Local and National Scale Energy Calibration of Standard Penetration Test Hammers by Jonathan Nathaniel Honeycutt A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama May 6, 2012 Keywords: SPT, N-value, energy, stress waves, geotechnical, statistics Copyright 2012 by Jonathan Nathaniel Honeycutt Approved by J. Brian Anderson, Chair, Associate Professor of Civil Engineering Jeffrey LaMondia, Assistant Professor of Civil Engineering Lorraine Wolf, Professor of Geophysics ? ii ? ? ? ? ? Abstract ? ? A Standard Penetration Test (SPT) energy testing program was developed for the Alabama Department of Transportation. Six Central Mine Equipment (CME) automatic hammers were calibrated using force and velocity measurements. The energy transfer ratio (ETR) for each hammer system was from 82.2% to 96.1%, with an overall average of approximately 91%. The coefficients of variance (COV) ranged from 2.2% to 5.7%. In addition to the testing program, a database for automatic hammers was created and included energy records from approximately 19,000 SPT hammer blows. 90% of the data were obtained from CME automatic hammers, and over two-thirds of the CME data represented repeat testing. The database records were acquired under Nuclear Quality Assurance Level I standards (NQA-1), which were provided by a private sector consultant for research purposes. The database records were used to determine a broad-based value of transfer efficiency for CME automatic hammers. The overall ETR was determined to be 82.7% ? 5.5% with a COV of 6.7%. The range of COVs between CME groups was from 1.1% to 10.5%. The overall average COV was 4.3%. These COV results compared well to the expected COV range for CME hammers documented in historical studies, which had a maximum value of 10%. ? iii Supplemental multiple regression analyses were performed on the CME database records for rod lengths less than 50 ft. The variables evaluated include hammer operation rate, rod length, penetration resistance, and rod type. The first regression model was used to predict transfer efficiency. The second model, which was regressed through the origin, was used to estimate the full effect of each variable without the intercept. The prediction accuracy between the two models was approximately 2% ETR. Hypothesis testing was performed on the independent variables. ? ? ? ? ? ? iv ? Dedication This work is dedicated to Ms. Merilyn A. Kaplan, Ms. Merilyn L. Honeycutt, and Mrs. Jennifer M. Cleary. ? v Acknowledgments I would first like to say that it has been a privilege attending Auburn University while pursuing my graduate studies. This opportunity would not have been possible without the assistance of Dr. Brian Anderson. As the chair of my committee, Dr. Anderson has supported me throughout this process, but has also allowed me the flexibility to work in my own way. He has proven to be not only a mentor, but also a friend, and I owe a great deal of my academic and professional success to him. I would like to extend the utmost appreciation to the other members of my committee for their involvement, support, and patience. Special thanks go out to Dr. Jeffrey Lamondia for his statistical guidance and to Dr. Lorraine Wolf for providing an outside perspective along with a wonderful sense of humor. The author conveys thanks to the folks at the Alabama Department of Transportation for providing the financial means for this project. It has been a true pleasure working with Mrs. Kaye Chancellor-Davis and Mr. William Brown of the Bureau of Materials and Tests, and is an experience that I will always remember. Last but not least, I would like to express the most sincere appreciation toward two individuals who have had a tremendous influence on the direction of my life. Specifically, I would like thank Mr. Steven Kiser for his profound encouragement and endless support for all of my endeavors, and to Dr. Harold Vaughn Jackson who taught me that ?As a man thinks, so he is. As he continues to think, so he remains.? ? vi Table of Contents Abstract ............................................................................................................................... ii? Dedication .......................................................................................................................... iv? Acknowledgments............................................................................................................... v? List of Tables ...................................................................................................................... x? List of Figures .................................................................................................................... xi? CHAPTER 1: INTRODUCTION ....................................................................................... 1? 1.1 The Standard Penetration Test ................................................................................ 1? 1.2. ASTM D 1586 Standard ........................................................................................ 2? 1.3 SPT Sampling ......................................................................................................... 2? 1.4 The SPT Hammer ................................................................................................... 5? 1.5 N-value Normalization ............................................................................................ 9? 1.6 Research Objective ............................................................................................... 10? CHAPTER 2: BACKGROUND ....................................................................................... 11? 2.1 Introduction ........................................................................................................... 11? 2.2 One-Dimensional Wave Equation ........................................................................ 11? 2.3 Proportionality between Force and Particle Velocity ........................................... 13? 2.4 Transmission and Reflection of Waves ................................................................ 15? 2.5 Source of Energy in the SPT ................................................................................. 17? 2.6 EFV Method of Energy Measurement .................................................................. 19? ? vii 2.7 EF2 Method of Energy Measurement ................................................................... 22? 2.8 Generalized Wave Transmission .......................................................................... 24? 2.8.1 Energy Transmission and Sampler Displacement ....................................... 26? 2.9 CME Automatic Hammer ..................................................................................... 33? 2.9.1 Hammer Automation ................................................................................... 33? 2.9.2 Drive Weight Viewing Slot ......................................................................... 35? CHAPTER 3: LITERATURE REVIEW .......................................................................... 37? 3.1 ASTM D 4633-10 ................................................................................................. 37? 3.2 EFV Transfer Efficiency in Literature .................................................................. 39? 3.3 Variation of Transfer Efficiency ........................................................................... 40? 3.3.1 FDOT Study ................................................................................................. 41? 3.3.2 NCDOT Study ............................................................................................. 42? 3.4 CME Hammer Operation Rate.............................................................................. 44? 3.5 Rod Length and Energy Transmission .................................................................. 47? 3.5.1 Palacios Study .............................................................................................. 48? 3.5.2 Morgano and Liang Study ........................................................................... 51? 3.5.3 NCDOT Study ............................................................................................. 53? 3.6 Secondary Hammer Impacts ................................................................................. 55? 3.7 Energy Reaching the Sampler ............................................................................... 58? 3.7.1 Palacios Study .............................................................................................. 59? 3.7.2 Abou-matar and Goble Study ...................................................................... 59? 3.7.3 MnDot Study ................................................................................................ 61? 3.7.4 Odebrecht Study........................................................................................... 62? ? viii 3.8 Conclusions Based on Previous Work .................................................................. 65? CHAPTER 4: ALDOT TESTING PROGRAM ............................................................... 70? 4.1 Introduction ........................................................................................................... 70? 4.2 ALDOT Drill Rig Fleet ......................................................................................... 70? 4.3 SPT Analyzer ........................................................................................................ 71? 4.4 Instrumented Subassembly ................................................................................... 72? 4.5 Field Testing Procedure ........................................................................................ 74? 4.5.1 Field Documentation .................................................................................... 74? 4.5.2 Equipment Set Up ........................................................................................ 78? 4.5.3 Data Acceptance Criteria ............................................................................. 82? 4.6 Office Analysis of Field Data ............................................................................... 84? 4.6.1 Retrieving Data from the SPT Analyzer ...................................................... 84? 4.6.2 PDAW Software Program............................................................................ 86? 4.6.3 PDIPLOT Software ...................................................................................... 88? 4.7 Calibration Certificate ........................................................................................... 90? 4.8 Summary of ALDOT Results ............................................................................... 91? 4.8.1 Measured Transfer Efficiency ...................................................................... 91? 4.8.2 Variation of Transfer Efficiency .................................................................. 92? 4.8.3 Variation of Hammer Operation Rate .......................................................... 95? 4.8.4 Rod Length Effects ...................................................................................... 96? 4.8.5 Effect of Secondary Impacts and Penetration Resistance ............................ 99? CHAPTER 5: SPT ENERGY DATABASE ................................................................... 104? 5.1 Introduction ......................................................................................................... 104? ? ix 5.2 Database Design .................................................................................................. 105? 5.3 Geologic Conditions ........................................................................................... 105? 5.4 Rod Type and Rod Length Distribution.............................................................. 106? 5.5 Summary of Drill Rigs ........................................................................................ 106? 5.6 CME Drill Rigs ................................................................................................... 108? 5.6.1 Summary Table .......................................................................................... 108? 5.6.2 Hammer Operation Rate ............................................................................ 112? 5.6.3 Summary of Results ................................................................................... 114? 5.6.4 Variation of Energy between Drill Rig Groups ......................................... 115? 5.6.5 Variation of Hammer Operation Rate between Drill Rig Groups ............. 116? 5.7 Multiple Linear Regression................................................................................. 117? 5.7.1 Statistical Terminology .............................................................................. 119? 5.7.2 Multiple Linear Regression Results ........................................................... 121? 5.7.3 Regression through the Origin ................................................................... 123? 5.8 CME Case Study ................................................................................................. 126? 5.8.1 Project Description and Summary of Transfer Efficiency ......................... 126? 5.8.2 Predicted Hammer Efficiency .................................................................... 127? CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS .................................. 129? REFERENCES ............................................................................................................... 135? APPENDICES ................................................................................................................ 138? ? x List of Tables Table 3.1 Historical EFV ETR .......................................................................................... 40? Table 3.2 Summary of FDOT energy measurements (Davidson et al., 1999) .................. 42? Table 3.3 Summary of NCDOT energy measurements (Valiquette et al., 2010) ............. 44? Table 4.1 ALDOT drill rig inventory ............................................................................... 71? Table 4.2 ALDOT summary statistics .............................................................................. 92? Table 5.1 Rod type and length distribution ..................................................................... 106? Table 5.2 Drill rig summary ............................................................................................ 107? Table 5.3 Summary of CME transfer efficiency ............................................................. 110? Table 5.4 Summary of CME hammer operation rate ...................................................... 113? Table 5.5 Overall summary of CME database records ................................................... 115? Table 5.6 Multiple regression results .............................................................................. 121? Table 5.7 Multiple regression summary statistics ........................................................... 121? Table 5.8 Multiple regression results ? without intercept ............................................... 124? Table 5.9 Multiple regression summary statistics ? without intercept ........................... 125? ? xi List of Figures Figure 1.1 Raymond Concrete Pile Company .................................................................... 1? Figure 1.2 Hollow-stem auger drilling................................................................................ 3? Figure 1.3 SPT sampling process (Mayne et al., 2001) ...................................................... 4? Figure 1.4 SPT boring log ................................................................................................... 6? Figure 1.5 Manual safety hammer (Kelley and Lens, 2010) .............................................. 7? Figure 1.6 Automatic hammer ............................................................................................ 8? Figure 2.1 Stress wave sign convention (modified from Howie et al., 2003) .................. 16? Figure 2.2 Instrumented subassembly............................................................................... 21? Figure 2.3 Wave transmission (Howie et al., 2003) ......................................................... 25? Figure 2.4 EFV & E-D Trace-short rod (19.3 ft)-low penetration resistance ................... 28? Figure 2.5 EFV & E-D Trace-Short Rod (19.3 ft)-moderate penetration resistance ........ 30? Figure 2.6 EFV & E-D Trace-Long Rod (49.3 ft)-low penetration resistance ................. 32? Figure 2.7 CME hammer operational components (modified from Rassieur, 1983) ....... 34? Figure 2.8 Drive weight viewing slot (dimensions from CME operations manual) ......... 36? Figure 3.1 NCDOT variation of transfer efficiency (Valiquette et. al, 2010) .................. 43? Figure 3.2 Drop height vs. hammer operation rate (Farrar and Chitwood, 1999) ............ 45? Figure 3.3 Drill rod energy vs. hammer operation rate (Farrar and Chitwood, 1999) ...... 45? Figure 3.4 Drive chain and lifting lug ............................................................................... 46? Figure 3.5 CME hammer malfunction .............................................................................. 47? ? xii Figure 3.6 Theoretical transfer efficiency (Schmertmann and Palacios, 1979) ................ 50? Figure 3.7 Drive system efficiency (Morgano and Liang, 1992) ..................................... 52? Figure 3.8 Average drive system efficiency (Morgano and Liang, 1992) ........................ 52? Figure 3.9 Wave equation study (Morgano and Liang, 1992) .......................................... 53? Figure 3.10 Normalized energy transfer (Valiquette et al., 2010) .................................... 55? Figure 3.11 Digital line-scan camera (Lee et al., 2010) .................................................... 57? Figure 3.12 Secondary impacts (Lee et al., 2010) ............................................................ 58? Figure 3.13 Wave equation study (Abou-matar and Goble, 1997) ................................... 61? Figure 3.14 MnDot rod type vs. N-value study (modified from Goble, 2005) ................. 62? Figure 3.15 Experimental setup (Odebrecht et al., 2005) ................................................. 63? Figure 3.16 Sampler energy-19 ft (5.8 m) rod .................................................................. 64? Figure 3.17 Sampler energy-117.5 ft (35.8 m) rod ........................................................... 65? Figure 4.1 SPT Analyzer ................................................................................................... 72? Figure 4.2 Instrumented subassembly............................................................................... 73? Figure 4.3 Field sheet-blank ............................................................................................. 76? Figure 4.4 Field sheet-filled out ........................................................................................ 77? Figure 4.5 Field notebook ................................................................................................. 78? Figure 4.7 Final instrumentation setup prior to testing ..................................................... 82? Figure 4.8 Representative force and velocity wave trace ................................................. 84? Figure 4.9 PDAW information screen .............................................................................. 86? Figure 4.10 PDIPLOT summary-ALDOT drill rig SE 9299 ............................................ 89? Figure 4.11 Energy calibration certificate-ALDOT SE9299 ............................................ 91? Figure 4.12 Box and whisker legend (SAS 9.2) ............................................................... 93? ? xiii Figure 4.13 Energy box plots-ALDOT (Blow to Blow) ................................................... 95? Figure 4.14 Hammer operation rate box plots-ALDOT (blow to blow) ........................... 96? Figure 4.15 ETR vs. rod length-ALDOT .......................................................................... 97? Figure 4.16 Rod length study comparison-ALDOT & NCDOT ...................................... 98? Figure 4.17 Rod length study comparison-all studies ....................................................... 99? Figure 4.18 Energy traces for rod length 19.3 ft (SPT blow count 7-13-20) .................. 100? Figure 4.19 Energy traces for rod length 29.3 ft (SPT blow count 11-20-26) ................ 101? Figure 4.20 Energy traces for rod length 39.3 ft (SPT blow count 8-15-22) .................. 101? Figure 5.1 ETR box plots ................................................................................................ 111? Figure 5.2 Histogram of ETR averages .......................................................................... 111? Figure 5.3 Histogram of single ETR records (hammer blows) ....................................... 112? Figure 5.4 Hammer operation rate box plots .................................................................. 114? Figure 5.5 ETR COV distribution ................................................................................... 116? Figure 5.6 BPM COV distribution .................................................................................. 117? Figure 5.7 SPT test site ................................................................................................... 127? ? ? ? ? 1 ? CHAPTER 1: INTRODUCTION ? ? 1.1 The Standard Penetration Test The standard penetration test (SPT) has been widely used for geotechnical explorations for nearly a century. The origin of the SPT dates back Charles Gow of the Raymond Concrete Pile Company (Figure 1.1). The original purpose of the test was to measure the density of soil formations using a standard procedure from which soil correlation combined with experience could be used for foundation design (Davidson et al., 1999). Over the years, its widespread use has led to an abundance of published empirical correlations relating soil penetration resistance to various engineering properties of soil. The most common SPT correlations are concerned with relating soil resistance to bearing capacity, shear strength parameters, soil modulus, and liquefaction potential. Figure 1.1 Raymond Concrete Pile Company ? 2 1.2. ASTM D 1586 Standard SPT testing equipment and procedures are governed by the ASTM International (ASTM) standard D 1586 (ASTM, 2008). This standard describes the test method for split-barrel sampling of soils for soil classification and determination of penetration resistance. Although the name implies strict standardization, the standard allows some degree of latitude with respect to the type of equipment used for drilling and sampling. In general, the 1586 standard specifies the recommended type and size of drill bits, augers, and drill rods that are suitable for preparing a borehole for sampling purposes. It also describes the standard hammer weight, sampler dimensions, and testing procedures to be used in order to obtain representative soil penetration resistance values. 1.3 SPT Sampling SPT programs are executed by mobilizing a drill rig to a test site. The most common types of drill rigs include all-terrain vehicles (ATV), track-mounted drill rigs, and truck-mounted drill rigs. However, drill rigs can also be mounted on barges, and other exotic off road vehicles. The type of vehicle selected for the job often depends on the existing site conditions and its transportation capabilities. Other considerations include the type and depth of geology to be sampled. The soil boring process begins after the drill rig has mobilized to the site and after the boring locations have been determined. Most SPT drill rigs are equipped with a rear engine block which provides the necessary horsepower for the rotary boring operation. Soil borings are performed vertically, to a prescribed depth, and are used to remove the overlying soil using either a hollow-stem auger (dry method) or a mud-rotary (wet ? 3 method) technique. When the sampling depth has been reached, the boring process stops and the drilling personnel prepare to perform the SPT. In Figure 1.2, an ATV drill rig is shown about to perform a hollow-stem auger soil boring near a bridge abutment in Alabama. As previously mentioned, the SPT has two objectives. The first objective is to retrieve a physical soil sample for soil classification, and the second objective is to obtain an estimate of the soil strength at the sampling depth. Both of these objectives are achieved simultaneously during the sampling process. Figure 1.2 Hollow-stem auger drilling The sampling process begins by attaching a split-spoon sampler of standardized dimensions to the bottom end of a string of drilling rods (Figure 1.3). Once attached, the drill rod string and sampler are lowered to the bottom of the pre-bored hole. It is common for a length of drill rods, greater than the depth of the boring, to be attached to Auger Drill Rods ? 4 the sampler in order for the drill rods to ?stick up? out of the bored hole and above the ground surface approximately three to five feet. Once the drill rods and sampler are in place, the SPT hammer is positioned on top of the drill rod string just prior to performing the test. With the hammer in place, a member of the drilling crew marks three six-inch Figure 1.3 SPT sampling process (Mayne et al., 2001) increments on a section of drill rod exposed above the ground surface. These markings represent the penetration distance that the sampler will experience during the test. After the six-inch increments have been marked, the SPT hammer system is engaged and allowed to repeatedly strike the top of the drill rods until the sampler has penetrated into the borehole a distance of eighteen inches. During the test, the number of hammer blows ? 5 for each six-inch increment is recorded. The number of blow counts required to drive the sampler the last twelve inches out of the eighteen-inch total is called the N-value. The N- value is the primary engineering parameter obtained from the SPT and is the blow count representation of the penetration resistance of the soil. The N-value has units of blows per foot (BPF). When the SPT is complete, the sampler and drill rods are removed from the borehole and the soil inside of the sampler is removed and classified before the next SPT. This process is typically repeated at intervals of five or ten feet depth until enough SPTs have been performed to sufficiently characterize subsurface conditions for the foundation or earthwork under consideration. The final end-product of the SPT test is called a boring log. The boring log is a record of site subsurface conditions and is used to stratify soil layers as well as delineate zones of soil type and strength. As an illustration, a representative boring log is provided in Figure 1.4. In this figure, the right and left side of the boring log show the respective soil classification and SPT N-values. 1.4 The SPT Hammer The SPT hammer system is a percussive instrument that provides dynamic impact energy by dropping a 140-pound weight. The drive weight is lifted a distance of 30 inches and then allowed to free-fall and strike the top of the drill rod string. The maximum theoretical potential energy available to drive the sampler is 4200 in-lbs (350 ft-lbs). The apparent soil penetration resistance, or N-value, depends on the energy transferred from the hammer to the drilling rods. Briefly stated, high energy efficient hammers will produce more sampler penetration per blow, and smaller apparent N- ? 6 ? Figure 1.4 SPT boring log values, compared to a hammer system that is less energy efficient. The N-value is therefore inversely proportional to the magnitude of transferred energy. There are two types of SPT hammer systems, which can be classified as either manual or automatic. The manual hammer system, which was the only type of hammer available prior to the 1980?s, commonly consisted of a ?rope and cathead? lift and release mechanism (Figure 1.5). The cathead is a rotating drum that supplies the motive power Soil Classification N-Value ? 7 for lifting the drive weight during the test. The automatic hammer, which is currently the most widely used hammer system, uses a hydraulic lifting mechanism to repeatedly lift and release the drive weight (Figure 1.6). The automatic hammer is covered extensively in Chapter 2. There are vast differences in the operational performance between the manual and automatic hammer. The automatic hammer is designed to supply a repeatable sequence of hammer impacts, which correspond to a relatively consistent transfer of impact energy. The manual hammer does not have the precision of the automatic hammer and often provides somewhat of a large variation in transferred energy. This occurs because Figure 1.5 Manual safety hammer (Kelley and Lens, 2010) Rope & Cathead Safety Hammer ? 8 Figure 1.6 Automatic hammer ? the efficiency of the manual system is dependent on the ability of the driller to consistently lift and release the drive weight 30 inches between hammer blows. Factors such as operator fatigue and number of turns of rope around the cathead often play a critical role when evaluating the N-values produced by the manual hammer system. The historical average energy transfer efficiency for the manual hammer is estimated to be 60 %. This is significantly lower than the 80 % average transfer efficiency typically attributed to the automatic hammer. Despite the variability of the manual hammer, its use was dominant for many decades, and most of the correlations for soil parameters based empirically on N-values were obtained from its energy transfer efficiency. Due to the emergence and popularity of the automatic hammer, which is more efficient, an energy standardization approach Automatic Hammer ? 9 has been adopted in the U.S., and is used to normalize the N-value results to a 60% reference energy level. 1.5 N-value Normalization The N-value is the main engineering parameter obtained from the SPT. Because of its widespread use, variability of N-values has been well documented. Common engineering practice accepts that these values can be highly variable and often are dependent upon the ability of the driller and type of testing equipment used. To quote ASTM D 1586 ?Variations in N-values of 100% or more have been observed when using different standard penetration test apparatus and drillers for adjacent borings in the same soil formation?. Variation of N-values has also been noticed when comparing N-values from similar hammer systems, i.e., two or more automatic hammers, in the same soil conditions, and sampling at the same time. This variation is the result of individual hammer systems being more or less efficient at transferring energy, even if they are from the same manufacturer. The engineering community generally agrees that the most effective way to remove some of the N-value variability is by measuring the amount of energy transferred to the drill rods during the SPT. If the amount of transferred energy is known, the N- values can be corrected to a 60 % reference energy level using a simple calibration equation ? null nullnull nullnull nullnullnullnullnull null null nullnullnullnullnullnullnullnull null nullnull null? (1.1) where ? 10 null nullnull = Penetration resistance adjusted to 60 % drill rod energy null nullnullnullnullnull = Penetration resistance measured in the field null nullnullnullnullnullnullnullnull = Maximum transferred energy entering the drill rod (from top measurements) null nullnull = Historical energy transfer efficiency for manual hammers (60 %) 1.6 Research Objective The Alabama Department of Transportation (ALDOT) routinely uses SPT N- values for their geotechnical designs. Currently, ALDOT is transitioning from the traditional Allowable Stress Design (ASD) methodology to the modern Load and Resistance Factor Design (LRFD) standards. With their move to LRFD, the Federal Highway Administration (FHWA) is recommending SPT energy calibration for each SPT drill rig as a method to account for N-value variability in the design process. Therefore, the primary research objective was to determine the average energy transfer efficiency for each of ALDOT?s SPT hammers, as well as develop a permanent energy testing program that will meet their future SPT needs. The secondary research objective focused on evaluating the variation of automatic hammer transfer efficiency from an SPT energy database. The energy records in the database were obtained under Nuclear Quality Assurance Level I standards (NQA-1). A broad-based transfer efficiency value and summary statistics for the CME automatic hammer are presented. Supporting multiple regression analyses were also performed on the data in order to evaluate the average effect of four variables affecting energy transfer for drill rods less than 50 ft. These variables include the hammer operation rate, rod length, penetration resistance, and rod type. ? 11 ? ? ? ? CHAPTER 2: BACKGROUND 2.1 Introduction This section is an overview of the general progression of stress wave theory leading up to field energy measurements. The following discussion is presented in a more qualitative format than has traditionally been used and should be helpful to the reader in the understanding of the energy measurement process. A background summary on the CME automatic hammer has also been provided at the end of the chapter. 2.2 One-Dimensional Wave Equation Engineering applications related to the dynamic impact of elastic rods are primarily concerned with the transformation of energy into motion via free longitudinal wave oscillations. Assuming that plane cross-sections of the rod remain plane during impact, the one-dimensional wave equation can be obtained by equating the inertia forces to the elastic forces generated in a single rod element. Since materials, such as steel, do not seriously depart from perfectly elastic behavior (for small deformations), the measured stress wave behavior often agrees well with the predictions of elastic theory (Kolsky, 1963). This is likely the primary reason that stress wave measurements using the wave equation have gained such widespread acceptance in engineering practice. As described by Fischer (1959), one-dimensional propagation of a compressional stress wave disturbance in an elastic rod can be described by the linear partial differential equation ? 12 ? ? null null null nullnull null nullnull null null null null nullnull null ? (2.1) Where null is the particle displacement of any point null along the rod, and with null and null being the velocity of stress wave propagation and the time associated with passage of the stress wave, respectively. The velocity of stress wave propagation, traditionally called wave speed, is related to the modulus of elasticity null and mass density null of the rod by ? null null nullnull/null (2.2) The value of null by itself is considered the fundamental wave speed of the material and is assumed to be constant for steel. Equation 2.1 is the one-dimensional wave equation which has a general solution ? nullnullnull,nullnull null nullnullnullnullnullnullnullnullnullnullnullnullnullnullnull (2.3) This general solution implies that the displacement pattern in a rod can consist of two wave functions null and null, which are traveling in opposite directions. The functions null and null must satisfy the boundary conditions for the problem under consideration. Since the boundary conditions of the stress wave are the initial strain and particle velocity, interest is directed toward the derivatives of null and null where, by the chain rule: ? nullnull nullnull null null null nullnullnullnullnullnullnullnull null nullnullnullnullnullnull? (2.4) ? 13 and ? nullnull nullnull nullnullnull null nullnullnullnullnullnullnullnullnull null nullnull nullnullnullnull? (2.5) Because equations 2.4 and 2.5 represent both the strain and particle velocity in a finite section of the rod, the problem is generally solved as these quantities can physically be measured or approximated. Here it should be noted that the arguments ? nullnullnullnullnullnull & nullnull nullnullnullnull (2.6) indicate that the null,null plane is divided into regions of constant strain and particle velocity having stress waves of constant slopes null null. Therefore, the actual stress wave measurements in the field will be concerned with measuring the change in strain and particle velocity due to passage of a constant velocity stress wave (which is propagating at the fundamental wave speed of steel). The implications of this lead to the relationship between force and particle velocity from which wave transmission and reflection theory are built upon. 2.3 Proportionality between Force and Particle Velocity A thorough discussion on proportionality was provided by Rausche (1981), and is briefly summarized here to illustrate the relationship between force and particle velocity. When the end of an SPT rod is struck by a rigid mass, a zone of compression is generated which creates strain in the rod. The strain causes a compressive force to emerge, and simultaneously produces a motion of rod particles. The rod particles travel with a speed null, which is often referred to as the particle velocity. Since this velocity is associated with ? 14 a particle of mass null, over time it creates an inertial force nullnull ?nullnullnull? (Newton?s second law of motion). This inertia force is in balance with the strain force, and since it takes time for the rod particles to accelerate, the strain in the rod will be transferred at the wave speed of the rod material. It can be shown that the measured strain and particle velocity in the rod are related to the wave speed by ? ? nullnull null null ? (2.7) Equation 2.7 can be expanded to represent the stress and force in the rod: ? ? nullnullnull null null ? (2.8) ? ? nullnullnull nullnull null ? (2.9) ?? The term nullnull in Equation 2.9 represents the rigidity, or static stiffness of the rod, whereas the term nullnull/null represents the dynamic stiffness of the rod (null is the modulus of elasticity and null is the cross-sectional area). nullnull/null is commonly referred to as the impedance and it is the proportionality constant which relates the stress wave force to its particle velocity. The impedance is the force with which a rod opposes a sudden change of velocity by one unit. ? 15 The significance of this relationship is such that when wave propagation exists in only one direction the measured force will always be balanced and proportional with the particle velocity times the impedance, and is commonly illustrated by ? ? nullnullnullnull ? (2.10) ? where ? ? nullnull nullnull null ? (2.11) 2.4 Transmission and Reflection of Waves Boundary conditions in the SPT can be regarded as impedance contrasts existing before and after an interface. These boundary conditions are typically encountered at three locations: 1. At the top of the drill rod where the striking end of the hammer meets the struck end of the rod. 2. At drill rod joints where the rods are subsequently connected in order to drill to increasing depths. 3. At the location of the split-spoon sampler which is in contact with the bottom of the borehole. One-dimensional wave theory suggests that wave transmission behavior can be characterized by considering force equilibrium and spatial velocity conditions existing at an impedance interface. With these considerations, the pertinent wave transmission and ? 16 reflection equations can be derived, which form the basis for the stress wave sign convention used in practice (Figure 2.1). Figure 2.1 Stress wave sign convention (modified from Howie et al., 2003) The following statements about wave transmission have been paraphrased from Howie (2003) and verbally describe the wave behavior depicted in Figure 2.1: 1. Compressive waves have particle motions that occur in the same direction as wave propagation. 2. Tensile waves have particle motions that occur in the opposite direction of wave propagation. Incoming Compressive Wave 1 2 Particle Velocity (-) Transmitted Compressive Wave Particle Velocity (+) 1 2 Transmitted Tensile Wave Reflected Tensile Wave Particle Velocity (+) Particle Velocity (-) 1 2 Transmitted Tensile Wave Particle Velocity (-) Incoming Tensile Wave Reflected Compressive Wave Particle Velocity (-) 1 2 Reflected Tensile Wave Incoming Compressive Wave Particle Velocity (+) Transmitted Compressive Wave Particle Velocity (+) Increase in Impedance Increase in Impedance Decrease in Impedance Decrease in Impedance Reflected Compressive Wave Incoming Tensile Wave ? 17 3. Incident waves will propagate through an impedance interface without changing type, i.e. transmitted compressive waves will remain compressive and tensile waves will remain tensile. 4. An increase in impedance will result in a reflection without change in wave type, i.e. compressive waves will causes compressive reflections. 5. A decrease in impedance will result in a reflection of the opposite wave type, i.e. compressive waves will cause tensile reflections. 2.5 Source of Energy in the SPT ? As mentioned in Chapter 1, the SPT is standardized to deliver a theoretical energy of 350 ft-lbs. This theoretical energy is achieved by dropping a 140-lb weight a distance of 2.5 ft. Considering this distance, the theoretical free-fall velocity null null of the weight can be determined ? ? null null null null2nullnull ? (2.12) where null = Gravitational acceleration null = Height of free-fall Because the theoretical free-fall velocity is now known, the theoretical kinetic energy of the hammer can be calculated: ? ? null null null 1 2 nullnull null null (2.13) ? 18 ? where null = Mass of weight During impact, the kinetic energy of the drive weight experiences energy losses that are likely due to friction. The actual kinetic energy available will be less than the theoretical potential energy of 350 ft-lbs. The ratio of these two quantities is called the hammer efficiency null null , and is one way to classify hammer performance. The hammer efficiency is represented by ? null null null null null nullnull ? (2.14) where null null = Hammer efficiency null null = Kinetic energy nullnull = Theoretical potential energy After impact, the kinetic energy of the hammer is progressively transferred to the anvil and drill rod string beneath it. There are additional energy losses during the transfer process, and the actual magnitude of energy transferred to the drill rods will be less than both the theoretical potential energy and the kinetic energy at impact. The ratio of the transferred energy to theoretical potential energy is known as the energy transfer ratio (ETR). The hammer efficiency null null has the greatest effect on ETR, but the ETR is ? 19 currently the primary quantity used to assess SPT hammer performance (because it is this energy capable of performing work). The energy transfer ratio is defined as ? nullnullnull null nullnullnull nullnull ? (2.15) ? where nullnullnull = Energy transfer ratio nullnullnull = Maximum transferred energy to drill rods The significance of EMX in equation 2.15 depends on the method used to measure the maximum energy. The first method of energy measurement is called the EFV method, and is currently the only method recommended by ASTM. The second method is called the EF2 method and is typically no longer used due to measurement inaccuracies. A brief explanation of each method follows. ? 2.6 EFV Method of Energy Measurement The energy entering the rods can be obtained by considering the amount of work performed on the rods ? ? nullnullnullnullnullnull ? (2.16) where ? 20 null = Work null = Force nullnull = Incremental distance which can be expressed as a function of time ? ? nullnullnullnull nullnullnullnullnull nullnullnullnullnullnull nullnull nullnull nullnull null nullnullnullnullnullnullnullnullnullnullnull ? (2.17) where nullnullnullnull = Energy as a function of time nullnullnullnull = Force as a function of time nullnullnullnull = Particle velocity as a function of time nullnull = Time increment These measurements are obtained in the field using an instrumented subassembly containing strain gages and accelerometers (Figure 2.2). ? 21 Figure 2.2 Instrumented subassembly To satisfy the requirements of Equation 2.17, the force and particle velocity can be determined from the measured strain and acceleration from the stress wave by ? ? nullnullnullnullnull ? (2.18) ? ? nullnullnullnullnullnull ? (2.19) where null = Measured drill rod strain null = Measured drill rod acceleration null = Modulus of elasticity of drill rods null = Cross-sectional area of drill rods Piezoresistive Accelerometers Glued-on Strain Gages Drill Rod Sub ? 22 The total amount of transferred energy from an SPT hammer impact is equal to ? ? nullnullnullnull nullnullnull nullnullnullnullnullnullnullnullnullnullnullnull null null ? (2.20) which is integrated over the entire time length of the force and velocity record to find the maximum value of transferred energy. This method of energy measurement is called the EFV method since both force and particle velocity measurements are obtained. 2.7 EF2 Method of Energy Measurement Energy measurements reported prior to the early 90?s were likely the result of the force-squared method. The force-squared method, commonly referred to as the EF2 method, exclusively used strain measurements as the basis for energy evaluation in the SPT. During that era, accelerometer technology capable of measuring large acceleration frequencies in the SPT were thought to be unreliable (ASTM, 2010), and by default, only strain measurements were used. The EF2 method takes advantage of the theoretical proportionality between force and velocity and substitutes the measured force divided by the impedance in place of velocity in Equation 2.17 to obtain ? ? nullnullnullnull nullnullnull null null nullnull null nullnullnullnull null nullnull null null null ? (2.21) ? 23 where null null = Time where the incident compression wave goes negative After substitution, the reciprocal of the impedance is brought to the front of the integral as a constant and the square of the measured force is integrated until the incident wave goes negative. The energy measured from the EF2 method was often accompanied by a series of correction factors in order to estimate a nominal value of transferred energy. These correction factors, which take into account the position of the load cell, rod length, rod mass, and stress wave velocity dispersion, were later found to be incorrectly applied (ASTM, 2010). There are additional drawbacks to the EF2 method. Because this method relies on the theoretical proportionality of force and velocity, it can only be accurate provided there are no wave reflections from rod joints or changes in rod cross-sectional area. Furthermore, since force integration is designed to abruptly stop once the initial force signal goes negative, unreliable energy measurements are recorded in certain situations. Large values of energy, higher than the theoretical maximum potential energy, would be measured when testing in high N-value soils. In this situation, the initial compressive wave would fail to go negative (no tensile response) and integration of the reflected compressive wave would continue throughout a longer time duration and would report artificially high ETR. Similarly, low values of energy would be measured as a result of drill rods having extremely loose rod joints. In this situation, the integrated force signal ? 24 would prematurely go negative and the integrated force signal would report artificially low ETR. 2.8 Generalized Wave Transmission This section illustrates the behavior of force and velocity traces measured during an energy test. Consider Figure 2.3 which shows an image of ideal stress wave transmission during the SPT. The x-axis represents the time scale of the wave event and the y-axis represents the force scale. The measured particle velocity is converted to a force by multiplication of the rod impedance, and can be compared to the force signal obtained from the strain measurements. Additionally, the time scale, which is in milliseconds, is often represented as a function of the rod length. Knowing the fundamental wave speed null of the drill rod, as well as the length of the drill rod, the time associated with wave reflections along the length of the rod can be evaluated. The time required for the stress wave to travel down the length of the rod, reflect at the sampler, and then return to the sensors is known as 2null/null. When a SPT hammer strikes the top of the drill rod, it creates a stress wave that propagates down the rod, toward the sampler. Transmission of the stress wave is not instantaneous and is progressively transferred to the drill rods as long as the hammer and rods remain in contact. The incident stress wave created from the impact is compressive, and imparts a positive force (compression) and positive proportional particle velocity (down) to the top of the rod. As the stress wave propagates it eventually passes the location of the sensors, which are often located only a few feet away from the top of the ? 25 Figure 2.3 Wave transmission (Howie et al., 2003) rod. After passing the sensors, it continues to travel and will typically encounter impedance contrasts existing at the drill rod joints. These contrasts, which are often due to differences in rod cross-sectional area, generate wave reflections that begin to travel up ? 26 the rod, and are measured by the sensors at a later time. The type and magnitude of the reflected wave depends on the impedance ratio existing at the joint interface. At time null/null, the stress wave will reach the sampler and begin to distribute its energy into the ground surface, creating sampler penetration. If the oncoming stress wave force is greater than the resisting force of the soil, a tension wave will be generated, and will reflect from the end of the sampler. This tension wave will travel up the length of the drill rod where its full effect will be measured at the sensors shortly after 2null/null. Arrival of the tension wave is evident by the decreasing force (negative, tension) and positive particle velocity (down) values of the stress wave. It is the positive, downward particle velocity of the tension wave that begins to pull the rods and sampler down creating penetration. Similarly, if the oncoming stress wave force is less than the resisting force of the soil, a compression wave will be generated, will reflect upward, and will contain a positive force (compression) and negative particle velocity (upward), which will not cause permanent sampler penetration. 2.8.1 Energy Transmission and Sampler Displacement The magnitude of energy transferred to the rods during an SPT hammer blow depends on the value of the force and velocity signals measured at the sensors. The measured sampler displacement also depends on the value of the measured velocity, which is determined by integration of the velocity signals (double integration of the acceleration signals). It should be briefly mentioned that energy transmission in the SPT can be divided into two categories. The first category is long drill rod energy transfer, which is the ? 27 simplest case, and generally only depends on the hammer?s efficiency and rod cross- sectional area. For long drill rods (rod lengths greater than about 50 ft), most of the hammer?s energy is transferred to the drill rods prior to the drill rod separating from the hammer during penetration. The second category is short rod energy transfer, and is a more complicated case to consider. Energy transmission for short rods (rod lengths less than 50 ft) depends on the efficiency of the hammer, rod cross-sectional area, secondary hammer impacts, and to some extent, the soil penetration resistance. Three examples are provided below in order to illustrate both types of behavior. The first two examples will discuss the energy transfer behavior for short drill rods, and the third example will discuss the energy transfer for long drill rods. Figure 2.4 shows a representative force and velocity trace (top) and an energy and displacement trace (bottom) obtained from a CME automatic hammer. The drill rod size was AWJ and the rod length was 19.3 ft (short drill rod classification). The total rod length includes part of the instrumented subassembly, the drill rod combination, and the split-spoon sampler. The SPT blow counts for the three 6-inch increments were 7-13-20. However, this figure shows the wave trace from the fourth blow of the SPT sequence, and is representative of low penetration resistance. After impact, and prior to time 2null/null, the force and proportional velocity created by the stress wave are overlapped and there is a steep increase in measured energy being transferred from the hammer. There is also an increase in the measured displacement of the drill rod due to the displacement of rod particles at the top. ? 28 Figure 2.4 EFV & E-D Trace-short rod (19.3 ft)-low penetration resistance As previously mentioned, when the stress wave reaches the sampler ( null/null) it begins to distribute its energy to the soil, and generates a tension wave that reflects up the drill rod. Shortly after time 2null/null, the full magnitude of the tension wave will arrive at the top of the rod and create separation between the hammer and rods. The initial separation distance between the hammer and drill rods depend on the resisting force of the soil and the magnitude of stress wave energy distributed to the soil from the incident wave. Since the value of force and velocity are greater than zero prior to the arrival of the tension wave, there is still remaining energy in the hammer that has not yet been transferred. Thus, the transfer of energy is prematurely cut off by the arriving reflected tension wave. Force Velocity*Z Energy Trace Displacement Trace Secondary Impact 2l/c ? 29 During the penetration process, and after the hammer and rods have separated, the energy inside of the drill rod repeatedly cycles through the drill rod, increasing in the downward transmission and decreasing in the upward transmission (but does not yet exceed the energy measured at 2null/null). Each wave cycle transmits a portion of its energy into the ground surface, and since the particle velocity is always positive (down), a step- wise displacement pattern is created. At a later time, the hammer strikes the drill rods a second time. This is known as a secondary hammer impact, and is evident by the positive force and positive particle velocity near the end of the time scale in Figure 2.4. The additional energy transmitted from this secondary impact produced a slight increase in permanent penetration of the sampler. The maximum measured ETR for this wave trace was 86.4 % with an estimated sampler penetration of 1.3 inches (N-value ~ 9 BPF). The second example is for the same short rod combination (19.3 ft) and same SPT hammer system (CME Auto). The force and velocity trace (top) and the energy displacement trace (bottom) shown in Figure 2.5 are representative of hammer blow number thirty-eight out of the 7-13-20 SPT sequence. This figure therefore illustrates the energy transmission process during the end of SPT sampling in moderately dense soil. The energy transmission for this example is approximately the same as the previous example prior to time 2null/null and has the same initial increase in energy and displacement. At time null/null, the energy from the stress wave reaches the sampler and begins to distribute its energy to the soil. Since the penetration resistance is now greater during the end of driving, the soil accepts more of the stress wave energy from the incident wave and there is less wave activity after 2null/null. ? 30 Figure 2.5 EFV & E-D Trace-Short Rod (19.3 ft)-moderate penetration resistance A small tension wave emerges from the bottom of the sampler, the full magnitude of which is measured shortly after 2null/null. Because the soil is dense, the sampler penetration is reduced, and the SPT hammer generally follows ?better? or has more contact with the drill rods during the penetration process. The increased hammer contact allows more of the hammer?s energy to be transferred to the top of the drill rods. The additional hammer energy is measured at a later time and can be seen from the second step in energy between time 2null/null and 4null/null in Figure 2.5. Just after 4null/null, there is a secondary hammer impact that transmits the remaining hammer energy, and only slightly contributes to permanent sampler penetration. This secondary impact occurs much Steps ? 31 sooner than that of the previous example. This is because the separation distance between the rods and hammer is much less when sampling in moderately resistant soil. As the soil resistance increases, the time associated with a secondary hammer impact will decrease, and will occur earlier on the time scale (will move to the left on the scale). The maximum measured ETR for this wave trace was 90.6 % with an estimated sampler penetration of 0.35 inches (N-value ~ 34 BPF). The final example is for the case of long drill rods. The rod length is 49.3 ft and the SPT blow count sequence is 7-22-34. The wave trace shown in Figure 2.6 is representative of the first hammer blow. Perhaps the most significant characteristic to notice in this wave trace is that the values of force and proportional velocity are approaching zero (x-axis) at 2null/null. This is an indication that the hammer has transmitted the majority of its energy to the drill rod before arrival of the tension wave. After 2null/null, the transfer of energy and sampler displacement is similar to that of the first example with low penetration resistance and the stress wave can be seen cycling throughout the drill rod creating a step-wise displacement pattern. ? 32 Figure 2.6 EFV & E-D Trace-Long Rod (49.3 ft)-low penetration resistance For this case, there is no dependency on the interaction between the hammer and rod during the penetration process, and therefore does not depend on soil resistance. Secondary hammer impacts are also not present. Secondary impacts are sometimes noticed for long drill rod combinations. However, the magnitude of the force and velocity is very small which generally does not contribute to measured energy and permanent sampler penetration. The maximum measured ETR for this case was 90.2% with an estimated sampler displacement of 1.26 inches. One last statement should be made about energy transfer between the short rod and long rod cases previously discussed. Based on the wave behavior of Figures 2.5 and 2.6, the transferred energy for the long rod case can be measured during the short rod case when the soil penetration resistance is large enough. The measured ETR for the short rod case driven into dense soil was 90.6% and the ETR measured for the long drill rod case was 90.2 %. The average measured ETR for all SPT hammer blows for the long rod combination was 90.6%, which is likely to be the baseline transfer efficiency for this CME automatic hammer system. ? 33 2.9 CME Automatic Hammer The Central Mine Equipment Company (CME) patented the automatic hammer in the Fall of 1983 (Rassieur, 1983). The automatic hammer provides a relatively consistent hammer impact and subsequently less variation in transferred energy compared to the manual hammer system. 2.9.1 Hammer Automation The drive weight lifting mechanism is the device that automates the dynamic impact in the SPT. The lifting mechanism is attached to the side of the cylindrical housing tube (Figure 2.7). The lifting mechanism consists of a lower drive sprocket, an upper idler sprocket, sprocket bearings, a drive chain, a chain guide, and a lifting lug. A hydraulic motor is attached to the outside of the housing tube and a portion of this motor extends into the housing where it is bolted to the drive sprocket. The 140-pound drive weight is also located inside the housing tube. The drive weight, which is approximately 19.75 inches in length, is made of lead and is encased in a steel sleeve. Automation of the drive weight begins when supply pressure from the rear engine block motor is transferred to the hydraulic motor of the hammer. Once this occurs, the sprockets and chain will begin to rotate. The lifting lug, which is attached to the chain, rotates with the chain and at the same speed and eventually lifts the drive weight up off of the anvil. During upward travel, and at the end of the chain length, the drive weight is thrown upward a certain distance as the lifting lug releases the weight and begins to travel back down to the location of the motor where it can lift the drive weight once ? 34 Figure 2.7 CME hammer operational components (modified from Rassieur, 1983) ? 35 again. Thus, the lifting lug acts as a cam that turns the rotational motion of the chain and sprocket system into linear, or vertical motion of the drive weight. It is important to emphasize that at the top of the chain (location of idler sprocket) the lifting lug does not actually drop the drive weight as the commonly used phrase ?drop height? suggests. Instead, the lifting lug throws the drive weight a certain distance to achieve the so called drop height. Fall height is a more accurate description that should be used when describing the end result of the releasing mechanism. As will be discussed in Chapter 3, the drive weight throw height is a function of the hammer operation rate. 2.9.2 Drive Weight Viewing Slot An often overlooked feature of the CME automatic hammer is the viewing slot located on the housing tube just a few inches above the idler sprocket. The viewing slot window allows personnel performing the field investigation to verify whether or not the correct drive weight fall height is being achieved. For most geotechnical applications, the prescribed fall height is 30 inches with an allowable tolerance of ? 1 inch. However, it is not uncommon for organizations to manually reduce this distance in order to achieve a reduced prescribed value of transferred energy (often 60%). Nevertheless, the fall height can be visually monitored by marking the viewing slot using known dimensions from the bottom of the hammer housing. If a reduced fall height is desired, modification of the viewing slot window will be necessary. Figure 2.8 depicts the dimensions recommended by CME in order to meet a 30 inch fall height requirement. ? 36 Figure 2.8 Drive weight viewing slot (dimensions from CME operations manual) ? 37 CHAPTER 3: LITERATURE REVIEW 3.1 ASTM D 4633-10 ASTM D 4633-10 (ASTM, 2010) describes the test method for performing energy measurements during the standard penetration test. This standard documents the significance and use of the test along with the appropriate testing equipment and procedures that should be followed in order to obtain reliable hammer transfer efficiency. The most prominent details of the standard include: ? The standard recommends force and velocity measurements to characterize the stress wave energy (EFV method). ? Data acquisition technology: The standard allows both digital and analog data acquisition systems that meet the anti-aliasing frequency requirements. For analog systems, the sampling rate should be at least 5 times the low-pass filter frequency. For digital systems, the sampling rate should be at least 10 times the low-pass filter frequency. ? Force measurement: The standard recommends using an instrumented rod section with symmetrically arranged foil strain gages in a full bridge circuit. ? 38 ? Acceleration measurement: The standard requires a minimum of two accelerometers capable of measuring accelerations to at least 10,000 g, and which have a useable frequency response to at least 4.5 kHz. ? The standard recommends that energy evaluation of hammer systems be limited to moderate N-values within a range of 10 to 50 blows per foot. The previous recommendation, based on the 2005 standard recommended an N-value range between 5 and 50 blows per foot. ? The standard reports that energy evaluation of hammer systems is more reliable when the drill rod length is at least 30 ft. ? The energy results should be averaged and reported for impacts associated with the observed N-value. The 2005 standard did not have this limitation and apparently allowed all energy measurements to be averaged, not just those associated with the N-value. ? The standard recommends performing energy measurements for at least 3 SPT sampling depths, with 5 depths preferred. This statement means that enough SPT energy data should be obtained in order to accurately characterize the average energy transmission for a given hammer system. ? The prime method of assessing data is to evaluate individual pairs of force and velocity signals. Due to small wave reflections that are often generated from the bottom of the subassembly, the Force and Velocity Proportionality (FVP) method of assessing data quality is not as accurate in SPT testing as it is in pile driving. ? 39 Individual force and velocity signals should return to zero at the end of the time record. It is common for the velocity signals to ?wander off in space? during testing. This is caused by the sensors coming loose during testing or even a malfunction of the sensors. 3.2 EFV Transfer Efficiency in Literature Table 3.1 contains a summary of energy transfer efficiencies obtained using the force and velocity method of energy measurement. The data in the table were compiled from documented efficiencies from years ranging from 1994 to 2010. While constructing the table, it was found that the level of data defining each ETR was not consistently reported. Some studies reported the number of average records while other studies reported the number of overall averages, which would correspond to the average of each average record for a single testing event. Nevertheless, the significance of the ETR should be based upon the level of data used to determine its value. As shown in Table 3.1, the range of reported ETRs for non-CME automatic hammers varied from 49% to 82% with an average of 70.2%. The range of ETRs from the CME automatic hammer group was from 75% to 84.5% with an average of 80.7%. Manual hammer systems in the table experienced ETRs that ranged from 35% to 70.2% with an average of 57.8%. Although this study is focused on evaluating the variation of energy transfer for the CME automatic hammer, the transfer efficiencies for other automatic hammers, as well as manual hammers, have also been included in the table since they were acquired using the EFV method. The coefficient of variance (COV) for each study was either documented in the literature or was calculated from the reported standard deviation. The ? 40 COVs were provided to show a normalized measure of dispersion for comparative purposes (ratio of standard deviation to the average). ? Table 3.1 Historical EFV ETR 3.3 Variation of Transfer Efficiency The COVs for CME automatic hammers listed in Table 3.1 ranged from 2.5% to 10%. The range of COVs for all other automatic hammers was from 4% to 15%. The manual hammer category experienced COVs that varied from 3.2% to 22 %, which is Year Study Hammer Description # of Hammers # Averages # Overall Averages ETR STD COV Auto - CME 1 8 - 81.4 - 5.8 Auto - Other 1 5 - 68.5 - 10.8 Auto -Other (Mud Rotary) 1 4 - 72.8 - 5.8 R&C - Safety 1 8 - 51.4 - 4.8 R&C - Safety (300 lb Hamme 1 5 - 74.7 - 3.2 Safety w/ Spooling Winch 1 8 - 23.1 - 17.8 Auto - CME 2 - - 80 2 2.5 Auto - Rupe 1 - - 75 3 4.0 R&C - Safety 1 - - 67 6.5 9.7 Auto - CME - - 10 75 - 9.0 Auto - Hydraulic - - 5 69 - 15.0 Auto - Other - - 6 49 - 13.0 R&C - Safety - - 15 63 - 12.0 Donut - - 3 43 - 22.0 Spooling Winch - - 3 35 - 8.0 Auto - CME 12 101 - 80.1 8 10.0 Auto - Diedrich 2 12 - 76 5.3 7.0 R&C - Safety 43 227 - 66 10.7 16.2 Auto - CME 1 12 - 81.4 3.9 4.8 Safety 1 12 - 70.2 8.5 12.1 Donut - Sprague & Henwood 1 8 - 63.5 4.3 6.8 Auto - CME 2 7 - 84.5 5.9 7.0 Auto - Diedrich 2 8 - 82 5.6 6.8 Safety Driver 6 43 - 54.6 11.5 21.1 Auto - (CME & Diedrich) 20 - 20 78.6 5.5 7.0 Manual - Unknown 8 - 8 62.3 9.8 15.7 Auto - CME 6 - 6 82.5 - - Safety 2 - 2 63.3 - - Safety Driver (Mobile) 1 - 1 48.1 - - NCDOT (Valiquette et al., 2010) 2010 VTrans (Kelley and Lens, 2010) 2010 FDOT - University of Florida (Davidson et al., 1999) 1999 MDOT - University of Maryland (Aggour and Radding, 2001) 2001 CALTRANS (Liebich, 2005) 2005 Seattle ASCE Field Testing Program (Batchelor et al., 1994) 1994 MnDOT (Lamb, 1997) 1997 Utah State University (Butler, 1997) (Data from GRL Compiled by Dr. Caliendo for G.Goble) 1997 ? 41 about twice the variation of the CME group. The details from two prominent SPT energy investigations are summarized below. 3.3.1 FDOT Study In 1997, an extensive SPT energy investigation was performed by Kimberly Spoor for the Florida Department of Transportation (FDOT) (Davidson et al., 1999). The SPT energy program consisted of performing EFV energy measurements on 43 manual hammer systems as well as 14 automatic hammer systems (12 CME) owned by FDOT and their consultants. During the testing program, numerous drill rig manufacturers had their SPT hammers calibrated and the results from the investigation are depicted in Table 3.2. The overall ETR average for each drill rig type is shown in the second column of the table. The third column shows the standard deviation of ETR test depth averages between different drill rigs of the same model. Apparently, the fourth column represents an overall standard deviation average of the ETR standard deviation measured from individual hammer blows for a given drill rig type. The data in the third column in Table 3.2 show that the standard deviation of average energy measured between sample depths for the CME automatic hammer group ranged from 3.9% to 10.1% ETR. Similarly, the energy data in the fourth column show that the average standard deviation measured between hammer blows were somewhat smaller and ranged from 1.9 % to 2.4 % ETR. The overall ETR for 12 CME automatic hammers in their study was reported to be 80.1% with an overall standard deviation of 8% ETR and a COV of approximately 10% (From Table 3.1). ? 42 Table 3.2 Summary of FDOT energy measurements (Davidson et al., 1999) 3.3.2 NCDOT Study Another impressive SPT energy investigation was documented in 2010 on drill rigs owned by the North Carolina Department of Transportation (NCDOT) and their consultants (Valiquette et al., 2010). The testing program, which was conducted approximately five years prior to the release of their report, consisted of one boring of energy measurements per hammer system. During this time period, engineers from Goble, Rausche, and Likins Engineers Inc. (GRL) obtained EFV energy measurements on twenty automatic hammer systems and eight manual safety hammer systems. The total number of hammer blows evaluated for each drill rig ranged from 71 to 489 with an overall drill rig average of 271 hammer blows. Drill rod types used in their study were either AW or AWJ sized drilling rods. Although not listed in their report, the drill rig manufacturers were either CME or Diedrich models. The quantity of each type of drill ? 43 rig was not reported. Figure 3.1 provides a visual summary of the measured energy variation for each drill rig obtained during the testing program. Figure 3.1 NCDOT variation of transfer efficiency (Valiquette et. al, 2010) In addition to the graphical summary shown in Figure 3.1, the NCDOT report included a summary table documenting the overall ETR average for each drill rig as well as the standard deviation of energy measured between hammer blow counts (Table 3.3). The data from Table 3.3 show that the standard deviation of EFV energy measured between hammer blows for each drill rig is similar to that determined from the FDOT investigation. The standard deviation values are relatively small, the majority of which have a value less than about 2% ETR. The overall ETR average for the twenty automatic hammers in the NCDOT study was 78.6 % with an overall standard deviation of 5.5 %. The overall COV was calculated as 7 % (Table 3.1). ? 44 Table 3.3 Summary of NCDOT energy measurements (Valiquette et al., 2010) ? ? 3.4 CME Hammer Operation Rate In 1999, an SPT energy study was performed for the Bureau of Reclamation on CME automatic hammers (Farrar and Chitwood, 1999). The objective of the study was to determine hammer performance and evaluate the effect of the hammer operation rate on energy transmission. The study found that the CME hammer is a rate dependent hammer, and that the energy delivered to the drill rods will be a function of the hammer fall height, which depends on the speed of the hammer lifting assembly (and therefore on Drill Rig I.D. Average Uncorrected Efficiency, All Rod Lengths Average Standard Deviation from Blow to Blow A-1 81.5 2.12 A-2 80.6 1.71 A-3 74.7 2.29 A-4 74.3 1.83 A-5 71.6 3.41 A-6 75.6 2.04 A-7 75.4 1.68 A-8 63.1 1.75 A-9 78.6 2.01 A-10 73.5 1.42 A-11 81.1 1.78 A-12 82.7 1.53 A-13 82.3 1.77 A-14 80 3 A-15 81.5 1.53 A-16 81.7 1.15 A-17 80.8 1.06 A-18 78.4 1.56 A-19 85.2 5.54 A-20 89.4 1.5 ? 45 the engine throttle speed and hydraulic flow control settings). Figures 3.2 and Figure 3.3 below highlight the results of the study and show the variation of fall height and transferred energy when the hammer operation rate is set above or below the CME factory settings of 50 to 55 blows per minute (BPM). Figure 3.2 Drop height vs. hammer operation rate (Farrar and Chitwood, 1999) Figure 3.3 Drill rod energy vs. hammer operation rate (Farrar and Chitwood, 1999) ? 46 Perhaps the most alarming finding of the study is that when the CME hammer operation speed is set too high, the falling drive weight will strike the lifting lug prior to striking the anvil. If this occurs, a portion of the kinetic energy of the drive weight will be transferred to the mechanical components inside of the housing tube prior to striking the anvil. Farrar notes that this can occur when the rate is set near or above 60 BPM. A picture of the drive chain and lifting lug is provided in Figure 3.4. Indeed, this type of malfunction happens in practice. Figure 3.5 shows a PDIPLOT summary of energy measurements provided by a private sector consultant. Reportedly, the data were obtained from a drill rig performing a routine SPT investigation. As can be seen from the figure, the hammer was operating slightly above 60 BPM. This high operation rate resulted in the drive weight striking the lifting lug prior to striking the anvil. Figure 3.4 Drive chain and lifting lug Drive Chain Lifting Lug ? 47 The measured ETR pattern proves to be erratic and extremely low producing ETRs less than 50%, as would be expected if the drive weight free-fall was obstructed in any way. Figure 3.5 CME hammer malfunction 3.5 Rod Length and Energy Transmission A considerable amount of work has been performed over the last 30 years in order to determine an approximate relationship between drill rod length and energy transfer in the SPT. Both theoretical and experimental investigations conclude that there is a reduction in transferred energy for shorter drill rods compared to the average baseline energy that would be measured for longer rods. The consequences of this reduced energy effect are twofold: Erratic BPM Erratic ETR ? 48 1. Energy measured at shallow depths may not accurately characterize the true hammer baseline energy and would report a reduced value of transfer efficiency. N-values corrected with the reduced transfer efficiency (Equation 1.1) would produce smaller corrected N-values compared to N- values corrected with the baseline value obtained from longer rods. This result may be conservative in some geotechnical applications. 2. N-values measured at shallow depths would not represent the N-value that would have been obtained if the baseline energy was available to perform work on the soil. The reduced energy from short rod lengths would produce less sampler penetration per blow and may result in a larger N- value than would be obtained if the baseline energy were available. Attempts at quantifying the relationship between rod length and energy transfer, as well as proposing correction factors to account for the expected energy losses, have been proposed by many researchers. The original correction factors, which were based on the force-squared method, were desired because of the limited force integration time. The EFV method does not have the same integration limitations. However, the general trend of reduced energy transmission is still the same, but to a lesser degree. Details from three prominent rod length investigations are outlined below. 3.5.1 Palacios Study A theoretical investigation into the behavior of rod length and energy transfer was performed by Schmertmann and Palacios at the University of Florida (Palacios, 1977). ? 49 Their method of investigation was based on the force-squared method of energy measurement, which was the prevalent method during that era. The SPT study included energy measurements on four different rod sizes with rod lengths varying from approximately 10 ft to 75 ft. Based on trends in their data, they concluded that for short rod lengths the returning tension wave prematurely terminated the incident compression wave energy due to separation of the drive weight and anvil. Because of the time integration limitations inherent to the force-squared method, the remaining energy content that would have been measured for the case of an infinite rod was, by necessity, estimated using correction factors derived from theoretical wave mechanics. After modifying stress wave theory from Fairhurst (1961), Palacios was able to express the hammer transfer efficiency null null as a function of rod length (Schmertmann and Palacios, 1979) where ? ? null null null null1nullnull null nullnullnull null null null nullnull null 4nullnull null null1nullnullnull null ? (3.1) with nullnull null 1nullnull 1nullnull null null null = Impedance ratio between hammer and drill rods null null = Length of hammer null = Length of drill rods and sampler null = Maximum number of completed stress cycles before loss of hammer contact ? 50 The numerical result of Equation 3.1 represents the theoretical maximum energy that could be transferred to the drill rods before arrival of the tension wave. This equation forms the basis for the ASTM null null correction factors. The dashed line in Figure 3.6 is a graphical representation of Equation 3.1. The non-linear trend of the dashed line suggests that the shortest rod lengths will have the largest reduction in transfer efficiency and that the energy reduction will gradually decrease as the length of the drill rod increases, up to about 50 ft. Figure 3.6 Theoretical transfer efficiency (Schmertmann and Palacios, 1979) ? 51 3.5.2 Morgano and Liang Study A study by Morgano and Liang (1992) examined the effects of rod length on energy transfer in the SPT. They conducted wave equation studies as well as field experiments for various rod lengths using a manual safety hammer system. Unlike the Palacios study, where the force-squared method was used, Morgano and Liang were able to measure the transferred energy using both force and velocity measurements. To the author?s knowledge, this was the first study on rod length effects using the EFV method. In addition to force and velocity measurements, Morgano used a Hammer Performance Analyzer (HPA) to measure the hammer?s impact velocity, which was later used to determine the kinetic energy just prior to impact. The HPA measurements were beneficial because they removed potential energy variability associated with drop-height inconsistencies of the manual hammer. Because the study included both EFV and kinetic energy measurements, the driving system transfer efficiency was determined in place of the ETR (which is EMX/PE). The driving system transfer efficiency is the ratio of measured EFV energy in the drill rods to the available kinetic energy just prior to impact (EMX/KE). Figure 3.7 shows the field testing results from their study. Each tick mark in the figure represents the drive system transfer efficiency from one hammer blow. Similarly, Figure 3.8 shows the average of the drive system transfer efficiencies. Based on the results of Figures 3.7 and 3.8, they determined that energy transfer is independent of rod length for lengths greater than 50 ft. However, for rod lengths less than 50 ft, the energy transferred to the rod is reduced. These findings are similar to those documented by the Palacios. ? 52 Figure 3.7 Drive system efficiency (Morgano and Liang, 1992) ? Figure 3.8 Average drive system efficiency (Morgano and Liang, 1992) ? 53 The results of a SPT wave equation study were also provided in their report. Wave equation simulations were performed on rod lengths varying from 10 ft to 100 ft. The energy transfer for each rod length was evaluated using soil resistance forces ranging from 0.5 kips to 13 kips. The results of the wave equation study indicated that the relationship between energy transfer and rod length is more ?critical? when lower soil resistance forces are present. As illustrated in Figure 3.9, the shortest rod length driven into the smallest soil resistance produced the lowest transferred energy. The transferred energy apparently increased as the soil resistance and rod length increased with transferred energy stabilizing at a rod length of 50 ft. Figure 3.9 Wave equation study (Morgano and Liang, 1992) 3.5.3 NCDOT Study Close to two decades after the Morgano and Liang rod length study, Valiquette, et al. (2010) performed an investigation into rod length effects for automatic hammer systems. Data from twenty automatic SPT hammers owned by the NCDOT and private consultants were used to investigate the behavior of rod length and energy transfer. To ? 54 the author?s knowledge, this apparently seems to be the largest rod length study performed on automatic hammers to date. As previously mentioned in Section 3.3.2, the testing program consisted of one boring of energy measurements per hammer system. Drill rod lengths evaluated in their study ranged from 14 ft to 74 ft, and were either AW or AWJ sized drilling rods. Based upon their evaluation of the automatic hammer subgroup, they determined that the transferred energy increased up to a rod length of about 38 ft and generally stabilized after that. For each drill rig, they determined baseline transfer efficiencies for rod lengths greater than 38 ft. They then systematically used the individual baseline energy values to normalize the energy measurements obtained from rod lengths less than 38 ft. This approach allowed the general trend of energy reduction to be compared among the various automatic hammer systems in the subgroup, regardless of their baseline transfer efficiency. Finally, the normalized transfer efficiency for each hammer system was averaged and incorporated into a regression analysis from which a best fit line was determined. The results of their investigation are shown in Figure 3.10 and are plotted against the results from the prior studies previously described. Based on the data in Figure 3.10, the estimated energy reduction for the theoretical method would be larger than that predicted by the NCDOT regression trend, up to a rod length of about 20 ft. The Morgano-predicted energy reduction is slightly less than the NCDOT and theoretical values for all rod lengths. The maximum reduction in transfer efficiency for the NCDOT regression is approximately 10% of the baseline efficiency for the shortest rod lengths. ? 55 Figure 3.10 Normalized energy transfer (Valiquette et al., 2010) ? ? 3.6 Secondary Hammer Impacts Lee et al. (2010) investigate the effect that secondary impacts had of energy transfer. Their investigation used the force and velocity method of energy measurement and involved taking energy measurements on two different donut hammer systems. The first hammer system evaluated was a manual rope and pulley donut system while the second hammer system was a modified automatic donut (MAD) hammer system. The MAD hammer system was similar to the manual donut hammer system and used a hydraulic motor to automatically lift and release a wire rope attached to the donut hammer. Their investigation involved performing SPT measurements at two different sites in Korea. The soils underlying both sites were reportedly composed of 30 ft to 42 ft of ? 56 weathered residual soil classified as silty sand (SM) based upon the Unified Soil Classification System (USCS). This soil type is very similar to the soils located in the piedmont region of the United States. The SPTs were performed every 5 ft up to depth of about 50 ft, with N-values ranging from 6 to 136 blows per foot. Drill rod lengths in their investigation ranged from approximately 25 ft to 54 ft. Secondary hammer impacts were evaluated using a digital line-scan camera (Figure 3.11). The digital line-scan camera was used to monitor the hammer-anvil motions during SPT impact using a 2 kHz frequency and a resolution of displacement of less than 0.12 mm. Figure 3.12 provides a representative display of the images obtained using the camera. As described by Lee, the upper and lower strips located in part (a) of the figure represent a typical photo image of the hammer-anvil motions during impact. The hammer-anvil displacements in part (b) were calculated from these measurements. Similarly, the hammer-anvil velocities in part (c) were calculated as the first derivative of the location-time curve. The force wave and measured EFV energy shown in part (d) were rod energy measurements taken during the SPT test using a PDA model PAK to process the force and velocity signals. Based upon the results from their field investigation, they concluded that two types of secondary impacts occurred, and generally depended on the penetration resistance of the soil and type of reflected stress wave. They reported that: 1. For N-values > 50, the impact produced a reflected upward compressive wave that ?pushed? the hammer, anvil, and drill rods up together. After the hammer and anvil separated, the hammer continued its upward movement and eventually reached a maximum position before striking the ? 57 anvil again. However, the anvil and drill rods only moved up a negligible distance. This type of secondary impact produced no permanent penetration due to large penetration resistance and did not produce and increase in transferred energy. 2. For N-values between 25 and 50, both types of secondary impacts were observed to occur. During sampler penetration, as the N-value noticeably increased due to soil resistance, the first type of secondary impact progressively faded away while the second type of secondary impact became more apparent. 3. For all N-values, the primary impact along with the first type of secondary impact appeared to contribute to sampler penetration and transferred energy while the second type of secondary impact did not have an effect on sampler penetration or transferred energy. Figure 3.11 Digital line-scan camera (Lee et al., 2010) ? 58 ? Figure 3.12 Secondary impacts (Lee et al., 2010) 3.7 Energy Reaching the Sampler Within the last decade there seems to be a renewed interest in evaluating whether or not the measured energy from the top of the drill stem is the same quantity of energy that reaches the location of the split-spoon sampler. As discussed in Chapter 1, the parameter null nullnullnullnullnullnullnullnull in Equation 1.1 is the maximum measured value of energy entering the drill rods obtained from top force and velocity measurements. This energy value is used to characterize the energy transfer efficiency of the hammer system. At the same time, it is also assumed that this is the same quantity of energy that is distributed to the split-spoon sampler, which may not be an accurate assumption for long drill rods. ? 59 3.7.1 Palacios Study As part of his doctoral research, Palacios studied the behavior of energy transmission of SPT drill rods (1977). Among other things, this study explained how internal friction within the steel rods resulted in a decaying energy transmission along the drill rods. Palacios generally explained the mechanism of internal friction and stated that during the energy transmission process, each particle of the rod absorbs energy from the stress wave as rod particles are successively compressed and decompressed during its cycling routine. Providing an example based upon theory from Kolsky, Palacios showed that internal friction in SPT rods can result in estimated energy losses of 1% for every 10 ft of drill rod, which would ultimately add up to large energy losses in deep borings. Kolsky?s theory was based upon stain wave amplitude attenuation, which depends on the specific damping capacity of steel. Specific damping capacity is defined as the measured ratio of the energy dissipated in taking a steel specimen through a stress cycle to the elastic stored energy stored in the specimen when its strain is at a maximum (Kolsky, 1963). 3.7.2 Abou-matar and Goble Study A report by Abou-matar and Goble (1997) presented the results of a theoretical investigation into the dynamic behavior of the SPT. Their study documented wave equation calculated sampler energies for drill rods having different cross-sectional areas. Specifically, they evaluated the energy transferred to the soil using AW size drill rods and compared it to the energy transferred to the soil using Mayhew size drill rods, which ? 60 reportedly has more than twice the rod cross-sectional area of the AW size rod. The energy calculated at the top of the rod was apparently identical for both rod types. From this analysis, they determined that drill rods having a larger cross-sectional area produced an increase in SPT blow counts compared to the blow counts from drill rods having a smaller cross-sectional area. They later explained that this behavior should be expected since the rod?s impedance is related to the rod?s area. As the rod area increases, the forces in the rod will be larger for a given set of (particle) displacements, and these forces would retain more energy inside of the rod which would result in a reduced quantity of energy available to perform work for penetration. Although their wave equation study was performed using a constant rod length of 54 ft (16.5 meters), they later recommended that rod length correction factors be based on rod length as well as rod cross-sectional area. In a closure response to the discussion provided by Boulanger and Idriss, which was based upon the original paper, they provided yet another wave equation study that evaluated SPT N-values for AW and NW sized drill rods. Drill rod lengths evaluated in this study ranged from approximately 10 ft to 100 ft and included soil resistances forces of 1.12 kips (5 kN) and 2.24 kips (10 kN). Figure 3.13 shows the wave equation results from their closure report. Based on these results, they concluded that for rod lengths up to 30 ft, the two rod types did not give significantly different SPT blow counts. However, for rod lengths greater than about 40 ft, the SPT blow counts begin to diverge, with the larger NW rod type producing higher SPT blow counts for the same soil resistance. ? 61 Figure 3.13 Wave equation study (Abou-matar and Goble, 1997) ? These conclusions verify the initial claims of the original paper and theoretically indicate that the energy reaching the sampler can be less than that from the top of the drill rod stem when the two different drill rod types are compared, and when they have nearly identical top calculated ETRs. 3.7.3 MnDot Study The research findings on sampler energy documented by Abou-matar and Goble were strictly based upon theoretical wave equation calculations. In 2005, Goble presented the results of MnDOT?s SPT N-value study which evaluated N-values based on rod size and depth. The N-values were obtained from the same site, however, it is not ? 62 known if they are from the same SPT hammer. Nevertheless, MnDOT?s field investigation results support that of the Abou-matar wave equation analysis previously discussed. As shown in Figure 3.14, N-values obtained from the larger N-sized rods produced larger N-values compared to that of the smaller diameter A sized rods. This type of behavior would be expected if there were more energy losses associated with the larger N-size rod group. Figure 3.14 MnDot rod type vs. N-value study (modified from Goble, 2005) 3.7.4 Odebrecht Study As part of an ongoing SPT investigation, Odebrecht et al. (2005) studied the effect that rod length and sampler penetration had on the energy reaching the split-spoon sampler. The SPT testing program consisted of taking force and velocity measurements from below the anvil as well as immediately above the sampler. These top and bottom 0 10 20 30 40 50 60 70 80 1020304050607080 De p t h SPT N-VALUE N-Rod w/ Inserts A-Rod w/o Inserts ? 63 energy measurements were not taken simultaneously but comparison between the two measurements locations were achieved by using an experimental calibration chamber that could control the penetration of the sampler. The calibration chamber allowed a known granular material to be prepared at a specific density where testing could be performed using controlled boundary conditions. Vertical stress in the chamber was controlled by a pressurization system regulated by air pressure, which used a self-relieving valve for driving an air-water interface system. Figure 3.15 shows the experimental set up and calibration chamber used in their research program. Figure 3.15 Experimental setup (Odebrecht et al., 2005) ? 64 The results for the 19 ft rod composition are depicted in Figure 3.16. This figure shows a comparison of EFV energy measurements taken from directly above the sampler and compared to the EFV measurements taken from the top of the rod, just beneath the anvil. As shown, the sampler penetration was indicative of an SPT N-value of 8 blows per foot. The energy measured at the top of the drill rod as well as just above the sampler was 296 ft-lbs of energy (401.5 Joules) (84.5% ETR). Figure 3.16 Sampler energy-19 ft (5.8 m) rod Similarly, the experimental results from the 117.5 ft rod composition are depicted in Figure 3.17. This figure provides the same top and bottom energy comparison as the previous example and with the same soil density. The energy measured at the top of the rods was also approximately the same. However, for this case, the energy measured just above the sampler was significantly less than that of the short rod example and was measured at 246 ft-lbs of energy (334 Joules) (70 % ETR), which is approximately a 15% ETR reduction in energy reaching the sampler from the 19 ft rod length to the 117.5 ft ? 65 rod length. These experimental results are very close to the theoretical 1% ETR loss per 10 ft of drill rod described by the Palacios study in section 3.7.1. Figure 3.17 Sampler energy-117.5 ft (35.8 m) rod 3.8 Conclusions Based on Previous Work ? Overall Average EFV Energy 1. The CME Automatic hammer ETR average in Table 3.1 was 80.7%. The range of ETR averages per study was from 75% to 84.5%. 2. The non-CME automatic hammer ETR average was 70.2% ETR. The range of ETR averages per study was 49% to 82%. 3. The ETR average for the manual hammer category was 57.8%. The range of ETR averages per study was 35% to 70.2%. ? 66 Expected Variation of EFV Energy 1. In light of the COVs reported in Table 3.1, the expected range of variation of energy for the CME automatic hammer is from 2.5% to 10%. This 10% maximum estimated value is slightly less than the 15% maximum COV for the non-CME automatic hammer group, and about one-half of the 22% maximum COV for the manual hammer group. CME Automatic Hammer 1. The CME hammer is a rate dependent hammer. The energy transferred from the hammer system will generally increase as the velocity of the drive system increases (sprockets, chain, and lifting lug). This speed is controlled by the RPMs of the drill rig engine and the hydraulic flow control settings of the hydraulic motor. 2. CME hammer settings are initially set at the factory to achieve a 30 inch fall height at a hammer operation rate of about 50 to 55 blows per minute. Over time, and after required maintenance is performed, the flow control settings may need readjustment in order to maintain the required fall height. The fall height distance can be verified using the viewing slot window on the drive weight housing tube. 3. CME hammer operation rates exceeding approximately 60 blows per minute may result in reduced energy transfer. This effect is due to an increased drive weight fall height (increased throw height) and a reduced cycle time of the lifting lug (from the increase in chain velocity). When this occurs, the drive weight will strike the lifting lug prior to striking the anvil and will transmit a portion of the ? 67 energy to the hammer?s drive system components rather than to the anvil (Figure 3.5). Rod Length Effects 1. There is an apparent reduction in transferred energy for short drill rod lengths. This reduction in energy is less than the baseline transfer efficiency that would be measured using longer rod lengths of about 40 ft to 50 ft. 2. The maximum estimated energy reduction for short drill rods is approximately 10% of the baseline ETR value. This value was estimated using the NCDOT regression line from Figure 3.10. 3. The wave equation study performed by Morgano and Liang verifies the theoretical plausibility that short rod length behavior is related to soil penetration resistance. The reduction in energy was more apparent for the shortest rod lengths driven into the weakest soils. The wave equation results also showed that the transferred energy increased as the soil resistance increased (for a given rod length). Secondary Impacts 1. The Lee study suggests that the occurrence and behavior of secondary hammer impacts depends on the soil penetration resistance. For low to moderate penetration resistances, a tension wave will be reflected from the sampler. For high penetration resistance, a compression wave will be reflected from the sampler. ? 68 2. A returning tension wave tends to pull the rod down faster than gravity resulting in hammer-anvil separation. After separation, the hammer eventually strikes the anvil again and creates further energy transfer. This type of secondary impact produces further permanent penetration of the sampler but generally less than the penetration provided from the first impact. 3. A returning compression wave tends to push the hammer, anvil, and drill rods up a small distance. After the hammer and anvil separate, the hammer continues its upward ascent until it reaches its top position. At a later time, the hammer eventually strikes the anvil but does not produce an increase in transferred energy or permanent sampler penetration. Energy Reaching the Split-Spoon Sampler 1. The energy measured at the top of the drill rods may not be the same quantity of energy that performs work on the soil. Energy reduction from stress wave amplitude attenuation can result in large energy losses for deep borings (long rods). Theoretical energy losses were estimated to be 1% ETR per 10 ft of drill rod. Experimental investigations from Odebrecht showed approximately 1.25% ETR loss per 10 ft. (15% total ETR loss with 117.5 ft rod length) 2. Wave equation studies showed that large diameter drill rods may produce larger N-values compared to the N-values produced with smaller diameter rods (assuming that top measured ETR is the same). This effect was explained by the fact that larger rod sizes tend to retain more of the stress wave energy for a given set of particle displacements. This conclusion was validated by MnDOT?s field ? 69 investigation where measured N-values were compared between two different rod sizes. ? 70 CHAPTER 4: ALDOT TESTING PROGRAM 4.1 Introduction This chapter provides a summary of the ALDOT SPT energy testing program. Described herein are pertinent details related to data acquisition equipment, field testing procedures, office analysis of field energy data, as well as the calibration certificate that was provided for each drill rig. The last few sections of this chapter highlight the results of the testing program, as well as compare these results to the conclusions previously found by others. 4.2 ALDOT Drill Rig Fleet ALDOT currently maintains six CME drill rigs, each having an automatic hammer. Their drill rig fleet consists of three 550X all-terrain vehicles (ATV), two 55 trucks, and one 850 track rig. These drill rigs travel throughout the state of Alabama performing SPTs and are used on a regular basis. ALDOT also uses consultants from the private sector to perform a portion of their work. However, due to the time limitations of the testing program, the consultant SPT hammers were not calibrated. Table 4.1 further classifies each drill rig based on the drill rig identification number. ? 71 Table 4.1 ALDOT drill rig inventory ? 4.3 SPT Analyzer The SPT Analyzer is a signal conditioning and processing unit that measures and stores raw strain and acceleration signals for each hammer blow during the SPT. The signals are collected through a 12-bit analog-to-digital converter at a sampling frequency of 20 kHz with each record containing a 2048 integer sample size per transducer. The device processes the measured signals produced from the travelling stress wave, and in real time analog integrates the acceleration signal to obtain particle velocity and calculates force from the measured strain signals using Hooke?s Law. Raw voltage signals from each of the transducers are converted to engineering units using calibration factors provided from the manufacturer. The force and velocity signals are then multiplied and integrated over the entire time record to obtain the maximum value of transferred energy to the drill rods. Digitization of the analog signal uses initial over sampling during the testing process. However, with this model of data acquisition equipment, the final representation of data points is limited to an integer sample size of 1024 (0 to 1023). During the data Rig I.D. CME Rig Model Rig Type SE9050 550X ATV SE9122 550X ATV SE9299 850 Track SE9445 550X ATV ST11151 55 Truck ST11152 55 Truck ? 72 acquisition process, the SPT Analyzer itself serves as a low-pass filter to the measured signals. Figure 4.1 SPT Analyzer ? 4.4 Instrumented Subassembly During the testing program, force and velocity measurements were obtained from strain gauges and accelerometers mounted to a two-foot long drill rod subassembly having the same approximate diameter (cross-sectional area) as the SPT drill rods (Figure 4.2). The subassembly for this project was an AWJ rod with a tapered ?box? connection located at the top of the subassembly and a tapered ?pin? connection located at the bottom. The cross-sectional area of the subassembly, which was provided by the manufacturer, was 1.2 square inches. ? 73 The instrumented drill rod contained two strain gauge bridges which were spaced at approximately 180 degrees from each other. Each strain gauge was terminated into a cable having a quick disconnect plug. Two Model K piezoresistive accelerometers were bolted to the subassembly at diametrically opposed sides of the rod and within 4 inches of the location of each strain gage. During the bolting process, each accelerometer was aligned axially with the rod in the sensitive direction, and with the quick connect plug facing the ground surface during the testing event. Based upon Pile Dynamics, Inc (PDI) specifications, both accelerometers are linear at 10,000 g (20,000 g limit) and with a useable frequency response of 4.5 kHz. Figure 4.2 Instrumented subassembly Model K Accelerometers Glued-on Strain Gages Quick Disconnect Plugs ? 74 4.5 Field Testing Procedure The field testing program was designed in such a way as to supplement ALDOT?s normal drilling operations as well as to produce a testing method that could be documented and performed using a simple repeatable sequence. Because ALDOT follows ASTM D 1586 guidelines for all of their SPT drilling and sampling procedures, the only additional requirement imposed on their normal operations was mounting of the subassembly to the drill rod stem. ALDOT drillers found that this was a relatively painless addition to their normal procedures as it did not cause large time delays. 4.5.1 Field Documentation SPT energy measurement field sheets, which were specifically designed for ALDOT, were a critical part of the testing process. The field sheets were formatted in such a way as to include project information and sensor calibrations within the first half of the sheet. The benefits of this formatting design were two-fold; first it allowed the testing engineer to become acquainted with the driller, the drilling equipment, and the scope of the project. Second, it prepared the testing engineer for the SPT energy measurement process. As will be seen later, certain inputs on the field sheet are the same inputs that are required in the SPT analyzer. Therefore, having the field sheets thoroughly filled out prior to energy testing allowed the rest of the testing process to go smoothly. The second half of the field testing sheet was designed to document the SPT sampling procedure. Documenting rod lengths, measured stick up (if performed), and calculated split-spoon sample depths was considered good practice, and represented what ? 75 was recorded on the field boring logs that were prepared by the drilling crew. SPT N- values recorded by the drilling crew were later obtained and recorded on the field testing sheet. There is also a section of the field testing sheet that allows for miscellaneous comments to be documented. Due to the space limitations of the form, this was the area that was used to record the drive weight fall height as well as any sensor and data issues experienced during testing. Finally, the field testing sheet included a document control number (DCN) for ALDOT?s organizational purposes. To illustrate formatting of the field sheet, Figures 4.3 and 4.4 show a blank field testing sheet as well as one that is completely filled out. A field notebook was used as an integral part of the testing program (Figure 4.5 below). The field notebook consisted of a rugged hard-plastic binder with numerous plastic sheet protectors which were used to organize and preserve the binder?s documents. Documentation stored in the binder included extra field testing sheets, manufacturer sensor calibration factors, ASTM procedures, and scratch paper for note taking. ? 76 ? Figure 4.3 Field sheet-blank Project Name: Rig Make / Model: Location: Rig I.D.: Date: Hammer Serial No.: SPT Inspector: Hammer Type: Drilling Company: Rod Size: Analyzer File Name (Boring No. plus Subdesignation) Rod Length (FT) Measured S.U. (FT) Calculated Start Depth (FT) Increment Misc. Comments 6?in 12?in 18?in 6?in 12?in 18?in 6?in 12?in 18?in 6?in 12?in 18?in 6?in 12?in 18?in 6?in 12?in 18?in *Rod?Length:??Total?Length?From?Gages?to?Tip?of?Sampler? Instrumented?Subassembly?Length:?____2?ft_____ *Measured?S.U.:?Measured?Drill?Rod?Stick?Up?From?Ground?Surface?to?Location?of?Gages *Calculated?Start?Depth:?Rod?Length?Minus?Measured?Stick?Up Length?Below?Gages:___________0.5?ft__________ DCN: 01 Accelerometer Serial Numbers: Accelerometer Calibration Factors: Geologic Region: Time Tested: Drill Rig Operator: SPT Analyzer Serial Number: Instrumented Rod Type / Area: F1:??????????????????????????????????????????????????????????????????F2:???????????????????????? F1:??????????????????????????????????????????????????????????????????F2:??????????????? Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 RECORD OF SPT ENERGY MEASUREMENTS Hammer Blow Counts (Provided By Others ) Strain Gage Serial Numbers: Strain Gage Calibration Factors: 4036T A1:?????????????????????????????????????????????????????????????????A2: A1:?????????????????????????????????????????????????????????????????A2: Boring Identification: (?????????????????????????) (?????????????????????????) (?????????????????????????) (?????????????????????????) (?????????????????????????) (?????????????????????????) ? 77 Figure 4.4 Field sheet-filled out ? 78 ? Figure 4.5 Field notebook ? ? 4.5.2 Equipment Set Up After the borings were drilled to depth, and after the split-spoon and drill rods were placed into the bored hole, the instrumented subassembly containing the strain gages and accelerometers was mounted on top of the drill rod string. The subassembly had a tapered pin connection at its bottom end and was screwed into the tapered box connection located at the top of the drill rod stem. The quick connect cables for each of the four sensors were attached to the SPT Analyzer by means of a main connection cable which contains a ?pig tail? attachment for each of the four sensors. Once all the cables were connected, the SPT Analyzer was turned on and mandatory inputs were then typed into the unit. Figure 4.6 depicts the progression of information screens used by the SPT Analyzer to store information for ? 79 testing. Explanation of these information screens is documented in the SPT Analyzer User?s Manual and summarized below for convenience: ? Main information screen: Information recorded on the field testing sheet was used to complete the main information screen. The potential energy rating of the hammer was also stored as an input (140 pound drive weight with a free fall height of 2.5 ft). ? Rod Length: This was the total rod length below the sensors (LE). This value was obtained by measuring the length of the split-spoon sampler, total length of the drill rods, and length of the subassembly below the sensors. This information was updated in the SPT Analyzer and recorded on the field testing sheet for each test depth. ? Test Depth: This value represented the boring penetration depth prior to sampling. It was obtained by subtracting the measured drill rod stick up above the ground surface (up to sensor location) from the Rod Length value previously used as an input. This information was updated in the SPT Analyzer and recorded on the field testing sheet for each test depth. ? Transducers: This describes what sensors were being used. ?A? stands for accelerometer and ?F? stands for force (strain gage). ? Test: This was used to check the status of all four sensors. If a sensor was not connected or if the sensor was out of the tolerance range, ?OK? would change to ?Fault?. The number beneath ?OK? on the accelerometer field ? 80 displayed the offset voltage for the sensor. Values within ? 4 volts provided acceptable data (PDI Manual, 2011). ? Active: This was used to select each sensor for data collection. If the field displayed ?YES? then that sensor was used during the test. Two strain gages and two accelerometers were always used during data acquisition. The average values for each set of sensors were always used for final ETR determination. ? Trigger: Selected which sensor would be the primary device used to detect data. Only one of the sensors can be labeled ?YES?. PDI suggests that either of the force sensors be used as the trigger sensor. ? Calibration Factor: Pressing this field allowed the user to input the sensor calibration factors provided from the manufacturer. After the necessary inputs were provided to the SPT Analyzer, the main data collection screen appeared and the SPT Analyzer and sensor were ready to perform the test. Just prior to SPT testing, the anvil was mounted to the top of the instrumented subassembly, and the SPT hammer was removed from its stowed position and placed directly on top of the anvil (Figure 4.7). ? 81 Figure 4.6 SPT Analyzer information screens? Main?Information?Screen: Next: Next: Next: Main?Summary?Screen: ???Hit?continue?to?go?to?the?main?data?collection?screen:??Note?that?"Pause'?is?highlighted.??You?must?press?"Pause"?in?order?to?start?collecting?data. ???"Pause"?will?change?to?"Accept".??Once?the?test?is?complete?and?the?data?has?been?collected?press?"Accept". ???After?pressing?"Accept",?it?is?necessary?to?press?the?"Set?Up"?button.??This?will?bring?you?back?to?the?Main?Summary?Screen. ???Press?the?Box?that?has?the?"Boring"?information.??Now?Change?the?Boring?Name?(Say?1A?2).?? ???It?is?now?necessary?to?change?the?Rod?Length?and?Depth?information.??Press?the?respective?buttons?and?input?new?values. ???Now?"Continue?New?Data". ???Press?"Pause"?which?will?change?to?"Accept"?and?begin?collecting?data. ???Repeat?the?process?until?all?testing?is?done. ROD?AREA??????????? 1.20?sq.in LENGTH????????????? 18.3' DEPTH?????????????? 15' TOTAL?BLOW?#??????? 0 CONTINUE?????????????????????????????? NEW?DATA A1:?OK??????????335?mV/g?*5000??????? A2:?OK??????????325?mV/g?*5000??????? F1:?OK??????????210.54?me/V?????????????? F2:?OK??????????211.5?me/V????? INCR?????? INCH?????? 6 SAVE?????? SX???????? 1 ??This?is?the?initial?boring?depth?just?prior?to?sampling.??? NOTE:?You?must?update?this?value?for?every?test?depth. REVIEW????????????????????????????????? (?50%?FULL) PROJECT:?????????????????????????BR???008?(528)??????????????????????????????? BORING:????????????????????????????????????1A?????????????????????????????????????????? INFO?1:????????????????????????????????CME?550x??????????????????????????????????? INFO?2:????????????????????????????????????AUTO??????????????????????????????????????? SPTRIG:??????????????????????????????????SE?9122???????????????????????????????????? OPERATOR:???????????????????????????RUSSELL F2 OK?????????????????? ?0.7V YES NO 211.5 NO 325 F1 OK?????????????????? ?0.5V YES YES 210.54 CALIBRATION? FACTOR A1 OK YES NO 335 A2 OK YES ROD?AREA:?????????????????????????????1.20?sq.in ENERGY?RATING:??????????????350?ft?lbs EDIT?DATE?&?TIME: CONTINUE?TO?NEXT?SCREEN TRANSDUCER TEST ACTIVE TRIGGER ??This?is?the?rod?length?below?the?gages???spoon?&?sub?(2.8')?+portion?of?instrumented?sub?assembly?(0.5')?+?actual?drill? rod?length?(?)?? NOTE:??You?must?update?this?value?for?every?test?depth.? ROD?LENGTH?(FT) TEST?DEPTH?(FT) PROJECT:?????????????????????????????BR???008?(528) INFO?1:????????????????????????????????CME?550x BORING:???????????????????????????????????????1A?1???????????? Note:?You?can?update?this?value?every?test?depth INFO?2:??????????????????????????????????AUTO OPERATOR:????????????????????????????RUSSELL HAMMER?NAME:???????????????SE?9122 ? 82 Figure 4.7 Final instrumentation setup prior to testing 4.5.3 Data Acceptance Criteria During the testing process, the SPT Analyzer collected the data from the sensors and displayed the force and proportional velocity wave forms for visual evaluation (Figure 4.8). The data collection screen allowed for individual force and velocity signals to be evaluated as well as evaluation of the general overlapping trend of the force and velocity signals up to 2null/null. The criteria used for data acceptance in the field are summarized below: ? Individual pairs of force and velocity must be proportional, and overlapped for each individual record. This provided an indication that sensors were working properly and that the accelerometers were not loose. Automatic Hammer Instrumented Subassembly ? 83 ? The general trend of the overlapped force and velocity signals must be similar prior to 2null/null. Serious departures from force and proportional velocity prior to 2null/null indicated extremely loose rod connections, and when necessary, the testing was abruptly stopped and the rods tightened. Expecting identical proportionality between the force and velocity signals before 2null/null was not practical as some loss of proportionality was expected due to impedance contrasts from rod joints. ? Both force and velocity signals must reach zero at the end of the time record. ? The initial rise time of the force and velocity signals must be similar for the first few data points. However, they were never exactly proportional at the peak magnitude where FVP is measured. The FVP value ranged from 0.7 to 1.0 during the testing program. FVP less than 1.0 was attributed to tensile wave reflections emerging a few inches below the end of the instrumented subassembly. The reflected tension wave slightly increased the measured particle velocity and slightly decreased the measured force signal. ? ETRs must be within an acceptable range (Less than 100 %). The hammer fall height was inspected for ETRs ranging outside the 75% to 85% range. The hammer fall height was inspected at least once during each borehole. ? 84 Figure 4.8 Representative force and velocity wave trace 4.6 Office Analysis of Field Data Once the necessary field energy measurements were performed, further evaluation of the records was required in order to determine the overall ETR for each drill rig. The following subsections highlight the necessary steps used to acquire the ETR for each test depth and subsequently for the entire testing event for each drill rig. 4.6.1 Retrieving Data from the SPT Analyzer The SPT Analyzer used an external memory card to transfer field data records to a personal computer. There are two options available for transferring data with this model. Specifically, the SPT Analyzer gives you the option to ? 85 1. ?Halve the Sampling Rate? or, 2. ?Save the First Half? As previously mentioned in section 4.3, the SPT Analyzer initially over samples during the testing process and collects a total of 2048 samples per sensor. However, when the SPT Analyzer attempts to write the raw data files to the memory card it only allows a sample size of 1024 samples per sensor to be transferred. Therefore, when Option 1 is chosen, 1024 data records per sensor will be transferred using a sample frequency of 10 kHz corresponding to a time duration of 102.4 milliseconds. This corresponds to one-half the digitization sampling rate. Similarly, when Option 2 is chosen, 1024 data records per sensor will be transferred using a sample collection frequency of 20 kHz and with a time duration of 51.2 milliseconds. This corresponds to one-half of the maximum time duration that was used during data acquisition. The signal conditioning system of the SPT Analyzer is such that the unit itself acts as a low-pass filter for force and velocity signals. The cut-off frequency of the SPT Analyzer is reportedly 3 kHz. Based upon ASTM 4633-10 analog sampling requirements for dynamic testing, in order to faithfully represent the true wave form and prevent aliasing, the data acquisition sampling rate should be at least 5 times the low pass filter frequency. Therefore, the data records in the ALDOT testing program were transferred from the SPT Analyzer to the data card using Option 2 from above, which corresponded to a 20 kHz digitization frequency and a time scale of 51.2 ms. Using Option 2 was sufficient for ALDOT?s SPT needs and produced quality force and velocity records throughout the testing program. Comparison was made with ETR averages between options 1 and 2, and the difference between the calculated ETRs was about 1%. ? 86 4.6.2 PDAW Software Program PDAW is the software that was used during the testing program to evaluate the energy measurements on a blow-by-blow basis. Conveniently, this software program can be downloaded to any personal computer or laptop. The primary advantage of this program is that the testing engineer can perform a second evaluation of force and velocity records in a comfortable setting, without being rushed. An example of the PDAW information screen is provided in Figure 4.9 and shows a force and velocity wave trace as well as the calculated EFV energy trace in the upper and lower sections of the screen, respectively. Calculated ETRs as well as other additional quantities were provided by PDAW on a blow-by-blow basis as shown on the left side of the screen. Figure 4.9 PDAW information screen ? 87 The objective of this stage of the data evaluation process was to verify the quality of the individual force and velocity records and ?adjust? the data set before uploading it to the final software program PDIPLOT. During the testing program the following data adjustments were found to be necessary and were generally performed for each data set and in this order: 1. Defined the beginning velocity time increment using command VA. This time increment was around data point 190 out of 1024 and corresponded to the data point that defines the initial rise time of the velocity signal. 2. Defined the end velocity time increment using command VE. This time increment data point 1023. The VE command was required because PDAW uses a signal rotation technique to make the velocity zero at time VE. 3. Used the velocity time shift command VT to shift and align the velocity signals such that the initial slope of the rise times of the force and velocity are approximately the same. The velocity scale was shifted 0.5 to 1.5 data points during the testing program due to the separation of the strain gages and accelerometers on the instrumented subassembly. The reason for doing so was to define the true wave up and wave down behavior of the stress wave as if the sensors were each at the same location. While performing the VT function, it was noticed that the ETR increased approximately 1%. 4. Verified that the force and velocity signals reached zero at the end of the time record. ? 88 5. Deleted any records where individual pairs of force and velocity do not overlap or when the velocity does not follow a trend toward zero. This an indication of loose sensors or simply sensor malfunction which might not have been noticed during field testing. 4.6.3 PDIPLOT Software PDIPLOT was another software package used during the testing program. The function of PDIPLOT was to organize and present the energy records in such a way as to visually and numerically describe the characteristics of the testing event. The first page of the PDIPLOT summary (Figure 4.10) includes a graphical display of 6 calculated quantities from the PDAW program. These quantities could be chosen from a number of available quantities, however, for reporting purposes the six that were chosen include: 1. CSX ? Maximum compression stress at the sensor location. This quantity indicated that the impact force (stress) delivered from the hammer was generally consistent from blow to blow. Erratic CSX values for automatic hammers likely indicate that hammer maintenance and / or evaluation should be performed. Erratic CSX values could also be the result of malfunctioning strain gages. 2. VMX ? Maximum downward velocity at the sensor location. This quantity provided an indication of the maximum velocity measured during testing and therefore a brief visual assessment that the accelerometers were working properly and were tightly bolted to the subassembly. ? 89 3. EMX ? Maximum energy transmitted to the transducers over the entire stress wave event. (Max EFV) 4. E2E ? E2E is the EFV energy at time 2null/null. This quantity of transferred energy increased with depth and eventually converged to the value of EMX once the rod?s length was long enough. 5. BPM ? Hammer operation rate in blows per minute. Since CME hammers are rate dependent, this quantity was always reported. BPM provides an indication of drill rig operator consistency (engine throttle control) and hammer performance. 6. ETR ? Energy transfer ratio (EMX/PE). This is the value that characterized the transfer efficiency of the hammer system. Figure 4.10 PDIPLOT summary-ALDOT drill rig SE 9299 ? 90 4.7 Calibration Certificate The final end product of the testing program was the energy calibration certificate. The calibration certificate was designed to provide a transparent snapshot of the testing event as well as the overall consistency of the hammer system. The calibration certificate documentation included drill rig, driller, boring identification, and type of drill rods used for sampling. Also, for each sample depth, the calibration certificate recorded the average hammer operation rate, drill rod lengths, SPT blow counts and average ETR per test depth. The standard deviation for the measured ETR for each test depth was recorded in the last column of the certificate. This is an important statistic that was used to evaluate the consistency of transferred energy to the drill rods between hammer blows. These values should generally be small for CME Automatic hammers and should certainly be less than about 10 for a CME hammer performing under optimum conditions and when sampling in a relatively consistent soil density. The ETR and BPM values recorded on the calibration certificate were obtained from PDIPLOT. The calibration certificate format used in the testing program is shown in Figure 4.11. As can be seen from the figure, testing was performed under as many depths, or rod lengths as possible. This approach provided ALDOT with enough test data where they could determine an ETR average for short rod lengths, if desired. An overall ETR was provided near the bottom of the certificate. This value was determined as the overall average of the average ETRs per test depth, and was weighted by the number of individual records analyzed for each test depth. Finally, an overall coefficient of variation was provided and is located at the bottom of the certificate. This COV represents the variation of the ETR averages within the rod lengths used during testing. ? 91 Figure 4.11 Energy calibration certificate-ALDOT SE9299 4.8 Summary of ALDOT Results This section of Chapter 4 provides a concise outline of the testing results and compares them to some of the findings of the literature review section. 4.8.1 Measured Transfer Efficiency The overall average ETR for each drill rig in the ALDOT testing program ranged from 82.2% to 96.1% (Table 4.2). Two of their drill rigs were determined to have ETRs less than 90% while the remaining four drill rigs had measured ETRs higher than 90%. Most of the ETRs are considerably higher than the CME ETR averages from Table 3.1, A u to m a ti c Ha m m er S e r i al Nu mb e r an d Rig Mod e l Rig O w n e r Rig O p e r a t or Bo r i ng N o . Tes t e d Dat e T e st e d Dr ill Rod S i z e Ave r age H a mme r Ope r a t i o n R a te (B P M ) D r i l l R o d Leng th (ft) (LE) Sa m p l e D e pth (feet) SP T Bl o w C o unt (bl o w s pe r s i x i n che s ) (F ro m Bo r i ng Lo g ) a No. of B l ow s A n al yz e d (F r o m P D I P LO T) b Ave r age Me asu r e d E n e r g y ( A ve r age E F V) (ft- l b s ) c E n e r gy T r an sf e r Rat i o (% ) (A v era g e ETR ) ETR S t a n da r d D e v i a t i o n (F r o m P D I P LO T) 54.4 9.3 4 - 5.5 3 - 3 - 5 8 300 85.7% 2.9 53.8 14.3 9 - 10.5 4 - 7 - 13 15 277 79.1% 3.1 54.3 19.3 14 - 15.5 7 - 13 - 20 31 308 88.0% 2.5 54.9 24.3 19 - 20.5 9 - 18 - 20 38 295 84.3% 1.8 54.9 29.3 24 - 25.5 11 - 20 - 26 46 307 87.7% 1.1 54.5 34.3 29 - 30.5 6 - 15 - 19 33 307 87.7% 1.2 54.7 39.3 34 - 35.5 8 - 15 - 22 37 311 88.9% 1.1 55.8 44.3 39 - 40.5 8 - 16 - 35 51 312 89.1% 1.3 56.2 49.3 44 - 45.5 7 - 22 - 34 56 317 90.6% 1.3 d Average Measured Energy: 307.1 e Energy Transfer Ratio (ETR) COV: 3.89 %Calibration Prepared By: JNH Date: 6/17/2011 SE 9299 CME - 850 (Track) ALDOT J. Mathews 1A 6/17/2011 AW-J 87.7% Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 SPT Testing Clinic # 1 Montgomery County, Alabama Trotman Road Overall Average ETR % ? 92 which varied from about 75% to 84.5%. The overall average for the ALDOT CME fleet was 91%, which is about 10% higher than the 80.7 % CME average calculated from Table 3.1. After a rigorous inspection of the force and velocity records, it was determined that some of these CME hammers were simply operating at a high transfer efficiency. The drive weight fall height was evaluated for each rig, and each fall height was within the 30-inch tolerance. These drill rigs are properly maintained and receive maintenance based upon the recommend usage schedule of the manufacturer (which is based on the number of usage hours). Furthermore, evaluation of SPT N-values at each Testing Clinic revealed that hammer systems with higher ETRs produced smaller N-values compared to hammers with lower ETRs while performing SPTs in the same geology and at the same approximate sampling depth. Table 4.2 ALDOT summary statistics 4.8.2 Variation of Transfer Efficiency The statistical computer program SAS was used to create box and whisker plots that visually show the distribution of transferred energy between hammer blows for each Rig I.D. # Single Records # Averages Overall Average BPM STD (BPM) COV (BPM) Overall Average ETR STD (ETR) COV (ETR) SE9050 220 8 52.65 0.74 1.40 93.1 5.34 5.74 SE9122 396 8 52.05 0.58 1.10 82.2 1.81 2.21 SE9299 355 9 54.83 0.75 1.36 87.7 3.41 3.89 SE9445 281 9 54.14 0.57 1.06 95.2 3.94 4.14 ST11151 214 6 52.13 0.24 0.46 92.2 3.21 3.48 ST11152 228 6 52.95 0.33 0.62 96.1 2.60 2.71 ? 93 drill rig. A legend, or key, for the box and whisker format is provided in Figure 4.12. The length of the box represents the interquartile range (IQR) for the data set, which is the range of data within the 25 th to 75 th percentile of the distribution and which contains 50% of the data around the median (or mean if normal). The whiskers highlight the maximum measured energy below the upper fence (1.5IQR). If the distribution of data is close to normal, the empirical rule can be used to evaluate where the approximate standard deviation boundaries are on the box plot figures. Generally speaking, and for all practical purposes, approximately two-thirds of the data in the distribution will lie within one standard deviation from the mean (? 34%), which will be located slightly outside of the 25 th and 75 th percentile markers of the IQR box. Similarly, the whiskers will be located somewhere between two and three standard deviations from the mean, depending on the location of outliers. Figure 4.12 Box and whisker legend (SAS 9.2) ? 94 The ALDOT box plots in Figure 4.13 suggest that that the distribution of energy records between hammer blows is practically normal. Some of the box plots do exhibit long tails in the direction of lower energy but the average calculated energy is very close to the median value and seems to be relatively unaffected by the slight skewness of the distribution. Four out of six box plots show energy measurements below the 1.5IQR distribution of the 25 th percentile. However, this is not a concern, and can likely be attributed to SPT measurements performed in soils having slightly erratic soil density located at shallow depths. The overall standard deviation between energy averages for each drill rig ranged from 1.81% to 5.34% ETR for the entire drilling fleet. These results compare relatively well to the automatic hammer standard deviations reported by FDOT and NCDOT whose maximum standard deviations ranged from 10.1% ETR (FDOT) to 5.5% ETR (NCDOT). Similarly, the ETR COVs for the ALDOT ranged from 2.21% to 5.74%. The ALDOT COV values are within the expected 10% COV range for CME automatic hammers documented in Table 3.1 ? 95 Figure 4.13 Energy box plots-ALDOT (Blow to Blow) 4.8.3 Variation of Hammer Operation Rate The average hammer operation rate for each drill rig, along with its standard deviation and coefficient of variation, were previously provided in Table 4.2. The shape of the hammer operation rate box plots in Figure 4.14 show that the distribution of data is practically normal. The range of average hammer operation rates experienced during the testing program was from approximately 52 blows per minute to 55 blows per minute. These measurements correspond well to the CME manufacturer hammer settings of 50 to 55 blows per minute. The standard deviation of hammer operation rate for each hammer system in the fleet was found to be less than 1BPM. The calculated COV for each group was either slightly higher or lower than 1 %, which basically shows that the CME automatic hammer is relatively consistent from blow to blow. ? 96 Figure 4.14 Hammer operation rate box plots-ALDOT (blow to blow) ? 4.8.4 Rod Length Effects SPT energy measurements were performed at as many depths as possible in order to establish a relationship between short rod lengths and energy transfer for the type of geology tested. This was primarily performed in order to allow ALDOT to establish short rod length correction factors, if desired. The field data from the testing program has been plotted in Figure 4.15, which shows the average ETR per rod length measured for each drill rig. The general trend of the data suggests that the average ETR for each hammer begins stabilize to the approximate hammer baseline energy at a rod length of 33 ft. This behavior supports the ASTM 4633 recommendation that energy transfer is ?more reliable? when the rods length is at least 30 ft. ? 97 Figure 4.15 ETR vs. rod length-ALDOT Utilizing the normalization approach used by the NCDOT, the ALDOT data was plotted against the NCDOT?s data using baseline transfer efficiencies observed at 33 ft as well as 38 ft. The average ETR at 38 ft was used in order for a comparison to be made with the NCDOT data. These results are plotted in Figure 4.16. Additional comparisons with the ALDOT and NCDOT data were made by plotting the results of the Morgano and Liang study, as well as the theoretical transfer efficiency null null from Equation 3.1, and are shown in Figure 4.17. 0 10 20 30 40 50 60 0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0% Ro d ? Le n g t h ? (ft ) ETR% SN?9122 SN?9299 SE?9445 ST?11151 ST?11152 SE?9050 ? 98 Figure 4.16 Rod length study comparison-ALDOT & NCDOT ? ? Inspection of the transfer efficiency trends in Figure 5.16 reveals that ALDOT?s short rod behavior generally agrees with that of the NCDOT study. The trends produced using baseline hammer efficiencies of 33 ft and 38 ft bound the upper and lower limits of the NCDOT regression trend, with an approximate difference between the upper and lower regression lines of 2.5% efficiency. 0.8 0.85 0.9 0.95 1 1.05 0 102030405060 Tr a n s f e r r e d ? Energy ? at ? Le ngth ? / ? Av e r a g e ? ET R Rod?Length?(ft) ALDOT?33?ft NCDOT?38?ft ALDOT?38?ft y?=??8E?05x2?+?0.0083x?+?0.7922 y?=??8E?05x2?+?0.0072x?+?0.8173 y?=??8E?05x2?+?0.0074x?+?0.8369 ? 99 Figure 4.17 Rod length study comparison-all studies Figure 4.17 above shows the hammer efficiency regressions for all of the short rod studies, and the apparent trend was still the same. The shortest rods produce a larger reduction in transfer efficiency compared to longer rods. The theoretical regression line seems to slightly over predict the energy losses for rod lengths less than about 25 ft when compared to the other regression lines. The regression line from the Morgano study approximately follows that of the ALDOT trend normalized from energy measurements above 33 ft. 4.8.5 Effect of Secondary Impacts and Penetration Resistance During the ALDOT testing program, it was found that the combination of secondary hammer impacts and soil penetration resistance had an apparent effect on the value of measured energy at the top of the rods. Due to the relatively consistent density 0.8 0.85 0.9 0.95 1 1.05 0 102030405060 T r a n sfe rre d ? En e r g y ? at ? Le n g th ? / ? Av e r a g e ? ET R Rod?Length?(ft) ALDOT?33?ft NCDOT?38?ft ALDOT?38?ft Morgano Theoretical ? 100 of the soil, it was possible to evaluate these effects, to some extent. Figures 4.18 through 4.20 show the energy traces for three consecutive rod lengths obtained from SE 9299 during the testing program. The energy traces in these figures are indicative of short rod lengths, and the associate hammer blow number, as well as measured ETR, are provided in the legend on the right hand side of each figure. The calibration certificate previously provided in Figure 4.11 (SE9299) highlights additional details related to this testing event. Figure 4.18 Energy traces for rod length 19.3 ft (SPT blow count 7-13-20) ? 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 Tr a n s f e r r e d ? Ene r g y ? (k i p ? ft ) Time?(Sec) BN#2?(82%) BN#6?(84%) BN#10?(87%) BN#24?(89%) BN#38?(91%) Arrival?Time?of?First?Tension?Wave Secondary Hammer?Impacts ? 101 Figure 4.19 Energy traces for rod length 29.3 ft (SPT blow count 11-20-26) ? Figure 4.20 Energy traces for rod length 39.3 ft (SPT blow count 8-15-22) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 T r a n s f e rred ? Ene r g y ? (k i p ? ft ) Time?(Sec) BN#2?(86%) BN#5?(86%) BN#10?(87%) BN#23?(88%) BN#37?(90%) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 T r a n s f erred ? En e r g y ? (k i p ? ft ) Time?(Sec) BN#3?(88%) BN#5?(89%) BN#10?(90%) BN#22?(91%) BN#38?(91%) ? 102 The first observation that can be made from these figures is that secondary hammer impacts do occur, which supports the statements made by Lee et al. in 2010. The contribution of measured energy per secondary impact is relatively consistent from blow to blow for a given rod length (the magnitude is approximately the same). It can also be seen that, as the rod?s length increases, the energy contribution from secondary impacts becomes less significant. A third observation is that the time associated with a secondary impact decreased as the penetration resistance of the soil increased during sampler penetration (secondary impacts moved to the left on time scale). The next effect to evaluate is the behavior of the energy traces just after arrival of the tension wave, between 2null/null and 4null/null. As shown in the previous figures, toward the end of the penetration process, when the soil resistance was large enough, the hammer transferred more of its energy to the drill rods during sampling. This created a second ?step? in measured energy between 2null/null and 4null/null just prior to the secondary impact. The only logical explanation for this behavior is that the hammer generally follows better with the drill rods when the returning tension wave is small and the penetration resistance is large. These findings, which are related to penetration resistance and energy transfer, agree well with that of Morgano and Liang?s wave equation analysis. The results of their wave equation analysis (Figure 3.9) showed that the transferred energy increased as the penetration resistance increased. This additional, or better contact behavior can also be seen shortly after 2null/null in Figure 3.12 (right side of figure) from Lee?s investigation on secondary impacts. However, these statements were not mentioned in Lee?s report. The force and velocity traces, as well as the energy displacement traces measured for each hammer blow obtained for SE 9299 are provided in Appendix B. The PDI ? 103 Curves program was used to display these wave traces, and they are listed in sequential order to further illustrate wave transmission and energy transfer. ? ? ? ? ? ? ? ? ? ? ? ? ? 104 ? ? ? ? CHAPTER 5: SPT ENERGY DATABASE 5.1 Introduction The SPT energy database described in this chapter was the result of a collaborative effort between Auburn University and a private sector consultant. Energy records in the database were performed under a nuclear safety-related quality assurance program, otherwise known as Nuclear Quality Assurance Level 1 (NQA-1). Adherence to the NQA-1 program helped ensure the accuracy of hammer calibrations and the overall quality control measures used to collect and evaluate the data. Energy calibrations for the database were also performed under strict accordance with ASTM 4633 guidelines, which fall under the NQA-1 umbrella. Force and velocity measurements for each hammer system in the database were collected using a Pile Driving Analyzer (PDA) model PAX, which is PDI?s digital data acquisition system. A minimum of two piezoresistive accelerometers were used to obtain acceleration measurements for each hammer blow. Force and velocity records obtained from the field were further evaluated using the PDAW software program. Final computation of individual energy records was performed using the software package PDIPLOT. Both PDAW and PDIPLOT are proprietary software packages from PDI?s software suite, which were designed to evaluate and report energy records obtained from the PDA. ? 105 5.2 Database Design The database was designed with the objective of creating a database that would be compatible with commonly used SPT software programs, as well as have the capability of efficiently querying data for further analysis. The solution to these objectives was found by using Microsoft Excel 2007 (Excel) and Microsoft Access 2007 (Access) as cornerstones for database functionality. For each drill rig, Visual Basic programming in Excel was used to organize energy records obtained from PDIPLOT. Once the information was organized, it was sent to a master summary table (MST) for each drill rig. The MST contained information such as ETR, N-value, rod length, spatial coordinates, etc. The Excel MST for each drill rig was then live-linked to the main Access database engine. The live-linked format between Excel and Access allowed for extremely efficient upgrading of new energy records. An additional feature of the main Access database is that it has the capability providing various summary statistics for individual data queries. Because Access is an object-relational database, it is fully compatible with geographical information system (GIS) programs such as ArcGIS. Fully incorporating the energy database into a GIS is another phase of this project and will not be discussed further. 5.3 Geologic Conditions Energy records in the database were obtained from numerous test sites in Florida, New Jersey, North Carolina, South Carolina, Texas, and Virginia. For simplicity, the geologic conditions for each test site were classified as either undifferentiated coastal ? 106 plain deposits or piedmont residuum. Testing depths in these geologic conditions ranged from approximately 10 ft to 500 ft, with the majority of the deeper boring depths being located in coastal plain deposits. 5.4 Rod Type and Rod Length Distribution SPT energy record percentages acquired from five different rod types are summarized in Table 5.1. Approximately one-half of the energy records were measured from A-sized drill rods. The remaining portion of individual energy records were obtained from N-sized drill rods, which are somewhat larger than the A-sized rod. The N-size drill rods have been categorized into three different groups and include the ?J? tapered thread, the ?W? non-tapered thread, and the N3 category. Additionally, the Mayhew drill rod group has been included. However, there is currently limited information associated with this group. Table 5.1 Rod type and length distribution 5.5 Summary of Drill Rigs A summary of drill rig manufacturers that currently make up the database is provided in Table 5.2. Table 5.2 subdivides the drill rig manufacturer category into Rod Size Record Count of Rod Size % of Total % of Total (50 ft or Less) % of Total (51 ft to 100 ft) % of Total (Greater than 100 ft) AWJ 8,925 46.78 25.91 14.68 6.19 NWJ 8,401 44.04 12.44 8.41 23.18 NW 321 1.68 0.51 1.17 - N3 1,132 5.93 1.92 - 4.01 Mayhew Jr. 298 1.56 0.73 0.84 - Total 19,077 100.00 41.51 25.10 33.38 ? 107 specific drill rig type, number of drill rigs per sub-category, and the number of single ETR records for each drill rig type. A single ETR record is the information associated with one hammer blow from an SPT. The average ETR and summary statistics for each drill rig have also been provided. Approximately 19,000 hammer blow records currently make up the database and were obtained from 111 separate testing events. The energy records were measured from 39 different drill rigs from the beginning of year 2006 to the end of year 2011. Two- thirds of all records in the database were acquired by repeat testing over the time frame previously mentioned. Perhaps one of the most interesting facts about the database records is that the drive weight for each hammer system was removed, inspected, and weighed just prior to the starting date for each project. The same was also performed at the completion of each project. This represents a standard of care not traditionally seen in commercial geotechnical practice. Table 5.2 Drill rig summary Rig Make Rig Type # Rigs # Single Records ETR Average (%) ETR STDEV (%) ETR COV (%) CME Truck 14 6,206 81.43 6.91 8.49 CME ATV 10 5,990 82.96 5.45 6.57 CME Track 6 4,875 83.99 5.72 6.81 CME Marsh Buggy 2 502 87.82 4.34 4.94 CME Trailer 1 252 82.77 4.21 5.09 Mobile Truck 2 164 86.53 2.69 3.11 Mobile ATV 1 315 91.64 8.25 9.00 Diedrich ATV 1 479 72.69 5.51 7.58 Fraste Track 1 209 78.94 2.07 2.62 Failing Truck 1 85 72.93 6.17 8.46 ALL Auto - 39 19,077 82.76 6.53 7.89 ? 108 5.6 CME Drill Rigs Energy measurements from CME automatic hammers represent over 90 % of the energy records in the database (17,825 single records). The rest of this paper will therefore be focused at statistically evaluating the variation of energy measured from this type of hammer system. Due to the large quantity of data that will be presented, each subsection will provide an overview of the numerical findings. The last few sections of Chapter 5 will be used to summarize the results and evaluate four variables that are known to affect transfer efficiency. The ALDOT CME data has not been included in this chapter, but will be compared to the database results in Chapter 6. 5.6.1 Summary Table The database results from 33 CME automatic hammer systems are provided in Table 5.3. The summary statistics are based on SPT records obtained from all rod types. Although energy measurements are often classified by drill rod type, there was no apparent difference in the magnitude or variation of ETR between the different rod groups, which is likely due to averaging effects. Organization of the drill rigs in Table 5.3 was strictly based upon the level of information associated with each drill rig. For example, the hammer system representing CME-1 contains the largest number of single records (hammer blows), while the hammer system representing CME-33 contains the least number of single records. The author believed that this was the most practical way of organizing the data as it allowed for a relatively quick assessment of the large amount of data shown in the table. ? 109 The first column in Table 5.3 specifies the rig identification number, or Rig I.D. The second column in the table documents the number of separate energy testing events that have been performed for each Rig I.D. The third column shows the duration, or number of days lapsed, between the first and last testing event. Additionally, the fourth column shows the number of drillers that have performed SPTs during energy testing. The next two columns in the table display the total number of single energy records and the total number of average records for each group. The number of average records represents the number of testing depths. The last three columns contain the summary statistics for each hammer system. ETR 95 % confidence interval half-widths were calculated for each drill rig ETR average and are provided in the last column in Table 5.3. The confidence interval values are based upon a ?Studentized? t-Distribution. The shape of this type of distribution changes as the level of information associated with it changes. The significance of each interval half-width should be based upon the number of average energy records associated with a specific drill rig I.D. The next three figures after Table 5.3 were provided to show the distribution of data in the CME group. The statistical software program SAS was used to create box and whisker plots for each hammer system (Figure 5.1). A legend, or key, describing the box plot format was previously provided in Figure 4.12. Figures 5.2 and 5.3 show the ETR distribution histograms. Figure 5.2 documents the distribution of 485 ETR test depth averages and Figure 5.3 documents the distribution of 17,825 hammer blow records. ? 110 ? Table 5.3 Summary of CME transfer efficiency Rig I.D. # Testing Events Duration (Btw. First & Last Test ) (Days) # Drillers # Single Records # Average Records ETR Average (%) ETR STDEV (of ETR Averages) ETR COV (%) ETR 95% CI ( Half-Width) (? = 0.05) CME-1 13 1639 3 1935 56 83.68 3.66 4.37 0.96 CME-2 6 787 1 1216 27 86.34 3.88 4.49 1.46 CME-3 11 1441 2 1204 44 84.38 4.05 4.80 1.20 CME-4 8 1257 1 1179 38 84.18 3.85 4.57 1.22 CME-5 6 766 2 1114 31 86.21 2.48 2.88 0.87 CME-6 7 1184 3 1077 34 85.27 3.11 3.65 1.05 CME-7 6 745 2 1051 27 77.59 8.13 10.48 3.07 CME-8 3 17 1 843 14 87.65 1.46 1.67 0.76 CME-9 5 684 3 705 16 79.1 3.74 4.73 1.83 CME-10 4 501 1 661 16 84.13 2.29 2.72 1.12 CME-11 4 1687 3 635 16 82.03 5.15 6.28 2.52 CME-12 1 1 1 464 5 80.24 1.48 1.84 1.30 CME-13 2 2 1 452 10 82.96 3.34 4.03 2.07 CME-14 3 564 3 397 14 81.28 6.64 8.17 3.48 CME-15 3 462 3 383 13 88.14 4.45 5.05 2.42 CME-16 3 523 3 373 14 76.2 4.56 5.98 2.39 CME-17 2 392 2 367 10 76.66 5.14 6.70 3.19 CME-18 2 28 1 363 7 83.96 4.74 5.65 3.51 CME-19 1 1 1 359 5 73.9 2.09 2.83 1.83 CME-20 3 92 2 354 12 85.99 3.7 4.30 2.09 CME-21 2 26 2 335 8 88.76 3.71 4.18 2.57 CME-22 3 572 3 312 12 73.82 2.45 3.32 1.39 CME-23 2 496 2 298 6 86.1 2.51 2.92 2.01 CME-24 1 1 1 294 3 69.96 3.88 5.55 4.39 CME-25 1 1 1 290 4 76.85 3.06 3.98 3.00 CME-26 2 1008 2 252 8 82.36 4.52 5.49 3.13 CME-27 1 1 1 221 5 86.03 3.35 3.89 2.94 CME-28 1 1 1 167 4 84.49 7.19 8.51 7.05 CME-29 1 1 1 160 5 76.86 1.93 2.51 1.69 CME-30 1 1 1 97 6 74.53 1.83 2.46 1.46 CME-31 1 1 1 95 5 81.41 1.36 1.67 1.19 CME-32 1 1 1 95 5 77.7 1.41 1.81 1.24 CME-33 1 1 1 77 5 84.78 1.01 1.19 0.89 ? 111 Figure 5.1 ETR box plots ? ? Figure 5.2 Histogram of ETR averages 0 5 10 15 20 25 30 35 40 45 50 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 Fr e q u e nc y ETR?% ? 112 Figure 5.3 Histogram of single ETR records (hammer blows) 5.6.2 Hammer Operation Rate The CME automatic hammer is rate-dependent. This basically means that the impact energy delivered from the hammer is a function of the speed of the hydraulic motor, which is synchronized with the engine?s throttle speed and hydraulic flow control settings. CME hammer operation rates are initially set at the factory to achieve a 30-inch fall height at an operation speed of 50 to 55 blows per minute. A statistical summary of CME hammer operation rate measurements are provided in Table 5.4. Box plot representation of the data is also provided in Figure 5.4. Hammer operation rate records for CME-31 were not obtainable for reasons unknown, and was left blank in the table. ? 113 Table 5.4 Summary of CME hammer operation rate ? Rig I.D. # Testing Events Duration (Btw. First & Last Test ) (Days) # Drillers # Single Records # Average Records BPM Average (%) BPM STDEV (of ETR Averages) BPM COV (%) CME-1 13 1639 3 1935 56 49.95 3.33 6.67 CME-2 6 787 1 1216 27 54.04 2.16 4.00 CME-3 11 1441 2 1204 44 51.78 1.58 3.05 CME-4 8 1257 1 1179 38 55.48 1.97 3.55 CME-5 6 766 2 1114 31 56.65 1.23 2.17 CME-6 7 1184 3 1077 34 53.54 2.35 4.39 CME-7 6 745 2 1051 27 52.26 1.88 3.60 CME-8 3 17 1 843 14 55.25 0.88 1.59 CME-9 5 684 3 705 16 50.79 2.97 5.85 CME-10 4 501 1 661 16 52.84 3.25 6.15 CME-11 4 1687 3 635 16 50.99 2.89 5.67 CME-12 1 1 1 464 5 56.78 0.74 1.30 CME-13 2 2 1 452 10 58.06 1.97 3.39 CME-14 3 564 3 397 14 44.05 7.48 16.98 CME-15 3 462 3 383 13 50.67 1.91 3.77 CME-16 3 523 3 373 14 52.12 2.11 4.05 CME-17 2 392 2 367 10 49.85 0.73 1.46 CME-18 2 28 1 363 7 51.02 1.25 2.45 CME-19 1 1 1 359 5 48.74 2.1 4.31 CME-20 3 92 2 354 12 50.91 1.63 3.20 CME-21 2 26 2 335 8 52.73 1.76 3.34 CME-22 3 572 3 312 12 49.44 1.22 2.47 CME-23 2 496 2 298 6 50.62 1.26 2.49 CME-24 1 1 1 294 3 53.24 0.86 1.62 CME-25 1 1 1 290 4 58.59 1.54 2.63 CME-26 2 1008 2 252 8 45.96 5.05 10.99 CME-27 1 1 1 221 5 53.63 2.61 4.87 CME-28 1 1 1 167 4 56.69 0.544 0.96 CME-29 1 1 1 160 5 50.91 1.19 2.34 CME-30 1 1 1 97 6 51.11 2.03 3.97 CME-31 - - - - - - - - CME-32 1 1 1 95 5 49.64 1.63 3.28 CME-33 1 1 1 77 5 50.29 1.48 2.94 ? 114 Figure 5.4 Hammer operation rate box plots 5.6.3 Summary of Results Table 5.5 below shows an ETR summary for the CME group. The table categorizes the database records based on rod type. Interestingly, the overall averages for each rod group are approximately the same with each ETR average approximately 83%. The calculated standard deviation and coefficient of variation for each rod group are also very similar and are shown to have values ranging from 5.58 to 6.41 and from 6.75 to 7.76, respectively. Confidence interval half-widths for the average are provided in the last column of the table and are less than 1 for each group. ? 115 Table 5.5 Overall summary of CME database records 5.6.4 Variation of Energy between Drill Rig Groups The ETR COV for each drill rig is shown below in Figure 5.5. The COVs are representative of the ETR variation between test depth averages. Approximately one-half of the database records are represented by CME-1 through CME-7. CME-1 through CME-7 have also had energy measurements performed on their hammers on at least six different occasions. Drill rig CME-1, which had the largest amount of records in the database, was tested a total of 13 different times over a four year period. The number of different drillers performing SPTs ranged from 1 to 3. Inspection of Figure 5.5 reveals that the most occurring COV is approximately less 4%. The expected value, or average COV between the groups was determined to be 4.3%. Drill rig CME-7 had an overall COV of about 10.5%, which was the largest COV in the database. This 10.5% value is close the maximum 10% COV listed in Table 3.1 for CME hammers (FDOT). Rod Group # of Averages ETR Average (%) ETR STDEV ( %) ETR COV (%) ETR 95% CI ( Half-Width) All 485 82.7 5.58 6.75 0.50 A-Size 263 82.98 5.84 7.04 0.71 N-Size 216 82.63 6.41 7.76 0.85 *N-Size group does not include Mayhew rods ? 116 Figure 5.5 ETR COV distribution ? ? 5.6.5 Variation of Hammer Operation Rate between Drill Rig Groups The BPM COV for each hammer system is shown in Figure 6.6. The most reoccurring COV is approximately less than 3%. The overall average COV for all hammer systems was approximately 4%. CME-14 and CME-26 had an unusually high variation compared to the other hammer systems. The COV for CME-14 was approximately 17% and the COV for CME-26 was approximately 11%. The average hammer operation rate for these two hammer systems was approximately 44 to 46 blows per minute, which is relatively slow compared to the operation rates of other hammers in Table 5.4. This slow operation rate resulted in these hammers having the two largest values of standard deviation in the table (approximately 5% to 7.5% BPM). This large 0 1 2 3 4 5 6 7 8 9 10 11 12 123456789101112131415161718192021222324252627282930313233 CO V ? of ? ETR ? (% ) Rig?I.D. 50% of Data Max Historical COV ? 117 variation also had an effect on the ETR COV for CME-14, but not on CME-26. After removing the COVs for these two hammer systems, the overall average COV was determined to be 3.4%. Figure 5.6 BPM COV distribution ? ? 5.7 Multiple Linear Regression This part of the paper is used to evaluate four variables affecting energy transfer for the CME automatic hammer system. These four variables include the hammer operation rate, rod length, penetration resistance, and rod type. Emphasis was placed on short drill rods (less than 50 ft) since the energy transfer for long drill rods is generally only a function of the hammer operation rate and rod type. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 123456789101112131415161718192021222324252627282930313233 CO V ? of ? BP M ? (% ) Rig?I.D. ? 118 Individual linear regression models were not used for this analysis because this model assumes that there is only one independent variable correlated to the dependent variable (ETR). The multiple linear regression approach, which is still based on least squares regression, does not have this model assumption, and can evaluate the average partial effect of each variable while holding the others constant (by partialing out the other residuals). In general, the addition of extra independent variables in the regression model increases the overall prediction accuracy. The multiple regression analysis was performed using the data from individual records instead of average records. An individual record is a single record obtained from one hammer blow during testing. Ultimately, this led to approximately 6,700 individual CME records being used in the analysis. In order to accurately represent the relationship between penetration resistance and transferred energy, each individual record was coded with its associated blow number in the sequence that it was measured in. For example, SPT blow number ten, would be coded with the number ten and have an associated measure of transferred energy. The representative blow number includes blow counts measured over the entire 18-inch sampling distance (where applicable) and not on the N- value (last 12-inches). Inspection of the database records showed that the number of blow counts measured within the first six inches was not significantly smaller than those measured in the second six inches of sampling, which is an indication that the boreholes were thoroughly cleaned out. ? 119 5.7.1 Statistical Terminology Statistical hypothesis testing was performed on the coefficients (slopes) to determine the plausibility of a linear effect for each explanatory variable. Statistical hypothesis testing terminology is often unclear, so a brief description of terminology used in this section is appropriate and is provided below: ? H 0 (Null Hypothesis): This statement describes what we are testing against. For linear regression, H 0 states that the explanatory variables (x-axis) do not have a linear effect on the dependent variable (y-axis). ? H a (Alternative Hypothesis): This statement can be considered as the opposite of the Null (or, what we are trying to prove occurs). H a states that there is a linear effect between the explanatory variables and the dependent variable. ? Degrees of Freedom: This number represents the level of information used in the statistical analysis. It is the total number of observations (data records) minus the number of intermediate steps used to estimate a parameter. ? Standard Error: This number represents the ?best? estimate of the standard deviation in its sampling distribution. It is considered the best estimate because it includes the degrees of freedom associated with the parameter. For multiple linear regression, the standard error is the pooled estimate of variance (standard deviation) from the individual linear regression models. ? Test Statistic: This is a numerical quantity used to test the plausibility of H 0 . It is the estimate divided by its standard error. For regression, the estimate is the coefficient (slope). ? 120 ? Type-I Error (?): This is commonly called the significance level. It is used to divide the rejection region from the region of acceptance. A common value of ? is 0.05, which is the probability of rejecting H 0 when it is actually true. ? p-Value: The p-Value describes the probability of obtaining a test statistic more extreme (farther from zero on a t-Distribution) than the one observed or initially calculated. If the test statistic yields a p-Value smaller than the 0.05 significance level, it is appropriate to reject H 0 in favor of H a . Similarly, if the test statistic yields a p-Value larger than 0.05, it is appropriate to fail to reject H 0 and conclude that there is not sufficient evidence of a linear effect. p-Values for regression analysis are considered two-sided p-Values (? 0.025 on each side). ? Multiple R: This is the correlation coefficient in regression analysis. It provides a measure of how well the data clusters around the regression line. A correlation coefficient of 1.0 means that there is an exact linear relationship between the variables. Likewise, a correlation coefficient of zero means that a linear relationship doesn?t exist between the variables. ? R 2 : This is the coefficient of determination for regression analysis. It is the square of the correlation coefficient. This number is often shown next to the slope-intercept formula and describes the percentage of the total response variation of the explanatory variables. It is therefore a measure of prediction accuracy. R 2 equal to 1.0 represents a perfectly fitting prediction model. R 2 should not be used for inference and should never be used to assess the validity of the straight line model (Ramsey and Schafer, 2002). ? 121 5.7.2 Multiple Linear Regression Results The summary output from Excel is provided in Tables 5.6 and 5.7. Table 5.6 shows the estimated slope coefficients for the energy parameters. This table also includes upper and lower 95% confidence intervals for the coefficients. Similarly, Table 5.7 shows the summary statistics and includes the standard error for the regression equation. The adjusted R-Square was also provided in this table and is slightly smaller than the traditional R-Square value above it. The adjusted R-Square basically penalizes the traditional R-Square value for the extra coefficients used in the analysis. Table 5.6 Multiple regression results Table 5.7 Multiple regression summary statistics Hypothesis testing using test statistics was performed for each independent variable in order to evaluate the plausibility of a partial linear effect on the dependent Energy Parameter Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 48.461 0.975 49.711 0.000 46.550 50.372 Hammer Operation Rate 0.553 0.018 30.974 0.000 0.518 0.589 Total Rod Length 0.101 0.007 14.942 0.000 0.088 0.115 Penetration Resistance 0.044 0.003 12.931 0.000 0.037 0.051 Rod Type (N-Size = 1) 0.309 0.142 2.173 0.030 0.030 0.588 Regression Statistics Multiple R 0.424 R Square 0.180 Adjusted R Square 0.179 Standard Error 5.485 Observations 6718 ? 122 variable. The test statistics (t Stat) were calculated by the ratio of the estimate (slope coefficient) and its associated standard error. A significance level of 0.05 was arbitrarily chosen prior to the analysis and was used to define the boundary of the rejection region of the distribution. Considering the shape of the t-distribution, which is based on the number of observations, the large test statistics calculated in the regression analysis are very unlikely under the null hypothesis for no linear effect. The p-Values for hammer operation rate, rod length, and penetration resistance are each smaller than 0.025 (one- half 0.05 for two sided distribution), and it is appropriate to conclude that these parameters contribute a partial linear effect on the value of the dependent variable. Additionally, a ?dummy variable? was used to assess the partial effect of the rod type category. The N-Size group was coded with ?1? in the analysis and the A-Size group was coded with ?0?. However, after the analysis, the p-Value for the rod type category was determined to be greater than 0.025. Therefore, it is appropriate to fail to reject H 0 and state that there is not sufficient evidence of a linear effect on the dependent variable. The resulting energy prediction equation for CME automatic hammers in the database is shown in Equation 5.1. The limiting values have been provided next to the description of each parameter. ? ? nullnullnull null null null nullnull null null nullnullnull nullnull null null nullnull nullnull null null nullnull ? (5.1) where nullnullnull = Energy transfer ratio (%) null null = Slope intercept ? 123 null null = Coefficient for hammer operation rate (40 BPM to 60 BPM) null null = Coefficient for rod length (ft) (10 ft to 50 ft) null null = Coefficient for penetration resistance (Hammer blow number from 10 to 100) After observing the calculated slope coefficients in Table 5.6, it was apparent that the hammer operation rate contributed the largest magnitude of energy in the regression equation. The rod length and penetration resistance contributed a total of approximately 9% ETR when the maximum rod length of 50 ft and maximum penetration resistance of 100 hammer blows were considered. This 9% ETR equates to 90% of the baseline transfer efficiency if a hammer speed of 55 BPM is assumed. This result supports the findings of the NCDOT rod length study which estimated a maximum 10% baseline efficiency loss for short rods. Although this seems to be a close comparison, it is very unlikely that the NCDOT experienced blow counts reaching 100 hammer blows on average. 5.7.3 Regression through the Origin A comparative multiple regression analysis was performed on the database records from the previous analysis. The objective of this analysis was to evaluate the full effect of the each variable after forcing the regression through the origin. Although the intercept was found to be statistically significant, it is difficult to understand how its value can be greater than zero when the coefficients are zero, i.e., if the hammer operation rate is zero there is no energy source and the remaining coefficients should be zero. Thus, forcing the intercept through the origin may provide a better physical interpretation of the coefficients if the prediction accuracy is close to the first model. ? 124 Regression forced through the origin is somewhat of a controversial topic and is briefly discussed by Eisenhauer (2003). In his paper, Eisenhauer references an approach from Hahn who recommended performing regression analyses with and without the intercept and then later assessing the validity of the model by comparing the standard errors for each regression equation. This is the approach that was used to compare the two models in this report. The results of the second regression analysis are provided below in Tables 5.8 and 5.9. The p-values for each coefficient are statistically significant.. As before, the largest contribution of ETR is from the hammer operation rate. The combined contribution of rod length and penetration resistance for the new regression equation seems to be more realistic. If it can be assumed that the NCDOT experienced an average penetration resistance of 25 hammer blows (over 18 inches) for all SPTs in their rod length study, this would result in an 8.75 % ETR contribution when a 50 ft rod length is considered. This corresponds to 90 % of the baseline transfer efficiency of a hammer operating at 55 BPM, and supports the NCDOT?s regression equation results. Additionally, the rod type variable was found to be statistically significant, but its effect on ETR is small since it would only add 0.784 ETR to the total predicted energy for N-size rods. Table 5.8 Multiple regression results ? without intercept Energy Parameter Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 0 #N/A #N/A #N/A #N/A #N/A Hammer Operation Rate 1.413 0.005 270.048 0.000 1.403 1.424 Total Rod Length 0.150 0.008 19.130 0.000 0.135 0.165 Penetration Resistance 0.053 0.004 13.268 0.000 0.045 0.061 Rod Type (N-Size = 1) 0.784 0.166 4.720 0.000 0.458 1.110 ? 125 Table 5.9 Multiple regression summary statistics ? without intercept Table 5.9 shows the summary statistics obtained from the regression analysis forced through the origin. The calculated standard error is approximately 1% ETR larger than that of the previous standard error shown in Table 5.7, which, for all practical purposes, suggests that the accuracy of the two models is not much different. One major difference between the two models is the reported value of R-Square. The new R-Square value was determined to be close to unity, which implies a nearly perfect prediction model. This R-Square is the result of a zero mean value of the dependent variable in the regression sum of squares (explained variance) and total sum of squares (total variance) formulas, which define the R-Square coefficient (SSR/SST). This results in a value of R- Square that is greater than the R-Square that would be calculated if the mean of the dependent variable were included, and is the reason that the standard error was chosen as a diagnostic tool for comparing the two models. Calculation of the standard error uses the error sum of squares to estimate prediction variance (nullnullnullnull null nullnull? ). Prediction accuracy between the two models is tested using a case study in section 5.8. Regression Statistics Multiple R 0.997 R Square 0.994 Adjusted R Square 0.994 Standard Error 6.416 Observations 6718 ? 126 5.8 CME Case Study The author had the opportunity to perform energy measurement on drill rig, CME-3, whose summary statistics were described in Table 5.3. Because A-Sized drill rods were used for this case study (AWJ), the summary data from Table 5.3 are not entirely accurate since it includes data for all rod types. The representative summary statistics for CME-3 based on A-size drill rods are provided below: ? Number of times tested with A-Size rods: 8 ? Number of test depth averages: 35 ? Overall ETR average: 83.69 % ? Standard deviation of ETR: ?4.14 % ETR ? 95 % CI for the mean: ?1.37 % ETR ? Overall average hammer operation rate: 51.78 BPM ? Standard deviation of BPM: ?1.58 BPM ? Average penetration resistance for A-Size: 24.6 hammer blows (1.5 ft) ? Average rod length for A-Size: 58.4 ft 5.8.1 Project Description and Summary of Transfer Efficiency A series of SPT energy measurements were performed on CME-3 at a bridge abutment in Calera, Alabama (Figure 5.7). The generalized geology underlying the test site consisted of hard shale deposits. N-values measured during the testing program ranged from approximately 39 to 100 blows per foot. SPT energy measurements were ? 127 performed on rod lengths ranging from 33 ft to 53 ft. The average hammer operation rate was determined to be approximately 53 BPM and the overall ETR average was 89.2 %. Figure 5.7 SPT test site ? 5.8.2 Predicted Hammer Efficiency Two CME multiple regression equations were used to predict the transfer efficiency from the SPT testing event previously discussed. The estimated ETR from the regression equation with the intercept was 87.2 % ? 5.4%. The estimated ETR from the regression equation without the intercept was 86.7% ? 6.4%. The prediction difference between the two models for this example is 0.5% ETR for the mean and 1% ETR for the standard deviation. The overall ETR at the test site was determined to be 89.2 %, which is located within one standard deviation of the predicted values. Calculation of the predicted ETR is shown below for transparency. ? 128 nullnullnull nullnullnullnull null null 48.5null0.55null53nullnull0.1null50nullnull0.045null100null null 87.2%null5.4% nullnullnull nullnullnullnull null1.4null53nullnull0.15null50nullnull0.05null100null null 86.7%null6.4% The 89.2 % ETR measured during the case study is higher than the 83.69 % overall average for CME-3 from the database records. After considering the confidence interval for the mean and the standard deviation, the 89.2 % ETR is still within the expected range of transfer efficiency for this hammer system. Moreover, the average penetration resistance measured during the case study is much higher than the historical average of 24.6 hammer blows, and is likely the reason for such a large mean difference of ETR. Using the average historical data for CME-3 previously provided, the regression equation with the intercept predicts an average ETR for CME-3 of 83.1 %. Similarly, the regression equation without the intercept predicts an average ETR of 81.2 %. The regression equation with the intercept is apparently a better predictor. However, the coefficients for the regression analysis without the intercept may provide a close approximation for the average effect of each individual variable. ? 129 ? CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS ? ? A SPT energy testing program was developed for the Alabama Department of Transportation. The testing was performed in a simple, repeatable sequence, which supplemented ALDOT?s normal SPT operations. A calibration certificate documenting hammer performance was provided for each drill rig. A copy of each calibration certificate can be found in Appendix A of this report. Concluding remarks summarizing the testing program are provided below. A summary of the database results, along with the results of the supplemental regression analyses, have also been presented. ALDOT summary 1. A total of six CME hammers were tested. The number of energy averages obtained for each hammer was from 6 to 9 (sample to sample), and were obtained from rod lengths less than about 50 ft. The overall ETRs for each hammer were from 82.2% to 96.1%, with an overall average of approximately 91%. The associated COVs ranged from 2.2% to 5.7%. 2. The average hammer operation rate for each drill rig were within the CME recommendations and varied from about 52 to 55 BPM. The calculated COVs were from 0.46% to 1.4%. ? 130 Database summary 1. The overall transfer efficiency for the CME automatic hammer was determined to be 82.7 % ETR ? 5.5% ETR. 2. The overall transfer efficiency for all automatic hammers was determined to be 82.7 % ETR ? 6.5% ETR. 3. The overall CME automatic hammer operation rate was determined to be 52.1 BPM ? 3.3 BPM. 4. Figure 5.5 provided a bar chart that showed the calculated COVs obtained from 33 CME hammers. These COVs were based on ETRs between test-depth averages. Two-thirds of the CME data were obtained from hammers that were calibrated multiple times. Drill rig CME-1, which represented the drill rig with the most repeat testing, had its hammer calibrated a total of 13 separate times over a 4.5 year period. The distribution of COVs between the drill rig groups ranged from 1.1% to 10.5%, with an overall COV average of 4.3%. 5. Figure 5.6 provided a bar chart that showed the calculated COVs for the average hammer operation rate between the drill rig groups. The distribution of BPM COVs ranged from 1% to 17%. The overall average COV was 4%. Multiple linear regression summary 1. Two regression analyses were performed on the CME auto energy records obtained from rod lengths less than 50 ft. The first analysis was performed with the intercept and the second analysis without the intercept. Four variables evaluated include the hammer operation rate, rod length, penetration resistance, ? 131 and rod type. The coefficients for each regression analysis were determined to be statistically significant (two-sided p-values less than 0.05). The hammer operation rate was found to have the largest effect on energy transfer, and the rod type categorical variable was found to have the smallest effect on energy transfer. The small ETR difference between the rod type categories was likely due to averaging effects between the database records. 2. Regression analysis through the origin was performed in order to interpret the full effect of the coefficients without the intercept, which is physically a more meaningful approach. Considering a CME hammer operating at 55 BPM, and performing SPTs with a rod length of 50 ft, the regression equation predicted a 77% ETR contribution from the hammer and a 7.5% ETR gain once the drill rods reached a length of 50 ft. If soil penetration resistance of 50 hammer blows (over 1.5 ft) were considered in the equation, this would add an additional 2.5% ETR to the predicted transfer efficiency based on the value of the coefficient. 3. A case study on drill rig CME-3 was performed using both regression models. Each model was able to capture the expected value of hammer efficiency within one standard deviation. The difference between the predicted ETR for each regression model in the case study was 0.5% ETR for the mean value and 1% ETR for the standard deviation. The regression equation that included the intercept was slightly more accurate in predicting energy transfer efficiency. CME automatic hammer calibration recommendations 1. The range of transfer efficiencies observed between the ALDOT investigation and the SPT database study were from approximately 74% ETR to 96% ETR. Some ? 132 of these CME hammers were relatively new and some were slightly older but were considered to be well maintained. This large range of transfer efficiencies shows the importance of calibrating individual drill rigs, as some drill rigs operate well above the 80 % assumed ETR average. 2. Characterizing the hammer transfer efficiency is an important objective of SPT energy measurements. However, it is even more important to have confidence that the operational components of the automatic hammer system are not malfunctioning. As was shown in the literature review, the CME automatic hammer tends to overthrow the drive weight when the hammer operation rate exceeds about 60 BPM. The combination of an increased throw height and reduced cycle time of the lifting lug (faster chain velocity) can cause the drive weight to strike the lifting lug prior to striking anvil. When this happens, the free fall velocity of the drive weight is obstructed by the lifting lug and the kinetic energy of the drive weight is transmitted to the various hammer system components rather than to the top of the anvil. This can permanently damage the drive chain and affect future hammer performance even after the hammer speed is reduced. Thus, performing SPT energy measurements also serves as a measure of quality assurance since energy transfer and hammer operation rate are both monitored during testing. 3. ASTM 4633 recommends calibrating SPT hammers on an annual basis for normal SPT operations. It also recommends that additional testing be performed on important projects that are highly sensitive to SPT N-value results. In light of the ASTM recommendations, it is important to consider that the overall ETR for a ? 133 SPT event characterizes the hammer performance for that day under specific testing conditions. As was previously illustrated in Figure 5.5, the CME transfer efficiency was determined to have a COV as high as 10%. This would translate to a standard deviation of 8% ETR if an 80% ETR average was assumed. Although this is somewhat of an extreme example, it justifies the importance of creating a personalized database of energy measurements that are obtained in different types of testing conditions and over an extended period of time. Having a history of energy transfer variation facilitates better decision making with respect N-value normalization and provides an indication of when hammer maintenance should be performed. 4. It is not always financially feasible to obtain force and velocity measurements for every hammer blow during an SPT investigation. The data analysis is rather complicated and the calibration process can be costly and time consuming, especially when calibrating multiple hammer systems is required for a single project. The frequency of these measurements is therefore somewhat restricted. Fortunately, there is an emerging technology designed for SPT hammers that is a cost effective approach to hammer calibration, and one which can almost effortlessly evaluate the hammer efficiency of every hammer blow performed in a SPT boring. This new technology uses proximity switches that measure drive weight kinetic energy just prior to impact. The efficiency of the hammer is determined from these measurements, which is later correlated to the transfer efficiency for N-value normalization. Preliminary research with the prototype model suggests that the measured kinetic energy closely tracks and approximates ? 134 the energy transferred to the drill rods, and appears to be a viable method of hammer calibration. Recommendations for future research 1. Four case studies evaluating the energy reaching the sampler were discussed in the literature review section. Some of these case studies were strictly theoretical and some were based on experimental observations. However, each study concluded that the transferred energy at the top of the drill rods will generally be greater than that measured at the bottom of the rods, and that energy losses for long drill rods should be expected. The primary questions to ask are at what length are extreme energy losses expected, what is the rate of decay, and how do different types of drill rods (different diameters) affect the magnitude of decay for comparative purposes. The author believes that answering these questions would be advantageous to many industries, especially the power industry, which often performs geotechnical borings on the order of hundreds of feet. This type of technology might also improve liquefaction soil analysis and serve earthquake- prone regions very well. Perhaps scientific research could design a small prototype subassembly that is durable and waterproof and that would attach to the sub on top of the split-spoon sampler. The subassembly would require strain gages and small internally-mounted accelerometers which would provide force and velocity measurements for energy calculation. The force and velocity measurements could be temporarily stored on a removable memory chip and later removed for further evaluation. ? 135 ? REFERENCES Abou-matar, H., and Goble, G.G. (1997) ?SPT Dynamic Analysis and Measurements,? Journal of Geotechnical and Geoenvironmental Engineering, Proceedings of the American Society of Civil Engineers, Vol. 123, 921-928. Aggour, M.S., and Radding, W.R. (2001). ?Standard Penetration Test (SPT) Correction,? University of Maryland, Final Report SP007B48. http://docs.trb.org/00929164.pdf (Accessed May 2011). ASTM (2008). ?Standard Test Method for Standard Penetration Test and Split-Barrel Sampling of Soils.? Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA. ASTM (2010). ?Standard Test Method for Energy Measurement for Dynamic Penetrometers.? Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA. Batchelor, C., Goble, G., Berger, J., and Miner, R. (1994). ?Standard Penetration Test Energy Measurements on The Seattle ASCE Field Testing Program.? Bulter, J.J (1997). ?Analysis of Energy Measurement Methods of SPT Driving Systems,? thesis, presented to Utah State University, at Logan, UT, in partial fulfillment of the requirements for the degree of Master of Science. Davidson, J., Maultsby, J., and Spoor, K. (1999). ?Standard Penetration Test Energy Calibrations.? Florida Department of Transportation, Contract No. BB261. Eisenhauer, J.G. (2003). ?Regression Through the Origin.? http://web.ist.utl.pt/~ist11038 /compute/.../,regression/regrthroughorigin.pdf (Accessed December 2011). Farrar, J.A., and Chitwood, D. (1999). ?CME Automatic Hammer Operations Bulletin,? U.S. Bureau of Reclamation, Denver, CO. Fischer, H.C. (1959). "On Longitudinal Impact I, Fundamental Cases of One- Dimensional Elastic Impact, Theories and Experiment," Applied Science Research, Section A, Vol. 8, 105-139. Goble, G.G. (2005). ?SPT Trials and Tribulations.? PDCA. http://www.piledrivers.org/files/uploads/49C05DDA-1389 (Accessed September 2011). ? 136 Howie, J., Daniel, C., Jackson, R., and Walker, B. (2003). ?Comparison of Energy Measurement Methods in the Standard Penetration Test,? Geotechnical Research Group, Department of Civil Engineering, the University of Columbia.http://www.civil.ubc British.ca/people/faculty/JHowie/SPT_Report/SPT_Report.pdf (Accessed May 2011). Kelley, S. and Lens, J. (2010). ?Evaluation of SPT Hammer Energy Variability,? Geo Designs Incorporated. http://www.aot.state.vt.us/MATRes/Documents/ACROBAT.pdf (Accessed June 2011). Kolsky, H. (1963). ?Stress Waves in Solids,? Dover Publications, Mineola, N.Y. Lamb, R. (1997). ?SPT Energy Measurements with the PDA,? Proceedings from the 45 th Annual Geotechnical Engineering Conference at the University of Minnesota, 1-20. Lee, C., Lee, J., An, S., and Lee, W. (2010). ?Effect of Secondary Impact on SPT Rod Energy and Sampler Penetration,? Journal of Geotechnical and Geoenvironmental Engineering, Proceedings of the American Society of Civil Engineers, Vol. 136, 522-526. Liebich, B. (2005). ?Standard Penetration Test Energy Testing and Hammer Efficiency Measurements.? http://www.dot.ca.gove/hq/esc/geotech/requests/logging_manual/ DEC_2005_SPT.pdf (Accessed June 2011). Mayne, P.W.,Christopher, B.R., and Dejong, J.,(2001). Subsurface investigations, FHWA-NHI-01-031. Morgano, C.M., and Liang, R. (1992). ?Energy transfer in SPT ? Rod length effect,? Proceedings of the Fourth International Conference on the Application of Stress-Wave Theory to Piles-The Hague, Netherlands. Odebrecht, E., Schnaid, F., Rocha, M.M., and Bernardes, P. (2005). ?Energy Efficiency for Standard Penetration Tests,? Journal of Geotechnical and Geoenvironmental Engineering, Proceeding of the American Society of Civil Engineers, Vol.131, 1252- 1263. Palacios, A. (1977). ?The Theory and Measurement of Energy Transfer During Standard Penetration Test Sampling,? thesis, presented to the University of Florida, at Gainesville, FL, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Ramsey, F.L. and Schafer, D.W. (2002). The Statistical Sleuth. Brookes/Cole, Belmont, CA. Rassieur, C.L., (1983). (To Central Mine Equipment Company), ?Automatic Drive Hammer System,? U.S. Patent 4,405,020; September 20, 1983. http://www.freepatentonline.com/4405020.pdf (Accessed July 2011). ? 137 Rausche, F. (1981). ?A Short Introduction to Continuous and Discrete Wave Mechanics.? The Second Seminar on The Dynamics of Pile Driving, Boulder, CO, 1-22. Schmertmann, J.H., and Palacios, A. (1979). ?Energy Dynamics of the SPT,? Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers, Vol. 105, No. GT8, 909-926. Valiquette, M., Robinson, B., and Borden, R.H. (2010). ?Energy Efficiency and Rod Length Effect in SPT Hammers,? TRB 2010 Annual Meeting CD-ROM. http://www.docs.trb.org/prp/10-0317.pdf (Accessed June 2011). ? 138 APPENDICES ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 152 ? ? ? ? ? APPENDIX A ALDOT CALIBRATION CERTIFICATES Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 Record of Standard Penetration Test Energy Calibration For SE 9122 ? Central Mine Equipment 550X ATV Date of Calibration: April 5 th , 2011 Documentation: Page 1 ? Calibration Certificate Pages 2 to 3 ? Field Sheets Pages 4 to 16 ? PDIPLOT Page 17 ? PDI Curves F&V Trace Auto ma tic Ha mmer Seria l Number a nd Rig M o del Rig Owner Rig Opera to r Boring No. Test ed Da te Tested Drill Ro d Size Av era g e Ha mmer Opera tio n Ra te (B PM ) Drill Ro d L eng th (ft) ( LE) Sa mple Depth (feet) SP T Blow Count (blo ws per six inches) (Fro m Bo ring Lo g ) a N o . of Bl ow s Analyzed ( F rom P D IP LO T) b A v e r age Me asu r e d En e r gy ( A ve r age EF V) (ft-lbs ) c En e r gy Tr an sf e r Ra tio (%) ( A ve r age ETR) ETR Sta nda rd Deviat ion ( F rom P D IP LO T) 51.6 8.3 3 - 4.5 4 - 8 - 9 14 277 79.1% 3.3 53.2 13.3 8 - 9.5 3 - 2 - 4 4 280 80.0% 4.5 51.5 18.3 13 - 14.5 14 - 34 - 40 74 280 80.0% 4.5 51.7 23.3 18 - 19.5 19 - 34 - 47 87 287 82.0% 2.8 51.8 28.3 23 - 24.5 23 - 30 - 50 84 288 82.3% 3.6 52 33.3 28 - 29.5 21 - 32 - 40 70 286 81.7% 3.3 52 6 38 3 33 34 5 18 31 50 78 291 83 1% 39 SE 9122 CME - 550x (ATV) ALDOT Russell B-1 4/5/2011 AW-J Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 U.S. 80 Over French Creek Marengo County, Alabama BR0008 (528) . . - . - - . 3.9 52 43.3 38 - 39.5 18 - 30 - 45 74 296 84.6% 5.4 d Average Measured Energy: 287.6 c Energy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet). The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff. The STDEV function from Excel was utilized to determine the standard deviation. Statistical Analysis - Overall Coefficient of Variation e Energy Transfer Ratio (ETR) COV: 2.21 %Calibration Prepared By: JNH Date: 4/5/2011 e ETR COV determined by calculating the overall standard deviation for the average ETR per sample depth (c) and then dividing by the overall average ETR. 82.2% a Energy results for SPT sampling are averaged and reported for hammer impacts during the final 1 ft of driving, which relates to the observed N-value. In some cases, certain blows produce poor quality data and were not used to calculate the Average Measured Energy. This may result in less blows evalutated for ETR than what is shown on the boring logs. d The overall Average Measured Energy is calculated by taking the weighted average of the number of hammer blows analyzed (last 1 ft) and the Average Measured Energy for each sample depth tested. b Measured Energy is based on the EFV method, as outlined in ASTM D4633-10, for each blow recorded by the SPT Analyzer. Overall Average ETR % DCN: 01 ~~~: ~~.s'PE:- () u~1 Brr c\.)~s - ,,.. 1b-t)"~ Alabama Department of'l'ransportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 Project Name: Location: Date: PT Inspector: Drilling Company: RECORD OF SPT ENERGY MEASUREMENTS 5 Rig Make / Model: Rig 1.0.: Hammer Serial No.: Hammer Type: Rod Size: Boring Identification: Geologic Region: Time Tested: Drill Rig Operator: SPT Analyzer Serial Number: Instrumented Rod Type / Area: 4036T Al: Al: A2: .3- 0' ? 6 in D:t> N(}~ ... 114 4-.2.D .5.3 4 12 in ~..5.' (0 - I.S- ) ~ (Ji) 18 in 2-a +&.,.. 5?3 3' If 6in 113 +S'-C> ~ 12 in~.;S (..3 - 9?S- ) tf t1iJ 18 in ~. ? 6 inIe /3.3 .5 ..3 <' 12 in ( &-'?r ) ~ r?.J 18 in /3/ 1'1 6in ID /'?-3 S.3 .,j4!f- 12 in( 1.3 - /'1. r ) 4-0 OJ) 18 in I~ .? J 9 6in IE <3?3 ~. :3 ..J~ 12 in(1.1-I'1..r ) ~r <3U 18 in 2.3 " 13 6in}F {3.) 5?3 .30 12 in (/3 ...2'1.1' ) sz> f:3?J) 18 in "Rod Length: Total Length Fram Gages ta Tip afSampler "Measured S.U.: Measured Drill Rod Stick Up Fram Ground Surface to Location of Gages "Calculated Start Depth: Rod Length Minus Measured Stick Up Alabama Department of' 1'ransportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 Project Name: Location: Date: SPT Inspector: Drilling Company: RECORD OF SPT ENERGY MEASUREMENTS .s Rig Make / Model: C t:- Rig LD.: Hammer Serial No.: Hammer Type: Rod Size: Boring Identification: Geologic Region: Time Tested: Drill Rig Operator: SPT Analyzer Serial Number: Instrumented Rod Type / Area: Al: 3 Al: 33S- A2: 3~S- Fl: 20(. A - ..Jlf..n .sO 61) 18 in 3:B ,- /~ 6 in?? #3.3 S.3\ A 30 12 in(.3~-3'1.r) ?S- C"7S) 18 in 6 in 12 in ( ) 18 in 6 in 12 in ( ) 18 in 6 in 12 in ( ) 18 in -Rod Length: Totol Length From Gages to Tip of Sampler -Measured S.U.: Measured Drill Rod Stick Up From Ground Surface to Location of Gages -Calculated Start Depth: Rod Length Minus Measured Stick Up Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 Record of Standard Penetration Test Energy Calibration For SE 9299 ? Central Mine Equipment 850 Track Date of Calibration: June 17 th , 2011 DCN: 02 Documentation: Page 1 ? Calibration Certificate Pages 2 to 3 ? Field Sheets Pages 4 to 6 ? PDIPLOT Page 7 ? PDI Curves F&V Trace Auto ma tic Ha mmer Seria l Number a nd Rig M o del Rig Owner Rig Opera to r Boring No. Test ed Da te Tested Drill Ro d Size Av era g e Ha mmer Opera tio n Ra te (B PM ) Drill Ro d L eng th (ft) ( LE) Sa mple Depth (feet) SP T Blow Count (blo ws per six inches) (Fro m Bo ring Lo g ) a N o . of Bl ow s Analyzed ( F rom P D IP LO T) b A v e r age Me asu r e d En e r gy ( A ve r age EF V) (ft-lbs ) c En e r gy Tr an sf e r Ra tio (%) ( A ve r age ETR) ETR Sta nda rd Deviat ion ( F rom P D IP LO T) 54.4 9.3 4 - 5.5 3 - 3 - 5 8 300 85.7% 2.9 53.8 14.3 9 - 10.5 4 - 7 - 13 15 277 79.1% 3.1 54.3 19.3 14 - 15.5 7 - 13 - 20 31 308 88.0% 2.5 54.9 24.3 19 - 20.5 9 - 18 - 20 38 295 84.3% 1.8 54.9 29.3 24 - 25.5 11 - 20 - 26 46 307 87.7% 1.1 54.5 34.3 29 - 30.5 6 - 15 - 19 33 307 87.7% 1.2 54 7 39 3 34 35 5 81522 37 311 88 9% 11 SE 9299 CME - 850 (Track) ALDOT J. Mathews 1A 6/17/2011 AW-J Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 SPT Testing Clinic # 1 Montgomery County, Alabama Trotman Road . . - . 8 - 15 - 22 . 1.1 55.8 44.3 39 - 40.5 8 - 16 - 35 51 312 89.1% 1.3 56.2 49.3 44 - 45.5 7 - 22 - 34 56 317 90.6% 1.3 d Average Measured Energy: 307.1 c Energy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet). The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff. Statistical Analysis - Overall Coefficient of Variation e Energy Transfer Ratio (ETR) COV: 3.89 %Calibration Prepared By: JNH Date: 6/17/2011 e ETR COV determined by calculating the overall standard deviation for the average ETR per sample depth (c) and then dividing by the overall average ETR. 87.7% a Energy results for SPT sampling are averaged and reported for hammer impacts during the final 1 ft of driving, which relates to the observed N-value. In some cases, certain blows produce poor quality data and were not used to calculate the Average Measured Energy. This may result in less blows evalutated for ETR than what is shown on the boring logs. d The overall Average Measured Energy is calculated by taking the weighted average of the number of hammer blows analyzed (last 1 ft) and the Average Measured Energy for each sample depth tested. b Measured Energy is based on the EFV method, as outlined in ASTM D4633-10, for each blow recorded by the SPT Analyzer. Overall Average ETR % DCN: 02 Alabama Department ofTransportation BUREAU OFMATERIALS &TESTS 3700Fairground Road Montgomery, Alabama 36110 Project Name: Location: Date: SPT Inspector: Drilling Company: RECORD OF SPT ENERGY MEASUREMENTS Rig Make I Model: Rig I.D.: Hammer Serial No.: Hammer Type: Rod Size: Ai: 1:,3 Ai: A2: ::3.<~ Fi: ?. I F2: 1'()/, ~ - ~ Fi: 211),>+ F2: .211,S- Accelerometer Calibration Factors: Accelerometer Serial Numbers: Strain Gage Serial Numbers: Strain Gage Calibration Factors: Boring Identification: Geologic Region:- Time Tested: Drill Rig Operator: SPT Analyzer Serial Number: Instrumented Rod Type IArea: Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts (Boring No. plus (Ff) S.U. Depth (ProvidedBy Otbers) Increment Misc. Comments Subdesignation) (Ff) (Ff) 2,k~IJS If' :$ 6in/4- +1.01S', . ..3S..3 12inq,:S (Jj~~.S' ) .5 ~ 18in l' If 6inI I 1-/Jf,.1 5:J 12in (~"/~, r- ) IJ 1f6) 18in / 11f' 7 6inI 5,3 11,j 13 12in(I'" ~ I("~ ) 2() r:f~} 18in I /1' ~ ----- 6inJ 3,.3 lLJ,3 JJJ 12in ( 1'/- ~,S' ) 2() ~8~ 18in / / 21t' II 6in21,3 3,3 ~() - 12in (24 ~lr.{') ~,ff') 18in '0/ ,- ,- 2r' L 6in3Jf,3 .5.3 ,5' 12 in ('21. 3D.~) ''1 .~4} 18in '--"" "Rod Length: Total Length From Gages to Tip of Sampler "Measured S.U.: Measured Drill Rod Stick Up From GroundSurface to Location of Gages "Calculated Start Depth: Rod Length Minus Measured Stick Up Instrumented Subassembly Length:_2 ft.__ Length Below Gages: O.5ft. _ DCN: 02 Alabama Department ofTransportatio BUREAU OF MATERIALS &TESTS 3700 Fairground Road Montgomery, Alabama 36110 Project Name: Location: Date: , SPT Inspector: Drilling Company: RECORD OF SPT ENERGY MEASUREMENTS -::tJ:- Rig Make /Model: Rig I.D.: Hammer Serial No.: Hammer Type: Rod Size: 4036T ',/~ Al: l(\~ .3 Al: .35 A2: ...:3 S- Fl: - I F2: '7~~ 2-- Fl: F2: Accelerometer Calibration Factors: Accelerometer Serial Numbers: Boring Identification: Geologic Region: Time Tested: Drill Rig Oper.ator: SPT Analyzer Serial Number: Instrumented Rod Type /Area: Strain Gage Serial Numbers: Strain Gage Calibration Factors: Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts (Boring No. plus (Ff) S.U. Depth (ProvidedBy Others) Increment Misc. Comments Subdesignation) (FT) (Ff) , , .3Jr g 6in/4- 31.3 .5-3 IS- 12 in ('.3Jf.~S".~) 2) 6.:f.) 18 in ; , 9 6in lf1-. :3 ~.3 31 It. 12 in (3'- Ifo.~) ~S- k/7 18 in 4~ 7 ~ 6in /' ,. ....?V 47,3 5"...3 'll.. 12 in (J,ey..? 4s-. r) '?.If ~5',(~ 18 in- 6in 12 in ( ) 18 in 6in 12 in ( ) 18 in 6in 12 in ( ) 18 in .Rod Length: Total Length From Gages to Tip of Sampler "'Measured S.U.: Measured Drill Rod Stick Up Fram Ground Surface to Location of Gages .Calculated Start Depth: Rod Length Minus Measured Stick Up Instrumented Subassembly Length:_2 ft.__ Length Below Gages: 0.5ft. _ DCN: 02 Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 Record of Standard Penetration Test Energy Calibration For SE 9445 ? Central Mine Equipment 550x ATV Date of Calibration: June 17 th , 2011 DCN: 03 Documentation: Page 1 ? Calibration Certificate Pages 2 to 3 ? Field Sheets Pages 4 to 6 ? PDIPLOT Page 7 ? PDI Curves F&V Trace Auto ma tic Ha mmer Seria l Number a nd Rig M o del Rig Owner Rig Opera to r Boring No. Test ed Da te Tested Drill Ro d Size Av era g e Ha mmer Opera tio n Ra te (B PM ) Drill Ro d L eng th (ft) ( LE) Sa mple Depth (feet) SP T Blow Count (blo ws per six inches) (Fro m Bo ring Lo g ) a N o . of Bl ow s Analyzed ( F rom P D IP LO T) b A v e r age Me asu r e d En e r gy ( A ve r age EF V) (ft-lbs ) c En e r gy Tr an sf e r Ra tio (%) ( A ve r age ETR) ETR Sta nda rd Deviat ion ( F rom P D IP LO T) 54.1 8.3 4 - 5.5 3 - 3 - 5 8 300 85.7% 1.9 53.6 13.3 9 - 10.5 3 - 6 - 10 16 316 90.3% 2.3 53.2 18.3 14 - 15.5 5 - 10 - 16 26 322 92.0% 2.9 54.2 23.3 19 - 20.5 8 - 13 - 20 32 326 93.1% 1.7 54.7 28.3 24 - 25.5 11 - 20 - 20 40 341 97.4% 2.1 54.9 33.3 29 - 30.5 11 - 19 - 28 46 337 96.3% 1.1 54 8 38 3 34 35 5 81334 47 340 97 1% 1 Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 SPT Testing Clinic # 1 Montgomery County, Alabama Trotman Road SE 9445 CME - 550x (ATV) ALDOT Dingler 2A 6/17/2011 AW-J . . - . 8 - 13 - 34 . 54 43.3 39 - 40.5 12 - 18 - 44 62 336 96.0% 1.7 53.8 48.3 44 - 45.5 12 - 21 - 47 21 338 96.6% 1.3 d Average Measured Energy: 333.3 c Energy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet). The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff. Statistical Analysis - Overall Coefficient of Variation e Energy Transfer Ratio (ETR) COV: 4.14 % 95.2% a Energy results for SPT sampling are averaged and reported for hammer impacts during the final 1 ft of driving, which relates to the observed N-value. In some cases, certain blows produce poor quality data and were not used to calculate the Average Measured Energy. This may result in less blows evalutated for ETR than what is shown on the boring logs. d The overall Average Measured Energy is calculated by taking the weighted average of the number of hammer blows analyzed (last 1 ft) and the Average Measured Energy for each sample depth tested. b Measured Energy is based on the EFV method, as outlined in ASTM D4633-10, for each blow recorded by the SPT Analyzer. Overall Average ETR % Calibration Prepared By: JNH Date: 6/17/2011 e ETR COV determined by calculating the overall standard deviation for the average ETR per sample depth (c) and then dividing by the overall average ETR. DCN: 03 Alabama Departmen~ ofTransportati BUREAU OFMATERIALS &TESTS 3700Fairground Road Montgomery, Alabama 361 Project Name: Location: Date: SPT Inspector: Drilling Company: RECORD OF SPT ENERGY MEASUREMENTS rI;h I Rig Make I Model: Rig 1.0.: Hammer Serial No.: Hammer Type: Rod Size: 4036T :'"~ Ai: A2: Ai: 3..:3~ A2: Fi: , F2:- Fi: :Z~.5'+ F2: ,;2/j,S- Accelerometer Serial Numbers: Accelerometer Calibration Factors: Strain Gage Calibration Factors: Strain Gage Serial Numbers: Boring Identification:. Geologic Region: Time Tested: Drill Rig Operator: SPT Analyzer Serial Number: Instrumented Rod Type IArea: Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts (Boring No. plus (Ff) S.U. Depth. (ProvidedByOthers) Increment Misc. Comments Subdesignation) (FT) (FT) 1.8 fP.~ If ' -3 6in,211. +5"" 4.3 ..3 12 in, ( Jj, S.5' (g:)11.3 ) ..s 18 in , '1' 03 6in. /3.3 If,j , 12in( 9~ I/).~ ) If) t'N) 18in , , lit I oS 6in /3.3 lj.3 ,/) - 12in (/;-/);$" ) I' (2') 18in. .I /1' go 6in11.3 If,.3 " 12in ( 11- 7".~ ) '20 r'3.lJ 18in, / :2~ I II 6in 23.) 4-.3 2~ 12 in(29 . 2~a' ) '20 (//{)) 18in .- .I 11" /1 6in'V 3;'3 '1,3 , '9 .- 12in(~f- 31'( ) 1? ('11) 18in *Rod Length: Total Length From Gages to Tip of Sampler *Measured S.U.: Measured Drill Rod Stick Up From GroundSurface to Location of Gages *Calculated Start Depth: Rod Length Minus Measured Stick Up Instrumented Subassembly Length:_2 ft.__ Length Below Gages: O.5ft. _ DCN: 03 Alabama Department ofTransportatio BUREAU OFMATERIALS &TESTS 3700Fairground Road Montgomery, Alabama 36110 Project Name: Location: Date: SPT Inspector: Drilling Company: Rig Make /Model: Rig I.D.: Hammer Serial No.: Hammer Type: Rod Size: '- Al: I<\S~ A2: l(JS-t3 Al: 33s- A2: Fl: - I F2: Fl: F2: Accelerometer Calibration Factors: Strain Gage Calibration Factors: Strain Gage Serial Numbers: Accelerometer Serial Numbers: Boring Identification: Geologic Region: Time Tested: Drill RigOperator: SPT Analyzer Serial Number: Instrumented Rod Type /Area: Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts (Boring No.plus (Ff) S.U. Depth (Provided By Others) Increment Misc. Comments Subdesignation) (Ff) (Ff) ~ , ~~ ' ~ 6 in 214- 3a., if,J Il 12 in(.3'1- 3S':S-) J'~ --C-l-=1] 18in I , 31 , /2 6in Jj3.} Jj.,:3 /r 12in ( 3f- ~.S- ) ~'" (b2) 18in 1;4/ /2 -, / 6in1!.3 1;,3 21 12in --II- ("'11- ~S".) ) Jf1- /18) 18in '-.7 6in 12in ( ) 18in 6in 12In ( ) 18in 6in 12in ( ) 18in '"Rod Length: Total Length From Gages to Tip 01Sampler '"Measured S.U.: Measured Drill Rod Stick Uphom Ground Surface to Location 01Gages '"Calculated Start Depth: Rod Length Minus Measured Stick Up Instrumented Subassembly Length:_2 /t.__ Length Below Gages: 0.5/t. _ DCN: 03 Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 Record of Standard Penetration Test Energy Calibration For ST 11151 ? Central Mine Equipment 55 Truck Mount Date of Calibration: July 8 th , 2011 DCN: 04 Documentation: Page 1 ? Calibration Certificate Pages 2 to 3 ? Field Sheets Pages 4 to 11 ? PDIPLOT Page 12 ? Force & Velocity Trace Auto ma tic Ha mmer Seria l Number a nd Rig M o del Rig Owner Rig Opera to r Boring No. Test ed Da te Tested Drill Ro d Size Av era g e Ha mmer Opera tio n Ra te (B PM ) Drill Ro d L e ng th (ft) ( LE) Sa mple Depth (feet) SP T Blow Count (blo ws per six inches) (Fro m Bo ring Lo g ) a N o . of Bl ow s Analyzed ( F rom P D IP LO T) b A v e r age Me asu r e d En e r gy ( A ve r age EF V) (ft-lbs ) c En e r gy Tr an sf e r Ra tio (%) ( A ve r age ETR) ETR Sta nda rd Deviat ion ( F rom P D IP LO T) 52.5 18.3 14 - 15.5 2 - 4 - 7 10 308 88.0% 3 52.2 23.3 19 - 20.5 5 - 8 - 4 10 307 87.7% 4.3 52.3 28.3 24 - 25.5 15 - 21 - 27 46 311 88.9% 1.2 52 33.3 29 - 30.4 24 - 32 - 50/0.4' 79 325 92.9% 1.9 51.9 38.3 34 - 35.5 15 - 24 - 40 61 323 92.3% 1 51.9 43.3 39 - 39.9 39 - 50/0.4' 51 335 95.7% 1.7 d AMdE 322 6 Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 SPT Testing Clinic # 2 Montgomery County, Alabama Near Trotman Road ST 11151 CME - 55 (Truck) ALDOT J. Mathews 1A 7/8/2011 AWJ 92 2%Average Measure nergy: . c Energy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet). The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff. Statistical Analysis - Overall Coefficient of Variation e Energy Transfer Ratio (ETR) COV: 3.49 %Calibration Prepared By: JNH Date: 7/8/2011 e ETR COV determined by calculating the overall standard deviation for the average ETR per sample depth (c) and then dividing by the overall average ETR. a Energy results for SPT sampling are averaged and reported for hammer impacts during the final 1 ft of driving, which relates to the observed N-value. In some cases, certain blows produce poor quality data and were not used to calculate the Average Measured Energy. This may result in less blows evalutated for ETR than what is shown on the boring logs. d The overall Average Measured Energy is calculated by taking the weighted average of the number of hammer blows analyzed (last 1 ft) and the Average Measured Energy for each sample depth tested. b Measured Energy is based on the EFV method, as outlined in ASTM D4633-10, for each blow recorded by the SPT Analyzer. Overall Average ETR % . DCN: 04 Project Name: Location: Date: SPT Inspector: Drilling Company: Alabama Department ofTransportation BUREAU OF MATERIALS &TESTS 3700 Fairground Road Montgomery, Alabama 36110 RECORD OF SPT ENERGY MEASUREMENTS ~ C Rig Make /Model: Rig 1.0.: Hammer Serial No.: Hammer Type: Rod Size: Boring Identification: Geologic Region: Time Tested: Drill Rig Operator: SPT Analyzer Serial Number: Instrumented Rod Type /Area: Accelerometer Serial Numbers: Accelerometer Calibration Factors: Strain Gage Serial Numbers: Strain Gage Calibration Factors: Ai: Ai: 3,.3S- A2: 0?s-" Fi: <'lJ!> F2: 2#6 .<- , - H: 2/P.S-? F2: ZI/..r Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts (Boring No.plus (Ff) S.U. Depth (ProvidedBy Otbers) Increment Misc. Comments Subdesignation) (Ff) (Ff) 2.S""'~.> ;" .E 6in ~C)~~ClI'J""~\(4.3. I ~- I -f5-(), 2 ....??...? 12 in bM-Vr8.3.. (+..s-.~ ) z.. (Jt/ 18in 6 kf>6trMt\c ," 6in, Jr,j \1\1. ". ,,1.(y{o~ ') /3.3 12in (? /~.S ) 18in ? I < 6in D'.f "r;SL,l- I~..z 1ti'.3 If.~ It' 11 12 in(I Jj.? I~. S ?. ) ~ -7,/-7 18in ~ .3l>(( , /7,- S- 6in.. Iv.l .5 <'3.3 ?,3 go 12in( 19-1p.!" ) JJ fa) 18 in I ? 2St ?. If" 6in)~.4 28'3 Jr,5 71 ....?....?? 12in ( 2'1- 2!'-( ) 2"1- /JJ.~J 18in 2~ ~ D1'Y ~r{JI..L, ./ Z, .. 6in 1l4-5 .33.~ 1;,3 32 12in,. ~ 3D(/(3'1-:Jc.1 ) So 7p ,9 71nn) 18in ~ "'Rod Length: Total Length From Gages to Tip of Sampler "'Measured S.U.: Measured Drill Rod Stick Up From Ground Surface to Location of Gages "'Calculated Start Depth: Rod Length Minus Measured Stick Up DCN: 04 Instrumented Subassembly Length:_2 ft.__ Length Below Gages: 0.5ft. _ Alabama Department ofTransportation BUREAU OFMATERIALS &TESTS 3700Fairground Road Montgomery, Alabama 36110 Project Name: Location: Date: SPT Inspector: Drilling Company: RECORD OF SPT ENERGY MEASUREMENTS Rig Make /Model: Rig I.D.: Hammer Serial No.: Hammer Type: Rod Size: ~ Al: A2: '' ) 1.10 7'7.;;7 1Bin 4-5.) I ~1/ $9 6in D1?P "'r")\,.l1'1.:;- ?:3 S67-L}. -'f -~ ) 12 in (3'.51-7) ~ 1Bin ~ .30'< 6in 12in ( ) 1Bin 6in 12in ( ) 1Bin 6in 12 in ( ) 1Bin 6in 12 in ( ) 1Bin "Rod Length: Total Length From Gages to Tip of Sampler "Measured S.U.: Measured Drill Rod Stick Up From Ground Surface to Location of Gages "Calculated Start Depth: Rod Length Minus Measured Stick Up Instrumented Subassembly Length:_2 ft.__ Length Below Gages: 0.5 ft. _ DCN: 04 Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 Record of Standard Penetration Test Energy Calibration For ST 11152 ? Central Mine Equipment 55 Truck Mount Date of Calibration: July 8 th , 2011 DCN: 05 Documentation: Page 1 ? Calibration Certificate Pages 2 to 3 ? Field Sheets Pages 4 to 12 ? PDIPLOT Page 13 ? Force & Velocity Trace Auto ma tic Ha mmer Seria l Number a nd Rig M o del Rig Owner Rig Opera to r Boring No. Test ed Da te Tested Drill Ro d Size Av era g e Ha mmer Opera tio n Ra te (B PM ) Drill Ro d L e ng th (ft) ( LE) Sa mple Depth (feet) SP T Blow Count (blo ws per six inches) (Fro m Bo ring Lo g ) a N o . of Bl ow s Analyzed ( F rom P D IP LO T) b A v e r age Me asu r e d En e r gy ( A ve r age EF V) (ft-lbs ) c En e r gy Tr an sf e r Ra tio (%) ( A ve r age ETR) ETR Sta nda rd Deviat ion ( F rom P D IP LO T) 52.5 18.3 14 - 15.5 3 - 3 - 5 7 318 90.9% 2 53.3 23.3 19 - 20.5 3 - 5 - 5 10 322 92.0% 2 53.1 28.3 24 - 25.5 13 - 27 - 35 83 340 97.1% 1.5 52.6 33.3 29 - 30.5 13 - 21 - 39 59 333 95.1% 1.4 53 38.3 34 - 35.5 24 - 38 - 50 92 339 96.9% 1.2 53.2 43.3 39 - 39.9 24 - 50/0.4' 49 335 95.7% 1.6 d AMdE 336 4 Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 SPT Testing Clinic # 2 Montgomery County, Alabama Near Trotman Road 96 1% ST 11152 CME - 55 (Truck) ALDOT J. Mathews 1B 7/8/2011 AWJ Average Measure nergy: . c Energy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet). The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff. Statistical Analysis - Overall Coefficient of Variation e Energy Transfer Ratio (ETR) COV: 2.71 %Calibration Prepared By: JNH Date: 7/9/2011 e ETR COV determined by calculating the overall standard deviation for the average ETR per sample depth (c) and then dividing by the overall average ETR. a Energy results for SPT sampling are averaged and reported for hammer impacts during the final 1 ft of driving, which relates to the observed N-value. In some cases, certain blows produce poor quality data and were not used to calculate the Average Measured Energy. This may result in less blows evalutated for ETR than what is shown on the boring logs. d The overall Average Measured Energy is calculated by taking the weighted average of the number of hammer blows analyzed (last 1 ft) and the Average Measured Energy for each sample depth tested. b Measured Energy is based on the EFV method, as outlined in ASTM D4633-10, for each blow recorded by the SPT Analyzer. Overall Average ETR % . DCN: 05 Alabama Department ofTransportati BUREAU OF MATERIALS &TESTS 3700 Fairground Road Montgomery, Alabama 3611 Project Name: Location: Date: SPT Inspector: Drilling Company: RECORD OF SPT ENERGY MEASUREMENTS 4::- Rig Make I Model: Rig I.D.: Hammer Serial No.: Hammer Type: Rod Size: Al: A2: Al: 33~ A2: S- Fl: 20 - I F2: 2D/, Fl: 2 .s:'"f F2: 2/1- ~ Accelerometer Calibration Factors: Accelerometer Serial Numbers: Boring Identification: Geologic Region: Time Tested: Drill Rig Operator: SPT Analyzer Serial Number: Instrumented Rod Type IArea: Strain Gage Serial Numbers: Strain Gage Calibration Factors: Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts (Boring No. plus (Ff) S.U. Depth (Provided By Otbers) Increment Misc. Comments Subdesignation) (Ff) (Ff) ?~ + I . Jf" ~ 6in VJo...l \J,,50' 115 ~I +,.S loS 53 I 12in '.3" ( I. S".) ) J 7.:5~ 18in D~~ Du<. ~.i fI.'{ , I 6in ~ ViA( ~ /13-.<. +10 If.j -] " / 12in1:1.3' ( .,. ~~. '>- ) ? (3) 18in 81~ Cc,VJ'~ I It ' .3 6in" .3 lB. 3 I j,J' 1f.:J 12in(JIJ-Is:r-) S- r8J 18in I r . ..3 6in ~op ~~~ ~ 13.3' 4-J I ..s- f B- 12in 4 ~od( ICj - ;I~,~- ) s (/0) 18in -t. 2lt I J~ 6in 78.3 . I 2:/./8 - S- Jt,5 12in ( ?It. 2s-:.r ) -~S" lIT} 18in , I 2f"- J:J 6in o,,~~j',\l. )B- ~ 3).3 4,3 21 12in--- - ~ (I(1'1-.3Q. S'"' ) 3C, (~()J 18in -"\. 0- .Rod Length: Totol Length From Gages to Tip of Sampler .Measured S.U.: Measured Drill Rod Stick Up From Ground Surface to Location of Gages .Calculated Start Depth: Rod Length Minus Measured Stick Up Instrumented Subassembly Length:_2 ft.__ Length Below Gages: 0.5 ft. _ DCN: 05 Accelerometer Calibration Factors: 4036T t. "'-A1: A2: ~ \S-l. A1: A2: c:32s- F1: -I F2: :2~ Fl: F2: I.,S- Alabama Department ofTransportati BUREAU OF MATERIALS &TESTS 3700Fairground Road Montgomery, Alabama 36 10 RECORD OF SPT ENERGY MEASUREMENTS Rig Make /Model: Rig I.D.: Hammer Serial No.: Hammer Type: Rod Size: Accelerometer Serial Numbers: Project Name: Location: Date: SPT Inspector: Drilling Company: Boring Identification: Geologic Region: Time Tested: Drill Rig Operator: SPT Analyzer Serial Number: Instrumented Rod Type /Area: Strain Gage Calibration Factors: Strain Gage Serial Numbers: Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts (Boring No. plus (Ff) S.U. Depth (ProvidedByOtbers) Increment Misc. Comments Subdesignation) (Ff) (Ff) 4.3 . o~' /./ 6in1{3. f 3'.3 ?Sl 12in .:39. .3sa- ) SO 18in ~ 1,. '!J ' , ./4 6in O~p ~??..:>~ l- IB ~?? 43,3 3' SO/A. ~ ' 12in U31-3?' ) .. -:tc3tJ tI 18in 6in 12in ( ) 18in 6in 12in ( ) 18in 6in 12in ( ) 18in 6in 12in ( ) 18in .Rod Length: Total Length From Gages to Tip of Sampler .Measured S.U.: Measured Drill Rod Stick Up From Ground Surface toLocation of Gages .Calculated Start Depth: Rod Length Minus Measured Stick Up Instrumented Subassembly Length:_2 ft.__ Length Below Gages: 0.5ft. _ DCN: 05 Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 Record of Standard Penetration Test Energy Calibration For SE 9050 ? Central Mine Equipment 550X ATV Date of Calibration: July 12 th , 2011 DCN: 06 Documentation: Page 1 ? Calibration Certificate Pages 2 to 3 ? Field Sheets Pages 4 to 13 ? PDIPLOT Page 14 ? Force & Velocity Trace Auto ma tic Ha mmer Seria l Number a nd Rig M o del Rig Owner Rig Opera to r Boring No. Test ed Da te Tested Drill Ro d Size Av era g e Ha mmer Opera tio n Ra te (B PM ) Drill Ro d L e ng th (ft) ( LE) Sa mple Depth (feet) SP T Blow Count (blo ws per six inches) (Fro m Bo ring Lo g ) a N o . of Bl ow s Analyzed ( F rom P D IP LO T) b A v e r age Me asu r e d En e r gy ( A ve r age EF V) (ft-lbs ) c En e r gy Tr an sf e r Ra tio (%) ( A ve r age ETR) ETR Sta nda rd Deviat ion ( F rom P D IP LO T) 51.3 8.3 4 - 5.5 1 - 3 - 4 7 277 79.1% 8.1 52.5 13.3 8 - 9.5 2 - 3 - 5 9 306 87.4% 2.8 53.3 18.3 14 - 15.5 2 - 3 - 3 6 308 88.0% 4.1 51.9 23.3 19 - 20.5 5 - 5 - 10 19 326 93.1% 2.7 52.6 28.3 24 - 25.5 3 - 9 - 21 30 325 92.9% 3 53 33.3 29 - 30.5 5 - 17 - 32 49 326 93.1% 2.5 53 3 38 3 34 35 5 51324 38 330 94 3% 25 SE 9050 CME - 550X (ATV) ALDOT K.Drake B22 7/12/2011 AW-J Alabama Department of Transportation BUREAU OF MATERIALS & TESTS 3700 Fairground Road Montgomery, Alabama 36110 231 Bypass HPP-0035 (10) Montgomery County, Alabama Near Trotman Road . . - . 5 - 13 - 24 . 2.5 53.3 43.3 39 - 40.4 6 - 30 - 50/0.4' 71 333 95.1% 2.9 d Average Measured Energy: 325.9 c Energy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet). The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff. Statistical Analysis - Overall Coefficient of Variation e Energy Transfer Ratio (ETR) COV: 5.74 %Calibration Prepared By: JNH Date: 7/12/2011 e ETR COV determined by calculating the overall standard deviation for the average ETR per sample depth (c) and then dividing by the overall average ETR. 93.1% a Energy results for SPT sampling are averaged and reported for hammer impacts during the final 1 ft of driving, which relates to the observed N-value. In some cases, certain blows produce poor quality data and were not used to calculate the Average Measured Energy. This may result in less blows evalutated for ETR than what is shown on the boring logs. d The overall Average Measured Energy is calculated by taking the weighted average of the number of hammer blows analyzed (last 1 ft) and the Average Measured Energy for each sample depth tested. b Measured Energy is based on the EFV method, as outlined in ASTM D4633-10, for each blow recorded by the SPT Analyzer. Overall Average ETR % DCN: 06 Al: Al: 3.s- A2: Fl: - I FZ: Fl: FZ: Alabama Department ofTransportati BUREAU OFMATERIALS &TESTS 3700Fairground Road Montgomery, Alabama 361 0 RECORD OF SPT ENERGY MEASUREMENTS Rig Make I Model: Rig I.D.: Hammer Serial No.: Hammer Type: Rod Size: Accelerometer Calibration Factors: Accelerometer Serial Numbers: Project Name: Location: Date: SPT Inspector: Drilling Company: Boring Identification: Geologic Region: Time Tested: Drill Rig Operator: SPT Analyzer Serial Number: Instrumented Rod Type I Area: Strain Gage Serial Numbers: Strain Gage Calibration Factors: Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts (Boring No.plus (Ff) S.U. Depth (Provided By Otbers) Increment Misc. Comments Subdesignation) (Ff) (Ff) 2.~ J.IJ.S' , 4' , 6in 'fFw,5f;/~f 8/2-/ -1-5' 4.3 -' 12 in.$'. ~. (..?.S.S- ) 4~ 18in , , 2 6in 1f-I-~.sf!y 13{2 -2 /3.3 5,3 8' ~ 12in(8- ?S- ) s c3'J 18in JrL L.J.JL .-, , /4' 7 6in )~~B22-- 3 / >],3 .2;.5 3 12in _'" i--(j~ ? Ir;s- ) ...3 <'J 18 in 'I , S- 6in ,, , 1'1 131.< - ~ 73.3 If.3 S- 12in (H - Z~.) ) /() 71~--; 18in I , 2~' '? 6in D~oi> ~" .?. 822 - S- 2$'.3 J).3 ? 12 in (2.y';~r ) .21 r'3o/ 18in -::-;30t', 21/ C) -- 6inIB22- , 33.3 1;.3 1:1 12 in (2r;-~.r ) .3J /tT,) 18 in---- .Rod Length: Total Length From Gages to Tip of Sampler .Measured S.U.: Measured Drill Rod Stick Up From Ground Surface to Location of Gages .Calculated Start Depth: Rod Length Minus Measured Stick Up Instrumented Subassembly Length:_2 ft.__ Length Below Gages: 0.5 ft. _ DCN: 06 Project Name: Location: Date: SPT Inspector: Drilling Company: Boring Identification: Geologic Region: Time Tested: Drill RigOperator: SPT Analyzer Serial Number: Instrumented Rod Type IArea: Accelerometer Serial Numbers: Alabama Department ofTransportation BUREAU OFMATERIALS &TESTS 3700 Fairground Road Montgomery, Alabama 36110 RECORD OF SPT ENERGY MEASUREMENTS Rig Make I Model: Rig I.D.: Hammer Serial No.: Hammer Type: Rod Size: Al: Accelerometer Calibration Factors: Strain Gage Serial Numbers: Strain Gage Calibration Factors: Al: Fl: Fl: A2: F2: F2: 2/1.s- Analyzer File Name Rod Length Measured Calculated Start Hammer Blow Counts (Boring No. plus (Ff) S.U. Depth (Provided By Others) Increment Misc. Comments Subdesignation) (Fl) (Fl) " 4.J . 34 ~ S- 6in81(- 7 38.3 13 12 in (..JoS'..3r.r ) 2'1 /3~) 18in / 37~ Co --e:::c...- 6ing12~8 ~3J~ 4,3 3D 12in (39.-9",~) so I/),.If "I"f;) 18inI 1::=.../ 6in 12in ( ) 18in 6in 12in ( ) 18in 6in 12in ( ) 18in 6in 12in ( ) 18in *Rod Length: Total Length From Gages to Tip 01Sampler *Measured S.U.: Measured Drill Rod Stick Up From Ground Surface to Location 01Gages *Calculated Start Depth: Rod Length Minus Measured Stick Up DCN: 06 Instrumented Subassembly Length:_2 ft.__ Length Below Gages: 0.5 ft. _ ? 153 APPENDIX B FORCE AND VELOCITY TRACES FOR SE9299 Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 1 6/17/2011 6:42:38 AM LP 4.00 ft FMX 27 kips VMX 15.5 f/s FVP 0.90 [] EF2 0.207 k-ft E2E 0.180 k-ft EMX 0.270 k-ft ETR 77.3 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 2 6/17/2011 6:42:39 AM LP 4.00 ft FMX 28 kips VMX 16.4 f/s FVP 0.90 [] EF2 0.220 k-ft E2E 0.195 k-ft EMX 0.265 k-ft ETR 75.6 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 3 6/17/2011 6:42:40 AM LP 4.00 ft FMX 28 kips VMX 16.2 f/s FVP 0.91 [] EF2 0.217 k-ft E2E 0.191 k-ft EMX 0.247 k-ft ETR 70.6 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 4 6/17/2011 6:42:41 AM LP 4.00 ft FMX 29 kips VMX 16.2 f/s FVP 0.89 [] EF2 0.219 k-ft E2E 0.197 k-ft EMX 0.285 k-ft ETR 81.6 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 5 6/17/2011 6:42:42 AM LP 4.00 ft FMX 29 kips VMX 16.3 f/s FVP 0.91 [] EF2 0.224 k-ft E2E 0.197 k-ft EMX 0.290 k-ft ETR 82.7 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 6 6/17/2011 6:42:43 AM LP 4.00 ft FMX 29 kips VMX 16.1 f/s FVP 0.89 [] EF2 0.226 k-ft E2E 0.200 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 7 6/17/2011 6:42:45 AM LP 4.00 ft FMX 29 kips VMX 16.2 f/s FVP 0.89 [] EF2 0.221 k-ft E2E 0.200 k-ft EMX 0.304 k-ft ETR 86.7 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 8 6/17/2011 6:42:46 AM LP 4.00 ft FMX 29 kips VMX 16.1 f/s FVP 0.88 [] EF2 0.225 k-ft E2E 0.205 k-ft EMX 0.315 k-ft ETR 90.1 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 9 6/17/2011 6:42:47 AM LP 4.00 ft FMX 29 kips VMX 15.9 f/s FVP 0.87 [] EF2 0.223 k-ft E2E 0.201 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 10 6/17/2011 6:42:48 AM LP 4.00 ft FMX 29 kips VMX 15.8 f/s FVP 0.87 [] EF2 0.219 k-ft E2E 0.204 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 11 6/17/2011 6:42:49 AM LP 4.00 ft FMX 29 kips VMX 15.6 f/s FVP 0.87 [] EF2 0.222 k-ft E2E 0.203 k-ft EMX 0.312 k-ft ETR 89.3 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 12 6/17/2011 6:50:12 AM LP 9.00 ft FMX 29 kips VMX 16.6 f/s FVP 0.90 [] EF2 0.254 k-ft E2E 0.243 k-ft EMX 0.261 k-ft ETR 74.5 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 13 6/17/2011 6:50:13 AM LP 9.00 ft FMX 28 kips VMX 17.3 f/s FVP 0.86 [] EF2 0.250 k-ft E2E 0.240 k-ft EMX 0.258 k-ft ETR 73.7 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 14 6/17/2011 6:50:15 AM LP 9.00 ft FMX 28 kips VMX 16.5 f/s FVP 0.86 [] EF2 0.250 k-ft E2E 0.243 k-ft EMX 0.257 k-ft ETR 73.5 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 15 6/17/2011 6:50:16 AM LP 9.00 ft FMX 28 kips VMX 16.4 f/s FVP 0.87 [] EF2 0.255 k-ft E2E 0.246 k-ft EMX 0.283 k-ft ETR 80.9 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 16 6/17/2011 6:50:17 AM LP 9.00 ft FMX 29 kips VMX 16.3 f/s FVP 0.87 [] EF2 0.256 k-ft E2E 0.245 k-ft EMX 0.280 k-ft ETR 79.9 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 17 6/17/2011 6:50:18 AM LP 9.00 ft FMX 28 kips VMX 15.9 f/s FVP 0.85 [] EF2 0.250 k-ft E2E 0.238 k-ft EMX 0.280 k-ft ETR 80.0 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 18 6/17/2011 6:50:19 AM LP 9.00 ft FMX 28 kips VMX 16.0 f/s FVP 0.86 [] EF2 0.249 k-ft E2E 0.240 k-ft EMX 0.282 k-ft ETR 80.7 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 19 6/17/2011 6:50:20 AM LP 9.00 ft FMX 28 kips VMX 15.9 f/s FVP 0.86 [] EF2 0.247 k-ft E2E 0.238 k-ft EMX 0.283 k-ft ETR 80.7 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 20 6/17/2011 6:50:21 AM LP 9.00 ft FMX 28 kips VMX 16.1 f/s FVP 0.85 [] EF2 0.249 k-ft E2E 0.239 k-ft EMX 0.284 k-ft ETR 81.2 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 21 6/17/2011 6:50:22 AM LP 9.00 ft FMX 28 kips VMX 15.9 f/s FVP 0.85 [] EF2 0.249 k-ft E2E 0.238 k-ft EMX 0.287 k-ft ETR 81.9 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 22 6/17/2011 6:50:23 AM LP 9.00 ft FMX 29 kips VMX 16.0 f/s FVP 0.86 [] EF2 0.252 k-ft E2E 0.240 k-ft EMX 0.290 k-ft ETR 82.9 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 23 6/17/2011 6:50:24 AM LP 9.00 ft FMX 28 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.249 k-ft E2E 0.237 k-ft EMX 0.284 k-ft ETR 81.1 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 24 6/17/2011 6:50:26 AM LP 9.00 ft FMX 28 kips VMX 16.0 f/s FVP 0.86 [] EF2 0.249 k-ft E2E 0.235 k-ft EMX 0.292 k-ft ETR 83.4 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 25 6/17/2011 6:50:27 AM LP 9.00 ft FMX 28 kips VMX 16.1 f/s FVP 0.85 [] EF2 0.251 k-ft E2E 0.238 k-ft EMX 0.293 k-ft ETR 83.7 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 26 6/17/2011 6:50:28 AM LP 9.00 ft FMX 28 kips VMX 15.9 f/s FVP 0.86 [] EF2 0.242 k-ft E2E 0.231 k-ft EMX 0.286 k-ft ETR 81.7 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 27 6/17/2011 6:56:53 AM LP 14.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.87 [] EF2 0.272 k-ft E2E 0.271 k-ft EMX 0.279 k-ft ETR 79.8 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 28 6/17/2011 6:56:54 AM LP 14.30 ft FMX 29 kips VMX 15.7 f/s FVP 0.86 [] EF2 0.275 k-ft E2E 0.279 k-ft EMX 0.288 k-ft ETR 82.3 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 29 6/17/2011 6:57:02 AM LP 14.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.266 k-ft E2E 0.268 k-ft EMX 0.285 k-ft ETR 81.3 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 30 6/17/2011 6:57:03 AM LP 14.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.271 k-ft E2E 0.277 k-ft EMX 0.302 k-ft ETR 86.4 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 31 6/17/2011 6:57:04 AM LP 14.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.271 k-ft E2E 0.273 k-ft EMX 0.298 k-ft ETR 85.3 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 32 6/17/2011 6:57:05 AM LP 14.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.265 k-ft E2E 0.269 k-ft EMX 0.296 k-ft ETR 84.6 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 33 6/17/2011 6:57:07 AM LP 14.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.261 k-ft E2E 0.262 k-ft EMX 0.288 k-ft ETR 82.4 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 34 6/17/2011 6:57:08 AM LP 14.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.269 k-ft E2E 0.271 k-ft EMX 0.300 k-ft ETR 85.6 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 35 6/17/2011 6:57:09 AM LP 14.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.263 k-ft E2E 0.267 k-ft EMX 0.298 k-ft ETR 85.2 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 36 6/17/2011 6:57:10 AM LP 14.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.85 [] EF2 0.276 k-ft E2E 0.272 k-ft EMX 0.306 k-ft ETR 87.4 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 37 6/17/2011 6:57:11 AM LP 14.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.83 [] EF2 0.265 k-ft E2E 0.266 k-ft EMX 0.298 k-ft ETR 85.1 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 38 6/17/2011 6:57:12 AM LP 14.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.83 [] EF2 0.273 k-ft E2E 0.276 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 39 6/17/2011 6:57:13 AM LP 14.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.83 [] EF2 0.266 k-ft E2E 0.266 k-ft EMX 0.298 k-ft ETR 85.1 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 40 6/17/2011 6:57:14 AM LP 14.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.83 [] EF2 0.271 k-ft E2E 0.270 k-ft EMX 0.305 k-ft ETR 87.1 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 41 6/17/2011 6:57:15 AM LP 14.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.267 k-ft E2E 0.268 k-ft EMX 0.301 k-ft ETR 86.0 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 42 6/17/2011 6:57:16 AM LP 14.30 ft FMX 28 kips VMX 15.4 f/s FVP 0.83 [] EF2 0.268 k-ft E2E 0.267 k-ft EMX 0.302 k-ft ETR 86.2 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 43 6/17/2011 6:57:17 AM LP 14.30 ft FMX 27 kips VMX 15.4 f/s FVP 0.83 [] EF2 0.260 k-ft E2E 0.261 k-ft EMX 0.295 k-ft ETR 84.2 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 44 6/17/2011 6:57:18 AM LP 14.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.84 [] EF2 0.267 k-ft E2E 0.266 k-ft EMX 0.304 k-ft ETR 86.8 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 45 6/17/2011 6:57:20 AM LP 14.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.83 [] EF2 0.271 k-ft E2E 0.271 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 46 6/17/2011 6:57:21 AM LP 14.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.83 [] EF2 0.271 k-ft E2E 0.272 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 47 6/17/2011 6:57:22 AM LP 14.30 ft FMX 27 kips VMX 15.3 f/s FVP 0.84 [] EF2 0.262 k-ft E2E 0.262 k-ft EMX 0.301 k-ft ETR 86.0 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 48 6/17/2011 6:57:23 AM LP 14.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.83 [] EF2 0.269 k-ft E2E 0.271 k-ft EMX 0.314 k-ft ETR 89.7 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 49 6/17/2011 6:57:24 AM LP 14.30 ft FMX 27 kips VMX 15.4 f/s FVP 0.82 [] EF2 0.262 k-ft E2E 0.265 k-ft EMX 0.309 k-ft ETR 88.3 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 50 6/17/2011 6:57:25 AM LP 14.30 ft FMX 27 kips VMX 15.4 f/s FVP 0.82 [] EF2 0.264 k-ft E2E 0.268 k-ft EMX 0.312 k-ft ETR 89.0 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 51 6/17/2011 6:57:26 AM LP 14.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.83 [] EF2 0.267 k-ft E2E 0.271 k-ft EMX 0.316 k-ft ETR 90.4 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 52 6/17/2011 6:57:27 AM LP 14.30 ft FMX 27 kips VMX 15.2 f/s FVP 0.82 [] EF2 0.257 k-ft E2E 0.260 k-ft EMX 0.306 k-ft ETR 87.3 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 53 6/17/2011 6:57:28 AM LP 14.30 ft FMX 27 kips VMX 15.6 f/s FVP 0.81 [] EF2 0.263 k-ft E2E 0.266 k-ft EMX 0.312 k-ft ETR 89.1 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 54 6/17/2011 6:57:29 AM LP 14.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.80 [] EF2 0.267 k-ft E2E 0.274 k-ft EMX 0.325 k-ft ETR 93.0 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 55 6/17/2011 6:57:30 AM LP 14.30 ft FMX 27 kips VMX 15.7 f/s FVP 0.81 [] EF2 0.266 k-ft E2E 0.271 k-ft EMX 0.318 k-ft ETR 90.7 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 56 6/17/2011 6:57:31 AM LP 14.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.80 [] EF2 0.263 k-ft E2E 0.267 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 57 6/17/2011 6:57:33 AM LP 14.30 ft FMX 27 kips VMX 15.6 f/s FVP 0.81 [] EF2 0.262 k-ft E2E 0.269 k-ft EMX 0.316 k-ft ETR 90.4 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 58 6/17/2011 6:57:34 AM LP 14.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.81 [] EF2 0.267 k-ft E2E 0.275 k-ft EMX 0.324 k-ft ETR 92.5 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 59 6/17/2011 6:57:35 AM LP 14.30 ft FMX 27 kips VMX 15.9 f/s FVP 0.80 [] EF2 0.262 k-ft E2E 0.271 k-ft EMX 0.316 k-ft ETR 90.3 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 60 6/17/2011 6:57:36 AM LP 14.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.81 [] EF2 0.271 k-ft E2E 0.274 k-ft EMX 0.323 k-ft ETR 92.4 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 61 6/17/2011 6:57:37 AM LP 14.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.80 [] EF2 0.266 k-ft E2E 0.272 k-ft EMX 0.317 k-ft ETR 90.5 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 62 6/17/2011 6:57:38 AM LP 14.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.273 k-ft E2E 0.277 k-ft EMX 0.328 k-ft ETR 93.8 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 63 6/17/2011 6:57:39 AM LP 14.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.81 [] EF2 0.264 k-ft E2E 0.268 k-ft EMX 0.311 k-ft ETR 88.7 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 64 6/17/2011 6:57:40 AM LP 14.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.80 [] EF2 0.271 k-ft E2E 0.273 k-ft EMX 0.317 k-ft ETR 90.6 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 65 6/17/2011 7:05:17 AM LP 19.30 ft FMX 28 kips VMX 15.2 f/s FVP 0.86 [] EF2 0.281 k-ft E2E 0.282 k-ft EMX 0.288 k-ft ETR 82.4 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 66 6/17/2011 7:05:18 AM LP 19.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.290 k-ft E2E 0.292 k-ft EMX 0.301 k-ft ETR 85.9 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 67 6/17/2011 7:05:19 AM LP 19.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.83 [] EF2 0.286 k-ft E2E 0.285 k-ft EMX 0.293 k-ft ETR 83.7 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 68 6/17/2011 7:05:20 AM LP 19.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.83 [] EF2 0.295 k-ft E2E 0.295 k-ft EMX 0.305 k-ft ETR 87.1 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 69 6/17/2011 7:05:21 AM LP 19.30 ft FMX 29 kips VMX 15.5 f/s FVP 0.86 [] EF2 0.288 k-ft E2E 0.289 k-ft EMX 0.297 k-ft ETR 84.8 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 70 6/17/2011 7:05:23 AM LP 19.30 ft FMX 28 kips VMX 15.3 f/s FVP 0.85 [] EF2 0.286 k-ft E2E 0.284 k-ft EMX 0.295 k-ft ETR 84.2 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 71 6/17/2011 7:05:24 AM LP 19.30 ft FMX 29 kips VMX 15.1 f/s FVP 0.87 [] EF2 0.284 k-ft E2E 0.282 k-ft EMX 0.292 k-ft ETR 83.4 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 72 6/17/2011 7:05:25 AM LP 19.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.288 k-ft E2E 0.291 k-ft EMX 0.304 k-ft ETR 87.0 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 73 6/17/2011 7:05:26 AM LP 19.30 ft FMX 28 kips VMX 15.0 f/s FVP 0.88 [] EF2 0.280 k-ft E2E 0.279 k-ft EMX 0.291 k-ft ETR 83.1 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 74 6/17/2011 7:05:27 AM LP 19.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.285 k-ft E2E 0.284 k-ft EMX 0.300 k-ft ETR 85.6 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 75 6/17/2011 7:05:28 AM LP 19.30 ft FMX 29 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.284 k-ft E2E 0.287 k-ft EMX 0.297 k-ft ETR 84.8 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 76 6/17/2011 7:05:29 AM LP 19.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.86 [] EF2 0.291 k-ft E2E 0.290 k-ft EMX 0.306 k-ft ETR 87.4 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 77 6/17/2011 7:05:30 AM LP 19.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.86 [] EF2 0.281 k-ft E2E 0.285 k-ft EMX 0.292 k-ft ETR 83.4 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 78 6/17/2011 7:05:31 AM LP 19.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.282 k-ft E2E 0.283 k-ft EMX 0.296 k-ft ETR 84.6 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 79 6/17/2011 7:05:32 AM LP 19.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.277 k-ft E2E 0.283 k-ft EMX 0.291 k-ft ETR 83.0 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 80 6/17/2011 7:05:33 AM LP 19.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.295 k-ft E2E 0.293 k-ft EMX 0.308 k-ft ETR 87.9 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 81 6/17/2011 7:05:34 AM LP 19.30 ft FMX 29 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.281 k-ft E2E 0.281 k-ft EMX 0.289 k-ft ETR 82.6 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 82 6/17/2011 7:05:35 AM LP 19.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.84 [] EF2 0.280 k-ft E2E 0.280 k-ft EMX 0.294 k-ft ETR 83.9 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 83 6/17/2011 7:05:36 AM LP 19.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.273 k-ft E2E 0.273 k-ft EMX 0.284 k-ft ETR 81.1 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 84 6/17/2011 7:05:38 AM LP 19.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.86 [] EF2 0.280 k-ft E2E 0.280 k-ft EMX 0.294 k-ft ETR 84.0 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 85 6/17/2011 7:05:39 AM LP 19.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.278 k-ft E2E 0.280 k-ft EMX 0.291 k-ft ETR 83.3 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 86 6/17/2011 7:05:40 AM LP 19.30 ft FMX 29 kips VMX 15.5 f/s FVP 0.86 [] EF2 0.283 k-ft E2E 0.282 k-ft EMX 0.297 k-ft ETR 84.8 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 87 6/17/2011 7:05:41 AM LP 19.30 ft FMX 28 kips VMX 15.4 f/s FVP 0.87 [] EF2 0.272 k-ft E2E 0.274 k-ft EMX 0.287 k-ft ETR 81.9 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 88 6/17/2011 7:05:42 AM LP 19.30 ft FMX 29 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.288 k-ft E2E 0.285 k-ft EMX 0.304 k-ft ETR 86.8 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 89 6/17/2011 7:05:43 AM LP 19.30 ft FMX 28 kips VMX 15.4 f/s FVP 0.86 [] EF2 0.274 k-ft E2E 0.276 k-ft EMX 0.292 k-ft ETR 83.4 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 90 6/17/2011 7:05:44 AM LP 19.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.83 [] EF2 0.278 k-ft E2E 0.281 k-ft EMX 0.301 k-ft ETR 86.1 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 91 6/17/2011 7:05:45 AM LP 19.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.282 k-ft E2E 0.284 k-ft EMX 0.301 k-ft ETR 86.1 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 92 6/17/2011 7:05:46 AM LP 19.30 ft FMX 29 kips VMX 15.3 f/s FVP 0.88 [] EF2 0.278 k-ft E2E 0.279 k-ft EMX 0.298 k-ft ETR 85.0 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 93 6/17/2011 7:05:47 AM LP 19.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.280 k-ft E2E 0.282 k-ft EMX 0.297 k-ft ETR 84.9 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 94 6/17/2011 7:05:48 AM LP 19.30 ft FMX 29 kips VMX 15.4 f/s FVP 0.87 [] EF2 0.288 k-ft E2E 0.284 k-ft EMX 0.301 k-ft ETR 86.0 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 95 6/17/2011 7:05:49 AM LP 19.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.278 k-ft E2E 0.281 k-ft EMX 0.299 k-ft ETR 85.4 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 96 6/17/2011 7:05:50 AM LP 19.30 ft FMX 29 kips VMX 15.3 f/s FVP 0.88 [] EF2 0.278 k-ft E2E 0.279 k-ft EMX 0.296 k-ft ETR 84.7 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 97 6/17/2011 7:05:52 AM LP 19.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.84 [] EF2 0.282 k-ft E2E 0.284 k-ft EMX 0.303 k-ft ETR 86.6 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 98 6/17/2011 7:05:53 AM LP 19.30 ft FMX 29 kips VMX 15.3 f/s FVP 0.88 [] EF2 0.280 k-ft E2E 0.279 k-ft EMX 0.296 k-ft ETR 84.5 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 99 6/17/2011 7:05:54 AM LP 19.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.279 k-ft E2E 0.282 k-ft EMX 0.299 k-ft ETR 85.5 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 100 6/17/2011 7:05:55 AM LP 19.30 ft FMX 29 kips VMX 15.4 f/s FVP 0.87 [] EF2 0.287 k-ft E2E 0.284 k-ft EMX 0.300 k-ft ETR 85.7 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 101 6/17/2011 7:05:56 AM LP 19.30 ft FMX 29 kips VMX 15.3 f/s FVP 0.88 [] EF2 0.271 k-ft E2E 0.273 k-ft EMX 0.286 k-ft ETR 81.6 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 102 6/17/2011 7:05:57 AM LP 19.30 ft FMX 28 kips VMX 15.2 f/s FVP 0.87 [] EF2 0.277 k-ft E2E 0.278 k-ft EMX 0.294 k-ft ETR 84.1 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 103 6/17/2011 7:05:58 AM LP 19.30 ft FMX 28 kips VMX 15.1 f/s FVP 0.88 [] EF2 0.271 k-ft E2E 0.275 k-ft EMX 0.291 k-ft ETR 83.1 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 104 6/17/2011 7:05:59 AM LP 19.30 ft FMX 29 kips VMX 15.5 f/s FVP 0.86 [] EF2 0.281 k-ft E2E 0.284 k-ft EMX 0.305 k-ft ETR 87.0 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 105 6/17/2011 7:06:00 AM LP 19.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.86 [] EF2 0.280 k-ft E2E 0.282 k-ft EMX 0.298 k-ft ETR 85.2 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 106 6/17/2011 7:06:01 AM LP 19.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.283 k-ft E2E 0.283 k-ft EMX 0.303 k-ft ETR 86.5 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 107 6/17/2011 7:06:02 AM LP 19.30 ft FMX 28 kips VMX 15.4 f/s FVP 0.84 [] EF2 0.270 k-ft E2E 0.275 k-ft EMX 0.295 k-ft ETR 84.3 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 108 6/17/2011 7:06:03 AM LP 19.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.86 [] EF2 0.277 k-ft E2E 0.281 k-ft EMX 0.305 k-ft ETR 87.2 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 109 6/17/2011 7:06:04 AM LP 19.30 ft FMX 28 kips VMX 15.2 f/s FVP 0.85 [] EF2 0.278 k-ft E2E 0.280 k-ft EMX 0.306 k-ft ETR 87.6 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 110 6/17/2011 7:06:05 AM LP 19.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.86 [] EF2 0.287 k-ft E2E 0.286 k-ft EMX 0.309 k-ft ETR 88.3 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 111 6/17/2011 7:12:19 AM LP 24.30 ft FMX 28 kips VMX 15.4 f/s FVP 0.85 [] EF2 0.284 k-ft E2E 0.292 k-ft EMX 0.296 k-ft ETR 84.5 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 112 6/17/2011 7:12:20 AM LP 24.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.86 [] EF2 0.286 k-ft E2E 0.298 k-ft EMX 0.302 k-ft ETR 86.4 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 113 6/17/2011 7:12:21 AM LP 24.30 ft FMX 28 kips VMX 15.3 f/s FVP 0.85 [] EF2 0.285 k-ft E2E 0.293 k-ft EMX 0.297 k-ft ETR 84.8 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 114 6/17/2011 7:12:22 AM LP 24.30 ft FMX 28 kips VMX 15.4 f/s FVP 0.86 [] EF2 0.289 k-ft E2E 0.295 k-ft EMX 0.299 k-ft ETR 85.4 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 115 6/17/2011 7:12:23 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.287 k-ft E2E 0.300 k-ft EMX 0.304 k-ft ETR 86.7 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 116 6/17/2011 7:12:24 AM LP 24.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.295 k-ft E2E 0.307 k-ft EMX 0.312 k-ft ETR 89.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 117 6/17/2011 7:12:25 AM LP 24.30 ft FMX 28 kips VMX 15.3 f/s FVP 0.86 [] EF2 0.282 k-ft E2E 0.294 k-ft EMX 0.299 k-ft ETR 85.4 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 118 6/17/2011 7:12:26 AM LP 24.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.290 k-ft E2E 0.297 k-ft EMX 0.301 k-ft ETR 86.0 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 119 6/17/2011 7:12:27 AM LP 24.30 ft FMX 29 kips VMX 15.7 f/s FVP 0.86 [] EF2 0.298 k-ft E2E 0.305 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 120 6/17/2011 7:12:28 AM LP 24.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.299 k-ft E2E 0.302 k-ft EMX 0.306 k-ft ETR 87.6 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 121 6/17/2011 7:12:30 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.289 k-ft E2E 0.301 k-ft EMX 0.305 k-ft ETR 87.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 122 6/17/2011 7:12:31 AM LP 24.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.288 k-ft E2E 0.297 k-ft EMX 0.301 k-ft ETR 86.0 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 123 6/17/2011 7:12:32 AM LP 24.30 ft FMX 28 kips VMX 15.4 f/s FVP 0.86 [] EF2 0.286 k-ft E2E 0.296 k-ft EMX 0.300 k-ft ETR 85.8 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 124 6/17/2011 7:12:33 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.295 k-ft E2E 0.299 k-ft EMX 0.303 k-ft ETR 86.6 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 125 6/17/2011 7:12:34 AM LP 24.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.284 k-ft E2E 0.294 k-ft EMX 0.298 k-ft ETR 85.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 126 6/17/2011 7:12:35 AM LP 24.30 ft FMX 29 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.295 k-ft E2E 0.300 k-ft EMX 0.305 k-ft ETR 87.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 127 6/17/2011 7:12:36 AM LP 24.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.86 [] EF2 0.291 k-ft E2E 0.303 k-ft EMX 0.307 k-ft ETR 87.7 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 128 6/17/2011 7:12:37 AM LP 24.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.295 k-ft E2E 0.300 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 129 6/17/2011 7:12:38 AM LP 24.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.289 k-ft E2E 0.296 k-ft EMX 0.300 k-ft ETR 85.7 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 130 6/17/2011 7:12:39 AM LP 24.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.86 [] EF2 0.299 k-ft E2E 0.303 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 131 6/17/2011 7:12:40 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.285 k-ft E2E 0.297 k-ft EMX 0.301 k-ft ETR 86.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 132 6/17/2011 7:12:41 AM LP 24.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.302 k-ft E2E 0.303 k-ft EMX 0.309 k-ft ETR 88.4 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 133 6/17/2011 7:12:42 AM LP 24.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.291 k-ft E2E 0.302 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 134 6/17/2011 7:12:43 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.287 k-ft E2E 0.297 k-ft EMX 0.307 k-ft ETR 87.6 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 135 6/17/2011 7:12:45 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.289 k-ft E2E 0.296 k-ft EMX 0.305 k-ft ETR 87.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 136 6/17/2011 7:12:46 AM LP 24.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.294 k-ft E2E 0.296 k-ft EMX 0.306 k-ft ETR 87.3 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 137 6/17/2011 7:12:47 AM LP 24.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.301 k-ft E2E 0.305 k-ft EMX 0.313 k-ft ETR 89.4 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 138 6/17/2011 7:12:48 AM LP 24.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.305 k-ft E2E 0.308 k-ft EMX 0.316 k-ft ETR 90.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 139 6/17/2011 7:12:49 AM LP 24.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.301 k-ft E2E 0.306 k-ft EMX 0.313 k-ft ETR 89.3 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 140 6/17/2011 7:12:50 AM LP 24.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.297 k-ft E2E 0.303 k-ft EMX 0.310 k-ft ETR 88.5 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 141 6/17/2011 7:12:51 AM LP 24.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.84 [] EF2 0.299 k-ft E2E 0.302 k-ft EMX 0.310 k-ft ETR 88.5 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 142 6/17/2011 7:12:52 AM LP 24.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.84 [] EF2 0.298 k-ft E2E 0.299 k-ft EMX 0.310 k-ft ETR 88.4 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 143 6/17/2011 7:12:53 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.288 k-ft E2E 0.296 k-ft EMX 0.306 k-ft ETR 87.5 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 144 6/17/2011 7:12:54 AM LP 24.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.302 k-ft E2E 0.300 k-ft EMX 0.312 k-ft ETR 89.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 145 6/17/2011 7:12:55 AM LP 24.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.292 k-ft E2E 0.301 k-ft EMX 0.311 k-ft ETR 88.7 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 146 6/17/2011 7:12:56 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.295 k-ft E2E 0.302 k-ft EMX 0.314 k-ft ETR 89.7 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 147 6/17/2011 7:12:57 AM LP 24.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.84 [] EF2 0.300 k-ft E2E 0.302 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 148 6/17/2011 7:12:58 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.290 k-ft E2E 0.297 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 149 6/17/2011 7:13:00 AM LP 24.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.84 [] EF2 0.291 k-ft E2E 0.295 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 150 6/17/2011 7:13:01 AM LP 24.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.293 k-ft E2E 0.298 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 151 6/17/2011 7:13:02 AM LP 24.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.298 k-ft E2E 0.297 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 152 6/17/2011 7:13:03 AM LP 24.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.84 [] EF2 0.289 k-ft E2E 0.294 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 153 6/17/2011 7:13:04 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.83 [] EF2 0.293 k-ft E2E 0.298 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 154 6/17/2011 7:13:05 AM LP 24.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.290 k-ft E2E 0.298 k-ft EMX 0.313 k-ft ETR 89.3 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 155 6/17/2011 7:13:06 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.294 k-ft E2E 0.296 k-ft EMX 0.309 k-ft ETR 88.4 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 156 6/17/2011 7:13:07 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.292 k-ft E2E 0.297 k-ft EMX 0.312 k-ft ETR 89.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 157 6/17/2011 7:13:08 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.295 k-ft E2E 0.299 k-ft EMX 0.313 k-ft ETR 89.5 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 158 6/17/2011 7:13:09 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.82 [] EF2 0.285 k-ft E2E 0.289 k-ft EMX 0.303 k-ft ETR 86.5 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 159 6/17/2011 7:13:10 AM LP 24.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.81 [] EF2 0.293 k-ft E2E 0.297 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 160 6/17/2011 7:13:11 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.82 [] EF2 0.289 k-ft E2E 0.293 k-ft EMX 0.308 k-ft ETR 88.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 161 6/17/2011 7:13:12 AM LP 24.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.289 k-ft E2E 0.293 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 162 6/17/2011 7:13:13 AM LP 24.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.83 [] EF2 0.281 k-ft E2E 0.290 k-ft EMX 0.303 k-ft ETR 86.7 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 163 6/17/2011 7:13:15 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.83 [] EF2 0.288 k-ft E2E 0.293 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 164 6/17/2011 7:13:16 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.280 k-ft E2E 0.293 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 165 6/17/2011 7:13:17 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.280 k-ft E2E 0.285 k-ft EMX 0.299 k-ft ETR 85.3 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 166 6/17/2011 7:13:18 AM LP 24.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.284 k-ft E2E 0.292 k-ft EMX 0.306 k-ft ETR 87.5 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 167 6/17/2011 7:13:19 AM LP 24.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.287 k-ft E2E 0.296 k-ft EMX 0.310 k-ft ETR 88.7 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 168 6/17/2011 7:13:20 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.83 [] EF2 0.291 k-ft E2E 0.295 k-ft EMX 0.308 k-ft ETR 88.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 169 6/17/2011 7:13:21 AM LP 24.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.290 k-ft E2E 0.297 k-ft EMX 0.310 k-ft ETR 88.6 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 170 6/17/2011 7:19:41 AM LP 29.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.84 [] EF2 0.277 k-ft E2E 0.285 k-ft EMX 0.287 k-ft ETR 82.0 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 171 6/17/2011 7:19:42 AM LP 29.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.291 k-ft E2E 0.300 k-ft EMX 0.302 k-ft ETR 86.3 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 172 6/17/2011 7:19:44 AM LP 29.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.82 [] EF2 0.290 k-ft E2E 0.294 k-ft EMX 0.296 k-ft ETR 84.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 173 6/17/2011 7:19:45 AM LP 29.30 ft FMX 27 kips VMX 15.6 f/s FVP 0.82 [] EF2 0.288 k-ft E2E 0.297 k-ft EMX 0.299 k-ft ETR 85.6 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 174 6/17/2011 7:19:46 AM LP 29.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.290 k-ft E2E 0.300 k-ft EMX 0.303 k-ft ETR 86.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 175 6/17/2011 7:19:47 AM LP 29.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.292 k-ft E2E 0.303 k-ft EMX 0.305 k-ft ETR 87.2 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 176 6/17/2011 7:19:48 AM LP 29.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.294 k-ft E2E 0.304 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 177 6/17/2011 7:19:49 AM LP 29.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.301 k-ft E2E 0.306 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 178 6/17/2011 7:19:50 AM LP 29.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.302 k-ft E2E 0.307 k-ft EMX 0.311 k-ft ETR 88.8 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 179 6/17/2011 7:19:51 AM LP 29.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.292 k-ft E2E 0.300 k-ft EMX 0.304 k-ft ETR 86.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 180 6/17/2011 7:19:52 AM LP 29.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.293 k-ft E2E 0.301 k-ft EMX 0.304 k-ft ETR 86.9 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 181 6/17/2011 7:19:53 AM LP 29.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.301 k-ft E2E 0.302 k-ft EMX 0.305 k-ft ETR 87.2 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 182 6/17/2011 7:19:54 AM LP 29.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.83 [] EF2 0.291 k-ft E2E 0.300 k-ft EMX 0.303 k-ft ETR 86.5 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 183 6/17/2011 7:19:55 AM LP 29.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.288 k-ft E2E 0.298 k-ft EMX 0.301 k-ft ETR 86.0 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 184 6/17/2011 7:19:57 AM LP 29.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.304 k-ft E2E 0.306 k-ft EMX 0.309 k-ft ETR 88.4 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 185 6/17/2011 7:19:58 AM LP 29.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.291 k-ft E2E 0.298 k-ft EMX 0.301 k-ft ETR 86.0 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 186 6/17/2011 7:19:59 AM LP 29.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.84 [] EF2 0.307 k-ft E2E 0.310 k-ft EMX 0.313 k-ft ETR 89.5 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 187 6/17/2011 7:20:00 AM LP 29.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.304 k-ft E2E 0.310 k-ft EMX 0.314 k-ft ETR 89.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 188 6/17/2011 7:20:01 AM LP 29.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.86 [] EF2 0.297 k-ft E2E 0.300 k-ft EMX 0.303 k-ft ETR 86.6 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 189 6/17/2011 7:20:02 AM LP 29.30 ft FMX 29 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.299 k-ft E2E 0.302 k-ft EMX 0.305 k-ft ETR 87.3 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 190 6/17/2011 7:20:03 AM LP 29.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.84 [] EF2 0.307 k-ft E2E 0.310 k-ft EMX 0.315 k-ft ETR 90.1 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 191 6/17/2011 7:20:04 AM LP 29.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.302 k-ft E2E 0.302 k-ft EMX 0.305 k-ft ETR 87.3 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 192 6/17/2011 7:20:05 AM LP 29.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.291 k-ft E2E 0.300 k-ft EMX 0.304 k-ft ETR 86.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 193 6/17/2011 7:20:06 AM LP 29.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.84 [] EF2 0.298 k-ft E2E 0.303 k-ft EMX 0.306 k-ft ETR 87.4 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 194 6/17/2011 7:20:07 AM LP 29.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.302 k-ft E2E 0.313 k-ft EMX 0.318 k-ft ETR 90.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 195 6/17/2011 7:20:08 AM LP 29.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.83 [] EF2 0.296 k-ft E2E 0.303 k-ft EMX 0.306 k-ft ETR 87.3 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 196 6/17/2011 7:20:09 AM LP 29.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.83 [] EF2 0.298 k-ft E2E 0.305 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 197 6/17/2011 7:20:11 AM LP 29.30 ft FMX 29 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.306 k-ft E2E 0.313 k-ft EMX 0.316 k-ft ETR 90.4 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 198 6/17/2011 7:20:12 AM LP 29.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.295 k-ft E2E 0.303 k-ft EMX 0.306 k-ft ETR 87.3 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 199 6/17/2011 7:20:13 AM LP 29.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.81 [] EF2 0.296 k-ft E2E 0.306 k-ft EMX 0.309 k-ft ETR 88.4 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 200 6/17/2011 7:20:14 AM LP 29.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.83 [] EF2 0.297 k-ft E2E 0.302 k-ft EMX 0.305 k-ft ETR 87.1 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 201 6/17/2011 7:20:15 AM LP 29.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.294 k-ft E2E 0.303 k-ft EMX 0.306 k-ft ETR 87.4 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 202 6/17/2011 7:20:16 AM LP 29.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.301 k-ft E2E 0.308 k-ft EMX 0.311 k-ft ETR 88.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 203 6/17/2011 7:20:17 AM LP 29.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.83 [] EF2 0.296 k-ft E2E 0.302 k-ft EMX 0.305 k-ft ETR 87.2 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 204 6/17/2011 7:20:18 AM LP 29.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.292 k-ft E2E 0.307 k-ft EMX 0.312 k-ft ETR 89.1 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 205 6/17/2011 7:20:19 AM LP 29.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.300 k-ft E2E 0.308 k-ft EMX 0.311 k-ft ETR 88.8 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 206 6/17/2011 7:20:20 AM LP 29.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.294 k-ft E2E 0.307 k-ft EMX 0.313 k-ft ETR 89.3 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 207 6/17/2011 7:20:21 AM LP 29.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.82 [] EF2 0.295 k-ft E2E 0.300 k-ft EMX 0.302 k-ft ETR 86.4 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 208 6/17/2011 7:20:22 AM LP 29.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.293 k-ft E2E 0.305 k-ft EMX 0.310 k-ft ETR 88.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 209 6/17/2011 7:20:24 AM LP 29.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.81 [] EF2 0.295 k-ft E2E 0.303 k-ft EMX 0.307 k-ft ETR 87.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 210 6/17/2011 7:20:25 AM LP 29.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.296 k-ft E2E 0.309 k-ft EMX 0.315 k-ft ETR 90.0 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 211 6/17/2011 7:20:26 AM LP 29.30 ft FMX 12 kips VMX 6.7 f/s FVP 0.87 [] EF2 0.052 k-ft E2E 0.055 k-ft EMX 0.055 k-ft ETR 15.8 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 212 6/17/2011 7:26:59 AM LP 34.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.4 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 213 6/17/2011 7:27:03 AM LP 34.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.79 [] EF2 0.305 k-ft E2E 0.312 k-ft EMX 0.314 k-ft ETR 89.7 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 214 6/17/2011 7:27:04 AM LP 34.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.302 k-ft E2E 0.307 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 215 6/17/2011 7:27:05 AM LP 34.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.304 k-ft E2E 0.315 k-ft EMX 0.317 k-ft ETR 90.4 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 216 6/17/2011 7:27:06 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.297 k-ft E2E 0.309 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 217 6/17/2011 7:27:08 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.80 [] EF2 0.296 k-ft E2E 0.306 k-ft EMX 0.308 k-ft ETR 87.9 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 218 6/17/2011 7:27:09 AM LP 34.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.300 k-ft E2E 0.310 k-ft EMX 0.311 k-ft ETR 89.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 219 6/17/2011 7:27:10 AM LP 34.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.296 k-ft E2E 0.304 k-ft EMX 0.305 k-ft ETR 87.2 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 220 6/17/2011 7:27:11 AM LP 34.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.301 k-ft E2E 0.312 k-ft EMX 0.314 k-ft ETR 89.6 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 221 6/17/2011 7:27:12 AM LP 34.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.81 [] EF2 0.301 k-ft E2E 0.313 k-ft EMX 0.315 k-ft ETR 90.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 222 6/17/2011 7:27:13 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.297 k-ft E2E 0.308 k-ft EMX 0.310 k-ft ETR 88.6 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 223 6/17/2011 7:27:14 AM LP 34.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.81 [] EF2 0.298 k-ft E2E 0.308 k-ft EMX 0.310 k-ft ETR 88.6 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 224 6/17/2011 7:27:15 AM LP 34.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.299 k-ft E2E 0.314 k-ft EMX 0.316 k-ft ETR 90.2 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 225 6/17/2011 7:27:16 AM LP 34.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.302 k-ft E2E 0.310 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 226 6/17/2011 7:27:17 AM LP 34.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.300 k-ft E2E 0.309 k-ft EMX 0.310 k-ft ETR 88.7 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 227 6/17/2011 7:27:18 AM LP 34.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.302 k-ft E2E 0.312 k-ft EMX 0.313 k-ft ETR 89.5 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 228 6/17/2011 7:27:19 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.4 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 229 6/17/2011 7:27:20 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.310 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 230 6/17/2011 7:27:21 AM LP 34.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.305 k-ft E2E 0.313 k-ft EMX 0.315 k-ft ETR 90.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 231 6/17/2011 7:27:22 AM LP 34.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.302 k-ft E2E 0.310 k-ft EMX 0.312 k-ft ETR 89.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 232 6/17/2011 7:27:23 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.303 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.4 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 233 6/17/2011 7:27:25 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.308 k-ft E2E 0.317 k-ft EMX 0.319 k-ft ETR 91.1 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 234 6/17/2011 7:27:26 AM LP 34.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.81 [] EF2 0.306 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 235 6/17/2011 7:27:27 AM LP 34.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.297 k-ft E2E 0.306 k-ft EMX 0.308 k-ft ETR 87.9 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 236 6/17/2011 7:27:28 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.298 k-ft E2E 0.306 k-ft EMX 0.308 k-ft ETR 87.9 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 237 6/17/2011 7:27:29 AM LP 34.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.81 [] EF2 0.304 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.5 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 238 6/17/2011 7:27:30 AM LP 34.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.300 k-ft E2E 0.312 k-ft EMX 0.314 k-ft ETR 89.7 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 239 6/17/2011 7:27:31 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.298 k-ft E2E 0.314 k-ft EMX 0.316 k-ft ETR 90.4 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 240 6/17/2011 7:27:35 AM LP 34.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.81 [] EF2 0.300 k-ft E2E 0.308 k-ft EMX 0.310 k-ft ETR 88.7 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 241 6/17/2011 7:27:36 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.291 k-ft E2E 0.303 k-ft EMX 0.305 k-ft ETR 87.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 242 6/17/2011 7:27:37 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.80 [] EF2 0.301 k-ft E2E 0.309 k-ft EMX 0.312 k-ft ETR 89.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 243 6/17/2011 7:27:38 AM LP 34.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.81 [] EF2 0.300 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 244 6/17/2011 7:27:40 AM LP 34.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.83 [] EF2 0.307 k-ft E2E 0.315 k-ft EMX 0.318 k-ft ETR 91.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 245 6/17/2011 7:27:42 AM LP 34.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.83 [] EF2 0.302 k-ft E2E 0.311 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 246 6/17/2011 7:27:43 AM LP 34.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.82 [] EF2 0.295 k-ft E2E 0.309 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 247 6/17/2011 7:27:44 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.306 k-ft EMX 0.310 k-ft ETR 88.5 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 248 6/17/2011 7:27:45 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.304 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 249 6/17/2011 7:27:46 AM LP 34.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.81 [] EF2 0.303 k-ft E2E 0.314 k-ft EMX 0.317 k-ft ETR 90.5 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 250 6/17/2011 7:27:47 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.292 k-ft E2E 0.303 k-ft EMX 0.307 k-ft ETR 87.6 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 251 6/17/2011 7:27:48 AM LP 34.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.297 k-ft E2E 0.306 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 252 6/17/2011 7:27:49 AM LP 34.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.83 [] EF2 0.301 k-ft E2E 0.309 k-ft EMX 0.311 k-ft ETR 89.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 253 6/17/2011 7:27:50 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.298 k-ft E2E 0.303 k-ft EMX 0.306 k-ft ETR 87.5 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 254 6/17/2011 7:27:51 AM LP 34.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.301 k-ft E2E 0.309 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 255 6/17/2011 7:27:52 AM LP 34.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.83 [] EF2 0.295 k-ft E2E 0.301 k-ft EMX 0.304 k-ft ETR 86.8 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 256 6/17/2011 7:34:30 AM LP 39.30 ft FMX 26 kips VMX 14.6 f/s FVP 0.81 [] EF2 0.239 k-ft E2E 0.252 k-ft EMX 0.253 k-ft ETR 72.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 257 6/17/2011 7:34:31 AM LP 39.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.298 k-ft E2E 0.311 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 258 6/17/2011 7:34:32 AM LP 39.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.297 k-ft E2E 0.309 k-ft EMX 0.310 k-ft ETR 88.5 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 259 6/17/2011 7:34:33 AM LP 39.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.294 k-ft E2E 0.306 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 260 6/17/2011 7:34:34 AM LP 39.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.296 k-ft E2E 0.310 k-ft EMX 0.312 k-ft ETR 89.0 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 261 6/17/2011 7:34:35 AM LP 39.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.302 k-ft E2E 0.315 k-ft EMX 0.317 k-ft ETR 90.6 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 262 6/17/2011 7:34:36 AM LP 39.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.81 [] EF2 0.300 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 263 6/17/2011 7:34:37 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.292 k-ft E2E 0.308 k-ft EMX 0.309 k-ft ETR 88.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 264 6/17/2011 7:34:38 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.312 k-ft EMX 0.314 k-ft ETR 89.6 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 265 6/17/2011 7:34:39 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.80 [] EF2 0.300 k-ft E2E 0.311 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 266 6/17/2011 7:34:41 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.324 k-ft EMX 0.327 k-ft ETR 93.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 267 6/17/2011 7:34:42 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.296 k-ft E2E 0.317 k-ft EMX 0.319 k-ft ETR 91.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 268 6/17/2011 7:34:43 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.81 [] EF2 0.295 k-ft E2E 0.305 k-ft EMX 0.307 k-ft ETR 87.7 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 269 6/17/2011 7:34:44 AM LP 39.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.295 k-ft E2E 0.317 k-ft EMX 0.319 k-ft ETR 91.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 270 6/17/2011 7:34:45 AM LP 39.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.308 k-ft EMX 0.309 k-ft ETR 88.4 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 271 6/17/2011 7:34:46 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.302 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.7 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 272 6/17/2011 7:34:47 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.312 k-ft EMX 0.314 k-ft ETR 89.6 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 273 6/17/2011 7:34:48 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.83 [] EF2 0.303 k-ft E2E 0.317 k-ft EMX 0.319 k-ft ETR 91.1 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 274 6/17/2011 7:34:49 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.300 k-ft E2E 0.312 k-ft EMX 0.313 k-ft ETR 89.5 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 275 6/17/2011 7:34:50 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.298 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.4 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 276 6/17/2011 7:34:51 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.302 k-ft E2E 0.315 k-ft EMX 0.317 k-ft ETR 90.5 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 277 6/17/2011 7:34:52 AM LP 39.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.83 [] EF2 0.299 k-ft E2E 0.316 k-ft EMX 0.317 k-ft ETR 90.7 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 278 6/17/2011 7:34:53 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.311 k-ft EMX 0.312 k-ft ETR 89.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 279 6/17/2011 7:34:54 AM LP 39.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.82 [] EF2 0.306 k-ft E2E 0.317 k-ft EMX 0.318 k-ft ETR 91.0 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 280 6/17/2011 7:34:55 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.303 k-ft E2E 0.314 k-ft EMX 0.316 k-ft ETR 90.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 281 6/17/2011 7:34:56 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.296 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.4 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 282 6/17/2011 7:34:57 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.302 k-ft E2E 0.312 k-ft EMX 0.314 k-ft ETR 89.7 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 283 6/17/2011 7:34:58 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.306 k-ft E2E 0.315 k-ft EMX 0.316 k-ft ETR 90.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 284 6/17/2011 7:35:00 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.297 k-ft E2E 0.308 k-ft EMX 0.309 k-ft ETR 88.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 285 6/17/2011 7:35:01 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.298 k-ft E2E 0.309 k-ft EMX 0.311 k-ft ETR 88.8 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 286 6/17/2011 7:35:02 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.311 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 287 6/17/2011 7:35:03 AM LP 39.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.83 [] EF2 0.292 k-ft E2E 0.303 k-ft EMX 0.305 k-ft ETR 87.1 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 288 6/17/2011 7:35:04 AM LP 39.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.84 [] EF2 0.303 k-ft E2E 0.315 k-ft EMX 0.316 k-ft ETR 90.4 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 289 6/17/2011 7:35:05 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.302 k-ft E2E 0.314 k-ft EMX 0.316 k-ft ETR 90.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 290 6/17/2011 7:35:06 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.301 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.4 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 291 6/17/2011 7:35:07 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.316 k-ft EMX 0.319 k-ft ETR 91.1 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 292 6/17/2011 7:35:08 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.310 k-ft EMX 0.312 k-ft ETR 89.1 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 293 6/17/2011 7:35:09 AM LP 39.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.308 k-ft EMX 0.311 k-ft ETR 88.7 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 294 6/17/2011 7:35:10 AM LP 39.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.296 k-ft E2E 0.307 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 295 6/17/2011 7:35:11 AM LP 39.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.295 k-ft E2E 0.307 k-ft EMX 0.308 k-ft ETR 88.1 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 296 6/17/2011 7:35:12 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.301 k-ft E2E 0.310 k-ft EMX 0.311 k-ft ETR 89.0 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 297 6/17/2011 7:35:13 AM LP 39.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.83 [] EF2 0.302 k-ft E2E 0.317 k-ft EMX 0.321 k-ft ETR 91.8 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 298 6/17/2011 7:35:14 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.83 [] EF2 0.302 k-ft E2E 0.308 k-ft EMX 0.309 k-ft ETR 88.4 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 299 6/17/2011 7:35:15 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.295 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 300 6/17/2011 7:35:16 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.310 k-ft EMX 0.311 k-ft ETR 88.8 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 301 6/17/2011 7:35:17 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.301 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 302 6/17/2011 7:35:19 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.298 k-ft E2E 0.307 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 303 6/17/2011 7:35:20 AM LP 39.30 ft FMX 28 kips VMX 16.4 f/s FVP 0.75 [] EF2 0.293 k-ft E2E 0.308 k-ft EMX 0.309 k-ft ETR 88.4 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 304 6/17/2011 7:35:21 AM LP 39.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.300 k-ft E2E 0.311 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 305 6/17/2011 7:35:22 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.81 [] EF2 0.294 k-ft E2E 0.309 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 306 6/17/2011 7:35:23 AM LP 39.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.299 k-ft E2E 0.306 k-ft EMX 0.308 k-ft ETR 87.9 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 307 6/17/2011 7:35:24 AM LP 39.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.292 k-ft E2E 0.307 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 308 6/17/2011 7:35:25 AM LP 39.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.302 k-ft E2E 0.314 k-ft EMX 0.315 k-ft ETR 90.0 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 309 6/17/2011 7:35:26 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.299 k-ft E2E 0.311 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 310 6/17/2011 7:35:27 AM LP 39.30 ft FMX 29 kips VMX 16.4 f/s FVP 0.80 [] EF2 0.307 k-ft E2E 0.319 k-ft EMX 0.320 k-ft ETR 91.5 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 311 6/17/2011 7:35:28 AM LP 39.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.305 k-ft EMX 0.306 k-ft ETR 87.5 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 312 6/17/2011 7:35:29 AM LP 39.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.83 [] EF2 0.291 k-ft E2E 0.308 k-ft EMX 0.310 k-ft ETR 88.6 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 313 6/17/2011 7:35:30 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.305 k-ft E2E 0.312 k-ft EMX 0.313 k-ft ETR 89.5 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 314 6/17/2011 7:35:31 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.84 [] EF2 0.299 k-ft E2E 0.308 k-ft EMX 0.309 k-ft ETR 88.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 315 6/17/2011 7:35:32 AM LP 39.30 ft FMX 27 kips VMX 16.0 f/s FVP 0.79 [] EF2 0.290 k-ft E2E 0.310 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 316 6/17/2011 7:35:33 AM LP 39.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.306 k-ft E2E 0.319 k-ft EMX 0.321 k-ft ETR 91.6 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 317 6/17/2011 7:42:57 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.82 [] EF2 0.296 k-ft E2E 0.315 k-ft EMX 0.316 k-ft ETR 90.2 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 318 6/17/2011 7:42:58 AM LP 44.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.83 [] EF2 0.305 k-ft E2E 0.324 k-ft EMX 0.324 k-ft ETR 92.7 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 319 6/17/2011 7:42:59 AM LP 44.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.300 k-ft E2E 0.319 k-ft EMX 0.320 k-ft ETR 91.3 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 320 6/17/2011 7:43:00 AM LP 44.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.83 [] EF2 0.302 k-ft E2E 0.316 k-ft EMX 0.317 k-ft ETR 90.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 321 6/17/2011 7:43:01 AM LP 44.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.297 k-ft E2E 0.319 k-ft EMX 0.319 k-ft ETR 91.2 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 322 6/17/2011 7:43:02 AM LP 44.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.77 [] EF2 0.302 k-ft E2E 0.321 k-ft EMX 0.322 k-ft ETR 92.0 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 323 6/17/2011 7:43:03 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.78 [] EF2 0.293 k-ft E2E 0.320 k-ft EMX 0.321 k-ft ETR 91.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 324 6/17/2011 7:43:04 AM LP 44.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.302 k-ft E2E 0.320 k-ft EMX 0.320 k-ft ETR 91.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 325 6/17/2011 7:43:05 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.78 [] EF2 0.295 k-ft E2E 0.319 k-ft EMX 0.320 k-ft ETR 91.4 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 326 6/17/2011 7:43:06 AM LP 44.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.81 [] EF2 0.302 k-ft E2E 0.320 k-ft EMX 0.321 k-ft ETR 91.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 327 6/17/2011 7:43:07 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.80 [] EF2 0.295 k-ft E2E 0.319 k-ft EMX 0.320 k-ft ETR 91.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 328 6/17/2011 7:43:08 AM LP 44.30 ft FMX 29 kips VMX 16.4 f/s FVP 0.80 [] EF2 0.303 k-ft E2E 0.321 k-ft EMX 0.322 k-ft ETR 91.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 329 6/17/2011 7:43:10 AM LP 44.30 ft FMX 29 kips VMX 16.4 f/s FVP 0.79 [] EF2 0.293 k-ft E2E 0.314 k-ft EMX 0.315 k-ft ETR 90.0 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 330 6/17/2011 7:43:11 AM LP 44.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.81 [] EF2 0.299 k-ft E2E 0.315 k-ft EMX 0.316 k-ft ETR 90.2 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 331 6/17/2011 7:43:12 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.83 [] EF2 0.296 k-ft E2E 0.318 k-ft EMX 0.319 k-ft ETR 91.2 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 332 6/17/2011 7:43:13 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.80 [] EF2 0.302 k-ft E2E 0.323 k-ft EMX 0.324 k-ft ETR 92.7 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 333 6/17/2011 7:43:14 AM LP 44.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.291 k-ft E2E 0.310 k-ft EMX 0.311 k-ft ETR 88.7 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 334 6/17/2011 7:43:15 AM LP 44.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.304 k-ft E2E 0.320 k-ft EMX 0.321 k-ft ETR 91.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 335 6/17/2011 7:43:16 AM LP 44.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.83 [] EF2 0.296 k-ft E2E 0.317 k-ft EMX 0.318 k-ft ETR 90.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 336 6/17/2011 7:43:17 AM LP 44.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.79 [] EF2 0.301 k-ft E2E 0.316 k-ft EMX 0.317 k-ft ETR 90.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 337 6/17/2011 7:43:18 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.77 [] EF2 0.296 k-ft E2E 0.320 k-ft EMX 0.321 k-ft ETR 91.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 338 6/17/2011 7:43:19 AM LP 44.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.308 k-ft E2E 0.322 k-ft EMX 0.324 k-ft ETR 92.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 339 6/17/2011 7:43:20 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.75 [] EF2 0.284 k-ft E2E 0.310 k-ft EMX 0.311 k-ft ETR 88.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 340 6/17/2011 7:43:21 AM LP 44.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.84 [] EF2 0.298 k-ft E2E 0.313 k-ft EMX 0.313 k-ft ETR 89.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 341 6/17/2011 7:43:22 AM LP 44.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.80 [] EF2 0.290 k-ft E2E 0.310 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 342 6/17/2011 7:43:23 AM LP 44.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.316 k-ft EMX 0.318 k-ft ETR 90.7 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 343 6/17/2011 7:43:24 AM LP 44.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.85 [] EF2 0.303 k-ft E2E 0.320 k-ft EMX 0.321 k-ft ETR 91.7 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 344 6/17/2011 7:43:25 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.79 [] EF2 0.293 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 345 6/17/2011 7:43:26 AM LP 44.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.297 k-ft E2E 0.316 k-ft EMX 0.317 k-ft ETR 90.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 346 6/17/2011 7:43:27 AM LP 44.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.322 k-ft EMX 0.323 k-ft ETR 92.3 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 347 6/17/2011 7:43:28 AM LP 44.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.295 k-ft E2E 0.314 k-ft EMX 0.315 k-ft ETR 90.0 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 348 6/17/2011 7:43:29 AM LP 44.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.81 [] EF2 0.303 k-ft E2E 0.322 k-ft EMX 0.324 k-ft ETR 92.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 349 6/17/2011 7:43:30 AM LP 44.30 ft FMX 28 kips VMX 16.6 f/s FVP 0.74 [] EF2 0.292 k-ft E2E 0.316 k-ft EMX 0.317 k-ft ETR 90.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 350 6/17/2011 7:43:32 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.77 [] EF2 0.302 k-ft E2E 0.322 k-ft EMX 0.324 k-ft ETR 92.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 351 6/17/2011 7:43:33 AM LP 44.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.82 [] EF2 0.295 k-ft E2E 0.324 k-ft EMX 0.325 k-ft ETR 92.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 352 6/17/2011 7:43:34 AM LP 44.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.81 [] EF2 0.302 k-ft E2E 0.319 k-ft EMX 0.321 k-ft ETR 91.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 353 6/17/2011 7:43:35 AM LP 44.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.292 k-ft E2E 0.316 k-ft EMX 0.317 k-ft ETR 90.7 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 354 6/17/2011 7:43:36 AM LP 44.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.297 k-ft E2E 0.314 k-ft EMX 0.316 k-ft ETR 90.3 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 355 6/17/2011 7:43:37 AM LP 44.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.79 [] EF2 0.293 k-ft E2E 0.324 k-ft EMX 0.326 k-ft ETR 93.2 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 356 6/17/2011 7:43:38 AM LP 44.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.78 [] EF2 0.295 k-ft E2E 0.316 k-ft EMX 0.318 k-ft ETR 90.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 357 6/17/2011 7:43:39 AM LP 44.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.292 k-ft E2E 0.311 k-ft EMX 0.312 k-ft ETR 89.1 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 358 6/17/2011 7:43:40 AM LP 44.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.83 [] EF2 0.300 k-ft E2E 0.315 k-ft EMX 0.317 k-ft ETR 90.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 359 6/17/2011 7:43:41 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.76 [] EF2 0.292 k-ft E2E 0.317 k-ft EMX 0.318 k-ft ETR 90.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 360 6/17/2011 7:43:42 AM LP 44.30 ft FMX 28 kips VMX 16.6 f/s FVP 0.73 [] EF2 0.298 k-ft E2E 0.322 k-ft EMX 0.323 k-ft ETR 92.3 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 361 6/17/2011 7:43:43 AM LP 44.30 ft FMX 29 kips VMX 16.4 f/s FVP 0.78 [] EF2 0.295 k-ft E2E 0.317 k-ft EMX 0.318 k-ft ETR 90.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 362 6/17/2011 7:43:44 AM LP 44.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.81 [] EF2 0.301 k-ft E2E 0.324 k-ft EMX 0.325 k-ft ETR 92.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 363 6/17/2011 7:43:45 AM LP 44.30 ft FMX 29 kips VMX 16.4 f/s FVP 0.82 [] EF2 0.296 k-ft E2E 0.318 k-ft EMX 0.320 k-ft ETR 91.3 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 364 6/17/2011 7:43:46 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.80 [] EF2 0.299 k-ft E2E 0.323 k-ft EMX 0.324 k-ft ETR 92.7 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 365 6/17/2011 7:43:47 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.83 [] EF2 0.292 k-ft E2E 0.314 k-ft EMX 0.315 k-ft ETR 89.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 366 6/17/2011 7:43:48 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.294 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 367 6/17/2011 7:43:49 AM LP 44.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.83 [] EF2 0.296 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 368 6/17/2011 7:43:50 AM LP 44.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.307 k-ft E2E 0.323 k-ft EMX 0.324 k-ft ETR 92.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 369 6/17/2011 7:43:51 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.82 [] EF2 0.295 k-ft E2E 0.315 k-ft EMX 0.316 k-ft ETR 90.3 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 370 6/17/2011 7:43:52 AM LP 44.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.84 [] EF2 0.305 k-ft E2E 0.321 k-ft EMX 0.322 k-ft ETR 92.0 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 371 6/17/2011 7:43:54 AM LP 44.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.81 [] EF2 0.293 k-ft E2E 0.314 k-ft EMX 0.315 k-ft ETR 89.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 372 6/17/2011 7:43:55 AM LP 44.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.83 [] EF2 0.300 k-ft E2E 0.316 k-ft EMX 0.317 k-ft ETR 90.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 373 6/17/2011 7:43:56 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.81 [] EF2 0.294 k-ft E2E 0.316 k-ft EMX 0.318 k-ft ETR 90.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 374 6/17/2011 7:43:57 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.314 k-ft EMX 0.315 k-ft ETR 90.0 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 375 6/17/2011 7:43:58 AM LP 44.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.81 [] EF2 0.294 k-ft E2E 0.314 k-ft EMX 0.315 k-ft ETR 90.1 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 376 6/17/2011 7:43:59 AM LP 44.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.83 [] EF2 0.304 k-ft E2E 0.322 k-ft EMX 0.323 k-ft ETR 92.4 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 377 6/17/2011 7:44:00 AM LP 44.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.79 [] EF2 0.289 k-ft E2E 0.312 k-ft EMX 0.314 k-ft ETR 89.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 378 6/17/2011 7:44:01 AM LP 44.30 ft FMX 27 kips VMX 15.8 f/s FVP 0.61 [] EF2 0.260 k-ft E2E 0.298 k-ft EMX 0.300 k-ft ETR 85.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 50 kips F 51.2 ms0.0 ms 23.3 f/s V Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 1 6/17/2011 6:42:38 AM LP 4.00 ft FMX 27 kips VMX 15.5 f/s FVP 0.90 [] EF2 0.207 k-ft E2E 0.180 k-ft EMX 0.270 k-ft ETR 77.3 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 2 6/17/2011 6:42:39 AM LP 4.00 ft FMX 28 kips VMX 16.4 f/s FVP 0.90 [] EF2 0.220 k-ft E2E 0.195 k-ft EMX 0.265 k-ft ETR 75.6 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 3 6/17/2011 6:42:40 AM LP 4.00 ft FMX 28 kips VMX 16.2 f/s FVP 0.91 [] EF2 0.217 k-ft E2E 0.191 k-ft EMX 0.247 k-ft ETR 70.6 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 4 6/17/2011 6:42:41 AM LP 4.00 ft FMX 29 kips VMX 16.2 f/s FVP 0.89 [] EF2 0.219 k-ft E2E 0.197 k-ft EMX 0.285 k-ft ETR 81.6 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 5 6/17/2011 6:42:42 AM LP 4.00 ft FMX 29 kips VMX 16.3 f/s FVP 0.91 [] EF2 0.224 k-ft E2E 0.197 k-ft EMX 0.290 k-ft ETR 82.7 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 6 6/17/2011 6:42:43 AM LP 4.00 ft FMX 29 kips VMX 16.1 f/s FVP 0.89 [] EF2 0.226 k-ft E2E 0.200 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 7 6/17/2011 6:42:45 AM LP 4.00 ft FMX 29 kips VMX 16.2 f/s FVP 0.89 [] EF2 0.221 k-ft E2E 0.200 k-ft EMX 0.304 k-ft ETR 86.7 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 8 6/17/2011 6:42:46 AM LP 4.00 ft FMX 29 kips VMX 16.1 f/s FVP 0.88 [] EF2 0.225 k-ft E2E 0.205 k-ft EMX 0.315 k-ft ETR 90.1 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 9 6/17/2011 6:42:47 AM LP 4.00 ft FMX 29 kips VMX 15.9 f/s FVP 0.87 [] EF2 0.223 k-ft E2E 0.201 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 10 6/17/2011 6:42:48 AM LP 4.00 ft FMX 29 kips VMX 15.8 f/s FVP 0.87 [] EF2 0.219 k-ft E2E 0.204 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 11 6/17/2011 6:42:49 AM LP 4.00 ft FMX 29 kips VMX 15.6 f/s FVP 0.87 [] EF2 0.222 k-ft E2E 0.203 k-ft EMX 0.312 k-ft ETR 89.3 (%) LE 9.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.10 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 12 6/17/2011 6:50:12 AM LP 9.00 ft FMX 29 kips VMX 16.6 f/s FVP 0.90 [] EF2 0.254 k-ft E2E 0.243 k-ft EMX 0.261 k-ft ETR 74.5 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 13 6/17/2011 6:50:13 AM LP 9.00 ft FMX 28 kips VMX 17.3 f/s FVP 0.86 [] EF2 0.250 k-ft E2E 0.240 k-ft EMX 0.258 k-ft ETR 73.7 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 14 6/17/2011 6:50:15 AM LP 9.00 ft FMX 28 kips VMX 16.5 f/s FVP 0.86 [] EF2 0.250 k-ft E2E 0.243 k-ft EMX 0.257 k-ft ETR 73.5 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 15 6/17/2011 6:50:16 AM LP 9.00 ft FMX 28 kips VMX 16.4 f/s FVP 0.87 [] EF2 0.255 k-ft E2E 0.246 k-ft EMX 0.283 k-ft ETR 80.9 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 16 6/17/2011 6:50:17 AM LP 9.00 ft FMX 29 kips VMX 16.3 f/s FVP 0.87 [] EF2 0.256 k-ft E2E 0.245 k-ft EMX 0.280 k-ft ETR 79.9 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 17 6/17/2011 6:50:18 AM LP 9.00 ft FMX 28 kips VMX 15.9 f/s FVP 0.85 [] EF2 0.250 k-ft E2E 0.238 k-ft EMX 0.280 k-ft ETR 80.0 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 18 6/17/2011 6:50:19 AM LP 9.00 ft FMX 28 kips VMX 16.0 f/s FVP 0.86 [] EF2 0.249 k-ft E2E 0.240 k-ft EMX 0.282 k-ft ETR 80.7 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 19 6/17/2011 6:50:20 AM LP 9.00 ft FMX 28 kips VMX 15.9 f/s FVP 0.86 [] EF2 0.247 k-ft E2E 0.238 k-ft EMX 0.283 k-ft ETR 80.7 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 20 6/17/2011 6:50:21 AM LP 9.00 ft FMX 28 kips VMX 16.1 f/s FVP 0.85 [] EF2 0.249 k-ft E2E 0.239 k-ft EMX 0.284 k-ft ETR 81.2 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 21 6/17/2011 6:50:22 AM LP 9.00 ft FMX 28 kips VMX 15.9 f/s FVP 0.85 [] EF2 0.249 k-ft E2E 0.238 k-ft EMX 0.287 k-ft ETR 81.9 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 22 6/17/2011 6:50:23 AM LP 9.00 ft FMX 29 kips VMX 16.0 f/s FVP 0.86 [] EF2 0.252 k-ft E2E 0.240 k-ft EMX 0.290 k-ft ETR 82.9 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 23 6/17/2011 6:50:24 AM LP 9.00 ft FMX 28 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.249 k-ft E2E 0.237 k-ft EMX 0.284 k-ft ETR 81.1 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 24 6/17/2011 6:50:26 AM LP 9.00 ft FMX 28 kips VMX 16.0 f/s FVP 0.86 [] EF2 0.249 k-ft E2E 0.235 k-ft EMX 0.292 k-ft ETR 83.4 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 25 6/17/2011 6:50:27 AM LP 9.00 ft FMX 28 kips VMX 16.1 f/s FVP 0.85 [] EF2 0.251 k-ft E2E 0.238 k-ft EMX 0.293 k-ft ETR 83.7 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 26 6/17/2011 6:50:28 AM LP 9.00 ft FMX 28 kips VMX 15.9 f/s FVP 0.86 [] EF2 0.242 k-ft E2E 0.231 k-ft EMX 0.286 k-ft ETR 81.7 (%) LE 14.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 1.69 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 27 6/17/2011 6:56:53 AM LP 14.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.87 [] EF2 0.272 k-ft E2E 0.271 k-ft EMX 0.279 k-ft ETR 79.8 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 28 6/17/2011 6:56:54 AM LP 14.30 ft FMX 29 kips VMX 15.7 f/s FVP 0.86 [] EF2 0.275 k-ft E2E 0.279 k-ft EMX 0.288 k-ft ETR 82.3 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 29 6/17/2011 6:57:02 AM LP 14.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.266 k-ft E2E 0.268 k-ft EMX 0.285 k-ft ETR 81.3 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 30 6/17/2011 6:57:03 AM LP 14.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.271 k-ft E2E 0.277 k-ft EMX 0.302 k-ft ETR 86.4 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 31 6/17/2011 6:57:04 AM LP 14.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.271 k-ft E2E 0.273 k-ft EMX 0.298 k-ft ETR 85.3 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 32 6/17/2011 6:57:05 AM LP 14.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.265 k-ft E2E 0.269 k-ft EMX 0.296 k-ft ETR 84.6 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 33 6/17/2011 6:57:07 AM LP 14.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.261 k-ft E2E 0.262 k-ft EMX 0.288 k-ft ETR 82.4 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 34 6/17/2011 6:57:08 AM LP 14.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.269 k-ft E2E 0.271 k-ft EMX 0.300 k-ft ETR 85.6 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 35 6/17/2011 6:57:09 AM LP 14.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.263 k-ft E2E 0.267 k-ft EMX 0.298 k-ft ETR 85.2 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 36 6/17/2011 6:57:10 AM LP 14.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.85 [] EF2 0.276 k-ft E2E 0.272 k-ft EMX 0.306 k-ft ETR 87.4 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 37 6/17/2011 6:57:11 AM LP 14.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.83 [] EF2 0.265 k-ft E2E 0.266 k-ft EMX 0.298 k-ft ETR 85.1 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 38 6/17/2011 6:57:12 AM LP 14.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.83 [] EF2 0.273 k-ft E2E 0.276 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 39 6/17/2011 6:57:13 AM LP 14.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.83 [] EF2 0.266 k-ft E2E 0.266 k-ft EMX 0.298 k-ft ETR 85.1 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 40 6/17/2011 6:57:14 AM LP 14.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.83 [] EF2 0.271 k-ft E2E 0.270 k-ft EMX 0.305 k-ft ETR 87.1 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 41 6/17/2011 6:57:15 AM LP 14.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.267 k-ft E2E 0.268 k-ft EMX 0.301 k-ft ETR 86.0 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 42 6/17/2011 6:57:16 AM LP 14.30 ft FMX 28 kips VMX 15.4 f/s FVP 0.83 [] EF2 0.268 k-ft E2E 0.267 k-ft EMX 0.302 k-ft ETR 86.2 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 43 6/17/2011 6:57:17 AM LP 14.30 ft FMX 27 kips VMX 15.4 f/s FVP 0.83 [] EF2 0.260 k-ft E2E 0.261 k-ft EMX 0.295 k-ft ETR 84.2 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 44 6/17/2011 6:57:18 AM LP 14.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.84 [] EF2 0.267 k-ft E2E 0.266 k-ft EMX 0.304 k-ft ETR 86.8 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 45 6/17/2011 6:57:20 AM LP 14.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.83 [] EF2 0.271 k-ft E2E 0.271 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 46 6/17/2011 6:57:21 AM LP 14.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.83 [] EF2 0.271 k-ft E2E 0.272 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 47 6/17/2011 6:57:22 AM LP 14.30 ft FMX 27 kips VMX 15.3 f/s FVP 0.84 [] EF2 0.262 k-ft E2E 0.262 k-ft EMX 0.301 k-ft ETR 86.0 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 48 6/17/2011 6:57:23 AM LP 14.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.83 [] EF2 0.269 k-ft E2E 0.271 k-ft EMX 0.314 k-ft ETR 89.7 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 49 6/17/2011 6:57:24 AM LP 14.30 ft FMX 27 kips VMX 15.4 f/s FVP 0.82 [] EF2 0.262 k-ft E2E 0.265 k-ft EMX 0.309 k-ft ETR 88.3 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 50 6/17/2011 6:57:25 AM LP 14.30 ft FMX 27 kips VMX 15.4 f/s FVP 0.82 [] EF2 0.264 k-ft E2E 0.268 k-ft EMX 0.312 k-ft ETR 89.0 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 51 6/17/2011 6:57:26 AM LP 14.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.83 [] EF2 0.267 k-ft E2E 0.271 k-ft EMX 0.316 k-ft ETR 90.4 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 52 6/17/2011 6:57:27 AM LP 14.30 ft FMX 27 kips VMX 15.2 f/s FVP 0.82 [] EF2 0.257 k-ft E2E 0.260 k-ft EMX 0.306 k-ft ETR 87.3 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 53 6/17/2011 6:57:28 AM LP 14.30 ft FMX 27 kips VMX 15.6 f/s FVP 0.81 [] EF2 0.263 k-ft E2E 0.266 k-ft EMX 0.312 k-ft ETR 89.1 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 54 6/17/2011 6:57:29 AM LP 14.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.80 [] EF2 0.267 k-ft E2E 0.274 k-ft EMX 0.325 k-ft ETR 93.0 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 55 6/17/2011 6:57:30 AM LP 14.30 ft FMX 27 kips VMX 15.7 f/s FVP 0.81 [] EF2 0.266 k-ft E2E 0.271 k-ft EMX 0.318 k-ft ETR 90.7 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 56 6/17/2011 6:57:31 AM LP 14.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.80 [] EF2 0.263 k-ft E2E 0.267 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 57 6/17/2011 6:57:33 AM LP 14.30 ft FMX 27 kips VMX 15.6 f/s FVP 0.81 [] EF2 0.262 k-ft E2E 0.269 k-ft EMX 0.316 k-ft ETR 90.4 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 58 6/17/2011 6:57:34 AM LP 14.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.81 [] EF2 0.267 k-ft E2E 0.275 k-ft EMX 0.324 k-ft ETR 92.5 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 59 6/17/2011 6:57:35 AM LP 14.30 ft FMX 27 kips VMX 15.9 f/s FVP 0.80 [] EF2 0.262 k-ft E2E 0.271 k-ft EMX 0.316 k-ft ETR 90.3 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 60 6/17/2011 6:57:36 AM LP 14.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.81 [] EF2 0.271 k-ft E2E 0.274 k-ft EMX 0.323 k-ft ETR 92.4 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 61 6/17/2011 6:57:37 AM LP 14.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.80 [] EF2 0.266 k-ft E2E 0.272 k-ft EMX 0.317 k-ft ETR 90.5 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 62 6/17/2011 6:57:38 AM LP 14.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.273 k-ft E2E 0.277 k-ft EMX 0.328 k-ft ETR 93.8 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 63 6/17/2011 6:57:39 AM LP 14.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.81 [] EF2 0.264 k-ft E2E 0.268 k-ft EMX 0.311 k-ft ETR 88.7 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 64 6/17/2011 6:57:40 AM LP 14.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.80 [] EF2 0.271 k-ft E2E 0.273 k-ft EMX 0.317 k-ft ETR 90.6 (%) LE 19.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.28 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 65 6/17/2011 7:05:17 AM LP 19.30 ft FMX 28 kips VMX 15.2 f/s FVP 0.86 [] EF2 0.281 k-ft E2E 0.282 k-ft EMX 0.288 k-ft ETR 82.4 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 66 6/17/2011 7:05:18 AM LP 19.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.290 k-ft E2E 0.292 k-ft EMX 0.301 k-ft ETR 85.9 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 67 6/17/2011 7:05:19 AM LP 19.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.83 [] EF2 0.286 k-ft E2E 0.285 k-ft EMX 0.293 k-ft ETR 83.7 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 68 6/17/2011 7:05:20 AM LP 19.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.83 [] EF2 0.295 k-ft E2E 0.295 k-ft EMX 0.305 k-ft ETR 87.1 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 69 6/17/2011 7:05:21 AM LP 19.30 ft FMX 29 kips VMX 15.5 f/s FVP 0.86 [] EF2 0.288 k-ft E2E 0.289 k-ft EMX 0.297 k-ft ETR 84.8 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 70 6/17/2011 7:05:23 AM LP 19.30 ft FMX 28 kips VMX 15.3 f/s FVP 0.85 [] EF2 0.286 k-ft E2E 0.284 k-ft EMX 0.295 k-ft ETR 84.2 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 71 6/17/2011 7:05:24 AM LP 19.30 ft FMX 29 kips VMX 15.1 f/s FVP 0.87 [] EF2 0.284 k-ft E2E 0.282 k-ft EMX 0.292 k-ft ETR 83.4 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 72 6/17/2011 7:05:25 AM LP 19.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.288 k-ft E2E 0.291 k-ft EMX 0.304 k-ft ETR 87.0 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 73 6/17/2011 7:05:26 AM LP 19.30 ft FMX 28 kips VMX 15.0 f/s FVP 0.88 [] EF2 0.280 k-ft E2E 0.279 k-ft EMX 0.291 k-ft ETR 83.1 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 74 6/17/2011 7:05:27 AM LP 19.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.285 k-ft E2E 0.284 k-ft EMX 0.300 k-ft ETR 85.6 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 75 6/17/2011 7:05:28 AM LP 19.30 ft FMX 29 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.284 k-ft E2E 0.287 k-ft EMX 0.297 k-ft ETR 84.8 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 76 6/17/2011 7:05:29 AM LP 19.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.86 [] EF2 0.291 k-ft E2E 0.290 k-ft EMX 0.306 k-ft ETR 87.4 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 77 6/17/2011 7:05:30 AM LP 19.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.86 [] EF2 0.281 k-ft E2E 0.285 k-ft EMX 0.292 k-ft ETR 83.4 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 78 6/17/2011 7:05:31 AM LP 19.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.282 k-ft E2E 0.283 k-ft EMX 0.296 k-ft ETR 84.6 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 79 6/17/2011 7:05:32 AM LP 19.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.277 k-ft E2E 0.283 k-ft EMX 0.291 k-ft ETR 83.0 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 80 6/17/2011 7:05:33 AM LP 19.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.295 k-ft E2E 0.293 k-ft EMX 0.308 k-ft ETR 87.9 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 81 6/17/2011 7:05:34 AM LP 19.30 ft FMX 29 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.281 k-ft E2E 0.281 k-ft EMX 0.289 k-ft ETR 82.6 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 82 6/17/2011 7:05:35 AM LP 19.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.84 [] EF2 0.280 k-ft E2E 0.280 k-ft EMX 0.294 k-ft ETR 83.9 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 83 6/17/2011 7:05:36 AM LP 19.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.273 k-ft E2E 0.273 k-ft EMX 0.284 k-ft ETR 81.1 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 84 6/17/2011 7:05:38 AM LP 19.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.86 [] EF2 0.280 k-ft E2E 0.280 k-ft EMX 0.294 k-ft ETR 84.0 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 85 6/17/2011 7:05:39 AM LP 19.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.278 k-ft E2E 0.280 k-ft EMX 0.291 k-ft ETR 83.3 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 86 6/17/2011 7:05:40 AM LP 19.30 ft FMX 29 kips VMX 15.5 f/s FVP 0.86 [] EF2 0.283 k-ft E2E 0.282 k-ft EMX 0.297 k-ft ETR 84.8 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 87 6/17/2011 7:05:41 AM LP 19.30 ft FMX 28 kips VMX 15.4 f/s FVP 0.87 [] EF2 0.272 k-ft E2E 0.274 k-ft EMX 0.287 k-ft ETR 81.9 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 88 6/17/2011 7:05:42 AM LP 19.30 ft FMX 29 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.288 k-ft E2E 0.285 k-ft EMX 0.304 k-ft ETR 86.8 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 89 6/17/2011 7:05:43 AM LP 19.30 ft FMX 28 kips VMX 15.4 f/s FVP 0.86 [] EF2 0.274 k-ft E2E 0.276 k-ft EMX 0.292 k-ft ETR 83.4 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 90 6/17/2011 7:05:44 AM LP 19.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.83 [] EF2 0.278 k-ft E2E 0.281 k-ft EMX 0.301 k-ft ETR 86.1 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 91 6/17/2011 7:05:45 AM LP 19.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.282 k-ft E2E 0.284 k-ft EMX 0.301 k-ft ETR 86.1 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 92 6/17/2011 7:05:46 AM LP 19.30 ft FMX 29 kips VMX 15.3 f/s FVP 0.88 [] EF2 0.278 k-ft E2E 0.279 k-ft EMX 0.298 k-ft ETR 85.0 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 93 6/17/2011 7:05:47 AM LP 19.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.280 k-ft E2E 0.282 k-ft EMX 0.297 k-ft ETR 84.9 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 94 6/17/2011 7:05:48 AM LP 19.30 ft FMX 29 kips VMX 15.4 f/s FVP 0.87 [] EF2 0.288 k-ft E2E 0.284 k-ft EMX 0.301 k-ft ETR 86.0 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 95 6/17/2011 7:05:49 AM LP 19.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.278 k-ft E2E 0.281 k-ft EMX 0.299 k-ft ETR 85.4 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 96 6/17/2011 7:05:50 AM LP 19.30 ft FMX 29 kips VMX 15.3 f/s FVP 0.88 [] EF2 0.278 k-ft E2E 0.279 k-ft EMX 0.296 k-ft ETR 84.7 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 97 6/17/2011 7:05:52 AM LP 19.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.84 [] EF2 0.282 k-ft E2E 0.284 k-ft EMX 0.303 k-ft ETR 86.6 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 98 6/17/2011 7:05:53 AM LP 19.30 ft FMX 29 kips VMX 15.3 f/s FVP 0.88 [] EF2 0.280 k-ft E2E 0.279 k-ft EMX 0.296 k-ft ETR 84.5 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 99 6/17/2011 7:05:54 AM LP 19.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.279 k-ft E2E 0.282 k-ft EMX 0.299 k-ft ETR 85.5 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 100 6/17/2011 7:05:55 AM LP 19.30 ft FMX 29 kips VMX 15.4 f/s FVP 0.87 [] EF2 0.287 k-ft E2E 0.284 k-ft EMX 0.300 k-ft ETR 85.7 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 101 6/17/2011 7:05:56 AM LP 19.30 ft FMX 29 kips VMX 15.3 f/s FVP 0.88 [] EF2 0.271 k-ft E2E 0.273 k-ft EMX 0.286 k-ft ETR 81.6 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 102 6/17/2011 7:05:57 AM LP 19.30 ft FMX 28 kips VMX 15.2 f/s FVP 0.87 [] EF2 0.277 k-ft E2E 0.278 k-ft EMX 0.294 k-ft ETR 84.1 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 103 6/17/2011 7:05:58 AM LP 19.30 ft FMX 28 kips VMX 15.1 f/s FVP 0.88 [] EF2 0.271 k-ft E2E 0.275 k-ft EMX 0.291 k-ft ETR 83.1 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 104 6/17/2011 7:05:59 AM LP 19.30 ft FMX 29 kips VMX 15.5 f/s FVP 0.86 [] EF2 0.281 k-ft E2E 0.284 k-ft EMX 0.305 k-ft ETR 87.0 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 105 6/17/2011 7:06:00 AM LP 19.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.86 [] EF2 0.280 k-ft E2E 0.282 k-ft EMX 0.298 k-ft ETR 85.2 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 106 6/17/2011 7:06:01 AM LP 19.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.283 k-ft E2E 0.283 k-ft EMX 0.303 k-ft ETR 86.5 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 107 6/17/2011 7:06:02 AM LP 19.30 ft FMX 28 kips VMX 15.4 f/s FVP 0.84 [] EF2 0.270 k-ft E2E 0.275 k-ft EMX 0.295 k-ft ETR 84.3 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 108 6/17/2011 7:06:03 AM LP 19.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.86 [] EF2 0.277 k-ft E2E 0.281 k-ft EMX 0.305 k-ft ETR 87.2 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 109 6/17/2011 7:06:04 AM LP 19.30 ft FMX 28 kips VMX 15.2 f/s FVP 0.85 [] EF2 0.278 k-ft E2E 0.280 k-ft EMX 0.306 k-ft ETR 87.6 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 110 6/17/2011 7:06:05 AM LP 19.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.86 [] EF2 0.287 k-ft E2E 0.286 k-ft EMX 0.309 k-ft ETR 88.3 (%) LE 24.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 2.87 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 111 6/17/2011 7:12:19 AM LP 24.30 ft FMX 28 kips VMX 15.4 f/s FVP 0.85 [] EF2 0.284 k-ft E2E 0.292 k-ft EMX 0.296 k-ft ETR 84.5 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 112 6/17/2011 7:12:20 AM LP 24.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.86 [] EF2 0.286 k-ft E2E 0.298 k-ft EMX 0.302 k-ft ETR 86.4 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 113 6/17/2011 7:12:21 AM LP 24.30 ft FMX 28 kips VMX 15.3 f/s FVP 0.85 [] EF2 0.285 k-ft E2E 0.293 k-ft EMX 0.297 k-ft ETR 84.8 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 114 6/17/2011 7:12:22 AM LP 24.30 ft FMX 28 kips VMX 15.4 f/s FVP 0.86 [] EF2 0.289 k-ft E2E 0.295 k-ft EMX 0.299 k-ft ETR 85.4 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 115 6/17/2011 7:12:23 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.287 k-ft E2E 0.300 k-ft EMX 0.304 k-ft ETR 86.7 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 116 6/17/2011 7:12:24 AM LP 24.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.295 k-ft E2E 0.307 k-ft EMX 0.312 k-ft ETR 89.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 117 6/17/2011 7:12:25 AM LP 24.30 ft FMX 28 kips VMX 15.3 f/s FVP 0.86 [] EF2 0.282 k-ft E2E 0.294 k-ft EMX 0.299 k-ft ETR 85.4 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 118 6/17/2011 7:12:26 AM LP 24.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.290 k-ft E2E 0.297 k-ft EMX 0.301 k-ft ETR 86.0 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 119 6/17/2011 7:12:27 AM LP 24.30 ft FMX 29 kips VMX 15.7 f/s FVP 0.86 [] EF2 0.298 k-ft E2E 0.305 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 120 6/17/2011 7:12:28 AM LP 24.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.299 k-ft E2E 0.302 k-ft EMX 0.306 k-ft ETR 87.6 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 121 6/17/2011 7:12:30 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.289 k-ft E2E 0.301 k-ft EMX 0.305 k-ft ETR 87.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 122 6/17/2011 7:12:31 AM LP 24.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.288 k-ft E2E 0.297 k-ft EMX 0.301 k-ft ETR 86.0 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 123 6/17/2011 7:12:32 AM LP 24.30 ft FMX 28 kips VMX 15.4 f/s FVP 0.86 [] EF2 0.286 k-ft E2E 0.296 k-ft EMX 0.300 k-ft ETR 85.8 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 124 6/17/2011 7:12:33 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.295 k-ft E2E 0.299 k-ft EMX 0.303 k-ft ETR 86.6 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 125 6/17/2011 7:12:34 AM LP 24.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.284 k-ft E2E 0.294 k-ft EMX 0.298 k-ft ETR 85.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 126 6/17/2011 7:12:35 AM LP 24.30 ft FMX 29 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.295 k-ft E2E 0.300 k-ft EMX 0.305 k-ft ETR 87.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 127 6/17/2011 7:12:36 AM LP 24.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.86 [] EF2 0.291 k-ft E2E 0.303 k-ft EMX 0.307 k-ft ETR 87.7 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 128 6/17/2011 7:12:37 AM LP 24.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.295 k-ft E2E 0.300 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 129 6/17/2011 7:12:38 AM LP 24.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.289 k-ft E2E 0.296 k-ft EMX 0.300 k-ft ETR 85.7 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 130 6/17/2011 7:12:39 AM LP 24.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.86 [] EF2 0.299 k-ft E2E 0.303 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 131 6/17/2011 7:12:40 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.285 k-ft E2E 0.297 k-ft EMX 0.301 k-ft ETR 86.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 132 6/17/2011 7:12:41 AM LP 24.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.302 k-ft E2E 0.303 k-ft EMX 0.309 k-ft ETR 88.4 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 133 6/17/2011 7:12:42 AM LP 24.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.291 k-ft E2E 0.302 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 134 6/17/2011 7:12:43 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.287 k-ft E2E 0.297 k-ft EMX 0.307 k-ft ETR 87.6 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 135 6/17/2011 7:12:45 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.289 k-ft E2E 0.296 k-ft EMX 0.305 k-ft ETR 87.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 136 6/17/2011 7:12:46 AM LP 24.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.294 k-ft E2E 0.296 k-ft EMX 0.306 k-ft ETR 87.3 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 137 6/17/2011 7:12:47 AM LP 24.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.301 k-ft E2E 0.305 k-ft EMX 0.313 k-ft ETR 89.4 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 138 6/17/2011 7:12:48 AM LP 24.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.305 k-ft E2E 0.308 k-ft EMX 0.316 k-ft ETR 90.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 139 6/17/2011 7:12:49 AM LP 24.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.301 k-ft E2E 0.306 k-ft EMX 0.313 k-ft ETR 89.3 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 140 6/17/2011 7:12:50 AM LP 24.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.297 k-ft E2E 0.303 k-ft EMX 0.310 k-ft ETR 88.5 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 141 6/17/2011 7:12:51 AM LP 24.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.84 [] EF2 0.299 k-ft E2E 0.302 k-ft EMX 0.310 k-ft ETR 88.5 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 142 6/17/2011 7:12:52 AM LP 24.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.84 [] EF2 0.298 k-ft E2E 0.299 k-ft EMX 0.310 k-ft ETR 88.4 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 143 6/17/2011 7:12:53 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.288 k-ft E2E 0.296 k-ft EMX 0.306 k-ft ETR 87.5 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 144 6/17/2011 7:12:54 AM LP 24.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.302 k-ft E2E 0.300 k-ft EMX 0.312 k-ft ETR 89.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 145 6/17/2011 7:12:55 AM LP 24.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.292 k-ft E2E 0.301 k-ft EMX 0.311 k-ft ETR 88.7 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 146 6/17/2011 7:12:56 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.295 k-ft E2E 0.302 k-ft EMX 0.314 k-ft ETR 89.7 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 147 6/17/2011 7:12:57 AM LP 24.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.84 [] EF2 0.300 k-ft E2E 0.302 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 148 6/17/2011 7:12:58 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.290 k-ft E2E 0.297 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 149 6/17/2011 7:13:00 AM LP 24.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.84 [] EF2 0.291 k-ft E2E 0.295 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 150 6/17/2011 7:13:01 AM LP 24.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.293 k-ft E2E 0.298 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 151 6/17/2011 7:13:02 AM LP 24.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.298 k-ft E2E 0.297 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 152 6/17/2011 7:13:03 AM LP 24.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.84 [] EF2 0.289 k-ft E2E 0.294 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 153 6/17/2011 7:13:04 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.83 [] EF2 0.293 k-ft E2E 0.298 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 154 6/17/2011 7:13:05 AM LP 24.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.290 k-ft E2E 0.298 k-ft EMX 0.313 k-ft ETR 89.3 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 155 6/17/2011 7:13:06 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.294 k-ft E2E 0.296 k-ft EMX 0.309 k-ft ETR 88.4 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 156 6/17/2011 7:13:07 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.292 k-ft E2E 0.297 k-ft EMX 0.312 k-ft ETR 89.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 157 6/17/2011 7:13:08 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.295 k-ft E2E 0.299 k-ft EMX 0.313 k-ft ETR 89.5 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 158 6/17/2011 7:13:09 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.82 [] EF2 0.285 k-ft E2E 0.289 k-ft EMX 0.303 k-ft ETR 86.5 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 159 6/17/2011 7:13:10 AM LP 24.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.81 [] EF2 0.293 k-ft E2E 0.297 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 160 6/17/2011 7:13:11 AM LP 24.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.82 [] EF2 0.289 k-ft E2E 0.293 k-ft EMX 0.308 k-ft ETR 88.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 161 6/17/2011 7:13:12 AM LP 24.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.289 k-ft E2E 0.293 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 162 6/17/2011 7:13:13 AM LP 24.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.83 [] EF2 0.281 k-ft E2E 0.290 k-ft EMX 0.303 k-ft ETR 86.7 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 163 6/17/2011 7:13:15 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.83 [] EF2 0.288 k-ft E2E 0.293 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 164 6/17/2011 7:13:16 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.280 k-ft E2E 0.293 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 165 6/17/2011 7:13:17 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.280 k-ft E2E 0.285 k-ft EMX 0.299 k-ft ETR 85.3 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 166 6/17/2011 7:13:18 AM LP 24.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.284 k-ft E2E 0.292 k-ft EMX 0.306 k-ft ETR 87.5 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 167 6/17/2011 7:13:19 AM LP 24.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.287 k-ft E2E 0.296 k-ft EMX 0.310 k-ft ETR 88.7 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 168 6/17/2011 7:13:20 AM LP 24.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.83 [] EF2 0.291 k-ft E2E 0.295 k-ft EMX 0.308 k-ft ETR 88.1 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 169 6/17/2011 7:13:21 AM LP 24.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.290 k-ft E2E 0.297 k-ft EMX 0.310 k-ft ETR 88.6 (%) LE 29.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 3.47 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 170 6/17/2011 7:19:41 AM LP 29.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.84 [] EF2 0.277 k-ft E2E 0.285 k-ft EMX 0.287 k-ft ETR 82.0 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 171 6/17/2011 7:19:42 AM LP 29.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.291 k-ft E2E 0.300 k-ft EMX 0.302 k-ft ETR 86.3 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 172 6/17/2011 7:19:44 AM LP 29.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.82 [] EF2 0.290 k-ft E2E 0.294 k-ft EMX 0.296 k-ft ETR 84.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 173 6/17/2011 7:19:45 AM LP 29.30 ft FMX 27 kips VMX 15.6 f/s FVP 0.82 [] EF2 0.288 k-ft E2E 0.297 k-ft EMX 0.299 k-ft ETR 85.6 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 174 6/17/2011 7:19:46 AM LP 29.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.290 k-ft E2E 0.300 k-ft EMX 0.303 k-ft ETR 86.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 175 6/17/2011 7:19:47 AM LP 29.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.292 k-ft E2E 0.303 k-ft EMX 0.305 k-ft ETR 87.2 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 176 6/17/2011 7:19:48 AM LP 29.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.294 k-ft E2E 0.304 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 177 6/17/2011 7:19:49 AM LP 29.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.301 k-ft E2E 0.306 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 178 6/17/2011 7:19:50 AM LP 29.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.302 k-ft E2E 0.307 k-ft EMX 0.311 k-ft ETR 88.8 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 179 6/17/2011 7:19:51 AM LP 29.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.292 k-ft E2E 0.300 k-ft EMX 0.304 k-ft ETR 86.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 180 6/17/2011 7:19:52 AM LP 29.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.293 k-ft E2E 0.301 k-ft EMX 0.304 k-ft ETR 86.9 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 181 6/17/2011 7:19:53 AM LP 29.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.301 k-ft E2E 0.302 k-ft EMX 0.305 k-ft ETR 87.2 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 182 6/17/2011 7:19:54 AM LP 29.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.83 [] EF2 0.291 k-ft E2E 0.300 k-ft EMX 0.303 k-ft ETR 86.5 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 183 6/17/2011 7:19:55 AM LP 29.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.288 k-ft E2E 0.298 k-ft EMX 0.301 k-ft ETR 86.0 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 184 6/17/2011 7:19:57 AM LP 29.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.304 k-ft E2E 0.306 k-ft EMX 0.309 k-ft ETR 88.4 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 185 6/17/2011 7:19:58 AM LP 29.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.291 k-ft E2E 0.298 k-ft EMX 0.301 k-ft ETR 86.0 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 186 6/17/2011 7:19:59 AM LP 29.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.84 [] EF2 0.307 k-ft E2E 0.310 k-ft EMX 0.313 k-ft ETR 89.5 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 187 6/17/2011 7:20:00 AM LP 29.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.304 k-ft E2E 0.310 k-ft EMX 0.314 k-ft ETR 89.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 188 6/17/2011 7:20:01 AM LP 29.30 ft FMX 29 kips VMX 15.6 f/s FVP 0.86 [] EF2 0.297 k-ft E2E 0.300 k-ft EMX 0.303 k-ft ETR 86.6 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 189 6/17/2011 7:20:02 AM LP 29.30 ft FMX 29 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.299 k-ft E2E 0.302 k-ft EMX 0.305 k-ft ETR 87.3 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 190 6/17/2011 7:20:03 AM LP 29.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.84 [] EF2 0.307 k-ft E2E 0.310 k-ft EMX 0.315 k-ft ETR 90.1 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 191 6/17/2011 7:20:04 AM LP 29.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.85 [] EF2 0.302 k-ft E2E 0.302 k-ft EMX 0.305 k-ft ETR 87.3 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 192 6/17/2011 7:20:05 AM LP 29.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.84 [] EF2 0.291 k-ft E2E 0.300 k-ft EMX 0.304 k-ft ETR 86.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 193 6/17/2011 7:20:06 AM LP 29.30 ft FMX 28 kips VMX 15.5 f/s FVP 0.84 [] EF2 0.298 k-ft E2E 0.303 k-ft EMX 0.306 k-ft ETR 87.4 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 194 6/17/2011 7:20:07 AM LP 29.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.302 k-ft E2E 0.313 k-ft EMX 0.318 k-ft ETR 90.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 195 6/17/2011 7:20:08 AM LP 29.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.83 [] EF2 0.296 k-ft E2E 0.303 k-ft EMX 0.306 k-ft ETR 87.3 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 196 6/17/2011 7:20:09 AM LP 29.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.83 [] EF2 0.298 k-ft E2E 0.305 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 197 6/17/2011 7:20:11 AM LP 29.30 ft FMX 29 kips VMX 15.7 f/s FVP 0.85 [] EF2 0.306 k-ft E2E 0.313 k-ft EMX 0.316 k-ft ETR 90.4 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 198 6/17/2011 7:20:12 AM LP 29.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.295 k-ft E2E 0.303 k-ft EMX 0.306 k-ft ETR 87.3 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 199 6/17/2011 7:20:13 AM LP 29.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.81 [] EF2 0.296 k-ft E2E 0.306 k-ft EMX 0.309 k-ft ETR 88.4 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 200 6/17/2011 7:20:14 AM LP 29.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.83 [] EF2 0.297 k-ft E2E 0.302 k-ft EMX 0.305 k-ft ETR 87.1 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 201 6/17/2011 7:20:15 AM LP 29.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.294 k-ft E2E 0.303 k-ft EMX 0.306 k-ft ETR 87.4 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 202 6/17/2011 7:20:16 AM LP 29.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.301 k-ft E2E 0.308 k-ft EMX 0.311 k-ft ETR 88.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 203 6/17/2011 7:20:17 AM LP 29.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.83 [] EF2 0.296 k-ft E2E 0.302 k-ft EMX 0.305 k-ft ETR 87.2 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 204 6/17/2011 7:20:18 AM LP 29.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.292 k-ft E2E 0.307 k-ft EMX 0.312 k-ft ETR 89.1 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 205 6/17/2011 7:20:19 AM LP 29.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.300 k-ft E2E 0.308 k-ft EMX 0.311 k-ft ETR 88.8 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 206 6/17/2011 7:20:20 AM LP 29.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.294 k-ft E2E 0.307 k-ft EMX 0.313 k-ft ETR 89.3 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 207 6/17/2011 7:20:21 AM LP 29.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.82 [] EF2 0.295 k-ft E2E 0.300 k-ft EMX 0.302 k-ft ETR 86.4 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 208 6/17/2011 7:20:22 AM LP 29.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.85 [] EF2 0.293 k-ft E2E 0.305 k-ft EMX 0.310 k-ft ETR 88.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 209 6/17/2011 7:20:24 AM LP 29.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.81 [] EF2 0.295 k-ft E2E 0.303 k-ft EMX 0.307 k-ft ETR 87.7 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 210 6/17/2011 7:20:25 AM LP 29.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.296 k-ft E2E 0.309 k-ft EMX 0.315 k-ft ETR 90.0 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 211 6/17/2011 7:20:26 AM LP 29.30 ft FMX 12 kips VMX 6.7 f/s FVP 0.87 [] EF2 0.052 k-ft E2E 0.055 k-ft EMX 0.055 k-ft ETR 15.8 (%) LE 34.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.06 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 212 6/17/2011 7:26:59 AM LP 34.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.4 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 213 6/17/2011 7:27:03 AM LP 34.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.79 [] EF2 0.305 k-ft E2E 0.312 k-ft EMX 0.314 k-ft ETR 89.7 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 214 6/17/2011 7:27:04 AM LP 34.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.302 k-ft E2E 0.307 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 215 6/17/2011 7:27:05 AM LP 34.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.304 k-ft E2E 0.315 k-ft EMX 0.317 k-ft ETR 90.4 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 216 6/17/2011 7:27:06 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.297 k-ft E2E 0.309 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 217 6/17/2011 7:27:08 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.80 [] EF2 0.296 k-ft E2E 0.306 k-ft EMX 0.308 k-ft ETR 87.9 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 218 6/17/2011 7:27:09 AM LP 34.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.300 k-ft E2E 0.310 k-ft EMX 0.311 k-ft ETR 89.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 219 6/17/2011 7:27:10 AM LP 34.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.296 k-ft E2E 0.304 k-ft EMX 0.305 k-ft ETR 87.2 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 220 6/17/2011 7:27:11 AM LP 34.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.301 k-ft E2E 0.312 k-ft EMX 0.314 k-ft ETR 89.6 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 221 6/17/2011 7:27:12 AM LP 34.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.81 [] EF2 0.301 k-ft E2E 0.313 k-ft EMX 0.315 k-ft ETR 90.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 222 6/17/2011 7:27:13 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.297 k-ft E2E 0.308 k-ft EMX 0.310 k-ft ETR 88.6 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 223 6/17/2011 7:27:14 AM LP 34.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.81 [] EF2 0.298 k-ft E2E 0.308 k-ft EMX 0.310 k-ft ETR 88.6 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 224 6/17/2011 7:27:15 AM LP 34.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.299 k-ft E2E 0.314 k-ft EMX 0.316 k-ft ETR 90.2 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 225 6/17/2011 7:27:16 AM LP 34.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.302 k-ft E2E 0.310 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 226 6/17/2011 7:27:17 AM LP 34.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.300 k-ft E2E 0.309 k-ft EMX 0.310 k-ft ETR 88.7 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 227 6/17/2011 7:27:18 AM LP 34.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.302 k-ft E2E 0.312 k-ft EMX 0.313 k-ft ETR 89.5 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 228 6/17/2011 7:27:19 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.4 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 229 6/17/2011 7:27:20 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.310 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 230 6/17/2011 7:27:21 AM LP 34.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.305 k-ft E2E 0.313 k-ft EMX 0.315 k-ft ETR 90.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 231 6/17/2011 7:27:22 AM LP 34.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.302 k-ft E2E 0.310 k-ft EMX 0.312 k-ft ETR 89.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 232 6/17/2011 7:27:23 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.303 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.4 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 233 6/17/2011 7:27:25 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.308 k-ft E2E 0.317 k-ft EMX 0.319 k-ft ETR 91.1 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 234 6/17/2011 7:27:26 AM LP 34.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.81 [] EF2 0.306 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 235 6/17/2011 7:27:27 AM LP 34.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.297 k-ft E2E 0.306 k-ft EMX 0.308 k-ft ETR 87.9 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 236 6/17/2011 7:27:28 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.298 k-ft E2E 0.306 k-ft EMX 0.308 k-ft ETR 87.9 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 237 6/17/2011 7:27:29 AM LP 34.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.81 [] EF2 0.304 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.5 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 238 6/17/2011 7:27:30 AM LP 34.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.300 k-ft E2E 0.312 k-ft EMX 0.314 k-ft ETR 89.7 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 239 6/17/2011 7:27:31 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.298 k-ft E2E 0.314 k-ft EMX 0.316 k-ft ETR 90.4 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 240 6/17/2011 7:27:35 AM LP 34.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.81 [] EF2 0.300 k-ft E2E 0.308 k-ft EMX 0.310 k-ft ETR 88.7 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 241 6/17/2011 7:27:36 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.291 k-ft E2E 0.303 k-ft EMX 0.305 k-ft ETR 87.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 242 6/17/2011 7:27:37 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.80 [] EF2 0.301 k-ft E2E 0.309 k-ft EMX 0.312 k-ft ETR 89.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 243 6/17/2011 7:27:38 AM LP 34.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.81 [] EF2 0.300 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 244 6/17/2011 7:27:40 AM LP 34.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.83 [] EF2 0.307 k-ft E2E 0.315 k-ft EMX 0.318 k-ft ETR 91.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 245 6/17/2011 7:27:42 AM LP 34.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.83 [] EF2 0.302 k-ft E2E 0.311 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 246 6/17/2011 7:27:43 AM LP 34.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.82 [] EF2 0.295 k-ft E2E 0.309 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 247 6/17/2011 7:27:44 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.306 k-ft EMX 0.310 k-ft ETR 88.5 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 248 6/17/2011 7:27:45 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.304 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 249 6/17/2011 7:27:46 AM LP 34.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.81 [] EF2 0.303 k-ft E2E 0.314 k-ft EMX 0.317 k-ft ETR 90.5 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 250 6/17/2011 7:27:47 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.292 k-ft E2E 0.303 k-ft EMX 0.307 k-ft ETR 87.6 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 251 6/17/2011 7:27:48 AM LP 34.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.297 k-ft E2E 0.306 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 252 6/17/2011 7:27:49 AM LP 34.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.83 [] EF2 0.301 k-ft E2E 0.309 k-ft EMX 0.311 k-ft ETR 89.0 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 253 6/17/2011 7:27:50 AM LP 34.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.298 k-ft E2E 0.303 k-ft EMX 0.306 k-ft ETR 87.5 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 254 6/17/2011 7:27:51 AM LP 34.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.301 k-ft E2E 0.309 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 255 6/17/2011 7:27:52 AM LP 34.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.83 [] EF2 0.295 k-ft E2E 0.301 k-ft EMX 0.304 k-ft ETR 86.8 (%) LE 39.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 4.65 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 256 6/17/2011 7:34:30 AM LP 39.30 ft FMX 26 kips VMX 14.6 f/s FVP 0.81 [] EF2 0.239 k-ft E2E 0.252 k-ft EMX 0.253 k-ft ETR 72.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 257 6/17/2011 7:34:31 AM LP 39.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.298 k-ft E2E 0.311 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 258 6/17/2011 7:34:32 AM LP 39.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.297 k-ft E2E 0.309 k-ft EMX 0.310 k-ft ETR 88.5 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 259 6/17/2011 7:34:33 AM LP 39.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.294 k-ft E2E 0.306 k-ft EMX 0.307 k-ft ETR 87.8 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 260 6/17/2011 7:34:34 AM LP 39.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.296 k-ft E2E 0.310 k-ft EMX 0.312 k-ft ETR 89.0 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 261 6/17/2011 7:34:35 AM LP 39.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.302 k-ft E2E 0.315 k-ft EMX 0.317 k-ft ETR 90.6 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 262 6/17/2011 7:34:36 AM LP 39.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.81 [] EF2 0.300 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 263 6/17/2011 7:34:37 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.292 k-ft E2E 0.308 k-ft EMX 0.309 k-ft ETR 88.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 264 6/17/2011 7:34:38 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.312 k-ft EMX 0.314 k-ft ETR 89.6 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 265 6/17/2011 7:34:39 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.80 [] EF2 0.300 k-ft E2E 0.311 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 266 6/17/2011 7:34:41 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.324 k-ft EMX 0.327 k-ft ETR 93.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 267 6/17/2011 7:34:42 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.296 k-ft E2E 0.317 k-ft EMX 0.319 k-ft ETR 91.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 268 6/17/2011 7:34:43 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.81 [] EF2 0.295 k-ft E2E 0.305 k-ft EMX 0.307 k-ft ETR 87.7 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 269 6/17/2011 7:34:44 AM LP 39.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.295 k-ft E2E 0.317 k-ft EMX 0.319 k-ft ETR 91.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 270 6/17/2011 7:34:45 AM LP 39.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.308 k-ft EMX 0.309 k-ft ETR 88.4 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 271 6/17/2011 7:34:46 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.302 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.7 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 272 6/17/2011 7:34:47 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.312 k-ft EMX 0.314 k-ft ETR 89.6 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 273 6/17/2011 7:34:48 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.83 [] EF2 0.303 k-ft E2E 0.317 k-ft EMX 0.319 k-ft ETR 91.1 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 274 6/17/2011 7:34:49 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.300 k-ft E2E 0.312 k-ft EMX 0.313 k-ft ETR 89.5 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 275 6/17/2011 7:34:50 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.298 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.4 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 276 6/17/2011 7:34:51 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.302 k-ft E2E 0.315 k-ft EMX 0.317 k-ft ETR 90.5 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 277 6/17/2011 7:34:52 AM LP 39.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.83 [] EF2 0.299 k-ft E2E 0.316 k-ft EMX 0.317 k-ft ETR 90.7 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 278 6/17/2011 7:34:53 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.311 k-ft EMX 0.312 k-ft ETR 89.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 279 6/17/2011 7:34:54 AM LP 39.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.82 [] EF2 0.306 k-ft E2E 0.317 k-ft EMX 0.318 k-ft ETR 91.0 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 280 6/17/2011 7:34:55 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.303 k-ft E2E 0.314 k-ft EMX 0.316 k-ft ETR 90.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 281 6/17/2011 7:34:56 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.296 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.4 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 282 6/17/2011 7:34:57 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.302 k-ft E2E 0.312 k-ft EMX 0.314 k-ft ETR 89.7 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 283 6/17/2011 7:34:58 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.306 k-ft E2E 0.315 k-ft EMX 0.316 k-ft ETR 90.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 284 6/17/2011 7:35:00 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.297 k-ft E2E 0.308 k-ft EMX 0.309 k-ft ETR 88.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 285 6/17/2011 7:35:01 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.298 k-ft E2E 0.309 k-ft EMX 0.311 k-ft ETR 88.8 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 286 6/17/2011 7:35:02 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.311 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 287 6/17/2011 7:35:03 AM LP 39.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.83 [] EF2 0.292 k-ft E2E 0.303 k-ft EMX 0.305 k-ft ETR 87.1 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 288 6/17/2011 7:35:04 AM LP 39.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.84 [] EF2 0.303 k-ft E2E 0.315 k-ft EMX 0.316 k-ft ETR 90.4 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 289 6/17/2011 7:35:05 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.302 k-ft E2E 0.314 k-ft EMX 0.316 k-ft ETR 90.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 290 6/17/2011 7:35:06 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.301 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.4 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 291 6/17/2011 7:35:07 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.316 k-ft EMX 0.319 k-ft ETR 91.1 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 292 6/17/2011 7:35:08 AM LP 39.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.310 k-ft EMX 0.312 k-ft ETR 89.1 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 293 6/17/2011 7:35:09 AM LP 39.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.297 k-ft E2E 0.308 k-ft EMX 0.311 k-ft ETR 88.7 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 294 6/17/2011 7:35:10 AM LP 39.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.296 k-ft E2E 0.307 k-ft EMX 0.309 k-ft ETR 88.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 295 6/17/2011 7:35:11 AM LP 39.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.295 k-ft E2E 0.307 k-ft EMX 0.308 k-ft ETR 88.1 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 296 6/17/2011 7:35:12 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.84 [] EF2 0.301 k-ft E2E 0.310 k-ft EMX 0.311 k-ft ETR 89.0 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 297 6/17/2011 7:35:13 AM LP 39.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.83 [] EF2 0.302 k-ft E2E 0.317 k-ft EMX 0.321 k-ft ETR 91.8 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 298 6/17/2011 7:35:14 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.83 [] EF2 0.302 k-ft E2E 0.308 k-ft EMX 0.309 k-ft ETR 88.4 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 299 6/17/2011 7:35:15 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.295 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 300 6/17/2011 7:35:16 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.310 k-ft EMX 0.311 k-ft ETR 88.8 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 301 6/17/2011 7:35:17 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.301 k-ft E2E 0.311 k-ft EMX 0.313 k-ft ETR 89.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 302 6/17/2011 7:35:19 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.298 k-ft E2E 0.307 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 303 6/17/2011 7:35:20 AM LP 39.30 ft FMX 28 kips VMX 16.4 f/s FVP 0.75 [] EF2 0.293 k-ft E2E 0.308 k-ft EMX 0.309 k-ft ETR 88.4 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 304 6/17/2011 7:35:21 AM LP 39.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.300 k-ft E2E 0.311 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 305 6/17/2011 7:35:22 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.81 [] EF2 0.294 k-ft E2E 0.309 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 306 6/17/2011 7:35:23 AM LP 39.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.84 [] EF2 0.299 k-ft E2E 0.306 k-ft EMX 0.308 k-ft ETR 87.9 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 307 6/17/2011 7:35:24 AM LP 39.30 ft FMX 28 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.292 k-ft E2E 0.307 k-ft EMX 0.308 k-ft ETR 88.0 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 308 6/17/2011 7:35:25 AM LP 39.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.302 k-ft E2E 0.314 k-ft EMX 0.315 k-ft ETR 90.0 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 309 6/17/2011 7:35:26 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.299 k-ft E2E 0.311 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 310 6/17/2011 7:35:27 AM LP 39.30 ft FMX 29 kips VMX 16.4 f/s FVP 0.80 [] EF2 0.307 k-ft E2E 0.319 k-ft EMX 0.320 k-ft ETR 91.5 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 311 6/17/2011 7:35:28 AM LP 39.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.305 k-ft EMX 0.306 k-ft ETR 87.5 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 312 6/17/2011 7:35:29 AM LP 39.30 ft FMX 28 kips VMX 15.7 f/s FVP 0.83 [] EF2 0.291 k-ft E2E 0.308 k-ft EMX 0.310 k-ft ETR 88.6 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 313 6/17/2011 7:35:30 AM LP 39.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.305 k-ft E2E 0.312 k-ft EMX 0.313 k-ft ETR 89.5 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 314 6/17/2011 7:35:31 AM LP 39.30 ft FMX 28 kips VMX 15.9 f/s FVP 0.84 [] EF2 0.299 k-ft E2E 0.308 k-ft EMX 0.309 k-ft ETR 88.3 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 315 6/17/2011 7:35:32 AM LP 39.30 ft FMX 27 kips VMX 16.0 f/s FVP 0.79 [] EF2 0.290 k-ft E2E 0.310 k-ft EMX 0.312 k-ft ETR 89.2 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 316 6/17/2011 7:35:33 AM LP 39.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.306 k-ft E2E 0.319 k-ft EMX 0.321 k-ft ETR 91.6 (%) LE 44.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.24 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 317 6/17/2011 7:42:57 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.82 [] EF2 0.296 k-ft E2E 0.315 k-ft EMX 0.316 k-ft ETR 90.2 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 318 6/17/2011 7:42:58 AM LP 44.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.83 [] EF2 0.305 k-ft E2E 0.324 k-ft EMX 0.324 k-ft ETR 92.7 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 319 6/17/2011 7:42:59 AM LP 44.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.300 k-ft E2E 0.319 k-ft EMX 0.320 k-ft ETR 91.3 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 320 6/17/2011 7:43:00 AM LP 44.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.83 [] EF2 0.302 k-ft E2E 0.316 k-ft EMX 0.317 k-ft ETR 90.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 321 6/17/2011 7:43:01 AM LP 44.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.297 k-ft E2E 0.319 k-ft EMX 0.319 k-ft ETR 91.2 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 322 6/17/2011 7:43:02 AM LP 44.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.77 [] EF2 0.302 k-ft E2E 0.321 k-ft EMX 0.322 k-ft ETR 92.0 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 323 6/17/2011 7:43:03 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.78 [] EF2 0.293 k-ft E2E 0.320 k-ft EMX 0.321 k-ft ETR 91.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 324 6/17/2011 7:43:04 AM LP 44.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.302 k-ft E2E 0.320 k-ft EMX 0.320 k-ft ETR 91.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 325 6/17/2011 7:43:05 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.78 [] EF2 0.295 k-ft E2E 0.319 k-ft EMX 0.320 k-ft ETR 91.4 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 326 6/17/2011 7:43:06 AM LP 44.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.81 [] EF2 0.302 k-ft E2E 0.320 k-ft EMX 0.321 k-ft ETR 91.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 327 6/17/2011 7:43:07 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.80 [] EF2 0.295 k-ft E2E 0.319 k-ft EMX 0.320 k-ft ETR 91.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 328 6/17/2011 7:43:08 AM LP 44.30 ft FMX 29 kips VMX 16.4 f/s FVP 0.80 [] EF2 0.303 k-ft E2E 0.321 k-ft EMX 0.322 k-ft ETR 91.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 329 6/17/2011 7:43:10 AM LP 44.30 ft FMX 29 kips VMX 16.4 f/s FVP 0.79 [] EF2 0.293 k-ft E2E 0.314 k-ft EMX 0.315 k-ft ETR 90.0 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 330 6/17/2011 7:43:11 AM LP 44.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.81 [] EF2 0.299 k-ft E2E 0.315 k-ft EMX 0.316 k-ft ETR 90.2 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 331 6/17/2011 7:43:12 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.83 [] EF2 0.296 k-ft E2E 0.318 k-ft EMX 0.319 k-ft ETR 91.2 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 332 6/17/2011 7:43:13 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.80 [] EF2 0.302 k-ft E2E 0.323 k-ft EMX 0.324 k-ft ETR 92.7 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 333 6/17/2011 7:43:14 AM LP 44.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.291 k-ft E2E 0.310 k-ft EMX 0.311 k-ft ETR 88.7 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 334 6/17/2011 7:43:15 AM LP 44.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.82 [] EF2 0.304 k-ft E2E 0.320 k-ft EMX 0.321 k-ft ETR 91.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 335 6/17/2011 7:43:16 AM LP 44.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.83 [] EF2 0.296 k-ft E2E 0.317 k-ft EMX 0.318 k-ft ETR 90.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 336 6/17/2011 7:43:17 AM LP 44.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.79 [] EF2 0.301 k-ft E2E 0.316 k-ft EMX 0.317 k-ft ETR 90.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 337 6/17/2011 7:43:18 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.77 [] EF2 0.296 k-ft E2E 0.320 k-ft EMX 0.321 k-ft ETR 91.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 338 6/17/2011 7:43:19 AM LP 44.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.308 k-ft E2E 0.322 k-ft EMX 0.324 k-ft ETR 92.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 339 6/17/2011 7:43:20 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.75 [] EF2 0.284 k-ft E2E 0.310 k-ft EMX 0.311 k-ft ETR 88.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 340 6/17/2011 7:43:21 AM LP 44.30 ft FMX 28 kips VMX 15.6 f/s FVP 0.84 [] EF2 0.298 k-ft E2E 0.313 k-ft EMX 0.313 k-ft ETR 89.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 341 6/17/2011 7:43:22 AM LP 44.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.80 [] EF2 0.290 k-ft E2E 0.310 k-ft EMX 0.311 k-ft ETR 88.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 342 6/17/2011 7:43:23 AM LP 44.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.316 k-ft EMX 0.318 k-ft ETR 90.7 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 343 6/17/2011 7:43:24 AM LP 44.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.85 [] EF2 0.303 k-ft E2E 0.320 k-ft EMX 0.321 k-ft ETR 91.7 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 344 6/17/2011 7:43:25 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.79 [] EF2 0.293 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 345 6/17/2011 7:43:26 AM LP 44.30 ft FMX 29 kips VMX 15.8 f/s FVP 0.85 [] EF2 0.297 k-ft E2E 0.316 k-ft EMX 0.317 k-ft ETR 90.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 346 6/17/2011 7:43:27 AM LP 44.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.322 k-ft EMX 0.323 k-ft ETR 92.3 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 347 6/17/2011 7:43:28 AM LP 44.30 ft FMX 29 kips VMX 15.9 f/s FVP 0.83 [] EF2 0.295 k-ft E2E 0.314 k-ft EMX 0.315 k-ft ETR 90.0 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 348 6/17/2011 7:43:29 AM LP 44.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.81 [] EF2 0.303 k-ft E2E 0.322 k-ft EMX 0.324 k-ft ETR 92.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 349 6/17/2011 7:43:30 AM LP 44.30 ft FMX 28 kips VMX 16.6 f/s FVP 0.74 [] EF2 0.292 k-ft E2E 0.316 k-ft EMX 0.317 k-ft ETR 90.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 350 6/17/2011 7:43:32 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.77 [] EF2 0.302 k-ft E2E 0.322 k-ft EMX 0.324 k-ft ETR 92.5 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 351 6/17/2011 7:43:33 AM LP 44.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.82 [] EF2 0.295 k-ft E2E 0.324 k-ft EMX 0.325 k-ft ETR 92.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 352 6/17/2011 7:43:34 AM LP 44.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.81 [] EF2 0.302 k-ft E2E 0.319 k-ft EMX 0.321 k-ft ETR 91.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 353 6/17/2011 7:43:35 AM LP 44.30 ft FMX 28 kips VMX 16.1 f/s FVP 0.80 [] EF2 0.292 k-ft E2E 0.316 k-ft EMX 0.317 k-ft ETR 90.7 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 354 6/17/2011 7:43:36 AM LP 44.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.81 [] EF2 0.297 k-ft E2E 0.314 k-ft EMX 0.316 k-ft ETR 90.3 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 355 6/17/2011 7:43:37 AM LP 44.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.79 [] EF2 0.293 k-ft E2E 0.324 k-ft EMX 0.326 k-ft ETR 93.2 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 356 6/17/2011 7:43:38 AM LP 44.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.78 [] EF2 0.295 k-ft E2E 0.316 k-ft EMX 0.318 k-ft ETR 90.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 357 6/17/2011 7:43:39 AM LP 44.30 ft FMX 28 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.292 k-ft E2E 0.311 k-ft EMX 0.312 k-ft ETR 89.1 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 358 6/17/2011 7:43:40 AM LP 44.30 ft FMX 28 kips VMX 16.0 f/s FVP 0.83 [] EF2 0.300 k-ft E2E 0.315 k-ft EMX 0.317 k-ft ETR 90.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 359 6/17/2011 7:43:41 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.76 [] EF2 0.292 k-ft E2E 0.317 k-ft EMX 0.318 k-ft ETR 90.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 360 6/17/2011 7:43:42 AM LP 44.30 ft FMX 28 kips VMX 16.6 f/s FVP 0.73 [] EF2 0.298 k-ft E2E 0.322 k-ft EMX 0.323 k-ft ETR 92.3 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 361 6/17/2011 7:43:43 AM LP 44.30 ft FMX 29 kips VMX 16.4 f/s FVP 0.78 [] EF2 0.295 k-ft E2E 0.317 k-ft EMX 0.318 k-ft ETR 90.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 362 6/17/2011 7:43:44 AM LP 44.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.81 [] EF2 0.301 k-ft E2E 0.324 k-ft EMX 0.325 k-ft ETR 92.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 363 6/17/2011 7:43:45 AM LP 44.30 ft FMX 29 kips VMX 16.4 f/s FVP 0.82 [] EF2 0.296 k-ft E2E 0.318 k-ft EMX 0.320 k-ft ETR 91.3 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 364 6/17/2011 7:43:46 AM LP 44.30 ft FMX 29 kips VMX 16.5 f/s FVP 0.80 [] EF2 0.299 k-ft E2E 0.323 k-ft EMX 0.324 k-ft ETR 92.7 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 365 6/17/2011 7:43:47 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.83 [] EF2 0.292 k-ft E2E 0.314 k-ft EMX 0.315 k-ft ETR 89.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 366 6/17/2011 7:43:48 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.80 [] EF2 0.294 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 367 6/17/2011 7:43:49 AM LP 44.30 ft FMX 29 kips VMX 16.0 f/s FVP 0.83 [] EF2 0.296 k-ft E2E 0.313 k-ft EMX 0.314 k-ft ETR 89.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 368 6/17/2011 7:43:50 AM LP 44.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.80 [] EF2 0.307 k-ft E2E 0.323 k-ft EMX 0.324 k-ft ETR 92.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 369 6/17/2011 7:43:51 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.82 [] EF2 0.295 k-ft E2E 0.315 k-ft EMX 0.316 k-ft ETR 90.3 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 370 6/17/2011 7:43:52 AM LP 44.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.84 [] EF2 0.305 k-ft E2E 0.321 k-ft EMX 0.322 k-ft ETR 92.0 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 371 6/17/2011 7:43:54 AM LP 44.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.81 [] EF2 0.293 k-ft E2E 0.314 k-ft EMX 0.315 k-ft ETR 89.9 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 372 6/17/2011 7:43:55 AM LP 44.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.83 [] EF2 0.300 k-ft E2E 0.316 k-ft EMX 0.317 k-ft ETR 90.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Alabama Department of Transportation PDI-CURVES - Printed: 10/29/2011 Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 373 6/17/2011 7:43:56 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.81 [] EF2 0.294 k-ft E2E 0.316 k-ft EMX 0.318 k-ft ETR 90.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 374 6/17/2011 7:43:57 AM LP 44.30 ft FMX 29 kips VMX 16.2 f/s FVP 0.82 [] EF2 0.300 k-ft E2E 0.314 k-ft EMX 0.315 k-ft ETR 90.0 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 375 6/17/2011 7:43:58 AM LP 44.30 ft FMX 29 kips VMX 16.1 f/s FVP 0.81 [] EF2 0.294 k-ft E2E 0.314 k-ft EMX 0.315 k-ft ETR 90.1 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 376 6/17/2011 7:43:59 AM LP 44.30 ft FMX 29 kips VMX 16.3 f/s FVP 0.83 [] EF2 0.304 k-ft E2E 0.322 k-ft EMX 0.323 k-ft ETR 92.4 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 377 6/17/2011 7:44:00 AM LP 44.30 ft FMX 28 kips VMX 16.3 f/s FVP 0.79 [] EF2 0.289 k-ft E2E 0.312 k-ft EMX 0.314 k-ft ETR 89.6 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D Project: TEST CLINIC 1 Pile: All Depths - Description: CME 850 TRACK;SE 9299;AUTO Operator: JNH BN 378 6/17/2011 7:44:01 AM LP 44.30 ft FMX 27 kips VMX 15.8 f/s FVP 0.61 [] EF2 0.260 k-ft E2E 0.298 k-ft EMX 0.300 k-ft ETR 85.8 (%) LE 49.30 ft AR 1.20 in^2 EM 30,000 ksi SP 0.492 k/ft3 WS 16,807.9 f/s 2L/c 5.83 ms EA/c 2.1 ksec/ft FR 20.000 kHz 0.350 k-ft E 51.2 ms0.0 ms 4.00 in D