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Abstract

Cognitive radios (CR) are intelligent radio devices that carseghe radio environment and
adapt to changes in the radio environment. CR represents paradigm of wireless communica-
tions and networking by efficiently sharing spectrum betwésensed users and secondary users.
To harvest the high potential of CRs, the mainstream CR resbascfocused on developing effec-
tive spectrum sensing and access techniques. Althougiderable advances have been achieved,
the important problem of guaranteeing application peréorae has not been well studied.

The first part of this dissertation develops effective alpons and protocols for spectrum
sensing and access. First, we present a spectrum sensingware MAC protocol for a CR net-
work collocated with multiple primary networks. Second, eemsider the problem of interference
mitigation via channel assignment and power allocatiorCigrusers.

The second part of this dissertation focuses on the probteptonized video streaming over
CR networks. First, we tackle the problem of scalable videtiioast in emerging infrastructure-
based CR networks. Second, we investigate the more chaigpgoblem of streaming multiple
videos over multi-hop CR networks.

Cooperative CR networks are discussed in the third part offiegertation. First, we investi-
gate the problem of cooperative relay in CR networks for frrtmhanced network performance.
Then, we study the problem of cooperative relay in CR netwlimkgideo streaming incorporating
interference alignment techniques.

In the fourth part of this dissertation, we consider femHoC& networks, where femto base
stations (FBS) are deployed to greatly improve network cayermnd capacity. First, we investi-
gate the problem of generic data multicast in femtocell neka. Second, we tackle the problem

of streaming scalable videos in femtocell CR networks.



This dissertation research provides a new perspective wndtaust multi-user video stream-
ing can be achieved in highly dynamic CR networks. It is amdmgfirst efforts to address the
important area of video over CR networks, and offers systienaatd comprehensive results and
solutions. The findings may shed new light on the feasibdft R networks in transporting real-

time video and be useful for developing practical CR videdesys.
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Chapter 1

Introduction

1.1 Background

Due to significant advances in wireless access technolagi@she proliferation of wireless
devices and applications, there is a fundamental chang&@bess network traffic. As predicted
by a Cisco study, wireless data is expected to grow to 6.3 Hgaljyer month by 2015, a 26-
fold increase over 2010, and 66% of the increase in futureless data traffic will be video re-
lated [2]. Such dramatic increase in wireless video traffidriven by the proliferation of mobile
PCs, smartphones, tablets, etc., with 300 Million to 400ibMiinew mobile phone users adopting
mobile services around the world and 120,000 new base s$ati®S) added every year to meet
the compelling need for ubiquitous access of mobile muldiaelata.

Such fundamental changes in wireless data volume and catmopdsring about great chal-
lenges for the design and operation of wireless access redwbhe capacity of existing and future
wireless networks will be greatly stressed. Although atowy more spectrum may help, we are
facing the problem of spectrum depletion since it is not &negable resource. Improving spec-
trum efficiency thus becomes ultimate important. In additiQuality of Service (QoS)/Quality
of Experience (QOE) provisioning in wireless networks aig@omes a very important problem
in order to enable high quality video services in legacy amerging wireless networks. Since
most of the increase in wireless video will be concentratetthé hot-spot areas, interference be-
comes the major limiting factor of network capacity and Qo8vsioning. Effective interference
exploitation and mitigation technologies are needed taezelmore efficient use of the spectrum
and power resources.

Among various potential techniques, we consi@egnitive radios(CR) as an effective so-

lution to meeting the critical demand in wireless networkagty and video provisioning. We

1
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Figure 1.1: Spectrum measurement results [1].

also incorporate advanced wireless communications amndonidhg technologies in the context
of CR networks, such as cooperative communications, imarée mitigation and alignment, and
femtocells, for optimizing the quality of multiuser videoramunications.

A CR is an advanced device with interface to sense the radiooemaent, and dynamically
access idle frequency bands so that CR networks are able tepbeydd with existing primary
network and improve network capacity. CR was motivated by asmement study of FCC on the
spectrum utilization, where many allocated spectrum aneddo be seriously underutilized even
in metropolitan areas (see Fig. 1.1). The CR concept repieaesignificant paradigm change in
spectrum regulation and utilization, from exclusive uselibgnsed users (or, primary users) to
sharing spectrum among licensed and unlicensed usergondary or CR users). Although the
basic concept of CR is intuitive, it is challenging to desidie&ive CR medium access control
(MAC) protocols to fully capitalize CR'’s potential. In order éaploit transmission opportunities
in licensed channels, the tension between primary useegiioh and CR user spectrum access
should be balanced. In addition, CR users access the licehseshels according to the sensing

results. Itis critical to take channel sensing errors imiwoaint in the design of CR MAC protocols.



Coupled with the depleting spectrum, interference will meeahe major capacity limiting
factor. Thus, effective interference mitigation techm@gwre indispensable to realize the high po-
tential of CRs. There are two types of interference that shbeldonsidered in such multi-channel
environment. The first typeso-channel interferenc@CCl), is due to the coexisting transmitters
occupying the same band as the victim receiver. The secads$padjacent channel interference
(ACI), which is in the form of power leakage from adjacent afs. Both types of interference
should be considered in the design of CR networking protocols

Cooperative wireless relagepresents another new paradigm for wireless communitsatio
and networking. It allows wireless relay nodes to assistamtsmitters in data delivery. The
objective of cooperative communication is to achieve coaipee diversity. Cooperation among
wireless nodes enables opportunistic use of energy andibdiicresources in wireless networks.
Recently, researchers have been exploring the idea of camgtilrese two techniques for enhanced
network-wide performance [3, 4].

A femtocell is a small cellular base station (BS), typicalsed for serving approved users
within a small coverage (e.g., a house). Femtocells ustialg broadband wireline connections
to the service provider network, which can be exploited tardmate the transmissions of multiple
femtocells for improved network-wide performance. Feretiscare shown effective in extending
coverage, improving capacity, and reducing both power wopsion and interference. Most of
the benefits are achieved by the reduced distance of wirebssmissions, i.e., by bringing BS’s
closer to users [5].

Although considerable understandings have been gainedraoug aspects of CR. the prob-
lem of guaranteeing application performance has not beefottus of major CR research. To this
end, we find spectrum-intensive and rate-adaptive videoef®eence application, makes excellent
use of the enhanced spectrum efficiency in CR networks. Udhka, where each bit should be de-
livered, video is loss tolerant and rate adaptive. They gyelysuited for CR networks, where the
available bandwidth heavily depends on primary user bena\Ve adopt scalable video coding,

such as fine grained scalability (FGS) and medium grain BE(8GS), to encode video streams.



We tackle the problems of video over various CR networkinga@@ms, such as infrastructure
based CR networks, multi-hop CR ad hoc networks, cooperatiay based CR networks, and
CR femtocell networks. We formulate cross-layer optimmatproblems that incorporates vari-
ous system parameters and control knobs, and developiedfesctution algorithms with proved

optimal performance of tight performance bounds.

1.2 Major Contributions

The focus of this dissertation research is realtime videsagting in wireless networks, in
particular, cognitive radio (CR) networks. The major conttibns are summarized as follows.

We first work on a sensing error-aware MAC protocol that cow@tés dynamic spectrum
access for CR users, which considers channel sensing emrtiie protocol design [6]. We de-
velop analytical models to evaluate the performance of thegsed protocols. The accuracy of
the analysis is demonstrated via our simulation study. Hbitewh, interference mitigation in CR
networks is crucial not only for primary user protectiont bilso the quality of service of CR
user themselves. Therefore, we next consider the problantesference mitigation via channel
assignment and power allocation for CR users [7]. We propo#iedn RLT-based centralized al-
gorithm and a distributed greedy algorithm which only ndedal channel gain information. The
distributed algorithm is shown to outperform the centedialgorithm and a heuristic algorithm
with considerable gains in our simulations.

We further start to tackle the challenging problem of optied real-time video multicast in
an infrastructure-based CR network. The base station of th@&Work exploits the spectrum
opportunities in multiple licensed channels to multicadews to groups of CR users [8]. A novel
formulation of the CR video multicast system is developedgivisonsiders important cross-layer
design factors such as scalable video coding, video ratieatpgpectrum sensing, dynamic spec-
trum access, modulation, scheduling, and primary useegtion. The design objective is to
optimize CR video quality while protecting primary usersnirdarmful collisions. Although the

problem can be solved using advanced optimization teclesigwe propose a sequential fixing



algorithm and a greedy algorithm with low complexity andy@o optimality gap. We also inves-
tigate the more challenging problem of video streaming awvelti-hop CR networks [9] which is
formulated as a mixed integer nonlinear programming (MINpRblem. We develop a central-
ized sequential fixing algorithm to derive upper and loweuriats for the achievable video quality,
and then apply dual decomposition to develop a distribukgorghm with proven optimality and
convergence conditions.

Next, we investigate the problem of cooperative relay in CRvoeks for further enhanced
network performance [10]. In particular, we focus on the panson of two representative co-
operative relay strategiedecode-and-forwardDF) andamplify-and-forward(AF). Cross-point
with the AF and DF curves are found when some parameter ig,wahich indicates that each of
them performs better in a certain parameter range and there case of dominance for the two
strategies. We further extend our work to video streamirgpoperative CR networks [11], which
incorporates interference alignment, a recent infornmatinoretic breakthrough that allows cur-
rent transmission of multiple signals. For the initial $tastic programming formulation, we first
develop a reformulation that significantly reduces comfoartal complexity. We then develop
distributed optimal algorithms for the cases of a singlencleh and multi-channel with channel
bounding, with proven convergence and convergence rateal$tiedeveloped a greedy algorithm
for the multi-channel without channel bounding case, withidided performance. This work is
among the first efforts to harvest the information theoratigances on interference alignment in
the broader network context and practical perspective.

Femtocell networks are another theme that my dissertatiomsfon. We first investigate the
problem of data multicast in femtocell networks that inaygies superposition coding and suc-
cessive interference cancellation [12]. The objectiveisiinimize the total base station power
consumption, while guaranteeing successful decodingeofithlticast data at each user. We for-
mulate a MINLP problem and reformulate it into a simpler forifo address the problem, we
develop optimal and near-optimal algorithms for three agpiconnection scenarios, and derive

upper and lower performance bounds. We also study the problestreaming real-time scalable



videos in femtocell cognitive radio networks [13], with a ltistage stochastic programming prob-
lem formulation. The proposed algorithms produce optiroaltgon in the case of non-interfering
FBS’s and near-optimal solution with proven lower bound im ¢hse of interfering FBS's.

This dissertation research provides a new perspective wndtaust multi-user video stream-
ing can be achieved in highly dynamic CR networks. It is amdrgfirst efforts to address the
important area of video over CR networks, and offers systenaatd comprehensive results and
solutions. The findings may shed new light on the feasibdftR networks in transporting real-

time video and be useful for developing practical CR videdesys.

1.3 Dissertation Outline

The reminder of this dissertation is organized as follows.

In Chapter 2, we present our work on effective spectrum sgraivdl access protocols for
CR networks. We introduce the general architecture of CR m&svand present three protocol
designs and analysis for different CR networking paradign@uding a sensing error aware CR
MAC protocol and resource allocation for co-channel andeeijt channel interference mitigation
in CR networks.

In Chapter 3, we investigate the problem of video streamingy three different CR net-
work paradigms, including multiuser video multicast in th@vnlink of an infrastructure-based
CR network and multiuser video unicast in a multi-hop CR nekwaeithout any fixed network
infrastructure.

In Chapter 4, we focus on cooperative CR networks. We compararalyze two typical co-
operative relay strategies in CR networks and investigaetbblem of multiuser video streaming
over a cooperative relay CR network by adopting interfereiggment.

In Chapter 5, we consider femtocell networks. In particuar tackle the problem of generic
data mulicast in the downlink of femtocell networks that éogp Superposition Codign (SC) and
Successive Interference Cancellation (SIC), as well as resallocation and quality of service

(QoS) provisioning for multiuser video streaming in CR feoaib networks.



We conclude the dissertation and discuss our future work ap@ 6.



Chapter 2

Cognitive Radio Networking

2.1 Introduction

According to Cisco’s recent study, wireless data traffic igemted to increase by a factor of
66 times by 2013. Much of this future wireless data trafficl wé video based services driven
by the need for ubiquitous access to wireless multimedidetdn Such drastic increase in traffic
demand will significantly stress the capacity of future \gss networks.

Cognitive radios(CR) provide an effective solution to meeting this criticahded by ex-
ploiting co-deployed networks and aggregating undergtili spectrum for future wireless net-
works [1,14,15]. CR was motivated by the spectrum measurenigrthe FCC, where a signifi-
cant amount of the assigned spectrum is found to remain utililazd. CR represents a paradigm
change in spectrum regulation and access, from exclusezbyiprimary users to shared spectrum
for secondary users, which can enhance spectrum utilizahd achieve high throughput capacity.

Although the basic concept of CR is intuitive, it is challemgyito design efficient cognitive
network protocols to fully capitalize CR’s potential. In orde exploit transmission opportunities
in licensed bands, the tension between primary user proteahd secondary user spectrum ac-
cess should be judiciously balanced. Spectrum sensing@eudram access are the two key CR
functions. Important design factors include (i) how to itigrtransmission opportunities, (ii) how
secondary users determine, among the licensed channetd) elennel(s) and when to access
for data transmission, and (iii) how to avoid harmful ineggnce to primary users under the om-
nipresent of spectrum (or, channel) sensing errors. Thegba@aproblems that should be addressed
in the medium access control (MAC) protocol design for CR nekaioAlthough very good under-

standings on the availability process of licensed chartmalse been gained recently [16,17], there



is still a critical need to develop analytical models th&etahannel sensing errors into account for
guiding the design of CR MAC protocols.

To support many bandwidth-intensive applications in CR oéktw, it is desirable to achieve
high network throughput under the constraint of limitecenférence to primary users. Due to
the use of open space as transmission medium, wireless mketapacity is usually constrained
by interference. A CR user’s transmission will generaterfatence not only to the neighboring
primary users, but also to other CR users sharing the samgamead channels. Therefore, inter-
ference mitigation is crucial not only for primary user @ation, but also for the quality of service
of CR user themselves. Effective interference mitigatiarhtéques are indispensable to realize
the high potential of CRs.

The remainder of this chapter is organized as follows. Theted work is discussed in Sec-
tion 2.2. The system model and preliminary results aretified in Section 2.3. We present a
sensing error aware MAC protocol in Section 2.4. Effectirarmnel interference mitigation is

discussed in Section 2.5. Section 2.6 concludes the chapter

2.2 Background and Related Work

CR has been considered as a “spectrum agile radio” that endyaf@mic spectrum access to
exploit transmission opportunities in licensed spectramds [14,15]. Several CR MAC protocols
have been proposed in the literature. In [18], Le and Hogs&ipose a MAC protocol for oppor-
tunistic spectrum access in CR networks. A decentralizediteg MAC protocol is developed
in [19] that allows secondary users to explore spectrum dppiies without a central coordinator
or a dedicated control channel. In a piece of recent work [@0Jand Zhang propose a negotiation-
based sensing policy (NSP), in which a secondary user kndvchvwehannels are already sensed
and will choose a different channel to sense. In [21], th@a@nstconsider two types of hardware
constraints: sensing constraint and transmission canstia [22], based on the information ob-
tained by a delegate secondary user, each secondary usgr sglects and switches to the best

data channel for data communication during the next petiof23], the authors describe a policy



such that a secondary user selects the channel that hagitteshsuccessful transmission proba-
bility to access. Many prior works [16, 18, 20, 21] assumdeamrchannel sensing, within which
secondary users can always sense the channel correctlgin§amrors are not considered. The
joint design of opportunistic spectrum access and sensifiggs is studied in a recent work [24]
in the presence of sensing errors. The authors develop aasigpaprinciple that decouples the
designs of sensing and access policy. This interestiny $$ushsed on a constrained partially ob-
servable Markov decision process (POMDP) formulation dns thas an exponentially growing
computational complexity [24]. In [25, 26], the authorspose MAC protocols for multi-hop CR
networks without the support of common control channelsgboh CR user is requested to keep a
list of available channels updated. The speed and accufagneing process are high demanding.
Co-Channel Interefence (CCl) and Adjacent Channel Interferé&Cé are the two major
factors limiting wireless network capacity. The impact of Gl network performance is well-
known and comprehensively investigated in [27]. Recently,impact of ACI has attracted con-
siderable interest in the wireless community. In [28, 2Bg heed was demonstrated for careful
channel selection to mitigate ACI in IEE®D)2.11 based systems. The impact of both CCI and
ACI on network throughput and performance was evaluateddr33]. The interference models
have been developed to analyze the channel interferencéewm papers. In [33], the problem of
statistical-physical modeling of CCl was investigated tdyreathe outage probabilities in wireless
networks and to design interference-aware transceiveZswas described by a simple quantifica-
tion model that was verified by testbed experiments in [29]34], a model for the aggregate ACI
in TV white space was developed to demonstrate that the wesiggum of the total ACI power
should be kept below certain threshold as well as ACI in eagacadt channel. A commonly
used approach to reduce CCI is to assign different channeksighilboring transmitters [13, 35].
In [36, 37], frequency domain iterative multi-user detestwere adopted for CCl cancellation. A
low-cost CCl avoidance MAC scheme was presented in [38]. li 831 was minimized by op-
timizing reception of television receivers. In [40], Gidoand Kalet addressed the ACI mitigation

problem by exploiting antenna diversity. In [41], stattialimodeling of the aggregate interference
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Figure 2.1. The discrete-time two-state Markov model fa $tate of channeh, S,,, for m =
1,2,..., M.
in a spectrum underlay CR network is proposed, in which CR nddsvooexist with primary net-
works and power constraints are imposed on the CR users tdlkeiepower below the noise floor

of primary receivers.

2.3 System Model and Preliminaries

2.3.1 Primary Network

We assume the primary users access the channels followyrgchrenous slot structure as in
prior work [14, 20, 42]. The channel states are independeeath other and each of thi¢ chan-
nels evolves over time following a discrete-time two-sti@kov process, as shown in Fig. 2.1.
Such channel model has been validated by recent measurstudias [14, 16, 20]. We define the
network state vectdn slott asS(t) = [S)(t), Sa(), . . ., Su(t)], whereS,, (¢) denotes the state of
channeln, form = 1,2,--- , M. When channeh. is idle, we haveS,,(t) = 0; when channein
is busy, we have,,(t) = 1.

Let \,, andy,, be the transition probability of remaining in stat@and the transition proba-
bility from state1 to 0 for channeln, respectively. Ley,,, = Pr(S,, = 1) denote theutilization
of channeln with respect to primary user transmissions. {,gt= Pr(S,, = 0) be the probability

that channeln is idle (i.e., not being used by primary users). We then have

— An
= TIEEO—ZS - @
fim
= 1-Pr(S,=1)=—""" 2.2
¢ H(S = 1) = T 22)
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A Time Slot -

Sensing Phase Transmission Phase

Figure 2.2: Time slot structure: a time slot consists of assgnphase and a transmission phase.

2.3.2 CR Network

As presented in prior work [16, 20, 43], we assume that eacbnslary user is equipped with
two transceivers: aontrol transceiveithat operates over a dedicated control channel, which we
assume is always available (e.g., a channel in the indystoeentific and medical (ISM) band),
and adata transceivethat is used for data communications throughihdicensed channels. The
data transceiver consists of an SDR that can be tuned to dhg &f licensed channels to transmit
and receive data. Secondary users also use their transcfivepectrum sensing and exchanging
sensing results.

We assume CR nodes access the licensed channels followisgrtteetime slot structure [14].
Each time slot is divided into two phases, gensing phasand thetransmission phases shown
in Fig. 2.2. In the sensing phase, a CR node chooses one df thkannels to sense using one
of its transceivers, and then exchanges sensed channehatfon with other CR nodes using
the other transceiver over the control channel. During thiesimission phase, the CR transmitter
and/or relay transmit data frames on licensed channelatbdtelieved to be idle based on sensing

results, using one or both of the transceivers.

2.3.3 Spectrum Sensing

We explicitly consider channel sensing errors in the desi@uring the sensing process,
two kinds of detection errors may occur. fAlse alarmrefers to the case when an idle channel
is considered busy. Consequently, the CR nodes will not attéonaccess that channel and a

spectrum opportunity will be wasted. riss detectiomefers to the case when a busy channel is
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considered idle. Since CR nodes will attempt to access tlaaredl in the transmission phase,
collisions with primary user transmissions will occur sedpsently.

We adopt hypothesis test to detect the availability of clebnn The null hypothesig?]" is
“channelm is idle.” The alternative hypothesi8}" is “channelm is busy.” Lete* andd!™ be the
probabilities of false alarm and miss detection, respeltimvhen CR nodeé senses channet.

We have

' = Pr{O" =1|H]'} and (2.3)

~

sm = Pr{e" = 0|H"}, (2.4)

where©? € {0, 1} is the channet: sensing result of channel at node:.

2.4 CR MAC Protocol

In this section, we present a channel sensing error aware pratcol for a CR network
collocated with multiple primary networks. We assume pryngers access the licensed channels
following a synchronous time slot structure [14, 20]. Thamhel states are independent to each
other and each evolves over time following a discrete-tinreekdv process [14, 16]. Secondary
users use their software-defined radio (SDR)-based traresseio tune to any of the licensed
channels, to sense and estimate channel status and to #ezebannels when they are found (or,
believed) to be available.

In particular, we develop two channel sensing polices, witich secondary users collabora-
tively sense the licensed channels and predict channebkstéfith thememoryless sensimplicy,
each secondary user chooses one oflithecensed channels to sense with equal probability. Dur-
ing the sensing phase, secondary users also exchangegsegmiits through a separate control
channel. This sensing policy is further improved with a netbm to spread out secondary users
to sense different channels, therefore reducing the chitwatex channel is not sensed by any of

the users. When spreading out secondary users to the chatirelmechanism also considers
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Figure 2.3: The CR secondary network is collocated witlprimary networks.

the autocorrelation of channel processes to obtain mongraiecsensing results. This is termed
improved sensingolicy.

These two sensing polices are then incorporated int@Rersistent Carrier Sense Multiple
Access (CSMA) mechanism to make sensing error aware CR MA©gutst We analyze the pro-
posed CR MAC protocols with respect to the interference arautfhput performance and derive
closed-form expressions. Primary user protection is &eki@ia tunning the channel access prob-
ability p of p-Persistent CSMA according to the interference analysi® TR MACs also aims
to maximize the CR network throughput while satisfying thienairy user protection constraints.
Through simulations, we find that the analysis is highly aataias compared to simulation results.
In addition, the proposed sensing error aware CR MAC prosomoiperform two existing schemes
with considerable gain margins, which justify the impodewof considering channel sensing errors

in CR MAC design.

2.4.1 Network Model and Assumptions

The network model considered in this section is illustrateBig. 2.3. Consided/ primary
networks, each allocated with a licensed channel. We asthenpimary users access the channels
following a synchronous slot structure as in prior work Pi42]. The channel state model evolves

independently following a discrete Markov process (sed¢i@e@.3.1).
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We assume a secondary network collocated withith@rimary networks, within whichV
secondary users take advantage of the spectrum white spadéslicensed channels for data
transmissions. For protection of primary users, the priibabf collision caused by secondary
user transmissions to primary users should be upper boungedprescribed thresholg,,, for
m=1,2,---, M.

As illustrated in Section 2.3.2, we assume that each secpnd®r is equipped with two
transceivers: aontrol transceivethat operates over a dedicated control channel, which warass
is always available, and data transceivethat is used for data communications through e
licensed channels. The data transceiver consists of an §&8tRéan be tuned to any of the
licensed channels to transmit and receive data. Secondarg also use their transceivers for

spectrum sensing and exchanging sensing results.

2.4.2 Sensing Error Aware CR MAC Protocol

For the CR network described in Section 2.4.1, we develogrsgasvare MAC protocols for
opportunistic spectrum access. The time slot structurkeoptoposed MAC protocols is shown in
Fig. 2.4, which consists of sensing phasand atransmission phasel'he sensing phase is further
divided into K mini-slots, within which each secondary user senses oneedfdensed channels.
CR users access the channels for data transmission duritrgtisenission phase. L&t, 7,,,, and
T,.: denote the duration of a time slot, a mini-slot, and the trd@ssion phase, respectively (see

Fig. 2.4), we have

T, = K x Tons + Thata- (25)

We first discuss the two key components of the proposed mistoice., channel sensing and
channel access, and then analyze their performance wibaee® primary user protection and the

expected throughput.

15



slot | slot

X
channel 1 idle busy
. > t
channel M busy idle
>t
Sensing. Transmission Sensing. Transmission
Phase Phase Phase Phase
12K 12 K St
>

Figure 2.4: The time slot structure of the proposed sengirng aware CR MAC protocol.

Sensing Phase

The first key element of the proposed MAC protocols is spectror channel sensing. Al-
though precise and timely channel state information islizighsirable for opportunistic spectrum
access and primary user protection, contiguous full-spetsensing is both energy inefficient
and hardware demanding. Since we assume a secondary ugeippesl with one transceiver for
spectrum sensing, i.e., the data transceiver with SDR dégabnly one of the licensed channels
can be sensed by the secondary user at a time.

During the sensing phase (see Fig. 2.4), a secondary usergicensed channel and keeps
on sensing it for one or multiple mini-slots. As discusse&attion 2.3.3, two kinds of detection
errors may occur: false alarm and miss detection. We asslirsecandary users have the same
probability of detection errors when sensing channeln = 1,2,--- | M. Lete,, andd,, denote
the probabilities of false alarm and miss detection on chbhnn respectively. The spectrum
sensing performance can be represented by the ReceivertiOpetharacteristic (ROC) curve,

where(1 — ¢,,) is plotted as a function of,, [14]. For a specific channeh in a certain time slot
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t, the sensing error probabilities can be written as:

Pr(W,,;=1|S5,=0) = ¢y, forall i=12,--- (2.6)

Pr(W,;=0|S,=1) = oy, foral i=1,2---, (2.7)

wherelV,, ; is theith sensing result of channel and.S,, is state of channeh.

We assume that the sensing results from different usera@epéndent and the sensing results
in different mini-slots are also independent to each otBeppose a secondary user continues to
sense channeh for £ mini-slots and obtaing sensing results. The conditional probability that

channeln is available after théth sensing mini-slot, denoted lay, ., can be derived as

mp = Pr(Sm=0|Wpn1=0mn1, , Wi ="0nk)
Pr(Wypi = Opmisi=1, -, k|S,, = 0) Pr(S,, = 0)
S o Pr(Wini = Ongii =1, K|Sy = §) Pr(S,, = )
Pr(S,, = 0) [1_, Pr(Wii = 6| = 0)
Zjl':o Pr(S,, = j) Hf:l Pr(Wini = Om.i| Sim =

7)
—1

Pr(Sp = 1) 1o Pr(Wins = Oy S = 1)
— 1+ ) )

PI‘(Sm = O) i1 Pr(Wm,i = 9m71]5'm = 0)

Sp=17"
- 1 dun gh—dy, DT (S
{ O Om s —0)
-1

— (1 +aly j;dmZ—m) (2.8)

whered,, is the number of observations whose sensing resolois channein, anda,, andj,,

are defined as follows.

( 1)
m , foréd,,;, =0 2.9
O P (Wi = 0[Sy, =0)  1—em : (2.9)
Pr(Wyi= 1S =1) 1—6,
m : = , foré,,; = 1. 2.10
= B W = 1180 =0) ~ em : (2.10)
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For the secondary user, it is also possible that it obtaimsesaf thek sensing results by local
measurements, and receives the remaining sensing rasutt$tfe control channel in the case that
some other secondary users are sensing the same chanmgt abuse of notation, we also use
an, i 10 denote the conditional channel availability probapiit this case, due to independence of
the sensing results. We plet, ;. as a function of: for the channel idle and busy cases in Fig. 2.5,
using the same parameters as one of the simulations (sderS2e.4). We have the following

proposition fora,, .

Definition 2.1. A random variableX is said to be dominated by in the sense of stochastic

ordering if Pr(X > z) < Pr(Y > z) for all =

Proposition 2.1. When channef is idle, a,, is @ monotone increasing function &f when

channelm is busyga,, . is @ monotone decreasing functionkoiih the sense of stochastic ordering.

Proof. From the defintion of.,, ;. in (2.8), it follows that

Pr(am,, > 6)

= Pr

Zf:l Wm,i _ ?:1 Wi
_ (2 L= by (L)
1-94 - 1—c¢
=P E 1 ) — 1 m < 2.11
! , {Wm,l Og( €m > W Og( Om >} B Xm) ( :

whereW,,,;, =1 — W,,;.

Sincee,, < 0.5 andJ,, < 0.5 for practical sensors, botlog <%> andlog (%) are

positive. IfS,,(t) = 0, we have that

Pr(Wm,i = 1) < PI‘(Wmﬂ' = O) = Pr(Wm,i — 1)
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Figure 2.5: lllustration of:,, ,, as a monotone function &f whene,, = 0.3, 6,, = 0.3, andkK = 7.

It follows thatPr(a,, , > 61) < Pr(amx+1 > 61). Thatis,a,, , is @ monotone increasing function

of k in the sense of stochastic ordering. Similarly, we can shaw t

Pr(amx < 60p) < Pr(amps1 < 6o)

whenS,,(t) = 1. That is,a,,, iS @ monotone decreasing functionfofn the sense of stochastic

ordering when the channel is busy. O

During the sensing phase, each secondary user choosesaymeetto sense with equal prob-
ability at the beginning of the time slot. Secondary usess atport their sensing results over the
control channel, and share the corresponding channelngeressults during the mini-slots. Two

threshold probabilitie®, < ©, are used for decision making.

o If the availability of channe, i.e., a,, x, is below©,, the channel is believed to be busy

and the secondary users will wait till the next time slot &rissensing again.

¢ If the availability of channem is betweert, and©,, secondary users will keep on sensing
the same channel to obtain more sensing results for moreaiecestimation of the channel

state, until the maximum number of mini-slofs, is reached.
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o If the availability of channeln exceed®),, the channel is believed to be idle and the sec-

ondary users stop sensing and prepare to access the chsam&dction 2.4.2).

The stop timeK,, when secondary users stop sensing channes a random variable that takes
value betweerl and K, the maximum number of mini-slots that can be used for sgniae
Fig. 2.4). If we haved, < a,, < ©1 by the end of the sensing phase, then channstate is not
identified due to lack of time (or sensing results) and thennkhlwill not be accessed.

When there aré sensing results available (e.g., one user senses chanioel4 mini-slots,
or it senses channel for less thark mini-slots and receives some channesensing results from

other secondary users), we define three sets of estimattgefsetate of channer, as:

W = {dn | amr <00,Y0 < dy, <k} (2.12)
Ul = {dn | ams >01,Y0<d, <k} (2.13)
\Ijzn,k = {dm | @() < Qm i < @1,VO < dm < k‘}

= (), V¥, (2.14)

whered,, is the number of observations whose sensing resolois channel. We then present

two channel sensing policies based on this classificatidinarollowing.

Memoryless Sensing Policy In this section, we first present a memoryless sensing palitl
which secondary users cooperatively sense the licensethelsa We call the policy “memoryless”
since it does not consider the channel sensing and accests resthe previous time slot for
simplicity. With this memoryless policy, each secondargrushooses one of th&/ licensed
channels to sense with equal probability, i.e/)/. Furthermore, channel selections of the

secondary users are independent and identically distabgi.d.).
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LetU,, be the random variable representing the number of secondarg that select channel

m to sense. The probability that, secondary users choose channdb sense is

N\ /1N (M- 1\
Pr(U,, = up) = <—> ( > (2.15)
o |\ M)

The joint distribution that there are, secondary users sensing chanhet, secondary users

sensing channg), - - -, andu,, secondary users sensing chanhglis

(2.16)
0, otherwise

We next derive the conditional probability that secondasgra compete for the channel after
the sensing phase stops at the end of mini-&lgt < K. The stop timek,, < K has two
implications. First, it means that secondary users stogisgrchanneln after mini-slot i,,,.
Second, it indicates that the estimated availability ofrete@m, a,, ;, has already exceeded the
threshold®;. Thus these secondary users think channek idle and are ready to access the
channel for data transmission. Note that a secondary usersébps sensing a channelwhen
am < O (When it is sure that the channel is busy). We are not intedeist this case, since the
secondary user will back off until the next time slot. Thiig is defined with regard to the event
A > O1.

There ard/,, users sensing channel andU,,, K,,, observations are available after mini-slot
K,,, which is also a random variable. We first derive the condélgrobability for event(,, = 1,

as

Pr(Kyp=1|Un=u, Sy =0)=Pr(am, > 61)

[(em)“’d}n(l — )i, (2.17)
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whered! is the number of observations whose sensing resalirighe first mini-slot.
Following similar reasoning as in (2.17), we can obtain tbaditional probability for the

event that the stop tim&,, = 2 as

PI‘(Km =2 | Um =u, Sm = 0) =Pr [(@0 < A < @1) N (amgu Z @1)}

- > ¥

1 2
p2evl ,, dhevz, \dy, | \dy,

u

() 24D (1 — em)D%] , (2.18)

where¥? , is defined in (2.14) and}, = d;, + d2,. In the general case, we can derive the

conditional probability for the event that the stop timéiig = & as:

= Pr [(@0 < U < @1) N (@0 < Gy < @1) Nn---N (@0 < A, (k—1)u < @1) N (am,ku > @1):|

. DY S I L N (Em)kufDﬁi@—em)Dfn}, (2.19)

1 2 k
D’Ene‘lj}n,ku Dfn_le\l’fnﬂ(k.fl)u d'}ne‘lj%’b,u dm dm dm

wherek = 1,--- | K and D* = Z’“ d: . We will apply these results in Section 2.4.3 to derive

i=1"m"

the throughput of the CR network by thew of total probability

Improved Sensing Policy Under the memoryless sensing policy, some channels mayenot b
sensed by any of the secondary users. Such an event occarprefiability Pr(U,, = 0) =
(%)N which is sufficiently large wher/ is large and/or the number of secondary users is
close to the number of channels. Secondary users will ndbleg@estimate the state of a channel
that nobody senses, and will neither access it in the tresssom phase. Therefore, the spectrum
opportunities in that channel will be wasted when such eveatur.

Motivated by this observation, we developiarproved sensingolicy that attempts to reduce

the chance that a channel is not sensed by any of the secarsasy The improved sensing policy

22



incorporates a mechanism to spread secondary users togheath. It also exploits channel state
autocorrelation by considering sensing results and chataies in the previous time slot.

By the end of the sensing phase in a time $|dhe secondary users compute the channel
availability a,,, . for each channeh. During the following transmission phase, if a secondasyr us
transmits on channeh, it can obtain more accurate channel state informatiors ifransmission
is successful, then channelis idle in time slott; otherwise, channeh is busy in the time slot.
Such channel information can be exchanged at the beginiithg sensing phase in the next time
slot. Then, we can classify the channels into three sets according to the channel statesen t

slott, including
e The set of channels that are detected or believed to be ieitmtdd by, ().
e The set of channels that are detected or believed to be beisgtet by, (¢).

e The set of channels whose states are not identified due twfdoke or not sensed by any

of the secondary users, denotedy).

Let |By(t)|, |Bi(t)| and|By(t)| be the cardinalities o8 (t), B (t), andBs(t), respectively.

If channelm is in setB,(t) and the stop time on channel is less than the maximum stop
time K, one user among those, users that are sensing this channel will be randomly chasen t
switch to sense another channel in therset B, (t) U By(t) in time slot(¢ + 1). If channelm is
in set3;(t) and the stop time on channelis less than the maximum stop tinkg, the secondary
users that are sensing this channel will randomly chooseansi inm U B,(t) to sense in time
slot (¢ + 1). With the above mechanism that reassigns secondary usehsutmels based on the
sensing results in the previous time slot, we can reducehbrae that a licensed channel is not
sensed by any of the users. This approach achievdsdldebalancingeffect since it attempts to

spread out secondary users to the channels.
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Transmission Phase

We adopt the-persistent CSMA protocol for data channel access for sergnders during
the data transmission phase. Under this protocol, a seppuader delays its transmission when the
channels are busy. Once one or more channels are detecethellsecondary user will attempt
to access the idle channel(s) for data transmission withglitity p. We consider the heavy load
domain, where each secondary user always has data to seweryoogher secondary user. The

following two cases are investigated for opportunisticctpen access for secondary users.

Case 1 Once the estimate of channel i.e.,a,, ;, exceeds threshol@,, each of the secondary
users sensing channel will send an RTS packet on channelwith probability p, to contend for
the transmission opportunity on this channel. If there iy @me secondary user that sends RTS,
then it wins the channel; if there is no secondary user thads&TS, then the channel will not be
accessed and will be wasted; if there are more than one RTK&{gasent on channet, there is
collision and none of the secondary users can use the channel

We definePidle, psuce gnd P!l as the probability that there is no RTS transmission on oblann
m, the probability that exactly one secondary user succligsfansmits an RTS on channel,
and the probability that there is collision on chanmelvhen multiple RTS packets are transmitted,
respectively. Recall thdt,, is the number of secondary users that choose chamtekense. This
set of secondary users also attempt to access chanihilis found idle. Withp-persistent CSMA,

it follows that

PAU,) = (1—-p" (2.20)
P(Uy) = Up xpx (1—p)Un! (2.21)

PU(U,) = 1 Pe(U,) — Py(U,)

= 1-1—=pY —U, xpx(1—-p)U1L (2.22)
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Case 2 We assume that the CR users can transmit data over more tharhaneels using the
channel bonding/aggregation techniques [20, 44]. In tAsec every secondary user keeps on
sensing the channel until the channel state is identifieatiirthe end of the sensing phase. At the
beginning of the transmission phase, the set of idle chararelidentified and are know to all the
secondary users. Then every secondary user will transniif&packet with probability on the
control channel, to contend for the entire set of idle chériéthere is only one secondary user
that sends RTS on the control channel, it wins the entirefseteochannels. Otherwise, the idle
channels will be wasted (i.e., when no RTS is sent, or mone time RTS are sent on the control
channel).

We definePide, psuec and P! as the probability of no RTS transmission on the control
channel, the probability that exactly one RTS sent on theérobohannel, and the probability of

collision on the control channel, respectively. BelPersistent CSMA, we have

Pidle(N) — (1 _ p)N (223)
P¢(N) = Nxpx (1—-pN! (2.24)
Pcoll(N) - 1— Pidle<N) o Psucc<N)

= 1-1-pN=Nxpx(1—-p~*t (2.25)

2.4.3 Performance Analysis
Interference Analysis

One of the main challenges in designing a CR network MAC pdtschow to balance the
tension between maximizing the capacity of secondary ussisprotecting primary users from
harmful collisions. Lety,, € [0, 1] be the maximum tolerable collision probability to primary
users on channeh: ~,, = 0 means that no secondary transmission is allowed, while= 1
means that secondary users have the same privilege aspus&s when accessing the channels.

The probability of collision caused by secondary users iimary users should be kept beloyy,.
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We first derive the conditional probability that chanmelis miss detected to be idle hy

secondary users after mini-slotas follows.

Pr(Kp =k | Uy = u, Sy = 1)
u u u

- ¥ Sy (8) P (1 — 6,)Fe" P (2.26)

1 2 k
DE el pk-lcyp2 dh,evz, , \d,, d d

m,ku m,(k—1)u

In Case 1, the idle channels are accessed by different seyomsiers. The probability that sec-

ondary users collide with primary users on channas

K N
Pyt = 3TN Pr(Ky =k | Up =u,Sp =1) x Pr(Uy, = u) x [P3(u) + P’ (u)] .
k=1 u=0

(2.27)

In Case 2, a winning secondary user takes all the idle chamsalg the technique of channel
bonding/aggregation. The probability that secondarysusellide with primary users on channel

mis
4 K N
Prd = >N Pr(Kp =k | Upn=1u,S, =1) x Pr(Up = u) x P*“(N). (2.28)
k=1 u=0

For primary user protection, the probability of secondasgrs causing collision with primary

users on channeh should be kept lower than or equalig, i.e.,
P <y, fori=1,2. (2.29)

This constraint is used to set the channel access prolygbftir the p-persistent CSMA protocol.
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Throughput Analysis

Based on previous analysis, the expected throughput of thgoped CR MAC protocols
adopting the two sensing policies, can be derived aftentbies attains steady state. Without loss
of generality, we ignore the time spent on RTS/CTS exchamngeigh can be approximated by a
fixed amount of overhead.

In Case 1, the expected throughput of channd¢hat is sensed by users, denoted by (u),

can be derived as

K
1 _
A () = Y Pr(Ky=k|Uy=u,5Sy,=0)x Ry x X (K — k)T + Tuara) (2.30)
k=1

S

whereR,, is the data rate of channel, andT} is the time slot duration given in (2.5).
LetU = (U1, Us, -+ -, Uy] denote the secondary usensing state vectowhere each element
U,, represents the number of secondary users that choose thartnesense and access. The

aggregate throughput for the CR network, denotehyis

M
Q=Y Pr(0)) Pr(9)Y [[1s,—q A, (U = w) Po(U, = u)] (2.31)
g g m=1
whereS is the channel state vector defined in Section 2.8:1<(v) is given in (2.21) andg,,—q
is an indicator that channel is idle, i.e.,
1, ifS,=0
Iis,,=0) = (2.32)
0, otherwise
In Case 1, the sensing process on channean stop early if the estimate of channel availabil-
ity a., r exceeds threshol@, or drops below the thresholg,. In the former case, the remaining
mini-slots can be used to transmit data. In Case 2, all CR useitsti the beginning of the
transmission phase, and then contend for the idle chanpalerting RTS packets on the control

channel. The winning secondary user’s data transmisstartasthe beginning of the transmission
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phase (i.e., aftek mini-slots). We can derive the throughput for channes follows.

K
T
AZ(u) = D Pr(K,=k|Uy=1uS,=0)x Ry x th (2.33)
k=1

s

The aggregate throughput for the CR network, denote@-hys

M

Q, = Zpr(ﬁ) Zpr(ﬁ) <Y [Is,,—q A2 (u)P™(N)] . (2.34)
U S

m=1

2.4.4 Simulation Study
Simulation Settings

We evaluate the performance of the proposed CR MAC protodod@scustomized simulator

developed with MATLAB. We compare the following four schenrethe simulations:

e A simple random sensing scheme that each user chooses ameetha sense with equal

probability, termedrandomin the plots.
e The negotiate sensing scheme presented in [20], teNegdtiatein the plots.

e The memoryless sensing scheme as described in Section 42 figuresMemoryles$
refers to transmission scheme Case 1 (i.e., idle channetseessed by different secondary
users, see Section 2.4.2), adi@moryles? refers to transmission scheme Case 2 (i.e., idle
channels are accessed by a winning secondary user usingattamding/aggregation tech-

niques [44]).

e The improved sensing scheme presented in Section 2.4 2e figures)mproved. refers to

transmission scheme Case 1, amghrove@ refers to transmission scheme Case 2.

We choose the negotiate sensing scheme since it adoptslarsietwork model and assumptions.
With this scheme, different secondary users attempt tasdlstinct channels to sense by over-

hearing the control packets on the control channel [20]. Gmie major differences between
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Table 2.1: Simulation Parameters
Symbol Value Definition

s 9us mini-slot interval

T, 1.89 ms time slot interval

M 5 number of licensed channels

N 8 number of secondary users

n 0.3 utilization of the licensed channels

€ 0.3 probability of false alarm

) 0.3 probability of miss detection

R 1 Mb/s data rate of each licensed channel
6, 0.8 upper threshold for channel decision
O 0.2 lower threshold for channel decision
K 5 maximum stop time for channel sensing

negotiate sensing and the proposed schemes in this paffeaf isegotiate sensing does not con-
sider spectrum sensing errors in the MAC protocol design.

The simulation parameters are summarized in Table 2.1 hiblow the typical values used
in [20]. We run each simulation scenario for 10 times witHedi#nt random seeds. Each point
in the plots shown in this section is the averagd @&imulation runs. We plo95% confidence

intervals as error bars on the simulation curves, which aghgible in all the figures.

Simulation Results

We first verify our throughput analysis presented in Sec®idn?2. In Figs 2.6 and 2.7, we plot
the throughputs for the CR MACs incorporating the memorylessisng policy and the improved
sensing policy, with both simulation and analysis curvessfed curves). We observe that the
simulation and analysis curves for the memoryless sensinglBRs overlap completely with
each other, indicating that our analysis is exact. Furtleemalthough there is a gap between
the simulation and analysis curves for the CR MACs with the owpd sensing policy, the gap is
generally very small. The gap is actually due to an approttonave used for the secondary user
sensing state vectaf, for which deriving the exact form is non-trivial. In the dysis, we assume

that the probability is O that a channel is not sensed by acyrskary user. We find the analysis can
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Figure 2.6: Throughput versus false alarm probability [§Wii% confidence intervals for the sim-
ulation results).
serve as a tight upper bound for the CR MAC throughput perfaneavhen the improved sensing
policy is incorporated.

We next investigate the impact of sensing errors on the CR M&@pmance. We assume
identical false alarm probabilities, = ¢, and identical miss detection probabilities = ¢ for all
the licensed channels. In Fig. 2.6, we plot the throughpbtagined by the four schemes versus the
false alarm probability. Specifically, we fixd at 0.3 and increasefrom 0.1 to 0.5. Intuitively,
a higher false alarm probability results in lower probaypifior secondary users to exploit the
transmission opportunities in the licensed channels. iEhiustrated in the figure, as all the
four throughput curves decreaseeas increased. The improved sensing MAC achieves the best
performance, with about 10% gain over the memoryless sgMAC and about 200% gain over
the two existing approaches. The advantage of channel bgfagjgregation is also demonstrated
in the figure, where Case 2 transmission scheme always ashigyleer throughput than Case 1
scheme.

In Fig. 2.7, we examine the impact of miss detection prolighilon the CR network through-
put. In these simulations, we fixat 0.3 and increasé& from 0.1 to 0.5. We find that the miss

detection error has small impact on the throughputs of thdom sensing and negotiate sensing
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Figure 2.7: Throughput versus miss detection probabiitigh( 95% confidence intervals for the
simulation results).
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Figure 2.8: Throughput versus channel utilization (vWifi¥% confidence intervals for the simula-
tion results).

protocols, since miss detection errors are not considerdae design of these protocols. How-
ever, both our proposed CR MAC schemes achieve considehableghput gains over the random

sensing and negotiate sensing schemes.
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Figure 2.9: Collision probability with primary users whem tmaximum tolerable collision proba-
bility is v = 3.5%.

In Fig. 2.8, we plot the throughput of the four schemes undéerdnt channel utilization
values ranging frond.3 to 0.7. As the utilization of the licensed channels is increaseé ttans-
mission opportunities for secondary users are clearlyaedu Therefore the four curves are all
decreasing function of. The improved policy with transmission scheme Case 2 achignesbest
performance among the four schemes, while random sensithbaoorest performance. When
the channel utilization ig = 0.3, the improved policy achievesla% gain in throughput over the
memoryless sensing policy. We also plot the upper bounde& network throughput, as given
by the channel idle probability in (2.2). When the channdlaatiion is low, the improved policy
with transmission scheme Case 2 can achieve a throughputiese/to the upper bound. The gap
between the upper bound and the achievable throughputiserghen the primary users get more
busy.

In Fig. 2.9, we plot the collision probability caused by sedary transmissions to primary
users, when the maximum allowable collision probabilityasasy = 3.5%. We plot the measured
collision probabilities in the simulations when the chadnmization is increased from 30% to

70%. It can be seen that the collision probabilities of randend negotiate sensing schemes
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Figure 2.10: Total throughput of primary users when theyobez more active.

increases along witly and soon exceed the 3.5% threshold. On the other hand, thsiaol
probabilities of the proposed schemes are kept around 2b%d entire range of examined.
Finally, we plot the throughput of the primary users in Fig® The primary user throughput
curves for all the four schemes increase when the chanre&atitn » is increased. The gap
between the curves of the proposed schemes and those ofmamdinegotiate sensing schemes, is
due to the different collision rates secondary users inicedo primary users under these schemes
(see Fig. 2.9). Ag is increased, the proposed schemes introduces relativastant collision rates
to primary users (i.e., around 2.5%), while the random argbtigte sensing schemes introduce

increasingly higher collision rates to primary users, Whdegrade the throughput of primary users.

2.5 Co-channel and Adjacent Channel Interference Mitigatio

In this section, we consider a CR network consisting of midipR transmitter receiver pairs.
The primary network comprises a base station sending daténary users using a set of licensed
channels. The CR nodes collaboratively sense the licensathels and exploit spectrum opportu-
nities for data transmission. We investigate the problematimizing the CR network throughput

while bounding the interference to primary users. We inotafe several important components
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such as cooperative spectrum sensing, spectrum sensimg,&mnd opportunistic spectrum access
into the cross-layer optimization framework. In the probléormulation, we specifically con-
sider mitigating CCl among CR users and ACI for both CR and primagysj through optimized
channel assignment and transmit power control for CR users.

The formulated problem is a Mixed Integer Nonlinear Prograng (MINLP) problem, due
to the use of index variables for channel assignment anditbgac relationship between link ca-
pacity and signal to noise ratio (SNR). Such problems are &Hd-m general. We first propose
a reformulation-linearization technique (RLT)-based caited algorithm that computes near-
optimal solutions in polynomial time [45]. We then developgliatributed greedy algorithm that
uses only local information and computes near-optimaltswig. Through simulation studies, we
find the distributed greedy algorithm outperforms both th@4Rased centralized algorithm and a

heuristic channel assignment algorithm that exploits insgtr diversity with considerable gains.

2.5.1 Network Model and Assumptions

As shown in Fig. 2.11, we consider a primary network where selsdation transmits data
to primary users using/ licensed channels with non-overlapping spectrum. Withosg of gen-
erality, we assume the channels have identical bandwidth.a¥8ume that each primary user is
equipped with one transceiver and can communicate withriingapy base station via one of the
licensed channels. L&, be the subset of primary users that are tuned to channgll the P,,’s
are generally assumed non-empty.

As illustrated in Section 2.3.1, we assume that the primatwark uses a synchronous time
slot structure. The occupancy of each channel is modelediassete-time Markov process. As
discussed before, the utilization of channelwith respect to primary user transmission, denoted
by 7,,, can be computed as (2.1)

Within the coverage of the primary network, there Arpairs of CR transmitters and receivers
that explore the spectrum opportunities in fidicensed channels for data communications. Each

CR node is equipped with two transceiverscantrol transceiverthat operates on a dedicated
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Figure 2.11: The primary and CR network model.

control channel (which we assume is always available), addta transceivetincorporating a
software defined radio (SDR) that is able to tune to any of\thkcensed channels.

CR nodes access the licensed channels following the samslbtretructure as in the primary
network. For CR nodes, each time slot consists of a sensingepdrad a transmission phase (see
Section 2.3.2). In the sensing phase, a CR node chooses dme/df thannels to sense using its
data transceiver, and then exchanges the sensed chammeliatibn with other CR nodes using its
control transceiver over the control channel. During t@$mission phase, the CR node turns its

data transceiver to one of thié channels to transmit or receive data based on sensinggesult

Cooperative Spectrum Sensing

As illustrated in Section 2.3.3, we consider two types ofsgamerrors (false alarrd and
miss detectiod") in the sensing phase. During the sensing phase, the CR neclesnge their
sensing results through the control channel. As presentétil), the conditional probability that

channeln is available for givenV sensing results on channel, denoted byP4 (07, ..., O1),
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can be computed as [46]:

[T, Pr{O;|Hy'} Pr{Hf}
g Pf{@m|Hm} Pr{Hg'} + HN Pr{O7|H]"} Pr{H{"}

[y Pt H Pr{O™| Hm}]

Pr{Hm} - Pr{O[H"}

5m1 on

N m)On -1
= I ;; o7 1(_ Gm(;)@ ] (2.35)

1—77m n

n=1

whereO” is then-th sensing result on channel.
When one or more sensing results are received at a CR nodeglsetising result vector
be@™ = [O7, 0O, ... 0™ for then received sensing results on channel The conditional

channel availability probability can be computed iteralyvas follows.

6m)1f®’1’1(1_5m)@§" -1
A m _ 1 N ( 1 1 .
PN = | T e e (2:36)
PAOr) = PAEr,ep,....0m
1
= <1 —1

{ " {P;%(@a",@;",--- o) } .

(om0 (1 — oy

A= n=2---,N. (2.37)

Opportunistic Channel Access

Let D,,(t) be a decision variable indicating whether channelill be accessed in time slot

t. Itis defined as

0, if channelm is considered idle
D,(t) = for m={1,2,--- ,M}. (2.38)
1, otherwise
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Based on the spectrum sensing re&tf ©m), channekn will be accessed (i.e., whe,, (t) = 0)
with probability P,Q(@Y](;), and it will not be accessed (i.e., whén, (t) = 1) with probability
1 — PP(67). We show how to comput®?(67) in the following.

For primary user protection, the probability that a CR traission collides with primary user
transmissions should be smaller with a threshold prestiiyethe primary network, denoted by

~m for channeln. The primary user protection condition can be written as
1= PA6R)| PR(GR) < m. (2.39)

To maximize the CR network throughpLRm’i’(é"Nl) should be set to a probability as large as pos-

sible, as allowed by the maximum collision rate constraivi. have from (2.39)

PP(67) = min W—m_,,l : 2.40

Let A(t) := {m|D,,(t) = 0} be the subset of channels that are identified to be idle in time
slot¢. Then its complement séf(t) = .A(t) is the subset of channels that are believed to be
busy in time slott (i.e., being used by primary users). We next investigate toweffectively
assign the channels iA(t) to the CR transmitters and how to choose transmit power foCtRe
transmitters, such that the CR network throughput is maxachimnder interference and collision

rate constraints.

Channel Interference Model

We consider CCI among CR users sharing the same licensed claath&lCl for both CR

and primary users in this paper. The CCl and ACI models are predé@nthe following.

Co-channel Interference CCl is caused by the CR user transmissions sharing the sameethann

as the victim receiver. Before introducing the interferenuedel, we define index variables®
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indicating the channel assignment for the CR links as follows

1, if channelm is used by CR linke
ot = m=1,2--,M k=1,2,--- K.

0, otherwise
(2.41)

Let 7, and R, be the transmitter and receiver of CR likk respectively. The CCI at CR

receiverk on channein, denoted by’}", is

m m m_.m
Cy' = E G7 = BT
i€® itk

= DGR Pl = G p Py, (2.42)
icP
whereGT: » is the channel gain from CR transmitteto CR receiverk on channetn, P;" is the

transmit power of CR transmittéron channein, and® := {1,2,--- | K} is the set of transmit-

ter/receiver pairs in the CR network.

Adjacent Channel Interference In addition to CCl, a CR receiver may also be interfered by
transmissions on an adjacent channel, when the channeiststictly orthogonal. The interferer
could be either a CR transmitter or a primary transmitter.(elgg primary base station) on the
adjacent channel. Such ACl is shown to be harmful with testlx@é@riments in a recent work [29].
Due to the imperfect design of band-pass filters, a portidgh@power on the adjacent channel
may leak to the channel being used by CR users. Such leakatg® isamsidered as noise. For
ease of explanation, we only consider the ACI from a direajimeoring channel in this paper. Let
3+1 be the ratio of leakage power from chanfwel + 1) to m, and3;.! the ratio of leakage power
from channelm — 1) to m. We term these leakage power ratAS| factor, which depends on the

spectral properties, such as inter-channel distance arthehwidth, and band-pass filter design.
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For a channeh, if its adjacent channéln + 1) is idle, then the ACI is due to the concurrent

CR transmissions on channeh + 1). We have

AC;;}]C = [1 — Dm—i—l(t)]ﬁ;;l Z G%:&;{lkpim-&-l‘r?ﬁ-l
i€d, itk
= [ = Dna®BE i (2.43)

Alternatively, if the adjacent channéh + 1) is busy, then the ACI is caused by a primary trans-
mission on channébn + 1). We have

AP = Dy ()8, G Qi (2.44)

m

WhereGgfgi is the channel gain from the primary transmitter to CR readiven channe(m + 1),
and@,,+1 is the transmit power of the primary transmitter on charjneh- 1).

Similarly, ACI on channeln may also come from the adjacent channel on the other sidg, i.e
channel(m — 1). We defineAC, }, and AP, | as the interference due to CR transmission and
primary transmission on channel — 1, respectively. These can be computed as

ACL = [1—=Dna(t), Ot (2.45)

m

APY = Dpa(D)B,,' Gyt Qmot. (2.46)
The total ACI on channeh from its two adjacent channels can be written as
A = AC, + AP+ ACL + AP (2.47)

Without loss of generality, we assum&’; ;, AP, AC}/, andAP}/, are all zero for channels
and M. This is because the adjacent chaniedsid (A + 1) are used by neither primary nor CR

users.
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On the other hand, primary users may also be interfered by @R usansmitting on an
adjacent channel. If channel is used by primary userand channe{m + 1) is available for CR

user access, the ACI received by the primary user is

BCHY = [1 = Doa (DIBE Y G Pt (2.48)

K3
ied

The ACI received by the primary user from CR transmissions @mibl(m — 1) is

BC, =[1- 18, Gttt (2.49)

i€d

Considering ACI from both sides of channe| the total ACI at a primary receiver can be written

as:
m __ +1 —1
B! = BC, " + BC, . (2.50)
Again, we assum&C andBC;}lj are zero for the two edge channels 1 add

2.5.2 Channel Selection and Power Allocation
Problem Statement

At each CR receiver, both types of interference from co-cehand adjacent channels are
treated as noise. Lef" be the SNR at CR receivéron channetn. Thenv* can be written as

m ™m .MM
GnyRkPk xk

- : 2.51
Ny + O+ Ap (2:51)

wherelV; is the channel noise power. The objective is to maximize #pacity of the CR network

as approximated by Shannon capacity. Without loss of gétyenae assume that each channel
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has unit bandwidth (e.gl,MHz). The objective function becomes

Ig}la{glz Z log, (1 4+ v;) (2.52)

TR ed meA(t)

Since each CR user is able to access one channel in each timeaslbave the following

channel access constraint.

Y ap <1, forallke . (2.53)
meA(t)

Furthermore, each CR transmitter is limited by a peak powestraint. That is

> Prap <T, forallk e . (2.54)

meA(t)

As discussed, the interference from CR transmissions togpyimasers should be bounded.
Recall thatB(t) is the set of busy channels af®}, is the set of primary users using channel

Letting the ACI bound bé&2, we have
B <Q, forallm e B(t),j € Pn. (2.55)

Problem (2.52) with constraints (2.53), (2.54) and (2.58xmizes the CR network capacity
while bounding the total interference (i.e., both CCl and AQIptimary users. Note that the
maximum collision rate constraint caused by CR transmiss{@r89) is satisfied by choosing the
channeln access probabilityaﬁ(é%) asin (2.40). Based on spectrum sensing results, we need to
determine channel access (as given by:this) as well transmit powers (as given by thg'’s) for
CR users. This is an MINLP problem, which is NP-hard in genanal cannot be solved exactly
in polynomial time. For this problem, we first describe belbaw to derive upper and lower

bounds with a centralized algorithm, and then present ailalistd algorithm that decomposes
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Problem (2.52) into a channel assignment subproblem andvarpalocations subproblem in the

next section.

Centralized Algorithm and Performance Bounds

In this section, we first obtain an upper bound by relaxinggiablem with RLT [45]. The

lower bound is then computed with a sequential fixing (SFpatigm [8,47]. To obtain a linear

relaxation of the MINLP problem, we first allow the binary Nadolesz)” to take real values in

0,1]. Second, the product terf"z}" is replaced by a substitution variali¥ = P*z}". Since

0 < P* <T'and0 < z* < 1, we derive the followindRLT bound-factor product constraints

Rearranging the terms, we have

(P = 0) (" —0) > 0
(P = 0)(1 =) 2 0
(T~ PPy —0) > 0
(T = Pr)(1—ap) > 0
(¢ >0

P =y =0

T2 — g >0

| PP 4T — g <T.

(2.56)

(2.57)

Finally, the logarithm terniog, (1 + v}*) in the objective function can be decomposed into the

difference between two logarithm terms, denoted;yandz;", respectively, as follows.

logy (1 + o)

logy(No + CF + Ay + Gz, Pi'ay!) — loge(No + CF + AYY)

42

(2.58)



——» Four tangential supports

| | >
X X3 X

/'/\The chord connecting

the two end points

Figure 2.12: The polyhedral outer approximation of a laanifunctiony = log,(z) inzo < x <
xs.

wherey;" := logy(No + Cp' + A + G 5 Ptay?) andzp = logy(No + O + A'). For ageneral
logarithm termlog, (z), we can linearize it over some tightly bounded regions witfolyhedral
outer approximation For example, ifr is bounded by:, < = < z, we can determiné evenly
spaced points as

l
$l:$0+z($L—$0), forl:0,1,~~ ,L. (259)

Then the logarithmic functiop = log, (x) can be substituted with the following linear constraints.

log, (z1,) —log, (20)
y > P xr — xg) + logy(x
L—T0 ( 0) 2(%0) (2.60)
1

Y < s (@ — @) +logy(a), for 1=0,1,--- L.

In this paper, we use a four-pointer (i.&.,= 3) tangential approximation. The upper and lower
bound ofy;* and z;* can be obtained by letting;* be 0 andI', respectively. The five linear

constraints given in (2.60) that form the polyhedral oufgsraximation are plotted in Fig. 2.12.
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Table 2.2: Sequential Fixing (SF) Algorithm

Use RLT to linearize the original problem;
Solve the LP relaxation;
Find the minimum value among alf* and1 — x}";
IF (the minimum value is in the form df — z7%')
Fix 27 to 1;
Fix all 27} to 0 for all m # m/;
ELSE
Fix 277 t0 0;
END IF
10: IF (allz}*'s are fixed)
11: Goto Step 16;
12: ELSE
13:  Reformulate and solve a new LP relaxation based on all
thez]"’s that have been fixed,;
14: Goto Step 3;
15: ENDIF
16: Formulate and solve a new LP for tRg"’s;
17. Substitute the;g}' 's and P;*'s into (2.52) to obtain a lower
bound on the CR network capacity;

With the above three-step relaxations, we thus obtain alipppgramming (LP) relaxation for
Problem (2.52). Solving the LP relaxation with an LP solveg, can obtain a possibly infeasible
solution due to the relaxations, which can serve asgper boundor the original problem.

We next present an SF Algorithm in Table 2.2 for deriving asfiel@ near-optimal solution.
In Steps3 — 9, the variabler}} that is closest td) or 1 is chosen and rounded to the nearest
binary integer. Once?; is fixed to1, all the other variables}? with the same subscrigt are
fixed to 0, due to constraint (2.53). Then the problem can be reforredlavith a reduced size,
and solved again iteratively, until all the binary varialg*’s are fixed. In Sted6, the transmit
powersP"’s are derived when the channel assignment is determinet. tNat here we still need
to formulate and solve an LP relaxation with respect to tigatithmic terms, since even when the
binary variables are fixed, the problem is still non-convEkally, in Step17, we substitute the
near-optimal feasible solution into the original objeetiunction (2.52) to obtain bower bound

for the global optimum.
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Generally, solving such an LP relaxation may produce arasibde solution to the original
problem due to the relaxations. A local search algorithrhestneeded to find a feasible solution in
the neighborhood. However, local search is not necessamyriproblem. First, the SF algorithm
determines binary values for all th§"'s, such that constraint (2.41) is satisfied. Second, fraen th
RLT bound-factor product constraints (2.57), we have #ifat= P* whenz]’ = 1; and¢}’ = 0
whenz]? = 0. Once all thez]"’s are set to binary values, by replacigg with P;* or 0, the
linear inequality constraints now only contain tRg"'s. Finally, although we use the polyhedral
outer approximation for the logarithmic terms, these teanesall in the objective function (2.52).
It is easy to show that the feasible solutions of the relax@gtoblem is a subset of the feasible
solution of the original problem, since the constraintshaf original problem is a subset of those
of the relaxed LP problem. Therefore, a feasible probleninéoltP relaxation is also feasible to
the original problem. We only need to substitute the feassllution into the original objective
function (2.52) to obtain the corresponding objective galuhich is a lower bound for the original
problem.

In our simulations, we find the upper bound quite loose, batldlver bound is reasonably
tight. The average-case time complexity of timplex methoda popular LP solving algorithm,
is O(nlogn) for a problem with size: [48]. Thus the computational complexity of one iteration
in SFisO(MK log(MK)). Since the number of iterations in SFA$K in the worst case, the

overall average-case computational complexity of SB(i8/? K2 log( M K)).

Distributed Algorithm

The Algorithm  Although the SF algorithm in Table 2.2 can compute a nearrgtsolution in
polynomial time, it is a centralized algorithm that need«kmow all the channel gains. In this
section, we present a distributed greedy algorithm forisgl?roblem (2.52). With this algorithm,
each CR transmitter estimates channel gains from itselinogpy users and all other CR receivers,
and each CR receiver estimates channel gains from the pribessy station and all other CR

transmitters.
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Table 2.3: Channel Assignment Algorithm for CR Likk

1: Initialize z}* = 1 for all m € A(t) and A.(t) = A(t);
2: WHILE (|Ax(t)] > 1)
3: Run the power allocation algorithm given in Table 2.4;
4:  Find the channeh’ with the minimumU;™ value:
m' = arg ming,c 4,1 Uy (P);
5. Setz?" = 0and removen’ from A,(t);
6: END WHILE
7: Run the power allocation algorithm given in Table 2.4

with all thex}*'s determined.

The distributed algorithm consists of two tiers: (i) the appier is achannel assignment
algorithm, which decides which channel to access for a CR transmittelr(ig the low tier is a
power allocation algorithmwhich decides how much power can be allocated to transneach
available channel. In the channel assignment algorithmgsgeme the transmit powers have been
allocated to each available channel; the power allocatlenpted by ar/ x K vector P, can be
obtained from the power allocation algorithm. Define theawdty of CR link % if it uses channel
m as

Ul = logy (1 4+ vh). (2.61)

Then in each loop, the channel with the Iowé’gt(ﬁ) is removed from the available channel set
A (t) and the correspondingj” is set to0, until only one available channel is left. The complete
channel assignment algorithm is presented in Table 2.3h W algorithm, initially we assume
CR transmittek uses all the channels ji(¢) in Step 1. Then in Stepgs— 6, we iteratively remove
the channels with the minimum capacity gain, until only oharmel is left. Finally, the transmit
power is determined for the chosen channel in Step 7.

In the power allocation algorithm, the main idea is to iteely allocate a small amount of
powerA to the CR link that can achieve the largest increase in (2:B2.algorithm is presented
in Table 2.4. LetA7” be a vector whosgk — 1) x M + m]-th element is\ and all other elements
are 0, indicating that powexk is allocated to CR linki on channeln. Obviously, if CR linkk is

allocated with the additional powé, the throughput of this CR link will increase; if another CR
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Table 2.4: Power Allocation Algorithm for CR Link

Initialize P* = 0 for all k € ® andm € Ax(¢);

CalculateZ ARN;" for all m € A(t);

IFQ can Bi"+A<D) & (Bm(PJrAm) <QforjeP,)
EARN[ =%, 4 [UR(P + A7) — Up(P)];

ELSE
EARN™ = 0;

END IF

CalculateCOST;? for all k' # k andm € Ay (t), where
Costil . = 2 peanUr (P + &) = Up(P));

Broadcast aIEARNm andCOSTQk to all other CR links;

10: CalculateP ROFIT}" for all k € ® andm € A, (t), where

PROFIT}" = EARN[" + Y, ;,, COST};

11: Find{m/,k'} = arg maxicogmea, ) PROFIT}",

12: IF (PROFIT,?? > 0)

13: P=DP+ Ak, ;

14: Go to Step 2;

©

15: ELSE.
16:  The algorithm is terminated with solutid?y
17: ENDIF

link &" # k is allocated with the additional powe, the throughput of CR link will decrease. The
increase and decrease of the throughput of the CR link areetbgarningandcost respectively:
EARN;]" is the throughpuincreasefor CR link £ on channehn if it gets the additional powef;
COST;7, is the throughputlecreaséor CR link k if another CR linkk’ # k on channeb: wins
the additional power allocation. In Steps3 — 7, we calculate® ARN}", but set it to0 if either
(2.54) or (2.55) is not satisfied. In Stefds— 11, the net throughput gains (qrofit) of all possible
power allocations are calculated and the combination vighlargest profit is selected. In Steps
12 — 13, the CR link with the largest positive profit wins the additpower allocation), if its
profit is positive. Otherwise, the power allocation aldamitis terminated with solutio®, because

no further power allocation can improve the total throughpu

A Simple Example To better explain our distributed algorithm, consider apferexample with

two CR users 1 and 2. As shown in Fig. 2.13, for each channeCR transmitter 1 calculates
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Calculate Calculate
EARN. 1m Broadcast EARsz
COSTZ’T’1 COST1""2

PROFIT " = PROFIT]" =
EARN{" + Compare EARNZ’" +
COST{’?2 COST£”1

CR Transmitter 1 CR Transmitter 2

Figure 2.13: An example of the distributed algorithm operatvith two CR users.

EARNT" andCOSTy and CR transmitter 2 calculatésA RN, andCOSTT,. The two nodes
then broadcast the values to each other. Once a node retee/€%) ST from the other node,
it calculates itsPROFIT as shown in the figure. The powér;" is allocated to the node with
the largerPROFIT". This power allocation algorithm is terminated if bdthROFI'T]* from
the two nodes are non-positive. Once the power allocatigardélhm is terminated, the channel

with the lowestl;(P) is removed from the available channel ski(¢), until only one available

channel is left, as given in Table 2.3.

2.5.3 Performance Evaluation

We evaluate the performance of the proposed algorithmg 04MAT LAB (for solving the LP
relaxations). For the results reported in this sectionietfa@e M/ = 6 licensed channels (unless
otherwise specified) with identical transition probalektP’! = 0.4 andP!° = 0.3 for all m. The
maximum collision probability with primary users4g, = 0.2 for all m. The transmit power of
primary base station 30 dBm and the maximum acceptable interference for the primseysus

2 = 10 dBm. There ardl = 6 transmitter and receiver pairs in the CR network. The power of
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CR transmitter is limited td,,, = 27 dBm for allm. The false alarm probability i§"" = 0.3 and
the miss detection probability i§* = 0.3 for all m andn, unless otherwise specified. Rayleigh
block fading channels are used in the simulations.

We consider four types of results: (i) the upper bound olthioy solving the RLT relaxation
as presented in Section 2.5.2; (ii) the centralized SF dhgorsolution given in Table 2.2 (a lower
bound); (iii) the distributed greedy algorithm given in Tedb2.3 and 2.4; and (iv) a simple central-
ized heuristic algorithm. With the centralized heuristgoaithm, each CR transmitter chooses the
best available channel to access to exploit multiuser siityegain. When the channels are assigned
and all thex}’s are fixed. Then it solves the reduced problem (2.52) withiTMAB Optimization
Toolbox to find a near-optimal power allocation. Each pomthe curves is the average of
simulations with different random seeds. Ti&4 confidence intervals are plotted as error bars,
which are negligible in all the cases.

We first examine the impact of the number of chaniélsn the overall throughput of the CR
network. In Fig. 2.14, we increasé from 4 to 8, and plot the total throughput of the CR network.
As expected, the more licensed channels, the more specpportanities for CR users and the
higher the network throughput. The curves of both SF and ¢heistic algorithm have lower slop
than that of the distributed greedy algorithm. It implieattthe greedy algorithm is more efficient
in exploiting the addition spectrum opportunities for CRigmissions. We find the upper bound
quite loose, while the lower bound is reasonably tight.

In Fig. 2.15, we investigate the impact of primary user clghatilizationn on the CR network
throughput. The throughput curves achieved by the algosthre plotted when is increased
from 0.3 to 0.7. Clearly, a smaller; allows more spectrum opportunities for CR transmissions.
When the primary users get more busy, the spectrum oppaesifitr CR users decreases and the
throughput of all the three algorithms decreases. It careba fom the figure that all the three
curves decrease gsgets larger. The CR network throughput of the distributec@dyealgorithm
is better than that of the simple heuristic algorithm and tfahe centralized SF algorithm. In

particular, whem = 0.3, the distributed greedy algorithm achieves a normalizeautghput gain
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Figure 2.14: CR network throughput versus the number of §edrchannels.
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Figure 2.15: CR network throughput versus primary user chlautilization.

of 27.84% over the simple heuristic algorithm, and a nornealithroughput gain of 117.62% over
SF. When) = 0.7, the distributed algroithm achieves normalized througlgains of 19.98% and
73.67% over the simple heuristic and SF, respectively.

Next we examine the impact of spectrum sensing errors on then€®ork throughput.

In Fig. 2.16, we test five pairs dfe,0} values as follows:{0.2,0.48}, {0.24,0.38}, {0.3,0.3},
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Figure 2.16: CR network throughput versus spectrum sensing grobabilities.

{0.38,0.24}, and{0.48,0.2}. The CR network throughputs achieved by the algorithms are pl

ted in the figure. It is interesting to see that the throughgmrformance gets worse when the
probability of one of the two sensing errors gets large. Wetcade-off between false alarm and
miss detection probabilities to find the optimal operatimgnpfor spectrum sensing. Again, the
throughput performance of the greedy algorithm is supdadhat of the heuristic algorithm and

doubles that of the SF algorithm.

We then investigate the impact of the ACI factéron the CR network throughput. The
simulation results are presented in Fig. 2.17, wheirgincreased frond to 0.5. As expected, the
CR network throughput is degraded by the presence of ACI. TWexreethe ACI, the lower the CR
network throughput. When is increased from 0 to 0.5, the throughput degradations .@@&14
Mbps, 3.8068 Mbps, and 3.3793 Mbps for the distributed algar, the simple heuristic, and SF,
respectively. The distributed greedy algorithm outperf®both the simple heuristic algorithm and
SF with considerable gaps for the entire rangg ebnsidered.

We also measure both types of interference in the simulsaod exam the impact of the ACI
factor 5 on channel interference. In Fig. 2.18, we increddeom 0 to 0.5 with step0.1 and plot

the measured average interference in the plots. The totahge interference for each licensed
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Figure 2.17: CR network throughput versus the ACI factor.

channel is shown in Fig. 2.18(a), which consists of both AGI @¢l. It can be seen that the total
interference increases aggyets larger, since there is more power leakage from adjateminels.
The ACI and CCI components are plotted in Figs. 2.18(b) and &) 1&spectively. It can be seen
that ACI almost linearly increases with Wheng = 0, ACl is zero for all the three schemes since
there is no power leakage from neighboring channels. When 0.5, the ACI of the proposed
distributed scheme is about 92.32% of that of the simpleisgtiand 58.93% of that of SF. The
proposed distributed algorithm curve has the lowest slopraythe three schemes, indicating more
effective control of ACI as5 increases. The fractions of ACI in the total average interfee are
plotted in Fig. 2.18(d) for the three schemes. The fracttmmaases as gets larger, from 0% to
about 22%. Clearly ACI should be considered in the resouroeaibn and protocol design of
CR networks.

Finally, we validate our proposed spectrum sensing andsagzheme. We set the maximum
allowable collision probabilityy to be 0.2 and increase channel utilizationfrom 0.3 to 0.7 in
steps of).1. In Fig. 2.19, the measured collision rates with primarysuse plotted, along with the

~ = 0.2 curve. It can be seen that the measured collision rate is/aliept belowy, showing that
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Figure 2.18: Composition of the total interference measimdatie simulations as a function of
ACI factor 5.

the proposed spectrum sensing and access scheme is gedgveffvith regard to primary user

protection.

2.6 Conclusions

In this chapter, we first studied the problem of design andyaizgaof MAC protocols for
CR networks in this chapter. In particular, we proposed aradyaed two opportunistic multi-
channel MAC protocols, adopting a memoryless sensing yalnd an improved sensing policy,

respectively. The impact of imperfect sensing (in the fowhsniss detection and false alarm)
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are explicitly considered in the CR MAC design. We developealygical models to evaluate the

performance of the proposed protocols. Our simulationystiemonstrates the accuracy of the
analysis, as well as the superior throughput performanteegproposed CR MACs over existing

approaches.

Then, we investigated the problem of CCI and ACI mitigation i@ammnel assignment and
power allocation in CR networks. The objective was to maxaie total CR network throughput
while keeping both collision rate and interference withhary users below tolerance thresholds.
We proposed an RLT-based centralized SF algorithm that cteamear-optimal solutions, and a
distributed greedy algorithm that only uses local chanmaéh gnformation. The proposed algo-
rithms are evaluated with simulations. The distributedcedyealgorithm is shown to outperform

both the centralized SF algorithm and a centralized heziaggorithm with considerable gains.
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Chapter 3

Video over CR Networks

3.1 Introduction

Video content delivery over wireless networks is expectedrow drastically in the coming
years. The compelling need for ubiquitous video contenesgavill significantly stress the ca-
pacity of existing and future wireless networks. To meet thitical demand, the Cognitive Radio
(CR) technology provides an effective solution that can ¢ifety exploit co-deployed networks
and aggregate underutilized spectrum for future videorawdreless networks.

The high potential of CRs has attracted substantial interése mainstream CR research
has focused on developing effective spectrum sensing atesadtechniques (eg., see [14, 15]).
Although considerable advances have been achieved, tratamp problem of guaranteeing ap-
plication performance has not been well studied. We find wvisiieeaming can make excellent
use of the enhanced spectrum efficiency in CR networks. Undl#a, where each bit should be
delivered, video is loss-tolerant and rate-adaptive [89, S'hey are highly suited for CR net-
works, where the available bandwidth depends on primary tusesmission behavior. Graceful
degradation of video quality can be achieved as spectrurarappties evolve over time.

CR is an evolving concept with various network models andlgewé cognitive functional-
ity [14, 15]. IEEE 802.22 Wireless Regional Area Networks (WRAthe first CR standard for
reforming broadcast TV bands, where a base station (BS)alentredium access for customer-
premises equipments (CPEs) [51]. Therefore, we first considdticasting scalable videos in
such an infrastructure-based CR network. The spectrum stsnsi multiple channels, each al-
located to a primary network. The CR network is co-locatedwhie primary networks, where
a CR BS seeks spectrum opportunities for multicasting meltyadleo streams, each to a group

of secondary subscribers. The problem is to exploit spectpportunities for minimizing video
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distortion, while keeping the collision rate with primargars below a prescribed threshold. We
consider scalable video coding, such as fine-grainedsitiglgdFGS) and medium grain scalable

(MGS) videos [52,53]. We model the problem of CR video mulitaaver the licensed channels
as a mixed integer nonlinear programming (MINLP) problend then develop a sequential fixing

algorithm and a greedy algorithm to solve the MINLP, while thtter has a low computational

complexity and a proved optimality gap [8].

We then tackle the problem of video over multi-hop CR netwpekg., a wireless mesh net-
work with CR-enabled nodes. This problem is more challendiag the problem above due to the
lack of infrastructure support. We assume each secondanjsisquipped with two transceivers.
To model and guarantee end-to-end video performance, wet dlde amplify-and-forward ap-
proach for video data transmission, which is well-studiethie context of cooperative communi-
cations [54]. This is equivalent to setting up a “virtual tefi’ through a multi-hop multi-channel
path. The challenging problem, however, is how to set up theal tunnels, while the available
channels at each relay evolve over time due to primary usestnissions. The formulated MINLP
problem is first solved using a centralized sequential fidlggprithm, which provides upper and
lower bounds for the achievable video quality. We then aphisl decomposition to develop a
distributed algorithm and prove its optimality as well as tonvergence condition [9].

The rest of the chapter is organized as follows. We revieated work in Section 3.2 and
present preliminaries in Section 3.3. We examine video mfeaistructure-based CR networks in
Section 3.4 and over multi-hop CR networks in Section 3.5. Wmcludes the chapter in Sec-

tion 3.6 with a discussion of open problems.

3.2 Background and Related Work

The high potential of CRs has attracted considerable intesastboth industry, government
and academia [1, 14]. The mainstream CR research has beesefbon spectrum sensing and
dynamic spectrum access issues. For example, the impgmecfsm sensing errors on the design

of spectrum access schemes has been addressed in several [6a@4, 55, 56]. The approach
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of iteratively sensing a selected subset of available oblartmas been developed in the design of
CR MAC protocols [6, 20,57]. The optimal trade-off betweea tlvo kinds of sensing errors is
investigated comprehensively and addressed in depth |n [24

The important issue of QoS provisioning in CR networks haslstedied only in a few pa-
pers [20, 58], where the objective is still focused on thealed “network-centric” metrics such
as maximum throughput and delay [20, 55]. In [55], an intiengsdelay throughput trade-off for a
multi-cell cognitive radio network is derived, while theaj@f primary user protection is achieved
by stabilizing a virtual “collision queue”. In [58], a gantleeoretic framework is described for
resource allocation for multimedia transmissions in spectagile wireless networks. In this in-
teresting work, each wireless station participates in auee management game, which is coordi-
nated by a network moderator. A mechanism-based resouncagement scheme determines the
amount of transmission opportunities to be allocated tmwuarusers on different frequency bands
such that certain global system metrics are optimized.

The problem of video over CR networks has been addressed wrdyféew recent papers.
In [59], a priority virtual queue model is adopted for wirgseCR users to select channel and
maximize video qualities. In [60], the impact of system paeters residing in different network
layers are jointly considered to achieve the best possibdkowquality for CR users. The problem
is formulated as a Mini-Max problem and solved with a dynaprmgramming approach. In [61],
Ali and Yu jointly optimize video parameter with spectrurmsig and access strategy. A rate-
distortion model is adopted to optimize the intra-mode @@a and source-channel rate with a
partially observable Markov decision process (POMDP) fdation. In [62], video encoding
rate, power control, relay selection and channel allocasie jointly considered for video over
cooperative CR networks. The problem is formulated as a mixedjer nonlinear problem and
solved by a solution algorithm based on a combination of lad¢h and bound framework and
convex relaxation techniques.

Video multicast, as one of the most important multimediaises, has attracted considerable

interest from the research community. Layered video magtibas been researched in the mobile
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ad hoc networks [63, 64] and infrastructure-based wiratesworks [52, 65]. A greedy algorithm
is presented in [65] for layered video multicast in WiMAX weirks with a proven optimality gap.
A few recent works [47, 66, 67] have studied multi-hop CR nekso The authors formulate
cross-layer optimization problem considering factorsrfrime PHY up to the transport layer. The
dual decomposition technique [68, 69] is adopted to devdisfributed algorithm. We choose
similar methodology in our work and apply it to the more ceadjing problem of real-time video

streaming.

3.3 System Model and Preliminaries

3.3.1 Primary Network

We consider a spectrum band consistingAdf orthogonal channels with identical band-
width [21]. We assume that th&/ channels are allocated #© primary networks, which cover
different service areas. A primary network can use any ofthe€hannels without interfering
with other primary networks. We further assume that the arinsystems use a synchronous slot
structure as in prior work [14, 20]. Due to primary user trarssions, the occupancy of each
channel evolves following a discrete-time Markov processyalidated by recent measurement
studies [14, 16, 20].

In primary networkk, the status of channeh in time slott is denoted byS* () with idle
(i.e., Sk (t) = 0) and busy (i.e.S* (t) = 1) states. Let\* andy”, be the transition probability
of remaining in stat® and that from staté to 0, respectively, for channeh in primary network
k. As discussed in Section 2.3.1, the utilization of channeh primary networkk, denoted by

nk =Pr(Sk =1),is

1-— )\k
k k m
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Figure 3.1: An infrastructure-based CR network collocatétl W primary networks.

Note that in infrastructure-based CR networks and cooper@ir networks, we assume there
is only oneK = 1 primary network. In infrastructure-based CR networks idtrced in the sec-
tion 3.4, we adoptV as the number of licensed channels siid¢es denoted as the number of

modulation-coding schemes.

3.3.2 Infrastructure-based CR Networks

As shown in Fig. 3.1, we consider a CR base station multic@stsal-time videos ta~
multicast groups, each of which had§ usersg = 1,2,--- ,G. The base station seeks spectrum
opportunities in theV channels to serve CR users. In each timesltite base station selects a set
of channelsA, (¢) to sense and a set of channglg(t) to access. Without loss of generality, the
base station hgs4, (¢)| transceivers such that it can sefgg(t)| channels simultaneously. Note
that a time slot and channel combination, termé&teais the minimum unit for resource allocation.

We adopt the same time-slot structure as in [14,57]. , wisciiustrated in Fig. 2.4. At

the beginning of each time slot, the base station senseselsan A, (t) and then chooses a set

59



Spectrum sensing Data transmission Acknowledgment

V) R\
<

A time slot >|

Figure 3.2: The structure of a time slot.

of available channels for opportunistic transmissiongtam sensing results. After a successful
transmission, the base station will receive an ACK from thex usth the highest SNR in the target
multicast group. Without loss of generality, we assume ¢a&h CR network user can access all

the available channels with the channel bonding/aggregatichniques [44, 70].

3.3.3 Multi-hop CR networks

As shown in Fig. 3.3, we also consider a multi-hop CR netwoek th co-located with the
primary networks, within whicks real-time videos are streamed amaNgCR nodes. Let/*
denote the set of CR nodes that are located within the coverfagemary networkk. A video
sessiori may be relayed by multiple CR nodes if sourgés not a one-hop neighbor of destination
d;. We assume aommon control channébr the CR network [20]. We also assume the timescale
of the primary channel process (or, the time slot durati@sjuch larger than the broadcast delays
on the control channel, such that feedbacks of channelnrdton can be received at the source
nodes in a timely manner.

The time slot structure is the same as that in infrastrudbaseed CR networks. In the sensing
phase, one transceiver of a CR node is used to sense one df ttennels, while the other is
tuned to the control channel to exchange channel informatith other CR users. Each video
source computes the optimal path selection and channefiglohg based on sensing results. In
the transmission phase, the channels assigned to a vidsiorsést each link along the path
form a virtual “tunnel” connecting source and destinationl;. As illustrated in Fig. 3.4, each
node can use one or more than one channels to communicatetiwthnodes using the channel

bonding/aggregation techniques [44, 70]. When multiplenclets are available on all the links

60



Primary network
base station

Secondary network
user

&

Figure 3.3: lllustration of the multi-hop video CR networlchitecture.
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Figure 3.4: The cut-through switching model for video data.

along a path, multiple tunnels can be established and usadtaneously for a video session.
In the acknowledgment phase, the destination sends ACK tedtiee for successfully received
video packets through the same tunnel.

We adopt amplify-and-forward for video transmission [5Bjuring the transmission phase,
one transceiver of the relay node receives video data fremplstream node on one channel, while
the other transceiver of the relay node amplifies and forsvtird data to the downstream node on
a different, orthogonal channel. There is no need to stateospackets at the relay nodes. Error
detection/correction will be performed at the destinatiode. As a result, we can transmit through

the tunnel a block of video data with minimum delay and jitteone time slot.
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3.3.4 Spectrum Sensing

As discussed in Section 2.3.3, two types of sensing erroysaoeur during the sensing pro-
cess. Afalse alarmmay lead to waste a spectrum opportunity andias detectionmay causes
collision with primary users. In a multi-hop CR network, thensing results from various users
may be different. Denoté/, as the hypothesis that chanmelin primary networkk is idle, and
H, the hypothesis that channel in primary networkk is busy in time slot. The conditional
probability that channetn is available in primary network, denoted by:* (¢), can be derived
as [8],

at (t) = Pr(HoW™=0", icur *)

[ m?'m

Ufn |U,’$,|*U1fn PI(H |7Tfn)
= [ () (o)

-1

(3.2)

whered™ represents a specific sensing result (0 oi4f),is the subset of users i (i.e., the set
of CR nodes that are located within the coverage of primanywot k) that sense channel, u”,
is the number of users "* observing channeh is idle, 7% represents the history of channel

in primary networkk, andy® and¢”, are defined as:

ko POW=0H1) _ 4,

m = P(WP=0{Ho) _ I—em’ whenf™ = ( 3
P = P(WZT":1|H(1)) = =, wheng" = 1.

Based on the Markov chain channel model, we have (3.4), wlanlbe recursively expanded:

Pr(Ho|mk) = Avak (t — 1)+ pk [1—ak (t -1
(Ho|my,) (t=1)+ pp, | (t=1)] (3.4)
Pr(Hy|7k) =1 — Pr(Hy|xk).
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3.3.5 Video Performance Measure

Both FGS and MGS videos are highly suited for dynamic CR netsowkith FGS or MGS
coding, each videdis encoded into one base layer with r&gand one enhancement layer with
rate R¢. The total bit rate for videdis R, = RV + R¢.

We consider peak-signal-noise-ratio (PSNR) (in dB) of retrocged videos. As in prior

work [8,52], the average PSNR of vidéadenoted as);, can be estimated as:

QuR) = Q]+ Bi(R — R)) = Q) + BR, (3.5)

where@? is the resulting PSNR when the base layer is decoded alreeconstant depending
on the video sequence and codec setting,@he= Q° — 3,R?. We verified the model (3.5) with
several test video sequences using the MPEG-4 FGS codebamti264/SVC MGS codec and
found it is highly accurate.

Due to the real-time nature, we assume that egobp of pictureGOP) must be delivered
during the next GOP window, which consists §; time slots. Beyond that, overdue data from
the current GOP will be useless and will be discarded. Irastfucture-based netword; video
stream are multicast t&' groups of CR user, so we choose the group ingémstead of video

session index.

3.4 \Video over Infrastructure Based CR Networks

In this section, we examine the problem of video over infragtire-based CR networks. We
consider cross-layer design factors such as scalable gm#ing, spectrum sensing, opportunistic
spectrum access, primary user protection, schedulingr eontrol and modulation. We propose
efficient optimization and scheduling algorithms for higlsbmpetitive solutions, and prove the

complexity and optimality bound of the proposed greedy wdigon.
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3.4.1 Network Model
Spectrum Access

At the beginning of each time slétthe CR BS senses thé channels and computg (¢) for
each channeh. Based on spectrum sensing results, the base station de¢srmhich channels
to access for video streaming. We adopt an opportunistictapa access approach, aiming to
exploit unused spectrum while probabilistically boundihg interference to primary users.

Let~, € (0,1) be themaximum allowed collision probabilitywith primary users on channel
n, andp!’ (t) thetransmission probabilitpn channeh for the base station in time slatThe prob-
ability of collision caused by the base station should be kefow,,, i.e.,p!" (t) [1 — a, ()] < Va.

In addition to primary user protection, another importapjective is to exploit unused spectrum
as much as possible. The transmission probability can wrdeted by jointly considering both

objectives, as

min<1l, —=—4%  if 0<a,(t) <1
P (1) = t " (36)

1, if a,(t)=1.

If pi*(t) = 1, channeh will be accessed deterministically.#f (t) = ~,,/[1 — a,(t)] < 1, channel

n will be accessed opportunistically with probabiljt ().

Modulation-Coding Schemes

At the PHY layer, we consider various modulation and chanading combination schemes.
Without loss of generality, we assume several choices ofutatidon schemes, such as QPSK, 16-
QAM and 64-QAM, combined with several choices of forwardoercorrection (FEC) schemes,
e.g., with rates 1/2, 2/3, and 3/4. We considérunique combinations of modulation and FEC
schemes, termedodulation-CodingMC) schemes, in this paper.

Under the same channel condition, different MC schemesaattieve different data rates
and symbol error rates. Adaptive modulation and channahgaallow us to exploit user channel

variations to maximize video data rate under a given resiitiarror rate constraint. When a user
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has a good channel, it should adopt an MC scheme that canrsagdugher data rate. Conversely,
it should adopt a low-rate MC scheme when the channel cemdgipoor. Le§ M C,, }in—1,... 1 DE
the list of available MC schemes indexed according to thafia dates in the increasing order. We
assume slow fading channels with coherence time largeraheme slot. Each CR user measures
its own channel and feedbacks measurements to the basa stéen its channel quality changes.
At the beginning of a time slot, the base station is able teecbthe number., ,,, of users in each
multicast groupy who can successfully decodéC,, signals form =1,2,--- , M.

Since the base layer carries the most important data, thé neleble MC scheme// Cy()
should be used, whetég) = max;{i : n,;, = N,}, for all g. Without loss of generality, we
assume that the base layer is always transmitted uging. If a user’'s channel is so poor that
it cannot decode thé/C; signal, we consider it disconnected from the CR network. \Winéu
divide the enhancement layer inté sub-layers, where sub-layer has ratel?; |, and uses\/C,.
Assuming thatV/ C,,, can carryb, ,, bits of videog in one tile, we denote the number of tiles for

sub-layerm of videog asl, ,, > 0. We have

M M
Ro=> "R, = bomlym. (3.7)
m=1 m=1

Proportional Fair Allocation

Since we consider video quality in this paper, we define thilgyutor user i in groupg as
Uy = log Qg = log (Q° + B, R: (1)), whereR¢ (i) is the received enhancement layer rate of user
i in groupg.

The total utility for groupg is U, = Zfﬁl U, Intuitively, a lower layer should use a lower
(i.e., more reliable) MC scheme. This is because if a lowgeras lost, a higher layer cannot be
used at the decoder even if it is correctly received. Consigehe user classification based on

their MC schemes, we can rewritg as follows [65]:

M k
Uy =Y (ngr — ngis1)log (Qz +8, ) R;,m> : (3.8)
m=1

k=1
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whereng yr41 = 0. The utility function of the entire CR video multicast system

U=> U, (3.9)
Maximizing U will achieveproportional fairnessamong the video sessions [71]

3.4.2 Optimized Video Multicast in CR Networks
Outline of the Proposed Approach

As discussed, the CR video multicast problem is highly chalieg since a lot of design
choices are tightly coupled. First, as users see differeahmels, such heterogeneity should be
accommodated so that a user can receive a video quality cosurae to its channel quality. Sec-
ond, we need to determine the video rates before transmjssiach, however, depend on future
channel evolution and choice of MC schemes. Third, the tdfileetween primary user protection
and spectrum utilization should guide the scheduling oéeigackets to channels. Finally, all the
optimization decisions should be made in real-time. Lownptexity, but efficient algorithms are
needed, while theoretical optimality bounds would be higtgpealing.

To address heterogeneous user channels, we adopt FGS tewp@thase layer with raﬂéﬁ;
and an enhancement layer with rﬁ? Without loss of generality, we assurR% Is prescribed for
an acceptable video quality, whiféj is set to a large value that is allowed by the codec. During
transmission, we determine teéfective ratefor each enhancement lay&f < Rg depending on
channel availability, sensing, and MC scherhe€Ehe optimal partition of the enhancement layer
should be determined such that each sub-layer uses a diffd@ scheme.

We determine the optimal partition of enhancement layées choices of MC schemes, and
video packet scheduling as follows. First, we solve theroatipartition problem for every GoP
based on an estimated (i.e., average) number of availdeslti in the next GoP window that

can be used for the enhancement layer, using algorithm GRBilowmplexityO(MGT.). The

1The proposed approach can also be used for streaming stGi®diBeo.
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tile allocations are then dynamically adjusted in each tsoeaccording to more recent (and thus
more accurate) channel status using algorithm GRD2, withpbexity O(M GK ), whereK < T.,.
Second, during each time slot, video packets are scheduklbe tavailable channels such that the
overall system utility is maximized. The TSA algorithm hasrplexity O(N log N). Both GRD2
and TSA have low complexity and are suitable for executiogaoh time slot.

In real-time video, overdue packets generally do not cbuate to improving the received
quality. We assume that the data from a GoP should be be dedive the next GoP window
consisting of7,p time slots? Since the base layer is essential for decoding a video, wareass
that the base layers of all the videos are coded usiidg. For the)M sub-layers of the enhance-
ment layer, a more important sub-layer will be coded usingoaemeliable (i.e., lower rate) MC
scheme. At the beginning of each GoP window, all the basedagre transmitted using the avail-
able tiles.Retransmissionwill be scheduled if no ACK is received for a base layer packdter
the base layers are transmitted, we allocate the remain@itpble tiles in the GoP window for
the enhancement layer. The same rule applies to the enhantsob-layers, such that a higher
sub-layer will be transmitted if and only if all the lower sidyers are acknowledged. This is due
to the decoding dependency of layered video.

In each time slot, the base station opportunistically access every channgth probability
pir(t) given in (3.6). Specifically, for each channglthe base station generates a random number
x,(t), which is independent of the channel histaéy(¢) and uniformly distributed in [0,1]. If
za(t) < plr(t), the most important packet among those not ACKed in the pusvidoP will
be transmitted on channel If an ACK is received for this packet at the end of time sipt
this packet is successfully received by at least one of tleesusnd will be removed from the
transmission buffer. Otherwise, there is a collision withmary user and this packet will remain
in the transmission buffer and will be retransmitted.

In the following, we describe in detail the three algorithms

2The proposed approach also works for the more general detmyrements that are multiple GoP windows.
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Enhancement Layer Partitioning and Tile Allocation

As a first step, we need to determine the effective rate fdn eabancement layet; < R;.
We also need to determine the optimal partition of each erdraent layer. Clearly, the solutions
will be highly dependent on the channel availability presssand sensing results.

Recall that the base layers are transmitted usift; first in each GoP window. Themain-
ing available tiles can then be allocated to the enhancemesrtdayVe assume that the number of
tiles used for the enhancement layers in a GoP windowis known at the beginning of the GoP
window. For example, we can estimale by computing the total average “idle” intervals of all
the N channels based on the channel model, decreased by the nafrtbes used for the base
layers (i.e.,Rg/bg,l). We then split the enhancement layer of each vigledo M sub-layers, each
occupyingl, ,, tiles when coded witd/C,,,, m = 1,2,--- , M.

Letting [ = i1, lie, -l l2a, - - Lo denote theile allocation vector we formulate

an optimization problem OPT-Part as follows.

¢ M
maximize: U(l) = > Y (ngx — ngas1) x log

k
QY+ By > bg,mlm] (3.10)
m=1

g=1 k=1
G M
subject to:z Z lym < T, (3.11)
g=1 m=1
M —
Z bg,mlg,m < RZa g€ [17 e 7M] (312)
m=1
lym >0, me[l,--- ,M],ge[l,--,G]. (3.13)

OPT-Part is solved at the beginning of each GoP window toraete the optimal partition of the
enhancement layer. The objective is to maximize the oveyatlem utility by choosing optimal
values for the, ,,'s. We can derive the effective video rates /s = M bymlygm. The for-

mulated problem is a MINLP problem, which is NP-hard [65].tte following, we present two

algorithms for computing near-optimal solutions to probl@PT-Part: (i) ssequential fixindSF)
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algorithm based on a linear relaxation of (3.10), and (igreedy algorithmGRD1 with proven

optimality gap.

A Sequential Fixing Algorithm  With this algorithm, the original MINLP is first linearized t
obtain a linear programming (LP) relaxation. Then we iigedy solve the LP, while fixing one in-
teger variable in every iteration [47,72]. We use Reformulation-Linearization Techniq(eLT)

to obtain the LP relaxation [45]. RLT is a technique that canged to produce LP relaxations for
a nonlinear, nonconvex polynomial programming problemnis Télaxation will provide a tight up-
per bound for a maximization problem. Specifically, we lineathe logarithm function in (3.10)
over some suitable, tightly-bounded interval using a petiral outer approximation comprised of
a convex envelope in concert with several tangential suppd¥e further relax the integer con-
straints, i.e., allowing th¢, ,,’s to take fractional values. Then we obtain an upper-baundiP
relaxation that can be solved in polynomial time. Due to lat&pace, we refer interested readers
to [45] for a detailed description of the technique.

We next solve the LP relaxation iteratively. During eachat®n, we find the; ;, which has
the minimum value fo([l; ] — l3.4) ofr ({;.» — |l5.,]) among all fractional, ,,,’'s, and round it
up or down to the nearest integer. We next reformulate anegsohew LP with/; ;, fixed. This
procedure repeats until all thhg,,’s are fixed. The complete SF algorithm is given in Table 3lde T
complexity of SF depends on the specific LP algorithm (ehg.simplex methodith polynomial-

time average-case complexity).

A Greedy Algorithm  Although SF can compute a near-optimal solution in polyredrmme, it
does not provide any guarantee on the optimality of the mwlutin the following, we describe
a greedy algorithm, termed GRD1, which exploits the inhepeiatrity structure of layered video
and MC schemes and has a proven optimality bound.

The complete greedy algorithm is given in Table 3.2, whire- Zngl }?; is the total rate
of all the enhancement layers a#dis a unit vectorwith “1” at the i-th location and “0” at all

other locations. In GRD1, all thg ,,’s are initially set to 0. During each iteration, one tile is
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Table 3.1: The Sequential Fixing (SF) Algorithm

Use RLT to linearize the original problem

Solved the LP relaxation

3:  Supposé; ,, is the integer variable with the minimum
(Tlgm] = lgm) OF (g — |lgm]) value among ally,;,,
variables that remain to be fixed, round it up or down to the
nearest integer

Ifall [, ,,’s are fixed, got to Step 6

5: Otherwise, reformulate a new relaxed LP with the newly

fixed !, ,, variables, and go to Step 2
6: Output all fixed,,, variables and?e = "% by .l

B

Table 3.2: The Greedy Algorithm (GRD1)

1: |Initializel,,, = 0 for all g andm
2: Initialize A = {1,2,--- ,G}
3:  WHILE (Zle M, < T, andA is not emptg
4: Find/; ; that can be increased by one:
S U(I4+8g.m)—U (1)
€4m = arg maneA,me[l,--- ,M] {W}
5. f: f‘|‘ e_)gym
6: IF (>, bgmlgm > RE)
7. l=1— é)g’fn
8: Deleteg from A
9: END IF
10: END WHILE

allocated to then-th sub-layer of videg@. In Step 4/, ; is chosen to be the one that achieves the
largest increase in terms of the “normalized” utility (&I (I+€,.,) — U (1)]/[bgm + R/T.]) if it is
assigned with an additional tile. Lines 6, 7, and 8 checkefdlsigned rate exceeds the maximum
rateR;. GRD1 terminates when either all the available tiles are wseghen all the video data
are allocated with tiles. In the latter case, all the videmsteansmitted at full rates. We have the

following Theorem for GRD1.

Theorem 3.1. The greedy algorithm GRD1 shown in Table 3.2 has a compléxifd GT.). It

guarantees a solution that is within a factor (@f— e~1/2) of the global optimal solution.

70



Proof. (i) Complexity In Step 4 in Table 3.2, it tak&38( M G) to solve fore}, ;. Since each iteration
assigns one tile to sub-laygr of groupg, it takesT, iterations to allocate all the available tiles in
a GoP window. Therefore, the overall complexity of GRDDIGV/ GT,).

(i) Optimality Bound This proof is extended from a result first shown in [65] foydeed
videos. We first show a property of group utilitg/g(f), which will be used in the proof of the

optimality gap. For two vector% andlz, letting A = Ug(lg) - Ug(lg), we have

M i 1 )
Z =1 nggma m —l m)
= (ngr —ngr+1) xlog | 14+ == m\g, 9,
A=) (ngr—ny Qb+ Bobgml2,,

M k - k .
< Z Z(l;»m o l;m>+<n97k - ng,k+1> X log <1 + ngg,m/ Qz + Z ngg,ml;m )

M M - f _
<D D g = L) (g = nggern) X log (1 + Bybga/ | QL+ D" Bbgml2 )
L m=1
M
- Z(l;,m - lz,?n)+ [Ug(lz +bgm) — U@)} 5 (3.14)

whereyt = max{0, y}. The first inequality is due to the concavity of logarithm ¢tions.
Next we prove the optimality bound. Létbe the output of GRD1 afteriterations. Let the
utility gap between the optimal solution and the GRD1 solube F; = U(f*) — U(l:), ande; ;, (t)

the argument found in Step 4 of GRD1 aftéterations. We havé = I;_; + &, (t) and

—

Fooy=U) - U(zll)

< ZZ Ay ) U1 + Ey()) = U (1))

) Z Z o)W/ lca 4 8yt = U] bgb,férf;fgi

sigm Hé};ZZ (bym + RIT,).
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The first inequality is due to (3.14) and the second inequéditows Step 4 of GRD1. It follows
@1 thad_ >, l;,, <Tcand)_ > byl ., < R. Wehavel, < (F,_;— Ft)m'
Solving for £, we haveF; < F,_; {1 — [b;»(t) + R/T.] /(2R)}.

Suppose th8VHILEloop in Table 3.2 has been executetimes when the solution is obtained.

F, < F_ 1{1—[§m( )+ R/T.] /(2R)}

< FoH{l t)+ R/T.]/(2R)}

< F{l—l/ 2kRi +R/T]} .

The WHILE loop exits when one or both of two constraints are violatédzgl Yomlgm < Tiis
violated, there is no tile that can be used. Therefore T, andZ,’f:1 R/T. > R. If constraint “A
is not empty” is violated, all the videos have been allocatgificient number of tiles and will be

transmitted at full rates. We haye}_, b, (t) > R in this case. It follows that

F < F {1 —1/(2kR) > "[bza(t) + R/Te]}

Fy[l—1/(2k)]" < Fye V2.

IN

SinceFy, = U(I*), we haveU(l;) > (1 — e Y/2)U(I*). Therefore, we conclude that the GRD1
solution is bounded byl — e~1/2)U (I*) andU (I*). O

A Refined Greedy Algorithm  GRD1 compute$, ,,’s based on an estimate of network status
§(t) in the nextl,p time slots. Due to channel dynamics, the compueds may not be exactly
accurate, especially whély, p is large. We next present a refined greedy algorithm, terniRIOZ;
which adjusts thé, ,,,'s based on more accurate estimation of the channel status.

GRD2 is executed at the beginning of every time slot. It ed@smghe number of available
tiles T.(¢) in the nextT. successive time slots, whete< T, < Tg,p IS a design parameter

depending on the coherence time of the channels. Such ¢éssirage more accurate than that in

72



GRD1 since they are based on recently received ACKs and resesing results. Specifically, we
estimateT’,(¢) using the belief vecto#(¢) in time slot¢. Recall thata,(t)’s are computed based
on the channel model, feedback, sensing results, and geasiors, as given in (3.2), and (3.4).
For the next time slotg, (¢ + 1) can be estimated as,(t + 1) = \,a,(t) + [l — an(t)] =

(An — pin)an(t) + pn- Recursively, we can derivig, (¢ + 7) for the nextr time slots.

1— ()‘n _,Un)T
L— (N — fin)

n(t+7) = (Ao — )" an(t) + pin (3.15)

At the beginning section of a GoP window, all the base layetshg firstly transmitted.
We start the estimation after all the base layers have besressfully received (possibly with
retransmissions). The number of available tiles in theofwihg 7.,; time slots can be estimated
asT.(t) = SN Soimin (¢ + 1), whered, (t + 0) = a,(t) andt,,, = min{T.y — 1, Taop —
(t modTg,.p)}. Te(t) may not be an integer, but it does not affect the outcome of GRD2

We then adjust thg, ,,,’'s based o, (t) and N, (t), the number of ACKs received in time slot
t. M T,(t) + Noer(t — 1) > To(t— 1)+ N, (t — 2), there are more tiles that can be allocated and we
can increase some of thg,,’s. On the other hand, i, () + Ny (t —1) < To(t —1) + Nyer(t —2),
we have to reduce some of tiyg,’s. Due to layered videos, when we increase the number of
allocated tiles, we only need to considgy, for m = m’,m' +1,--- | M, whereMC,, is the
highest MC scheme used in the previous time slot. Similavlyen we reduce the number of
allocated tiles, we only need to considgy, for m =m’,m' +1,--- , M.

The refined greedy algorithm is given in Table 3.3. For tino 5lthe complexity of GRD2
iSO(MGK), whereK = | Ny, (t — 1) — Nyep(t — 2) + To(t) — To(t — 1)|. SinceK < T, the

complexity of GRD2 is much lower than GRD1, suitable for exagouin each time slot.

Tile Scheduling in a Time Slot

In each time slot, we need to schedule the remaining tiles for transmissidh@N channels.

We define In¢g, m, i) to be the increase in the group utility functibiig) after thei-th tile in the
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Table 3.3: The Refined Greedy Algorithm (GRDZ2) for Each Timé Slo
1. Initializel,,, = 0 for all g andm
2: Initialize A ={1,2,--- ,G}
3 Initialize N, (0) =0
4:  Estimatel,(1) based on the Markov Chain channel model
5: Use GRD1 to find all, ,,'s based or{.(1)
6.
y
8
9

WHILE t = 2to Tg.p
Estimater,(¢)
IF [To(t) + Noer(t — 1) < To(t — 1) + Noer(t — 2)]
WHILE |26, S0l > To(t) + No(t = 2)]
10: Find!; ,; that can be reduced by 1:

> ; U =U(—E.m)
egvm - arg mlnv97m€{m,’ 7M} bg,m+R/Te

11: fI f— e_;g,m
12: IF(§¢ A)
13: Addgto A
14. END IF

15: END WHILE
16: END IF

17: IF[TL(t) + N (t — 1) > To(t — 1) + Nuo(t — 2)]
18:  WHILE [chil SM 1y < To(t) + Nt — 1) and
Ais not empty

19: Findl; ; that can be increased by 1

g — U(E+eg.m)—-U(D)
€gm = aIg maXge A me{m’, - ,M} by m-+R/Te

200 I=I+énm

21: IF (3, bgmlgm > RS)
22. | = f— gg’m

23: Deleteg from A

24: END IF

25:  END WHILE

26: ENDIF

27:  UpdateN,.(t — 1)
28: END WHILE

sub-layer using/C,, is successfully decoded. It can be shown that

M
. Bg g,m
InC(g,m,z) = (n gk — TN ,k?+1) X 1Og m— , .
,;n ! ! Qb + 59 Z ' bg ulg,u + (Z - 1)59179,7”

Inc(g, m, i) can be interpreted as thewardif the tile is successfully received.
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Table 3.4: Algorithm for Tile Scheduling in a Time Slot
Initialize m,, to the lowest MC that has not been ACKed forall
Initialize ¢, to the first packet that has not been ACKed forgall
3: Sort{c,(t)} in decreasing order. Let the sorted channel list be

indexed byj.

4: While (j = 1to N)

5:  Find the group having the maximum increasé/i(y):
§ = arg maxy, Inc(g, my, iy)

6: Allocate the tile on channeglto groupg

7:  Updatem; andi,

8: End while

Letting c,,(t) be the probability that the tile is successfully receivéednt we have:, (t) =

P (t)a,(t). Our objective of tile scheduling is to maximize the expda®ward, i.e.,

Mz

maximize: ERewardg cn(t) - Inc(&,,), (3.16)

n=1

where¢ = {& }n=1,.. ;v @andg, is the tile allocation for channel, i.e., representing the three-tuple
{g,m,i}. The TSA algorithm is shown in Table 3.4, which solves thevatmptimization problem.
The complexity of TSA iSD(N log N). We have the following theorem for TSA.

Theorem 3.2. E[Reward] is maximized if INg;) > Inc(&;) whenc;(t) > ¢;(¢) for all < andj.

Proof. Suppose there exists a pairidndj where In¢¢;) > Inc(;) andc;(t) < ¢;(t). We can
further increase E[Reward] by switching the tile assignmiesit assign channeéto ¢; and channel

j to&;. With this new assignment, the net increase in E[Reward] is

ci(t)Inc(&;) + ci(t)Inc(E;) — ci(t)Inc(&;) — c;(t)Inc(E;)
= [¢;(t) — ai(®)][Inc(&;) — Inc(§;)] > 0

Therefore E[Reward] is maximized when thiec(¢;)} and{c;(¢)} are in the same order. [
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3.4.3 Simulation Results

We evaluate the performance of the proposed CR video multicasework using a cus-
tomized simulator implemented with a combination of C andTMAB. Specifically, the LPs are
solved using the MATLAB Optimization Toolbox and the remam parts are written in C. For
the results reported in this section, we have= 12 channels (unless otherwise specified). The
channel parameters, andy,, are set betwee(v, 1). The maximum allowed collision probability
v, IS set to 0.2 for all the channels unless otherwise specified.

The CR base station multicasts three Common IntermediateddfDhF, 352 x 288) video
sequences to three multicast groups, iBusto group 1,Foremanto group 2, andMother &
Daughterto group 3. Then,,,’s are {42, 40, 36, 30, 22, 12(i.e., 42 users can decodéC
signal, 40 users can decodéC’, signal, and so forth); the, ,,’s are{51, 46, 40, 32, 23, 1IRand
thens,,'s are{49, 44, 40, 32, 24, 13 The number of bits carried in one tile using the MC schemes
are 1 kb/s, 1.5 kb/s, 2 kb/s, 3 kb/s, 5.3 kb/s, and 6 kb/s, otisply. We choos€,»=150 and
T, = 10, sensing intervall’ = 3, false alarm probability,, = 0.3 and miss detection probability
0, = 0.25 for all n, unless otherwise specified.

In every simulation, we compare three schemes: (i) a simpleistic scheme that equally
allocates tiles to each group (Equal Allocation); (ii) A eaie based on SF (Sequential Fixing),
and (iii) a scheme based on the greedy algorithm GRD2 (Gredggri#hm). These schemes
have increasing complexity in the order of Equal Allocati@reedy Algorithm, and Sequential
Fixing. They differ on how to solve Problem OPT-Part, whie same tile scheduling algorithm
and opportunistic spectrum access scheme are used in atilteenes. Each point in the figures is
the average of 10 simulation runs, with 95% confidence ialsmplotted. We observe that the 95%
confidence intervals for Equal Allocation and Greedy Algon are negligible, while the 95%
confidence intervals for Sequential Fixing is relativelsgier. The C/MATLAB code is executed
in a Dell Precision Workstation 390 with an Intel Core 2 Duo 86X PU working at 1.86 GHz

and a 1066 MB memory. For number of channels ranging f\or3 to N=15, the execution times
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Figure 3.5: Average PSNR of all multicast users.

of Equal Allocation and Greedy Algorithm are about a few imdtonds, while Sequential Fixing
takes about two seconds.

In Fig. 3.5 we plot the average PSNR among all users in eachtiagastl group. For all the
groups, Greedy Algorithm achieves the best performanci, wp to 4.2 dB improvements over
Equal Allocation and up to 0.6 dB improvements over Seqaéfiixing. We find Sequential
Fixing achieves a lower PSNR than Equal Allocation for gr@yout higher PSNRs for groups
1 and 2. This is because Equal Allocation does not considemral conditions and fairness. It
achieves better performance for group 3 at the cost of muearl®SNRs for groups 1 and 2. We
also plot Frame 53 from the originBlussequence and the decoded video at user 1 of group 1 in
Fig 3.6. We choose this user since it is one of the users witieddb PSNR values. The average
PSNR of this user is 29.54 dB, while the average PSNR of allgfiousers is 34.6 dB. Compared
to the original frame (right), the reconstructed framet]liefoks quite good, although some details
are lost.

In Fig. 3.7, we examine the impact of the maximum allowedisiolh probability~,. We
increasey, from 0.1 to 0.3, and plot the average PSNR values among aliskes. Wheny,,

gets larger, there will be higher chance of collision forWigeo packets, which hurts the received
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Figure 3.7: Average PSNR of all users versygwith 95% confidence intervals).

video quality. However, a higher, also allows a higher transmission probabifif§/(t) for the base
station (see (3.6)), thus allowing the base station to grakerspectrum opportunities and achieve
a higher video rate. The net effect of these two contradicéifiects is improved video quality
for the range ofy,, values considered in this simulation. This is illustratedhe figure where all
the three curves increase gsgets larger. We also observe that the curves for Sequertiaig-
and Equal Allocation are roughly parallel to each other,levthie Greedy Algorithm curve has a

steeper slope. This indicates that Greedy Algorithm is neffieient in exploiting the additional

bandwidth allowed by an increaseg.
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In Fig. 3.8, we examine the impact of number of chaniélsWe increaseV from 3 to 15
in steps of 3, and plot the average PSNR values of all muttigssrs. As expected, the more
channels, the more spectrum opportunities for the CR netyankd the better the video quality.
Again, we observe that the Greedy Algorithm curve has thepstst slope, implying it is more
efficient in exploiting the increased spectrum opportufotyideo transmissions.

We demonstrate the impact of sensing errors in Fig. 3.9. Bidite sets of ¢, J,,} values
as follows:{0.10, 0.38}, {0.30,0.25}, {0.5,0.17}, {0.70,0.10} and{0.9,0.04} [24], and plot the
average PSNR values of all users. It is quite interestinge#otbat the video quality is not very
sensitive to sensing errors. Evenesis increased nine times from 10% to 90%, there is only
0.58 dB reduction (or a 1.5% normalized reduction) in averB§NR when Greedy Algorithm
is used. The same can be observed for the other two curves.olyecture that this is due to
the opportunistic spectrum access approach adopted ineathtee schemes. A special strength
of the proposed approach is that it explicitly considersligpes of sensing errors and mitigates
the impact of both sensing errors. For example, when the fEm rate is very high, the base
station will not trust the sensing results and will accessdhannel relatively more aggressively,

thus mitigating the negative effect of the high false alaate r
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Figure 3.9: Average PSNR of all users for variduds, 6,, } values (with 95% confidence intervals).

Finally, we demonstrate the impact of user channel vanat{oe., due to mobility). We chose
atagged user in group 1 and assume that its channel conditeorges every 20 GoPs. The highest
MC scheme that the tagged user can decode is changed acrtwdihe following sequence:
MC3, MC5, MC4, MC6, MC5 and MC3. All other parameters remain the sasne the previous
experiments. In Fig. 3.10, we plot the average PSNRs for eathds this user that are obtained
using the three algorithms. We observe that both Greedyralgn and Sequential Fixing can
quickly adapt to changing channel conditions. Both alganghachieve received video qualities
commensurate with the channel quality of the tagged userl8¢find the video quality achieved
by Greedy Algorithm is more stable than that of Sequentiahigi, while the latter curve has some
deep fades from time to time. This is due to the fact that Grédgorithm has a proven optimality
bound, while Sequential Fixing does not provide any gua&aniThe Equal Allocation curve is
relative constant for the entire period since it does nopattachannel variations. Although being
simple, it does not provide good video quality in this case.

For optimization-driven multimedia systems, there is déraff between (i) grabbing all the
available resource to maximize media quality and (ii) be Edaptive to network dynamics for a

smooth playout. The main objective of this paper is to derratesthe feasibility and layout the
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Figure 3.10: GoP average PSNRs of a tagged user in Group 1, irghemannel condition varies
over time.

framework for video streaming over infrastructure-based@®vorks, using an objective function
of maximizing the overall user utility. We will investigatbe interesting problem of trading off

resource utilization and smoothness in our future work.

3.5 Video over Multi-hop CR Networks

In this section, we examine the problem of video over mubi-lCR networks. We model
streaming of concurrent videos as an MINLP problem, aimmgaximize the overall received
video quality and fairness among the video sessions, wbilm the collision rate with primary
users under spectrum sensing errors. We solve the MINLPgobsing a centralized sequen-
tial fixing algorithm, and derive upper and lower bounds fog bbjective value. We then apply
dual decomposition to develop a distributed algorithm ara/e its optimality and convergence

conditions.
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3.5.1 Network Model
Spectrum Access

During the transmission phase of a time slot, a CR user datestwhich channel(s) to ac-
cess for transmission of video data based on spectrum geresinlts. Lets*, be a threshold for
spectrum access: chanmelis considered idle if the estimaté, is greater than the threshold, and
busy otherwise. The availability of channelin primary networkk, denoted ast” , is

i 0, ay, > #y,
Ak = (3.17)

1, otherwise.

For each channeh, we can calculate the probability of collision with primargers as:

u* , ,
Pr(Af, = 0|H,) => ! (1= ) 15,1, (3.18)
icuk,\ 1
where set)* is defined as:
‘ s PrULITE) T
— ) ? ml—t__ N2 m/ > . .

For non-intrusive spectrum access, the collision probgitshould be bounded with a prescribed
thresholdy® . A higher spectrum access thresheli will reduce the potential interference with
primary users, but increase the chance of wasting trangmispportunities. For a given collision

tolerancey® , we can solvé’r(A% = 0|H,) = ~* for xF,. The objective is to maximize CR users’
spectrum access without exceeding the maximum collisiobadsility with primary users.

LetQ; ; be the set of available channels at lifkj }. Assumingi € &* and;j € U*', we have

O = {m (A; — 0andA" = o} . (3.20)
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Link and Path Statistics

Due to the amplify-and-forward approach for video datagmaission, there is no queueing
delay at intermediate nodes. Assume each link has a fixeg dgjdi.e., processing and propaga-
tion delays). LetP/* be the set of all possible paths fromto d;. For a given delay requirement

Ty, the set of feasible patlfg for video sessioh can be determined as:
Pi=SP| > w;<Ty, PEP' ;. (3.21)
{i,j}eP

Let pi”; be the packet loss rate on channeét link {i, j}. A packet is successfully delivered
over link {7, j} if there is no loss on all the channels that were used for tnétting the packet.

The link loss probability; ; can be derived as:

pij=1— ] a-p)™, (3.22)
meM

where M is set of licensed channels adg is an indicator: /,, = 1 if channelm is used for
the transmission, anf, = 0 otherwise. Assuming independent link losses, the enditblass

probability for pathP]* € P, can be estimated as:
pr=1- ] @-puy. (3.23)

3.5.2 Problem Statement

We also aim to achieve fairness among the concurrent videnmses. It has been shown that
proportional fairnessan be achieved by maximizing the sum of logarithms of vid8bIRs (i.e.,

utilities). Therefore, our objective is to maximize the miesystem utility, i.e.,

maximize: Y Uy(R) =Y log(Qi(Ry)). (3.24)
l l
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Multi-hop CR Network Video Streaming Problem

For the system described in Section 2.4.1, the problem @ovaer multi-hop CR networks
consists of path selection for each video session and chadneduling for each CR node along

the chosen paths. We define two sets of index variables. Romeh scheduling, we have

1, atlink{i,j}, if channelm is
z = assigned to tunnelin pathP}’ (3.25)

0, otherwise.

For path selection, we have

1, if video sessior selects pattP! € P,
Yl = (3.26)

0, otherwise

Note that the indicators:;ﬁﬁ;’;1 andy!, are not independent. #f* = 0 for path P}, all the
l,h,’l” H

17.]7m

zy"" s on that path are. If link {i, j} is not on pathP}', all its 27/ 's are alsa). For link {4, j}
on pathP", we can only choose those available channels ifesgto schedule video transmission.
Thatis, we have!’7 € {0,1} if m € Q;;, andz}"7, = 0 otherwise. In the rest of the paper, we
usex andy to represent the vector forms © ?; andy’, respectively.

As discussed, the objective is to maximize the expectedyusitim at the end ofV; time
slots, as given in (3.24). Sindeg(Q,;(E[R;(0)])) is a constant, (3.24) is equivalent to the sum of

utility increments of all the time slots, as

> log(QuE[R(NG)])) — log(Qi(E[R,(0)]))
=Y {log(QuE[R(1)])) — log(QuE[R(t — 1)]))}- (3.27)
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Therefore, (3.24) will be maximized if we maximize the exgeelutility increment during each

time slot, which can be written as:

> loB(@UELA(0)) - log(QuELRi( = 1))

> (1+ B0 Bl 1))

Ql( [t — 1))
ﬁl pL lzlhzvm r
= zl:};yl log 1+ZZ NeT, Q' T — Din)
- Zzyl 10g<1+plzlezzhzrm 1_plh)) !
I hep,

wherez; is the next hop fromy; on pathP}", pj, is the packet loss rate on tunnebf path P,

' = QuE[Ri(t — 1)), andp} = BiL,/(NeT.Q; ™).
From (3.22) and (3.23), the end-to-end packet loss rataiforelr on pathP)" is:

pia=1- T TI@-wm)min. (3.28)

{i.jyepp meM

We assume that each tunnel can only include one channel briekc When there are multiple
channels available at each link along the path, a CR source caxl set up multiple tunnels to

exploit the additional bandwidth. We then have the follogvaonstraint:

ahr <1 v {i, 5} e PP (3.29)

z]m
m

Considering availability of the channels, we further have,

Z in?; < |Qijl, ¥ {i,j} e P, (3.30)

where|(2; ;| is the number of available channels on lifikj } defined in (3.20).
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As discussed, each node is equipped with two transceiveeston receiving and the other for
transmitting video data during the transmission phase celachannel cannot be used to receive

and transmit data simultaneously at a relay node. We hawesafdr channeh:

i7j7m j7k7m

So a2 NG <1 Ym, LY he PLY {iy g}, {5 k) € PP (3.31)

Let n? be the number of tunnels on paﬂﬁ. For each source, and each destinatiaf), the

number of scheduled channels is equattoWe have for each source node

N bt =nlyl, VheP,VIL (3.32)

/
21,2],m
room

Let d; be the last hop to destinatial on pathP/*, we have for each destination node

SN =ty VhePVL (3.33)

T m

At a relay node, the number of channels used to receive datpuel to that of channels used
to transmit data, due to flow conservation and amplify-aorivéird. At relay nodg for sessiort,

assumei,j} € P and{j, k} € P}*. We have,

SN altr =Nl vhePLVLY (i} {5k} € Pl (3.34)

We also consider hardware-related constraints on patltssle We summarize such con-

straints in the following general form for ease of presearat
Do whl <1V (3.35)
I heP

To simplify exposition, we choose at most one pattPjrfor video session. Such a single path
routing constraint can be expressedasy;’ < 1, which is a special case of (3.35) whem,{eh =1

for all h, andwz‘i,h = 0forallg # 1,1 # [, andh. We can also hav®_, y' < ¢ to allow up
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to ¢ paths for each video session. In order to achieve optimalithe general case of multi-path
routing, an optimal scheduling algorithm should be dedigteedispatch packets to paths with
different conditions (e.qg., different number of tunnelsl aelays).

There are also disjointedness constraints for the chogés.pbhis is because each CR node
is equipped with two transceivers and both will be used foide® session if it is included in
a chosen path. Such disjointedness constraint is also @&bkpase of (3.35) with the following

definition forw;, for each CR node:

1, ifnodeg € pathP!
wf, = g &P (3.36)
0, otherwise

Finally we formulate the problem of multi-hop CR network vadgreaming (OPT-CRV) as:

max: » Y ylog <1+plZinh;m 1_plh)> (3.37)

I heP,
subject to: (3.25) ~ (3.35).

Centralized Algorithm and Upper/Lower Bounds

Problem OPT-CRYV is in the form of MINLP (without continuougiadbles), which is NP-hard
in general. We first describe a centralized algorithm tovégpierformance bounds in this section,
and then present a distributed algorithm based on dual deasiton in the next section.

We first obtain a relaxedon-linear programmingNLP) version of OPT-CRV. The binary

L,h,r
1,5,m

variablesz;’-" andy/ are relaxed to take values in [0,1]. The integer variablesare treated as

nonnegative real numbers. It can be shown that the relaxdidgmn has a concave object function
and the constraints are convex. This relaxed problem caplisedsusing a constrained nonlinear
optimization problem solver. If all the variables are irge@ the solution, then we have the exact
optimal solution. Otherwise, we obtain an infeasible solutwhich produces an upper bound for

the problem. This is given in Lines~22 in Table 3.5.
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Table 3.5: The Sequential Fixing Algorithm (SF) for Probl&RT-CRV
1: Relaxinteger variableg” , yf, andn};
Solve the relaxed problem using a constrained NLP solver;
if (there isy)* not fixed)
Find the largesy))’, where[l’, '] = arg max{y'},
and fix it to1;
Fix othery;"'s according to constraint (3.35);
Go to Step 2;
end if
if (there isz}"" not fixed)
Find the Iarges:t:’, L whereld, j',m’, I 1) =
arg max{z"" 1, and setitto 1;
10: Fix otherxl% 's according to the constraints;
11. if (thereis other variable that is not fixed)
12: Go to Step 2;

A WN

© 00 ~N O o

13: else

14: Fixn;’s based orx andy;

15: Exit with feasible solutiodx, y, n};
16: endif

17: endif

We also develop aequential fixing algorithn(SF) for solving OPT-CRV. The pseudo-code is
given in Table 3.5. SF iteratively solves the relaxed prohléxing one or more integer variables
after each iteration [8,47]. In Table 3.5, LinesBfix the path selection variableg, and Lines
8~16 fix the channel scheduling variabte#;; and tunnel variables]'. The tunnel variables}

can be computed using (3.32) aftélj.‘;; andy/* are solved. When the algorithm terminates, it

produces a feasible solution that yields a lower bound ferthjective value.

3.5.3 Dual Decomposition

SF is a centralized algorithm requiring global informatittrmay not be suitable for multi-hop
wireless networks, although the upper and lower boundsgeaiseful insights on the performance
limits. In this section, we develop a distributed algoritfon Problem OPT-CRV and analyze its

optimality and convergence performance.
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Decompose Problem OPT-CRV

Since the domains ofﬁ?; defined in (3.29)-(3.34) for different paths do not intersect with
each other, we can decompose Problem OPT-CRV into two sulgpnsb The first subproblem
deals with channel scheduling for maximizing the expectdifyuon a chosen pat®/*. We have

thechannel schedulingroblem (OPT-CS) as:

Hl' = maXZ Z xilh;m (1—=pip) (3.38)

subject to.(3.29) (3.34), 25" € {0,1}, forall i, h,r,m.

In the second part, optimal paths are selected to maximee\hrall objective function. Letting

Fl =log (1+ p{ Hl"), we have the followingath selectiorproblem (OPT-PS):

maximize:  f(y) =Y Y _ F'yl (3.39)
l h
subjectto: > ) wf,yt <1, forall g

I hep
yr € {0,1}, forall I,h.

Solve the Channel Scheduling Subproblem

We have the following result for assigning available chasmaéa relay node.

Theorem 3.3. Consider three consecutive nodes along a path, denoted a&siod andk. Idle
channels 1 and 2 are available at lifk, j} and idle channels 3 and 4 are available at lifik k}.
Assume the packet loss rates of the four channels safisfy p;; andp?, > pj,. To set up two
tunnels, assigning channef4, 3} to one tunnel and channe{2, 4} to the other tunnel achieves

the maximum expectation of successful transmission onsgation{i, j, k}.

Proof. Let the success probabilities on the channelgibe= 1—p; ;, p7; = 1—p; ;, 73, = 1—p}4,

andp;, = 1 —pj,. We havep}; < p7; andp?, < p;,. Comparing the success probabilities of
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the channel assignment given in Theorem 3.3 and that of teenative assignment, we have

ﬁ%,jﬁ?,k +]512,j]5?,k - ﬁz{jﬁ;{k - ﬁ?,jﬁ?,k = (251'1,]‘ - ﬁ?])(ﬁ?k - ﬁ?,k) > 0. The result follows. L

According to Theorem 3.3, a greedy approach, which alwapesbs the channel with the
lowest loss rate at each link when setting up tunnels alongtla, produces the optimal overall
success probability. More specifically, when there is omlg tunnel to be set up along a path, the
tunnel should consist of the most reliable channels aVeiieach link along the path. When there
are multiple tunnels to set up along a path, tunnel 1 shoutdisbof the most reliable channels
that are available at each link; tunnel 2 should consist@ftttond most reliable links available at
each link; and so forth.

Define the set of loss rates of the available channels on{link asA; ; = {p}|m € Q;;}.

The greedy algorithm is given in Table 3.6, with which eaadtkea source node solves Problem
OPT-CS for each feasible path. Lines2in Table 3.6 checks if there is more channels to assign
and the algorithm terminates if no channel is left. In Linesld, links with only one available
channel are assigned to tunneand the neighboring links with the same available chanmels a
removed due to constraint (3.31). In Lines 117, links with more than two channels are grouped
to be assigned later. In Lines 420, the available channel with the lowest packet loss rate is
assigned to tunnel at each unallocated link, according to Theorem 3.3. To aeoithannel

interference, the same channel on neighboring links is vechas in Lines 21.33.

Solve the Path Selection Subproblem

To solve Problem OPT-PS, we first relax binary varialjeso allow them take real values in

[0,1] and obtain the followingelaxed path selectioproblem (OPT-rPS):

maximize:  f(y) => Y F'y/ (3.40)
l h

subjectto: Y ) " wf,yt <1, forall g
I heP

0 <y <1, forall h,l.
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Table 3.6: The Greedy Algorithm for Channel Scheduling

1: Initialization: tunnel- = 1, link {, j}'s from z; to d;;
2: if Ayl ==0)
3: Exit;
4: elseif(|A; ;| ==1)
5: Assign the single channel ik, ;, m/, to tunnelr;
6 Check neighboring linKk, i};
7 if (pZi € Aki)
8 Removep}; from Ay,

1< k,j < iand go to Step 2;

9: else

10: Go to Step 13;
11: end if

12: else

13:  Puth;; in setA};
14: if (nodej is not destination/;)

15: 14— 7,7 <,
16: Go to Step 2;
17:  endif

18: endif

19:  while (A} is not empty)

20:  Find the maximum valu;e{ff}, in setA?
{i',j',m'} = arg min{p };

21:  Assign channeh’ to tunnelr;

22: Remove set; ; from setA”;

23:  Check neighboring linkk, i} and{j, v};

24: if (i € A andA,; € A)

25: Removey}’; from Ay ;
26: if (Ay;is empty)

27: Exit;

28: end if

29: end if

30: if (p € Ay, andA;, € A})
31 Remove”, from A;,;
32: if (A;, is empty)

33: Exit;

34 end if

35: end if

36: end while

37: Compute the next tunnel:<— r + 1 and go to Step 2;
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We then introduce positive Lagrange Multipliersfor the path selection constraints in Problem

OPT-rPS and obtain the correspondlragrangian function

- Z Z Fly' + Z eg(1— Z Z wlg,hylh) (3.41)
l
- ZZ Ty — Zwlhyl €g) +Z€g
l h
= ZZE?(y{‘,e) + Zeg.
I h g
Problem (3.41) can be decoupled since the domaing'sfdo not overlap. Relaxing the coupling

constraints, it can be decomposed into two levels. At thesfolevel, we have the following

subproblems, one for each pgi,

max L'(yl', e) = Fl'y! — Z wy hyl eg. (3.42)

0<yh<1

At the higher level, by updating the dual variablgswe can solve theelaxed dual problem

Igl>1£l q(e ZZL’,( , ) Zeg, (3.43)

g

where (y,")* is the optimal solution to (3.42). Since the solution to £3.% unique, the relaxed
dual problem (3.43) can be solved using the followsndpgradient methothat iteratively updates

the Lagrange Multipliers [69]:

+

eg(r+ 1) = |eg(r) —a(r)(1 =D > wiul)| (3.44)

where is the iteration indexn(7) is a sufficiently small positive step size apd™ denotes

max{z,0}. The pseudo code for the distributed algorithm is given inld&.7.
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Table 3.7: Distribution Algorithm for Path Selection

1: Initialization: setr = 0, e,(0) > 0 and step size € [0, 1];

2: Each source locally solves the lower level problem inZB.4
if (F' = 32, dlheg(7)) > 0) y =y + 5,y = min{y}', 1};
else y' =y — s,y = max{y}", 0};

3: Broadcast solutiop (e(7));

4: Each source updatesaccording to (3.44) and broadcasts + 1)
through the common control channel,
5. 7« 7+1 and go to Step 2 until termination criterion is satisfied,;

Optimality and Convergence Analysis

The distributed algorithm in Table 3.7 iteratively updatesdual variables until they converge
to stable values. In this section, we first prove that thetswilwbtained by the distributed algorithm
is also optimal for the original path selection problem GPS-We then derive the convergence

condition for the distributed algorithm.

Fact 1([69]). Consider a linear problem involving both equality and inelipyaconstraints

maximize: a’x (3.45)
subjectto: hix=10;, ---, hl x=10,
g/1X§Clv ) g;‘XSCTv

wherea, h;, andg; are column vectors ifR,,, b;’s and ¢;'s are scalars, andx’ is thetranspose
of a. For any feasible poink, the set ofactive inequality constraints is denoted b§(x) =
{j|g;.x = ¢;}. If x* is amaximizer of inequality constrained problem (3.48)is also a maximizer

of the following equality constrained problem:

maximize: a'x (3.46)
subjectto: hix =10y, ---, hl x=10,

gix =c;,Vj € Ax).
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Lemma 3.1. The optimal solution for the relaxed primal problem OPT-iR£3.40) is also feasible

and optimal for the original Problem OPT-PS in (3.39).

Proof. According to Fact 1, the linearized problem of OPT-PS, ORT-rPS, can be rewritten as

an equality constrained problem in the following form:

maximize: F'y (3.47)
subjectto:  wiy =1, jc A(y") (3.48)

0<yr<1, forall h,l,

whereF, w;’s, andy are column vectors with element¥’, w{h, andy”, respectively. We apply
Gauss-Jordan eliminatioto the constraints in (3.48) to solve fgr Since there is not sufficient
number of equations, somg's are free variables (denoted gﬁ) and the rest are dependent
variables (denoted @). Assuming there are free variables, the dependent variables can be

written as linear combinations of the free variables aftau§s-Jordan elimination, as
yj =D wyl +bj, J € Aly). (3.49)
=1

Due to Gauss-Jordan elimination and binary vecters, w;'- andb; in (3.49) are all integers.
Therefore, if all the free variableg attain binary values, then all the dependent varialgfes
computed using (3.49) will also be integers. SiAce y;‘ < 1, being integers means that they are
either O or 1, i.e., binaries. That is, such a solution wilfé&asible.

Next we substitute (3.49) into problem (3.47) to elimindtdlee dependent variables. Then

we obtain a unconstrained problem with onlfree variables, as

maximize: >~ Fyy! + bo (3.50)

=1
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Since the free variableg’s take value in{0, 1}, this problem can be easily solved as follows. If
the coefficient?, > 0, we sety! = 1; otherwise, ifF; < 0, we sety/ = 0. Thus (3.50) achieves
its maximum objective value. Once all the free variablesdatermined with their optimal binary
values, we computes the dependent variables using (3.489¢hvare also binary as discussed

above. Thus we obtain a feasible solution, which is optimal. O

Lemma 3.2. If the relaxed primal Problem OPT-rPS in (3.40) has an optisw@ution, then the
relaxed dual problem (3.43) also has an optimal solution Hrelcorresponding optimal values of

the two problems are identical.

Proof. By definition, the problems in (3.41) and (3.43) are primadidproblems. The primal
problem always has an optimal solution because it is bound&dce Problem OPT-rPS is an
LP problem, the relaxed dual problem is also bounded andbleasTherefore the relaxed dual
problem also has an optimal solution. We havedtieng dualityif the primal problem is convex,

which is the case here since Problem OPT-rPS is an LP problem. n

We have Theorem 3.4 on the optimality of the path selectitutism, which follows naturally

from Lemmas 3.1 and 3.2.

Theorem 3.4. The optimal solution to the relaxed dual problem (3.42) a&d3) is also feasible

and optimal to the original path selection Problem OPT-P&giin (3.39).

As discussed, the relaxed dual problem (3.43) can be sokiad thesubgradient methothat
iteratively updates the Lagrange Multipliers. We have thlfing theorem on the convergence

of the distributed algorithm given in Table 3.7.

Theorem 3.5. Lete* be the optimal solution. The distributed algorithm in TaBI& converges if

the step sizes(7) in (3.44) satisfy the following condition:

2]g(e(r)) — q(e”) ]
G (T

0<a(r) < , forall 7, (3.51)
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whereG() is the gradient ofj(e(7)).

Proof. Sinceq(e(r)) is a linear function, we have subgradient equality, as

It then follows that

le(r) — a(r)G(r) — e"||?
= |le(r)—e"|[* — 2a(7)[e(7) e[ G(7) + (a(7))*[|G(7)]|*

= |le(r)—e"|[* — 2a(7)[g(e(r)) —q(e")] + (a(7))*[|G(7)]|”

(3.52)
If «(7) satisfy (3.51), the sum of the last two terms in (3.52) is tiegalt follows that,||e(7) —
a(T)G(1) —€*|| < ||e(r) — e*||. Since the projection operationi®nexpansiveve have,
lle(r +1) — e[| = [[[e(T) — a(r)G(n)]" — [e"]"]]
< lle(r) —a(n)G(r) — €[] < [le(r) —e7l,
which states the conditional convergence of the algorithm. ]

Since the optimal solutioa* is not known a priori, we use the following approximationfet
algorithm: o(7) = 45247, wherej(7) is the current estimate far(e”). We choose the mean

of the objective values of the relaxed primal and dual pnoisiéor (7).

Practical Considerations

Our distributed algorithms are based on the fact that thepcoation is distributed on each
feasible path. The OPT-CS algorithm requires informatiocizainnel availability and packet loss

rates at the links of feasible paths. The OPT-PS algorithmpedes the primal variablg' for each
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path and broadcasts Lagrangian multipliers over the cbatr@nnel to all the source nodes. We
assume a perfect control channel such that channel infamean be effectively distributed and
shared, which is not confined by the time slot structure [20].

We assume relatively large timescales for the primary nettnme slots, and small to medium
diameter for the CR network, such that there is sufficient tforetimely feedback of channel
information to the video source nodes and for the distrithatigorithms to converge. Otherwise,
channel information can be estimated using (3.4) basedlagettfeedback, leading to suboptimal
solutions. If the time slot is too short, the distributedaxithm may not converge to the optimal
solution (see Fig. 3.15). We focus on developing the CR vidaméwork in this paper, and will

investigate these issues in our future work.

3.5.4 Simulation Results
Methodology and Simulation Settings

We implement the proposed algorithms with a combination aird MATLAB (i.e., for
solving the relaxed NLP problems), and evaluate their perémce with simulations. For the
results reported in this section, we have= 3 primary networks and/ = 10 channels. There are
56, 55, and 62 CR users in the coverage areas of primary nesvioiX and 3, respectively. The
1283
forth); the|i/?|'sare [4 657 65385 6], and the?,

'sare[5464875674](i.e., five users sense channel 1, famsisense channel 2, and so

'sare[865476856 7]. The topology is
shown in Fig. 3.11.

We choosel, = 100, T, = 0.02 and N = 10. The channel utilization ig* = 0.6 for
all the channels. The probability of false alarmfis = 0.3 and the probability of miss detection
is 0% = 0.2 for all m andk, unless otherwise specified. Channel parametgrand*, are set
between0, 1). The maximum allowed collision probability’ is set to0.2 for all the M channels
in the three primary networks.

We consider three video sessions, each streaming a videe @ammon Intermediate Format

(CIF, 352 x 288), i.e.,Busto destination 1Foremanto destination 2, an¥other & Daughterto
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Figure 3.11: Topology of the multi-hop CR network. Note thatyovideo source nodes, video
destination nodes, and those nodes along the precompuitesigza shown in the topology.
destination 3. The frame rate is 30 fps, and a GOP consist é&faines. We assume that the
duration of a time slot is 0.02 seconds and each GOP shoulélwed in 0.2 seconds (i.e., 10
time slots).

We compare four schemes in the simulations: (i) the uppantimg solution by solving the
relaxed version of Problem OPT-CRYV using an NLP solver, li©) proposed distributed algorithm
in Tables 3.6 and 3.7, (iii) the sequential fixing algorithimegy in Table 3.5, which computes a
lower-bounding solution, and (iv) a greedy heuristic whateach hop, the link with the most
available channels is used. Each point in the figures is teeage of 10 simulation runs, with
95% confidence intervals plotted as error bars in the figures. 98% confidence intervals are

negligible in all the figures.

Simulation Results

Algorithm Performance To demonstrate the convergence of the distributed algorithe plot
the traces of the four Lagrangian multipliers in Fig. 3.12e Wbserve that all the Lagrangian
multipliers converge to their optimal values after 76 itenas. We also plot the control overhead
as measured by the number of distinct broadcast messagesé:/fpusing the y-axis on the right-
hand side. The overhead curve increases linearly with th&eu of iterations and gets flat (i.e.,

no more broadcast message) when all the Lagrangian meispbnverge to their optimal values.
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Figure 3.12: lllustrate the convergence of the distributiggbrithm.

We examine the impact of spectrum sensing errors in Fig..3V¥8 test six sensing error
combinations(e,,, d,, } as follows:{0.1, 0.5, {0.2, 0.3, {0.3, 0.2, {0.5, 0.1%, {0.7, 0.0, and
{0.9, 0.02, and plot the average PSNR values of the Foreman sessiarinteresting to see that
the best video quality is achieved when the false alarm fitibac,,, is betweerd.2 and0.3. Since
the two error probabilities are correlated, increasing wilegenerally decrease the other. With
a largere,,, CR users are more likely to waste spectrum opportunitigsaiteaactually available,
leading to lower bandwidth for videos and poorer video duaéis shown in Fig. 3.13. On the
other hand, a largef,, implies more aggressive spectrum access and more severeiahce to
primary users. Therefore whe, is lower than 0.2 (and,, is higher than 0.3), the CR nodes

themselves also suffer from the collisions and the videdityudegrades.

Impact of Primary Network Parameters In Fig. 3.14, we examine the impact of channel uti-
lization n on received video quality. We focus on Session 2 with the fRaresequence. The
average PSNRs achieved by the four schemes are plotted yisemcreased frond.6 to 0.9

for all licensed channels. Intuitively, a smallemallows more transmission opportunities for CR

nodes, leading to improved video quality. This is illusdgin the figure where all the four curves
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Figure 3.13: Video PSNRs versus spectrum sensing error.

decrease ag gets larger. The distributed scheme achieves PSNRs very tdbat obtained by
sequential fixing, and both of them are close to the upperdboline heuristic scheme is inefficient
in exploiting the available spectrum even when the channlation is low. As discussed, the
time slot duration is also an important parameter that migcathe convergence of the distributed
algorithm. In Fig. 3.15, we keep the same network and videsisga settings, while increasing the
time slot duration as 4 ms, 10 ms, 20 ms, 40ms and 100 ms. Faea time slot duration, we
let the distributed algorithm run for 5% of the time slot dioa, starting from the beginning of
the time slot, and then stop. The solution that the algoripmoduces when it is stopped will be
used for video transmission in the remainder of this timé. dkocan be seen that when the time
slot is 4 ms, the algorithm does not converge after40.2 ms, and the PSNR produced by the
distributed algorithm is low (but still higher than that diet heuristic algorithm). When the time
slot duration is sufficiently large (e.g., over 10 ms), thgoaithm can converge and the proposed
algorithm produces very good video quality as compareddaifiper bound and the lower bound

given by the sequential fixing algorithm.
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Figure 3.14: Video PSNRs versus primary user channel uiiiza).
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Figure 3.15: Impact of time slot duration on received videaldy.

Comparison of MPEG-4 FGS and H.264/SVC MGS Videos Finally, we compare MPEG-
4 FGS and H.264/SVC MGS videos, while keeping the same gsttit has been shown that
H.264/SVC has better rate-distortion performance than @E-GS due to the use of efficient
hierarchical prediction structures, the inter-layer preédn mechanisms, improved drift control

mechanism, and the efficient coding scheme in H.264/AVC.[58though MGS has Network
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Figure 3.16: Comparison of MPEG-4 FGS video with H.264/SVC3Msdeo under various chan-
nel utilizations.

Abstraction Layer (NAL) unit-based granularity, it achesvsimilar rate-distortion performance as
H.264/SVC FGS [53].

We plot the upper bounds and the distributed algorithm tesulFigs. 3.16 and 3.17 for var-
ious channel utilizations and false alarm probabilitiespectively. From the figures, it can be
observed that there is a gap about 2.5 dB between the H.268¥S and MPEG-4 FGS curves,
which clearly demonstrates the rate-distortion efficieaEWMGS over MPEG-4 FGS. The pro-
posed algorithm can effectively handle both MGS and FGSogdand the same trend is observed

in both cases.

3.6 Conclusions

In this chapter, we first addressed the problem of multingsiGS video in CR networks.
The problem formulation took video quality and proportibfearness as objectives, while con-
sidering cross-layer design factors such as FGS codingtrsipe sensing, opportunistic spectrum

access, primary user protection, scheduling, error cbatrd modulation. We proposed efficient
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Figure 3.17: Comparison of MPEG-4 FGS video with H.264/SVC3$AMideo under various false
alarm probabilities.
optimization and scheduling algorithms for highly compredi solutions, and proved the complex-
ity and optimality bound of the proposed greedy algorithmur &mulation results demonstrate
not only the viability of video over CR networks, but also tHigcacy of the proposed approach.
Then, we studied the challenging problem of streaming plelscalable videos in a multi-hop
CR network. The problem formulation considered spectrumsiagrand sensing errors, spectrum
access and primary user protection, video quality anddasnand channel/path selection for con-
current video sessions. We first solved the formulated MINk&blem using a sequential fixing
scheme that produces lower and upper bounds on the acteexideb quality. We then applied
dual decomposition to derive a distributed algorithm, amalyzed its optimality and convergence

performance. Our simulations validated the efficacy of ttugppsed scheme.
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Chapter 4

Cooperative CR Networks

4.1 Introduction

Cooperative relayn CR networks [3, 73] represents another new paradigm faless com-
munications. It allows wireless CR nodes to assist each athdaita delivery, with the objective
of achieving greater reliability and efficiency than eachh@fm could attain individually (i.e., to
achieve the so-callecboperative diversily Cooperation among CR nodes enables opportunistic
use of energy and bandwidth resources in wireless netwarkscan deliver many salient advan-
tages over conventional point-to-point wireless commations.

Recently, there has been some interesting work on cooperatizy in CR networks [3, 73].
In [73], the authors considered the case of two single-usks,| one primary and one secondary.
The secondary transmitter is allowed to act as a “transpameay for the primary link, motivated
by the rationale that helping primary users will lead to meansmission opportunities for CR
nodes. In [3], the authors presented an excellent overvieseweral cooperative relay scenarios
and various related issues. A new MAC protocol was proposédraplemented in a testbed to
select a spectrum-rich CR node as relay for a CR transmittenirer pair.

We investigate cooperative relay in CR networks, using vide@ reference application to
make the best use of the enhanced network capacity. We eorsizhse station (BS) and multiple
relay nodes (RN) that collaboratively stream multiple vislém CR users within the network. To
support high quality video service in such a challengingremment, we assume a well planned
relay network where the RNs are connected to the BS with higleémireline links. Therefore
the video packets will be available at both the BS and the RNsrédheir scheduled transmis-
sion time, thus allowing advanced cooperative transmmggichniques to be adopted for streaming

videos. In particular, we consider interference alignmueifitere the BS and RNs simultaneously
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transmit encoded signals to all CR users, such that undesigedls will be canceled and the
desired signal can be decoded at each CR user [74, 75]. IndU@),cooperative sender-side tech-
niques are termeahterference alignmentwhile receiver-side techniques that use overheard (or
exchanged via a wireline link) packets to cancel interfeeais termednterference cancelllation
We present a stochastic programming formulation of the lprolof interference alignment for
video streaming in cooperative CR networks and then a refiation of the problem based on
Linear Algebra theory [77], such that the number of variatdad computational complexity can
be greatly reduced. To address the formulated problem, woge an optimal distributed algo-
rithm with proven convergence and convergence rate, amddtgreedy algorithm with a proven
performance bound.

The remainder of this chapter is organized as follows. Reélaterk is discussed in Sec-
tion 4.2. In Section 4.3, we compare two cooperative relstegies in CR networks. We investi-
gate the problem of cooperative CR relay with interferengmatent for MGS video streaming in

Section 4.4. Section 4.5 concludes the chapter.

4.2 Background and Related Work

The theoretical foundation of relay channels was laid bysdrainal work [78]. The capacities
of the Gaussian relay channel and certain discrete relayngtsare evaluated, and the achievable
lower bound to the capacity of the general relay channeltébéshed in this work. In [79,80], the
authors described the concept of cooperative diversitgrevdiversity gains are achieved via the
cooperation of mobile users. In [54], the authors develgetianalyzed low-complexity cooper-
ative diversity protocols. Several cooperative straegieluding AF and DF, were described and
their performance characterizations were derived in terhositage probabilities.

In practice, there is a restriction that each node cannosin& and receive simultaneously in
the same frequency band. The “cheap” relay channel concapimtroduced in [81], where the
authors derived the capacity of the Gaussian degradedpthelay channel. Multiple relay nodes

for a transmitter-receiver pair are investigated in [824 §83]. The authors showed that, when
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compared with complex protocols that involve all relaysg, s$implified protocol with no more than
one relay chosen can achieve the same performance. This iedeon why we consider single
relay in this paper.

In [84], Ng and Yu proposed a utility maximization framewdok joint optimization of node,
relay strategy selection, and power, bandwidth and rateation in a cellular network. Cai et
al. [85] presented a semi-distributed algorithm for AF yel@tworks. A heuristic was adopted to
select relay and allocate power. Both AF and DF were congider@6], where a polynomial time
algorithm for optimal relay selection was developed and/@dao be optimal. In [87], a protocol
is proposed for joint routing, relay selection, and dynaspectrum allocation for multi-hop CR
networks, and its performance is evaluated through sinouigit

The problem of video over CR networks has only been studiedf@waecent papers [8, 9,
13,59,60,88]. In [59], a dynamic channel selection schem® proposed for CR users to transmit
videos over multiple channels. In [88], a distributed joimtting and spectrum sharing algorithm
for video streaming over CR ad hoc networks was describedaidaged with simulations. In our
prior work, we considered video multicast in an infrastanetbased CR network [8], unicast video
streaming over multihop CR networks [9] and CR femtocell neka¢13]. In [60], the impact of
system parameters residing in different network layergangly considered to achieve the best
possible video quality for CR users. Unlike the heuristicrapphes in [59, 88], the analytical and
optimization approach taken in this paper yields algorghmith optimal or bounded performance.
The cooperative relay and interference alignment teclasi@lso distinguish this paper from prior
work on this topic.

As point-to-point link capacity approaches the Shannoritlithere has been considerable
interest on exploiting interference to improve wirelessvoek capacity [74—76,89,90]. In addition
to information theoretic work on asymptotic capacity [73], practical issues have been addressed
in [76, 89, 90]. In [89], the authors presented a practicaligie of analog network coding to
exploit interference and allow concurrent transmissiarigch does not make any synchronization

assumptions. In [90], interference alignment and canwefids incorporated in MIMO LANS,
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and the network capacity is shown, analytically and expenially, to be almost doubled. In [76],
the authors presented a general algorithm for identifymgrference alignment and cancellation
opportunities in practical multi-hop mesh networks. Theatt of synchronization and channel
estimation was evaluated through a GNU Radio implementationr work was motivated by
these interesting papers, and we incorporate interferaligement in cooperative CR networks

and exploit the enhanced capacity for wireless video stiggam

4.3 CR and Cooperative Networking

In this section, we investigate the problem of coopera&ayin CR networks. We assume a
primary network with multiple licensed bands and a CR netveorksisting of multiple cooperative
relay links. Each cooperative relay link consists of a CRdnaitter, a CR relay, and a CR receiver.
The objective is to develop effective mechanisms to integtiaese two wireless communication
technologies, and to provide an analysis for the compaon$bwmo representative cooperative relay
strategies, i.e.decode-and-forwardDF) and amplify-and-forward(AF), in the context of CR
networks. We first consider cooperative spectrum sensintgdZR nodes. We model both types
of sensing errors, i.e., miss detection and false alarmgdange the optimal value for the sensing
threshold. Next, we incorporate DF and AF into {®ersistent Carrier Sense Multiple Access
(CSMA) protocol for channel access for the CR nodes. We dewdlmged-form expressions for
the network-wide capacities achieved by DF and AF, respalgfias well as that for the case of
direct link transmission for comparison purpose.

Through analytical and simulation evaluations of DF andl?éiSed cooperative relay strate-
gies, we find the analysis provides upper bounds for the sit@dlresults, which are reasonably
tight. We also find cross-point with the AF and DF curves wheme system parameter is varied,
indicating that each of them performs better in a certaiaip@ter range. There is no case that one
completely dominates the other for the two strategies. Tmsiderable gaps between the cooper-
ative relay results and the direct link results exemplify tliversity gain achieved by cooperative

relays in CR networks.
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Figure 4.1: lllustration of colocated primary and CR netvgorklhe CR network consists of a
number cooperative relay links, each consisting of a CR inétter, a CR relay and a CR receiver.

4.3.1 Network Model and Assumptions

We assume a primary network and a spectrum band that is diwde M licensed chan-
nels, each modeled as a time slotted, block-fading chanfleé state of each channel evolves
independently following a discrete time Markov proces® (Section 2.3.1).

As illustrated in Fig. 4.1, there is a CR network colocatechwlite primary network. The CR
network consists oV sets of cooperative relay links, each including a CR trartemi CR relay,
and a CR receiver. Each CR node (or, secondary user) is equpgedwvo transceivers, each
incorporating a software defined radio (SDR) that is ablene to any of thel/ licensed channels
and a control channel and operate from there.

As discussed in Section 2.3.2, we assume CR nodes accessahgelil channels following
the same time slot structure [14]. In the sensing phase, a @R clmoses one of the channels
to sense using one of its transceivers, and then exchangesdsehannel information with other
CR nodes using the other transceiver over the control charibgting the transmission phase,
the CR transmitter and/or relay transmit data frames on diedrchannels that are believed to be
idle based on sensing results, using one or both of the earmess. We consider cooperative relay

strategies AF and DF, and compare their performance in ffleiog sections.
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4.3.2 Cooperative Relay in CR Networks

In this section, we investigate how to effectively integréite two advance wireless communi-
cation technologies, and present an analysis of the coieralay strategies in CR networks. We
first examine cooperative spectrum sensing and derive tialsensing threshold. We then con-
sider cooperative relay and spectrum access, and deriveethvrk-wide throughput performance

achievable when these two technologies are integrated.

Spectrum Sensing

As illustrated in Section 2.3.3, we assume there/gfeCR nodes sensing channel After
the sensing phase, each CR node obtaisersing result vecto®,, = [©7, 07", - - - , 0% | for

channeln. The conditional probability,,, (6,,) on channetn availability is

am(@T7 6517 Tty 67](;”1)
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If am(ém) is greater than aensing threshold,,, channelm is believed to be idle; otherwise,

channeln is believed to be busy. The decision variablg is defined as follows.

0, if an(Gm) > Tm
D,, = B (4.2)
1, if apn(©On) < 7.
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CR nodes only attempt to access channevhereD,, is 0. Since functiorn,,,(©,,) in (4.1)
hasN,, binary variables, there can B&= different combinations corresponding2t values for
am(ém). We sort the2¥» combinations according to theﬂ;n(@)m) values in the non-increasing
order. Leta$) be thejth largest function value ant}?) the argument that achieves tjith largest

function valuea%), where

In the design of CR networks, we consider two objectives: @ to avoid harmful inter-
ference to primary users, and (ii) how to fully exploit spaat opportunities for the CR nodes.
For primary user protection, we limit the collision probékiwith primary user with a thresh-
old. Let~,, be thetolerance thresholgdi.e., the maximum allowable interference probabilitytwit
primary users on channeb. The probability of collision with primary users on chanmelis
given asPr{D,, = 0| H{"}; the probability of detecting an available transmissioparunity
is Pr{D,, = 0| Hj"}. Our objective is to maximize the probability of detectingiéable chan-
nels, while keeping the collision probability below,. Therefore, the optimal spectrum sensing

problem can be formulated as follows.

max  Pr{D,, =0|H"} (4.3)

Tm

subectto: Pr{D,, =0|/H"} < . (4.4)

From their definitions, botRr{D,, = 0| H*} andPr{D,,, = 0| H}"} are decreasing functions
of 7,,. AsPr{D,, = 0| H{")} approaches its maximum allowed vatyg, Pr{D,, = 0| H"} also
approaches its maximum. Therefore, solving the optinoragiroblem (4.3)~ (4.4) is equivalent
to solving

Pr{D,, = 0| H"} = Y.

110



Table 4.1: Algorithm for Computing the Optimal Sensing Tinad

1: Computem(n and the correspondlr@n)
for all 7;
Initialize p. = Pr{a,(6,,) = a'¥'|H"} and
i = 0l
Setj = 1;
WHILE (p: < i)
j=J+1

Tm = a%)a

Pe = pe + Pr{an(6,,) = ) |H™};
END WHILE

n

ON O RW

If 7,,, = a%), we have

Pr{D = 0|H{"}(a)) = Pr{am( m) > a)[H"}
ZPr{am adV|H} = Zam”mw — om0, (4.5)

Obviously,Pr{D,, =0 | H{”}(a%)) is an increasing function gf. The optimal sensing threshold

T can be set ta)), such that

Pr{Dy = 0| H'}(a) <

and

Pr{Dy = 0| H"}Hal*V) > .

The algorithm for computing the optimal sensing threshgj]ds presented in Table 4.1.
Once the optimal sensing threshefjflis determinedPr{D,, = 0| H"} can be computed as

given in (4.5) and’r{D,,, = 0 | Hj"} can be computed as:

Pr{Dy, = 0|Hy"} = Pr{anm(© 5 ) Tl Hg'}

iPr{am(é D\ HY = Z )=o), (4.6)
=1
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Odd time slot Even time slot

Channel 1 R, > D

. Channel 2
DF: Channel 3
Channel 4

Channel 1

. Channel 2
AF: Channel 3
Channel 4

Figure 4.2: lllustration of the protocol operation of AF aD#, whereS, = R; represents the
transmission from source to relay aRg = D, represents the transmission from relay to destina-
tion, for theith cooperative relay link.

Cooperative Relay Strategies

During the transmission phase, CR transmitters and relagspt to send data through the
channels that are believed to be idle. We assume fixed lengtilfthe data frames. L&t} and
G% denote the path gains from the transmitter to relay and fteerrelay to receiver, respectively,
and leto?, andoj, denote the noise powers at the relay and receiver, resplctior thekth co-
operative relay link. We examine the two cooperation retegtegies DF and AF in the following.

For comparison purpose, we also consider direct link trasson below.

Decode-and-Forward (DF) With DF, the CR transmitter and relay transmit separatelyam c
secutive odd and event time slots: the CR transmitter sertdstal#he corresponding relay in an
oddtime slot; the relay node then decodes the data and forweata$he receiver in the following
eventime slot, as shown in Fig. 4.2.

Without loss of generality, we assume a data frame can bessitdly decoded if the received
signal-to-noise ratio (SNR) is no less thadecoding threshold. We assume gains on different
links are independent to each other. The receiver can ssfatlggdecode the frame if it is not lost

or corrupted on both links. Théecoding rateof DF at thekth receiver, denoted b¥% .., can be
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computed as,

Php = Pr{(PG}/o?, > k) and (P.G5 /o5, > k) }

= FG’f (O-f,k’%/Ps> FG’; (Ug,k’f/Pr) ) (4.7)

where P, and P, are the transmit powers at the transmitter and relay, réispbc FG;f (z) and
F’Gg(:n) are the complementary cumulative distribution functioBEDF) of path gaingz} and

G%, respectively.

Amplify-and-Forward (AF)  With AF, the CR transmitter and relay transmit simultanepus|
the same time slot on different channels. A pipeline is fafroennecting the CR transmitter to
the relay and then to the receiver; the relay amplifies theived signal and immediately forwards
it to the receiver in the same time slot, as shown in Fig. 4.2caRé¢hat the CR relay has two
transceivers. The relay receives data from the transnuisieg one transceiver operating on one or
more idle channels; it forwards the data simultaneouslyéaréceiver using the other transceiver
operating on one or mowifferentidle channels.

With this cooperative relay strategy, a data frame can beessfully decoded if the SNR at
the receiver is no less than the decoding thresholdhen the decoding rate of AF at tig¢h

receiver, denoted aB} ., can be computed as,

P, PGHGE oo (P +07))05 1k
Pk = P r s 1 2 > = / F c ik . dF .
AF ' { GlfPS + Uz,k U?i,k: a K} 0 ¢ P;P.x & (@)

Direct Link Transmission For comparison purpose, we also consider the case of dirdct |
transmission (DL). That is, the CR transmitter transmitdreceiver via the direct link; the CR
relay is not used in this case. Let the path gairGjavith CCDFFGS (x), and recall that the noise

power iscj , at the receiver, for théth direct link transmission.
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Following similar analysis, the decoding rate of DL at #th receiver, denoted ag};,, can

be computed as
Py, = Pr{P.Gi/os, > K} = Fgi (03,5/Ps) . (4.9)

Opportunistic Channel Access

We assume greedy transmitters that always have data to BeadCR nodes usePersistent
CSMA for channel access. At the beginning of the transmispluase of an odd time slot, CR
transmitters send Request-to-Send (RTS) with probabiliyer the control channel. Since there
are N CR transmitters, the transmission probabijitys set tol/N to maximize the throughput
(i.e., to maximizeP; in (4.10) given below).

The following three cases may occur:

e Case 1 none of the CR transmitters sends RTS for channel accessdiEHeensed chan-

nels will be wasted.

e Case 2 only one CR transmitter sends RTS, and it successfullyves&ilear-to-Send (CTS)
from the receiver over the control channel. It then accessase of or all the licensed

channels that are believed to be idle for data transmissitimel transmission phase.

e Case 3more than one CR transmitters send RTS and collision oceuttssocontrol channel.

No CR node can access the licensed channels, and the idlsditehannels will be wasted.

Let Py, P, and P, denote the probability corresponding to the three caseserated above,

respectively. We then have

Ro= (1=p)" = (1-1/N)* (4.10)
P = Np(l-p)N' = (1-1/N)"! (4.11)
P, = 1—-P—P,. (4.12)
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The CR cooperative relay link that wins the channels in thetodd slot will continue to use the
channels in the following even time slot. A new round of chermompetition will start in the next
odd time slot following these two time slots.

Since a licensed channel is accessed with probalilityn the odd time slot, we modify the
tolerance threshold,,, as~,, = v/ P, such that the maximum allowable collision requirement
can still be satisfied. In the even time slot, the channelsawsittinue to be used by the winning
cooperative relay link, i.e., to be accessed with probighilli Therefore, the tolerance threshold is

still v, for the even time slots.

Capacity Analysis

Once the CR transmitter wins the competition, as indicated bgceived CTS, it begins to
send data over the licensed channels that are inferred didé.e.,D,, = 0) in the transmission
phase. We assume tlwhannel bonding and aggregatidechnique is used, such that multiple
channels can be used collectively by a CR node for data trassmi[20, 44].

With DF, the winning CR transmitter uses all the availablerncieds to transmit to the relay in
the odd time slot. In the following even time slot, the CR traiiger stops transmission, while the
relay uses the available channels in the even time slot teafiat data to the receiver. If the number
of available channels in the even time slot is equal to ortgrdhan that in the odd time slot, the
relay uses the same number of channels to forward all thévestdata. Otherwise, the relay uses
all the available channels to forward part of the receivad;dhe excess data will be dropped due
to limited channel resource in the even time slot. The drdpfsa will be retransmitted in some
future odd time slot by the transmitter.

With AF, no matter it is an odd or even time slot, the CR transnilways uses half of the
available licensed channels to transmit to the relay. Tlag reses one of its transceivers to receive
from the chosen half of the available channels. Simultagkgoit uses the other transceiver to

forward the received data to the receiver using the remginatf of the available channels.
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Let D°¢ and D¢ be the decision variables of channelin the odd and even time slot, re-
spectively (see (4.2)). Lef?? and S<’ be the status of channel in the odd and even time slot,

respectively. We have,

Pr{D% = 8% = j D =k, S = [} (4.13)
= Pr{D% = K|S = [} Pr{D% = i|S°* = j} x

Pr{S% =15 = j} Pr{S% = j}, fori,j,k,1 € {0,1}.

wherePr{S°¢ = j} are the probabilities that channelis busy or idlePr{S% = [ | S%¢ = j} are
the channel transition probabilitiesPr{ D% = k | S = [} andPr{D% = i | S = j} can be
computed as in (4.5) and (4.6).

Let Npr, Nar andNp;, be the number of frames successfully delivered to the recemhe
two consecutive time slots using DF, AF and DL, respectivBlfineSe? = 1—5%, §¢ = 15,

D% =1— D% andDe =1 — D<. We have

Nor = (ShLSuDg) A (S0, SeDi) (4.14)
Var = |gEilsE |+ |sEi s (@.15)
Nor = (ZaSeDat) + (ShSabs). (4.16)

wherex A y represents the minimum afandy, and|z | means the maximum integer that is not
larger thane.

As discussed, the probability that a frame can be succésstlivered isP% .., Pk, or PX,
for the three schemes, respectively. Recall that spectrasourees are allocated distributedly for

every pair of two consecutive time slots. We derive the cépdor the three cooperative relay
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strategies as

Cpr = E[Nprl- Y31, (PhrPL)/(2NT) (4.17)
Car = E[Nag]- 33, (PipPiL)/(2NTy) (4.18)
Cpr = E[Npr]- Yoy (PhLPL)/(2NTY), (4.19)

wherelL is the packet length arifl, is the duration of a time slot. The expectations are computed

using the results derived in (4.13)(4.16).

4.3.3 Performance Evaluation

We evaluate the performance of the cooperative relay giesgtevith analysis and simulations.
The analytical capacities of the schemes are obtained hétlanalysis presented in Section 4.3.2.
The actual throughput is obtained using MATLAB simulatiorihe simulation parameters and
their values are listed in Table 4.2, unless specified otiservwWe considef/ = 5 licensed chan-
nels and a CR network with seven cooperative relay links. Tla@meels have identical parameters
for the Markov chain models. Each point in the simulationvesris the average ab) simulation
runs with different random seeds. We plit% confidence intervals for the simulation results,
which are negligible in all the cases.

We first examine the impact of the number of licensed channisillustrate the effect of
spectrum sensing, we let the decoding ridte be equal taP% .. In Fig. 4.3, we plot the throughput
of AF, DF, and DL under increased number of licensed chaniiéle analytical curves are upper
bounds for the simulation curves in all the cases, and thégapeen the two is reasonably small.
Furthermore, as the number of license channels is incretisedhroughput of both AF and DF
are increased. The slope of the AF curves is larger than fithedDF curves. There is a cross
point between five and six, as predicted by both simulatiahaaralysis curves. This indicates that
AF outperforms DF when the number of channels is large. Thisecause AF is more flexible

than DF in exploiting the idle channels in the two conse&utime slots. The DL analysis and
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Table 4.2: Simulation Parameters and Values

Symbol Value Definition
M 5 number of licensed channels
A 0.7 channel transition probability
from idle to idle
i 0.2 channel transition probability
from busy to idle
n 0.6 channel utilization
y 0.08 maximum allowable collision
probability
N 7 number of CR cooperative relay
links
P, 10 dBm transmit power of the CR
transmitters
P, 10 dBm transmit power of CR relays
L 1 kb packet length
T, 1 ms duration of a time slot
05 T T T T T T T
—+— AF throughput (simulation)
0.451| - © — DF throughput (simulation)
——— DL throughput (simulation)
0.4r AF capacity (analysis)
— 8 — DF capacity (analysis)
@ 0.35 DL capacity (analysis)
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g. 0.25
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Figure 4.3: Throughput performance versus number of leghannels.

simulation curves also increases with the number of chanbek with the lowest slope and the
lowest throughput values.

In Fig. 4.4, we demonstrate the impact of channel utilizatio the throughput of the schemes.
The channel utilizatiom is increased front).3 to 0.9, when primary users get more active. As

7n is increased, the transmission opportunities for CR nodeseatuced and all the throughputs
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Figure 4.4: Throughput performance versus primary usemroglautilization.

are degraded. We find the throughputs of AF and DF are closadio ether when the channel
utilization is high. AF outperforms DF in the low channelliattion region, but is inferior to
DF in the high channel utilization region. There is a crosspbetween the AF and DF curves
between; = 0.5 andn = 0.6. When the channel utilization is low, there is a big gap betwbe
cooperative relay curves and and the DL curves.

In Fig. 4.5, we examine the channel fading factor. We comdi#gyleigh block fading chan-
nels, where the received power is exponentially distritbwtéh a distance-dependent mean. We
fix the transmitter power at 10 dBm, and increase the relay péwms one dBm to 18 dBm. As
the relay power is increased, the throughput is also ineckasce the SNR at the receiver is im-
proved. We can see the increasing speed of AF is larger tlarotiDF, indicating that AF has
superior performance than DF when the relay transmit posviarge. The capacity analysis also
demonstrate the same trend. The throughput of DL does nethdepn the relay node. Its through-
put is better than that of AF and DF when the relay transmitgras/low, since both AF and DF
are limited by the relay-to-receiver link in this low powegion. However, the throughputs of AF
and DF quickly exceed that of DL and grow fast as the relayetaeiver link is improved with the

increased relay transmit power. The considerable gapseleetithe cooperative relay link curves
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Figure 4.5: Throughput performance versus transmit poivezlay nodes.

and the DL curves in Figs. 4.3, 4.4 and 4.5 exemplify the digeigain achieved by cooperative

relays in CR networks.

4.4 Cooperative CR Networks with Interference Alignment

In this section, we investigate cooperative relay in CR nétaaising video as a reference
application. We consider a base station (BS) and multipkyrabdes (RN) that collaboratively
stream multiple videos to CR users within the network. It h@srbshown that the performance of

a cooperative relay link is mainly limited by two factors:

¢ thehalf-duplex operationsince the BS—RN and the RN—user transmissions cannot be sched-

uled simultaneously on the same channel [79]; and

¢ the bottleneck channelwhich is usually the BS—user and/or the RN—user channel llysua

with poor quality due to obstacles, attenuation, multigathpagation and mobility [54].

To support high quality video service in such a challengingrenment, we assume a well
planned relay network where the RNs are connected to the BShigtirspeed wireline links,

and explore interference alignment to overcome the batlerthannel problem. Therefore the
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video packets will be available at both the BS and the RNs befw®e scheduled transmission
time, thus allowing advanced cooperative transmissiohriggies (e.g. interference alignment)
to be adopted for streaming videos. In particular, we incmate interference alignment to allow
transmitters collaboratively send encoded signals to alu€éts, such that undesired signals will
be canceled and the desired signal can be decoded at eachICR use

We present a stochastic programming formulation, as well r@formulation that greatly re-
duces computational complexity. In the cases of a singensed channel and multiple licensed
channels with channel bonding, we develop an optimal Oisteid algorithm with proven con-
vergence and convergence speed. In the case of multipleelsawithout channel bonding, we

develop a greedy algorithm with a proven performance bound.

4.4.1 Network Model and Assumptions

The cooperative CR network is illustrated in Fig. 4.6. Ther@iCR BS (indexed) and
(K — 1) CR RNSs (indexed fron2 to K) deployed in the area to servé active CR users. Let
U ={1,2,--- N} denote the set of active CR users. We assume that the BS and BINthare
equipped with multiple transceivers: one is tuned to theroom control channel and the others
are used to sense multiple licensed channels at the begiohieach time slot, and to transmit
encoded signals to CR users. We consider the case where eacte€Ras one software defined
radio (SDR) based transceiver, which can be tuned to openaa@yof the(A/ + 1) channels. If
the channel bonding/aggregation techniques are usedJi4 ransmitter can collectively use all
the available channels and a CR user can receive from all tiable channels simultaneously.
Otherwise, only one licensed channel will be used by a tréttesnand a CR user can only receive
from a single chosen channel at a time.

Consider the three channels in a traditional cooperatiaygik. Usually the BS and RNs
are mounted on high towers, and the BS—RN channel has goodyquadi to line-of-sight (LOS)
communications and absence of mobility. On the other ha@R aser is typically on the ground

level. The BS—user and RN—user channels usually have muclempqoality due to obstacles,
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Figure 4.6: Illustration of the cooperative CR network.

attenuation, multipath propagation and mobility. To supp@h quality video service, we assume
a well planned relay network, where the RNs are connectedetd® via broadband wireline
connections (e.g., as in femtocell networks [13]). Alteively, free space optical links can also be
used to provide multi-gigabit rates between the BS and the BNs As a result, the video packets
will always be available for transmission (with suitableanhel coding and retransmission) at the
RNs at their scheduled transmission time. To cope with thehnpeorer BS—user and RN—user
channels, the BS and RNs adopt interference alignment to catdyedy transmit video packets to

CR users, while exploiting the spectrum opportunities inlitensed channels.

Spectrum Access

The BS and the RNs sense the licensed channels and exchangsetig@ng results over
the common control channel during the sensing phase. Réwlin Section 2.5.1 and 2.5.1.
Given L sensing results obtained for channelthe corresponding sensing result vectd[:)ES =

O™ Or, ... Or]. Let PA(O™) := PAOT, 07, ..., 0™ be the conditional probability that
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channeln is available, which can be computed iteratively as showrumpoior work [13]:

5m)17@’1"(1_5m)®§" -1
Amy  — 1 m (1 1
PION = |1+ < o yer

PAOr) = PAOT.0F,.--,0r)

1 (J)1—°F (1 — om)°r }
= 1+[ —1]>< L/ __ i 1> 2.
{ P;g(@?iﬂ7®g’l) ’@?11) (e;n)@z (1 _E;n>1 ©i
For each channeh, define an index variabl®,,(t) for the BS or RNs to access the channel

in time slott. That is,

0, access channetb in time slott
Dy (t) = m=1,2---,M. (4.20)

1, otherwise,

With sensing resuliP2(67"), each channel will be opportunistically accessed. Let the
probability beP2(6™) that channeln will be accessed in time slofi.e., whenD,,(t) = 0). The

optimal channel access probability can be computed as:
PR(67) = min {3,/ |1 = PAOP)] 1}, (4.21)
Let A(t) be the set of available channels in time sladit follows thatA(¢) := {m | D,,(t) = 0}.

Interference Alignment

We next briefly describe the main idea of interference aligntrconsidered in this paper.
Interested readers are referred to [76, 90] for insighttalneples, a classification of various inter-
ference alignment scenarios, and practical considemation

Consider two transmitters (denotedsasand s, ) and two receivers (denoted dsandds).
Let X; and X, be the signals corresponding to the packets to be seitamdd,, respectively.
With interference alignment, the transmittefsand s, send compound signais ; X, + a;2X»

andaq 1 X7 + a22X5, respectively, to the two receiveds andd, simultaneously. If channel noise
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is ignored, the received signdls andY; can be written as:

T
Y, G1,1 G1,2 a1 A12 X

- =GTx A x X, (4.22)
Y, G2,1 G2,2 21 22 X
whereG; ; is the channel gain from transmittgrto receiverd,.
From (4.22), it can be seen that both receivers can perfdetipde their signals if the trans-
formation matrixA is chosen to b({GT}_l, i.e., the inverse of the channel gain matrix. With this

technique, the transmitters are able to send packets sinaatisly and the interference between

the two concurrent transmissions can be effectively caucal both receivers [76].

4.4.2 Problem Formulation

We formulate the problem of interference alignment for abld video streaming over coop-
erative CR networks in this section. As discussed in SectiBri4dthe video packets are available
at both the BS and all the RNs before their scheduled trangmissne; the BS and RNs adopt
interference alignment to overcome the poor BS—CR user and RNis€Rchannels.

Let X, denote the signal to be transmitted to ugewhich has unit power. As illustrated in
Section 4.4.1, transmittér sends a compound signal;,, ax ; X; to all active CR users, where
ai;'s are the weights to be determined. Ignoring channel naigecan compute the received

signalY,, at a usen as:

N
Gknzaij] Zzak]Gkn

1 j=1 k=1 j=1

]~

Y, =
k

K
X; Y arjGrp, n=1,2,-- N, (4.23)

1 k=1

'MZ

J

whereG}, , is the channel gain from the BS (i.é.,= 1) or an RNk to usern. For userm, only

signal .X,, should be decoded and the coefficients of all other signalsidtbe forced to zero. The
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zero-forcing constraintsan be written as:

K
> ar;Grn =0, forallj#n. (4.24)
k=1

Usually the total transmit power of the BS and every RN is lichibyy a peak poweP,,,.
SinceX; has unit power, for alj, the power of each transmitted signal is the square sum tfeall

coefficientSaivj. Thepeak power constrairdan be written as
N
> lakl* < Prgay k=1,--+ K. (4.25)
j=1

Recall that each CR user has one SDR transceiver that can littturezeive from any of the
(M + 1) channels, when channel bonding is not adopted.bl’dbe a binary variable indicating

that user; selects licensed channel. It is defined as

1, if usern receives from channeh
b = j=1,---,N,m=1,---, M. (4.26)

0, otherwise,

Then, we have the followingzansceiver constraint

d o<1, j=1,--- N (4.27)
meA(t)

After introducing the channel selection variabl¢ss, the overall channel gain becomes

Grj= Y bI'HY, (4.28)
meA(t)

whereH;"; is the channel gain from the BS (i.¢.~ 1) or an RNk to user;j on channekn.
Letw’ be the PSNR of usei's reconstructed video at the beginning of time glahdV; the

PSNR of usey’s reconstructed video at the end of time gloln time slott, w;? Is already known,
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while W} is a random variable depending on the resource allocatidnpamary user activity
during the time slot. That is;;j“ is a realization ofV’}.

As discussed in Section 3.3.5, the quality of reconstrubt&® video can be modeled with a
linear equation [53]:

W(R) =a+ 8 x R, (4.29)

wherelV (R) is the average peak signal-to-noise ratio (PSNR) of the stnacted MGS videoR
is the average data rate, andand 5 are constants depending on the specific video sequence and
codec.

We formulate a multistage stochastic programming probtemaximize the sum of expected
logarithm of the PSNR'’s at the end of the GOP, i.E;V:lE [log(WjT)], for proportional fair-
ness among the video sessions [71]. It can be shown that thistage stochastic programming

problem can be decomposed irftserial sub-problems, one for each time glas [9]:

N

maximize: » " E [log(W})|w!] (4.30)
j=1

subject to: W} = w! + 0! (4.31)
bi* € {0,1}, ax; >0, forallm, j, k (4.32)

Constraints (4.24), (4.25) and (4.27)

where\lf§ is a random variable that depends on spectrum sensing, @hoeation, and channel
selection in time slot. This is a mixed integer nonlinear programming problem (MRY, with
binary variable$?*'s and continuous real variableg ;'s.

In particular, \I{i can have two possible values: (i) zero, if the packet is notassfully
received due to collision with primary users; (ii) the PSNiRrease achieved in time sloif the

packet is successfully received, denoted/asThe PSNR increase can be computed as:

K 2
B 1
)\3 = ﬂ]T 10g2 1 -+ FO (Z ak,ij’j) s (433)

k=1
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whereN, is the noise power ang is the channel bandwidth.
User; can successfully receive a video packet from channdlit tunes to channetn (i.e.,
bj* = 1) and the BS and RNs transmit on channe(i.e., with probabilityPﬁ(é’L")). The proba-

bility that user; successfully receives a video packet, denotetass

Pi= > U'PR(OT). (4.34)
)

meA(t

Therefore, we can expand the expectation in (4.30) to olta@fiormulated problem:

N
maximize: » "E [P} log(w} + A!) + (1 — P})log(w})] (4.35)
j=1

subject to: constraints (4.24), (4.25), (4.27), and (4.32)

4.4.3 Solution Algorithms

In this section, we develop effective solution algorithmsihte stochastic programming prob-
lem (4.30). In Section 4.4.3, we first consider the case ohglsilicensed channel, and derive a
distributed, optimal algorithm with guaranteed convergeand bounded convergence speed. We
then address the case of multiple licensed channels. Ifnghdonding/aggregation techniques
are used [44, 70], the distributed algorithm in Section3tcén still be applied to achieve optimal
solutions. We finally consider the case of multiple licenslea@nnels without channel bonding, and

develop a greedy algorithm with a performance lower bourfSaation 4.4.3.

Case of a Single Channel

Property  Consider the case when there is only one licensed channelhenM = 1. The
K transmitters, including the BS arf’ — 1) RNs, send video packets to active users using the

licensed channel when it is sensed idle.

Definition 4.1. A set of vectors iinearly independent none of them can be written as a linear

combination of the other vectors in the set [77].
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For userj, the weight and channel gain vectors afig:= [a; j, a2, - ,ax ;] andG; =
[G1,Ga;, -+, Gk ;]7, whereT denotesmatrix transpose Due to spatial diversity, we assume

that the@j vectors are linearly independent [74].

Lemma 4.1. To successfully decode each sigigl j = 1,2, --- , N, the number of active users

N should be smaller than or equal to the number of transmittérs

Proof. From (4.24), it can be seen thatis orthogonal to th¢ NV — 1) vectorsG,’s, for n # j.
Sinced; is a K by 1 vector, there are at mo§K — 1) vectors that are orthogonal @. Since the

@j vectors are linearly independent, it follows that — 1) < (K — 1) and thereforéV < K. [

According to Lemma 4.1, the following additional consttaishould be enforced for the

channel selection variables.

N
d b <K, forallm e A(). (4.36)
j=1
That is, the number of active users receiving from any chlamneannot be more than the number
of transmitters on that channel, whichASin the single channel case and less than or equal to
in the multiple channels case. We first assume tas not greater thaik’, and will remove this

assumption in the following subsection.

Reformulation and Complexity Reduction  With a single channel, all active users receive from
channel 1. Thereforé} = 1,andb]* = 0,form > 1,j = 1,2,--- , N. The formulated problem
is now reduced to a nonlinear programming problem with et (4.24), (4.25), and (4.32). If
the number of active users i§ = 1, the solution is straightforward: all the transmittersdéme
same signak; to the single user using their maximum transmit powgr,. .

In general, the reduced problem can be solved with the duamposition technique [69]
(i.e., a primal dual algorithm). This problem h&s x N primal variables (i.e., the; ;'s), and
we need to definé&/ (N — 1) dual variables (or, Lagrangian Multipliers) for consttaif4.24) and

K dual variables for constraints (4.25). These numbers cbelthrge for even moderate-sized
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systems. Before presenting the solution algorithm, we fiesivd a reformulation of the original
problem (4.35) that can greatly reduce the number of primdl @ual variables, such that the

computational complexity can be reduced.

Lemma 4.2. Each vectoi; = [a;;,as4,- - ,ax ;] can be represented by the linear combination

of r nonzero, linearly independent vectors, where K — N + 1.

Proof. From (4.24), each vectat; is orthogonal toG; where;j # i. Define a reduced matrix
G_, obtained by deleting?; from G, i.e., G_; = [Gy,--- ,G,_1,G,11,--- ,Gy]. Thend; is

a solution to the homogeneous linear syst@ﬁ]jf = 0. Since we assume that tifé’s are all
linearly independent, the columns 6f_; are also linearly independent [77]. Thus the rank of
G_; is (IV —1). The solution belongs to the null space@f ;. The dimension of the null space is
r = K — (N —1) according to the Rank-nullity Theorem [77]. Therefore, egcban be presented

by the linear combination of linearly independent vectors. O

Lete; = {€1,€j2,-- ,€j,} be abasisfor the null space o&_;. There are many methods to
obtain the basis, such as Gaussian Elimination. Howeveshew that it is not necessary to solve
the homogeneous linear syst(ﬂﬁjf = 0 to get the basis for every differentvalue. Therefore
the computational complexity can be further reduced.

Our algorithm for computing a basis is shown in Table 4.3. tepS 1-6, we first solve the
homogeneous linear syste@'Z = 0 to get a basisvy, @, - - - , Ux_n]. Note that if K is equal
to IV, the basis is the empty sét We then set thé{ — N basis vectors to be the firéf — N
vectors in all the basses, j = 1,2,--- ,N. In Step 8, we orthogonalize ea¢h_; and obtain
(N — 1) orthogonal vectorsj;;, i = 1,2,--- , N — 1. Finally in Step 9, we let theth vectore] .
be orthogonal to all the; ;s by subtracting all the projections on eagh); from éj (recall that

r = K — N + 1). The operation is:

=

N
Q)

L

Cjr = EN-k+1 = Gj —

i (4.37)

T
I\
oy
&l
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Table 4.3: Basis Computation Algorithm
IF (K > N)
Solve homogeneous linear systéz = 0 and get
basis[v, - - - , Uk_n];
FORi=1t0 K — N
€;; = u;, forall g;
END FOR
END IF
FORj =1to N
Orthogonalizeés_; and get(/N — 1) orthogonal vectorsj; ;'s;
Calculate), as in (4.37);
0: END FOR

HBOoONOOA®

Lemma 4.3. The solution space constructed by the bégisv,, - - - , Ux_ ] is a sub-space of the

—

solution space oGIj:r =0 forall j.

Proof. It is easy to see that each vecifiis a solution ofGij = 0 by substitutingz with v;, for

1=1,2,--- ,K — N. O
Lemma 4.4. The vectorsuy, vs, - - - , Uk _n, €,-] cOmputed in Table 4.3 is a basis of the null space
of G_;.

Proof. Obviously, thev;’s are linearly independent. From (4.37), it is easy to yetfifate;, is
orthogonal to all they; ;'s. Thereforeg;, is also a solution to syste@@' ;7 = 0. SinceG,; andd; ;
are orthogonal to all th€’s, ande;, is a linear combination clﬁj andd; ;, €, is also orthogonal

and linearly independent to all thgs. The conclusion follows. O

Define coefficients; = [c;1,¢j2, -+ ,¢;»|T. Then we can represeiit as a linear combina-

tion of the basis vectors, i.et; = >",_, ¢;,€;; = e;¢;. Eq. (4.33) can be rewritten as
B;B 1 /5 12\2 B;B 1 4 = \2
X = S log (14 5 (FelGy) ) = i togy 1+ s (e0,G5) ). a39)

The second equality is because the fikSt- N column vectors ire; are orthogonal td@-;. The

random variabléV’; in the objective function now only depends @np. The peak power constraint
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Table 4.4: Comparison of Computational Complexity
Original Problem| Reformulated Problem
Primal Variables KN (K—N+1)N

Dual Variables | N(N - 1)+ K | K

can be revised as:
N
> lej(R)E) < Praas k=1,--+ K, (4.39)
j=1
wheree; (k) is thekth row of matrixe;.
With such a reformulation, the number of primal and dualafasies can be greatly reduced.
In Table 4.4, we show the numbers of variables in the origmablem and in the reformulated
problem. The number of primary variables is reduced frAnv to (K — N + 1)N, and the
number of dual variables is reduced frai{N — 1) + K to K. Such reductions result in greatly

reduced computational complexity.

Distributed Algorithm  To solve the reformulated problem, we define non-negatia dari-

ablesji = [, -+ , px|' for the inequality constraints. The Lagrangian function is

N K N

Llc, i) = ZE [Log(W (s ))wf] + D ta(Pras — Z[ej(k)éj]2)

K
= Z £j<5ja ﬁ) + Pmaw Z Hi, (440)
j=1 k=1

wherec is a matrix consisting of all column vectey's and

L;(&, i) = E [log(W} (e )|wf] = male; (k)&

k=1

The corresponding problem can be decomposedtub-problems and solved iteratively

[69]. In Stepr > 1, for given vectori(7), each CR user solves the following sub-problem using
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local information
cj(1) = arg max L;(c, ii(7)). (4.41)

Obviously, the objective function in (4.41) is concave. fidfere, there is a unique optimal solu-
tion. The CR users then exchange their solutions over the @onuontrol channel. To solve the

primal problem, we adopt the gradient method [69].
G(r+1) = &(1) + ¢VL;((7), (), (4.42)

whereV L;(¢;(7), fi()) is the gradient of the primal problem ands a small positive step size.

The master dual problem for a givefr) is:

min - q(@) = 3 L5(& (), 1)+ Praa D i (4.43)

ui>0,i=1,- K

Since the Lagrangian function is differentiable, the saldgent iteration method can be adopted.

fi(r + 1) = [fi(7) — p(r)g(T)] ", (4.44)

wherep(r) = YDA is a positive step sizgi* is the optimal solutiongi(r) = Vq(ji(7)) is
the gradient of the dual problem, apti- denotes the projection onto the nonnegative axis. Since
the optimal solutioni* is unknown a priori, we choose the mean of the objective wbfehe
primal and dual problems as an estimatejfoin the algorithm. The updated.(r + 1) will again

be used to solve the sub-problems (4.41). Since the prolsieonvex, we have strong duality; the
duality gap between the primal and dual problems will be z&he distributed algorithm is shown

in Table 4.5, wher® < k < 1 is a threshold for convergence.
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Table 4.5: Algorithm for the Case of a Single Channel

1. IF(NV=1)

2: Setay, ; 10 P, for all &;

3: ELSE

4: Setr = 0; fi(0) to positive values¢(0) to random values;
5: Compute bases;’s as in Table 4.3;

6: DO

7 T=7+1:

8: Computer;(7) as in (4.42);

9: Broadcast;(7) on the common control channel;
10: Updateii(7) as in (4.44);

11: WHILE (||i(7) — fi(7 — 1)|| > r);

12: Computeyy ;'s;

13: ENDIF

Performance Analysis We analyze the performance of the distributed algorithnhisi $ection.
In particular, we prove that it converges to the optimal 8otuat a speed faster thayil /7 asr

goes to infinity.

Theorem 4.1.The serieg(/i(7)) converges tq(/*) asT goes to infinity and the square error sum

S (a(fi()) — q(ji*))* is bounded.

Proof. For the optimality gap, we have:

(7 +1) = @|1* = i) — p(r)g(n)]F — i
< |la(r) = p(r)g(r) — @|*
= li(r) = i1 = 2p(r)(ji(7) — i) g(r) + (p(7)*[|g ()|

= |li(r) = @°11* = 20(7)(q(fi(7)) — (i) + (p(7)*[|5(7)]|*-

Since the step size jgr) = L4 it follows that

(q((r)) — q(i"))?
g (T)II?
(q(fi(r)) — q(fi))?

~9 ’
g

li(r +1) = @ |[* < [la(r) = @ -

< lii(r) = i@|l* -

(4.45)
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whereg? is an upper bound dfg(7)||>. Since the second term on the right-hand-side of (4.45) is
non-negative, it follows thdim, ., ¢(i(7)) = q(g*).

Summing Inequality (4.45) over, we have

o0

> (qli(r)) — q(ji*)* < gIIf(L) — ]|

=1

That is, the square error sum is upper bounded. ]
Theorem 4.2. The sequencéq(ji(7))} converges faster thafil //7} asT goes to infinity.

Proof. Assumelim, . /7(q(fi(7)) — q(i*)) > 0. Then there is a sufficiently large and a
positive numbet such that,/7(q(fi(7)) — q(i*)) > &, for all 7 > 7'. Taking the square sum from

7' t0 0o, we have:

o) e} 1

> (qfi(r) = (i)’ = €Y~ = oo, (4.46)

T=7' T=7'

Eq. (4.46) contradicts with Theorem 4.1, which states ¥at , (¢(si(7)) — ¢(i*))?* is bounded.

Therefore, we have

Tlggo NG =0, (4.47)
indicating that the convergence speed (7)) is faster than that of //7. N

Case of Multiple Channels with Channel Bonding

When there are multiple licensed channels, we first condecdse where the channel bond-
ing/aggregation techniques are used by the transmitter€Rusers [44, 70]. With channel bond-
ing, a transmitter can utilize all the available channelstit) collectively to transmit the mixed
signal. We assume that at the end of the sensing phase inigachlot, CR users tune their SDR

transceiver to the common control channel to receive thefsetailable channelsl(¢) from the
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BS. Then each CR user can receive from all the channels(in and decode its desired signal
from the compound signal it receives.

This case is similar to the case of a single licensed chanXelv all the active CR users
receive from the set of available channdl&). We thus have’" = 1, for m € A(t), andb}* = 0,
form ¢ A(t), j = 1,2,---, N. When all theb"’s are determined this way, problem (4.30) is
reduced to a nonlinear programming problem with constsaihi24) and (4.25). The distributed
algorithm described in Section 4.4.3 can be applied to sthiigereduced problem to get optimal

solutions.

Case of Multiple Channels without Channel Bonding

We finally consider the case of multiple channels withoutnecte bonding, where each CR
user has a narrow band SDR transceiver and can only receiue dne of the channels. We
first present a greedy algorithm that leverages the optifgatighm in Table 4.5 for near-optimal

solutions, and then derive a lower bound for its performance

Greedy Algorithm  WhenM > 1, the optimal solution to problem (4.30) depends also on the
binary variable$’s, which determines whether usgreceives from channeh. Recall that there
are two constraints for th&"'s: (i) each user can use at most one channel (see (4.279)}h¢ii
number of users on the same channel cannot exceed the nuhttzersonittersi’ (see (4.36)). Let
b be the channel allocation vector with elemetitss, and@(l;) the corresponding objective value
for a given user channel allocation

We take a two-step approach to solve problem (4.30). Firstapply the greedy algorithm
in Table 4.6 to choose one available channeMif) for each CR user (i.e., to determibe Sec-
ond, we apply the algorithm in Table 4.5 to obtain a nearrogtisolution for the given channel
allocationb.

In Table 4.6,07" is a unit vector with 1 for thé(j — 1) x M + m]-th element and for all

other elements, and= b + 17;” indicates choosing channel’ for userj’. In each iteration, the
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Table 4.6: Channel Selection Algorithm for the Case of Muttithannels without Channel Bond-
ing

1: Initialize b to a zero vector, user set= {1,--- , N}
and user-channel sét= U/ x A(t);

2. WHILE (C # 0)

3: Find the user-channel pdiy’, m’}, such that

{j/,m'} = argmax(jmyec} {2 (b + T}") — (0)};
Seth = b + ¢ and remove’ from/;
IF (0, b = K)
Removen' from A(t);
END IF
Update user-channel set= U/ x A(t);
END WHILE

©CoN O R

user-channel paifj’, m’) that can achieve the largest increase in the objective valceosen, as

in Step 3. The complexity of the greedy algorithm in the weeste isO(K2M?).

Performance Bound We next analyze the greedy algorithm and derive a lower bdonds
performance. Let; be the sequence from the first to thh user-channel pair selected by the

greedy algorithm. The increase in objective value is dehate
E = F(Vl, I/lfl) = qD(I/l) - CD(Vlfl). (448)

Sum up (4.48) from 1 td.. We have}_" | F; = ®(v;,) since®(1,) = 0. LetQ be the global
optimal solution for user-channel allocation. Defineas a subset of2. For giveny,, 7; is the
subset of user-channel pairs that cannot be allocated dhe twonflict with thel-th user channel

allocationy; (but not conflict with the user-channel allocations/in,).

Lemma 4.5. Assume the greedy algorithm stopdiisteps, we have

Q) < P(vy) + Z Z FloUy_1,v-1).

=1 oem
Proof. The proof is similar to the proof of Lemma 7 in [13] and is omdttfor brevity. ]
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Theorem 4.3. The greedy algorithm for channel selection in Table 4.6 celnieve an objective

value that is at Iea% of the global optimum in each time slot.

Proof. According to Lemma 4.5, it follows that:

O(Q) < @)+ Y Im|F < O(vn)+(JAR)=1) ) F = [A@D)|®(v).  (4.49)

=1 =1

The second inequality is due to the fact that each user camsehat most one channel and there
are at most|.A(t)| — 1) pairs inm; according to the definition. The equality in (4.49) is beeaus

Zle F; = ®(v.). Then we have:

1
2 () < 00n) < @(Q). (4.50)

The greedy heuristic solution is lower boundediBy4(t)| of the global optimum. O

Define competitive ratioq = ®(v;)/P(2) = 1/|.A(t)|. Assume all the licensed channels
have identical utilization). Since|.A(t)| is a random variable, we take the expectatiory @nd

obtain:

Ep ="+ (%) P = (4.51)

In Fig. 4.7, we evaluate the impact of channel utilizatioand the number of licensed chan-
nels M on the competitive ratio. We increagsdrom 0.05 to 0.95 in steps 0f0.05 and increasé/
from 6 to 12 in steps of2. The lower bound (4.50) becomes tighter whgeis larger or when\/
is smaller. For example, when= 0.6 and M = 6, the greedy algorithm solution is guaranteed
to be no less than 52.7% of the global optimal. wheaa increased to 0.95, the greedy algorithm

solution is guaranteed to be no less than 98.3% of the glqiiahal.
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Figure 4.7: Competitive rati@i|x| defined in (4.51) versus channel utilizatign

4.4.4 Performance Evaluation

We evaluate the performance of the proposed algorithms avkbATLAB implementation
and the JVSM 9.13 Video Codec. We present simulation resaitshé following two scenarios:
(i) a single licensed channel and (ii) multiple licensedretels without channel bonding, since
we observe similar performance for the case of multiplensesl channels with channel bonding.
For comparison purpose, we also developed two simpler steuschemes that do not incorporate

interference alignment.

e Heuristic I each CR user selects the best channel(t) based on channel condition. The
time slot is equally divided among the active users recgifiom the same channel, to send

their signals separately in each time slice.

e Heuristic 2 in each time slot, the active user with the best channellecgs for each

available channel. The entire time slot is used to trandmstuser’s signal.
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Figure 4.8: Received video quality for each CR user with a siegannel.

Case of a Single Licensed Channel

In the first scenario, there aré = 4 transmitters, i.e., one BS and three RNs. The channel
utilization is set to 0.6 and the maximum allowable collision probapijiis set to 0.2. There are
three active CR users, each receives an MGS video streamHi@BS:Busto CR user 1Mobile
to CR user 2, andHarbor to CR user 3. The video sequences are in the Common Intermediate
Format (CIF, 25%288). The GOP size of the videos is 16 and the delivery deadliis 10. The
false alarm probability is]* = 0.3 and the miss detection probabilityd® = 0.3 for all spectrum
sensors. The channel bandwidths 1 MHz. The peak power limitis 10 W for all the transmitters,
unless otherwise specified.

We first plot the average Y-PSNRs of the three reconstructed M@eos in Fig. 4.8, i.e.,
only the Y (Luminance) component of the original and recarded videos are used. Among
three schemes, the proposed algorithm achieves the hiBB&R value, while the two heuristic
algorithms have similar performance. Note that the prop@dgorithm is optimal in the single
channel case. It achieves significant improvements rarfigimy 3.1 dB to 5.25 dB over the two
heuristic algorithms. Such PSNR gains are considerabiegsn video coding and communica-

tions, a half dB gain is distinguishable and worth pursing.
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Figure 4.9: Convergence rate of the distributed algoriththwisingle channel.

We next examine the convergence rate of the distributedritign. According to Theo-
rem 4.2, the distributed algorithm converges at a speeérfalsan1/,/7 asymptotically. We
compare the optimality gap of the proposed algorithm, |gz) — ¢*|, with series10/+/7 in
Fig. 4.9. Both curves converge to 0agoes to infinity. It can be seen that the convergence speed,
i.e., the slope of the curve, of the proposed scheme is ldnger that of10/./7 after aboutl0
iterations. The convergence of the optimality gap is mudhefathan10/./7, which exhibits a
heavy tail.

In the case of multiple channels with channel bonding, thopmance of the proposed algo-

rithm is similar to that in the single channel case. We onetrigsults for lack of space.

Case of Multiple Channels without Channel Bonding

We next investigate the second scenario with six licensethrobls and four transmitters.
There are 12 CR users, each streaming one of the three difiederosBus Mobile, andHarbor.
The rest of the parameters are the same as those in the shmgl@at case, unless otherwise
specified. Eq. (4.49) can also be interpreted as an uppedimuthe global optimal, i.e®(2) <

|A(t)|®(vy), which is also plotted in the figures. Each point in the follogvfigures is the average
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Figure 4.10: Reconstructed video quality vs. channel afilan » in the multi-channel without
channel bonding case.

of 10 simulation runs with different random seeds. The 95%fidence intervals are plotted as
error bars, which are generally negligible.

The impact of channel utilization on received video quality is presented in Fig. 4.10. We
increase) from 0.3 t0 0.9 in steps 0f).15, and plot the Y-PSNRs of reconstructed videos averaged
over all the 12 CR users. Intuitively, a smallegallows more transmission opportunities for CR
users, thus allowing the CR users to achieve higher vides eatd better video quality. This is
shown in the figure, in which all four curves decrease &sincreased. We also observe that the
gap between the upper bound and proposed schemes becontles asaggets larger, from 32.65
dB whenn = 0.3 to 0.63 dB whery = 0.9. This trend is also demonstrated in Fig. 4.7. The
proposed scheme outperforms the two heuristic schemescaiitsiderable gains, ranging from
0.8 dB to 3.65 dB.

Finally, we investigate the impact of the number of trantenst/A’ on the video quality. In
this simulation we increas& from 2 to 6 with step size 1. The average Y-PSNRs of all the
12 CR users are plotted in Fig. 4.11. As expected, the morsrtrdiers, the more effective the

interference alignment technique, and thus the better itheowquality. The proposed algorithm
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Figure 4.11: Reconstructed video quality vs. number of tratters K in the multi-channel with-
out channel bonding case.
achieves gains ranging from 1.78 dB (wh&nh = 2) to 4.55 dB (whenK = 6) over the two

heuristic schemes.

45 Conclusions

In this chapter, we first studied the problem of coopera@ayin CR networks. We modeled
the two cooperative relay strategies, i.e., DF and AF, whrehintegrated witp-Persistent CSMA.
We analyzed their throughput performance and compared threter various parameter ranges.
Cross-point with the AF and DF curves are found when some pateans varied, indicating that
each of them performs better in a certain parameter rangeg th no case of dominance for the
two strategies. Considerable gains were observed over goormal DL transmissions, as achieved
by exploiting cooperative diversity with the cooperatiedays in CR networks.

Then, we investigated the problem of interference alignni@nMGS video streaming in
a cooperative relay enhanced CR network. We presented aastacprogramming formation,

and derived a reformulation that leads to considerableatemiuin computational complexity. A
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distributed optimal algorithm was developed for the casa sihgle channel and the case of multi-
channel with channel bonding, with proven convergence andargence speed. We also presented
a greedy algorithm for the multi-channel without channeidiag case, with a proven performance
bound. The proposed algorithms are evaluated with sintuatand are shown to outperform two

heuristic schemes without interference alignment withstagrable gains.
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Chapter 5

CR Femtocell Networks

5.1 Introduction

Due to the use of open space as transmission medium, capdaiyeless networks are
usually limited by interference. When a mobile user movesydveam the base station, a consider-
ably larger transmit power is needed to overcome attenuatibile causing interference to other
users and deteriorating network capacity. To this end, deails provide an effective solution
that brings network infrastructure closer to mobile usér$éemtocell is a small (e.g., residential)
cellular network, with aemto base statiofFBS) connected to the owner’s broadband wireline
network [5,92,93]. The FBS serves approved users when tleayitlrin the coverage. Among the
many benefits, femtocells are shown effective on improviatywork coverage and capacity [5].
Due to reduced distance, transmit power can be greatly eeljleading to prolonged battery life,
improved signal-to-interference-plus-noise ratio (SIN&)d better spatial reuse of spectrum.

Femtocells have received significant interest from the leg® industry. Although highly
promising, many important problems should be addressedlioHfarvest their potential, such as
interference mitigation, resource allocation, synchezation, and QoS provisioning [5, 92]. It is
also critical for the success of this technology to suppapartant applications such as real-time
video streaming in femtocell networks.

In this chapter, we first investigate the problem of data ivast in femtocell networks. It is
not atypical that many users may request for the same comtgiaiften observed in wireline net-
works. By allowing multiple users to share the same downlin#ticast transmission, significant
spectrum and power savings can be achieved.

In particular, we adopsuperposition codingSC) andsuccessive interference cancellation

(SIC), two well-known PHY techniques, for data multicast@mftocell networks [94]. With SC,
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a compound signal is transmitted, consisting of multipégmals (or, layers) from different senders
or from the same sender. With SIC, a strong signal can be fisiddel, by treating all other
signals as noise. Then the decoder will reconstruct theakfgmm the decoded bits, and subtract
the reconstructed signal from the compound signal. The sigxial will be decoded from the
residual, by treating the remaining signals as noise. Arfdrtb. A special strength of the SC with
SIC approach is that it enables simultaneous unicast trigegms (e.g., many-to-one or one-to-
many). It has been shown that SC with SIC is more efficient BtdM techniques with orthogonal
channels [94, 95].

We adopt SC and SIC for the unique femtocell network enviremimand investigate how
to enable efficient data multicast from the femtocells totipld users. We formulate a Mixed
Integer Nonlinear Programming (MINLP) problem, which isd4&d in general. The objective
is to minimize the total BS power consumption. Then we refdateuthe MINLP problem into a
simpler form, and derive upper and lower performance bouwdsalso derive a simple heuristic
scheme that assigns users to the BS’s with a greedy approadilyFwe consider three typical
connection scenarios in the femtocell network, and devefgpnal and near-optimal algorithms
for the three scenarios. The proposed algorithms have lonpatational complexity, and are
shown to outperform the heuristic scheme with considergaies.

Then, we investigate the problem of video streaming in feeitaccognitive radio (CR) net-
works. We consider a femtocell network consisting ehacro base statio(MBS) and multiple
FBS’s. The femtocell network is co-located with a primarywatk with multiple licensed chan-
nels. This is a challenging problem due to the stringent Qaafslirements of real-time videos
and, on the other hand, the new dimensions of network dyrsa(e, channel availability) and
uncertainties (i.e., spectrum sensing and errors) foul@Rmetworks.

We adopt Scalable Video Coding (SVC) in our system. SVC encadedeo into multiple
substreams, subsets of which can be decoded to provideediffquality levels for the recon-

structed video [53]. Such scalability is very useful for eidstreaming systems, especially in
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CR networks, to accommodate heterogeneous channel aliadakand dynamic network condi-
tions. We consider H.264/SVC medium grain scalable (MG8gos, since MGS can achieve
better rate-distortion performance over Fine-GranylegBitalability (FGS), although it only has
Network Abstraction Layer (NAL) unit-based granularity]5

The unique femtocell network architecture and the scahatkso allow us to develop a frame-
work that captures the key design issues and trade-offgpaodmulate estochastic programming
problem. It has been shown that the deployment of femtobesa significant impact on the
network performance [5]. In this paper, we examine thredayepent scenarios. In the case of a
single FBS, we applgual decompositioto develop a distributed algorithm that can compute the
optimal solution. In the case of multiple non-interferinB%s, we show that the same distributed
algorithm can be used to compute optimal solutions. In tise ad multiple interfering FBS's,
we develop a greedy algorithm that can compute near-opsoiations, and prove a closed-form
lower bound for its performance based onisterference grapmodel. The proposed algorithms
are evaluated with simulations, and are shown to outpertoree alternative schemes with con-
siderable gains.

The remainder of this chapter is organized as follows. Theted work is discussed in Sec-
tion 5.2. We investigate the problem of data multicast oganitocell networks in Section 5.3. The
problem of streaming multiple MGS videos in a femtocell CRywek is discussed in Section 5.4.

Section 5.5 concludes this paper.

5.2 Background and Related Work

Femtocells have attracted considerable interest from inalinstry and academia. Technical
and business challenges, requirements and some prelinsolutions to femtocell networks are
discussed in [5]. Since FBS’s are distributedly located aiedadle to spatially reuse the same

channel, considerable research efforts were made oneneaide analysis and mitigation [35, 96].
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A distributed utility based SINR adaptation scheme wasgiresl in [96] to alleviate cross-tire in-
terference at the macrocell from co-channel femtocellg, Ot and Lee [35] proposed a fractional
frequency reuse scheme to mitigate inter-femtocell ieterice.

Deploying femtocells by underlaying the macrocell has h@ened to significantly improve
indoor coverage and system capacity. However, interferenitigation in a two-tier heteroge-
neous network is a challenging problem. In [97], the intenfiee from macrocell and femtocells
was mitigated by a spatial channel separation scheme witdvenrd-to-channel mapping. In [98],
the rate distribution in the macrocell was improved by sulghaartitioning and modest gains were
achieved by interference cancellation. In [99], the ire¥hce was controlled by denying the ac-
cess of femtocell base stations to protect the transmisdgioearby macro base station. A novel
algorithmic framework was presented in [100] for dynamiteiference management to deliver
QoS, fairness and high system efficiency in LTE-A femtocetivorks. Requiring no modification
of existing macrocells, CR was shown to achieve considenadtiormance improvement when
applied to interference mitigation [101]. In [102], thelaygonal time-frequency blocks and trans-
mission opportunities were allocated based on a safetvidtassification.

SIC has high potential of sending or receiving multiple sigrconcurrently, which improves
the transmission efficiency. In [95], the authors develop®dC and routing protocols that ex-
ploit SC and SIC to enable simultaneous unicast transnmissi8en, et al. investigated the pos-
sible throughput gains with SIC from a MAC layer perspecii¥€3]. Power control for SIC
was comprehensively investigated and widely applied tedatidision multiple access (CDMA)
systems [104-108]. Applying game theory, Jean and Jabbapoped an uplink power control
under SIC in direct sequence-CDMA networks [104]. In [10Bg authors introduced an iterative
two-stage SIC detection scheme for a multicode MIMO systacthslowed the proposed scheme
significantly outperformed the equal power allocation sebe A scheme on joint power control
and receiver optimization of CDMA transceivers was preseim¢106]. In [107,108], the impact
of imperfect channel estimation and imperfect interfeeec@ncellation on the capacity of CDMA

systems was examined.
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5.3 Multicast in Femtocell Networks with Superposition Codng and Successive Interfer-

ence Cancellation

In this section, we formulate a Mixed Integer Nonlinear Pamgming (MINLP) problem
of data multicast in femotcell networks, which is NP-hardgeneral. Then we reformulate the
MINLP problem into a simpler form, and derive upper and loywerformance bounds. We also
derive a simple heuristic scheme that assigns users to thevid® a greedy approach. Finally,
we consider three typical connection scenarios in the feettoetwork, and develop optimal and
near-optimal algorithms for the three scenarios. The mepalgorithms have low computational

complexity, and are shown to outperform the heuristic seamth considerable gains.

5.3.1 System Model and Problem Statement
System Model

Consider a femtocell network with an MBS (index@&dand M FBS’s (indexed from to M)
deployed in the area. Th& FBS’s are connected to the MBS and the Internet via broadband
wireline connections. Furthermore, we assume a spectrurd theat is divided into two parts,
one is allocated to the MBS with bandwidh, and the other is allocated to thé FBS’'s. The
bandwidth allocated to FB& is denoted by3,,. When there is no overlap between the coverages
of two FBS’s, they can spatially reuse the same spectrum. r@ibe, the MBS allocates disjoint
spectrum to the FBS’s with overlapping coverages. We asstineespectrum allocation is known
a priori.

There arg< mobile users in the femtocell network. Each user is equipyptdone transceiver
that can be tuned to one of the two available channels, benecting to a nearby FBS or to the
MBS. The network is time slotted. We assume block-fading nke&n where the channel condition
is constant in each time slot [94]. We focus on a multicashade, where the MBS and FBS’s

multicast a data file to th& users. The data file is divided into multiple packets withadength
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Figure 5.1: Superposition coding and successive intaréereancellation.

and transmitted in sequence with the same modulation schédmee packet is successfully
received and decoded at the user, it requests pécket) in the next time slot.

We adopt SC and SIC to transmit these packets [94], as #liestin Fig. 5.1. In each time slot
t, the compound signal hdslayers(or, levels), denoted ab (), - - -, D (t). Each levelD;(t),
1=1,---,L,is apacket requested by some of the users in time.shotser that has successfully
decoded);(t), foralli = 1,---,1—1, is able to subtract these signals from the received conmgoun

signal and then decodé (¢), while the signals fronD,,(¢) to D (t) are treated as noise.

Problem Statement

For the SC and SIC scheme to work, the transmit powers foretvedd should be carefully
determined, such that there is a sufficiently high SNR forlévels to be decodable. It is also
important to control the transmit powers of the BS’s to redaterference and leverage frequency
reuse. The annual power bill is a large part of a mobile op€satosts [109]. Minimizing BS
power consumption is important to reduce not only the opega©OPEX, but also the global GO
emission; an important step towards “green” communication

Therefore, we focus on BS power allocation in this paper. Tiijeative is to minimize the
total power of all the BS’s, while guaranteeing a target ratg for each user. Recall that the
data file is partitioned into equal-length packets. ThedargteR,,, ensures that a packet can be
transmitted within a time slot, for given modulation and hel coding schemes.

Define binary indicatof* , for all m andk, as:

o 1, if userk connects to BSn (5.1)
" 0, otherwise.
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Consider a general time slotwhen L. data packets, or levels, are requested. We formulate the

optimal power allocation problem (termed OPT-Power) aoved.

M L
minimize: Z Z P (5.2)

m=0 [=1

subject to: B,, log, (1 + % 1%) > R, 1%, forall k (5.3)
M
> 1F =1.forall k (5.4)
m=0
P™ >0, foralll,m, (5.5)

where P is the power of BSn for transmitting the level packet;y* is the SNR at usek if it
connects to BSn. Constraint (5.3) guarantees the minimum rate at each usest@mt (5.4) is
due to the fact that each user is equipped with one trangceivé can only connect to one BS.
Let U4, denote the set of users requesting the léymcket. A usek € U, has decoded all
the packets up t@,_;. It subtracts the decoded signals from the received sigrhtraats signals

D1, ---,Dy as noise. The SNR at uskre U, forl = 1,--- , L — 1, can be written as:
L
Yo = Hy P/ (No +Hy, Y P;") : (5.6)
i=l+1
where H is the random channel gain from B to userk and N, is the noise power. For user
k € U}, that requests the last packet, the SNR is

Y = Hp PL' [No. (5.7)

The optimization variables in Problem OPT-Power consishembinary variableg” 's and the
continuous variableg™’s. Itis an MINLP problem, which is NP-hard in general. In 8ec 5.3.2,
we first reformulate the problem to a obtain a simpler forng #ren develop effective algorithms

for optimal and suboptimal solutions.
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5.3.2 Reformulation and Power Allocation

In this section, we reformulate Problem OPT-Power to obtasimpler form, and derive
an upper bound and a lower bound for the total BS power. Themefiation also leads to a
simple heuristic algorithm. Finally, we introduce powdbahtion algorithms for three connection

scenarios.

Problem Reformulation

Due to the monotonic logarithm functions and the binarygattrs/* , constraint (5.3) can
be rewritten as:

ARIR >TE IR m=0,1,---, M, (5.8)

wherel'® =T, =: 2fr/Bn _ 1 is the minimum SNR requirement at ugethat connects to BS
m. To further simplify the problem, defin@" = Zf:l P, with Q7' , = 0. Then powerP™ is

the difference

P =Q" - Q- (5.9)

Problem OPT-Power can be reformulated as:

M
minimize » ~ Q" (5.10)
m=0
subject to: H},,(Q" = Qi’t1)/ (No+ Hy, Qi't1) Iy, > Ty,
forallk eyl =1,--- L (5.11)
Q" >Q4, =1L (5.12)
M
> 1k =1, forallk, (5.13)

m=0
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Forl < L, constraint (5.11) can be rewritten as:
QI > [NoDw/HE + (1+ D) Q1] 15 (5.14)

Letl™ be the subset of users connecting to/B$ ;. SinceQ;” > Q7 ,, (5.14) can be rewritten
as,

Q™ = max {Q;ﬁl, max [NoLy/HE, + (1 + L) Q4] } : (5.15)
l

From (5.15), we define a functiap)” = F,,(Q}},,U™) as:

m o m s ur =9
Fn(QlL,U") = Nor (5.16)
maXgeym { f;fnm +(1+ Fm)Qﬁ—l} , U # 0.
Obviously, F,,,(Qf,,U™) is non-decreasing with respect@y, ;. It follows that
Q7 = Fu(QyU") = Fn(Fn(Q"Us"), U")
= Fm( e (Fm(QTH?UE”)’UFfl), T au1m>
= Fn( - (En(0,U), U ), -, UM). (5.17)
If none of the subse®” (I = 1,---, L) is empty, we can expand the above recursive term
using (5.16). It follows that
L
"= Nl Y (1+T,,)1 mex {1/Hn}, (5.18)

=1

where the exponernf” is defined as{* = 0 and¢}}; = ¢;* + 1. Otherwise, if a subsét™ = () for
somem, we have that)]" = Q7+, maxpem {1/HE } = maxyep {1/HE} = 0, and¢ = ;.

Eq. (5.18) still holds true.
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Finally, the objective function (5.10) can be rewritten as

M L
NoTy Y (1+T,,)4" 1/HE L 5.19
D Mol 3 (1+ D)™ s {1/H} (5.19)

Since(1 +I';,,) > 0, it can be seen that to minimize the total BS power, we needep Keec"'s

as low as possible.

Performance Bounds

The reformulation and simplification allow us to derive peniance bounds for the total BS
power consumption. First, we derive the upper bound for thjeative function (5.10). Define a
variable

Gn = max max {T,,/HN}, (5.20)

le{1, L} keum
which corresponds to the user with the worst channel card#gmong all users that connect to BS

m. It follows that:

QT =N > Y (14T max {T,,/HE }

keum

m=0 m=0 [=1
M L
<N Y Y4 T)TE,
m=0 [=1
M L
S NO Z am Z(l + Fm)l_l
m=0 =1
M
=No Y G [(1+T0)" = 1] /Ty (5.21)
m=0

In (5.21), the first inequality is from the definition 6f,,. The second inequality is from the
definition of "t ;. Specifically,ci” = 0; whenl™ # 0, we havec* = ¢* | + 1, whenl™ = (), we
havec” = ¢",. It follows thatc;” < [ — 1. Therefore, (5.21) is an upper bound on the objective

function (5.10).
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Furthermore, by defining’ = max,,c(o... sy {Gn }, @andT = max,eo,.. a1y {I'n}, We can

get a looser upper bound from 5.21 as
M
Q' < NoG(M +1) [(1+T)" —1] JT. (5.22)

m=0

Next, we derive a lower bound for (5.10). Define

Ql - miﬂme{0,~- M} INaXgeym {Fm/Hﬁl}

(5.23)
r'= minme{o,--- M} {Fm} .
We have that
M M L
QT =N > Y (14T max {T,,/H}
m=0 m=0 [=1
M L
> Noy > (1+T)7¢
m=0 [=1
L M
>No ) G (14D
=1 m=0
L S0 7"
> No(M +1))  G'(1+L) 50
=1
L
> No(M +1) Y G'(1 + ), (5.24)

In (5.24), the first inequality is from the definition 6f. The second inequality is due to the
definition of . The third inequality is due to the fact th@t + I')<" is a convex function. The
fourth inequality is because that each level must be tratestnipy at least one BS. Thus for each
levell, there is at least on€" = ¢;" | + 1 for somem. It follows that the sunﬁn]‘fzo c* should be

greater thar — 1. Therefore, (5.24) provides a lower bound for (5.10).
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Furthermore, by defining: = min;ey... 1y {G'}, we can obtain a looser lower bound from

(5.24) as

(5.25)

= g (1+D)7
2, Q1 2 NoG(M +1) +1)

m=0 £

A Simple Heuristic Scheme

We first describe a greedy heuristic algorithm that solve3-@8wer with suboptimal solu-
tions. With this heuristic, each user compares the charaieskgrom the MBS and the FBS’s. It
chooses the BS with the best channel condition to connedbts, the values of the binary vari-
ablesI” are determined. Once the binary variables are fixed, alldbeetd/"’s are determined.
Starting withQ7',, = 0, we can apply (5.15) iteratively to find thg"’s. Finally, the transmit
powersP™ can be computed using (5.9).

With this approach, among the users requesting the legy@tket, it is more likely that some
of them connect to the MBS and the rest connect to some FBS’¢pdhe random channel gains
in each time slot. In this situation, both MBS and FBS will hageransmit all the requested
data packets. Such situation is not optimal for minimizing total power, as will be discussed in

Section 5.3.2.
Power Allocation Algorithms
In the following, we develop three power allocation algamiis for three different connection

scenarios with a more structured approach.

Case I-One Base Station We first consider the simplest connection scenario wherthalk’
users connect to the same BS (i.e., either the MBS or an FBS)n#esall the users connect to BS
m. Then we have® = 1 for all k, and all the subsetg™ are non-empty/*, = 0 for all k£ and all

m’ # m, and all the subsetg™ are empty form’ # m.
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From (5.16), we can derive the optimal solution as:

"= (14 Tw)Q + max {NoT'/H Y
1

L
= Nol'w > (1+T,)"" max {1/HE}, 1=1,2,--- L. (5.26)
!

eum
i=l

Recall thatQ7'}, = Q7' = 0, the optimal power allocation for Problem OPT-Power in tase
Is:

me—Qr, m/ =m, foralll
: s (5.27)

0, m' # m, forall [.

m'x
Pl =

Case [I-MBS and One FBS We next consider the case with one MBS and one FBS (i.e.,
M = 1), where each user has two choices: connecting to eitherBBedF the MBS.

Recall that/? andi/! are the subset of users who connected to the MBS and the FBScresp
tively, and who request the levepacket. Examining (5.18), we find that the total power of/iBS
can be significantly reduced if one or more levels are nostratted, since the exponedt will
not be increased in this case. Furthermore, consider thelwies: (i) not transmitting levé|
and (ii) not transmitting level > [ from BSm. The first choice will yield larger power savings,
since more exponents (i.ej’, ¢/}, - -, ;') will assume smaller values. Therefore, we should
let these two subsets be empty whenever possible, i.eeréith= () or /! = (). According to
this policy, all the users requesting the lesphacket will connect to the same BS. We only need to
make the optimal connection decision for each subset ofusguesting the same level of packet,
rather than for each individual user.

Since not transmitting a lower level packet yields more posawings for a BS, we calculate
the power from the lowest to the highest level, and decidetdreconnecting to the MBS or
the FBS for users in each level. Defitd = maxiey, {1/Hf} and G} = maxyey, {1/Hf}.
The algorithm for solving Problem OPT-Power in this caseiveigin Table 5.1. In Step3-10,
the decision on whether connecting to the MBS or the FBS is mgdmimparing the expected

increments in the total power. The user subsétaind/! are determined in Stepsand7. In
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Table 5.1: Power Allocation Algorithm For Case II

1: Initialize all¢}, ¢/, QY ., andQy ., to zero;
2. FORI=1TOL

3: IF (o(1 4 )9 GO < Iy (1+Ty)4GY)
4: Set = Uy anduf}! = 0;

5: A= +1;

6: ELSE

7 Sett) = 0 andit}! = U;;

8: o=c+1

9: END IF

10: END FOR

11: FORI=LTO1

12: Q) = FO(Q?H,L{P) andP = Q) — Q?H;
13: Q) = Fi(Ql,Ul) and P! = Q) — Q.
14: END FOR

Stepsl1-14, Q*'s and the corresponding™’'s are computed in the reverse order, based on the
determined subsetg’ andi{}'.

The computational complexity of this algorithmd@¥L).

Case IlI-MBS and Multiple FBS’s  Finally, we consider the general case with one MBS and
multiple FBS’s in the network. Each user is able to connech&NBS or a nearby FBS. Recall
that we definé/, as the set of users requesting the lévahcket, and{" as the subset of users in
U, thatconnecto BSm. These sets have the following properties.

UM um =,

m=0

UurOuUr =0, forallm’ #m.

The first property is due to the fact that each user must canodéoe MBS or an FBS. The second
property is because each user can connect to only one BS. &hsulssets connecting to different

BS’s do not overlap. Therefor&;™’s is apartition of 24 with respect ton.
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In addition, we defingS;™ as the set of possible users that eoeeredoy BS m and request

the levell packet. These sets have the following properties.

UN_, Sm=8=u

S"NSY =S8m, forallm #0
S"NS =0, forallm’ # mandm,m’ # 0.

The first property is because all users in each femtocell avered by the MBS. The second
property indicates that the users covered by FB&re a subset of the users covered by the MBS.
The third property shows that the user subsets in differemtdcells do not overlap. We can see
that theS;™’s, form = 1,--- , M, are also a partition a@f;.

DefineW,, (i) = maxyey {1/HY }, wherel/ is the set of users and = 0,--- , M. If the
setU is empty, we definé?,,()) = 0. For example, consider Case Il whe¥e = 1. We have
S =S} =, Wo(Uy) = GY, andWy (Uy) = G}

The power allocation algorithm for Case lll is presented ibl&®.2. The algorithm iteratively
picks users from theligible subsetS;” and assigns them to tladlocatedsubset/". In each step
[, U is the subset of FBS’s that will transmit the levgbacket; the complementary sétis the
subset of FBS’s that will not transmit the levgdacket. The expected increment in total power for
each partition is computed, and the partition with the sesakéxpected increment will be chosen.
AJ" is the power of BSn for transmitting the level data packet. In Steps-15, the MBS and
FBS combination? is determined for transmitting the levgbacket, with the lowest powek,. In
Stepsl6-30, elements iS;" are assigned " according tol. In Steps31-35, power sums);”
and the corresponding power allocatia$ are calculated in the reverse order from the known
u’s.

The complexity of the algorithm i© (M L).
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Table 5.2: Power Allocation Algorithm For Case Il

1. Initialize: ¢ = 0 andQ7., , = 0, for all /, m;
2. FORI=1TOL

3: FORm =0TO M

4: AT =T, (14 T,)9 W, (S™);
5: END FOR

6 SetQ = {1,--- ,M} and¥ = {);
7 WHILE (Q # 0)

8: m’ = argming,cq A

9: Comput%’ = Fg(l + FO)C?WU(UmeW Slm),
10: IF (3 cwim A+ A") < Ag)
11: Addm’ to ;

12: Ao = co A+ A

13: END IF

14: Removen’ from Q;

15: END WHILE

16: IF @ =0)

17: U =8y

18: Ad=d+1;

19: Setd" = 0, for all m # 0;

20: ELSE

211 U =U,q ST

22: IF (V] < M)

23: Q= +1;

24: END IF

25: FORm € ¥

26: o' =qr+1;

27: umr =8m

28: END FOR

29: END IF

30: END FOR

31: FORI=LTO1

32: FORm =0TO M

33 = Fn(Q, U") and P = Q7 — Q7
34: END FOR

35: END FOR

5.3.3 Performance Evaluation

We evaluate the performance of the proposed power allotatgwrithms using MATLABM.
Three scenarios corresponding to the three cases in S&cBdhare simulated: (i) Case I: a single

MBS,; (ii) Case II: one MBS and one FBS; and (iii) Case Ill: one MBS dnédé¢ FBS's.

159



Case I: MBS Case II: MBS and one FBS
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Figure 5.2: Case | vs. Case II: interference footprints.

Since we do not find any similar schemes in the literature, \mderthe following compar-
isons. First, we compare Cases | and Il with respect to BS poamswmption and interference
footprint. In both cases, there afé = 8 users and. = 4 levels. In Case |, the MBS bandwidth
is By = 2 MHz. In Case Il, the MBS and the FBS share th#MHz total bandwidth; the MBS
bandwidth isB, = 1 MHz and the FBS bandwidth i8; = 1 MHz. The target data ratg,,, is set
to 2 Mbps. The channel gain from a base station to each user is1\erpally distributed in each
time slot.

The interference footprints in the three dimensional saieglotted in Fig. 5.2. The height
B of the cylinders indicates the spectrum used by a BS, whileatdrisr is proportional to the
BS transmit power. In Case | when only the MBS is used, the total @&pis45.71 dBm and
the volume of the cylinder isr?B = 18,841 MHz m?. In Case Il when both the MBS and FBS
are used, the total BS powerd$.58 dBm and the total volume of the two cylinder2is378 MHz
m?. Using an additional FBS achieves 813 dB power saving and the interference footprint is
reduced tal2.62% of that in Case |. This simple comparison clearly demonrstita¢ advantages

of femtocells achieved by bringing BS’s closer to users.
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Figure 5.3: Case Ill: impact of number of levédls

We next consider the more general Case lll, using a femtoeeNark of one MBS and three
FBS’s. The MBS bandwidth i#, = 1 MHz and each FBS is assigned with bandwidih = 1
MHz, m = 1,2,3. The target data rate is stillMbps. In Figs. 5.3 and 5.4, we plot four curves,
each obtained with: (i) the heuristic scheme describedati@e5.3.2; (i) The proposed algorithm
presented in Section 5.3.2; (iii) The upper bound; and (ig)lower bound derived in Section 5.3.2.
Each point in the figures is the averagel6fsimulation runs. Th&5% confidence intervals are
plotted as error bars, which are all negligible.

In Fig. 5.3, we examine the impact of the number of packet$el/eon the total BS transmit
power. We increasé from 2 to 6, and plot the total power of base stations. As expected, the
more packet levels, the larger the BS power consumption. Betiptoposed and heuristic curves
lie in between the upper and lower bound curves. Whea increased fron2 to 6, the power
consumption of the heuristic scheme is increased92 dB, while the power consumption of
the proposed algorithm is increased fhg4 dB. The power savings achieved by the proposed
algorithm over the heuristic scheme range fré92 dB to6.45 dB.

In Fig. 5.4, we show the impact of the BS bandwidths. The nurob&vels isL = 4. We
fix the total bandwidth a2 MHz, which is shared by the MBS and FBS’s. We increase the MBS
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Figure 5.4: Case lll: impact of MBS bandwidth,.

bandwidth from).4 MHz to 1.6 MHz in steps 0f).2 MHz, while decrease the bandwidth of FBS'’s
from 1.6 MHz to 0.4 MHz. We find that the total power consumption is increase®agets
large. This is due to the fact that as the FBS bandwidth getiesnithe FBS’s have to spend more
power to meet the minimum data rate requirement. The cun@yzed by the proposed algorithm
has a smaller slop than that of the heuristic scheme: thealbwvecrease in the total power of
the proposed algorithm i$.86 dB, while that of the heuristic scheme28.84 dB. This implies
that the proposed scheme is not very sensitive to the bathlailbcation between the MBS and
FBS’s. The proposed algorithm also achieves consider poswéngs over the heuristic scheme.
When B, = 1.6 MHz, the total power of the proposed algorithn2is75 dB lower than that of the

heuristic scheme.

5.4 Video over CR Femtocell Networks

In this section, we investigate the problem of video stregmn femtocell cognitive radio
(CR) networks and formulatesdochastic programmingroblem to examine three deployment sce-
narios. In the case of a single FBS, we apgilyal decompositioto develop an optimum-achieving

distributed algorithm, which is shown also optimal for ttzese of multiple non-interfering FBS’s.
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In the case of multiple interfering FBS’s, we develop a grealdyprithm that can compute near-
optimal solutions, and prove a closed-form lower bound teperformance based on arter-
ference graphmodel. The proposed algorithms are evaluated with sinaratiand are shown to

outperform three alternative schemes with considerabtesga

5.4.1 System Model and Preliminaries
Spectrum and Network Model

We consider a spectrum consisting(éf + 1) channels, including one common, unlicensed
channel (indexed as chanrtgland M licensed channels (indexed as channels M). The M
licensed channels are allocated to a primary network, aaddmmon channel is exclusively used
by all CR users. We assume all the channels follow a synchedrime slot structure [14]. The
capacity of each licensed channel3s Mbps, while the capacity of the common channeBis
Mbps. The channel states evolve independently, while tloeimancy of each licensed channel
follows a two-state discrete-time Markov process as diesdrin Section 2.3.1.

The femtocell CR network is illustrated in Fig. 5.5. TherensMBS andN FBS’s deployed
in the area to serve CR users. TheFBS’s are connected to the MBS (and the Internet) via
broadband wireline connections. Due to advances in anteuhaology, it is possible to equip
multiple antennas at the base stations. The MBS has one antkanis always tuned to the
common channel. Each FBS is equipped with multiple antenags, (/) and is able to sense
multiple licensed channels at the beginning of each time Sloere arel<; CR users in femtocell
i,i=1,2,---,N,andY.~ K, = K. Each CR user has a software radio transceiver, which can
be tuned to any of thé/+1 channels. A CR user will either connect to a nearby FBS usiegoo
more of the licensed channels or to the MBS via the common &tann

Although the CR users are mobile, we assume constant topalagyg a time slot. If the
topology is changed during a time slot, the video transmossiill only be interrupted for the time
slot, since the proposed algorithms are executed in evergyglot for new channel assignment and

schedule.
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Figure 5.5: A femtocell CR network with one MBS and four FBS’s.

Spectrum Sensing and Access

The femtocell CR network is within the coverage of the infrasture-based primary network.
Both FBS’s and CR users sense the channels to identify specppartanities in each time slot.
Each time slot consists of (i) ensing phasevhen CR users and FBS's sense licensed channels,
(i) a transmission phasevhen CR users and FBS’s attempt to access licensed chanmigiia
anacknowledgment phasehen acknowledgments (ACK) are returned to the source.

As described in Section 2.5.1, cooperative sensing paieyso adopted here. We also adopt
ahypothesis tegb detect channel availability. We assume that each CR us@sels one channel
to sense in each time slot, since it only has one transceMee. sensing results will be shared
among CR users and FBS’s via the common channel in the sensasg.pBivern. sensing results

on channekn, the availability of channel:, i.e., PA(07, ... ,©™), can be computed iteratively
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as follows.

PaO7) = [1+ i (5?1)1@?(1_5?)@?}_ (5.28)

T (@PT = e

1
= 1+[ —1}><
{ Pn{}(@ana@gl7 7@711)

0 B St i N
(@ (1 —amier [ l=ho b (5.29)

As in Section 2.5.1, we adopt a probabilistic approach: dasesensing result§,,, we
haveD,,(t) = 0 with probability P2(6,,) and D,,(t) = 1 with probability 1 — P2(6,,). For
primary user protection, the collision probability withipary users caused by CR users should be

bounded. The probability?? (6,,) is determined as follows
PE(6,) = min {4/ 1= Pa(Ew)] 1} (5.30)

Let A(t) := {m|D,,(t) = 0} be the set of available channels in time slotThenG" =
D meA() PA(Om) is the expected number of available channels. These cleawilebe accessed

in the transmission phase of time siot

Channel Model

Without loss of generality, we consider independent blackrig channels that is widely used
in prior work [110]. The channel fading-gain process is piise constant on blocks of one time
slot, and fading in different time slots are independent. J@é(m) denote therobability density
functionof the received SINRX from a base stationat CR userj. We assume the packet can
be successfully decoded if the received SINR exceeds ahbiced . The packet loss probability

from base stationto CR user; is
Py = Pr{X < H} — / Fi9 (@)de = FUI(H), (5.31)
0
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whereFy/ (H) is the cumulative density function of.

In the case of correlated fading channels, which can be radded finite state Markov Pro-
cess [111], the packet loss probability in the next time st be estimated from the known state
of the previous time slot and the transition probabilitiésthe packet is successfully decoded,
the CR user returns an ACK to the base station in the ACK phase.s¥eree ACKs are always

successfully delivered.

Video Performance Measure

We assume each active CR user receives a real-time videonstrea either the MSB or
an FSB. Without loss of generality, we adopt the MGS option &164/SVC, for scalability to
accommodate the high variability of network bandwidth in GRworks.

Due to real-time constraint, each Group of Pictures (GOR\afieo stream must be delivered
in the nextl” time slots. With MGS, enhancement layer NAL units can beatided from a quality
scalable bit stream, and thus packet-based quality seatakling is provided. Our approach is to
encode the video according to the maximum rate the chanagalsupport. During transmission,
only part of the MGS video gets transmitted as allowed by threemit available channel bandwidth.
The video packets are transmitted in decreasing order ofghgnificance in decoding. When a
truncated MGS video is received and decoded, the PSNR isutiohpy substituting the effective
rate of the received MGS video into (5.32) given below, thesdriginal video is not required.

Without loss of generality, we assume that the last wirehegsis the bottleneck; video data
is available at the MBS and FBS’s when they are scheduled toamsritted. The quality of

reconstructed MGS video can be modeled as [53]:

W(R) =a+ 8 x R, (5.32)

wherelV (R) is the average peak signal-to-noise ratio (PSNR) of the stoacted videoR is the

received data ratey and 5 are constants depending on the video sequence and codec.
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Figure 5.6: Rate-distortion curves of three H.264/SVC MG&us.

We verified (5.32) using an H.264/SVC codec and Bws Mobile, and Harbour test se-
guences. In Fig. 5.6, the markers are obtained by trunc#éti@gencoded video’s enhancement
layer at different positions to obtain different effectrages, while the curves are computed using
(5.32). The curves fit well with measurements for the thresuences. It is worth noting that
PSNR may not be a good measure of video quality as comparadaltérnative metrics such as
MS-SSIM [112]. The main reason for choosing PSNR is thattlea closed-form model relating
it to network level metrics—video rate. With the closedrafiomodel, we can have a mathemat-
ical formulation of the scheduling/resource allocationlpgem, and derive effective algorithms.
Should such closed-form models be available for MS-SSINM,possible to incorporate it into the

optimization framework as well.

5.4.2 MGS Video over Femtocell CR Networks

In this section, we address the problem of resource allmecétir MGS videos over femtocell
CR networks. We first examine the case of a single FBS, and tkandhe general case of multiple
non-interfering or interfering FBS’s. The algorithms foetkingle and non-interfering FBS cases

are distributed ones and optimal. The algorithm for therfeteng FBS case is a centralized one
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that can be executed at the MBS. To simplify notation, we ohdttime slot index for most of
the variables in this Section. For examplagpresents a variable for time slotz~ represents the

variable in time slott — 1), andxz™" represents the variable in time s(ot+ 1).

Case of Single FBS

Formulation We first consider the case of a single FBS in the CR network, wiher&BS can
use all the7 available channels to stream videog{active CR users. Leb; be the PSNR of CR
user; at the beginning of time slatand¥; the PSNR of CR user at the end of time slot. In
time slot¢, w; is already knownjV; is a random variable that depends on channel condition and
primary user activity; anduj is arealizationof ;. Let¢, ; and¢; ; indicate the random packet
losses from the MBS and FBS, respectively, to CR ysar time slott. That is,¢; ; is 1 with
probability P, ; = 1 — P, ; and0 with probability P, ;. Due to block fading channel$} ;'s do not
change within the time slot.

Let po,;, and p; ; be the portions of time slat when CR userj receives video data from
the MBS and FBS, respectively. The average PSNR is computed Euene slots. We first have
W;(0) = o, whent = 0. In each time slot, the CR user receives ; po ; B bits through the MBS,
and¢, jp1 ;G By bits through the FBS (assuming that OFDM is used), which dmurt an increase
of B(&o.jpo.jBo+&1,01,;GB1)/T to the total PSNR in thig’ time slot interval, according to (5.32).
Therefore we have the following recursive relationsiip: = W™ +3(8o ;p0,j Bo+&1,ip1,;GB1) /T
=W, +&ojpoiRoj + &§1ip1;G R, WhereR, j = BBy /T andR, ; = 3B,/ T.

For proportional fairness, we aim to maximize the sum of tigatithms of the PSNRs of

all CR users [71]. We formulateraultistage stochastic programming probl&ymaximizing the
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expectatiorof the logarithm-sum at time'.

K
maximize: Y~ E[log(W;(T))] (5.33)
j=1
subject tO:Wj = Wj_ + f(),jpo,jRoyj + gl,ijjGRl,j’ j=1--- K, t=1,---.T
K
sz,j < 1a Z.:Oa]-a tzlv 7T
j=1
Pi,j ZOJ i20717 j:]-a 7K7 t:]-a 7T'
Ry ; = B;Bo/T andR, ; = §;B,/T are constants for thgth MGS video.
At the beginning of the last time sI@t, a realizationg;_y) = [&1, &, -+, &p41] is known,

where&, = €61, 80: 0 €t €kl t = 1,2,--- )T — 1. It can be shown that the
multistage stochastic programming problem (5.33) can bemeosed int@” serial sub-problems,

each to be solved in a time slo[9].

K
maximize: » " E{log(W;)&—} (5.34)

j=1
subject to:W; = W~ + & jpoRo; + €101 ;GR1y j =1, K

K
> pig<1, i=0,1
j=1

pi,jzov i:O,17j:1,"',K,

whereE{log(W;)|&:-1} denotes theonditional expectatiowf log(1¥;) given realizatiorg,_,;.
W, is known given the realization. When= 1, the conditional expectation becomes an uncondi-
tional expectation.

Since a CR user has only one transceiver, it can operate @ eitle or more licensed chan-
nels (i.e., connecting to the FBS) or the common channe| @ianecting to the MBS), but not

both simultaneously. Assume CR ugesperates on the common channel with probabjlityand
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one or more licensed channels with probabiity\We then rewrite problem (5.34) as

K
maximize: Z [ijO,j log(I/Vj_ + pO,jRO,j) + qulvj log(Wj_ + pLjGRLj)]
=1
K
subjectto:) ~pi; <1, i=0,1
j=1
pj_'_Qj: 17 j:17 7K

pij, Dj» ¢; >0, i=0,1, j=1,--- K.

Properties In this section, we analyze the formulated problem (5.3%) @erive its properties.

We have Lemmas 1, 2, and 3 and Theorem 1 and provide the prothfs following.
Lemma 5.1. Problem (5.35) is a convex optimization problem.

Proof. First, it can be shown that the single tepp?, ; log(W;™ + po;Ro ;) + q; P1jlog(W, +

p1,;GR; ;) is a concave function, because itessian matrixs negative semi-definite. Then, the
objective function is concave since the sum of concave fonstis also concave. Finally, all the
constraints are linear. We conclude that problem (5.35pmvex with a unique optimal solution.

0
Lemma 5.2.If [p, p, ¢| is a feasible solution to problem (5.35), thing, p] is also feasible.

Proof. Since|p, p, q] is feasible, we have + ¢ = 1. Switching the two probabilities, we still have

g+ p = 1. Therefore, the derived new solution is also feasible. O

Lemma 5.3. Let the optimal solution b&*, p*, ¢*]. If p; > ¢;, then % ; log(W;™ + p ;jRo ;) is

greater than or equal td ; log(W,” + pj ;GRy ;). And vice versa.

Proof. AssumeP, ; log(W;™ + p; ;Ro;) is less thanP; ;log(W;™ + pi ;GRy ;). Sincep; > g,
the sum of the produgt; Py ; log(W,™ + pj jRo;) + ¢ P1jlog(W;” + pi ;GRy ;) is smaller than
the sum of the produaf; Py ; log(W;~ + pf5 ;Ro;) + p;Prjlog(W, + pi ;GRy ;). Thus we can

obtain an objective value larger than the optimum by switghthe values op? andg;, which is
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still feasible according to Lemma 2. This conflicts with tlesamption thafp*, p*, ¢*| is optimal.

The reverse statement can be proved similarly. ]

Theorem 5.1. Let the optimal solution b@*, p*, ¢*|. If p; > ¢;, then we have; = 1 andg; = 0.
Otherwise, we havg; = 0 andq; = 1.

Proof. If p* > ¢, we havePy ; log(W, + pj ;Ro;) > Pi;log(W; + pi ;GRy ;) according to
Lemma 3. Since the objective function is linear with resgegt; andg;, the optimal value can
be achieved by setting; to its maximum value 1 ang; to its minimum value 0. The reverse

statement can be proved similarly. n

According to Theorem 1, a CR user is connected to either the MBISed~BS for theentire
duration of a time slot in the optimal solution. That is, itedonot switch between base stations

during a time slot under optimal scheduling.

Distributed Solution Algorithm  To solve problem (5.35), we define non-negatilteal vari-

ables\ = [\, \;] for the two inequality constraints. Thegrangian functiors
K —
Lp.p. ) = Y [piPojlog(W; + po;Ro;) + (1= pj)Prjlog(W; + p1;GRy ;)] +
7j=1

K
A (1 — Z,O()J) + )\1(1 - ZPI,]’)
=1 =1

K
= Zﬁj(pj?p07j7pl,j>>‘0>)‘1)+)\0+>\1a (535)

Jj=1

where

L;(Dj, poj» Prjs Mo, M) = P Pojlog(W + poRo) +

(1—p)Pr, log(W;™ + p1;GRi15) — Aopoj — AMpiy-

The corresponding problem can be decomposedAinsgub-problems and solved iteratively.

In Stepr > 1, for given\y(7) and)\;(7) values, each CR usgrsolves the following sub-problem
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using local information.

[p; (7—)7 p87j<7—>7 pi] (T)] = arginax ‘Cj (p]7 P0,55 P1,55 )\O(T)J )\1 (T)) (536)

Dj;P0,5,P1,5 20

There is a unique optimal solution since the objective fiomcin (5.36) is concave. The CR users

then exchange their solutions. Timaster dual problenfor givenp(r) andp(7), is:

K
min E(p(’f), p(T), )\) = Z [’j(pj (T), PO,j(T)> pl,j(T)v )\0, )\1) + )\0 =+ )\1. (537)

A>0 ,
J=1

Since the Lagrangian function is differentiable, gradient iterationapproach can be used.

K +
XNi(T+1) = [)\i(T) — 85X (1 — Zp;k](T))] ,1=0,1, (5.38)

wheres is a sufficiently small positivetep sizeand[-]* denotes the projection onto the nonnegative
axis. The updated;(r + 1) will again be used to solve the sub-problems, and so forticeSihe
problem is convex, we hawrong duality the duality gapbetween the primal and dual problems
is zero. The dual variablel(7) will converge to the optimal values asgoes to infinity. Since
the optimal solution to (5.36) is unique, the primal vareshl() andp; ;(7) will also converge to
their optimal values when is sufficiently large.

The distributed solution procedure is presented in Taldelb.the table, Steps 3-8 solve the
sub-problem in (5.36); Step 9 updates the dual variableg tfitesholdy is a prescribed small
value with0 < ¢ < 1. The algorithm terminates when the dual variables are serffily close to

the optimal values.

Case of Multiple Non-interfering FBS’s

We next consider the case of > 1 non-interfering FBS’s. The coverages of the FBS’s
do not overlap with each other, as FBS 1 and 2 in Fig. 5.5. Comselyueach FBS can use all

the available licensed channels without interfering off@6’s. Assume each CR user knows the
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Table 5.3: Algorithm for the Case of Single FBS

1: Setr =0, A\o(0) andA;(0) to some nonnegative value;

2. DO % (each CR userexecutes Steps 3-8)
w1t w1t

3 po;(T)= [;:(Ei) —ﬁj] , p1y(T)= [;jl(ﬂ) _rig] ,

40 IR [Rojlog(W + poy(1)Rog) — Ao(7)po(7)] >

[P log(W; + p1i(T)G Ry ) — Mi(7)p1(T)]

5: Setp;(7) =1 andp; ;(1) = 0;

6: ELSE

7 Setp;(7) = 0andpg ;(7) = 0;

8: END IF

9: MBS updates\;(7 + 1) as in (5.38);

10: T=7+1;

11 WHILE (3o (\(7 +1) = Xi(7))? > ¢)

nearest FBS and is associate with it. l&£tdenote the set of CR users associated with EBShe

resource allocation problem becomes:

K N

maximize: » _ p; Py jlog(W; + po;Ros) + > D> a;Pislog(W; + pi;GR:;) (5.39)
j=1 =1 jeU,;
K

subject to: Zpoj <1

Zp”_ i=1,---,N
JEU,;

pij,y Pjy ¢ >0, i=1,--- N, j=1-- K.

Since all the available channels can be allocated to each RBSspatial reuse, problem (5.39)
can be solved using the algorithm in Table 5.3 with some mexlifiotation;p; ;(7) now becomes

pi;(T) and\;(7) becomes\;(7),i =1,--- , N. The dual variables are iteratively updated as

Xo(T+1) = [)\0( — 5 X ( Zpoj )] (5.40)
)\Z(T—f—l) = [)\1(7') — S X <1— Zp%('f’))] s 1= 1, ,N (541)

JEU;
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Table 5.4: Algorithm for the Case of Multiple Non-InterfegikBS’s
1: Setr =0, and)(0) and);(0) to some nonnegative values, for

all 3;
2. DO % (each CR userexecutes Steps 3-8)
5 -1+ S -1+

3: Po,j(T):[;%(ﬁ)—% P (T) = %_% ,
4. IF [Py log(W;™ + poj(T)Ro;) — Ao(7)po(7)] >

[Pijlog(W; 4 pij(T)GRi ;) — Ni(T)pis (T)]
5: Setp;(7) = 1andp, ;(1) = 0;
6: ELSE
7. Setpj<7') =0 andp(),j(T) =0;
8: END IF
9: MBS updates\;(7 + 1) as in (5.40) and (5.41);
10: T=T7+1;

11 WHILE (22X, (0l +1) = A(7)* > 9)

The modified solution algorithm is presented in Table 5.4. is¢he case of single FBS, the
algorithm is jointly executed by the CR users and MBS, by iteet updating the dual variables
Ao(7) and \;(7)’s, and the resource allocatiop§ ;(7) and p; ;(7)’s. It can be shown that the

distributed algorithm can produce the optimal solutiondmoblem (5.39).

Case of Multiple Interfering FBS’s

Formulation Finally, we consider the case of multiple interfering FB&ssume that the cover-
ages of some FBS'’s overlap with each other, as FBS 3 and 4 in BigTbey cannot use the same
channel simultaneously, but have to compete for the availdiannels in the transmission phase.

Definechannel allocation variables; ,,, for time slott as:

1, if channelm is allocated to FBS
Ci,m = (542)
0, otherwise.

Given an allocation, the expected number of available cblarfor FBS; is G; :ZmGA(t) Cim P2,

We usdnterference graplo model the case of overlapping coverages, which is defiakhb
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Figure 5.7: Interference graph for the femtocell CR netwtrbven in Fig. 5.5.

Definition 5.1. Aninterference grapli; = (V;, Ey) is an undirected graph where each vertex

represents an FBS and each edge indicates interference déetive two end FBS’s.

For the example given in Fig. 5.5, we can derive an interiggeggraph as shown in Fig. 5.7.

FBS 3 and 4 cannot use the same channel simultaneously, asssizenin the following lemma.

Lemma 5.4. If channelm is allocated to FBS, the neighboring vertices of FBSn the interfer-

ence graphG, denoted ak (i), cannot use the same chanmekimultaneously.

Further define index variable$ as

1, ifFBSis an endpoint of linkk € G;
dk = (5.43)

0, otherwise.

The interference constraint can be describe@ﬁ\é1 dfci,m <1,form =0,---,M, and for all

link k£ € G;. We then have the following problem formulation.

K N
maximize:» p;Po;log(W; + pojRos) + Y Y q;Pijlog(W; + pi;GiRi;)  (5.44)
=1 i=1 jeU;
K
subjectto: ) ~ pg; < 1

J=1
Zpi,jSL Z:L 7N

JEU;

Gi= > cmbPa i=1-- N
meA(t)

N
> dfcim <1,m=0,---,Mforlink k € G,

i=1

pi,j7pj7Qjaci,m207 7’:17 7N7 jzla 7K7 mIO? 7M'
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Table 5.5: Channel Allocation Algorithm for Case of InterfeyiFBS’s

1: Initialize c to a zero matrix, FBS s¢t = {1,--- , N}, and

FBS-channel set = N x A(t);
2: WHILE (C is not empty)
3:  Find FBS-channel paif’, m'}, such that
{7/,m'} = argmax{Q(c+ e;,n,) — Q(c)};
{i,;m}eC

4 Setc = c+ ey 5
5. Remove{i',m'} fromC;
6
7

RemoveR (i) x m’ fromC;
END WHILE

Solution Algorithm  The optimal solution to problem (5.44) depends on the cheaadlzeation
variablesc; ,,,. Problem (5.44) can be solved with the algorithm in Table ib#he ¢;,,’s are
known. LetQ(c) be the suboptimal objective value for a given channel atlonac, wherec =
[c1, 6, - -+, Cn] @andc; is a vector of elements, ,,,, for FBS: and channelsn € A(t). If all the
FBS's are disjointedly distributed with no overlap, each FB8 ase all the available channels.
We have; ,, = 1 for all i andm € A(t), i.e., itis reduced to the case in Section 5.4.2.

To solve problem (5.44), we first applygaeedy algorithnto allocate the available channels
in A(t) to the FBS’s (i.e., to determine). We then apply the algorithm in Table 5.4 with the
computedc to obtain a near-optimal solution. Lef,, be a matrix withl at position{:, m} and
0 at all other positions, representing the allocation of clehm € A(¢) to FBSi. The greedy
channel allocation algorithm is given in Table 5.5, where BBS-channel pair that can achieve
the largest increase () is chosen in each iteration. The worst case complexity ofyteedy

algorithm isO(N2M?).

Performance Lower Bound We next present a lower bound for the greedy algorithm. Let
e(l) be thel-th FBS-channel pair chosen in the greedy algorithm, andenote the sequence
{e(1),e(2),--- ,e(l)}. The increase in object value (5.44) due to thk allocated FBS-channel

pair is denoted as

Ay = A(m,meq) = Q(m) — Q(m—1). (5.45)
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SinceQ(my) = Q(0) = 0, we have

ZAI = Q(mr) — Q(mp—1) + - + Q(m) — Q(mo)
= Q(m1) — Q(mo) = Q(7z).

For two FBS-channel paieg/) ande(l’), we saye(l) conflicts withe(I’) when there is an edge
connecting the FBS in(/) and the FBS ire(!’) in the interference grapfy;, and the two FBS’s
choose the same channel. Kebe the global optimal solution. We defing as the subset db

that conflicts with allocatiom(/) but not with the previous allocatioqs(1),e(2),--- ,e(l — 1)}.

Lemma 5.5. Assume the greedy algorithm in Table 5.5 stopd.isteps. The global optimal

solution{2 can be partitioned intd. non-overlapping subsets, [ = 1,2,--- , L.

Proof. According to the definition of;, the L subsets of the optimal solutidd do not intersect
with each other. Assume the statement is false, then the whithesel subsets is not equal to the
optimal set. Let theset differencdew;,; = 2\ (Ulew,). By definition,w;, .1 does not conflict
with the existingL allocations{e(1),--- ,e(L)}, meaning that the greedy algorithm can continue
to at least thé L + 1)-th step. This conflicts with the assumption that the gredggrahm stops

in L steps. It follows thaf) = U, w;. O

Let A(my, m1) = Q(m2) — Q(m1) denote the difference between two feasible allocations
andm,. We next derive a lower bound on the performance of the graéglyrithm. We assume

two properties for functiom\ (7o, 71 ) in the following.

Property 5.1. Consider FBS-channel pair sets, 7, ando, satisfyingr; C m ando N my = (.

We haveA (my U o, m U o) < A(mg, m).

Property 5.2. Consider FBS-channel pair sets o, ando, satisfyings, N7 = 0, oo N7 = 0,

ando; Noy = 0. We haveA (g Uos U, ) < A(oy U, ) + Ao U, ).

In Property 1, we have N7, = () sincemr; C 7 ando N 7w, = (. This property states

that the incremental objective value does not get larger @ rohannels are allocated and as
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the objective value gets larger. Property 2 states thatitreimental objective value achieved by
allocating multiple FBS-channel pair sets does not exceedstim of the incremental objective
values achieved by allocating each individual FBS-chanaglget. These are generally true for

many resource allocation problems [71].

Since we choose the maximum incremental allocation in eteghaf the greedy algorithm,

we have Lemma 5.6 that directly follows Step 3 in Table 5.5.

Lemma 5.6. For any FBS-channel pais € w;, we haveQ(m_1 U o) — Q(m_1) = A(m_1 U

o,m-1) <A

Lemma 5.7. Assume the greedy algorithm stopdiisteps, we have

Q) < Q(rp) + Z Z AlcUm_1,m_1).

=1 o€w

Proof. The following inequalities hold true according to the prdjes of theA(-, -) function:

Q((UiL:lei) um) = Q((UzL 1owi) U ) + A(( i) U, (UiLzlJrzwi) Um)
< QUL pyowi) Um) + Alwiy Um, m)
< QUiLgawi) U i) + Alwipr U, m)

< QUL pwi) Umigr) + Z Ao Umy,m).

TEWI ]

We havery, = () andw;.; = () (see Lemma 5.5). With induction from= 0to! = L — 1, we have

QUL w;) U D) = Q(Q) andQ(Q) < Q(mr) + X, 5 e AlG Umy, my). O

Lemma 5.8. The maximum size af; is equal to the degree, in the interference graph of the

FBS selected in theth step of the greedy algorithm, which is denoted’#$).
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Proof. Once FBSi is allocated with channeth, the neighboring FBS's id;, R (i), cannot use
the same channeh anymore due to the interference constraint. The maximumbeurof FBS-
channel pairs that conflict with the selected FBS-channel{pain}, i.e., the maximum size ofj,

is equal to the degree of FBSn G|. n

Then we have Theorem 5.2 that provides a lower bound on thecig value achieved by

the greedy algorithm given in Table 5.5.

Theorem 5.2. The greedy algorithm can achieve an objective value that ieastm of the
global optimum, wheré,,,.. is the maximum node degree in the interference gr&plof the

femtocell CR network.

Proof. According to Lemmas 5.7 and 5.8, we have:

= (14 D)Q(wy), (5.46)

whereD = Y1 D()A;/ S35, A, The second equality is due to the facts thaf | A, =
Q(WL)-
To further simplify the bound, we replade(/) with the maximum node degre®,,,.. We

then haveD < 37 DpaeNi/ 25 Aj = Dipar and

1

mQ(Q) < Q(mr) < Q(), (5.47)

which provides a lower bound on the performance of the gredgtyrithm. ]

When there is a single FBS in the CR network, we h&yg,, = 0 andQ(7.) = Q(f)
according to Theorem 5.2. The proposed algorithm produeesptimal solution. In the case of
multiple non-interfering FBS’s, we still havB,,., = 0 and can obtain the optimal solution using

the proposed algorithm. For the femtocell CR network giveRig 5.5 (with interference graph
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shown in Fig. 5.7), we havB,,.., = 1 and the low bound is a half of the global optimal. Note that
(5.46) provides a tighter bound for the optimum than (5.8@) with higher complexity. These are
interesting performance bounds since they bound the aabieevideo quality, an application layer

performance measure, rather than lower layer metrics (@gdwidth or time share).

5.4.3 Simulation Results

We evaluate the performance of the proposed algorithmgudiiTLAB and JSVM 9.13
Video codec. Two scenarios are used in the simulations: glesifBS CR network and a CR
network with interfering FBS’s. In every simulation, we coane the proposed algorithms with

the following three more straightforward heuristic scheme

e Heuristic 1 based oequal allocation each CR user chooses the better channel (i.e., the
common channel or a licensed channel) based on the chanméitioas; time slots are

equally allocated among active CR users;

e Heuristic 2 exploitingmultiuser diversity the MBS and each FBS chooses one active CR

user with the best channel condition; the entire time slatlecated to the selected CR user.

e SCA-MACproposed in [23]: with this scheme, the successful trarspmgate is evaluated
based on channel packet loss rate and collision probatultty primary users; the channel-

user pair with the highest transmission probability is steld.

We choose SCA-MAC because it adopts similar models and asgma@s in this paper. Once
the channels are selected, the same distributed algor#thuseid for scheduling video data for all
the three schemes.

We adopt the Raleigh block fading model and the packet logsatibty is between [0.004,
0.028]. The frame rate is set to 30 fps and the GoP size is 16.b&ke layer mode is set to be
AVC compatible. The motion search mode is set to Fast Seaitbhsearch range 32. Each point
in the figures presented in this section is the average ofrhQlation runs with different random

seeds. We plot 95% confidence intervals in the figures, whiglganerally negligible.

180



0.92

0.9FY

084N Y]

0.82f 7

Dual Variables

O£ ] R L Y AR ERRISEILERRIIRLIETRPORRTE-RPPORRREE

0.74 1 I I 1 1 1 1
0 50 100 150 200 250 300 350 400
Iteration Index (1)

Figure 5.8: Convergence of the two dual variables in the sifrfiS case.

Case of Single FBS

In the first scenario, there ard = 8 channels and the channel parametefsand Pj; are
set to 0.4 and 0.3, respectively, for all The maximum allowable collision probability,, is set
to 0.2 for allm. There is one FBS and three active CR users. Three Common |tiate&ormat
(CIF, 352x288) video sequences are streamed to the CR user8ugto CR user 1Mobile to
CR user 2, andHarbor to CR user 3. We hav€ = 10 as the delivery deadline. Both probabilities
of false alarme and miss detectiof are set to 0.3 for all the FBS’s and CR users, unless otherwise
specified.

First we investigate the convergence of the distributedréttyn. The traces of the two dual
variables are plotted in Fig. 5.8. To improve the convergesyeed, the correlation in adjacent
time slots can be exploited. In particular, we set the ogdtwahies for the optimization variables
in the previous time slot as the initialization values foe thariables in the current time slot. By
doing so, the convergence speed can be improved. It can beétsddooth dual variables converge
to their optimal values after 300 iterations. After converge, the optimal solution for the primary

problem can be obtained.
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Figure 5.9: Single FBS: received video quality vs. numberhafrmels (computed with (9) and
measured by PSNR).

Our proposed scheme achieves the best performance amotigebelgorithms, with up to
4.3 dB improvement over the two heuristic schemes and ubtdR over SCA-MAC. Such gains
are significant with regard to video quality, since a 0.5 diedénce is distinguishable by human
eyes. Compared to the two heuristic schemes and SCA-MAC, tle® wjdality of our proposed
scheme is well balanced among the three users, indicatitey i@rness performance.

In Fig. 5.9, we examine the impact of the number of chaniélen received video quality.
First, we validate the video quality measure used in our tdation by comparing the PSNR value
computed using (5.32) with that computed from real decodddovframes. The average PSNR
for three received videos are plotted in the figure. It candemshat the real PSNRs are very close
to those predicted by (5.32), with overlapping confidenderirals. This is also consistent with
the results shown in Fig. 5.6. Second, as expected, the mereséd channels, the more spectrum
opportunities for CR users and the higher PSNR for receivédos. SCA-MAC performs better
than two heuristics, but is inferior to the proposed scheme.

We also plot the MS-SSIM of the received videos at the three §4tsuin Fig. 5.10 [112].
Similar observations can be made from the MS-SSIM plot. AB#SIMs for the four curves

are more than 0.97 and very close to 1. The proposed schelineuperforms the other three
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Figure 5.10: Single FBS: received video quality vs. numbahainnels (measured by MS-SSIM).

schemes. In the remaining figures, we will use model prediB®8NR values, since the model
(5.32) is sufficient to predict the real video quality.

In Fig. 5.11, we demonstrate the impact of channel utiloraij on received video quality.
The average PSNRs achieved by the four schemes are plottedwikancreased from 0.3 to
0.7. Intuitively, a smaller) allows more spectrum opportunities for video transmissiohis is
illustrated in the figure where all the three curves decr@asegets larger. The performance of
both heuristics are close and the proposed scheme achigads about 3 dB over the heuristics
and 2 dB over SCA-MAC.

We also compare the MGS and FGS videos while keeping othanpers identical. We
find that MGS video achieves over 0.5 dB gain in video qualitgrd=GS video. The results are

omitted for brevity.

Case of Interfering FBS’s

We next investigate the second scenario with three FBS’seanld FBS has three active CR
users. Each FBS streams three different videos to the comdsm CR users. The coverages of

FBS 1 and 2 overlap with each other, and the coverages of FBS 2 aveflap with each other.
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Figure 5.11: Single FBS: received video quality vs. chantiBtation.

In Fig. 5.12, we examine the impact of the number of chanfélen the received video
guality. The average PSNRs of all the active CR users are glottthe figure when we increase
M from 12 to 20 with step size 2. As mentioned before, more casimply more transmission
opportunities for video transmission. In this scenariajrigtic 2 (with a multiuser diversity ap-
proach) outperforms heuristic 1 (with an equal allocatippraach). But its PSNRs are still about
0.3~ 0.5 dB lower that those of the proposed algorithm. The pregasheme has up to 0.4 dB
improvement over SCA-MAC. In Fig. 5.12, we also plot an uppearriztbon the optimal objective
value, which is obtained as in (5.46). It can be seen thatén®pnance of our proposed scheme
is close to optimal solution since the gap between the uppend and our scheme is generally
small (about 0.5 dB).

Next, we examine the impact of sensing errors on the recendswb quality. In Fig. 5.13, we
test five pairs of ¢, §} values:{0.2,0.48, {0.24,0.38, {0.3,0.3, {0.38,0.24, and{0.48,0.2. It
is interesting to see that the performance of all the fouests get worse when the probability of
one of the two sensing errors gets large. We can trade-offdeet false alarm and miss detection
probabilities to find the optimal operating point for the sjpem sensors. Moreover, the dynamic

range of video quality is not big for the range of sensing mromulated, compared to that in

184



36

~[21 Upper bound 1]
+=(3=' Proposed scheme : : : s :
35.5}| = A= Heuristic 1 S s X AR RRRR <) |
—&— Heuristic 2 : ; |I| PR
- % - SCA-MAC : IR
fra) : : : ! L : -7 ’
X X X : X 4 - . X
= : : : ‘ e T A
Z 345F: e @ ’wa” ~~»;}¢-<’~’»~3-
& : : : s .7 P :

> : R : :
B4 T e T 1

L

: ‘g’ : : : : : : :

33 1 1 1 1 1 1 1
12 13 14 15 16 17 18 19 20
Number of Licensed Channels (M)

Figure 5.12: Interfering FBS’s: received video quality vamber of channels.

36 T T
~[21 Upper bound
: : : : =3~ Proposed scheme
355 il = A= Heuristic 1 -
: : : : —&— Heuristic 2
: = %= SCA-MAC
_. 35f SN
m ~ : m
E :
x . . - :
Z 345 i T TS .
wn
T
>
34} .
33 i i i i i i
0.2 0.25 0.3 0.35 0.4 0.45 0.5

Probability of False Alarm (g)

Figure 5.13: Interfering FBS’s: received video quality vsnsing error probability.

Fig. 5.12. This is because both sensing errors are modetetreated in the algorithms. Again,
our proposed scheme outperforms the two heuristic scheme$S&A-MAC with considerable

margins for the entire range.
We also investigate the impact of the bandwidth of the comamamnelB,. In this simulation,

we fix By at 0.3 Mbps and increadg, from 0.1 Mbps to 0.5 Mbps with step size 0.1 Mbps. The
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Figure 5.14: Interfering FBS’s: received video quality vandwidth of the common channel.

results are presented in Fig. 5.14. We notice that the ager@go quality increases rapidly as
the common channel bandwidth is increased from 0.1 Mbps3avhbps. Beyond 0.3 Mbps,
the increases of the PSNR curves slow down and the curvesagietThis implies that a very
large bandwidth for the common channel is not necessarge sire gain for additional bandwidth
diminishes as3, gets large. Again, the proposed scheme outperforms thetbifee schemes and
the gap between our scheme and the upper bound is small.

Next, we stop the distributed algorithm after a fixed amodninoe, and evaluate the subop-
timal solutions. In particular, we vary the duration of tislets, and let the distributed algorithm
run for 5% of the time slot duration at the beginning of thedisfot. Then the solution obtained
this way will be used for the video data transmissions. Tiselts are presented in Fig. 5.15. It
can be seen that when the time slot is 5 ms, the algorithm dueonverge after 5%5 = 0.25 ms
and the PSNR produced by the distributed algorithm is closgkedt of Heuristic 1, and lower than
those of Heuristic 2 and SCA-MAC. When the time slot is suffidielarge, the algorithm can get
closer to the optimal and the proposed algorithm productterbedeo quality as compared to the

two heuristic algorithms and SCA-MAC. Beyond 20 ms, the incedasPSNR is small since all
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Figure 5.15: Video quality achieved by the algorithms whegytare only executed for 5% of the
time slot duration.

the curves gets flat. Therefore the proposed algorithm doeildseful even when there is no time
for it to fully converge to the optimal.
During the simulations, we find the collision rate with primaisers are strictly kept below

the prescribed collision toleranee These results are omitted for brevity.

5.5 Conclusions

In this chapter, we first addressed the problem of multingsiGS video in CR networks.
The problem formulation took video quality and proportibferness as objectives, while con-
sidering cross-layer design factors such as FGS codingirsjpe sensing, opportunistic spectrum
access, primary user protection, scheduling, error cbatrd modulation. We proposed efficient
optimization and scheduling algorithms for highly competi solutions, and proved the complex-
ity and optimality bound of the proposed greedy algorithmur @mulation results demonstrate
not only the viability of video over CR networks, but also tHigcacy of the proposed approach.

Then, we studied the challenging problem of streaming iplelscalable videos in a multi-hop

CR network. The problem formulation considered spectrunsisgrand sensing errors, spectrum
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access and primary user protection, video quality anddasnand channel/path selection for con-
current video sessions. We first solved the formulated MIiNdkdblem using a sequential fixing
scheme that produces lower and upper bounds on the acheexideb quality. We then applied
dual decomposition to derive a distributed algorithm, amalyzed its optimality and convergence

performance. Our simulations validated the efficacy of ttugppsed scheme.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In the previous chapters, we investigated several chafigngroblems of effective CR net-
working and scalable video streaming over CR networks. Gsgarch consisted of network mod-
eling, cross-layer design and optimization, performamadyais, algorithm development, and sim-
ulation validation.

In Chapter 2, we first studied the problem of design and arsabfsMAC protocols for CR
networks. We explicitly considered sensing errors in thagieof MAC protocols and developed
analytical models to evaluate the performance of the prg@sotocols. In the second part, we
considered the problem of interference mitigation via ctgrassignment and power allocation
for CR users. We proposed a distributed greedy algorithm dhbt needs local channel gain
information. It was shown to outperform other two altermagi via simulations.

In Chapter 3, a more challenging problem, scalable vide@stigg in CR networks, was
investigated. We first studied the problem of scalable viaedticast over infrastructure based
CR networks. We proposed an efficient greedy algorithm withvggd complexity and optimal-
ity bound. Then, we considered the problem of streamingipielivideos over multi-hop CR
networks. We developed a distributed algorithm by applydngl decomposition and proved its
optimality and convergence conditions.

In Chapter 4, we first investigated the problem of cooperatlay in CR networks. We
compared two typical cooperative relay strategies andldped an analysis for the comparison.
We found each of the strategies performed better in a cqygaameter range and diversity gain was
achieved by cooperative relays. Then, we investigated ithielggm of interference alignment for

MGS video streaming in a cooperative relay enhanced CR nkiwe developed a distributed
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optimal algorithm for the case of a single channel and the cédisnulti-channel bonding, with
proven convergence and convergence speed. We also propgseddy algorithm for the multi-
channel without channel bonding case, with a proven peidiaoge bound.

In Chapter 5, we first investigated the problem of data mudtioa femtocell networks that
incorporates SC and SIC. We developed optimal and near-ap#tgorithms with low compu-
tational complexity, as well as performance bounds. Thentagkled the problem of streaming
multiple MGS videos in a femtocell CR networks. A distributegtimal algorithm was devel-
oped in the case of non-interfering FBS’s and a greedy algarfor near-optimal solutions was

proposed in the case of interfering FBS’s with proved lowarrizb

6.2 Summary of Contributions

Wireless video has been a challenging area with consideragéarch efforts. However, video
over CR networks has not been well studied, since the maiarmst@R research has focused on
spectrum sensing and access. It was not clear if video carffé@@ad in such highly dynamic
networks even a few years ago. There is a compelling needfamvative research in this area
given the Cisco prediction of exploding wireless video tcaiffi the next few years.

In this dissertation, we investigated the problem of effecCR networking with applica-
tion to multi-user video communications over four emerdgtg networking paradigms, including
infrastructure-based CR networks, multi-hop ad hoc CR ndtsyaCR femtocell networks, and
relay-assisted CR networks. This research provides inadegatment of the problems with both
theory and algorithm ingredients. The findings not only sgstully demonstrate the feasibility of

video CR networks, but also shed useful insights on devejppiactical CR video systems.
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6.3 Open Problems and Future Work

Although considerable progresses have been made throisgtiigskertation work in the area
of video over CR networks, there are many interesting opehl@nas to be explored in this im-
portant problem area. Some of such open problems are brigglyrithed below, which we plan to
investigate in our future research.

In most of our prior work, we assumed that the occupancy dfi daensed channel evolves
over time following a two state discrete-time Markov pracesd the primary user activities on
different channels are independent. Although this assiempbakes the problem manageable, it
may not hold true in certain CR networks. The primary usersimraasion may be modeled as a
more general process, while the primary transmissions fbereint channels may be statistically
correlated. Thus, a more sophisticate spectrum sensing@ess scheme is required to be inte-
grated into the cross-layer optimization framework. Theuaacy of the sensing process could be
improved by exploiting the sensing results from adjaceandels and historic sensing results.

Similarly, another assumption is that the lowest video igjpaequirement for CR users can
always be guaranteed. However, the network capacity for @rsistrongly depends on both the
primary user transmissions and randomly fading and shadpetiannels. Therefore, an admission
control mechanism is required that can estimate the lev€)a$ that a new video session will
have and whether there is enough bandwidth available t@ skat session. A simple yet efficient
admission control mechanism that considers both primagy ativities and channel conditions is
essential for QoS provisioning for video over CR networks.

We investigated several challenging problems in CR netwosksg video as a reference ap-
plication. In an operating CR network, there will be multipleplications that generate different
types of traffic flows, all sharing the extra bandwidth pr@ddoy CRs. It is thus interesting to
investigate how to provide quality of service (QoS) guaeastfor different traffic flows each with
different characteristics and different QoS requirementss is a general problem for both wire-
line and wireless networks. The Internet adopts the Intedr&ervices (intserv) and Differenti-

ated Services (diffserv) approaches to address this proliiée conjecture a certain classification
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scheme should be adopted to intelligently identify and sifgsapplication traffic according to
their characteristics and QoS requirements, and a resallomation scheme will be used to treat
the different classes of traffic flows differently. These imteresting problems that worth further
investigation.

We presented a theoretical framework for video streamingRmetworks and demonstrated
the performance with extensive simulations. In the futaeare interested in building a CR video
streaming testbed network, such that the system perforerzarcbe demonstrated under a realistic
wireless environment. Our research will focus on the coliodm of hardware components (e.g.
USRP models) and software techniques (e.g. network optiroizalgorithms). Such a CR video
testbed can not only validate the theoretical results, lsat @eveal new practical constraints that

should be considered in the modeling and analysis, as waitifging new research problems.
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