
Design of 3.33GHz CML Processor Datapath

by

Abdullah Al Owahid

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 7, 2012

Keywords: CML, CMOS, Processor

Copyright 2012 by Abdullah Al Owahid

Approved by

Fa Foster Dai, Chair, Professor of Electrical and Computer Engineering
Vishwani D. Agrawal, James J. Danaher Professor of Electrical and Computer Engineering

Victor P. Nelson, Professor of Electrical and Computer Engineering

Abstract

Almost a decade processor speed has been stuck at operating frequency 2-3GHz due

to excessive power consumption of CMOS logic gate at higher frequency whereas predicted

speed at present was 10-15GHz. This leads the idea of multi-core design in today’s proces-

sor architecture. However it increases the communication overhead β and there exist data

dependency which cannot fully exploit the advantage of many-core design. Further many

core design is increasing number of dark silicon and number of core cannot be increased after

certain limit. Therefore a novel approaches in processor design using CML logic gate has

been proposed.

Handcrafted 16-bit CML microprocessor datapath has been developed at operating fre-

quency 3.33GHz using 130nm CMOS technology. With the same feature size, CMOS gate is

incapable to operate beyond 1GHz whereas CML logic gates were optimized for 12GHz using

bias current of 70% of peak ft current with a logic swing of 600mV. Considering critical path

delay, circuit has been slowed down to operate at 3.33GHz.

All the processor components - decoder, mux, register file, ALU was deliberately hand-

crafted due to lack of analog synthesizer tool. Reported static power consumption of multi-

cycle CML processor datapath is 41.264W. However it is not the best case and could have

been reduced to 50% by implementing multi-input CML logic. Expected chip area is 2.2mm

x 3.45mm and power density per unit area is 5.44µW/µm2. Estimated performance evalu-

ated is 892 MIPS. Supply voltage used is 2.8V. CML logic was defined as, logic-1 = 2.8V and

logic-0 = 2.2V. 1V reference voltage was used to constant bias the current source and reset

signal uses 1.3V and 0.7V for high and low logics respectively. It has been observed that

it is possible to realize ultra-high speed processor using existing technology with minimum

power consumption in CML logic.

ii

Acknowledgments

I would like to acknowledge the continuous support and guidance of Dr. Fa Foster Dai.

Without his suggestion and direction it would have been impossible to complete this thesis

work. I would also like to thank my committee members Dr. Vishwani D. Agrawal for his

meaningful suggestions regarding processor architecture and Dr. Victor P. Nelson.

I thank my friends and colleagues - James Clark, Shannon Price, Xin Jin and Baohu Li

for being with me and making life at Auburn enjoyable.

Last but not the least, I would like to thank my family members - my parents whose

love brought me so far, my brother and sister, and especially my wife for her patience.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . xi

List of Abbreviations . xii

1 Introduction . 1

1.1 Problem Statement . 1

1.2 Background and Motivation . 1

1.3 Contribution . 4

1.4 Organization . 5

2 Background and High Speed CML Logic Realization 6

2.1 CML Inverter . 8

2.1.1 CML Inverter Optimization . 9

2.2 CML Universal Gate . 16

2.2.1 Universal CML Gate Optimization 19

2.3 CML XOR/XNOR Gate . 21

2.4 CML Mux Realization . 24

2.5 CML D-latch Realization . 26

2.6 Speed, Power, Area and Delay of Basic CML Components 28

3 Datapath . 29

3.1 First Clock Cycle of Every Instruction . 31

3.2 R-type Instruction . 32

3.2.1 R-type ADD/SUB/AND/XOR . 32

iv

3.2.2 R-type SLT . 33

3.2.3 R-type SEQ . 34

3.3 I-type Instruction . 35

3.3.1 I-type LW . 35

3.3.2 I-type SW . 36

3.3.3 I-type ADDI . 37

3.3.4 I-type MOVI . 37

3.4 J-type Instruction . 38

3.4.1 J-type J LABEL . 39

3.4.2 J-type JZ LABEL . 40

3.4.3 J-type JNZ LABEL . 41

3.4.4 J-type JAL . 41

3.4.5 J-type JR . 42

3.5 Control Signals . 43

4 Component Realization . 46

4.1 16-bit Register With Enable Input . 47

4.2 Z Register (1-bit Register With Enable Input) 49

4.3 4 16-bit 2-to-1 Mux . 49

4.4 3 4-bit 2-to-1 Mux . 50

4.5 3 16-bit 4-to-1 Mux . 50

4.6 16-bit 5-to-1 mux . 51

4.7 16-bit ALU . 52

4.8 16x16 Register File . 57

4.9 Sign 4-to-16 extension (Sign 4) . 62

4.10 Sign 8-to-16 extension (Sign 8) . 63

4.11 Sign 12-to-16 extension (Sign 12) . 63

4.12 2 unsigned 1-to-16 extension (Unsigned 16) 64

v

4.13 4 1-bit AND gate . 65

4.14 1 1-bit OR gate . 65

5 Processor Verification and Performance . 67

5.1 Processor Verification . 67

5.2 Performance . 70

5.3 Comparison . 72

6 Conclusions . 74

6.1 Future Work . 74

Bibliography . 76

vi

List of Figures

1.1 Operating frequency over time . 2

1.2 Operating Frequency vs. Power of Intel Processor 2

1.3 Power density per unit area . 3

2.1 Current consumptions for CMOS vs. CML logic 6

2.2 CMOS vs. CML power consumption . 7

2.3 CML Inverter . 8

2.4 Normalized current for CML inverter . 13

2.5 CML inverter half-circuit small-signal model . 15

2.6 Post vs. pre layout simulation of CML inverter with 18fF input/output load

capacitance (input changes at 83ps) . 16

2.7 CML inverter layout . 16

2.8 Universal CML gate . 17

2.9 Universal CML gate with embedded level shifter 18

2.10 Normalized current for CML universal gate . 20

2.11 Post vs. pre layout simulation of CML AND with 18fF input/output load capac-

itance (input changes at 83ps) . 20

vii

2.12 CML AND layout . 21

2.13 CML XOR gate . 22

2.14 Post vs. pre layout simulation of CML XOR with 18fF input/output load capac-

itance (input changes at 83ps) . 23

2.15 CML XOR layout . 23

2.16 CML Mux realization . 24

2.17 Post vs. pre layout simulation of CML Mux with 18fF input/output load capac-

itance (input changes at 83ps) . 25

2.18 CML Mux layout . 25

2.19 CML D-latch . 26

2.20 Post vs. pre layout simulation of CML D-latch with 18fF input/output load

capacitance at 6GHz (166ps) . 27

2.21 CML D-latch layout . 27

3.1 Processor datapath . 29

3.2 First clock cycle of any instruction . 31

3.3 R-type ADD/SUB/AND/XOR . 32

3.4 R-type SLT . 33

3.5 R-type SEQ . 34

3.6 I-type LW . 35

viii

3.7 I-type SW . 36

3.8 I-type ADDI . 37

3.9 I-type MOVI . 38

3.10 J-type J LABEL . 39

3.11 J-type JZ LABEL . 40

3.12 J-type JNZ LABEL . 41

3.13 J-type JAL . 42

3.14 J-type JR . 43

4.1 Datapath Components . 46

4.2 Block diagram of MS DFF, MS DFF-EN, 16-bit register 48

4.3 1-bit register output at 6GHz with 20fF load capacitance (clock period 166ps) . 49

4.4 1-bit 4-to-1 mux . 50

4.5 1-bit 4-to-1 mux output with 20fF load capacitance (input changes at 83ps) . . 51

4.6 1-bit 5-to-1 mux . 52

4.7 1-bit 5-to-1 Mux output with 20fF load capacitance (input changes at 166ps) . . 52

4.8 Block diagram of 16-bit ALU . 53

4.9 16-bit CLA block diagram . 53

4.10 Critical path delay in 16-bit CLA is 224.7ps (input changes at 500ps) 55

ix

4.11 16-bit ALU Output (input changes at 300ps) 56

4.12 16x16 Register File Schematic . 58

4.13 4-to-16 Deocoder (input changes at 83ps) . 59

4.14 1-bit 16-to-1 Mux Schematic . 59

4.15 1-bit 16-to-1 Mux Output (input changes at 144ps) 60

4.16 16x16 Register File Output at 3.33GHz . 61

4.17 Sign 4 to 16 Extension Output (input changes at 72ps) 63

4.18 Unsigned 1 to 16 Extension Output (input changes at 83ps) 64

5.1 Handcrafted Processor Schematic . 67

5.2 MOVI instruction . 68

5.3 ADDI instruction . 69

5.4 ADD instruction . 70

5.5 Static power consumption of CML processor datapath over 13 clock cycles . . . 71

x

List of Tables

2.1 Inverter Operation . 8

2.2 CML AND Operation . 19

2.3 CML XOR Operation . 22

2.4 CML Mux Operation . 24

2.5 CML D-latch Operation . 26

2.6 Power, Area and Delay of Basic Components (post layout simulation with 18fF
load capacitance) . 28

3.1 Instruction Set Architecture . 29

3.2 Opcode and 15 Different Operations . 30

3.3 Control Signal Table Part-1 . 44

3.4 Control Signal Table Part-2 . 45

4.1 Component Power Dissipation, Expected Area and Delay 65

xi

List of Abbreviations

ALU Arithmetic Logic Unit

BiCMOS Bipolar and CMOS in same integrated chip

BJT Bipolar Junction Transistor

CML Current Mode Logic

CMOS Complementary Metal Oxide Semi-conductor

ECL Emitter Coupled Logic

ISA Instruction Set Architecture

MCML Mos Current Mode Logic

MIPS Million Instructions Per Second

nMOS n-type Metal Oxide Semi-conductor

RISC Reduced Instruction Set Computing

SoC System on Chip

SPICE Simulation Program with Integrated Circuit Emphasis

SRAM Static Random Access Memory

xii

Chapter 1

Introduction

This thesis presents the design of a handcrafted 3.33GHz CML processor datapath.

RISC architecture has been adopted in designing the multi-cycle processor datapath and the

ISA is 16-bits long. It is the first ever MCML processor that requires constant power dissi-

pation unlike CMOS processors. Also, once optimized, power dissipation does not increase

with increasing operating frequency. Optimizing CML logic for higher operating frequency

requires higher power than optimizing for lower frequency. Therefore, once CML logic has

been optimized for a targeted maximum frequency, operating the circuit at lower frequency

will lose the benefits in terms of power.

Due to larger switching noise associated with CMOS circuits, CML is a better choice for

high speed circuit realization [1]. BJT based CML gates are faster than MOSFET CML due

to higher gm and lower power but have been avoided for process difficulty and uncommonness

in designing digital circuits. Therefore MOSFET-CML (MCML) logic has been used.

1.1 Problem Statement

The problem solved in this thesis: Design a high speed low power processor datapath.

1.2 Background and Motivation

Processor speed has been stuck at 2-3GHz due to excessive power consumption, as

indicated in Figure 1.1 for the last 10 years [2]. Therefore multi-core design has evolved to

increase performance. But the number of cores cannot be increased after a certain limit and

there exists communication overhead β. Further, due to data dependency, programs cannot

be fully parallelized, which inhibits proper exploitation of multi-core design.

1

Figure 1.1: Operating frequency over time

Intel processor speed vs power have been obtained and plotted in Matlab as depicted

in Figure 1.2 [3].

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

pentium
pentium mmx

pentium II

pentium III 1400S
pentium 4 1.3

pentium 4 506

pentium 4 HT 661

pentium D 820

pentium Extreme Edition 840

core 2 Duo E4400

Core 2 Extreme QX6800

Core i3−560
Core i5−670

Core i7−980X Extreme Edition (6core)

−
−

−
−

P
ro

ce
ss

or
 O

pe
ra

tin
g

F
re

qu
en

cy
 (

G
H

z)
−

−
−

−
>

−−−−−−−−−Power (W)−−−−−−−−−>

Figure 1.2: Operating Frequency vs. Power of Intel Processor

In Figure 1.2 it is observed that processor power consumption has been increased almost

exponentially at operating frequencies beyond 2GHz. Also notable is that, core i-5 has higher

operating frequency than core-i7 but the power consumption in core i-7 is almost double due

to a higher number of cores. So reducing the number of cores will not only reduce power

but can result in higher performance due to less data dependency.

2

Power consumption can also be reduced by moving to deep submicron technology. How-

ever, the main drawback to reducing feature size is it increases unit power density and chips

cannot sustain that power, as shown in Figure 1.3 [4].

Figure 1.3: Power density per unit area

In CML, per unit power density is lower as it requires greater area than CMOS due to

load resistances in CML logic. Therefore in CML, we can achieve higher operating frequency

with less power density.

A previous mixed signal superscalar processor was developed in 1997, using 0.5µm BiC-

MOS process and required 3.6V and 2.1V power supplies. The reported operating frequency

was 533MHz and the design used a PowerPC architecture that contained three pipelines and

a large on-chip secondary cache to achieve a peak performance of 1600 MIPS. The 15mm

x 10 mm die contained 2.7M transistors (2M CMOS and 0.7M bipolar) and dissipated less

than 85W [5]. All logic circuits were implemented in three-level emitter coupled logic (ECL)

and only RAM structures were implemented with CMOS circuits.

Although BJT has less switching noise and are faster than MOS transistors they are

expensive and not frequently used in digital circuits [1]. This led to the idea to design a

high speed processor datapath using MCML logic. Further CMOS SRAM cannot operate

3

at 3.33GHz using 0.12µm technology. Therefore only high speed datapath was developed in

this thesis.

1.3 Contribution

CML logic architecture has been discussed in the literatures but it is not guaranteed

that it can realize digital functions unless optimization has been performed [6]-[8]. Optimized

CML logic can steer full bias current at different input combinations, resulting in full voltage

swing that differentiate logic states. Also, technology files provide only transistors, unlike

digital technology files that provides optimized CMOS logic gates. Therefore, due to lack of

analog synthesizer tools handcrafting of CML logic architecture is necessary and then opti-

mization is required for CML logic to realize digital function for a targeted frequency. All the

basic components have been derived first, with maximum operating frequency 12GHz using

130nm CMOS technology. Bias current was chosen to be 70% of peak ft current that gives

us highest possible operating frequency without burning transistors when operate. Further,

biasing CML gates with 70% of peak ft or less may incur 10% propagation delay but can save

more than 40% power [1] and [7]. Logic swing was determined to be 600mV, assuming it will

be advantageous than CMOS logic at this frequency that has fixed swing 1V. These basic

CML logic designs were later used in realizing 16-bit 3.33GHz datapath components. All the

processor components - mux, register file, ALU were deliberately handcrafted in Cadence

Virtuoso. Reported static power consumption of the multi-cycle CML processor is 41.264W

and power density per unit area is 5.44µW/µm2 = 544W/cm2, below traditional CMOS

processor power density per unit area, as indicated in Figure 1.3. Estimated performance

of the multi cycle CML processor datapath is 892 MIPS and expected chip area is 2.2mm x

3.45mm.

This work has been accepted at IEEE International Symposium On Circuits and Systems

(ISCAS) 2012 Conference [9].

4

1.4 Organization

The thesis has been organized as follows: Chapter 2 provides background and describes

high speed CML logic realization. Chapter 3 introduces datapath design. Chapter 4 describes

CML datapath component realization and verification. Chapter 5 represents processor ver-

ification, performance and comparison. Chapter 6 draws conclusions and discusses future

work.

5

Chapter 2

Background and High Speed CML Logic Realization

Recently, interest in high speed digital circuit baseds on MCML/BJT-CML is increasing

due to low power consumption [10]. Noise coupling between digital circuitry and sensitive

analog blocks has always been a major obstacle in complete system on chip design (SoC) [11].

MOS current mode logic (MCML) is a promising alternative to conventional MOS in mixed

signal applications. Many efforts were exhausted to realize the potential of MCML [12]-

[17]. Even though MCML has been shown to dissipate less power than CMOS at operation

frequencies of more than 300MHz, designers have been reluctant to exchange MCML for

CMOS [14]. The high complexity of MCML and the lack of automation tools made it

impossible to produce robust and power-efficient designs while maintaining low cost and

reasonable time to market.

Figure 2.1: Current consumptions for CMOS vs. CML logic

Figure 2.1 shows typical current consumption for CMOS and CML logics [18]. As

indicated, typically at slower frequency CMOS is beneficial whereas CML takes less power

6

at higher operating frequency. Figure 2.1 is based on assumption, and not according to

circuit measurements, and is not shown in scale. It is supposed that typically beyond 1GHz

CML is beneficial than CMOS.

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

−−−−−−− Frequency (GHz) −−−−−−−>

−
−

−
−

−
−

−
−

−
 P

ow
er

 (
m

W
)

−
−

−
−

−
−

−
−

−
>

CMOS Divide by 2 Power Dissipation
CML Divide by 2 Power Dissipation

Figure 2.2: CMOS vs. CML power consumption

A divide by two circuits was realized in CMOS (W = 160nm, 160nm, 200nm, 600nm,

1m, 1.5m, 2.5m, 3m, 7m and 10m for 0.5, 1, 1.2, 1.4, 1.5, 1.6, 1.8, 2, 2.3 and 2.5GHz

respectively) and CML (W = 160nm, 160nm, 160nm, 200nm, 250nm, 300nm each having

Wtail = 120nm for 0.5, 1, 2, 2.5, 3 and 4GHz respectively) architecture. Channel length, L =

120nm was fixed for both cases and power has been plotted in Figure 2.2. At 2.5GHz CMOS

D filp-flop propagation delay reaches 50% of input clock cycle whereas CML D flip-flop was

able to generate correct output till 6GHz. It is obvious that CML dominates over CMOS

beyond 1.5GHz. Benefits of MCML circuit topology over CMOS are largely independent of

technology [6].

Many successful attempts have been made to expose the relationships between the

MCML gate delay and the various design parameters [19]-[21]. These efforts have provided

insight into the design considerations and have been described briefly for CML inverters

and universal CML logic. There is no straight forward method to optimize CML logic and

modeling accurate propagation delay for CML logic with pen and paper is very hard to

7

derive due to higher order effects. Therefore, we will rely on some approximation in the later

subsections and compare with the simulation results in designing high speed CML gates.

2.1 CML Inverter

Figure 2.3: CML Inverter

Figure 2.3 shows a CML Inverter which is typically a differential pair. There exists a

particular biasing voltage Vin (quiescent point), for which Id1 = Id2 = Ibias/2. For differential

input, which is our logic swing ∆V, it is necessary to tune the circuit such that when logic-1

(Vin+ ∆V/2) is applied to A+ and logic-0 (Vin-∆V/2) is applied to A-, T1 turns on and T2

turns off resulting in Id1=Ibias, Id2=0; steering all the current through T1. A Summary of

CML inverter operation has been given in Table 2.1

A+ A- T on T off Out+ Out-
Vin-∆V/2 Vin+∆V/2 2, 3 1 Vin+∆V/2 Vin-∆V/2
Vin+∆V/2 Vin-∆V/2 1, 3 2 Vin-∆V/2 Vin+∆V/2

Table 2.1: Inverter Operation

8

2.1.1 CML Inverter Optimization

If our supply voltage is Vdd as indicated in Figure 2.3, and the output of the CML gate

drives another gate, then we must have to maintain:

Logic-1 = Vdd = Vin + ∆V/2

and Logic-0 = Vdd- ∆V = Vin- ∆V/2

Let us assume logic-1 (Vin+∆V/2) is applied to A+ and logic-0 (Vin-∆V/2) is applied to

A-. Therefore, to keep T1 in its forward-active region and T2 in its cut-off region, necessary

conditions are:

Vgs1 > Vth1; Vgd1 < Vth1; Vds1 > Vgs1 − Vth1

Vgs2 < Vth2; Vgd2 < Vth2

If we assume that the magnitude of the voltage swing is just large enough to steer all the

current from one side to the other then ∆V = ∆Vmin, which is the minimum swing required

(just large enough to turn off T2),

Vgs2 = Vth2

Vg2 − Vx = Vth2

Vin −∆Vmin/2− Vx = Vth2

Vdd −∆Vmin/2−∆Vmin/2− Vx = Vth2

Vx = Vdd −∆Vmin − Vth2 (2.1)

Vgs1 = Vg1 − Vx

Vgs1 = Vin +∆Vmin/2− Vx

Vgs1 = Vdd − Vx (2.2)

Ibias = (µnCox/2)(W/L)(Vgs1 − Vth1)
α (2.3)

9

where µn is electron mobility in nMOS device and Cox is capacitance per unit area of gate

oxide, Cox=εox/tox. Permittivity of SiO2, εox = 3.9ε0; where permittivity of free space ε0 =

8.85·10−14F/cm and tox is thickness of gate oxide. For a short channel device, like 0.12µm

feature size α ' 1.25. For easiness of our pen and paper calcuation, sometimes we will

assume either α is 2.

For matching purposes, T1 and T2 have to be same feature size such that an equal

amount of current flows on both sides at the quiescent point. Therefore equation 2.1 yields

Vth1 = Vdd −∆Vmin − Vx

and, Vgs1 − Vth1 = Vdd − Vx − Vdd +∆Vmin + Vx

= ∆Vmin (2.4)

Ibias = (µnCox/2)(W/L)(∆Vmin)
α (2.5)

Therefore, Ibias can be realized as a function of minimum logic swing ∆Vmin, with Ibias

∝ ∆Vmin. It means, the less logic swing we define, the less bias current we need to realize

a CML inverter. The minimum amount of current that will be required to realize this logic

swing occurs when W is minimum. In other words, we can realize this full swing at high

bias current which is true but we will burn more power. The minimum amount of Wn that

can provide just large enough (smallest) bias current to realize full swing is:

IL = (µnCox/2)(Wn/L)(∆Vmin)
α (2.6)

Again, let us consider a CML inverter circuit at its quiescent point, as indicated in

Figure 2.3. In determining our minimum logic swing ∆Vmin we need to consider how we

are going to forward bias the transistors, meaning what our overdrive should be. Typically,

for overdrive votage, Vov ≥ 300mV, the transistor reaches soft saturation and when Vov ≥

500mV, the transistor reaches hard saturation. Overdrive voltage is referred to as Vov = Vgs

10

- Vt. It is necessary to determine overdrive voltage because, if we apply logic-1 at A+ and

logic-0 at A- and try to turn off T2 but if T2 at quiescent point reached velocity saturation

then (∆V)/2 is small enough to completely turn off T2. The consequence will be we cannot

realize full swing. Making our logic swing large can turn T2 off but we will end up in greater

RC constant and high propagation delay. Therefore, we need overdrive voltage such that it

can push the transistor slightly in to the forward active region. A careful consideration was

made such that Vov = Vgs - Vt = 263.9mV. Therefore it is necessary to expose the relation

between logic swing and overdrive voltage. For an input voltage Vg1 at gate terminal of T1,

Vgs1 = V g1− Vx

Vg1 = Vgs1 + Vx

and Vg2 = Vgs2 + Vx

For differential input voltage, which is our logic swing,

∆V = Vg1 − Vg2

∆V = Vgs1 − Vgs2

Id1 = (1/2)µCox(W/L)(Vgs1 − Vt)
2 α=2 for simplicity (2.7)

Id2 = (1/2)µCox(W/L)(Vgs2 − Vt)
2

√
Id1−

√
Id2 = ∆V

√

(1/2)(µCox(W/L))

Id1 + Id2 − 2
√
Id1.Id2 = (1/2)(µCox(W/L))∆V 2

Ibias − 2
√
Id1.Id2 = (1/2)(µCox(W/L))∆V 2

2
√
Id1.Id2 = Ibias − (1/2)(µCox(W/L))∆V 2

2
√

Id1.(Ibias− Id1) = Ibias − (1/2)(µCox(W/L))∆V 2

−4I2d1 + 4Id1.Ibias = I2bias − Ibias(µCox(W/L))∆V 2 + (1/4)(µCox(W/L))2∆V 4

11

−4I2d1 + 4Id1 · Ibias = I2bias − Ibias ·K∆V 2 + (1/4)K2∆V 4 K=µCox(W/L)

4I2d1 − 4Id1 · Ibias + I2bias − IbiasK∆V 2 + (1/4)K2∆V 4 = 0

Id1 = [4Ibias ±
√

(16I2bias − 16I2bias + 16IbiasK∆V 2 − 4K2∆V 4)]/8

Id1 = [2Ibias ±∆V
√

(4IbiasK −K2∆V 2)]/4

Id1 = Ibias/2± (1/4)∆V 2
√

(Ibias.K)
√

[1−K∆V 2/4Ibias]

Id1 = Ibias/2± (∆V/2)
√

(Ibias.K)
√

[1− (∆V/2)2/(Ibias/K)]

As Logic 1 was applied to A+ and Logic-0 at A-, then differential input Vid > 0 resulting

Id1 > Id2.

Id1 = Ibias/2 + (∆V/2)
√

(Ibias.K)
√

[1− (∆V/2)2/(Ibias/K)] (2.8)

Id2 = Ibias/2− (∆V/2)
√

(Ibias.K)
√

[1− (∆V/2)2/(Ibias/K)] (2.9)

At the biasing (quiescent) point, Vid = 0, resulting Id1 = Id2 = Ibias/2. Therefore equation

2.7 yields

Ibias/2 = (1/2)µCox(W/L)(Vgs1 − Vt)
2

Ibias/2 = (K/2)V 2

ov

K = Ibias/V
2

ov

Plugging in the value of K in equation 2.8 we get

Id1 = Ibias/2 + (∆V/2)(Ibias/Vov)
√

[1− ((∆V/2)/Vov)2] (2.10)

Id2 = Ibias/2− (∆V/2)(Ibias/Vov)
√

[1− ((∆V/2)/Vov)2] (2.11)

12

Now if we want to steer full current through T1, resulting Id1 = Ibias and Id2 = 0, then

equation 2.10 yields

Ibias = Ibias/2 + (∆V/2)(Ibias/Vov)
√

[1− ((∆V/2)/Vov)2]

Ibias/2 = (∆V/2)(Ibias/Vov)
√

[1− ((∆V/2)/Vov)2]

1 =
∆V

Vov

·
√

1− (
∆V

4Vov

)2

= (
∆V

Vov

)2 − 1

4
· (∆V

Vov

)4

=
(

∆V

Vov

)2
(

1− ∆V 2

4V 2
ov

)

(

Vov

∆V

)2

=
4V 2

ov −∆V 2

4V 2
ov

4V 4

ov = 4V 2

ov ·∆V 2 −∆V 4

(

2V 2

ov −∆V 2
)2

= 0

∆V = ±
√
2Vov (2.12)

It means for ∆V = +
√
2Vov swing either one of the transistor will turn on pushing other

one to be off and at ∆V = -
√
2Vov it will be reversed, as indicated in Figure 2.4.

Figure 2.4: Normalized current for CML inverter

13

At the biasing point shown earlier, Vov = 263.9mV, therefore our minimum logic swing

from the biasing point will be ∆V/2=
√
2·263.9mV = ±373.21mV. In Figure 2.4 it is shown,

at +300mV swing from the biasing point, T1 passes all the bias current and at -300mV from

the biasing point, T2 completely turns on resulting in a total logic swing ∆V=600mV. 73mV

discrepancy occurs because it is a short channel device and α is not 2, but rather close to

1.25. Equation 2.12 can further be extended by plugging Vov in terms of bias current and

W.

∆V = ±
√
2Vov

∆V = ±
√
2

√

Ibias
K

∆V = ±
√

√

√

√

2Ibias
µCox

W
L

(2.13)

It means the more W/L ratio we have, the faster we can move in switching region. But

making W larger will increase parasitic capacitance at higher operating frequency and the

RC constant will be dominating.

In order to achieve faster full swing, ∆V = Ibias * RL, we can increase bias current to

reduce RL. Bias current was tuned to 1.65mA for W=7µm and L=120nm, which is 70% of

peak ft current, and load resistance RL was tuned to 348Ω.

Input gate capacitance of each CML basic component is, Cgg = 8fF. It is stated that

wire capacitance is 0.10ps/µm [22]. Assuming 100µm is required to connect next stage then

10ps delay should be added and typically 1fF is necessary to mimic 1ps delay. Therefore

10+8 = 18fF was added as output load capacitance (CL).

Propagation delay, Pd = 0.69RC, where C is the capacitance looking in to Drain of

T1/T2.

Pd = 0.69RL(Cintr + CL)

Pd = 0.69RL(Cgd1 + Cdb1 + CL)

14

= 0.69
∆V

Ibias
(Cgd1 + Cdb1 + CL) (2.14)

Figure 2.5: CML inverter half-circuit small-signal model

Where Cintr is intrinsic capacitance which equals the gate to drain (Cgd1) plus drain

to bulk (Cdb1) capacitance as shown in Figure 2.5. Equation 2.14 means, the higher the

bias current, the lower the propagation delay. But, bias can be increased by increasing W,

and at higher frequency further increasing bias current will not reduce propagation delay

and parasitic capacitance will dominate. Hence, optimized width obtained for the upper

level transistors are 7µm and 4µm width for the current source, all having channel length =

120nm with bias current, Ibias=1.65mA.

All these intuitive design considerations were included in designing CML logic circuits

that can achieve maximum operating frequency of 12GHz with 0.12µm feature size. Supply

voltage used was Vdd=2.8V, logic-1 = 2.8V, logic-0 = 2.2V, constant biasing voltage, Vg =

1V to bias the current source and logic swing ∆V = 600mV.

Figure 2.6 shows post vs. pre layout simulation of a CML inverter operating at 12GHz

(input changes at 83ps) with 18fF input/output load capacitance. Rising delay of inverter

in circuit level simulation is 17.47ps and extracted layout delay is 24.79ps. The power

consumption of the CML inverter is P = Vdd*Ibias = 2.8V * 1.65mA = 4.62mW, which is

constant. Operating this optimized CML inverter at 1MHz and 12GHz will dissipate the

same amount of power. Therefore power consumption is independent of operating frequency.

Figure 2.6 also shows layout simulation varies with circuit level simulation by an amount of

15

Figure 2.6: Post vs. pre layout simulation of CML inverter with 18fF input/output load
capacitance (input changes at 83ps)

7.32ps. Layout of the CML inverter was also performed and the reported area is 15.960µm

x 24.450µm, as indicated in Figure 2.7.

Figure 2.7: CML inverter layout

2.2 CML Universal Gate

A universal CML gate is represented in Figure 2.8 that can realize AND, NAND, OR

and NOR functions. According to input logic combination as indicated in Figure 2.8, the

16

universal gate can realize an AND function. Reversing the output will realize a NAND

function. Reversing all the inputs and outputs will realize an OR function and thus a NOR

can be realized as well.

Figure 2.8: Universal CML gate

Careful consideration was made to choose Vin=2.5V and ∆V=600mV, leading Logic-

1=2.8V and Logic-0=2.5V as shown earlier in CML inverter section. The biasing conditions

are same as before. If we assume Logic-1 has applied in A+ and Logic-0 has been applied

in A- then,

Vgs1 > Vth1; Vgd1 < Vth1; Vds1 > Vgs1 − Vth1

Vgs2 < Vth2; Vgd2 < Vth2

For input B, levels have to be at least VDS amount down such that the condition VGD3

< Vth and VGD4 < Vth is met when T3 and T4 operate (are in the forward active region).

Therefore logic-1 for input B is Vin + ∆V -VDS and Logic-0 is Vin - ∆V - VDS.

Due to the discrepancy of logic levels for the second input, a level shifter is necessary

and has been embedded with in each gate as indicated in Figure 2.9. The previous power

17

Figure 2.9: Universal CML gate with embedded level shifter

of the CML gate was Vdd*Ibias and now with the level shifter it is Vdd*3Ibias; total power

increased by a factor of 3.

T7 and T8 have to be the same size as T1 and T2 for matching purposes, such that

T7/T8 can mimic the voltage drop VDS by T1/T2. To balance the differential architecture,

T5 is necessary with T4; because T3 sees either T1 or T2 as a load and is also used for

preventing breakdown. T6, T9 and T10 are of same size and constant biasing voltage (Vg)

is applied to act as a current source.

There are three paths in the universal CML gate and it is necessary to make sure total

bias current (Ibias) flows in any of these path from Vdd to Vss depending on logic combination

from. Splitting of Ibias is not acceptable because full swing realization will not be possible.

Table 2.2 shows the path that will be turned on, depending on input logic combination

and realization of the CML AND function. It is notable that the entry at B+/B- is un-

shifted logic. It is applied to input B at the level shifter and eventually it gets shifted down

by an amount VDS and propagates to input B of CML AND. It is indicated in Table 2.2 that

lowest level (2nd level, input B) dominates in path selection.

18

A+ A- B+ B- Out+ Out- T off T on Path
Vdd-∆V Vdd Vdd-∆V Vdd Vdd-∆V Vdd 1, 2, 3 5, 4, 6 T5, T4, T6
Vdd-∆V Vdd Vdd Vdd-∆V Vdd-∆V Vdd 1, 4, 5 2, 3, 6 T2, T3, T6
Vdd Vdd-∆V Vdd-∆V Vdd Vdd-∆V Vdd 1, 2, 3 5, 4, 6 T5, T4, T6
Vdd Vdd-∆V Vdd Vdd-∆V Vdd Vdd-∆V 2, 4, 5 1, 3, 6 T1, T3, T6

Table 2.2: CML AND Operation

2.2.1 Universal CML Gate Optimization

When a path turns on, it is necessary to steer all the bias current (Ibias) to that path,

as stated before, to realize full logic swing, ∆V = RL * Ibias. The more bias current we

have, the faster the swing realized. Intuitive techniques to optimize the CML gate have

been shown in the CML inverter optimization subsection. It was found, using 130nm CMOS

technology, the highest operating frequency we can obtain for CML inverter is 12GHz with

upper transistor W=7µm, L=120nm for bias current of 1.65mA for which current source size

is W=4µm, L=120nm. As we cannot exceed this operating frequency for particular logic

swing ∆V=600mV, supply voltage Vdd=2.8V, logic-1=2.8V, logic-0=2.2V parameters, the

same size has been used in CML universal gate for upper transistors. But in this case, it

has second level of input and here it contributes more parasitic capacitance, bias current has

been increased very little from 1.65mA to 1.753mA (for which current source size is W=7µm,

L=120nm) to operate at 12GHz.

For upper level (and 2nd level) transistors, around Vov=200mV has been provided such

that a 300mV swing from the biasing point can turn off and on the transistors. It should

be noted, at quiescent point Ir1 6= Ir2, as indicated in Figure 2.10. The reason is, Out+

has 2 paths at Q point but Out- has 1 path to Vss. Therefore, typically Ir1 = 1

3
Ir2, as it

is observed in Figure 2.10. It is shown that Ir1 = 517.5µA and Ir2 = 1.238mA out of total

bias current 1.753mA. Therefore, initially, Out+ tends to be close to logic-0 (2.2V), which

is 2.371V and Out- tends to be close to logic-1 (2.8V), which 2.62V at Q point. As it can

be seen in normalized current plot of universal CML gate in Figure 2.10 that Id1 6= Id2 at

19

Figure 2.10: Normalized current for CML universal gate

biasing point. But full current steering was made possible at -300mV to +300mV swing,

which is our objective.

Figure 2.11: Post vs. pre layout simulation of CML AND with 18fF input/output load
capacitance (input changes at 83ps)

Figure 2.11 shows post vs. pre layout simulation of the CML AND gate at 12GHz

(input changes at 83ps). Load capacitance, (CL) =18fF was added to mimic next stage

input capacitance, Cgg=8fF plus 10fF to mimic 100µm wire for connecting next stage similar

to the CML inverter [22]. The circuit level simulation shows rising delay is 35.6ps whereas

20

extracted layout simulation has rising delay of 37.6ps. Bias current Ibias=1.759mA and 2

other current source supply 2.019mA each, for a total power consumption of 2.8V * (1.753

+ 2.019 + 2.019)mA = 16.2148mW.

Figure 2.12: CML AND layout

The reported area of CML AND gate is 30.150µm x 42.900µm, as indicated in Figure

2.12 and this area should be the same for CML NAND/OR/NOR. Layouts of all these gates

have been performed and have been simulated but not included because their architectures

are not different from CML AND, just the reverse of inputs or outputs.

2.3 CML XOR/XNOR Gate

A CML XOR gate is shown in Figure 2.13 with an embedded level shifter. Table 2.3

briefly describes CML XOR operation and paths.

Logic-1 represented by Vin+∆V/2 = 2.8V and logic-0 is Vin-∆V/2 = 2.2V, where Vin

= 2.5V is the biasing (quiescent) voltage and ∆V=600mV is the logic swing. Bias current

Ibias=1.757mA and two other current sources supply 2.019mA each, having total power

consumption of 2.8V * (1.757+2.019+2.019)mA = 16.226mW. Power consumption of the

21

Figure 2.13: CML XOR gate

CML XOR is even less than the CML AND gate, which is impractical in CMOS realization

but possible in CML architecture.

A+ A- B+ B- Out+ Out- T on T off
0 1 0 1 0 1 7, 5, 1 2, 3, 4, 6
0 1 1 0 1 0 7, 5, 2 1, 3, 4, 6
1 0 0 1 1 0 7, 6, 4 1, 2, 3, 4
1 0 1 0 0 1 7, 6, 3 1, 2, 4, 5

Table 2.3: CML XOR Operation

For the 00 combination, T1, T5 and T7 will turn on and Ibias will flow down to Vss,

resulting in all other paths being turned off. For the 01 combination, either T2 or T3 will

turn on; depending on A. As A+ is 0 and A- is 1, T5 will be on and T6 will be off, and the

path will be T2, T5 and T7.

As the lowest level dominates the path, for the 10 combination T6 will be on, and as B+

is 0 and B-=1, T4 will turn on and the path will be T4, T6 and T7. For 11 combinations,

T3, T6 and T7 will be turned on.

Figure 2.14 shows post vs. pre layout simulation of CML XOR gate with 18fF in-

put/output load capacitance at 12GHz (input changes at 83ps). It is observed that circuit

22

Figure 2.14: Post vs. pre layout simulation of CML XOR with 18fF input/output load
capacitance (input changes at 83ps)

level rise delay is 33.7ps whereas extracted layout delay is 41.5ps. Therefore, 7.8ps discrep-

ancy exists in between circuit level and device level simulation.

Figure 2.15: CML XOR layout

Reported area of CML XOR is 28.590µm x 45.630µm as indicated in Figure 2.15.

23

2.4 CML Mux Realization

A CML mux has been realized at the transistor level as indicated in Figure 2.16. The

architecture is very similar to the XOR and the power dissipation is less than the CML

AND/XOR gate. Realizing a CML mux with transistors reduces power at least 1

3
over

realizing the mux by cascading CML AND gates. Realizing mux with transistor has two fold

benefits; one is less power and the other one is delay reduced by 1

2
. Table 2.4 describes CML

mux operation.

Figure 2.16: CML Mux realization

B+ (V) A+(V) S+(V) Out+(V) T on T off
2.2 2.2 2.2 2.2 5, 2 6, 1, 3, 4
2.2 2.8 2.2 2.8 5, 1 6, 2, 3, 4
2.8 2.2 2.2 2.2 5, 2 6, 1, 3, 4
2.8 2.8 2.2 2.8 5, 1 6, 2, 3, 4
2.2 2.2 2.8 2.2 6, 4 5, 1, 2, 3
2.2 2.8 2.8 2.2 6, 4 5, 2, 2, 3
2.8 2.2 2.8 2.8 6, 5 4, 1, 2, 3
2.8 2.8 2.8 2.8 6, 5 4, 2, 2, 3

Table 2.4: CML Mux Operation

24

Figure 2.17 shows post vs. pre layout simulation of CML mux with 18fF input/output

load capacitance at 12GHz (input changes at 83ps). It is observed that circuit level rise

delay is 28.01ps whereas extracted layout delay is 33.99ps. Therefore, 5.98ps discrepancy

exists in between circuit level and device level simulation.

Figure 2.17: Post vs. pre layout simulation of CML Mux with 18fF input/output load
capacitance (input changes at 83ps)

Figure 2.18: CML Mux layout

The reported area for the CML Mux is 36.510µm x 47.520µm, as indicated in Figure

2.18. Total power consumption of the CML Mux is 2.8V * (2.019 + 2.019 + 1.757)mA =

16.226mW.

25

2.5 CML D-latch Realization

A CML D-latch has been realized in transistors, as indicated in Figure 2.20, with four

levels of hierarchy with a reset input, not by cascading CML AND gates, in contrast to

CMOS architecture. This architecture not only reduces power consumption but also reduces

Figure 2.19: CML D-latch

delay. Very surprisingly power consumption is less than the CML AND gate, which cannot

be realized in CMOS architecture. It is notable that, the lowest level dominates in selecting

upper level paths. RST+=1.3V (RST-=0.7V) turns on T9 (T7 off) and ties Q+ to Vss,

irrespective of any input combination.

CLK+ (V) D+(V) RST+(V) Qt+1+(V) T on T off
2.2 2.2 2.2 Qt+ 8, 7, 6, (3 / 4) 9, 5, (4 / 3), 1, 2, 10, 11
2.2 2.8 2.2 Qt+ 8, 7, 6, (3 / 4) 9, 5, (4 / 3), 1, 2, 10, 11
2.8 2.2 2.2 2.2 8, 7, 5, 2 9, 6, 1, 3, 4, 10, 11
2.8 2.8 2.2 2.8 8, 7, 5, 1 9, 6, 2, 3, 4, 10, 11
x x 2.8 2.2 8, 9, 10, 11 1, 2, 3, 4, 5, 6, 7, 8

Table 2.5: CML D-latch Operation

Table 2.5 briefly describes the operation of the CML D-latch. Initially Q+ tends to be

logic-0 (the reason explained for the CML AND gate). If the clock is high, then whichever

26

data comes at D+ is passes to the output Q+. Also, the present state pushes lower level

transistors to retain their logic states when clock is not high. Therefore at beginning, reset

is not necessary in CML architecture.

Figure 2.20: Post vs. pre layout simulation of CML D-latch with 18fF input/output load
capacitance at 6GHz (166ps)

Figure 2.20 shows post vs. pre layout simulation of CML D-latch with 18fF input/output

load capacitance at 6GHz. It is observed that circuit level rise delay is 56.813ps whereas

extracted layout delay is 67.367ps. Therefore, 10.554ps discrepancy exists in between circuit

level and device level simulation.

Figure 2.21: CML D-latch layout

27

Power consumption of the CML D-latch is 2.8V * (2.019 + 2.019 + 1.431)mA =

15.3132mW. Reported area for CML D-latch is 29.190µm x 57.780µm, as indicated in Figure

2.21.

2.6 Speed, Power, Area and Delay of Basic CML Components

Table 2.6 summarizes post simulation power, area and delay with 18fF load (10fF for

wire 8fF for next stage Cgg) capacitance of each CML basic components. In later chapters,

higher level circuit realization has been performed using these basic components to develop

a CML processor datapath.. Therefore, in measuring theoretical worst case delay it has

assumed that delay is additive, meaning if the output of a CML AND gate drives the input

of a CML Mux, the total delay is the sum of the two. Total delay of any complex component

in simulation is found to match the number of basic components in the critical path and

assigning delay to each of them.

Component Power (mW) Area (µmxµm) Delay (ps)

Inverter 4.62 15.96x24.45 24.79
AND/NAND 16.2148 30.15x42.90 37.6
OR/NOR 16.2148 30.15x42.90 46.09

XOR/XNOR 16.226 28.59x45.63 41.5
CML 2-to-1 Mux 16.226 36.51x47.52 33.99
CML D-latch 15.3132 29.19x57.78 67.367

Table 2.6: Power, Area and Delay of Basic Components (post layout simulation with 18fF
load capacitance)

Layout of the processor datapath has not been performed but the circuit level simulation.

It is observed that post vs. pre layout simulation differs maximum 10ps and wire delay is

10ps (for 100µm wire connecting next stage and assuming wire delay is 0.10ps/µm) [22].

Therefore 20fF load capacitance was added inside every CML logic in datapath simulation

to mimic post layout + wire delay (in intermediate stages Cgg = 8fF has already been

considered by simulation tool). Area was predicted by counting the number of gates * area

of each gate + 50% area for wiring.

28

Chapter 3

Datapath

A multi-cycle 16-bit processor datapath has been designed using a RISC architecture

that can execute 15 different operations and a 4-bit opcode has been used. Three different

types of instructions can be performed and instruction set architecture is given in Table 3.1.

Address bus (16-bit)
15-12 11-8 7-4 3-0

Opcode R-type Rd Rs Rt
Opcode I-type Rd Rs Immediate operand
Opcode J-type Address

Table 3.1: Instruction Set Architecture

Figure 3.1: Processor datapath

29

The processor datapath is shown in Figure 3.1, where all the components have been

realized in CML logic except the cache memory and control unit. Correct operation of

the datapath has been verified by providing external control stimulus in every clock cycle

and observing/providing data to/from memory. Fifteen different operations that can be

performed are listed in Table 3.2. The Processor datapath does not contain any novel

approach. However this datapath can be re-structured such that power consumption will be

less and operating frequency can be increased.

Type Opcode Description Cycle

0000 ADD Rd=Rs+Rt 4
0001 SUB Rd=Rs-Rt 4
0010 AND Rd=Rs•Rt 4

R-type 0011 XOR Rd=Rs⊕Rt 4
0100 SLT Rd=1 if Rs<Rt else Rd=0 4
0101 SEQ Rd=1 if Rs=Rt else Rd=0 4
0110 LW Rd=[Rs]+n; n=4bit 5
0111 SW [Rs+n]=Rd; n=4bit 4

I-type 1000 ADDI Rd=Rs+n; n=4bit 4
1001 MOVI Rd=n; n=8bit 4

1010 J LABEL PC = LABEL; n=12bit 2
1011 JZ PC=LABEL if Rd=0; n=8bit 4

J-type 1100 JNZ PC=LABEL if Rd 6=0; n=8bit 4
1101 JAL $RA=PC+1 &PC=LABEL; n=12bit 3
1110 JR PC=$RA ; least 12-bit unused 2

Table 3.2: Opcode and 15 Different Operations

The datapath contains 16-bit program counter register, 16-bit instruction register, 16x16

register file, 16-bit ALU, 16-bit pc+1 register and 16-bit ALU out register. PC, IR, ALU out,

PC+1 are 16-bit registers with enable input that controls the write operation. The 16-bit

ALU contains 16-bit CLA, BLA, AND and XOR. In the 16x16 register file, 4-bit rr1, rr2

and rr3 can address any of 16 register (16-bit each) and propagates the content of addressed

register in 16-bit rd1, rd2 and rd3 through 3 16-bit 16-to-1 mux. 4-bit wrreg is used for

addressing the write register and 1-bit reg wr is used to enable the write operation. It is

assumed, for mem en=1 and rd wr=0, that memory can be read and for mem en=1 and

30

rd wr=1 memory can perform write operation. It takes 2-5 cycles to perform any of the 15

instructions as listed in Table 3.2 with brief description.

In Table 3.2 RA is register-15 implemented in hardware. Also, register-0, which contains

0 is implemented in hardware as well. The critical path delay is 5 clock cycles for the LW

instruction and the path is PC ⇒ IR ⇒ Reg file ⇒ ALU out ⇒ MEM ⇒ Reg file.

3.1 First Clock Cycle of Every Instruction

The first clock cycle is same for any instruction and the selected path is shown in Figure

3.2, with control logic. As indicated in Figure 3.2, in the first cycle men en = 1 and fetch

= 1 and data comes into IR register, assuming that memory is fast enough to be read in

one clock cycle. Also, at the same time, A sel = 01, B sel=00 selects the content of PC and

1-bit value 1 (from first input of 16bit 4 to 1 mux) and the ALU performs PC+1.

Figure 3.2: First clock cycle of any instruction

31

3.2 R-type Instruction

Six different type of instruction can be performed in R-type operation. They are ADD,

SUB, AND, XOR, SLT and SEQ. ADD, SUB, AND, XOR instructions perform addition,

subtraction, binary bitwise AND and binary bitwise XOR respectively. SLT stores Rd = 1

if Rs < Rt, else Rd = 0 (performs Rs - Rt and checks MSB). SEQ stores Rd = 1 if Rs = Rt,

else Rd = 0 (performs Rs - Rt and checks Z flag). It takes four cycles to perform any R-type

instruction.

3.2.1 R-type ADD/SUB/AND/XOR

In the second cycle of R-type ADD/SUB/AND/XOR instructions, A sel = 10, B sel =

01 selects rd1 and rd2 and pc+1 = 1 signal enables PC+1 to be saved in the PC+1 register.

Control signal func = 00, 01, 10 and 11 at second cycle performs ADD, SUB, AND and

Figure 3.3: R-type ADD/SUB/AND/XOR

XOR respectively. The third clock cycle saves the ALU result in the ALU OUT register and

32

control signal is alu out = 1. Control signal jal = 1 passes the content of the ALU OUT

register through 16-bit 2-to-1 mux. At the fourth clock cycle reg wr = 1 enables the register

file to be written which was addressed by Rd[11:8] = wrreg[3:0] for control signal jal rd =

0. At the same cycle pc wr =1 enables PC register to be updated at the end of fourth

clock cycle that can be used for next instruction. Second cycle to fourth cycle of R-type

ADD/SUB/AND/XOR is shown in Figure 3.3 with control logic.

3.2.2 R-type SLT

At the second cycle PC+1 (computed in first cycle) gets updated in the PC+1 register

and A sel = 10, B sel = 01 selects rd1 and rd2 as operands to the ALU, as indicated in Figure

3.4. Function of the ALU is func = 01, meaning it performs subtraction at the second cycle.

Figure 3.4: R-type SLT

At third clock cycle the result is stored in ALU OUT register, holding control signal alu out

= 1. Control signal jal = 1 passes the content of the ALU OUT register through the mux

33

and the MSB gets ANDed with 1. If Rs < Rt then MSB = 1 and the AND result is 1 else

MSB = 0. This result geta unsigned extension to 16-bit data. At fourth clock cycle, reg wr

= 1 enables the addressed register to be written by the data and PC is upadated as well as

indicated in Figure 3.4.

3.2.3 R-type SEQ

At the second cycle PC+1 gets updated in the PC+1 register and rd1 and rd2 gets

selected as operands to the ALU and the ALU performs the subtraction. At the third cycle

Figure 3.5: R-type SEQ

the ALU result gets updated in ALU OUT and also control signal z = 1 enables the Z register

to be updated. 1-bit zero flag register (Z) is used to hold the value, either 0 or 1 to indicate

that the resultant bits are all zero or not, respectively. The content of the Z register (Z =

1 means rd1 = rd2 else rd1 6= rd2) is ANDed with 1-bit 1 at the third cycle. This result

gets unsigned extension to 16-bit data and fed to fourth input of 16-bit 4-to-1 mux. At the

fourth clock cycle reg src = 11 selects that 4th input to that mux and reg wr = 1 enables

34

the write operation to the register file addressed by Rd[11:8] = wrreg[3:0], which is selected

by control signal jal rd = 0, as shown in Figure 3.5.

3.3 I-type Instruction

Four different types of instruction can be performed as immediate type operations. LW

computes the contents of the Rs register and added to the sign extended 16-bit immediate

data. The computed address is used to point to a location in memory and the data at this

address is loaded into register, Rd = [Rs] + n. Likewise, SW computes the address but stores

the content of the register addressed by 4-bit Rd into memory location, [Rs+n] = Rd. ADDI

adds the content of register Rs to 4-bit immediate operand n (sign extended) and stores it

to register Rd, Rd = Rs+n. MOVI converts 8-bit immediate operand to sign extended 16-bit

data and moves it into register Rd, Rd = n.

3.3.1 I-type LW

Figure 3.6: I-type LW

35

LW takes 5 clock cycles to complete and the second to fifth clock cycle is shown in

Figure 3.6. At the second cycle, A sel = 11 and B sel = 01, selects sign extended rt[3:0]

bits and content of register rs[3:0] through rd2. It also performs addition in second cycle.

At the third clock cycle the result is stored in ALU OUT register and at the fourth clock

cycle the computed address (result) points to an address location in memory and memory

is being when control signal IorAddr = 1 and mem en = 1. Data from memory is written

into register file at the fifth clock cycle and PC is updated while reg wr = 1 and pc wr = 1.

The destination register is addressed by rd[11:8] and mux selection signal jal rd = 0.

3.3.2 I-type SW

At the second cycle control signal A sel = 11 and B sel = 01 selects sign extended

least significant 4-bits and the content of Rs register as operands to the ALU and performs

addition. The computed address (result) is then updated in ALU OUT in the third clock

Figure 3.7: I-type SW

36

cycle, as indicated in Figure 3.7. At the fourth clock cycle, content of register file output

rd3 = data to mem is written to the memory (MEM) addressed by computed result (Rs+n)

when IorAddr = 1, mem en = 1 and rd wr = 1 and PC gets updated.

3.3.3 I-type ADDI

Figure 3.8: I-type ADDI

The second and third clock cycles for ADDI are the same as LW/SW, but this time

the sum is considered as a result rather than an address and gets updated in ALU OUT in

the third clock cycle. The result is then saved to register R d by selecting the path through

reg src = 00 and reg wr =1 at the fourth clock cycle as indicated in Figure 3.8.

3.3.4 I-type MOVI

The MOVI operation moves least 8-bit data into register-Rd with sign extension as

indicated in Figure 3.9. At the second clock cycle control signal A sel = 00, B sel = 10

37

Figure 3.9: I-type MOVI

selects 16-bit 0 (from first input of 4-to-1 mux) and sign-extended 8-bit data as operands to

ALU and performs addition, meaning 8-bit data is added with 0 and PC+1 is updated in

the PC+1 register. At the third clock cycle the ALU result is saved into ALU OUT register

and control signal alu out = 1. At the fourth clock cycle data is written into register file

addressed by Rd[11:8] = wrreg[3:0] and reg wr =1 and PC is updated.

3.4 J-type Instruction

J-type can perform five different types of jump instruction based on opcode. J LABEL

performs jump unconditionally and does not save the program counter value. It takes 12-bit

as an immediate operand and can jump in [-2048 - +2047] bit memory location. JZ and

JNZ perform jump based on the contents of Rd. If Rd = 0 then JZ performs jump and if

Rd = 1 then JNZ performs jump. If the condition is not satisfied then the program counter

increments by one. Both JZ and JNZ take n = 8-bits as an immediate operand and can

38

jump in [-128 - +127] bit memory location. JAL instruction performs the jump operation

unconditionally but it saves (jump and link) the incremented program counter into $RA =

1111 register in the register file. $RA is the fifteenth register in the register file that was

implemented in hardware. The JR instruction returns from any location by loading the

program counter from $RA that was saved earlier by some other instruction and can jump

(return) in between [-32768 - +32767] bit memory location.

3.4.1 J-type J LABEL

As indicated in Figure 3.10, J LABEL can be executed in two clock cycles. The first

Figure 3.10: J-type J LABEL

cycle is the same as any instruction. At the second clock cycle, sign-extended 12-bit gets

selected through 16-bit 5-to-1 mux by control signal pc sel = 001. Also, at the second clock

cycle control signal pc wr =1 lets PC register be updated.

39

3.4.2 J-type JZ LABEL

JZ LABEL can be executed in four clock cycles as indicated in Figure 3.11. At the

second clock cycle computed PC+1 gets updated in the PC+1 register and control signal

jz =1 is activated and remains high until the fourth clock cycle. Also in the second clock

Figure 3.11: J-type JZ LABEL

cycle A sel = 00 and B sel = 01 selects 16-bit 0 (first input of 16-bit 4-to-1 mux) and the

content of Rd register through rd2. Input to register file rr2 (which is Rd[11:8]) was selected

through mux signal bit jz | jnz. The ALU performs addition and if the result is 0 then ALU

output z will go high. At the third clock cycle z en =1 activates z register to be updated.

At the fourth clock cycle z & jz = 1 (if z = 1) selects 16-bit 2-to-1 mux control bit to pass

Sign8 in the datapath and pc sel = 010 lets it pass through 16-bit 5-to-1 mux and LABEL

is updated in PC register.

40

3.4.3 J-type JNZ LABEL

JNZ can perform jump operation to 8-bit LABEL if Rd 6= 0, as indicated in Figure 3.12.

At the second cycle control signal jnz = 1 enables Rd to be connected as input rr2 of register

Figure 3.12: J-type JNZ LABEL

file through 4-bit 2-to-1 mux. Input rr2 of reg file generates content of this register at rr2

signal. A sel = 00, B sel = 01 selects 16-bit 0 and rr2 and func = 00 performs addition in

this cycle. At the third cycle z en = 1 let z register to be updated. At fourth clock cycle,

z & jnz determines whether PC+1 or Sign8 will be passed through 16-bit 2-to-1 mux and

pc sel = 011 lets it pass. Also in this cycle pc wr =1 lets PC register be updated.

3.4.4 J-type JAL

JAL can be performed in three clock cycles as indicated in Figure 3.13. At the first

cycle the instruction is fetched to IR register and PC is incremented by 1 as stated before.

At the second clock cycle control signal jal rd =1 selects wrreg[3:0] = Rd[11:8], addressing

41

Figure 3.13: J-type JAL

which register needs to be written. Also at this cycle PC+1 register gets updated because

of pc+1 = 1. At third clock cycle control signal jal = 1 selects PC+1 to pass through the

16-bit 2-to-1 mux and reg wr = 1 lets it be written to the addressed register. Also Sign12

(12-bit sign extended LABEL) gets selected in the 16-bit 5-to-1 mux as control signal pc sel

= 001 and pc wr = 1 enables updating of PC register.

3.4.5 J-type JR

JR can be executed in two clock cycles as indicated in Figure 3.14. At the second clock

cycle, input to Ref file rr3[3:0] = ra[1111] gets selected as control signal sw jr = 1. The

corresponding content of rr3 becomes available at the rd3 16-bit output and gets passed

through the 16-bit 5-to-1 mux as control signal is pc sel = 100. At the same time result

(return address coming through rd3) gets updated in PC register and control signal is pc wr

= 1.

42

Figure 3.14: J-type JR

3.5 Control Signals

Control signals have been summarized for all fifteen instructions and listed in Table 3.3

and Table 3.4 for every clock cycle.

43

C
y
c
l
e

p
c

w
r

I
o
r
A
d
d
r

m
e
m

e
n

r
d

w
r

f
e
t
c
h

s
w

j
r

j
a
l

r
d

r
e
g

s
r
c

r
e
g

w
r

A

s
e
l

B

s
e
l

f
u
n
c

z

e
n

p
c
+
1

a
l
u

o
u
t

j
a
l

p
c

s
e
l

J
z

J
n
z

All
1

0 0 1 0 1 0 0 00 0 01 00 00 0 0 0 0 00
0

0 0

Add
2

0 0 0 0 0 0 0 00 0 10 01 x
x

0 1 0 0 00
0

0 0

Add
3

0 0 0 0 0 0 0 00 0 10 01 x
x

0 0 1 0 00
0

0 0

Add
4

1 0 0 0 0 0 0 00 1 01 00 00 0 0 0 0 00
0

0 0

Slt
2

0 0 0 0 0 0 0 00 0 10 01 01 0 1 0 0 00
0

0 0

Slt
3

0 0 0 0 0 0 0 10 0 10 01 01 0 0 1 0 00
0

0 0

Slt
4

1 0 0 0 0 0 0 10 1 01 00 00 0 0 0 0 00
0

0 0

Seq
2

0 0 0 0 0 0 0 11 0 10 01 01 0 1 0 0 00
0

0 0

Seq
3

0 0 0 0 0 0 0 11 0 10 01 01 1 0 1 0 00
0

0 0

Seq
4

1 0 0 0 0 0 0 11 1 01 00 00 0 0 0 0 00
0

0 0

Lw
2

0 0 0 0 0 0 0 01 0 11 01 00 0 1 0 0 00
0

0 0

Lw
3

0 1 0 0 0 0 0 01 0 11 01 00 0 0 1 0 00
0

0 0

Lw
4

0 1 1 0 0 0 0 01 0 11 01 00 0 0 0 0 00
0

0 0

Lw
5

1 0 0 0 0 0 0 01 1 01 00 00 0 0 0 0 00
0

0 0

Sw
2

0 0 0 0 0 0 0 00 0 11 01 00 0 1 0 0 00
0

0 0

Sw
3

0 1 0 0 0 0 0 00 0 11 01 00 0 0 1 0 00
0

0 0

Sw
4

1 1 1 1 0 0 0 00 0 01 00 00 0 0 0 0 00
0

0 0

Table 3.3: Control Signal Table Part-1

44

C
y
c
l
e

p
c

w
r

I
o
r
A
d
d
r

m
e
m

e
n

r
d

w
r

f
e
t
c
h

s
w

j
r

j
a
l

r
d

r
e
g

s
r
c

r
e
g

w
r

A

s
e
l

B

s
e
l

f
u
n
c

z

e
n

p
c
+
1

a
l
u

o
u
t

j
a
l

p
c

s
e
l

J
z

J
n
z

All
1

0 0 1 0 1 0 0 00 0 01 00 00 0 0 0 0 00
0

0 0

Addi
2

0 0 0 0 0 0 0 00 0 11 01 00 0 1 0 0 00
0

0 0

Addi
3

0 0 0 0 0 0 0 00 0 11 01 00 0 0 1 0 00
0

0 0

Addi
4

1 0 0 0 0 0 0 00 1 01 00 00 0 0 0 0 00
0

0 0

Movi
2

0 0 0 0 0 0 0 00 0 00 10 00 0 1 0 0 00
0

0 0

movi
3

0 0 0 0 0 0 0 00 0 00 10 00 0 0 1 0 00
0

0 0

Movi
4

1 0 0 0 0 0 0 00 1 01 00 00 0 0 0 0 00
0

0 0

J
2

1 0 0 0 0 0 0 00 0 01 00 00 0 0 0 0 00
1

0 0

JZ
2

0 0 0 0 0 0 0 00 0 00 01 00 0 1 0 0 01
0

1 0

JZ
3

0 0 0 0 0 0 0 00 0 00 01 00 1 0 1 0 01
0

1 0

Jz
4

1 0 0 0 0 0 0 00 0 01 00 00 0 0 0 0 01
0

1 0

Jnz
2

0 0 0 0 0 0 0 00 0 00 01 00 0 1 0 0 01
1

0 1

Jnz
3

0 0 0 0 0 0 0 00 0 00 01 00 1 0 1 0 01
1

0 1

Jnz
4

1 0 0 0 0 0 0 00 0 01 00 00 0 0 0 0 01
1

0 1

JAL
2

0 0 0 0 0 0 1 00 0 01 00 00 0 1 0 1 00
1

0 0

JAL
3

1 0 0 0 0 0 1 00 1 01 00 00 0 0 0 1 00
1

0 0

JR
2

1 0 0 0 0 1 0 00 0 00 00 00 0 0 0 0 10
0

0 0

Table 3.4: Control Signal Table Part-2

45

Chapter 4

Component Realization

The processor datapath is shown again in Figure 4.1 to indicate the components that

are necessary to realize in CML. This chapter will demonstrate how each of these datapath

components was realized using basic CML components developed in Chapter 2. Each ba-

sic component included 20fF load capacitance in designing datapath components to mimic

post layout simulation and wire delay. Proper handcrafting in Cadence Virtuoso Composer

Schematic has been done and Spectre simulation (equivalent to SPICE) was performed to

verify correct operation of each block. The tool used is Analog Artist for Spectre simulation

and the technology used is 130nm CMOS. The processor datapath consists of:

Figure 4.1: Datapath Components

46

1. 4 16-bit register with enable input (PC, IR, ALU OUT, PC+1)

2. Z register (1-bit register with enable input)

3. 4 16-bit 2-to-1 mux

4. 3 4-bit 2-to-1 mux

5. 3 16-bit 4-to-1 mux

6. 16-bit 5-to-1 mux

7. 16-bit ALU

8. 16x16 register file (REG FILE)

9. Sign 4 to 16 extension (sign 4)

10. Sign 8 to 16 extension (sign 8)

11. Sign 12 to16 extension (sign 12)

12. 2 unsigned 1 to 16 extension (unsigned 16)

13. 4 1-bit AND gate

14. 1 1-bit OR gate

4.1 16-bit Register With Enable Input

A 1-bit register was developed by cascading CML d-latches. As CML comes in com-

plementary form, there are two signals for any input/output. The negative clock pulse was

provided to the first d-latch and the positive pulse was given to the second d-latch in or-

der to realize a positive edge triggered D flip-flop. A two input mux was used in front of

the master-slave DFF to hold the state when enable is 0 and pass the data to input D of

47

Figure 4.2: Block diagram of MS DFF, MS DFF-EN, 16-bit register

DFF when enable is 1. The circuit diagrams of the master-slave D flip-flop, master-slave D

Flip-flop with an enable input and 16-bit register with enable input are shown in Figure 4.2.

MS DFF burns 2 * 15.3132mW = 30.6264mW and MS DFF-EN takes 16.226mW +

30.6264mW = 46.8524mW. For simplicity, only 1-bit MS DFF-EN output is shown in Figure

4.3. The 16-bit register output will be the same and delay is identical as well because they are

parallel. In Figure 4.3, 101.41ps rise delay has been observed with 20fF load capacitance. In

simulation it is observed that the 16-bit MS DFF-EN (16-bit register) takes 16 * 46.8524mW

= 749.6384mW. Minimum setup time was found to be 40ps to operate at 6GHz.

Estimated area of the 16-bit register is 16 * (2*D latch area + 2-to1 mux area) = 16

* (2*(29.19 x 57.78)µm + 36.51 x 47.52µm) = 16*(94.89µm x 57.78µm) = 1518.24µm x

57.78µm. 50% additive area for wiring will be added later to the total area of the processor

to get power density per unit area.

Therfore, in datapath 4 16-bit registers should dissipate 4 * 749.6384mW = 2998.55mW

with an area of 4 * (1518.24µm x 57.78µm) = 6072.96µm x 57.78µm.

48

Figure 4.3: 1-bit register output at 6GHz with 20fF load capacitance (clock period 166ps)

4.2 Z Register (1-bit Register With Enable Input)

As indicated in section 4.1, the 1-bit register with an enable input has power consump-

tion of 46.8524mW and an area of 94.89µm x 57.78µm and reported rise delay is 101.41ps.

4.3 4 16-bit 2-to-1 Mux

A 1-bit 2-to-1 mux has been shown in Figure 2.17, with a power consumption of

16.226mW and an area of 36.51µm x 47.52µm, with rise delay of 33.99ps. A 16-bit 2-to-1

mux is 16 instances of 1-bit 2-to-1 mux with 16 times power consumption of 259.616mW and

16 times area 584.16µm x 47.52µm. Delay is same because they are parallel in architecutre.

Therefore, 4 16-bit 2-to-1 mux power consumption is 1038.464mW, area = 2336.64µm

x 47.52µm and rise delay = 33.99ps. Due to static power consumption, computing power

for 16-bit 2-to-1 mux theoretically as 16 * 1-bit 2-to-1 mux produces the same value as

simulating 16-bit 2-to-1 mux and getting the power from the tool. However, in some cases

where larger number of basic CML components has been used, we simulate the component

directly to get power consumption from the tool.

49

4.4 3 4-bit 2-to-1 Mux

As indicated in section 4.3, a 4-bit 2-to-1 mux power consumption is 64.904mW and area

is 146.04µm x 47.52µm. Therefore 3 4-bit 2-to-1 mux power consumption is 194.712mW,

with an area of 438.12µm x 47.52µm and rise delay is 33.99ps.

4.5 3 16-bit 4-to-1 Mux

A 1-bit 4-to-1 mux was developed using 3 1-bit 2-to-1 mux, providing S0 as the control

bit for first stage and S1 as the control bit for the second stage as indicated in Figure 4.4.

Expected power consumption is 3 * 1-bit 2-to-1 mux power = 3 * 16.226mW = 48.678mW

and simulation power obtained is 2.8V * 17.38mA = 48.664mW, which is almost identical.

Figure 4.4: 1-bit 4-to-1 mux

The expected area of a 1-bit 4-to-1 mux would be 3 * (36.510µm x 47.52µm) = 109.53µm

x 47.52µm. Expected rise delay is 2 * 33.99ps = 67.98ps, due to two stages of CML 2-to-1

mux, and simulated rise delay is 52.51ps, as indicated in Figure 4.5.

Therefore, the 3 16-bit 4-to-1 mux power consumption is 3 * 16 * 48.664mW = 3 *

778.624mW = 2335.872mW, area is 3 * 16 * (109.53µm x 47.52µm) = 3 * (1752.48µm x

47.52µm) = 5257.44µm x 47.52µm and simulated rise delay is 52.51ps.

50

Figure 4.5: 1-bit 4-to-1 mux output with 20fF load capacitance (input changes at 83ps)

4.6 16-bit 5-to-1 mux

A 1-bit 5-to-1 mux was developed using a 1-bit 4-to-1 mux and a 1-bit 2-to-1 mux

as shown in Figure 4.6. Expected power consumption is the sum of two = 48.664mW +

16.226mW = 64.89mW and simulated power is 2.8V * 23.18mA = 64.904mW.

The 16-bit 5-to-1 mux power consumption is 16 * 64.904mW = 1038.464mW and ex-

pected area is 16 * (1-bit 4-to-1 + 1-bit 2-to-1) = 16 * (109.53µm x 47.52µm + 36.51µm x

47.52µm) = 16 * (146.04µm + 47.52µm) = 2336.64µm x 47.52µm.

A 1-bit 5-to-1 mux output at where input changes at 166ps is shown in Figure 4.7.

Simulated rise delay is 59.61ps, as indicated.

51

Figure 4.6: 1-bit 5-to-1 mux

Figure 4.7: 1-bit 5-to-1 Mux output with 20fF load capacitance (input changes at 166ps)

4.7 16-bit ALU

A 16-bit ALU consists of a 16-bit CLA, 16-bit BLA, 16-bit AND, 16-bit XOR and 16-

bit 4-to-1 mux. For 16-bit inputs at A and B - addition, subtraction, AND and XOR are

performed irrespective to 2-bit function. Based on the function input, the 16-bit 4-to-1 mux

passes the selected result to the output. The output bits are also OR-ed and passed to Z

signal, which is connected to zero flag register.

52

Figure 4.8: Block diagram of 16-bit ALU

A 16-bit carry look ahead adder was designed using the schematic shown in Figure 4.9,

where carry generation is gi, carry propagation is pi and summation is si for each 1-bit CLA.

Figure 4.9: 16-bit CLA block diagram

gi=xi·yi; pi=xi⊕yi

si=xi⊕yi⊕ci−1

Level-1 CLA output can be described as:

P0=p3·p2·p1·p0

53

P1=p7·p6·p5·p4

P2=p11·p10·p9·p8

P3=p15·p14·p13·p12

G0=g3+(p3·g2)+(p3·p2·g1)+(p3·p2·p1·g0)

G1=g7+(p7·g6)+(p7·p6·g5)+(p7·p6·p5·g4)

G2=g11+(p11·g10)+(p11·p10·g9)+(p11·p10·p9·g8)

G3=g15+(p15·g14)+(p15·p14·g13)+(p15·p14·p13·g12)

c1=g0+p0·c0

c2=g1+p1·g0+p1·p0·c0

c3=g2+p2·g1+p2·p1·g0+p2·p1·p0·c0

Level-2 CLA output can be described as:

C1=G0+P0·c0

C2=G1+P1·G0+P1·P0·c0

C3=G2+P2·G1+P2·P1·G0+P2·P1·P0·c0

Power consumption for the 16-bit CLA obtained in circuit simulation is 2.8V * 1.198A

= 3.3544W. Critical path sensitization in 16-bit CLA was triggered by providing all 0’s in

16-bit A and B and then All 1’s in input A and 1-bit 1 in Cin. Simulation result shows rise

delay of 16-bit CLA is 224.7ps, as indicated in Figure 4.10.

The 16-bit CLA expected area is 16 * (1-bit CLA) + 4 * Level-1 CLA + Level-2 CLA

= 16 * (1 AND + 3 XOR) + 4 * (19 AND + 9 OR) + 10 AND + 6 OR = 16 * (30.15µm

x 42.9µm + 3 * (28.59µm x 45.63µm)) + 4 * 28 * (30.15µm x 42.9µm) + 16 * (30.15µm x

42.9µm) = 1854.72µm x 45.63µm + 3376.8µm x 42.9µm + 482.4µm x 42.9µm = 5713.92µm

x 42.9µm.

A 16-bit BLA can be realized using the same architecture of Level-1 and Level-2, but

with a little difference in the 1-bit BLA.

gi=x̄i·yi; pi=x̄i+yi

54

Figure 4.10: Critical path delay in 16-bit CLA is 224.7ps (input changes at 500ps)

si=xi⊕yi⊕ci−1

Power consumption of the 16-bit BLA found in simulation is 2.8V * 1.198A = 3.3544W, which

is the same as the 16-bit CLA and critical path delay should be same as well. Estimated area

of 16-bit BLA would be 16 * 1-bit BLA + 4 * Levlel-1 CLA + Level-2 CLA = 16 * (1AND

+ 1OR + 2XOR) + 3376.8µm x 42.9µm + 482.4µm x 42.9µm = 16 * 2 * (AND + XOR)

+ 3859.2µm x 42.9µm = 32 * (58.74µm x 45.63µm) + 3859.2µm x 42.9µm = 5738.88µm x

45.63µm.

16-bit AND power consumption would be 16 * 16.2148mW = 259.4368mW, with an

expected area of 16 * (30.15µm x 42.9µm) = 482.4µm x 42.9µm. Delay will be identical to

the 1-bit AND gate which is 37.6ps.

16-bit XOR power consumption would be 16 * 16.226mW = 259.616mW, with an ex-

pected area of 16 * (28.59µm x 45.63µm) = 457.44µm x 45.63µm. Rise delay of the 16-bit

XOR is 41.5ps.

55

16-bit 4-to-1 mux power consumption is 16 * 48.664mW = 778.624mW , area is 16 *

(109.53µm x 47.52µm) = 1752.48µm x 47.52µm and simulated rise delay is 52.51ps.

Total expected area estimated is, 5713.92µm x 42.9µm + 5738.88µm x 45.63µm +

482.4µm x 42.9µm + 457.44µm x 45.63µm + 1752.48µm x 47.52µm = 14145.12µm x

47.52µm.

Figure 4.11: 16-bit ALU Output (input changes at 300ps)

Estimated path-delay from input to output of the ALU is max(16-bit CLA, 16-bit BLA,

16-bit AND, 16-bit XOR) + 16-bit 4-to-1 mux = 224.7ps + 52.51ps = 277.21ps. But critical

path delay exists between the ALU input to Z flag where 4 stage of OR have been used.

56

The Z flag is used only in 3 instructions out of 15 instructions. In simulating 16-bit ALU

at 300ps using path sensitization as indicated in Figure 4.10, generated correct output of

Out signals at 275.6ps and Z signal took 348ps. Therefore 12 instructions can be executed

at 300ps (3.33GHz) and 3 instruction (where z flag is necessary) can be executed in 350ps

(2.85GHz).

In Figure 4.11 the ALU performs addition, ADD FFFF 0000 (with Cin=1) and result

is all 0000 and Z = 1 when mux selection bit S0S1 = 00. Then for S0S1 = 01 it performs

subtraction, SUB 0000 FFFF and the result is 0001. For S0S1=10 it performs 16-bit AND,

AND FFFF FFFF and the result is FFFF. For S0S1=11 the ALU performs 16-bit XOR,

XOR 0000 FFFF and the result is FFFF.

Estimated power consumption of 16-bit ALU is 3.3544W + 3.3544W + 259.4368mW +

259.616mW+ 778.624mW+ 15 * 16.2148mW= 8.2496988W and simulation result shows 16-

bit ALU takes 2.8V * 2.944A = 8.2432W. Estimated area of ALU is 14145.12µm x 47.52µm.

Time it takes to generate correct operation sensitizing critical path is 275.6ps for 12 instruc-

tions and 348ps for 3 instructions.

4.8 16x16 Register File

16x16 register file consists of 4-to-16 decoder, 16-bit AND, 16 16-bit registers and 3

16-bit 16-to-1 mux, as shown in Figure 4.12.

The register file has 3 4-bit inputs, rr1, rr2 and rr3, to address any of the 16 registers

and corresponding 16-bit data will arrive at rd1, rd2 and rd3, respectively. 4-bit wrreg[3:0]

is used to address any of the 16 register (16-bits each) and data will be written when control

signal reg wr is 1. Therefore, wrreg[3:0] input is fed to 4-to-16 decoder input. For wrreg[3:0]

= 0000 first output bit of decoder will be high and rest of them will be low. For a particular

combination of wrreg[3:0], the equivalent BCD value output line of the decoder will be high

and rest of them will be low, as indicated in Figure 4.13.

57

Figure 4.12: 16x16 Register File Schematic

4-to-16 decoder delay is dominated by the 2 stage AND delay. Theoretical estimation

of rise delay = 75.2ps and simulated path delay observed is, rise delay = 72.01ps. Simulated

power obtained for 4-to-16 decoder is 2.8V * 278.2mA = 778.96mW and expected area is 48

* AND gate area = 48 * (30.15µm x 42.9µm) = 1447.2µm x 42.9µm.

The output of the decoder is connected to a 16-bit AND and the second input of the

16-bit AND is reg wr. Therefore, one of sixteen output lines of the 16-bit AND will be

high if and only if the corresponding decoder line is high and reg wr is high, to make sure

that the selected register can be written only when reg wr is high. The output of 16-bit

AND was connected to the EN input of 16 registers. 16-bit AND power consumption is 16 *

16.2148mW = 259.4368mW, rise delay = 37.6ps, expected area = 16 * (30.15µm x 42.9µm)

= 482.4µm x 42.9µm.

As stated in section 4.1, 16-bit register area = 1518.24µm x 57.78µm, with power

conusmption of 923.44mW with rise delay = 101.41ps. Therefore, 16 16-bit register area

58

Figure 4.13: 4-to-16 Deocoder (input changes at 83ps)

= 16 * (1518.24µm x 57.78µm) = 24291.84µm x 57.78µm and power consumption is 16 *

749.6384mW = 11.994W.

A 1-bit 16-to-1 mux was developed using 1-bit 4-to-1 mux as indicated in Figure 4.14.

The two least significant control bits, S0 and S1, were connected to the first stage of the

1-bit 4-to-1 mux and S2, S3 were connected to the second stage.

Figure 4.14: 1-bit 16-to-1 Mux Schematic

Simulated power consumption obtained for the 1-bit 16-to-1 mux is 2.8V * 86.92mA =

243.376mW. Expected area, from section 4.5, is 5 * (109.53µm x 47.52µm) = 547.65µm x

59

47.52µm. Simulated rise delay of 1-bit 4-to-1 mux is 52.51ps. Therefore expected rise delay

of 1-bit 16-to-1 mux is 105.02ps, whereas simulated rise delay is 85.39ps, as indicated in

Figure 4.15.

Figure 4.15: 1-bit 16-to-1 Mux Output (input changes at 144ps)

For simplicity, 3 inputs D0, D1, D2 have been used instead of 16 inputs. D0, D1 and D2

were connected to the first three inputs and fourth input was connected to D0, fifth input

to D1, sixth input to D2, seventh input to D0 and so on and correct operation was verified

at where intput changes at 144ps.

16-bit 16-to-1 mux power consumption is 16 * 243.376mW = 3.894016W and expected

area is 16 * (547.65µm x 47.52µm) = 8762.4µm x 47.52µm with rise delay = 85.39ps.

60

Therefore, 3 16-bit 16-to-1 mux power consumption is 11.6872W with expected area of

26287.2µm x 47.52µm.

Figure 4.16: 16x16 Register File Output at 3.33GHz

16x16 register file path delay would be 4-to-16 decoder delay + 16-bit AND delay +

16-bit MS DFF-EN delay + 16-bit 16-to-1 mux delay = 72.01ps + 37.6ps + 101.41ps +

85.39ps = 296.41ps. Estimated power consumption of register file is 4-to-16 decoder +

16-bit AND + 16 16-bit register + 3 16-bit 16-to-1 mux = 778.96mW + 259.4368mW +

61

11.994W + 11.6872W = 24.719W. Estimated area of the 16x16 register file is 4-to-16 decoder

area 1447.2µm x 42.9µm + 16-bit AND area 482.4µm x 42.9µm + 16 16-bit register area

24291.84µm x 57.78µm + 3 16-bit 16-to-1 mux area 26287.2µm x 47.52µm = 52508.64µm x

57.78µm.

Figure 4.16 shows verification of the 16x16 register file at 300ps clock period. An analog

test bench was set up such that at the first clock cycle it writes FFFF in register-0 but as

register-0 is implemented in hardware it will have 0 at the end. In consecutive cycles, data

written on registers 1, 2, 3, 4, 5 up to 15 were EEEE, DDDD, 8888, 3333, 2222, 5555, 4444,

FFFF, AAAA, 9999, 8888, 7777, 6666, 5555, 0000 and then control signal reg wr goes low

meaning write cannot be performed any more. Then rr1 = rr2 = rr3 = 0, 1, 2, 3, 4 and 5

was provided for simplicity and only 16-bit rd1 was probed to see the result at register-0,

1, .. 5 which were 0000, EEEE, DDDD, 8888, 3333 and 2222. Then in the following clock

cycle reset = 1 sets all the outputs to be logic-0.

4.9 Sign 4-to-16 extension (Sign 4)

Sign 4 to 16 extension was developed using a single stage of sixteen inverters. First,

4-bits were passed to the inverter and the output was flipped to work as a buffer, due to

the complementary form of CML logic. The fourth-bit was connected as input to rest of the

inverters and those outputs were flipped as well.

Figure 4.17 shows the outputs of the sign 4 to 16 extension at where input changes at

72ps. The fourth-bit (D3) was copied to to input D4-D15 and fragment of output is shown

Out0-Out7. Simulated power consumption of sign 4 to 16 extension is 2.8V * 26.4mA =

73.92mW and delay is same as 1-bit inverter but flipped, and simulation rise delay = 25.5ps.

Expected area is 16 * (15.96µm x 24.45µm) = 255.36µm x 24.45µm.

62

Figure 4.17: Sign 4 to 16 Extension Output (input changes at 72ps)

4.10 Sign 8-to-16 extension (Sign 8)

Sign 8 to 16 extension is similar to sign 4 to 16 extension, with the only difference being

that the eighth bit (D7) is copied to D8-D15 bits. Area, power consumption and delay are

the same as the sign 4-to-16 extension.

4.11 Sign 12-to-16 extension (Sign 12)

Sign 12 to 16 extension is similar to sign 4 to 16 extension with the only difference being

that the twelfth bit (D11) is copied to D12 - D15 bits. Area, power consumption and delay

are same as sign 4 to 16 extension.

63

4.12 2 unsigned 1-to-16 extension (Unsigned 16)

Unsigned 1-to-16 extension was developed using 16 inverters, similar to sign 4 to 16

extension. The only difference is the 1-bit input was connected to D0 and D1 - D15 were

tied down to logic 0 (2.V). The output was flipped to work as a buffer, and area, power and

delay are the same as sign 4 to 16 extension. Therefore 2 unsigned 1-to-16 extension power

consumption is 2 * 73.92mW = 147.84mW and expected area is 2 * (255.36µm x 24.45µm)

= 510.72µm x 24.45µm.

Figure 4.18: Unsigned 1 to 16 Extension Output (input changes at 83ps)

Figure 4.18 shows unsigned 1-to-16 extension output where output Q0 passes 1-bit input

D0 and rest of the inputs are tied to Logic-0 which is 2.2V. The output glitch that is observed

fluctuates only between 2.2228V - 2.2223V, 0.5mV only. The simulator tool usually zooms

in when plotting output, meaning glitch is not as significant as it looks like. Only the first

four bits of output are shown in Figure 4.17.

64

4.13 4 1-bit AND gate

4 1-bit AND gate power consumption is 4 * 16.2148mW = 64.8592mW and area is 4 *

(30.15µm x 42.90µm) = 120.6µm x 42.9µm with rise delay = 37.6ps.

4.14 1 1-bit OR gate

One 1-bit OR gate power consumption is 16.2148mW having an area of 30.15µm x

42.90µm with rise delay = 46.09ps as stated in Table 2.6.

Table 4.1 summarizes power, expected area and time to generate correct operation for

the complete datapath components. Simulation results presented in this table included 20fF

load capacitance inside every basic components to mimic post layout simulation and wire

capacitance.

Component Power (mW) Expected Area Delay (ps)
(µm x µm)

PC, PC+1, ALU OUT, IR 2998.55 6072.96 x 57.78 101.41
Z 46.8524 94.89 x 57.78 101.41

16-bit 2-to-1 mux (4 used) 1038.464 2336.64 x 47.52 33.99
4-bit 2 to 1 mux (3 used) 194.712 438.12 x 47.52 33.99
16-bit 4 to 1 mux (3 used) 2335.872 5257.44 x 47.52 31.39

16-bit 5 to 1 mux 1038.464 2336.64 x 47.52 59.61
16-bit ALU 8243.2 14145.12 x 47.52 275.6

16x16 Reg file 24719 52508.64 x 57.78 296.41
Sign 4 73.92 255.36 x 24.45 25.5
Sign 8 73.92 255.36 x 24.45 25.5
Sign 12 73.92 255.36 x 24.45 25.5

Unsigned 16 (2 used) 147.84 510.72 x 24.45 25.5
1-bit AND gate (4 used) 64.8592 120.6 x 42.9 37.6

1 OR gate 16.2148 30.15 x 42.90 46.09
Total 41.065W 84618 x 57.78 296.41ps

= 2115.45 x 2311.2

Simulation Power 2.2mm x 2.3mm
& 41.264W + 50% area for wiring 300ps

Frequency = 2.2mm x 3.45mm

Table 4.1: Component Power Dissipation, Expected Area and Delay

65

As indicated in Table 4.1, estimated power obtained by summing up component power

dissipation is 41.065W whereas simulation power obtained is 41.264W which is almost iden-

tical. Most of the power is dissipated in the 16x16 register file, which is 24.719W out of

41.264W. The 16x16 register file is also a time dominating component and critical path de-

lay is 296.41ps. Register file was simulated at 300ps and has been verified as indicated in

Figure 4.16. However as stated earlier, for 12 instruction ALU critical path delay is 275.6ps

and for remaining 3 instruction where Z flag is used, critical path delay is 348ps.

Table 4.1 should be identical to post layout simulation although layout of the processor

datapath has not been performed but in circuit level (transistor level). However to mimic

post layout simulation and wire capacitance, 20fF load capacitance was added inside every

building block. Typically post layout simulation varied with 10ps with circuit level as in-

dicated in Chapter 2 and 1fF can mimic 1ps delay. Also, assuming 100µm is necessary to

connect next stage then additional 10fF (0.1ps/µm) is necessary to mimic wire capacitance

[22].

An attempt has been made to estimate total area, counting the number of basic compo-

nent used + 50% area for wiring. Expected total area, including wire is, 2.2mm x 3.45mm

(2200µm x 3450µm) leading power dissipation per unit area to be 41.264W / (2200 *

3450)µm2 = 5.44µW/µm2.

66

Chapter 5

Processor Verification and Performance

5.1 Processor Verification

A handcrafted 16-bit microprocessor datapath has been designed in CML logic as indi-

cated in Figure 5.1. An analog test bench was set up to provide 16-bit data from memory

using voltage sources (vpulse) and appropriate external control signals were provided to

perform verification. Three instructions have been verified, providing consecutive data. At

the first cycle reset was triggered and simulation was performed at 300ps (3.33GHz) clock

period.

Figure 5.1: Handcrafted Processor Schematic

67

Each instruction took 4 clock cycles to execute and the result is provided in a sequence

of Figure 5.2 - 5.4.

Instruction executed in cycle order:

Figure 5.2: MOVI instruction

Reset (first cycle)

MOVI Rd = n; n 8-bit (I-type)

1001 0001 0001 0111 (applied at second cycle)

Explanation: Rd = Reg-1 = 23; move 23 in register-1. Appropriate external control signal

has been applied at cycle = 2, 3, 4 and 5. Only selected signals of register-1 has been probed

and expected result obtained at the beginning of sixth clock cycle as shown in Figure 5.2

(fifth bit of reg1 4 of register-1 is shown in Figure 5.3).

ADDI Rd = Rs + n; n 4-bit (I-type)

1000 0111 0001 0111 (applied at sixth cycle)

68

Figure 5.3: ADDI instruction

Explanation: Rd = Rs + n; add content of register Rs = 0001 (register-1 contains 23

performed in previous instruction) to n = 0111 and save the result in Rd = 0111. Therefore

register-7 will contain 23 + 7 = 30. Appropriate control signals were applied at cycle = 6, 7,

8 and 9. Rd = 30 = 11110 was observed at the beginning of tenth clock cycle, as indicated

in Figure 5.3.

ADD Rd = Rs + Rt (R-type)

0000 1101 0001 0111 (applied at tenth cycle)

Explanation: Rd = Rs + Rt; add content of register Rs = 0001 (register-1) with Rt = 0111

(register-7) and save the result in Rd = 1101 (register-13). Appropriate control signals were

applied at cycle = 10, 11, 12 and 13 and content of Rd = 13 (register-13) was observed, 23

+ 30 = 53 (110101) at the beginning of 14th clock cycle, as indicated in Figure 5.4.

69

Figure 5.4: ADD instruction

Figure 5.5 shows static power consumption of CML processor datapath over 13 clock

cycles (300ps clock period). Processor datapath peak power 41.51W reached at 306.5ps right

after reset signal and average power dissipated is 41.264W, as indicated in Figure 5.4.

5.2 Performance

Performance metric MIPS was used to determine processor performance. 11 instructions

take 4 clock cycles to execute, so the probability of executing any of these 11 instructions is

11/15. Similarly, 1 instruction (LW) takes 5 clock cycles to execute and thus probability is

1/15. Likewise, 1 instruction (JAL) takes 3 clock cycles to execute so probability is 1/15.

Two instructions (J LABEL, JR) take 2 clock cycles to execute and probability is 2/15.

It has been stated earlier that 3 instructions (SEQ, JZ, and JNZ) require processor

speed to be slowed down to operate at 2.87GHz (348ps) due to worst path delay. However

70

Figure 5.5: Static power consumption of CML processor datapath over 13 clock cycles

this problem can be solved by re-structuring the datapath. Assuming each instruction can

be performed at 3.33GHz (300ps), estimated clock per instruction (CPI) is:

CPI = 4 ∗ 11

15
+ 5 ∗ 1

15
+ 3 ∗ 1

15
+ 2 ∗ 2

15

= 3.733

Assuming 1 million instructions have been executed,

Execution time = No. of instruction count ∗ clock period ∗ CPI

= 106 ∗ 300ps ∗ 3.733 clock/instruction

= 1.1199 ∗ 10−3sec

71

MIPS =
Instruction count

Execution time ∗ 106

=
106

1.1199 ∗ 10−3sec ∗ 106
= 892.93

5.3 Comparison

There is no common ground to compare the CML processor with a CMOS processor.

The same feature size CMOS can never operate as fast CML logic due small swing and

differential architecture. The smaller swing we define, the faster we can operate CML logic.

In CML there is no dynamic power, but only static power dissipation, and it is constant

and does not increase with increasing frequency as stated earlier in Chapter 2. The highest

operating frequency for a particular technology (minimum feature size) can be achieved

through design intuition such that differential pair can just turn-off one side and steer full

current in the other part based on input combinations that benefit CML over CMOS at

higher frequency.

These days, Intel’s latest processors in 90nm, 65nm, 32nm process technology can

achieve 2-4GHz operating frequency with typical power consumption 150W - 200W and

MIPS varies from 6000 - 10000 on an average [3] and [23]. The CML processor that was

developed in this thesis work has been implemented at the circuit level with additional

load capacitance to mimic post layout simulation and wire delay. Hardware/software co-

ordination has not been performed, nor has a compiler been designed to implement program

code (assembly language) to measure execution time. However, theoretical estimation shows

the developed CML processor has MIPS = 892 with power consumption 41.264W. Today’s

processors are mostly pipelined and superscalar in architecture. Re-structuring the multi-

cycle datapath of the CML processor into a pipeline can gain at least 4 times the MIPS

72

(3568), and making it superscalar can exceed 10000 MIPS while burning 50-70W in 120nm

feature size.

Comparing just a single CMOS gate to CML gate is misleading. It is because of

1. Swing is not same. In CML we can define 100mV or 600mV swing, whatever we want,

based on our requirement. Making the swing 100mV will burn less power than a 600mV

swing. But in CMOS, swing is fixed, 1V.

2. At higher frequency, as long as our swing is less than 1V, CML is advantageous over

CMOS.

3. At lower frequency (below 1GHz) it depends. Typically due to constant power dissipa-

tion CML is a worse choice than CMOS. Reducing swing to 100mV or less may benefit

CML over CMOS at lower frequency.

4. Same feature size CMOS cannot operate as fast as CML. Therefore, in order to compare

the two at a particular operating frequency we need smaller feature size for CMOS and

larger feature size for CML, and thus breaking the common ground to compare.

5. One possible way to compare CMOS with CML at the same feature size is not to

optimize CML at its highest operating frequency but at some lower frequency, where

CMOS is capable to operate at, meaning frequency and feature size are the same. But

in this case we are deliberately letting CML lose its benefits. As stated in Figure 2.1,

CML power consumption does not increase exponentially, but rather slowly, similar to

a horizontal line. Optimizing for lower frequency (where CMOS is capable to operate)

may reduce some power but not too much. CML’s higher constant power dissipation

at lower frequency will let CMOS gate to be favorable because CMOS static power is

almost zero and dynamic power will reduce due to lower operating frequency.

73

Chapter 6

Conclusions

The first ever, 3.33GHz MCML microprocessor datapath has been developed using

130nm CMOS technology. No prior work exists in literature in designing processor datapaths

using MCML logic. It is first in its kind and power consumption is very low compared to

traditional CMOS processors. However, a prior attempt was made to develop a BiCMOS

superscalar RISC microprocessor where three level ECL logic gates have been used along

with CMOS gates in same integrated chip [5].

Reported power consumption of the developed MCML processor is 41.264W with an

estimated area of 2.2mm x 3.45m. Expected power density per unit area is 5.44µW/µm2. A

RISC architecture was adopted in developing the 16-bit processor datapath. Out of fifteen

instructions, twelve instructions can be performed at 3.33GHz and three instructions can be

performed at 2.87GHz, with an estimated MIPS of 892.

This thesis work indicates that it is possible to realize superfast processors beyond

20GHz with minimum power consumption using today’s technology. Either a voltage con-

version is necessary that can be done by amplifying small signal swings to 1V and then shifted

down or the total system could be implemented in CML to work with CML processor [24].

6.1 Future Work

It is possible to come up with a CML synthesizer tool such that the entire design can be

automated. The idea behind the statement is, CML gates which are analog can be optimized

for multiple operating frequencies and multi-input CML logics by proper handcrafting, sim-

ilar to digital technology files. Implementing multi-input logic has two fold benefits; delay

will be reduced but power consumption will be the same. However to provide enough biasing

74

for each level of transistors, we have to increase our supply voltage. Once CML logics for

multi-input and multiple frequencies have been optimized by proper handcrafting, the rest

of the process can be automated as is the case for digital circuits. A CML synthesizer tool

should be able to pick different optimized CML logic such that it meets the area and timing

constraints. It could be a time oriented interested topic for any PHD student in mixed signal

design.

75

Bibliography

[1] Vasanth Kakani, Foster F. Dai and R.C Jaeger, “Delay analysis and optimal biasing for
high speed low power current mode logic circuits,” IEEE International Symposium on
Circuits and Systems, vol. 2, pp. II-869-872, May 23-26, 2004.

[2] Dr. Fa Foster Dai’s, “ELEC 6190 Introduction to Digital and Analog IC Design,” Slide
10, Page 22.

[3] Wikipedia, “http://en.wikipedia.org/wiki/List_of_CPU_power_dissipation”.

[4] Dr. Vishwani D. Agrawal’s, “ELEC 6270 Low Power Design of Electronic Circuit,” Slide
no 1, page 6.

[5] Cliff A. Maier, James A. Markevitch, Tim Sippel, Earl T. Cohen, Jim Blomgren, James
G. Ballard, Jay Pattin, Viki Moldenhauer, Jeffrey A. Thomas and George Taylor, “A
533-MHz BiCMOS superscalar RISC microprocessor,” IEEE Journal of Solid-State Cir-
cuits, vol. 32, pp. 16251634, Nov. 1997.

[6] Armin Tajalli, Eric Vittoz and Yusuf Leblebici, “Ultra low power subthreshold MOS
current mode logic circuits using a novel load device concept,” European Solid State
Circuits Conference, pp. 304-307, Sept. 11-13, 2007.

[7] M. Alioto and G. Palumbo, “Modeling and optimized design of current mode MUX /
XOR and D-flip flop,” IEEE Transactions of Circuits and Systems-II, vol. 47, no. 5, pp.
452-461, May 2000.

[8] Dr. Fa Foster Dai’s, “ELEC 6190 Introduction to Digital and Analog IC Design,” Slide
7, Page 4, 10, 11, 16, 17, 22.

[9] Abdullah Al Owahid and Foster F. Dai, “A 41.264W, 3.33GHz Processor Datapath Us-
ing Current Mode Logics In 130nm CMOS Technology, “IEEE International Symposium
on Circuits and Systems, May 20-23, 2012.

[10] H. Rein, ”Design consideration for very-high-speed Si-bipolar ICs operating up to 50
Gb/s,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 10761090, Aug. 1996.

[11] “International Technology RoadMap for Semiconductors,” ITRS, Radio Frequency and
Analog/Mixed-Signal Technologies for Wireless Communications Tech. Rep., 2005.

[12] S. Khabiri and M. Shams, “A mathematical programming approach to designing MOS
current-mode logic circuits,” in Proc. IEEE ISCAS, May 2005, vol. 3, pp. 24252428.

76

[13] H. Hassan, M. Anis, and M. Elmasry, “MOS current mode circuits: Analysis, design,
and variability,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 8, pp.
885898, Aug. 2005.

[14] J. Musicer and J. Rabaey, “MOS current mode logic for low power, low noise CORDIC
computation in mixed-signal environments,” in Proc. ISLPED, 2000, pp. 102107.

[15] A. Tanabe, M. Umetani, I. Fujiwara, T. Ogura, K. Kataoka, M. Okihara, H. Sakuraba,
T. Endoh, and F. Masuoka, “A 10 Gb/s demultiplexer IC in 0.18 um CMOS using
current mode logic with tolerance to the threshold voltage fluctuation,” IEEE J. Solid-
State Circuits, vol. 36, no. 6, pp. 988996, Jun. 2001.

[16] M. Allam and M. Elmasry, “Dynamic current mode logic (DyCML): A new low-power
high-performance logic style,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 550558,
Mar. 2001.

[17] M. Yamashima and H. Yamada, “A MOS current mode logic (MCML) circuit for low-
power sub-GHz processors,” IECE Trans. Electron., vol. E75-C, no. 10, pp. 11811187,
Oct. 1992.

[18] Dr. Fa Foster Dai’s “ELEC 6190 Introduction to Digital and Analog IC Design,” Slide
7, Page 2.

[19] M. Alioto and G. Palumbo, “Design strategies for source coupled logic gates,” IEEE
Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, no. 5, pp. 640654, May 2003.

[20] A. Ismail and M. Elmasry, “A low power design approach for MOS current mode logic,”
in Proc. IEEE Int. SOC Conf., Sep. 2003, pp. 143146.

[21] Osman Musa and Maitham Shams, “An efficient delay model for MOS current mode
logic automated design and optimization,” IEEE Transactions on Circuits and Systems-
I: Regular Papers, vol. 57, no. 8, August 2010.

[22] Xueyang Geng, Fa Foster Dai, J. David Irwin and Richard C. Jaeger, “24-Bit 5.0 GHz
Direct Digital Synthesizer RFIC With Direct Digital Modulations in 0.13µm SiGe BiC-
MOS Technology,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 944-954,
May 2010.

[23] Wikipedia, “http://en.wikipedia.org/wiki/List_of_Intel_microprocessors”.

[24] Xuelian Liu, Hadrian O. Aquino, Alexey Gutin and John. Mcdonald, “A 125-ps Access,
4GHz, 16KB BICMOS SRAM,” IEEE International Midwest Symposium on Circuits
and Systems, pp. 1222-1225, Aug 2010.

77

