directly from the inbound trucks to the outbound trucks. To satisfy

this condition, a group of trucks are scheduled for simultaneous arrival and departure. This

constraint can be improved by allowing storage of inventory at the cross dock. This requires

constraints that limit the quantity of goods in inventory and also limit the length of time

that these goods remain in the cross dock. This also requires modifying the current model to

allow transfer of goods without requiring all trucks to be at the cross dock simultaneously.

As a result, vehicle utilization may be improved.
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