Local and National Scale Energy Calibration of Standard Penetration Test Hammers
by
Jonathan Nathaniel Honeycutt
A thesis submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the
requirements for the Degree of
Master of Science
Auburn, Alabama
May 6, 2012
Keywords: SPT, N-value, energy, stress waves, geotechnical, statistics
Copyright 2012 by Jonathan Nathaniel Honeycutt
Approved by
J. Brian Anderson, Chair, Associate Professor of Civil Engineering
Jeffrey LaMondia, Assistant Professor of Civil Engineering
Lorraine Wolf, Professor of Geophysics
? ii
?
?
?
?
?
Abstract
?
?
A Standard Penetration Test (SPT) energy testing program was developed for the
Alabama Department of Transportation. Six Central Mine Equipment (CME) automatic
hammers were calibrated using force and velocity measurements. The energy transfer
ratio (ETR) for each hammer system was from 82.2% to 96.1%, with an overall average
of approximately 91%. The coefficients of variance (COV) ranged from 2.2% to 5.7%.
In addition to the testing program, a database for automatic hammers was created
and included energy records from approximately 19,000 SPT hammer blows. 90% of the
data were obtained from CME automatic hammers, and over two-thirds of the CME data
represented repeat testing. The database records were acquired under Nuclear Quality
Assurance Level I standards (NQA-1), which were provided by a private sector
consultant for research purposes.
The database records were used to determine a broad-based value of transfer
efficiency for CME automatic hammers. The overall ETR was determined to be 82.7% ?
5.5% with a COV of 6.7%. The range of COVs between CME groups was from 1.1% to
10.5%. The overall average COV was 4.3%. These COV results compared well to the
expected COV range for CME hammers documented in historical studies, which had a
maximum value of 10%.
? iii
Supplemental multiple regression analyses were performed on the CME database
records for rod lengths less than 50 ft. The variables evaluated include hammer operation
rate, rod length, penetration resistance, and rod type. The first regression model was used
to predict transfer efficiency. The second model, which was regressed through the origin,
was used to estimate the full effect of each variable without the intercept. The prediction
accuracy between the two models was approximately 2% ETR. Hypothesis testing was
performed on the independent variables.
?
?
?
?
?
? iv
?
Dedication
This work is dedicated to Ms. Merilyn A. Kaplan, Ms. Merilyn L. Honeycutt, and
Mrs. Jennifer M. Cleary.
? v
Acknowledgments
I would first like to say that it has been a privilege attending Auburn University
while pursuing my graduate studies. This opportunity would not have been possible
without the assistance of Dr. Brian Anderson. As the chair of my committee, Dr.
Anderson has supported me throughout this process, but has also allowed me the
flexibility to work in my own way. He has proven to be not only a mentor, but also a
friend, and I owe a great deal of my academic and professional success to him.
I would like to extend the utmost appreciation to the other members of my
committee for their involvement, support, and patience. Special thanks go out to Dr.
Jeffrey Lamondia for his statistical guidance and to Dr. Lorraine Wolf for providing an
outside perspective along with a wonderful sense of humor.
The author conveys thanks to the folks at the Alabama Department of
Transportation for providing the financial means for this project. It has been a true
pleasure working with Mrs. Kaye Chancellor-Davis and Mr. William Brown of the
Bureau of Materials and Tests, and is an experience that I will always remember.
Last but not least, I would like to express the most sincere appreciation toward
two individuals who have had a tremendous influence on the direction of my life.
Specifically, I would like thank Mr. Steven Kiser for his profound encouragement and
endless support for all of my endeavors, and to Dr. Harold Vaughn Jackson who taught
me that ?As a man thinks, so he is. As he continues to think, so he remains.?
? vi
Table of Contents
Abstract ............................................................................................................................... ii?
Dedication .......................................................................................................................... iv?
Acknowledgments............................................................................................................... v?
List of Tables ...................................................................................................................... x?
List of Figures .................................................................................................................... xi?
CHAPTER 1: INTRODUCTION ....................................................................................... 1?
1.1 The Standard Penetration Test ................................................................................ 1?
1.2. ASTM D 1586 Standard ........................................................................................ 2?
1.3 SPT Sampling ......................................................................................................... 2?
1.4 The SPT Hammer ................................................................................................... 5?
1.5 N-value Normalization ............................................................................................ 9?
1.6 Research Objective ............................................................................................... 10?
CHAPTER 2: BACKGROUND ....................................................................................... 11?
2.1 Introduction ........................................................................................................... 11?
2.2 One-Dimensional Wave Equation ........................................................................ 11?
2.3 Proportionality between Force and Particle Velocity ........................................... 13?
2.4 Transmission and Reflection of Waves ................................................................ 15?
2.5 Source of Energy in the SPT ................................................................................. 17?
2.6 EFV Method of Energy Measurement .................................................................. 19?
? vii
2.7 EF2 Method of Energy Measurement ................................................................... 22?
2.8 Generalized Wave Transmission .......................................................................... 24?
2.8.1 Energy Transmission and Sampler Displacement ....................................... 26?
2.9 CME Automatic Hammer ..................................................................................... 33?
2.9.1 Hammer Automation ................................................................................... 33?
2.9.2 Drive Weight Viewing Slot ......................................................................... 35?
CHAPTER 3: LITERATURE REVIEW .......................................................................... 37?
3.1 ASTM D 4633-10 ................................................................................................. 37?
3.2 EFV Transfer Efficiency in Literature .................................................................. 39?
3.3 Variation of Transfer Efficiency ........................................................................... 40?
3.3.1 FDOT Study ................................................................................................. 41?
3.3.2 NCDOT Study ............................................................................................. 42?
3.4 CME Hammer Operation Rate.............................................................................. 44?
3.5 Rod Length and Energy Transmission .................................................................. 47?
3.5.1 Palacios Study .............................................................................................. 48?
3.5.2 Morgano and Liang Study ........................................................................... 51?
3.5.3 NCDOT Study ............................................................................................. 53?
3.6 Secondary Hammer Impacts ................................................................................. 55?
3.7 Energy Reaching the Sampler ............................................................................... 58?
3.7.1 Palacios Study .............................................................................................. 59?
3.7.2 Abou-matar and Goble Study ...................................................................... 59?
3.7.3 MnDot Study ................................................................................................ 61?
3.7.4 Odebrecht Study........................................................................................... 62?
? viii
3.8 Conclusions Based on Previous Work .................................................................. 65?
CHAPTER 4: ALDOT TESTING PROGRAM ............................................................... 70?
4.1 Introduction ........................................................................................................... 70?
4.2 ALDOT Drill Rig Fleet ......................................................................................... 70?
4.3 SPT Analyzer ........................................................................................................ 71?
4.4 Instrumented Subassembly ................................................................................... 72?
4.5 Field Testing Procedure ........................................................................................ 74?
4.5.1 Field Documentation .................................................................................... 74?
4.5.2 Equipment Set Up ........................................................................................ 78?
4.5.3 Data Acceptance Criteria ............................................................................. 82?
4.6 Office Analysis of Field Data ............................................................................... 84?
4.6.1 Retrieving Data from the SPT Analyzer ...................................................... 84?
4.6.2 PDAW Software Program............................................................................ 86?
4.6.3 PDIPLOT Software ...................................................................................... 88?
4.7 Calibration Certificate ........................................................................................... 90?
4.8 Summary of ALDOT Results ............................................................................... 91?
4.8.1 Measured Transfer Efficiency ...................................................................... 91?
4.8.2 Variation of Transfer Efficiency .................................................................. 92?
4.8.3 Variation of Hammer Operation Rate .......................................................... 95?
4.8.4 Rod Length Effects ...................................................................................... 96?
4.8.5 Effect of Secondary Impacts and Penetration Resistance ............................ 99?
CHAPTER 5: SPT ENERGY DATABASE ................................................................... 104?
5.1 Introduction ......................................................................................................... 104?
? ix
5.2 Database Design .................................................................................................. 105?
5.3 Geologic Conditions ........................................................................................... 105?
5.4 Rod Type and Rod Length Distribution.............................................................. 106?
5.5 Summary of Drill Rigs ........................................................................................ 106?
5.6 CME Drill Rigs ................................................................................................... 108?
5.6.1 Summary Table .......................................................................................... 108?
5.6.2 Hammer Operation Rate ............................................................................ 112?
5.6.3 Summary of Results ................................................................................... 114?
5.6.4 Variation of Energy between Drill Rig Groups ......................................... 115?
5.6.5 Variation of Hammer Operation Rate between Drill Rig Groups ............. 116?
5.7 Multiple Linear Regression................................................................................. 117?
5.7.1 Statistical Terminology .............................................................................. 119?
5.7.2 Multiple Linear Regression Results ........................................................... 121?
5.7.3 Regression through the Origin ................................................................... 123?
5.8 CME Case Study ................................................................................................. 126?
5.8.1 Project Description and Summary of Transfer Efficiency ......................... 126?
5.8.2 Predicted Hammer Efficiency .................................................................... 127?
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS .................................. 129?
REFERENCES ............................................................................................................... 135?
APPENDICES ................................................................................................................ 138?
? x
List of Tables
Table 3.1 Historical EFV ETR .......................................................................................... 40?
Table 3.2 Summary of FDOT energy measurements (Davidson et al., 1999) .................. 42?
Table 3.3 Summary of NCDOT energy measurements (Valiquette et al., 2010) ............. 44?
Table 4.1 ALDOT drill rig inventory ............................................................................... 71?
Table 4.2 ALDOT summary statistics .............................................................................. 92?
Table 5.1 Rod type and length distribution ..................................................................... 106?
Table 5.2 Drill rig summary ............................................................................................ 107?
Table 5.3 Summary of CME transfer efficiency ............................................................. 110?
Table 5.4 Summary of CME hammer operation rate ...................................................... 113?
Table 5.5 Overall summary of CME database records ................................................... 115?
Table 5.6 Multiple regression results .............................................................................. 121?
Table 5.7 Multiple regression summary statistics ........................................................... 121?
Table 5.8 Multiple regression results ? without intercept ............................................... 124?
Table 5.9 Multiple regression summary statistics ? without intercept ........................... 125?
? xi
List of Figures
Figure 1.1 Raymond Concrete Pile Company .................................................................... 1?
Figure 1.2 Hollow-stem auger drilling................................................................................ 3?
Figure 1.3 SPT sampling process (Mayne et al., 2001) ...................................................... 4?
Figure 1.4 SPT boring log ................................................................................................... 6?
Figure 1.5 Manual safety hammer (Kelley and Lens, 2010) .............................................. 7?
Figure 1.6 Automatic hammer ............................................................................................ 8?
Figure 2.1 Stress wave sign convention (modified from Howie et al., 2003) .................. 16?
Figure 2.2 Instrumented subassembly............................................................................... 21?
Figure 2.3 Wave transmission (Howie et al., 2003) ......................................................... 25?
Figure 2.4 EFV & E-D Trace-short rod (19.3 ft)-low penetration resistance ................... 28?
Figure 2.5 EFV & E-D Trace-Short Rod (19.3 ft)-moderate penetration resistance ........ 30?
Figure 2.6 EFV & E-D Trace-Long Rod (49.3 ft)-low penetration resistance ................. 32?
Figure 2.7 CME hammer operational components (modified from Rassieur, 1983) ....... 34?
Figure 2.8 Drive weight viewing slot (dimensions from CME operations manual) ......... 36?
Figure 3.1 NCDOT variation of transfer efficiency (Valiquette et. al, 2010) .................. 43?
Figure 3.2 Drop height vs. hammer operation rate (Farrar and Chitwood, 1999) ............ 45?
Figure 3.3 Drill rod energy vs. hammer operation rate (Farrar and Chitwood, 1999) ...... 45?
Figure 3.4 Drive chain and lifting lug ............................................................................... 46?
Figure 3.5 CME hammer malfunction .............................................................................. 47?
? xii
Figure 3.6 Theoretical transfer efficiency (Schmertmann and Palacios, 1979) ................ 50?
Figure 3.7 Drive system efficiency (Morgano and Liang, 1992) ..................................... 52?
Figure 3.8 Average drive system efficiency (Morgano and Liang, 1992) ........................ 52?
Figure 3.9 Wave equation study (Morgano and Liang, 1992) .......................................... 53?
Figure 3.10 Normalized energy transfer (Valiquette et al., 2010) .................................... 55?
Figure 3.11 Digital line-scan camera (Lee et al., 2010) .................................................... 57?
Figure 3.12 Secondary impacts (Lee et al., 2010) ............................................................ 58?
Figure 3.13 Wave equation study (Abou-matar and Goble, 1997) ................................... 61?
Figure 3.14 MnDot rod type vs. N-value study (modified from Goble, 2005) ................. 62?
Figure 3.15 Experimental setup (Odebrecht et al., 2005) ................................................. 63?
Figure 3.16 Sampler energy-19 ft (5.8 m) rod .................................................................. 64?
Figure 3.17 Sampler energy-117.5 ft (35.8 m) rod ........................................................... 65?
Figure 4.1 SPT Analyzer ................................................................................................... 72?
Figure 4.2 Instrumented subassembly............................................................................... 73?
Figure 4.3 Field sheet-blank ............................................................................................. 76?
Figure 4.4 Field sheet-filled out ........................................................................................ 77?
Figure 4.5 Field notebook ................................................................................................. 78?
Figure 4.7 Final instrumentation setup prior to testing ..................................................... 82?
Figure 4.8 Representative force and velocity wave trace ................................................. 84?
Figure 4.9 PDAW information screen .............................................................................. 86?
Figure 4.10 PDIPLOT summary-ALDOT drill rig SE 9299 ............................................ 89?
Figure 4.11 Energy calibration certificate-ALDOT SE9299 ............................................ 91?
Figure 4.12 Box and whisker legend (SAS 9.2) ............................................................... 93?
? xiii
Figure 4.13 Energy box plots-ALDOT (Blow to Blow) ................................................... 95?
Figure 4.14 Hammer operation rate box plots-ALDOT (blow to blow) ........................... 96?
Figure 4.15 ETR vs. rod length-ALDOT .......................................................................... 97?
Figure 4.16 Rod length study comparison-ALDOT & NCDOT ...................................... 98?
Figure 4.17 Rod length study comparison-all studies ....................................................... 99?
Figure 4.18 Energy traces for rod length 19.3 ft (SPT blow count 7-13-20) .................. 100?
Figure 4.19 Energy traces for rod length 29.3 ft (SPT blow count 11-20-26) ................ 101?
Figure 4.20 Energy traces for rod length 39.3 ft (SPT blow count 8-15-22) .................. 101?
Figure 5.1 ETR box plots ................................................................................................ 111?
Figure 5.2 Histogram of ETR averages .......................................................................... 111?
Figure 5.3 Histogram of single ETR records (hammer blows) ....................................... 112?
Figure 5.4 Hammer operation rate box plots .................................................................. 114?
Figure 5.5 ETR COV distribution ................................................................................... 116?
Figure 5.6 BPM COV distribution .................................................................................. 117?
Figure 5.7 SPT test site ................................................................................................... 127?
?
?
?
? 1
?
CHAPTER 1: INTRODUCTION
?
?
1.1 The Standard Penetration Test
The standard penetration test (SPT) has been widely used for geotechnical
explorations for nearly a century. The origin of the SPT dates back Charles Gow of the
Raymond Concrete Pile Company (Figure 1.1). The original purpose of the test was to
measure the density of soil formations using a standard procedure from which soil
correlation combined with experience could be used for foundation design (Davidson et
al., 1999). Over the years, its widespread use has led to an abundance of published
empirical correlations relating soil penetration resistance to various engineering
properties of soil. The most common SPT correlations are concerned with relating soil
resistance to bearing capacity, shear strength parameters, soil modulus, and liquefaction
potential.
Figure 1.1 Raymond Concrete Pile Company
? 2
1.2. ASTM D 1586 Standard
SPT testing equipment and procedures are governed by the ASTM International
(ASTM) standard D 1586 (ASTM, 2008). This standard describes the test method for
split-barrel sampling of soils for soil classification and determination of penetration
resistance. Although the name implies strict standardization, the standard allows some
degree of latitude with respect to the type of equipment used for drilling and sampling.
In general, the 1586 standard specifies the recommended type and size of drill bits,
augers, and drill rods that are suitable for preparing a borehole for sampling purposes. It
also describes the standard hammer weight, sampler dimensions, and testing procedures
to be used in order to obtain representative soil penetration resistance values.
1.3 SPT Sampling
SPT programs are executed by mobilizing a drill rig to a test site. The most
common types of drill rigs include all-terrain vehicles (ATV), track-mounted drill rigs,
and truck-mounted drill rigs. However, drill rigs can also be mounted on barges, and
other exotic off road vehicles. The type of vehicle selected for the job often depends on
the existing site conditions and its transportation capabilities. Other considerations
include the type and depth of geology to be sampled.
The soil boring process begins after the drill rig has mobilized to the site and after
the boring locations have been determined. Most SPT drill rigs are equipped with a rear
engine block which provides the necessary horsepower for the rotary boring operation.
Soil borings are performed vertically, to a prescribed depth, and are used to remove the
overlying soil using either a hollow-stem auger (dry method) or a mud-rotary (wet
? 3
method) technique. When the sampling depth has been reached, the boring process stops
and the drilling personnel prepare to perform the SPT. In Figure 1.2, an ATV drill rig is
shown about to perform a hollow-stem auger soil boring near a bridge abutment in
Alabama.
As previously mentioned, the SPT has two objectives. The first objective is to
retrieve a physical soil sample for soil classification, and the second objective is to obtain
an estimate of the soil strength at the sampling depth. Both of these objectives are
achieved simultaneously during the sampling process.
Figure 1.2 Hollow-stem auger drilling
The sampling process begins by attaching a split-spoon sampler of standardized
dimensions to the bottom end of a string of drilling rods (Figure 1.3). Once attached, the
drill rod string and sampler are lowered to the bottom of the pre-bored hole. It is
common for a length of drill rods, greater than the depth of the boring, to be attached to
Auger
Drill Rods
? 4
the sampler in order for the drill rods to ?stick up? out of the bored hole and above the
ground surface approximately three to five feet. Once the drill rods and sampler are in
place, the SPT hammer is positioned on top of the drill rod string just prior to performing
the test. With the hammer in place, a member of the drilling crew marks three six-inch
Figure 1.3 SPT sampling process (Mayne et al., 2001)
increments on a section of drill rod exposed above the ground surface. These markings
represent the penetration distance that the sampler will experience during the test. After
the six-inch increments have been marked, the SPT hammer system is engaged and
allowed to repeatedly strike the top of the drill rods until the sampler has penetrated into
the borehole a distance of eighteen inches. During the test, the number of hammer blows
? 5
for each six-inch increment is recorded. The number of blow counts required to drive the
sampler the last twelve inches out of the eighteen-inch total is called the N-value. The N-
value is the primary engineering parameter obtained from the SPT and is the blow count
representation of the penetration resistance of the soil. The N-value has units of blows
per foot (BPF).
When the SPT is complete, the sampler and drill rods are removed from the
borehole and the soil inside of the sampler is removed and classified before the next SPT.
This process is typically repeated at intervals of five or ten feet depth until enough SPTs
have been performed to sufficiently characterize subsurface conditions for the foundation
or earthwork under consideration. The final end-product of the SPT test is called a
boring log. The boring log is a record of site subsurface conditions and is used to stratify
soil layers as well as delineate zones of soil type and strength. As an illustration, a
representative boring log is provided in Figure 1.4. In this figure, the right and left side
of the boring log show the respective soil classification and SPT N-values.
1.4 The SPT Hammer
The SPT hammer system is a percussive instrument that provides dynamic impact
energy by dropping a 140-pound weight. The drive weight is lifted a distance of 30
inches and then allowed to free-fall and strike the top of the drill rod string. The
maximum theoretical potential energy available to drive the sampler is 4200 in-lbs (350
ft-lbs). The apparent soil penetration resistance, or N-value, depends on the energy
transferred from the hammer to the drilling rods. Briefly stated, high energy efficient
hammers will produce more sampler penetration per blow, and smaller apparent N-
? 6
?
Figure 1.4 SPT boring log
values, compared to a hammer system that is less energy efficient. The N-value is
therefore inversely proportional to the magnitude of transferred energy.
There are two types of SPT hammer systems, which can be classified as either
manual or automatic. The manual hammer system, which was the only type of hammer
available prior to the 1980?s, commonly consisted of a ?rope and cathead? lift and release
mechanism (Figure 1.5). The cathead is a rotating drum that supplies the motive power
Soil Classification N-Value
? 7
for lifting the drive weight during the test. The automatic hammer, which is currently the
most widely used hammer system, uses a hydraulic lifting mechanism to repeatedly lift
and release the drive weight (Figure 1.6). The automatic hammer is covered extensively
in Chapter 2.
There are vast differences in the operational performance between the manual and
automatic hammer. The automatic hammer is designed to supply a repeatable sequence
of hammer impacts, which correspond to a relatively consistent transfer of impact energy.
The manual hammer does not have the precision of the automatic hammer and often
provides somewhat of a large variation in transferred energy. This occurs because
Figure 1.5 Manual safety hammer (Kelley and Lens, 2010)
Rope &
Cathead
Safety
Hammer
? 8
Figure 1.6 Automatic hammer
?
the efficiency of the manual system is dependent on the ability of the driller to
consistently lift and release the drive weight 30 inches between hammer blows.
Factors such as operator fatigue and number of turns of rope around the cathead often
play a critical role when evaluating the N-values produced by the manual hammer
system. The historical average energy transfer efficiency for the manual hammer is
estimated to be 60 %. This is significantly lower than the 80 % average transfer
efficiency typically attributed to the automatic hammer.
Despite the variability of the manual hammer, its use was dominant for many
decades, and most of the correlations for soil parameters based empirically on N-values
were obtained from its energy transfer efficiency. Due to the emergence and popularity
of the automatic hammer, which is more efficient, an energy standardization approach
Automatic
Hammer
? 9
has been adopted in the U.S., and is used to normalize the N-value results to a 60%
reference energy level.
1.5 N-value Normalization
The N-value is the main engineering parameter obtained from the SPT. Because
of its widespread use, variability of N-values has been well documented. Common
engineering practice accepts that these values can be highly variable and often are
dependent upon the ability of the driller and type of testing equipment used. To quote
ASTM D 1586 ?Variations in N-values of 100% or more have been observed when using
different standard penetration test apparatus and drillers for adjacent borings in the same
soil formation?. Variation of N-values has also been noticed when comparing N-values
from similar hammer systems, i.e., two or more automatic hammers, in the same soil
conditions, and sampling at the same time. This variation is the result of individual
hammer systems being more or less efficient at transferring energy, even if they are from
the same manufacturer.
The engineering community generally agrees that the most effective way to
remove some of the N-value variability is by measuring the amount of energy transferred
to the drill rods during the SPT. If the amount of transferred energy is known, the N-
values can be corrected to a 60 % reference energy level using a simple calibration
equation
?
null
nullnull
nullnull
nullnullnullnullnull
null
null
nullnullnullnullnullnullnullnull
null
nullnull
null? (1.1)
where
? 10
null
nullnull
= Penetration resistance adjusted to 60 % drill rod energy
null
nullnullnullnullnull
= Penetration resistance measured in the field
null
nullnullnullnullnullnullnullnull
= Maximum transferred energy entering the drill rod (from top measurements)
null
nullnull
= Historical energy transfer efficiency for manual hammers (60 %)
1.6 Research Objective
The Alabama Department of Transportation (ALDOT) routinely uses SPT N-
values for their geotechnical designs. Currently, ALDOT is transitioning from the
traditional Allowable Stress Design (ASD) methodology to the modern Load and
Resistance Factor Design (LRFD) standards. With their move to LRFD, the Federal
Highway Administration (FHWA) is recommending SPT energy calibration for each SPT
drill rig as a method to account for N-value variability in the design process. Therefore,
the primary research objective was to determine the average energy transfer efficiency for
each of ALDOT?s SPT hammers, as well as develop a permanent energy testing program
that will meet their future SPT needs.
The secondary research objective focused on evaluating the variation of automatic
hammer transfer efficiency from an SPT energy database. The energy records in the
database were obtained under Nuclear Quality Assurance Level I standards (NQA-1). A
broad-based transfer efficiency value and summary statistics for the CME automatic
hammer are presented. Supporting multiple regression analyses were also performed on
the data in order to evaluate the average effect of four variables affecting energy transfer
for drill rods less than 50 ft. These variables include the hammer operation rate, rod
length, penetration resistance, and rod type.
? 11
?
?
?
?
CHAPTER 2: BACKGROUND
2.1 Introduction
This section is an overview of the general progression of stress wave theory
leading up to field energy measurements. The following discussion is presented in a
more qualitative format than has traditionally been used and should be helpful to the
reader in the understanding of the energy measurement process. A background summary
on the CME automatic hammer has also been provided at the end of the chapter.
2.2 One-Dimensional Wave Equation
Engineering applications related to the dynamic impact of elastic rods are
primarily concerned with the transformation of energy into motion via free longitudinal
wave oscillations. Assuming that plane cross-sections of the rod remain plane during
impact, the one-dimensional wave equation can be obtained by equating the inertia forces
to the elastic forces generated in a single rod element. Since materials, such as steel, do
not seriously depart from perfectly elastic behavior (for small deformations), the
measured stress wave behavior often agrees well with the predictions of elastic theory
(Kolsky, 1963). This is likely the primary reason that stress wave measurements using
the wave equation have gained such widespread acceptance in engineering practice.
As described by Fischer (1959), one-dimensional propagation of a compressional
stress wave disturbance in an elastic rod can be described by the linear partial differential
equation
? 12
?
?
null
null
null
nullnull
null
nullnull
null
null
null
null
nullnull
null
?
(2.1)
Where null is the particle displacement of any point null along the rod, and with null and null being
the velocity of stress wave propagation and the time associated with passage of the stress
wave, respectively. The velocity of stress wave propagation, traditionally called wave
speed, is related to the modulus of elasticity null and mass density null of the rod by
?
null
null
nullnull/null (2.2)
The value of null by itself is considered the fundamental wave speed of the material and is
assumed to be constant for steel. Equation 2.1 is the one-dimensional wave equation
which has a general solution
? nullnullnull,nullnull null nullnullnullnullnullnullnullnullnullnullnullnullnullnullnull (2.3)
This general solution implies that the displacement pattern in a rod can consist of two
wave functions null and null, which are traveling in opposite directions. The functions null and
null must satisfy the boundary conditions for the problem under consideration. Since the
boundary conditions of the stress wave are the initial strain and particle velocity, interest
is directed toward the derivatives of null and null where, by the chain rule:
? nullnull
nullnull
null null
null
nullnullnullnullnullnullnullnull
null
nullnullnullnullnullnull? (2.4)
? 13
and
? nullnull
nullnull
nullnullnull
null
nullnullnullnullnullnullnullnullnull
null
nullnull nullnullnullnull?
(2.5)
Because equations 2.4 and 2.5 represent both the strain and particle velocity in a finite
section of the rod, the problem is generally solved as these quantities can physically be
measured or approximated. Here it should be noted that the arguments
? nullnullnullnullnullnull & nullnull nullnullnullnull (2.6)
indicate that the null,null plane is divided into regions of constant strain and particle velocity
having stress waves of constant slopes null null. Therefore, the actual stress wave
measurements in the field will be concerned with measuring the change in strain and
particle velocity due to passage of a constant velocity stress wave (which is propagating
at the fundamental wave speed of steel). The implications of this lead to the relationship
between force and particle velocity from which wave transmission and reflection theory
are built upon.
2.3 Proportionality between Force and Particle Velocity
A thorough discussion on proportionality was provided by Rausche (1981), and is
briefly summarized here to illustrate the relationship between force and particle velocity.
When the end of an SPT rod is struck by a rigid mass, a zone of compression is generated
which creates strain in the rod. The strain causes a compressive force to emerge, and
simultaneously produces a motion of rod particles. The rod particles travel with a speed
null, which is often referred to as the particle velocity. Since this velocity is associated with
? 14
a particle of mass null, over time it creates an inertial force nullnull ?nullnullnull? (Newton?s second
law of motion). This inertia force is in balance with the strain force, and since it takes
time for the rod particles to accelerate, the strain in the rod will be transferred at the wave
speed of the rod material.
It can be shown that the measured strain and particle velocity in the rod are
related to the wave speed by
?
?
nullnull
null
null
?
(2.7)
Equation 2.7 can be expanded to represent the stress and force in the rod:
?
?
nullnullnull
null
null
?
(2.8)
?
?
nullnullnull
nullnull
null
?
(2.9)
??
The term nullnull in Equation 2.9 represents the rigidity, or static stiffness of the rod,
whereas the term nullnull/null represents the dynamic stiffness of the rod (null is the modulus of
elasticity and null is the cross-sectional area). nullnull/null is commonly referred to as the
impedance and it is the proportionality constant which relates the stress wave force to its
particle velocity. The impedance is the force with which a rod opposes a sudden change
of velocity by one unit.
? 15
The significance of this relationship is such that when wave propagation exists in
only one direction the measured force will always be balanced and proportional with the
particle velocity times the impedance, and is commonly illustrated by
?
?
nullnullnullnull
?
(2.10)
?
where
?
?
nullnull
nullnull
null
?
(2.11)
2.4 Transmission and Reflection of Waves
Boundary conditions in the SPT can be regarded as impedance contrasts existing
before and after an interface. These boundary conditions are typically encountered at
three locations:
1. At the top of the drill rod where the striking end of the hammer meets the
struck end of the rod.
2. At drill rod joints where the rods are subsequently connected in order to
drill to increasing depths.
3. At the location of the split-spoon sampler which is in contact with the
bottom of the borehole.
One-dimensional wave theory suggests that wave transmission behavior can be
characterized by considering force equilibrium and spatial velocity conditions existing at
an impedance interface. With these considerations, the pertinent wave transmission and
? 16
reflection equations can be derived, which form the basis for the stress wave sign
convention used in practice (Figure 2.1).
Figure 2.1 Stress wave sign convention (modified from Howie et al., 2003)
The following statements about wave transmission have been paraphrased from
Howie (2003) and verbally describe the wave behavior depicted in Figure 2.1:
1. Compressive waves have particle motions that occur in the same direction
as wave propagation.
2. Tensile waves have particle motions that occur in the opposite direction of
wave propagation.
Incoming
Compressive
Wave
1
2
Particle
Velocity
(-)
Transmitted
Compressive
Wave
Particle
Velocity
(+)
1
2
Transmitted
Tensile Wave
Reflected
Tensile
Wave
Particle
Velocity
(+)
Particle
Velocity
(-)
1
2
Transmitted
Tensile Wave
Particle
Velocity
(-)
Incoming
Tensile
Wave
Reflected
Compressive
Wave
Particle
Velocity
(-)
1
2
Reflected
Tensile
Wave
Incoming
Compressive
Wave
Particle
Velocity
(+)
Transmitted
Compressive
Wave
Particle
Velocity
(+)
Increase in Impedance
Increase in Impedance
Decrease in Impedance
Decrease in Impedance
Reflected
Compressive
Wave
Incoming
Tensile
Wave
? 17
3. Incident waves will propagate through an impedance interface without
changing type, i.e. transmitted compressive waves will remain
compressive and tensile waves will remain tensile.
4. An increase in impedance will result in a reflection without change in
wave type, i.e. compressive waves will causes compressive reflections.
5. A decrease in impedance will result in a reflection of the opposite wave
type, i.e. compressive waves will cause tensile reflections.
2.5 Source of Energy in the SPT
? As mentioned in Chapter 1, the SPT is standardized to deliver a theoretical energy
of 350 ft-lbs. This theoretical energy is achieved by dropping a 140-lb weight a distance
of 2.5 ft. Considering this distance, the theoretical free-fall velocity null
null
of the weight can
be determined
?
?
null
null
null null2nullnull
?
(2.12)
where
null = Gravitational acceleration
null = Height of free-fall
Because the theoretical free-fall velocity is now known, the theoretical kinetic energy of
the hammer can be calculated:
?
?
null
null
null
1
2
nullnull
null
null
(2.13)
? 18
?
where
null = Mass of weight
During impact, the kinetic energy of the drive weight experiences energy losses
that are likely due to friction. The actual kinetic energy available will be less than the
theoretical potential energy of 350 ft-lbs. The ratio of these two quantities is called the
hammer efficiency null
null
, and is one way to classify hammer performance. The hammer
efficiency is represented by
?
null
null
null
null
null
nullnull
? (2.14)
where
null
null
= Hammer efficiency
null
null
= Kinetic energy
nullnull = Theoretical potential energy
After impact, the kinetic energy of the hammer is progressively transferred to the
anvil and drill rod string beneath it. There are additional energy losses during the transfer
process, and the actual magnitude of energy transferred to the drill rods will be less than
both the theoretical potential energy and the kinetic energy at impact. The ratio of the
transferred energy to theoretical potential energy is known as the energy transfer ratio
(ETR). The hammer efficiency null
null
has the greatest effect on ETR, but the ETR is
? 19
currently the primary quantity used to assess SPT hammer performance (because it is this
energy capable of performing work). The energy transfer ratio is defined as
?
nullnullnull null
nullnullnull
nullnull
?
(2.15)
?
where
nullnullnull = Energy transfer ratio
nullnullnull = Maximum transferred energy to drill rods
The significance of EMX in equation 2.15 depends on the method used to
measure the maximum energy. The first method of energy measurement is called the
EFV method, and is currently the only method recommended by ASTM. The second
method is called the EF2 method and is typically no longer used due to measurement
inaccuracies. A brief explanation of each method follows.
?
2.6 EFV Method of Energy Measurement
The energy entering the rods can be obtained by considering the amount of work
performed on the rods
?
?
nullnullnullnullnullnull
?
(2.16)
where
? 20
null = Work
null = Force
nullnull = Incremental distance
which can be expressed as a function of time
?
?
nullnullnullnull nullnullnullnullnull nullnullnullnullnullnull
nullnull
nullnull
nullnull null nullnullnullnullnullnullnullnullnullnullnull
?
(2.17)
where
nullnullnullnull = Energy as a function of time
nullnullnullnull = Force as a function of time
nullnullnullnull = Particle velocity as a function of time
nullnull = Time increment
These measurements are obtained in the field using an instrumented subassembly
containing strain gages and accelerometers (Figure 2.2).
? 21
Figure 2.2 Instrumented subassembly
To satisfy the requirements of Equation 2.17, the force and particle velocity can be
determined from the measured strain and acceleration from the stress wave by
?
?
nullnullnullnullnull
?
(2.18)
?
?
nullnullnullnullnullnull
?
(2.19)
where
null = Measured drill rod strain
null = Measured drill rod acceleration
null = Modulus of elasticity of drill rods
null = Cross-sectional area of drill rods
Piezoresistive Accelerometers
Glued-on Strain Gages
Drill Rod Sub
? 22
The total amount of transferred energy from an SPT hammer impact is equal to
?
?
nullnullnullnull
nullnullnull
nullnullnullnullnullnullnullnullnullnullnullnull
null
null
?
(2.20)
which is integrated over the entire time length of the force and velocity record to find the
maximum value of transferred energy. This method of energy measurement is called the
EFV method since both force and particle velocity measurements are obtained.
2.7 EF2 Method of Energy Measurement
Energy measurements reported prior to the early 90?s were likely the result of the
force-squared method. The force-squared method, commonly referred to as the EF2
method, exclusively used strain measurements as the basis for energy evaluation in the
SPT. During that era, accelerometer technology capable of measuring large acceleration
frequencies in the SPT were thought to be unreliable (ASTM, 2010), and by default, only
strain measurements were used.
The EF2 method takes advantage of the theoretical proportionality between force
and velocity and substitutes the measured force divided by the impedance in place of
velocity in Equation 2.17 to obtain
?
?
nullnullnullnull
nullnullnull
null
null
nullnull
null nullnullnullnull
null
nullnull
null
null
null
?
(2.21)
? 23
where
null
null
= Time where the incident compression wave goes negative
After substitution, the reciprocal of the impedance is brought to the front of the
integral as a constant and the square of the measured force is integrated until the incident
wave goes negative.
The energy measured from the EF2 method was often accompanied by a series of
correction factors in order to estimate a nominal value of transferred energy. These
correction factors, which take into account the position of the load cell, rod length, rod
mass, and stress wave velocity dispersion, were later found to be incorrectly applied
(ASTM, 2010).
There are additional drawbacks to the EF2 method. Because this method relies on
the theoretical proportionality of force and velocity, it can only be accurate provided
there are no wave reflections from rod joints or changes in rod cross-sectional area.
Furthermore, since force integration is designed to abruptly stop once the initial force
signal goes negative, unreliable energy measurements are recorded in certain situations.
Large values of energy, higher than the theoretical maximum potential energy, would be
measured when testing in high N-value soils. In this situation, the initial compressive
wave would fail to go negative (no tensile response) and integration of the reflected
compressive wave would continue throughout a longer time duration and would report
artificially high ETR. Similarly, low values of energy would be measured as a result of
drill rods having extremely loose rod joints. In this situation, the integrated force signal
? 24
would prematurely go negative and the integrated force signal would report artificially
low ETR.
2.8 Generalized Wave Transmission
This section illustrates the behavior of force and velocity traces measured during
an energy test. Consider Figure 2.3 which shows an image of ideal stress wave
transmission during the SPT. The x-axis represents the time scale of the wave event and
the y-axis represents the force scale. The measured particle velocity is converted to a
force by multiplication of the rod impedance, and can be compared to the force signal
obtained from the strain measurements. Additionally, the time scale, which is in
milliseconds, is often represented as a function of the rod length. Knowing the
fundamental wave speed null of the drill rod, as well as the length of the drill rod, the time
associated with wave reflections along the length of the rod can be evaluated. The time
required for the stress wave to travel down the length of the rod, reflect at the sampler,
and then return to the sensors is known as 2null/null.
When a SPT hammer strikes the top of the drill rod, it creates a stress wave that
propagates down the rod, toward the sampler. Transmission of the stress wave is not
instantaneous and is progressively transferred to the drill rods as long as the hammer and
rods remain in contact. The incident stress wave created from the impact is compressive,
and imparts a positive force (compression) and positive proportional particle velocity
(down) to the top of the rod. As the stress wave propagates it eventually passes the
location of the sensors, which are often located only a few feet away from the top of the
? 25
Figure 2.3 Wave transmission (Howie et al., 2003)
rod. After passing the sensors, it continues to travel and will typically encounter
impedance contrasts existing at the drill rod joints. These contrasts, which are often due
to differences in rod cross-sectional area, generate wave reflections that begin to travel up
? 26
the rod, and are measured by the sensors at a later time. The type and magnitude of the
reflected wave depends on the impedance ratio existing at the joint interface.
At time null/null, the stress wave will reach the sampler and begin to distribute its
energy into the ground surface, creating sampler penetration. If the oncoming stress
wave force is greater than the resisting force of the soil, a tension wave will be generated,
and will reflect from the end of the sampler. This tension wave will travel up the length
of the drill rod where its full effect will be measured at the sensors shortly after 2null/null.
Arrival of the tension wave is evident by the decreasing force (negative, tension) and
positive particle velocity (down) values of the stress wave. It is the positive, downward
particle velocity of the tension wave that begins to pull the rods and sampler down
creating penetration. Similarly, if the oncoming stress wave force is less than the
resisting force of the soil, a compression wave will be generated, will reflect upward, and
will contain a positive force (compression) and negative particle velocity (upward),
which will not cause permanent sampler penetration.
2.8.1 Energy Transmission and Sampler Displacement
The magnitude of energy transferred to the rods during an SPT hammer blow
depends on the value of the force and velocity signals measured at the sensors. The
measured sampler displacement also depends on the value of the measured velocity,
which is determined by integration of the velocity signals (double integration of the
acceleration signals).
It should be briefly mentioned that energy transmission in the SPT can be divided
into two categories. The first category is long drill rod energy transfer, which is the
? 27
simplest case, and generally only depends on the hammer?s efficiency and rod cross-
sectional area. For long drill rods (rod lengths greater than about 50 ft), most of the
hammer?s energy is transferred to the drill rods prior to the drill rod separating from the
hammer during penetration. The second category is short rod energy transfer, and is a
more complicated case to consider. Energy transmission for short rods (rod lengths less
than 50 ft) depends on the efficiency of the hammer, rod cross-sectional area, secondary
hammer impacts, and to some extent, the soil penetration resistance. Three examples are
provided below in order to illustrate both types of behavior. The first two examples will
discuss the energy transfer behavior for short drill rods, and the third example will
discuss the energy transfer for long drill rods.
Figure 2.4 shows a representative force and velocity trace (top) and an energy and
displacement trace (bottom) obtained from a CME automatic hammer. The drill rod size
was AWJ and the rod length was 19.3 ft (short drill rod classification). The total rod
length includes part of the instrumented subassembly, the drill rod combination, and the
split-spoon sampler. The SPT blow counts for the three 6-inch increments were 7-13-20.
However, this figure shows the wave trace from the fourth blow of the SPT sequence,
and is representative of low penetration resistance.
After impact, and prior to time 2null/null, the force and proportional velocity created
by the stress wave are overlapped and there is a steep increase in measured energy being
transferred from the hammer. There is also an increase in the measured displacement of
the drill rod due to the displacement of rod particles at the top.
? 28
Figure 2.4 EFV & E-D Trace-short rod (19.3 ft)-low penetration resistance
As previously mentioned, when the stress wave reaches the sampler ( null/null) it
begins to distribute its energy to the soil, and generates a tension wave that reflects up the
drill rod. Shortly after time 2null/null, the full magnitude of the tension wave will arrive at the
top of the rod and create separation between the hammer and rods. The initial separation
distance between the hammer and drill rods depend on the resisting force of the soil and
the magnitude of stress wave energy distributed to the soil from the incident wave. Since
the value of force and velocity are greater than zero prior to the arrival of the tension
wave, there is still remaining energy in the hammer that has not yet been transferred.
Thus, the transfer of energy is prematurely cut off by the arriving reflected tension wave.
Force
Velocity*Z
Energy Trace
Displacement Trace
Secondary Impact
2l/c
? 29
During the penetration process, and after the hammer and rods have separated, the
energy inside of the drill rod repeatedly cycles through the drill rod, increasing in the
downward transmission and decreasing in the upward transmission (but does not yet
exceed the energy measured at 2null/null). Each wave cycle transmits a portion of its energy
into the ground surface, and since the particle velocity is always positive (down), a step-
wise displacement pattern is created.
At a later time, the hammer strikes the drill rods a second time. This is known as
a secondary hammer impact, and is evident by the positive force and positive particle
velocity near the end of the time scale in Figure 2.4. The additional energy transmitted
from this secondary impact produced a slight increase in permanent penetration of the
sampler. The maximum measured ETR for this wave trace was 86.4 % with an estimated
sampler penetration of 1.3 inches (N-value ~ 9 BPF).
The second example is for the same short rod combination (19.3 ft) and same SPT
hammer system (CME Auto). The force and velocity trace (top) and the energy
displacement trace (bottom) shown in Figure 2.5 are representative of hammer blow
number thirty-eight out of the 7-13-20 SPT sequence. This figure therefore illustrates the
energy transmission process during the end of SPT sampling in moderately dense soil.
The energy transmission for this example is approximately the same as the
previous example prior to time 2null/null and has the same initial increase in energy and
displacement. At time null/null, the energy from the stress wave reaches the sampler and
begins to distribute its energy to the soil. Since the penetration resistance is now greater
during the end of driving, the soil accepts more of the stress wave energy from the
incident wave and there is less wave activity after 2null/null.
? 30
Figure 2.5 EFV & E-D Trace-Short Rod (19.3 ft)-moderate penetration resistance
A small tension wave emerges from the bottom of the sampler, the full magnitude
of which is measured shortly after 2null/null. Because the soil is dense, the sampler
penetration is reduced, and the SPT hammer generally follows ?better? or has more
contact with the drill rods during the penetration process. The increased hammer contact
allows more of the hammer?s energy to be transferred to the top of the drill rods. The
additional hammer energy is measured at a later time and can be seen from the second
step in energy between time 2null/null and 4null/null in Figure 2.5. Just after 4null/null, there is a
secondary hammer impact that transmits the remaining hammer energy, and only slightly
contributes to permanent sampler penetration. This secondary impact occurs much
Steps
? 31
sooner than that of the previous example. This is because the separation distance
between the rods and hammer is much less when sampling in moderately resistant soil.
As the soil resistance increases, the time associated with a secondary hammer impact will
decrease, and will occur earlier on the time scale (will move to the left on the scale). The
maximum measured ETR for this wave trace was 90.6 % with an estimated sampler
penetration of 0.35 inches (N-value ~ 34 BPF).
The final example is for the case of long drill rods. The rod length is 49.3 ft and
the SPT blow count sequence is 7-22-34. The wave trace shown in Figure 2.6 is
representative of the first hammer blow. Perhaps the most significant characteristic to
notice in this wave trace is that the values of force and proportional velocity are
approaching zero (x-axis) at 2null/null. This is an indication that the hammer has transmitted
the majority of its energy to the drill rod before arrival of the tension wave. After 2null/null,
the transfer of energy and sampler displacement is similar to that of the first example
with low penetration resistance and the stress wave can be seen cycling throughout the
drill rod creating a step-wise displacement pattern.
? 32
Figure 2.6 EFV & E-D Trace-Long Rod (49.3 ft)-low penetration resistance
For this case, there is no dependency on the interaction between the hammer and
rod during the penetration process, and therefore does not depend on soil resistance.
Secondary hammer impacts are also not present. Secondary impacts are sometimes
noticed for long drill rod combinations. However, the magnitude of the force and
velocity is very small which generally does not contribute to measured energy and
permanent sampler penetration. The maximum measured ETR for this case was 90.2%
with an estimated sampler displacement of 1.26 inches.
One last statement should be made about energy transfer between the short rod
and long rod cases previously discussed. Based on the wave behavior of Figures 2.5 and
2.6, the transferred energy for the long rod case can be measured during the short rod
case when the soil penetration resistance is large enough. The measured ETR for the
short rod case driven into dense soil was 90.6% and the ETR measured for the long drill
rod case was 90.2 %. The average measured ETR for all SPT hammer blows for the long
rod combination was 90.6%, which is likely to be the baseline transfer efficiency for this
CME automatic hammer system.
? 33
2.9 CME Automatic Hammer
The Central Mine Equipment Company (CME) patented the automatic hammer in
the Fall of 1983 (Rassieur, 1983). The automatic hammer provides a relatively consistent
hammer impact and subsequently less variation in transferred energy compared to the
manual hammer system.
2.9.1 Hammer Automation
The drive weight lifting mechanism is the device that automates the dynamic
impact in the SPT. The lifting mechanism is attached to the side of the cylindrical
housing tube (Figure 2.7). The lifting mechanism consists of a lower drive sprocket, an
upper idler sprocket, sprocket bearings, a drive chain, a chain guide, and a lifting lug. A
hydraulic motor is attached to the outside of the housing tube and a portion of this motor
extends into the housing where it is bolted to the drive sprocket. The 140-pound drive
weight is also located inside the housing tube. The drive weight, which is approximately
19.75 inches in length, is made of lead and is encased in a steel sleeve.
Automation of the drive weight begins when supply pressure from the rear engine
block motor is transferred to the hydraulic motor of the hammer. Once this occurs, the
sprockets and chain will begin to rotate. The lifting lug, which is attached to the chain,
rotates with the chain and at the same speed and eventually lifts the drive weight up off of
the anvil. During upward travel, and at the end of the chain length, the drive weight is
thrown upward a certain distance as the lifting lug releases the weight and begins to
travel back down to the location of the motor where it can lift the drive weight once
? 34
Figure 2.7 CME hammer operational components (modified from Rassieur, 1983)
? 35
again. Thus, the lifting lug acts as a cam that turns the rotational motion of the chain and
sprocket system into linear, or vertical motion of the drive weight.
It is important to emphasize that at the top of the chain (location of idler sprocket)
the lifting lug does not actually drop the drive weight as the commonly used phrase ?drop
height? suggests. Instead, the lifting lug throws the drive weight a certain distance to
achieve the so called drop height. Fall height is a more accurate description that should
be used when describing the end result of the releasing mechanism. As will be discussed
in Chapter 3, the drive weight throw height is a function of the hammer operation rate.
2.9.2 Drive Weight Viewing Slot
An often overlooked feature of the CME automatic hammer is the viewing slot
located on the housing tube just a few inches above the idler sprocket. The viewing slot
window allows personnel performing the field investigation to verify whether or not the
correct drive weight fall height is being achieved. For most geotechnical applications,
the prescribed fall height is 30 inches with an allowable tolerance of ? 1 inch. However,
it is not uncommon for organizations to manually reduce this distance in order to achieve
a reduced prescribed value of transferred energy (often 60%). Nevertheless, the fall
height can be visually monitored by marking the viewing slot using known dimensions
from the bottom of the hammer housing. If a reduced fall height is desired, modification
of the viewing slot window will be necessary. Figure 2.8 depicts the dimensions
recommended by CME in order to meet a 30 inch fall height requirement.
? 36
Figure 2.8 Drive weight viewing slot (dimensions from CME operations manual)
? 37
CHAPTER 3: LITERATURE REVIEW
3.1 ASTM D 4633-10
ASTM D 4633-10 (ASTM, 2010) describes the test method for performing energy
measurements during the standard penetration test. This standard documents the
significance and use of the test along with the appropriate testing equipment and
procedures that should be followed in order to obtain reliable hammer transfer efficiency.
The most prominent details of the standard include:
? The standard recommends force and velocity measurements to
characterize the stress wave energy (EFV method).
? Data acquisition technology: The standard allows both digital and analog
data acquisition systems that meet the anti-aliasing frequency
requirements. For analog systems, the sampling rate should be at least 5
times the low-pass filter frequency. For digital systems, the sampling rate
should be at least 10 times the low-pass filter frequency.
? Force measurement: The standard recommends using an instrumented rod
section with symmetrically arranged foil strain gages in a full bridge
circuit.
? 38
? Acceleration measurement: The standard requires a minimum of two
accelerometers capable of measuring accelerations to at least 10,000 g,
and which have a useable frequency response to at least 4.5 kHz.
? The standard recommends that energy evaluation of hammer systems be
limited to moderate N-values within a range of 10 to 50 blows per foot.
The previous recommendation, based on the 2005 standard recommended
an N-value range between 5 and 50 blows per foot.
? The standard reports that energy evaluation of hammer systems is more
reliable when the drill rod length is at least 30 ft.
? The energy results should be averaged and reported for impacts associated
with the observed N-value. The 2005 standard did not have this limitation
and apparently allowed all energy measurements to be averaged, not just
those associated with the N-value.
? The standard recommends performing energy measurements for at least 3
SPT sampling depths, with 5 depths preferred. This statement means that
enough SPT energy data should be obtained in order to accurately
characterize the average energy transmission for a given hammer system.
? The prime method of assessing data is to evaluate individual pairs of force
and velocity signals. Due to small wave reflections that are often
generated from the bottom of the subassembly, the Force and Velocity
Proportionality (FVP) method of assessing data quality is not as accurate
in SPT testing as it is in pile driving.
? 39
Individual force and velocity signals should return to zero at the end of the
time record. It is common for the velocity signals to ?wander off in
space? during testing. This is caused by the sensors coming loose during
testing or even a malfunction of the sensors.
3.2 EFV Transfer Efficiency in Literature
Table 3.1 contains a summary of energy transfer efficiencies obtained using the
force and velocity method of energy measurement. The data in the table were compiled
from documented efficiencies from years ranging from 1994 to 2010. While constructing
the table, it was found that the level of data defining each ETR was not consistently
reported. Some studies reported the number of average records while other studies
reported the number of overall averages, which would correspond to the average of each
average record for a single testing event. Nevertheless, the significance of the ETR
should be based upon the level of data used to determine its value. As shown in Table
3.1, the range of reported ETRs for non-CME automatic hammers varied from 49% to
82% with an average of 70.2%. The range of ETRs from the CME automatic hammer
group was from 75% to 84.5% with an average of 80.7%. Manual hammer systems in
the table experienced ETRs that ranged from 35% to 70.2% with an average of 57.8%.
Although this study is focused on evaluating the variation of energy transfer for
the CME automatic hammer, the transfer efficiencies for other automatic hammers, as
well as manual hammers, have also been included in the table since they were acquired
using the EFV method. The coefficient of variance (COV) for each study was either
documented in the literature or was calculated from the reported standard deviation. The
? 40
COVs were provided to show a normalized measure of dispersion for comparative
purposes (ratio of standard deviation to the average).
?
Table 3.1 Historical EFV ETR
3.3 Variation of Transfer Efficiency
The COVs for CME automatic hammers listed in Table 3.1 ranged from 2.5% to
10%. The range of COVs for all other automatic hammers was from 4% to 15%. The
manual hammer category experienced COVs that varied from 3.2% to 22 %, which is
Year Study Hammer Description
# of
Hammers
#
Averages
# Overall
Averages
ETR STD COV
Auto - CME 1 8 - 81.4 - 5.8
Auto - Other 1 5 - 68.5 - 10.8
Auto -Other (Mud Rotary) 1 4 - 72.8 - 5.8
R&C - Safety 1 8 - 51.4 - 4.8
R&C - Safety (300 lb Hamme 1 5 - 74.7 - 3.2
Safety w/ Spooling Winch 1 8 - 23.1 - 17.8
Auto - CME 2 - - 80 2 2.5
Auto - Rupe 1 - - 75 3 4.0
R&C - Safety 1 - - 67 6.5 9.7
Auto - CME - - 10 75 - 9.0
Auto - Hydraulic - - 5 69 - 15.0
Auto - Other - - 6 49 - 13.0
R&C - Safety - - 15 63 - 12.0
Donut - - 3 43 - 22.0
Spooling Winch - - 3 35 - 8.0
Auto - CME 12 101 - 80.1 8 10.0
Auto - Diedrich 2 12 - 76 5.3 7.0
R&C - Safety 43 227 - 66 10.7 16.2
Auto - CME 1 12 - 81.4 3.9 4.8
Safety 1 12 - 70.2 8.5 12.1
Donut - Sprague & Henwood 1 8 - 63.5 4.3 6.8
Auto - CME 2 7 - 84.5 5.9 7.0
Auto - Diedrich 2 8 - 82 5.6 6.8
Safety Driver 6 43 - 54.6 11.5 21.1
Auto - (CME & Diedrich) 20 - 20 78.6 5.5 7.0
Manual - Unknown 8 - 8 62.3 9.8 15.7
Auto - CME 6 - 6 82.5 - -
Safety 2 - 2 63.3 - -
Safety Driver (Mobile) 1 - 1 48.1 - -
NCDOT
(Valiquette et al., 2010)
2010
VTrans
(Kelley and Lens, 2010)
2010
FDOT - University of Florida
(Davidson et al., 1999)
1999
MDOT - University of Maryland
(Aggour and Radding, 2001)
2001
CALTRANS
(Liebich, 2005)
2005
Seattle ASCE Field Testing Program
(Batchelor et al., 1994)
1994
MnDOT
(Lamb, 1997)
1997
Utah State University
(Butler, 1997)
(Data from GRL Compiled by Dr.
Caliendo for G.Goble)
1997
? 41
about twice the variation of the CME group. The details from two prominent SPT energy
investigations are summarized below.
3.3.1 FDOT Study
In 1997, an extensive SPT energy investigation was performed by Kimberly
Spoor for the Florida Department of Transportation (FDOT) (Davidson et al., 1999). The
SPT energy program consisted of performing EFV energy measurements on 43 manual
hammer systems as well as 14 automatic hammer systems (12 CME) owned by FDOT
and their consultants. During the testing program, numerous drill rig manufacturers had
their SPT hammers calibrated and the results from the investigation are depicted in Table
3.2. The overall ETR average for each drill rig type is shown in the second column of the
table. The third column shows the standard deviation of ETR test depth averages
between different drill rigs of the same model. Apparently, the fourth column represents
an overall standard deviation average of the ETR standard deviation measured from
individual hammer blows for a given drill rig type.
The data in the third column in Table 3.2 show that the standard deviation of
average energy measured between sample depths for the CME automatic hammer group
ranged from 3.9% to 10.1% ETR. Similarly, the energy data in the fourth column show
that the average standard deviation measured between hammer blows were somewhat
smaller and ranged from 1.9 % to 2.4 % ETR. The overall ETR for 12 CME automatic
hammers in their study was reported to be 80.1% with an overall standard deviation of
8% ETR and a COV of approximately 10% (From Table 3.1).
? 42
Table 3.2 Summary of FDOT energy measurements (Davidson et al., 1999)
3.3.2 NCDOT Study
Another impressive SPT energy investigation was documented in 2010 on drill
rigs owned by the North Carolina Department of Transportation (NCDOT) and their
consultants (Valiquette et al., 2010). The testing program, which was conducted
approximately five years prior to the release of their report, consisted of one boring of
energy measurements per hammer system. During this time period, engineers from
Goble, Rausche, and Likins Engineers Inc. (GRL) obtained EFV energy measurements
on twenty automatic hammer systems and eight manual safety hammer systems. The
total number of hammer blows evaluated for each drill rig ranged from 71 to 489 with an
overall drill rig average of 271 hammer blows. Drill rod types used in their study were
either AW or AWJ sized drilling rods. Although not listed in their report, the drill rig
manufacturers were either CME or Diedrich models. The quantity of each type of drill
? 43
rig was not reported. Figure 3.1 provides a visual summary of the measured energy
variation for each drill rig obtained during the testing program.
Figure 3.1 NCDOT variation of transfer efficiency (Valiquette et. al, 2010)
In addition to the graphical summary shown in Figure 3.1, the NCDOT report
included a summary table documenting the overall ETR average for each drill rig as well
as the standard deviation of energy measured between hammer blow counts (Table 3.3).
The data from Table 3.3 show that the standard deviation of EFV energy
measured between hammer blows for each drill rig is similar to that determined from the
FDOT investigation. The standard deviation values are relatively small, the majority of
which have a value less than about 2% ETR. The overall ETR average for the twenty
automatic hammers in the NCDOT study was 78.6 % with an overall standard deviation
of 5.5 %. The overall COV was calculated as 7 % (Table 3.1).
? 44
Table 3.3 Summary of NCDOT energy measurements (Valiquette et al., 2010)
?
?
3.4 CME Hammer Operation Rate
In 1999, an SPT energy study was performed for the Bureau of Reclamation on
CME automatic hammers (Farrar and Chitwood, 1999). The objective of the study was
to determine hammer performance and evaluate the effect of the hammer operation rate
on energy transmission. The study found that the CME hammer is a rate dependent
hammer, and that the energy delivered to the drill rods will be a function of the hammer
fall height, which depends on the speed of the hammer lifting assembly (and therefore on
Drill Rig
I.D.
Average
Uncorrected
Efficiency, All
Rod Lengths
Average
Standard
Deviation
from Blow to
Blow
A-1 81.5 2.12
A-2 80.6 1.71
A-3 74.7 2.29
A-4 74.3 1.83
A-5 71.6 3.41
A-6 75.6 2.04
A-7 75.4 1.68
A-8 63.1 1.75
A-9 78.6 2.01
A-10 73.5 1.42
A-11 81.1 1.78
A-12 82.7 1.53
A-13 82.3 1.77
A-14 80 3
A-15 81.5 1.53
A-16 81.7 1.15
A-17 80.8 1.06
A-18 78.4 1.56
A-19 85.2 5.54
A-20 89.4 1.5
? 45
the engine throttle speed and hydraulic flow control settings). Figures 3.2 and Figure 3.3
below highlight the results of the study and show the variation of fall height and
transferred energy when the hammer operation rate is set above or below the CME
factory settings of 50 to 55 blows per minute (BPM).
Figure 3.2 Drop height vs. hammer operation rate (Farrar and Chitwood, 1999)
Figure 3.3 Drill rod energy vs. hammer operation rate (Farrar and Chitwood, 1999)
? 46
Perhaps the most alarming finding of the study is that when the CME hammer
operation speed is set too high, the falling drive weight will strike the lifting lug prior to
striking the anvil. If this occurs, a portion of the kinetic energy of the drive weight will
be transferred to the mechanical components inside of the housing tube prior to striking
the anvil. Farrar notes that this can occur when the rate is set near or above 60 BPM. A
picture of the drive chain and lifting lug is provided in Figure 3.4.
Indeed, this type of malfunction happens in practice. Figure 3.5 shows a
PDIPLOT summary of energy measurements provided by a private sector consultant.
Reportedly, the data were obtained from a drill rig performing a routine SPT
investigation. As can be seen from the figure, the hammer was operating slightly above
60 BPM. This high operation rate resulted in the drive weight striking the lifting lug
prior to striking the anvil.
Figure 3.4 Drive chain and lifting lug
Drive Chain
Lifting Lug
? 47
The measured ETR pattern proves to be erratic and extremely low producing ETRs less
than 50%, as would be expected if the drive weight free-fall was obstructed in any way.
Figure 3.5 CME hammer malfunction
3.5 Rod Length and Energy Transmission
A considerable amount of work has been performed over the last 30 years in order
to determine an approximate relationship between drill rod length and energy transfer in
the SPT. Both theoretical and experimental investigations conclude that there is a
reduction in transferred energy for shorter drill rods compared to the average baseline
energy that would be measured for longer rods. The consequences of this reduced energy
effect are twofold:
Erratic BPM
Erratic ETR
? 48
1. Energy measured at shallow depths may not accurately characterize the
true hammer baseline energy and would report a reduced value of transfer
efficiency. N-values corrected with the reduced transfer efficiency
(Equation 1.1) would produce smaller corrected N-values compared to N-
values corrected with the baseline value obtained from longer rods. This
result may be conservative in some geotechnical applications.
2. N-values measured at shallow depths would not represent the N-value that
would have been obtained if the baseline energy was available to perform
work on the soil. The reduced energy from short rod lengths would
produce less sampler penetration per blow and may result in a larger N-
value than would be obtained if the baseline energy were available.
Attempts at quantifying the relationship between rod length and energy transfer,
as well as proposing correction factors to account for the expected energy losses, have
been proposed by many researchers. The original correction factors, which were based
on the force-squared method, were desired because of the limited force integration time.
The EFV method does not have the same integration limitations. However, the general
trend of reduced energy transmission is still the same, but to a lesser degree. Details from
three prominent rod length investigations are outlined below.
3.5.1 Palacios Study
A theoretical investigation into the behavior of rod length and energy transfer was
performed by Schmertmann and Palacios at the University of Florida (Palacios, 1977).
? 49
Their method of investigation was based on the force-squared method of energy
measurement, which was the prevalent method during that era.
The SPT study included energy measurements on four different rod sizes with rod
lengths varying from approximately 10 ft to 75 ft. Based on trends in their data, they
concluded that for short rod lengths the returning tension wave prematurely terminated
the incident compression wave energy due to separation of the drive weight and anvil.
Because of the time integration limitations inherent to the force-squared method, the
remaining energy content that would have been measured for the case of an infinite rod
was, by necessity, estimated using correction factors derived from theoretical wave
mechanics. After modifying stress wave theory from Fairhurst (1961), Palacios was able
to express the hammer transfer efficiency null
null
as a function of rod length (Schmertmann
and Palacios, 1979) where
?
?
null
null
null null1nullnull
null
nullnullnull
null
null
null
nullnull null
4nullnull
null
null1nullnullnull
null
?
(3.1)
with
nullnull null
1nullnull
1nullnull
null
null
null = Impedance ratio between hammer and drill rods
null
null
= Length of hammer
null = Length of drill rods and sampler
null = Maximum number of completed stress cycles before loss of hammer contact
? 50
The numerical result of Equation 3.1 represents the theoretical maximum energy
that could be transferred to the drill rods before arrival of the tension wave. This equation
forms the basis for the ASTM null
null
correction factors. The dashed line in Figure 3.6 is a
graphical representation of Equation 3.1. The non-linear trend of the dashed line suggests
that the shortest rod lengths will have the largest reduction in transfer efficiency and that
the energy reduction will gradually decrease as the length of the drill rod increases, up to
about 50 ft.
Figure 3.6 Theoretical transfer efficiency (Schmertmann and Palacios, 1979)
? 51
3.5.2 Morgano and Liang Study
A study by Morgano and Liang (1992) examined the effects of rod length on
energy transfer in the SPT. They conducted wave equation studies as well as field
experiments for various rod lengths using a manual safety hammer system. Unlike the
Palacios study, where the force-squared method was used, Morgano and Liang were able
to measure the transferred energy using both force and velocity measurements. To the
author?s knowledge, this was the first study on rod length effects using the EFV method.
In addition to force and velocity measurements, Morgano used a Hammer
Performance Analyzer (HPA) to measure the hammer?s impact velocity, which was later
used to determine the kinetic energy just prior to impact. The HPA measurements were
beneficial because they removed potential energy variability associated with drop-height
inconsistencies of the manual hammer. Because the study included both EFV and kinetic
energy measurements, the driving system transfer efficiency was determined in place of
the ETR (which is EMX/PE). The driving system transfer efficiency is the ratio of
measured EFV energy in the drill rods to the available kinetic energy just prior to impact
(EMX/KE).
Figure 3.7 shows the field testing results from their study. Each tick mark in the
figure represents the drive system transfer efficiency from one hammer blow. Similarly,
Figure 3.8 shows the average of the drive system transfer efficiencies.
Based on the results of Figures 3.7 and 3.8, they determined that energy transfer is
independent of rod length for lengths greater than 50 ft. However, for rod lengths less
than 50 ft, the energy transferred to the rod is reduced. These findings are similar to
those documented by the Palacios.
? 52
Figure 3.7 Drive system efficiency (Morgano and Liang, 1992)
?
Figure 3.8 Average drive system efficiency (Morgano and Liang, 1992)
? 53
The results of a SPT wave equation study were also provided in their report.
Wave equation simulations were performed on rod lengths varying from 10 ft to 100 ft.
The energy transfer for each rod length was evaluated using soil resistance forces ranging
from 0.5 kips to 13 kips. The results of the wave equation study indicated that the
relationship between energy transfer and rod length is more ?critical? when lower soil
resistance forces are present. As illustrated in Figure 3.9, the shortest rod length driven
into the smallest soil resistance produced the lowest transferred energy. The transferred
energy apparently increased as the soil resistance and rod length increased with
transferred energy stabilizing at a rod length of 50 ft.
Figure 3.9 Wave equation study (Morgano and Liang, 1992)
3.5.3 NCDOT Study
Close to two decades after the Morgano and Liang rod length study, Valiquette, et
al. (2010) performed an investigation into rod length effects for automatic hammer
systems. Data from twenty automatic SPT hammers owned by the NCDOT and private
consultants were used to investigate the behavior of rod length and energy transfer. To
? 54
the author?s knowledge, this apparently seems to be the largest rod length study
performed on automatic hammers to date.
As previously mentioned in Section 3.3.2, the testing program consisted of one
boring of energy measurements per hammer system. Drill rod lengths evaluated in their
study ranged from 14 ft to 74 ft, and were either AW or AWJ sized drilling rods.
Based upon their evaluation of the automatic hammer subgroup, they determined
that the transferred energy increased up to a rod length of about 38 ft and generally
stabilized after that. For each drill rig, they determined baseline transfer efficiencies for
rod lengths greater than 38 ft. They then systematically used the individual baseline
energy values to normalize the energy measurements obtained from rod lengths less than
38 ft. This approach allowed the general trend of energy reduction to be compared
among the various automatic hammer systems in the subgroup, regardless of their
baseline transfer efficiency. Finally, the normalized transfer efficiency for each hammer
system was averaged and incorporated into a regression analysis from which a best fit
line was determined. The results of their investigation are shown in Figure 3.10 and are
plotted against the results from the prior studies previously described.
Based on the data in Figure 3.10, the estimated energy reduction for the
theoretical method would be larger than that predicted by the NCDOT regression trend,
up to a rod length of about 20 ft. The Morgano-predicted energy reduction is slightly less
than the NCDOT and theoretical values for all rod lengths. The maximum reduction in
transfer efficiency for the NCDOT regression is approximately 10% of the baseline
efficiency for the shortest rod lengths.
? 55
Figure 3.10 Normalized energy transfer (Valiquette et al., 2010)
?
?
3.6 Secondary Hammer Impacts
Lee et al. (2010) investigate the effect that secondary impacts had of energy
transfer. Their investigation used the force and velocity method of energy measurement
and involved taking energy measurements on two different donut hammer systems. The
first hammer system evaluated was a manual rope and pulley donut system while the
second hammer system was a modified automatic donut (MAD) hammer system. The
MAD hammer system was similar to the manual donut hammer system and used a
hydraulic motor to automatically lift and release a wire rope attached to the donut
hammer.
Their investigation involved performing SPT measurements at two different sites
in Korea. The soils underlying both sites were reportedly composed of 30 ft to 42 ft of
? 56
weathered residual soil classified as silty sand (SM) based upon the Unified Soil
Classification System (USCS). This soil type is very similar to the soils located in the
piedmont region of the United States. The SPTs were performed every 5 ft up to depth of
about 50 ft, with N-values ranging from 6 to 136 blows per foot. Drill rod lengths in their
investigation ranged from approximately 25 ft to 54 ft.
Secondary hammer impacts were evaluated using a digital line-scan camera
(Figure 3.11). The digital line-scan camera was used to monitor the hammer-anvil
motions during SPT impact using a 2 kHz frequency and a resolution of displacement of
less than 0.12 mm. Figure 3.12 provides a representative display of the images obtained
using the camera. As described by Lee, the upper and lower strips located in part (a) of
the figure represent a typical photo image of the hammer-anvil motions during impact.
The hammer-anvil displacements in part (b) were calculated from these measurements.
Similarly, the hammer-anvil velocities in part (c) were calculated as the first derivative of
the location-time curve. The force wave and measured EFV energy shown in part (d)
were rod energy measurements taken during the SPT test using a PDA model PAK to
process the force and velocity signals.
Based upon the results from their field investigation, they concluded that two
types of secondary impacts occurred, and generally depended on the penetration
resistance of the soil and type of reflected stress wave. They reported that:
1. For N-values > 50, the impact produced a reflected upward compressive
wave that ?pushed? the hammer, anvil, and drill rods up together. After
the hammer and anvil separated, the hammer continued its upward
movement and eventually reached a maximum position before striking the
? 57
anvil again. However, the anvil and drill rods only moved up a negligible
distance. This type of secondary impact produced no permanent
penetration due to large penetration resistance and did not produce and
increase in transferred energy.
2. For N-values between 25 and 50, both types of secondary impacts were
observed to occur. During sampler penetration, as the N-value noticeably
increased due to soil resistance, the first type of secondary impact
progressively faded away while the second type of secondary impact
became more apparent.
3. For all N-values, the primary impact along with the first type of secondary
impact appeared to contribute to sampler penetration and transferred
energy while the second type of secondary impact did not have an effect
on sampler penetration or transferred energy.
Figure 3.11 Digital line-scan camera (Lee et al., 2010)
? 58
?
Figure 3.12 Secondary impacts (Lee et al., 2010)
3.7 Energy Reaching the Sampler
Within the last decade there seems to be a renewed interest in evaluating whether
or not the measured energy from the top of the drill stem is the same quantity of energy
that reaches the location of the split-spoon sampler. As discussed in Chapter 1, the
parameter null
nullnullnullnullnullnullnullnull
in Equation 1.1 is the maximum measured value of energy entering
the drill rods obtained from top force and velocity measurements. This energy value is
used to characterize the energy transfer efficiency of the hammer system. At the same
time, it is also assumed that this is the same quantity of energy that is distributed to the
split-spoon sampler, which may not be an accurate assumption for long drill rods.
? 59
3.7.1 Palacios Study
As part of his doctoral research, Palacios studied the behavior of energy
transmission of SPT drill rods (1977). Among other things, this study explained how
internal friction within the steel rods resulted in a decaying energy transmission along the
drill rods. Palacios generally explained the mechanism of internal friction and stated that
during the energy transmission process, each particle of the rod absorbs energy from the
stress wave as rod particles are successively compressed and decompressed during its
cycling routine.
Providing an example based upon theory from Kolsky, Palacios showed that
internal friction in SPT rods can result in estimated energy losses of 1% for every 10 ft of
drill rod, which would ultimately add up to large energy losses in deep borings. Kolsky?s
theory was based upon stain wave amplitude attenuation, which depends on the specific
damping capacity of steel. Specific damping capacity is defined as the measured ratio of
the energy dissipated in taking a steel specimen through a stress cycle to the elastic stored
energy stored in the specimen when its strain is at a maximum (Kolsky, 1963).
3.7.2 Abou-matar and Goble Study
A report by Abou-matar and Goble (1997) presented the results of a theoretical
investigation into the dynamic behavior of the SPT. Their study documented wave
equation calculated sampler energies for drill rods having different cross-sectional areas.
Specifically, they evaluated the energy transferred to the soil using AW size drill rods
and compared it to the energy transferred to the soil using Mayhew size drill rods, which
? 60
reportedly has more than twice the rod cross-sectional area of the AW size rod. The
energy calculated at the top of the rod was apparently identical for both rod types.
From this analysis, they determined that drill rods having a larger cross-sectional
area produced an increase in SPT blow counts compared to the blow counts from drill
rods having a smaller cross-sectional area. They later explained that this behavior should
be expected since the rod?s impedance is related to the rod?s area. As the rod area
increases, the forces in the rod will be larger for a given set of (particle) displacements,
and these forces would retain more energy inside of the rod which would result in a
reduced quantity of energy available to perform work for penetration. Although their
wave equation study was performed using a constant rod length of 54 ft (16.5 meters),
they later recommended that rod length correction factors be based on rod length as well
as rod cross-sectional area.
In a closure response to the discussion provided by Boulanger and Idriss, which
was based upon the original paper, they provided yet another wave equation study that
evaluated SPT N-values for AW and NW sized drill rods. Drill rod lengths evaluated in
this study ranged from approximately 10 ft to 100 ft and included soil resistances forces
of 1.12 kips (5 kN) and 2.24 kips (10 kN). Figure 3.13 shows the wave equation results
from their closure report.
Based on these results, they concluded that for rod lengths up to 30 ft, the two rod
types did not give significantly different SPT blow counts. However, for rod lengths
greater than about 40 ft, the SPT blow counts begin to diverge, with the larger NW rod
type producing higher SPT blow counts for the same soil resistance.
? 61
Figure 3.13 Wave equation study (Abou-matar and Goble, 1997)
?
These conclusions verify the initial claims of the original paper and theoretically indicate
that the energy reaching the sampler can be less than that from the top of the drill rod
stem when the two different drill rod types are compared, and when they have nearly
identical top calculated ETRs.
3.7.3 MnDot Study
The research findings on sampler energy documented by Abou-matar and Goble
were strictly based upon theoretical wave equation calculations. In 2005, Goble
presented the results of MnDOT?s SPT N-value study which evaluated N-values based on
rod size and depth. The N-values were obtained from the same site, however, it is not
? 62
known if they are from the same SPT hammer. Nevertheless, MnDOT?s field
investigation results support that of the Abou-matar wave equation analysis previously
discussed. As shown in Figure 3.14, N-values obtained from the larger N-sized rods
produced larger N-values compared to that of the smaller diameter A sized rods. This
type of behavior would be expected if there were more energy losses associated with the
larger N-size rod group.
Figure 3.14 MnDot rod type vs. N-value study (modified from Goble, 2005)
3.7.4 Odebrecht Study
As part of an ongoing SPT investigation, Odebrecht et al. (2005) studied the
effect that rod length and sampler penetration had on the energy reaching the split-spoon
sampler. The SPT testing program consisted of taking force and velocity measurements
from below the anvil as well as immediately above the sampler. These top and bottom
0
10
20
30
40
50
60
70
80
1020304050607080
De
p
t
h
SPT N-VALUE
N-Rod w/ Inserts
A-Rod w/o Inserts
? 63
energy measurements were not taken simultaneously but comparison between the two
measurements locations were achieved by using an experimental calibration chamber that
could control the penetration of the sampler. The calibration chamber allowed a known
granular material to be prepared at a specific density where testing could be performed
using controlled boundary conditions. Vertical stress in the chamber was controlled by a
pressurization system regulated by air pressure, which used a self-relieving valve for
driving an air-water interface system. Figure 3.15 shows the experimental set up and
calibration chamber used in their research program.
Figure 3.15 Experimental setup (Odebrecht et al., 2005)
? 64
The results for the 19 ft rod composition are depicted in Figure 3.16. This figure
shows a comparison of EFV energy measurements taken from directly above the sampler
and compared to the EFV measurements taken from the top of the rod, just beneath the
anvil. As shown, the sampler penetration was indicative of an SPT N-value of 8 blows
per foot. The energy measured at the top of the drill rod as well as just above the sampler
was 296 ft-lbs of energy (401.5 Joules) (84.5% ETR).
Figure 3.16 Sampler energy-19 ft (5.8 m) rod
Similarly, the experimental results from the 117.5 ft rod composition are depicted
in Figure 3.17. This figure provides the same top and bottom energy comparison as the
previous example and with the same soil density. The energy measured at the top of the
rods was also approximately the same. However, for this case, the energy measured just
above the sampler was significantly less than that of the short rod example and was
measured at 246 ft-lbs of energy (334 Joules) (70 % ETR), which is approximately a 15%
ETR reduction in energy reaching the sampler from the 19 ft rod length to the 117.5 ft
? 65
rod length. These experimental results are very close to the theoretical 1% ETR loss per
10 ft of drill rod described by the Palacios study in section 3.7.1.
Figure 3.17 Sampler energy-117.5 ft (35.8 m) rod
3.8 Conclusions Based on Previous Work
?
Overall Average EFV Energy
1. The CME Automatic hammer ETR average in Table 3.1 was 80.7%. The range of
ETR averages per study was from 75% to 84.5%.
2. The non-CME automatic hammer ETR average was 70.2% ETR. The range of
ETR averages per study was 49% to 82%.
3. The ETR average for the manual hammer category was 57.8%. The range of ETR
averages per study was 35% to 70.2%.
? 66
Expected Variation of EFV Energy
1. In light of the COVs reported in Table 3.1, the expected range of variation of
energy for the CME automatic hammer is from 2.5% to 10%. This 10%
maximum estimated value is slightly less than the 15% maximum COV for the
non-CME automatic hammer group, and about one-half of the 22% maximum
COV for the manual hammer group.
CME Automatic Hammer
1. The CME hammer is a rate dependent hammer. The energy transferred from the
hammer system will generally increase as the velocity of the drive system
increases (sprockets, chain, and lifting lug). This speed is controlled by the RPMs
of the drill rig engine and the hydraulic flow control settings of the hydraulic
motor.
2. CME hammer settings are initially set at the factory to achieve a 30 inch fall
height at a hammer operation rate of about 50 to 55 blows per minute. Over time,
and after required maintenance is performed, the flow control settings may need
readjustment in order to maintain the required fall height. The fall height distance
can be verified using the viewing slot window on the drive weight housing tube.
3. CME hammer operation rates exceeding approximately 60 blows per minute may
result in reduced energy transfer. This effect is due to an increased drive weight
fall height (increased throw height) and a reduced cycle time of the lifting lug
(from the increase in chain velocity). When this occurs, the drive weight will
strike the lifting lug prior to striking the anvil and will transmit a portion of the
? 67
energy to the hammer?s drive system components rather than to the anvil (Figure
3.5).
Rod Length Effects
1. There is an apparent reduction in transferred energy for short drill rod lengths.
This reduction in energy is less than the baseline transfer efficiency that would be
measured using longer rod lengths of about 40 ft to 50 ft.
2. The maximum estimated energy reduction for short drill rods is approximately
10% of the baseline ETR value. This value was estimated using the NCDOT
regression line from Figure 3.10.
3. The wave equation study performed by Morgano and Liang verifies the
theoretical plausibility that short rod length behavior is related to soil penetration
resistance. The reduction in energy was more apparent for the shortest rod
lengths driven into the weakest soils. The wave equation results also showed that
the transferred energy increased as the soil resistance increased (for a given rod
length).
Secondary Impacts
1. The Lee study suggests that the occurrence and behavior of secondary hammer
impacts depends on the soil penetration resistance. For low to moderate
penetration resistances, a tension wave will be reflected from the sampler. For
high penetration resistance, a compression wave will be reflected from the
sampler.
? 68
2. A returning tension wave tends to pull the rod down faster than gravity resulting
in hammer-anvil separation. After separation, the hammer eventually strikes the
anvil again and creates further energy transfer. This type of secondary impact
produces further permanent penetration of the sampler but generally less than the
penetration provided from the first impact.
3. A returning compression wave tends to push the hammer, anvil, and drill rods up
a small distance. After the hammer and anvil separate, the hammer continues its
upward ascent until it reaches its top position. At a later time, the hammer
eventually strikes the anvil but does not produce an increase in transferred energy
or permanent sampler penetration.
Energy Reaching the Split-Spoon Sampler
1. The energy measured at the top of the drill rods may not be the same quantity of
energy that performs work on the soil. Energy reduction from stress wave
amplitude attenuation can result in large energy losses for deep borings (long
rods). Theoretical energy losses were estimated to be 1% ETR per 10 ft of drill
rod. Experimental investigations from Odebrecht showed approximately 1.25%
ETR loss per 10 ft. (15% total ETR loss with 117.5 ft rod length)
2. Wave equation studies showed that large diameter drill rods may produce larger
N-values compared to the N-values produced with smaller diameter rods
(assuming that top measured ETR is the same). This effect was explained by the
fact that larger rod sizes tend to retain more of the stress wave energy for a given
set of particle displacements. This conclusion was validated by MnDOT?s field
? 69
investigation where measured N-values were compared between two different rod
sizes.
? 70
CHAPTER 4: ALDOT TESTING PROGRAM
4.1 Introduction
This chapter provides a summary of the ALDOT SPT energy testing program.
Described herein are pertinent details related to data acquisition equipment, field testing
procedures, office analysis of field energy data, as well as the calibration certificate that
was provided for each drill rig. The last few sections of this chapter highlight the results
of the testing program, as well as compare these results to the conclusions previously
found by others.
4.2 ALDOT Drill Rig Fleet
ALDOT currently maintains six CME drill rigs, each having an automatic
hammer. Their drill rig fleet consists of three 550X all-terrain vehicles (ATV), two 55
trucks, and one 850 track rig. These drill rigs travel throughout the state of Alabama
performing SPTs and are used on a regular basis. ALDOT also uses consultants from the
private sector to perform a portion of their work. However, due to the time limitations of
the testing program, the consultant SPT hammers were not calibrated. Table 4.1 further
classifies each drill rig based on the drill rig identification number.
? 71
Table 4.1 ALDOT drill rig inventory
?
4.3 SPT Analyzer
The SPT Analyzer is a signal conditioning and processing unit that measures and
stores raw strain and acceleration signals for each hammer blow during the SPT. The
signals are collected through a 12-bit analog-to-digital converter at a sampling frequency
of 20 kHz with each record containing a 2048 integer sample size per transducer.
The device processes the measured signals produced from the travelling stress
wave, and in real time analog integrates the acceleration signal to obtain particle velocity
and calculates force from the measured strain signals using Hooke?s Law. Raw voltage
signals from each of the transducers are converted to engineering units using calibration
factors provided from the manufacturer. The force and velocity signals are then
multiplied and integrated over the entire time record to obtain the maximum value of
transferred energy to the drill rods.
Digitization of the analog signal uses initial over sampling during the testing
process. However, with this model of data acquisition equipment, the final representation
of data points is limited to an integer sample size of 1024 (0 to 1023). During the data
Rig I.D.
CME Rig
Model
Rig Type
SE9050 550X ATV
SE9122 550X ATV
SE9299 850 Track
SE9445 550X ATV
ST11151 55 Truck
ST11152 55 Truck
? 72
acquisition process, the SPT Analyzer itself serves as a low-pass filter to the measured
signals.
Figure 4.1 SPT Analyzer
?
4.4 Instrumented Subassembly
During the testing program, force and velocity measurements were obtained from
strain gauges and accelerometers mounted to a two-foot long drill rod subassembly
having the same approximate diameter (cross-sectional area) as the SPT drill rods (Figure
4.2). The subassembly for this project was an AWJ rod with a tapered ?box? connection
located at the top of the subassembly and a tapered ?pin? connection located at the
bottom. The cross-sectional area of the subassembly, which was provided by the
manufacturer, was 1.2 square inches.
? 73
The instrumented drill rod contained two strain gauge bridges which were spaced
at approximately 180 degrees from each other. Each strain gauge was terminated into a
cable having a quick disconnect plug.
Two Model K piezoresistive accelerometers were bolted to the subassembly at
diametrically opposed sides of the rod and within 4 inches of the location of each strain
gage. During the bolting process, each accelerometer was aligned axially with the rod in
the sensitive direction, and with the quick connect plug facing the ground surface during
the testing event. Based upon Pile Dynamics, Inc (PDI) specifications, both
accelerometers are linear at 10,000 g (20,000 g limit) and with a useable frequency
response of 4.5 kHz.
Figure 4.2 Instrumented subassembly
Model K Accelerometers
Glued-on Strain Gages
Quick Disconnect Plugs
? 74
4.5 Field Testing Procedure
The field testing program was designed in such a way as to supplement ALDOT?s
normal drilling operations as well as to produce a testing method that could be
documented and performed using a simple repeatable sequence. Because ALDOT
follows ASTM D 1586 guidelines for all of their SPT drilling and sampling procedures,
the only additional requirement imposed on their normal operations was mounting of the
subassembly to the drill rod stem. ALDOT drillers found that this was a relatively
painless addition to their normal procedures as it did not cause large time delays.
4.5.1 Field Documentation
SPT energy measurement field sheets, which were specifically designed for
ALDOT, were a critical part of the testing process. The field sheets were formatted in
such a way as to include project information and sensor calibrations within the first half
of the sheet. The benefits of this formatting design were two-fold; first it allowed the
testing engineer to become acquainted with the driller, the drilling equipment, and the
scope of the project. Second, it prepared the testing engineer for the SPT energy
measurement process. As will be seen later, certain inputs on the field sheet are the same
inputs that are required in the SPT analyzer. Therefore, having the field sheets
thoroughly filled out prior to energy testing allowed the rest of the testing process to go
smoothly.
The second half of the field testing sheet was designed to document the SPT
sampling procedure. Documenting rod lengths, measured stick up (if performed), and
calculated split-spoon sample depths was considered good practice, and represented what
? 75
was recorded on the field boring logs that were prepared by the drilling crew. SPT N-
values recorded by the drilling crew were later obtained and recorded on the field testing
sheet. There is also a section of the field testing sheet that allows for miscellaneous
comments to be documented. Due to the space limitations of the form, this was the area
that was used to record the drive weight fall height as well as any sensor and data issues
experienced during testing. Finally, the field testing sheet included a document control
number (DCN) for ALDOT?s organizational purposes. To illustrate formatting of the
field sheet, Figures 4.3 and 4.4 show a blank field testing sheet as well as one that is
completely filled out.
A field notebook was used as an integral part of the testing program (Figure 4.5
below). The field notebook consisted of a rugged hard-plastic binder with numerous
plastic sheet protectors which were used to organize and preserve the binder?s
documents. Documentation stored in the binder included extra field testing sheets,
manufacturer sensor calibration factors, ASTM procedures, and scratch paper for note
taking.
? 76
?
Figure 4.3 Field sheet-blank
Project Name: Rig Make / Model:
Location: Rig I.D.:
Date: Hammer Serial No.:
SPT Inspector: Hammer Type:
Drilling Company: Rod Size:
Analyzer File Name
(Boring No. plus
Subdesignation)
Rod Length
(FT)
Measured
S.U.
(FT)
Calculated Start
Depth
(FT)
Increment Misc. Comments
6?in
12?in
18?in
6?in
12?in
18?in
6?in
12?in
18?in
6?in
12?in
18?in
6?in
12?in
18?in
6?in
12?in
18?in
*Rod?Length:??Total?Length?From?Gages?to?Tip?of?Sampler? Instrumented?Subassembly?Length:?____2?ft_____
*Measured?S.U.:?Measured?Drill?Rod?Stick?Up?From?Ground?Surface?to?Location?of?Gages
*Calculated?Start?Depth:?Rod?Length?Minus?Measured?Stick?Up Length?Below?Gages:___________0.5?ft__________
DCN: 01
Accelerometer Serial Numbers:
Accelerometer Calibration Factors:
Geologic Region:
Time Tested:
Drill Rig Operator:
SPT Analyzer Serial Number:
Instrumented Rod Type / Area:
F1:??????????????????????????????????????????????????????????????????F2:????????????????????????
F1:??????????????????????????????????????????????????????????????????F2:???????????????
Alabama Department of Transportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
RECORD OF SPT ENERGY MEASUREMENTS
Hammer Blow Counts
(Provided By Others )
Strain Gage Serial Numbers:
Strain Gage Calibration Factors:
4036T
A1:?????????????????????????????????????????????????????????????????A2:
A1:?????????????????????????????????????????????????????????????????A2:
Boring Identification:
(?????????????????????????)
(?????????????????????????)
(?????????????????????????)
(?????????????????????????)
(?????????????????????????)
(?????????????????????????)
? 77
Figure 4.4 Field sheet-filled out
? 78
?
Figure 4.5 Field notebook
?
?
4.5.2 Equipment Set Up
After the borings were drilled to depth, and after the split-spoon and drill rods
were placed into the bored hole, the instrumented subassembly containing the strain
gages and accelerometers was mounted on top of the drill rod string. The subassembly
had a tapered pin connection at its bottom end and was screwed into the tapered box
connection located at the top of the drill rod stem.
The quick connect cables for each of the four sensors were attached to the SPT
Analyzer by means of a main connection cable which contains a ?pig tail? attachment for
each of the four sensors. Once all the cables were connected, the SPT Analyzer was
turned on and mandatory inputs were then typed into the unit. Figure 4.6 depicts the
progression of information screens used by the SPT Analyzer to store information for
? 79
testing. Explanation of these information screens is documented in the SPT Analyzer
User?s Manual and summarized below for convenience:
? Main information screen: Information recorded on the field testing sheet
was used to complete the main information screen. The potential energy
rating of the hammer was also stored as an input (140 pound drive weight
with a free fall height of 2.5 ft).
? Rod Length: This was the total rod length below the sensors (LE). This
value was obtained by measuring the length of the split-spoon sampler,
total length of the drill rods, and length of the subassembly below the
sensors. This information was updated in the SPT Analyzer and recorded
on the field testing sheet for each test depth.
? Test Depth: This value represented the boring penetration depth prior to
sampling. It was obtained by subtracting the measured drill rod stick up
above the ground surface (up to sensor location) from the Rod Length
value previously used as an input. This information was updated in the
SPT Analyzer and recorded on the field testing sheet for each test depth.
? Transducers: This describes what sensors were being used. ?A? stands for
accelerometer and ?F? stands for force (strain gage).
? Test: This was used to check the status of all four sensors. If a sensor was
not connected or if the sensor was out of the tolerance range, ?OK? would
change to ?Fault?. The number beneath ?OK? on the accelerometer field
? 80
displayed the offset voltage for the sensor. Values within ? 4 volts
provided acceptable data (PDI Manual, 2011).
? Active: This was used to select each sensor for data collection. If the field
displayed ?YES? then that sensor was used during the test. Two strain
gages and two accelerometers were always used during data acquisition.
The average values for each set of sensors were always used for final ETR
determination.
? Trigger: Selected which sensor would be the primary device used to detect
data. Only one of the sensors can be labeled ?YES?. PDI suggests that
either of the force sensors be used as the trigger sensor.
? Calibration Factor: Pressing this field allowed the user to input the sensor
calibration factors provided from the manufacturer.
After the necessary inputs were provided to the SPT Analyzer, the main data
collection screen appeared and the SPT Analyzer and sensor were ready to perform the
test. Just prior to SPT testing, the anvil was mounted to the top of the instrumented
subassembly, and the SPT hammer was removed from its stowed position and placed
directly on top of the anvil (Figure 4.7).
? 81
Figure 4.6 SPT Analyzer information screens?
Main?Information?Screen:
Next:
Next:
Next:
Main?Summary?Screen:
???Hit?continue?to?go?to?the?main?data?collection?screen:??Note?that?"Pause'?is?highlighted.??You?must?press?"Pause"?in?order?to?start?collecting?data.
???"Pause"?will?change?to?"Accept".??Once?the?test?is?complete?and?the?data?has?been?collected?press?"Accept".
???After?pressing?"Accept",?it?is?necessary?to?press?the?"Set?Up"?button.??This?will?bring?you?back?to?the?Main?Summary?Screen.
???Press?the?Box?that?has?the?"Boring"?information.??Now?Change?the?Boring?Name?(Say?1A?2).??
???It?is?now?necessary?to?change?the?Rod?Length?and?Depth?information.??Press?the?respective?buttons?and?input?new?values.
???Now?"Continue?New?Data".
???Press?"Pause"?which?will?change?to?"Accept"?and?begin?collecting?data.
???Repeat?the?process?until?all?testing?is?done.
ROD?AREA???????????
1.20?sq.in
LENGTH?????????????
18.3'
DEPTH??????????????
15'
TOTAL?BLOW?#???????
0
CONTINUE??????????????????????????????
NEW?DATA
A1:?OK??????????335?mV/g?*5000???????
A2:?OK??????????325?mV/g?*5000???????
F1:?OK??????????210.54?me/V??????????????
F2:?OK??????????211.5?me/V?????
INCR??????
INCH??????
6
SAVE??????
SX????????
1
??This?is?the?initial?boring?depth?just?prior?to?sampling.??? NOTE:?You?must?update?this?value?for?every?test?depth.
REVIEW?????????????????????????????????
(?50%?FULL)
PROJECT:?????????????????????????BR???008?(528)???????????????????????????????
BORING:????????????????????????????????????1A??????????????????????????????????????????
INFO?1:????????????????????????????????CME?550x???????????????????????????????????
INFO?2:????????????????????????????????????AUTO???????????????????????????????????????
SPTRIG:??????????????????????????????????SE?9122????????????????????????????????????
OPERATOR:???????????????????????????RUSSELL
F2
OK??????????????????
?0.7V
YES NO 211.5
NO 325
F1
OK??????????????????
?0.5V
YES YES 210.54
CALIBRATION?
FACTOR
A1 OK YES NO 335
A2 OK YES
ROD?AREA:?????????????????????????????1.20?sq.in ENERGY?RATING:??????????????350?ft?lbs
EDIT?DATE?&?TIME: CONTINUE?TO?NEXT?SCREEN
TRANSDUCER TEST ACTIVE TRIGGER
??This?is?the?rod?length?below?the?gages???spoon?&?sub?(2.8')?+portion?of?instrumented?sub?assembly?(0.5')?+?actual?drill?
rod?length?(?)?? NOTE:??You?must?update?this?value?for?every?test?depth.?
ROD?LENGTH?(FT)
TEST?DEPTH?(FT)
PROJECT:?????????????????????????????BR???008?(528) INFO?1:????????????????????????????????CME?550x
BORING:???????????????????????????????????????1A?1????????????
Note:?You?can?update?this?value?every?test?depth
INFO?2:??????????????????????????????????AUTO
OPERATOR:????????????????????????????RUSSELL HAMMER?NAME:???????????????SE?9122
? 82
Figure 4.7 Final instrumentation setup prior to testing
4.5.3 Data Acceptance Criteria
During the testing process, the SPT Analyzer collected the data from the sensors
and displayed the force and proportional velocity wave forms for visual evaluation
(Figure 4.8). The data collection screen allowed for individual force and velocity signals
to be evaluated as well as evaluation of the general overlapping trend of the force and
velocity signals up to 2null/null. The criteria used for data acceptance in the field are
summarized below:
? Individual pairs of force and velocity must be proportional, and
overlapped for each individual record. This provided an indication that
sensors were working properly and that the accelerometers were not loose.
Automatic Hammer
Instrumented Subassembly
? 83
? The general trend of the overlapped force and velocity signals must be
similar prior to 2null/null. Serious departures from force and proportional
velocity prior to 2null/null indicated extremely loose rod connections, and
when necessary, the testing was abruptly stopped and the rods tightened.
Expecting identical proportionality between the force and velocity signals
before 2null/null was not practical as some loss of proportionality was
expected due to impedance contrasts from rod joints.
? Both force and velocity signals must reach zero at the end of the time
record.
? The initial rise time of the force and velocity signals must be similar for
the first few data points. However, they were never exactly proportional
at the peak magnitude where FVP is measured. The FVP value ranged
from 0.7 to 1.0 during the testing program. FVP less than 1.0 was
attributed to tensile wave reflections emerging a few inches below the end
of the instrumented subassembly. The reflected tension wave slightly
increased the measured particle velocity and slightly decreased the
measured force signal.
? ETRs must be within an acceptable range (Less than 100 %). The hammer
fall height was inspected for ETRs ranging outside the 75% to 85% range.
The hammer fall height was inspected at least once during each borehole.
? 84
Figure 4.8 Representative force and velocity wave trace
4.6 Office Analysis of Field Data
Once the necessary field energy measurements were performed, further evaluation
of the records was required in order to determine the overall ETR for each drill rig. The
following subsections highlight the necessary steps used to acquire the ETR for each test
depth and subsequently for the entire testing event for each drill rig.
4.6.1 Retrieving Data from the SPT Analyzer
The SPT Analyzer used an external memory card to transfer field data records to a
personal computer. There are two options available for transferring data with this model.
Specifically, the SPT Analyzer gives you the option to
? 85
1. ?Halve the Sampling Rate? or,
2. ?Save the First Half?
As previously mentioned in section 4.3, the SPT Analyzer initially over samples
during the testing process and collects a total of 2048 samples per sensor. However,
when the SPT Analyzer attempts to write the raw data files to the memory card it only
allows a sample size of 1024 samples per sensor to be transferred. Therefore, when
Option 1 is chosen, 1024 data records per sensor will be transferred using a sample
frequency of 10 kHz corresponding to a time duration of 102.4 milliseconds. This
corresponds to one-half the digitization sampling rate. Similarly, when Option 2 is
chosen, 1024 data records per sensor will be transferred using a sample collection
frequency of 20 kHz and with a time duration of 51.2 milliseconds. This corresponds to
one-half of the maximum time duration that was used during data acquisition.
The signal conditioning system of the SPT Analyzer is such that the unit itself
acts as a low-pass filter for force and velocity signals. The cut-off frequency of the SPT
Analyzer is reportedly 3 kHz. Based upon ASTM 4633-10 analog sampling requirements
for dynamic testing, in order to faithfully represent the true wave form and prevent
aliasing, the data acquisition sampling rate should be at least 5 times the low pass filter
frequency. Therefore, the data records in the ALDOT testing program were transferred
from the SPT Analyzer to the data card using Option 2 from above, which corresponded
to a 20 kHz digitization frequency and a time scale of 51.2 ms. Using Option 2 was
sufficient for ALDOT?s SPT needs and produced quality force and velocity records
throughout the testing program. Comparison was made with ETR averages between
options 1 and 2, and the difference between the calculated ETRs was about 1%.
? 86
4.6.2 PDAW Software Program
PDAW is the software that was used during the testing program to evaluate the
energy measurements on a blow-by-blow basis. Conveniently, this software program can
be downloaded to any personal computer or laptop. The primary advantage of this
program is that the testing engineer can perform a second evaluation of force and velocity
records in a comfortable setting, without being rushed. An example of the PDAW
information screen is provided in Figure 4.9 and shows a force and velocity wave trace as
well as the calculated EFV energy trace in the upper and lower sections of the screen,
respectively. Calculated ETRs as well as other additional quantities were provided by
PDAW on a blow-by-blow basis as shown on the left side of the screen.
Figure 4.9 PDAW information screen
? 87
The objective of this stage of the data evaluation process was to verify the quality
of the individual force and velocity records and ?adjust? the data set before uploading it
to the final software program PDIPLOT. During the testing program the following data
adjustments were found to be necessary and were generally performed for each data set
and in this order:
1. Defined the beginning velocity time increment using command VA. This
time increment was around data point 190 out of 1024 and corresponded
to the data point that defines the initial rise time of the velocity signal.
2. Defined the end velocity time increment using command VE. This time
increment data point 1023. The VE command was required because
PDAW uses a signal rotation technique to make the velocity zero at time
VE.
3. Used the velocity time shift command VT to shift and align the velocity
signals such that the initial slope of the rise times of the force and velocity
are approximately the same. The velocity scale was shifted 0.5 to 1.5 data
points during the testing program due to the separation of the strain gages
and accelerometers on the instrumented subassembly. The reason for
doing so was to define the true wave up and wave down behavior of the
stress wave as if the sensors were each at the same location. While
performing the VT function, it was noticed that the ETR increased
approximately 1%.
4. Verified that the force and velocity signals reached zero at the end of the
time record.
? 88
5. Deleted any records where individual pairs of force and velocity do not
overlap or when the velocity does not follow a trend toward zero. This an
indication of loose sensors or simply sensor malfunction which might not
have been noticed during field testing.
4.6.3 PDIPLOT Software
PDIPLOT was another software package used during the testing program. The
function of PDIPLOT was to organize and present the energy records in such a way as to
visually and numerically describe the characteristics of the testing event. The first page
of the PDIPLOT summary (Figure 4.10) includes a graphical display of 6 calculated
quantities from the PDAW program. These quantities could be chosen from a number of
available quantities, however, for reporting purposes the six that were chosen include:
1. CSX ? Maximum compression stress at the sensor location. This quantity
indicated that the impact force (stress) delivered from the hammer was
generally consistent from blow to blow. Erratic CSX values for automatic
hammers likely indicate that hammer maintenance and / or evaluation
should be performed. Erratic CSX values could also be the result of
malfunctioning strain gages.
2. VMX ? Maximum downward velocity at the sensor location. This
quantity provided an indication of the maximum velocity measured during
testing and therefore a brief visual assessment that the accelerometers
were working properly and were tightly bolted to the subassembly.
? 89
3. EMX ? Maximum energy transmitted to the transducers over the entire
stress wave event. (Max EFV)
4. E2E ? E2E is the EFV energy at time 2null/null. This quantity of transferred
energy increased with depth and eventually converged to the value of
EMX once the rod?s length was long enough.
5. BPM ? Hammer operation rate in blows per minute. Since CME hammers
are rate dependent, this quantity was always reported. BPM provides an
indication of drill rig operator consistency (engine throttle control) and
hammer performance.
6. ETR ? Energy transfer ratio (EMX/PE). This is the value that
characterized the transfer efficiency of the hammer system.
Figure 4.10 PDIPLOT summary-ALDOT drill rig SE 9299
? 90
4.7 Calibration Certificate
The final end product of the testing program was the energy calibration
certificate. The calibration certificate was designed to provide a transparent snapshot of
the testing event as well as the overall consistency of the hammer system. The
calibration certificate documentation included drill rig, driller, boring identification, and
type of drill rods used for sampling. Also, for each sample depth, the calibration
certificate recorded the average hammer operation rate, drill rod lengths, SPT blow
counts and average ETR per test depth. The standard deviation for the measured ETR for
each test depth was recorded in the last column of the certificate. This is an important
statistic that was used to evaluate the consistency of transferred energy to the drill rods
between hammer blows. These values should generally be small for CME Automatic
hammers and should certainly be less than about 10 for a CME hammer performing under
optimum conditions and when sampling in a relatively consistent soil density. The ETR
and BPM values recorded on the calibration certificate were obtained from PDIPLOT.
The calibration certificate format used in the testing program is shown in Figure
4.11. As can be seen from the figure, testing was performed under as many depths, or
rod lengths as possible. This approach provided ALDOT with enough test data where
they could determine an ETR average for short rod lengths, if desired. An overall ETR
was provided near the bottom of the certificate. This value was determined as the overall
average of the average ETRs per test depth, and was weighted by the number of
individual records analyzed for each test depth. Finally, an overall coefficient of
variation was provided and is located at the bottom of the certificate. This COV
represents the variation of the ETR averages within the rod lengths used during testing.
? 91
Figure 4.11 Energy calibration certificate-ALDOT SE9299
4.8 Summary of ALDOT Results
This section of Chapter 4 provides a concise outline of the testing results and
compares them to some of the findings of the literature review section.
4.8.1 Measured Transfer Efficiency
The overall average ETR for each drill rig in the ALDOT testing program ranged
from 82.2% to 96.1% (Table 4.2). Two of their drill rigs were determined to have ETRs
less than 90% while the remaining four drill rigs had measured ETRs higher than 90%.
Most of the ETRs are considerably higher than the CME ETR averages from Table 3.1,
A
u
to
m
a
ti
c Ha
m
m
er
S
e
r
i
al
Nu
mb
e
r
an
d
Rig
Mod
e
l
Rig O
w
n
e
r
Rig O
p
e
r
a
t
or
Bo
r
i
ng
N
o
.
Tes
t
e
d
Dat
e
T
e
st
e
d
Dr
ill Rod
S
i
z
e
Ave
r
age
H
a
mme
r
Ope
r
a
t
i
o
n R
a
te
(B
P
M
)
D
r
i
l
l
R
o
d Leng
th (ft)
(LE)
Sa
m
p
l
e
D
e
pth
(feet)
SP
T Bl
o
w
C
o
unt
(bl
o
w
s
pe
r s
i
x
i
n
che
s
)
(F
ro
m
Bo
r
i
ng
Lo
g
)
a
No. of
B
l
ow
s
A
n
al
yz
e
d
(F
r
o
m
P
D
I
P
LO
T)
b
Ave
r
age
Me
asu
r
e
d
E
n
e
r
g
y
(
A
ve
r
age
E
F
V)
(ft-
l
b
s
)
c
E
n
e
r
gy T
r
an
sf
e
r
Rat
i
o
(%
)
(A
v
era
g
e
ETR
)
ETR
S
t
a
n
da
r
d
D
e
v
i
a
t
i
o
n
(F
r
o
m
P
D
I
P
LO
T)
54.4 9.3 4 - 5.5 3 - 3 - 5 8 300 85.7% 2.9
53.8 14.3 9 - 10.5 4 - 7 - 13 15 277 79.1% 3.1
54.3 19.3 14 - 15.5 7 - 13 - 20 31 308 88.0% 2.5
54.9 24.3 19 - 20.5 9 - 18 - 20 38 295 84.3% 1.8
54.9 29.3 24 - 25.5 11 - 20 - 26 46 307 87.7% 1.1
54.5 34.3 29 - 30.5 6 - 15 - 19 33 307 87.7% 1.2
54.7 39.3 34 - 35.5 8 - 15 - 22 37 311 88.9% 1.1
55.8 44.3 39 - 40.5 8 - 16 - 35 51 312 89.1% 1.3
56.2 49.3 44 - 45.5 7 - 22 - 34 56 317 90.6% 1.3
d
Average Measured Energy: 307.1
e
Energy Transfer Ratio (ETR) COV: 3.89 %Calibration Prepared By: JNH Date: 6/17/2011
SE 9299
CME - 850
(Track)
ALDOT J. Mathews 1A 6/17/2011 AW-J
87.7%
Alabama Department of Transportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
SPT Testing Clinic # 1
Montgomery County, Alabama
Trotman Road
Overall Average ETR %
? 92
which varied from about 75% to 84.5%. The overall average for the ALDOT CME fleet
was 91%, which is about 10% higher than the 80.7 % CME average calculated from
Table 3.1.
After a rigorous inspection of the force and velocity records, it was determined
that some of these CME hammers were simply operating at a high transfer efficiency.
The drive weight fall height was evaluated for each rig, and each fall height was within
the 30-inch tolerance. These drill rigs are properly maintained and receive maintenance
based upon the recommend usage schedule of the manufacturer (which is based on the
number of usage hours). Furthermore, evaluation of SPT N-values at each Testing Clinic
revealed that hammer systems with higher ETRs produced smaller N-values compared to
hammers with lower ETRs while performing SPTs in the same geology and at the same
approximate sampling depth.
Table 4.2 ALDOT summary statistics
4.8.2 Variation of Transfer Efficiency
The statistical computer program SAS was used to create box and whisker plots
that visually show the distribution of transferred energy between hammer blows for each
Rig I.D.
# Single
Records
#
Averages
Overall
Average BPM
STD
(BPM)
COV
(BPM)
Overall
Average ETR
STD
(ETR)
COV
(ETR)
SE9050 220 8 52.65 0.74 1.40 93.1 5.34 5.74
SE9122 396 8 52.05 0.58 1.10 82.2 1.81 2.21
SE9299 355 9 54.83 0.75 1.36 87.7 3.41 3.89
SE9445 281 9 54.14 0.57 1.06 95.2 3.94 4.14
ST11151 214 6 52.13 0.24 0.46 92.2 3.21 3.48
ST11152 228 6 52.95 0.33 0.62 96.1 2.60 2.71
? 93
drill rig. A legend, or key, for the box and whisker format is provided in Figure 4.12.
The length of the box represents the interquartile range (IQR) for the data set, which is
the range of data within the 25
th
to 75
th
percentile of the distribution and which contains
50% of the data around the median (or mean if normal). The whiskers highlight the
maximum measured energy below the upper fence (1.5IQR). If the distribution of data is
close to normal, the empirical rule can be used to evaluate where the approximate
standard deviation boundaries are on the box plot figures. Generally speaking, and for all
practical purposes, approximately two-thirds of the data in the distribution will lie within
one standard deviation from the mean (? 34%), which will be located slightly outside of
the 25
th
and 75
th
percentile markers of the IQR box. Similarly, the whiskers will be
located somewhere between two and three standard deviations from the mean, depending
on the location of outliers.
Figure 4.12 Box and whisker legend (SAS 9.2)
? 94
The ALDOT box plots in Figure 4.13 suggest that that the distribution of energy
records between hammer blows is practically normal. Some of the box plots do exhibit
long tails in the direction of lower energy but the average calculated energy is very close
to the median value and seems to be relatively unaffected by the slight skewness of the
distribution. Four out of six box plots show energy measurements below the 1.5IQR
distribution of the 25
th
percentile. However, this is not a concern, and can likely be
attributed to SPT measurements performed in soils having slightly erratic soil density
located at shallow depths.
The overall standard deviation between energy averages for each drill rig
ranged from 1.81% to 5.34% ETR for the entire drilling fleet. These results compare
relatively well to the automatic hammer standard deviations reported by FDOT and
NCDOT whose maximum standard deviations ranged from 10.1% ETR (FDOT) to 5.5%
ETR (NCDOT). Similarly, the ETR COVs for the ALDOT ranged from 2.21% to 5.74%.
The ALDOT COV values are within the expected 10% COV range for CME automatic
hammers documented in Table 3.1
? 95
Figure 4.13 Energy box plots-ALDOT (Blow to Blow)
4.8.3 Variation of Hammer Operation Rate
The average hammer operation rate for each drill rig, along with its standard
deviation and coefficient of variation, were previously provided in Table 4.2. The shape
of the hammer operation rate box plots in Figure 4.14 show that the distribution of data is
practically normal. The range of average hammer operation rates experienced during the
testing program was from approximately 52 blows per minute to 55 blows per minute.
These measurements correspond well to the CME manufacturer hammer settings of 50 to
55 blows per minute. The standard deviation of hammer operation rate for each hammer
system in the fleet was found to be less than 1BPM. The calculated COV for each group
was either slightly higher or lower than 1 %, which basically shows that the CME
automatic hammer is relatively consistent from blow to blow.
? 96
Figure 4.14 Hammer operation rate box plots-ALDOT (blow to blow)
?
4.8.4 Rod Length Effects
SPT energy measurements were performed at as many depths as possible in order
to establish a relationship between short rod lengths and energy transfer for the type of
geology tested. This was primarily performed in order to allow ALDOT to establish
short rod length correction factors, if desired. The field data from the testing program has
been plotted in Figure 4.15, which shows the average ETR per rod length measured for
each drill rig. The general trend of the data suggests that the average ETR for each
hammer begins stabilize to the approximate hammer baseline energy at a rod length of 33
ft. This behavior supports the ASTM 4633 recommendation that energy transfer is ?more
reliable? when the rods length is at least 30 ft.
? 97
Figure 4.15 ETR vs. rod length-ALDOT
Utilizing the normalization approach used by the NCDOT, the ALDOT data was
plotted against the NCDOT?s data using baseline transfer efficiencies observed at 33 ft as
well as 38 ft. The average ETR at 38 ft was used in order for a comparison to be made
with the NCDOT data. These results are plotted in Figure 4.16. Additional comparisons
with the ALDOT and NCDOT data were made by plotting the results of the Morgano and
Liang study, as well as the theoretical transfer efficiency null
null
from Equation 3.1, and are
shown in Figure 4.17.
0
10
20
30
40
50
60
0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%
Ro
d
?
Le
n
g
t
h
?
(ft
)
ETR%
SN?9122
SN?9299
SE?9445
ST?11151
ST?11152
SE?9050
? 98
Figure 4.16 Rod length study comparison-ALDOT & NCDOT
?
?
Inspection of the transfer efficiency trends in Figure 5.16 reveals that ALDOT?s
short rod behavior generally agrees with that of the NCDOT study. The trends produced
using baseline hammer efficiencies of 33 ft and 38 ft bound the upper and lower limits of
the NCDOT regression trend, with an approximate difference between the upper and
lower regression lines of 2.5% efficiency.
0.8
0.85
0.9
0.95
1
1.05
0 102030405060
Tr
a
n
s
f
e
r
r
e
d
?
Energy
?
at
?
Le
ngth
?
/
?
Av
e
r
a
g
e
?
ET
R
Rod?Length?(ft)
ALDOT?33?ft
NCDOT?38?ft
ALDOT?38?ft
y?=??8E?05x2?+?0.0083x?+?0.7922
y?=??8E?05x2?+?0.0072x?+?0.8173
y?=??8E?05x2?+?0.0074x?+?0.8369
? 99
Figure 4.17 Rod length study comparison-all studies
Figure 4.17 above shows the hammer efficiency regressions for all of the short
rod studies, and the apparent trend was still the same. The shortest rods produce a larger
reduction in transfer efficiency compared to longer rods. The theoretical regression line
seems to slightly over predict the energy losses for rod lengths less than about 25 ft when
compared to the other regression lines. The regression line from the Morgano study
approximately follows that of the ALDOT trend normalized from energy measurements
above 33 ft.
4.8.5 Effect of Secondary Impacts and Penetration Resistance
During the ALDOT testing program, it was found that the combination of
secondary hammer impacts and soil penetration resistance had an apparent effect on the
value of measured energy at the top of the rods. Due to the relatively consistent density
0.8
0.85
0.9
0.95
1
1.05
0 102030405060
T
r
a
n
sfe
rre
d
?
En
e
r
g
y
?
at
?
Le
n
g
th
?
/
?
Av
e
r
a
g
e
?
ET
R
Rod?Length?(ft)
ALDOT?33?ft
NCDOT?38?ft
ALDOT?38?ft
Morgano
Theoretical
? 100
of the soil, it was possible to evaluate these effects, to some extent. Figures 4.18 through
4.20 show the energy traces for three consecutive rod lengths obtained from SE 9299
during the testing program. The energy traces in these figures are indicative of short rod
lengths, and the associate hammer blow number, as well as measured ETR, are provided
in the legend on the right hand side of each figure. The calibration certificate previously
provided in Figure 4.11 (SE9299) highlights additional details related to this testing
event.
Figure 4.18 Energy traces for rod length 19.3 ft (SPT blow count 7-13-20)
?
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
Tr
a
n
s
f
e
r
r
e
d
?
Ene
r
g
y
?
(k
i
p
?
ft
)
Time?(Sec)
BN#2?(82%)
BN#6?(84%)
BN#10?(87%)
BN#24?(89%)
BN#38?(91%)
Arrival?Time?of?First?Tension?Wave
Secondary Hammer?Impacts
? 101
Figure 4.19 Energy traces for rod length 29.3 ft (SPT blow count 11-20-26)
?
Figure 4.20 Energy traces for rod length 39.3 ft (SPT blow count 8-15-22)
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
T
r
a
n
s
f
e
rred
?
Ene
r
g
y
?
(k
i
p
?
ft
)
Time?(Sec)
BN#2?(86%)
BN#5?(86%)
BN#10?(87%)
BN#23?(88%)
BN#37?(90%)
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
T
r
a
n
s
f
erred
?
En
e
r
g
y
?
(k
i
p
?
ft
)
Time?(Sec)
BN#3?(88%)
BN#5?(89%)
BN#10?(90%)
BN#22?(91%)
BN#38?(91%)
? 102
The first observation that can be made from these figures is that secondary
hammer impacts do occur, which supports the statements made by Lee et al. in 2010.
The contribution of measured energy per secondary impact is relatively consistent from
blow to blow for a given rod length (the magnitude is approximately the same). It can
also be seen that, as the rod?s length increases, the energy contribution from secondary
impacts becomes less significant. A third observation is that the time associated with a
secondary impact decreased as the penetration resistance of the soil increased during
sampler penetration (secondary impacts moved to the left on time scale).
The next effect to evaluate is the behavior of the energy traces just after arrival of
the tension wave, between 2null/null and 4null/null. As shown in the previous figures, toward the
end of the penetration process, when the soil resistance was large enough, the hammer
transferred more of its energy to the drill rods during sampling. This created a second
?step? in measured energy between 2null/null and 4null/null just prior to the secondary impact.
The only logical explanation for this behavior is that the hammer generally follows better
with the drill rods when the returning tension wave is small and the penetration resistance
is large. These findings, which are related to penetration resistance and energy transfer,
agree well with that of Morgano and Liang?s wave equation analysis. The results of their
wave equation analysis (Figure 3.9) showed that the transferred energy increased as the
penetration resistance increased. This additional, or better contact behavior can also be
seen shortly after 2null/null in Figure 3.12 (right side of figure) from Lee?s investigation on
secondary impacts. However, these statements were not mentioned in Lee?s report.
The force and velocity traces, as well as the energy displacement traces measured
for each hammer blow obtained for SE 9299 are provided in Appendix B. The PDI
? 103
Curves program was used to display these wave traces, and they are listed in sequential
order to further illustrate wave transmission and energy transfer.
?
?
?
?
?
?
?
?
?
?
?
?
? 104
?
?
?
?
CHAPTER 5: SPT ENERGY DATABASE
5.1 Introduction
The SPT energy database described in this chapter was the result of a
collaborative effort between Auburn University and a private sector consultant. Energy
records in the database were performed under a nuclear safety-related quality assurance
program, otherwise known as Nuclear Quality Assurance Level 1 (NQA-1). Adherence
to the NQA-1 program helped ensure the accuracy of hammer calibrations and the overall
quality control measures used to collect and evaluate the data. Energy calibrations for the
database were also performed under strict accordance with ASTM 4633 guidelines,
which fall under the NQA-1 umbrella.
Force and velocity measurements for each hammer system in the database were
collected using a Pile Driving Analyzer (PDA) model PAX, which is PDI?s digital data
acquisition system. A minimum of two piezoresistive accelerometers were used to obtain
acceleration measurements for each hammer blow. Force and velocity records obtained
from the field were further evaluated using the PDAW software program. Final
computation of individual energy records was performed using the software package
PDIPLOT. Both PDAW and PDIPLOT are proprietary software packages from PDI?s
software suite, which were designed to evaluate and report energy records obtained from
the PDA.
? 105
5.2 Database Design
The database was designed with the objective of creating a database that would be
compatible with commonly used SPT software programs, as well as have the capability
of efficiently querying data for further analysis. The solution to these objectives was
found by using Microsoft Excel 2007 (Excel) and Microsoft Access 2007 (Access) as
cornerstones for database functionality.
For each drill rig, Visual Basic programming in Excel was used to organize
energy records obtained from PDIPLOT. Once the information was organized, it was
sent to a master summary table (MST) for each drill rig. The MST contained information
such as ETR, N-value, rod length, spatial coordinates, etc.
The Excel MST for each drill rig was then live-linked to the main Access
database engine. The live-linked format between Excel and Access allowed for
extremely efficient upgrading of new energy records. An additional feature of the main
Access database is that it has the capability providing various summary statistics for
individual data queries. Because Access is an object-relational database, it is fully
compatible with geographical information system (GIS) programs such as ArcGIS. Fully
incorporating the energy database into a GIS is another phase of this project and will not
be discussed further.
5.3 Geologic Conditions
Energy records in the database were obtained from numerous test sites in Florida,
New Jersey, North Carolina, South Carolina, Texas, and Virginia. For simplicity, the
geologic conditions for each test site were classified as either undifferentiated coastal
? 106
plain deposits or piedmont residuum. Testing depths in these geologic conditions ranged
from approximately 10 ft to 500 ft, with the majority of the deeper boring depths being
located in coastal plain deposits.
5.4 Rod Type and Rod Length Distribution
SPT energy record percentages acquired from five different rod types are
summarized in Table 5.1. Approximately one-half of the energy records were measured
from A-sized drill rods. The remaining portion of individual energy records were
obtained from N-sized drill rods, which are somewhat larger than the A-sized rod. The
N-size drill rods have been categorized into three different groups and include the ?J?
tapered thread, the ?W? non-tapered thread, and the N3 category. Additionally, the
Mayhew drill rod group has been included. However, there is currently limited
information associated with this group.
Table 5.1 Rod type and length distribution
5.5 Summary of Drill Rigs
A summary of drill rig manufacturers that currently make up the database is
provided in Table 5.2. Table 5.2 subdivides the drill rig manufacturer category into
Rod Size
Record Count of
Rod Size
% of
Total
% of Total
(50 ft or Less)
% of Total
(51 ft to 100 ft)
% of Total
(Greater than 100 ft)
AWJ 8,925 46.78 25.91 14.68 6.19
NWJ 8,401 44.04 12.44 8.41 23.18
NW 321 1.68 0.51 1.17 -
N3 1,132 5.93 1.92 - 4.01
Mayhew Jr. 298 1.56 0.73 0.84 -
Total 19,077 100.00 41.51 25.10 33.38
? 107
specific drill rig type, number of drill rigs per sub-category, and the number of single
ETR records for each drill rig type. A single ETR record is the information associated
with one hammer blow from an SPT. The average ETR and summary statistics for each
drill rig have also been provided.
Approximately 19,000 hammer blow records currently make up the database and
were obtained from 111 separate testing events. The energy records were measured from
39 different drill rigs from the beginning of year 2006 to the end of year 2011. Two-
thirds of all records in the database were acquired by repeat testing over the time frame
previously mentioned.
Perhaps one of the most interesting facts about the database records is that the
drive weight for each hammer system was removed, inspected, and weighed just prior to
the starting date for each project. The same was also performed at the completion of each
project. This represents a standard of care not traditionally seen in commercial
geotechnical practice.
Table 5.2 Drill rig summary
Rig Make Rig Type # Rigs # Single Records
ETR Average
(%)
ETR STDEV
(%)
ETR COV
(%)
CME Truck 14 6,206 81.43 6.91 8.49
CME ATV 10 5,990 82.96 5.45 6.57
CME Track 6 4,875 83.99 5.72 6.81
CME Marsh Buggy 2 502 87.82 4.34 4.94
CME Trailer 1 252 82.77 4.21 5.09
Mobile Truck 2 164 86.53 2.69 3.11
Mobile ATV 1 315 91.64 8.25 9.00
Diedrich ATV 1 479 72.69 5.51 7.58
Fraste Track 1 209 78.94 2.07 2.62
Failing Truck 1 85 72.93 6.17 8.46
ALL Auto - 39 19,077 82.76 6.53 7.89
? 108
5.6 CME Drill Rigs
Energy measurements from CME automatic hammers represent over 90 % of the
energy records in the database (17,825 single records). The rest of this paper will
therefore be focused at statistically evaluating the variation of energy measured from this
type of hammer system. Due to the large quantity of data that will be presented, each
subsection will provide an overview of the numerical findings. The last few sections of
Chapter 5 will be used to summarize the results and evaluate four variables that are
known to affect transfer efficiency. The ALDOT CME data has not been included in this
chapter, but will be compared to the database results in Chapter 6.
5.6.1 Summary Table
The database results from 33 CME automatic hammer systems are provided in
Table 5.3. The summary statistics are based on SPT records obtained from all rod types.
Although energy measurements are often classified by drill rod type, there was no
apparent difference in the magnitude or variation of ETR between the different rod
groups, which is likely due to averaging effects. Organization of the drill rigs in Table
5.3 was strictly based upon the level of information associated with each drill rig. For
example, the hammer system representing CME-1 contains the largest number of single
records (hammer blows), while the hammer system representing CME-33 contains the
least number of single records. The author believed that this was the most practical way
of organizing the data as it allowed for a relatively quick assessment of the large amount
of data shown in the table.
? 109
The first column in Table 5.3 specifies the rig identification number, or Rig I.D.
The second column in the table documents the number of separate energy testing events
that have been performed for each Rig I.D. The third column shows the duration, or
number of days lapsed, between the first and last testing event. Additionally, the fourth
column shows the number of drillers that have performed SPTs during energy testing.
The next two columns in the table display the total number of single energy records and
the total number of average records for each group. The number of average records
represents the number of testing depths. The last three columns contain the summary
statistics for each hammer system.
ETR 95 % confidence interval half-widths were calculated for each drill rig ETR
average and are provided in the last column in Table 5.3. The confidence interval values
are based upon a ?Studentized? t-Distribution. The shape of this type of distribution
changes as the level of information associated with it changes. The significance of each
interval half-width should be based upon the number of average energy records
associated with a specific drill rig I.D.
The next three figures after Table 5.3 were provided to show the distribution of
data in the CME group. The statistical software program SAS was used to create box and
whisker plots for each hammer system (Figure 5.1). A legend, or key, describing the box
plot format was previously provided in Figure 4.12. Figures 5.2 and 5.3 show the ETR
distribution histograms. Figure 5.2 documents the distribution of 485 ETR test depth
averages and Figure 5.3 documents the distribution of 17,825 hammer blow records.
? 110
?
Table 5.3 Summary of CME transfer efficiency
Rig I.D.
# Testing
Events
Duration
(Btw. First & Last Test )
(Days)
# Drillers
# Single
Records
# Average
Records
ETR Average
(%)
ETR STDEV
(of ETR Averages)
ETR COV
(%)
ETR 95% CI
( Half-Width)
(? = 0.05)
CME-1 13 1639 3 1935 56 83.68 3.66 4.37 0.96
CME-2 6 787 1 1216 27 86.34 3.88 4.49 1.46
CME-3 11 1441 2 1204 44 84.38 4.05 4.80 1.20
CME-4 8 1257 1 1179 38 84.18 3.85 4.57 1.22
CME-5 6 766 2 1114 31 86.21 2.48 2.88 0.87
CME-6 7 1184 3 1077 34 85.27 3.11 3.65 1.05
CME-7 6 745 2 1051 27 77.59 8.13 10.48 3.07
CME-8 3 17 1 843 14 87.65 1.46 1.67 0.76
CME-9 5 684 3 705 16 79.1 3.74 4.73 1.83
CME-10 4 501 1 661 16 84.13 2.29 2.72 1.12
CME-11 4 1687 3 635 16 82.03 5.15 6.28 2.52
CME-12 1 1 1 464 5 80.24 1.48 1.84 1.30
CME-13 2 2 1 452 10 82.96 3.34 4.03 2.07
CME-14 3 564 3 397 14 81.28 6.64 8.17 3.48
CME-15 3 462 3 383 13 88.14 4.45 5.05 2.42
CME-16 3 523 3 373 14 76.2 4.56 5.98 2.39
CME-17 2 392 2 367 10 76.66 5.14 6.70 3.19
CME-18 2 28 1 363 7 83.96 4.74 5.65 3.51
CME-19 1 1 1 359 5 73.9 2.09 2.83 1.83
CME-20 3 92 2 354 12 85.99 3.7 4.30 2.09
CME-21 2 26 2 335 8 88.76 3.71 4.18 2.57
CME-22 3 572 3 312 12 73.82 2.45 3.32 1.39
CME-23 2 496 2 298 6 86.1 2.51 2.92 2.01
CME-24 1 1 1 294 3 69.96 3.88 5.55 4.39
CME-25 1 1 1 290 4 76.85 3.06 3.98 3.00
CME-26 2 1008 2 252 8 82.36 4.52 5.49 3.13
CME-27 1 1 1 221 5 86.03 3.35 3.89 2.94
CME-28 1 1 1 167 4 84.49 7.19 8.51 7.05
CME-29 1 1 1 160 5 76.86 1.93 2.51 1.69
CME-30 1 1 1 97 6 74.53 1.83 2.46 1.46
CME-31 1 1 1 95 5 81.41 1.36 1.67 1.19
CME-32 1 1 1 95 5 77.7 1.41 1.81 1.24
CME-33 1 1 1 77 5 84.78 1.01 1.19 0.89
? 111
Figure 5.1 ETR box plots
?
?
Figure 5.2 Histogram of ETR averages
0
5
10
15
20
25
30
35
40
45
50
50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100
Fr
e
q
u
e
nc
y
ETR?%
? 112
Figure 5.3 Histogram of single ETR records (hammer blows)
5.6.2 Hammer Operation Rate
The CME automatic hammer is rate-dependent. This basically means that the
impact energy delivered from the hammer is a function of the speed of the hydraulic
motor, which is synchronized with the engine?s throttle speed and hydraulic flow control
settings. CME hammer operation rates are initially set at the factory to achieve a 30-inch
fall height at an operation speed of 50 to 55 blows per minute. A statistical summary of
CME hammer operation rate measurements are provided in Table 5.4. Box plot
representation of the data is also provided in Figure 5.4. Hammer operation rate records
for CME-31 were not obtainable for reasons unknown, and was left blank in the table.
? 113
Table 5.4 Summary of CME hammer operation rate
?
Rig I.D.
# Testing
Events
Duration
(Btw. First & Last Test )
(Days)
#
Drillers
# Single
Records
# Average
Records
BPM
Average
(%)
BPM STDEV
(of ETR Averages)
BPM
COV
(%)
CME-1 13 1639 3 1935 56 49.95 3.33 6.67
CME-2 6 787 1 1216 27 54.04 2.16 4.00
CME-3 11 1441 2 1204 44 51.78 1.58 3.05
CME-4 8 1257 1 1179 38 55.48 1.97 3.55
CME-5 6 766 2 1114 31 56.65 1.23 2.17
CME-6 7 1184 3 1077 34 53.54 2.35 4.39
CME-7 6 745 2 1051 27 52.26 1.88 3.60
CME-8 3 17 1 843 14 55.25 0.88 1.59
CME-9 5 684 3 705 16 50.79 2.97 5.85
CME-10 4 501 1 661 16 52.84 3.25 6.15
CME-11 4 1687 3 635 16 50.99 2.89 5.67
CME-12 1 1 1 464 5 56.78 0.74 1.30
CME-13 2 2 1 452 10 58.06 1.97 3.39
CME-14 3 564 3 397 14 44.05 7.48 16.98
CME-15 3 462 3 383 13 50.67 1.91 3.77
CME-16 3 523 3 373 14 52.12 2.11 4.05
CME-17 2 392 2 367 10 49.85 0.73 1.46
CME-18 2 28 1 363 7 51.02 1.25 2.45
CME-19 1 1 1 359 5 48.74 2.1 4.31
CME-20 3 92 2 354 12 50.91 1.63 3.20
CME-21 2 26 2 335 8 52.73 1.76 3.34
CME-22 3 572 3 312 12 49.44 1.22 2.47
CME-23 2 496 2 298 6 50.62 1.26 2.49
CME-24 1 1 1 294 3 53.24 0.86 1.62
CME-25 1 1 1 290 4 58.59 1.54 2.63
CME-26 2 1008 2 252 8 45.96 5.05 10.99
CME-27 1 1 1 221 5 53.63 2.61 4.87
CME-28 1 1 1 167 4 56.69 0.544 0.96
CME-29 1 1 1 160 5 50.91 1.19 2.34
CME-30 1 1 1 97 6 51.11 2.03 3.97
CME-31 - - - - - - - -
CME-32 1 1 1 95 5 49.64 1.63 3.28
CME-33 1 1 1 77 5 50.29 1.48 2.94
? 114
Figure 5.4 Hammer operation rate box plots
5.6.3 Summary of Results
Table 5.5 below shows an ETR summary for the CME group. The table
categorizes the database records based on rod type. Interestingly, the overall averages for
each rod group are approximately the same with each ETR average approximately 83%.
The calculated standard deviation and coefficient of variation for each rod group are also
very similar and are shown to have values ranging from 5.58 to 6.41 and from 6.75 to
7.76, respectively. Confidence interval half-widths for the average are provided in the
last column of the table and are less than 1 for each group.
? 115
Table 5.5 Overall summary of CME database records
5.6.4 Variation of Energy between Drill Rig Groups
The ETR COV for each drill rig is shown below in Figure 5.5. The COVs are
representative of the ETR variation between test depth averages. Approximately one-half
of the database records are represented by CME-1 through CME-7. CME-1 through
CME-7 have also had energy measurements performed on their hammers on at least six
different occasions. Drill rig CME-1, which had the largest amount of records in the
database, was tested a total of 13 different times over a four year period. The number of
different drillers performing SPTs ranged from 1 to 3.
Inspection of Figure 5.5 reveals that the most occurring COV is approximately
less 4%. The expected value, or average COV between the groups was determined to be
4.3%. Drill rig CME-7 had an overall COV of about 10.5%, which was the largest COV
in the database. This 10.5% value is close the maximum 10% COV listed in Table 3.1
for CME hammers (FDOT).
Rod Group
# of
Averages
ETR Average
(%)
ETR STDEV
( %)
ETR COV
(%)
ETR 95% CI
( Half-Width)
All 485 82.7 5.58 6.75 0.50
A-Size 263 82.98 5.84 7.04 0.71
N-Size 216 82.63 6.41 7.76 0.85
*N-Size group does not include Mayhew rods
? 116
Figure 5.5 ETR COV distribution
?
?
5.6.5 Variation of Hammer Operation Rate between Drill Rig Groups
The BPM COV for each hammer system is shown in Figure 6.6. The most
reoccurring COV is approximately less than 3%. The overall average COV for all
hammer systems was approximately 4%. CME-14 and CME-26 had an unusually high
variation compared to the other hammer systems. The COV for CME-14 was
approximately 17% and the COV for CME-26 was approximately 11%. The average
hammer operation rate for these two hammer systems was approximately 44 to 46 blows
per minute, which is relatively slow compared to the operation rates of other hammers in
Table 5.4. This slow operation rate resulted in these hammers having the two largest
values of standard deviation in the table (approximately 5% to 7.5% BPM). This large
0
1
2
3
4
5
6
7
8
9
10
11
12
123456789101112131415161718192021222324252627282930313233
CO
V
?
of
?
ETR
?
(%
)
Rig?I.D.
50% of Data
Max Historical COV
? 117
variation also had an effect on the ETR COV for CME-14, but not on CME-26. After
removing the COVs for these two hammer systems, the overall average COV was
determined to be 3.4%.
Figure 5.6 BPM COV distribution
?
?
5.7 Multiple Linear Regression
This part of the paper is used to evaluate four variables affecting energy transfer
for the CME automatic hammer system. These four variables include the hammer
operation rate, rod length, penetration resistance, and rod type. Emphasis was placed on
short drill rods (less than 50 ft) since the energy transfer for long drill rods is generally
only a function of the hammer operation rate and rod type.
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
123456789101112131415161718192021222324252627282930313233
CO
V
?
of
?
BP
M
?
(%
)
Rig?I.D.
? 118
Individual linear regression models were not used for this analysis because this
model assumes that there is only one independent variable correlated to the dependent
variable (ETR). The multiple linear regression approach, which is still based on least
squares regression, does not have this model assumption, and can evaluate the average
partial effect of each variable while holding the others constant (by partialing out the
other residuals). In general, the addition of extra independent variables in the regression
model increases the overall prediction accuracy.
The multiple regression analysis was performed using the data from individual
records instead of average records. An individual record is a single record obtained from
one hammer blow during testing. Ultimately, this led to approximately 6,700 individual
CME records being used in the analysis. In order to accurately represent the relationship
between penetration resistance and transferred energy, each individual record was coded
with its associated blow number in the sequence that it was measured in. For example,
SPT blow number ten, would be coded with the number ten and have an associated
measure of transferred energy. The representative blow number includes blow counts
measured over the entire 18-inch sampling distance (where applicable) and not on the N-
value (last 12-inches). Inspection of the database records showed that the number of
blow counts measured within the first six inches was not significantly smaller than those
measured in the second six inches of sampling, which is an indication that the boreholes
were thoroughly cleaned out.
? 119
5.7.1 Statistical Terminology
Statistical hypothesis testing was performed on the coefficients (slopes) to
determine the plausibility of a linear effect for each explanatory variable. Statistical
hypothesis testing terminology is often unclear, so a brief description of terminology used
in this section is appropriate and is provided below:
? H
0
(Null Hypothesis): This statement describes what we are testing against. For
linear regression, H
0
states that the explanatory variables (x-axis) do not have a
linear effect on the dependent variable (y-axis).
? H
a
(Alternative Hypothesis): This statement can be considered as the opposite of
the Null (or, what we are trying to prove occurs). H
a
states that there is a linear
effect between the explanatory variables and the dependent variable.
? Degrees of Freedom: This number represents the level of information used in the
statistical analysis. It is the total number of observations (data records) minus the
number of intermediate steps used to estimate a parameter.
? Standard Error: This number represents the ?best? estimate of the standard
deviation in its sampling distribution. It is considered the best estimate because it
includes the degrees of freedom associated with the parameter. For multiple
linear regression, the standard error is the pooled estimate of variance (standard
deviation) from the individual linear regression models.
? Test Statistic: This is a numerical quantity used to test the plausibility of H
0
. It is
the estimate divided by its standard error. For regression, the estimate is the
coefficient (slope).
? 120
? Type-I Error (?): This is commonly called the significance level. It is used to
divide the rejection region from the region of acceptance. A common value of ?
is 0.05, which is the probability of rejecting H
0
when it is actually true.
? p-Value: The p-Value describes the probability of obtaining a test statistic more
extreme (farther from zero on a t-Distribution) than the one observed or initially
calculated. If the test statistic yields a p-Value smaller than the 0.05 significance
level, it is appropriate to reject H
0
in favor of H
a
. Similarly, if the test statistic
yields a p-Value larger than 0.05, it is appropriate to fail to reject H
0
and
conclude that there is not sufficient evidence of a linear effect. p-Values for
regression analysis are considered two-sided p-Values (? 0.025 on each side).
? Multiple R: This is the correlation coefficient in regression analysis. It provides a
measure of how well the data clusters around the regression line. A correlation
coefficient of 1.0 means that there is an exact linear relationship between the
variables. Likewise, a correlation coefficient of zero means that a linear
relationship doesn?t exist between the variables.
? R
2
: This is the coefficient of determination for regression analysis. It is the
square of the correlation coefficient. This number is often shown next to the
slope-intercept formula and describes the percentage of the total response
variation of the explanatory variables. It is therefore a measure of prediction
accuracy. R
2
equal to 1.0 represents a perfectly fitting prediction model. R
2
should not be used for inference and should never be used to assess the validity of
the straight line model (Ramsey and Schafer, 2002).
? 121
5.7.2 Multiple Linear Regression Results
The summary output from Excel is provided in Tables 5.6 and 5.7. Table 5.6
shows the estimated slope coefficients for the energy parameters. This table also includes
upper and lower 95% confidence intervals for the coefficients. Similarly, Table 5.7
shows the summary statistics and includes the standard error for the regression equation.
The adjusted R-Square was also provided in this table and is slightly smaller than the
traditional R-Square value above it. The adjusted R-Square basically penalizes the
traditional R-Square value for the extra coefficients used in the analysis.
Table 5.6 Multiple regression results
Table 5.7 Multiple regression summary statistics
Hypothesis testing using test statistics was performed for each independent
variable in order to evaluate the plausibility of a partial linear effect on the dependent
Energy Parameter Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 48.461 0.975 49.711 0.000 46.550 50.372
Hammer Operation Rate 0.553 0.018 30.974 0.000 0.518 0.589
Total Rod Length 0.101 0.007 14.942 0.000 0.088 0.115
Penetration Resistance 0.044 0.003 12.931 0.000 0.037 0.051
Rod Type (N-Size = 1) 0.309 0.142 2.173 0.030 0.030 0.588
Regression Statistics
Multiple R 0.424
R Square 0.180
Adjusted R Square 0.179
Standard Error 5.485
Observations 6718
? 122
variable. The test statistics (t Stat) were calculated by the ratio of the estimate (slope
coefficient) and its associated standard error. A significance level of 0.05 was arbitrarily
chosen prior to the analysis and was used to define the boundary of the rejection region of
the distribution. Considering the shape of the t-distribution, which is based on the
number of observations, the large test statistics calculated in the regression analysis are
very unlikely under the null hypothesis for no linear effect. The p-Values for hammer
operation rate, rod length, and penetration resistance are each smaller than 0.025 (one-
half 0.05 for two sided distribution), and it is appropriate to conclude that these
parameters contribute a partial linear effect on the value of the dependent variable.
Additionally, a ?dummy variable? was used to assess the partial effect of the rod type
category. The N-Size group was coded with ?1? in the analysis and the A-Size group
was coded with ?0?. However, after the analysis, the p-Value for the rod type category
was determined to be greater than 0.025. Therefore, it is appropriate to fail to reject H
0
and state that there is not sufficient evidence of a linear effect on the dependent variable.
The resulting energy prediction equation for CME automatic hammers in the database is
shown in Equation 5.1. The limiting values have been provided next to the description of
each parameter.
?
?
nullnullnull null null
null
nullnull
null
null
nullnullnull
nullnull
null
null
nullnull
nullnull
null
null
nullnull
?
(5.1)
where
nullnullnull = Energy transfer ratio (%)
null
null
= Slope intercept
? 123
null
null
= Coefficient for hammer operation rate (40 BPM to 60 BPM)
null
null
= Coefficient for rod length (ft) (10 ft to 50 ft)
null
null
= Coefficient for penetration resistance (Hammer blow number from 10 to 100)
After observing the calculated slope coefficients in Table 5.6, it was apparent that
the hammer operation rate contributed the largest magnitude of energy in the regression
equation. The rod length and penetration resistance contributed a total of approximately
9% ETR when the maximum rod length of 50 ft and maximum penetration resistance of
100 hammer blows were considered. This 9% ETR equates to 90% of the baseline
transfer efficiency if a hammer speed of 55 BPM is assumed. This result supports the
findings of the NCDOT rod length study which estimated a maximum 10% baseline
efficiency loss for short rods. Although this seems to be a close comparison, it is very
unlikely that the NCDOT experienced blow counts reaching 100 hammer blows on
average.
5.7.3 Regression through the Origin
A comparative multiple regression analysis was performed on the database
records from the previous analysis. The objective of this analysis was to evaluate the full
effect of the each variable after forcing the regression through the origin. Although the
intercept was found to be statistically significant, it is difficult to understand how its
value can be greater than zero when the coefficients are zero, i.e., if the hammer
operation rate is zero there is no energy source and the remaining coefficients should be
zero. Thus, forcing the intercept through the origin may provide a better physical
interpretation of the coefficients if the prediction accuracy is close to the first model.
? 124
Regression forced through the origin is somewhat of a controversial topic and is briefly
discussed by Eisenhauer (2003). In his paper, Eisenhauer references an approach from
Hahn who recommended performing regression analyses with and without the intercept
and then later assessing the validity of the model by comparing the standard errors for
each regression equation. This is the approach that was used to compare the two models
in this report.
The results of the second regression analysis are provided below in Tables 5.8 and
5.9. The p-values for each coefficient are statistically significant.. As before, the largest
contribution of ETR is from the hammer operation rate. The combined contribution of
rod length and penetration resistance for the new regression equation seems to be more
realistic. If it can be assumed that the NCDOT experienced an average penetration
resistance of 25 hammer blows (over 18 inches) for all SPTs in their rod length study,
this would result in an 8.75 % ETR contribution when a 50 ft rod length is considered.
This corresponds to 90 % of the baseline transfer efficiency of a hammer operating at 55
BPM, and supports the NCDOT?s regression equation results. Additionally, the rod type
variable was found to be statistically significant, but its effect on ETR is small since it
would only add 0.784 ETR to the total predicted energy for N-size rods.
Table 5.8 Multiple regression results ? without intercept
Energy Parameter Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 0 #N/A #N/A #N/A #N/A #N/A
Hammer Operation Rate 1.413 0.005 270.048 0.000 1.403 1.424
Total Rod Length 0.150 0.008 19.130 0.000 0.135 0.165
Penetration Resistance 0.053 0.004 13.268 0.000 0.045 0.061
Rod Type (N-Size = 1) 0.784 0.166 4.720 0.000 0.458 1.110
? 125
Table 5.9 Multiple regression summary statistics ? without intercept
Table 5.9 shows the summary statistics obtained from the regression analysis
forced through the origin. The calculated standard error is approximately 1% ETR larger
than that of the previous standard error shown in Table 5.7, which, for all practical
purposes, suggests that the accuracy of the two models is not much different. One major
difference between the two models is the reported value of R-Square. The new R-Square
value was determined to be close to unity, which implies a nearly perfect prediction
model. This R-Square is the result of a zero mean value of the dependent variable in the
regression sum of squares (explained variance) and total sum of squares (total variance)
formulas, which define the R-Square coefficient (SSR/SST). This results in a value of R-
Square that is greater than the R-Square that would be calculated if the mean of the
dependent variable were included, and is the reason that the standard error was chosen as
a diagnostic tool for comparing the two models. Calculation of the standard error uses
the error sum of squares to estimate prediction variance (nullnullnullnull null nullnull? ). Prediction
accuracy between the two models is tested using a case study in section 5.8.
Regression Statistics
Multiple R 0.997
R Square 0.994
Adjusted R Square 0.994
Standard Error 6.416
Observations 6718
? 126
5.8 CME Case Study
The author had the opportunity to perform energy measurement on drill rig,
CME-3, whose summary statistics were described in Table 5.3. Because A-Sized drill
rods were used for this case study (AWJ), the summary data from Table 5.3 are not
entirely accurate since it includes data for all rod types. The representative summary
statistics for CME-3 based on A-size drill rods are provided below:
? Number of times tested with A-Size rods: 8
? Number of test depth averages: 35
? Overall ETR average: 83.69 %
? Standard deviation of ETR: ?4.14 % ETR
? 95 % CI for the mean: ?1.37 % ETR
? Overall average hammer operation rate: 51.78 BPM
? Standard deviation of BPM: ?1.58 BPM
? Average penetration resistance for A-Size: 24.6 hammer blows (1.5 ft)
? Average rod length for A-Size: 58.4 ft
5.8.1 Project Description and Summary of Transfer Efficiency
A series of SPT energy measurements were performed on CME-3 at a bridge
abutment in Calera, Alabama (Figure 5.7). The generalized geology underlying the test
site consisted of hard shale deposits. N-values measured during the testing program
ranged from approximately 39 to 100 blows per foot. SPT energy measurements were
? 127
performed on rod lengths ranging from 33 ft to 53 ft. The average hammer operation rate
was determined to be approximately 53 BPM and the overall ETR average was 89.2 %.
Figure 5.7 SPT test site
?
5.8.2 Predicted Hammer Efficiency
Two CME multiple regression equations were used to predict the transfer
efficiency from the SPT testing event previously discussed. The estimated ETR from the
regression equation with the intercept was 87.2 % ? 5.4%. The estimated ETR from the
regression equation without the intercept was 86.7% ? 6.4%. The prediction difference
between the two models for this example is 0.5% ETR for the mean and 1% ETR for the
standard deviation. The overall ETR at the test site was determined to be 89.2 %, which
is located within one standard deviation of the predicted values. Calculation of the
predicted ETR is shown below for transparency.
? 128
nullnullnull
nullnullnullnull
null
null 48.5null0.55null53nullnull0.1null50nullnull0.045null100null null 87.2%null5.4%
nullnullnull
nullnullnullnull
null1.4null53nullnull0.15null50nullnull0.05null100null null 86.7%null6.4%
The 89.2 % ETR measured during the case study is higher than the 83.69 %
overall average for CME-3 from the database records. After considering the confidence
interval for the mean and the standard deviation, the 89.2 % ETR is still within the
expected range of transfer efficiency for this hammer system. Moreover, the average
penetration resistance measured during the case study is much higher than the historical
average of 24.6 hammer blows, and is likely the reason for such a large mean difference
of ETR. Using the average historical data for CME-3 previously provided, the regression
equation with the intercept predicts an average ETR for CME-3 of 83.1 %. Similarly, the
regression equation without the intercept predicts an average ETR of 81.2 %. The
regression equation with the intercept is apparently a better predictor. However, the
coefficients for the regression analysis without the intercept may provide a close
approximation for the average effect of each individual variable.
? 129
?
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS
?
?
A SPT energy testing program was developed for the Alabama Department of
Transportation. The testing was performed in a simple, repeatable sequence, which
supplemented ALDOT?s normal SPT operations. A calibration certificate documenting
hammer performance was provided for each drill rig. A copy of each calibration
certificate can be found in Appendix A of this report. Concluding remarks summarizing
the testing program are provided below. A summary of the database results, along with
the results of the supplemental regression analyses, have also been presented.
ALDOT summary
1. A total of six CME hammers were tested. The number of energy averages
obtained for each hammer was from 6 to 9 (sample to sample), and were obtained
from rod lengths less than about 50 ft. The overall ETRs for each hammer were
from 82.2% to 96.1%, with an overall average of approximately 91%. The
associated COVs ranged from 2.2% to 5.7%.
2. The average hammer operation rate for each drill rig were within the CME
recommendations and varied from about 52 to 55 BPM. The calculated COVs
were from 0.46% to 1.4%.
? 130
Database summary
1. The overall transfer efficiency for the CME automatic hammer was determined to
be 82.7 % ETR ? 5.5% ETR.
2. The overall transfer efficiency for all automatic hammers was determined to be
82.7 % ETR ? 6.5% ETR.
3. The overall CME automatic hammer operation rate was determined to be 52.1
BPM ? 3.3 BPM.
4. Figure 5.5 provided a bar chart that showed the calculated COVs obtained from
33 CME hammers. These COVs were based on ETRs between test-depth
averages. Two-thirds of the CME data were obtained from hammers that were
calibrated multiple times. Drill rig CME-1, which represented the drill rig with
the most repeat testing, had its hammer calibrated a total of 13 separate times over
a 4.5 year period. The distribution of COVs between the drill rig groups ranged
from 1.1% to 10.5%, with an overall COV average of 4.3%.
5. Figure 5.6 provided a bar chart that showed the calculated COVs for the average
hammer operation rate between the drill rig groups. The distribution of BPM
COVs ranged from 1% to 17%. The overall average COV was 4%.
Multiple linear regression summary
1. Two regression analyses were performed on the CME auto energy records
obtained from rod lengths less than 50 ft. The first analysis was performed with
the intercept and the second analysis without the intercept. Four variables
evaluated include the hammer operation rate, rod length, penetration resistance,
? 131
and rod type. The coefficients for each regression analysis were determined to be
statistically significant (two-sided p-values less than 0.05). The hammer
operation rate was found to have the largest effect on energy transfer, and the rod
type categorical variable was found to have the smallest effect on energy transfer.
The small ETR difference between the rod type categories was likely due to
averaging effects between the database records.
2. Regression analysis through the origin was performed in order to interpret the full
effect of the coefficients without the intercept, which is physically a more
meaningful approach. Considering a CME hammer operating at 55 BPM, and
performing SPTs with a rod length of 50 ft, the regression equation predicted a
77% ETR contribution from the hammer and a 7.5% ETR gain once the drill rods
reached a length of 50 ft. If soil penetration resistance of 50 hammer blows (over
1.5 ft) were considered in the equation, this would add an additional 2.5% ETR to
the predicted transfer efficiency based on the value of the coefficient.
3. A case study on drill rig CME-3 was performed using both regression models.
Each model was able to capture the expected value of hammer efficiency within
one standard deviation. The difference between the predicted ETR for each
regression model in the case study was 0.5% ETR for the mean value and 1%
ETR for the standard deviation. The regression equation that included the
intercept was slightly more accurate in predicting energy transfer efficiency.
CME automatic hammer calibration recommendations
1. The range of transfer efficiencies observed between the ALDOT investigation and
the SPT database study were from approximately 74% ETR to 96% ETR. Some
? 132
of these CME hammers were relatively new and some were slightly older but
were considered to be well maintained. This large range of transfer efficiencies
shows the importance of calibrating individual drill rigs, as some drill rigs operate
well above the 80 % assumed ETR average.
2. Characterizing the hammer transfer efficiency is an important objective of SPT
energy measurements. However, it is even more important to have confidence
that the operational components of the automatic hammer system are not
malfunctioning. As was shown in the literature review, the CME automatic
hammer tends to overthrow the drive weight when the hammer operation rate
exceeds about 60 BPM. The combination of an increased throw height and
reduced cycle time of the lifting lug (faster chain velocity) can cause the drive
weight to strike the lifting lug prior to striking anvil. When this happens, the free
fall velocity of the drive weight is obstructed by the lifting lug and the kinetic
energy of the drive weight is transmitted to the various hammer system
components rather than to the top of the anvil. This can permanently damage the
drive chain and affect future hammer performance even after the hammer speed is
reduced. Thus, performing SPT energy measurements also serves as a measure of
quality assurance since energy transfer and hammer operation rate are both
monitored during testing.
3. ASTM 4633 recommends calibrating SPT hammers on an annual basis for normal
SPT operations. It also recommends that additional testing be performed on
important projects that are highly sensitive to SPT N-value results. In light of the
ASTM recommendations, it is important to consider that the overall ETR for a
? 133
SPT event characterizes the hammer performance for that day under specific
testing conditions. As was previously illustrated in Figure 5.5, the CME transfer
efficiency was determined to have a COV as high as 10%. This would translate to
a standard deviation of 8% ETR if an 80% ETR average was assumed. Although
this is somewhat of an extreme example, it justifies the importance of creating a
personalized database of energy measurements that are obtained in different types
of testing conditions and over an extended period of time. Having a history of
energy transfer variation facilitates better decision making with respect N-value
normalization and provides an indication of when hammer maintenance should be
performed.
4. It is not always financially feasible to obtain force and velocity measurements for
every hammer blow during an SPT investigation. The data analysis is rather
complicated and the calibration process can be costly and time consuming,
especially when calibrating multiple hammer systems is required for a single
project. The frequency of these measurements is therefore somewhat restricted.
Fortunately, there is an emerging technology designed for SPT hammers that is a
cost effective approach to hammer calibration, and one which can almost
effortlessly evaluate the hammer efficiency of every hammer blow performed in a
SPT boring. This new technology uses proximity switches that measure drive
weight kinetic energy just prior to impact. The efficiency of the hammer is
determined from these measurements, which is later correlated to the transfer
efficiency for N-value normalization. Preliminary research with the prototype
model suggests that the measured kinetic energy closely tracks and approximates
? 134
the energy transferred to the drill rods, and appears to be a viable method of
hammer calibration.
Recommendations for future research
1. Four case studies evaluating the energy reaching the sampler were discussed in
the literature review section. Some of these case studies were strictly theoretical
and some were based on experimental observations. However, each study
concluded that the transferred energy at the top of the drill rods will generally be
greater than that measured at the bottom of the rods, and that energy losses for
long drill rods should be expected. The primary questions to ask are at what
length are extreme energy losses expected, what is the rate of decay, and how do
different types of drill rods (different diameters) affect the magnitude of decay for
comparative purposes. The author believes that answering these questions would
be advantageous to many industries, especially the power industry, which often
performs geotechnical borings on the order of hundreds of feet. This type of
technology might also improve liquefaction soil analysis and serve earthquake-
prone regions very well. Perhaps scientific research could design a small
prototype subassembly that is durable and waterproof and that would attach to the
sub on top of the split-spoon sampler. The subassembly would require strain
gages and small internally-mounted accelerometers which would provide force
and velocity measurements for energy calculation. The force and velocity
measurements could be temporarily stored on a removable memory chip and later
removed for further evaluation.
? 135
?
REFERENCES
Abou-matar, H., and Goble, G.G. (1997) ?SPT Dynamic Analysis and Measurements,?
Journal of Geotechnical and Geoenvironmental Engineering, Proceedings of the
American Society of Civil Engineers, Vol. 123, 921-928.
Aggour, M.S., and Radding, W.R. (2001). ?Standard Penetration Test (SPT) Correction,?
University of Maryland, Final Report SP007B48. http://docs.trb.org/00929164.pdf
(Accessed May 2011).
ASTM (2008). ?Standard Test Method for Standard Penetration Test and Split-Barrel
Sampling of Soils.? Annual Book of ASTM Standards, ASTM International, West
Conshohocken, PA.
ASTM (2010). ?Standard Test Method for Energy Measurement for Dynamic
Penetrometers.? Annual Book of ASTM Standards, ASTM International, West
Conshohocken, PA.
Batchelor, C., Goble, G., Berger, J., and Miner, R. (1994). ?Standard Penetration Test
Energy Measurements on The Seattle ASCE Field Testing Program.?
Bulter, J.J (1997). ?Analysis of Energy Measurement Methods of SPT Driving Systems,?
thesis, presented to Utah State University, at Logan, UT, in partial fulfillment of the
requirements for the degree of Master of Science.
Davidson, J., Maultsby, J., and Spoor, K. (1999). ?Standard Penetration Test Energy
Calibrations.? Florida Department of Transportation, Contract No. BB261.
Eisenhauer, J.G. (2003). ?Regression Through the Origin.? http://web.ist.utl.pt/~ist11038
/compute/.../,regression/regrthroughorigin.pdf (Accessed December 2011).
Farrar, J.A., and Chitwood, D. (1999). ?CME Automatic Hammer Operations Bulletin,?
U.S. Bureau of Reclamation, Denver, CO.
Fischer, H.C. (1959). "On Longitudinal Impact I, Fundamental Cases of One-
Dimensional Elastic Impact, Theories and Experiment," Applied Science Research,
Section A, Vol. 8, 105-139.
Goble, G.G. (2005). ?SPT Trials and Tribulations.? PDCA.
http://www.piledrivers.org/files/uploads/49C05DDA-1389 (Accessed September 2011).
? 136
Howie, J., Daniel, C., Jackson, R., and Walker, B. (2003). ?Comparison of Energy
Measurement Methods in the Standard Penetration Test,? Geotechnical Research Group,
Department of Civil Engineering, the University of Columbia.http://www.civil.ubc
British.ca/people/faculty/JHowie/SPT_Report/SPT_Report.pdf (Accessed May 2011).
Kelley, S. and Lens, J. (2010). ?Evaluation of SPT Hammer Energy Variability,? Geo
Designs Incorporated. http://www.aot.state.vt.us/MATRes/Documents/ACROBAT.pdf
(Accessed June 2011).
Kolsky, H. (1963). ?Stress Waves in Solids,? Dover Publications, Mineola, N.Y.
Lamb, R. (1997). ?SPT Energy Measurements with the PDA,? Proceedings from the 45
th
Annual Geotechnical Engineering Conference at the University of Minnesota, 1-20.
Lee, C., Lee, J., An, S., and Lee, W. (2010). ?Effect of Secondary Impact on SPT Rod
Energy and Sampler Penetration,? Journal of Geotechnical and Geoenvironmental
Engineering, Proceedings of the American Society of Civil Engineers, Vol. 136, 522-526.
Liebich, B. (2005). ?Standard Penetration Test Energy Testing and Hammer Efficiency
Measurements.? http://www.dot.ca.gove/hq/esc/geotech/requests/logging_manual/
DEC_2005_SPT.pdf (Accessed June 2011).
Mayne, P.W.,Christopher, B.R., and Dejong, J.,(2001). Subsurface investigations,
FHWA-NHI-01-031.
Morgano, C.M., and Liang, R. (1992). ?Energy transfer in SPT ? Rod length effect,?
Proceedings of the Fourth International Conference on the Application of Stress-Wave
Theory to Piles-The Hague, Netherlands.
Odebrecht, E., Schnaid, F., Rocha, M.M., and Bernardes, P. (2005). ?Energy Efficiency
for Standard Penetration Tests,? Journal of Geotechnical and Geoenvironmental
Engineering, Proceeding of the American Society of Civil Engineers, Vol.131, 1252-
1263.
Palacios, A. (1977). ?The Theory and Measurement of Energy Transfer During Standard
Penetration Test Sampling,? thesis, presented to the University of Florida, at Gainesville,
FL, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
Ramsey, F.L. and Schafer, D.W. (2002). The Statistical Sleuth. Brookes/Cole, Belmont,
CA.
Rassieur, C.L., (1983). (To Central Mine Equipment Company), ?Automatic Drive
Hammer System,? U.S. Patent 4,405,020; September 20, 1983.
http://www.freepatentonline.com/4405020.pdf (Accessed July 2011).
? 137
Rausche, F. (1981). ?A Short Introduction to Continuous and Discrete Wave Mechanics.?
The Second Seminar on The Dynamics of Pile Driving, Boulder, CO, 1-22.
Schmertmann, J.H., and Palacios, A. (1979). ?Energy Dynamics of the SPT,? Journal of
the Geotechnical Engineering Division, Proceedings of the American Society of Civil
Engineers, Vol. 105, No. GT8, 909-926.
Valiquette, M., Robinson, B., and Borden, R.H. (2010). ?Energy Efficiency and Rod
Length Effect in SPT Hammers,? TRB 2010 Annual Meeting CD-ROM.
http://www.docs.trb.org/prp/10-0317.pdf (Accessed June 2011).
? 138
APPENDICES
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? 152
?
?
?
?
?
APPENDIX A
ALDOT CALIBRATION CERTIFICATES
Alabama Department of Transportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
Record of Standard Penetration Test Energy Calibration
For
SE 9122 ? Central Mine Equipment 550X ATV
Date of Calibration: April 5
th
, 2011
Documentation:
Page 1 ? Calibration Certificate
Pages 2 to 3 ? Field Sheets
Pages 4 to 16 ? PDIPLOT
Page 17 ? PDI Curves F&V Trace
Auto
ma
tic Ha
mmer
Seria
l Number a
nd
Rig
M
o
del
Rig
Owner
Rig
Opera
to
r
Boring No. Test
ed
Da
te Tested
Drill Ro
d Size
Av
era
g
e Ha
mmer
Opera
tio
n
Ra
te
(B
PM
)
Drill Ro
d L
eng
th (ft)
(
LE)
Sa
mple Depth (feet)
SP
T Blow Count
(blo
ws per six
inches)
(Fro
m Bo
ring
Lo
g
)
a
N
o
. of
Bl
ow
s
Analyzed
(
F
rom P
D
IP
LO
T)
b
A
v
e
r
age
Me
asu
r
e
d
En
e
r
gy (
A
ve
r
age
EF
V)
(ft-lbs
)
c
En
e
r
gy Tr
an
sf
e
r
Ra
tio
(%)
(
A
ve
r
age
ETR)
ETR Sta
nda
rd
Deviat
ion
(
F
rom P
D
IP
LO
T)
51.6 8.3 3 - 4.5 4 - 8 - 9 14 277 79.1% 3.3
53.2 13.3 8 - 9.5 3 - 2 - 4 4 280 80.0% 4.5
51.5 18.3 13 - 14.5 14 - 34 - 40 74 280 80.0% 4.5
51.7 23.3 18 - 19.5 19 - 34 - 47 87 287 82.0% 2.8
51.8 28.3 23 - 24.5 23 - 30 - 50 84 288 82.3% 3.6
52 33.3 28 - 29.5 21 - 32 - 40 70 286 81.7% 3.3
52 6 38 3 33 34 5 18 31 50 78 291 83 1% 39
SE 9122
CME - 550x
(ATV)
ALDOT Russell B-1 4/5/2011 AW-J
Alabama Department of Transportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
U.S. 80 Over French Creek
Marengo County, Alabama
BR0008 (528)
. . - . - - . 3.9
52 43.3 38 - 39.5 18 - 30 - 45 74 296 84.6% 5.4
d
Average Measured Energy:
287.6
c
Energy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet).
The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.
The STDEV function from Excel was utilized to determine the standard deviation.
Statistical Analysis - Overall Coefficient of Variation
e
Energy Transfer Ratio (ETR) COV: 2.21 %Calibration Prepared By: JNH Date: 4/5/2011
e
ETR COV determined by calculating the overall standard deviation for the average ETR per sample depth (c) and then dividing by the overall average ETR.
82.2%
a
Energy results for SPT sampling are averaged and reported for hammer impacts during the final 1 ft of driving, which relates to the observed N-value. In some cases, certain blows produce poor
quality data and were not used to calculate the Average Measured Energy. This may result in less blows evalutated for ETR than what is shown on the boring logs.
d
The overall Average Measured Energy is calculated by taking the weighted average of the number of hammer blows analyzed (last 1 ft) and the Average Measured Energy for each sample depth
tested.
b
Measured Energy is based on the EFV method, as outlined in ASTM D4633-10, for each blow recorded by the SPT Analyzer.
Overall Average ETR %
DCN: 01
~~~:
~~.s'PE:- () u~1
Brr c\.)~s - ,,.. 1b-t)"~
Alabama Department of'l'ransportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
Project Name:
Location:
Date:
PT Inspector:
Drilling Company:
RECORD OF SPT ENERGY MEASUREMENTS
5 Rig Make / Model:
Rig 1.0.:
Hammer Serial No.:
Hammer Type:
Rod Size:
Boring Identification:
Geologic Region:
Time Tested:
Drill Rig Operator:
SPT Analyzer Serial Number:
Instrumented Rod Type / Area:
4036T
Al:
Al: A2: .3- 0' ? 6 in D:t> N(}~ ...
114 4-.2.D .5.3 4 12 in
~..5.'
(0 - I.S- ) ~ (Ji) 18 in
2-a +&.,.. 5?3 3' If 6in
113 +S'-C> ~ 12 in~.;S (..3 - 9?S- ) tf t1iJ 18 in
~. ? 6 inIe /3.3 .5 ..3 <'
12 in
( &-'?r ) ~ r?.J 18 in
/3/ 1'1 6in
ID /'?-3 S.3 .,j4!f- 12 in( 1.3 - /'1. r ) 4-0 OJ) 18 in
I~ .? J 9 6in
IE <3?3 ~. :3 ..J~ 12 in(1.1-I'1..r ) ~r <3U 18 in
2.3 " 13 6in}F
{3.) 5?3 .30 12 in
(/3 ...2'1.1' ) sz> f:3?J) 18 in
"Rod Length: Total Length Fram Gages ta Tip afSampler
"Measured S.U.: Measured Drill Rod Stick Up Fram Ground Surface to Location of Gages
"Calculated Start Depth: Rod Length Minus Measured Stick Up
Alabama Department of' 1'ransportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
Project Name:
Location:
Date:
SPT Inspector:
Drilling Company:
RECORD OF SPT ENERGY MEASUREMENTS
.s Rig Make / Model: C t:-
Rig LD.:
Hammer Serial No.:
Hammer Type:
Rod Size:
Boring Identification:
Geologic Region:
Time Tested:
Drill Rig Operator:
SPT Analyzer Serial Number:
Instrumented Rod Type / Area:
Al: 3
Al: 33S- A2: 3~S-
Fl: 20(. A - ..Jlf..n .sO 61) 18 in
3:B ,- /~ 6 in??
#3.3 S.3\ A 30 12 in(.3~-3'1.r) ?S- C"7S)
18 in
6 in
12 in
( ) 18 in
6 in
12 in
( ) 18 in
6 in
12 in
( ) 18 in
-Rod Length: Totol Length From Gages to Tip of Sampler
-Measured S.U.: Measured Drill Rod Stick Up From Ground Surface to Location of Gages
-Calculated Start Depth: Rod Length Minus Measured Stick Up
Alabama Department of Transportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
Record of Standard Penetration Test Energy Calibration
For
SE 9299 ? Central Mine Equipment 850 Track
Date of Calibration: June 17
th
, 2011
DCN: 02
Documentation:
Page 1 ? Calibration Certificate
Pages 2 to 3 ? Field Sheets
Pages 4 to 6 ? PDIPLOT
Page 7 ? PDI Curves F&V Trace
Auto
ma
tic Ha
mmer
Seria
l Number a
nd
Rig
M
o
del
Rig
Owner
Rig
Opera
to
r
Boring No. Test
ed
Da
te Tested
Drill Ro
d Size
Av
era
g
e Ha
mmer
Opera
tio
n
Ra
te
(B
PM
)
Drill Ro
d L
eng
th (ft)
(
LE)
Sa
mple Depth (feet)
SP
T Blow Count
(blo
ws per six
inches)
(Fro
m Bo
ring
Lo
g
)
a
N
o
. of
Bl
ow
s
Analyzed
(
F
rom P
D
IP
LO
T)
b
A
v
e
r
age
Me
asu
r
e
d
En
e
r
gy (
A
ve
r
age
EF
V)
(ft-lbs
)
c
En
e
r
gy Tr
an
sf
e
r
Ra
tio
(%)
(
A
ve
r
age
ETR)
ETR Sta
nda
rd
Deviat
ion
(
F
rom P
D
IP
LO
T)
54.4 9.3 4 - 5.5 3 - 3 - 5 8 300 85.7% 2.9
53.8 14.3 9 - 10.5 4 - 7 - 13 15 277 79.1% 3.1
54.3 19.3 14 - 15.5 7 - 13 - 20 31 308 88.0% 2.5
54.9 24.3 19 - 20.5 9 - 18 - 20 38 295 84.3% 1.8
54.9 29.3 24 - 25.5 11 - 20 - 26 46 307 87.7% 1.1
54.5 34.3 29 - 30.5 6 - 15 - 19 33 307 87.7% 1.2
54 7 39 3 34 35 5 81522 37 311 88 9% 11
SE 9299
CME - 850
(Track)
ALDOT J. Mathews 1A 6/17/2011 AW-J
Alabama Department of Transportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
SPT Testing Clinic # 1
Montgomery County, Alabama
Trotman Road
. . - . 8 - 15 - 22 . 1.1
55.8 44.3 39 - 40.5 8 - 16 - 35 51 312 89.1% 1.3
56.2 49.3 44 - 45.5 7 - 22 - 34 56 317 90.6% 1.3
d
Average Measured Energy:
307.1
c
Energy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet).
The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.
Statistical Analysis - Overall Coefficient of Variation
e
Energy Transfer Ratio (ETR) COV: 3.89 %Calibration Prepared By: JNH Date: 6/17/2011
e
ETR COV determined by calculating the overall standard deviation for the average ETR per sample depth (c) and then dividing by the overall average ETR.
87.7%
a
Energy results for SPT sampling are averaged and reported for hammer impacts during the final 1 ft of driving, which relates to the observed N-value. In some cases, certain blows produce poor
quality data and were not used to calculate the Average Measured Energy. This may result in less blows evalutated for ETR than what is shown on the boring logs.
d
The overall Average Measured Energy is calculated by taking the weighted average of the number of hammer blows analyzed (last 1 ft) and the Average Measured Energy for each sample depth
tested.
b
Measured Energy is based on the EFV method, as outlined in ASTM D4633-10, for each blow recorded by the SPT Analyzer.
Overall Average ETR %
DCN: 02
Alabama Department ofTransportation
BUREAU OFMATERIALS &TESTS
3700Fairground Road Montgomery, Alabama 36110
Project Name:
Location:
Date:
SPT Inspector:
Drilling Company:
RECORD OF SPT ENERGY MEASUREMENTS
Rig Make I Model:
Rig I.D.:
Hammer Serial No.:
Hammer Type:
Rod Size:
Ai: 1:,3
Ai: A2: ::3.<~
Fi: ?. I F2: 1'()/, ~ - ~
Fi: 211),>+ F2: .211,S-
Accelerometer Calibration Factors:
Accelerometer Serial Numbers:
Strain Gage Serial Numbers:
Strain Gage Calibration Factors:
Boring Identification:
Geologic Region:-
Time Tested:
Drill Rig Operator:
SPT Analyzer Serial Number:
Instrumented Rod Type IArea:
Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts
(Boring No. plus (Ff) S.U. Depth (ProvidedBy Otbers) Increment Misc. Comments
Subdesignation) (Ff) (Ff)
2,k~IJS If' :$ 6in/4-
+1.01S', . ..3S..3 12inq,:S
(Jj~~.S' ) .5 ~ 18in
l' If 6inI I 1-/Jf,.1 5:J 12in
(~"/~, r- ) IJ 1f6) 18in
/ 11f' 7 6inI 5,3
11,j 13 12in(I'" ~
I("~ ) 2() r:f~} 18in
I /1' ~ ----- 6inJ 3,.3
lLJ,3 JJJ 12in
( 1'/- ~,S' ) 2() ~8~ 18in
/ / 21t' II 6in21,3 3,3
~() - 12in
(24 ~lr.{') ~,ff') 18in
'0/ ,- ,- 2r' L 6in3Jf,3 .5.3 ,5'
12 in
('21. 3D.~) ''1 .~4} 18in
'--""
"Rod Length: Total Length From Gages to Tip of Sampler
"Measured S.U.: Measured Drill Rod Stick Up From GroundSurface to Location of Gages
"Calculated Start Depth: Rod Length Minus Measured Stick Up
Instrumented Subassembly Length:_2 ft.__
Length Below Gages: O.5ft. _
DCN: 02
Alabama Department ofTransportatio
BUREAU OF MATERIALS &TESTS
3700 Fairground Road Montgomery, Alabama 36110
Project Name:
Location:
Date: ,
SPT Inspector:
Drilling Company:
RECORD OF SPT ENERGY MEASUREMENTS
-::tJ:- Rig Make /Model:
Rig I.D.:
Hammer Serial No.:
Hammer Type:
Rod Size:
4036T
',/~
Al: l(\~ .3
Al: .35 A2: ...:3 S-
Fl: - I F2: '7~~ 2--
Fl: F2:
Accelerometer Calibration Factors:
Accelerometer Serial Numbers:
Boring Identification:
Geologic Region:
Time Tested:
Drill Rig Oper.ator:
SPT Analyzer Serial Number:
Instrumented Rod Type /Area:
Strain Gage Serial Numbers:
Strain Gage Calibration Factors:
Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts
(Boring No. plus (Ff) S.U. Depth (ProvidedBy Others) Increment Misc. Comments
Subdesignation) (FT) (Ff)
, , .3Jr g 6in/4-
31.3 .5-3 IS- 12 in
('.3Jf.~S".~) 2) 6.:f.) 18 in
; , 9 6in
lf1-. :3 ~.3 31 It. 12 in
(3'- Ifo.~) ~S- k/7 18 in
4~ 7
~ 6in
/' ,.
....?V 47,3 5"...3 'll.. 12 in
(J,ey..? 4s-. r) '?.If ~5',(~ 18 in-
6in
12 in
( ) 18 in
6in
12 in
( ) 18 in
6in
12 in
( ) 18 in
.Rod Length: Total Length From Gages to Tip of Sampler
"'Measured S.U.: Measured Drill Rod Stick Up Fram Ground Surface to Location of Gages
.Calculated Start Depth: Rod Length Minus Measured Stick Up
Instrumented Subassembly Length:_2 ft.__
Length Below Gages: 0.5ft. _
DCN: 02
Alabama Department of Transportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
Record of Standard Penetration Test Energy Calibration
For
SE 9445 ? Central Mine Equipment 550x ATV
Date of Calibration: June 17
th
, 2011
DCN: 03
Documentation:
Page 1 ? Calibration Certificate
Pages 2 to 3 ? Field Sheets
Pages 4 to 6 ? PDIPLOT
Page 7 ? PDI Curves F&V Trace
Auto
ma
tic Ha
mmer
Seria
l Number a
nd
Rig
M
o
del
Rig
Owner
Rig
Opera
to
r
Boring No. Test
ed
Da
te Tested
Drill Ro
d Size
Av
era
g
e Ha
mmer
Opera
tio
n
Ra
te
(B
PM
)
Drill Ro
d L
eng
th (ft)
(
LE)
Sa
mple Depth (feet)
SP
T Blow Count
(blo
ws per six
inches)
(Fro
m Bo
ring
Lo
g
)
a
N
o
. of
Bl
ow
s
Analyzed
(
F
rom P
D
IP
LO
T)
b
A
v
e
r
age
Me
asu
r
e
d
En
e
r
gy (
A
ve
r
age
EF
V)
(ft-lbs
)
c
En
e
r
gy Tr
an
sf
e
r
Ra
tio
(%)
(
A
ve
r
age
ETR)
ETR Sta
nda
rd
Deviat
ion
(
F
rom P
D
IP
LO
T)
54.1 8.3 4 - 5.5 3 - 3 - 5 8 300 85.7% 1.9
53.6 13.3 9 - 10.5 3 - 6 - 10 16 316 90.3% 2.3
53.2 18.3 14 - 15.5 5 - 10 - 16 26 322 92.0% 2.9
54.2 23.3 19 - 20.5 8 - 13 - 20 32 326 93.1% 1.7
54.7 28.3 24 - 25.5 11 - 20 - 20 40 341 97.4% 2.1
54.9 33.3 29 - 30.5 11 - 19 - 28 46 337 96.3% 1.1
54 8 38 3 34 35 5 81334 47 340 97 1% 1
Alabama Department of Transportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
SPT Testing Clinic # 1
Montgomery County, Alabama
Trotman Road
SE 9445
CME - 550x
(ATV)
ALDOT Dingler 2A 6/17/2011 AW-J
. . - . 8 - 13 - 34 .
54 43.3 39 - 40.5 12 - 18 - 44 62 336 96.0% 1.7
53.8 48.3 44 - 45.5 12 - 21 - 47 21 338 96.6% 1.3
d
Average Measured Energy:
333.3
c
Energy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet).
The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.
Statistical Analysis - Overall Coefficient of Variation
e
Energy Transfer Ratio (ETR) COV: 4.14 %
95.2%
a
Energy results for SPT sampling are averaged and reported for hammer impacts during the final 1 ft of driving, which relates to the observed N-value. In some cases, certain blows produce poor
quality data and were not used to calculate the Average Measured Energy. This may result in less blows evalutated for ETR than what is shown on the boring logs.
d
The overall Average Measured Energy is calculated by taking the weighted average of the number of hammer blows analyzed (last 1 ft) and the Average Measured Energy for each sample depth
tested.
b
Measured Energy is based on the EFV method, as outlined in ASTM D4633-10, for each blow recorded by the SPT Analyzer.
Overall Average ETR %
Calibration Prepared By: JNH Date: 6/17/2011
e
ETR COV determined by calculating the overall standard deviation for the average ETR per sample depth (c) and then dividing by the overall average ETR.
DCN: 03
Alabama Departmen~ ofTransportati
BUREAU OFMATERIALS &TESTS
3700Fairground Road Montgomery, Alabama 361
Project Name:
Location:
Date:
SPT Inspector:
Drilling Company:
RECORD OF SPT ENERGY MEASUREMENTS
rI;h I Rig Make I Model:
Rig 1.0.:
Hammer Serial No.:
Hammer Type:
Rod Size:
4036T
:'"~
Ai: A2:
Ai: 3..:3~ A2:
Fi: , F2:-
Fi: :Z~.5'+ F2: ,;2/j,S-
Accelerometer Serial Numbers:
Accelerometer Calibration Factors:
Strain Gage Calibration Factors:
Strain Gage Serial Numbers:
Boring Identification:.
Geologic Region:
Time Tested:
Drill Rig Operator:
SPT Analyzer Serial Number:
Instrumented Rod Type IArea:
Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts
(Boring No. plus (Ff) S.U. Depth. (ProvidedByOthers) Increment Misc. Comments
Subdesignation) (FT) (FT)
1.8 fP.~ If ' -3 6in,211.
+5"" 4.3 ..3 12 in,
( Jj, S.5' (g:)11.3 ) ..s 18 in
, '1' 03 6in.
/3.3 If,j , 12in( 9~
I/).~ ) If) t'N) 18in
, , lit I oS 6in
/3.3 lj.3 ,/) - 12in
(/;-/);$" ) I' (2') 18in.
.I /1' go 6in11.3
If,.3 " 12in
( 11- 7".~ ) '20 r'3.lJ 18in,
/ :2~ I II 6in
23.) 4-.3 2~ 12 in(29 .
2~a' ) '20 (//{)) 18in
.- .I 11" /1 6in'V
3;'3 '1,3 , '9 .- 12in(~f-
31'( ) 1? ('11) 18in
*Rod Length: Total Length From Gages to Tip of Sampler
*Measured S.U.: Measured Drill Rod Stick Up From GroundSurface to Location of Gages
*Calculated Start Depth: Rod Length Minus Measured Stick Up
Instrumented Subassembly Length:_2 ft.__
Length Below Gages: O.5ft. _
DCN: 03
Alabama Department ofTransportatio
BUREAU OFMATERIALS &TESTS
3700Fairground Road Montgomery, Alabama 36110
Project Name:
Location:
Date:
SPT Inspector:
Drilling Company:
Rig Make /Model:
Rig I.D.:
Hammer Serial No.:
Hammer Type:
Rod Size:
'-
Al: I<\S~ A2: l(JS-t3
Al: 33s- A2:
Fl: - I F2:
Fl: F2:
Accelerometer Calibration Factors:
Strain Gage Calibration Factors:
Strain Gage Serial Numbers:
Accelerometer Serial Numbers:
Boring Identification:
Geologic Region:
Time Tested:
Drill RigOperator:
SPT Analyzer Serial Number:
Instrumented Rod Type /Area:
Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts
(Boring No.plus (Ff) S.U. Depth (Provided By Others) Increment Misc. Comments
Subdesignation) (Ff) (Ff)
~ , ~~ ' ~ 6 in
214- 3a., if,J Il 12 in(.3'1- 3S':S-) J'~ --C-l-=1] 18in
I , 31 , /2 6in
Jj3.} Jj.,:3 /r 12in
( 3f- ~.S- ) ~'" (b2) 18in
1;4/ /2 -, / 6in1!.3 1;,3
21 12in
--II- ("'11- ~S".) ) Jf1- /18) 18in
'-.7 6in
12in
( ) 18in
6in
12In
( ) 18in
6in
12in
( ) 18in
'"Rod Length: Total Length From Gages to Tip 01Sampler
'"Measured S.U.: Measured Drill Rod Stick Uphom Ground Surface to Location 01Gages
'"Calculated Start Depth: Rod Length Minus Measured Stick Up
Instrumented Subassembly Length:_2 /t.__
Length Below Gages: 0.5/t. _
DCN: 03
Alabama Department of Transportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
Record of Standard Penetration Test Energy Calibration
For
ST 11151 ? Central Mine Equipment 55 Truck Mount
Date of Calibration: July 8
th
, 2011
DCN: 04
Documentation:
Page 1 ? Calibration Certificate
Pages 2 to 3 ? Field Sheets
Pages 4 to 11 ? PDIPLOT
Page 12 ? Force & Velocity Trace
Auto
ma
tic Ha
mmer
Seria
l
Number a
nd
Rig
M
o
del
Rig
Owner
Rig
Opera
to
r
Boring No. Test
ed
Da
te Tested
Drill Ro
d Size
Av
era
g
e
Ha
mmer
Opera
tio
n
Ra
te
(B
PM
)
Drill Ro
d L
e
ng
th (ft)
(
LE)
Sa
mple Depth (feet)
SP
T Blow Count
(blo
ws per six
inches)
(Fro
m Bo
ring
Lo
g
)
a
N
o
. of
Bl
ow
s
Analyzed
(
F
rom P
D
IP
LO
T)
b
A
v
e
r
age
Me
asu
r
e
d
En
e
r
gy (
A
ve
r
age
EF
V)
(ft-lbs
)
c
En
e
r
gy Tr
an
sf
e
r
Ra
tio
(%)
(
A
ve
r
age
ETR)
ETR Sta
nda
rd
Deviat
ion
(
F
rom P
D
IP
LO
T)
52.5 18.3 14 - 15.5 2 - 4 - 7 10 308 88.0% 3
52.2 23.3 19 - 20.5 5 - 8 - 4 10 307 87.7% 4.3
52.3 28.3 24 - 25.5 15 - 21 - 27 46 311 88.9% 1.2
52 33.3 29 - 30.4 24 - 32 - 50/0.4' 79 325 92.9% 1.9
51.9 38.3 34 - 35.5 15 - 24 - 40 61 323 92.3% 1
51.9 43.3 39 - 39.9 39 - 50/0.4' 51 335 95.7% 1.7
d
AMdE
322 6
Alabama Department of Transportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
SPT Testing Clinic # 2
Montgomery County, Alabama
Near Trotman Road
ST 11151
CME - 55
(Truck)
ALDOT J. Mathews 1A 7/8/2011 AWJ
92 2%Average Measure nergy: .
c
Energy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet).
The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.
Statistical Analysis - Overall Coefficient of Variation
e
Energy Transfer Ratio (ETR) COV: 3.49 %Calibration Prepared By: JNH Date: 7/8/2011
e
ETR COV determined by calculating the overall standard deviation for the average ETR per sample depth (c) and then dividing by the overall average ETR.
a
Energy results for SPT sampling are averaged and reported for hammer impacts during the final 1 ft of driving, which relates to the observed N-value. In some cases, certain blows produce poor
quality data and were not used to calculate the Average Measured Energy. This may result in less blows evalutated for ETR than what is shown on the boring logs.
d
The overall Average Measured Energy is calculated by taking the weighted average of the number of hammer blows analyzed (last 1 ft) and the Average Measured Energy for each sample depth
tested.
b
Measured Energy is based on the EFV method, as outlined in ASTM D4633-10, for each blow recorded by the SPT Analyzer.
Overall Average ETR %
.
DCN: 04
Project Name:
Location:
Date:
SPT Inspector:
Drilling Company:
Alabama Department ofTransportation
BUREAU OF MATERIALS &TESTS
3700 Fairground Road Montgomery, Alabama 36110
RECORD OF SPT ENERGY MEASUREMENTS
~ C Rig Make /Model:
Rig 1.0.:
Hammer Serial No.:
Hammer Type:
Rod Size:
Boring Identification:
Geologic Region:
Time Tested:
Drill Rig Operator:
SPT Analyzer Serial Number:
Instrumented Rod Type /Area:
Accelerometer Serial Numbers:
Accelerometer Calibration Factors:
Strain Gage Serial Numbers:
Strain Gage Calibration Factors:
Ai:
Ai: 3,.3S- A2: 0?s-"
Fi: <'lJ!> F2: 2#6 .<- , -
H: 2/P.S-? F2: ZI/..r
Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts
(Boring No.plus (Ff) S.U. Depth (ProvidedBy Otbers) Increment Misc. Comments
Subdesignation) (Ff) (Ff)
2.S""'~.> ;" .E 6in ~C)~~ClI'J""~\(4.3.
I ~- I -f5-(), 2 ....??...? 12 in bM-Vr8.3.. (+..s-.~
) z.. (Jt/ 18in
6 kf>6trMt\c ," 6in, Jr,j
\1\1. ". ,,1.(y{o~ ') /3.3 12in
(? /~.S ) 18in
? I < 6in D'.f "r;SL,l-
I~..z 1ti'.3 If.~ It' 11 12 in(I
Jj.? I~. S ?. ) ~ -7,/-7 18in ~ .3l>((
, /7,- S- 6in..
Iv.l .5 <'3.3 ?,3 go 12in( 19-1p.!" ) JJ fa) 18
in
I ? 2St ?. If" 6in)~.4
28'3 Jr,5 71 ....?....?? 12in
( 2'1- 2!'-( ) 2"1- /JJ.~J 18in
2~ ~ D1'Y ~r{JI..L, ./ Z, .. 6in
1l4-5 .33.~ 1;,3 32 12in,. ~ 3D(/(3'1-:Jc.1 ) So 7p ,9 71nn) 18in
~
"'Rod Length: Total Length From Gages to Tip of Sampler
"'Measured S.U.: Measured Drill Rod Stick Up From Ground Surface to Location of Gages
"'Calculated Start Depth: Rod Length Minus Measured Stick Up
DCN: 04
Instrumented Subassembly Length:_2 ft.__
Length Below Gages: 0.5ft. _
Alabama Department ofTransportation
BUREAU OFMATERIALS &TESTS
3700Fairground Road Montgomery, Alabama 36110
Project Name:
Location:
Date:
SPT Inspector:
Drilling Company:
RECORD OF SPT ENERGY MEASUREMENTS
Rig Make /Model:
Rig I.D.:
Hammer Serial No.:
Hammer Type:
Rod Size:
~
Al: A2: '' ) 1.10 7'7.;;7 1Bin
4-5.) I ~1/ $9 6in D1?P "'r")\,.l1'1.:;- ?:3 S67-L}. -'f -~ ) 12 in
(3'.51-7) ~ 1Bin ~ .30'<
6in
12in
( ) 1Bin
6in
12in
( ) 1Bin
6in
12 in
( ) 1Bin
6in
12 in
( ) 1Bin
"Rod Length: Total Length From Gages to Tip of Sampler
"Measured S.U.: Measured Drill Rod Stick Up From Ground Surface to Location of Gages
"Calculated Start Depth: Rod Length Minus Measured Stick Up
Instrumented Subassembly Length:_2 ft.__
Length Below Gages: 0.5 ft. _
DCN: 04
Alabama Department of Transportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
Record of Standard Penetration Test Energy Calibration
For
ST 11152 ? Central Mine Equipment 55 Truck Mount
Date of Calibration: July 8
th
, 2011
DCN: 05
Documentation:
Page 1 ? Calibration Certificate
Pages 2 to 3 ? Field Sheets
Pages 4 to 12 ? PDIPLOT
Page 13 ? Force & Velocity Trace
Auto
ma
tic Ha
mmer
Seria
l
Number a
nd
Rig
M
o
del
Rig
Owner
Rig
Opera
to
r
Boring No. Test
ed
Da
te Tested
Drill Ro
d Size
Av
era
g
e
Ha
mmer
Opera
tio
n
Ra
te
(B
PM
)
Drill Ro
d L
e
ng
th (ft)
(
LE)
Sa
mple Depth (feet)
SP
T Blow Count
(blo
ws per six
inches)
(Fro
m Bo
ring
Lo
g
)
a
N
o
. of
Bl
ow
s
Analyzed
(
F
rom P
D
IP
LO
T)
b
A
v
e
r
age
Me
asu
r
e
d
En
e
r
gy (
A
ve
r
age
EF
V)
(ft-lbs
)
c
En
e
r
gy Tr
an
sf
e
r
Ra
tio
(%)
(
A
ve
r
age
ETR)
ETR Sta
nda
rd
Deviat
ion
(
F
rom P
D
IP
LO
T)
52.5 18.3 14 - 15.5 3 - 3 - 5 7 318 90.9% 2
53.3 23.3 19 - 20.5 3 - 5 - 5 10 322 92.0% 2
53.1 28.3 24 - 25.5 13 - 27 - 35 83 340 97.1% 1.5
52.6 33.3 29 - 30.5 13 - 21 - 39 59 333 95.1% 1.4
53 38.3 34 - 35.5 24 - 38 - 50 92 339 96.9% 1.2
53.2 43.3 39 - 39.9 24 - 50/0.4' 49 335 95.7% 1.6
d
AMdE
336 4
Alabama Department of Transportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
SPT Testing Clinic # 2
Montgomery County, Alabama
Near Trotman Road
96 1%
ST 11152
CME - 55
(Truck)
ALDOT J. Mathews 1B 7/8/2011 AWJ
Average Measure nergy:
.
c
Energy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet).
The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.
Statistical Analysis - Overall Coefficient of Variation
e
Energy Transfer Ratio (ETR) COV: 2.71 %Calibration Prepared By: JNH Date: 7/9/2011
e
ETR COV determined by calculating the overall standard deviation for the average ETR per sample depth (c) and then dividing by the overall average ETR.
a
Energy results for SPT sampling are averaged and reported for hammer impacts during the final 1 ft of driving, which relates to the observed N-value. In some cases, certain blows produce poor
quality data and were not used to calculate the Average Measured Energy. This may result in less blows evalutated for ETR than what is shown on the boring logs.
d
The overall Average Measured Energy is calculated by taking the weighted average of the number of hammer blows analyzed (last 1 ft) and the Average Measured Energy for each sample depth
tested.
b
Measured Energy is based on the EFV method, as outlined in ASTM D4633-10, for each blow recorded by the SPT Analyzer.
Overall Average ETR %
.
DCN: 05
Alabama Department ofTransportati
BUREAU OF MATERIALS &TESTS
3700 Fairground Road Montgomery, Alabama 3611
Project Name:
Location:
Date:
SPT Inspector:
Drilling Company:
RECORD OF SPT ENERGY MEASUREMENTS
4::- Rig Make I Model:
Rig I.D.:
Hammer Serial No.:
Hammer Type:
Rod Size:
Al: A2:
Al: 33~ A2: S-
Fl: 20 - I F2: 2D/,
Fl: 2 .s:'"f F2: 2/1- ~
Accelerometer Calibration Factors:
Accelerometer Serial Numbers:
Boring Identification:
Geologic Region:
Time Tested:
Drill Rig Operator:
SPT Analyzer Serial Number:
Instrumented Rod Type IArea:
Strain Gage Serial Numbers:
Strain Gage Calibration Factors:
Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts
(Boring No. plus (Ff) S.U. Depth (Provided By Otbers) Increment Misc. Comments
Subdesignation) (Ff) (Ff)
?~ + I . Jf" ~ 6in VJo...l \J,,50'
115 ~I +,.S loS 53 I 12in
'.3" ( I. S".) ) J 7.:5~ 18in D~~ Du<.
~.i fI.'{ , I 6in ~ ViA( ~
/13-.<. +10 If.j -] " / 12in1:1.3' ( .,. ~~. '>-
) ? (3) 18in 81~ Cc,VJ'~
I It ' .3 6in" .3
lB. 3 I j,J' 1f.:J 12in(JIJ-Is:r-) S- r8J 18in
I r . ..3 6in ~op ~~~
~ 13.3' 4-J
I ..s-
f B- 12in 4 ~od( ICj - ;I~,~- ) s (/0) 18in -t.
2lt I
J~ 6in
78.3 . I 2:/./8 - S- Jt,5 12in
( ?It. 2s-:.r ) -~S" lIT} 18in
, I 2f"- J:J 6in o,,~~j',\l.
)B- ~ 3).3 4,3 21 12in--- - ~ (I(1'1-.3Q.
S'"' ) 3C, (~()J 18in -"\. 0-
.Rod Length: Totol Length From Gages to Tip of Sampler
.Measured S.U.: Measured Drill Rod Stick Up From Ground Surface to Location of Gages
.Calculated Start Depth: Rod Length Minus Measured Stick Up
Instrumented Subassembly Length:_2 ft.__
Length Below Gages: 0.5 ft. _
DCN: 05
Accelerometer Calibration Factors:
4036T
t.
"'-A1: A2: ~ \S-l.
A1: A2: c:32s-
F1: -I F2: :2~
Fl: F2: I.,S-
Alabama Department ofTransportati
BUREAU OF MATERIALS &TESTS
3700Fairground Road Montgomery, Alabama 36 10
RECORD OF SPT ENERGY MEASUREMENTS
Rig Make /Model:
Rig I.D.:
Hammer Serial No.:
Hammer Type:
Rod Size:
Accelerometer Serial Numbers:
Project Name:
Location:
Date:
SPT Inspector:
Drilling Company:
Boring Identification:
Geologic Region:
Time Tested:
Drill Rig Operator:
SPT Analyzer Serial Number:
Instrumented Rod Type /Area:
Strain Gage Calibration Factors:
Strain Gage Serial Numbers:
Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts
(Boring No. plus (Ff) S.U. Depth (ProvidedByOtbers) Increment Misc. Comments
Subdesignation) (Ff) (Ff)
4.3 . o~' /./ 6in1{3. f 3'.3 ?Sl 12in
.:39. .3sa- ) SO 18in
~ 1,.
'!J '
, ./4 6in O~p ~??..:>~ l-
IB ~?? 43,3 3' SO/A. ~ ' 12in
U31-3?' )
.. -:tc3tJ tI
18in
6in
12in
( ) 18in
6in
12in
( ) 18in
6in
12in
( ) 18in
6in
12in
( ) 18in
.Rod Length: Total Length From Gages to Tip of Sampler
.Measured S.U.: Measured Drill Rod Stick Up From Ground Surface toLocation of Gages
.Calculated Start Depth: Rod Length Minus Measured Stick Up
Instrumented Subassembly Length:_2 ft.__
Length Below Gages: 0.5ft. _
DCN: 05
Alabama Department of Transportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
Record of Standard Penetration Test Energy Calibration
For
SE 9050 ? Central Mine Equipment 550X ATV
Date of Calibration: July 12
th
, 2011
DCN: 06
Documentation:
Page 1 ? Calibration Certificate
Pages 2 to 3 ? Field Sheets
Pages 4 to 13 ? PDIPLOT
Page 14 ? Force & Velocity Trace
Auto
ma
tic Ha
mmer
Seria
l
Number a
nd
Rig
M
o
del
Rig
Owner
Rig
Opera
to
r
Boring No. Test
ed
Da
te Tested
Drill Ro
d Size
Av
era
g
e
Ha
mmer
Opera
tio
n
Ra
te
(B
PM
)
Drill Ro
d L
e
ng
th (ft)
(
LE)
Sa
mple Depth (feet)
SP
T Blow Count
(blo
ws per six
inches)
(Fro
m Bo
ring
Lo
g
)
a
N
o
. of
Bl
ow
s
Analyzed
(
F
rom P
D
IP
LO
T)
b
A
v
e
r
age
Me
asu
r
e
d
En
e
r
gy (
A
ve
r
age
EF
V)
(ft-lbs
)
c
En
e
r
gy Tr
an
sf
e
r
Ra
tio
(%)
(
A
ve
r
age
ETR)
ETR Sta
nda
rd
Deviat
ion
(
F
rom P
D
IP
LO
T)
51.3 8.3 4 - 5.5 1 - 3 - 4 7 277 79.1% 8.1
52.5 13.3 8 - 9.5 2 - 3 - 5 9 306 87.4% 2.8
53.3 18.3 14 - 15.5 2 - 3 - 3 6 308 88.0% 4.1
51.9 23.3 19 - 20.5 5 - 5 - 10 19 326 93.1% 2.7
52.6 28.3 24 - 25.5 3 - 9 - 21 30 325 92.9% 3
53 33.3 29 - 30.5 5 - 17 - 32 49 326 93.1% 2.5
53 3 38 3 34 35 5 51324 38 330 94 3% 25
SE 9050
CME - 550X
(ATV)
ALDOT K.Drake B22 7/12/2011 AW-J
Alabama Department of Transportation
BUREAU OF MATERIALS & TESTS
3700 Fairground Road Montgomery, Alabama 36110
231 Bypass HPP-0035 (10)
Montgomery County, Alabama
Near Trotman Road
. . - . 5 - 13 - 24 . 2.5
53.3 43.3 39 - 40.4 6 - 30 - 50/0.4' 71 333 95.1% 2.9
d
Average Measured Energy:
325.9
c
Energy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet).
The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.
Statistical Analysis - Overall Coefficient of Variation
e
Energy Transfer Ratio (ETR) COV: 5.74 %Calibration Prepared By: JNH Date: 7/12/2011
e
ETR COV determined by calculating the overall standard deviation for the average ETR per sample depth (c) and then dividing by the overall average ETR.
93.1%
a
Energy results for SPT sampling are averaged and reported for hammer impacts during the final 1 ft of driving, which relates to the observed N-value. In some cases, certain blows produce poor
quality data and were not used to calculate the Average Measured Energy. This may result in less blows evalutated for ETR than what is shown on the boring logs.
d
The overall Average Measured Energy is calculated by taking the weighted average of the number of hammer blows analyzed (last 1 ft) and the Average Measured Energy for each sample depth
tested.
b
Measured Energy is based on the EFV method, as outlined in ASTM D4633-10, for each blow recorded by the SPT Analyzer.
Overall Average ETR %
DCN: 06
Al:
Al: 3.s- A2:
Fl: - I FZ:
Fl: FZ:
Alabama Department ofTransportati
BUREAU OFMATERIALS &TESTS
3700Fairground Road Montgomery, Alabama 361 0
RECORD OF SPT ENERGY MEASUREMENTS
Rig Make I Model:
Rig I.D.:
Hammer Serial No.:
Hammer Type:
Rod Size:
Accelerometer Calibration Factors:
Accelerometer Serial Numbers:
Project Name:
Location:
Date:
SPT Inspector:
Drilling Company:
Boring Identification:
Geologic Region:
Time Tested:
Drill Rig Operator:
SPT Analyzer Serial Number:
Instrumented Rod Type I Area:
Strain Gage Serial Numbers:
Strain Gage Calibration Factors:
Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts
(Boring No.plus (Ff) S.U. Depth (Provided By Otbers) Increment Misc. Comments
Subdesignation) (Ff) (Ff)
2.~ J.IJ.S' , 4' , 6in 'fFw,5f;/~f
8/2-/ -1-5' 4.3 -' 12 in.$'. ~. (..?.S.S- ) 4~ 18in
, , 2 6in 1f-I-~.sf!y
13{2 -2 /3.3 5,3 8' ~ 12in(8- ?S- ) s c3'J 18in
JrL L.J.JL .-, ,
/4' 7 6in )~~B22--
3 / >],3 .2;.5 3 12in _'" i--(j~ ? Ir;s- ) ...3 <'J 18 in 'I
, S- 6in ,, , 1'1
131.< - ~ 73.3 If.3 S- 12in
(H - Z~.) ) /() 71~--; 18in
I , 2~' '? 6in D~oi> ~" .?.
822 - S- 2$'.3 J).3 ? 12 in
(2.y';~r ) .21 r'3o/ 18in -::-;30t',
21/ C) -- 6inIB22- , 33.3 1;.3 1:1 12 in
(2r;-~.r ) .3J /tT,) 18 in----
.Rod Length: Total Length From Gages to Tip of Sampler
.Measured S.U.: Measured Drill Rod Stick Up From Ground Surface to Location of Gages
.Calculated Start Depth: Rod Length Minus Measured Stick Up
Instrumented Subassembly Length:_2 ft.__
Length Below Gages: 0.5 ft. _
DCN: 06
Project Name:
Location:
Date:
SPT Inspector:
Drilling Company:
Boring Identification:
Geologic Region:
Time Tested:
Drill RigOperator:
SPT Analyzer Serial Number:
Instrumented Rod Type IArea:
Accelerometer Serial Numbers:
Alabama Department ofTransportation
BUREAU OFMATERIALS &TESTS
3700 Fairground Road Montgomery, Alabama 36110
RECORD OF SPT ENERGY MEASUREMENTS
Rig Make I Model:
Rig I.D.:
Hammer Serial No.:
Hammer Type:
Rod Size:
Al:
Accelerometer Calibration Factors:
Strain Gage Serial Numbers:
Strain Gage Calibration Factors:
Al:
Fl:
Fl:
A2:
F2:
F2: 2/1.s-
Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts
(Boring No. plus (Ff) S.U. Depth (Provided By Others) Increment Misc. Comments
Subdesignation) (Fl) (Fl)
" 4.J . 34 ~ S- 6in81(- 7 38.3 13 12 in
(..JoS'..3r.r ) 2'1 /3~) 18in
/ 37~ Co --e:::c...- 6ing12~8 ~3J~ 4,3
3D 12in
(39.-9",~) so I/),.If "I"f;) 18inI
1::=.../ 6in
12in
( ) 18in
6in
12in
( ) 18in
6in
12in
( ) 18in
6in
12in
( ) 18in
*Rod Length: Total Length From Gages to Tip 01Sampler
*Measured S.U.: Measured Drill Rod Stick Up From Ground Surface to Location 01Gages
*Calculated Start Depth: Rod Length Minus Measured Stick Up
DCN: 06
Instrumented Subassembly Length:_2 ft.__
Length Below Gages: 0.5 ft. _
? 153
APPENDIX B
FORCE AND VELOCITY TRACES FOR SE9299
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 1
6/17/2011 6:42:38 AM
LP 4.00 ft
FMX 27 kips
VMX 15.5 f/s
FVP 0.90 []
EF2 0.207 k-ft
E2E 0.180 k-ft
EMX 0.270 k-ft
ETR 77.3 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 2
6/17/2011 6:42:39 AM
LP 4.00 ft
FMX 28 kips
VMX 16.4 f/s
FVP 0.90 []
EF2 0.220 k-ft
E2E 0.195 k-ft
EMX 0.265 k-ft
ETR 75.6 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 3
6/17/2011 6:42:40 AM
LP 4.00 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.91 []
EF2 0.217 k-ft
E2E 0.191 k-ft
EMX 0.247 k-ft
ETR 70.6 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 4
6/17/2011 6:42:41 AM
LP 4.00 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.89 []
EF2 0.219 k-ft
E2E 0.197 k-ft
EMX 0.285 k-ft
ETR 81.6 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 5
6/17/2011 6:42:42 AM
LP 4.00 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.91 []
EF2 0.224 k-ft
E2E 0.197 k-ft
EMX 0.290 k-ft
ETR 82.7 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 6
6/17/2011 6:42:43 AM
LP 4.00 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.89 []
EF2 0.226 k-ft
E2E 0.200 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 7
6/17/2011 6:42:45 AM
LP 4.00 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.89 []
EF2 0.221 k-ft
E2E 0.200 k-ft
EMX 0.304 k-ft
ETR 86.7 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 8
6/17/2011 6:42:46 AM
LP 4.00 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.88 []
EF2 0.225 k-ft
E2E 0.205 k-ft
EMX 0.315 k-ft
ETR 90.1 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 9
6/17/2011 6:42:47 AM
LP 4.00 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.87 []
EF2 0.223 k-ft
E2E 0.201 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 10
6/17/2011 6:42:48 AM
LP 4.00 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.87 []
EF2 0.219 k-ft
E2E 0.204 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 11
6/17/2011 6:42:49 AM
LP 4.00 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.87 []
EF2 0.222 k-ft
E2E 0.203 k-ft
EMX 0.312 k-ft
ETR 89.3 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 12
6/17/2011 6:50:12 AM
LP 9.00 ft
FMX 29 kips
VMX 16.6 f/s
FVP 0.90 []
EF2 0.254 k-ft
E2E 0.243 k-ft
EMX 0.261 k-ft
ETR 74.5 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 13
6/17/2011 6:50:13 AM
LP 9.00 ft
FMX 28 kips
VMX 17.3 f/s
FVP 0.86 []
EF2 0.250 k-ft
E2E 0.240 k-ft
EMX 0.258 k-ft
ETR 73.7 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 14
6/17/2011 6:50:15 AM
LP 9.00 ft
FMX 28 kips
VMX 16.5 f/s
FVP 0.86 []
EF2 0.250 k-ft
E2E 0.243 k-ft
EMX 0.257 k-ft
ETR 73.5 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 15
6/17/2011 6:50:16 AM
LP 9.00 ft
FMX 28 kips
VMX 16.4 f/s
FVP 0.87 []
EF2 0.255 k-ft
E2E 0.246 k-ft
EMX 0.283 k-ft
ETR 80.9 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 16
6/17/2011 6:50:17 AM
LP 9.00 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.87 []
EF2 0.256 k-ft
E2E 0.245 k-ft
EMX 0.280 k-ft
ETR 79.9 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 17
6/17/2011 6:50:18 AM
LP 9.00 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.85 []
EF2 0.250 k-ft
E2E 0.238 k-ft
EMX 0.280 k-ft
ETR 80.0 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 18
6/17/2011 6:50:19 AM
LP 9.00 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.86 []
EF2 0.249 k-ft
E2E 0.240 k-ft
EMX 0.282 k-ft
ETR 80.7 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 19
6/17/2011 6:50:20 AM
LP 9.00 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.86 []
EF2 0.247 k-ft
E2E 0.238 k-ft
EMX 0.283 k-ft
ETR 80.7 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 20
6/17/2011 6:50:21 AM
LP 9.00 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.85 []
EF2 0.249 k-ft
E2E 0.239 k-ft
EMX 0.284 k-ft
ETR 81.2 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 21
6/17/2011 6:50:22 AM
LP 9.00 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.85 []
EF2 0.249 k-ft
E2E 0.238 k-ft
EMX 0.287 k-ft
ETR 81.9 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 22
6/17/2011 6:50:23 AM
LP 9.00 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.86 []
EF2 0.252 k-ft
E2E 0.240 k-ft
EMX 0.290 k-ft
ETR 82.9 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 23
6/17/2011 6:50:24 AM
LP 9.00 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.249 k-ft
E2E 0.237 k-ft
EMX 0.284 k-ft
ETR 81.1 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 24
6/17/2011 6:50:26 AM
LP 9.00 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.86 []
EF2 0.249 k-ft
E2E 0.235 k-ft
EMX 0.292 k-ft
ETR 83.4 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 25
6/17/2011 6:50:27 AM
LP 9.00 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.85 []
EF2 0.251 k-ft
E2E 0.238 k-ft
EMX 0.293 k-ft
ETR 83.7 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 26
6/17/2011 6:50:28 AM
LP 9.00 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.86 []
EF2 0.242 k-ft
E2E 0.231 k-ft
EMX 0.286 k-ft
ETR 81.7 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 27
6/17/2011 6:56:53 AM
LP 14.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.87 []
EF2 0.272 k-ft
E2E 0.271 k-ft
EMX 0.279 k-ft
ETR 79.8 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 28
6/17/2011 6:56:54 AM
LP 14.30 ft
FMX 29 kips
VMX 15.7 f/s
FVP 0.86 []
EF2 0.275 k-ft
E2E 0.279 k-ft
EMX 0.288 k-ft
ETR 82.3 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 29
6/17/2011 6:57:02 AM
LP 14.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.266 k-ft
E2E 0.268 k-ft
EMX 0.285 k-ft
ETR 81.3 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 30
6/17/2011 6:57:03 AM
LP 14.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.271 k-ft
E2E 0.277 k-ft
EMX 0.302 k-ft
ETR 86.4 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 31
6/17/2011 6:57:04 AM
LP 14.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.271 k-ft
E2E 0.273 k-ft
EMX 0.298 k-ft
ETR 85.3 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 32
6/17/2011 6:57:05 AM
LP 14.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.265 k-ft
E2E 0.269 k-ft
EMX 0.296 k-ft
ETR 84.6 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 33
6/17/2011 6:57:07 AM
LP 14.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.261 k-ft
E2E 0.262 k-ft
EMX 0.288 k-ft
ETR 82.4 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 34
6/17/2011 6:57:08 AM
LP 14.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.269 k-ft
E2E 0.271 k-ft
EMX 0.300 k-ft
ETR 85.6 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 35
6/17/2011 6:57:09 AM
LP 14.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.263 k-ft
E2E 0.267 k-ft
EMX 0.298 k-ft
ETR 85.2 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 36
6/17/2011 6:57:10 AM
LP 14.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.85 []
EF2 0.276 k-ft
E2E 0.272 k-ft
EMX 0.306 k-ft
ETR 87.4 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 37
6/17/2011 6:57:11 AM
LP 14.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.83 []
EF2 0.265 k-ft
E2E 0.266 k-ft
EMX 0.298 k-ft
ETR 85.1 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 38
6/17/2011 6:57:12 AM
LP 14.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.83 []
EF2 0.273 k-ft
E2E 0.276 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 39
6/17/2011 6:57:13 AM
LP 14.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.83 []
EF2 0.266 k-ft
E2E 0.266 k-ft
EMX 0.298 k-ft
ETR 85.1 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 40
6/17/2011 6:57:14 AM
LP 14.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.83 []
EF2 0.271 k-ft
E2E 0.270 k-ft
EMX 0.305 k-ft
ETR 87.1 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 41
6/17/2011 6:57:15 AM
LP 14.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.267 k-ft
E2E 0.268 k-ft
EMX 0.301 k-ft
ETR 86.0 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 42
6/17/2011 6:57:16 AM
LP 14.30 ft
FMX 28 kips
VMX 15.4 f/s
FVP 0.83 []
EF2 0.268 k-ft
E2E 0.267 k-ft
EMX 0.302 k-ft
ETR 86.2 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 43
6/17/2011 6:57:17 AM
LP 14.30 ft
FMX 27 kips
VMX 15.4 f/s
FVP 0.83 []
EF2 0.260 k-ft
E2E 0.261 k-ft
EMX 0.295 k-ft
ETR 84.2 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 44
6/17/2011 6:57:18 AM
LP 14.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.84 []
EF2 0.267 k-ft
E2E 0.266 k-ft
EMX 0.304 k-ft
ETR 86.8 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 45
6/17/2011 6:57:20 AM
LP 14.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.83 []
EF2 0.271 k-ft
E2E 0.271 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 46
6/17/2011 6:57:21 AM
LP 14.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.83 []
EF2 0.271 k-ft
E2E 0.272 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 47
6/17/2011 6:57:22 AM
LP 14.30 ft
FMX 27 kips
VMX 15.3 f/s
FVP 0.84 []
EF2 0.262 k-ft
E2E 0.262 k-ft
EMX 0.301 k-ft
ETR 86.0 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 48
6/17/2011 6:57:23 AM
LP 14.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.83 []
EF2 0.269 k-ft
E2E 0.271 k-ft
EMX 0.314 k-ft
ETR 89.7 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 49
6/17/2011 6:57:24 AM
LP 14.30 ft
FMX 27 kips
VMX 15.4 f/s
FVP 0.82 []
EF2 0.262 k-ft
E2E 0.265 k-ft
EMX 0.309 k-ft
ETR 88.3 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 50
6/17/2011 6:57:25 AM
LP 14.30 ft
FMX 27 kips
VMX 15.4 f/s
FVP 0.82 []
EF2 0.264 k-ft
E2E 0.268 k-ft
EMX 0.312 k-ft
ETR 89.0 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 51
6/17/2011 6:57:26 AM
LP 14.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.83 []
EF2 0.267 k-ft
E2E 0.271 k-ft
EMX 0.316 k-ft
ETR 90.4 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 52
6/17/2011 6:57:27 AM
LP 14.30 ft
FMX 27 kips
VMX 15.2 f/s
FVP 0.82 []
EF2 0.257 k-ft
E2E 0.260 k-ft
EMX 0.306 k-ft
ETR 87.3 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 53
6/17/2011 6:57:28 AM
LP 14.30 ft
FMX 27 kips
VMX 15.6 f/s
FVP 0.81 []
EF2 0.263 k-ft
E2E 0.266 k-ft
EMX 0.312 k-ft
ETR 89.1 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 54
6/17/2011 6:57:29 AM
LP 14.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.80 []
EF2 0.267 k-ft
E2E 0.274 k-ft
EMX 0.325 k-ft
ETR 93.0 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 55
6/17/2011 6:57:30 AM
LP 14.30 ft
FMX 27 kips
VMX 15.7 f/s
FVP 0.81 []
EF2 0.266 k-ft
E2E 0.271 k-ft
EMX 0.318 k-ft
ETR 90.7 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 56
6/17/2011 6:57:31 AM
LP 14.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.80 []
EF2 0.263 k-ft
E2E 0.267 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 57
6/17/2011 6:57:33 AM
LP 14.30 ft
FMX 27 kips
VMX 15.6 f/s
FVP 0.81 []
EF2 0.262 k-ft
E2E 0.269 k-ft
EMX 0.316 k-ft
ETR 90.4 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 58
6/17/2011 6:57:34 AM
LP 14.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.81 []
EF2 0.267 k-ft
E2E 0.275 k-ft
EMX 0.324 k-ft
ETR 92.5 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 59
6/17/2011 6:57:35 AM
LP 14.30 ft
FMX 27 kips
VMX 15.9 f/s
FVP 0.80 []
EF2 0.262 k-ft
E2E 0.271 k-ft
EMX 0.316 k-ft
ETR 90.3 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 60
6/17/2011 6:57:36 AM
LP 14.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.81 []
EF2 0.271 k-ft
E2E 0.274 k-ft
EMX 0.323 k-ft
ETR 92.4 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 61
6/17/2011 6:57:37 AM
LP 14.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.80 []
EF2 0.266 k-ft
E2E 0.272 k-ft
EMX 0.317 k-ft
ETR 90.5 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 62
6/17/2011 6:57:38 AM
LP 14.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.273 k-ft
E2E 0.277 k-ft
EMX 0.328 k-ft
ETR 93.8 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 63
6/17/2011 6:57:39 AM
LP 14.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.81 []
EF2 0.264 k-ft
E2E 0.268 k-ft
EMX 0.311 k-ft
ETR 88.7 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 64
6/17/2011 6:57:40 AM
LP 14.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.80 []
EF2 0.271 k-ft
E2E 0.273 k-ft
EMX 0.317 k-ft
ETR 90.6 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 65
6/17/2011 7:05:17 AM
LP 19.30 ft
FMX 28 kips
VMX 15.2 f/s
FVP 0.86 []
EF2 0.281 k-ft
E2E 0.282 k-ft
EMX 0.288 k-ft
ETR 82.4 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 66
6/17/2011 7:05:18 AM
LP 19.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.290 k-ft
E2E 0.292 k-ft
EMX 0.301 k-ft
ETR 85.9 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 67
6/17/2011 7:05:19 AM
LP 19.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.83 []
EF2 0.286 k-ft
E2E 0.285 k-ft
EMX 0.293 k-ft
ETR 83.7 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 68
6/17/2011 7:05:20 AM
LP 19.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.83 []
EF2 0.295 k-ft
E2E 0.295 k-ft
EMX 0.305 k-ft
ETR 87.1 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 69
6/17/2011 7:05:21 AM
LP 19.30 ft
FMX 29 kips
VMX 15.5 f/s
FVP 0.86 []
EF2 0.288 k-ft
E2E 0.289 k-ft
EMX 0.297 k-ft
ETR 84.8 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 70
6/17/2011 7:05:23 AM
LP 19.30 ft
FMX 28 kips
VMX 15.3 f/s
FVP 0.85 []
EF2 0.286 k-ft
E2E 0.284 k-ft
EMX 0.295 k-ft
ETR 84.2 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 71
6/17/2011 7:05:24 AM
LP 19.30 ft
FMX 29 kips
VMX 15.1 f/s
FVP 0.87 []
EF2 0.284 k-ft
E2E 0.282 k-ft
EMX 0.292 k-ft
ETR 83.4 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 72
6/17/2011 7:05:25 AM
LP 19.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.288 k-ft
E2E 0.291 k-ft
EMX 0.304 k-ft
ETR 87.0 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 73
6/17/2011 7:05:26 AM
LP 19.30 ft
FMX 28 kips
VMX 15.0 f/s
FVP 0.88 []
EF2 0.280 k-ft
E2E 0.279 k-ft
EMX 0.291 k-ft
ETR 83.1 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 74
6/17/2011 7:05:27 AM
LP 19.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.285 k-ft
E2E 0.284 k-ft
EMX 0.300 k-ft
ETR 85.6 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 75
6/17/2011 7:05:28 AM
LP 19.30 ft
FMX 29 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.284 k-ft
E2E 0.287 k-ft
EMX 0.297 k-ft
ETR 84.8 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 76
6/17/2011 7:05:29 AM
LP 19.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.86 []
EF2 0.291 k-ft
E2E 0.290 k-ft
EMX 0.306 k-ft
ETR 87.4 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 77
6/17/2011 7:05:30 AM
LP 19.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.86 []
EF2 0.281 k-ft
E2E 0.285 k-ft
EMX 0.292 k-ft
ETR 83.4 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 78
6/17/2011 7:05:31 AM
LP 19.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.282 k-ft
E2E 0.283 k-ft
EMX 0.296 k-ft
ETR 84.6 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 79
6/17/2011 7:05:32 AM
LP 19.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.277 k-ft
E2E 0.283 k-ft
EMX 0.291 k-ft
ETR 83.0 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 80
6/17/2011 7:05:33 AM
LP 19.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.295 k-ft
E2E 0.293 k-ft
EMX 0.308 k-ft
ETR 87.9 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 81
6/17/2011 7:05:34 AM
LP 19.30 ft
FMX 29 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.281 k-ft
E2E 0.281 k-ft
EMX 0.289 k-ft
ETR 82.6 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 82
6/17/2011 7:05:35 AM
LP 19.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.84 []
EF2 0.280 k-ft
E2E 0.280 k-ft
EMX 0.294 k-ft
ETR 83.9 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 83
6/17/2011 7:05:36 AM
LP 19.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.273 k-ft
E2E 0.273 k-ft
EMX 0.284 k-ft
ETR 81.1 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 84
6/17/2011 7:05:38 AM
LP 19.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.86 []
EF2 0.280 k-ft
E2E 0.280 k-ft
EMX 0.294 k-ft
ETR 84.0 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 85
6/17/2011 7:05:39 AM
LP 19.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.278 k-ft
E2E 0.280 k-ft
EMX 0.291 k-ft
ETR 83.3 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 86
6/17/2011 7:05:40 AM
LP 19.30 ft
FMX 29 kips
VMX 15.5 f/s
FVP 0.86 []
EF2 0.283 k-ft
E2E 0.282 k-ft
EMX 0.297 k-ft
ETR 84.8 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 87
6/17/2011 7:05:41 AM
LP 19.30 ft
FMX 28 kips
VMX 15.4 f/s
FVP 0.87 []
EF2 0.272 k-ft
E2E 0.274 k-ft
EMX 0.287 k-ft
ETR 81.9 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 88
6/17/2011 7:05:42 AM
LP 19.30 ft
FMX 29 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.288 k-ft
E2E 0.285 k-ft
EMX 0.304 k-ft
ETR 86.8 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 89
6/17/2011 7:05:43 AM
LP 19.30 ft
FMX 28 kips
VMX 15.4 f/s
FVP 0.86 []
EF2 0.274 k-ft
E2E 0.276 k-ft
EMX 0.292 k-ft
ETR 83.4 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 90
6/17/2011 7:05:44 AM
LP 19.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.83 []
EF2 0.278 k-ft
E2E 0.281 k-ft
EMX 0.301 k-ft
ETR 86.1 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 91
6/17/2011 7:05:45 AM
LP 19.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.282 k-ft
E2E 0.284 k-ft
EMX 0.301 k-ft
ETR 86.1 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 92
6/17/2011 7:05:46 AM
LP 19.30 ft
FMX 29 kips
VMX 15.3 f/s
FVP 0.88 []
EF2 0.278 k-ft
E2E 0.279 k-ft
EMX 0.298 k-ft
ETR 85.0 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 93
6/17/2011 7:05:47 AM
LP 19.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.280 k-ft
E2E 0.282 k-ft
EMX 0.297 k-ft
ETR 84.9 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 94
6/17/2011 7:05:48 AM
LP 19.30 ft
FMX 29 kips
VMX 15.4 f/s
FVP 0.87 []
EF2 0.288 k-ft
E2E 0.284 k-ft
EMX 0.301 k-ft
ETR 86.0 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 95
6/17/2011 7:05:49 AM
LP 19.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.278 k-ft
E2E 0.281 k-ft
EMX 0.299 k-ft
ETR 85.4 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 96
6/17/2011 7:05:50 AM
LP 19.30 ft
FMX 29 kips
VMX 15.3 f/s
FVP 0.88 []
EF2 0.278 k-ft
E2E 0.279 k-ft
EMX 0.296 k-ft
ETR 84.7 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 97
6/17/2011 7:05:52 AM
LP 19.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.84 []
EF2 0.282 k-ft
E2E 0.284 k-ft
EMX 0.303 k-ft
ETR 86.6 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 98
6/17/2011 7:05:53 AM
LP 19.30 ft
FMX 29 kips
VMX 15.3 f/s
FVP 0.88 []
EF2 0.280 k-ft
E2E 0.279 k-ft
EMX 0.296 k-ft
ETR 84.5 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 99
6/17/2011 7:05:54 AM
LP 19.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.279 k-ft
E2E 0.282 k-ft
EMX 0.299 k-ft
ETR 85.5 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 100
6/17/2011 7:05:55 AM
LP 19.30 ft
FMX 29 kips
VMX 15.4 f/s
FVP 0.87 []
EF2 0.287 k-ft
E2E 0.284 k-ft
EMX 0.300 k-ft
ETR 85.7 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 101
6/17/2011 7:05:56 AM
LP 19.30 ft
FMX 29 kips
VMX 15.3 f/s
FVP 0.88 []
EF2 0.271 k-ft
E2E 0.273 k-ft
EMX 0.286 k-ft
ETR 81.6 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 102
6/17/2011 7:05:57 AM
LP 19.30 ft
FMX 28 kips
VMX 15.2 f/s
FVP 0.87 []
EF2 0.277 k-ft
E2E 0.278 k-ft
EMX 0.294 k-ft
ETR 84.1 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 103
6/17/2011 7:05:58 AM
LP 19.30 ft
FMX 28 kips
VMX 15.1 f/s
FVP 0.88 []
EF2 0.271 k-ft
E2E 0.275 k-ft
EMX 0.291 k-ft
ETR 83.1 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 104
6/17/2011 7:05:59 AM
LP 19.30 ft
FMX 29 kips
VMX 15.5 f/s
FVP 0.86 []
EF2 0.281 k-ft
E2E 0.284 k-ft
EMX 0.305 k-ft
ETR 87.0 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 105
6/17/2011 7:06:00 AM
LP 19.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.86 []
EF2 0.280 k-ft
E2E 0.282 k-ft
EMX 0.298 k-ft
ETR 85.2 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 106
6/17/2011 7:06:01 AM
LP 19.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.283 k-ft
E2E 0.283 k-ft
EMX 0.303 k-ft
ETR 86.5 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 107
6/17/2011 7:06:02 AM
LP 19.30 ft
FMX 28 kips
VMX 15.4 f/s
FVP 0.84 []
EF2 0.270 k-ft
E2E 0.275 k-ft
EMX 0.295 k-ft
ETR 84.3 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 108
6/17/2011 7:06:03 AM
LP 19.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.86 []
EF2 0.277 k-ft
E2E 0.281 k-ft
EMX 0.305 k-ft
ETR 87.2 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 109
6/17/2011 7:06:04 AM
LP 19.30 ft
FMX 28 kips
VMX 15.2 f/s
FVP 0.85 []
EF2 0.278 k-ft
E2E 0.280 k-ft
EMX 0.306 k-ft
ETR 87.6 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 110
6/17/2011 7:06:05 AM
LP 19.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.86 []
EF2 0.287 k-ft
E2E 0.286 k-ft
EMX 0.309 k-ft
ETR 88.3 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 111
6/17/2011 7:12:19 AM
LP 24.30 ft
FMX 28 kips
VMX 15.4 f/s
FVP 0.85 []
EF2 0.284 k-ft
E2E 0.292 k-ft
EMX 0.296 k-ft
ETR 84.5 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 112
6/17/2011 7:12:20 AM
LP 24.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.86 []
EF2 0.286 k-ft
E2E 0.298 k-ft
EMX 0.302 k-ft
ETR 86.4 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 113
6/17/2011 7:12:21 AM
LP 24.30 ft
FMX 28 kips
VMX 15.3 f/s
FVP 0.85 []
EF2 0.285 k-ft
E2E 0.293 k-ft
EMX 0.297 k-ft
ETR 84.8 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 114
6/17/2011 7:12:22 AM
LP 24.30 ft
FMX 28 kips
VMX 15.4 f/s
FVP 0.86 []
EF2 0.289 k-ft
E2E 0.295 k-ft
EMX 0.299 k-ft
ETR 85.4 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 115
6/17/2011 7:12:23 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.287 k-ft
E2E 0.300 k-ft
EMX 0.304 k-ft
ETR 86.7 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 116
6/17/2011 7:12:24 AM
LP 24.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.295 k-ft
E2E 0.307 k-ft
EMX 0.312 k-ft
ETR 89.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 117
6/17/2011 7:12:25 AM
LP 24.30 ft
FMX 28 kips
VMX 15.3 f/s
FVP 0.86 []
EF2 0.282 k-ft
E2E 0.294 k-ft
EMX 0.299 k-ft
ETR 85.4 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 118
6/17/2011 7:12:26 AM
LP 24.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.290 k-ft
E2E 0.297 k-ft
EMX 0.301 k-ft
ETR 86.0 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 119
6/17/2011 7:12:27 AM
LP 24.30 ft
FMX 29 kips
VMX 15.7 f/s
FVP 0.86 []
EF2 0.298 k-ft
E2E 0.305 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 120
6/17/2011 7:12:28 AM
LP 24.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.299 k-ft
E2E 0.302 k-ft
EMX 0.306 k-ft
ETR 87.6 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 121
6/17/2011 7:12:30 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.289 k-ft
E2E 0.301 k-ft
EMX 0.305 k-ft
ETR 87.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 122
6/17/2011 7:12:31 AM
LP 24.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.288 k-ft
E2E 0.297 k-ft
EMX 0.301 k-ft
ETR 86.0 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 123
6/17/2011 7:12:32 AM
LP 24.30 ft
FMX 28 kips
VMX 15.4 f/s
FVP 0.86 []
EF2 0.286 k-ft
E2E 0.296 k-ft
EMX 0.300 k-ft
ETR 85.8 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 124
6/17/2011 7:12:33 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.295 k-ft
E2E 0.299 k-ft
EMX 0.303 k-ft
ETR 86.6 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 125
6/17/2011 7:12:34 AM
LP 24.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.284 k-ft
E2E 0.294 k-ft
EMX 0.298 k-ft
ETR 85.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 126
6/17/2011 7:12:35 AM
LP 24.30 ft
FMX 29 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.295 k-ft
E2E 0.300 k-ft
EMX 0.305 k-ft
ETR 87.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 127
6/17/2011 7:12:36 AM
LP 24.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.86 []
EF2 0.291 k-ft
E2E 0.303 k-ft
EMX 0.307 k-ft
ETR 87.7 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 128
6/17/2011 7:12:37 AM
LP 24.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.295 k-ft
E2E 0.300 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 129
6/17/2011 7:12:38 AM
LP 24.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.289 k-ft
E2E 0.296 k-ft
EMX 0.300 k-ft
ETR 85.7 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 130
6/17/2011 7:12:39 AM
LP 24.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.86 []
EF2 0.299 k-ft
E2E 0.303 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 131
6/17/2011 7:12:40 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.285 k-ft
E2E 0.297 k-ft
EMX 0.301 k-ft
ETR 86.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 132
6/17/2011 7:12:41 AM
LP 24.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.302 k-ft
E2E 0.303 k-ft
EMX 0.309 k-ft
ETR 88.4 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 133
6/17/2011 7:12:42 AM
LP 24.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.291 k-ft
E2E 0.302 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 134
6/17/2011 7:12:43 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.287 k-ft
E2E 0.297 k-ft
EMX 0.307 k-ft
ETR 87.6 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 135
6/17/2011 7:12:45 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.289 k-ft
E2E 0.296 k-ft
EMX 0.305 k-ft
ETR 87.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 136
6/17/2011 7:12:46 AM
LP 24.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.294 k-ft
E2E 0.296 k-ft
EMX 0.306 k-ft
ETR 87.3 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 137
6/17/2011 7:12:47 AM
LP 24.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.301 k-ft
E2E 0.305 k-ft
EMX 0.313 k-ft
ETR 89.4 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 138
6/17/2011 7:12:48 AM
LP 24.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.305 k-ft
E2E 0.308 k-ft
EMX 0.316 k-ft
ETR 90.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 139
6/17/2011 7:12:49 AM
LP 24.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.301 k-ft
E2E 0.306 k-ft
EMX 0.313 k-ft
ETR 89.3 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 140
6/17/2011 7:12:50 AM
LP 24.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.297 k-ft
E2E 0.303 k-ft
EMX 0.310 k-ft
ETR 88.5 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 141
6/17/2011 7:12:51 AM
LP 24.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.84 []
EF2 0.299 k-ft
E2E 0.302 k-ft
EMX 0.310 k-ft
ETR 88.5 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 142
6/17/2011 7:12:52 AM
LP 24.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.84 []
EF2 0.298 k-ft
E2E 0.299 k-ft
EMX 0.310 k-ft
ETR 88.4 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 143
6/17/2011 7:12:53 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.288 k-ft
E2E 0.296 k-ft
EMX 0.306 k-ft
ETR 87.5 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 144
6/17/2011 7:12:54 AM
LP 24.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.302 k-ft
E2E 0.300 k-ft
EMX 0.312 k-ft
ETR 89.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 145
6/17/2011 7:12:55 AM
LP 24.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.292 k-ft
E2E 0.301 k-ft
EMX 0.311 k-ft
ETR 88.7 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 146
6/17/2011 7:12:56 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.295 k-ft
E2E 0.302 k-ft
EMX 0.314 k-ft
ETR 89.7 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 147
6/17/2011 7:12:57 AM
LP 24.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.84 []
EF2 0.300 k-ft
E2E 0.302 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 148
6/17/2011 7:12:58 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.290 k-ft
E2E 0.297 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 149
6/17/2011 7:13:00 AM
LP 24.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.84 []
EF2 0.291 k-ft
E2E 0.295 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 150
6/17/2011 7:13:01 AM
LP 24.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.293 k-ft
E2E 0.298 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 151
6/17/2011 7:13:02 AM
LP 24.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.298 k-ft
E2E 0.297 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 152
6/17/2011 7:13:03 AM
LP 24.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.84 []
EF2 0.289 k-ft
E2E 0.294 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 153
6/17/2011 7:13:04 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.83 []
EF2 0.293 k-ft
E2E 0.298 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 154
6/17/2011 7:13:05 AM
LP 24.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.290 k-ft
E2E 0.298 k-ft
EMX 0.313 k-ft
ETR 89.3 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 155
6/17/2011 7:13:06 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.294 k-ft
E2E 0.296 k-ft
EMX 0.309 k-ft
ETR 88.4 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 156
6/17/2011 7:13:07 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.292 k-ft
E2E 0.297 k-ft
EMX 0.312 k-ft
ETR 89.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 157
6/17/2011 7:13:08 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.295 k-ft
E2E 0.299 k-ft
EMX 0.313 k-ft
ETR 89.5 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 158
6/17/2011 7:13:09 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.82 []
EF2 0.285 k-ft
E2E 0.289 k-ft
EMX 0.303 k-ft
ETR 86.5 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 159
6/17/2011 7:13:10 AM
LP 24.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.81 []
EF2 0.293 k-ft
E2E 0.297 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 160
6/17/2011 7:13:11 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.82 []
EF2 0.289 k-ft
E2E 0.293 k-ft
EMX 0.308 k-ft
ETR 88.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 161
6/17/2011 7:13:12 AM
LP 24.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.289 k-ft
E2E 0.293 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 162
6/17/2011 7:13:13 AM
LP 24.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.83 []
EF2 0.281 k-ft
E2E 0.290 k-ft
EMX 0.303 k-ft
ETR 86.7 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 163
6/17/2011 7:13:15 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.83 []
EF2 0.288 k-ft
E2E 0.293 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 164
6/17/2011 7:13:16 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.280 k-ft
E2E 0.293 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 165
6/17/2011 7:13:17 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.280 k-ft
E2E 0.285 k-ft
EMX 0.299 k-ft
ETR 85.3 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 166
6/17/2011 7:13:18 AM
LP 24.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.284 k-ft
E2E 0.292 k-ft
EMX 0.306 k-ft
ETR 87.5 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 167
6/17/2011 7:13:19 AM
LP 24.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.287 k-ft
E2E 0.296 k-ft
EMX 0.310 k-ft
ETR 88.7 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 168
6/17/2011 7:13:20 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.83 []
EF2 0.291 k-ft
E2E 0.295 k-ft
EMX 0.308 k-ft
ETR 88.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 169
6/17/2011 7:13:21 AM
LP 24.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.290 k-ft
E2E 0.297 k-ft
EMX 0.310 k-ft
ETR 88.6 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 170
6/17/2011 7:19:41 AM
LP 29.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.84 []
EF2 0.277 k-ft
E2E 0.285 k-ft
EMX 0.287 k-ft
ETR 82.0 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 171
6/17/2011 7:19:42 AM
LP 29.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.291 k-ft
E2E 0.300 k-ft
EMX 0.302 k-ft
ETR 86.3 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 172
6/17/2011 7:19:44 AM
LP 29.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.82 []
EF2 0.290 k-ft
E2E 0.294 k-ft
EMX 0.296 k-ft
ETR 84.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 173
6/17/2011 7:19:45 AM
LP 29.30 ft
FMX 27 kips
VMX 15.6 f/s
FVP 0.82 []
EF2 0.288 k-ft
E2E 0.297 k-ft
EMX 0.299 k-ft
ETR 85.6 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 174
6/17/2011 7:19:46 AM
LP 29.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.290 k-ft
E2E 0.300 k-ft
EMX 0.303 k-ft
ETR 86.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 175
6/17/2011 7:19:47 AM
LP 29.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.292 k-ft
E2E 0.303 k-ft
EMX 0.305 k-ft
ETR 87.2 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 176
6/17/2011 7:19:48 AM
LP 29.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.294 k-ft
E2E 0.304 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 177
6/17/2011 7:19:49 AM
LP 29.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.301 k-ft
E2E 0.306 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 178
6/17/2011 7:19:50 AM
LP 29.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.302 k-ft
E2E 0.307 k-ft
EMX 0.311 k-ft
ETR 88.8 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 179
6/17/2011 7:19:51 AM
LP 29.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.292 k-ft
E2E 0.300 k-ft
EMX 0.304 k-ft
ETR 86.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 180
6/17/2011 7:19:52 AM
LP 29.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.293 k-ft
E2E 0.301 k-ft
EMX 0.304 k-ft
ETR 86.9 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 181
6/17/2011 7:19:53 AM
LP 29.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.301 k-ft
E2E 0.302 k-ft
EMX 0.305 k-ft
ETR 87.2 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 182
6/17/2011 7:19:54 AM
LP 29.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.83 []
EF2 0.291 k-ft
E2E 0.300 k-ft
EMX 0.303 k-ft
ETR 86.5 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 183
6/17/2011 7:19:55 AM
LP 29.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.288 k-ft
E2E 0.298 k-ft
EMX 0.301 k-ft
ETR 86.0 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 184
6/17/2011 7:19:57 AM
LP 29.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.304 k-ft
E2E 0.306 k-ft
EMX 0.309 k-ft
ETR 88.4 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 185
6/17/2011 7:19:58 AM
LP 29.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.291 k-ft
E2E 0.298 k-ft
EMX 0.301 k-ft
ETR 86.0 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 186
6/17/2011 7:19:59 AM
LP 29.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.84 []
EF2 0.307 k-ft
E2E 0.310 k-ft
EMX 0.313 k-ft
ETR 89.5 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 187
6/17/2011 7:20:00 AM
LP 29.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.304 k-ft
E2E 0.310 k-ft
EMX 0.314 k-ft
ETR 89.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 188
6/17/2011 7:20:01 AM
LP 29.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.86 []
EF2 0.297 k-ft
E2E 0.300 k-ft
EMX 0.303 k-ft
ETR 86.6 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 189
6/17/2011 7:20:02 AM
LP 29.30 ft
FMX 29 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.299 k-ft
E2E 0.302 k-ft
EMX 0.305 k-ft
ETR 87.3 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 190
6/17/2011 7:20:03 AM
LP 29.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.84 []
EF2 0.307 k-ft
E2E 0.310 k-ft
EMX 0.315 k-ft
ETR 90.1 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 191
6/17/2011 7:20:04 AM
LP 29.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.302 k-ft
E2E 0.302 k-ft
EMX 0.305 k-ft
ETR 87.3 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 192
6/17/2011 7:20:05 AM
LP 29.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.291 k-ft
E2E 0.300 k-ft
EMX 0.304 k-ft
ETR 86.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 193
6/17/2011 7:20:06 AM
LP 29.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.84 []
EF2 0.298 k-ft
E2E 0.303 k-ft
EMX 0.306 k-ft
ETR 87.4 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 194
6/17/2011 7:20:07 AM
LP 29.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.302 k-ft
E2E 0.313 k-ft
EMX 0.318 k-ft
ETR 90.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 195
6/17/2011 7:20:08 AM
LP 29.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.83 []
EF2 0.296 k-ft
E2E 0.303 k-ft
EMX 0.306 k-ft
ETR 87.3 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 196
6/17/2011 7:20:09 AM
LP 29.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.83 []
EF2 0.298 k-ft
E2E 0.305 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 197
6/17/2011 7:20:11 AM
LP 29.30 ft
FMX 29 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.306 k-ft
E2E 0.313 k-ft
EMX 0.316 k-ft
ETR 90.4 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 198
6/17/2011 7:20:12 AM
LP 29.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.295 k-ft
E2E 0.303 k-ft
EMX 0.306 k-ft
ETR 87.3 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 199
6/17/2011 7:20:13 AM
LP 29.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.81 []
EF2 0.296 k-ft
E2E 0.306 k-ft
EMX 0.309 k-ft
ETR 88.4 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 200
6/17/2011 7:20:14 AM
LP 29.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.83 []
EF2 0.297 k-ft
E2E 0.302 k-ft
EMX 0.305 k-ft
ETR 87.1 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 201
6/17/2011 7:20:15 AM
LP 29.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.294 k-ft
E2E 0.303 k-ft
EMX 0.306 k-ft
ETR 87.4 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 202
6/17/2011 7:20:16 AM
LP 29.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.301 k-ft
E2E 0.308 k-ft
EMX 0.311 k-ft
ETR 88.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 203
6/17/2011 7:20:17 AM
LP 29.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.83 []
EF2 0.296 k-ft
E2E 0.302 k-ft
EMX 0.305 k-ft
ETR 87.2 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 204
6/17/2011 7:20:18 AM
LP 29.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.292 k-ft
E2E 0.307 k-ft
EMX 0.312 k-ft
ETR 89.1 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 205
6/17/2011 7:20:19 AM
LP 29.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.300 k-ft
E2E 0.308 k-ft
EMX 0.311 k-ft
ETR 88.8 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 206
6/17/2011 7:20:20 AM
LP 29.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.294 k-ft
E2E 0.307 k-ft
EMX 0.313 k-ft
ETR 89.3 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 207
6/17/2011 7:20:21 AM
LP 29.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.82 []
EF2 0.295 k-ft
E2E 0.300 k-ft
EMX 0.302 k-ft
ETR 86.4 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 208
6/17/2011 7:20:22 AM
LP 29.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.293 k-ft
E2E 0.305 k-ft
EMX 0.310 k-ft
ETR 88.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 209
6/17/2011 7:20:24 AM
LP 29.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.81 []
EF2 0.295 k-ft
E2E 0.303 k-ft
EMX 0.307 k-ft
ETR 87.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 210
6/17/2011 7:20:25 AM
LP 29.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.296 k-ft
E2E 0.309 k-ft
EMX 0.315 k-ft
ETR 90.0 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 211
6/17/2011 7:20:26 AM
LP 29.30 ft
FMX 12 kips
VMX 6.7 f/s
FVP 0.87 []
EF2 0.052 k-ft
E2E 0.055 k-ft
EMX 0.055 k-ft
ETR 15.8 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 212
6/17/2011 7:26:59 AM
LP 34.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.4 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 213
6/17/2011 7:27:03 AM
LP 34.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.79 []
EF2 0.305 k-ft
E2E 0.312 k-ft
EMX 0.314 k-ft
ETR 89.7 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 214
6/17/2011 7:27:04 AM
LP 34.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.302 k-ft
E2E 0.307 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 215
6/17/2011 7:27:05 AM
LP 34.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.304 k-ft
E2E 0.315 k-ft
EMX 0.317 k-ft
ETR 90.4 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 216
6/17/2011 7:27:06 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.297 k-ft
E2E 0.309 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 217
6/17/2011 7:27:08 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.80 []
EF2 0.296 k-ft
E2E 0.306 k-ft
EMX 0.308 k-ft
ETR 87.9 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 218
6/17/2011 7:27:09 AM
LP 34.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.300 k-ft
E2E 0.310 k-ft
EMX 0.311 k-ft
ETR 89.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 219
6/17/2011 7:27:10 AM
LP 34.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.296 k-ft
E2E 0.304 k-ft
EMX 0.305 k-ft
ETR 87.2 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 220
6/17/2011 7:27:11 AM
LP 34.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.301 k-ft
E2E 0.312 k-ft
EMX 0.314 k-ft
ETR 89.6 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 221
6/17/2011 7:27:12 AM
LP 34.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.81 []
EF2 0.301 k-ft
E2E 0.313 k-ft
EMX 0.315 k-ft
ETR 90.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 222
6/17/2011 7:27:13 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.297 k-ft
E2E 0.308 k-ft
EMX 0.310 k-ft
ETR 88.6 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 223
6/17/2011 7:27:14 AM
LP 34.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.81 []
EF2 0.298 k-ft
E2E 0.308 k-ft
EMX 0.310 k-ft
ETR 88.6 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 224
6/17/2011 7:27:15 AM
LP 34.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.299 k-ft
E2E 0.314 k-ft
EMX 0.316 k-ft
ETR 90.2 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 225
6/17/2011 7:27:16 AM
LP 34.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.302 k-ft
E2E 0.310 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 226
6/17/2011 7:27:17 AM
LP 34.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.300 k-ft
E2E 0.309 k-ft
EMX 0.310 k-ft
ETR 88.7 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 227
6/17/2011 7:27:18 AM
LP 34.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.302 k-ft
E2E 0.312 k-ft
EMX 0.313 k-ft
ETR 89.5 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 228
6/17/2011 7:27:19 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.4 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 229
6/17/2011 7:27:20 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.310 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 230
6/17/2011 7:27:21 AM
LP 34.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.305 k-ft
E2E 0.313 k-ft
EMX 0.315 k-ft
ETR 90.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 231
6/17/2011 7:27:22 AM
LP 34.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.302 k-ft
E2E 0.310 k-ft
EMX 0.312 k-ft
ETR 89.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 232
6/17/2011 7:27:23 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.303 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.4 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 233
6/17/2011 7:27:25 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.308 k-ft
E2E 0.317 k-ft
EMX 0.319 k-ft
ETR 91.1 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 234
6/17/2011 7:27:26 AM
LP 34.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.81 []
EF2 0.306 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 235
6/17/2011 7:27:27 AM
LP 34.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.297 k-ft
E2E 0.306 k-ft
EMX 0.308 k-ft
ETR 87.9 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 236
6/17/2011 7:27:28 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.298 k-ft
E2E 0.306 k-ft
EMX 0.308 k-ft
ETR 87.9 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 237
6/17/2011 7:27:29 AM
LP 34.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.81 []
EF2 0.304 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.5 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 238
6/17/2011 7:27:30 AM
LP 34.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.300 k-ft
E2E 0.312 k-ft
EMX 0.314 k-ft
ETR 89.7 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 239
6/17/2011 7:27:31 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.298 k-ft
E2E 0.314 k-ft
EMX 0.316 k-ft
ETR 90.4 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 240
6/17/2011 7:27:35 AM
LP 34.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.81 []
EF2 0.300 k-ft
E2E 0.308 k-ft
EMX 0.310 k-ft
ETR 88.7 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 241
6/17/2011 7:27:36 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.291 k-ft
E2E 0.303 k-ft
EMX 0.305 k-ft
ETR 87.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 242
6/17/2011 7:27:37 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.80 []
EF2 0.301 k-ft
E2E 0.309 k-ft
EMX 0.312 k-ft
ETR 89.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 243
6/17/2011 7:27:38 AM
LP 34.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.81 []
EF2 0.300 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 244
6/17/2011 7:27:40 AM
LP 34.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.83 []
EF2 0.307 k-ft
E2E 0.315 k-ft
EMX 0.318 k-ft
ETR 91.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 245
6/17/2011 7:27:42 AM
LP 34.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.83 []
EF2 0.302 k-ft
E2E 0.311 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 246
6/17/2011 7:27:43 AM
LP 34.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.82 []
EF2 0.295 k-ft
E2E 0.309 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 247
6/17/2011 7:27:44 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.306 k-ft
EMX 0.310 k-ft
ETR 88.5 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 248
6/17/2011 7:27:45 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.304 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 249
6/17/2011 7:27:46 AM
LP 34.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.81 []
EF2 0.303 k-ft
E2E 0.314 k-ft
EMX 0.317 k-ft
ETR 90.5 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 250
6/17/2011 7:27:47 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.292 k-ft
E2E 0.303 k-ft
EMX 0.307 k-ft
ETR 87.6 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 251
6/17/2011 7:27:48 AM
LP 34.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.297 k-ft
E2E 0.306 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 252
6/17/2011 7:27:49 AM
LP 34.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.83 []
EF2 0.301 k-ft
E2E 0.309 k-ft
EMX 0.311 k-ft
ETR 89.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 253
6/17/2011 7:27:50 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.298 k-ft
E2E 0.303 k-ft
EMX 0.306 k-ft
ETR 87.5 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 254
6/17/2011 7:27:51 AM
LP 34.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.301 k-ft
E2E 0.309 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 255
6/17/2011 7:27:52 AM
LP 34.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.83 []
EF2 0.295 k-ft
E2E 0.301 k-ft
EMX 0.304 k-ft
ETR 86.8 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 256
6/17/2011 7:34:30 AM
LP 39.30 ft
FMX 26 kips
VMX 14.6 f/s
FVP 0.81 []
EF2 0.239 k-ft
E2E 0.252 k-ft
EMX 0.253 k-ft
ETR 72.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 257
6/17/2011 7:34:31 AM
LP 39.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.298 k-ft
E2E 0.311 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 258
6/17/2011 7:34:32 AM
LP 39.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.297 k-ft
E2E 0.309 k-ft
EMX 0.310 k-ft
ETR 88.5 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 259
6/17/2011 7:34:33 AM
LP 39.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.294 k-ft
E2E 0.306 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 260
6/17/2011 7:34:34 AM
LP 39.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.296 k-ft
E2E 0.310 k-ft
EMX 0.312 k-ft
ETR 89.0 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 261
6/17/2011 7:34:35 AM
LP 39.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.302 k-ft
E2E 0.315 k-ft
EMX 0.317 k-ft
ETR 90.6 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 262
6/17/2011 7:34:36 AM
LP 39.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.81 []
EF2 0.300 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 263
6/17/2011 7:34:37 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.292 k-ft
E2E 0.308 k-ft
EMX 0.309 k-ft
ETR 88.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 264
6/17/2011 7:34:38 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.312 k-ft
EMX 0.314 k-ft
ETR 89.6 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 265
6/17/2011 7:34:39 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.80 []
EF2 0.300 k-ft
E2E 0.311 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 266
6/17/2011 7:34:41 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.324 k-ft
EMX 0.327 k-ft
ETR 93.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 267
6/17/2011 7:34:42 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.296 k-ft
E2E 0.317 k-ft
EMX 0.319 k-ft
ETR 91.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 268
6/17/2011 7:34:43 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.81 []
EF2 0.295 k-ft
E2E 0.305 k-ft
EMX 0.307 k-ft
ETR 87.7 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 269
6/17/2011 7:34:44 AM
LP 39.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.295 k-ft
E2E 0.317 k-ft
EMX 0.319 k-ft
ETR 91.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 270
6/17/2011 7:34:45 AM
LP 39.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.308 k-ft
EMX 0.309 k-ft
ETR 88.4 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 271
6/17/2011 7:34:46 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.302 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.7 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 272
6/17/2011 7:34:47 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.312 k-ft
EMX 0.314 k-ft
ETR 89.6 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 273
6/17/2011 7:34:48 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.83 []
EF2 0.303 k-ft
E2E 0.317 k-ft
EMX 0.319 k-ft
ETR 91.1 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 274
6/17/2011 7:34:49 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.300 k-ft
E2E 0.312 k-ft
EMX 0.313 k-ft
ETR 89.5 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 275
6/17/2011 7:34:50 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.298 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.4 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 276
6/17/2011 7:34:51 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.302 k-ft
E2E 0.315 k-ft
EMX 0.317 k-ft
ETR 90.5 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 277
6/17/2011 7:34:52 AM
LP 39.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.83 []
EF2 0.299 k-ft
E2E 0.316 k-ft
EMX 0.317 k-ft
ETR 90.7 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 278
6/17/2011 7:34:53 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.311 k-ft
EMX 0.312 k-ft
ETR 89.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 279
6/17/2011 7:34:54 AM
LP 39.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.82 []
EF2 0.306 k-ft
E2E 0.317 k-ft
EMX 0.318 k-ft
ETR 91.0 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 280
6/17/2011 7:34:55 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.303 k-ft
E2E 0.314 k-ft
EMX 0.316 k-ft
ETR 90.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 281
6/17/2011 7:34:56 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.296 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.4 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 282
6/17/2011 7:34:57 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.302 k-ft
E2E 0.312 k-ft
EMX 0.314 k-ft
ETR 89.7 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 283
6/17/2011 7:34:58 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.306 k-ft
E2E 0.315 k-ft
EMX 0.316 k-ft
ETR 90.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 284
6/17/2011 7:35:00 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.297 k-ft
E2E 0.308 k-ft
EMX 0.309 k-ft
ETR 88.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 285
6/17/2011 7:35:01 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.298 k-ft
E2E 0.309 k-ft
EMX 0.311 k-ft
ETR 88.8 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 286
6/17/2011 7:35:02 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.311 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 287
6/17/2011 7:35:03 AM
LP 39.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.83 []
EF2 0.292 k-ft
E2E 0.303 k-ft
EMX 0.305 k-ft
ETR 87.1 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 288
6/17/2011 7:35:04 AM
LP 39.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.84 []
EF2 0.303 k-ft
E2E 0.315 k-ft
EMX 0.316 k-ft
ETR 90.4 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 289
6/17/2011 7:35:05 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.302 k-ft
E2E 0.314 k-ft
EMX 0.316 k-ft
ETR 90.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 290
6/17/2011 7:35:06 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.301 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.4 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 291
6/17/2011 7:35:07 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.316 k-ft
EMX 0.319 k-ft
ETR 91.1 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 292
6/17/2011 7:35:08 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.310 k-ft
EMX 0.312 k-ft
ETR 89.1 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 293
6/17/2011 7:35:09 AM
LP 39.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.308 k-ft
EMX 0.311 k-ft
ETR 88.7 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 294
6/17/2011 7:35:10 AM
LP 39.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.296 k-ft
E2E 0.307 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 295
6/17/2011 7:35:11 AM
LP 39.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.295 k-ft
E2E 0.307 k-ft
EMX 0.308 k-ft
ETR 88.1 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 296
6/17/2011 7:35:12 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.301 k-ft
E2E 0.310 k-ft
EMX 0.311 k-ft
ETR 89.0 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 297
6/17/2011 7:35:13 AM
LP 39.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.83 []
EF2 0.302 k-ft
E2E 0.317 k-ft
EMX 0.321 k-ft
ETR 91.8 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 298
6/17/2011 7:35:14 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.83 []
EF2 0.302 k-ft
E2E 0.308 k-ft
EMX 0.309 k-ft
ETR 88.4 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 299
6/17/2011 7:35:15 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.295 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 300
6/17/2011 7:35:16 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.310 k-ft
EMX 0.311 k-ft
ETR 88.8 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 301
6/17/2011 7:35:17 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.301 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 302
6/17/2011 7:35:19 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.298 k-ft
E2E 0.307 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 303
6/17/2011 7:35:20 AM
LP 39.30 ft
FMX 28 kips
VMX 16.4 f/s
FVP 0.75 []
EF2 0.293 k-ft
E2E 0.308 k-ft
EMX 0.309 k-ft
ETR 88.4 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 304
6/17/2011 7:35:21 AM
LP 39.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.300 k-ft
E2E 0.311 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 305
6/17/2011 7:35:22 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.81 []
EF2 0.294 k-ft
E2E 0.309 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 306
6/17/2011 7:35:23 AM
LP 39.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.299 k-ft
E2E 0.306 k-ft
EMX 0.308 k-ft
ETR 87.9 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 307
6/17/2011 7:35:24 AM
LP 39.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.292 k-ft
E2E 0.307 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 308
6/17/2011 7:35:25 AM
LP 39.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.302 k-ft
E2E 0.314 k-ft
EMX 0.315 k-ft
ETR 90.0 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 309
6/17/2011 7:35:26 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.299 k-ft
E2E 0.311 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 310
6/17/2011 7:35:27 AM
LP 39.30 ft
FMX 29 kips
VMX 16.4 f/s
FVP 0.80 []
EF2 0.307 k-ft
E2E 0.319 k-ft
EMX 0.320 k-ft
ETR 91.5 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 311
6/17/2011 7:35:28 AM
LP 39.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.305 k-ft
EMX 0.306 k-ft
ETR 87.5 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 312
6/17/2011 7:35:29 AM
LP 39.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.83 []
EF2 0.291 k-ft
E2E 0.308 k-ft
EMX 0.310 k-ft
ETR 88.6 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 313
6/17/2011 7:35:30 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.305 k-ft
E2E 0.312 k-ft
EMX 0.313 k-ft
ETR 89.5 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 314
6/17/2011 7:35:31 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.84 []
EF2 0.299 k-ft
E2E 0.308 k-ft
EMX 0.309 k-ft
ETR 88.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 315
6/17/2011 7:35:32 AM
LP 39.30 ft
FMX 27 kips
VMX 16.0 f/s
FVP 0.79 []
EF2 0.290 k-ft
E2E 0.310 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 316
6/17/2011 7:35:33 AM
LP 39.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.306 k-ft
E2E 0.319 k-ft
EMX 0.321 k-ft
ETR 91.6 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 317
6/17/2011 7:42:57 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.82 []
EF2 0.296 k-ft
E2E 0.315 k-ft
EMX 0.316 k-ft
ETR 90.2 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 318
6/17/2011 7:42:58 AM
LP 44.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.83 []
EF2 0.305 k-ft
E2E 0.324 k-ft
EMX 0.324 k-ft
ETR 92.7 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 319
6/17/2011 7:42:59 AM
LP 44.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.300 k-ft
E2E 0.319 k-ft
EMX 0.320 k-ft
ETR 91.3 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 320
6/17/2011 7:43:00 AM
LP 44.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.83 []
EF2 0.302 k-ft
E2E 0.316 k-ft
EMX 0.317 k-ft
ETR 90.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 321
6/17/2011 7:43:01 AM
LP 44.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.297 k-ft
E2E 0.319 k-ft
EMX 0.319 k-ft
ETR 91.2 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 322
6/17/2011 7:43:02 AM
LP 44.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.77 []
EF2 0.302 k-ft
E2E 0.321 k-ft
EMX 0.322 k-ft
ETR 92.0 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 323
6/17/2011 7:43:03 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.78 []
EF2 0.293 k-ft
E2E 0.320 k-ft
EMX 0.321 k-ft
ETR 91.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 324
6/17/2011 7:43:04 AM
LP 44.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.302 k-ft
E2E 0.320 k-ft
EMX 0.320 k-ft
ETR 91.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 325
6/17/2011 7:43:05 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.78 []
EF2 0.295 k-ft
E2E 0.319 k-ft
EMX 0.320 k-ft
ETR 91.4 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 326
6/17/2011 7:43:06 AM
LP 44.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.81 []
EF2 0.302 k-ft
E2E 0.320 k-ft
EMX 0.321 k-ft
ETR 91.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 327
6/17/2011 7:43:07 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.80 []
EF2 0.295 k-ft
E2E 0.319 k-ft
EMX 0.320 k-ft
ETR 91.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 328
6/17/2011 7:43:08 AM
LP 44.30 ft
FMX 29 kips
VMX 16.4 f/s
FVP 0.80 []
EF2 0.303 k-ft
E2E 0.321 k-ft
EMX 0.322 k-ft
ETR 91.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 329
6/17/2011 7:43:10 AM
LP 44.30 ft
FMX 29 kips
VMX 16.4 f/s
FVP 0.79 []
EF2 0.293 k-ft
E2E 0.314 k-ft
EMX 0.315 k-ft
ETR 90.0 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 330
6/17/2011 7:43:11 AM
LP 44.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.81 []
EF2 0.299 k-ft
E2E 0.315 k-ft
EMX 0.316 k-ft
ETR 90.2 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 331
6/17/2011 7:43:12 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.83 []
EF2 0.296 k-ft
E2E 0.318 k-ft
EMX 0.319 k-ft
ETR 91.2 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 332
6/17/2011 7:43:13 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.80 []
EF2 0.302 k-ft
E2E 0.323 k-ft
EMX 0.324 k-ft
ETR 92.7 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 333
6/17/2011 7:43:14 AM
LP 44.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.291 k-ft
E2E 0.310 k-ft
EMX 0.311 k-ft
ETR 88.7 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 334
6/17/2011 7:43:15 AM
LP 44.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.304 k-ft
E2E 0.320 k-ft
EMX 0.321 k-ft
ETR 91.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 335
6/17/2011 7:43:16 AM
LP 44.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.83 []
EF2 0.296 k-ft
E2E 0.317 k-ft
EMX 0.318 k-ft
ETR 90.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 336
6/17/2011 7:43:17 AM
LP 44.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.79 []
EF2 0.301 k-ft
E2E 0.316 k-ft
EMX 0.317 k-ft
ETR 90.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 337
6/17/2011 7:43:18 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.77 []
EF2 0.296 k-ft
E2E 0.320 k-ft
EMX 0.321 k-ft
ETR 91.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 338
6/17/2011 7:43:19 AM
LP 44.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.308 k-ft
E2E 0.322 k-ft
EMX 0.324 k-ft
ETR 92.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 339
6/17/2011 7:43:20 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.75 []
EF2 0.284 k-ft
E2E 0.310 k-ft
EMX 0.311 k-ft
ETR 88.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 340
6/17/2011 7:43:21 AM
LP 44.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.84 []
EF2 0.298 k-ft
E2E 0.313 k-ft
EMX 0.313 k-ft
ETR 89.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 341
6/17/2011 7:43:22 AM
LP 44.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.80 []
EF2 0.290 k-ft
E2E 0.310 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 342
6/17/2011 7:43:23 AM
LP 44.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.316 k-ft
EMX 0.318 k-ft
ETR 90.7 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 343
6/17/2011 7:43:24 AM
LP 44.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.85 []
EF2 0.303 k-ft
E2E 0.320 k-ft
EMX 0.321 k-ft
ETR 91.7 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 344
6/17/2011 7:43:25 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.79 []
EF2 0.293 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 345
6/17/2011 7:43:26 AM
LP 44.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.297 k-ft
E2E 0.316 k-ft
EMX 0.317 k-ft
ETR 90.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 346
6/17/2011 7:43:27 AM
LP 44.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.322 k-ft
EMX 0.323 k-ft
ETR 92.3 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 347
6/17/2011 7:43:28 AM
LP 44.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.295 k-ft
E2E 0.314 k-ft
EMX 0.315 k-ft
ETR 90.0 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 348
6/17/2011 7:43:29 AM
LP 44.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.81 []
EF2 0.303 k-ft
E2E 0.322 k-ft
EMX 0.324 k-ft
ETR 92.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 349
6/17/2011 7:43:30 AM
LP 44.30 ft
FMX 28 kips
VMX 16.6 f/s
FVP 0.74 []
EF2 0.292 k-ft
E2E 0.316 k-ft
EMX 0.317 k-ft
ETR 90.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 350
6/17/2011 7:43:32 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.77 []
EF2 0.302 k-ft
E2E 0.322 k-ft
EMX 0.324 k-ft
ETR 92.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 351
6/17/2011 7:43:33 AM
LP 44.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.82 []
EF2 0.295 k-ft
E2E 0.324 k-ft
EMX 0.325 k-ft
ETR 92.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 352
6/17/2011 7:43:34 AM
LP 44.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.81 []
EF2 0.302 k-ft
E2E 0.319 k-ft
EMX 0.321 k-ft
ETR 91.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 353
6/17/2011 7:43:35 AM
LP 44.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.292 k-ft
E2E 0.316 k-ft
EMX 0.317 k-ft
ETR 90.7 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 354
6/17/2011 7:43:36 AM
LP 44.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.297 k-ft
E2E 0.314 k-ft
EMX 0.316 k-ft
ETR 90.3 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 355
6/17/2011 7:43:37 AM
LP 44.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.79 []
EF2 0.293 k-ft
E2E 0.324 k-ft
EMX 0.326 k-ft
ETR 93.2 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 356
6/17/2011 7:43:38 AM
LP 44.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.78 []
EF2 0.295 k-ft
E2E 0.316 k-ft
EMX 0.318 k-ft
ETR 90.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 357
6/17/2011 7:43:39 AM
LP 44.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.292 k-ft
E2E 0.311 k-ft
EMX 0.312 k-ft
ETR 89.1 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 358
6/17/2011 7:43:40 AM
LP 44.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.83 []
EF2 0.300 k-ft
E2E 0.315 k-ft
EMX 0.317 k-ft
ETR 90.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 359
6/17/2011 7:43:41 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.76 []
EF2 0.292 k-ft
E2E 0.317 k-ft
EMX 0.318 k-ft
ETR 90.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 360
6/17/2011 7:43:42 AM
LP 44.30 ft
FMX 28 kips
VMX 16.6 f/s
FVP 0.73 []
EF2 0.298 k-ft
E2E 0.322 k-ft
EMX 0.323 k-ft
ETR 92.3 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 361
6/17/2011 7:43:43 AM
LP 44.30 ft
FMX 29 kips
VMX 16.4 f/s
FVP 0.78 []
EF2 0.295 k-ft
E2E 0.317 k-ft
EMX 0.318 k-ft
ETR 90.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 362
6/17/2011 7:43:44 AM
LP 44.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.81 []
EF2 0.301 k-ft
E2E 0.324 k-ft
EMX 0.325 k-ft
ETR 92.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 363
6/17/2011 7:43:45 AM
LP 44.30 ft
FMX 29 kips
VMX 16.4 f/s
FVP 0.82 []
EF2 0.296 k-ft
E2E 0.318 k-ft
EMX 0.320 k-ft
ETR 91.3 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 364
6/17/2011 7:43:46 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.80 []
EF2 0.299 k-ft
E2E 0.323 k-ft
EMX 0.324 k-ft
ETR 92.7 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 365
6/17/2011 7:43:47 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.83 []
EF2 0.292 k-ft
E2E 0.314 k-ft
EMX 0.315 k-ft
ETR 89.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 366
6/17/2011 7:43:48 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.294 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 367
6/17/2011 7:43:49 AM
LP 44.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.83 []
EF2 0.296 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 368
6/17/2011 7:43:50 AM
LP 44.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.307 k-ft
E2E 0.323 k-ft
EMX 0.324 k-ft
ETR 92.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 369
6/17/2011 7:43:51 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.82 []
EF2 0.295 k-ft
E2E 0.315 k-ft
EMX 0.316 k-ft
ETR 90.3 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 370
6/17/2011 7:43:52 AM
LP 44.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.84 []
EF2 0.305 k-ft
E2E 0.321 k-ft
EMX 0.322 k-ft
ETR 92.0 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 371
6/17/2011 7:43:54 AM
LP 44.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.81 []
EF2 0.293 k-ft
E2E 0.314 k-ft
EMX 0.315 k-ft
ETR 89.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 372
6/17/2011 7:43:55 AM
LP 44.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.83 []
EF2 0.300 k-ft
E2E 0.316 k-ft
EMX 0.317 k-ft
ETR 90.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 373
6/17/2011 7:43:56 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.81 []
EF2 0.294 k-ft
E2E 0.316 k-ft
EMX 0.318 k-ft
ETR 90.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 374
6/17/2011 7:43:57 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.314 k-ft
EMX 0.315 k-ft
ETR 90.0 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 375
6/17/2011 7:43:58 AM
LP 44.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.81 []
EF2 0.294 k-ft
E2E 0.314 k-ft
EMX 0.315 k-ft
ETR 90.1 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 376
6/17/2011 7:43:59 AM
LP 44.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.83 []
EF2 0.304 k-ft
E2E 0.322 k-ft
EMX 0.323 k-ft
ETR 92.4 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 377
6/17/2011 7:44:00 AM
LP 44.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.79 []
EF2 0.289 k-ft
E2E 0.312 k-ft
EMX 0.314 k-ft
ETR 89.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 378
6/17/2011 7:44:01 AM
LP 44.30 ft
FMX 27 kips
VMX 15.8 f/s
FVP 0.61 []
EF2 0.260 k-ft
E2E 0.298 k-ft
EMX 0.300 k-ft
ETR 85.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
50
kips
F
51.2 ms0.0 ms
23.3
f/s
V
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 1
6/17/2011 6:42:38 AM
LP 4.00 ft
FMX 27 kips
VMX 15.5 f/s
FVP 0.90 []
EF2 0.207 k-ft
E2E 0.180 k-ft
EMX 0.270 k-ft
ETR 77.3 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 2
6/17/2011 6:42:39 AM
LP 4.00 ft
FMX 28 kips
VMX 16.4 f/s
FVP 0.90 []
EF2 0.220 k-ft
E2E 0.195 k-ft
EMX 0.265 k-ft
ETR 75.6 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 3
6/17/2011 6:42:40 AM
LP 4.00 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.91 []
EF2 0.217 k-ft
E2E 0.191 k-ft
EMX 0.247 k-ft
ETR 70.6 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 4
6/17/2011 6:42:41 AM
LP 4.00 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.89 []
EF2 0.219 k-ft
E2E 0.197 k-ft
EMX 0.285 k-ft
ETR 81.6 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 5
6/17/2011 6:42:42 AM
LP 4.00 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.91 []
EF2 0.224 k-ft
E2E 0.197 k-ft
EMX 0.290 k-ft
ETR 82.7 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 6
6/17/2011 6:42:43 AM
LP 4.00 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.89 []
EF2 0.226 k-ft
E2E 0.200 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 7
6/17/2011 6:42:45 AM
LP 4.00 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.89 []
EF2 0.221 k-ft
E2E 0.200 k-ft
EMX 0.304 k-ft
ETR 86.7 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 8
6/17/2011 6:42:46 AM
LP 4.00 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.88 []
EF2 0.225 k-ft
E2E 0.205 k-ft
EMX 0.315 k-ft
ETR 90.1 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 9
6/17/2011 6:42:47 AM
LP 4.00 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.87 []
EF2 0.223 k-ft
E2E 0.201 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 10
6/17/2011 6:42:48 AM
LP 4.00 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.87 []
EF2 0.219 k-ft
E2E 0.204 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 11
6/17/2011 6:42:49 AM
LP 4.00 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.87 []
EF2 0.222 k-ft
E2E 0.203 k-ft
EMX 0.312 k-ft
ETR 89.3 (%)
LE 9.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.10 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 12
6/17/2011 6:50:12 AM
LP 9.00 ft
FMX 29 kips
VMX 16.6 f/s
FVP 0.90 []
EF2 0.254 k-ft
E2E 0.243 k-ft
EMX 0.261 k-ft
ETR 74.5 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 13
6/17/2011 6:50:13 AM
LP 9.00 ft
FMX 28 kips
VMX 17.3 f/s
FVP 0.86 []
EF2 0.250 k-ft
E2E 0.240 k-ft
EMX 0.258 k-ft
ETR 73.7 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 14
6/17/2011 6:50:15 AM
LP 9.00 ft
FMX 28 kips
VMX 16.5 f/s
FVP 0.86 []
EF2 0.250 k-ft
E2E 0.243 k-ft
EMX 0.257 k-ft
ETR 73.5 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 15
6/17/2011 6:50:16 AM
LP 9.00 ft
FMX 28 kips
VMX 16.4 f/s
FVP 0.87 []
EF2 0.255 k-ft
E2E 0.246 k-ft
EMX 0.283 k-ft
ETR 80.9 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 16
6/17/2011 6:50:17 AM
LP 9.00 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.87 []
EF2 0.256 k-ft
E2E 0.245 k-ft
EMX 0.280 k-ft
ETR 79.9 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 17
6/17/2011 6:50:18 AM
LP 9.00 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.85 []
EF2 0.250 k-ft
E2E 0.238 k-ft
EMX 0.280 k-ft
ETR 80.0 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 18
6/17/2011 6:50:19 AM
LP 9.00 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.86 []
EF2 0.249 k-ft
E2E 0.240 k-ft
EMX 0.282 k-ft
ETR 80.7 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 19
6/17/2011 6:50:20 AM
LP 9.00 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.86 []
EF2 0.247 k-ft
E2E 0.238 k-ft
EMX 0.283 k-ft
ETR 80.7 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 20
6/17/2011 6:50:21 AM
LP 9.00 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.85 []
EF2 0.249 k-ft
E2E 0.239 k-ft
EMX 0.284 k-ft
ETR 81.2 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 21
6/17/2011 6:50:22 AM
LP 9.00 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.85 []
EF2 0.249 k-ft
E2E 0.238 k-ft
EMX 0.287 k-ft
ETR 81.9 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 22
6/17/2011 6:50:23 AM
LP 9.00 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.86 []
EF2 0.252 k-ft
E2E 0.240 k-ft
EMX 0.290 k-ft
ETR 82.9 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 23
6/17/2011 6:50:24 AM
LP 9.00 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.249 k-ft
E2E 0.237 k-ft
EMX 0.284 k-ft
ETR 81.1 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 24
6/17/2011 6:50:26 AM
LP 9.00 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.86 []
EF2 0.249 k-ft
E2E 0.235 k-ft
EMX 0.292 k-ft
ETR 83.4 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 25
6/17/2011 6:50:27 AM
LP 9.00 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.85 []
EF2 0.251 k-ft
E2E 0.238 k-ft
EMX 0.293 k-ft
ETR 83.7 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 26
6/17/2011 6:50:28 AM
LP 9.00 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.86 []
EF2 0.242 k-ft
E2E 0.231 k-ft
EMX 0.286 k-ft
ETR 81.7 (%)
LE 14.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 1.69 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 27
6/17/2011 6:56:53 AM
LP 14.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.87 []
EF2 0.272 k-ft
E2E 0.271 k-ft
EMX 0.279 k-ft
ETR 79.8 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 28
6/17/2011 6:56:54 AM
LP 14.30 ft
FMX 29 kips
VMX 15.7 f/s
FVP 0.86 []
EF2 0.275 k-ft
E2E 0.279 k-ft
EMX 0.288 k-ft
ETR 82.3 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 29
6/17/2011 6:57:02 AM
LP 14.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.266 k-ft
E2E 0.268 k-ft
EMX 0.285 k-ft
ETR 81.3 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 30
6/17/2011 6:57:03 AM
LP 14.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.271 k-ft
E2E 0.277 k-ft
EMX 0.302 k-ft
ETR 86.4 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 31
6/17/2011 6:57:04 AM
LP 14.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.271 k-ft
E2E 0.273 k-ft
EMX 0.298 k-ft
ETR 85.3 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 32
6/17/2011 6:57:05 AM
LP 14.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.265 k-ft
E2E 0.269 k-ft
EMX 0.296 k-ft
ETR 84.6 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 33
6/17/2011 6:57:07 AM
LP 14.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.261 k-ft
E2E 0.262 k-ft
EMX 0.288 k-ft
ETR 82.4 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 34
6/17/2011 6:57:08 AM
LP 14.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.269 k-ft
E2E 0.271 k-ft
EMX 0.300 k-ft
ETR 85.6 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 35
6/17/2011 6:57:09 AM
LP 14.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.263 k-ft
E2E 0.267 k-ft
EMX 0.298 k-ft
ETR 85.2 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 36
6/17/2011 6:57:10 AM
LP 14.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.85 []
EF2 0.276 k-ft
E2E 0.272 k-ft
EMX 0.306 k-ft
ETR 87.4 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 37
6/17/2011 6:57:11 AM
LP 14.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.83 []
EF2 0.265 k-ft
E2E 0.266 k-ft
EMX 0.298 k-ft
ETR 85.1 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 38
6/17/2011 6:57:12 AM
LP 14.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.83 []
EF2 0.273 k-ft
E2E 0.276 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 39
6/17/2011 6:57:13 AM
LP 14.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.83 []
EF2 0.266 k-ft
E2E 0.266 k-ft
EMX 0.298 k-ft
ETR 85.1 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 40
6/17/2011 6:57:14 AM
LP 14.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.83 []
EF2 0.271 k-ft
E2E 0.270 k-ft
EMX 0.305 k-ft
ETR 87.1 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 41
6/17/2011 6:57:15 AM
LP 14.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.267 k-ft
E2E 0.268 k-ft
EMX 0.301 k-ft
ETR 86.0 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 42
6/17/2011 6:57:16 AM
LP 14.30 ft
FMX 28 kips
VMX 15.4 f/s
FVP 0.83 []
EF2 0.268 k-ft
E2E 0.267 k-ft
EMX 0.302 k-ft
ETR 86.2 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 43
6/17/2011 6:57:17 AM
LP 14.30 ft
FMX 27 kips
VMX 15.4 f/s
FVP 0.83 []
EF2 0.260 k-ft
E2E 0.261 k-ft
EMX 0.295 k-ft
ETR 84.2 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 44
6/17/2011 6:57:18 AM
LP 14.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.84 []
EF2 0.267 k-ft
E2E 0.266 k-ft
EMX 0.304 k-ft
ETR 86.8 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 45
6/17/2011 6:57:20 AM
LP 14.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.83 []
EF2 0.271 k-ft
E2E 0.271 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 46
6/17/2011 6:57:21 AM
LP 14.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.83 []
EF2 0.271 k-ft
E2E 0.272 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 47
6/17/2011 6:57:22 AM
LP 14.30 ft
FMX 27 kips
VMX 15.3 f/s
FVP 0.84 []
EF2 0.262 k-ft
E2E 0.262 k-ft
EMX 0.301 k-ft
ETR 86.0 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 48
6/17/2011 6:57:23 AM
LP 14.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.83 []
EF2 0.269 k-ft
E2E 0.271 k-ft
EMX 0.314 k-ft
ETR 89.7 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 49
6/17/2011 6:57:24 AM
LP 14.30 ft
FMX 27 kips
VMX 15.4 f/s
FVP 0.82 []
EF2 0.262 k-ft
E2E 0.265 k-ft
EMX 0.309 k-ft
ETR 88.3 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 50
6/17/2011 6:57:25 AM
LP 14.30 ft
FMX 27 kips
VMX 15.4 f/s
FVP 0.82 []
EF2 0.264 k-ft
E2E 0.268 k-ft
EMX 0.312 k-ft
ETR 89.0 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 51
6/17/2011 6:57:26 AM
LP 14.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.83 []
EF2 0.267 k-ft
E2E 0.271 k-ft
EMX 0.316 k-ft
ETR 90.4 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 52
6/17/2011 6:57:27 AM
LP 14.30 ft
FMX 27 kips
VMX 15.2 f/s
FVP 0.82 []
EF2 0.257 k-ft
E2E 0.260 k-ft
EMX 0.306 k-ft
ETR 87.3 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 53
6/17/2011 6:57:28 AM
LP 14.30 ft
FMX 27 kips
VMX 15.6 f/s
FVP 0.81 []
EF2 0.263 k-ft
E2E 0.266 k-ft
EMX 0.312 k-ft
ETR 89.1 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 54
6/17/2011 6:57:29 AM
LP 14.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.80 []
EF2 0.267 k-ft
E2E 0.274 k-ft
EMX 0.325 k-ft
ETR 93.0 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 55
6/17/2011 6:57:30 AM
LP 14.30 ft
FMX 27 kips
VMX 15.7 f/s
FVP 0.81 []
EF2 0.266 k-ft
E2E 0.271 k-ft
EMX 0.318 k-ft
ETR 90.7 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 56
6/17/2011 6:57:31 AM
LP 14.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.80 []
EF2 0.263 k-ft
E2E 0.267 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 57
6/17/2011 6:57:33 AM
LP 14.30 ft
FMX 27 kips
VMX 15.6 f/s
FVP 0.81 []
EF2 0.262 k-ft
E2E 0.269 k-ft
EMX 0.316 k-ft
ETR 90.4 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 58
6/17/2011 6:57:34 AM
LP 14.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.81 []
EF2 0.267 k-ft
E2E 0.275 k-ft
EMX 0.324 k-ft
ETR 92.5 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 59
6/17/2011 6:57:35 AM
LP 14.30 ft
FMX 27 kips
VMX 15.9 f/s
FVP 0.80 []
EF2 0.262 k-ft
E2E 0.271 k-ft
EMX 0.316 k-ft
ETR 90.3 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 60
6/17/2011 6:57:36 AM
LP 14.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.81 []
EF2 0.271 k-ft
E2E 0.274 k-ft
EMX 0.323 k-ft
ETR 92.4 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 61
6/17/2011 6:57:37 AM
LP 14.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.80 []
EF2 0.266 k-ft
E2E 0.272 k-ft
EMX 0.317 k-ft
ETR 90.5 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 62
6/17/2011 6:57:38 AM
LP 14.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.273 k-ft
E2E 0.277 k-ft
EMX 0.328 k-ft
ETR 93.8 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 63
6/17/2011 6:57:39 AM
LP 14.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.81 []
EF2 0.264 k-ft
E2E 0.268 k-ft
EMX 0.311 k-ft
ETR 88.7 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 64
6/17/2011 6:57:40 AM
LP 14.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.80 []
EF2 0.271 k-ft
E2E 0.273 k-ft
EMX 0.317 k-ft
ETR 90.6 (%)
LE 19.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.28 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 65
6/17/2011 7:05:17 AM
LP 19.30 ft
FMX 28 kips
VMX 15.2 f/s
FVP 0.86 []
EF2 0.281 k-ft
E2E 0.282 k-ft
EMX 0.288 k-ft
ETR 82.4 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 66
6/17/2011 7:05:18 AM
LP 19.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.290 k-ft
E2E 0.292 k-ft
EMX 0.301 k-ft
ETR 85.9 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 67
6/17/2011 7:05:19 AM
LP 19.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.83 []
EF2 0.286 k-ft
E2E 0.285 k-ft
EMX 0.293 k-ft
ETR 83.7 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 68
6/17/2011 7:05:20 AM
LP 19.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.83 []
EF2 0.295 k-ft
E2E 0.295 k-ft
EMX 0.305 k-ft
ETR 87.1 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 69
6/17/2011 7:05:21 AM
LP 19.30 ft
FMX 29 kips
VMX 15.5 f/s
FVP 0.86 []
EF2 0.288 k-ft
E2E 0.289 k-ft
EMX 0.297 k-ft
ETR 84.8 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 70
6/17/2011 7:05:23 AM
LP 19.30 ft
FMX 28 kips
VMX 15.3 f/s
FVP 0.85 []
EF2 0.286 k-ft
E2E 0.284 k-ft
EMX 0.295 k-ft
ETR 84.2 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 71
6/17/2011 7:05:24 AM
LP 19.30 ft
FMX 29 kips
VMX 15.1 f/s
FVP 0.87 []
EF2 0.284 k-ft
E2E 0.282 k-ft
EMX 0.292 k-ft
ETR 83.4 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 72
6/17/2011 7:05:25 AM
LP 19.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.288 k-ft
E2E 0.291 k-ft
EMX 0.304 k-ft
ETR 87.0 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 73
6/17/2011 7:05:26 AM
LP 19.30 ft
FMX 28 kips
VMX 15.0 f/s
FVP 0.88 []
EF2 0.280 k-ft
E2E 0.279 k-ft
EMX 0.291 k-ft
ETR 83.1 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 74
6/17/2011 7:05:27 AM
LP 19.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.285 k-ft
E2E 0.284 k-ft
EMX 0.300 k-ft
ETR 85.6 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 75
6/17/2011 7:05:28 AM
LP 19.30 ft
FMX 29 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.284 k-ft
E2E 0.287 k-ft
EMX 0.297 k-ft
ETR 84.8 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 76
6/17/2011 7:05:29 AM
LP 19.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.86 []
EF2 0.291 k-ft
E2E 0.290 k-ft
EMX 0.306 k-ft
ETR 87.4 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 77
6/17/2011 7:05:30 AM
LP 19.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.86 []
EF2 0.281 k-ft
E2E 0.285 k-ft
EMX 0.292 k-ft
ETR 83.4 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 78
6/17/2011 7:05:31 AM
LP 19.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.282 k-ft
E2E 0.283 k-ft
EMX 0.296 k-ft
ETR 84.6 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 79
6/17/2011 7:05:32 AM
LP 19.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.277 k-ft
E2E 0.283 k-ft
EMX 0.291 k-ft
ETR 83.0 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 80
6/17/2011 7:05:33 AM
LP 19.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.295 k-ft
E2E 0.293 k-ft
EMX 0.308 k-ft
ETR 87.9 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 81
6/17/2011 7:05:34 AM
LP 19.30 ft
FMX 29 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.281 k-ft
E2E 0.281 k-ft
EMX 0.289 k-ft
ETR 82.6 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 82
6/17/2011 7:05:35 AM
LP 19.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.84 []
EF2 0.280 k-ft
E2E 0.280 k-ft
EMX 0.294 k-ft
ETR 83.9 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 83
6/17/2011 7:05:36 AM
LP 19.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.273 k-ft
E2E 0.273 k-ft
EMX 0.284 k-ft
ETR 81.1 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 84
6/17/2011 7:05:38 AM
LP 19.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.86 []
EF2 0.280 k-ft
E2E 0.280 k-ft
EMX 0.294 k-ft
ETR 84.0 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 85
6/17/2011 7:05:39 AM
LP 19.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.278 k-ft
E2E 0.280 k-ft
EMX 0.291 k-ft
ETR 83.3 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 86
6/17/2011 7:05:40 AM
LP 19.30 ft
FMX 29 kips
VMX 15.5 f/s
FVP 0.86 []
EF2 0.283 k-ft
E2E 0.282 k-ft
EMX 0.297 k-ft
ETR 84.8 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 87
6/17/2011 7:05:41 AM
LP 19.30 ft
FMX 28 kips
VMX 15.4 f/s
FVP 0.87 []
EF2 0.272 k-ft
E2E 0.274 k-ft
EMX 0.287 k-ft
ETR 81.9 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 88
6/17/2011 7:05:42 AM
LP 19.30 ft
FMX 29 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.288 k-ft
E2E 0.285 k-ft
EMX 0.304 k-ft
ETR 86.8 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 89
6/17/2011 7:05:43 AM
LP 19.30 ft
FMX 28 kips
VMX 15.4 f/s
FVP 0.86 []
EF2 0.274 k-ft
E2E 0.276 k-ft
EMX 0.292 k-ft
ETR 83.4 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 90
6/17/2011 7:05:44 AM
LP 19.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.83 []
EF2 0.278 k-ft
E2E 0.281 k-ft
EMX 0.301 k-ft
ETR 86.1 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 91
6/17/2011 7:05:45 AM
LP 19.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.282 k-ft
E2E 0.284 k-ft
EMX 0.301 k-ft
ETR 86.1 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 92
6/17/2011 7:05:46 AM
LP 19.30 ft
FMX 29 kips
VMX 15.3 f/s
FVP 0.88 []
EF2 0.278 k-ft
E2E 0.279 k-ft
EMX 0.298 k-ft
ETR 85.0 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 93
6/17/2011 7:05:47 AM
LP 19.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.280 k-ft
E2E 0.282 k-ft
EMX 0.297 k-ft
ETR 84.9 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 94
6/17/2011 7:05:48 AM
LP 19.30 ft
FMX 29 kips
VMX 15.4 f/s
FVP 0.87 []
EF2 0.288 k-ft
E2E 0.284 k-ft
EMX 0.301 k-ft
ETR 86.0 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 95
6/17/2011 7:05:49 AM
LP 19.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.278 k-ft
E2E 0.281 k-ft
EMX 0.299 k-ft
ETR 85.4 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 96
6/17/2011 7:05:50 AM
LP 19.30 ft
FMX 29 kips
VMX 15.3 f/s
FVP 0.88 []
EF2 0.278 k-ft
E2E 0.279 k-ft
EMX 0.296 k-ft
ETR 84.7 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 97
6/17/2011 7:05:52 AM
LP 19.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.84 []
EF2 0.282 k-ft
E2E 0.284 k-ft
EMX 0.303 k-ft
ETR 86.6 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 98
6/17/2011 7:05:53 AM
LP 19.30 ft
FMX 29 kips
VMX 15.3 f/s
FVP 0.88 []
EF2 0.280 k-ft
E2E 0.279 k-ft
EMX 0.296 k-ft
ETR 84.5 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 99
6/17/2011 7:05:54 AM
LP 19.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.279 k-ft
E2E 0.282 k-ft
EMX 0.299 k-ft
ETR 85.5 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 100
6/17/2011 7:05:55 AM
LP 19.30 ft
FMX 29 kips
VMX 15.4 f/s
FVP 0.87 []
EF2 0.287 k-ft
E2E 0.284 k-ft
EMX 0.300 k-ft
ETR 85.7 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 101
6/17/2011 7:05:56 AM
LP 19.30 ft
FMX 29 kips
VMX 15.3 f/s
FVP 0.88 []
EF2 0.271 k-ft
E2E 0.273 k-ft
EMX 0.286 k-ft
ETR 81.6 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 102
6/17/2011 7:05:57 AM
LP 19.30 ft
FMX 28 kips
VMX 15.2 f/s
FVP 0.87 []
EF2 0.277 k-ft
E2E 0.278 k-ft
EMX 0.294 k-ft
ETR 84.1 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 103
6/17/2011 7:05:58 AM
LP 19.30 ft
FMX 28 kips
VMX 15.1 f/s
FVP 0.88 []
EF2 0.271 k-ft
E2E 0.275 k-ft
EMX 0.291 k-ft
ETR 83.1 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 104
6/17/2011 7:05:59 AM
LP 19.30 ft
FMX 29 kips
VMX 15.5 f/s
FVP 0.86 []
EF2 0.281 k-ft
E2E 0.284 k-ft
EMX 0.305 k-ft
ETR 87.0 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 105
6/17/2011 7:06:00 AM
LP 19.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.86 []
EF2 0.280 k-ft
E2E 0.282 k-ft
EMX 0.298 k-ft
ETR 85.2 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 106
6/17/2011 7:06:01 AM
LP 19.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.283 k-ft
E2E 0.283 k-ft
EMX 0.303 k-ft
ETR 86.5 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 107
6/17/2011 7:06:02 AM
LP 19.30 ft
FMX 28 kips
VMX 15.4 f/s
FVP 0.84 []
EF2 0.270 k-ft
E2E 0.275 k-ft
EMX 0.295 k-ft
ETR 84.3 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 108
6/17/2011 7:06:03 AM
LP 19.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.86 []
EF2 0.277 k-ft
E2E 0.281 k-ft
EMX 0.305 k-ft
ETR 87.2 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 109
6/17/2011 7:06:04 AM
LP 19.30 ft
FMX 28 kips
VMX 15.2 f/s
FVP 0.85 []
EF2 0.278 k-ft
E2E 0.280 k-ft
EMX 0.306 k-ft
ETR 87.6 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 110
6/17/2011 7:06:05 AM
LP 19.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.86 []
EF2 0.287 k-ft
E2E 0.286 k-ft
EMX 0.309 k-ft
ETR 88.3 (%)
LE 24.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 2.87 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 111
6/17/2011 7:12:19 AM
LP 24.30 ft
FMX 28 kips
VMX 15.4 f/s
FVP 0.85 []
EF2 0.284 k-ft
E2E 0.292 k-ft
EMX 0.296 k-ft
ETR 84.5 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 112
6/17/2011 7:12:20 AM
LP 24.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.86 []
EF2 0.286 k-ft
E2E 0.298 k-ft
EMX 0.302 k-ft
ETR 86.4 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 113
6/17/2011 7:12:21 AM
LP 24.30 ft
FMX 28 kips
VMX 15.3 f/s
FVP 0.85 []
EF2 0.285 k-ft
E2E 0.293 k-ft
EMX 0.297 k-ft
ETR 84.8 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 114
6/17/2011 7:12:22 AM
LP 24.30 ft
FMX 28 kips
VMX 15.4 f/s
FVP 0.86 []
EF2 0.289 k-ft
E2E 0.295 k-ft
EMX 0.299 k-ft
ETR 85.4 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 115
6/17/2011 7:12:23 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.287 k-ft
E2E 0.300 k-ft
EMX 0.304 k-ft
ETR 86.7 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 116
6/17/2011 7:12:24 AM
LP 24.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.295 k-ft
E2E 0.307 k-ft
EMX 0.312 k-ft
ETR 89.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 117
6/17/2011 7:12:25 AM
LP 24.30 ft
FMX 28 kips
VMX 15.3 f/s
FVP 0.86 []
EF2 0.282 k-ft
E2E 0.294 k-ft
EMX 0.299 k-ft
ETR 85.4 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 118
6/17/2011 7:12:26 AM
LP 24.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.290 k-ft
E2E 0.297 k-ft
EMX 0.301 k-ft
ETR 86.0 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 119
6/17/2011 7:12:27 AM
LP 24.30 ft
FMX 29 kips
VMX 15.7 f/s
FVP 0.86 []
EF2 0.298 k-ft
E2E 0.305 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 120
6/17/2011 7:12:28 AM
LP 24.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.299 k-ft
E2E 0.302 k-ft
EMX 0.306 k-ft
ETR 87.6 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 121
6/17/2011 7:12:30 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.289 k-ft
E2E 0.301 k-ft
EMX 0.305 k-ft
ETR 87.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 122
6/17/2011 7:12:31 AM
LP 24.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.288 k-ft
E2E 0.297 k-ft
EMX 0.301 k-ft
ETR 86.0 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 123
6/17/2011 7:12:32 AM
LP 24.30 ft
FMX 28 kips
VMX 15.4 f/s
FVP 0.86 []
EF2 0.286 k-ft
E2E 0.296 k-ft
EMX 0.300 k-ft
ETR 85.8 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 124
6/17/2011 7:12:33 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.295 k-ft
E2E 0.299 k-ft
EMX 0.303 k-ft
ETR 86.6 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 125
6/17/2011 7:12:34 AM
LP 24.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.284 k-ft
E2E 0.294 k-ft
EMX 0.298 k-ft
ETR 85.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 126
6/17/2011 7:12:35 AM
LP 24.30 ft
FMX 29 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.295 k-ft
E2E 0.300 k-ft
EMX 0.305 k-ft
ETR 87.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 127
6/17/2011 7:12:36 AM
LP 24.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.86 []
EF2 0.291 k-ft
E2E 0.303 k-ft
EMX 0.307 k-ft
ETR 87.7 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 128
6/17/2011 7:12:37 AM
LP 24.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.295 k-ft
E2E 0.300 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 129
6/17/2011 7:12:38 AM
LP 24.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.289 k-ft
E2E 0.296 k-ft
EMX 0.300 k-ft
ETR 85.7 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 130
6/17/2011 7:12:39 AM
LP 24.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.86 []
EF2 0.299 k-ft
E2E 0.303 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 131
6/17/2011 7:12:40 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.285 k-ft
E2E 0.297 k-ft
EMX 0.301 k-ft
ETR 86.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 132
6/17/2011 7:12:41 AM
LP 24.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.302 k-ft
E2E 0.303 k-ft
EMX 0.309 k-ft
ETR 88.4 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 133
6/17/2011 7:12:42 AM
LP 24.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.291 k-ft
E2E 0.302 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 134
6/17/2011 7:12:43 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.287 k-ft
E2E 0.297 k-ft
EMX 0.307 k-ft
ETR 87.6 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 135
6/17/2011 7:12:45 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.289 k-ft
E2E 0.296 k-ft
EMX 0.305 k-ft
ETR 87.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 136
6/17/2011 7:12:46 AM
LP 24.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.294 k-ft
E2E 0.296 k-ft
EMX 0.306 k-ft
ETR 87.3 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 137
6/17/2011 7:12:47 AM
LP 24.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.301 k-ft
E2E 0.305 k-ft
EMX 0.313 k-ft
ETR 89.4 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 138
6/17/2011 7:12:48 AM
LP 24.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.305 k-ft
E2E 0.308 k-ft
EMX 0.316 k-ft
ETR 90.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 139
6/17/2011 7:12:49 AM
LP 24.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.301 k-ft
E2E 0.306 k-ft
EMX 0.313 k-ft
ETR 89.3 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 140
6/17/2011 7:12:50 AM
LP 24.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.297 k-ft
E2E 0.303 k-ft
EMX 0.310 k-ft
ETR 88.5 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 141
6/17/2011 7:12:51 AM
LP 24.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.84 []
EF2 0.299 k-ft
E2E 0.302 k-ft
EMX 0.310 k-ft
ETR 88.5 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 142
6/17/2011 7:12:52 AM
LP 24.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.84 []
EF2 0.298 k-ft
E2E 0.299 k-ft
EMX 0.310 k-ft
ETR 88.4 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 143
6/17/2011 7:12:53 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.288 k-ft
E2E 0.296 k-ft
EMX 0.306 k-ft
ETR 87.5 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 144
6/17/2011 7:12:54 AM
LP 24.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.302 k-ft
E2E 0.300 k-ft
EMX 0.312 k-ft
ETR 89.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 145
6/17/2011 7:12:55 AM
LP 24.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.292 k-ft
E2E 0.301 k-ft
EMX 0.311 k-ft
ETR 88.7 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 146
6/17/2011 7:12:56 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.295 k-ft
E2E 0.302 k-ft
EMX 0.314 k-ft
ETR 89.7 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 147
6/17/2011 7:12:57 AM
LP 24.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.84 []
EF2 0.300 k-ft
E2E 0.302 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 148
6/17/2011 7:12:58 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.290 k-ft
E2E 0.297 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 149
6/17/2011 7:13:00 AM
LP 24.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.84 []
EF2 0.291 k-ft
E2E 0.295 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 150
6/17/2011 7:13:01 AM
LP 24.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.293 k-ft
E2E 0.298 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 151
6/17/2011 7:13:02 AM
LP 24.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.298 k-ft
E2E 0.297 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 152
6/17/2011 7:13:03 AM
LP 24.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.84 []
EF2 0.289 k-ft
E2E 0.294 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 153
6/17/2011 7:13:04 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.83 []
EF2 0.293 k-ft
E2E 0.298 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 154
6/17/2011 7:13:05 AM
LP 24.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.290 k-ft
E2E 0.298 k-ft
EMX 0.313 k-ft
ETR 89.3 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 155
6/17/2011 7:13:06 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.294 k-ft
E2E 0.296 k-ft
EMX 0.309 k-ft
ETR 88.4 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 156
6/17/2011 7:13:07 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.292 k-ft
E2E 0.297 k-ft
EMX 0.312 k-ft
ETR 89.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 157
6/17/2011 7:13:08 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.295 k-ft
E2E 0.299 k-ft
EMX 0.313 k-ft
ETR 89.5 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 158
6/17/2011 7:13:09 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.82 []
EF2 0.285 k-ft
E2E 0.289 k-ft
EMX 0.303 k-ft
ETR 86.5 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 159
6/17/2011 7:13:10 AM
LP 24.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.81 []
EF2 0.293 k-ft
E2E 0.297 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 160
6/17/2011 7:13:11 AM
LP 24.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.82 []
EF2 0.289 k-ft
E2E 0.293 k-ft
EMX 0.308 k-ft
ETR 88.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 161
6/17/2011 7:13:12 AM
LP 24.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.289 k-ft
E2E 0.293 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 162
6/17/2011 7:13:13 AM
LP 24.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.83 []
EF2 0.281 k-ft
E2E 0.290 k-ft
EMX 0.303 k-ft
ETR 86.7 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 163
6/17/2011 7:13:15 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.83 []
EF2 0.288 k-ft
E2E 0.293 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 164
6/17/2011 7:13:16 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.280 k-ft
E2E 0.293 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 165
6/17/2011 7:13:17 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.280 k-ft
E2E 0.285 k-ft
EMX 0.299 k-ft
ETR 85.3 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 166
6/17/2011 7:13:18 AM
LP 24.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.284 k-ft
E2E 0.292 k-ft
EMX 0.306 k-ft
ETR 87.5 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 167
6/17/2011 7:13:19 AM
LP 24.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.287 k-ft
E2E 0.296 k-ft
EMX 0.310 k-ft
ETR 88.7 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 168
6/17/2011 7:13:20 AM
LP 24.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.83 []
EF2 0.291 k-ft
E2E 0.295 k-ft
EMX 0.308 k-ft
ETR 88.1 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 169
6/17/2011 7:13:21 AM
LP 24.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.290 k-ft
E2E 0.297 k-ft
EMX 0.310 k-ft
ETR 88.6 (%)
LE 29.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 3.47 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 170
6/17/2011 7:19:41 AM
LP 29.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.84 []
EF2 0.277 k-ft
E2E 0.285 k-ft
EMX 0.287 k-ft
ETR 82.0 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 171
6/17/2011 7:19:42 AM
LP 29.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.291 k-ft
E2E 0.300 k-ft
EMX 0.302 k-ft
ETR 86.3 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 172
6/17/2011 7:19:44 AM
LP 29.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.82 []
EF2 0.290 k-ft
E2E 0.294 k-ft
EMX 0.296 k-ft
ETR 84.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 173
6/17/2011 7:19:45 AM
LP 29.30 ft
FMX 27 kips
VMX 15.6 f/s
FVP 0.82 []
EF2 0.288 k-ft
E2E 0.297 k-ft
EMX 0.299 k-ft
ETR 85.6 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 174
6/17/2011 7:19:46 AM
LP 29.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.290 k-ft
E2E 0.300 k-ft
EMX 0.303 k-ft
ETR 86.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 175
6/17/2011 7:19:47 AM
LP 29.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.292 k-ft
E2E 0.303 k-ft
EMX 0.305 k-ft
ETR 87.2 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 176
6/17/2011 7:19:48 AM
LP 29.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.294 k-ft
E2E 0.304 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 177
6/17/2011 7:19:49 AM
LP 29.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.301 k-ft
E2E 0.306 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 178
6/17/2011 7:19:50 AM
LP 29.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.302 k-ft
E2E 0.307 k-ft
EMX 0.311 k-ft
ETR 88.8 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 179
6/17/2011 7:19:51 AM
LP 29.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.292 k-ft
E2E 0.300 k-ft
EMX 0.304 k-ft
ETR 86.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 180
6/17/2011 7:19:52 AM
LP 29.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.293 k-ft
E2E 0.301 k-ft
EMX 0.304 k-ft
ETR 86.9 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 181
6/17/2011 7:19:53 AM
LP 29.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.301 k-ft
E2E 0.302 k-ft
EMX 0.305 k-ft
ETR 87.2 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 182
6/17/2011 7:19:54 AM
LP 29.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.83 []
EF2 0.291 k-ft
E2E 0.300 k-ft
EMX 0.303 k-ft
ETR 86.5 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 183
6/17/2011 7:19:55 AM
LP 29.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.288 k-ft
E2E 0.298 k-ft
EMX 0.301 k-ft
ETR 86.0 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 184
6/17/2011 7:19:57 AM
LP 29.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.304 k-ft
E2E 0.306 k-ft
EMX 0.309 k-ft
ETR 88.4 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 185
6/17/2011 7:19:58 AM
LP 29.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.291 k-ft
E2E 0.298 k-ft
EMX 0.301 k-ft
ETR 86.0 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 186
6/17/2011 7:19:59 AM
LP 29.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.84 []
EF2 0.307 k-ft
E2E 0.310 k-ft
EMX 0.313 k-ft
ETR 89.5 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 187
6/17/2011 7:20:00 AM
LP 29.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.304 k-ft
E2E 0.310 k-ft
EMX 0.314 k-ft
ETR 89.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 188
6/17/2011 7:20:01 AM
LP 29.30 ft
FMX 29 kips
VMX 15.6 f/s
FVP 0.86 []
EF2 0.297 k-ft
E2E 0.300 k-ft
EMX 0.303 k-ft
ETR 86.6 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 189
6/17/2011 7:20:02 AM
LP 29.30 ft
FMX 29 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.299 k-ft
E2E 0.302 k-ft
EMX 0.305 k-ft
ETR 87.3 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 190
6/17/2011 7:20:03 AM
LP 29.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.84 []
EF2 0.307 k-ft
E2E 0.310 k-ft
EMX 0.315 k-ft
ETR 90.1 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 191
6/17/2011 7:20:04 AM
LP 29.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.85 []
EF2 0.302 k-ft
E2E 0.302 k-ft
EMX 0.305 k-ft
ETR 87.3 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 192
6/17/2011 7:20:05 AM
LP 29.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.84 []
EF2 0.291 k-ft
E2E 0.300 k-ft
EMX 0.304 k-ft
ETR 86.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 193
6/17/2011 7:20:06 AM
LP 29.30 ft
FMX 28 kips
VMX 15.5 f/s
FVP 0.84 []
EF2 0.298 k-ft
E2E 0.303 k-ft
EMX 0.306 k-ft
ETR 87.4 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 194
6/17/2011 7:20:07 AM
LP 29.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.302 k-ft
E2E 0.313 k-ft
EMX 0.318 k-ft
ETR 90.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 195
6/17/2011 7:20:08 AM
LP 29.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.83 []
EF2 0.296 k-ft
E2E 0.303 k-ft
EMX 0.306 k-ft
ETR 87.3 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 196
6/17/2011 7:20:09 AM
LP 29.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.83 []
EF2 0.298 k-ft
E2E 0.305 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 197
6/17/2011 7:20:11 AM
LP 29.30 ft
FMX 29 kips
VMX 15.7 f/s
FVP 0.85 []
EF2 0.306 k-ft
E2E 0.313 k-ft
EMX 0.316 k-ft
ETR 90.4 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 198
6/17/2011 7:20:12 AM
LP 29.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.295 k-ft
E2E 0.303 k-ft
EMX 0.306 k-ft
ETR 87.3 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 199
6/17/2011 7:20:13 AM
LP 29.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.81 []
EF2 0.296 k-ft
E2E 0.306 k-ft
EMX 0.309 k-ft
ETR 88.4 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 200
6/17/2011 7:20:14 AM
LP 29.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.83 []
EF2 0.297 k-ft
E2E 0.302 k-ft
EMX 0.305 k-ft
ETR 87.1 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 201
6/17/2011 7:20:15 AM
LP 29.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.294 k-ft
E2E 0.303 k-ft
EMX 0.306 k-ft
ETR 87.4 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 202
6/17/2011 7:20:16 AM
LP 29.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.301 k-ft
E2E 0.308 k-ft
EMX 0.311 k-ft
ETR 88.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 203
6/17/2011 7:20:17 AM
LP 29.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.83 []
EF2 0.296 k-ft
E2E 0.302 k-ft
EMX 0.305 k-ft
ETR 87.2 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 204
6/17/2011 7:20:18 AM
LP 29.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.292 k-ft
E2E 0.307 k-ft
EMX 0.312 k-ft
ETR 89.1 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 205
6/17/2011 7:20:19 AM
LP 29.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.300 k-ft
E2E 0.308 k-ft
EMX 0.311 k-ft
ETR 88.8 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 206
6/17/2011 7:20:20 AM
LP 29.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.294 k-ft
E2E 0.307 k-ft
EMX 0.313 k-ft
ETR 89.3 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 207
6/17/2011 7:20:21 AM
LP 29.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.82 []
EF2 0.295 k-ft
E2E 0.300 k-ft
EMX 0.302 k-ft
ETR 86.4 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 208
6/17/2011 7:20:22 AM
LP 29.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.85 []
EF2 0.293 k-ft
E2E 0.305 k-ft
EMX 0.310 k-ft
ETR 88.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 209
6/17/2011 7:20:24 AM
LP 29.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.81 []
EF2 0.295 k-ft
E2E 0.303 k-ft
EMX 0.307 k-ft
ETR 87.7 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 210
6/17/2011 7:20:25 AM
LP 29.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.296 k-ft
E2E 0.309 k-ft
EMX 0.315 k-ft
ETR 90.0 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 211
6/17/2011 7:20:26 AM
LP 29.30 ft
FMX 12 kips
VMX 6.7 f/s
FVP 0.87 []
EF2 0.052 k-ft
E2E 0.055 k-ft
EMX 0.055 k-ft
ETR 15.8 (%)
LE 34.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.06 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 212
6/17/2011 7:26:59 AM
LP 34.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.4 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 213
6/17/2011 7:27:03 AM
LP 34.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.79 []
EF2 0.305 k-ft
E2E 0.312 k-ft
EMX 0.314 k-ft
ETR 89.7 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 214
6/17/2011 7:27:04 AM
LP 34.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.302 k-ft
E2E 0.307 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 215
6/17/2011 7:27:05 AM
LP 34.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.304 k-ft
E2E 0.315 k-ft
EMX 0.317 k-ft
ETR 90.4 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 216
6/17/2011 7:27:06 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.297 k-ft
E2E 0.309 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 217
6/17/2011 7:27:08 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.80 []
EF2 0.296 k-ft
E2E 0.306 k-ft
EMX 0.308 k-ft
ETR 87.9 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 218
6/17/2011 7:27:09 AM
LP 34.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.300 k-ft
E2E 0.310 k-ft
EMX 0.311 k-ft
ETR 89.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 219
6/17/2011 7:27:10 AM
LP 34.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.296 k-ft
E2E 0.304 k-ft
EMX 0.305 k-ft
ETR 87.2 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 220
6/17/2011 7:27:11 AM
LP 34.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.301 k-ft
E2E 0.312 k-ft
EMX 0.314 k-ft
ETR 89.6 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 221
6/17/2011 7:27:12 AM
LP 34.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.81 []
EF2 0.301 k-ft
E2E 0.313 k-ft
EMX 0.315 k-ft
ETR 90.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 222
6/17/2011 7:27:13 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.297 k-ft
E2E 0.308 k-ft
EMX 0.310 k-ft
ETR 88.6 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 223
6/17/2011 7:27:14 AM
LP 34.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.81 []
EF2 0.298 k-ft
E2E 0.308 k-ft
EMX 0.310 k-ft
ETR 88.6 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 224
6/17/2011 7:27:15 AM
LP 34.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.299 k-ft
E2E 0.314 k-ft
EMX 0.316 k-ft
ETR 90.2 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 225
6/17/2011 7:27:16 AM
LP 34.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.302 k-ft
E2E 0.310 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 226
6/17/2011 7:27:17 AM
LP 34.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.300 k-ft
E2E 0.309 k-ft
EMX 0.310 k-ft
ETR 88.7 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 227
6/17/2011 7:27:18 AM
LP 34.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.302 k-ft
E2E 0.312 k-ft
EMX 0.313 k-ft
ETR 89.5 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 228
6/17/2011 7:27:19 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.4 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 229
6/17/2011 7:27:20 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.310 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 230
6/17/2011 7:27:21 AM
LP 34.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.305 k-ft
E2E 0.313 k-ft
EMX 0.315 k-ft
ETR 90.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 231
6/17/2011 7:27:22 AM
LP 34.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.302 k-ft
E2E 0.310 k-ft
EMX 0.312 k-ft
ETR 89.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 232
6/17/2011 7:27:23 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.303 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.4 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 233
6/17/2011 7:27:25 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.308 k-ft
E2E 0.317 k-ft
EMX 0.319 k-ft
ETR 91.1 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 234
6/17/2011 7:27:26 AM
LP 34.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.81 []
EF2 0.306 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 235
6/17/2011 7:27:27 AM
LP 34.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.297 k-ft
E2E 0.306 k-ft
EMX 0.308 k-ft
ETR 87.9 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 236
6/17/2011 7:27:28 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.298 k-ft
E2E 0.306 k-ft
EMX 0.308 k-ft
ETR 87.9 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 237
6/17/2011 7:27:29 AM
LP 34.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.81 []
EF2 0.304 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.5 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 238
6/17/2011 7:27:30 AM
LP 34.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.300 k-ft
E2E 0.312 k-ft
EMX 0.314 k-ft
ETR 89.7 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 239
6/17/2011 7:27:31 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.298 k-ft
E2E 0.314 k-ft
EMX 0.316 k-ft
ETR 90.4 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 240
6/17/2011 7:27:35 AM
LP 34.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.81 []
EF2 0.300 k-ft
E2E 0.308 k-ft
EMX 0.310 k-ft
ETR 88.7 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 241
6/17/2011 7:27:36 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.291 k-ft
E2E 0.303 k-ft
EMX 0.305 k-ft
ETR 87.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 242
6/17/2011 7:27:37 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.80 []
EF2 0.301 k-ft
E2E 0.309 k-ft
EMX 0.312 k-ft
ETR 89.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 243
6/17/2011 7:27:38 AM
LP 34.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.81 []
EF2 0.300 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 244
6/17/2011 7:27:40 AM
LP 34.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.83 []
EF2 0.307 k-ft
E2E 0.315 k-ft
EMX 0.318 k-ft
ETR 91.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 245
6/17/2011 7:27:42 AM
LP 34.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.83 []
EF2 0.302 k-ft
E2E 0.311 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 246
6/17/2011 7:27:43 AM
LP 34.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.82 []
EF2 0.295 k-ft
E2E 0.309 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 247
6/17/2011 7:27:44 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.306 k-ft
EMX 0.310 k-ft
ETR 88.5 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 248
6/17/2011 7:27:45 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.304 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 249
6/17/2011 7:27:46 AM
LP 34.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.81 []
EF2 0.303 k-ft
E2E 0.314 k-ft
EMX 0.317 k-ft
ETR 90.5 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 250
6/17/2011 7:27:47 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.292 k-ft
E2E 0.303 k-ft
EMX 0.307 k-ft
ETR 87.6 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 251
6/17/2011 7:27:48 AM
LP 34.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.297 k-ft
E2E 0.306 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 252
6/17/2011 7:27:49 AM
LP 34.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.83 []
EF2 0.301 k-ft
E2E 0.309 k-ft
EMX 0.311 k-ft
ETR 89.0 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 253
6/17/2011 7:27:50 AM
LP 34.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.298 k-ft
E2E 0.303 k-ft
EMX 0.306 k-ft
ETR 87.5 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 254
6/17/2011 7:27:51 AM
LP 34.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.301 k-ft
E2E 0.309 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 255
6/17/2011 7:27:52 AM
LP 34.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.83 []
EF2 0.295 k-ft
E2E 0.301 k-ft
EMX 0.304 k-ft
ETR 86.8 (%)
LE 39.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 4.65 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 256
6/17/2011 7:34:30 AM
LP 39.30 ft
FMX 26 kips
VMX 14.6 f/s
FVP 0.81 []
EF2 0.239 k-ft
E2E 0.252 k-ft
EMX 0.253 k-ft
ETR 72.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 257
6/17/2011 7:34:31 AM
LP 39.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.298 k-ft
E2E 0.311 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 258
6/17/2011 7:34:32 AM
LP 39.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.297 k-ft
E2E 0.309 k-ft
EMX 0.310 k-ft
ETR 88.5 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 259
6/17/2011 7:34:33 AM
LP 39.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.294 k-ft
E2E 0.306 k-ft
EMX 0.307 k-ft
ETR 87.8 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 260
6/17/2011 7:34:34 AM
LP 39.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.296 k-ft
E2E 0.310 k-ft
EMX 0.312 k-ft
ETR 89.0 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 261
6/17/2011 7:34:35 AM
LP 39.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.302 k-ft
E2E 0.315 k-ft
EMX 0.317 k-ft
ETR 90.6 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 262
6/17/2011 7:34:36 AM
LP 39.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.81 []
EF2 0.300 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 263
6/17/2011 7:34:37 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.292 k-ft
E2E 0.308 k-ft
EMX 0.309 k-ft
ETR 88.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 264
6/17/2011 7:34:38 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.312 k-ft
EMX 0.314 k-ft
ETR 89.6 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 265
6/17/2011 7:34:39 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.80 []
EF2 0.300 k-ft
E2E 0.311 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 266
6/17/2011 7:34:41 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.324 k-ft
EMX 0.327 k-ft
ETR 93.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 267
6/17/2011 7:34:42 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.296 k-ft
E2E 0.317 k-ft
EMX 0.319 k-ft
ETR 91.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 268
6/17/2011 7:34:43 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.81 []
EF2 0.295 k-ft
E2E 0.305 k-ft
EMX 0.307 k-ft
ETR 87.7 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 269
6/17/2011 7:34:44 AM
LP 39.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.295 k-ft
E2E 0.317 k-ft
EMX 0.319 k-ft
ETR 91.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 270
6/17/2011 7:34:45 AM
LP 39.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.308 k-ft
EMX 0.309 k-ft
ETR 88.4 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 271
6/17/2011 7:34:46 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.302 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.7 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 272
6/17/2011 7:34:47 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.312 k-ft
EMX 0.314 k-ft
ETR 89.6 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 273
6/17/2011 7:34:48 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.83 []
EF2 0.303 k-ft
E2E 0.317 k-ft
EMX 0.319 k-ft
ETR 91.1 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 274
6/17/2011 7:34:49 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.300 k-ft
E2E 0.312 k-ft
EMX 0.313 k-ft
ETR 89.5 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 275
6/17/2011 7:34:50 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.298 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.4 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 276
6/17/2011 7:34:51 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.302 k-ft
E2E 0.315 k-ft
EMX 0.317 k-ft
ETR 90.5 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 277
6/17/2011 7:34:52 AM
LP 39.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.83 []
EF2 0.299 k-ft
E2E 0.316 k-ft
EMX 0.317 k-ft
ETR 90.7 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 278
6/17/2011 7:34:53 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.311 k-ft
EMX 0.312 k-ft
ETR 89.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 279
6/17/2011 7:34:54 AM
LP 39.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.82 []
EF2 0.306 k-ft
E2E 0.317 k-ft
EMX 0.318 k-ft
ETR 91.0 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 280
6/17/2011 7:34:55 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.303 k-ft
E2E 0.314 k-ft
EMX 0.316 k-ft
ETR 90.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 281
6/17/2011 7:34:56 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.296 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.4 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 282
6/17/2011 7:34:57 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.302 k-ft
E2E 0.312 k-ft
EMX 0.314 k-ft
ETR 89.7 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 283
6/17/2011 7:34:58 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.306 k-ft
E2E 0.315 k-ft
EMX 0.316 k-ft
ETR 90.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 284
6/17/2011 7:35:00 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.297 k-ft
E2E 0.308 k-ft
EMX 0.309 k-ft
ETR 88.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 285
6/17/2011 7:35:01 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.298 k-ft
E2E 0.309 k-ft
EMX 0.311 k-ft
ETR 88.8 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 286
6/17/2011 7:35:02 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.311 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 287
6/17/2011 7:35:03 AM
LP 39.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.83 []
EF2 0.292 k-ft
E2E 0.303 k-ft
EMX 0.305 k-ft
ETR 87.1 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 288
6/17/2011 7:35:04 AM
LP 39.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.84 []
EF2 0.303 k-ft
E2E 0.315 k-ft
EMX 0.316 k-ft
ETR 90.4 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 289
6/17/2011 7:35:05 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.302 k-ft
E2E 0.314 k-ft
EMX 0.316 k-ft
ETR 90.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 290
6/17/2011 7:35:06 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.301 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.4 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 291
6/17/2011 7:35:07 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.316 k-ft
EMX 0.319 k-ft
ETR 91.1 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 292
6/17/2011 7:35:08 AM
LP 39.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.310 k-ft
EMX 0.312 k-ft
ETR 89.1 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 293
6/17/2011 7:35:09 AM
LP 39.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.297 k-ft
E2E 0.308 k-ft
EMX 0.311 k-ft
ETR 88.7 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 294
6/17/2011 7:35:10 AM
LP 39.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.296 k-ft
E2E 0.307 k-ft
EMX 0.309 k-ft
ETR 88.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 295
6/17/2011 7:35:11 AM
LP 39.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.295 k-ft
E2E 0.307 k-ft
EMX 0.308 k-ft
ETR 88.1 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 296
6/17/2011 7:35:12 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.84 []
EF2 0.301 k-ft
E2E 0.310 k-ft
EMX 0.311 k-ft
ETR 89.0 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 297
6/17/2011 7:35:13 AM
LP 39.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.83 []
EF2 0.302 k-ft
E2E 0.317 k-ft
EMX 0.321 k-ft
ETR 91.8 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 298
6/17/2011 7:35:14 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.83 []
EF2 0.302 k-ft
E2E 0.308 k-ft
EMX 0.309 k-ft
ETR 88.4 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 299
6/17/2011 7:35:15 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.295 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 300
6/17/2011 7:35:16 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.310 k-ft
EMX 0.311 k-ft
ETR 88.8 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 301
6/17/2011 7:35:17 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.301 k-ft
E2E 0.311 k-ft
EMX 0.313 k-ft
ETR 89.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 302
6/17/2011 7:35:19 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.298 k-ft
E2E 0.307 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 303
6/17/2011 7:35:20 AM
LP 39.30 ft
FMX 28 kips
VMX 16.4 f/s
FVP 0.75 []
EF2 0.293 k-ft
E2E 0.308 k-ft
EMX 0.309 k-ft
ETR 88.4 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 304
6/17/2011 7:35:21 AM
LP 39.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.300 k-ft
E2E 0.311 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 305
6/17/2011 7:35:22 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.81 []
EF2 0.294 k-ft
E2E 0.309 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 306
6/17/2011 7:35:23 AM
LP 39.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.84 []
EF2 0.299 k-ft
E2E 0.306 k-ft
EMX 0.308 k-ft
ETR 87.9 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 307
6/17/2011 7:35:24 AM
LP 39.30 ft
FMX 28 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.292 k-ft
E2E 0.307 k-ft
EMX 0.308 k-ft
ETR 88.0 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 308
6/17/2011 7:35:25 AM
LP 39.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.302 k-ft
E2E 0.314 k-ft
EMX 0.315 k-ft
ETR 90.0 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 309
6/17/2011 7:35:26 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.299 k-ft
E2E 0.311 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 310
6/17/2011 7:35:27 AM
LP 39.30 ft
FMX 29 kips
VMX 16.4 f/s
FVP 0.80 []
EF2 0.307 k-ft
E2E 0.319 k-ft
EMX 0.320 k-ft
ETR 91.5 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 311
6/17/2011 7:35:28 AM
LP 39.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.305 k-ft
EMX 0.306 k-ft
ETR 87.5 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 312
6/17/2011 7:35:29 AM
LP 39.30 ft
FMX 28 kips
VMX 15.7 f/s
FVP 0.83 []
EF2 0.291 k-ft
E2E 0.308 k-ft
EMX 0.310 k-ft
ETR 88.6 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 313
6/17/2011 7:35:30 AM
LP 39.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.305 k-ft
E2E 0.312 k-ft
EMX 0.313 k-ft
ETR 89.5 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 314
6/17/2011 7:35:31 AM
LP 39.30 ft
FMX 28 kips
VMX 15.9 f/s
FVP 0.84 []
EF2 0.299 k-ft
E2E 0.308 k-ft
EMX 0.309 k-ft
ETR 88.3 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 315
6/17/2011 7:35:32 AM
LP 39.30 ft
FMX 27 kips
VMX 16.0 f/s
FVP 0.79 []
EF2 0.290 k-ft
E2E 0.310 k-ft
EMX 0.312 k-ft
ETR 89.2 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 316
6/17/2011 7:35:33 AM
LP 39.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.306 k-ft
E2E 0.319 k-ft
EMX 0.321 k-ft
ETR 91.6 (%)
LE 44.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.24 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 317
6/17/2011 7:42:57 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.82 []
EF2 0.296 k-ft
E2E 0.315 k-ft
EMX 0.316 k-ft
ETR 90.2 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 318
6/17/2011 7:42:58 AM
LP 44.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.83 []
EF2 0.305 k-ft
E2E 0.324 k-ft
EMX 0.324 k-ft
ETR 92.7 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 319
6/17/2011 7:42:59 AM
LP 44.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.300 k-ft
E2E 0.319 k-ft
EMX 0.320 k-ft
ETR 91.3 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 320
6/17/2011 7:43:00 AM
LP 44.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.83 []
EF2 0.302 k-ft
E2E 0.316 k-ft
EMX 0.317 k-ft
ETR 90.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 321
6/17/2011 7:43:01 AM
LP 44.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.297 k-ft
E2E 0.319 k-ft
EMX 0.319 k-ft
ETR 91.2 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 322
6/17/2011 7:43:02 AM
LP 44.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.77 []
EF2 0.302 k-ft
E2E 0.321 k-ft
EMX 0.322 k-ft
ETR 92.0 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 323
6/17/2011 7:43:03 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.78 []
EF2 0.293 k-ft
E2E 0.320 k-ft
EMX 0.321 k-ft
ETR 91.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 324
6/17/2011 7:43:04 AM
LP 44.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.302 k-ft
E2E 0.320 k-ft
EMX 0.320 k-ft
ETR 91.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 325
6/17/2011 7:43:05 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.78 []
EF2 0.295 k-ft
E2E 0.319 k-ft
EMX 0.320 k-ft
ETR 91.4 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 326
6/17/2011 7:43:06 AM
LP 44.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.81 []
EF2 0.302 k-ft
E2E 0.320 k-ft
EMX 0.321 k-ft
ETR 91.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 327
6/17/2011 7:43:07 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.80 []
EF2 0.295 k-ft
E2E 0.319 k-ft
EMX 0.320 k-ft
ETR 91.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 328
6/17/2011 7:43:08 AM
LP 44.30 ft
FMX 29 kips
VMX 16.4 f/s
FVP 0.80 []
EF2 0.303 k-ft
E2E 0.321 k-ft
EMX 0.322 k-ft
ETR 91.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 329
6/17/2011 7:43:10 AM
LP 44.30 ft
FMX 29 kips
VMX 16.4 f/s
FVP 0.79 []
EF2 0.293 k-ft
E2E 0.314 k-ft
EMX 0.315 k-ft
ETR 90.0 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 330
6/17/2011 7:43:11 AM
LP 44.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.81 []
EF2 0.299 k-ft
E2E 0.315 k-ft
EMX 0.316 k-ft
ETR 90.2 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 331
6/17/2011 7:43:12 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.83 []
EF2 0.296 k-ft
E2E 0.318 k-ft
EMX 0.319 k-ft
ETR 91.2 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 332
6/17/2011 7:43:13 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.80 []
EF2 0.302 k-ft
E2E 0.323 k-ft
EMX 0.324 k-ft
ETR 92.7 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 333
6/17/2011 7:43:14 AM
LP 44.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.291 k-ft
E2E 0.310 k-ft
EMX 0.311 k-ft
ETR 88.7 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 334
6/17/2011 7:43:15 AM
LP 44.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.82 []
EF2 0.304 k-ft
E2E 0.320 k-ft
EMX 0.321 k-ft
ETR 91.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 335
6/17/2011 7:43:16 AM
LP 44.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.83 []
EF2 0.296 k-ft
E2E 0.317 k-ft
EMX 0.318 k-ft
ETR 90.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 336
6/17/2011 7:43:17 AM
LP 44.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.79 []
EF2 0.301 k-ft
E2E 0.316 k-ft
EMX 0.317 k-ft
ETR 90.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 337
6/17/2011 7:43:18 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.77 []
EF2 0.296 k-ft
E2E 0.320 k-ft
EMX 0.321 k-ft
ETR 91.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 338
6/17/2011 7:43:19 AM
LP 44.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.308 k-ft
E2E 0.322 k-ft
EMX 0.324 k-ft
ETR 92.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 339
6/17/2011 7:43:20 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.75 []
EF2 0.284 k-ft
E2E 0.310 k-ft
EMX 0.311 k-ft
ETR 88.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 340
6/17/2011 7:43:21 AM
LP 44.30 ft
FMX 28 kips
VMX 15.6 f/s
FVP 0.84 []
EF2 0.298 k-ft
E2E 0.313 k-ft
EMX 0.313 k-ft
ETR 89.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 341
6/17/2011 7:43:22 AM
LP 44.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.80 []
EF2 0.290 k-ft
E2E 0.310 k-ft
EMX 0.311 k-ft
ETR 88.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 342
6/17/2011 7:43:23 AM
LP 44.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.316 k-ft
EMX 0.318 k-ft
ETR 90.7 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 343
6/17/2011 7:43:24 AM
LP 44.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.85 []
EF2 0.303 k-ft
E2E 0.320 k-ft
EMX 0.321 k-ft
ETR 91.7 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 344
6/17/2011 7:43:25 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.79 []
EF2 0.293 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 345
6/17/2011 7:43:26 AM
LP 44.30 ft
FMX 29 kips
VMX 15.8 f/s
FVP 0.85 []
EF2 0.297 k-ft
E2E 0.316 k-ft
EMX 0.317 k-ft
ETR 90.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 346
6/17/2011 7:43:27 AM
LP 44.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.322 k-ft
EMX 0.323 k-ft
ETR 92.3 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 347
6/17/2011 7:43:28 AM
LP 44.30 ft
FMX 29 kips
VMX 15.9 f/s
FVP 0.83 []
EF2 0.295 k-ft
E2E 0.314 k-ft
EMX 0.315 k-ft
ETR 90.0 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 348
6/17/2011 7:43:29 AM
LP 44.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.81 []
EF2 0.303 k-ft
E2E 0.322 k-ft
EMX 0.324 k-ft
ETR 92.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 349
6/17/2011 7:43:30 AM
LP 44.30 ft
FMX 28 kips
VMX 16.6 f/s
FVP 0.74 []
EF2 0.292 k-ft
E2E 0.316 k-ft
EMX 0.317 k-ft
ETR 90.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 350
6/17/2011 7:43:32 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.77 []
EF2 0.302 k-ft
E2E 0.322 k-ft
EMX 0.324 k-ft
ETR 92.5 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 351
6/17/2011 7:43:33 AM
LP 44.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.82 []
EF2 0.295 k-ft
E2E 0.324 k-ft
EMX 0.325 k-ft
ETR 92.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 352
6/17/2011 7:43:34 AM
LP 44.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.81 []
EF2 0.302 k-ft
E2E 0.319 k-ft
EMX 0.321 k-ft
ETR 91.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 353
6/17/2011 7:43:35 AM
LP 44.30 ft
FMX 28 kips
VMX 16.1 f/s
FVP 0.80 []
EF2 0.292 k-ft
E2E 0.316 k-ft
EMX 0.317 k-ft
ETR 90.7 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 354
6/17/2011 7:43:36 AM
LP 44.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.81 []
EF2 0.297 k-ft
E2E 0.314 k-ft
EMX 0.316 k-ft
ETR 90.3 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 355
6/17/2011 7:43:37 AM
LP 44.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.79 []
EF2 0.293 k-ft
E2E 0.324 k-ft
EMX 0.326 k-ft
ETR 93.2 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 356
6/17/2011 7:43:38 AM
LP 44.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.78 []
EF2 0.295 k-ft
E2E 0.316 k-ft
EMX 0.318 k-ft
ETR 90.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 357
6/17/2011 7:43:39 AM
LP 44.30 ft
FMX 28 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.292 k-ft
E2E 0.311 k-ft
EMX 0.312 k-ft
ETR 89.1 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 358
6/17/2011 7:43:40 AM
LP 44.30 ft
FMX 28 kips
VMX 16.0 f/s
FVP 0.83 []
EF2 0.300 k-ft
E2E 0.315 k-ft
EMX 0.317 k-ft
ETR 90.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 359
6/17/2011 7:43:41 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.76 []
EF2 0.292 k-ft
E2E 0.317 k-ft
EMX 0.318 k-ft
ETR 90.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 360
6/17/2011 7:43:42 AM
LP 44.30 ft
FMX 28 kips
VMX 16.6 f/s
FVP 0.73 []
EF2 0.298 k-ft
E2E 0.322 k-ft
EMX 0.323 k-ft
ETR 92.3 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 361
6/17/2011 7:43:43 AM
LP 44.30 ft
FMX 29 kips
VMX 16.4 f/s
FVP 0.78 []
EF2 0.295 k-ft
E2E 0.317 k-ft
EMX 0.318 k-ft
ETR 90.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 362
6/17/2011 7:43:44 AM
LP 44.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.81 []
EF2 0.301 k-ft
E2E 0.324 k-ft
EMX 0.325 k-ft
ETR 92.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 363
6/17/2011 7:43:45 AM
LP 44.30 ft
FMX 29 kips
VMX 16.4 f/s
FVP 0.82 []
EF2 0.296 k-ft
E2E 0.318 k-ft
EMX 0.320 k-ft
ETR 91.3 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 364
6/17/2011 7:43:46 AM
LP 44.30 ft
FMX 29 kips
VMX 16.5 f/s
FVP 0.80 []
EF2 0.299 k-ft
E2E 0.323 k-ft
EMX 0.324 k-ft
ETR 92.7 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 365
6/17/2011 7:43:47 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.83 []
EF2 0.292 k-ft
E2E 0.314 k-ft
EMX 0.315 k-ft
ETR 89.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 366
6/17/2011 7:43:48 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.80 []
EF2 0.294 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 367
6/17/2011 7:43:49 AM
LP 44.30 ft
FMX 29 kips
VMX 16.0 f/s
FVP 0.83 []
EF2 0.296 k-ft
E2E 0.313 k-ft
EMX 0.314 k-ft
ETR 89.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 368
6/17/2011 7:43:50 AM
LP 44.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.80 []
EF2 0.307 k-ft
E2E 0.323 k-ft
EMX 0.324 k-ft
ETR 92.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 369
6/17/2011 7:43:51 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.82 []
EF2 0.295 k-ft
E2E 0.315 k-ft
EMX 0.316 k-ft
ETR 90.3 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 370
6/17/2011 7:43:52 AM
LP 44.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.84 []
EF2 0.305 k-ft
E2E 0.321 k-ft
EMX 0.322 k-ft
ETR 92.0 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 371
6/17/2011 7:43:54 AM
LP 44.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.81 []
EF2 0.293 k-ft
E2E 0.314 k-ft
EMX 0.315 k-ft
ETR 89.9 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 372
6/17/2011 7:43:55 AM
LP 44.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.83 []
EF2 0.300 k-ft
E2E 0.316 k-ft
EMX 0.317 k-ft
ETR 90.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 373
6/17/2011 7:43:56 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.81 []
EF2 0.294 k-ft
E2E 0.316 k-ft
EMX 0.318 k-ft
ETR 90.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 374
6/17/2011 7:43:57 AM
LP 44.30 ft
FMX 29 kips
VMX 16.2 f/s
FVP 0.82 []
EF2 0.300 k-ft
E2E 0.314 k-ft
EMX 0.315 k-ft
ETR 90.0 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 375
6/17/2011 7:43:58 AM
LP 44.30 ft
FMX 29 kips
VMX 16.1 f/s
FVP 0.81 []
EF2 0.294 k-ft
E2E 0.314 k-ft
EMX 0.315 k-ft
ETR 90.1 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 376
6/17/2011 7:43:59 AM
LP 44.30 ft
FMX 29 kips
VMX 16.3 f/s
FVP 0.83 []
EF2 0.304 k-ft
E2E 0.322 k-ft
EMX 0.323 k-ft
ETR 92.4 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 377
6/17/2011 7:44:00 AM
LP 44.30 ft
FMX 28 kips
VMX 16.3 f/s
FVP 0.79 []
EF2 0.289 k-ft
E2E 0.312 k-ft
EMX 0.314 k-ft
ETR 89.6 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D
Project: TEST CLINIC 1
Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO
Operator: JNH
BN 378
6/17/2011 7:44:01 AM
LP 44.30 ft
FMX 27 kips
VMX 15.8 f/s
FVP 0.61 []
EF2 0.260 k-ft
E2E 0.298 k-ft
EMX 0.300 k-ft
ETR 85.8 (%)
LE 49.30 ft
AR 1.20 in^2
EM 30,000 ksi
SP 0.492 k/ft3
WS 16,807.9 f/s
2L/c 5.83 ms
EA/c 2.1 ksec/ft
FR 20.000 kHz
0.350
k-ft
E
51.2 ms0.0 ms
4.00
in
D