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Abstract
With the increasing use of cyberinfrastructure and popularity of e-Science initiatives,
science is becoming truly globalized, reducing barriers to entry and enabling formation of
open and global networked innovation communities. Yet, relatively little is known about the
mechanisms that govern such globalized communities. Meanwhile, creative arti cial ecosys-
tem metaphors and interaction processes among communities have potential to shed light on
the e ects of communication styles in the emergence of global knowledge communities. So,
this study explores how networks of scienti c communities and epistemic cultures form and
evolve, what network patterns emerge from di erent socio-technical communication theories,
and the relationship between environmental constraints, community traits, and innovation
performance and potential. Understanding scienti c communities and their associated com-
munication networks is key to understanding the dynamics of knowledge creation, as well
as formation and growth of scienti c communities to facilitate informed science and innova-
tion policy-making. A bene t of this research is to o er federal agencies a computer-aided
decision-making tool so as to evaluate investment decision and policies. To this end, an
agent-based simulation model combining boundary processes and theories of communication
is developed. The model is veri ed and validated with respect to empirical network data.
Simulation results suggest that communities with highly connected clusters are likely to
thrive if resource availability is low. So far as the resource allocation strategy is concerned,
key area investment with technology transferring results in the highest variety. Exploration
of the impact of socio-technical communication theories suggest that under low communi-
cation frequency, openness and receptivity lead to higher variety. On the contrary, variety
decreases with increasing receptivity under high communication frequency.
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Chapter 1
Introduction
1.1 Problem
Creativity is the production of novel and useful ideas by an individual or group of
individuals working together [4]. Innovation is extension of creativity, as it is the successful
implementation, adoption, and transfer of creative ideas, products, processes, or services
[98]. Collective creativity emphasizes the collaboration and coordination of all members in a
community rather than individual works. Scienti c communities provide a concrete basis to
facilitate scienti c discovery and collective creativity. So, the study of scienti c communities
is bene cial to understand the dynamics of knowledge creation, as well as their formation
and growth to facilitate informed science and innovation policy-making.
A scienti c community consists of scientists, domain knowledge as well as their rela-
tionships, and interactions. It is normally divided into \sub-communities" each of which
works on a particular  eld within science, and objectivity is expected to be achieved by
the scienti c method [105]. As the access to and production of knowledge are increasingly
becoming transparent, the practice of science is now more open and global [113], where
communication is carried by networks, and shared knowledge is documented in electronic
medias such as software and electronic documents. The cyber-infrastructure transcends
the geographical boundaries so that members around the world can collectively make con-
tributions in the virtual scienti c community. Such virtual collaboratories include Open
Source Science (OSS) communities such as OBO Foundry (Open Biomedical Ontologies)
[86], NanoHUB (Simulation, Education, Technology for Nano Technology) [62], and NEES
Grid (Network for Earthquake Engineering Cyberinfrastructure) [63]. It leads to an evolving
collective knowledge-base that is governed and maintained by community members without
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central authority. We call such communities of practice and epistemic cultures as Global
Participatory Science (GPS) communities [108].
GPS is based on a self-organizing network in which scientists work together not because
they are asked to but because they desire it [93]. Social scientists have proposed several
theories of communication to interpret the underlying mechanisms of forming such self-
organized networks [61]. Therefore, it is important to explore the e ects of di erent theories
of communication on patterns of emerging networks and innovation performances.
Based on these observations, we focus on the following problems:
1. How do scienti c communities? networks form and evolve, and what network patterns
emerge from di erent socio-technical communication theories such as Cognitive Theo-
ries, Self-interest Theories, Exchange and Dependency, Homophiliy & Proximity, and
Preferential Attachment [61]?
2. How do scienti c communities respond to environmental changes such as funding and
resource allocation across research areas? Since communities sustain themselves by
adapting to changing environmental conditions, while shaping their cognitive niches,
how can we design innovation environments that in uence overall innovation potential
and performance of the landscape of scienti c communities?
3. What is the impact of scienti c community traits (i.e., receptivity,  exibility, reorgani-
zation tendency) and environmental constraints (i.e., interaction topologies, maximum
community number, level of external funding) on the innovation performance (e.g.,
diversity and resilience) of GPS?
4. Which metrics measure innovation performance and potential based on science of net-
works and complex adaptive systems perspective? What are the underlying inter-
relationships between communities? con guration parameters, network metrics, and
diversity, resilience, as well as innovation?
2
1.2 Signi cance of the Problem
The globalization driven by advances in computer and communication technology, as
well as the collective economic and political processes brings dramatic changes in organi-
zational forms and communication networks [61]. The key for such dramatic changes of
organizational landscape is the emergence of social communication networks among organi-
zations. Furthermore, the underlying mechanisms for such social communication networks
can be abstracted into several theories of communication. Therefore, it is important to study
these theories that shape the communication networks.
Understanding scienti c communities and their associated social communication net-
works is key to understanding the dynamics of knowledge creation, as well as formation and
growth of scienti c communities to facilitate informed science and innovation policy-making.
Some Federal agencies, such as NIH and DOE, have begun to use social network analysis
techniques to understand the process of innovation [91]. Lack of knowledge of science and
innovation dynamics can lead to serious and unintended consequences [91]. For example,
Federal encouragement of universities to transfer technologies to industry has resulted in
universities putting more attention on near-term research rather than long-term basic re-
search. In addition, Shane [83] examines the e ects of Bayh-Dole Act in the United States
on one aspect of technology commercialization i.e. university patenting, and suggests that
the Bayh-Dole Act provided incentives for universities to increase patenting.
Studying the formation and behavior of scienti c communities could avoid unnecessary
duplication by predicating what  nal forms the community could evolve into. For instance,
in [47], Kaiser presents a computational model to predict the emergence and development
of scienti c  elds.
\Although the importance of investment in science, technology is understood, the ra-
tionale for speci c scienti c investment decisions lacks a strong theoretical and empirical
basis" [91]. So, an interdisciplinary research theme, called \the science of science policy" has
recently emerged. This is a theme that aims to provide a scienti cally rigorous quantitative
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basis from which policy makers and researchers could assess the impacts and likely outputs,
while improving the understanding of its dynamics [28]. It is critically important to develop
science of science policy because the U.S. Federal government?s total R&D budget reached
$139 billion in 2007, and it is essential to make use of such a signi cant amount of funding
e ectively so as to maximize social and economic bene ts.
Research funding could be structured to encourage the formation of new communities,
as is currently occurring through the large Federal investment in the nanoscience [82] and
synthetic biology [10] communities. Investment in innovation capacity is the key to higher
productivity, higher wages, and higher economic growth [91]. Although more emphasis have
been put on investment analysis, there is little understanding of how scienti c communities
respond to changes in funding within research areas. The understanding of how communities
of science evolve would have clear implication for investment decisions.
1.3 Strategy
Under globalization driven by advances in computer and communication technology,
the  ow of information that transmits through communication networks is independent of
space and time, because people can share knowledge and make contributions simultaneously
anywhere in the world [61]. Furthermore, the mechanisms for the emergence and evolution
of communication networks can be abstracted into several communication theories. So, the
 rst perspective for GPS is a global communication system.
In the communication network, communities a ect and are in uenced by peer commu-
nities through boundary processes, during which cooperation and competition occur. GPS
communities operate in ways similar to ecosystems in that communities act to ensure their
survival and success by accessing resources, creating knowledge, and keeping attractiveness
within the social communication network in which they want to thrive [60]. So, the second
perspective for GPS is a creative ecosystem.
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As a communication system, the interconnections between communities are emphasized.
As an ecosystem, it focuses on cooperation and competition driven by which communities
form, develop, fade, and coevolve. These two properties can be combined under the frame-
work of a complex adaptive system, because the complex system is a system composed of
interconnected parts that as a whole exhibit one or more properties not obvious from the
properties of the individual parts [99]. Meanwhile, agent based modeling (ABM) is an ideal
way to study complex systems because even a simple ABM can exhibit complex behavior
patterns and provide valuable information about the dynamics of the real-world system that
it emulates [12]. ABMs provide theoretical leverage where global patterns of interest are
more than the aggregation of individual attributes, but at the same time, the emergent pat-
tern cannot be understood without a bottom up dynamic model of the micro foundations at
the relational level [55].
The strategy adopted here is to explore how communities? innovation networks form
and evolve under a speci c communication theory using the complex adaptive systems per-
spective. Furthermore, the environment is designed to maximize innovation outputs based
on the understanding of communities? responses to varying investment strategies. So the
study is guided by network theory, boundary processes, and the theory of complex adaptive
systems.
1.4 Contributions
1.4.1 Contributions to Theory of Agent-Based Modeling
Agent-based Modeling provides theoretical leverage to explore complex systems where
global patterns result from interactions of multiple agents. In a large-scale ABM, it is es-
sential to standardize the communication among interacted agents, since agents may be
developed by di erent programmers. Agent Communication Language (ACL) [31] is pro-
posed by the Foundation for Intelligent Physical Agents (FIPA) as a standard language for
agent communications. ACL mainly focuses on the structure of message sent and received
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by agents, which includes four mandatory parameters: performative, sender, receiver, and
content [31]. Because FIPA-ACL is a basic speech-act theory based communication primi-
tive, it does not provide any speci c rules to guide how the communication is carried out.
My research using social communication theories as behavioral rules of agents can advance
existing ACL by providing a new layer above it. The new layer is named as communica-
tion protocol that de nes how to choose communication targets, when the communication
happens, and when the communication dissolves.
Agent-Based Models (ABMs) are often criticized for relying on informal, subjective, and
qualitative validation procedures [27]. Because most ABMs are highly abstract and are built
from bottom up, their emergent behavior is often unpredictable. Furthermore, ABMs are
often developed for studying complex adaptive phenomena, which involve uncertainty and
ambiguity in terms of their underlying behavioral mechanisms. Models that focus on human
and social dynamics are especially prone to ambiguity and uncertainty. To gain empirical
insight into such problems and to be able to generate behavior that mimics expected or
theoretical scenarios, model development and re nement should be coupled with evaluation
and validation. The validation strategy used here is a Robust Generative Validation (RGV)
[111] method that refers to the strategies used by scientists in generating and validating
knowledge. The main steps of RGV consist of generating ensembles, initiating schema, eval-
uating schema, and transforming schema, where each ensemble refers to a single hypotheses
space and each schema refers to the set of con gurations corresponding to the ensemble.
The model introduced in this dissertation is validated using a simpli ed RGV by replacing
a network of ensembles with two independent experiments. These two experiments aim to
compare simulation outputs against overlay map and OBO Foundry respectively.
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1.4.2 Contributions to Science and Innovation Policy Development
In order to address the questions raised in section 1.1, a multi-agent model is built, in
which behavioral rules of agents can be varied based on various social communication theories
including homophily, preferential attachment, structural hole, exchange, and balance theory.
Homophily theory has been identi ed by social scientists as an important mechanism
that explains communication networks are created, maintained, and reconstituted [61]. Ho-
mophiliy means a community would like to communicate with similar others and is highly
in uenced by similar peer communities. Similarity is thought to ease communication, fos-
ter trust, and reciprocity, and improve di usion of knowledge [15]. Structural holes are
those knowledge spaces where communities are not connected so that other communities
may exploit them by investing their social capital to indirectly link two or more uncon-
nected communities [61]. The community that  lls the structural hole becomes a broker in
relationship to others. A preferential attachment is a process where resource is distributed
among individuals according to how much they already have, i.e., rich gets richer. Under
suitable circumstance, preferential attachment can generate power law [25] that exists in
many social systems, for instance, the number of papers published by authors, the citation
index of papers etc. Exchange and dependency theories seek to address how communication
emerges based on the distribution of information and resources across the members. Heider?s
balance theory [38] states: \my friend?s friend is my friend; my friend?s enemy is my enemy;
my enemy?s friend is my enemy; my enemy?s enemy is my friend", which means friends have
similar attitudes, while enemies have di erent opinions on the third object. Using homophily,
preferential attachment, structural hole, exchange, and balance theory, we analyze the inter-
action between communities and compare them in terms of emergent network patterns and
innovation metrics.
In addition, experiments using agent-based simulation have been conducted. Among
these experiments, we examine six types of topologies (i.e., 1D grid, 2D grid, random net-
work, random group network, scale-free network, and dynamic network) and observe the
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emergent patterns of communities and their interrelationship with innovation performance.
Simulation results show that scale-free network has the highest resilience compared with ran-
dom and random group network. In addition, the relationship between variety and density
is a concave-like function, to which the relationship between variety and centrality is similar.
Furthermore, policy-makers may encourage communities to build highly connected clusters
if resource availability is low. As far as the resource allocation strategy is concerned, key
area investment with technology transferring results in the highest variety. Considering the
situation where communities communicate with one another guided by structural hole, pref-
erential attachment, or homophily theory, decision-makers may encourage communities to
be open to accept in uences from peers in order to foster innovation. In addition, under low
communication frequency, openness and receptivity lead to higher variety. On the contrary,
variety decreases with increasing receptivity under high communication frequency.
The rest of the dissertation is organized as follows. In Chapter 2, we present background
on GPS from the perspective of communication system, ecosystem, and complex adaptive
system. Chapter 3 introduces the design and formalization of the model, which embodies
the mechanisms of boundary processes, Homophily theory, and HSB (Hue, Saturation and
Brightness) color model that is used to visualize emergent community landscapes. Chapter
4 describes the implementation of the model. The veri cation and validation are conducted
in Chapter 5, where a novel generative validation method is devised to instill con dence in
the operational behavior of the model. Chapter 6 delineates metrics and indicators used to
measure network structure and innovation output, as well as evaluation using these metrics.
Chapter 7 examines the impacts of socio-technical communication theories on innovation
performance. Finally, in Chapter 8, we conclude by summarizing our  ndings and point out
potential avenues of future research.
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Chapter 2
Literature Review
The research conducted in the dissertation views global participatory science as a global
communication system and a creative ecosystem. These two perspectives can be combined
under the framework of a complex adaptive system.
2.1 Characteristics of GPS Communities
Recently, a number of virtual scienti c collaboratories emerged and continue to success-
fully bring together scientists over the globe to collaborate to not only share and aggregate
data, but also create new knowledge [93]. Such virtual collaboratories include Open Source
Science (OSS) communities such as OBO Foundry (Open Biomedical Ontologies) [86], which
is a form of GPS. So, we choose OSS communities as a research object to study, develop,
and explore models of innovation in collective knowledge creation communities. OSS com-
munities are immune to process loss through production blocking because all team members
can contribute ideas simultaneously. In addition, OSS communities reduce cognitive fail-
ures and enhance the synergistic e ects of group brainstorming using electronic media to
communicate, because access to the data is unrestricted by individual recall [108]. Further-
more, compared with traditional scienti c teams, OSS is located with distributed structure
of network, as well as more open and transparent due to decentralized decision-making
style. Besides OBO, the following are among such open science communities: NanoHUB
(Simulation Education Technology for Nano Technology) [62], and NEES Grid (Network
for Earthquake Engineering Cyberinfrastructure) [63]. Table 2.1 describes the comparison
between traditional scienti c teams and open source communities.
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Table 2.1: Traditional Scienti c Teams vs. Global Participatory Science
Criteria Additional Criteria Traditional Scien-
ti c Teams
Open Source Com-
munities
Distribution Space Co-located DistributedTime Synchronous Asynchronous +
synchronous
Communication Face to face Virtual meeting
Organization Structure Hierarchical NetworkedStyle Team/Formal
Group
Community/Market
Openness Product
Access Push-driven Pull-driven
Transpa-
rency
Complete product Incomplete prod-
uct
Integration
of contri-
butions
Pre-production de-
cisions
Pre and post-
production review
Process Decision-
making
Closed/Centralized Open/Decentralized
Mobility Entry threshold High LowTurnover rate Low High
In the invisible college [93], researchers complement each other by sharing equipments,
ideas, knowledge, techniques, and tools. In other words, scienti c curiosity and ambition are
the driving forces for researchers to work together in an invisible college. As far as these
networks are concerned, they are neither pre-designed, nor random. Rather, these networks
organize and operate based on self-organizing processes, which are also the main focus of this
research. With better understanding of such rules, policymakers could make better policy
decisions in terms of improving innovation performance and investment e ciency.
2.1.1 Understanding GPS as a Communication System
Social network theory is often used to describe the structure of scienti c communities,
but little research is conducted on the formation of network of communities [64].
Communication networks and the organizational forms of the 21st century are under-
going rapid and dramatic changes [32]. There are many theories that focus on the role of
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social communication mechanisms in explaining the emergence and evolution of community
networks. Table 2.2 summarizes selected social theories.
Table 2.2: Selected Social Theories [61]
Theories Sub-Theories
Theories of Self-interest
Social Capital
Structural Holes
Transaction Costs
Mutual Self-Interest & Collective
Action
Public Good Theory
Critical Mass Theory
Cognitive Theories
Semantic/Knowledge Networks
Cognitive Social Structures
Cognitive Consistency
Balance Theory
Contagion Theories
Social Information Processing
Social Learning Theory
Institutional Theory
Structural Theory of Action
Exchange and Dependency
Social Exchange Theory
Resource Dependency
Network Exchange
Homophily & Proximity
Social Comparison Theory
Social Identity
Physical Proximity
Electronic Proximity
Theories of Network Evolution Organizational EcologyNK(C)
Theories of self-interest explain how people make decisions based on their personal fa-
vorites and desires [20]. Theories of mutual interest and collective action focus on why
outcomes produced by coordinated activity are unattainable by individual action [21]. Con-
tagion theories examine how ideas, messages, and beliefs spread through some forms of direct
connection [18]. Cognitive theories address the role that knowledge and perception play in
socio-technical communication networks [88]. Exchange and dependency theories seek to
address how communication emerges based on the distribution of information and resources
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across the members [43]. Homophily and proximity theories explore the emergence of com-
munication networks based on the similarities of network members? traits [15]. Theories of
network evolution study the mechanisms of variation, selection, retention, and competition
[95].
2.1.2 Understanding GPS as a Creative Ecosystem
Scienti c communities behave in similar ways to an ecosystem in that there exist both
competition and cooperation over the use of resource; that is, interacting species (i.e., com-
munities) compete to gain resources from their environment to survive and grow, while also
cooperating to develop symbiosis and to improve their chance for survival. Arti cial ecosys-
tems have grown as a generalized evolutionary approach for creative discovery, since their
applications across di erent domains have been developed such as economics [6], ecology
[59], and social science [29]. Arthur [6] extends the frameworks of economics from viewing
economic activities within an equilibrium steady state, to viewing economic activities con-
tinually changing, and constantly adapting and co-evolving within a dynamically changing
environment. Mitchell [59] abstracts the natural evolution at a high level into two phases:
evolution using genetic operators (e.g., combination, mutation etc.), and selection of descen-
dents based on  tness. Epstein [29] studies the underlying rules and develops models about
how the decentralized local interactions of heterogeneous autonomous social individuals could
generate regularities observed in the real world.
We can summarize characteristics of arti cial ecosystems under eight basic concepts and
processes listed as follows [56]:
 The phenotype used in arti cial ecosystem forms the basis of an individual.
 A collection of individuals represent a species.
 Individuals are distributed and move within the environment.
 Individuals inhabit and interact within environment.
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 Individuals have abilities to modify and change the environment.
 Individuals have a scalar measure to represent success, i.e., health.
 Individuals undergo stages of development, i.e., life-circle.
 An energy-metabolism cycle describes the resources cycle.
In relation to dynamics of ecosystems, scienti c communities exhibit the following char-
acteristics:
 The domain of a scienti c community is its phenotype, which is composed of norms,
practices, and skills.
 Clusters of communities are comprised of epistemic cultures that correspond to species.
 Communities are distributed globally.
 An explicit model of environment (e.g., funding agencies) in uences decisions of com-
munities by altering the availability and distribution of resources.
 Scienti c communities have the ability to change and modify their environment as a
result of research and technology transfer.
 Communities have a scalar measure to represent success, i.e.,  tness.
 Scienti c communities undergo stages of coalescing, growth, stability, and renewal.
 Scienti c communities adopt external funding and transfer human capital and knowl-
edge into technology and products, which is similar to metabolism.
Based on the characteristics above, scienti c communities can be viewed as a creative
ecosystem.
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2.1.3 Boundary Processes in Knowledge Creation and Di usion
Boundary refers to something that indicates a limit or extent, which often has nega-
tive meanings because it leads to limitation and a lack of access. Boundaries exist between
communities; for example, there are technical communication challenges when communities
of psychology and computer science jointly hold a meeting. Unlike in traditional scienti c
teams, where boundaries are usually well de ned due to o cially sanctioned a liation, the
boundaries of the open source communities are rather  uid because they engage in interdis-
ciplinary research. On the other hand, boundaries are also important for a learning system,
because boundaries o er learning opportunities, and the learning opportunities are di er-
ent from those within a community [96]. In a community, the competence and experience
converge since it is the basis for a community to be stable. However, the competence and
experience tend to be diverse so as to expose communities to a foreign competence [97].
Therefore, both strong core activities within a community and active boundary processes
determine the learning and innovation potential of a social learning system [57].
The in uence among communities is bidirectional, which means that each scienti c com-
munity in uences other communities by publishing papers and holding conferences. At the
same time, they are also a ected by peer communities. Such processes are called boundary
processes, which \arise from di erent enterprises; di erent ways of engaging with one an-
other; di erent histories, repertoires, ways of communicating, and capabilities" [97]. Through
boundary processes, communities with common interests that promote each other become
closer and closer so that clusters emerge. Communities in a cluster share similarities in
terms of discipline, norms, skills, and expertise, and strongly connect with each other. In
addition, there are still interconnections among clusters, which are important for di erent
ideas to di use, although such interconnects are not as strong as those inside clusters. At
last, the environment communities inhabit is another noteworthy item. It is expected that
environments in uence the behavior of communities by investments policies [91].
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In order to build bridges across boundaries, some communities may act as brokers
between communities that are originally disconnected. Brokering makes boundary processes
occur, through which knowledge di uses. Concomitantly, communities that act as brokers
are likely to thrive because they can bene t from di erent experiences and views [97]. This
view is similar to the theory of structural hole in that communities invest social capital in
a structural hole to gain pro ts, as a broker builds links between those communities that
originally disconnected.
E ects of boundary processes on GPS are di erent from those on traditional scienti c
teams in terms of strength, because they have di erent decision-making styles. The decision-
making style in traditional teams is centralized, which results in traditional teams being less
likely to be a ected by boundary processes. On the other hand, GPS communities are more
likely to be in uenced by boundary processes since its decision-making style is decentralized.
In addition, GPS communities have lower entry threshold than traditional ones, which causes
higher mobility that in turn leads to higher in uence of boundary processes on GPS com-
munities. Therefore, to deal with di erent e ects on GPS or scienti c teams, the simulation
model presented in the dissertation adjusts the receptivity (ratio of weights of neighbors to
weights of itself). In other words, the receptivity for GPS is larger than that for traditional
scienti c teams.
2.1.4 Understanding GPS as a Complex Adaptive System
A complex system is composed of interconnected parts that as a whole exhibit one or
more properties (behavior among the possible properties) not obvious from the properties of
the individual parts. In essence, complexity is concerned with emergency, that is, the process
where the global behavior of systems results from the actions and interactions of agents [99].
The behaviors of scientists and scienti c communities have the characteristics of com-
plex adaptive systems. While scientists and scienti c groups adapt their behavior to  t their
changing environment, they also actively shape it to create cognitive niches to improve their
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resilience and success. The forming, dissolution, and maintenance of emergent collaboration
structures in reaction to opportunities, resources, and environmental (e.g., science policy)
interventions can be viewed as a dynamic ecosystem [108]. Therefore the formation of sci-
enti c domains, problem areas, and disciplines occurs in the context of a complex adaptive
system [41].
Knowledge creation in GPS is comprised of a large population of decentralized networked
individuals and groups of scientists who interact with and in uence each other to form
aggregate emergent communities of interest around focal problem domains. As a complex
adaptive system, a GPS has the following characteristics: [108]
1. Problem solving behavior, as well as emergence and co-evolution of communities are
results of activities and interactions of scientists.
2. Communities compete and cooperate to form and sustain cognitive niches and interact
through boundary processes.
3. Scientists and knowledge have mobility across boundary of scienti c communities. Mo-
bility fosters innovation [25].
4. Consists of many complex subsystems (e.g., scienti c communities, academic institu-
tions, R&D institutes).
Unlike in a traditional research project, where scientists are guided by a central au-
thority, scientists in a GPS aim at not only advancing science but also choosing a problem
based on their self-interests. During the scienti c process, scientists generate new problems
by solving existing problems, which in turn attracts more scientists with similar interests
to participate. Thus a circle of positive feedback forms. In [70], Pirolli illustrates how the
dynamics of information foraging play a negative feedback when solutions become routine
and become less novel due to diminishing rate of returns. Under such positive and negative
feedback, scientists adapt their behavior to improve their  tness and success [108].
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2.2 Environmental Constraints
The environmental constraints in our research refer to investments and policies that
policy-makers can leverage to in uence the activity of scienti c communities and further
foster the innovation performance. One of the policy instruments available to policy-makers
is the investment strategy in science and technology. The other is to foster the role of
competition and cooperation in the promotion of discovery [91]. However, the impacts of
these various policies on innovation are largely unknown. McCormack [56] states that the
design of environments based on which creative behavior is expected to emerge is at least as
important as the human capital which is expected to evolve within the environment. The
lack of knowledge about impacts of policies can lead to unintended consequence [91]. For
example, the goal of College Opportunity and A ordability Act of 2007 [68] is to stabilize the
state higher education spending and decrease the cost of colleges. But there is an undesired
consequence that the rate of growth of state higher education spending in the future is also
reduced.
Although the importance of (public and private) investment on science is widely ac-
cepted, there is still a lack of theories and methodologies to evaluate the nature and dis-
tributions of investments. Reed et al. [76] propose a seven-step framework to help pro-
gram managers develop a well-structured impact evaluation: 1. Identify scope, objective,
and priorities; 2. Select the types of evaluation to be completed; 3. Select the aspects of
deployment-induced changes to be evaluated; 4. Identify research questions and metrics; 5.
Design the evaluation; 6. Conduct the evaluation; 7. Report and use the results and data.
Knezo [49] concludes that Federal agencies allocate funding based on topical or  eld-speci c
priorities that have shifted over time, by studying the trends of Federal R&D budget in the
last half century.
The other policy instrument policy-makers can make use of is to foster competition and
cooperation. Competition for resources leads to various kinds of alliances/mutual relation-
ships and to the establishment of various symbiotic relationships [3]. Axelrod [8] undertakes
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a variety of simulations related to iterated Prisoner?s Dilemma, drawing conclusions based
on these experiments about the relationship between sel shness in the short run versus coop-
eration in the long run. Axelrod also  gures out ways in which groups form, adhere, oppose
or join other groups.
Based on the understanding of how scienti c communities respond to changes in funding
across research areas, we can design an environment by making policies to guide communities
to act in the ways agencies expect them. It is to analyze the con guration of an environment
given an expected behavior or output of communities. Since the relationship between the
environment and communities? behavior may not be one to one, it is feasible that multiple
environmental con gurations correspond to the same innovation outputs. The basic alloca-
tion decision is the choice of which items to fund in the plan, and what level of funding it
should receive [104]. There are two contingency mechanisms dealing with unexpected situa-
tions. One is to determine which community will be funded if more resources are available.
The other is to determine which community will be sacri ced if total resources have to be
shrunk.
For designing the environment, there are at least two potential aspects that need to be
explored further.
 Find out available investment strategies that can be used to compare e ects on in-
novation performance or potential. For example, broad investment in all domains,
key support for some speci c domains, random allocation, and dynamically changing
allocation based on contributions.
 Find out the investment strategy to maximize the innovation performance or innovation
potential. For example, what is the investment strategy so as to maximize the diversity
of communities?
One di erence between traditional teams and GPS is that GPS may require fewer re-
sources to create and maintain because resources can be shared by collaboration in GPS.
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In addition, GPS is driven by the desire of scientists to do original and creative research
[93], which in turn can reduce costs to hire scientists. Therefore, the di erence between
traditional teams and GPS is re ected by the maintenance resource model with adjusting
the maximum/minimum resources needed. In other words, traditional teams have higher
maximum/minimum resources needed than GPS. So the model presented in this study tries
to deal with both traditional teams and GPS by adjusting the parameters of the model.
2.3 Relation to Earlier Work
Earlier studies pertaining to the application of computational models to scienti c dis-
covery processes focus on simulating cognitive processes and re-enacting discoveries [48].
Speci cally, computational modeling of concept formation is viewed as central to discov-
ery and has a long history [44]. More recent and complex applications of computational
models include arti cial intelligence and machine learning techniques that view science from
the perspective of problem solving [84]. Most of these techniques focus on mimicking the
discovery processes employed by individual scientists. Yilmaz [109] develops an agent simu-
lation model conducted to examine the impact of culture and con ict management styles on
collective creativity in open source innovation systems. How collectives govern and coordi-
nate the actions of individuals to maximize innovation output is examined in [110] to better
understand the emergence of collective creativity.
Besides computational models, there are also other methods to study scienti c activi-
ties. The overlay map presented in [75] is a visualization technique that intends to catch the
reforms that most science and technology institutions are undergoing to transcend the tradi-
tional boundary of disciplines. Visual analytics is a new  eld of research that is focusing on
how people interact with information to make decisions [24]. Such visualization techniques
are also applied in other domains. Chemists use visualization to present a visual comparison
of properties or states in two or more systems so as to present visual prediction of properties
or states in the future [33]. Gloor [36] introduces an alternative method of measuring the
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success of knowledge workers. In [24], the visualization technique is used to address how the
public investment in science a ects the lives of U.S. citizens. As a new emerging tool, visu-
alization techniques also have some limitations. The data for visualization has so far been
limited to publication and patent data. In addition, in many cases it is not possible to pool
many cross-country data-sets because the data is gathered in di erent ways. Furthermore,
if there is no understanding of the underlying dynamics, the use of visualization does not
advance metrics [24]. Therefore, it is reasonable to combine visualization techniques with
computational models to better understand the underlying mechanism and to better present
results.
Although signi cant research has been conducted on scienti c communities from the
network perspective, simulation modeling of such communities is rare. In [34], Gilbert de-
velops a model where citation patterns and growth of knowledge are simulated to exhibit
empirical regularities observed in scienti c communities. However, this study does not aim
to consider social processes pertaining to enculturation and innovation. On the other hand,
the simulation study presented in [112] views scienti c discovery as a social process. How-
ever, it focuses on the interactions between single scientists so that it does not analyze the
pattern of network of communities formed by single scientists. In the context of innovation,
the use of simulation of collective invention and innovation di usion [22] revealed the sig-
ni cance of social network structure in knowledge creation and di usion. Furthermore, in
[56], McCormack uses the HSB model to represent arti cial species so as to demonstrate
similar species with similar color, which ignites the idea of using the HSB color model to
vividly depict the states of scienti c communities. In order to analyze the inner dynamics, an
organization is often divided into several interconnected components such as organizational
structure, agent, and environment [26]. Recently, the Simulating Knowledge Dynamics in
Innovation Networks (SKIN) [85] emerges as a tool to simulate knowledge dynamics in inno-
vation networks, which has been applied in learning competence [35], the university-industry
links [2], and technology spillover [73].
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Building on these earlier studies, the model introduced herein is:
1. a computational model, that can provide not only qualitative but also quantitative
analysis.
2. a model based on complex system theories, boundary processes, and communication
network theories.
3. an adaptive learning system of communities that can change their behavior based on
their  tness.
4. using communities as the unit of analysis to track the scienti c impact of investments.
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Chapter 3
Design Concepts and Details
3.1 Overview
Three major components are selected to represent the status of scienti c communities:
domain, maturity, and resources. Domain refers to discipline or task characteristics. Ma-
turity is an attribute that indicates the scienti c sophistication and degree of advancement
in a speci c domain. Resources that a community holds are vital to undertake scienti c
activities. In order to visually depict the states of communities, the HSB color model is
used. Hue indicates the domain of a community, as it determines the basic color such as
red (0o), blue (120o), green (240o) etc. Saturation represents maturity as it serves as an
indicator for the level of growth. Brightness corresponds to the level of resource. Figure 3.1
shows the visual snapshots of our model with grid and network topology, respectively. Each
cell represents a community whose color indicates its internal states. As the  gure depicts,
the community network pattern looks like a color landscape. Hence, the simulation model
of GPS communities is named the Colorscape model. Additionally, Colorscape is generic,
as it can be used to represent both traditional scienti c teams and GPS communities by
adjusting model?s parameters.
Figure 3.2 represents the components of the simulation model and their relationships.
In Figure 3.2, there are three kinds of relationships: interaction within a community, inter-
action between communities, and interaction between community and environment. These
three interactions are the fundamental driving forces for the dynamics of scienti c systems
composed of interconnected scienti c communities.
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Figure 3.1: Snapshots of Colorscape Model
Figure 3.2: Network of Scienti c Communities
3.2 Process
As shown in Figure 3.3, the process of our simulation model mainly consists of activities
speci ed by six sub-processes: resource allocation, interaction within community, learning,
innovation, growth, and fade. Resource allocation refers to strategies used to distribute
resources to communities. Interaction within community refers to scienti c activities at
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the macro level i.e., a community is driven by funding to improve its maturity. Learning
and innovation between communities mimic the boundary processes of communities i.e.,
communities a ect and are in uenced by peer communities. Growth is de ned as the process
through which communities improve their extent so as to increase their in uences. Fade
refers to disappearance of a community due to loss of resources and attractiveness. These
six sub-processes are discussed in detail in the following sections.
Figure 3.3: The Activity Flow of the ColorScape Model
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3.3 Resource Allocation
As shown in Figure 3.4, the triple helix of University-Industry-Government [30] is a
spiral model of innovation that captures multiple relationships in the process of knowledge
capitalization. Governments provide subsidies and grants as resource. Academia generates
knowledge, licenses, and graduates as input to industry; industry generates products as
input to innovation, as well as returns on capital and investment capital as input to  nancial
system.
Figure 3.4: Triple Helix of University-Industry-Government Relations
My research focuses on the relationship between government and academia, so Figure
3.4 is reduced to Figure 3.5. In the baseline model, the strategy for resource allocation is
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uniform allocation; that is, the total resources are distributed among all communities equally.
The total amount of resources available for allocation is equal to sum of the contributions
of communities coupled with external funding. Contributions by communities are based on
the premise that produced knowledge can be transferred to technology, which in turn results
in economic growth.
Figure 3.5: Resource Allocation
Contributions provided by a community is moderated by the product of its maturity
and resource. This is based on the hypothesis that communities with higher maturity and
resources are expected to be more productive. This is expressed in Equation 3.1:
Rt =
#communitiesX
i=1
(Fi;t +Si;t Bi;t); (3.1)
where Rt indicates the total resource available at time t. Fi;t denotes the external
funding allocated to community i at the time t. Si;t and Bi;t indicate maturity and resources
of community i respectively.
26
3.4 Interaction within Community
Interaction within the community refers to the scienti c activities at the macro level,
i.e., the community is driven by funding to improve its maturity. The interaction process is
depicted in Figure 3.6.
Figure 3.6: Interaction within Communities
3.4.1 Relationship between Maturity and Resources
Riss et al. [78] develop a model of knowledge maturation that includes three phases:
coalescing, maturing, and transformation. At the phase of coalescing, the e orts to improve
maturity of knowledge are high, because it is a period of exploration toward a solution for a
new problem. As the problem and methodology become clear, the maturity improves faster
as a result of aggregation of knowledge of individual scientists during the phase of maturing.
In the last stage, signi cantly high e orts are required to standardize knowledge artifacts
to make them reusable [78] and resolve con icts among stakeholders because tension builds
up as maturity passes the threshold for the problem and method to be settled. Thus, a
U-shaped trend between maturity and e orts arises.
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The relationship between resource and saturation is de ned as follows:
Rm;t = Rmin Rmaxc St +Rmax if St c
Rm;t = Rmax Rmin1 c St + Rmin cRmax1 c if St >c
0 < c < 1 (3.2)
where Rm;t is the resources needed to maintain the current saturation. St is the current
level of saturation, and c is the critical value that divides the trend into two categories.
Rmax and Rmin are the maximum and minimum resources needed respectively, which are
adjustable and based on types of communities.
At each time step, a community receives resources via external funding. But not all
available resources can be used to push forward the maturity of community, i.e., only part of
the resources helps advance maturity, because the following learning and innovation processes
also require resources. How much saturation the community can gain by these resources is
determined by the following equation:
St+1 = St + t (1 St) Rs;t; (3.3)
where St+1 is the maturity of the community at the time t + 1. Rs;t is the resources
that could be used to increase maturity, which is a proportion of (TotalResource Rm;t).
The increase in saturation is adjusted by  t, which is an exponential decay function with
gradually decreasing slope over time, because more e orts are needed to sustain a community
with increasing maturity.
 t = e t0=  (Smax Smin) +Smin; (3.4)
where  t is an adjusting parameter to control the increment of saturation. t0 is the
time period during which saturation increases continuously.  is a constant coe cient to
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control the slope of the function curve. Smax and Smin refer to the maximum and minimum
increment for saturation respectively. At the time when saturation just begins to increase,
 t is equal to Smax. As saturation increases,  t gradually decreases toward Smin.
3.4.2 Resources Consumed
As maturity increases, it is necessary to consume resources because technology develops
based on research and development costs. Resource level is updated as Equation 3.5,
Bt+1 = Bt +Rt Rm;t Rs;t; (3.5)
where Bt+1 is the resource the community has at the end of this interaction process.
Bt denotes the resource the community already holds at the current time. Rt is the new
resource allocated to the community at the current time. Rm;t is the resource to maintain
the current state, which is based on equation 3.2. Rs;t is the resource needed to change
maturity.
3.5 Learning between Communities
Learning between communities mimics the boundary processes between communities,
i.e., communities a ect and are in uenced by peer communities. In the Colorscape model,
based on the assumptions predicated on the Homophily theory [61], a community is more
likely to communicates with similar others and is highly in uenced by similar peer com-
munities. As depicted in Figure 3.7, when a scientist or domain knowledge in community 2
transfers to community 1, the scientists of community 1 who interact with and are in uenced
by the new knowledge are pulled toward to the new direction.
Figure 3.8 depicts the process of learning, which mainly includes update neighbors,
update weights of neighbors, update discipline, maturity and resources of the current com-
munity through boundary processes based on the homophily theory.
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Figure 3.7: Learning Process
3.5.1 Updating the Intensity of Communities? In uences
The in uences that communities exert or receive are re ected by their interaction fre-
quency. Interaction frequency between communities is depicted by the weights associated
with links in the evolving communication graph. According to the Homophily theory, the
more similar communities are, the stronger the in uences. So, the intensity of community
j?s in uence on community i is de ned as follows:
8
>><
>>:
Wji;t = Wji;t 1 +CW Iji;t (1 Wji;t 1) if Iji;t 0
Wji;t = Wji;t 1 +CW Iji;t Wji;t 1 otherwise
(3.6)
where Wji;t is the in uence of neighbor j at the current time. CW is a number between 0
and 1 and is inversely proportional to inertia (resistance to change in a community). Iji;t is
the intensity of change in the in uence, which is de ned as:
Iji;t = (1 Dji;t)4 (1 Di;t)4; (3.7)
where Dji;t is the dissimilarity which is equal to the distance between community i and
community j in terms of current hue at the time t whose equation is 3.8. Di;t is the average
distance between community i and all of the neighbors at the time t. This function grows
much faster when dissimilarity between i and j becomes smaller in comparison to average
dissimilarity, resulting in higher intensity Iji;t.
The equation for the dissimilarity between community i and j is de ned as follows:
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Figure 3.8: Flow Chart of the Community Learning Process
Dji;t = Dissimilarity(Hi;t;Hj;t); (3.8)
where Hi;t is the hue of community i at the time tick t. Hj;t is the hue of community j
at the time j.
Dissimilarity(x;y) =
8>
><
>>:
jx yj
180 ifjx yj 180
360 jx yj
180 otherwise
(3.9)
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3.5.2 Updating the Maturity of a Community
Learning among communities a ects both saturation and discipline. Saturation refers
to maturity of the domain that is the state or quality of being fully grown or developed.
The reason for change in saturation by learning is that scientists can borrow theories and
methodologies from other domains to improve the skills and knowledge necessary to solve
problems in their own domain.
As shown in Figure 3.9, the circle refers to hue and the vector refers to saturation.
Length of the vector indicates the strength of saturation. The longer the vector is, the
larger is the saturation. Angles represent di erences between communites in terms of their
domains. The larger the angle is, the more di erent these domains are. S1, S2 and S3 are
saturation of community 1, community 2, and community 3, respectively. S2 and S3 are in
di erent domains from S1. But both S2 and S3 have e ects on S1 moderated by the angles
 and  , respectively. So, the in uence from S2 is equal to W2;1 S2 cos( ). On the other
hand, the in uence from S3 is W3;1 S3 cos( ), where cos( ) is negative since  is obtuse.
Figure 3.9: Updating Maturity during the Learning Process
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The change of saturation during the learning process is the sum of in uences from peers,
which is de ned by equation 3.10,
Si;t+1 = Si;t +AS 
#neighborsX
j=0
Wji;t Sj;t cos( ji;t); (3.10)
where Si;t+1 refers to the saturation of community i at the time t+ 1.  ji;t refers to the
angle between the hues of communities i and j. AS is a function of susceptibility de ned in
Equation 3.11:
AS = e   R; (3.11)
where R refers to the resources the community currently holds.  is a constant coe cient
to control and calibrate the rate of change in susceptibility.
3.5.3 Updating the Discipline of a Community
Learning can lead the current community to change its hue i.e., discipline (speci c norms,
practices, and relevant skills) due to in uences from neighbor communities. Concomitantly,
the community itself is inclined to realize its own target norms as shown in Figure 3.10,
where the circle refers to hue and the vector refers to saturation. Angles between vectors
represent di erences of communities in terms of their domains. The larger the angle is,
the more di erent these domains are. Hcurrent1 , Hcurrent2 and Hcurrent3 are the current hue
of community 1, community 2, and community 3, respectively. Hcurrent2 and Hcurrent3 are in
di erent domains from Hcurrent1 . But both Hcurrent2 and Hcurrent3 have e ects on Hcurrent1 with
angle of  and  , respectively. Additionally, Hcurrent1 is pulled by its target hue Htarget1 due
to its intention to realize its target. So, the change of hue during the learning process is the
sum of in uences from peers and its own inclination, which is de ned by equation 3.12.
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Figure 3.10: Domain Update during the Learning Process
Hcurrenti;t+1 = Hcurrenti;t +AH 
0
@
0
@
#neighborsX
j=1
Wji;t (Hcurrentj;t  Hcurrenti;t )
1
A +Wi;t (Htargeti;t  Hcurrenti;t )
1
A
(3.12)
where Hcurrenti;t+1 refers to the new hue after the learning process. Hcurrenti;t refers to the
current hue of the community i. Hcurrentj;t refers to the current hue of the community j. Wji;t
refers to the in uences of community j on community i at the current time. Wi;t refers to
the resistance of community i to reach its own target hue. Htargeti;t refers to the current target
hue of community i. AH denotes susceptibility and is de ned in Equation 3.13 as:
AH = e   RS ; (3.13)
where S refers to saturation. Other parameters are the same as Equation 3.11.
AS and AH are community?s susceptibility to in uence on saturation and hue respec-
tively. Susceptibility to in uence on saturation (AS) and hue (AH) decreases with increasing
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resources, because a community obtains greater success if the community acquires more re-
sources, which in turn inhibits the strength of in uences exerted by other communities. In
addition, as saturation increases, a discipline becomes more susceptible to change. When the
resource level is high and the discipline is saturated, members are more likely to experiment
with new ideas.
3.5.4 Updating the Resource of a Community
During the learning process, communities purchase instruments, organize meetings and
forums, or spend time on new materials etc. The amount of resources consumed is propor-
tional to the degree of change in saturation and hue. Resource consumption for learning is
de ned as follows:
Bi;t+1 = Bi;t (CH j Hj+CS j Sj); (3.14)
where  H = Dissimilarity(Hcurrenti;t+1 ;Hcurrenti;t )
 S = Si;t+1 Si;t
Bi;t+1 refers to the resource of domain i at the next time. Bi;t refers to the resource of
domain i at the current time. CH and CS are constant numbers to convert changes of hue
and saturation to resource respectively.
3.6 Innovation Process
Innovation changes the norms of the community i.e., target hue in the Colorscape model,
because changing target hue is a strategy for a community to adapt to its environment.
Moving target hue of a community toward its current hue can decrease resource consumption
during the learning process, which in turn improves its sustainability. The distance between
current and target hue is de ned as  exibility that is an important requirement for innovation
[90]. Therefore, a requirement for innovation is  exibility greater than a threshold as:
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Dii;t TInnovation; (3.15)
where Dii;t is the distance between current hue and target hue. TInnovation is the toler-
ance.
In addition, there are two kinds of innovation patterns, one of which is reorganization,
the other is specialization. Reorganization means that the community starts transforming it-
self by moving its accepted target toward the current state. On the other hand, specialization
means branching out new communities. Whether reorganization or specialization happens
is determined by a parameter called reorganization tendency. The innovation process is
depicted in Figure 3.11.
Figure 3.11: Flow Chart of Innovation
3.6.1 Reorganization
Reorganization process a ects the hue of the target color, which is the weighted sum
of target colors of the in uential neighbors and resistance to change. Communities are
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in uenced by target colors of neighbors because the target of a community determines its
future direction and can be seen as its vision. As shown in Figure 3.12, Htarget1 is in uenced
by Htarget2 , Htarget3 , and Hcurrent1 .
Figure 3.12: Updating the Domain during the Innovation Process
Htargeti;t+1 = Htargeti;t +AH 
0
@
0
@
#neighborsX
j=1
Wji;t (Htargetj;t  Htargeti;t )
1
A +Wi;t (Hcurrenti;t  Htargeti;t )
1
A
(3.16)
where Htargeti;t+1 refers to the new target hue after the reorganization process. Htargeti;t refers
to the current target hue of the community i. Htargetj;t refers to the current target hue of the
community j. Wji;t refers to the in uence of community j on community i at the current
time. Wi;t refers to the resistance of community i to retain its own current hue. Hcurrenti;t
refers to the current hue of community i. AH is susceptibility of community i and is de ned
in Equation 3.13.
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Innovation may refer to incremental and emergent or radical and revolutionary changes
in thinking, products, processes, or organizations [101]. Therefore, innovation requires addi-
tional resources. Resource consumption during innovation is de ned as follows:
Bi;t+1 = Bi;t CH j Hj; (3.17)
where Bi;t+1 refers to the brightness of domain i at the next time. Bi;t refers to the
brightness of domain i at the current time.  H refers to the changes of target hue of domain
i. CH is a constant value used to convert hue to resources needed for the innovation process,
which is the same as CH in equation 3.14.
3.6.2 Specialization
Specialization corresponds to the fact in the real world that new communities are split
from the original community if the current community cannot match the expectations of all
members. When specialization occurs, a new community is created. The new community
occupies the nearest empty cell to the current community. If there are no empty cells, then
specialization cannot happen. The underlying reason is the carrying capacity that is de ned
as the maximum number of communities that the current environment can sustain [72].
After the new community is created, the current color of the new community is the
same as the original community. On the other hand, the target color of the new community
is generated randomly within a range, as shown in Figure 3.13.
3.7 Grow and Fade
Following the innovation process, if the resource of a community cannot maintain its
current state, then Rs;t is decreased, and the processes of interaction, learning and innovation
starts over. The iteration process continues until the remaining resources can maintain the
current state or Rs;t is equal to 0. When Rs;t is equal to 0, the community fades and
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Figure 3.13: Specialization
is removed from the current context. On the other hand, if the community has enough
resources to maintain and the neighbor cell is empty, then the community is likely to extend
to occupy neighbor cells with a small probability. This captures evolutionary dynamics by
retaining those communities that are  t to survive in the current environment.
3.8 Heterogeneous Adaption
Individual communities can adaptively change the weights of interconnections with other
communities based on the environmental feedback so as to maximize their  tness [58]. The
 tness refers to the resource the community gains. The more resources the community gains,
the higher its  tness becomes. On the other hand, the  tness decreases if fewer resources
are acquired. Furthermore, the weights of interconnection evolve along with the  tness. The
equations for weights to change are as follows: two groups that correspond to weights of
neighbors and weights of self respectively.
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:
Wji;t+1 = Wji;t + Wji;tW
i;t+
P#neighbors
k=1 Wki;t
 (1 Wji;t) if fitness inceases
Wji;t+1 = Wji;t Wji;tW
i;t+
P#neighbors
k=1 Wki;t
 Wji;t if fitness decreases
Wji;t+1 = Wji;t otherwise
(3.18)
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>>>:
Wi;t+1 = Wi;t + Wi;tW
i;t+
P#neighbors
k=1 Wki;t
 (1 Wi;t) if fitness inceases
Wi;t+1 = Wi;t Wi;tW
i;t+
P#neighbors
k=1 Wki;t
 Wi;t if fitness decreases
Wi;t+1 = Wi;t otherwise
(3.19)
where Wji;t refers to the original interconnection weights of community j to community i.
Wij;t+1 refers to the new interconnection weights after feedback based on  tness. P#neighborsk=1 Wki;t
refers to the sum of weights of all neighbors. Wi;t refers to the tendency of community i to
reach its own target hue. The range of weight is between 0 and 1. If  tness rises, the
weight should increase toward 1 in proportion to the contributions of community j i.e.,
Wji;t=(Wi;t + P#neighborsk=1 Wki;t). On the contrary, if  tness falls, the weight should also de-
crease toward 0 in proportion to the contributions.
It is worth noting that the link between j and i is removed, if Wji is smaller than a
threshold.
3.8.1 Initialization
Table 3.1 describes all the state variables and their initial values in the simulation model.
The signi cances of each variable are discussed in the following.
1. Carrying capacity (initial community number) refers to the size of the whole scienti c
society that is composed of single communities interconnected with each other. In
biology, the term of minimum viable population [103] is the lower bound of population
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Table 3.1: Initial Values of State Variables
Parameters Name Range Initial Value
Carrying Capacity [10, 200] 100
Stop Time [1;1) 1000
Startup Funding [1, 2] 2
Parameter Fi;t in equation 3.1 [0.1, 1] 0.5
Tolerance [0, 1] 0.2
Reorganization Tendency [0, 1] 0.5
Parameter c in equation 3.2 [0, 1] 0.5
Parameter Rmax in equation 3.2 [0, 1] 0.9
Proportion of resources to advance maturity [0, 1] Random
Max Increment of Saturation Per Step (Smax in equation 3.4) [0.1, 1] 0.5
Min Increment of Saturation Per Step (Smin in equation 3.4) [0, 1] 0.1
 in equation 3.4 (0;1) 100
CW in equation 3.6 [0, 1] 0.5
 in equation 3.13 (0;1) 3
Resources Cost to Push Hue (CH in equation 3.17) [0, 1] 1
Resources Cost to Push Saturation (CS in equation 3.17) [0, 1] 1
Current color HSB range Random
Target color HSB range Random
Initial weight of Self [0, 1] Random
Initial weight of neighbor [0, 1] Random
Weight to grow [0, 1] Random
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of species so that it can survive. So, it is expected that the initial community number
is related to diversity and resilience.
2. Startup Funding (parameter Fi;t in equation 3.1) indicates the external funding al-
located to the community. Research funding could be structured to encourage the
formation of new communities [91]. Also research funding has e ects on the develop-
ments of existing communities.
3. Tolerance (threshold for innovation to happen) and reorganization tendency determine
innovation occurrence frequency and which type of innovation occurs. Since innovation
changes the norms of the community, it is of interest to investigate the relationship
between the type of innovation and diversity.
4. Parameter c and Rmax in equation 3.2 determine the form of the maintenance function
that in turn decides whether or not the community could fade out.
5. Smax, Smin and  in equation 3.4 determine how much maturity can be gained per time
tick. On the other hand, the more maturity a community gains, the more resources the
community consumes, which increases the likelihood of fading of the community. So
Smax, Smin and  are important parameters when total available resources are limited.
6. CW in equation 3.6 determines changes of weights of links that in turn determine
in uences of peer communities during the process of learning and innovation.
7.  in equation 3.13 determines the slope of the curve of susceptibility of a community.
It determines the extent to which the community can be changed further.
8. CH and CS in equation 3.17 determine the relationship between domain change inten-
sity, maturity, and corresponding resources consumption. So, these two parameters are
expected to a ect the rate of fading.
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Chapter 4
Implementation of Simulation Model
4.1 Introduction to Repast
Repast is an acronym for the Recursive Porous Agent Simulation Toolkit [77] that is a
free and open source agent-based modeling toolkit that simpli es model creation and use.
Repast Simphony provides a rich variety of features including the following:
 The model development can use pure Java, Groovy,  owcharts, and any mixture of
them.
 A pure Java model execution environment includes built-in results logging and graphing
tools that make it easy to change the appearances of agents.
 The context is based on a  exible hierarchy that can realize the modeling and visual-
ization of 2D environments and 3D environments.
 The discrete event scheduler is fully concurrent multithreaded.
 All the models developed by Repast are object-oriented.
In general, the standard model using Repast is based on contexts and projections.
There are some frequently used projections including grid, continuous space, network, and
geography. Figure 4.1 shows how context, sub context, and projection interact.
4.2 Implementation of Agents
Figure 4.2 represents part of the class diagram of this simulation model of open science
communities, where there are four main classes: Community, SubCommunity, Neighbor and
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Figure 4.1: Contexts and Projections
CommunityStyle. Community is the major research object in the simulation model, which
has two types of state variables and three functions. SubCommunity is used when a commu-
nity occupies multiple cells. A community is comprised of one or more SubCommunities. The
CommunityStyle class is used to render Community and SubCommunity, so as to show the
correct color according to the states of domain. The Neighbor class represents communities
connected with the current community.
Figure 4.2: Class Diagram of Model
A community is represented by its genome and state whose details are described as
follows:
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 Genome
Target color is (H, S, B) = (H, 1, 1), where H refers to discipline of community whose
range is [0, 360). Wg is the probability for a community to grow i.e., occupy neighbor
places. WS is propensity of community to move toward the target. WNk denotes the
in uence exhibited on the community by the kth neighbor
 State
H, S, and B of current color represent domain, maturity, and resource respectively.
Age refers to the time period when the community exists in the context. Width is the
number of cells the community occupies. The resource level R allocated at the current
time is di erent from B, which represents the overall resources held by the community.
4.3 Visual Snapshots of the Simulation View
The following three groups of  gures depict snapshots of the Colorscape model over time
with 2D, scale-free, and dynamic communication context respectively. Among these  gures,
there are two points in common, one of which is that communities become more colorful as
the result of increasing maturity. The other is that clusters of similar communities emerge
as the result of boundary processes among communities.
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(a) (b)
(c) (d)
Figure 4.3: Snapshots of 2D Communication Context
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(a) (b)
(c) (d)
Figure 4.4: Snapshots of Scale-free Communication Context
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(a) (b)
(c) (d)
Figure 4.5: Snapshots of Dynamic Communication Context
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Chapter 5
Veri cation, Validation and Evaluation
The evaluation of a simulation model involves two major activities, one is veri cation,
and the other is validation that includes conceptual and operational validation [9]. Concep-
tual validation aims to assure that the conceptual model is consistent with the system under
investigation [79]. Operational validation substantiates the accuracy of model?s behavior
against the system behavior for its intended purpose and domain of applicability. [79].
Figure 5.1: Overview of Veri cation and Validation [92]
Also, veri cation and validation can be conducted at the micro and macro level respec-
tively. Thus, the strategies for di erent levels of veri cation and validation are summarized
as shown in Table 5.1.
5.1 Veri cation
Veri cation is the process of determining that a computer model, simulation, or fed-
eration of models and simulation code and their associated data accurately represent the
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Table 5.1: Veri cation and Validation at Micro and Macro Level
Veri cation Conceptual Vali-
dation
Operational Val-
idation
Micro Unit test at thelevel of single
function
Ontological
Adequacy: ground
each equation on
theory
Activity of single
agent against the-
ory
Sensitivity analysis
with respect to sin-
gle agent
Macro
Integration test at
the level of
components of
agent
Conceptual
validity against
theory
Activities of set of
agents against the-
ory
Activities of set of
agents against em-
pirical evidence
Conceptual
validity determined
by experts
Cross-model vali-
dation
Sensitivity analysis
with respect to set
of agents
developer?s conceptual description and speci cations [1]. To achieve this goal, unit and
integration tests are used.
5.1.1 Micro Veri cation
Micro veri cation is carried out by unit test at the level of single function. Unit testing
involves determining the correctness of the simulation program at the function level. All
functions are tested using boundary and error conditions, and the outputs are observed for
consistency against expected regularities. For demonstration purposes, the following example
illustrates testing of the resource allocation module. The resource allocation strategy in the
baseline model is used to allocate resources evenly across the communities. The total amount
of resources each community receives is equal to resources allocated to each cell times the
number of cells the community occupies plus the contributions to transfer technology.
1. When communities make no contributions and one cell per community:
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Resources allocated per cell Resources received by each community
0 0
0.5 0.5
1 1
2. When communities make no contributions and two cells per community:
Resources allocated per cell Resources received by each community
0 0
0.5 1
1 2
3. When communities make contributions 1 and one cell per community:
Resources allocated per cell Resources received by each community
0 1
0.5 1.5
1 2
4. When communities make contributions 1 and two cells per community:
Resources allocated per cell Resources received by each community
0 1
0.5 2
1 3
5.1.2 Macro Veri cation
Macro veri cation is carried out by integration tests at the level of collectives of agents
such as interaction, learning, reorganization, specialization, fade, and growth etc. Integration
testing is the activity of software testing in which individual software modules are combined
and tested as a group [102]. For our simulation model, we focus on the behavior of the
Community class since community behavior is the focal aspect of our study.
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The learning process is composed of several functions such as updating in uences of
neighbors, calculating changes of hue, saturation, and brightness etc. Table 5.2 records the
precondition and expected values (the column Next Color) of the integration test for learning
process.
Table 5.2: Summary of the Integration Test for the Learning Process
Community 1 Neighbor Community 1
Current Color Target Color Receptivity Current Color Next Color
(0,0,0) (0,1,1) 1 (180,1,1) (180,0,0)
(0,1,0) (0,1,1) 1 (180,1,1) (180,0,0)
(0,1,0) (90,1,1) 1 (180,1,1) (180,0,0)
(0,1,1) (0,1,1) 1 (180,1,1) (8.96,0.95,0.9)
(0,0,0) (0,1,1) 0 (180,1,1) (0,0,0)
(0,1,1) (0,1,1) 0 (180,1,1) (0,1,1)
(0,0,0) (0,1,1) 0 (90,1,1) (0,0,0)
(0,0,0) (180,1,1) 0 (90,1,1) (180,0,0)
In the above table, the  rst three rows show that the current color of a community
with receptivity of 1 will be changed to the same as the current color of interacted neighbors
after the learning process, no matter what the community?s target color is. The di erence
of the fourth row from the  rst three rows is that the quotient of the community?s resource
divided by saturation is equal to 1, which in turn makes its susceptibility (Equation 3.13)
greater than 0. So, the current color under the case of the fourth row is the result computed
by Equation 3.12. The last four rows illustrate that the current color of a community with
receptivity of 0 is always pulled toward its target color, which is independent of in uences
from neighbors.
5.2 Validation
There are two major types of validation: conceptual validation and operational valida-
tion.
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5.2.1 Conceptual Validation
The conceptual validation refers to ontological adequacy by grounding the underlying
generative mechanisms of the model on theories and/or empirical evidence. Table 5.3 lists
the evidence used to validate each subprocess of the Colorscape model.
Table 5.3: Summary of Conceptual Validation of Each Subprocess
Subprocess Evidence
Interaction between environment and
community
Prey-predator models[46]
Observed trends in NSF investments
[60]
Relationship between maturity and
resources
U-shaped model of the knowledge ma-
turing process [78]
Kuhn?s paradigm change theory [53]
Updating intensity of communities? in-
 uences
Homophily theory [15]
Domain dynamics of a community Boundary processes [96], Social learn-
ing theory [88].
Maturity dynamics of a community The formation process of DNA comput-
ing [5].
Community reorganization Panarchy theory[37]
Community specialization Panarchy theory[37]
Fading process dynamics Panarchy theory[37]
Community growth dynamics Panarchy theory[37]
Panarchy is the structure in which systems of nature and systems of humans, as well
as combined human-natural systems are interlinked in continual adaptive cycles of growth,
accumulation, restructuring, and renewal [37]. Therefore, it is used in this study to validate
the subprocesses of reorganization, specialization, grow, and fade.
5.2.2 Micro Operational Validation
As far as the micro operational validation is considered, we compare the behavior of
a single agent to the expected regularities. The followings illustrate three micro operation
validation strategies used for the Colorscape model.
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1. According to the Homophily theory, the intensity of in uences from similar peers is
greater than that from di erent peers. So, one way to conduct micro operational
validation is to investigate the impact of di erences between weights of in uences of
neighbors associated with an agent.
2. The other strategy is to undertake sensitivity analysis with respect to single agents.
For example, an agent with fewer resources is more likely to fade than agents with
more resources. In addition, an agent with higher receptivity has stronger intention to
change its domain toward its neighbors, compared with agents having lower receptivity.
3. When an unexpected phenomenon occurs, we need trace it back to the internal mecha-
nisms of the model by viewing it as a white box. If the rationale behind the unexpected
phenomenon is found and it matches either existing theories or empirical rules, then
the model is validated with respect to the case.
5.2.3 Macro Operational Validation
For macro operational validation, we focus on the global emergent behavior based on
agent interactions i.e., external validation against real world. There are various strategies for
macro operational validation, such as comparison of simulation outputs to target systems,
empirical rules, cross-model validation, and sensitivity analysis [80]. Firstly, validation can
be conducted via comparison of simulation model outputs and the actual data collected
from the system under investigation. If data are not available, empirical rules can be used
to determine the validity of the model, e.g., presence of power law in cities? population,
 nancial market, and internet sites [11]. In addition, we can evaluate impacts of a speci c
parameter by changing its value but keeping others unchanged. If the result is consistent
with the expected regularities, then we increase our con dence about the correctness of the
simulation model under this speci c case. Finally, unexpected phenomena could emerge since
the Colorscape model aims to study complex systems. When such unexpected phenomena
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occur, it is necessary to trace back to the model and check the control and data  ows step
by step. If the unexpected phenomenon can be interpreted reasonably, then the model is
validated under this phenomenon.
5.2.3.1 Emergence of Communities
Figure 5.2 presents evolving states of communities over time during a single run of the
Colorscape model. Initially, the colors of communities are grey due to their low maturity. As
the simulation unfolds, states of communities become increasingly colorful due to increasing
maturity through community sustainment, interaction, learning, and innovation processes.
After a long run, clusters with similar color patterns emerge, which suggests formation of
related disciplines as a result of communication and boundary processes.
Figure 5.2: Growth and Formation of Community Clusters
Figure 5.3(a) presents the ideal core/periphery network pattern. Figure 5.3(b) depicts
the domain-domain network pattern of OBO community. Figure 5.3(c) is a snapshot of the
network of the Colorscape model. From the visual comparison of these three  gures, one
can observe similar network structures such as the presence of core communities with a large
number of links surrounded by periphery communities.
5.2.3.2 Comparison with Institutions around Department of Energy
Figure 5.4(a) depicts how the clustering coe cient of DOE in nanoscale science changes
from 1990 to 2005 [60]. Figure 5.4(b) depicts the clustering coe cient gathered by running
the Colorscape model from time step 1 to 100. From these two  gures, we observe very
similar trends i.e., clustering coe cient oscillates within a limited range.
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(a) Core/Periphery Network (b) OBO Domain-
Domain Network
(c) Snapshot of the Colorscape Model
Figure 5.3: Emergent Network Patterns
(a) (b)
Figure 5.4: Comparison of Clustering Coe cient
Figure 5.5(a) shows the number of institutions and average degree of institutions of
collaborations in nanoscale science with DOE from 1990 to 2005 [60]. Figure 5.5(b) and 5.5(c)
present the number of communities and average degree respectively gathered via running the
Colorscape model from time step 1 to 100. From these three  gures, we observe very similar
trends, i.e., the number of communities increases gradually and the average degree  uctuates
within a limited range. This increases our con dence in the Colorscape model introduced in
this dissertation, because of its capability of generating similar network patterns and metric
outputs to corresponding indicators such as institutional structure involved in nanoscale
science in Department of Energy (DOE).
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(a) (b) (c)
Figure 5.5: Comparison of Communities Number and Average Degree
5.3 A Robust Evolutionary Framework for Validation
In this section, a robust evolutionary framework for validation based on genetic algo-
rithm is introduced to  nd the appropriate con guration parameters of the Colorscape model
to produce results similar to the overlay map and OBO data in terms of the number of nodes,
density, centrality, clustering coe cient, average path, and core/periphery ratio.
5.3.1 Design of the Validation Framework
The strategy used in the operational validation of the ColorScape model is shown in
Figure 5.6. Each step will be discussed in detail in the following sections.
5.3.2 Gene Encoding
Gene Design has two subprocesses, one of which is gene encoding. The other is gene
decoding.
Gene encoding refers to the process of converting the con guration parameters to genes
that evolve toward parameter space that exhibits accurate results with respect to system
data. In general, genes are presented in binary strings, where each element is 0 or 1. It
is essential to determine how many bits are needed to represent a con guration parameter,
which in turn is determined by the value range and the degree of precision needed. If the
con guration parameter is integral, then the binary presentation of the integer is used as
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Figure 5.6: Validation Framework
the gene. If the con guration parameter is  oat, the degree of precision must be set up in
advance so that the binary presentation of the  oat number satis es the requirements. If
the con guration parameter has a  xed amount of feasible values, then the number of bits
of the corresponding gene is determined by the total number of feasible values. The  nal
gene is a string that consists of all the con guration parameters. As shown in Figure 5.7, we
select two parameters from a collection as an example, one of which is integer and ranges
between 0 and 6. The other is  oat and the range is from 0 to 1. For the integral parameter
m, three bits are required since the maximum value is 6. For the  oat parameter with value
equal to 0.75, there are four possible values since the precision is set to 0.25. So two bits are
required to represent parameter n.
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Figure 5.7: Gene Encoding
Since there are twelve allocation strategies, four bits are needed to represent allocation
strategies. Based on the same rationale, the number of bits of other con guration parameters
is determined. Figure 5.8 shows a sample of gene after encoding the con guration parameters
of the Colorscape model, where the total number of bits is 21.
Figure 5.8: Gene Example
5.3.3 Gene Decoding
As an inverse process of gene encoding, gene decoding aims dividing the gene into parts
corresponding con guration parameters.
To calculate the  tness of each gene, the gene has to be translated (decode) into con-
 guration parameters of the Colorscape. Then the Colorscape model is batch run given the
parameters and return the outputs.
The total number of bits of the gene is 21, among which di erent bits have di erent
meaning. The following table interprets the relationship between bits and the corresponding
meanings.
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Table 5.4: Gene Decoding
Bits Variable Name Code Value
0-1 Population
00 10
01 50
10 100
11 200
2-5 Allocation Strategy
0000 Uniform allocation with  xed external resource
0001 Uniform allocation with technology transferring
0010 Allocation proportional to contribution with  xed
external resource
0011 Allocation proportional to contribution with tech-
nology transferring
0100 Allocation proportional to cluster size with  xed
external resource
0101 Allocation proportional to cluster size with tech
transferring
0110 Allocation proportional to importance of domains
with  xed external resource
0111 Allocation proportional to importance of domains
with technology transferring
1000 Competition allocation
1001 P2PAllocation
1010 Random allocation with  xed external resource
1011 Random allocation with technology transferring
6-7 Resource 00 0.1
Continued on next page
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Table 5.4 { continued from previous page
Bits Variable Name Code Value
01 0.4
10 0.7
11 1.0
8-9 Tolerance 00 0
01 0.3
10 0.6
11 1.0
10-12 Reorganization Tendency
000 0
001 0.1
010 0.3
011 0.5
100 0.7
101 0.9
110 1.0
13-15 Receptivity
000 0
001 0.1
010 0.3
011 0.5
100 0.7
101 0.9
110 1.0
16-18 Communication Frequency 000 0.1
001 0.2
010 0.3
Continued on next page
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Table 5.4 { continued from previous page
Bits Variable Name Code Value
011 0.4
100 0.5
101 0.6
110 0.8
111 1.0
19-20 Growth Threshold
00 0.5
01 0.7
10 0.8
11 1.0
There is one noteworthy aspect, that is, speci c values of bits may not have real mean-
ings, for instance, receptivity of 111. If it happens, a recovery strategy is required. The
recovery strategy used here is to mod the old value by the maximum practical value. For
the receptivity of 111, the new receptivity is equal to 111 % 7 = 000.
5.3.4 Population Initialization
Population initialization involves generating a collection of genes with the prede ned
total number. Each bit of a gene is assigned randomly as 0 or 1. Once the total number
of genes is assigned, the population is generated automatically. The size of the population
used in the validation framework is 100.
5.3.5 Repair to the Genes
During the evolution, the generated new genes may be out of the feasible range. In this
case, a repair is needed to guarantee the validity of the gene. Considering the parameter m
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shown in Figure 5.7, if the generated value is 111, it is beyond the feasible range since its
maximum value is 6. Two strategies can be used to make the repair. One is to mod the
new value by the maximum value, i.e., 7%6 = 1. Then the repaired gene is 001. The other
strategy is to randomly map it into the feasible domain.
5.3.6 The Fitness Function
In biology, natural selection is the process of eliminating members of a species that do
not adapt to the environment well. In genetic algorithm, the selection of genes is based
on their  tness that is the indicator showing how close the gene?s outputs are against the
target. To quantitatively validate a simulation model, metrics have to be chosen and the
corresponding values of these metrics with respect to the real system are computed. The
values of metrics of the real system are the target. The  tness of each gene is inversely
proportional to the distance between its outputs and the target metrics, which is de ned by
Equation 5.1:
f(g) = 1qP6
i=1(xi ti)2
; (5.1)
where g is the gene. xi is the ith element of output metric vector given the gene. ti
is the ith element of target metric vector. The metric vector includes six elements, each of
which corresponds to a metric: the number of nodes, density, centrality, clustering coe cient,
average path, and core/periphery ratio.
As a general measure of the degree of socio-technical interaction, we use and interpret
density, centrality, clustering coe cient, average path length and core/periphery ratio so as
to identify the target networks including OBO and overlay map. Except the core/periphery
ratio, the de nition of other metrics and their relation to creativity and innovation potential
are presented in [113]. The core/periphery network pattern is considered as a stable, sus-
tainable, and innovative structure [52]. Given the same number of core members, increasing
level of periphery members is bene cial for bringing new external ideas. The core/periphery
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ratio is used to measure the percentage of the members in the core to the members in the
periphery. The algorithm shown in Figure 5.9 describes the strategy used to compute the
core/periphery ratio.
Figure 5.9: Core/Periphery Ratio
5.3.7 Termination Condition
There are two conditions to terminate the validation process:
1. The maximum iteration times are reached.
2. A gene with  tness greater than a prede ned threshold emerges.
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5.3.8 Crossover
Reproduction is the process of generating the next generation of genes, where two genetic
operators are used, i.e., crossover and mutation. For crossover, there are two options: one-
point crossover and two-point crossover. One-point crossover means that two genes exchange
the parts beginning at the randomly selected cross point. Two-point crossover is de ned as
that two genes exchange the part between the  rst and the second cross point.
5.3.9 Mutation
Crossover is a binary operator. On the other hand, mutation is a unary operator. There
is a very small probability of mutation, i.e., 1%. Iterate all genes, if a randomly generated
number is less than the mutation probability, then mutation happens. When mutation
happens, our strategy randomly chooses a mutation point and then  ips the bit.
5.3.10 Selection
Selection is the process of updating population in terms of a  tness-based function. The
higher the  tness of a gene is, the more likely the gene is selected. In the population including
both parents and children, a  xed number of genes are selected as the next generation. For
each gene, the probability for it to be selected is based on its  tness:
ppi =
iX
j=1
pj; (5.2)
pj = fjPN
k=1fk
; (5.3)
where pj is the probability for gene i to be selected. ppi is the accumulated probability.
fj is the  tness of gene j. Only if ppi rand(0;1) ppi 1, the gene i is selected.
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5.3.11 Equilibrium
During the evolution process, if the population does not change, then this is an indication
that equilibrium is reached. The potential reason is that the population converges to a local
optimal point. To break the equilibrium and continue the evolution, a mechanism named
kick the ball is used. Vividly imagining the whole searching range as a mountain, kicking
the ball aims to transfer a solution from one valley to another, where it may evolve to be a
better solution. In the genetic algorithm, when the population of genes does not change, a
part of population are randomly selected and their bits are randomly mutated. Compared
with the mutation operator, kicking the ball  ips multiple bits one time rather than just one
bit.
5.3.12 Implementation
The simulation model and the associated validation framework are implemented by
RePast. RePast is an open source software that facilitates design and implementation of
agent-based models. It provides mechanisms for both single and batch run. However, the
con guration parameters cannot be changed during either single or batch run. So, a new run-
ner that inherits the default runner of RePast is necessary to dynamically translate the gene
to con guration parameters and return the outputs that are required for the computation
of  tness.
As shown in Figure 5.10, the abstract GA class implements all other functions except the
 tness function. The  tness function is overridden by child classes that drive the simulation
model after converting the gene to corresponding con guration parameters. Figure 5.11 is
the sequence diagram that captures the dynamic strategy used in the validation framework.
The main class invokes the genetic algorithm which in turn invokes the simulation model that
derives its  tness value. Because the genetic algorithm may evolve over multiple generations,
there is a loop for the genetic algorithm until the termination condition is reached.
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Figure 5.10: Class Diagram of Validation Framework
5.4 Comparison with Overlay Map
Overlay map [75] is a novel tool that presents relationships among disciplines based on
citation data.
After 100 generations, the best gene is discovered. Table 5.5 lists all the parameters and
their values represented by the gene:
Table 5.5: The Best Con guration against Overlay Map
Name Value
Carrying Capacity 50
Startup Funding 2
External Resource 1
Tolerance 0.6
Reorganization Tendency 0.1
Receptivity 1
Allocation Strategy Proportional to Contribution with Technology Transferring
Communication Style Homophily
Communication Frequency 0.6
Threshold to Grow 0.5
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Figure 5.11: Sequence Diagram of Validation Framework
Figure 5.13 is the snapshot of the network generated by the Colorscape model given the
con guration parameters shown in Table 5.5.
By comparison, the similarities of Figure 5.12 and Figure 5.13 can be observed as follows:
1. The development levels of communities ( elds) are di erent from each other.
2. Those communities with similar states form clusters.
3. Some communities have more links than others.
The above is the intuitive comparison of network patterns. To gain more con dence,
a quantitative comparison is undertaken in terms of six metrics: number of nodes, density,
centrality, clustering coe cient, average path, and core/periphery ratio. Table 5.6 presents
the comparison of the network metrics generated by the Colorscape model against the corre-
sponding metrics of the overlay map (expected values in the table). Although the con dence
intervals of metrics derived from the simulation data do not always contain the correspond-
ing values of overlay map, we can still observe that they are signi cantly close. In addition,
if we reduce the number of target metrics, the Colorscape model is able to generate outputs
with con dence intervals containing the expected values.
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Figure 5.12: Overlay Map [75]
Table 5.6: Simulation Output vs. Overlay Map
Name Mean
Value
Standard
Deviation
Con dence
Interval of 90%
Expected
Values
Number of Nodes 296 79.581 [272, 320] 222
Density 0.214 0.068 [0.194, 0.233] 0.139
Clustering Coe cient 0.574 0.050 [0.559, 0.589] 0.648
Centrality 0.354 0.040 [0.342, 0.366] 0.216
Average Path 1.847 0.086 [1.821, 1.873] 2.415
Core/Periphery Ratio 77.283 36.583 [65.482, 89.084] 73.0
5.5 Comparison with the OBO Domain-Domain Data
Figure 5.14 depicts the actual OBO network, where the nodes with the same color
belong to the same group. Because all the groups are the branches of biology, we consider
them as a single domain.
After 100 generations, most  t gene is found. Table 5.7 lists all the parameters and
their values represented by the gene.
69
Figure 5.13: Snapshot of the Colorscape Model against Overlay Map
Table 5.7: The Best Con guration against OBO Data
Name Value
Carrying Capacity 30
Startup Funding 2
External Resource 1
Tolerance 0.6
Reorganization Tendency 0.5
Receptivity 0.9
Allocation Strategy Uniform allocation with technology transferring
Communication Style Homophily
Communication Frequency 1.0
Threshold to Grow 0.5
Because the Colorscape model studies the relationships between communities with sim-
ilar or di erent domains, all the communities have to be categorized into domains based on
their color so as to compare to the OBO network. To illustrate the process, let us observe
Figure 5.15 that is a snapshot given the above con guration parameters.
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Figure 5.14: OBO Domain-Domain Network
For Figure 5.15, communities can be divided into four domains based on their similarities
in terms of their colors, which are shown in Figure 5.16. We compute the metrics for each
of these domains and compare the metrics with the metrics of OBO network.
Table 5.8 presents the comparison of network metrics generated by the Colorscape model
against the corresponding metrics from empirical OBO data (expected values in the table).
Since the con dence intervals of metrics derived from the simulation data contain the cor-
responding values of the OBO network, we conclude that Colorscape model can generate
similar network structures in comparison to OBO.
In addition, the best con guration parameters against the OBO network are recorded
in Table 5.7. From the table, we can observe that the best con guration has a medium level
tolerance (0.6), high receptivity (0.9), and high degree of communication frequency (1.0).
These are indeed the quintessence characteristics of open source science communities.
71
Figure 5.15: Snapshot of Colorscape Model against OBO
Table 5.8: Simulation vs. OBO Data
Metrics Mean Value Con dence Interval of 90% Expected Values
Number of Nodes 55.633 [46.076, 65.190] 49
Density 0.605 [0.521, 0.689] 0.549
Clustering Coe cient 0.846 [0.812, 0.881] 0.880
Centrality 0.355 [0.302, 0.407] 0.405
Average Path 1.404 [1.317, 1.491] 1.406
Core/Periphery Ratio 50.9 [37.2, 64.6] 23.5
5.6 Power Law
When the probability for the occurrence of an event is inversely proportional to its
size, power-laws are often expected [66]. Power law appears in many systems, e.g., the
distributions of the sizes of cities, earthquakes, forest  res, and people?s personal fortunes.
Figure 5.17(a) shows the inequality of communities in terms of resources. Most commu-
nities hold the relatively few resources, while a small part of communities hold the relatively
many resources. To determine if this can be interpreted by the power law, Figure 5.17(b)
shows the relationship between the Logarithm value of number of communities and their
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Figure 5.16: Clusters of the Network of Colorscape Model against OBO
resources, as well as the corresponding linear regression curve. Since the R2 for this  tting
is 0.86, there is signi cant evidence that the Colorscape model can exhibit power-law in
resource distribution.
(a) (b)
Figure 5.17: Distribution of Resources in ColorScape Model
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Chapter 6
Simulation Results and Evaluation
In this chapter, experiments are conducted to investigate the impact of scienti c com-
munity traits (i.e., receptivity,  exibility, reorganization tendency) and environmental con-
straints (i.e., interaction topologies, carrying capacity, resource allocation strategies) on the
innovation performance (e.g., diversity and resilience) of GPS.
6.1 Interaction Toplogies
The experiments in this section test  ve types of interaction topologies and their e ects
on diversity and resilience of GPS:
1. One-dimensional grid: Each community has two neighbors on the left and right side.
2. Two-dimensional grid: Each community is embedded in a Von Neumann neighbor-
hood; that is, it has eight neighbors surrounding it. Figure 3.1 includes a snapshot of
the 2D grid.
3. Random network: The edges between any pair of nodes are created with equal proba-
bility.
4. Random group network: The nodes within a group have higher probability to build
links than those between di erent groups.
5. Scale-free network: The nodes with more links are more likely to be selected to build
links. Figure 3.1 includes a snapshot of scale-free network.
6. Dynamic network: Communities choose to communicate with other communities based
on preferences dictated by the selected social communication theories.
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6.2 Measuring Innovation Potential and Performance
Since we are interested in observing potential relations between the structure of the
social network and innovation outputs of a community, two types of metrics are considered:
innovation metrics and network structure metrics that pertain to integrated di erentiation.
We proposed a hierarchy of metrics to examine relations between scienti c community
traits, structure of communication networks, and innovation performance. The hierarchy
shown in Figure 6.1 aims to delineate the relationship between layers of the evaluation
framework.
6.2.1 Innovation Metrics
In the evaluation framework shown in Figure 6.1, there are three innovation metrics:
robustness, resilience, and interdisciplinarity. Two of these metrics are used in the following
experiments: resilience and interdisciplinarity, in which diversity is suggested to be a useful
proxy indicator to measure interdisciplinarity [74] [71].
6.2.1.1 Diversity
The process of knowledge creation is based on the combination and elaboration of exist-
ing knowledge. Diverse sources of knowledge challenge existing solutions, ignite new ideas,
and lead to more impactful solutions [60]. So, diversity is a proxy indicator for innovation
potential and capacity. There are three dimensions related to diversity: variety, balance,
and disparity [89]. Variety can be computed as the number of clusters of communities of
the whole environment. Each cluster is composed of similar communities. To classify com-
munities into clusters, we use the QT (Quality Threshold) clustering algorithm [39]. QT
clustering algorithm needs a prede ned diameter indicating the maximum di erence among
members in a cluster. Then a candidate cluster for each community is built by including
other communities within the prede ned diameter. A cluster with maximum members is
selected, and then we recursively run the above steps with the set of communities after
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Figure 6.1: The Evaluation Framework
removing communities in the selected cluster. Algorithm 1 is the pseudo code for the QT
algorithm:
Balance indicates inequality in terms of resources each community holds. It is calculated
using the Gini coe cient [16], which is a measure of the inequality of a distribution, a value
of 0 expressing total equality, and a value of 1 maximal inequality [100]. The Gini coe cient
is calculated as follows:
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Algorithm 1 QTAlgorithm (Community[] communities; double diameter)
Vector<Vector<Community>> result = new Vector<Vector<Community>>();
Community[][] clusterArray = new Community[communities.length][];
for i = 0 to communities:length do
/*Find cluster for each community*/
Community[] cluster =  ndCluster(communities, communities[i], diameter);
clusterArray[i] = cluster;
end for
int indexMax =  ndMaxCluster(clusterArray);
result.addAll(clusterArray[indexMax]);
removeCommunities(communities, clusterArray[indexMax]);
if communities:length> 0 then
/*Recursively call the algorithm with the reduced set*/
Vector<Vector<Community>> tmpResult = QTAlgorithm(communities, diameter);
result.addAll(tmpResult);
end if
return result
GN =
Pn
i=1(2i n 1)xi
(n 1)Pni=1xi ; (6.1)
where n is the total number of communities. xi is the resource level of community i.
Disparity refers to the degree of di erence of each community, that is, the dissimilarity
of communities based on their current color.
6.2.1.2 Resilience
Partly, innovation is the process of  nding alternative, more e ective ways to address
challenges and seize opportunities. On the other hand, resilience is the capacity to adapt,
restore in constructive ways while undergoing changes to retain essentially the same function.
Hence, innovation is change, but resilience is survival. Due to presence of uncertainty in
the evolution of the innovation landscape, resilience is an essential property for a scienti c
community to sustain its innovation capacity.
Resilience is the capacity of a system to absorb disturbance and reorganize while under-
going changes to still retain essentially the same function, structure, identity, and feedbacks
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[94]. Based on this de nition, we de ne resilience as the extent of disturbance of the system
that reduces the fraction of active communities to the initial set of communities below a
speci c threshold.
6.2.2 Network Metrics
Structural properties of networks as they relate to creative output pertain to integrated
di erentiation [87]. As a general measure of the degree of social interaction, we use density,
centrality, and clustering coe cient to determine their potential roles in and relation to
innovativeness. Low density and high centrality communities are expected to exhibit higher
degrees of innovation capacity [25]. Cliquish networks with low average path lengths are
known to be e ective in knowledge creation and di usion [23].
6.3 Simulation Results
Using the ColorScape model, we conducted a series of exploratory experiments to ex-
amine how innovation capacity and sustainability of the innovation ecosystem relate to com-
munity interaction topologies, connectivity, and resource allocation strategies. Table 3.1
denotes the con guration parameters and their initial values.
6.3.1 Diversity vs. Carrying Capacity
In this experiment, we explore variation of diversity in relation to number of commu-
nities within a speci c topology. Figure 6.2 evaluates variety, disparity and balance across
combination of two factors, number of communities and 1D/2D topology.
In Figure 6.2, we observe that variety and disparity increase with the initial community
size, called Carrying Capacity (CC). In the 2D topology, disparity increases with CC up to
a critical threshold, after which further increase in dissimilarity diminishes. Computation of
variety is based on the QT clustering algorithm based on a pre-selected diameter denoting
the maximum di erence allowed among members within a cluster. In this experiment, the
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(a) (b)
(c) (d)
Figure 6.2: Diversity vs. Initial Community Numbers
diameter is set to 10, indicating that the hue di erence among communities within a cluster
can be up to 10. Therefore, the maximum variety is 360/10 = 36. That is, diversity cannot
increase inde nitely with CC. Based on Figure 6.2(d), the comparison between 1D and 2D
suggests that in comparison to 1D topology, the 2D topology is more conducive to fostering
variety with a lower degree of uncertainty. Also, the limited sphere of interaction exhibited
in the 1D topology inhibits di usion of in uence and hence leads to increased time to reach
equilibrium.
Next, to evaluate the impact of neighbor size and hence the sphere of in uence within the
1D topology, we gradually increased the interaction window from 2 to 8 neighbors. Obser-
vations depicted in Figure 6.3 suggest that interaction window positively a ects variety and
underlying uncertainty (i.e., dispersion) up to a level, beyond which variety stops improving
while uncertainty increases.
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Figure 6.3: Variety vs. Neighbor Size in 1D
6.3.2 Diversity vs. External Resource
The resource allocation strategy used in the baseline model is to distribute all resources
uniformly among communities. The total available resource is the sum of contributions of
communities and external resources. Figure 6.4 depicts the change in diversity with respect
to available external resources.
Figure 6.4: Diversity vs. Resource Allocated Per Time
The abscissa indicates the amount of resources allocated to each community per time
tick. In the 1D topology, the rate of increase in variety slows and stabilizes over time. On
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the other hand, the 2D topology seems to be less sensitive to external resource, indicating
higher degree of potential for resilience than 1D.
When external resource is low, a small number of communities can survive. As exter-
nal resource increases, more and more communities can survive, which leads to increased
diversity. This trend increases up to a point beyond which more resources only can increase
the number of communities within a cluster rather than the number of clusters. On the
other hand, the communities in the 2D topology have more neighbors than those in the
1D topology, which makes communities more likely to form clusters. Communities within a
cluster have similar domains, which helps communities improve maturity with less resource
consumption during the process of learning discussed in section 3.5. Thus, communities in
the 2D topology have higher maturity and more resources left, so that the second part in
Equation 3.1 is large enough to sustain all communities.
For policy makers, it is noteworthy that more funds cannot lead to higher diversity.
More funds only result in more resources held by communities.
6.3.3 Diversity vs. Reorganization
The experiment in this section aims to  nd out the relationship between diversity and
reorganization. Figure 6.5 depicts change in variety, disparity, and balance against di erent
levels of reorganization tendency.
From Figure 6.5, we can observe that variety and disparity decrease with increasing re-
organization tendency, which means that reorganization has negative e ects on variety and
disparity. On the other hand, specialization has positive e ects on variety and disparity. It
is consistent with the functionality of specialization and reorganization. Specialization facili-
tates creation of a new community with a di erent target color from the current community.
However, reorganization involves pulling the target color toward the current color, causing
convergence.
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Figure 6.5: Diversity vs. Reorganization Tendency
6.3.4 Diversity vs. Receptivity
In this experiment, we considered alternative interaction topologies (Random and Ran-
dom Group Network) to discern the relation between variety and community receptivity.
Receptivity of a community is de ned as the ratio of neighbor in uence to inertia. Connect-
edness is de ned as the probability of building links between nodes. Figure 6.6 indicates
that there is a critical receptivity threshold, after which the behavior of low and high density
communities diverges. Behind this phenomenon, the potential reason is that low receptivity
results in few in uences from neighbors, which in turn determines context topologies? few
e ects on variety. Under environments with high receptivity, variety favors low connectivity.
The reason is that more communication links cause convergence, which in turn decrease
the variety. However, communities with various levels of connectivity converge to the same
stable level of variety. Similar patterns are observed in both random and random group
networks.
Based on the experimental results, policy makers may encourage communities to be more
receptive in a relatively low density environment to reach a high variety. This conclusion is
supported by earlier reports and  ndings [25].
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Figure 6.6: Variety in Random and Random Group Network
6.3.5 Resilience of Di erent Network Topologies
Resilience is de ned as the extent of disturbance on the system that signi cantly reduces
the ratio of active communities to CC when external resource is set to maximum [94]. To
compute resilience, the number of communities under maximum resource availability (i.e.,
CC) is set as the base reference level for each topology. Figure 6.7 depicts the number of
active communities varying along with external resources in terms of three kinds of network
topologies.
Figure 6.7: Number of Active Communities
As resources are gradually reduced, the ratio ( ) of number of communities to the CC
is computed. The loss ratio is de ned as 1  and ranked to identify resilient topologies.
According to Table 6.1, scale-free network has the highest resilience, and random group
network has higher resilience than random network, because the loss ratio of scale free
network is smallest and the loss ratio of random network is largest when external resources
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decrease to 0.7. Figure 6.8 con rms that random group network exhibits higher resilience
than random network.
Table 6.1: Resilience of Di erent Network Topologies
Random Random Group Scale Free
ResourcesNumber of
Communi-
ties
Loss Ratio Number of
Communi-
ties
Loss Ratio Number of
Communi-
ties
Loss Ratio
1 43.77 0 35.57 0 71.43 0
0.9 42.3 0.03 34.27 0.04 66.47 0.07
0.8 37.43 0.14 30.63 0.14 60.7 0.15
0.7 25.33 0.42 22.83 0.36 52.2 0.27
Figure 6.8: Comparison of Random and Random Group Network on Resilience
6.3.6 Relationship between Diversity and Network Metrics
The data to study the relationship between diversity and network metrics are gathered
from previous experiments involving sensitivity analysis on receptivity. Each pair of density
and variety is classi ed into buckets that occupy an identical range i.e., 0.1 for each bucket
in terms of density. If the density falls into the range of [0, 0.1), then the pair of density
and variety belongs to the bucket of 0.1. If the density falls into the range of [0.1, 0.2), then
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the pair of density and variety belongs to the bucket of 0.2. After grouping, variety is the
average of all pairs in the corresponding bucket.
Figure 6.9 shows that variety increases with density up to a point. After that point,
variety decreases with increasing density in both random and random group networks.
Figure 6.9: Variety vs. Density in Random and Random Group Network
Figure 6.10 plots variety against degree centrality. Variety increases with centrality up
to a point. Beyond that point, variety decreases with increasing centrality.
Figure 6.10: Variety vs. Centrality in Random and Random Group Network
In [40], Hohn examines the relationship between species diversity and population density
in diatom populations, which is shown in Figure 6.11. Since scienti c communities can be
viewed as an ecosystem, it is reasonable to compare the phenomena of ecosystem to that
of scienti c communities. From this  gure, we can see species diversity increasing with
population density up to a point. As density increases beyond this threshold, diversity starts
declining. The density in [40] is de ned as the number of individuals per species, which is
di erent from density de ned in our research. However, both de nitions of density are
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related. The more individuals the species has, the more is the dependency among members
due to shared, but limited resources.
Figure 6.11: Species Diversity vs. Population Density in [40]
In [69], the following proposition about centrality and creativity is presented: individuals
with greater centrality are likely to have higher creativity until a level. Beyond this level,
greater centrality may constrain creativity. This trend is consistent with our experimental
results.
6.3.7 Sustainability, Resource Availability, and Connectedness
In ecology, sustainability refers to the ability of biological systems to remain diverse
and productive over time. In the domain of creativity, sustainability can be interpreted
as the e ectiveness of communities in utilizing resources. So, we relate it to success rate,
which measures the extent to which communities are e ective in making use of resources to
improve their maturity, while maintaining themselves. Success rate is de ned as the ratio of
the number of active communities remaining at the end of simulation to CC.
Figure 6.12 depicts the relationship between resource availability, interconnectedness,
and success rate. The experimental results suggest that if resource availability increases
while connectedness is decreased, the success rate increases. Also, when resource is at high
level, success rate decreases with increasing connectedness. In addition, when resource is
at low level, success rate decreases with decreasing connectedness. A plausible explanation
for this observation is that higher resource availability leads to higher variety. Under high
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variety, larger connectivity causes each community to be pulled toward multiple di erent
cognitive niches, resulting in lack of focus which in turn costs communities more resources,
and hence decreasing the survival rate. On the other hand, lower resource availability leads
to lower variety. Under low variety, however, strong connectivity results in more communities
sharing similar states, bene ting from each other through a symbiotic relation, which in turn
increases the overall survival rate.
Figure 6.12: Success Rate vs. Resource
Based on these preliminary observations, policy-makers may encourage communities to
build highly connected clusters if resource availability is low. On the other hand, under
moderate to high-level resource availability, loosely connected clusters may be more e ective
in promoting an environment conducive to sustainability.
6.3.8 Disparity vs. Resource and Connectedness
Creativity partly involves combination and elaboration of existing knowledge. Therefore,
we use diversity as a proxy indicator for collective creativity. As discussed earlier, there are
three dimensions related to diversity: variety, balance, and disparity [89].
In this section, we focus on the disparity dimension. Disparity indicates the degree of
inequality, which can be measured by the Gini coe cient [100]. The coe cient ranges from
0 to 1, where 0 and 1 refer to perfect equality and extreme inequality, respectively.
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Figure 6.13 denotes the relationship between resource availability, connectedness, and
disparity. As resource level increases from 0.5 to 1, disparity increases with resource avail-
ability when the degree of connectedness is low, since more resources lead to higher success
rate, which in turn results in disparity. On the other hand, when the resource level increases
further, disparity decreases. This is due to decreased need for interaction for sustainment.
This, in turn, decreases inequality. In addition, disparity increases with decreasing level of
connectivity, which is possibly due to increased convergence under high connectivity, result-
ing in decreased disparity.
Figure 6.13: Disparity vs. Resource
Based on the previous two experiments, Table 6.2 summarizes how disparity and success
rate relate to resource availability and connectedness.
Table 6.2: Success Rate and Disparity
Resource Level Resource Trend Connectedness Disparity Success Rate
Low Down Down Up Down
High Up Down Up Up
High Up Up Down Down
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6.4 Experiments on Resource Allocation Strategy
Understanding the in uence of resource distribution across communities is critically
important for informed decision-making in science and innovation policy development. The
following experiments focus on the impact of resource allocation strategies on diversity. For
the allocation strategies, we identify seven options:
1. Allocate resource uniformly among communities.
2. Allocate resources proportional to the contributions of communities.
3. Allocate resources proportional to the size of cluster formed by similar communities.
4. Allocate resources proportional to the importance of domains.
5. Fully competitive allocation.
6. Peer-to-peer (P2P) lending.
7. Random allocation.
In uniform allocation, resources are allocated to communities equally regardless of their
states. Resource allocation proportional to contribution is a reward mechanism. Commu-
nities with larger contributions receive more resources. Under the allocation proportional
to cluster size, the larger the cluster a community belongs to, the more resources the com-
munity receives. With allocation proportional to importance of domains, disciplines with
higher priority receive more resources. The competitive allocation strategy is analogous to
the prey/predator model, where resources are distributed among domains, and communities
compete for resources. Under random allocation, resources are allocated to a randomly se-
lected set of communities equally regardless of their state. P2P lending involves a contract-
bid protocol. The community that invites others for collaboration is called the sponsor.
Other communities in the same domain respond with a bid that indicates the ratio of re-
sources the community gets to those resources the sponsor will receive. The community that
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answers the call is named as respondent. After receiving all the bids, the sponsor selects a
bid with the highest resource gain.
Figure 6.14 presents the class diagram of the resource allocation module, where all
classes are inherited from a single class named ResourceAllocation that declares two functions
implemented by sub-classes. All classes of di erent allocation strategies only have one single
public function i.e., allocationResources(). In addition, the common part of total resources
is extracted to be a class named TotalResource that has two public functions i.e.,  xed() and
techTransfer(), which are distinguished by whether or not there is a mechanism to transfer
technology.
6.4.1 Design of Resources Allocation Strategies
6.4.1.1 Uniform Allocation
Uniform allocation means that resources are allocated to communities equally regardless
with the states of communities. Figure 6.15 represents the process of uniform allocation.
Given the total resource (RT) and total number of communities (N), each community can
receive resources (Ri) that amounts to:
Ri = RT 1N: (6.2)
6.4.1.2 Proportional to Contribution
Resource allocation proportional to contribution is a reward mechanism in that commu-
nities with larger contributions receive proportionally more resources. Figure 6.16 represents
the process of resource allocation proportional to contributions of communities.
In Figure 6.16, contributions provided by a community (Ci) are moderated by the
product of its maturity and resource. This is based on the hypothesis that communities with
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Figure 6.14: Class Diagram of Resources Allocation
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Figure 6.15: Flow Chart of Uniform Allocation
higher maturity and resources are expected to be more productive. Each community can
receive resources (Ri) that amounts to:
Ri = RT CiPN
j=1Cj
; (6.3)
where RT is the total available resources. N is the total number of communities.
6.4.1.3 Proportional to Cluster Size
Allocation of resources proportional to cluster size refers to distribution of resources
proportional to size of the cluster to which a community belongs. The purpose of such
allocation strategy is to encourage communities to form larger clusters. Figure 6.17 represents
the process involved in deciding how much resource to allocate to a community. Given a
total resource (RT), each community gets resources with amount of:
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Figure 6.16: Flow Chart of Allocation Proportional to Contribution
Ri = RT SiPN
j=1Sj
; (6.4)
where Si is the size of cluster community i belongs to, N is the total number of com-
munities. For the sake of illustration, here is an example where there are three communities,
among which two communities form a cluster and RT = 10. The community within the
cluster gets the resource of 10*2/(2+2+1) = 4. Also, the community without the cluster
gets the resource of 10/(2+2+1) = 2. So, the community within the cluster gets resources
twice more than the community without a cluster.
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Figure 6.17: Flow Chart of Allocation Proportional to Cluster
6.4.1.4 Proportional to Importance of Domains
Some domains have higher funds than others, e.g., nanotechnology receives more funds
than other conventional physics. Figure 6.18 represents the process of allocation proportional
to importance of domains. Each community i receives resources (Ri) de ned as follows:
Ri = RT WjN
j
; (6.5)
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where RT is the total resource. j indicates the domain community i belongs to. Wj and
Nj denotes the importance of domain j and total number of communities domain j includes,
respectively.
Figure 6.18: Flow Chart of Allocation Proportional to Importance of Domains
For the sake of illustration, the following is an example where the whole range of hue is
divided into three domains, that is, [-60, 60), [60,180), and [180, 300), whose corresponding
importance is 0.6, 0.3, and 0.1 respectively. If the number of communities in the domain [-60,
60) is 3 and total resource is 100, each community in the domain [-60, 60) can be allocated
resources of 100*0.6/3 = 20.
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6.4.1.5 Competitive Allocation
The competitive allocation strategy is similar to the prey/predator model, where re-
sources are distributed among domains, and communities receive resources from the domain
they belong to. The whole range of hue is divided into 360 domains. Each domain has a
 xed amount of resources at the beginning of each time interval. If a community attains
the resources within its domain, the resources in that domain become 0. The process is
represented in Figure 6.19.
Figure 6.19: Flow Chart of Competitive Allocation
6.4.1.6 P2P Lending
P2P lending introduces the mechanism of calling for proposals on the basis of fully
competitive allocation, indicating that a community can request collaboration with other
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communities if the domain of the community does not have su cient resources. The com-
munity calling others for collaboration is called sponsor. When P2P lending occurs, other
communities in that domain respond with a bid that indicates the ratio of resources received
by the community to those resources the sponsor receives. The community that answers the
call is named as respondent. The bid a respondent submits is proportional to resources it
holds, that is, the more resources it has, the higher the ratio of pro t the community expects
to receive. After receiving all the bids, the sponsor community selects a bid with the highest
pro t. The process is represented in Figure 6.20.
6.4.1.7 Random Allocation
Random allocation involves distributing resources to communities randomly regardless
of their state. Figure 6.21 represents the process of random allocation.
6.4.2 Network Pattern vs. Resource Allocation Strategy
In this section, emerging network patterns are qualitatively and visually examined to
gain insight about the impacts of resource allocation strategies on diversity. Figure 6.22
depicts network structures generated under allocation strategies 1 (i.e., uniform allocation),
2 (i.e., proportional to contributions) and 3 (i.e., proportional to the size of clusters). We
observe that the network under uniform allocation has the highest diversity, while strategies
2 and 3 lead to relatively lower diversity.
In Figure 6.23, the prede ned ratios of resources allocated to disciplines indicated by
red, green, and blue colors are 60%, 30%, and 10%, respectively. We observe that two
types of network patterns emerge under allocation proportional to signi cance of domains.
Figure 6.23(a) depicts that the number of communities in each domain is proportional to their
importance. However, the communities with most resources granted may not be as successful
as expected, as exhibited in Figure 6.23(b) by relatively small number of red communities.
A potential reason is that the cluster of red domains interacts in high frequency with the
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Figure 6.20: Flow Chart of P2P Lending
cluster of green and blue domains. This interaction could have incurred signi cant resource
cost during the learning process, resulting in decreased number of red domains.
To explore the impact of the relation between domains on the  nal network pattern,
we design an experiment where the blue communities and the green communities cannot
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Figure 6.21: Flow Chart of Random Allocation
(a) Strategy 1 (b) Strategy 2 (c) Strategy 3
Figure 6.22: Strategy 1 vs. Strategy 2 vs. Strategy 3
connect with each other so that the red communities are aligned between the green and the
blue communities. The simulation model is run thirty times with di erent random seeds,
and the  nal network patterns can be categorized into two types, which are shown in Figure
6.24. In Figure 6.24(a), all red communities are changed to either blue or green communities.
Because blue communities and green communities cannot connect with each other, the  nal
pattern of type 1 is an isolated cluster of blue or green communities. In Figure 6.24(b),
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(a) Expected Case (b) Unexpected Case
Figure 6.23: Allocation Proportional to Importance of Domains
red communities are pulled by both green and blue communities so that more resources are
consumed and their maturity is developed slowly. In addition, because the current model
is based on Homophily theory, the intensity of in uences from peers is proportional to their
similarity rather than how many resources the community holds. Therefore, red communities
cannot thrive under such network alignment, although most resources are allocated to the
red communities.
(a) Isolated clusters of blue or green communities (b) Red communities struggling to thrive
Figure 6.24: Patterns in Network Con guration Experiment
Figure 6.25 depicts the comparison of competitive allocation and P2P lending allocation.
We do not observe signi cant di erence on diversity, which suggests that higher success rate,
as observed in P2P lending, may not result in signi cantly higher diversity.
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(a) Competitive Allocation (b) P2P Lending
Figure 6.25: Competitive Allocation vs. P2P Lending
6.4.3 Variety vs. Resource Allocation Strategy
For the resource allocation strategy, two aspects are considered. One is the resource size,
and the other is the allocation mechanism, which is de ned in terms of the seven categories
listed in the previous section. For the resource size, two options are examined:  xed amount
of total resources and dynamic allocation with technology transferring. As shown in Table
6.3, we examine twelve allocation strategies based on the combination of resource size and
allocation strategies (except competitive and P2P lending).
The experiments with each allocation strategy are conducted 30 times and the aver-
age variety is recorded as shown in Figure 6.26. Variety can be computed as the number
of clusters of communities within the environment. Each cluster is composed of similar
communities in terms of their hue.
Based on Figure 6.26, we discern the following:
1. Key area investment with technology transferring (A8) results in the highest variety.
This is similar to the case where domains with lower priority still have potential to
advance, yet the environment promotes development of domains related to priorities.
2. Uniform allocation (A1, A2) leads to higher variety compared to resource allocation
proportional to contributions (A3, A4).
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Table 6.3: Allocation Strategies
Symbol Resource Allocation Strategies
A1 Uniform allocation with  xed ex-
ternal resource
A2 Uniform allocation with technol-
ogy transferring
A3 Allocation proportional to con-
tribution with  xed external re-
source
A4 Allocation proportional to contri-
bution with technology transfer-
ring
A5 Allocation proportional to cluster
size with  xed external resource
A6 Allocation proportional to cluster
size with tech transferring
A7 Allocation proportional to impor-
tance of domains with  xed exter-
nal resource
A8 Allocation proportional to impor-
tance of domains with technology
transferring
A9 Competition allocation
A10 P2PAllocation
A11 Random allocation with  xed ex-
ternal resource
A12 Random allocation with technol-
ogy transferring
3. Competitive allocation (A9) results in higher variety than P2P lending (A10). The
underlying reason is that P2P lending allows communities to share resources, which in
turn causes both lender and borrower communities to fade out under limited resources.
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Figure 6.26: Variety vs. Allocation Strategies
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Chapter 7
Comparison of Communication Theories in Terms of Innovation Performance
7.1 Introduction
Under the globalization driven by advances in computer and communication technology,
the  ow of information that transmits through communication networks is independent of
space and time, because people can share knowledge and make contributions simultaneously
anywhere in the world [61]. Furthermore, the mechanisms for the emergence and evolution of
communication networks can be abstracted into several communication theories. Although
communication theories describe the internal mechanisms of social communication networks,
little research has been conducted to implement computational models using them. Mean-
while, there is no research undertaken for comparison of communication theories in term of
their e ects on innovation performance.
Communication networks and the organizational forms of the 21st century are undergo-
ing rapid and dramatic changes [32]. There exist theories that focus on the role of interaction
mechanisms in explaining the emergence and evolution of communication networks. One ad-
vantage of analyzing system dynamics from the perspective of socio-technical networks is
the ability of data analysis at various levels such as individual, dyad, triad, organizational,
and interorganizational [61]. Homophily, preferential attachment, and exchange theory are
mainly about the dyad relationship where a communication tie from community A to com-
munity B can be predicated by the communication tie from community B to community
A. On the other hand, balance and structural hole theory analyze the triad relationship,
where the communication tie between community A and B can be predicated by the third
community C that is associated with both A and B. In addition, these theories distinguish
with each other in terms of studying internal mechanisms of communication networks from
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di erent perspectives, which include communities? traits, self-interest, and discrepancy in re-
sources. Homophily, preferential attachment, structural hole, exchange, and balance theory
analyze communication network at di erent levels and from di erent perspectives, hence it
is important to use them to model the dynamics between communities and compare them
in terms of network patterns and innovation metrics.
7.2 Homophily
Homophily theory explores the emergence of communication networks based on the
similarities of network members? traits [61]. Similarity contributes to ease communication,
foster trust and increase the predictability of behavior [15]. On the basis of homophily,
communities select others who are similar to communicate.
7.2.1 Model Design
The following process is from the viewpoint of a community called the current commu-
nity. At each time interval, the current community randomly selects another community to
communicate based on their similarities, which means that the higher similarity between the
current community and the target community results in the higher probability of building
communication between them. Figure 7.1 depicts the process of communication guided by
the Homophily theory.
The following equations describe how to update in uences of neighbors based on ho-
mophily.
8>
><
>>:
Wji;t = Wji;t 1 +CW Iji;t (1 Wji;t 1) if Iji;t 0
Wji;t = Wji;t 1 +CW Iji;t Wji;t 1 otherwise
(7.1)
where Wji;t is the in uence of neighbor j at the current time. CW is a number between
0 and 1 and is inversely proportional to inertia (resistance to change in a community). Iji;t
is the intensity of change in the in uence, which is de ned as:
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Figure 7.1: Process of Communication using Homophily Theory
Iji;t = (1 Dji;t)4 (1 Di;t)4; (7.2)
where Dji;t is the dissimilarity which is equal to the distance between community i and
community j in terms of current hue at the time t whose equation is 3.8. Di;t is the average
distance between community i and all of the neighbors at the time t. This function grows
much faster when dissimilarity between i and j becomes smaller in comparison to average
dissimilarity, resulting in higher intensity Iji;t.
The equation for the dissimilarity between community i and j is de ned as follows:
Dji;t = Dissimilarity(Hi;t;Hj;t); (7.3)
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where Hi;t is the hue of community i at the time tick t. Hj;t is the hue of community j
at the time j.
Dissimilarity(x;y) =
8>
><
>>:
jx yj
180 ifjx yj 180
360 jx yj
180 otherwise
(7.4)
7.2.2 Validation
We designed an experiment where there are three communities A, B and C. The sim-
ilarity between community A and B is 80%, while the similarity between A and C is 20%.
The experiment tries to see how likely community A would like to communicate with B or C
under homophily theory. The simulation model runs 100 times, among which community A
communicates with community B 97 times as shown in Figure 7.2. To amplify the di erence
of similarity, a square operation is used, which in turn leads community B to have a much
higher probability of being communicated by community A than community C.
Figure 7.2: Communication Frequency vs. Similarity
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7.3 Structural Hole
Structural holes are those places where communities are not connected so that other
communities may exploit the places by investing their social capital to indirectly link two or
more unconnected communities [61]. The community that  lls the structural hole becomes
a broker in relationships among others. As shown in an early Italian saying "between two
 ghters, the third bene ts" [17], the community acting as broker can bene t from di erent
knowledge and expertise of other communities. There are two kinds of information bene ts
for broker identi ed in [19]: access and timing. Access means getting information that others
may not get. Timing refers to getting information earlier than peers.
7.3.1 Model Design
The following process is from the viewpoint of a community denoted as C0. At each
time interval, a community C1 not connected to C0 is randomly selected  rstly. Then a
community C2 not connected to C1 is randomly selected. Finally two links between C0 and
C1, C0 and C2 are built respectively. The process is depicted in Figure 7.3.
Figure 7.3: Process of Communication using Structural Hole Theory
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7.3.2 Validation
Burt in [17] points out that individual?s e ective network size determines its success
potential; that is, individual with larger e ective network is more likely to succeed. The ties
among a person?s network partners attenuate the e ective network size, which gets to the
max value (i.e., 1) when partners are not connected to one another. On the other hand,
the e ective network size becomes the min value (i.e., 0) if partners are connected to one
another. Meanwhile, clustering coe cient measures how close are the neighbors to being a
clique. However, clustering coe cient is equal to 1 if neighbors are fully connected. So, we
use 1 - clustering coe cient to represent network e ective size to get 0 for fully connected
networks and 1 for isolated networks. In addition, communities? success is re ected by their
resources.
The following experiment is to capture the relation between e ective network size and
resources, where the e ective network size and resources of each community are recorded
at each time step. Then, the average value of resources is computed with respect to the
same e ective network size. Based on Figure 7.4, we can observe that resources held by
communities increase with communities? e ective network size. The potential reason is that
larger e ective network size means more opportunities around the community, and hence
increase in its resource levels.
Figure 7.4: Resource vs. E ective Network Size under Structural Hole Theory
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7.4 Preferential Attachment
The preferential attachment is a process where resources are distributed among individ-
uals according to how much they already have, i.e., rich get richer. Communities may like to
connect to others with more resources in order to steer their own directions to get potentially
more resources. On the other hand, communities may intend to connect to peers with larger
number of links that indicates a more central position and larger in uences within the net-
work. So, there are two branches of preferential attachment theory: preferential attachment
based on resources, and preferential attachment based on links.
7.4.1 Preferential Attachment Based on Resources
The preferential attachment based on resources means that the community with more
resources are more likely to be communicated. Figure 7.5 shows the process of building
connections under the preferential attachment based on resources.
Figure 7.5: Communication Process of Preferential Attachment based on Resources
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Under the preferential attachment based on resources theory, communities with more
resources have larger in uences on others. The following equation describes how to update
in uences of neighbors using the preferential attachment based on resources.
Wji;t = Rj;tPN
k=1Rk;t
; (7.5)
where Wji;t is the in uence of neighbor j on community i at time t. Rj;t is the resources
of community j. N is the total number of communities.
7.4.2 Preferential Attachment Based on Links
The preferential attachment based on links means that the community with more links
are more likely to be communicated. Figure 7.6 delineates the process of using preferential
attachment based on links to build connections among communities.
Figure 7.6: Communication Process of Preferential Attachment based on Links
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Under the preferential attachment based on links theory, communities with more links
have larger in uences on others. The following equation describes how to update in uences
of neighbors using the preferential attachment based on links.
Wji;t = Lj;tPN
k=1Lk;t
; (7.6)
where Wji;t is the in uence of neighbor j on community i at time t. Lj;t is the number
of links of community j. N is the total number of communities.
7.4.3 Validation
Under suitable circumstance, preferential attachment can generate power law [106]. For
preferential attachment based on resources introduced in section 7.4.1, we run the simula-
tion 30 times and output the resources of communities at the end of each run. Figure 7.7(a)
depicts the inequality of communities in terms of resources. Most communities hold the rel-
atively few resources, while a small part of communities hold the relatively many resources.
This observation is indicative of the presence of power law. Figure 7.7(b) shows the rela-
tionship between the log value of number of communities and their resources, as well as the
corresponding linear regression curve. Since the R2 for this  tting is 0.92, the Colorscape
model suggests the presence of power law in resource distribution.
For preferential attachment based on links introduced in section 7.4.2, we run the sim-
ulation 30 times and print out the number of links of communities at the end of each run.
Figure 7.8(a) depicts the inequality of communities in terms of links. Most communities
have the relatively few links, while a small part of communities hold relatively many links.
Because the Colorscape model has a mechanism of specialization where a new community
is generated and a link between original and new community is built, the creation of this
link does not follow preferential attachment theory, which in turn results in the communities
with two links are more than those with one link. This observation is indicative of the pres-
ence of power law. Figure 7.8(b) shows the relationship between the log value of number of
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(a) Histogram of Communities? Resources (b) Linear Regression of Logarithmic Value of Re-
sources
Figure 7.7: Communities? Resources
communities and their links, as well as the corresponding linear regression curve. Since the
R2 for this  tting is 0.85, the Colorscape model suggests the presence of power law in link
distribution.
(a) Histogram of Communities? Links (b) Linear Regression of Logarithmic Value of Links
Figure 7.8: Communities? Links
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7.5 Balance Theory
7.5.1 Model Design
Heider?s balance theory [38] states: \my friend?s friend is my friend; my friend?s enemy is
my enemy; my enemy?s friend is my enemy; my enemy?s enemy is my friend", which means
friends have similar attitudes, while enemies have di erent opinions on the third object.
As scienti c communities keep creative, they may desire to communicate with neighbors
including both similar and dissimilar communities in order to maintain a highly diverse
environment. When using balance theory to study the activities of scienti c communities,
communities try to keep the interactions balanced in terms of disciplines among communities
that are communicated with.
To illustrate the triad relationship that balance theory focuses on, let us consider the
following example. From the perspective of community A, the probability of building link
between A and B is determined by the peer communities associated with A. If there are more
neighbor communities of A similar to A than neighbors dissimilar to A and the similarity
between A and B is lower than the average, then it is more likely for A to communicate with
B. On the contrary, if there are less neighbor communities of A similar to A than dissimilar
neighbors and the similarity between A and B is lower than the average, then it is less likely
for A to communicate with B. These relations are described in Table 7.1.
Table 7.1: Illustration of Building Links based on Balance Theory
Similarity between A
and B
Number of Neighbors
Similar to A
Probability of Build-
ing Link
High More Low
High Less High
Low More High
Low Less Low
The similarity between communities is determined by their disciplines, which is de ned
as Equation 7.3 and 7.4.
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When using balance theory to select peers to communicate, if more communities are
above the average dissimilarity, either decrease the in uence of a community with above
average dissimilarity or randomly select another community with below average dissimilarity
in order to reach balance. On the other hand, if more communities are lower than the
average dissimilarity, either decrease the in uence of a community below average dissimilarity
or randomly select another community with above average dissimilarity in order to reach
balance. The process of using balance theory to build the communication network is shown
in Figure 7.9.
Figure 7.9: Process of Communication using Balance Theory
The following discussion delineates the process of updating in uence of neighbors using
balance theory. The balance is de ned as the equilibrium where the discipline of communities
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converge to. In cases where there are di erences in opinion between communities, their needs
for balance motivate them to increase their communication frequency with one another to
reach an agreement. Given the assumption that communities? opinions are based on their
discipline, the larger di erence of discipline results in the larger di erence of opinion. So,
communities would like to communicate more with communities with larger di erence in
order to reach the balance. The Colorscape model is based on boundary processes that drive
interacting communities to move toward each other, which in turn reduces their di erences.
Such interactions guided by balance theory and boundary processes cause the dissimilarities
between communities to change dynamically. During each interaction, if the dissimilarity of a
community?s neighbor j is above the average between the community i and all community i0s
neighbors, the communication frequency between community i and j increases. Otherwise,
their communication frequency decreases. Equation 7.7 describes how the in uences of
neighbors are updated.
 Wji;t = sin( 2 (Dji;t Di;t));
Wji;t+1 = Wji;t +  Wji;t; (7.7)
where Dji;t is the dissimilarity between community i and its neighbor j at time t. Di;t
is the average dissimilarity between community i and all its neighbors. Wji;t and  Wji;t
are the in uences of community j on community i and the increment of such in uences,
respectively.
In the extreme case, the maximum Dji;t is 1 and Di;t is close to 0, then the maximum
of Dji;t Di;t is 1. Under this case,  Wji;t = sin( 2 (1 0)) = 1. On the other hand, the
minimum Dji;t is 0 and Di;t is close to 1. Then the minimum  Wji;t = sin( 2 (0 1)) = 1.
Figure 7.10 depicts change in  Wji;t over Dji;t given di erent Di;t.
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Figure 7.10: In uences Change with Dissimilarity
7.5.2 Validation
In [54], Lane posits that the relationship between organizations can be categorized into
positive and negative. It is pointed out in [107] that the condition for a network to be
balanced is that the product of relation ties between organizations is positive. According to
homophily theory, communities would like to communicate with those communities similar
to them. So, for community i, the communication ties between community i and others
with higher similarity than average are viewed as positive relationship. On the contrary, the
communication ties between community i and others with lower similarity than average are
viewed as negative relationship. We plot positive and negative relationship, which correspond
to the number of communities with higher and lower similarity respectively, which is shown
in Figure 7.11(a). Also the product of all relation ties is plotted, where each positive tie is
represented by 1 and each negative tie is represented by -1, which is shown in Figure 7.11(b).
Based on these two  gures, we can observe that the product of all ties oscillates between
-1 and 1. In complex adaptive systems, there are three fundamental kinds of attractors:  xed
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(a) Positive and Negative Relations Change over
Time
(b) The Product of Relations
Figure 7.11: Relations under Balance Theory
point attractor, limit cycle attractor, and chaos attractor. Figure 7.11(b) shows there is a
limit cycle attractor existed, in which the exact state of the system cannot be predicted,
although we know it will be either -1 or 1. It means that the system reaches a dynamic
balance compared with the  xed balance in [107], where the number of positive and negative
ties keeps the same dynamically, shown in Figure 7.11(a). Such a dynamic balance makes
communities satisfy with their status, and the communication network formed by them is
balanced.
7.6 Exchange Theory
7.6.1 Model Design
According to exchange theory, the necessary condition for the realization of a network
tie is the discrepancy in resource. In the Colorscape model, the discrepancy in resource be-
tween communities is re ected by the brightness component of the HSB color model. When
a community cannot achieve enough resources by solving problems in its own domain, it tries
to solve inter-disciplinary problems by collaborating with peers. Once community i  nds an
inter-disciplinary problem with potential funds, community i will ask other communities for
collaboration. Another community j who can solve the problem may be willing to collabo-
rate. Then a link between community i and j is created. In such cases, what are exchanged
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between communities are resources based on the knowledge and skills of communities. Dif-
ferent from the balance theory, the exchange theory interprets communication at the dyad
level, which means the communication link is determined by the two parties involved in the
collaboration.
There is a website named InnoCentive [45] that uses challenge-driven innovation mech-
anism to bridge companies that have problems to be solved and users who would like to
capitalize their knowledge. When a company has a problem to be solved, the company may
try to post the problem on this website. Those users who are interested in this problem may
submit their solutions, one of which will be selected by the sponsor company. The author of
the selected solution is rewarded.
P2P lending process is de ned as follows:
1. Divide the discipline into 36 domains (i.e., 10 degree per domain), and put some
problems in each domain.
2. If the domain a community inhabits has problems, then the community receives the
corresponding funding up to a threshold, i.e., the maximum value a community can
achieve per time step.
3. If the domain a community inhabits does not have problems, the community looks
through neighbor domains until the community  nds a domain with problems. Then
the community calls for a proposal to collaborate.
4. All other communities will receive the invitation. Only those communities within the
domain will respond with a bid that shows the ratio of funding the community gets to
those resources the sponsor gets.
5. The community who initializes the call for proposals chooses the bid with the highest
ratio.
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There are three kinds of collaborations that may occur during the P2P lending process:
two parties within discipline, two parties cross discipline, and triple parties. Type I collab-
oration takes place when the sponsor community receives reply from communities within
the domain where the problem exists. Type II collaboration is interdisciplinary collabora-
tion, which happens when the domain of the problem is just between the sponsor and the
responder communities. Type III collaboration occurs when there are two responders whose
domains are just adjacent neighbor of the problem. These collaborations are illustrated in
Figure 7.12, where the purple and blue circle represent sponsor and responder respectively.
Figure 7.12: P2P Collaborations
If there are several communities that can collaborate, a community may choose one that
can help reduce the dependency on other communities. In order to reduce the dependency,
a community i seeks to forge links with communities not connected with community i. In
[61], Monge points out the network extension, which means that organizations can seek to
increase the number of exchange alternatives by creating new network links.
Each communication theory has two functions, one of which is to build a communication
network. The other is to update the weights of neighbors. When using the exchange theory
to update links connecting to neighbors, the weights increase when an exchange occurs
during a time interval. Otherwise, the weights of links connecting to neighbors decrease if
no exchanges happen between them during a time interval.
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7.6.2 Validation
7.6.2.1 Resource Accessibility
Brass [13] claims that the organization?s access to resources is re ected by closeness
centrality that refers to the extent to which people, group, and organizations can reach all
others in a network through a minimum of intermediaries. It means that higher closeness
will have more resources. Further, Brass [14] found that the measure of centrality correlated
with reputational measures of power, which in turn in uences the organization?s ability to
achieve resources.
The closeness centrality is calculated as shown in Equation 7.8 [65].
Ci = N 1PN 1
j=1 di;j
; (7.8)
where di;j is the minimum distance between community i and j. N is the total number
of communities in this network.
We design an experiment where the simulation of the Colorscape model was replicated
30 times. At the end of each single run, the closeness centrality and resources of each commu-
nity are recorded. For each level of centrality, the average level of resources of corresponding
communities are computed. Figure 7.13 depicts the average resources of communities chang-
ing along with the closeness centrality of these communities.
Based on Figure 7.13, we can observe that the average resource level increases along
with closeness centrality. The underlying reason may be that higher closeness centrality
due to direct connections with peers, results in larger number of similar communities due
to boundary processes. Thus, the community with higher closeness centrality is likely to
survive, because it has more opportunities for collaboration with similar peers.
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Figure 7.13: Resource Availability along with Closeness Centrality
7.6.2.2 Law of N-Squared
Krackhardt [51] identi ed the constraint of \Law of N-Squared", which simply notes
that the number of potential links in a network organization increases geometrically with
the number of people.
We increase the total number of communities from 10 to 190, and then count the number
of communities that may build collaborations with respect to each community in the P2P
lending. For example, considering that the total number of communities is 10, if the number
of potential target communities for each community i is xi, then the total number of potential
target communities is P10i=1xi. For each case, simulation model is run 30 times to get the
average value. Figure 7.14 shows that the number of target communities geometrically
increases with population.
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Figure 7.14: Number of Target Communities vs. Population
7.6.2.3 Iron law of Oligarchy
The other constraint identi ed by Krackhardt [51] is the \Iron law of Oligarchy", which
is the tendency for groups and social systems, even fervently democratic ones, to end up
under the control of a few people.
Figure 7.15 depicts how the network guided by the exchange theory evolves over time.
The initial number of communities is 20. At the beginning, communities start communicating
with each other. More and more communications happen over time so that communities
tightly connect with each other. Furthermore, the boundary process pulls communities
to move toward each other in terms of their domain. Because each cell in the resource
landscape can only a ord one community, communities within the same cell have to search
for collaboration. Although such collaboration may happen, communities still fade out due
to small portion of resources the collaboration community likes to share. Thus, the total
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number of communities decreases until the last winner communities stay within their resource
cells.
Figure 7.15: Emergent Networks over Time
7.7 Experiments on Communication Theories
In this section, experiments are conducted to investigate the impact of scienti c commu-
nity traits (i.e., receptivity,  exibility) and environmental constraints (i.e., external resources,
communication strategies) on the innovation potential and performance of GPS.
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Table 7.2 lists all the parameters that could be changed in the following experiments.
Table 7.2: Experimental Parameters
Name Default Value
Carrying Capacity 60
Startup Funding 2
External Resource 2
Tolerance 0.6
Reorganization Tendency 0.5
Receptivity 0.5
Allocation Strategy P2PAllocation
Communication Style Balance
Communication Frequency 0.4
Threshold to Grow 0.5
7.7.1 Variety vs. External Resource
Figure 7.16 depicts how diversity changes with respect to the size of external resources
injected into the environment. The abscissa indicates the amount of resources allocated to
each community per time tick. For all the communication theories, the variety increases
along with external resources. Also, the scale of variety is really similar, indicating that
these communication theories do not have signi cant di erences on the e ects on variety
under the P2P allocation strategy.
After setting the communication frequency to 0.1, we depict the change in variety over
external resources in Figure 7.17. From this  gure, we observe that variety is less sensitive
to the external resources, since variety almost remains unchanged. Based on observations
denoted by Figures 7.16 and 7.17, policy-makers need to be cognizant that increasing funding
does not always help increase variety, especially for those communities with relatively low
communication frequency.
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Figure 7.16: Variety vs. External Resources at Moderate Communication Frequency
Figure 7.17: Variety vs. External Resources at Low Communication Frequency
7.7.2 Sustainability vs. Resource Availability
In ecology, sustainability refers to the ability of biological systems to remain diverse
and productive over time. In the domain of creativity, sustainability can be interpreted
as the e ectiveness of communities in utilizing resources. So, we relate it to success rate,
which measures the extent to which communities are e ective in making use of resources to
126
improve their maturity, while maintaining themselves. Success rate is de ned as the ratio of
the number of active communities remaining at the end of simulation to carrying capacity.
Figure 7.18(a) shows that sustainability increases with external resources, while its rate
of increase gradually decreases with increasing external resources. This suggests the presence
of an asymptote, toward which sustainability moves with increasing external resource levels.
If communication frequency is decreased to 0.1, the change in sustainability over resources
is as depicted in Figure 7.18(b), in which similar trends are observed but with relatively
large scale; that is, sustainability increases with decreasing communication frequency. As
scienti c communities can be viewed as arti cial ecosystems, the communication frequency
is similar to the evolution frequency. Lower evolution frequency leads to fewer species to be
eliminated.
(a) High Communication Frequency
(b) Low Communication Frequency
Figure 7.18: Sustainability vs. External Resources
127
7.7.3 Sustainability vs. Receptivity
Figure 7.19(a) shows the change in sustainability with respect to varying levels of recep-
tivity at low communication frequency. Receptivity of a community is de ned as the ratio
of neighbor in uence to inertia. We observe that sustainability almost does not vary with
receptivity at low communication frequency. When the communication frequency increases
to 0.7, sustainability vs. receptivity is depicted in Figure 7.19(b), which shows sustainabil-
ity decreasing with increasing receptivity. Based on this comparison, decision-makers may
develop policies to encourage communities to be more independent, if there are too many
interacting activities in the domain.
(a) Low Communication Frequency
(b) High Communication Frequency
Figure 7.19: Sustainability vs. Receptivity
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7.7.3.1 Variety vs. Receptivity
Figure 7.20 shows the change in diversity with respect to varying levels of receptivity.
Receptivity of a community is de ned as the ratio of neighbor in uence to inertia. This  gure
shows that variety increases with increasing receptivity for all the theories. When receptivity
is low, these communication theories lead to similar variety, because communication theories
will not have e ects on interactions between communities if communities have little in uence
on each other. In addition, in comparison to other theories, the exchange theory is less
sensitive to receptivity in terms of variety. The potential reason is that the communication
guided by exchange theory is based on distribution of resources on the innovation landscape,
which is not directly related to variety. In addition, variety under balance, homophily, and
structural hole theory increases monotonically with receptivity, the reason behind which is
that these three communication theories build connections based on traits of communities
that are directly related to variety.
Figure 7.20: Variety vs. Receptivity under Low Communication Frequency
Figure 7.20 shows the relation between variety and receptivity under low communication
frequency. When communication frequency is increased to 0.7, the relation between variety
and receptivity is depicted in Figure 7.21, based on which, we can observe the opposite
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trend depicted in Figure 7.20. When the communication frequency is low, variety increases
along with receptivity. On the other hand, variety decreases with increasing receptivity
under high communication frequency. This comparison suggests that decision makers may
consider promoting policies that encourage communities to be more open, if the scienti c
domain has relatively fewer communication activities. On the contrary, decision makers may
encourage communities to increase inertia if more communication activities occur in this
domain.
Figure 7.21: Variety vs. Receptivity under High Communication Frequency
7.7.3.2 Innovation Potential
It is shown in [25] that communities with low density and high centrality are expected
to exhibit higher innovation potential. Figure 7.22 depicts change in density and centrality
over receptivity under various communication theories.
Based on these  gures, we can observe that all communication theories except prefer-
ential attachment based on links lead to the emergence of communication networks with
small density and large centrality along with increasing receptivity. When communities are
guided by preferential attachment based on links, communities are always willing to connect
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(a) (b)
(c) (d)
(e) (f)
Figure 7.22: Innovation Potential
to those with larger number of links, which directly determines the communication network
structure. So, receptivity under preferential attachment based on links theory does not play
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a signi cant role as it does under other theories in terms of density and centrality. In addi-
tion, under the homophily theory, density signi cantly decreases with increasing receptivity,
while centrality almost remains the same, which demonstrates that receptivity is a positive
factor that improves innovation potential.
7.7.3.3 Knowledge Di usion E ciency
Cliquish networks with low average path lengths exhibit the small-world phenomena
and are known to be e ective in knowledge creation and di usion [23]. It is proved that the
small world structure is an e cient architecture for new knowledge to di use [22]. Small
world network structure is identi ed by a high clustering coe cient and a shorter average
path. Figure 7.23 shows the change in clustering coe cient and average path length over
receptivity under di erent communication theories, with the communication frequency set to
0.4. From these  gures, we can observe that the communication network guided by balance,
exchange, homophily, preferential attachment based on links, preferential attachment based
on resources results in decreased clustering coe cient and increased average path length,
along with increasing receptivity. It demonstrates that receptivity is a negative factor for
communities under these theories to form a small world. In addition, balance theory leads to
the highest knowledge di usion e ciency, since it results in the highest clustering coe cient
and one of the shortest average path length. Based on this experimental result, decision-
makers may encourage communities to keep self-centering to form a small world network
when communication frequency is moderate.
7.7.3.4 Network Patterns
When the communication frequency is high, emergent networks generated by balance
and exchange theories always lead to a high density. So, we decrease the communication
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(a) Clustering Coe cient vs. Receptivity
(b) Average Path vs. Receptivity
Figure 7.23: Knowledge Di usion E ciency
frequency to 0.1; that means each community has 0.1 probability of undertaking communi-
cations in each time interval. The following  gures (Figure 7.24, 7.25, and 7.27) show net-
work patterns formed by communities under communication theories including homophily,
structural hole, preferential attachment, balance, and exchange, respectively. Based on the
comparison, the networks under homophily and exchange theory have clusters of similar
communities in terms of hue emergence, which are depicted in Figure 7.24. In addition,
the network (shown in Figure 7.25) guided by preferential attachment based on links ex-
hibits the property of scale-free network, since its link distribution (shown in Figure 7.26)
follows a power law with R2 = 0:81. Moreover, networks under balance, structural hole,
and preferential attachment based on resources theories demonstrate a core/periphery net-
work, where a core with highly connected communities emerges, which are shown in Figure
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7.27. The core/periphery ratio of these three networks are 4, 11, and 6 respectively, indi-
cating that more core communities are surrounded by fewer periphery communities. Similar
phenomenon is exhibited in the OBO network as shown in Table 5.8.
(a) Homophily Theory
(b) Exchange Theory
Figure 7.24: Networks Generated under Homophiliy and Exchange Theory
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Figure 7.25: The Network Generated under Preference Attachment based on Links Theory
(a) Histogram of Communities? Links (b) Linear Regression of Logarithmic Value of
Links
Figure 7.26: Communities? Links
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(a) Balance Theory
(b) Structural Hole Theory
(c) Preference Attachment based on Resources Theory
Figure 7.27: Networks under Balance, Structural Hole, and Preference Attachment based on
Resources Theory 136
Chapter 8
Conclusions
In this chapter we outline our  ndings and discuss them in the context of collective
creativity in global participatory science. Also, future research avenues for extending the
current model to resolve its limitations are delineated.
8.1 Findings and Discussion
In this study, we conceptualized and simulated the growth and development of scien-
ti c communities in terms of a complex adaptive communication system that follows the
principles of creative arti cial ecosystems.
Using social communication theories as behavioral rules of agents can facilitate develop-
ment of a new layer over the existing Agent Communication Language (ACL) [31] framework
that is based on the speech-act theory [7]. The new layer enables speci cation of communi-
cation mechanisms over the basic primitives provided by ACL. The communication proto-
col manages connections between agents from di erent perspectives including communities?
traits, self-interest, and discrepancy in resources. In addition, the RGV (Robust Generative
Validation) strategy presented in this dissertation can help researchers address Veri cation
and Validation (V&V) challenges of ABM, e.g., counterintuitive emergent behavior, as well
as structural and parametric uncertainty. The usefulness of the RGV framework is examined
by the validation process of the ColorScape model against the empirical OBO data and the
science overlay map.
This research provides a computer-aided tool for science policy development, which is
a theme that aims to provide a scienti cally rigorous quantitative basis that can be used
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by policy makers to assess the impact of their decisions on the growth and development of
scienti c  elds.
The main objective of this research is to explore the impact of scienti c community
traits (i.e., receptivity,  exibility, reorganization tendency) and environmental constraints
(i.e., interaction topologies, resource allocation strategies, socio-technical communication
preferences) on the innovation potential (e.g., diversity, sustainability, and resilience) of GPS.
Based on the experiments conducted with the ColorScape model, we draw the conclusions
discussed in the following sections.
8.1.1 ColorScape: A General Purpose Model
The ColorScape model introduced in this dissertation is a general-purpose creative arti-
 cial innovation ecosystem model that can mimic the behavior of both traditional and open
innovation communities. The model is conceptually grounded and validated in terms of its
capability to generate similar metrics against the science overlay map [75] and the empirical
OBO network [86].
8.1.2 Community?s Traits vs. Diversity
In low density networks, increasing levels of receptivity improves diversity
up to a level. On the contrary, diversity decreases with increasing receptivity
in highly coupled networks. Under environments with high receptivity, the reason that
diversity favors low connectivity is that presence of dense communication channels causes
convergence, which in turn decreases diversity. Experimental results suggest encouraging
communities to be more receptive in relatively low density environments to attain higher
levels of diversity.
Reorganization adversely a ects diversity. On the other hand, specialization
has positive e ects on diversity. Reorganization and specialization strategies help com-
munities adapt to their environment, when the community cannot meet the expectations
138
of its members. This observation is consistent with the functionality of specialization and
reorganization. Specialization facilitates creation of a new community with a di erent tar-
get color from the current community, while reorganization involves pulling the target color
toward the current color, causing convergence.
8.1.3 Environmental Constraints vs. Diversity, Sustainability, and Resilience
The size of the carrying capacity of the knowledge ecosystem has positive
e ects on diversity. Yet, there is a point of diminishing returns. Increasing the
number of communities improves the probability of forming more clusters comprised of sim-
ilar communities. But there is maximum diversity given a  xed scienti c spectrum and the
maximum di erence within clusters. So, diversity cannot increase inde nitely with the car-
rying capacity. By the same token, increasing external resources leads to increased diversity
up to a point, beyond which more resources can only increase the number of communities
within a cluster rather than the number of clusters. For policy makers, it is noteworthy that
neither external resources nor initial community number can keep diversity increasing, i.e.,
there is a tradeo between the available funding and the expected level of diversity.
Disparity increases with resources up to a point. Beyond that point, dispar-
ity decreases with increasing resources. At the same time, lower connectedness
cause higher disparity. Disparity increases with the increasing level of resource availabil-
ity, because more resources lead to higher success rate, which in turn results in disparity.
On the other hand, beyond that point, disparity decreases because of the decreased need
for interaction for sustainment, which in turn decreases inequality. In addition, disparity
increases with decreasing level of connectivity; this is due to decreased convergence under
low connectivity. To meet the desired level of disparity, policy-makers need to consider the
connectedness of the social communication network when making decisions on allocating
external funding.
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The 2D topology is more resilient than the 1D topology, and scale-free net-
works have higher resilience than random and random group networks. The 1D
topology corresponds to relations between upstream and downstream organizations. Gen-
erally speaking, upstream organizations lead the frontier research and determine the direc-
tion of future research in their domains. Downstream organizations mainly transfer the
technology developed by upstream organizations into products. The 2D topology adds the
collaborations between organizations at the same level in the organizational ecological chain.
Communities with highly connected clusters under low level of resource avail-
ability can experience high levels of sustainability. On the contrary, under mod-
erate level of resources, loosely connected clusters are more likely to survive. A
plausible explanation for this observation is that higher resource availability leads to higher
variety. Under high variety, larger connectivity causes each community to be pulled toward
multiple di erent cognitive niches, resulting in lack of focus which in turn costs communities
more resources, and hence decreasing the survival rate. On the other hand, lower resource
availability leads to lower variety. Under low variety, however, strong connectivity results
in more communities sharing similar states, bene ting from each other through a symbi-
otic relation, which in turn increases the overall survival rate. Based on these observations,
policy-makers may encourage communities to build highly connected clusters if resource
availability is low.
8.1.4 Network Metrics vs. Variety
One goal of this research is to identify a metric hierarchy, two layers of which are network
metrics and attributes. Network metrics include density and centrality, while attributes
include diversity. Little research is undertaken to make clear the relation between these two
layers. Based on the experiments conducted with the Colorscape model, we observe that
variety increases with density and centrality up to a point, beyond which variety
is inhibited. Similar results are also found in [40][69]. According to these observations,
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researchers may estimate expected levels of variety based on the density and centrality of
social networks; that is, neither low nor high density/centrality results in high variety. High
variety occurs at moderate density/centrality.
8.1.5 Allocation Strategies vs. Variety
Key area investment with technology transferring results in the highest level
of variety. This is similar to the case where domains with lower priority still have potential
to advance, yet the environment promotes development of domains related to priorities.
Additionally, the communities with most resources granted may not be as successful as
expected, if the domain with the top priority is located between several signi cantly di erent
domains. A potential reason is that the domain with top priority is pulled toward several
di erent directions, which could have incurred signi cant resource cost during the learning
process, resulting in decreased number of communities with most resources granted. For
policy-makers, they should also consider the interaction networks around the domain with
the top priority, when making decisions about funding allocation.
8.1.6 Communication Strategies vs. Diversity, Sustainability, and Innovation
Potential
Examined communication strategies are not signi cantly di erent from each
other, especially in regard to the relation between variety and external resources
under the P2P allocation strategy. Increasing funding does not always help in-
crease variety, especially for those communities with relatively low communica-
tion frequency. Communication theories change the strategy of communities in selecting
targets, based on which local niches are emerged. Di erent formation of local niches results
in di erent local diversity. But the local diversity does not in uence the global diversity sig-
ni cantly. In addition, low communication frequency results in fewer interaction activities,
causing fewer resources to be consumed. So, external resources have little e ect on variety at
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low communication frequency. As scienti c communities can be viewed as arti cial ecosys-
tems, the communication frequency is similar to the evolution frequency. Lower evolution
frequency leads to fewer species to be eliminated. This suggests that sustainability favors
low communication frequency. Based on this observation, policy-makers may discourage
inter-organizational activities when resources are limited.
Under low communication frequency, openness and receptivity lead to higher
variety. On the contrary, variety decreases with increasing receptivity under
high communication frequency. The potential reason is that higher receptivity results
in more communities sharing similar states under low communication frequency, bene ting
from each other through a symbiotic relation, which in turn increases the overall survival rate.
On the other hand, under high communication frequency, higher receptivity results in the
convergence of communities, which in turn lead to more communities inhabiting within the
same domain. Under the P2P allocation strategy, one domain can only sustain  xed number
of communities so that the survival rate decreases with increasing receptivity. This is also
why sustainability decreases with increasing receptivity at high communication
frequency.
Receptivity is a positive factor that improves innovation potential for com-
munities under high communication frequency. At high communication frequency,
higher receptivity results in lower survival rate, which in turn leads to lower density and
lower centrality. However, density decreases at a higher rate than centrality does, resulting
in signi cant di erence between levels of density and centrality. Networks with low density
and high centrality are attributed with higher innovation potential [25]. In comparison to
the previous  nding that sustainability and variety decrease with increasing receptivity at
high communication frequency, there is a tradeo between sustainability, variety, and inno-
vation potential. Decision-makers have to take this observation into consideration to develop
policies that balance these three indicators.
142
Networks governed by the homophily and the exchange theories yield clus-
ters of similar communities. Under the homophily theory, communities communicate
with similar peer communities. Under the exchange theory, the transaction occurs when
communities solve problems by collaboration, during which collaborating communities be-
come similar. So, both of these theories help local clusters with similar communities to
emerge. Based on this  nding, policy-makers need to be cognizant that local niches are
likely to exist in networks of communities guided by the homophily or the exchange theory.
8.2 Extensions
The main emphasis of the Colorscape model presented in this dissertation is the inter-
connection among communities. Hence, the model can be used to simulate the behavior of
networks formed by communities, among which dynamic relationships exist.
These types of communities include the following [22]:
 Shared Instrument: The main objective of such communities is to increase access
to a scienti c instrument. Shared Instrument collaboratories often provide remote
access to expensive scienti c instruments such as telescopes. For such communities,
the Colorscape model can help discern e ective strategies for improving the collective
use of expensive instruments.
 Virtual Community of Practice is a network of individuals who share a research
area and communicate online. Virtual Communities may share news of professional
interest, advice, techniques, or pointers to other resources online.
 Virtual Learning Communities aim to increase the knowledge of participants, but
not necessarily aimed toward conducting original research.
 Distributed Research Centers are similar to a university research center, but they
are operated at a distance. It is an attempt to aggregate scienti c talent, e orts, and
resources beyond the level of individual researchers.
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For networks comprised of the types of communities listed above, the Colorscape model
needs to be slightly modi ed according to the speci c characteristics of relations between
each type of communities, so that it can simulate the dynamics of emergent networks and
facilitate the analysis of the output data.
8.3 Limitation and Future Research
One limitation of the Colorscape model is its inability to generate network patterns sim-
ilar to the science overlay map, although the structural indicators such as density, centrality,
clustering coe cient are su ciently similar. The potential reason is that communities se-
lect target communities to communicate globally. It may be valuable to limit the scope of
potential targets that communities can select. This strategy aims to encourage more local
niches to emerge, which is observed in contemporary research development with relatively
high-coupled clusters and fewer international connections.
Besides communication theories already implemented in the Colorscape model, there
are other theories that can also be embedded in the model.
Public goods theory [81] explains the economics of collective ownership such as public
bridges, parks, and libraries, which are distinguished from the private ownership. Two
characteristics of public goods are noteworthy: impossibility of exclusion and jointness of
supply. There is a determining factor in generating public goods named critical mass [67],
which is de ned as the minimum interest that drives the majority of people to realize the
public good.
Cognitive social structure [50] is to characterize individual community?s perceptions
of the social network. The theory can be used to build the community?s understanding of the
network, which is partial and may be di erent from the real network. The communities in the
partial network cognized by a community are its candidate objects for future communication.
Two steps are needed, one of which is to build the partial network. The other is to select
communities to communicate within the partial network.
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Cognitive consistency theory [42] argues that communities are satis ed with their
positions in the communication network if their associated peer communities are connected
with one another. Assuming the set of neighbors of a community A is S, then the in uence
of a community B in S on A is proportional to the number of B0s links to other communities
in S.
This research provides a computer-aided tool (i.e., the ColorScape Model) for science
policy development, so that decision-makers can assess the impact of their decisions on the
growth and development of scienti c  elds in advance. By undertaking experiments pre-
sented in Chapters six and seven, decision-makers can alter communities? traits, resource
allocation strategies, and socio-technical communication preferences to examine their im-
pacts on innovation potential and performance. In addition, the resource allocation module
and the communication preferences module can be extended and replaced by other modules
that decision-makers are interested in. Hence, the ColorScape model can be customized to
facilitate conducting abstract thought experiments for exploring e ective strategies, while
allowing informed decision-making for science and innovation policy.
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