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This study attempts to define an optimal hull shape for a boat towing either a skier or 

a wakeboarder.  Two methods for determining a free surface deformation (both hull and 

wake shape) given an applied pressure disturbance are compared.  The methods derive 

from the same potential flow, but vary in how the pressure disturbance is defined; one 

uses a Fourier type approximation, the other a piecewise constant interpolation. 

Using the results from the comparison of the two methods, an approach for simulating 

the wake shape given different hull shapes (via the pressure distribution) is developed.  

Using this approach the hull shape is optimized based on two wake parameters: height 

and slope.  Examples of this optimization are presented for different towing scenarios.  

The resulting hulls and wakes are then examined for realism. 
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NOMENCLATURE

A amplitude coefficient of a pressure patch (N/m2) 

B half–beam (m) 

E leading edge contribution tensor (-) 

*E  final wave height basis tensor (-) 

I total number of longitudinal solution points in the wetted area (-) 

J total number of transverse solution points in the wetted area (-) 

L wetted length of the craft (m) 

M total number of longitudinal pressure patches (-) 

N total number of frequency multiples / transverse pressure patches (-) 

P pressure (N/m2) 

U vehicle speed (m/s) 

a pressure patch length (m) 

b pressure patch width (m) 

g acceleration due to gravity (m/s2) 

i longitudinal index of solution point (-) 

j transverse index of solution point (-) 

k solution point index (-) 

k0 fundamental wave number (1/m) 

m longitudinal index of pressure patch (-) 
 xiv



 

n frequency multiple of the pressure patch / transverse index of pressure patch (-) 

p pressure strip index (-) 

t time (s) 

u x coordinate of velocity (m/s) 

v y coordinate of velocity (m/s) 

w z coordinate of velocity (m/s) 

x forward coordinate (m) 

y port coordinate (m) 

z up coordinate (m) 

î  forward direction (-) 

ĵ  port direction (-) 

k̂  up direction (-) 

v  total fluid velocity (m/s) 

Φ total flow potential (m2/s) 

ζ height of the fluid surface (m) 

η  coordinate of the pressure (-) ĵ

θ wave angle (rad) 

ξ  coordinate of the pressure (-) î

ρ fluid density (kg/m3) 

φ craft disturbance potential (m2/s) 

 xv
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1. INTRODUCTION

Wake shape is an important factor to consider when designing recreational or 

professional water skiing towboats.  With the gain in popularity of wakeboards and other 

water sports, the “ideal” wake has become much more complicated.  Most professional 

ski events are based around objects in the water: slalom buoys, jump ramp, etc [AWSA, 

IWSF].  For these events the competitor wants as little interference from the wake as 

possible, i.e. a flat wake.  Wakeboard events, on the other hand, rely on the wake for the 

competition.  Most events are based around using the wake as a launching platform for 

varying jumps [WWA, WWC].  For these events the competitors want a wake shaped to 

allow higher jumping.  The shape of the wake is affected by several boat characteristics 

and operating conditions such as trim, speed, and mean draft.  The largest design variable 

is the hull shape. 

Most current towboats are designed based on experience and past designs.  The 

potential for radical improvements to boat design exists in utilizing computer simulations 

to test designs before they are manufactured.  There are two philosophies to designing 

towboats; the first is pure design (either wakeboard or ski).  These boats are designed for 

the sole purpose of towing a specific piece of equipment.  Other considerations such as 

passenger room and comfort are secondary to towing.  The boat is designed to create the 

best wake for the specific equipment.  A boat with this design is usually reserved for 

tournament tow boats; they are too limited for general public enjoyment.  An example of 



 

this type of design is the Nautique Ski 196.  Note the closed bow and limited seating.  

This boat is not designed for passengers.  Also notice the engine compartment in the 

center of the boat; this configuration is known as an inboard engine.  Directly in front of 

the engine compartment is the ski pylon where the tow rope is attached.  The forces from 

the rope act near the center of the boat and so pull it from its course less.  It is not 

obvious, but the hull is also designed specifically with the wake in mind. 

 

Fig. 1 Nautique Ski 196 

The second philosophy is mixed design.  These boats are for more general 

recreational use.  The wake produced can be used for either skiing or wakeboarding, but 

is not ideal for either.  An example of this type of design is the Monterey 268 SS 

SuperSport.  This boat has an open bow and much more seating.  The engine 

compartment is at the rear of the boat in what is known as an inboard/outboard 

configuration.  There is no ski pylon interior to the boat to attach the tow rope; instead on 

the transom there is a hook.  Because the rope attach point is at the rear of the boat, when 

the skier swings wide it can cause the rear of the boat to also move in that direction.  The 

hull of this boat is designed more for passenger comfort than wake performance. 
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Fig. 2 Monterey 268 SS SuperSport 

Wakes shapes for this type of boat are very hard to optimize.  The main differences in 

operating conditions between skiing and wakeboarding are rope length (rider placement 

in the wake) and boat speed.  The goal of the design is to make the wake act differently 

based on these two conditions.  Recently some companies have started putting water 

tanks at the stern of boats such as the Super Air Nautique 210; these tanks increase both 

draft and trim when full allowing the boat to create a bigger wake for wakeboarding.  

Another feature of most pure wakeboarding tow boats is the tower which takes the place 

of the ski pylon.  The tow rope attaches much higher allowing for better jumps, etc. 
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Fig. 3 Super Air Nautique 210 

A design method using computer simulations would significantly reduce the cost and 

increase the performance of the hull design.  The traditional method to simulate fluid 

flow is computational fluid dynamics (CFD).  This method involves numerically solving 

the Navier-Stokes equations [Currie]: 

 ( ) ( ) ( )2 P
t

ρ ρ µ λ µ
∂

+ − ∇ − ∇ +∇ =+∇ ∇
∂
u u uu ug g ρ f . (1.1) 

with µ and λ viscosity parameters of the fluid.  In general this is not an easy problem to 

even simulate.  One simplification that can be made is to assume inviscid and 

incompressible flow resulting in Euler’s equations: 

 ( ) P
t

ρ ρ ρ∂
+ +∇ =∇

∂
u uug f . (1.2) 

This simplification removes some terms from the differential equations, but they are 

still nonlinear and without a closed-form solution.  Several methods for numerically 

approximating the solution to this equation are available.  These methods work very well 

for fluids in enclosed spaces.  They provide in-depth knowledge of both the pressure and 

the velocity of the fluid throughout the entire volume in question.  Determining the wake 
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shape does not require that knowledge, however; it only requires the free surface height.  

The height can be determined from the fluid pressure and velocity information but 

several problems with the CFD methods exist.  One problem is the boundary conditions: 

to numerically approximate the solution the conditions at the boundary of the volume in 

question must be known.  In enclosed spaces this is generally a condition based on the 

velocity of the fluid at a solid wall or a velocity or pressure profile at an inlet or outlet.  In 

open water this is not as easy to determine.  Related to the boundary conditions is a 

bigger problem, the free surface itself.  One boundary of the fluid is the free surface.  

CFD methods require the boundary location to be known.  However, for the wake shape 

problem the air-fluid boundary location is the unknown.  To solve this problem using 

CFD an initial free surface height must be guessed and then the solution iterated by 

varying the shape and position of the free surface until all known boundary conditions are 

met.  This would take an inordinate amount of time, particularly because the free surface 

consists of many different points each of which must be varied independently.  In 

conclusion, a different method needs to be employed to determine the wake shape a boat 

produces. 

Researchers have studied the flow around planing bodies for many years.  The initial 

research centered on determining equations for the flow by using different simplifications 

for the hull shape [Sottorf, Maruo 1951, Maruo 1967].  This research was used to 

calculate the loading on the hull and thus the horsepower requirements for the boat 

[Savitsky].  The research evolved to using numerical technique approximations instead of 

simplifying the hull [Wang, Shen, Doctors].  Two numerical approaches evolved; the first 

uses a series of vortices to represent the flow [Lai].  The more common approach is to use 
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pressure elements to represent the hull on the surface [Tong, Cheng].  This idea has 

proven successful for determining lift and drag for hulls [Wellicome]; it is only recently 

being used to also determine the free surface height behind the boat [Scullen]. 

The idea to determine the wake shape is to take a pressure distribution on a free 

surface with a known wake shape.  If this wake shape is linear in the pressure distribution 

then many of the pressures can be combined over the wetted area of the boat.  The 

pressures are varied so the deformation of the surface in the wetted area matches the hull 

shape.  The free surface height behind the wetted area from the resulting pressures is then 

the wake shape.  Ideally, the method could be inverted so that a given hull shape (or 

perhaps even desired wake shape) produces the pressure.  This research compares two 

pressure functions used as the basis for the pressure distribution.  It then extends the 

method into finding the wake created by using many pressure patches.  The method 

presented allows any pressure to be modeled and therefore any hull should be possible.  

Using the developed method an optimal hull shape for both skiing and wakeboarding 

given the constraints each activity is under is examined. 



 

2. MATHEMATICAL DERIVATIONS

As the introduction mentioned, traditional computational fluid mechanics methods are 

not appropriate for computing the wake a planing craft creates.  Instead, a technique that 

creates basis functions linear in the pressure amplitude will be utilized.  These basis 

functions are summed together with different pressures to create the hull shape of the 

craft.  The pressure that created this hull is then used to create the wake shape. 

2.1. BASIC ASSUMPTIONS AND RELATIONSHIPS 

To create the surface basis functions, the following assumptions are made about the 

fluid and craft: 

1. The craft is traveling at a constant speed (U).  This assumption is equivalent to a 

stationary craft in a flow with constant velocity. 

2. The fluid is inviscid. 

3. The fluid is incompressible. 

4. The fluid has infinite depth. 

5. The disturbance created by the craft is small compared to the constant velocity 

flow. 

The flow created under these conditions can be represented as a potential flow.  The 

potential of the total flow (Φ) is given by: 

 UxφΦ = − . (2.1) 
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where φ is the potential of the disturbance created by the craft.  x ( ) is the direction the 

craft is traveling, y ( ) is to the port side of the craft, and z ( ) is up. 

î

ĵ k̂

 

Fig. 4 Coordinate Frame and Uniform Flow 

y

x

U 

From the definition of a potential flow the total fluid velocity is determined by 

 ˆ ˆ ˆu v w= + + = ∇Φv i j k . (2.2) 

The following notation will be used to denote derivatives throughout the paper. 

 
2

,x xyx x y
∂Θ ∂

Θ = Θ =
Θ

∂ ∂ ∂
 (2.3) 

where Θ is a generic scalar variable.  Along with these basic assumptions, several 

preliminary properties are required to derive the velocity potential. 
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2.1.1. Conservation of Mass  

The first property to examine for the flow is conservation of mass [Currie], 

 0
V

D dV
Dt

ρ =∫ . (2.4) 

ρ is the fluid density, t is time, and V is the volume of interest.  Expanding this equation 

using Reynolds’ Transport Theorem, 

 ( )t
V V

D dV dV
Dt

Θ = Θ +∇ Θ∫ ∫ v , (2.5) 

the conservation of mass equation (2.4) then becomes 

 ( ) ( ) ( ) 0t x y z
V

u v w dVρ ρ ρ ρ⎡ ⎤+ + + =⎣∫ ⎦ . (2.6) 

This equation must be true for an arbitrary volume, so the integrand must always be zero, 

 ( ) ( ) ( ) 0t x y z
u v wρ ρ ρ ρ+ + + = . (2.7) 

Expanding the derivatives in this equation gives 

 ( ) 0t x y z x y zu v w u u uρ ρ ρ ρ ρ+ + + + + + = . (2.8) 

Because the fluid is assumed incompressible ( 0αρ = ) the conservation of mass equation 

is further simplified to 

 0x y zu v w+ + = . (2.9) 

In terms of the perturbation potential, the conservation of mass equation is 

 0xx yy zzφ φ φ+ + = . (2.10) 
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2.1.2. Kinematic Boundary Condition  

The next property to examine is the kinematic boundary condition.  It states that the 

normal velocity of the surface ( Dz
Dt

) is equal to the change in height of the surface with 

respect to time ( D
Dt
ζ ) where ζ is the height of the fluid surface.  This idea is written as 

 ( ) 0D z
Dt

ζ− = . (2.11) 

Expanding this using the definition of a material derivative, 

 t x y
D u v w
Dt y
Θ
= Θ + Θ + Θ + Θ , (2.12) 

the kinematic boundary condition (2.11) becomes 

 ( ) ( ) ( ) ( ) (t x y

D z z u z v z w z
Dt

)z
ζ ζ ζ ζ− = − + − + − + −ζ . (2.13) 

The assumption that the craft is traveling at a constant speed implies the system is in 

steady state, 

 ( )0 x y zu v w 1ζ ζ ζ= − − + − . (2.14) 

Written in terms of the perturbation potential, 

 0 x x x y y z zU zφ ζ ζ φ ζ φ ζ= − + − + − φ

z

. (2.15) 

Because of the assumption that the perturbation potential (and therefore the change in 

surface height) is small, it is safe to linearize this equation.  Additionally, it is assumed 

that this equation applies on the undisturbed free surface (z = 0) instead of the true 

surface (z = ζ).  Therefore, the kinematic boundary condition is 

 0 xUζ φ= + . (2.16) 
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2.1.3. Dynamic Boundary Condition 

The next boundary condition to examine involves the conservation of momentum 

(Bernoulli’s equation) applied on the surface of the fluid.  The Bernoulli equation states 

 1
2

P G F
ρ
+ ∇Φ⋅∇Φ − =  (2.17) 

where F is the Bernoulli constant, G is the gravity term (G gz= − ), and P is the pressure.  

On the free surface the Bernoulli equation is, 

 ( 2 2 2 21 2
2 x y z x

PF U )U gφ φ φ φ ζ
ρ

= + + + − + + . (2.18) 

To determine the Bernoulli constant, the Bernoulli equation is evaluated far upstream 

where the surface is undisturbed (ζ = 0) the pressure is atmospheric (P = 0) and the 

velocity is constant ( ˆU= −v i ).  The resulting Bernoulli constant is 

 21
2

F U= . (2.19) 

Substituting this constant into the Bernoulli equation (2.18) and linearizing results in the 

dynamic boundary condition: 

 0 x
P U gφ ζ
ρ

= − + . (2.20)  

This equation will be used to determine the wave height, so the last term is left in.  In all 

other aspects it is assumed to apply on the undisturbed free surface, however. 

2.1.4. Far Field Boundary Condition 

The final boundary condition to consider is the far field boundary condition.  This 

condition derives from the assumptions about the fluid far away from the disturbance 

created by the craft.  In particular, the condition holds in two locations.  The first is far 
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below the craft ( z = −∞ ); the second is far ahead of the craft ( x = ∞ ).  The condition 

states that the velocity perturbation will not affect the vertical velocity of the fluid 

( 0zφ = ). 

2.2. VELOCITY POTENTIAL 

The conditions presented thus far apply to any velocity potential that meets the 

assumptions presented in section 2.1.  Wehausen and Laitone derive a velocity potential 

for regular waves that meets these assumptions and describes the fluid behavior created 

by applying a pressure to the free surface of the fluid.  This potential is 

 

( )

( ) ( )

( ) ( )

2

2

2
02 0

2
3 sec

0
2

2
0 0

1 1, sec
2 sec

sin cos cos sin sec

cos sec cos sec sin

kz

S

kz

keP
U k k

k x k y dkd k e

k x k y d d d

π

π

π
θ

π

φ ξ η θ
πρ π θ

ξ θ η θ θ θ

ξ θ η θ θ θ ξ η

∞

−

−

⎧⎪= ⎨ −⎪⎩

− − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎫⎪⎡ ⎤− −⎡ ⎤ ⎬⎣ ⎦ ⎣ ⎦
⎪⎭

∫∫ ∫ ∫

∫g

g

 (2.21) 

where S is the wetted area of the applied pressure, ξ and η are the coordinates of the 

pressure, θ is the wave angle, k is the wave number, and k0 is the fundamental wave 

number defined as 

 0 2

gk
U

= . (2.22) 

To determine the surface height, the dynamic boundary condition (2.20) is used. This 

equation requires the partial derivative of the velocity potential with respect to the 

longitudinal direction on the free surface.  This partial derivative is 
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( )

( ) ( )

( ) ( )

2 2

20
02 0

2
2 4
0

2

2
0 0

1 1,
2 sec

cos cos cos sin sec

sin sec cos sec sin .

x z
S

kP
U k k

k x k y dkd k

k x k y d d d

π

π

π

π

φ ξ η
πρ π θ

ξ θ η θ θ θ

ξ θ η θ θ θ

∞

=
−

−

⎧⎪= ⎨ −⎪⎩

− − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎫⎪⎡ ⎤− −⎡ ⎤ ⎬⎣ ⎦ ⎣ ⎦
⎪⎭

∫∫ ∫ ∫

∫g

g ξ η

 (2.23) 

Solving the dynamic boundary condition (2.20) for surface height results in 

 

( ) ( )

( ) ( )

( ) ( ) ( )

2 2

2
02 0

2
2 4
0

2

2
0 0

1 1, ,
2 sec

cos cos cos sin sec

,
sin sec cos sec sin .

S

kx y P
g k k

k x k y dkd k

P x y
k x k y d d d

g

π

π

π

π

ζ ξ η
πρ π θ

ξ θ η θ θ θ

ξ θ η θ θ θ ξ η
ρ

∞

−

−

⎧⎪= ⎨ −⎪⎩

− − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎫⎪⎡ ⎤− − −⎡ ⎤ ⎬⎣ ⎦ ⎣ ⎦
⎪⎭

∫∫ ∫ ∫

∫g

g

 (2.24) 

An equation for wave height has now been developed; all that remains is to define the 

pressure acting on the surface and evaluate the integrals. 

The double integral over the surface does not have an analytical solution for all 

pressures.  The solution could be solved numerically at this point, but that would involve 

solving four nested integrals numerically for each point in a solution grid.  This is very 

expensive computationally.  To reduce the computation time pressures are chosen that 

result in an analytical solution for the double integral over the surface. Two forms of 

pressure functions will be presented.  Both are linear in the pressure amplitude 

coefficients.  The first method creates a pressure that varies sinusoidally in the transverse 

direction (y, η) and is piecewise constant in the longitudinal direction (x, ξ).  The second 

method is piecewise constant in both the longitudinal and transverse directions. 

 13



 

2.3. SINUSOIDAL PRESSURE PATCHES 

The sinusoidally varying pressure method utilizes pressure patches that vary as sine 

waves in the transverse direction to approximate the true pressure [Cheng].  Multiple 

pressure patches over the same surface with different sine frequencies are added together.  

This is similar to a Fourier approximation of a function.  The total pressure is piecewise 

constant in the longitudinal direction.  In general, the form of the pressure is 

 ( ) ( )
1

( , ) sin
2

N

n
n

nP A B B
B
πξ η ξ η η

=

⎡ ⎤= + −⎢ ⎥⎣ ⎦
∑ B≤ ≤ . (2.25) 

The frequency of the sine wave is modified by changing n; An(ξ)  is the amplitude 

coefficient of the pressure patch, B is the half-beam, and L is the wetted length of the 

craft.  With this pressure, the surface equation (2.24) becomes 

 ( )

( ) ( )

( ) ( )

( ) ( )

0

1

1

0

1

1 , , ,
2

;
1 sin,

2

1 , , , ;
2

BN

n n
n B L

N

n
n

BN

n n
n B L

A S x y d d
g

B y B
nA x y Bx y

g B
y B

A S x y d d
B yg

ξ ξ η ξ η
πρ

πζ
ρ

ξ ξ η ξ η
πρ

= − −

=

= − −

⎧
⎪
⎪ − ≤ ≤
⎪⎪ ⎡ ⎤− += ⎨ ⎢ ⎥⎣ ⎦⎪
⎪ ≤ −
⎪

≤⎪⎩

∑ ∫ ∫

∑

∑ ∫ ∫

 (2.26) 

with 

 

( ) ( ) ( )

( ) ( )

( )

2 2

2
02 0

2
2 4
0 0

2

2
0

1, , , sin cos cos
2 sec

cos sin sec sin sec

cos sec sin .

n
n kS x y B k x

B k k

k y dkd k k x

k y d

π

π

π

π

πξ η η ξ
π θ

θ

η θ θ θ ξ θ

η θ θ θ

∞

−

−

⎧⎪⎡ ⎤= + −⎡ ⎤⎨ ⎣ ⎦⎢ ⎥ −⎣ ⎦ ⎪⎩

− + −⎡ ⎤ ⎡⎣ ⎦ ⎣

⎫⎪⎡ ⎤− ⎬⎣ ⎦
⎪⎭

∫ ∫

∫g

g

⎤⎦  (2.27) 
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Fig. 5 Sinusoidal Pressure Patch Definition 
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The first step in determining the wave height is to evaluate the double integral over 

the wetted area. 

2.3.1. Surface Integral 

The pressure is piecewise constant in the longitudinal direction, i.e. An(ξ) is piecewise 

constant in ξ: 
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a

 ( ) ( )

,1

,2

,

, 1

,

0 ; 0
; 0
; 2

; 1

; 2
;

0 ;

n

n

n n m

n M

n M

A a
A a a

A A am a m

A L a L a
A L L

L

ξ
ξ
ξ

ξ ξ

ξ
ξ

ξ

−

<⎧
⎪ − < <⎪
⎪ − < < −
⎪
⎪⎪= − < < − −⎨
⎪
⎪

− + < < − +⎪
⎪ − < < − +⎪
⎪ < −⎩

M

M
. (2.28) 



 

The length of a pressure patch is given by a, and m defines the particular longitudinal 

patch. Therefore, the surface height becomes 

 

( ) ( ) ( )

( )
( )

( )

( )
( ) ( )

0

,1 ,2
1 2

1 2

, , 1

1
,

1, , , , , ,
2

, , , , , ,

sin
2, , , .

B aN

n n n n
n B a a

a m L a

n m n n M n
am L a

N

L a n
n

n M n
L

x y A S x y d A S x y d
g

A S x y d A S x y

nA x y B
BA S x y d d

g

ζ ξ η ξ
πρ

,

d

ξ η ξ

ξ η ξ ξ η ξ

π

ξ η ξ η
ρ

−

= − − −

− − − +

−
− − +

− +
=

−

⎡
= +⎢

⎣

+ + + +

⎡ ⎤+⎢ ⎥⎤ ⎣ ⎦+ −⎥
⎦

∑ ∫ ∫ ∫

∫ ∫

∑
∫

L L  (2.29) 

To simplify notation, it is assumed the transverse location is in the half breadth of the 

craft ( B y B− ≤ ≤ ).  If this is not the case the last term of the equation drops out. The 

condition will be added back later.  An intermediate variable is used to evaluate the 

longitudinal integration: 

 ( )* 1a mξ ξ= + − . (2.30) 

Therefore, the generic longitudinal integral appears as 

 ( )
( )

( )(
1 0

*, , , , , 1 ,
a m

n n
am a

S x y d S x y a m d) *ξ η ξ ξ η ξ
− −

− −

= − −∫ ∫ . (2.31) 
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The integrand of this integral (2.27) is 

 

( )( ) ( )

( )( )
( )

( )( )

( ) }
( )( ) ( )

2 2
*

2
02 0

*

2
2 4 *
0 0

2

2
0

* * *
,

1, , 1 , sin
2 s

cos 1 cos

cos sin

sec sin 1 sec

cos sec sin

, , 1 , , , , .

n

n n m

n kS x y a m B
B k k

k x a m

k y dkd

k k x a m

k y d

S x y a m S x y

π

π

π

π

πξ η η
π θ

ξ θ

η θ θ

ec

θ ξ θ

η θ θ θ

ξ η ξ η

∞

−

−

⎧⎪⎡ ⎤− − = + ⎨⎢ ⎥ −⎣ ⎦ ⎪⎩
⎡ ⎤− + −⎣ ⎦

−⎡ ⎤⎣ ⎦

⎡ ⎤+ − + −⎣ ⎦

⎡ ⎤−⎣ ⎦

− − =

∫ ∫

∫

g

g

g

 (2.32) 

Substituting this integrand back into the height equation (2.29) results in 

 

( ) ( ) ( )

( ) ( )

( )
( ) ( )

( )

0 0
* * * * * *

,1 ,1 ,2 ,2
1

0 0
* * * * * *

, , , 1 , 1

0
* * * 1

, ,

,

1, , , , , , ,
2

, , , , , ,

sin
2, , ,

1,
2

BN

n n n n
n B a a

n m n m n M n M
a a

N

n
n

n M n M
a

n m

x y A S x y d A S x y d
g

A S x y d A S x y d

nA x y B
BA S x y d d

g

x y A
g

ζ ξ η ξ
πρ

ξ η ξ ξ η ξ

π

ξ η ξ η
ρ

ζ
πρ

= − − −

− −
− −

=

−

⎡
= +⎢

⎣

+ + + +

⎡ ⎤+⎢ ⎥⎤ ⎣ ⎦+ −⎥
⎦

=

∑ ∫ ∫ ∫

∫ ∫

∑
∫

L L

( )
( )

ξ η ξ

( )0
* * * 1
,

1 1

sin
2, , , .

N

B nN M
n

n m
n m B a

nA x y B
BS x y d d

g

π

ξ η ξ η
ρ

=

= = − −

⎡ ⎤+⎢ ⎥⎣ ⎦−
∑

∑∑ ∫ ∫

(2.33) 

The surface integrand (2.32) is split into two terms, the single and the double integral: 

 ( ) ( ) ( )* * * * * *
, , ,1 , ,2, , , , , , , , ,n m n m n mS x y S x y S x yξ η ξ η= + ξ η . (2.34) 
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with 

 

( ) ( )

( )( ) ( )

( ) ( )

( )( ) ( )

2 2
* *
, ,1 2

02 0

*

2
* * 2 4
, ,2 0

2

* 2
0 0

1, , , sin
2 sec

cos 1 cos cos sin

, , , sin sec
2

sin 1 sec cos sec sin .

n m

n m

n kS x y B
B k k

k x a m k y dkd

nS x y k B
B

k x a m k y d

π

π

π

π

πξ η η
π θ

ξ θ η θ

πξ η η θ

θ

ξ θ η θ θ

∞

−

−

⎡ ⎤= +⎢ ⎥ −⎣ ⎦

⎡ ⎤− + − −⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤= +⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤− + − −⎣ ⎦⎣ ⎦

∫ ∫

∫

θ

 (2.35) 

This implies the surface integral term of the wave height equation (2.33) is also split into 

two parts:  

 ( ) ( ) ( ) ( ) (, ,1 , ,2
1 1 1

, , , sin
2

N M N

n m n m n
n m n

ng x y g x y g x y A x y B
B
πρ ζ ρ ζ ρ ζ

= = =

⎡ ⎤⎡ ⎤= + −⎣ ⎦ ⎢ ⎥⎣ ⎦
∑∑ ∑ )+  (2.36) 

with 

 

( ) ( )

( )( )
( )

( ) ( )

( )( )
( )

0

20 2
,

, ,1 2 2
02 0

*

*

2 20
, 4

, ,2
2

*
0

2
0

, sin
2 2 s

cos 1 cos

cos sin

, sin sec
2 2

sin 1 sec

cos sec s

B
n m

n m
B a

B
n m

n m
B a

A n kx y B
B k k

k x a m

k y dkd d d

A k nx y B
B

k x a m

k y

π

π

π

π

πζ η
ecπ θ

ξ θ

η θ θ ξ η

πζ η
π

ξ θ

η θ

∞

− − −

− − −

⎡ ⎤= +⎢ ⎥ −⎣ ⎦

⎡ ⎤− + −⎣ ⎦
−⎡ ⎤⎣ ⎦

⎡ ⎤= +⎢ ⎥⎣ ⎦

⎡ ⎤− + −⎣ ⎦

−

∫ ∫ ∫ ∫

∫ ∫ ∫

g

g

g

g *in .d d dθ θ ξ η⎡ ⎤⎣ ⎦

θ
 (2.37) 

These two equations are integrated with respect to the pressure coordinates (ξ and η) 

resulting in 

 18



 

 

( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

2
,

, ,1 2 2
02 0

1,1 1,2 2,1 2,2

2
, 0 3

, ,2
2

1,1 1,2 2,1 2,2

, sec
4 sec

, , , ,

, sec
4

, , , ,

n m
n m

n m
n m

A kx y
k k

I k I k I k I k dkd

A k
x y

J k J k J k J k d

π

π

π

π

ζ θ
π θ

θ θ θ θ

ζ θ
π

θ

θ θ θ θ

∞

−

−

=
−

⎡ ⎤+ − −⎣ ⎦

=

⎡ ⎤+ − −⎣ ⎦

∫ ∫

∫

g

g θ

 (2.38) 

with 

 

( )
( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )

( ) ( )
( ) ( )

,

2 2
0 0

,
2

0

1

2

1 sin sin
,

1 sin 1,22
1,21 cos sec cos sec

,
1 sec sin

2
1 cos sin

cos sin .

n
l l

l j
j

n
l l

l j
j

k k
I k nk lB

jk k
J k nk

B
x a m y B

x am y B

ω ω
θ πθ

ω θ ω θ
θ πθ θ

ω θ θ

ω θ θ

+ −

+ −

±

±

− −
=

− + =
=− −

=
− +

= + − +⎡ ⎤⎣ ⎦
= + +

m

m

 (2.39) 

It is important to note that when the pressure strip is rotated by the wave angle θ, 1ω
±  and 

2ω
±  correspond to the leading and trailing edges of the strip respectively.  The wave 

height component equations (2.38) are written in terms of the leading and trailing edge 

contributions as 

 
( ) ( ) ( )
( ) ( ) ( )

, ,1 , ,1, , ,1,

, ,2 , ,2, , ,2,

, ,

, ,
n m n m L n m T

n m n m L n m T

,

,

x y x y x y

x y x y

ζ ζ ζ

ζ ζ ζ

= −

= − x y
 (2.40) 
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with 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2
,

, ,1, 1,1 1,22 2
02 0

2
,

, ,1, 2,1 2,22 2
02 0

2
, 0 3

, ,2, 1,1 1,2
2

, 0
, ,2,

, sec , ,
4 sec

, sec , ,
4 sec

, sec , ,
4

,

n m
n m L

n m
n m T

n m
n m L

n m
n m T

A kx y I k I
k k

A k

k dkd

x y I k I
k k

A k
x y J k J k d

A k
x y

π

π

π

π

π

π

k dkd

ζ θ θ
π θ

θ θ

ζ θ θ
π θ

ζ θ θ θ θ
π

ζ

∞

−

∞

−

−

⎡ ⎤= +⎣ ⎦−

⎡ ⎤= +⎣ ⎦−

⎡ ⎤= +⎣ ⎦

=

∫ ∫

∫ ∫

∫

θ θ

( ) ( )
2

3
2,1 2,2

2

sec , , .
4

J k J k d
π

π

θ θ θ θ
π −

⎡ ⎤+⎣ ⎦∫

 (2.41) 

The trailing edge is equivalent to the leading edge with the longitudinal coordinate (x) 

shifted by the pressure patch length (a). 

 ( ) ( )2 1, ,x y x aω ω± ±= − y , (2.42) 

which implies 

 
( ) ( )
( ) ( )

, ,1, , ,1,

, ,2, , ,2,

, ,

, ,
n m T n m L

n m T n m L .

x y x a y

x y x a

ζ ζ

ζ ζ

= −

= − y
 (2.43) 

Therefore, each of the wave height components (2.40) only depends on the leading edge 

contribution: 

 
( ) ( ) ( )
( ) ( ) ( )

, ,1 , ,1, , ,1,

, ,2 , ,2, , ,2,

, ,

, ,
n m n m L n m L

n m n m L n m L

,

, .

x y x y x a y

x y x y x a

ζ ζ ζ

ζ ζ ζ

= − −

= − − y
 (2.44) 

Overall, the total surface height is the sum of the heights made by each pressure patch 

and the static deflection from the pressure being applied, i.e. 

 ( ) ( ) ( ) (,
1 1 1

, , sin
2

N M N

n m n
n m n

ng x y g x y A x y B
B
πρ ζ ρ ζ

= = =
)⎡ ⎤= − +⎢ ⎥⎣ ⎦

∑∑ ∑ . (2.45) 
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The contribution of each pressure patch is written as a leading edge component and a 

trailing edge component.  The trailing edge component is identical to, but offset from, the 

leading edge component: 

 ( ) ( ) ( ), , , , ,, ,n m n m L n m Lg x y g x y g x a yρ ζ ρ ζ ρ ζ= − ,− . (2.46) 

The leading edge component is split into two terms, a single and a double integral: 

 ( ) ( ) ( ), , , ,1, , ,2,, ,n m L n m L n m L , .x y x yζ ζ ζ= + x y  (2.47) 

The wetted area integral is now evaluated.  Two integrals remain: the wave number 

and wave angle integrals.  Only the double integral term contains the wave number 

integral.  To make the wave angle integration similar for both terms, the wave number 

integral is evaluated next. 

2.3.2. Wave Number Integral 

To evaluate the wave number integral in the double integral term of the wave height 

(2.41) a complex integration method must be employed.  The basic form of the integral in 

this method is 

 1,2
00

1, 2
secj j
kE I dk

k k θ

∞

=
−∫ j = . (2.48) 

With I1,j from equation (2.39) this integral becomes 

 
( ) ( ) ( )

( ) ( )20
0

1 sin sin
1,2

sec 1 sin
2

n
m m

j
j

k k k
E

nk k k
B

ω ω

πθ θ

+ −∞ ⎡ ⎤− −⎣ ⎦= =
⎡ ⎤− − +⎢ ⎥⎣ ⎦

∫ dk j . (2.49) 
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To evaluate this integral a complex variable and equation are defined: 

 
( ) ( ) ( )

1

1 2

1
iQ

j
j

Q k iu

Q eF Q
Q k s Q k

ω±

±

= +

= − −
− −

 (2.50) 

where s is simply a variable substitution and k1 and k2 are values at which the function 

becomes singular.  To match the integrand, 

 

2
1 0

2

sec

( 1)
2 sin

sin .

j

k k
nk

B
s

θ
π
θ

θ

=

= − −

= −

 (2.51) 

On the real axis this function evaluates to 

 ( ) ( ) ( )
1

1 2

1
ik

j
j

k eF k
k k s k k

ω±

± = − −
− −

. (2.52) 

It can also be written in terms of sine and cosine functions,  

 ( ) ( )
( ) ( )

( )
1

1 2

cos sin
1 j

j

k i kkF k
k k s k k

1ω ω± ±

±
+

= − −
− −

, (2.53) 

instead of an exponential.  This equation is beginning to look like the integrand presented 

above.  In fact the integral in equation  (2.49) is 

 ( ) ( ) ( ) ( ) ( )1 1
0 0

1 sgn Im sgn Imn
j jE F k dk F k dkω ω

∞ ∞
+ + − −

j

⎧ ⎫ ⎧
= − −

⎫
⎨ ⎬ ⎨
⎩ ⎭ ⎩ ⎭
∫ ⎬∫

j

. (2.54) 

This integral is divided into two parts: 

 ( )1 n
j jE e e+ −= − −  (2.55) 
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with 
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k dk ( ) ( )1
0

sgn Imj je Fω
∞

± ± ±⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∫ . (2.56) 

In the complex plane, the line from zero to infinity is divided into five parts.  Part one 

lies on the real axis and goes from the origin to immediately before the first singularity.  

Part two circles the first singularity with an infinitely small radius.  Part three is also on 

the real axis between the two singularities.  Part four circles the second singularity similar 

to part two.  Part five is on the real axis again and goes from the second singularity to 

infinity.  Adding two more parts extends this line to a closed contour.  Part six is a quarter 

circle from the real axis to the imaginary axis with an infinite radius, and part seven lies 

on the imaginary axis from infinity back to the origin.   

u 

 

Fig. 6 Complex Plane and Line Integrals 
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The real integral from zero to infinity is equivalent to an integral over segments one, 

three, and five: 
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j Q dQ ( ) ( )
1 3 5

1sgn Imj
l l l

e Fω± ± +

+ +

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭
∫ . (2.57) 

Using the Cauchy Theorem, the line integral over a closed contour is zero, 

 ( ) 0
c

j
l

F Q± =∫  (2.58) 

and the integral over the real segments written in terms of the other segments is 

 ( ) ( )
1 3 5 2 4 6 7

j
l l l l l l l

F Q F Q±

+ + + + +

= −∫ ∫ j
±

0

. (2.59) 

Therefore, equation (2.57) becomes 

 . (2.60) ( ) ( ) ( ) ( ) ( )
2 4 6 7

1sgn Imj j j j j
l l l l

e F Q dQ F Q dQ F Q dQ F Q dQω± ± ± ± ± ±
⎧ ⎫⎪ ⎪= − + + +⎨ ⎬
⎪ ⎪⎩ ⎭
∫ ∫ ∫ ∫

To evaluate this total integral, each of the component integrals is studied separately. 

The first integral to examine is over the l2 segment.  The following parameters define 

the line to integrate over: 

 . (2.61) 2 1: , 0i il Q k re dQ ire d rβ β β β π= + = ≤ ≤ →

The integral therefore becomes 

 ( ) ( )
( )

( )
1 1

2

0
1

0
1 1 1 2

lim 1
ii k rei

j i
j i ir

l

k re eF Q dQ ire d
k re k s k re k

β ωβ
β

β β
π

β
±+

±

→

+
= − −

+ − + −∫ ∫ . (2.62) 

Evaluating the limit, gives 

 ( ) ( ) ( )
1 1

2

0
1

1 2

1
ik

j
j

l

ik eF Q dQ d
s k k

ω

π

β
±

± = − −
−∫ ∫ , (2.63) 



 

or 

 ( ) ( )
( )

1 1

2

1

1 2

1 ikj

j
l

ik e
F Q dQ

s k k

ωπ
±

± −
=

−∫ . (2.64) 

In terms of sine and cosine functions the integral is 

 ( ) ( )
( ) ( ) ( )

2

1
1 1 1 1

1 2

1
sin cos

j

j
l

k
F Q dQ k i k

s k k
π

ω± ±−
ω±⎡ ⎤= − +⎣ ⎦−∫ . (2.65) 

Taking the imaginary component of this integral leads to 

 ( ) ( )
( ) (

2

1
1 1

1 2

1
Im cos

j

j
l

k
F Q dQ k

s k k
π )ω± ±

⎧ ⎫ −⎪ ⎪ =⎨ ⎬ −⎪ ⎪⎩ ⎭
∫ . (2.66) 

The next integral to consider is over the l4 segment.  The following parameters define 

this segment: 

 4 2: , 0i il Q k re dQ ire d rβ β β β π= + = ≤ ≤ → 0 . (2.67) 

The integral over this segment is: 

 ( ) ( )
( )

( )
2 1

4

0
2

0
2 1 2 2

lim 1
ii k rei

j i
j i ir

l

k re eF Q dQ ire d
k re k s k re k

β ωβ
β

β β
π

β
±+

±

→

+
= − −

+ − + −∫ ∫ . (2.68) 

This integral is split into two conditions, one where the singularity is positive and one 

where it is negative.  If the singularity is positive (k2 > 0), the limit evaluates to the l2 

component: 
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0
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1 ikj

j
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This integral is solved as 
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j
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Written in terms of sine and cosine functions the integral is 
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1
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j

j
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k
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If the singularity is negative (k2 < 0), the limit evaluates to 

 ( )
4

0j
l

F Q dQ± =∫ . (2.72) 

Therefore, the total imaginary component of this integral is 
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∫ . (2.73) 

To simplify evaluation of this function, the inequality condition is converted into terms of 

wave angle over which this function will be integrated.  From equation (2.51) the 

singularity being positive (k2 > 0) implies 

 
( 1) 0

2 sin
( 1) 0.
sin

j

j

n
B
π
θ

θ

− − >

−
<

 (2.74) 

j is given, so this function solved explicitly in terms of the wave angle is 

 
1;0

2

2; 0.
2

j

j

πθ

π θ

= < <

= − < <
 (2.75) 
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The singularity being negative (k2 < 0) implies 

 
( 1) 0

2 sin
( 1) 0.
sin

j

j
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− − <

−
>

 (2.76) 

This function is also solved explicitly in terms of the wave angle as 
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2

j

j

π θ
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= < <
 (2.77) 

The next integral to consider is the l6 integral.  The following parameters define the 

line to integrate over: 

 6 : , 0
2

i il Q Re dQ iRe d Rβ β πβ β= = ≤ ≤ →∞ . (2.78) 

The integral therefore becomes 
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Written in terms of sine and cosine functions this integral is 
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Much of the integrand is simplified by taking the limit, but one term remains: 
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1 lim R ij
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s

π
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This term depends on the value of 1ω
± .  If 1 0ω± =  the integral is solved as 

 ( ) ( )
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2
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j
l

i
F Q dQ

s
π± − −

=∫ . (2.82) 

On the other hand, if  the integral evaluates to 1 0ω± ≠

 ( )
6

0j
l

F Q dQ± =∫ . (2.83) 

Therefore, taking the total imaginary component of this integral leads to 
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∫ . (2.84) 

Once again, it is simpler to write the condition in terms of the wave angle.  From 

equation (2.39), this condition becomes 
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( ) ( )
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m

m

m

 (2.85) 

Solving this condition explicitly for the wave angle produces 

 ( )1 1
tan

x a m
y B

θ − − + −⎛ ⎞
= ⎜

⎝ ⎠m ⎟ . (2.86) 

The last integral to consider is over the l7 segment. The following parameters define 

this segment: 

 7 : , 0l Q i dQ idγ γ γ= = ≤ < ∞ . (2.87) 
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This integral is 
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Through some manipulation, this is written as 
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The variable substitution 
ik
γλ =  is made producing the following integrals: 
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These solutions involve the even and odd auxiliary functions to the sine and cosine 

functions [Abramowitz]: 
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Using these integrals, the imaginary portion of the total l7 integral is 
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The total integral in equation (2.60) is divided into components along the same lines as 

these individual integrals: 

 30

j 1, 2, 3, 4, 5,j j j j je e e e e e± ± ± ± ± ±= + + + + . (2.93) 

 where 
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 (2.94) 



 

The integrals solved above are then substituted into these equations producing 
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 (2.95) 

At this point, the wave number integral of the double integral component in the 

leading edge contribution (2.41) has been solved using the complex integration method.  

The wave angle integral in both leading edge components still must be solved. 

2.3.3. Wave Angle Integral 

Each of the resulting functions from the previous section, equation (2.95), is 

integrated with respect to the wave angle in equation (2.41).  The second component in 

this equation is also integrated with respect to the wave angle.  To simplify this 
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integration, the second component is written in terms similar to the first component (after 

the complex integration).  The integrand of the second term (2.39) is 

 32

je ( )1, 6, 6,1 n
j jJ e+ −= − −  (2.96) 

with  
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The total leading edge contribution (2.47) is 
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Using the complex integration method (2.48) the wave number integration is simplified 

to 
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This leads to a natural splitting of the leading edge contribution (2.99) into two parts 

 , , 1 2n m L T Tζ = +  (2.100) 

where 
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These integrals are expressed in terms of the functions defined above (2.55), (2.93), and 

(2.96) as 
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Each part is made up of a positive and a negative contribution: 
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To simplify the integration, each of these integrals is written separately using 

equations (2.95) and (2.97).  The first integral is 
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The second integral has two forms depending on the value of j, and is 
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θ  (2.106) 

The third integral’s integrand only has a value at one wave angle and so is zero: 
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The fourth integral is 
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The fifth integral is slightly more complicated.  It is 
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One of the sign functions depends solely on the value of j and whether the wave angle is 

positive or negative.  To simplify the equation it is split into two parts; one for positive 

wave angles and the other for negative wave angles, i.e. 
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b j 5, 5, , 5, ,j a jR R R± ± ±= +  (2.110) 

with 
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The last integral is 
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Similar terms are grouped to match the equations in the Cheng and Wellicome paper.  

The first of these groups is 
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The next three terms are simply equations from above, 
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 (2.116) 

The positive and negative components of the leading edge contribution (2.104) are also 

written in terms of the Cheng and Wellicome functions: 
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This leads to the leading edge contributions (2.103) of 

 
( ) ( ) ( )

( ) ( )

, ,
,1 ,1 ,2 ,2 ,3 ,32 2

, 0 ,
,1 ,1 2, 2,2

1 1 1
4 4

1 1 .
4 4

n n nn m n m
j j j j j j

n nn m n m
j j j j

A A
T el el el el el

A k A
ef ef R R

π π jel

π π

+ − + − + −

+ − + −

⎡ ⎤
= − − + − − − − +⎢ ⎥

⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − − + − −⎣ ⎦ ⎣ ⎦

 (2.118) 

To get the total leading edge contribution (2.100) this function is summed with j set to 

one and two.  Based on this, the total last term of the leading edge contribution is 
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Using the functions in equation (2.106) this equation is 
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To simplify the integrand, the term 
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is studied.  From the definition given in equation (2.39) and trigonometric identities, this 

term is 
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If n is odd, the cosine terms are zero, leaving 
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which simplifies to 
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On the other hand, if n is even, the sine terms are zero, leaving 
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which simplifies to 
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Therefore, overall this function is equivalent to 
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So the equation (2.120) simplifies to 
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Writing this in terms of Cheng and Wellicome functions produces 
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To summarize, the total leading edge contribution is 
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using the following integrals 
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These integrals do not have an analytical solution; they must be numerically 

integrated.  Several of these integrals contain the even auxiliary function from equation 
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(2.91).  This function also does not have an analytical solution and either a series 

expansion or numerical integration must be employed. 

2.3.4. Evaluation Grid 

As was mentioned in equations (2.45) and (2.46), the wave height is given by 
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In the previous section it was determined that this equation cannot be solved analytically; 

therefore, a numerical solution is employed.  To approximate this function numerically, a 

grid of solution points is created.  Two indices are already in use; m corresponds to the 

longitudinal pressure strip in question and n corresponds to the frequency of the sine 

wave in the pressure.  To define where on the surface the height is being solved for, two 

more indices are used: i corresponds to the longitudinal (x) direction and j corresponds to 

the transverse (y) direction.  Using these indices the x and y coordinates become 
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I is the number of longitudinal points in the wetted area and J is the number of transverse 

points. 
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Fig. 7 Sinusoidal Pressure Hull Discretization 
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Similarly, the pressure coefficient from the last term of the wave height (2.133) is written 

in terms of the longitudinal index: 

 ( ) ,n i nA x A= i . (2.135) 

At this point a tensor containing the wave height from the leading edge contribution of 

each pressure strip and pressure frequency for each of the grid points is created: 
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It has been noted that the trailing edge contribution is expressed by shifting the leading 

edge equation by a patch length (2.43), i,e, 
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This is equivalent to shifting the index of the longitudinal coordinate: 
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i 1ix a x −+ = . (2.138) 

The same logic is used to express each of the subsequent pressure strips as the first strip 

offset: 
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These simplifications are then substituted back into the wave height equation (2.133): 
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This equation is further simplified by combining the n summations.  Additionally, the 

case where the transverse position is outside the half breadth of the craft (2.26) is now 

added back in, resulting in 
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The m sum is combined with the last term by including a condition when m = i, 
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According to the discretized longitudinal position equation (2.134), the term En,1,0,j 

corresponds to a location ahead of the craft.  Therefore, the wave height due this term is 

obviously zero.  A new wave height basis function tensor is generated that incorporates 

each of these changes. 
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Substituting back into the total wave height (2.142) produces 
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This equation is linear in the pressure coefficients.  It can be written in matrix form by 

introducing two new indices: p corresponds to the pressure strip and frequency and k 

corresponds to the location on the surface, i.e. 
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The wave height equation then becomes 
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which is written in matrix form as 

 *gρ ζ = AE . (2.147) 

In summary, the integrals in equation (2.132) are numerically integrated over a grid 

of points for the leading edge of the first pressure strip.  The grid is then shifted to 

generate the entire basis function tensor.  Using the basis function tensor and pressure 

coefficients the wave height is determined. 

2.4. CONSTANT PRESSURE PATCHES 

A second method to define the pressure patches is to assume a constant pressure over 

the entire patch [Scullen].  Multiple pressure patches with varying pressures are then 

created over the wetted area of the craft.  The wave height is linear in each of the 

contributing heights, so the heights from the individual pressure patches are added 

together to generate the total wave height, i.e. 
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Scullen and Tuck present the following wave height  
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 created by such a pressure patch, where 
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The partial derivative of this equation with respect to height, evaluated on the undisturbed 

free surface (z = 0), is 
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 Therefore, the wave height due to a single constant pressure patch is 
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Fig. 8 Constant Pressure Hull Discretization 
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As with the sinusoidal pressure method, a double integral over the wetted area of the 

craft must be evaluated to determine the surface height. 
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2.4.1. Surface Integral 

From Fig. 8 the surface integration is 
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To evaluate this integral two variable substitutions are made: 
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The surface integral evaluates to 
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The single patch wave height (2.152) becomes 
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The surface integration is accomplished.  Two integrations remain in this method, the 

wave angle and wave number integrations.  The first one to evaluate is the wave number 

integral. 
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2.4.2. Wave Number Integral 

To simplify the single patch wave height, a new function is created based on the four 

terms of the surface integral.  Essentially, a height component must be found for each of 

the four corners of the pressure patch.  The wave height equation becomes 
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Evaluating the wave number integral produces 

 ( ) ( ) ( )2

0 2
2

g log 2 H sin1,
2 sin cos

T T T T
x y d

π

π

π
ζ θ

π θ θ−

+ −
= − ∫  (2.159) 

with 

 2
0 0sec sec sinT k x k yθ θ= + θ , (2.160) 

g the even auxiliary function defined in equation (2.91), and H the Heaviside step 

function, defined as 

 ( )
0; 0

H
1; 0

z
z

z
<⎧

= ⎨ >⎩
. (2.161) 

2.4.3. Wave Angle Integral 

As with the sinusoidal pressure patches, the wave angle integral must be evaluated 

numerically.  To simplify this integration the corner integral (2.159) is divided into two 

parts, a local and a far field. 

 48



 

 ( ) ( ) ( )0 , ,L F ,x y x y xζ ζ ζ= + y  (2.162) 

The local field corresponds to the area directly under the craft and does not contribute to 

the wake created by the craft; it does have an effect near the craft, however.  This term is 

 ( ) ( ) ( ) ( )2

2
2

g log 2 H H sin1,
2 sin cosL

T T T x T
x y d

π

π

π
ζ θ

π θ θ−

+ − −⎡ ⎤⎣ ⎦= − ∫ . (2.163) 

The far field on the other hand contains the craft wake, but the integrand is much simpler: 

 ( ) ( ) 2

2

H sin,
sin cosF

x Tx y
π

π

dζ θ
π θ θ−

= ∫ . (2.164) 

The total wave height is found by summing the far field component at each corner of 

the pressure patch and accounting for the local field contribution which will be discussed 

in section 2.5.2. 

2.4.4. Evaluation Grid 

As with the sinusoidal pressure patches, the wave angle integral is solved 

numerically.  Therefore, a grid over which to solve the integral is created.  The same grid 

as the sinusoidal pressure method is used with one difference.  Previously, n 

corresponded to the frequency of the pressure; now it corresponds to the transverse 

pressure patch.  The location is discretized in the same way as in the previous method 

(2.134).  Similar to the sinusoidal pressure method, a basis tensor consisting of the 

contributions of each pressure point at each index location is found: 

 
( ) ( )
( ) ( )

, , , 0 0

0 0

, ,

, ,

n m i j i j i j

i j i j

E x am a y bn x am a y bn b

x am y bn x am y bn b

ζ ζ

ζ ζ

= + − − − + − − +

− + − + + − + .
 (2.165) 

This method requires a wave height contribution from each of the corners of the pressure 

patch.  Each of these contributions is identical except for the offset.  This offset is 
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 (2.166) 

These can also be written in terms of the index as 

 1

1.

i i m
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j j n

j j

x am x
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y bn y

y bn b y

−

i m

n
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−

− +

+ =
+ − =

− =

− + =

 (2.167) 

The basis tensor (2.165) then becomes 

 ( ) ( ) ( ) (, , , 0 1 0 1 1 0 0 1, , , ,n m i j i m j n i m j n i m j n i m j nE x y x y x y x yζ ζ ζ ζ− + − − + − + − − − − += − − + ) . (2.168) 

As with the previous method, only the first pressure patch contribution needs to be 

calculated.  The other patches are identical but offset.  Substituting this basis tensor back 

into the single pressure patch wave height equation (2.157) produces 

 ( ), ,,n m i j n m n m i jg x y P Eρ ζ = , , ,

, , ,

. (2.169) 

The total wave height (2.148) therefore becomes 

 . (2.170) , ,
1 1

N M

i j n m n m i j
n m

g P Eρ ζ
= =

=∑∑

The system is linear in the pressure coefficients and is written in matrix form similar the 

sinusoidal pressure method, equations (2.145), (2.146), and (2.147). 

In this method equation (2.164) must be numerically integrated.  The integration is 

performed over a grid of points to produce the contribution of one corner of a pressure 

patch.  The total patch contribution is found by shifting the first corner to the other three 
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corners and summing the results.  This first patch is then shifted to produce the entire 

basis function tensor.  The pressure amplitudes together with this tensor determine the 

total wave height. 

2.5. NUMERICAL ISSUES 

Both the sinusoidal and the constant pressure methods involve a numerical integration 

of the wave angle integral.  These integrals all contain features such as singularities and 

rapid oscillations which make the numerical integration difficult to perform. 



 

2.5.1. Sinusoidal Pressure Method 

The integrals for the sinusoidal pressure method (2.132) are 
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 (2.171) 

It should be noted that the denominator is identical in each of these integrands: 

 2
0 sec sin ( 1)

2
j

j
nD k

B
πθ θ= + − . (2.172) 
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The integrands also contain only a few common numerators: 
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 (2.173) 

To cut down on the number of calculations performed during the numerical integration, 

the leading edge wave height equation (2.131) is divided into three terms: 

 ( ) ( ) (, , 0 ,
, , 24 4 8

n m n m n m
n m L

A A k A n
)I II III

B
ζ

π π
= + + . (2.174) 

The first term in this equation is 
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 (2.175) 

This is written in terms of the numerators and denominator above as 
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The second term is 

 ( ) ( )1,1 1,1 2,1 2,11 1n nII ef ef ef ef+ − += − − + − − − ; (2.177) 

or in terms of the common numerators and denominators 

 ( ) ( )2
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−
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∫ . (2.178) 

The third term is 

 1,2 2,2III ef ef= + ; (2.179) 

or in the common numerators and denominators 

 
2 0

1 20 2

2 2F N F NIII d d
D D

π

π

θ θ
−

= +∫ ∫ . (2.180) 

Combining the integrals in this way cuts down on the number of times the integration 

routine calculates common terms.  It also allows the integration routine to only be more 

accurate where needed and reduce the number of integrating points thereby speeding up 

the calculation.  Typical combined integrands are shown below. 
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Fig. 9 Sinusoidal Pressure Combined Integrands  

k0 = 3.08, x = 0.25, y = 0.14, m = 1, n = 1, a = 0.1, B = 0.5 

There are still a few issues preventing accurate numerical integration of these 

functions.  The first is the rapid oscillation in II as it approaches the integration limits.  

To aid in the integration of this oscillation a variable substitution is made: 

 tant θ= . (2.181) 

This substitution applied to the II integral (2.178) leads to 

 ( ) ( )* * * *

1 2
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D D

+ − + −∞

−∞

⎡ ⎤− − − − +
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∫ t  (2.182) 
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with the numerator and denominator being 
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 (2.183) 

This new integrand is shown below. 
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Fig. 10 Sinusoidal Pressure II Integrand with Slow Oscillations 

k0 = 3.08, x = 0.25, y = 0.14, m = 1, n = 1, a = 0.1, B = 0.5 

The oscillations are much more reasonable.  There is a new problem, however, the 

integration limits are now positive and negative infinity.  The integrand rapidly 

approaches zero as t approaches positive or negative infinity.  The integration is safely 

truncated with minimal inaccuracies in the result. 

Another problem exists; the integrand of each of the functions becomes infinite at 

some points.  To find where these singularities are, the value of the wave angle that sets 

the denominator equal to zero needs to be found: 

 2 * *
0 sec sin ( 1) 0.

2
j

j
nD k

B
πθ θ= + − =  (2.184) 
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Instead of solving this equation directly, it is easier to solve it in terms of the transformed 

variable used to stretch the II integrand (2.181): 

 * *2
0 1 ( 1)
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nD k t t

B
0π

= + + − = . (2.185) 

The solution where this singularity occurs is 
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. (2.186) 

The wave angle of the singularity is therefore 
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By inspection, when j = 1 in the denominator the sign of the wave angle must be positive 

and when j = 2 the sign must be negative to make the total denominator zero. 

The location of the singularity has been found, now the singularity must be dealt with.  

To remove the singularity from the integration, the integrands are modified.  In general, 
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∫ ∫ ⎟⎟ . (2.188) 

The second term in the integrand effectively cancels out the singularity of the first term.  

To not add any net change to the equation, the integral of the second term is added back 

to the total equation.  This technique is used to remove the singularity from each of the 

integrals in both the original (wave angle) and transformed variable.  To apply this 

technique the derivative of the denominator must be computed.  In the original variable 

the derivative is 
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 ( )2 3
0 2 cos secD kθ θ θ= − ; (2.189) 

in the transformed variable the derivative is 
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The modified integrands with the singularities removed are shown below. 
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Fig. 11 Sinusoidal Pressure Final Integrands 

k0 = 3.08, x = 0.25, y = 0.14, m = 1, n = 1, a = 0.1, B = 0.5 

The integrands still contain discontinuities, but they are now either due to different 

integration ranges, i.e. I and III contain two integrals one for negative wave angles and 

the other for positive wave angles, or to the sign function contained in the integrands.  
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The first discontinuity type is not an issue because over each integration range the 

function is continuous.  The sign discontinuity could be removed by splitting the 

integration into two separate integrals at this point.  This introduces several coding issues 

though; locating the discontinuity and determining which segment the singularity is in to 

name a couple.  Because of these issues the sign discontinuity is resolved by simply using 

many integration points.  While this is not the most elegant method, it does not introduce 

significant integration errors. 

2.5.2. Constant Pressure Method 

The constant pressure method has two terms to evaluate, equations (2.163) and 

(2.164); they are 
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 (2.191) 

with 

 2
0 0sec sec sinT k x k yθ θ= + θ . (2.192) 

The local field integral is treated specially.  As Scullen and Tuck show, the local field 

contribution to the surface height is mainly directly under the hull.  It appears as a 

discontinuity in the far field contribution that is constant in the longitudinal direction.  It 

also contains the even auxiliary function (2.91) which must be computed either from an 

interpolation or a series expansion.  Therefore, instead of taking the computational time 

and effort, the local field contribution is approximated as the value of the far field at the 

leading edge of the wetted area.  The total wave height at this location is effectively zero.  
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Therefore, the local field must cancel the far field out.  The local field is assumed 

constant in the longitudinal direction for the length of the wetted area. 

All of the actual wave height in the constant pressure method comes from the far field 

contribution.  This integral must still be computed.  The far field function is much 

simpler than the previous integrals.  It does not have any complex functions in the 

integrand and only contains a single integral to evaluate. It does have the same issues as 

the sinusoidal pressure integrals.  The integrand oscillates as the wave angle approaches 

the integration limits and it also contains a singularity.  These problems are solved using 

the same methods developed for the sinusoidal pressure method. 
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Fig. 12 Constant Pressure Original Far Field Integrand 

k0 = 3.08, x = 0.25, y = 0.14 

The integrand oscillation is countered by a variable transformation (2.181).  The far 

field integral then becomes 

 ( ) ( )H sin,F

x Tx y
t

ζ
π

∞

−∞

= ∫ dt  (2.193) 

with 
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 (2
0 1T k t x yt= + + ) . (2.194) 

This integrand is shown below. 
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Fig. 13 Constant Pressure Far Field Integrand with Slow Oscillations 

k0 = 3.08, x = 0.25, y = 0.14 

This integrand still has a singularity at t = 0.  The singularity is removed using the 

method from the sinusoidal pressure patches (2.188).  Using this method the far field 

integral becomes 

 ( ) ( ) ( )0H sin sin
,F

x T k x
x y

t
ζ

π

∞

−∞

−
= ∫ dt . (2.195) 

The second term in the integrand is odd so its integral is zero and nothing needs to be 

added to the integral to cancel it out.  This integrand is shown below. 

 61



 

-100 -50 0 50 100
-1

-0.5

0

0.5

1

ζ F
t  

Fig. 14 Constant Pressure Far Field Final Integrand 

k0 = 3.08, x = 0.25, y = 0.14 

The singularity has been removed; due to the scale of the integration limits the oscillation 

is more pronounced.  Many integration points must be used, but this function can be 

accurately numerically integrated. 
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3. METHOD VALIDATION

To validate the methods presented in the previous section several tests are performed.  

These tests compare the sinusoidal and constant pressure methods derived above and 

where possible include or reference outside results.  

3.1. SINUSOIDAL PRESSURE BASIS FUNCTION 

The first test is taken from Cheng and Wellicome’s paper presenting the sinusoidal 

pressure method.  The test utilizes the simplest pressure function available to this method, 

a single sine wave with unit amplitude, 

 1sin
2

P π y⎡ ⎤⎛= +⎜
⎞
⎟⎢ ⎥⎝ ⎠⎣ ⎦

. (3.1) 

The beam and length of this “hull” are both one.  The pressure is constant in the 

longitudinal direction, so only one pressure strip is used, as shown in figure 1. 
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Fig. 15 Sinusoidal Pressure Basis Function Test Pressure 

The fundamental wave number, representing craft speed, is 3.0779.  The density of 

the water and acceleration due to gravity are both set to one.  This test is shown in figure 

4 of Cheng and Wellicome’s paper.  Both the sinusoidal and constant pressure methods 

are implemented to attempt to reproduce this figure. 
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Fig. 16 Sinusoidal Pressure Basis Function Test Wake 

The gross aspects of the two methods match each other quite well and also match the 

results from Cheng and Wellicome.  The results are very similar in the “wake” region of 

the surface.  The peaks and valleys of the oscillations occur in the same places and are 

approximately the same amplitudes. On the other hand, there are significant differences 
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in the two methods.  It is expected that the sinusoidal pressure method would perform 

better in this test because the input pressure is exactly one of its basis functions.  

However, that method has significantly more noise both ahead of the applied pressure 

and between the pressure and the limits of the wake.  Ahead of the craft the surface 

height should obviously be zero because the craft’s speed carries the disturbance 

downstream.  Similarly, the double rows of spikes spreading out at nearly 45 degrees 

behind the pressure disturbance occur ahead of the predicted wake and are noise created 

by this method.  This noise does not create a problem using this method though because it 

is outside of the area of interest and does not corrupt the key results.  The constant 

pressure method has no problem with noise in its results. 

A much larger problem exists with the sinusoidal method directly under the applied 

pressure, where the “hull” is. The sinusoidal pressure method predicts that the water 

immediately rises as a pressure is applied to the surface as seen in Fig. 17. 

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

x

y

Constant Pressure M ethod

Sinusoidal Pressure M ethod

-1

-0.5

0

0.5

1

 

Fig. 17 Sinusoidal Pressure Basis Function Test Hull 

This rise is quite dramatic when viewed in the total wake surface, Fig. 16.  This rise 

cannot happen physically.  Approximately half way along the length of the pressure the 

water surface drops to match the surface predicted by the constant pressure method.  This 
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result is not predicted in the Cheng and Wellicome paper and must be a numerical 

anomaly in the calculations, but no reason has been found for it.  This result is much 

more significant than the noise of the sinusoidal method.  The goal of this research is to 

match a hull shape to a predicted wake.  If the hull the sinusoidal method predicts is 

incorrect in this simple example, then the method is not a valid model for predicting more 

complex hull shapes. 

Another point that should be mentioned is the time to compute the results using each 

of these methods.  The sinusoidal pressure method takes orders of magnitude longer to 

complete the calculations than the constant pressure method.  This timing makes sense 

because the sinusoidal pressure method computes many more integrals than the constant 

pressure method.  Additionally, the integrals in the sinusoidal method often require an 

additional integration at each point in the integrand.  Even though this interior integral is 

accomplished with an interpolation, it still slows the integration down. 

Overall, both methods predict very similar wake shapes.  The sinusoidal pressure 

method has more numerical integration noise, but the noise is in parts of the surface that 

do not interfere with the hull and wake surfaces.  The sinusoidal pressure method also 

takes significantly longer to compute.  The major downfall of the sinusoidal pressure 

method, though, is the rise in the wave height near the forward section of the hull.  This 

rise does not match any physical phenomenon (such as a bow wave) in either size or 

shape; additionally it does not match the results in Cheng and Wellicome.  The rise 

makes this method unreliable for predicting a hull shape given a pressure definition. 



 

3.2. SIMPLIFIED REALISTIC HULL PRESSURE 

Scullen and Tuck also present a test case for a pressure distribution.  This test case 

represents a simplified function for the pressure a planing hull creates.  The pressure is 

given by 

 ( )22 1 41P
x

⎛ ⎞= −−⎜ ⎟
⎝ ⎠

y . (3.2) 

This “hull” has a length of two and a beam of one. 
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Fig. 18 Simplified Realistic Hull Test Pressure 

For this test the fundamental wave number is one.  As with the previous test 

gravitational acceleration and the density of the water are both set to one. 
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Fig. 19 Simplified Realistic Hull Test Wake 

Once again, the major aspects of the results from both the constant and sinusoidal 

pressure methods match.  They both show a series of peaks and valleys in the 

approximate shape of an actual boat wake.  The area inside the major wake has smaller 

disturbances.  These results are very promising for the goal of using these methods to 

predict an actual wake.  The sinusoidal method has several of the same issues that 

plagued the sinusoidal pressure basis function test.  The noise ahead of the boat is not as 

apparent, but the double row of spikes behind the applied pressure is present as before, 

Fig. 16, and in this test intersects the actual wake making the issue more problematic.  

The rise in the surface under the applied pressure is also still present.  This rise matches 

the characteristics of the previous test, a rise in the front half of the pressure becoming a 

depression further along the pressure. 
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Fig. 20 Simplified Realistic Hull Test Hull 

The area directly under the applied pressure using the constant pressure method 

matches the results obtained by Scullen and Tuck, figure 9.  As with the sinusoidal 

pressure basis function test, the constant pressure method completed the calculations 

many orders of magnitude faster than the sinusoidal pressure method. 

The results of this test are essentially the same as the previous test.  The constant 

pressure method performs quite well and the sinusoidal pressure method has several 

problems that make it an unreliable candidate to predict a hull and wake shape.  An 

additional promising result is the wake behind this pressure is beginning to resemble a 

boat’s wake. 

3.3. SINUSOIDAL PRESSURE CENTERLINES 

The previous tests explored the general shape of the wakes generated using the two 

pressure methods.  Cheng and Wellicome also present centerlines of the surfaces 

produced by the sinusoidal pressure basis function test run at different beam to length 

ratios.  The pressure for these tests is the same as in the sinusoidal pressure basis function 

test (3.1) except the beam is varied in each test, i.e.  
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 1sin
2

yP
B

π⎡ ⎤⎛= +⎜
⎞
⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (3.3) 

where B is the beam.  The length and speed in this test are also the same as the sinusoidal 

pressure basis function test.  Cheng and Wellicome present the results of these tests in 

figure 3.  Their results are also presented in the Fig. 21.  The most obvious feature of 

each of these plots is the pressure rise in the sinusoidal pressure method at the leading 

edge of the pressure.  In each test, the surface this method predicts rises dramatically 

before dropping to a more reasonable value halfway along the pressure, x = -0.5.  Other 

details are also different in the three methods.  The first test, B = 0.4, is inconclusive.  

Neither method matches Cheng and Wellicome’s results.  The basic form of the three 

results is similar; a depression under the “hull” followed by a rise and second depression 

aft of the boat.  The details of the three are quite different, however.  The second test,  

B = 1, provides more insight.  Again, the basic forms of the results are similar.  The 

amplitudes, though, of both the sinusoidal and constant pressure methods are not as high 

as Cheng and Wellicome’s results predict; they are approximately equal to each other, 

however.  This test corresponds to the sinusoidal pressure basis function test presented 

above.  In the sinusoidal pressure basis function test, the amplitude of the waves is 

around one.  This is also true in Cheng and Wellicome’s results for this test.  Their 

centerline, on the other hand, has an amplitude of over two.  This implies the amplitude 

of their centerline tests may not be accurate.  The other aspects of this test match Cheng 

and Wellicome’s results well.  The location of the second peak does not exactly match 

the peak of Cheng and Wellicome, but it is close in each method.  The last test, B = 10, 

has similar results.  The Cheng and Wellicome amplitude is higher, but the peaks line up 
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better than the second test.  Once again, the sinusoidal and constant pressure methods 

results match quite well. 
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Fig. 21 Sinusoidal Pressure Basis Function Centerlines 

Overall, the results from the methods tested do not match Cheng and Wellicome’s 

results exactly.  It is expected that the sinusoidal pressure method would.  Some 

difference is anticipated and acceptable in the constant pressure method.  In each test, the 
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amplitudes do not match those predicted by Cheng and Wellicome.  The sinusoidal and 

constant pressure method amplitudes do match each other reasonably well, however.  The 

problem may be in the amplitude predicted by Cheng and Wellicome.  Each method 

predicts approximately the same frequency for the waves; wave peaks are close enough 

to be acceptable.  The surface rise in the sinusoidal pressure method, as in the previous 

tests, is a fatal problem.  The constant pressure method is a valid method to predict hull 

and wake shapes given a pressure distribution. 
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4. METHOD ISSUES

In addition to the test case inaccuracies discussed in the previous chapter, there are 

several other issues which may complicate using each of the methods to compute a boat 

wake.  Each of these issues deals with the different pressures the method is based around 

and involves symmetry and oscillation frequencies. 

4.1. CONSTANT PRESSURE METHOD SYMMETRY 

The first issue involves the fact that boats are generally symmetric.  The symmetry 

assumes that the port and starboard sides of the hull are identical and also that the center 

of gravity is directly over the centerline of the hull.  These two assumptions lead to a 

symmetric pressure distribution.  Because the pressure is symmetric it is safe to only 

analyze one side of the wake response and assume the other side is identical.  The 

constant pressure method utilizes constant pressure elements as the basis of the applied 

pressure.  Multiple pressure basis functions (at different locations) are added together to 

produce the total pressure.  A problem arises when only computing the response of half 

of the pressure patches, however.  The response of each pressure patch is symmetric 

about the center of the pressure patch, but the pressure patch is offset from the centerline 

of the hull making the pressure (and the response) non-symmetric about the centerline of 

the hull (Fig. 22).  Because this response is not symmetric it is no longer accurate to only 

examine one side of the wake. 



 

0 2 4 6 8 10
-6

-4

-2

0

2

4

6

x
y

 

Fig. 22 Single Constant Pressure Patch Wake 

One solution to this problem is to not take advantage of the symmetry and compute 

responses from pressure patches over the entire hull.  This method must be employed if 

the hull is not symmetric for any reason.  On the other hand, if the hull is symmetric there 

are corresponding pressure patches on either side of the centerline.  These two patches 

can be analyzed to produce a combined response. 
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Fig. 23 Corresponding Constant Pressure Patch Wakes 

This response is now symmetric; however, the advantage in time saving from only 

computing responses for one half of the pressure patches has been lost.  The response 

needs to be calculated for only one half of the wake, but for each of the pressure patches. 
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Another solution is to only use the pressure patch on one side, and reflect the wake 

created across the centerline back into the side being calculated.  This reflection actually 

comes from the corresponding symmetric pressure patch.  The response from the actual 

pressure patch that is lost across the symmetry line is identical to the response from the 

corresponding symmetric pressure patch.  This modified height basis function is now 

symmetric about the centerline and can be safely used while still only using the pressure 

patches on one side of the hull and computing the wake over the same half of the 

centerline. 
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Fig. 24 Total Constant Pressure Patch Basis Function 

4.2. SINUSOIDAL PRESSURE METHOD SYMMETRY 

A similar symmetry condition exists for the sinusoidal pressure method; the 

symmetry is easier in this case though.  The pressure basis functions in this method are 

defined as existing over the entire width of the hull.  This means they can be inherently 

symmetric without reflecting the response of another pressure patch.  From (2.25) the 

pressure is defined as a series of sine waves with increasing frequency.  Essentially the 

pressure is approximated with a simplified Fourier series.  This pressure is symmetric if 
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only odd terms are used for n.  To verify this symmetry condition a sinusoidal pressure 

patch is simulated without the symmetry assumption.  As can be seen in Fig. 25, the 

resulting surface disturbance is indeed symmetric.  It is valid to only compute half of the 

wake. 
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Fig. 25 Sinusoidal Pressure Patch Wakes 

To strictly satisfy the derivation all Fourier terms are used to define the pressure, but 

because of symmetry if the hull (and thus pressure disturbance) is symmetric the 

coefficients corresponding to even n are zero.  Computation time can be saved, however, 

by simply discarding these terms and only computing the response from the odd terms of 

n.  To take this into account the index for the pressure terms is modified. 

 *2n n 1= −  (4.1) 

where .  This modified index is always odd.  It is used in place of the old 

index in each of the sinusoidal pressure method basis functions.  Now the pressure basis 

function is guaranteed to be symmetric and the resulting wake will be as well.  This 

means that once again only half the wake has to be simulated.  Also, only half the basis 

* 1, 2,3,n = L
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functions need to be determined because each of the asymmetric pressure basis functions 

is ignored. 

4.3. SINUSOIDAL PRESSURE METHOD OSCILLATION 

The fact that the frequency is increasing in the sinusoidal pressure method brings up 

an interesting facet of this method.  To accurately capture the characteristics of a sine 

wave a minimum of two points per period of the sine wave must be known.  This is the 

minimum frequency (Nyquist frequency) at which a signal must be sampled in order to 

reconstruct it using a Fourier series [Franklin].  In practice, it is desirable to sample at 

more points per period than the Nyquist frequency suggests because a Fourier series is 

not generally used to reconstruct the signal; a simpler method (e.g. linear interpolation) is 

used in reconstruction. These simpler methods perform better with more than two 

samples per period. 

The number of points this method is allowed is limited, however.  In order for there to 

be as many pressure coefficients as there are calculated wave heights under the hull the 

number of points from the centerline to the beam must equal the number of pressure 

terms.  The number of samples per period is obviously lowest with the highest frequency.  

The worst case number of samples per period can therefore be calculated by comparing 

the number of points per half-beam to how many periods there are in a half-beam at the 

highest frequency.  This ratio is 

 
worst
case

#
2 1

samples N
period N

=
4
−

 (4.2) 
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where N is the number of pressure terms.  In the limit as more pressure terms are used, 

the number of samples per period approaches the Nyquist limit. 
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Fig. 26 Loss of Data as More Fourier Terms are Used 

It does not take many pressure terms before there are essentially two samples per period 

in the highest frequency pressure basis function.  This means the higher frequencies are 

in danger of loosing data due to not sampling often enough.  One method to examine the 

impact of this problem is to oversample the system and compare the results to the results 

produced by the actual sampling. 

The first function to study is the pressure basis function.  The lowest and highest 

frequency pressures are shown along with where they are actually sampled and a linear 

interpolation (Fig. 27).  The maximum number of pressure terms is 10. 
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Fig. 27 Oversampled Pressure Basis Function 

It is obvious in this plot that the sampling captures the character of the low frequency 

pressure, but does not capture the high frequency oscillations.  The amplitude of the high 

frequency oscillations remains constant, but the amplitude of the sampled signal seems to 

increase moving away from the centerline. 

It seems likely that similar behavior will be observed in the wake basis function that 

results from this pressure.  The model does not guarantee that the oscillations carry over 

to the wake, but physically it makes sense.  The plot only shows one slice of the wake, 

but the behavior is similar throughout the entire wake (Fig. 28).  Once again the low 

frequency component is captured well.  A blip at y = 0.175 is not captured, but it is most 

likely noise and should be ignored.  As with the pressure basis function the high 

frequency component, on the other hand, is not captured.  The amplitude actually 

decreases slightly, but the sampled function has a peak amplitude in the middle of the 

hull then it decreases again. 
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Fig. 28 Oversampled Wake Basis Function 

m = 1, x = -1.1 

The data loss can also be examined by looking at the characteristics of the total wake 

basis function compared to an oversampled basis function (Fig. 29).  The oversampled 

function shows the oscillations are reasonably consistent in both directions; the peaks and 

valleys create a regular grid.  The sampled basis function, however, seems to have a 

series of nearly plane waves with peaks at a slight angle from the centerline.  The two 

behaviors are quite different.  It is also important to note that the data loss issue discussed 

above is in the transverse direction.  A similar behavior is observed in the longitudinal 

direction. 
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Fig. 29 Oversampled Wake Basis Function Surface 

m = 1, n = 10 

This problem becomes particularly pressing when the hull shape is known and the 

pressure coefficients are unknown.  Because of the data loss the higher frequency basis 

functions become closer to linearly dependant and the matrix inversion harder to 

accurately compute.  In practice, a high frequency term in a forward pressure strip is 

erroneously given a large amplitude.  This creates large high frequency oscillations 

further aft along the hull which are fixed by assigning an even larger amplitude to the 

high frequency terms in these pressure strips.  The inversion results in an estimated hull 

that when oversampled is nothing but an exponentially growing high frequency 

oscillation.  The wake this hull creates is obviously not accurate. 

In conclusion, it is possible to take advantage of the symmetry of boat hulls to reduce 

the number of calculations needed.  With the constant pressure method, this requires 

slightly modifying the basis function.  For the sinusoidal pressure method all that is 

needed is to discard the pressure terms that are asymmetric.  These procedures effectively 

reduce the computation time for each method.  The fact that the sinusoidal pressure 

method is based on a Fourier series also raises issues related to the number of points used 
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to capture the system behavior.  In general, these issues along with all the inadequacies 

discussed in chapter 3 make the sinusoidal pressure method unacceptable for computing 

the shape of a boat wake.  Throughout the remainder of the work the constant pressure 

method is used exclusively. 

4.4. ISSUES WITH INVERSION  

As was mentioned in chapter 2, the wave height over a grid of points is determined by 

summing a series of basis functions multiplied by pressure coefficients at each point 

(2.170).  In other words, the wave heights are a linear combination of basis functions: 

 gρ ζ = AE . (4.3) 

The ideal method to determine a boat’s wake is to define the surface of the hull and 

compute the basis functions over the wetted area.  The number of points defining the hull 

should be the same as the number of unknown pressure coefficients ( hullE  is square).  

The pressure coefficients are then determined using 

 ( ) 1
hull hullA gρ ζ−= E . (4.4) 

A new set of basis functions is then computed over the wake area and the pressure 

coefficients determined with the hull are used to solve for the height of the wake: 

 .wake
wake

A
g

ζ
ρ

=
E  (4.5) 

The problem with this method is that it involves inverting the basis function matrix.  

Because of the uncertainties that go into creating this matrix the inversion is not a stable 

numerical operation. 
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While the basis function matrix is nonsingular (theoretically invertible) it is very 

poorly conditioned and thus sensitive to noise.  The condition number of a matrix is the 

ratio of the largest and smallest singular values of the matrix.  For the ideal case (an 

orthogonal matrix) the condition number is one.  As the condition number grows the 

matrix inversion becomes less stable and the accuracy of the inverted matrix decreases.  

Chapter 3 presents two cases to validate the solution methods, a sinusoidal pressure and a 

simplified hull pressure.  In these cases the condition numbers of the hull basis functions 

are 7.5·109 and 1.2·1011 respectively.  In these tests the pressure (as opposed to the hull 

shape) was defined; however it would not be safe to invert the hull basis function 

matrices. 

To demonstrate the instability the basis functions from the simplified hull pressure 

will be used with two hull shapes and the resulting pressures compared.  The first hull 

shape is the one computed using constant pressure patches (Fig. 30). 

 

Fig. 30 Original Test Surface 

When the basis function matrix is inverted the pressure (Fig. 31) is identical (to machine 

precision) to the actual pressure used to generate the surface (Fig. 18). 
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Fig. 31 Pressure Resulting From Original Test Surface 

The surface is then rotated by 0.00001° about the y – axis (adjusting the trim by a 

miniscule amount).  This small change in the hull should produce virtually no change in 

pressure; however, the pressure solved for (Fig. 32) is unrealistic.  The pressure rise at the 

front of the surface displacement is still visible.  However, further aft the pressure 

oscillates uncontrollably.  As the surface is rotated more (or other perturbations are 

applied) the amplitude of the oscillation becomes much larger. 
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Fig. 32 Pressure Resulting From Rotated Test Surface 

To better understand the reason for these oscillations the basis function matrix must 

be examined.  The hull shape equation (4.3) can be written in block form as a series of 

smaller matrices due to its formation from a multidimensional tensor equation, i.e. 
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 (4.6) 

where ,i jζ , , and  are as in (2.170)and “→” represents the whole range of 

values (i.e. a vector/matrix).  The basis matrix can be simplified by noting that the 

contribution of a pressure patch only affects the flow aft of the patch: 

, , ,n m i jE ,n mA

 , , , 0 ; 1n m i jE i m= ≤ − . (4.7) 
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This leads to: 
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The first row of hull heights ( 1,1 Jζ → ) can be determined independent of any pressures 

except for the first row ( ).  Conversely, the first row pressure vector can be found 

by inverting the first row basis function matrix ( ) to match the first row hull 

height vector.  This pressure creates a disturbance down stream.  The second row of 

pressures must cancel this disturbance as well as match the second row height to the hull.  

Due to noise in the basis function calculations, the down stream height disturbances 

contain small oscillations.  To cancel the oscillations, the pressure in the next inversion 

contains the same oscillation with a slightly larger amplitude.  As the solution propagates 

aft the oscillation in the pressure continues to grow causing the instability. 

1 ,NA→ 1

J1 ,1,1,1NE → →
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Fig. 33 Increasing Pressure Oscillation 

This instability and sensitivity to small hull shape changes require a change in 

solution procedure.  Instead of defining the hull, determining the pressure that produces 

that hull, and finally determining the wake the new procedure is to define a pressure 

shape with unknown parameters; vary those parameters over a reasonable range; and then 

determine both the hull and wake shape the pressure produces.  One potential problem 

with this method is that the hull shapes produced may not be realistic.  The hull shape 

needs to be monitored to guarantee that it is practical.  This may also be a benefit, 

however; since the hull is not being varied directly, some shapes may be discovered that 

are possible to manufacture but would not otherwise be investigated. 
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5. HULL OPTIMIZATION

The goal of this research is to study methodology for designing hulls for different 

types of professional and recreational tow boats, specifically for towing a skier or a 

wakeboarder.  Algorithms for predicting the wake (and hull shape) given a pressure 

disturbance have been developed.  The next step is to describe what is “good” for a wake 

and what parameters are defined in each event.  The wake shape equations depend on the 

speed the boat is traveling; the speed is in turn dependent on what and who is being 

towed.  Additionally, it does not make sense to examine the shape of the entire wake; the 

rider will only be in a portion of the wake defined by the tow rope length which depends 

on the event and the rider.  Different events require different parameters and different 

riders have different preferences. 

5.1. EVENT DEFINITION 

Skiing has existed for the longest time and its events are the most formalized.  In 

particular two governing bodies oversee most of the professional skiing tournaments, the 

International Water Ski Federation (IWSF) and the American Water Ski Association 

(AWSA).  These two bodies have very similar rules concerning boat speed and rope 

length for events.  Two events will be considered for skiing: jumping and slaloming. 



 

Jumping is defined as the skier using a ramp to jump and get the maximum distance 

before landing.  The skier can choose a speed between 45 and 57 kph (28 and 35 mph) 

and the tow rope length is 23 m (75 ft) [AWSA]. 

Fig. 34 Ski Jumping Example and Course Layout 

Slaloming is defined as the skier going around a series of buoys to either side of the 

boat’s path.  The speed is set at 58 kph (36 mph); the rope length varies between 11.25 

and 18.25 m (37 and 60 ft) [AWSA].  The rope gets shorter with each run making the 

event more difficult. 
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Fig. 35 Slaloming Example and Course Layout 

The conditions for recreational (amateur) waterskiing vary much more based on the 

skier’s preference.  Typically the speed is less than for professionals and the tow rope 

length is towards the longer end of the professional range.  One factor ties each of these 

activities together: the activity is not based on the wake.  The boat must be towing the 

skier, but fewer disturbances from the wake are better. 

Wakeboarding is a newer sport; two bodies also govern its professional events, the 

World Wakeboard Association (WWA) and the World Wakeboard Council (WWC).  

Tournaments sponsored by these two bodies have different events that mainly consist of 

various freeform jumps, flips, etc.  Both agree, however, that boat speed and rope length 

are at the discretion of the rider [WWC]; in general the riders prefer boat speeds much 

slower than skiing, 12 to 20 mph (19 to 32 kph), and tow rope length in the middle of the 

slalom lengths [Favret, Solomon].  This is also true for recreational wakeboarding.  One 

factor that is consistent for most wakeboarding activities is that the wake itself provides 

the launching platform for many of the tricks.  Therefore, the wake should be larger and 

provide a ramp for the wakeboard. 
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Fig. 36 Wakeboarding Examples 

In summary, besides the actual hull shape there are two parameters that are varied for 

the different activities: the boat speed and the tow rope length, or distance behind the boat 

the wake will be examined.  Two basic types of wake are also desired depending on the 

activity.  For skiing a flat wake as small as possible is desired.  For wakeboarding a larger 

wake with ramp characteristics is ideal. 

To characterize these wake shapes two parameters will be examined: the maximum 

height of the wake and the slope of the main disturbance.  These parameters are 

calculated along the arc the skier makes behind the boat and are defined as 

 
( ) ( )

1tan .

max min

max min

max min

height z z

z z
slope

R z R zθ θ
−

= −

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (5.1) 
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Fig. 37 Wake Parameters 

For each speed and tow length under consideration the pressure distribution that creates 

the hull will be varied to attempt to either minimize or maximize (depending on the 

activity) these parameters.  The hull shape that created the wake will then be examined 

for reasonability and shape. 

5.2. TYPICAL HULL SHAPE 

Because the hull shape is being determined from the surface deformation made by the 

pressure instead of being defined directly, the shape must be examined to guarantee that 

it is reasonable.  The gross shape of most planing hulls has not changed drastically in 
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many years, although minor improvements have been made.  The shape is characterized 

by a “V”-bottom that is sharper near the bow with decreasing deadrise angle towards the 

stern.  This basic shape is shown below [Comstock]. 
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Fig. 38 Basic Planing Hull Shape 

Two critical parameters characterize this shape.  The chine is the sharp break in the 

transverse slope of the hull (the edge of the “V”-bottom).  The slope of the “V” is known 

as the deadrise; as was previously mentioned it varies along the length of the hull. 

A third parameter needed to characterize the hull’s shape in the water is the trim 

angle.  This angle is how parallel the keel is to the free surface.  This is not a parameter of 

the hull itself; the trim angle is maintained to balance the pitch moments acting on the 

hull. 

Modern planing hulls are more complicated than this example.  For instance most 

have strakes, longitudinal ridges running along the bottom of the hull; however, the 

chine, deadrise, and trim angle characterize the overall free surface deformation created 

by the hull well enough for the purposes of this research. 
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5.3. TEST CASES 

As mentioned in section 5.1, the conditions that represent each event include speed 

and tow rope length.  Six cases are studied to find optimal hull shapes.  To represent ski 

jumping the rope length is defined as 23 m and the speed can vary between 45 and 57 

kph; these limits are tested.  In slaloming the speed is set at 58 kph and the rope length 

can vary between 11.25 and 18.25 m; 11.25 and 14.25 m are evaluated.  Wakeboarding is 

not regulated but two typical cases, 14.75 m rope length at 19 kph and 32 kph, are tested.  

These parameters are summarized in Table 1. 

Table 1 Test Parameters 

 Speed (kph) Tow Rope Length (m) 

Jump 1 57 23 

Jump 2 45 23 

Slalom 1 58 11.25 

Slalom 2 58 14.25 

Wakeboard 1 19 14.75 

Wakeboard 2 32 14.75 

 
Three other parameters must be set for each test: the displacement, length, and beam 

of the boat.  When planing the volume of water displaced does not balance the weight of 

the boat due to the lift created by planing.  Instead of measuring displacement the lift 

generated by the pressure is adjusted to match the weight of the boat.  The length and 

beam are more difficult.  As more lift is created the boat rises out of the water.  

Therefore, the wetted area will not necessarily stay the same as parameters change.  In 



 

order to minimize variations and concentrate on how hull shape (as opposed to size) 

affects the wake for this study the length and beam remain constant for each test. 

From section 5.2, planing hulls normally have a chine where the shape drastically 

changes; above the chine the hull is nearly vertical.  When planing the waterline is very 

near the chine (see Fig. 39).  Therefore, the wetted beam is assumed to be 90% of the 

overall beam.  Similarly, approximately two thirds of the length of the hull is in the water 

when planing (see Fig. 39).  For the tests a typical tow boat with parameters in Table 2 is 

used. 

Fig. 39 Examples of Planing Boats 
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Table 2 Typical Tow Boat Parameters 

 Overall Value Wetted Value 

Mass (kg) 1445 1445 

Length (m) 6.45 4.3 

Beam (m) 2.31 2 

 
The pressure distribution is varied for each test.  The pressure distribution used in 

section 3.2 represents a simplified pressure produced by a planing hull.  In particular it 

has characteristics that are present in planing craft such as a singularity at the leading 

edge and zero value at the other edges [Scullen].  These characteristics can be maintained 

and the pressure allowed to vary by modifying the pressure equation to 

 1 1
c dL yP

x B
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − −⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦
. (5.2) 

In this equation c effectively controls how long the peak of the pressure is and d controls 

how wide the peak is.  For the skiing tests (jumping and slaloming) the goal is to 

minimize the wake height and slope; for the wakeboarding tests the goal is opposite, to 

maximize the wake height and slope. 

In each test using the conditions listed above (Table 1 and Table 2) the pressure is 

varied according to equation (5.2) and then modified so that lift matches weight.  The 

wake generated by this pressure is computed and examined in an arc defined by the tow 

rope.  The maximum wake height and wake slope along this arc are determined using 

equation (5.1).  These two parameters are then compared over the range of pressure 

parameters so that for each test the slope and height can either be maximized or 

minimized as appropriate. 
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5.4. JUMP 1 TEST RESULTS 

The first test is the higher speed ski jump test.  The surfaces shown below represent 

the maximum wave height and slope as a function of the two pressure parameters (c and 

d).  The goal of this test is to minimize both the maximum height and the slope.  The 

maximum height is minimized when either c or d is at the minimum value tested; the 

absolute minimum occurs when both c and d are at the minimum tested value.  The 

minimum value of c tested is 0.01.  Values below this do not appreciably modify the 

pressure from this value and so are not tested.  Similarly for d testing any lower does not 

change the results. 

The minimum slope occurs where d is approximately 4 and c is greater than 5.  It 

stays near this minimum along the line c = 3.5.  To compromise between these two 

minimizations values of c = 2.3 and d = 2 are chosen for the optimal wake. 



 

 

 c

 d

2 4 6 8 10

5

10

15

20

25

30

0.4

0.45

0.5

 

 c

 d

2 4 6 8 10

5

10

15

20

25

30

28

29

30

31

32

 

Fig. 40 Jump 1 Minimization 

5.4.1. Resulting Pressure and Hull Shape 

These pressure parameters result in the pressure shown below (Fig. 41).  This 

pressure produces the wake also shown below.  In general this hull shape looks 

reasonable.  The trim angle is 5.7 deg; at the stern of the boat the deadrise is 6 deg.  

Unlike the typical hull presented in section 5.2 the deadrise decreases toward the front of 

the boat.  This is due to two reasons.  First, the wetted area is defined as a rectangle 

instead of the triangle that a more typical hull would have.  Without knowing the hull 

shape beforehand it is not possible to know the shape of the wetted area triangle so a 
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rectangle must be assumed.  Second, near the bow the pressure function used (5.2) has 

value for the width of the boat instead of only near the centerline (again a rectangular 

wetted area instead of a triangle).  A different pressure function might produce a more 

typical hull shape.  One interesting feature of the hull shape is the positive height on the 

outside rear corner.  At the transom approximately 0.8 m from the centerline the hull 

begins to rise quickly.  This is characteristic of the chine line.  The chine widens as it 

approaches the transom; this is not typical, but has the same explanation as the atypical 

deadrise.  Also, outside the chine the height becomes positive.  It is common for the 

water to spray up on the sides of the boat (see Fig. 39).  The positive height is physically 

reasonable in this light. 
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Fig. 41 Jump 1 Pressure and Hull Shape 

5.4.2. Resulting Wake 

The wake this pressure produces is shown below in Fig. 42.  The black line represents 

the arc a skier would follow.  The height the skier encounters is also plotted vs. the 

distance along the arc.  The square indicates the highest point on the arc and the circle the 

lowest.  A typical wake behind a boat is reasonably flat directly behind the boat with a 

crest spreading in a “V” outside this flat area.  Outside the crest is a valley which levels 

off to the undisturbed free surface height.  The shape shown below has several of these 

characteristics.  In particular the size and location of the crest and valley are the 

 100



 

 101

parameters used to characterize the wake.  The area inside the wake crest (inside the “V” 

behind the boat) is not accurate.  This area has longitudinal oscillations that are not 

present in physical wakes.  These oscillations narrow further behind the boat until the 

surface inside the wake becomes essentially noise (around x = 25 m in this test).  These 

oscillations can also be seen in the centerline validation tests (section 3.3).  However, in 

this area of the wake the extra disturbance from the boat’s propeller affects the fluid flow; 

the disturbance from the propeller is not included in this simulation.  Therefore, the area 

inside the “V” behind the boat can safely be ignored when analyzing the wake shape. 

Ignoring the area directly behind the boat, the height profile along the skier’s arc 

appears reasonable.  The valley outside the wake is not typically that much more extreme 

than the surface height inside the wake crest, but this is most likely due to a combination 

of the atypical hull and the no propeller assumption.  The height of the wake is 39.8 cm 

and the slope is 28.4 deg. 
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Fig. 42 Jump 1 Wake 

5.5. JUMP 2 TEST RESULTS 

The next test case is the slower ski jump.  As before, the surfaces to minimize (wake 

height and slope) are shown below.  The height shows a strong trend: as c is decreased 

the height decreases.  The slope is not as clear.  There is a rough minimum along the line 

c = 2.1 and the line d = 2 is also a minimum for c greater than 4.  The slope is also near 

minimum at c = 0.01 and d = 14.6; this is the condition chosen as the optimum 

compromise. 
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Fig. 43 Jump 2 Minimization 

5.5.1. Resulting Pressure and Hull Shape 

These parameters result in a pressure that is nearly linear while still maintaining the 

required boundary conditions.  The hull shape is also interesting.  The trim is normal at 

5.2 deg, and as before the hull gets wider forward.  The deadrise, however, is not 

apparent.  In fact, the rear outside edge is lower than the centerline.  This shape is known 

as a catamaran and while not typically used in towboats is common in other power boat 

designs. 
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Fig. 44 Jump 2 Pressure and Hull Shape 

Although this hull shape is not common for towboats, some manufacturers are 

beginning to produce boats with similar features.  The boat shown below is the 

MasterCraft X-Star.  It is not a true catamaran because the “V” hull is still present; 

however, outriggers are present similar to a tri-hull.  The X-Star is a wakeboarding tow 

boat; it is not meant to imply that the hull shape presented above is necessarily the best 

ski tow boat.  It does, however, show that similar designs are feasible and being used in 

industry. 

 104



 

 

Fig. 45 MasterCraft X-Star 

5.5.2. Resulting Wake 

As before, the wake looks reasonable except for the area immediately behind the 

boat.  The maximum wake height is 56.2 cm and the slope is 25.9 deg.  In general, this 

wake is not as preferable as the previous test case.  As boat speed increases typically the 

wake becomes smaller and flatter because less of the hull is disturbing the free surface to 

achieve the same lift.  The comparison of the two speeds qualitatively matches the 

physical expectations.  The magnitude of the height for both this and the previous test 

seems high.  More evaluation of this technique is warranted to guarantee its accuracy. 
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Fig. 46 Jump 2 Wake 

5.6. SLALOM 1 TEST RESULTS 

The next two tests are the slalom runs.  The first slalom test is with the shorter rope.  

The trends in both the height and slope are strong.  The height decreases as either c or d 

decrease; the absolute minimum occurs at c = 0.01 and d = 2.  The slope has similar 

trends except the minimum in c occurs at 2; for c < 2 the slope begins to rise again.  The 

gradient in the d – direction is stronger, however (d has more affect on slope than c).  

Because c = 0.01 and d = 2 minimizes the height and is near the minimum slope this 

point is chosen as the optimal compromise. 

 106



 

 c

 d

2 4 6 8 10

5

10

15

20

25

30

0.4

0.45

0.5

0.55

0.6

 

 c

 d

2 4 6 8 10

5

10

15

20

25

30

28

29

30

31

32

 

Fig. 47 Slalom 1 Minimization 

5.6.1. Resulting Pressure and Hull Shape 

The pressure this condition produces is fairly linear longitudinally and curved 

transversely.  The hull, however, does not exhibit the catamaran shape of the previous 

linear hull; it is a more traditional “V” shape.  The trim angle is 4.9 deg and the deadrise 

at the transom is 2.6 deg. 
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Fig. 48 Slalom 1 Pressure and Hull Shape 

5.6.2. Resulting Wake 

The wake this pressure produces is slightly different from the previous two test cases.  

The lowest height of the wake occurs inside the wake crest as opposed to the valley 

outside the crest.  In fact, no valley outside the wake crest is present.  This difference is 

due to the fact that the skier is so close to the boat; further from the boat the wake crest 

for this peak dies and the wake crest the previous tests used is formed.  This close to the 

boat the skier is ahead of the formation of the main wake.  The height the skier sees is 

38.4 cm and the slope is 28.2 deg. 
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Fig. 49 Slalom 1 Wake 

5.7. SLALOM 2 TEST RESULTS 

The longer rope slalom test results are interesting because for many pressure 

distributions the wake is not valid; in particular the main wake crest is below the 

undisturbed free surface which is not realistic.  These obviously incorrect wakes are not 

considered in the optimization.  Of the wakes that are reasonable the heights and slopes 

follow the trends seen previously in the minimization.  As c and d decrease the height and 

slope also decrease; d has a bigger effect on slope than c does.  The optimal combination 

for this test is c = 2.3 and d = 17.4. 
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Fig. 50 Slalom 2 Minimization 

5.7.1. Resulting Pressure and Hull Shape 

These pressure coefficients result in a distribution that is wide, but concentrated at the 

front of the wetted area.  The hull has the catamaran shape seen in a previous test.  The 

trim angle is 3.8 deg; the deadrise angle is meaningless in a catamaran hull. 
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Fig. 51 Slalom 2 Pressure and Hull Shape 

5.7.2. Resulting Wake 

The longer rope in this test means the skier is back in the main wake so the valley 

outside the wake crest is apparent.  The wake height is 48.5 cm and the slope is 39.2 deg.  

As with the ski jumping tests, the wake heights are excessive compared to physical 

wakes. 
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Fig. 52 Slalom 2 Wake 

5.8. WAKEBOARD 1 TEST RESULTS 

The last two tests are for wakeboarding.  The main difference between these tests and 

the skiing tests is the lower speeds.  Additionally, instead of minimizing the wake height 

and slope the goal of the tests is to maximize them.  The first wakeboard test is the slower 

of the two.  The height and slope show similar trends as the other tests except c has a 

much larger effect on both the slope and the height than d; in fact unlike before as d 

decreases the height and slope may increase.  The maximum height and slope both occur 

at c = 10 and d = 30. 
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Fig. 53 Wakeboard 1 Maximization 

5.8.1. Resulting Pressure and Hull Shape 

This pressure is virtually constant over the width of the boat and is concentrated 

exclusively at the leading edge of the wetted area.  The hull shape this produces is 

problematic.  Before the transom of the boat the hull is rising implying the hull is bowl 

shaped, which is not a practical planing hull design.  Considering only the centerline 

forward of the minimum hull height the trim angle is 35.2 degrees, very steep for a 

planing hull.  As boat speed increases the boat transitions from operating in a 

displacement mode (lift comes from displaced water) to a planing mode.  During this 

transition the boat trim is very large.  The hull in this test with these pressure parameters 
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is going slow enough that it has not made the transition to full planing.  The wake shape 

equations are only valid for full planing.  This is the most likely cause for the unrealistic 

hull shape. 
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Fig. 54 Wakeboard 1 Pressure and Hull Shape 

5.8.2. Resulting Non-Optimal Pressure and Hull Shape 

To find a reasonable hull the parameters which minimize the wake height and slope  

(c = 0.01, d = 2) are examined.  The hull this produces still curves upward at the stern, 

but not much. 
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Fig. 55 Wakeboard 1 Non-Optimal Pressure and Hull Shape 

5.8.3. Resulting Non-Optimal Wake 

The wake the non-optimal pressure coefficients produce is obviously not the best 

wake, but it does look reasonable.  The crest “V” is very wide which is typical of slower 

boats, particularly when not fully transitioned to planing mode.  The lowest point of the 

wake is inside the crest which is not unreasonable.  The wake height is 110.6 cm and the 

slope is 28.5 deg.  As with all the other tests this height seems excessively large. 
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Fig. 56 Wakeboard 1 Non-Optimal Wake 

5.9. WAKEBOARD 2 TEST RESULTS 

The final test is the faster wakeboard test.  The height and slope profiles have similar 

trends as the slower wakeboard test.  The maximum of each occurs at c = 10 and d = 30. 
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Fig. 57 Wakeboard 2 Maximization 

5.9.1. Resulting Pressure and Hull Shape 

This pressure is identical to the optimal wake in the previous wakeboard test, but this 

hull is more reasonable.  One interesting feature of the hull is a depression near the 

forward outside corner of the wetted area.  This is similar to a catamaran, but vanishes at 

the stern of the boat.  No tow boats are currently manufactured in this shape, but it is not 

infeasible.  The trim angle is 11 deg and there is no deadrise. 
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Fig. 58 Wakeboard 2 Resulting Pressure and Hull Shape 

5.9.2. Resulting Wake 

This test has a high enough speed that the wake looks more like the skiing wakes.  

The valley outside the wake crest is the lowest point although the valley inside the crest is 

not much higher.  The wake height is 95.3 cm and the slope is 34.3 deg.  It does not seem 

reasonable for a boat to create a wake nearly one meter high. 
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Fig. 59 Wakeboard 2 Wake 

5.10. RESULTS SUMMARY 

In each test the wake the boat produced appears reasonable.  A “V” shaped crest is 

visible with a valley inside it and outside either a valley or drop to the undisturbed free 

surface.  The wake is wide when the boat is slow and narrows as speed increases 

matching reality.  The area directly behind the boat is not realistic, but this could be due 

to ignoring propeller effects.  The wake shape also shows a strong correlation to the 

pressure distribution, and the hull shapes while not always typical are usually reasonable. 

There is however a problem with the wake height.  In every case tested the height is 

larger than can be expected in a real wake.  The shape of the wetted area also needs to be 
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examined.  In particular, each hull produced is flat at the leading edge of the wetted area 

instead of showing the characteristic deadrise present in tow boats.  Without the ability to 

directly define the hull shape defining the shape of the wetted area becomes problematic. 
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6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

 

6.1. CONCLUSIONS 

In conclusion, this work attempts to predict the wake shape behind a given boat 

moving at a given speed.  To do this two methods for determining the free surface 

deformation from a pressure distribution are presented.  Both methods derive from the 

same velocity potential function; the difference is the form of the pressure distribution 

and the resulting integrals that must be evaluated numerically.  Each method is compared 

to previously published results to verify its accuracy.  The sinusoidal pressure basis 

function method does not yield results matching the original authors.  Furthermore, this 

method has potential instabilities beyond the numerical inaccuracies; in order to produce 

a square linear system the pressure oscillates too quickly for the solution grid to capture.  

The constant pressure basis function method yields results that closely match the 

published results.  The numeric algorithm for the constant pressure basis function also 

runs much faster than the sinusoidal pressure basis function.  Because of the sinusoidal 

pressure basis function method’s shortfalls, the constant pressure basis function method is 

used to predict the wake shape behind the boat.  Even the constant pressure basis function 

method is not stable enough to invert and determine a pressure distribution from a boat 

hull shape.  Instead a variety of pressures are examined for wake shape and hull shape. 
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Tests are performed for a range of scenarios encountered in real life.  In particular, ski 

jumping and slaloming, and wakeboarding conditions are simulated.  To find the optimal 

hull shape for each of these activities the wake shapes produced by the various pressure 

distributions are examined for characteristics important to the activities: wake height and 

slope.  The hulls produced by the tested pressures are feasible for the most part.  

However, because the hull is not directly defined some characteristics are not typical.  

Specifically, every hull produced is flat at the leading edge of the wetted area; this is not 

typical of modern towboats.  The flat hull shape is due to the fact that a rectangular 

wetted area must be assumed.  Additionally, several hulls had depressions along the 

outside edge.  This shape is common in power boats, but not in tow boats.  The wakes 

observed in the simulations are also qualitatively reasonable.  A definite “V” crest is 

visible behind the boat.  This “V” widens as the boat moves slower matching physical 

intuition.  The wake height and slope also show a strong correlation to pressure 

distribution.  Oscillations appear inside the “V” that do not represent reality, but these are 

most likely due to ignoring the effects of the propeller.  The major discrepancy between 

the simulated wake and a physical wake is the difference in height.  The simulated wakes 

are much larger than is typical of tow boat wakes.  This discrepancy warrants further 

research. 

One final important note is that the hull optimization performed in this research only 

considers wake parameters.  Boat hulls must be designed with many other considerations 

such as handling, drag (engine size), and ride comfort in mind.  For example, most of the 

hulls studied in this research have nearly flat bottoms.  Flat bottom boats are common for 

small one or two person, low power boats for use in calm waters.  Larger boats (such as 
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tow boats) never have flat bottoms because of considerations completely outside wake 

shape.  Flat bottom boats are not as maneuverable as “V” hulls; they slide over the water 

instead of cutting through it.  This sliding behavior also makes their ride in rough water 

very violent; the boat goes up over each wave instead of cutting through them.  Any 

designer who wished to make use of the procedures developed in this research would 

need to combine the wake considerations with other boat performance considerations.  

Until a method to invert the surface deformation procedure (define a hull shape instead of 

a pressure distribution) is developed it will be very difficult to use this method in 

conjunction with other hull considerations. 

6.2. SUGGESTIONS FOR FUTURE RESEARCH 

There are several areas that could be investigated to improve the method developed in 

this research.  These areas generally fall into two categories: numerical algorithms used 

and range of tests to optimize hull shape.  The most complex algorithms in this research 

involve the numerical integration of functions.  These functions have features making 

them difficult to integrate, singularities and rapid oscillations.  Transformations are used 

to remove the singularity and slow the oscillations, but these change the integration range 

to negative and positive infinity introducing inaccuracies when the integration is 

truncated.  Better analytical transformations may be possible to improve the numerical 

integration accuracy.  The particular pressure basis functions used can also improve the 

numerical algorithms.  The sinusoidal pressure basis function method has the problem of 

data loss from not capturing higher frequency oscillations.  The method does satisfy the 

Nyquist criterion for number of points per period necessary to uniquely define a sine 

wave; however, this absolute minimum is not enough to accurately capture the sine wave.  
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This apparent discrepancy is due to the fact that the Nyquist criterion is for fitting the 

data with a Fourier series instead of the piecewise linear interpolation used in the method 

developed for this research.  If the wake surface were described by a Fourier series 

instead of being determined by inverting the basis function matrix it is possible the higher 

frequency oscillations could be captured thereby stabilizing the sinusoidal pressure basis 

function method.  Another improvement that could be made with the pressure basis 

functions is in the constant pressure basis function method.  This method approximates 

the pressure distribution by piecewise constant rectangular patches.  This creates 

discontinuities in the applied pressure disturbance.  The free surface disturbance may be 

smoother if these pressure discontinuities were not present.  Specifically if the pressure 

distribution could be approximated by either two dimensional piecewise linear or cubic 

spline rectangles a smoother wake may result.  For this method to succeed the velocity 

potential function would need to be derived for this new pressure type.  All of the 

numerical improvements have the same goal in mind: to allow the free surface 

deformation problem to be inverted.  For this research to move from an analysis tool to a 

design tool, a way to define the hull shape, and thereby determine the wake shape, must 

be developed.  In particular this means lowering the condition number of the surface 

basis function matrix.  The condition number may be lowered either by more accurate 

numerical integration or by using better pressure basis functions. 

The second category for recommended future research is in the range of tests to 

optimize the hull.  If a method to directly define the hull shape is developed many more 

tests become available.  One of the more interesting scenarios to investigate is the mixed 

design tow boat, one that is designed to tow both skiers and wakeboarders.  These 
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activities have different wake requirements, but are also performed at different speeds.  

Could one hull be designed to produce an ideal wakeboard wake at low speeds and an 

ideal ski wake at high speeds?  If the pressure must be defined instead of the hull shape 

then a wider range of pressure distributions should be examined.  Specifically the 

knowledge that a “V” hull produces a triangular wetted area should be taken into account.  

Regardless of whether the hull shape or pressure distribution is defined the results need to 

be compared to physical experiments.  This work highlighted results that do not seem 

physically reasonable.  These results need to be compared to a real wake. 
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