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Abstract

Cognitive radios (CR) are intelligent radio devices that can sense the radio environment and

adapt to changes in the radio environment. CR represents a newparadigm of wireless communica-

tions and networking by efficiently sharing spectrum between licensed users and secondary users.

To harvest the high potential of CRs, the mainstream CR researchhas focused on developing effec-

tive spectrum sensing and access techniques. Although considerable advances have been achieved,

the important problem of guaranteeing application performance has not been well studied.

The first part of this dissertation develops effective algorithms and protocols for spectrum

sensing and access. First, we present a spectrum sensing error aware MAC protocol for a CR net-

work collocated with multiple primary networks. Second, weconsider the problem of interference

mitigation via channel assignment and power allocation forCR users.

The second part of this dissertation focuses on the problem of optimized video streaming over

CR networks. First, we tackle the problem of scalable video multicast in emerging infrastructure-

based CR networks. Second, we investigate the more challenging problem of streaming multiple

videos over multi-hop CR networks.

Cooperative CR networks are discussed in the third part of thisdissertation. First, we investi-

gate the problem of cooperative relay in CR networks for further enhanced network performance.

Then, we study the problem of cooperative relay in CR networksfor video streaming incorporating

interference alignment techniques.

In the fourth part of this dissertation, we consider femtocell CR networks, where femto base

stations (FBS) are deployed to greatly improve network coverage and capacity. First, we investi-

gate the problem of generic data multicast in femtocell networks. Second, we tackle the problem

of streaming scalable videos in femtocell CR networks.
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This dissertation research provides a new perspective on how robust multi-user video stream-

ing can be achieved in highly dynamic CR networks. It is among the first efforts to address the

important area of video over CR networks, and offers systematic and comprehensive results and

solutions. The findings may shed new light on the feasibilityof CR networks in transporting real-

time video and be useful for developing practical CR video systems.
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Chapter 1

Introduction

1.1 Background

Due to significant advances in wireless access technologiesand the proliferation of wireless

devices and applications, there is a fundamental change in wireless network traffic. As predicted

by a Cisco study, wireless data is expected to grow to 6.3 Exabytes per month by 2015, a 26-

fold increase over 2010, and 66% of the increase in future wireless data traffic will be video re-

lated [2]. Such dramatic increase in wireless video traffic is driven by the proliferation of mobile

PCs, smartphones, tablets, etc., with 300 Million to 400 Million new mobile phone users adopting

mobile services around the world and 120,000 new base stations (BS) added every year to meet

the compelling need for ubiquitous access of mobile multimedia data.

Such fundamental changes in wireless data volume and composition bring about great chal-

lenges for the design and operation of wireless access networks. The capacity of existing and future

wireless networks will be greatly stressed. Although allocating more spectrum may help, we are

facing the problem of spectrum depletion since it is not a regenerable resource. Improving spec-

trum efficiency thus becomes ultimate important. In addition, Quality of Service (QoS)/Quality

of Experience (QoE) provisioning in wireless networks alsobecomes a very important problem

in order to enable high quality video services in legacy and emerging wireless networks. Since

most of the increase in wireless video will be concentrated in the hot-spot areas, interference be-

comes the major limiting factor of network capacity and QoS provisioning. Effective interference

exploitation and mitigation technologies are needed to achieve more efficient use of the spectrum

and power resources.

Among various potential techniques, we considerCognitive radios(CR) as an effective so-

lution to meeting the critical demand in wireless network capacity and video provisioning. We

1
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Figure 1.1: Spectrum measurement results [1].

also incorporate advanced wireless communications and networking technologies in the context

of CR networks, such as cooperative communications, interference mitigation and alignment, and

femtocells, for optimizing the quality of multiuser video communications.

A CR is an advanced device with interface to sense the radio environment, and dynamically

access idle frequency bands so that CR networks are able to be deployed with existing primary

network and improve network capacity. CR was motivated by a measurement study of FCC on the

spectrum utilization, where many allocated spectrum are found to be seriously underutilized even

in metropolitan areas (see Fig. 1.1). The CR concept represents a significant paradigm change in

spectrum regulation and utilization, from exclusive use bylicensed users (or, primary users) to

sharing spectrum among licensed and unlicensed users (or, secondary or CR users). Although the

basic concept of CR is intuitive, it is challenging to design effective CR medium access control

(MAC) protocols to fully capitalize CR’s potential. In order toexploit transmission opportunities

in licensed channels, the tension between primary user protection and CR user spectrum access

should be balanced. In addition, CR users access the licensedchannels according to the sensing

results. It is critical to take channel sensing errors into account in the design of CR MAC protocols.
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Coupled with the depleting spectrum, interference will become the major capacity limiting

factor. Thus, effective interference mitigation techniques are indispensable to realize the high po-

tential of CRs. There are two types of interference that shouldbe considered in such multi-channel

environment. The first type,co-channel interference(CCI), is due to the coexisting transmitters

occupying the same band as the victim receiver. The second type isadjacent channel interference

(ACI), which is in the form of power leakage from adjacent channels. Both types of interference

should be considered in the design of CR networking protocols.

Cooperative wireless relayrepresents another new paradigm for wireless communications

and networking. It allows wireless relay nodes to assistanttransmitters in data delivery. The

objective of cooperative communication is to achieve cooperative diversity. Cooperation among

wireless nodes enables opportunistic use of energy and bandwidth resources in wireless networks.

Recently, researchers have been exploring the idea of combining these two techniques for enhanced

network-wide performance [3,4].

A femtocell is a small cellular base station (BS), typically used for serving approved users

within a small coverage (e.g., a house). Femtocells usuallyhave broadband wireline connections

to the service provider network, which can be exploited to coordinate the transmissions of multiple

femtocells for improved network-wide performance. Femtocells are shown effective in extending

coverage, improving capacity, and reducing both power consumption and interference. Most of

the benefits are achieved by the reduced distance of wirelesstransmissions, i.e., by bringing BS’s

closer to users [5].

Although considerable understandings have been gained on various aspects of CR. the prob-

lem of guaranteeing application performance has not been the focus of major CR research. To this

end, we find spectrum-intensive and rate-adaptive video as areference application, makes excellent

use of the enhanced spectrum efficiency in CR networks. Unlikedata, where each bit should be de-

livered, video is loss tolerant and rate adaptive. They are highly suited for CR networks, where the

available bandwidth heavily depends on primary user behavior. We adopt scalable video coding,

such as fine grained scalability (FGS) and medium grain scalable (MGS), to encode video streams.
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We tackle the problems of video over various CR networking paradigms, such as infrastructure

based CR networks, multi-hop CR ad hoc networks, cooperative relay based CR networks, and

CR femtocell networks. We formulate cross-layer optimization problems that incorporates vari-

ous system parameters and control knobs, and develop effective solution algorithms with proved

optimal performance of tight performance bounds.

1.2 Major Contributions

The focus of this dissertation research is realtime video streaming in wireless networks, in

particular, cognitive radio (CR) networks. The major contributions are summarized as follows.

We first work on a sensing error-aware MAC protocol that coordinates dynamic spectrum

access for CR users, which considers channel sensing errors in the protocol design [6]. We de-

velop analytical models to evaluate the performance of the proposed protocols. The accuracy of

the analysis is demonstrated via our simulation study. In addition, interference mitigation in CR

networks is crucial not only for primary user protection, but also the quality of service of CR

user themselves. Therefore, we next consider the problem ofinterference mitigation via channel

assignment and power allocation for CR users [7]. We propose both an RLT-based centralized al-

gorithm and a distributed greedy algorithm which only needslocal channel gain information. The

distributed algorithm is shown to outperform the centralized algorithm and a heuristic algorithm

with considerable gains in our simulations.

We further start to tackle the challenging problem of optimized real-time video multicast in

an infrastructure-based CR network. The base station of the CRnetwork exploits the spectrum

opportunities in multiple licensed channels to multicast videos to groups of CR users [8]. A novel

formulation of the CR video multicast system is developed, which considers important cross-layer

design factors such as scalable video coding, video rate control, spectrum sensing, dynamic spec-

trum access, modulation, scheduling, and primary user protection. The design objective is to

optimize CR video quality while protecting primary users from harmful collisions. Although the

problem can be solved using advanced optimization techniques, we propose a sequential fixing
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algorithm and a greedy algorithm with low complexity and proven optimality gap. We also inves-

tigate the more challenging problem of video streaming overmulti-hop CR networks [9] which is

formulated as a mixed integer nonlinear programming (MINLP) problem. We develop a central-

ized sequential fixing algorithm to derive upper and lower bounds for the achievable video quality,

and then apply dual decomposition to develop a distributed algorithm with proven optimality and

convergence conditions.

Next, we investigate the problem of cooperative relay in CR networks for further enhanced

network performance [10]. In particular, we focus on the comparison of two representative co-

operative relay strategies,decode-and-forward(DF) andamplify-and-forward(AF). Cross-point

with the AF and DF curves are found when some parameter is valid, which indicates that each of

them performs better in a certain parameter range and there is no case of dominance for the two

strategies. We further extend our work to video streaming incooperative CR networks [11], which

incorporates interference alignment, a recent information theoretic breakthrough that allows cur-

rent transmission of multiple signals. For the initial stochastic programming formulation, we first

develop a reformulation that significantly reduces computational complexity. We then develop

distributed optimal algorithms for the cases of a single channel and multi-channel with channel

bounding, with proven convergence and convergence rate. Wealso developed a greedy algorithm

for the multi-channel without channel bounding case, with bounded performance. This work is

among the first efforts to harvest the information theoreticadvances on interference alignment in

the broader network context and practical perspective.

Femtocell networks are another theme that my dissertation focus on. We first investigate the

problem of data multicast in femtocell networks that incorporates superposition coding and suc-

cessive interference cancellation [12]. The objective is to minimize the total base station power

consumption, while guaranteeing successful decoding of the multicast data at each user. We for-

mulate a MINLP problem and reformulate it into a simpler form. To address the problem, we

develop optimal and near-optimal algorithms for three typical connection scenarios, and derive

upper and lower performance bounds. We also study the problem of streaming real-time scalable
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videos in femtocell cognitive radio networks [13], with a multistage stochastic programming prob-

lem formulation. The proposed algorithms produce optimal solution in the case of non-interfering

FBS’s and near-optimal solution with proven lower bound in the case of interfering FBS’s.

This dissertation research provides a new perspective on how robust multi-user video stream-

ing can be achieved in highly dynamic CR networks. It is among the first efforts to address the

important area of video over CR networks, and offers systematic and comprehensive results and

solutions. The findings may shed new light on the feasibilityof CR networks in transporting real-

time video and be useful for developing practical CR video systems.

1.3 Dissertation Outline

The reminder of this dissertation is organized as follows.

In Chapter 2, we present our work on effective spectrum sensing and access protocols for

CR networks. We introduce the general architecture of CR networks and present three protocol

designs and analysis for different CR networking paradigms,including a sensing error aware CR

MAC protocol and resource allocation for co-channel and adjacent channel interference mitigation

in CR networks.

In Chapter 3, we investigate the problem of video streaming over three different CR net-

work paradigms, including multiuser video multicast in thedownlink of an infrastructure-based

CR network and multiuser video unicast in a multi-hop CR network without any fixed network

infrastructure.

In Chapter 4, we focus on cooperative CR networks. We compare and analyze two typical co-

operative relay strategies in CR networks and investigate the problem of multiuser video streaming

over a cooperative relay CR network by adopting interferencealignment.

In Chapter 5, we consider femtocell networks. In particular,we tackle the problem of generic

data mulicast in the downlink of femtocell networks that employs Superposition Codign (SC) and

Successive Interference Cancellation (SIC), as well as resource allocation and quality of service

(QoS) provisioning for multiuser video streaming in CR femtocell networks.

6



We conclude the dissertation and discuss our future work in Chapter 6.
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Chapter 2

Cognitive Radio Networking

2.1 Introduction

According to Cisco’s recent study, wireless data traffic is expected to increase by a factor of

66 times by 2013. Much of this future wireless data traffic will be video based services driven

by the need for ubiquitous access to wireless multimedia content. Such drastic increase in traffic

demand will significantly stress the capacity of future wireless networks.

Cognitive radios(CR) provide an effective solution to meeting this critical demand by ex-

ploiting co-deployed networks and aggregating underutilized spectrum for future wireless net-

works [1, 14, 15]. CR was motivated by the spectrum measurements by the FCC, where a signifi-

cant amount of the assigned spectrum is found to remain underutilized. CR represents a paradigm

change in spectrum regulation and access, from exclusive use by primary users to shared spectrum

for secondary users, which can enhance spectrum utilization and achieve high throughput capacity.

Although the basic concept of CR is intuitive, it is challenging to design efficient cognitive

network protocols to fully capitalize CR’s potential. In order to exploit transmission opportunities

in licensed bands, the tension between primary user protection and secondary user spectrum ac-

cess should be judiciously balanced. Spectrum sensing and spectrum access are the two key CR

functions. Important design factors include (i) how to identify transmission opportunities, (ii) how

secondary users determine, among the licensed channels, which channel(s) and when to access

for data transmission, and (iii) how to avoid harmful interference to primary users under the om-

nipresent of spectrum (or, channel) sensing errors. These are the problems that should be addressed

in the medium access control (MAC) protocol design for CR networks. Although very good under-

standings on the availability process of licensed channelshave been gained recently [16,17], there
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is still a critical need to develop analytical models that take channel sensing errors into account for

guiding the design of CR MAC protocols.

To support many bandwidth-intensive applications in CR networks, it is desirable to achieve

high network throughput under the constraint of limited interference to primary users. Due to

the use of open space as transmission medium, wireless network capacity is usually constrained

by interference. A CR user’s transmission will generate interference not only to the neighboring

primary users, but also to other CR users sharing the same or adjacent channels. Therefore, inter-

ference mitigation is crucial not only for primary user protection, but also for the quality of service

of CR user themselves. Effective interference mitigation techniques are indispensable to realize

the high potential of CRs.

The remainder of this chapter is organized as follows. The related work is discussed in Sec-

tion 2.2. The system model and preliminary results are illustrated in Section 2.3. We present a

sensing error aware MAC protocol in Section 2.4. Effective channel interference mitigation is

discussed in Section 2.5. Section 2.6 concludes the chapter.

2.2 Background and Related Work

CR has been considered as a “spectrum agile radio” that enables dynamic spectrum access to

exploit transmission opportunities in licensed spectrum bands [14,15]. Several CR MAC protocols

have been proposed in the literature. In [18], Le and Hossainpropose a MAC protocol for oppor-

tunistic spectrum access in CR networks. A decentralized cognitive MAC protocol is developed

in [19] that allows secondary users to explore spectrum opportunities without a central coordinator

or a dedicated control channel. In a piece of recent work [20], Su and Zhang propose a negotiation-

based sensing policy (NSP), in which a secondary user knows which channels are already sensed

and will choose a different channel to sense. In [21], the authors consider two types of hardware

constraints: sensing constraint and transmission constraint. In [22], based on the information ob-

tained by a delegate secondary user, each secondary user group selects and switches to the best

data channel for data communication during the next period.In [23], the authors describe a policy
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such that a secondary user selects the channel that has the highest successful transmission proba-

bility to access. Many prior works [16, 18, 20, 21] assume perfect channel sensing, within which

secondary users can always sense the channel correctly. Sensing errors are not considered. The

joint design of opportunistic spectrum access and sensing policies is studied in a recent work [24]

in the presence of sensing errors. The authors develop a separation principle that decouples the

designs of sensing and access policy. This interesting study is based on a constrained partially ob-

servable Markov decision process (POMDP) formulation and thus has an exponentially growing

computational complexity [24]. In [25,26], the authors propose MAC protocols for multi-hop CR

networks without the support of common control channels, but each CR user is requested to keep a

list of available channels updated. The speed and accuracy of sensing process are high demanding.

Co-Channel Interefence (CCI) and Adjacent Channel Interference(ACI) are the two major

factors limiting wireless network capacity. The impact of CCIon network performance is well-

known and comprehensively investigated in [27]. Recently, the impact of ACI has attracted con-

siderable interest in the wireless community. In [28, 29], the need was demonstrated for careful

channel selection to mitigate ACI in IEEE802.11 based systems. The impact of both CCI and

ACI on network throughput and performance was evaluated in [30–32]. The interference models

have been developed to analyze the channel interference in afew papers. In [33], the problem of

statistical-physical modeling of CCI was investigated to analyze the outage probabilities in wireless

networks and to design interference-aware transceivers. ACI was described by a simple quantifica-

tion model that was verified by testbed experiments in [29]. In [34], a model for the aggregate ACI

in TV white space was developed to demonstrate that the weighted sum of the total ACI power

should be kept below certain threshold as well as ACI in each adjacent channel. A commonly

used approach to reduce CCI is to assign different channels to neighboring transmitters [13, 35].

In [36, 37], frequency domain iterative multi-user detectors were adopted for CCI cancellation. A

low-cost CCI avoidance MAC scheme was presented in [38]. In [39], ACI was minimized by op-

timizing reception of television receivers. In [40], Gidony and Kalet addressed the ACI mitigation

problem by exploiting antenna diversity. In [41], statistical modeling of the aggregate interference

10
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Figure 2.1: The discrete-time two-state Markov model for the state of channelm, Sm, for m =
1, 2, . . . ,M .

in a spectrum underlay CR network is proposed, in which CR networks coexist with primary net-

works and power constraints are imposed on the CR users to keeptheir power below the noise floor

of primary receivers.

2.3 System Model and Preliminaries

2.3.1 Primary Network

We assume the primary users access the channels following a synchronous slot structure as in

prior work [14,20,42]. The channel states are independent to each other and each of theM chan-

nels evolves over time following a discrete-time two-stateMarkov process, as shown in Fig. 2.1.

Such channel model has been validated by recent measurementstudies [14,16,20]. We define the

network state vectorin slot t as~S(t) = [S1(t), S2(t), . . . , SM(t)], whereSm(t) denotes the state of

channelm, for m = 1, 2, · · · ,M . When channelm is idle, we haveSm(t) = 0; when channelm

is busy, we haveSm(t) = 1.

Let λm andµm be the transition probability of remaining in state0 and the transition proba-

bility from state1 to 0 for channelm, respectively. Letηm = Pr(Sm = 1) denote theutilization

of channelm with respect to primary user transmissions. Letζm = Pr(Sm = 0) be the probability

that channelm is idle (i.e., not being used by primary users). We then have

ηm = lim
T→∞

1

T

T
∑

t=1

Sm(t) =
1− λm

1− λm + µm
(2.1)

ζm = 1− Pr(Sm = 1) =
µm

1− λm + µm
. (2.2)

11



Sensing Phase Transmission Phase

A Time Slot

Figure 2.2: Time slot structure: a time slot consists of a sensing phase and a transmission phase.

2.3.2 CR Network

As presented in prior work [16,20,43], we assume that each secondary user is equipped with

two transceivers: acontrol transceiverthat operates over a dedicated control channel, which we

assume is always available (e.g., a channel in the industrial, scientific and medical (ISM) band),

and adata transceiverthat is used for data communications through theM licensed channels. The

data transceiver consists of an SDR that can be tuned to any oftheM licensed channels to transmit

and receive data. Secondary users also use their transceivers for spectrum sensing and exchanging

sensing results.

We assume CR nodes access the licensed channels following thesame time slot structure [14].

Each time slot is divided into two phases, thesensing phaseand thetransmission phase, as shown

in Fig. 2.2. In the sensing phase, a CR node chooses one of theM channels to sense using one

of its transceivers, and then exchanges sensed channel information with other CR nodes using

the other transceiver over the control channel. During the transmission phase, the CR transmitter

and/or relay transmit data frames on licensed channels thatare believed to be idle based on sensing

results, using one or both of the transceivers.

2.3.3 Spectrum Sensing

We explicitly consider channel sensing errors in the design. During the sensing process,

two kinds of detection errors may occur. Afalse alarmrefers to the case when an idle channel

is considered busy. Consequently, the CR nodes will not attempt to access that channel and a

spectrum opportunity will be wasted. Amiss detectionrefers to the case when a busy channel is
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considered idle. Since CR nodes will attempt to access this channel in the transmission phase,

collisions with primary user transmissions will occur subsequently.

We adopt hypothesis test to detect the availability of channel m. The null hypothesisHm
0 is

“channelm is idle.” The alternative hypothesisHm
1 is “channelm is busy.” Letǫmi andδmi be the

probabilities of false alarm and miss detection, respectively, when CR nodei senses channelm.

We have

ǫmi = Pr{Θm
i = 1|Hm

0 } and (2.3)

δmi = Pr{Θm
i = 0|Hm

1 }, (2.4)

whereΘm
i ∈ {0, 1} is the channelm sensing result of channelm at nodei.

2.4 CR MAC Protocol

In this section, we present a channel sensing error aware MACprotocol for a CR network

collocated with multiple primary networks. We assume primary users access the licensed channels

following a synchronous time slot structure [14, 20]. The channel states are independent to each

other and each evolves over time following a discrete-time Markov process [14, 16]. Secondary

users use their software-defined radio (SDR)-based transceivers to tune to any of the licensed

channels, to sense and estimate channel status and to accessthe channels when they are found (or,

believed) to be available.

In particular, we develop two channel sensing polices, withwhich secondary users collabora-

tively sense the licensed channels and predict channel states. With thememoryless sensingpolicy,

each secondary user chooses one of theM licensed channels to sense with equal probability. Dur-

ing the sensing phase, secondary users also exchange sensing results through a separate control

channel. This sensing policy is further improved with a mechanism to spread out secondary users

to sense different channels, therefore reducing the chancethat a channel is not sensed by any of

the users. When spreading out secondary users to the channels, the mechanism also considers
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Figure 2.3: The CR secondary network is collocated withM primary networks.

the autocorrelation of channel processes to obtain more accurate sensing results. This is termed

improved sensingpolicy.

These two sensing polices are then incorporated into thep-Persistent Carrier Sense Multiple

Access (CSMA) mechanism to make sensing error aware CR MAC protocols. We analyze the pro-

posed CR MAC protocols with respect to the interference and throughput performance and derive

closed-form expressions. Primary user protection is achieved via tunning the channel access prob-

ability p of p-Persistent CSMA according to the interference analysis. The CR MACs also aims

to maximize the CR network throughput while satisfying the primary user protection constraints.

Through simulations, we find that the analysis is highly accurate as compared to simulation results.

In addition, the proposed sensing error aware CR MAC protocols outperform two existing schemes

with considerable gain margins, which justify the importance of considering channel sensing errors

in CR MAC design.

2.4.1 Network Model and Assumptions

The network model considered in this section is illustratedin Fig. 2.3. ConsiderM primary

networks, each allocated with a licensed channel. We assumethe primary users access the channels

following a synchronous slot structure as in prior work [14,20,42]. The channel state model evolves

independently following a discrete Markov process (see Section 2.3.1).

14



We assume a secondary network collocated with theM primary networks, within whichN

secondary users take advantage of the spectrum white spacesin M licensed channels for data

transmissions. For protection of primary users, the probability of collision caused by secondary

user transmissions to primary users should be upper boundedby a prescribed thresholdγm, for

m = 1, 2, · · · ,M .

As illustrated in Section 2.3.2, we assume that each secondary user is equipped with two

transceivers: acontrol transceiverthat operates over a dedicated control channel, which we assume

is always available, and adata transceiverthat is used for data communications through theM

licensed channels. The data transceiver consists of an SDR that can be tuned to any of theM

licensed channels to transmit and receive data. Secondary users also use their transceivers for

spectrum sensing and exchanging sensing results.

2.4.2 Sensing Error Aware CR MAC Protocol

For the CR network described in Section 2.4.1, we develop sensing aware MAC protocols for

opportunistic spectrum access. The time slot structure of the proposed MAC protocols is shown in

Fig. 2.4, which consists of asensing phaseand atransmission phase. The sensing phase is further

divided intoK̄ mini-slots, within which each secondary user senses one of the licensed channels.

CR users access the channels for data transmission during thetransmission phase. LetTs, Tms, and

Tdata denote the duration of a time slot, a mini-slot, and the transmission phase, respectively (see

Fig. 2.4), we have

Ts = K̄ × Tms + Tdata. (2.5)

We first discuss the two key components of the proposed protocols, i.e., channel sensing and

channel access, and then analyze their performance with respect to primary user protection and the

expected throughput.
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Figure 2.4: The time slot structure of the proposed sensing error aware CR MAC protocol.

Sensing Phase

The first key element of the proposed MAC protocols is spectrum, or channel sensing. Al-

though precise and timely channel state information is highly desirable for opportunistic spectrum

access and primary user protection, contiguous full-spectrum sensing is both energy inefficient

and hardware demanding. Since we assume a secondary user is equipped with one transceiver for

spectrum sensing, i.e., the data transceiver with SDR capability, only one of the licensed channels

can be sensed by the secondary user at a time.

During the sensing phase (see Fig. 2.4), a secondary user picks a licensed channel and keeps

on sensing it for one or multiple mini-slots. As discussed inSection 2.3.3, two kinds of detection

errors may occur: false alarm and miss detection. We assume all secondary users have the same

probability of detection errors when sensing channelm, m = 1, 2, · · · ,M . Let ǫm andδm denote

the probabilities of false alarm and miss detection on channel m, respectively. The spectrum

sensing performance can be represented by the Receiver Operation Characteristic (ROC) curve,

where(1 − δm) is plotted as a function ofǫm [14]. For a specific channelm in a certain time slot
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t, the sensing error probabilities can be written as:

Pr(Wm,i = 1 | Sm = 0) = ǫm, for all i = 1, 2, · · · (2.6)

Pr(Wm,i = 0 | Sm = 1) = δm, for all i = 1, 2, · · · , (2.7)

whereWm,i is theith sensing result of channelm andSm is state of channelm.

We assume that the sensing results from different users are independent and the sensing results

in different mini-slots are also independent to each other.Suppose a secondary user continues to

sense channelm for k mini-slots and obtainsk sensing results. The conditional probability that

channelm is available after thekth sensing mini-slot, denoted byam,k, can be derived as

am,k = Pr(Sm = 0 | Wm,1 = θm,1, · · · ,Wm,k = θm,k)

=
Pr(Wm,i = θm,i, i = 1, · · · , k|Sm = 0)Pr(Sm = 0)

∑1
j=0 Pr(Wm,i = θm,i, i = 1, · · · , k|Sm = j) Pr(Sm = j)

=
Pr(Sm = 0)

∏k
i=1 Pr(Wm,i = θm,i|Sm = 0)

∑1
j=0 Pr(Sm = j)

∏k
i=1 Pr(Wm,i = θm,i|Sm = j)

=

[

1 +
Pr(Sm = 1)

Pr(Sm = 0)

k
∏

i=1

Pr(Wm,i = θm,i|Sm = 1)

Pr(Wm,i = θm,i|Sm = 0)

]−1

=

[

1 + αdmm βk−dmm

Pr(Sm = 1)

Pr(Sm = 0)

]−1

=

(

1 + αdmm βk−dmm

ηm
ζm

)−1

,

(2.8)

wheredm is the number of observations whose sensing result is0 on channelm, andαm andβm

are defined as follows.

αm =
Pr(Wm,i = 0|Sm = 1)

Pr(Wm,i = 0|Sm = 0)
=

δm
1− ǫm

, for θm,i = 0 (2.9)

βm =
Pr(Wm,i = 1|Sm = 1)

Pr(Wm,i = 1|Sm = 0)
=

1− δm
ǫm

, for θm,i = 1. (2.10)
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For the secondary user, it is also possible that it obtains some of thek sensing results by local

measurements, and receives the remaining sensing results from the control channel in the case that

some other secondary users are sensing the same channelm. By abuse of notation, we also use

am,k to denote the conditional channel availability probability in this case, due to independence of

the sensing results. We plotam,k as a function ofk for the channel idle and busy cases in Fig. 2.5,

using the same parameters as one of the simulations (see Section 2.4.4). We have the following

proposition foram,k.

Definition 2.1. A random variableX is said to be dominated byY in the sense of stochastic

ordering ifPr(X ≥ x) ≤ Pr(Y ≥ x) for all x

Proposition 2.1. When channelm is idle, am,k is a monotone increasing function ofk; when

channelm is busy,am,k is a monotone decreasing function ofk in the sense of stochastic ordering.

Proof. From the defintion ofam,k in (2.8), it follows that

Pr(am,k ≥ θ1)

= Pr





[

1 +
ηm
ζm

(

δm
1− ǫm

)

∑k
i=1 W̄m,i

(

1− δm
ǫm

)

∑k
i=1Wm,i

]−1

≥ θ1





= Pr

(

(

δm
1− ǫm

)

∑k
i=1 W̄m,i

(

1− δm
ǫm

)

∑k
i=1Wm,i

≤
(

1

θ1
− 1

)

ζm
ηm

)

= Pr

(

k
∑

i=1

[

Wm,i log

(

1− δm
ǫm

)

− W̄m,i log

(

1− ǫm
δm

)]

≤ χm

)

(2.11)

whereW̄m,i = 1−Wm,i.

Sinceǫm < 0.5 and δm < 0.5 for practical sensors, bothlog
(

1−δm
ǫm

)

and log
(

1−ǫm
δm

)

are

positive. IfSm(t) = 0, we have that

Pr(Wm,i = 1) < Pr(Wm,i = 0) = Pr(W̄m,i = 1).
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Figure 2.5: Illustration ofam,k as a monotone function ofk, whenǫm = 0.3, δm = 0.3, andK̄ = 7.

It follows thatPr(am,k ≥ θ1) < Pr(am,k+1 ≥ θ1). That is,am,k is a monotone increasing function

of k in the sense of stochastic ordering. Similarly, we can show that

Pr(am,k ≤ θ0) < Pr(am,k+1 ≤ θ0)

whenSm(t) = 1. That is,am,k is a monotone decreasing function ofk in the sense of stochastic

ordering when the channel is busy.

During the sensing phase, each secondary user chooses one channel to sense with equal prob-

ability at the beginning of the time slot. Secondary users also report their sensing results over the

control channel, and share the corresponding channel sensing results during the mini-slots. Two

threshold probabilitiesΘ0 < Θ1 are used for decision making.

• If the availability of channelm, i.e., am,k, is belowΘ0, the channel is believed to be busy

and the secondary users will wait till the next time slot to start sensing again.

• If the availability of channelm is betweenΘ0 andΘ1, secondary users will keep on sensing

the same channel to obtain more sensing results for more accurate estimation of the channel

state, until the maximum number of mini-slots,K̄, is reached.
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• If the availability of channelm exceedsΘ1, the channel is believed to be idle and the sec-

ondary users stop sensing and prepare to access the channel (see Section 2.4.2).

Thestop timeKm when secondary users stop sensing channelm, is a random variable that takes

value between1 and K̄, the maximum number of mini-slots that can be used for sensing (see

Fig. 2.4). If we haveΘ0 < am,k < Θ1 by the end of the sensing phase, then channelm state is not

identified due to lack of time (or sensing results) and the channel will not be accessed.

When there arek sensing results available (e.g., one user senses channelm for k mini-slots,

or it senses channelm for less thank mini-slots and receives some channelm sensing results from

other secondary users), we define three sets of estimates forthe state of channelm, as:

Ψ0
m,k = {dm | am,k ≤ Θ0, ∀ 0 ≤ dm ≤ k} (2.12)

Ψ1
m,k = {dm | am,k ≥ Θ1, ∀ 0 ≤ dm ≤ k} (2.13)

Ψ2
m,k = {dm | Θ0 < am,k < Θ1, ∀ 0 ≤ dm ≤ k}

= (Ψ0
m,k ∪Ψ1

m,k), (2.14)

wheredm is the number of observations whose sensing result is0 on channelm. We then present

two channel sensing policies based on this classification inthe following.

Memoryless Sensing Policy In this section, we first present a memoryless sensing policy, with

which secondary users cooperatively sense the licensed channels. We call the policy “memoryless”

since it does not consider the channel sensing and access results in the previous time slot for

simplicity. With this memoryless policy, each secondary user chooses one of theM licensed

channels to sense with equal probability, i.e.,1/M . Furthermore, channel selections of theN

secondary users are independent and identically distributed (i.i.d.).
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LetUm be the random variable representing the number of secondaryusers that select channel

m to sense. The probability thatum secondary users choose channelm to sense is

Pr(Um = um) =







N

um







(

1

M

)um (M − 1

M

)N−um

.

(2.15)

The joint distribution that there areu1 secondary users sensing channel1, u2 secondary users

sensing channel2, · · · , anduM secondary users sensing channelM , is

Pr(u1, u2, · · · , uM ) =











N !
∏M

m=1 um!
× 1

MN , if
∑M

m=1 um = N

0, otherwise.
(2.16)

We next derive the conditional probability that secondary users compete for the channel after

the sensing phase stops at the end of mini-slotKm < K̄. The stop timeKm < K̄ has two

implications. First, it means that secondary users stop sensing channelm after mini-slotKm.

Second, it indicates that the estimated availability of channelm, am,k, has already exceeded the

thresholdΘ1. Thus these secondary users think channelm is idle and are ready to access the

channel for data transmission. Note that a secondary user also stops sensing a channelm when

am,k < Θ0 (when it is sure that the channel is busy). We are not interested in this case, since the

secondary user will back off until the next time slot. ThusKm is defined with regard to the event

am,k > Θ1.

There areUm users sensing channelm andUmKm observations are available after mini-slot

Km, which is also a random variable. We first derive the conditional probability for eventKm = 1,

as

Pr(Km = 1 | Um = u , Sm = 0) = Pr(am,u ≥ Θ1)

=
∑

d1m∈Ψ1
m,u







u

d1m







[

(ǫm)
u−d1m(1− ǫm)d

1
m

]

, (2.17)
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whered1m is the number of observations whose sensing result is0 in the first mini-slot.

Following similar reasoning as in (2.17), we can obtain the conditional probability for the

event that the stop timeKm = 2 as

Pr(Km = 2 | Um = u , Sm = 0) = Pr [(Θ0 < am,u < Θ1) ∩ (am,2u ≥ Θ1)]

=
∑

D2
m∈Ψ1

m,2u

∑

d1m∈Ψ2
m,u







u

d1m













u

d2m







[

(ǫm)
2u−D2

m(1− ǫm)D
2
m

]

, (2.18)

whereΨ2
m,k is defined in (2.14) andD2

m = d1m + d2m. In the general case, we can derive the

conditional probability for the event that the stop time isKm = k as:

Pr(Km = k | Um = u , Sm = 0)

= Pr
[

(Θ0 < am,u < Θ1) ∩ (Θ0 < am,2u < Θ1) ∩ · · · ∩ (Θ0 < am,(k−1)u < Θ1) ∩ (am,ku ≥ Θ1)
]

=
∑

Dk
m∈Ψ1

m,ku

∑

Dk−1
m ∈Ψ2

m,(k−1)u

· · ·
∑

d1m∈Ψ2
m,u







u

d1m













u

d2m






· · ·







u

dkm







[

(ǫm)
ku−Dk

m(1− ǫm)D
k
m

]

, (2.19)

wherek = 1, · · · , K̄ andDk
m =

∑k
i=1 d

i
m. We will apply these results in Section 2.4.3 to derive

the throughput of the CR network by thelaw of total probability.

Improved Sensing Policy Under the memoryless sensing policy, some channels may not be

sensed by any of the secondary users. Such an event occurs with probabilityPr(Um = 0) =
(

M−1
M

)N
, which is sufficiently large whenM is large and/or the number of secondary users is

close to the number of channels. Secondary users will not be able to estimate the state of a channel

that nobody senses, and will neither access it in the transmission phase. Therefore, the spectrum

opportunities in that channel will be wasted when such events occur.

Motivated by this observation, we develop animproved sensingpolicy that attempts to reduce

the chance that a channel is not sensed by any of the secondaryusers. The improved sensing policy
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incorporates a mechanism to spread secondary users to the channels. It also exploits channel state

autocorrelation by considering sensing results and channel states in the previous time slot.

By the end of the sensing phase in a time slott, the secondary users compute the channel

availabilityam,k for each channelm. During the following transmission phase, if a secondary user

transmits on channelm, it can obtain more accurate channel state information: if its transmission

is successful, then channelm is idle in time slott; otherwise, channelm is busy in the time slot.

Such channel information can be exchanged at the beginning of the sensing phase in the next time

slot. Then, we can classify theM channels into three sets according to the channel states in time

slot t, including

• The set of channels that are detected or believed to be idle, denoted byB0(t).

• The set of channels that are detected or believed to be busy, denoted byB1(t).

• The set of channels whose states are not identified due to lackof time or not sensed by any

of the secondary users, denoted byB2(t).

Let |B0(t)|, |B1(t)| and|B2(t)| be the cardinalities ofB0(t), B1(t), andB2(t), respectively.

If channelm is in setB0(t) and the stop time on channelm is less than the maximum stop

time K̄, one user among thoseum users that are sensing this channel will be randomly chosen to

switch to sense another channel in the setm ∪ B1(t) ∪ B2(t) in time slot(t + 1). If channelm is

in setB1(t) and the stop time on channelm is less than the maximum stop timēK, the secondary

users that are sensing this channel will randomly choose a channel inm ∪ B2(t) to sense in time

slot (t + 1). With the above mechanism that reassigns secondary users tochannels based on the

sensing results in the previous time slot, we can reduce the chance that a licensed channel is not

sensed by any of the users. This approach achieves theload balancingeffect since it attempts to

spread out secondary users to the channels.
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Transmission Phase

We adopt thep-persistent CSMA protocol for data channel access for secondary users during

the data transmission phase. Under this protocol, a secondary user delays its transmission when the

channels are busy. Once one or more channels are detected idle, the secondary user will attempt

to access the idle channel(s) for data transmission with probability p. We consider the heavy load

domain, where each secondary user always has data to send to every other secondary user. The

following two cases are investigated for opportunistic spectrum access for secondary users.

Case 1 Once the estimate of channelm, i.e.,am,k, exceeds thresholdΘ1, each of the secondary

users sensing channelm will send an RTS packet on channelm with probabilityp, to contend for

the transmission opportunity on this channel. If there is only one secondary user that sends RTS,

then it wins the channel; if there is no secondary user that sends RTS, then the channel will not be

accessed and will be wasted; if there are more than one RTS packets sent on channelm, there is

collision and none of the secondary users can use the channel.

We defineP idle
m ,P succ

m andP coll
m as the probability that there is no RTS transmission on channel

m, the probability that exactly one secondary user successfully transmits an RTS on channelm,

and the probability that there is collision on channelm when multiple RTS packets are transmitted,

respectively. Recall thatUm is the number of secondary users that choose channelm to sense. This

set of secondary users also attempt to access channelm if it is found idle. Withp-persistent CSMA,

it follows that

P idle
m (Um) = (1− p)Um (2.20)

P succ
m (Um) = Um × p× (1− p)Um−1 (2.21)

P coll
m (Um) = 1− P idle

m (Um)− P succ
m (Um)

= 1− (1− p)Um − Um × p× (1− p)Um−1. (2.22)

24



Case 2 We assume that the CR users can transmit data over more than onechannels using the

channel bonding/aggregation techniques [20, 44]. In this case, every secondary user keeps on

sensing the channel until the channel state is identified or until the end of the sensing phase. At the

beginning of the transmission phase, the set of idle channels are identified and are know to all the

secondary users. Then every secondary user will transmit anRTS packet with probabilityp on the

control channel, to contend for the entire set of idle channels. If there is only one secondary user

that sends RTS on the control channel, it wins the entire set of idle channels. Otherwise, the idle

channels will be wasted (i.e., when no RTS is sent, or more than one RTS are sent on the control

channel).

We defineP idle, P succ andP coll as the probability of no RTS transmission on the control

channel, the probability that exactly one RTS sent on the control channel, and the probability of

collision on the control channel, respectively. Forp-Persistent CSMA, we have

P idle(N) = (1− p)N (2.23)

P succ(N) = N × p× (1− p)N−1 (2.24)

P coll(N) = 1− P idle(N)− P succ(N)

= 1− (1− p)N −N × p× (1− p)N−1. (2.25)

2.4.3 Performance Analysis

Interference Analysis

One of the main challenges in designing a CR network MAC protocol is how to balance the

tension between maximizing the capacity of secondary usersand protecting primary users from

harmful collisions. Letγm ∈ [0, 1] be the maximum tolerable collision probability to primary

users on channelm: γm = 0 means that no secondary transmission is allowed, whileγm = 1

means that secondary users have the same privilege as primary users when accessing the channels.

The probability of collision caused by secondary users to primary users should be kept belowγm.
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We first derive the conditional probability that channelm is miss detected to be idle byu

secondary users after mini-slotk, as follows.

Pr(Km = k | Um = u, Sm = 1)

=
∑

Dk
m∈Ψ1

m,ku

∑

Dk−1
m ∈Ψ2

m,(k−1)u

· · ·
∑

d1m∈Ψ2
m,u







u

d1m













u

d2m






· · ·







u

dkm






(δm)

Dk
m(1− δm)ku−D

k
m . (2.26)

In Case 1, the idle channels are accessed by different secondary users. The probability that sec-

ondary users collide with primary users on channelm is

P intf
m,1 =

K̄
∑

k=1

N
∑

u=0

Pr(Km = k | Um = u, Sm = 1)× Pr(Um = u)×
[

P succ
m (u) + P coll

m (u)
]

.

(2.27)

In Case 2, a winning secondary user takes all the idle channelsusing the technique of channel

bonding/aggregation. The probability that secondary users collide with primary users on channel

m is

P intf
m,2 =

K̄
∑

k=1

N
∑

u=0

Pr(Km = k | Um = u, Sm = 1)× Pr(Um = u)× P succ(N). (2.28)

For primary user protection, the probability of secondary users causing collision with primary

users on channelm should be kept lower than or equal toγm, i.e.,

P intf
m,i ≤ γm, for i = 1, 2. (2.29)

This constraint is used to set the channel access probability p for thep-persistent CSMA protocol.
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Throughput Analysis

Based on previous analysis, the expected throughput of the proposed CR MAC protocols

adopting the two sensing policies, can be derived after the system attains steady state. Without loss

of generality, we ignore the time spent on RTS/CTS exchanges,which can be approximated by a

fixed amount of overhead.

In Case 1, the expected throughput of channelm that is sensed byu users, denoted byΛ1
m(u),

can be derived as

Λ1
m(u) =

K̄
∑

k=1

Pr(Km = k | Um = u, Sm = 0)×Rm ×
1

Ts
×
[

(K̄ − k)Tms + Tdata
]

,(2.30)

whereRm is the data rate of channelm, andTs is the time slot duration given in (2.5).

Let ~U = [U1, U2, · · · , UM ] denote the secondary usersensing state vector, where each element

Um represents the number of secondary users that choose channel m to sense and access. The

aggregate throughput for the CR network, denoted byΩ1, is

Ω1=
∑

~U

Pr(~U)
∑

~S

Pr(~S)
M
∑

m=1

[

I[Sm=0]Λ
1
m(Um = u)P succ

m (Um = u)
]

, (2.31)

where~S is the channel state vector defined in Section 2.4.1,P succ
m (u) is given in (2.21) andI[Sm=0]

is an indicator that channelm is idle, i.e.,

I[Sm=0] =











1, if Sm = 0

0, otherwise.
(2.32)

In Case 1, the sensing process on channelm can stop early if the estimate of channel availabil-

ity am,k exceeds thresholdΘ1 or drops below the thresholdΘ0. In the former case, the remaining

mini-slots can be used to transmit data. In Case 2, all CR users wait till the beginning of the

transmission phase, and then contend for the idle channels by sending RTS packets on the control

channel. The winning secondary user’s data transmissions start at the beginning of the transmission
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phase (i.e., after̄K mini-slots). We can derive the throughput for channelm as follows.

Λ2
m(u) =

K̄
∑

k=1

Pr(Km = k | Um = u, Sm = 0)×Rm ×
Tdata
Ts

, (2.33)

The aggregate throughput for the CR network, denoted byΩ2, is

Ω2 =
∑

~U

Pr(~U)
∑

~S

Pr(~S)×
M
∑

m=1

[

I[Sm=0]Λ
2
m(u)P

succ(N)
]

. (2.34)

2.4.4 Simulation Study

Simulation Settings

We evaluate the performance of the proposed CR MAC protocol using a customized simulator

developed with MATLAB. We compare the following four schemesin the simulations:

• A simple random sensing scheme that each user chooses one channel to sense with equal

probability, termedRandomin the plots.

• The negotiate sensing scheme presented in [20], termedNegotiatein the plots.

• The memoryless sensing scheme as described in Section 2.4.2. In the figures,Memoryless1

refers to transmission scheme Case 1 (i.e., idle channels areaccessed by different secondary

users, see Section 2.4.2), andMemoryless2 refers to transmission scheme Case 2 (i.e., idle

channels are accessed by a winning secondary user using channel bonding/aggregation tech-

niques [44]).

• The improved sensing scheme presented in Section 2.4.2. In the figures,Improved1 refers to

transmission scheme Case 1, andImproved2 refers to transmission scheme Case 2.

We choose the negotiate sensing scheme since it adopts a similar network model and assumptions.

With this scheme, different secondary users attempt to select distinct channels to sense by over-

hearing the control packets on the control channel [20]. Oneof the major differences between
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Table 2.1: Simulation Parameters
Symbol Value Definition
Tms 9 µs mini-slot interval
Ts 1.89 ms time slot interval
M 5 number of licensed channels
N 8 number of secondary users
η 0.3 utilization of the licensed channels
ǫ 0.3 probability of false alarm
δ 0.3 probability of miss detection
R 1 Mb/s data rate of each licensed channel
Θ1 0.8 upper threshold for channel decision
Θ0 0.2 lower threshold for channel decision
K̄ 5 maximum stop time for channel sensing

negotiate sensing and the proposed schemes in this paper, isthat negotiate sensing does not con-

sider spectrum sensing errors in the MAC protocol design.

The simulation parameters are summarized in Table 2.1, which follow the typical values used

in [20]. We run each simulation scenario for 10 times with different random seeds. Each point

in the plots shown in this section is the average of10 simulation runs. We plot95% confidence

intervals as error bars on the simulation curves, which are negligible in all the figures.

Simulation Results

We first verify our throughput analysis presented in Section2.4.2. In Figs 2.6 and 2.7, we plot

the throughputs for the CR MACs incorporating the memoryless sensing policy and the improved

sensing policy, with both simulation and analysis curves (dashed curves). We observe that the

simulation and analysis curves for the memoryless sensing CRMACs overlap completely with

each other, indicating that our analysis is exact. Furthermore, although there is a gap between

the simulation and analysis curves for the CR MACs with the improved sensing policy, the gap is

generally very small. The gap is actually due to an approximation we used for the secondary user

sensing state vector~U , for which deriving the exact form is non-trivial. In the analysis, we assume

that the probability is 0 that a channel is not sensed by any secondary user. We find the analysis can
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Figure 2.6: Throughput versus false alarm probability (with 95% confidence intervals for the sim-
ulation results).

serve as a tight upper bound for the CR MAC throughput performance when the improved sensing

policy is incorporated.

We next investigate the impact of sensing errors on the CR MAC performance. We assume

identical false alarm probabilitiesǫm = ǫ, and identical miss detection probabilitiesδm = δ for all

the licensed channels. In Fig. 2.6, we plot the throughputs obtained by the four schemes versus the

false alarm probabilityǫ. Specifically, we fixδ at 0.3 and increaseǫ from 0.1 to 0.5. Intuitively,

a higher false alarm probability results in lower probability for secondary users to exploit the

transmission opportunities in the licensed channels. Thisis illustrated in the figure, as all the

four throughput curves decrease asǫ is increased. The improved sensing MAC achieves the best

performance, with about 10% gain over the memoryless sensing MAC and about 200% gain over

the two existing approaches. The advantage of channel bonding/aggregation is also demonstrated

in the figure, where Case 2 transmission scheme always achieves higher throughput than Case 1

scheme.

In Fig. 2.7, we examine the impact of miss detection probability δ on the CR network through-

put. In these simulations, we fixǫ at 0.3 and increaseδ from 0.1 to 0.5. We find that the miss

detection error has small impact on the throughputs of the random sensing and negotiate sensing
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Figure 2.8: Throughput versus channel utilization (with95% confidence intervals for the simula-
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protocols, since miss detection errors are not considered in the design of these protocols. How-

ever, both our proposed CR MAC schemes achieve considerable throughput gains over the random

sensing and negotiate sensing schemes.
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Figure 2.9: Collision probability with primary users when the maximum tolerable collision proba-
bility is γ = 3.5%.

In Fig. 2.8, we plot the throughput of the four schemes under different channel utilization

values ranging from0.3 to 0.7. As the utilization of the licensed channels is increased, the trans-

mission opportunities for secondary users are clearly reduced. Therefore the four curves are all

decreasing function ofη. The improved policy with transmission scheme Case 2 achieves the best

performance among the four schemes, while random sensing has the poorest performance. When

the channel utilization isη = 0.3, the improved policy achieves a10% gain in throughput over the

memoryless sensing policy. We also plot the upper bound on the CR network throughput, as given

by the channel idle probability in (2.2). When the channel utilization is low, the improved policy

with transmission scheme Case 2 can achieve a throughput veryclose to the upper bound. The gap

between the upper bound and the achievable throughput increase when the primary users get more

busy.

In Fig. 2.9, we plot the collision probability caused by secondary transmissions to primary

users, when the maximum allowable collision probability isset asγ = 3.5%. We plot the measured

collision probabilities in the simulations when the channel utilization is increased from 30% to

70%. It can be seen that the collision probabilities of random and negotiate sensing schemes
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Figure 2.10: Total throughput of primary users when they become more active.

increases along withη and soon exceed the 3.5% threshold. On the other hand, the collision

probabilities of the proposed schemes are kept around 2.5% for the entire range ofη examined.

Finally, we plot the throughput of the primary users in Fig. 2.10. The primary user throughput

curves for all the four schemes increase when the channel utilization η is increased. The gap

between the curves of the proposed schemes and those of random and negotiate sensing schemes, is

due to the different collision rates secondary users introduce to primary users under these schemes

(see Fig. 2.9). Asη is increased, the proposed schemes introduces relatively constant collision rates

to primary users (i.e., around 2.5%), while the random and negotiate sensing schemes introduce

increasingly higher collision rates to primary users, which degrade the throughput of primary users.

2.5 Co-channel and Adjacent Channel Interference Mitigation

In this section, we consider a CR network consisting of multiple CR transmitter receiver pairs.

The primary network comprises a base station sending data toprimary users using a set of licensed

channels. The CR nodes collaboratively sense the licensed channels and exploit spectrum opportu-

nities for data transmission. We investigate the problem ofmaximizing the CR network throughput

while bounding the interference to primary users. We incorporate several important components
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such as cooperative spectrum sensing, spectrum sensing errors, and opportunistic spectrum access

into the cross-layer optimization framework. In the problem formulation, we specifically con-

sider mitigating CCI among CR users and ACI for both CR and primary users, through optimized

channel assignment and transmit power control for CR users.

The formulated problem is a Mixed Integer Nonlinear Programming (MINLP) problem, due

to the use of index variables for channel assignment and logarithmic relationship between link ca-

pacity and signal to noise ratio (SNR). Such problems are NP-hard in general. We first propose

a reformulation-linearization technique (RLT)-based centralized algorithm that computes near-

optimal solutions in polynomial time [45]. We then develop adistributed greedy algorithm that

uses only local information and computes near-optimal solutions. Through simulation studies, we

find the distributed greedy algorithm outperforms both the RLT-based centralized algorithm and a

heuristic channel assignment algorithm that exploits multiuser diversity with considerable gains.

2.5.1 Network Model and Assumptions

As shown in Fig. 2.11, we consider a primary network where a base station transmits data

to primary users usingM licensed channels with non-overlapping spectrum. Withoutloss of gen-

erality, we assume the channels have identical bandwidth. We assume that each primary user is

equipped with one transceiver and can communicate with the primary base station via one of the

licensed channels. LetPm be the subset of primary users that are tuned to channelm. All thePm’s

are generally assumed non-empty.

As illustrated in Section 2.3.1, we assume that the primary network uses a synchronous time

slot structure. The occupancy of each channel is modeled as adiscrete-time Markov process. As

discussed before, the utilization of channelm with respect to primary user transmission, denoted

by ηm, can be computed as (2.1)

Within the coverage of the primary network, there areK pairs of CR transmitters and receivers

that explore the spectrum opportunities in theM licensed channels for data communications. Each

CR node is equipped with two transceivers: acontrol transceiverthat operates on a dedicated
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Figure 2.11: The primary and CR network model.

control channel (which we assume is always available), and adata transceiverincorporating a

software defined radio (SDR) that is able to tune to any of theM licensed channels.

CR nodes access the licensed channels following the same timeslot structure as in the primary

network. For CR nodes, each time slot consists of a sensing phase and a transmission phase (see

Section 2.3.2). In the sensing phase, a CR node chooses one of theM channels to sense using its

data transceiver, and then exchanges the sensed channel information with other CR nodes using its

control transceiver over the control channel. During the transmission phase, the CR node turns its

data transceiver to one of theM channels to transmit or receive data based on sensing results.

Cooperative Spectrum Sensing

As illustrated in Section 2.3.3, we consider two types of sensing errors (false alarmǫmn and

miss detectionδmn ) in the sensing phase. During the sensing phase, the CR nodes exchange their

sensing results through the control channel. As presented in (4.1), the conditional probability that

channelm is available for givenN sensing results on channelm, denoted byPA
m(Θ

m
1 , · · · ,Θm

N),
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can be computed as [46]:

PA
m(Θ

m
1 , · · · ,Θm

N)

=
Pr{Θm

1 ,Θ
m
2 , · · · ,Θm

N |Hm
0 )}Pr{Hm

0 }
Pr{Θm

1 ,Θ
m
2 , · · · ,Θm

N |Hm
0 }Pr{Hm

0 }+ Pr{Θm
1 ,Θ

m
2 , · · · ,Θm

N |Hm
1 }Pr{Hm

1 }

=

∏N
n=1 Pr{Θm

n |Hm
0 }Pr{Hm

0 }
∏N

n=1 Pr{Θm
n |Hm

0 }Pr{Hm
0 }+

∏N
n=1 Pr{Θm

n |Hm
1 }Pr{Hm

1 }

=

[

1 +
Pr{Hm

1 }
Pr{Hm

0 }
N
∏

n=1

Pr{Θm
n |Hm

1 }
Pr{Θm

n |Hm
0 }

]−1

=

[

1 +
ηm

1− ηm

N
∏

n=1

(δmn )
1−Θm

n (1− δmn )Θ
m
n

(ǫmn )
Θm

n (1− ǫmn )1−Θm
n

]−1

(2.35)

whereΘm
n is then-th sensing result on channelm.

When one or more sensing results are received at a CR node, let the sensing result vector

be ~Θm
n = [Θm

1 ,Θ
m
2 , · · · ,Θm

n ] for then received sensing results on channelm. The conditional

channel availability probability can be computed iteratively as follows.

PA
m(Θ

m
1 ) =

[

1 +
ηm

1− ηm
× (δm1 )

1−Θm
1 (1− δm1 )Θ

m
1

(ǫm1 )
Θm

1 (1− ǫm1 )1−Θm
1

]−1

(2.36)

PA
m(~Θ

m
n ) = PA

m(Θ
m
1 ,Θ

m
2 , · · · ,Θm

n )

=

{

1 +

[

1

PA
m(Θ

m
1 ,Θ

m
2 , · · · ,Θm

n−1)
− 1

]

×

(δmn )
1−Θm

n (1− δmn )Θ
m
n

(ǫmn )
Θm

n (1− ǫmn )1−Θm
n

}−1

, n = 2, · · · , N. (2.37)

Opportunistic Channel Access

LetDm(t) be a decision variable indicating whether channelm will be accessed in time slot

t. It is defined as

Dm(t) =











0, if channelm is considered idle

1, otherwise
for m = {1, 2, · · · ,M}. (2.38)
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Based on the spectrum sensing resultPA
m(~Θ

m
N), channelm will be accessed (i.e., whenDm(t) = 0)

with probabilityPD
m (~Θm

N), and it will not be accessed (i.e., whenDm(t) = 1) with probability

1− PD
m (~Θm

N). We show how to computePD
m (~Θm

N) in the following.

For primary user protection, the probability that a CR transmission collides with primary user

transmissions should be smaller with a threshold prescribed by the primary network, denoted by

γm for channelm. The primary user protection condition can be written as

[

1− PA
m(~Θ

m
N)
]

PD
m (~Θm

N) ≤ γm. (2.39)

To maximize the CR network throughput,PD
m (~Θm

N) should be set to a probability as large as pos-

sible, as allowed by the maximum collision rate constraint.We have from (2.39)

PD
m (~Θm

N) = min

{

γm

1− PA
m(~Θ

m
N)
, 1

}

. (2.40)

Let A(t) := {m|Dm(t) = 0} be the subset of channels that are identified to be idle in time

slot t. Then its complement setB(t) = A(t) is the subset of channels that are believed to be

busy in time slott (i.e., being used by primary users). We next investigate howto effectively

assign the channels inA(t) to the CR transmitters and how to choose transmit power for theCR

transmitters, such that the CR network throughput is maximized under interference and collision

rate constraints.

Channel Interference Model

We consider CCI among CR users sharing the same licensed channeland ACI for both CR

and primary users in this paper. The CCI and ACI models are presented in the following.

Co-channel Interference CCI is caused by the CR user transmissions sharing the same channel

as the victim receiver. Before introducing the interferencemodel, we define index variablesxmk
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indicating the channel assignment for the CR links as follows:

xmk =











1, if channelm is used by CR linkk

0, otherwise,
m = 1, 2, · · · ,M, k = 1, 2, · · · , K.

(2.41)

Let Tk andRk be the transmitter and receiver of CR linkk, respectively. The CCI at CR

receiverk on channelm, denoted byCm
k , is

Cm
k =

∑

i∈Φ,i 6=k

Gm
Ti,Rk

Pm
i x

m
i

=
∑

i∈Φ

Gm
Ti,Rk

Pm
i x

m
i −Gm

Tk,Tk
Pm
k x

m
k , (2.42)

whereGm
Ti,Rk

is the channel gain from CR transmitteri to CR receiverk on channelm, Pm
i is the

transmit power of CR transmitteri on channelm, andΦ := {1, 2, · · · , K} is the set of transmit-

ter/receiver pairs in the CR network.

Adjacent Channel Interference In addition to CCI, a CR receiver may also be interfered by

transmissions on an adjacent channel, when the channels arenot strictly orthogonal. The interferer

could be either a CR transmitter or a primary transmitter (e.g., the primary base station) on the

adjacent channel. Such ACI is shown to be harmful with testbedexperiments in a recent work [29].

Due to the imperfect design of band-pass filters, a portion ofthe power on the adjacent channel

may leak to the channel being used by CR users. Such leakage is also considered as noise. For

ease of explanation, we only consider the ACI from a direct neighboring channel in this paper. Let

β+1
m be the ratio of leakage power from channel(m+ 1) tom, andβ−1

m the ratio of leakage power

from channel(m− 1) tom. We term these leakage power ratiosACI factor, which depends on the

spectral properties, such as inter-channel distance and channel width, and band-pass filter design.
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For a channelm, if its adjacent channel(m+ 1) is idle, then the ACI is due to the concurrent

CR transmissions on channel(m+ 1). We have

AC+1
m,k = [1−Dm+1(t)]β

+1
m

∑

i∈Φ,i 6=k

Gm+1
Ti,Rk

Pm+1
i xm+1

i

= [1−Dm+1(t)]β
+1
m Cm+1

k . (2.43)

Alternatively, if the adjacent channel(m + 1) is busy, then the ACI is caused by a primary trans-

mission on channel(m+ 1). We have

AP+1
m,k = Dm+1(t)β

+1
m Gm+1

0,Rk
Qm+1, (2.44)

whereGm+1
0,Rk

is the channel gain from the primary transmitter to CR receiver k on channel(m+1),

andQm+1 is the transmit power of the primary transmitter on channel(m+ 1).

Similarly, ACI on channelm may also come from the adjacent channel on the other side, i.e.,

channel(m − 1). We defineAC−1
m,k andAP−1

m,k as the interference due to CR transmission and

primary transmission on channelm− 1, respectively. These can be computed as

AC−1
m,k = [1−Dm−1(t)]β

−1
m Cm−1

k (2.45)

AP−1
m,k = Dm−1(t)β

−1
m Gm−1

0,Rk
Qm−1. (2.46)

The total ACI on channelm from its two adjacent channels can be written as

Amk = AC+1
m,k + AP+1

m,k + AC−1
m,k + AP−1

m,k. (2.47)

Without loss of generality, we assumeAC−1
1,k ,AP−1

1,k ,AC+1
M,k andAP+1

M,k are all zero for channels1

andM . This is because the adjacent channels0 and(M + 1) are used by neither primary nor CR

users.
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On the other hand, primary users may also be interfered by CR users transmitting on an

adjacent channel. If channelm is used by primary userj and channel(m+ 1) is available for CR

user access, the ACI received by the primary user is

BC+1
m,j = [1−Dm+1(t)]β

+1
m

∑

i∈Φ

Gm+1
Ti,j

Pm+1
i xm+1

i . (2.48)

The ACI received by the primary user from CR transmissions on channel(m− 1) is

BC−1
m,j = [1−Dm−1(t)]β

−1
m

∑

i∈Φ

Gm−1
Ti,j

Pm−1
i xm−1

i . (2.49)

Considering ACI from both sides of channelm, the total ACI at a primary receiver can be written

as:

Bm
j = BC+1

m,j + BC−1
m,j. (2.50)

Again, we assumeBC−1
1,j andBC+1

M,j are zero for the two edge channels 1 andM .

2.5.2 Channel Selection and Power Allocation

Problem Statement

At each CR receiver, both types of interference from co-channel and adjacent channels are

treated as noise. Letυmk be the SNR at CR receiverk on channelm. Thenυmk can be written as

υmk =
Gm

Tk,Rk
Pm
k x

m
k

N0 + Cm
k + Amk

, (2.51)

whereN0 is the channel noise power. The objective is to maximize the capacity of the CR network

as approximated by Shannon capacity. Without loss of generality, we assume that each channel
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has unit bandwidth (e.g.,1 MHz). The objective function becomes

max
Pm
k
,xm

k

∑

k∈Φ

∑

m∈A(t)

log2(1 + υmk ). (2.52)

Since each CR user is able to access one channel in each time slot, we have the following

channel access constraint.

∑

m∈A(t)

xmk ≤ 1, for all k ∈ Φ. (2.53)

Furthermore, each CR transmitter is limited by a peak power constraint. That is

∑

m∈A(t)

Pm
k x

m
k ≤ Γ, for all k ∈ Φ. (2.54)

As discussed, the interference from CR transmissions to primary users should be bounded.

Recall thatB(t) is the set of busy channels andPm is the set of primary users using channelm.

Letting the ACI bound beΩ, we have

Bm
j ≤ Ω, for all m ∈ B(t), j ∈ Pm. (2.55)

Problem (2.52) with constraints (2.53), (2.54) and (2.55) maximizes the CR network capacity

while bounding the total interference (i.e., both CCI and ACI) to primary users. Note that the

maximum collision rate constraint caused by CR transmissions (2.39) is satisfied by choosing the

channelm access probabilityPD
m (~Θm

N) as in (2.40). Based on spectrum sensing results, we need to

determine channel access (as given by thexmk ’s) as well transmit powers (as given by thePm
k ’s) for

CR users. This is an MINLP problem, which is NP-hard in generaland cannot be solved exactly

in polynomial time. For this problem, we first describe belowhow to derive upper and lower

bounds with a centralized algorithm, and then present a distributed algorithm that decomposes
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Problem (2.52) into a channel assignment subproblem and a power allocations subproblem in the

next section.

Centralized Algorithm and Performance Bounds

In this section, we first obtain an upper bound by relaxing theproblem with RLT [45]. The

lower bound is then computed with a sequential fixing (SF) algorithm [8, 47]. To obtain a linear

relaxation of the MINLP problem, we first allow the binary variablesxmk to take real values in

[0, 1]. Second, the product termPm
k x

m
k is replaced by a substitution variableφmk = Pm

k x
m
k . Since

0 ≤ Pm
k ≤ Γ and0 ≤ xmk ≤ 1, we derive the followingRLT bound-factor product constraints.



































(Pm
k − 0)(xmk − 0) ≥ 0

(Pm
k − 0)(1− xmk ) ≥ 0

(Γ− Pm
k )(xmk − 0) ≥ 0

(Γ− Pm
k )(1− xmk ) ≥ 0

(2.56)

Rearranging the terms, we have



































φmk ≥ 0

Pm
k − φmk ≥ 0

Γxmk − φmk ≥ 0

Pm
k + Γxmk − φmk ≤ Γ.

(2.57)

Finally, the logarithm termlog2(1+υ
m
k ) in the objective function can be decomposed into the

difference between two logarithm terms, denoted byymk andzmk , respectively, as follows.

log2(1 + υmk ) = log2(N0 + Cm
k + Amk +Gm

Tk,Rk
Pm
k x

m
k )− log2(N0 + Cm

k + Amk )

= ymk − zmk , (2.58)
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Figure 2.12: The polyhedral outer approximation of a logarithm functiony = log2(x) in x0 ≤ x ≤
x3.

whereymk := log2(N0+C
m
k +Amk +Gm

Tk,Rk
Pm
k x

m
k ) andzmk := log2(N0+C

m
k +Amk ). For a general

logarithm termlog2(x), we can linearize it over some tightly bounded regions with apolyhedral

outer approximation. For example, ifx is bounded byx0 ≤ x ≤ xL, we can determineL evenly

spaced points as

xl = x0 +
l

L
(xL − x0), for l = 0, 1, · · · , L. (2.59)

Then the logarithmic functiony = log2(x) can be substituted with the following linear constraints.











y ≥ log2(xL)−log2(x0)
xL−x0

(x− x0) + log2(x0)

y ≤ 1
ln(2)xl

(x− xl) + log2(xl), for l = 0, 1, · · · , L.
(2.60)

In this paper, we use a four-pointer (i.e.,L = 3) tangential approximation. The upper and lower

bound ofymk and zmk can be obtained by lettingφmk be 0 andΓ, respectively. The five linear

constraints given in (2.60) that form the polyhedral outer approximation are plotted in Fig. 2.12.
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Table 2.2: Sequential Fixing (SF) Algorithm

1: Use RLT to linearize the original problem;
2: Solve the LP relaxation;
3: Find the minimum value among allxmk and1− xmk ;
4: IF (the minimum value is in the form of1− xm′

k′ )
5: Fix xm

′

k′ to 1;
6: Fix all xmk′ to 0 for all m 6= m′;
7: ELSE
8: Fix xm

′

k′ to 0;
9: END IF
10: IF (allxmk ’s are fixed)
11: Go to Step 16;
12: ELSE
13: Reformulate and solve a new LP relaxation based on all

thexmk ’s that have been fixed;
14: Go to Step 3;
15: END IF
16: Formulate and solve a new LP for thePm

k ’s;
17: Substitute thexm

′

k′ ’s andPm
k ’s into (2.52) to obtain a lower

bound on the CR network capacity;

With the above three-step relaxations, we thus obtain a linear programming (LP) relaxation for

Problem (2.52). Solving the LP relaxation with an LP solver,we can obtain a possibly infeasible

solution due to the relaxations, which can serve as anupper boundfor the original problem.

We next present an SF Algorithm in Table 2.2 for deriving a feasible near-optimal solution.

In Steps3 − 9, the variablexm
′

k′ that is closest to0 or 1 is chosen and rounded to the nearest

binary integer. Oncexm
′

k′ is fixed to1, all the other variablesxmk′ with the same subscriptk′ are

fixed to 0, due to constraint (2.53). Then the problem can be reformulated with a reduced size,

and solved again iteratively, until all the binary variables xmk ’s are fixed. In Step16, the transmit

powersPm
k ’s are derived when the channel assignment is determined. Note that here we still need

to formulate and solve an LP relaxation with respect to the logarithmic terms, since even when the

binary variables are fixed, the problem is still non-convex.Finally, in Step17, we substitute the

near-optimal feasible solution into the original objective function (2.52) to obtain alower bound

for the global optimum.
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Generally, solving such an LP relaxation may produce an infeasible solution to the original

problem due to the relaxations. A local search algorithm is then needed to find a feasible solution in

the neighborhood. However, local search is not necessary inour problem. First, the SF algorithm

determines binary values for all thexmk ’s, such that constraint (2.41) is satisfied. Second, from the

RLT bound-factor product constraints (2.57), we have thatφmk = Pm
k whenxmk = 1; andφmk = 0

whenxmk = 0. Once all thexmk ’s are set to binary values, by replacingφmk with Pm
k or 0, the

linear inequality constraints now only contain thePm
k ’s. Finally, although we use the polyhedral

outer approximation for the logarithmic terms, these termsare all in the objective function (2.52).

It is easy to show that the feasible solutions of the relaxed LP problem is a subset of the feasible

solution of the original problem, since the constraints of the original problem is a subset of those

of the relaxed LP problem. Therefore, a feasible problem to the LP relaxation is also feasible to

the original problem. We only need to substitute the feasible solution into the original objective

function (2.52) to obtain the corresponding objective value, which is a lower bound for the original

problem.

In our simulations, we find the upper bound quite loose, but the lower bound is reasonably

tight. The average-case time complexity of thesimplex method, a popular LP solving algorithm,

is O(n log n) for a problem with sizen [48]. Thus the computational complexity of one iteration

in SF isO(MK log(MK)). Since the number of iterations in SF isMK in the worst case, the

overall average-case computational complexity of SF isO(M2K2 log(MK)).

Distributed Algorithm

The Algorithm Although the SF algorithm in Table 2.2 can compute a near-optimal solution in

polynomial time, it is a centralized algorithm that needs toknow all the channel gains. In this

section, we present a distributed greedy algorithm for solving Problem (2.52). With this algorithm,

each CR transmitter estimates channel gains from itself to primary users and all other CR receivers,

and each CR receiver estimates channel gains from the primarybase station and all other CR

transmitters.
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Table 2.3: Channel Assignment Algorithm for CR Linkk

1: Initializexmk = 1 for all m ∈ A(t) andAk(t) = A(t);
2: WHILE (|Ak(t)| > 1)
3: Run the power allocation algorithm given in Table 2.4;
4: Find the channelm′ with the minimumUm′

k value:
m′ = argminm∈Ak(t) U

m
k (~P );

5: Setxm
′

k = 0 and removem′ fromAk(t);
6: END WHILE
7: Run the power allocation algorithm given in Table 2.4

with all thexmk ’s determined.

The distributed algorithm consists of two tiers: (i) the upper tier is achannel assignment

algorithm, which decides which channel to access for a CR transmitter, and (ii) the low tier is a

power allocation algorithm, which decides how much power can be allocated to transmit oneach

available channel. In the channel assignment algorithm, weassume the transmit powers have been

allocated to each available channel; the power allocation,denoted by anM ×K vector ~P , can be

obtained from the power allocation algorithm. Define the capacity of CR linkk if it uses channel

m as

Um
k = log2(1 + υmk ). (2.61)

Then in each loop, the channel with the lowestUm
k (~P ) is removed from the available channel set

Ak(t) and the correspondingxmk is set to0, until only one available channel is left. The complete

channel assignment algorithm is presented in Table 2.3. With the algorithm, initially we assume

CR transmitterk uses all the channels inA(t) in Step 1. Then in Steps2−6, we iteratively remove

the channels with the minimum capacity gain, until only one channel is left. Finally, the transmit

power is determined for the chosen channel in Step 7.

In the power allocation algorithm, the main idea is to iteratively allocate a small amount of

power∆ to the CR link that can achieve the largest increase in (2.52).The algorithm is presented

in Table 2.4. Let~∆m
k be a vector whose[(k − 1)×M +m]-th element is∆ and all other elements

are 0, indicating that power∆ is allocated to CR linkk on channelm. Obviously, if CR linkk is

allocated with the additional power∆, the throughput of this CR link will increase; if another CR
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Table 2.4: Power Allocation Algorithm for CR Linkk

1: InitializePm
k = 0 for all k ∈ Φ andm ∈ Ak(t);

2: CalculateEARNm
k for all m ∈ Ak(t);

3: IF (
∑

m∈A(t)P
m
k +∆≤ Γ) & (Bm

j (~P + ~∆m
k )≤Ω for j ∈Pm)

4: EARNm
k =

∑

n∈A(t)[U
n
k (
~P + ~∆m

k )− Un
k (
~P )];

5: ELSE
6: EARNm

k = 0;
7: END IF
8: CalculateCOSTmk′,k for all k′ 6= k andm ∈ Ak′(t), where

Costmk′,k =
∑

n∈A(t)[U
n
k (
~P + ~∆m

k′)− Un
k (
~P )];

9: Broadcast allEARNm
k andCOSTmk′,k to all other CR links;

10: CalculatePROFITmk for all k ∈ Φ andm ∈ Ak(t), where
PROFITmk = EARNm

k +
∑

k 6=k′ COST
m
k,k′ ;

11: Find{m′, k′} = argmaxk∈Φ&m∈Ak(t) PROFIT
m
k ;

12: IF (PROFITm
′

k′ > 0)
13: ~P = ~P + ~∆m′

k′ ;
14: Go to Step 2;
15: ELSE.
16: The algorithm is terminated with solution~P ;
17: END IF

link k′ 6= k is allocated with the additional power∆, the throughput of CR linkk will decrease. The

increase and decrease of the throughput of the CR link are termedearningandcost, respectively:

EARNm
k is the throughputincreasefor CR link k on channelm if it gets the additional power∆;

COSTmk′,k is the throughputdecreasefor CR link k if another CR linkk′ 6= k on channelm wins

the additional power allocation∆. In Steps3 − 7, we calculateEARNm
k , but set it to0 if either

(2.54) or (2.55) is not satisfied. In Steps10−11, the net throughput gains (or,profit) of all possible

power allocations are calculated and the combination with the largest profit is selected. In Steps

12 − 13, the CR link with the largest positive profit wins the additional power allocation∆, if its

profit is positive. Otherwise, the power allocation algorithm is terminated with solution~P , because

no further power allocation can improve the total throughput.

A Simple Example To better explain our distributed algorithm, consider a simple example with

two CR users 1 and 2. As shown in Fig. 2.13, for each channelm, CR transmitter 1 calculates
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Figure 2.13: An example of the distributed algorithm operation with two CR users.

EARNm
1 andCOSTm2,1 and CR transmitter 2 calculatesEARNm

2 andCOSTm1,2. The two nodes

then broadcast the values to each other. Once a node receivestheCOST from the other node,

it calculates itsPROFIT as shown in the figure. The power~∆m
k is allocated to the node with

the largerPROFITmk . This power allocation algorithm is terminated if bothPROFITmk from

the two nodes are non-positive. Once the power allocation algorithm is terminated, the channel

with the lowestUm
k (~P ) is removed from the available channel setAk(t), until only one available

channel is left, as given in Table 2.3.

2.5.3 Performance Evaluation

We evaluate the performance of the proposed algorithms using MATLAB (for solving the LP

relaxations). For the results reported in this section, there areM = 6 licensed channels (unless

otherwise specified) with identical transition probabilitiesP 01
m = 0.4 andP 10

m = 0.3 for all m. The

maximum collision probability with primary users isγm = 0.2 for all m. The transmit power of

primary base station is30 dBm and the maximum acceptable interference for the primary users is

Ω = 10 dBm. There areK = 6 transmitter and receiver pairs in the CR network. The power of
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CR transmitter is limited toΓm = 27 dBm for allm. The false alarm probability isǫmn = 0.3 and

the miss detection probability isδmn = 0.3 for all m andn, unless otherwise specified. Rayleigh

block fading channels are used in the simulations.

We consider four types of results: (i) the upper bound obtained by solving the RLT relaxation

as presented in Section 2.5.2; (ii) the centralized SF algorithm solution given in Table 2.2 (a lower

bound); (iii) the distributed greedy algorithm given in Tables 2.3 and 2.4; and (iv) a simple central-

ized heuristic algorithm. With the centralized heuristic algorithm, each CR transmitter chooses the

best available channel to access to exploit multiuser diversity gain. When the channels are assigned

and all thexmk ’s are fixed. Then it solves the reduced problem (2.52) with MATLAB Optimization

Toolbox to find a near-optimal power allocation. Each point in the curves is the average of10

simulations with different random seeds. The95% confidence intervals are plotted as error bars,

which are negligible in all the cases.

We first examine the impact of the number of channelsM on the overall throughput of the CR

network. In Fig. 2.14, we increaseM from 4 to 8, and plot the total throughput of the CR network.

As expected, the more licensed channels, the more spectrum opportunities for CR users and the

higher the network throughput. The curves of both SF and the heuristic algorithm have lower slop

than that of the distributed greedy algorithm. It implies that the greedy algorithm is more efficient

in exploiting the addition spectrum opportunities for CR transmissions. We find the upper bound

quite loose, while the lower bound is reasonably tight.

In Fig. 2.15, we investigate the impact of primary user channel utilizationη on the CR network

throughput. The throughput curves achieved by the algorithms are plotted whenη is increased

from 0.3 to 0.7. Clearly, a smallerη allows more spectrum opportunities for CR transmissions.

When the primary users get more busy, the spectrum opportunities for CR users decreases and the

throughput of all the three algorithms decreases. It can be seen from the figure that all the three

curves decrease asη gets larger. The CR network throughput of the distributed greedy algorithm

is better than that of the simple heuristic algorithm and that of the centralized SF algorithm. In

particular, whenη = 0.3, the distributed greedy algorithm achieves a normalized throughput gain
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Figure 2.14: CR network throughput versus the number of licensed channels.
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Figure 2.15: CR network throughput versus primary user channel utilization.

of 27.84% over the simple heuristic algorithm, and a normalized throughput gain of 117.62% over

SF. Whenη = 0.7, the distributed algroithm achieves normalized throughput gains of 19.98% and

73.67% over the simple heuristic and SF, respectively.

Next we examine the impact of spectrum sensing errors on the CRnetwork throughput.

In Fig. 2.16, we test five pairs of{ǫ, δ} values as follows:{0.2, 0.48}, {0.24, 0.38}, {0.3, 0.3},
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Figure 2.16: CR network throughput versus spectrum sensing error probabilities.

{0.38, 0.24}, and{0.48, 0.2}. The CR network throughputs achieved by the algorithms are plot-

ted in the figure. It is interesting to see that the throughputperformance gets worse when the

probability of one of the two sensing errors gets large. We can trade-off between false alarm and

miss detection probabilities to find the optimal operating point for spectrum sensing. Again, the

throughput performance of the greedy algorithm is superiorto that of the heuristic algorithm and

doubles that of the SF algorithm.

We then investigate the impact of the ACI factorβ on the CR network throughput. The

simulation results are presented in Fig. 2.17, whereβ is increased from0 to 0.5. As expected, the

CR network throughput is degraded by the presence of ACI. The severer the ACI, the lower the CR

network throughput. Whenβ is increased from 0 to 0.5, the throughput degradations are 4.0647

Mbps, 3.8068 Mbps, and 3.3793 Mbps for the distributed algorithm, the simple heuristic, and SF,

respectively. The distributed greedy algorithm outperforms both the simple heuristic algorithm and

SF with considerable gaps for the entire range ofβ considered.

We also measure both types of interference in the simulations and exam the impact of the ACI

factorβ on channel interference. In Fig. 2.18, we increaseβ from 0 to 0.5 with step0.1 and plot

the measured average interference in the plots. The total average interference for each licensed
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Figure 2.17: CR network throughput versus the ACI factor.

channel is shown in Fig. 2.18(a), which consists of both ACI and CCI. It can be seen that the total

interference increases asβ gets larger, since there is more power leakage from adjacentchannels.

The ACI and CCI components are plotted in Figs. 2.18(b) and 2.18(c), respectively. It can be seen

that ACI almost linearly increases withβ. Whenβ = 0, ACI is zero for all the three schemes since

there is no power leakage from neighboring channels. Whenβ = 0.5, the ACI of the proposed

distributed scheme is about 92.32% of that of the simple heuristic and 58.93% of that of SF. The

proposed distributed algorithm curve has the lowest slop among the three schemes, indicating more

effective control of ACI asβ increases. The fractions of ACI in the total average interference are

plotted in Fig. 2.18(d) for the three schemes. The fraction increases asβ gets larger, from 0% to

about 22%. Clearly ACI should be considered in the resource allocation and protocol design of

CR networks.

Finally, we validate our proposed spectrum sensing and access scheme. We set the maximum

allowable collision probabilityγ to be0.2 and increase channel utilizationη from 0.3 to 0.7 in

steps of0.1. In Fig. 2.19, the measured collision rates with primary uses are plotted, along with the

γ = 0.2 curve. It can be seen that the measured collision rate is always kept belowγ, showing that

52



0 0.1 0.2 0.3 0.4 0.5

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Adjacent Channel Interference Factor  (β)

A
ve

ra
ge

 C
ha

nn
el

 In
te

rf
er

en
ce

 (µ
W

)
Lower bound
Proposed scheme
Heuristic scheme

(a) Average total interference on a channel

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Adjacent Channel Interference Factor (β)

A
ve

ra
ge

 A
dj

ac
en

t C
ha

nn
el

 In
te

rf
er

en
ce

 (µ
W

)

Lower bound
Proposed scheme
Heuristic scheme

(b) Average ACI on a channel

0 0.1 0.2 0.3 0.4 0.5
0.8

1

1.2

1.4

1.6

1.8

2

Adjacent Channel Interference Factor (β)

A
ve

ra
ge

 C
o−

ch
an

ne
l I

nt
er

fe
re

nc
e 

(µ
W

)

Lower bound
Proposed scheme
Heuristic scheme

(c) Average CCI on a channel

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

Adjacent Channel Interference Factor (β)

P
or

tio
n 

of
 A

C
I i

n 
T

ot
al

 In
te

rf
er

en
ce

Lower bound
Proposed scheme
Heuristic scheme

(d) Portion of ACI in the total interference

Figure 2.18: Composition of the total interference measuredin the simulations as a function of
ACI factorβ.

the proposed spectrum sensing and access scheme is quite effective with regard to primary user

protection.

2.6 Conclusions

In this chapter, we first studied the problem of design and analysis of MAC protocols for

CR networks in this chapter. In particular, we proposed and analyzed two opportunistic multi-

channel MAC protocols, adopting a memoryless sensing policy and an improved sensing policy,

respectively. The impact of imperfect sensing (in the formsof miss detection and false alarm)
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Figure 2.19: Interference.

are explicitly considered in the CR MAC design. We developed analytical models to evaluate the

performance of the proposed protocols. Our simulation study demonstrates the accuracy of the

analysis, as well as the superior throughput performance ofthe proposed CR MACs over existing

approaches.

Then, we investigated the problem of CCI and ACI mitigation via channel assignment and

power allocation in CR networks. The objective was to maximize the total CR network throughput

while keeping both collision rate and interference with primary users below tolerance thresholds.

We proposed an RLT-based centralized SF algorithm that computes near-optimal solutions, and a

distributed greedy algorithm that only uses local channel gain information. The proposed algo-

rithms are evaluated with simulations. The distributed greedy algorithm is shown to outperform

both the centralized SF algorithm and a centralized heuristic algorithm with considerable gains.
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Chapter 3

Video over CR Networks

3.1 Introduction

Video content delivery over wireless networks is expected to grow drastically in the coming

years. The compelling need for ubiquitous video content access will significantly stress the ca-

pacity of existing and future wireless networks. To meet this critical demand, the Cognitive Radio

(CR) technology provides an effective solution that can effectively exploit co-deployed networks

and aggregate underutilized spectrum for future video-aware wireless networks.

The high potential of CRs has attracted substantial interest.The mainstream CR research

has focused on developing effective spectrum sensing and access techniques (eg., see [14, 15]).

Although considerable advances have been achieved, the important problem of guaranteeing ap-

plication performance has not been well studied. We find video streaming can make excellent

use of the enhanced spectrum efficiency in CR networks. Unlikedata, where each bit should be

delivered, video is loss-tolerant and rate-adaptive [49, 50]. They are highly suited for CR net-

works, where the available bandwidth depends on primary user transmission behavior. Graceful

degradation of video quality can be achieved as spectrum opportunities evolve over time.

CR is an evolving concept with various network models and levels of cognitive functional-

ity [14, 15]. IEEE 802.22 Wireless Regional Area Networks (WRAN) is the first CR standard for

reforming broadcast TV bands, where a base station (BS) controls medium access for customer-

premises equipments (CPEs) [51]. Therefore, we first consider multicasting scalable videos in

such an infrastructure-based CR network. The spectrum consists of multiple channels, each al-

located to a primary network. The CR network is co-located with the primary networks, where

a CR BS seeks spectrum opportunities for multicasting multiple video streams, each to a group

of secondary subscribers. The problem is to exploit spectrum opportunities for minimizing video
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distortion, while keeping the collision rate with primary users below a prescribed threshold. We

consider scalable video coding, such as fine-grained-scalability (FGS) and medium grain scalable

(MGS) videos [52, 53]. We model the problem of CR video multicast over the licensed channels

as a mixed integer nonlinear programming (MINLP) problem, and then develop a sequential fixing

algorithm and a greedy algorithm to solve the MINLP, while the latter has a low computational

complexity and a proved optimality gap [8].

We then tackle the problem of video over multi-hop CR networks, e.g., a wireless mesh net-

work with CR-enabled nodes. This problem is more challenging than the problem above due to the

lack of infrastructure support. We assume each secondary user is equipped with two transceivers.

To model and guarantee end-to-end video performance, we adopt the amplify-and-forward ap-

proach for video data transmission, which is well-studied in the context of cooperative communi-

cations [54]. This is equivalent to setting up a “virtual tunnel” through a multi-hop multi-channel

path. The challenging problem, however, is how to set up the virtual tunnels, while the available

channels at each relay evolve over time due to primary user transmissions. The formulated MINLP

problem is first solved using a centralized sequential fixingalgorithm, which provides upper and

lower bounds for the achievable video quality. We then applydual decomposition to develop a

distributed algorithm and prove its optimality as well as the convergence condition [9].

The rest of the chapter is organized as follows. We review related work in Section 3.2 and

present preliminaries in Section 3.3. We examine video overinfrastructure-based CR networks in

Section 3.4 and over multi-hop CR networks in Section 3.5. We concludes the chapter in Sec-

tion 3.6 with a discussion of open problems.

3.2 Background and Related Work

The high potential of CRs has attracted considerable interestform both industry, government

and academia [1, 14]. The mainstream CR research has been focused on spectrum sensing and

dynamic spectrum access issues. For example, the impact of spectrum sensing errors on the design

of spectrum access schemes has been addressed in several papers [6, 24, 55, 56]. The approach
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of iteratively sensing a selected subset of available channels has been developed in the design of

CR MAC protocols [6, 20, 57]. The optimal trade-off between the two kinds of sensing errors is

investigated comprehensively and addressed in depth in [24].

The important issue of QoS provisioning in CR networks has been studied only in a few pa-

pers [20, 58], where the objective is still focused on the so-called “network-centric” metrics such

as maximum throughput and delay [20,55]. In [55], an interesting delay throughput trade-off for a

multi-cell cognitive radio network is derived, while the goal of primary user protection is achieved

by stabilizing a virtual “collision queue”. In [58], a game-theoretic framework is described for

resource allocation for multimedia transmissions in spectrum agile wireless networks. In this in-

teresting work, each wireless station participates in a resource management game, which is coordi-

nated by a network moderator. A mechanism-based resource management scheme determines the

amount of transmission opportunities to be allocated to various users on different frequency bands

such that certain global system metrics are optimized.

The problem of video over CR networks has been addressed only in a few recent papers.

In [59], a priority virtual queue model is adopted for wireless CR users to select channel and

maximize video qualities. In [60], the impact of system parameters residing in different network

layers are jointly considered to achieve the best possible video quality for CR users. The problem

is formulated as a Mini-Max problem and solved with a dynamicprogramming approach. In [61],

Ali and Yu jointly optimize video parameter with spectrum sensing and access strategy. A rate-

distortion model is adopted to optimize the intra-mode selection and source-channel rate with a

partially observable Markov decision process (POMDP) formulation. In [62], video encoding

rate, power control, relay selection and channel allocation are jointly considered for video over

cooperative CR networks. The problem is formulated as a mixed-integer nonlinear problem and

solved by a solution algorithm based on a combination of the branch and bound framework and

convex relaxation techniques.

Video multicast, as one of the most important multimedia services, has attracted considerable

interest from the research community. Layered video multicast has been researched in the mobile
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ad hoc networks [63, 64] and infrastructure-based wirelessnetworks [52, 65]. A greedy algorithm

is presented in [65] for layered video multicast in WiMAX networks with a proven optimality gap.

A few recent works [47, 66, 67] have studied multi-hop CR networks. The authors formulate

cross-layer optimization problem considering factors from the PHY up to the transport layer. The

dual decomposition technique [68, 69] is adopted to developdistributed algorithm. We choose

similar methodology in our work and apply it to the more challenging problem of real-time video

streaming.

3.3 System Model and Preliminaries

3.3.1 Primary Network

We consider a spectrum band consisting ofM orthogonal channels with identical band-

width [21]. We assume that theM channels are allocated toK primary networks, which cover

different service areas. A primary network can use any of theM channels without interfering

with other primary networks. We further assume that the primary systems use a synchronous slot

structure as in prior work [14, 20]. Due to primary user transmissions, the occupancy of each

channel evolves following a discrete-time Markov process,as validated by recent measurement

studies [14,16,20].

In primary networkk, the status of channelm in time slot t is denoted bySkm(t) with idle

(i.e., Skm(t) = 0) and busy (i.e.,Skm(t) = 1) states. Letλkm andµkm be the transition probability

of remaining in state0 and that from state1 to 0, respectively, for channelm in primary network

k. As discussed in Section 2.3.1, the utilization of channelm in primary networkk, denoted by

ηkm = Pr(Skm = 1), is

ηkm = lim
T→∞

1

T

∑T
t=1S

k
m(t) =

1− λkm
1− λkm + µkm

. (3.1)
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Figure 3.1: An infrastructure-based CR network collocated with N primary networks.

Note that in infrastructure-based CR networks and cooperative CR networks, we assume there

is only oneK = 1 primary network. In infrastructure-based CR networks introduced in the sec-

tion 3.4, we adoptN as the number of licensed channels sinceM is denoted as the number of

modulation-coding schemes.

3.3.2 Infrastructure-based CR Networks

As shown in Fig. 3.1, we consider a CR base station multicastsG real-time videos toG

multicast groups, each of which haveNg users,g = 1, 2, · · · , G. The base station seeks spectrum

opportunities in theN channels to serve CR users. In each time slott, the base station selects a set

of channelsA1(t) to sense and a set of channelsA2(t) to access. Without loss of generality, the

base station has|A1(t)| transceivers such that it can sense|A1(t)| channels simultaneously. Note

that a time slot and channel combination, termed atile, is the minimum unit for resource allocation.

We adopt the same time-slot structure as in [14, 57]. , which is illustrated in Fig. 2.4. At

the beginning of each time slot, the base station senses channels inA1(t) and then chooses a set
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of available channels for opportunistic transmissions based on sensing results. After a successful

transmission, the base station will receive an ACK from the user with the highest SNR in the target

multicast group. Without loss of generality, we assume thateach CR network user can access all

the available channels with the channel bonding/aggregation techniques [44,70].

3.3.3 Multi-hop CR networks

As shown in Fig. 3.3, we also consider a multi-hop CR network that is co-located with the

primary networks, within whichS real-time videos are streamed amongN CR nodes. LetUk

denote the set of CR nodes that are located within the coverageof primary networkk. A video

sessionl may be relayed by multiple CR nodes if sourcezl is not a one-hop neighbor of destination

dl. We assume acommon control channelfor the CR network [20]. We also assume the timescale

of the primary channel process (or, the time slot durations)is much larger than the broadcast delays

on the control channel, such that feedbacks of channel information can be received at the source

nodes in a timely manner.

The time slot structure is the same as that in infrastructure-based CR networks. In the sensing

phase, one transceiver of a CR node is used to sense one of theM channels, while the other is

tuned to the control channel to exchange channel information with other CR users. Each video

source computes the optimal path selection and channel scheduling based on sensing results. In

the transmission phase, the channels assigned to a video session l at each link along the path

form a virtual “tunnel” connecting sourcezl and destinationdl. As illustrated in Fig. 3.4, each

node can use one or more than one channels to communicate withother nodes using the channel

bonding/aggregation techniques [44, 70]. When multiple channels are available on all the links
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Figure 3.4: The cut-through switching model for video data.

along a path, multiple tunnels can be established and used simultaneously for a video session.

In the acknowledgment phase, the destination sends ACK to thesource for successfully received

video packets through the same tunnel.

We adopt amplify-and-forward for video transmission [54].During the transmission phase,

one transceiver of the relay node receives video data from the upstream node on one channel, while

the other transceiver of the relay node amplifies and forwards the data to the downstream node on

a different, orthogonal channel. There is no need to store video packets at the relay nodes. Error

detection/correction will be performed at the destinationnode. As a result, we can transmit through

the tunnel a block of video data with minimum delay and jitterin one time slot.
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3.3.4 Spectrum Sensing

As discussed in Section 2.3.3, two types of sensing errors may occur during the sensing pro-

cess. Afalse alarmmay lead to waste a spectrum opportunity and amiss detectionmay causes

collision with primary users. In a multi-hop CR network, the sensing results from various users

may be different. DenoteH0 as the hypothesis that channelm in primary networkk is idle, and

H1 the hypothesis that channelm in primary networkk is busy in time slott. The conditional

probability that channelm is available in primary networkk, denoted byakm(t), can be derived

as [8],

akm(t) = Pr(H0|Wm
i = θmi , i ∈ Ukm, πkm)

=

[

1 +
(

ϕkm
)ukm

(

φkm
)|Uk

m|−ukm Pr(H1|πkm)
Pr(H0|πkm)

]−1

. (3.2)

whereθmi represents a specific sensing result (0 or 1),Ukm is the subset of users inUk (i.e., the set

of CR nodes that are located within the coverage of primary network k) that sense channelm, ukm

is the number of users inUkm observing channelm is idle,πkm represents the history of channelm

in primary networkk, andϕkm andφkm are defined as:











ϕkm =
P (Wm

i =0|H1)

P (Wm
i =0|H0)

= δm
1−ǫm

, whenθmi = 0

φkm =
P (Wm

i =1|H1)

P (Wm
i =1|H0)

= 1−δm
ǫm

, whenθmi = 1.
(3.3)

Based on the Markov chain channel model, we have (3.4), which can be recursively expanded:











Pr(H0|πkm) = λkma
k
m(t− 1) + µkm

[

1− akm(t− 1)
]

Pr(H1|πkm) = 1− Pr(H0|πkm).
(3.4)

62



3.3.5 Video Performance Measure

Both FGS and MGS videos are highly suited for dynamic CR networks. With FGS or MGS

coding, each videol is encoded into one base layer with rateRb
l and one enhancement layer with

rateRe
l . The total bit rate for videol isRl = Rb

l +Re
l .

We consider peak-signal-noise-ratio (PSNR) (in dB) of reconstructed videos. As in prior

work [8,52], the average PSNR of videol, denoted asQl, can be estimated as:

Ql(Rl) = Qb
l + βl(Rl −Rb

l ) = Q0
l + βlRl, (3.5)

whereQb
l is the resulting PSNR when the base layer is decoded alone,βl a constant depending

on the video sequence and codec setting, andQ0
l = Qb

l − βlRb
l . We verified the model (3.5) with

several test video sequences using the MPEG-4 FGS codec and the H.264/SVC MGS codec and

found it is highly accurate.

Due to the real-time nature, we assume that eachgroup of pictures(GOP) must be delivered

during the next GOP window, which consists ofNG time slots. Beyond that, overdue data from

the current GOP will be useless and will be discarded. In infrastructure-based network,G video

stream are multicast toG groups of CR user, so we choose the group indexg instead of video

session indexl.

3.4 Video over Infrastructure Based CR Networks

In this section, we examine the problem of video over infrastructure-based CR networks. We

consider cross-layer design factors such as scalable videocoding, spectrum sensing, opportunistic

spectrum access, primary user protection, scheduling, error control and modulation. We propose

efficient optimization and scheduling algorithms for highly competitive solutions, and prove the

complexity and optimality bound of the proposed greedy algorithm.
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3.4.1 Network Model

Spectrum Access

At the beginning of each time slott, the CR BS senses theM channels and computean(t) for

each channeln. Based on spectrum sensing results, the base station determines which channels

to access for video streaming. We adopt an opportunistic spectrum access approach, aiming to

exploit unused spectrum while probabilistically boundingthe interference to primary users.

Let γn ∈ (0, 1) be themaximum allowed collision probabilitywith primary users on channel

n, andptrn (t) thetransmission probabilityon channeln for the base station in time slott. The prob-

ability of collision caused by the base station should be kept belowγn, i.e.,ptrn (t) [1− an(t)] ≤ γn.

In addition to primary user protection, another important objective is to exploit unused spectrum

as much as possible. The transmission probability can be determined by jointly considering both

objectives, as

ptrn (t) =











min
{

1, γn
1−an(t)

}

, if 0 ≤ an(t) < 1

1, if an(t) = 1.
(3.6)

If ptrn (t) = 1, channeln will be accessed deterministically. Ifptrn (t) = γn/[1− an(t)] < 1, channel

n will be accessed opportunistically with probabilityptrn (t).

Modulation-Coding Schemes

At the PHY layer, we consider various modulation and channelcoding combination schemes.

Without loss of generality, we assume several choices of modulation schemes, such as QPSK, 16-

QAM and 64-QAM, combined with several choices of forward error correction (FEC) schemes,

e.g., with rates 1/2, 2/3, and 3/4. We considerM unique combinations of modulation and FEC

schemes, termedModulation-Coding(MC) schemes, in this paper.

Under the same channel condition, different MC schemes willachieve different data rates

and symbol error rates. Adaptive modulation and channel coding allow us to exploit user channel

variations to maximize video data rate under a given residual bit error rate constraint. When a user
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has a good channel, it should adopt an MC scheme that can support a higher data rate. Conversely,

it should adopt a low-rate MC scheme when the channel condition is poor. Let{MCm}m=1,··· ,M be

the list of available MC schemes indexed according to their data rates in the increasing order. We

assume slow fading channels with coherence time larger thana time slot. Each CR user measures

its own channel and feedbacks measurements to the base station when its channel quality changes.

At the beginning of a time slot, the base station is able to collect the numberng,m of users in each

multicast groupg who can successfully decodeMCm signals form = 1, 2, · · · ,M .

Since the base layer carries the most important data, the most reliable MC schemeMCb(g)

should be used, whereb(g) = maxi{i : ng,i = Ng}, for all g. Without loss of generality, we

assume that the base layer is always transmitted usingMC1. If a user’s channel is so poor that

it cannot decode theMC1 signal, we consider it disconnected from the CR network. We further

divide the enhancement layer intoM sub-layers, where sub-layerm has rateRe
g,m and usesMCm.

Assuming thatMCm can carrybg,m bits of videog in one tile, we denote the number of tiles for

sub-layerm of videog aslg,m ≥ 0. We have

Re
g =

M
∑

m=1

Re
g,m =

M
∑

m=1

bg,mlg,m. (3.7)

Proportional Fair Allocation

Since we consider video quality in this paper, we define the utility for user i in groupg as

Ug,i = logQg,i = log
(

Qb
g + βgR

e
g(i)
)

, whereRe
g(i) is the received enhancement layer rate of user

i in groupg.

The total utility for groupg is Ug =
∑Ng

i=1 Ug,i. Intuitively, a lower layer should use a lower

(i.e., more reliable) MC scheme. This is because if a lower layer is lost, a higher layer cannot be

used at the decoder even if it is correctly received. Considering the user classification based on

their MC schemes, we can rewriteUg as follows [65]:

Ug =
M
∑

k=1

(ng,k − ng,k+1) log

(

Qb
g + βg

k
∑

m=1

Re
g,m

)

, (3.8)
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whereng,M+1 = 0. The utility function of the entire CR video multicast systemis

U =
G
∑

g=1

Ug. (3.9)

MaximizingU will achieveproportional fairnessamong the video sessions [71]

3.4.2 Optimized Video Multicast in CR Networks

Outline of the Proposed Approach

As discussed, the CR video multicast problem is highly challenging since a lot of design

choices are tightly coupled. First, as users see different channels, such heterogeneity should be

accommodated so that a user can receive a video quality commensurate to its channel quality. Sec-

ond, we need to determine the video rates before transmission, which, however, depend on future

channel evolution and choice of MC schemes. Third, the trade-off between primary user protection

and spectrum utilization should guide the scheduling of video packets to channels. Finally, all the

optimization decisions should be made in real-time. Low-complexity, but efficient algorithms are

needed, while theoretical optimality bounds would be highly appealing.

To address heterogeneous user channels, we adopt FGS to produce a base layer with rateRb
g

and an enhancement layer with rateR̄e
g. Without loss of generality, we assumeRb

g is prescribed for

an acceptable video quality, whilēRe
g is set to a large value that is allowed by the codec. During

transmission, we determine theeffective ratefor each enhancement layerRe
g ≤ R̄e

g depending on

channel availability, sensing, and MC schemes.1 The optimal partition of the enhancement layer

should be determined such that each sub-layer uses a different MC scheme.

We determine the optimal partition of enhancement layers, the choices of MC schemes, and

video packet scheduling as follows. First, we solve the optimal partition problem for every GoP

based on an estimated (i.e., average) number of available tiles Te in the next GoP window that

can be used for the enhancement layer, using algorithm GRD1 with complexityO(MGTe). The

1The proposed approach can also be used for streaming stored FGS video.
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tile allocations are then dynamically adjusted in each timeslot according to more recent (and thus

more accurate) channel status using algorithm GRD2, with complexityO(MGK), whereK ≪ Te.

Second, during each time slot, video packets are scheduled to the available channels such that the

overall system utility is maximized. The TSA algorithm has complexityO(N logN). Both GRD2

and TSA have low complexity and are suitable for execution ineach time slot.

In real-time video, overdue packets generally do not contribute to improving the received

quality. We assume that the data from a GoP should be be delivered in the next GoP window

consisting ofTGoP time slots.2 Since the base layer is essential for decoding a video, we assume

that the base layers of all the videos are coded usingMC1. For theM sub-layers of the enhance-

ment layer, a more important sub-layer will be coded using a more reliable (i.e., lower rate) MC

scheme. At the beginning of each GoP window, all the base layers are transmitted using the avail-

able tiles.Retransmissionswill be scheduled if no ACK is received for a base layer packet.After

the base layers are transmitted, we allocate the remaining available tiles in the GoP window for

the enhancement layer. The same rule applies to the enhancement sub-layers, such that a higher

sub-layer will be transmitted if and only if all the lower sub-layers are acknowledged. This is due

to the decoding dependency of layered video.

In each time slott, the base station opportunistically access every channeln with probability

ptrn (t) given in (3.6). Specifically, for each channeln, the base station generates a random number

xn(t), which is independent of the channel historyθn(t) and uniformly distributed in [0,1]. If

xn(t) ≤ ptrn (t), the most important packet among those not ACKed in the previous GoP will

be transmitted on channeln. If an ACK is received for this packet at the end of time slott,

this packet is successfully received by at least one of the users and will be removed from the

transmission buffer. Otherwise, there is a collision with primary user and this packet will remain

in the transmission buffer and will be retransmitted.

In the following, we describe in detail the three algorithms.

2The proposed approach also works for the more general delay requirements that are multiple GoP windows.
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Enhancement Layer Partitioning and Tile Allocation

As a first step, we need to determine the effective rate for each enhancement layerRe
g ≤ R̄e

g.

We also need to determine the optimal partition of each enhancement layer. Clearly, the solutions

will be highly dependent on the channel availability processes and sensing results.

Recall that the base layers are transmitted usingMC1 first in each GoP window. Theremain-

ing available tiles can then be allocated to the enhancement layers. We assume that the number of

tiles used for the enhancement layers in a GoP window,Te, is known at the beginning of the GoP

window. For example, we can estimateTe by computing the total average “idle” intervals of all

theN channels based on the channel model, decreased by the numberof tiles used for the base

layers (i.e.,Rb
g/bg,1). We then split the enhancement layer of each videog intoM sub-layers, each

occupyinglg,m tiles when coded withMCm,m = 1, 2, · · · ,M .

Letting~l = [l1,1, l1,2, · · · , l1,M , l2,1, · · · lG,M ] denote thetile allocation vector, we formulate

an optimization problem OPT-Part as follows.

maximize:U(~l) =
G
∑

g=1

M
∑

k=1

(ng,k − ng,k+1)× log

[

Qb
g + βg

k
∑

m=1

bg,mlg,m

]

(3.10)

subject to:
G
∑

g=1

M
∑

m=1

lg,m ≤ Te (3.11)

M
∑

m=1

bg,mlg,m ≤ R̄e
g, g ∈ [1, · · · ,M ] (3.12)

lg,m ≥ 0, m ∈ [1, · · · ,M ], g ∈ [1, · · · , G]. (3.13)

OPT-Part is solved at the beginning of each GoP window to determine the optimal partition of the

enhancement layer. The objective is to maximize the overallsystem utility by choosing optimal

values for thelg,m’s. We can derive the effective video rates asRe
g =

∑M
m=1 bg,mlg,m. The for-

mulated problem is a MINLP problem, which is NP-hard [65]. Inthe following, we present two

algorithms for computing near-optimal solutions to problem OPT-Part: (i) asequential fixing(SF)
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algorithm based on a linear relaxation of (3.10), and (ii) agreedy algorithmGRD1 with proven

optimality gap.

A Sequential Fixing Algorithm With this algorithm, the original MINLP is first linearized to

obtain a linear programming (LP) relaxation. Then we iteratively solve the LP, while fixing one in-

teger variable in every iteration [47,72]. We use theReformulation-Linearization Technique(RLT)

to obtain the LP relaxation [45]. RLT is a technique that can beused to produce LP relaxations for

a nonlinear, nonconvex polynomial programming problem. This relaxation will provide a tight up-

per bound for a maximization problem. Specifically, we linearize the logarithm function in (3.10)

over some suitable, tightly-bounded interval using a polyhedral outer approximation comprised of

a convex envelope in concert with several tangential supports. We further relax the integer con-

straints, i.e., allowing thelg,m’s to take fractional values. Then we obtain an upper-bounding LP

relaxation that can be solved in polynomial time. Due to lackof space, we refer interested readers

to [45] for a detailed description of the technique.

We next solve the LP relaxation iteratively. During each iteration, we find thelĝ,m̂ which has

the minimum value for(⌈lĝ,m̂⌉ − lĝ,m̂) or (lĝ,m̂ − ⌊lĝ,m̂⌋) among all fractionallg,m’s, and round it

up or down to the nearest integer. We next reformulate and solve a new LP withlĝ,m̂ fixed. This

procedure repeats until all thelg,m’s are fixed. The complete SF algorithm is given in Table 3.1. The

complexity of SF depends on the specific LP algorithm (e.g., thesimplex methodwith polynomial-

time average-case complexity).

A Greedy Algorithm Although SF can compute a near-optimal solution in polynomial time, it

does not provide any guarantee on the optimality of the solution. In the following, we describe

a greedy algorithm, termed GRD1, which exploits the inherentpriority structure of layered video

and MC schemes and has a proven optimality bound.

The complete greedy algorithm is given in Table 3.2, whereR =
∑G

g=1 R̄
e
g is the total rate

of all the enhancement layers and~ei is a unit vectorwith “1” at the i-th location and “0” at all

other locations. In GRD1, all thelg,m’s are initially set to 0. During each iteration, one tile is
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Table 3.1: The Sequential Fixing (SF) Algorithm
1: Use RLT to linearize the original problem
2: Solved the LP relaxation
3: Supposelĝ,m̂ is the integer variable with the minimum

(⌈lĝ,m̂⌉ − lĝ,m̂) or (lĝ,m̂ − ⌊lĝ,m̂⌋) value among alllg,m
variables that remain to be fixed, round it up or down to the
nearest integer

4: If all lg,m’s are fixed, got to Step 6
5: Otherwise, reformulate a new relaxed LP with the newly

fixed lg,m variables, and go to Step 2
6: Output all fixedlg,m variables andRe

g =
∑M

m=1 bg,mlg,m

Table 3.2: The Greedy Algorithm (GRD1)
1: Initialize lg,m = 0 for all g andm
2: InitializeA = {1, 2, · · · , G}
3: WHILE

(

∑G
g=1

∑M
m=1 lg,m ≤ Te andA is not empty

)

4: Findlĝ,m̂ that can be increased by one:

~eĝ,m̂ = argmaxg∈A,m∈[1,··· ,M ]

{

U(~l+~eg,m)−U(~l)

bg,m+R/Te

}

5: ~l = ~l + ~eĝ,m̂
6: IF

(
∑

m bĝ,mlĝ,m > R̄e
g

)

7: ~l = ~l − ~eĝ,m̂
8: Deleteĝ fromA
9: END IF
10: END WHILE

allocated to thêm-th sub-layer of videôg. In Step 4,lm̂,ĝ is chosen to be the one that achieves the

largest increase in terms of the “normalized” utility (i.e., [U(~l+~eg,m)−U(~l)]/[bg,m+R/Te]) if it is

assigned with an additional tile. Lines 6, 7, and 8 check if the assigned rate exceeds the maximum

rateR̄e
g. GRD1 terminates when either all the available tiles are usedor when all the video data

are allocated with tiles. In the latter case, all the videos are transmitted at full rates. We have the

following Theorem for GRD1.

Theorem 3.1. The greedy algorithm GRD1 shown in Table 3.2 has a complexityO(MGTe). It

guarantees a solution that is within a factor of(1− e−1/2) of the global optimal solution.
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Proof. (i) Complexity: In Step 4 in Table 3.2, it takesO(MG) to solve for~eĝ,m̂. Since each iteration

assigns one tile to sub-layer̂m of groupĝ, it takesTe iterations to allocate all the available tiles in

a GoP window. Therefore, the overall complexity of GRD1 isO(MGTe).

(ii) Optimality Bound: This proof is extended from a result first shown in [65] for layered

videos. We first show a property of group utilityUg(~l), which will be used in the proof of the

optimality gap. For two vectors~l1g and~l2g, letting∆ = Ug(~l
1
g)− Ug(~l2g), we have

∆ =
M
∑

k=1

(ng,k − ng,k+1)× log

(

1 +

∑k
m=1 βgbg,m(l

1
g,m − l2g,m)

Qb
g +

∑k
m=1 βgbg,ml

2
g,m

)

≤
M
∑

k=1

k
∑

m=1

(l1g,m − l2g,m)+(ng,k − ng,k+1)× log

(

1 + βgbg,m/

[

Qb
g +

k
∑

m=1

βgbg,ml
2
g,m

])

≤
M
∑

k=1

M
∑

m=1

(l1g,m − l2g,m)+(ng,k − ng,k+1)× log

(

1 + βgbg,m/

[

Qb
g +

k
∑

m=1

βgbg,ml
2
g,m

])

=
M
∑

m=1

(l1g,m − l2g,m)+
[

Ug(~l
2
g + bg,m)− U(~l2g)

]

, (3.14)

wherey+ = max{0, y}. The first inequality is due to the concavity of logarithm functions.

Next we prove the optimality bound. Let~lt be the output of GRD1 aftert iterations. Let the

utility gap between the optimal solution and the GRD1 solution beFt = U(~l∗)−U(~lt), and~eĝ,m̂(t)

the argument found in Step 4 of GRD1 aftert iterations. We have~lt = ~lt−1 + ~eĝ,m̂(t) and

Ft−1 = U(~l∗)− U(~lt−1)

≤
∑

g

∑

m

(l∗g,m − lg,m)+[U(~lt−1 + ~eg,m(t))− U(~lt−1)]

≤
∑

g

∑

m

(l∗g,m − lg,m)+[U(~lt−1 + ~eĝ,m̂(t))− U(~lt−1)]
bg,m +R/Te
bĝ,m̂(t) +R/Te

≤ U(~lt)− U(~lt−1)

bĝ,m̂(t) +R/Te

∑

g

∑

m

[l∗g,m(bg,m +R/Te)].
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The first inequality is due to (3.14) and the second inequality follows Step 4 of GRD1. It follows

(3.11) that
∑

g

∑

m l
∗
g,m ≤ Te and

∑

g

∑

m bg,ml
∗
g,m ≤ R. We haveFt−1 ≤ (Ft−1−Ft) 2R

bĝ,m̂(t)+R/Te
.

Solving forFt, we haveFt ≤ Ft−1 {1− [bĝ,m̂(t) +R/Te] /(2R)}.

Suppose theWHILE loop in Table 3.2 has been executedk times when the solution is obtained.

Fk ≤ Fk−1 {1− [bĝ,m̂(k) +R/Te] /(2R)}

≤ F0

k
∏

t=1

{1− [bĝ,m̂(t) +R/Te] /(2R)}

≤ F0

{

1− 1/(2kR)
k
∑

t=1

[bĝ,m̂(t) +R/Te]

}k

.

TheWHILE loop exits when one or both of two constraints are violated. If
∑

g

∑

m lg,m ≤ Te is

violated, there is no tile that can be used. Thereforek ≥ Te and
∑k

t=1R/Te ≥ R. If constraint “A

is not empty” is violated, all the videos have been allocatedsufficient number of tiles and will be

transmitted at full rates. We have
∑k

t=1 bĝ,m̂(t) ≥ R in this case. It follows that

Fk ≤ F0

{

1− 1/(2kR)
k
∑

t=1

[bĝ,m̂(t) +R/Te]

}k

≤ F0 [1− 1/(2k)]k ≤ F0e
−1/2.

SinceF0 = U(~l∗), we haveU(~lk) ≥ (1 − e−1/2)U(~l∗). Therefore, we conclude that the GRD1

solution is bounded by(1− e−1/2)U(~l∗) andU(~l∗).

A Refined Greedy Algorithm GRD1 computeslg,m’s based on an estimate of network status

~S(t) in the nextTGoP time slots. Due to channel dynamics, the computedlg,m’s may not be exactly

accurate, especially whenTGoP is large. We next present a refined greedy algorithm, termed GRD2,

which adjusts thelg,m’s based on more accurate estimation of the channel status.

GRD2 is executed at the beginning of every time slot. It estimates the number of available

tiles Te(t) in the nextTest successive time slots, where1 ≤ Test ≤ TGoP is a design parameter

depending on the coherence time of the channels. Such estimates are more accurate than that in
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GRD1 since they are based on recently received ACKs and recent sensing results. Specifically, we

estimateTe(t) using the belief vector~a(t) in time slott. Recall thatan(t)’s are computed based

on the channel model, feedback, sensing results, and sensing errors, as given in (3.2), and (3.4).

For the next time slot,an(t + 1) can be estimated aŝan(t + 1) = λnan(t) + µn[1 − an(t)] =

(λn − µn)an(t) + µn. Recursively, we can derivêan(t+ τ) for the nextτ time slots.

ân(t+ τ) = (λn − µn)τan(t) + µn
1− (λn − µn)τ
1− (λn − µn)

. (3.15)

At the beginning section of a GoP window, all the base layers will be firstly transmitted.

We start the estimation after all the base layers have been successfully received (possibly with

retransmissions). The number of available tiles in the following Test time slots can be estimated

asTe(t) =
∑N

n=1

∑tmin

τ=0 ân(t + τ), whereân(t + 0) = an(t) andtmin = min{Test − 1, TGoP −

(t modTGoP )}. Te(t) may not be an integer, but it does not affect the outcome of GRD2.

We then adjust thelg,m’s based onTe(t) andNack(t), the number of ACKs received in time slot

t. If Te(t)+Nack(t−1) > Te(t−1)+Nack(t−2), there are more tiles that can be allocated and we

can increase some of thelg,m’s. On the other hand, ifTe(t)+Nack(t−1) < Te(t−1)+Nack(t−2),

we have to reduce some of thelg,m’s. Due to layered videos, when we increase the number of

allocated tiles, we only need to considerlg,m for m = m′,m′ + 1, · · · ,M , whereMCm′ is the

highest MC scheme used in the previous time slot. Similarly,when we reduce the number of

allocated tiles, we only need to considerlg,m for m = m′,m′ + 1, · · · ,M .

The refined greedy algorithm is given in Table 3.3. For time slot t, the complexity of GRD2

is O(MGK), whereK = |Nack(t − 1) − Nack(t − 2) + Te(t) − Te(t − 1)|. SinceK ≪ Te, the

complexity of GRD2 is much lower than GRD1, suitable for execution in each time slot.

Tile Scheduling in a Time Slot

In each time slott, we need to schedule the remaining tiles for transmission ontheN channels.

We define Inc(g,m, i) to be the increase in the group utility functionU(g) after thei-th tile in the
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Table 3.3: The Refined Greedy Algorithm (GRD2) for Each Time Slot
1: Initialize lg,m = 0 for all g andm
2: InitializeA = {1, 2, · · · , G}
3: InitializeNack(0) = 0
4: EstimateTe(1) based on the Markov Chain channel model
5: Use GRD1 to find alllg,m’s based onTe(1)
6: WHILE t = 2 to TGoP
7: EstimateTe(t)
8: IF [Te(t) +Nack(t− 1) < Te(t− 1) +Nack(t− 2)]

9: WHILE
[

∑G
g=1

∑M
m=1 lg,m > Te(t) +Nack(t− 2)

]

10: Findlĝ,m̂ that can be reduced by 1:

~eĝ,m̂ = argmin∀g,m∈{m′,··· ,M}

{

U(~l)−U(~l−~eg,m)

bg,m+R/Te

}

11: ~l = ~l − ~eĝ,m̂
12: IF (ĝ /∈ A)
13: Add ĝ toA
14: END IF
15: END WHILE
16: END IF
17: IF [Te(t) +Nack(t− 1) > Te(t− 1) +Nack(t− 2)]

18: WHILE
[

∑G
g=1

∑M
m=1 lg,m ≤ Te(t) +Nack(t− 1) and

A is not empty]
19: Findlĝ,m̂ that can be increased by 1

~eĝ,m̂ = argmaxg∈A,m∈{m′,··· ,M}

{

U(~l+~eg,m)−U(~l)

bg,m+R/Te

}

20: ~l = ~l + ~eĝ,m̂
21: IF

(
∑

m bĝ,mlĝ,m > R̄e
g

)

22: ~l = ~l − ~eĝ,m̂
23: Deletêg fromA
24: END IF
25: END WHILE
26: END IF
27: UpdateNack(t− 1)
28: END WHILE

sub-layer usingMCm is successfully decoded. It can be shown that

Inc(g,m, i) =
M
∑

k=m

(ng,k − ng,k+1)× log

[

1 +
βgbg,m

Qb
g + βg

∑m−1
u=1 bg,ulg,u + (i− 1)βgbg,m

]

.

Inc(g,m, i) can be interpreted as thereward if the tile is successfully received.
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Table 3.4: Algorithm for Tile Scheduling in a Time Slot
1: Initializemg to the lowest MC that has not been ACKed for allg
2: Initialize ig to the first packet that has not been ACKed for allg
3: Sort{cn(t)} in decreasing order. Let the sorted channel list be

indexed byj.
4: While (j = 1 toN )
5: Find the group having the maximum increase inU(g):

ĝ = argmax∀g Inc(g,mg, ig)
6: Allocate the tile on channelj to groupĝ
7: Updatemĝ andiĝ
8: End while

Letting cn(t) be the probability that the tile is successfully received, then we havecn(t) =

ptrn (t)an(t). Our objective of tile scheduling is to maximize the expected reward, i.e.,

maximize: E[Reward(~ξ)] =
N
∑

n=1

cn(t) · Inc(ξn), (3.16)

where~ξ = {ξn}n=1,··· ,N andξn is the tile allocation for channeln, i.e., representing the three-tuple

{g,m, i}. The TSA algorithm is shown in Table 3.4, which solves the above optimization problem.

The complexity of TSA isO(N logN). We have the following theorem for TSA.

Theorem 3.2.E[Reward] is maximized if Inc(ξi) > Inc(ξj) whenci(t) > cj(t) for all i andj.

Proof. Suppose there exists a pair ofi andj where Inc(ξi) > Inc(ξj) andci(t) < cj(t). We can

further increase E[Reward] by switching the tile assignment, i.e., assign channeli to ξj and channel

j to ξi. With this new assignment, the net increase in E[Reward] is

cj(t)Inc(ξi) + ci(t)Inc(ξj)− ci(t)Inc(ξi)− cj(t)Inc(ξj)

= [cj(t)− ci(t)][Inc(ξi)− Inc(ξj)] > 0.

Therefore E[Reward] is maximized when the{Inc(ξi)} and{ci(t)} are in the same order.
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3.4.3 Simulation Results

We evaluate the performance of the proposed CR video multicast framework using a cus-

tomized simulator implemented with a combination of C and MATLAB. Specifically, the LPs are

solved using the MATLAB Optimization Toolbox and the remaining parts are written in C. For

the results reported in this section, we haveN = 12 channels (unless otherwise specified). The

channel parametersλn andµn are set between(0, 1). The maximum allowed collision probability

γn is set to 0.2 for all the channels unless otherwise specified.

The CR base station multicasts three Common Intermediate Format (CIF,352 × 288) video

sequences to three multicast groups, i.e.,Bus to group 1,Foremanto group 2, andMother &

Daughterto group 3. Then1,m’s are{42, 40, 36, 30, 22, 12} (i.e., 42 users can decodeMC1

signal, 40 users can decodeMC2 signal, and so forth); then2,m’s are{51, 46, 40, 32, 23, 12} and

then3,m’s are{49, 44, 40, 32, 24, 13}. The number of bits carried in one tile using the MC schemes

are 1 kb/s, 1.5 kb/s, 2 kb/s, 3 kb/s, 5.3 kb/s, and 6 kb/s, respectively. We chooseTGoP=150 and

Test = 10, sensing intervalW = 3, false alarm probabilityǫn = 0.3 and miss detection probability

δn = 0.25 for all n, unless otherwise specified.

In every simulation, we compare three schemes: (i) a simple heuristic scheme that equally

allocates tiles to each group (Equal Allocation); (ii) A scheme based on SF (Sequential Fixing),

and (iii) a scheme based on the greedy algorithm GRD2 (Greedy Algorithm). These schemes

have increasing complexity in the order of Equal Allocation, Greedy Algorithm, and Sequential

Fixing. They differ on how to solve Problem OPT-Part, while the same tile scheduling algorithm

and opportunistic spectrum access scheme are used in all theschemes. Each point in the figures is

the average of 10 simulation runs, with 95% confidence intervals plotted. We observe that the 95%

confidence intervals for Equal Allocation and Greedy Algorithm are negligible, while the 95%

confidence intervals for Sequential Fixing is relatively larger. The C/MATLAB code is executed

in a Dell Precision Workstation 390 with an Intel Core 2 Duo E6300 CPU working at 1.86 GHz

and a 1066 MB memory. For number of channels ranging fromN=3 toN=15, the execution times
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Figure 3.5: Average PSNR of all multicast users.

of Equal Allocation and Greedy Algorithm are about a few milliseconds, while Sequential Fixing

takes about two seconds.

In Fig. 3.5 we plot the average PSNR among all users in each multicast group. For all the

groups, Greedy Algorithm achieves the best performance, with up to 4.2 dB improvements over

Equal Allocation and up to 0.6 dB improvements over Sequential Fixing. We find Sequential

Fixing achieves a lower PSNR than Equal Allocation for group3, but higher PSNRs for groups

1 and 2. This is because Equal Allocation does not consider channel conditions and fairness. It

achieves better performance for group 3 at the cost of much lower PSNRs for groups 1 and 2. We

also plot Frame 53 from the originalBussequence and the decoded video at user 1 of group 1 in

Fig 3.6. We choose this user since it is one of the users with lowest PSNR values. The average

PSNR of this user is 29.54 dB, while the average PSNR of all group 1 users is 34.6 dB. Compared

to the original frame (right), the reconstructed frame (left) looks quite good, although some details

are lost.

In Fig. 3.7, we examine the impact of the maximum allowed collision probabilityγn. We

increaseγn from 0.1 to 0.3, and plot the average PSNR values among all theusers. Whenγn

gets larger, there will be higher chance of collision for thevideo packets, which hurts the received
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Figure 3.6: The original (the right one) and decoded Frame 53(the left one) at user 1 in group 1.
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Figure 3.7: Average PSNR of all users versusγn (with 95% confidence intervals).

video quality. However, a higherγn also allows a higher transmission probabilityptrn (t) for the base

station (see (3.6)), thus allowing the base station to grab more spectrum opportunities and achieve

a higher video rate. The net effect of these two contradicting effects is improved video quality

for the range ofγn values considered in this simulation. This is illustrated in the figure where all

the three curves increase asγn gets larger. We also observe that the curves for Sequential Fixing

and Equal Allocation are roughly parallel to each other, while the Greedy Algorithm curve has a

steeper slope. This indicates that Greedy Algorithm is moreefficient in exploiting the additional

bandwidth allowed by an increasedγn.
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Figure 3.8: Average PSNR of all users versusN (with 95% confidence intervals).

In Fig. 3.8, we examine the impact of number of channelsN . We increaseN from 3 to 15

in steps of 3, and plot the average PSNR values of all multicast users. As expected, the more

channels, the more spectrum opportunities for the CR networks, and the better the video quality.

Again, we observe that the Greedy Algorithm curve has the steepest slope, implying it is more

efficient in exploiting the increased spectrum opportunityfor video transmissions.

We demonstrate the impact of sensing errors in Fig. 3.9. We test five sets of{ǫn, δn} values

as follows:{0.10, 0.38}, {0.30, 0.25}, {0.5, 0.17}, {0.70, 0.10} and{0.9, 0.04} [24], and plot the

average PSNR values of all users. It is quite interesting to see that the video quality is not very

sensitive to sensing errors. Even asǫn is increased nine times from 10% to 90%, there is only

0.58 dB reduction (or a 1.5% normalized reduction) in average PSNR when Greedy Algorithm

is used. The same can be observed for the other two curves. We conjecture that this is due to

the opportunistic spectrum access approach adopted in all the three schemes. A special strength

of the proposed approach is that it explicitly considers both types of sensing errors and mitigates

the impact of both sensing errors. For example, when the false alarm rate is very high, the base

station will not trust the sensing results and will access the channel relatively more aggressively,

thus mitigating the negative effect of the high false alarm rate.
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Figure 3.9: Average PSNR of all users for various{ǫn, δn} values (with 95% confidence intervals).

Finally, we demonstrate the impact of user channel variations (i.e., due to mobility). We chose

a tagged user in group 1 and assume that its channel conditionchanges every 20 GoPs. The highest

MC scheme that the tagged user can decode is changed according to the following sequence:

MC3, MC5, MC4, MC6, MC5 and MC3. All other parameters remain the sameas in the previous

experiments. In Fig. 3.10, we plot the average PSNRs for each GoP at this user that are obtained

using the three algorithms. We observe that both Greedy Algorithm and Sequential Fixing can

quickly adapt to changing channel conditions. Both algorithms achieve received video qualities

commensurate with the channel quality of the tagged user. Wealso find the video quality achieved

by Greedy Algorithm is more stable than that of Sequential Fixing, while the latter curve has some

deep fades from time to time. This is due to the fact that Greedy Algorithm has a proven optimality

bound, while Sequential Fixing does not provide any guarantee. The Equal Allocation curve is

relative constant for the entire period since it does not adapt to channel variations. Although being

simple, it does not provide good video quality in this case.

For optimization-driven multimedia systems, there is a trade-off between (i) grabbing all the

available resource to maximize media quality and (ii) be less adaptive to network dynamics for a

smooth playout. The main objective of this paper is to demonstrate the feasibility and layout the
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Figure 3.10: GoP average PSNRs of a tagged user in Group 1, whenits channel condition varies
over time.

framework for video streaming over infrastructure-based CRnetworks, using an objective function

of maximizing the overall user utility. We will investigatethe interesting problem of trading off

resource utilization and smoothness in our future work.

3.5 Video over Multi-hop CR Networks

In this section, we examine the problem of video over multi-hop CR networks. We model

streaming of concurrent videos as an MINLP problem, aiming to maximize the overall received

video quality and fairness among the video sessions, while bound the collision rate with primary

users under spectrum sensing errors. We solve the MINLP problem using a centralized sequen-

tial fixing algorithm, and derive upper and lower bounds for the objective value. We then apply

dual decomposition to develop a distributed algorithm and prove its optimality and convergence

conditions.
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3.5.1 Network Model

Spectrum Access

During the transmission phase of a time slot, a CR user determines which channel(s) to ac-

cess for transmission of video data based on spectrum sensing results. Letκkm be a threshold for

spectrum access: channelm is considered idle if the estimateakm is greater than the threshold, and

busy otherwise. The availability of channelm in primary networkk, denoted asAkm, is

Akm =











0, akm ≥ κkm

1, otherwise.
(3.17)

For each channelm, we can calculate the probability of collision with primaryusers as:

Pr(Akm = 0|H1) =
∑

i∈ψk
m







|Ukm|

i






(1− δm)|U

k
m|−i(δm)

i, (3.18)

where setψkm is defined as:

ψkm =

{

i

∣

∣

∣

∣

∣

[

1 + ϕimφ
|Uk

m|−i
m

Pr(H1|πkm)
Pr(H0|πkm)

]−1

≥ κkm

}

. (3.19)

For non-intrusive spectrum access, the collision probability should be bounded with a prescribed

thresholdγkm. A higher spectrum access thresholdκkm will reduce the potential interference with

primary users, but increase the chance of wasting transmission opportunities. For a given collision

toleranceγkm, we can solvePr(Akm = 0|H1) = γkm for κkm. The objective is to maximize CR users’

spectrum access without exceeding the maximum collision probability with primary users.

LetΩi,j be the set of available channels at link{i, j}. Assumingi ∈ Uk andj ∈ Uk′, we have

Ωi,j =
{

m
∣

∣

∣Akm = 0 andAk
′

m = 0
}

. (3.20)
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Link and Path Statistics

Due to the amplify-and-forward approach for video data transmission, there is no queueing

delay at intermediate nodes. Assume each link has a fixed delay ωi,j (i.e., processing and propaga-

tion delays). LetPAl be the set of all possible paths fromzl to dl. For a given delay requirement

Tth, the set of feasible pathsPl for video sessionl can be determined as:

Pl =







P

∣

∣

∣

∣

∣

∣

∑

{i,j}∈P

ωi,j ≤ Tth, P ∈ PAl







. (3.21)

Let pmi,j be the packet loss rate on channelm at link {i, j}. A packet is successfully delivered

over link {i, j} if there is no loss on all the channels that were used for transmitting the packet.

The link loss probabilitypi,j can be derived as:

pi,j = 1−
∏

m∈M

(1− pmi,j)Im , (3.22)

whereM is set of licensed channels andIm is an indicator:Im = 1 if channelm is used for

the transmission, andIm = 0 otherwise. Assuming independent link losses, the end-to-end loss

probability for pathPhl ∈ Pl can be estimated as:

phl = 1−
∏

{i,j}∈Ph
l

(1− pi,j). (3.23)

3.5.2 Problem Statement

We also aim to achieve fairness among the concurrent video sessions. It has been shown that

proportional fairnesscan be achieved by maximizing the sum of logarithms of video PSNRs (i.e.,

utilities). Therefore, our objective is to maximize the overall system utility, i.e.,

maximize:
∑

l

Ul(Rl) =
∑

l

log(Ql(Rl)). (3.24)
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Multi-hop CR Network Video Streaming Problem

For the system described in Section 2.4.1, the problem of video over multi-hop CR networks

consists of path selection for each video session and channel scheduling for each CR node along

the chosen paths. We define two sets of index variables. For channel scheduling, we have

xl,h,ri,j,m =























1, at link {i, j}, if channelm is

assigned to tunnelr in pathPhl
0, otherwise.

(3.25)

For path selection, we have

yhl =











1, if video sessionl selects pathPhl ∈ Pl
0, otherwise,

(3.26)

Note that the indicators,xl,h,ri,j,m andyhl , are not independent. Ifyhl = 0 for pathPhl , all the

xl,h,ri,j,m’s on that path are0. If link {i, j} is not on pathPhl , all its xl,h,ri,j,m’s are also0. For link {i, j}

on pathPhl , we can only choose those available channels in setΩi,j to schedule video transmission.

That is, we havexl,h,ri,j,m ∈ {0, 1} if m ∈ Ωi,j, andxl,h,ri,j,m = 0 otherwise. In the rest of the paper, we

usex andy to represent the vector forms ofxl,h,ri,j,m andyhl , respectively.

As discussed, the objective is to maximize the expected utility sum at the end ofNG time

slots, as given in (3.24). Sincelog(Ql(E[Rl(0)])) is a constant, (3.24) is equivalent to the sum of

utility increments of all the time slots, as

∑

l

log(Ql(E[Rl(NG)]))− log(Ql(E[Rl(0)]))

=
∑

t

∑

l

{log(Ql(E[Rl(t)]))− log(Ql(E[Rl(t− 1)]))} . (3.27)
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Therefore, (3.24) will be maximized if we maximize the expected utility increment during each

time slot, which can be written as:

∑

l

log(Ql(E[Rl(t)]))− log(Ql(E[Rl(t− 1)]))

=
∑

l

log

(

1 + βl
E[Rl(t)]− E[Rl(t− 1)]

Ql(E[Rl(t− 1)])

)

=
∑

l

∑

h∈Pl

yhl log

(

1+
∑

r

∑

m

βlLpx
l,h,r
zl,z

′

l
,m

NGTsQ
t−1
l

(1− prl,h)
)

=
∑

l

∑

h∈Pl

yhl log

(

1+ρtl
∑

r

∑

m

xl,h,rzl,z
′

l
,m(1− prl,h)

)

,

wherez′l is the next hop fromzl on pathPhl , prl,h is the packet loss rate on tunnelr of pathPhl ,

Qt−1
l = Ql(E[Rl(t− 1)]), andρtl = βlLp/(NGTsQ

t−1
l ).

From (3.22) and (3.23), the end-to-end packet loss rate for tunnelr on pathPhl is:

prl,h = 1−
∏

{i,j}∈Ph
l

∏

m∈M

(1− pmi,j)x
l,h,r
i,j,m . (3.28)

We assume that each tunnel can only include one channel on each link. When there are multiple

channels available at each link along the path, a CR source node can set up multiple tunnels to

exploit the additional bandwidth. We then have the following constraint:

∑

m

xl,h,ri,j,m ≤ 1, ∀ {i, j} ∈ Phl . (3.29)

Considering availability of the channels, we further have,

∑

r

∑

m

xl,h,ri,j,m ≤ |Ωi,j|, ∀ {i, j} ∈ Phl , (3.30)

where|Ωi,j| is the number of available channels on link{i, j} defined in (3.20).
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As discussed, each node is equipped with two transceivers: one for receiving and the other for

transmitting video data during the transmission phase. Hence a channel cannot be used to receive

and transmit data simultaneously at a relay node. We have foreach channelm:

∑

r

xl,h,ri,j,m +
∑

r

xl,h,rj,k,m ≤ 1, ∀ m, l, ∀ h ∈ Pl, ∀ {i, j}, {j, k} ∈ Phl . (3.31)

Let nhl be the number of tunnels on pathPhl . For each sourcezl and each destinationdl, the

number of scheduled channels is equal tonhl . We have for each source node

∑

r

∑

m

xl,h,rzl,z
′

l
,m = nhl y

h
l , ∀ h ∈ Pl, ∀ l. (3.32)

Let d′l be the last hop to destinationdl on pathPhl , we have for each destination node

∑

r

∑

m

xl,h,rd′
l
,dl,m

= nhl y
h
l , ∀ h ∈ Pl, ∀ l. (3.33)

At a relay node, the number of channels used to receive data isequal to that of channels used

to transmit data, due to flow conservation and amplify-and-forward. At relay nodej for sessionl,

assume{i, j} ∈ Phl and{j, k} ∈ Phl . We have,

∑

r

∑

m

xl,h,ri,j,m =
∑

r

∑

m

xl,h,rj,k,m, ∀ h ∈ Pl, ∀ l, ∀ {i, j}, {j, k} ∈ Phl . (3.34)

We also consider hardware-related constraints on path selection. We summarize such con-

straints in the following general form for ease of presentation:

∑

l

∑

h∈Pl

wgl,hy
h
l ≤ 1, ∀ g. (3.35)

To simplify exposition, we choose at most one path inPl for video sessionl. Such a single path

routing constraint can be expressed as
∑

h y
h
l ≤ 1, which is a special case of (3.35) wherew1

l,h = 1

for all h, andwgl′,h = 0 for all g 6= 1, l′ 6= l, andh. We can also have
∑

h y
h
l ≤ ξ to allow up
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to ξ paths for each video session. In order to achieve optimalityin the general case of multi-path

routing, an optimal scheduling algorithm should be designed to dispatch packets to paths with

different conditions (e.g., different number of tunnels and delays).

There are also disjointedness constraints for the chosen paths. This is because each CR node

is equipped with two transceivers and both will be used for a video session if it is included in

a chosen path. Such disjointedness constraint is also a special case of (3.35) with the following

definition forwgl,h for each CR nodeg:

wgl,h =











1, if nodeg ∈ pathPhl
0, otherwise,

(3.36)

Finally we formulate the problem of multi-hop CR network video streaming (OPT-CRV) as:

max:
∑

l

∑

h∈Pl

yhl log

(

1+ ρtl
∑

r

∑

m

xl,h,rzl,z
′

l
,m(1− prl,h)

)

(3.37)

subject to: (3.25) ∼ (3.35).

Centralized Algorithm and Upper/Lower Bounds

Problem OPT-CRV is in the form of MINLP (without continuous variables), which is NP-hard

in general. We first describe a centralized algorithm to derive performance bounds in this section,

and then present a distributed algorithm based on dual decomposition in the next section.

We first obtain a relaxednon-linear programming(NLP) version of OPT-CRV. The binary

variablesxl,h,ri,j,m andyhl are relaxed to take values in [0,1]. The integer variablesnhl are treated as

nonnegative real numbers. It can be shown that the relaxed problem has a concave object function

and the constraints are convex. This relaxed problem can be solved using a constrained nonlinear

optimization problem solver. If all the variables are integer in the solution, then we have the exact

optimal solution. Otherwise, we obtain an infeasible solution, which produces an upper bound for

the problem. This is given in Lines 1∼2 in Table 3.5.
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Table 3.5: The Sequential Fixing Algorithm (SF) for ProblemOPT-CRV
1 : Relax integer variablesxl,h,ri,j,m, yhl , andnhl ;
2 : Solve the relaxed problem using a constrained NLP solver;
3 : if (there isyhl not fixed)
4 : Find the largestyh

′

l′ , where[l′, h′] = argmax{yhl },
and fix it to1;

5 : Fix otheryhl ’s according to constraint (3.35);
6 : Go to Step 2;
7 : end if
8 : if (there isxl,h,ri,j,m not fixed)
9 : Find the largestxl

′,h′,r′

i′,j′,m′ , where[i′, j′,m′, l′, h′, r′] =

argmax{xl,h,ri,j,m}, and set it to 1;
10: Fix otherxl,h,ri,j,m’s according to the constraints;
11: if (there is other variable that is not fixed)
12: Go to Step 2;
13: else
14: Fixnhl ’s based onx andy;
15: Exit with feasible solution{x,y,n};
16: end if
17: end if

We also develop asequential fixing algorithm(SF) for solving OPT-CRV. The pseudo-code is

given in Table 3.5. SF iteratively solves the relaxed problem, fixing one or more integer variables

after each iteration [8, 47]. In Table 3.5, Lines 3∼7 fix the path selection variablesyhl , and Lines

8∼16 fix the channel scheduling variablesxl,h,ri,j,m and tunnel variablesnhl . The tunnel variablesnhl

can be computed using (3.32) afterxl,h,ri,j,m andyhl are solved. When the algorithm terminates, it

produces a feasible solution that yields a lower bound for the objective value.

3.5.3 Dual Decomposition

SF is a centralized algorithm requiring global information. It may not be suitable for multi-hop

wireless networks, although the upper and lower bounds provide useful insights on the performance

limits. In this section, we develop a distributed algorithmfor Problem OPT-CRV and analyze its

optimality and convergence performance.
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Decompose Problem OPT-CRV

Since the domains ofxl,h,ri,j,m defined in (3.29)∼(3.34) for different paths do not intersect with

each other, we can decompose Problem OPT-CRV into two subproblems. The first subproblem

deals with channel scheduling for maximizing the expected utility on a chosen pathPhl . We have

thechannel schedulingproblem (OPT-CS) as:

Hh
l = max

x

∑

r

∑

m

xl,h,rzl,z
′

l
,m(1− prl,h) (3.38)

subject to:(3.29) ∼ (3.34), xl,h,rzl,z
′

l
,m ∈ {0, 1}, for all l, h, r,m.

In the second part, optimal paths are selected to maximize the overall objective function. Letting

F h
l = log

(

1 + ρTl H
h
l

)

, we have the followingpath selectionproblem (OPT-PS):

maximize: f(y) =
∑

l

∑

h

F h
l y

h
l (3.39)

subject to:
∑

l

∑

h∈Pl

wgl,hy
h
l ≤ 1, for all g

yhl ∈ {0, 1}, for all l, h.

Solve the Channel Scheduling Subproblem

We have the following result for assigning available channels at a relay node.

Theorem 3.3. Consider three consecutive nodes along a path, denoted as nodesi, j, andk. Idle

channels 1 and 2 are available at link{i, j} and idle channels 3 and 4 are available at link{j, k}.

Assume the packet loss rates of the four channels satisfyp1i,j > p2i,j andp3j,k > p4j,k. To set up two

tunnels, assigning channels{1, 3} to one tunnel and channels{2, 4} to the other tunnel achieves

the maximum expectation of successful transmission on pathsection{i, j, k}.

Proof. Let the success probabilities on the channels bep̃1i,j = 1−p1i,j, p̃2i,j = 1−p2i,j, p̃3j,k = 1−p3j,k,

andp̃4j,k = 1 − p4j,k. We havep̃1i,j < p̃2i,j andp̃3j,k < p̃4j,k. Comparing the success probabilities of
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the channel assignment given in Theorem 3.3 and that of the alternative assignment, we have

p̃1i,j p̃
3
j,k + p̃2i,j p̃

4
j,k − p̃1i,j p̃4j,k − p̃2i,j p̃3j,k = (p̃1i,j − p̃2i,j)(p̃3j,k − p̃4j,k) > 0. The result follows.

According to Theorem 3.3, a greedy approach, which always chooses the channel with the

lowest loss rate at each link when setting up tunnels along a path, produces the optimal overall

success probability. More specifically, when there is only one tunnel to be set up along a path, the

tunnel should consist of the most reliable channels available at each link along the path. When there

are multiple tunnels to set up along a path, tunnel 1 should consist of the most reliable channels

that are available at each link; tunnel 2 should consist of the second most reliable links available at

each link; and so forth.

Define the set of loss rates of the available channels on link{i, j} asΛi,j = {pmi,j|m ∈ Ωi,j}.

The greedy algorithm is given in Table 3.6, with which each video source node solves Problem

OPT-CS for each feasible path. Lines 2∼3 in Table 3.6 checks if there is more channels to assign

and the algorithm terminates if no channel is left. In Lines 4∼10, links with only one available

channel are assigned to tunnelr and the neighboring links with the same available channels are

removed due to constraint (3.31). In Lines 11∼17, links with more than two channels are grouped

to be assigned later. In Lines 18∼20, the available channel with the lowest packet loss rate is

assigned to tunnelr at each unallocated link, according to Theorem 3.3. To avoidco-channel

interference, the same channel on neighboring links is removed as in Lines 21∼33.

Solve the Path Selection Subproblem

To solve Problem OPT-PS, we first relax binary variablesyhl to allow them take real values in

[0,1] and obtain the followingrelaxed path selectionproblem (OPT-rPS):

maximize: f(y) =
∑

l

∑

h

F h
l y

h
l (3.40)

subject to:
∑

l

∑

h∈Pl

wgl,hy
h
l ≤ 1, for all g

0 ≤ yhl ≤ 1, for all h, l.
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Table 3.6: The Greedy Algorithm for Channel Scheduling
1 : Initialization: tunnelr = 1, link {i, j}’s from zl to dl;
2 : if (|Λi,j| == 0)
3 : Exit;
4 : else if(|Λi,j| == 1)
5 : Assign the single channel inΛi,j,m′, to tunnelr;
6 Check neighboring link{k, i};
7 : if (pm

′

k,i ∈ Λk,i)
8 : Removepm

′

k,i fromΛk,i,
i← k, j ← i and go to Step 2;

9 : else
10: Go to Step 13;
11: end if
12: else
13: PutΛi,j in setΛhl ;
14: if (nodej is not destinationdl)
15: i← j, j ← v;
16: Go to Step 2;
17: end if
18: end if
19: while (Λhl is not empty)
20: Find the maximum valuepm

′

i′,j′ in setΛhl
{i′, j′,m′} = argmin{pmi,j};

21: Assign channelm′ to tunnelr;
22: Remove setΛi′,j′ from setΛhl ;
23: Check neighboring link{k, i} and{j, v};
24: if (pm

′

k,i ∈ Λk,i andΛk,i ∈ Λhl )
25: Removepm

′

k,i fromΛk,i;
26: if (Λk,i is empty)
27: Exit;
28: end if
29: end if
30: if (pm

′

j,v ∈ Λj,v andΛj,v ∈ Λhl )
31: Removepm

′

j,v fromΛj,v;
32: if (Λj,v is empty)
33: Exit;
34: end if
35: end if
36: end while
37: Compute the next tunnel:r ← r + 1 and go to Step 2;
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We then introduce positive Lagrange Multiplierseg for the path selection constraints in Problem

OPT-rPS and obtain the correspondingLagrangian function:

L(y, e) =
∑

l

∑

h

F h
l y

h
l +

∑

g

eg(1−
∑

l

∑

h

wgl,hy
h
l ) (3.41)

=
∑

l

∑

h

(F h
l y

h
l −

∑

g

wgl,hy
h
l eg) +

∑

g

eg

=
∑

l

∑

h

Lhl (yhl , e) +
∑

g

eg.

Problem (3.41) can be decoupled since the domains ofyhl ’s do not overlap. Relaxing the coupling

constraints, it can be decomposed into two levels. At the lower level, we have the following

subproblems, one for each pathPhl ,

max
0≤yh

l
≤1
Lhl (yhl , e) = F h

l y
h
l −

∑

g

wgl,hy
h
l eg. (3.42)

At the higher level, by updating the dual variableseg, we can solve therelaxed dual problem:

min
e≥0

q(e) =
∑

l

∑

h

Lhl
(

(

yhl
)∗
, e
)

+
∑

g

eg, (3.43)

where
(

yhl
)∗

is the optimal solution to (3.42). Since the solution to (3.42) is unique, the relaxed

dual problem (3.43) can be solved using the followingsubgradient methodthat iteratively updates

the Lagrange Multipliers [69]:

eg(τ + 1) =

[

eg(τ)− α(τ)(1−
∑

l

∑

h

wgl,hy
h
l )

]+

, (3.44)

whereτ is the iteration index,α(τ) is a sufficiently small positive step size and[x]+ denotes

max{x, 0}. The pseudo code for the distributed algorithm is given in Table 3.7.
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Table 3.7: Distribution Algorithm for Path Selection
1: Initialization: setτ = 0, eg(0) > 0 and step sizes ∈ [0, 1];
2: Each source locally solves the lower level problem in (3.42);

if (F h
l −

∑

g d
g
l,heg(τ)) > 0) yhl = yhl + s, yhl = min{yhl , 1};

else yhl = yhl − s, yhl = max{yhl , 0};
3: Broadcast solutionyhl (e(τ));
4: Each source updatese according to (3.44) and broadcastse(τ + 1)

through the common control channel;
5: τ ← τ+1 and go to Step 2 until termination criterion is satisfied;

Optimality and Convergence Analysis

The distributed algorithm in Table 3.7 iteratively updatesthe dual variables until they converge

to stable values. In this section, we first prove that the solution obtained by the distributed algorithm

is also optimal for the original path selection problem OPT-PS. We then derive the convergence

condition for the distributed algorithm.

Fact 1 ( [69]). Consider a linear problem involving both equality and inequality constraints

maximize: a′x (3.45)

subject to: h′
1x = b1, · · · , h′

mx = bm

g′
1x ≤ c1, · · · , g′

rx ≤ cr,

wherea, hi, andgj are column vectors inRn, bi’s and cj ’s are scalars, anda′ is the transpose

of a. For any feasible pointx, the set ofactive inequality constraints is denoted byA(x) =
{

j|g′
jx = cj

}

. If x∗ is a maximizer of inequality constrained problem (3.45),x∗ is also a maximizer

of the following equality constrained problem:

maximize: a′x (3.46)

subject to: h′
1x = b1, · · · , h′

mx = bm

g′
jx = cj, ∀ j ∈ A(x).
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Lemma 3.1.The optimal solution for the relaxed primal problem OPT-rPSin (3.40) is also feasible

and optimal for the original Problem OPT-PS in (3.39).

Proof. According to Fact 1, the linearized problem of OPT-PS, i.e.,OPT-rPS, can be rewritten as

an equality constrained problem in the following form:

maximize: F′y (3.47)

subject to: w′
jy = 1, j ∈ A(y∗) (3.48)

0 ≤ yhl ≤ 1, for all h, l,

whereF, wj ’s, andy are column vectors with elementsF h
l , wgl,h, andyhl , respectively. We apply

Gauss-Jordan eliminationto the constraints in (3.48) to solve fory. Since there is not sufficient

number of equations, someyhl ’s are free variables (denoted asyfi ) and the rest are dependent

variables (denoted asydj ). Assuming there arer free variables, the dependent variables can be

written as linear combinations of the free variables after Gauss-Jordan elimination, as

ydj =
r
∑

i=1

w̄ijy
f
i + b̄j, j ∈ A(y∗i ). (3.49)

Due to Gauss-Jordan elimination and binary vectorswj ’s, w̄ij and b̄j in (3.49) are all integers.

Therefore, if all the free variablesyfi attain binary values, then all the dependent variablesydj

computed using (3.49) will also be integers. Since0 ≤ ydj ≤ 1, being integers means that they are

either 0 or 1, i.e., binaries. That is, such a solution will befeasible.

Next we substitute (3.49) into problem (3.47) to eliminate all the dependent variables. Then

we obtain a unconstrained problem with onlyr free variables, as

maximize:
r
∑

i=1

F̄iy
f
i + b̄0 (3.50)

94



Since the free variablesyfi ’s take value in{0, 1}, this problem can be easily solved as follows. If

the coefficientF̄i > 0, we setyfi = 1; otherwise, ifF̄i < 0, we setyfi = 0. Thus (3.50) achieves

its maximum objective value. Once all the free variables aredetermined with their optimal binary

values, we computes the dependent variables using (3.49), which are also binary as discussed

above. Thus we obtain a feasible solution, which is optimal.

Lemma 3.2. If the relaxed primal Problem OPT-rPS in (3.40) has an optimal solution, then the

relaxed dual problem (3.43) also has an optimal solution andthe corresponding optimal values of

the two problems are identical.

Proof. By definition, the problems in (3.41) and (3.43) are primal/dual problems. The primal

problem always has an optimal solution because it is bounded. Since Problem OPT-rPS is an

LP problem, the relaxed dual problem is also bounded and feasible. Therefore the relaxed dual

problem also has an optimal solution. We have thestrong dualityif the primal problem is convex,

which is the case here since Problem OPT-rPS is an LP problem.

We have Theorem 3.4 on the optimality of the path selection solution, which follows naturally

from Lemmas 3.1 and 3.2.

Theorem 3.4. The optimal solution to the relaxed dual problem (3.42) and (3.43) is also feasible

and optimal to the original path selection Problem OPT-PS given in (3.39).

As discussed, the relaxed dual problem (3.43) can be solved using thesubgradient methodthat

iteratively updates the Lagrange Multipliers. We have the following theorem on the convergence

of the distributed algorithm given in Table 3.7.

Theorem 3.5. Let e∗ be the optimal solution. The distributed algorithm in Table3.7 converges if

the step sizesα(τ) in (3.44) satisfy the following condition:

0 < α(τ) <
2 [q(e(τ))− q(e∗) ]

||G(τ)||2 , for all τ, (3.51)
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whereG(τ) is the gradient ofq(e(τ)).

Proof. Sinceq(e(τ)) is a linear function, we have subgradient equality, as

q(e(τ))− q(e∗) = [e(τ)− e∗]′G(τ).

It then follows that

||e(τ)− α(τ)G(τ)− e∗||2

= ||e(τ)−e∗||2 − 2α(τ)[e(τ)−e∗]′G(τ) + (α(τ))2||G(τ)||2

= ||e(τ)−e∗||2 − 2α(τ)[q(e(τ))−q(e∗)] + (α(τ))2||G(τ)||2.

(3.52)

If α(τ) satisfy (3.51), the sum of the last two terms in (3.52) is negative. It follows that,||e(τ) −

α(τ)G(τ)− e∗|| < ||e(τ)− e∗||. Since the projection operation isnonexpansive, we have,

||e(τ + 1)− e∗|| = ||[e(τ)− α(τ)G(τ)]+ − [e∗]+||

≤ ||e(τ)− α(τ)G(τ)− e∗|| < ||e(τ)− e∗||,

which states the conditional convergence of the algorithm.

Since the optimal solutione∗ is not known a priori, we use the following approximation in the

algorithm:α(τ) = q(e(τ))−q̂(τ)
||G(τ)||2

, whereq̂(τ) is the current estimate forq(e∗). We choose the mean

of the objective values of the relaxed primal and dual problems for q̂(τ).

Practical Considerations

Our distributed algorithms are based on the fact that the computation is distributed on each

feasible path. The OPT-CS algorithm requires information onchannel availability and packet loss

rates at the links of feasible paths. The OPT-PS algorithm computes the primal variableyhl for each
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path and broadcasts Lagrangian multipliers over the control channel to all the source nodes. We

assume a perfect control channel such that channel information can be effectively distributed and

shared, which is not confined by the time slot structure [20].

We assume relatively large timescales for the primary network time slots, and small to medium

diameter for the CR network, such that there is sufficient timefor timely feedback of channel

information to the video source nodes and for the distributed algorithms to converge. Otherwise,

channel information can be estimated using (3.4) based on delayed feedback, leading to suboptimal

solutions. If the time slot is too short, the distributed algorithm may not converge to the optimal

solution (see Fig. 3.15). We focus on developing the CR video framework in this paper, and will

investigate these issues in our future work.

3.5.4 Simulation Results

Methodology and Simulation Settings

We implement the proposed algorithms with a combination of Cand MATLAB (i.e., for

solving the relaxed NLP problems), and evaluate their performance with simulations. For the

results reported in this section, we haveK = 3 primary networks andM = 10 channels. There are

56, 55, and 62 CR users in the coverage areas of primary networks 1, 2, and 3, respectively. The

|U1
m|’s are [5 4 6 4 8 7 5 6 7 4] (i.e., five users sense channel 1, four users sense channel 2, and so

forth); the|U2
m|’s are [4 6 5 7 6 5 3 8 5 6], and the|U3

m|’s are [8 6 5 4 7 6 8 5 6 7]. The topology is

shown in Fig. 3.11.

We chooseLp = 100, Ts = 0.02 andNG = 10. The channel utilization isηkm = 0.6 for

all the channels. The probability of false alarm isǫkm = 0.3 and the probability of miss detection

is δkm = 0.2 for all m andk, unless otherwise specified. Channel parametersλkm andµkm are set

between(0, 1). The maximum allowed collision probabilityγkm is set to0.2 for all theM channels

in the three primary networks.

We consider three video sessions, each streaming a video in the Common Intermediate Format

(CIF, 352 × 288), i.e.,Busto destination 1,Foremanto destination 2, andMother & Daughterto
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Figure 3.11: Topology of the multi-hop CR network. Note that only video source nodes, video
destination nodes, and those nodes along the precomputed paths are shown in the topology.

destination 3. The frame rate is 30 fps, and a GOP consists of 10 frames. We assume that the

duration of a time slot is 0.02 seconds and each GOP should be delivered in 0.2 seconds (i.e., 10

time slots).

We compare four schemes in the simulations: (i) the upper-bounding solution by solving the

relaxed version of Problem OPT-CRV using an NLP solver, (ii) the proposed distributed algorithm

in Tables 3.6 and 3.7, (iii) the sequential fixing algorithm given in Table 3.5, which computes a

lower-bounding solution, and (iv) a greedy heuristic whereat each hop, the link with the most

available channels is used. Each point in the figures is the average of 10 simulation runs, with

95% confidence intervals plotted as error bars in the figures. The95% confidence intervals are

negligible in all the figures.

Simulation Results

Algorithm Performance To demonstrate the convergence of the distributed algorithm, we plot

the traces of the four Lagrangian multipliers in Fig. 3.12. We observe that all the Lagrangian

multipliers converge to their optimal values after 76 iterations. We also plot the control overhead

as measured by the number of distinct broadcast messages forei(τ) using the y-axis on the right-

hand side. The overhead curve increases linearly with the number of iterations and gets flat (i.e.,

no more broadcast message) when all the Lagrangian multipliers converge to their optimal values.
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Figure 3.12: Illustrate the convergence of the distributedalgorithm.

We examine the impact of spectrum sensing errors in Fig. 3.13. We test six sensing error

combinations{ǫm, δm} as follows:{0.1, 0.5}, {0.2, 0.3}, {0.3, 0.2}, {0.5, 0.11}, {0.7, 0.06}, and

{0.9, 0.02}, and plot the average PSNR values of the Foreman session. It is interesting to see that

the best video quality is achieved when the false alarm probability ǫm is between0.2 and0.3. Since

the two error probabilities are correlated, increasing onewill generally decrease the other. With

a largerǫm, CR users are more likely to waste spectrum opportunities that are actually available,

leading to lower bandwidth for videos and poorer video quality, as shown in Fig. 3.13. On the

other hand, a largerδm implies more aggressive spectrum access and more severe interference to

primary users. Therefore whenǫm is lower than 0.2 (andδm is higher than 0.3), the CR nodes

themselves also suffer from the collisions and the video quality degrades.

Impact of Primary Network Parameters In Fig. 3.14, we examine the impact of channel uti-

lization η on received video quality. We focus on Session 2 with the Foreman sequence. The

average PSNRs achieved by the four schemes are plotted whenη is increased from0.6 to 0.9

for all licensed channels. Intuitively, a smallerη allows more transmission opportunities for CR

nodes, leading to improved video quality. This is illustrated in the figure where all the four curves
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Figure 3.13: Video PSNRs versus spectrum sensing error.

decrease asη gets larger. The distributed scheme achieves PSNRs very close to that obtained by

sequential fixing, and both of them are close to the upper bound. The heuristic scheme is inefficient

in exploiting the available spectrum even when the channel utilization is low. As discussed, the

time slot duration is also an important parameter that may affect the convergence of the distributed

algorithm. In Fig. 3.15, we keep the same network and video session settings, while increasing the

time slot duration as 4 ms, 10 ms, 20 ms, 40ms and 100 ms. For a given time slot duration, we

let the distributed algorithm run for 5% of the time slot duration, starting from the beginning of

the time slot, and then stop. The solution that the algorithmproduces when it is stopped will be

used for video transmission in the remainder of this time slot. It can be seen that when the time

slot is 4 ms, the algorithm does not converge after 5%×4=0.2 ms, and the PSNR produced by the

distributed algorithm is low (but still higher than that of the heuristic algorithm). When the time

slot duration is sufficiently large (e.g., over 10 ms), the algorithm can converge and the proposed

algorithm produces very good video quality as compared to the upper bound and the lower bound

given by the sequential fixing algorithm.
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Figure 3.14: Video PSNRs versus primary user channel utilization η.
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Figure 3.15: Impact of time slot duration on received video quality.

Comparison of MPEG-4 FGS and H.264/SVC MGS Videos Finally, we compare MPEG-

4 FGS and H.264/SVC MGS videos, while keeping the same settings. It has been shown that

H.264/SVC has better rate-distortion performance than MPEG-4 FGS due to the use of efficient

hierarchical prediction structures, the inter-layer prediction mechanisms, improved drift control

mechanism, and the efficient coding scheme in H.264/AVC [53]. Although MGS has Network
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Figure 3.16: Comparison of MPEG-4 FGS video with H.264/SVC MGS video under various chan-
nel utilizations.

Abstraction Layer (NAL) unit-based granularity, it achieves similar rate-distortion performance as

H.264/SVC FGS [53].

We plot the upper bounds and the distributed algorithm results in Figs. 3.16 and 3.17 for var-

ious channel utilizations and false alarm probabilities, respectively. From the figures, it can be

observed that there is a gap about 2.5 dB between the H.264/SVC MGS and MPEG-4 FGS curves,

which clearly demonstrates the rate-distortion efficiencyof MGS over MPEG-4 FGS. The pro-

posed algorithm can effectively handle both MGS and FGS videos, and the same trend is observed

in both cases.

3.6 Conclusions

In this chapter, we first addressed the problem of multicasting FGS video in CR networks.

The problem formulation took video quality and proportional fairness as objectives, while con-

sidering cross-layer design factors such as FGS coding, spectrum sensing, opportunistic spectrum

access, primary user protection, scheduling, error control and modulation. We proposed efficient
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Figure 3.17: Comparison of MPEG-4 FGS video with H.264/SVC MGS video under various false
alarm probabilities.

optimization and scheduling algorithms for highly competitive solutions, and proved the complex-

ity and optimality bound of the proposed greedy algorithm. Our simulation results demonstrate

not only the viability of video over CR networks, but also the efficacy of the proposed approach.

Then, we studied the challenging problem of streaming multiple scalable videos in a multi-hop

CR network. The problem formulation considered spectrum sensing and sensing errors, spectrum

access and primary user protection, video quality and fairness, and channel/path selection for con-

current video sessions. We first solved the formulated MINLPproblem using a sequential fixing

scheme that produces lower and upper bounds on the achievable video quality. We then applied

dual decomposition to derive a distributed algorithm, and analyzed its optimality and convergence

performance. Our simulations validated the efficacy of the proposed scheme.
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Chapter 4

Cooperative CR Networks

4.1 Introduction

Cooperative relayin CR networks [3,73] represents another new paradigm for wireless com-

munications. It allows wireless CR nodes to assist each otherin data delivery, with the objective

of achieving greater reliability and efficiency than each ofthem could attain individually (i.e., to

achieve the so-calledcooperative diversity). Cooperation among CR nodes enables opportunistic

use of energy and bandwidth resources in wireless networks,and can deliver many salient advan-

tages over conventional point-to-point wireless communications.

Recently, there has been some interesting work on cooperative relay in CR networks [3, 73].

In [73], the authors considered the case of two single-user links, one primary and one secondary.

The secondary transmitter is allowed to act as a “transparent” relay for the primary link, motivated

by the rationale that helping primary users will lead to moretransmission opportunities for CR

nodes. In [3], the authors presented an excellent overview of several cooperative relay scenarios

and various related issues. A new MAC protocol was proposed and implemented in a testbed to

select a spectrum-rich CR node as relay for a CR transmitter/receiver pair.

We investigate cooperative relay in CR networks, using videoas a reference application to

make the best use of the enhanced network capacity. We consider a base station (BS) and multiple

relay nodes (RN) that collaboratively stream multiple videos to CR users within the network. To

support high quality video service in such a challenging environment, we assume a well planned

relay network where the RNs are connected to the BS with high-speed wireline links. Therefore

the video packets will be available at both the BS and the RNs before their scheduled transmis-

sion time, thus allowing advanced cooperative transmission techniques to be adopted for streaming

videos. In particular, we consider interference alignment, where the BS and RNs simultaneously
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transmit encoded signals to all CR users, such that undesiredsignals will be canceled and the

desired signal can be decoded at each CR user [74,75]. In [76],such cooperative sender-side tech-

niques are termedinterference alignment, while receiver-side techniques that use overheard (or

exchanged via a wireline link) packets to cancel interference is termedinterference cancelllation.

We present a stochastic programming formulation of the problem of interference alignment for

video streaming in cooperative CR networks and then a reformulation of the problem based on

Linear Algebra theory [77], such that the number of variables and computational complexity can

be greatly reduced. To address the formulated problem, we propose an optimal distributed algo-

rithm with proven convergence and convergence rate, and then a greedy algorithm with a proven

performance bound.

The remainder of this chapter is organized as follows. Related work is discussed in Sec-

tion 4.2. In Section 4.3, we compare two cooperative relay strategies in CR networks. We investi-

gate the problem of cooperative CR relay with interference alignment for MGS video streaming in

Section 4.4. Section 4.5 concludes the chapter.

4.2 Background and Related Work

The theoretical foundation of relay channels was laid by theseminal work [78]. The capacities

of the Gaussian relay channel and certain discrete relay channels are evaluated, and the achievable

lower bound to the capacity of the general relay channel is established in this work. In [79,80], the

authors described the concept of cooperative diversity, where diversity gains are achieved via the

cooperation of mobile users. In [54], the authors developedand analyzed low-complexity cooper-

ative diversity protocols. Several cooperative strategies, including AF and DF, were described and

their performance characterizations were derived in termsof outage probabilities.

In practice, there is a restriction that each node cannot transmit and receive simultaneously in

the same frequency band. The “cheap” relay channel concept was introduced in [81], where the

authors derived the capacity of the Gaussian degraded “cheap” relay channel. Multiple relay nodes

for a transmitter-receiver pair are investigated in [82] and [83]. The authors showed that, when
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compared with complex protocols that involve all relays, the simplified protocol with no more than

one relay chosen can achieve the same performance. This is the reason why we consider single

relay in this paper.

In [84], Ng and Yu proposed a utility maximization frameworkfor joint optimization of node,

relay strategy selection, and power, bandwidth and rate allocation in a cellular network. Cai et

al. [85] presented a semi-distributed algorithm for AF relay networks. A heuristic was adopted to

select relay and allocate power. Both AF and DF were considered in [86], where a polynomial time

algorithm for optimal relay selection was developed and proved to be optimal. In [87], a protocol

is proposed for joint routing, relay selection, and dynamicspectrum allocation for multi-hop CR

networks, and its performance is evaluated through simulations.

The problem of video over CR networks has only been studied in afew recent papers [8, 9,

13,59,60,88]. In [59], a dynamic channel selection scheme was proposed for CR users to transmit

videos over multiple channels. In [88], a distributed jointrouting and spectrum sharing algorithm

for video streaming over CR ad hoc networks was described and evaluated with simulations. In our

prior work, we considered video multicast in an infrastructure-based CR network [8], unicast video

streaming over multihop CR networks [9] and CR femtocell networks [13]. In [60], the impact of

system parameters residing in different network layers arejointly considered to achieve the best

possible video quality for CR users. Unlike the heuristic approaches in [59,88], the analytical and

optimization approach taken in this paper yields algorithms with optimal or bounded performance.

The cooperative relay and interference alignment techniques also distinguish this paper from prior

work on this topic.

As point-to-point link capacity approaches the Shannon limit, there has been considerable

interest on exploiting interference to improve wireless network capacity [74–76,89,90]. In addition

to information theoretic work on asymptotic capacity [74,75], practical issues have been addressed

in [76, 89, 90]. In [89], the authors presented a practical design of analog network coding to

exploit interference and allow concurrent transmissions,which does not make any synchronization

assumptions. In [90], interference alignment and cancellation is incorporated in MIMO LANs,
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and the network capacity is shown, analytically and experimentally, to be almost doubled. In [76],

the authors presented a general algorithm for identifying interference alignment and cancellation

opportunities in practical multi-hop mesh networks. The impact of synchronization and channel

estimation was evaluated through a GNU Radio implementation. Our work was motivated by

these interesting papers, and we incorporate interferencealignment in cooperative CR networks

and exploit the enhanced capacity for wireless video streaming.

4.3 CR and Cooperative Networking

In this section, we investigate the problem of cooperative relay in CR networks. We assume a

primary network with multiple licensed bands and a CR networkconsisting of multiple cooperative

relay links. Each cooperative relay link consists of a CR transmitter, a CR relay, and a CR receiver.

The objective is to develop effective mechanisms to integrate these two wireless communication

technologies, and to provide an analysis for the comparisonof two representative cooperative relay

strategies, i.e.,decode-and-forward(DF) andamplify-and-forward(AF), in the context of CR

networks. We first consider cooperative spectrum sensing bythe CR nodes. We model both types

of sensing errors, i.e., miss detection and false alarm, andderive the optimal value for the sensing

threshold. Next, we incorporate DF and AF into thep-Persistent Carrier Sense Multiple Access

(CSMA) protocol for channel access for the CR nodes. We developclosed-form expressions for

the network-wide capacities achieved by DF and AF, respectively, as well as that for the case of

direct link transmission for comparison purpose.

Through analytical and simulation evaluations of DF and AF-based cooperative relay strate-

gies, we find the analysis provides upper bounds for the simulated results, which are reasonably

tight. We also find cross-point with the AF and DF curves when some system parameter is varied,

indicating that each of them performs better in a certain parameter range. There is no case that one

completely dominates the other for the two strategies. The considerable gaps between the cooper-

ative relay results and the direct link results exemplify the diversity gain achieved by cooperative

relays in CR networks.
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Figure 4.1: Illustration of colocated primary and CR networks. The CR network consists of a
number cooperative relay links, each consisting of a CR transmitter, a CR relay and a CR receiver.

4.3.1 Network Model and Assumptions

We assume a primary network and a spectrum band that is divided into M licensed chan-

nels, each modeled as a time slotted, block-fading channel.The state of each channel evolves

independently following a discrete time Markov process (see Section 2.3.1).

As illustrated in Fig. 4.1, there is a CR network colocated with the primary network. The CR

network consists ofN sets of cooperative relay links, each including a CR transmitter, a CR relay,

and a CR receiver. Each CR node (or, secondary user) is equippedwith two transceivers, each

incorporating a software defined radio (SDR) that is able to tune to any of theM licensed channels

and a control channel and operate from there.

As discussed in Section 2.3.2, we assume CR nodes access the licensed channels following

the same time slot structure [14]. In the sensing phase, a CR node chooses one of theM channels

to sense using one of its transceivers, and then exchanges sensed channel information with other

CR nodes using the other transceiver over the control channel. During the transmission phase,

the CR transmitter and/or relay transmit data frames on licensed channels that are believed to be

idle based on sensing results, using one or both of the transceivers. We consider cooperative relay

strategies AF and DF, and compare their performance in the following sections.
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4.3.2 Cooperative Relay in CR Networks

In this section, we investigate how to effectively integrate the two advance wireless communi-

cation technologies, and present an analysis of the cooperative relay strategies in CR networks. We

first examine cooperative spectrum sensing and derive the optimal sensing threshold. We then con-

sider cooperative relay and spectrum access, and derive thenetwork-wide throughput performance

achievable when these two technologies are integrated.

Spectrum Sensing

As illustrated in Section 2.3.3, we assume there areNm CR nodes sensing channelm. After

the sensing phase, each CR node obtains asensing result vector~Θm = [Θm
1 ,Θ

m
2 , · · · ,Θm

Nm
] for

channelm. The conditional probabilityam(~Θm) on channelm availability is

am(Θ
m
1 ,Θ

m
2 , · · · ,Θm

Nm
)

∼= Pr{Hm
0 |Θm

1 ,Θ
m
2 , · · · ,Θm

Nm
}

=
Pr{Θm

1 ,Θ
m
2 , · · · ,Θm

Nm
|Hm

0 )}Pr{Hm
0 }

∑

j∈{0,1} Pr{Θm
1 ,Θ

m
2 , · · · ,Θm

Nm
|Hm

j }Pr{Hm
j }

=

∏Nm

i=1 Pr{Θm
i |Hm

0 }Pr{Hm
0 }

∑

j∈{0,1}

∏Nm

i=1 Pr{Θm
i |Hm

j }Pr{Hm
j }

=

[

1 +
Pr{Hm

1 }
Pr{Hm

0 }
Nm
∏

i=1

Pr{Θm
i |Hm

1 }
Pr{Θm

i |Hm
0 }

]−1

=

[

1 +
ηm

1− ηm

Nm
∏

i=1

(δmi )
1−Θm

i (1− δmi )Θ
m
i

(ǫmi )
Θm

i (1− ǫmi )1−Θm
i

]−1

. (4.1)

If am(~Θm) is greater than asensing thresholdτm, channelm is believed to be idle; otherwise,

channelm is believed to be busy. The decision variableDm is defined as follows.

Dm =











0, if am(~Θm) > τm

1, if am(~Θm) ≤ τm.
(4.2)
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CR nodes only attempt to access channelm whereDm is 0. Since functionam(~Θm) in (4.1)

hasNm binary variables, there can be2Nm different combinations corresponding to2Nm values for

am(~Θm). We sort the2Nm combinations according to theiram(~Θm) values in the non-increasing

order. Leta(j)m be thejth largest function value and~θ(j)m the argument that achieves thejth largest

function valuea(j)m , where

~θ(j)m = [θm1 (j), θ
m
2 (j), · · · , θmNm

(j)].

In the design of CR networks, we consider two objectives: (i) how to avoid harmful inter-

ference to primary users, and (ii) how to fully exploit spectrum opportunities for the CR nodes.

For primary user protection, we limit the collision probability with primary user with a thresh-

old. Letγm be thetolerance threshold, i.e., the maximum allowable interference probability with

primary users on channelm. The probability of collision with primary users on channelm is

given asPr{Dm = 0 | Hm
1 }; the probability of detecting an available transmission opportunity

is Pr{Dm = 0 | Hm
0 }. Our objective is to maximize the probability of detecting available chan-

nels, while keeping the collision probability belowγm. Therefore, the optimal spectrum sensing

problem can be formulated as follows.

max
τm

Pr{Dm = 0|Hm
0 } (4.3)

subect to: Pr{Dm = 0|Hm
1 } ≤ γm. (4.4)

From their definitions, bothPr{Dm = 0|Hm
1 } andPr{Dm = 0|Hm

0 } are decreasing functions

of τm. AsPr{Dm = 0 |Hm
1 )} approaches its maximum allowed valueγm, Pr{Dm = 0 |Hm

0 } also

approaches its maximum. Therefore, solving the optimization problem (4.3)∼ (4.4) is equivalent

to solving

Pr{Dm = 0 |Hm
1 } = γm.
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Table 4.1: Algorithm for Computing the Optimal Sensing Threshold
1: Computea(j)m and the corresponding~θ(j)m ,

for all j;
2: Initializepc = Pr{am(~Θm) = a

(1)
m |Hm

1 } and
τm = a

(1)
m ;

3: Setj = 1;
4: WHILE (pc ≤ γm)
5: j = j + 1;
6: τm = a

(j)
m ;

7: pc = pc + Pr{am(~Θm) = a
(j)
m |Hm

1 };
8: END WHILE

If τm = a
(j)
m , we have

Pr{Dm = 0|Hm
1 }(a(j)m ) = Pr{am(~Θm) > a(j)m |Hm

1 }

=

j−1
∑

l=1

Pr{am(~Θm) = a(l)m |Hm
1 } =

j−1
∑

l=1

(δmi )
1−θmi (l)(1− δmi )θ

m
i (l). (4.5)

Obviously,Pr{Dm = 0 | Hm
1 }(a(j)m ) is an increasing function ofj. The optimal sensing threshold

τ ∗m can be set toa(j)m , such that

Pr{Dm = 0 |Hm
1 }(a(j)m ) ≤ γm

and

Pr{Dm = 0 |Hm
1 }(a(j+1)

m ) > γm.

The algorithm for computing the optimal sensing thresholdτ ∗m is presented in Table 4.1.

Once the optimal sensing thresholdτ ∗m is determined,Pr{Dm = 0 |Hm
1 } can be computed as

given in (4.5) andPr{Dm = 0 |Hm
0 } can be computed as:

Pr{Dm = 0|Hm
0 } = Pr{am(~Θm) > τ ∗m|Hm

0 }

=

j−1
∑

l=1

Pr{am(~Θm) = a(l)m |Hm
0 } =

j−1
∑

l=1

(ǫmi )
θmi (l)(1− ǫmi )1−θ

m
i (l). (4.6)
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Figure 4.2: Illustration of the protocol operation of AF andDF, whereSi ⇒ Ri represents the
transmission from source to relay andRi ⇒ Di represents the transmission from relay to destina-
tion, for theith cooperative relay link.

Cooperative Relay Strategies

During the transmission phase, CR transmitters and relays attempt to send data through the

channels that are believed to be idle. We assume fixed length for all the data frames. LetGk
1 and

Gk
2 denote the path gains from the transmitter to relay and from the relay to receiver, respectively,

and letσ2
r,k andσ2

d,k denote the noise powers at the relay and receiver, respectively, for thekth co-

operative relay link. We examine the two cooperation relay strategies DF and AF in the following.

For comparison purpose, we also consider direct link transmission below.

Decode-and-Forward (DF) With DF, the CR transmitter and relay transmit separately on con-

secutive odd and event time slots: the CR transmitter sends data to the corresponding relay in an

odd time slot; the relay node then decodes the data and forwards it to the receiver in the following

eventime slot, as shown in Fig. 4.2.

Without loss of generality, we assume a data frame can be successfully decoded if the received

signal-to-noise ratio (SNR) is no less than adecoding thresholdκ. We assume gains on different

links are independent to each other. The receiver can successfully decode the frame if it is not lost

or corrupted on both links. Thedecoding rateof DF at thekth receiver, denoted byP k
DF , can be
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computed as,

P k
DF = Pr

{(

PsG
k
1/σ

2
r,k ≥ κ

)

and
(

PrG
k
2/σ

2
d,k ≥ κ

)}

= F̄Gk
1

(

σ2
r,kκ/Ps

)

F̄Gk
2

(

σ2
d,kκ/Pr

)

, (4.7)

wherePs andPr are the transmit powers at the transmitter and relay, respectively, F̄Gk
1
(x) and

F̄Gk
2
(x) are the complementary cumulative distribution functions (CCDF) of path gainsGk

1 and

Gk
2, respectively.

Amplify-and-Forward (AF) With AF, the CR transmitter and relay transmit simultaneously in

the same time slot on different channels. A pipeline is formed connecting the CR transmitter to

the relay and then to the receiver; the relay amplifies the received signal and immediately forwards

it to the receiver in the same time slot, as shown in Fig. 4.2. Recall that the CR relay has two

transceivers. The relay receives data from the transmitterusing one transceiver operating on one or

more idle channels; it forwards the data simultaneously to the receiver using the other transceiver

operating on one or moredifferentidle channels.

With this cooperative relay strategy, a data frame can be successfully decoded if the SNR at

the receiver is no less than the decoding thresholdκ. Then the decoding rate of AF at thekth

receiver, denoted asP k
AF , can be computed as,

P k
AF = Pr

{

Pr
Gk

1Ps + σ2
r,k

PsG
k
1G

k
2

σ2
d,k

≥ κ

}

=

∫ +∞

0

F̄Gk
2

(

(Psx+ σ2
r,k)σ

2
d,kκ

PsPrx

)

dFGk
1
(x).

(4.8)

Direct Link Transmission For comparison purpose, we also consider the case of direct link

transmission (DL). That is, the CR transmitter transmits to the receiver via the direct link; the CR

relay is not used in this case. Let the path gain beGk
0 with CCDFF̄Gk

0
(x), and recall that the noise

power isσ2
d,k at the receiver, for thekth direct link transmission.
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Following similar analysis, the decoding rate of DL at thekth receiver, denoted asP k
DL, can

be computed as

P k
DL = Pr

{

PsG
k
0/σ

2
d,k ≥ κ

}

= F̄Gk
0

(

σ2
d,kκ/Ps

)

. (4.9)

Opportunistic Channel Access

We assume greedy transmitters that always have data to send.The CR nodes usep-Persistent

CSMA for channel access. At the beginning of the transmissionphase of an odd time slot, CR

transmitters send Request-to-Send (RTS) with probabilityp over the control channel. Since there

areN CR transmitters, the transmission probabilityp is set to1/N to maximize the throughput

(i.e., to maximizeP1 in (4.10) given below).

The following three cases may occur:

• Case 1: none of the CR transmitters sends RTS for channel access. Theidle licensed chan-

nels will be wasted.

• Case 2: only one CR transmitter sends RTS, and it successfully receives Clear-to-Send (CTS)

from the receiver over the control channel. It then accessessome of or all the licensed

channels that are believed to be idle for data transmission in the transmission phase.

• Case 3: more than one CR transmitters send RTS and collision occurs on the control channel.

No CR node can access the licensed channels, and the idle licensed channels will be wasted.

Let P0, P1 andP2 denote the probability corresponding to the three cases enumerated above,

respectively. We then have

P0 = (1− p)N = (1− 1/N)N (4.10)

P1 = Np(1− p)N−1 = (1− 1/N)N−1 (4.11)

P2 = 1− P0 − P1. (4.12)
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The CR cooperative relay link that wins the channels in the oddtime slot will continue to use the

channels in the following even time slot. A new round of channel competition will start in the next

odd time slot following these two time slots.

Since a licensed channel is accessed with probabilityP1 in the odd time slot, we modify the

tolerance thresholdγm asγ′m = γm/P1, such that the maximum allowable collision requirement

can still be satisfied. In the even time slot, the channels will continue to be used by the winning

cooperative relay link, i.e., to be accessed with probability 1. Therefore, the tolerance threshold is

still γm for the even time slots.

Capacity Analysis

Once the CR transmitter wins the competition, as indicated bya received CTS, it begins to

send data over the licensed channels that are inferred to be idle (i.e.,Dm = 0) in the transmission

phase. We assume thechannel bonding and aggregationtechnique is used, such that multiple

channels can be used collectively by a CR node for data transmission [20,44].

With DF, the winning CR transmitter uses all the available channels to transmit to the relay in

the odd time slot. In the following even time slot, the CR transmitter stops transmission, while the

relay uses the available channels in the even time slot to forward data to the receiver. If the number

of available channels in the even time slot is equal to or greater than that in the odd time slot, the

relay uses the same number of channels to forward all the received data. Otherwise, the relay uses

all the available channels to forward part of the received data; the excess data will be dropped due

to limited channel resource in the even time slot. The dropped data will be retransmitted in some

future odd time slot by the transmitter.

With AF, no matter it is an odd or even time slot, the CR transmitter always uses half of the

available licensed channels to transmit to the relay. The relay uses one of its transceivers to receive

from the chosen half of the available channels. Simultaneously, it uses the other transceiver to

forward the received data to the receiver using the remaining half of the available channels.
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Let Dod
m andDev

m be the decision variables of channelm in the odd and even time slot, re-

spectively (see (4.2)). LetSodm andSevm be the status of channelm in the odd and even time slot,

respectively. We have,

Pr{Dod
m = i, Sodm = j,Dev

m = k, Sevm = l} (4.13)

= Pr{Dev
m = k|Sevm = l}Pr{Dod

m = i|Sodm = j} ×

Pr{Sevm = l|Sodm = j}Pr{Sodm = j}, for i, j, k, l ∈ {0, 1}.

wherePr{Sodm = j} are the probabilities that channelm is busy or idle,Pr{Sevm = l | Sodm = j} are

the channelm transition probabilities.Pr{Dev
m = k | Sevm = l} andPr{Dod

m = i | Sodm = j} can be

computed as in (4.5) and (4.6).

LetNDF ,NAF andNDL be the number of frames successfully delivered to the receiver in the

two consecutive time slots using DF, AF and DL, respectively. DefineS̄odm = 1−Sodm , S̄evm = 1−Sevm ,

D̄od
m = 1−Dod

m andD̄ev
m = 1−Dev

m . We have

NDF =
(

∑M
m=1S̄

od
m D̄

od
m

)

∧
(

∑M
m=1S̄

ev
m D̄

ev
m

)

(4.14)

NAF =

⌊

1

2

∑M
m=1S̄

od
m D̄

od
m

⌋

+

⌊

1

2

∑M
m=1S̄

ev
m D̄

ev
m

⌋

(4.15)

NDL =
(

∑M
m=1S̄

od
m D̄

od
m

)

+
(

∑M
m=1S̄

ev
m D̄

ev
m

)

, (4.16)

wherex ∧ y represents the minimum ofx andy, and⌊x⌋ means the maximum integer that is not

larger thanx.

As discussed, the probability that a frame can be successfully delivered isP k
DF , P k

AF , orP k
DL

for the three schemes, respectively. Recall that spectrum resources are allocated distributedly for

every pair of two consecutive time slots. We derive the capacity for the three cooperative relay
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strategies as

CDF = E [NDF ] ·
∑N

k=1(P
k
DFP1L)/(2NTs) (4.17)

CAF = E [NAF ] ·
∑N

k=1(P
k
AFP1L)/(2NTs) (4.18)

CDL = E [NDL] ·
∑N

k=1(P
k
DLP1L)/(2NTs), (4.19)

whereL is the packet length andTs is the duration of a time slot. The expectations are computed

using the results derived in (4.13)∼ (4.16).

4.3.3 Performance Evaluation

We evaluate the performance of the cooperative relay strategies with analysis and simulations.

The analytical capacities of the schemes are obtained with the analysis presented in Section 4.3.2.

The actual throughput is obtained using MATLAB simulations. The simulation parameters and

their values are listed in Table 4.2, unless specified otherwise. We considerM = 5 licensed chan-

nels and a CR network with seven cooperative relay links. The channels have identical parameters

for the Markov chain models. Each point in the simulation curves is the average of10 simulation

runs with different random seeds. We plot95% confidence intervals for the simulation results,

which are negligible in all the cases.

We first examine the impact of the number of licensed channels. To illustrate the effect of

spectrum sensing, we let the decoding rateP k
AF be equal toP k

DF . In Fig. 4.3, we plot the throughput

of AF, DF, and DL under increased number of licensed channels. The analytical curves are upper

bounds for the simulation curves in all the cases, and the gapbetween the two is reasonably small.

Furthermore, as the number of license channels is increased, the throughput of both AF and DF

are increased. The slope of the AF curves is larger than that of the DF curves. There is a cross

point between five and six, as predicted by both simulation and analysis curves. This indicates that

AF outperforms DF when the number of channels is large. This is because AF is more flexible

than DF in exploiting the idle channels in the two consecutive time slots. The DL analysis and
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Table 4.2: Simulation Parameters and Values
Symbol Value Definition
M 5 number of licensed channels
λ 0.7 channel transition probability

from idle to idle
µ 0.2 channel transition probability

from busy to idle
η 0.6 channel utilization
γ 0.08 maximum allowable collision

probability
N 7 number of CR cooperative relay

links
Ps 10 dBm transmit power of the CR

transmitters
Pr 10 dBm transmit power of CR relays
L 1 kb packet length
Ts 1 ms duration of a time slot
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Figure 4.3: Throughput performance versus number of licensed channels.

simulation curves also increases with the number of channels, but with the lowest slope and the

lowest throughput values.

In Fig. 4.4, we demonstrate the impact of channel utilization on the throughput of the schemes.

The channel utilizationη is increased from0.3 to 0.9, when primary users get more active. As

η is increased, the transmission opportunities for CR nodes are reduced and all the throughputs
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Figure 4.4: Throughput performance versus primary user channel utilization.

are degraded. We find the throughputs of AF and DF are close to each other when the channel

utilization is high. AF outperforms DF in the low channel utilization region, but is inferior to

DF in the high channel utilization region. There is a cross point between the AF and DF curves

betweenη = 0.5 andη = 0.6. When the channel utilization is low, there is a big gap between the

cooperative relay curves and and the DL curves.

In Fig. 4.5, we examine the channel fading factor. We consider Rayleigh block fading chan-

nels, where the received power is exponentially distributed with a distance-dependent mean. We

fix the transmitter power at 10 dBm, and increase the relay power from one dBm to 18 dBm. As

the relay power is increased, the throughput is also increased since the SNR at the receiver is im-

proved. We can see the increasing speed of AF is larger than that of DF, indicating that AF has

superior performance than DF when the relay transmit power is large. The capacity analysis also

demonstrate the same trend. The throughput of DL does not depend on the relay node. Its through-

put is better than that of AF and DF when the relay transmit power is low, since both AF and DF

are limited by the relay-to-receiver link in this low power region. However, the throughputs of AF

and DF quickly exceed that of DL and grow fast as the relay-to-receiver link is improved with the

increased relay transmit power. The considerable gaps between the cooperative relay link curves
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Figure 4.5: Throughput performance versus transmit power of relay nodes.

and the DL curves in Figs. 4.3, 4.4 and 4.5 exemplify the diversity gain achieved by cooperative

relays in CR networks.

4.4 Cooperative CR Networks with Interference Alignment

In this section, we investigate cooperative relay in CR networks using video as a reference

application. We consider a base station (BS) and multiple relay nodes (RN) that collaboratively

stream multiple videos to CR users within the network. It has been shown that the performance of

a cooperative relay link is mainly limited by two factors:

• thehalf-duplex operation, since the BS–RN and the RN–user transmissions cannot be sched-

uled simultaneously on the same channel [79]; and

• the bottleneck channel, which is usually the BS–user and/or the RN–user channel, usually

with poor quality due to obstacles, attenuation, multipathpropagation and mobility [54].

To support high quality video service in such a challenging environment, we assume a well

planned relay network where the RNs are connected to the BS withhigh-speed wireline links,

and explore interference alignment to overcome the bottleneck channel problem. Therefore the
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video packets will be available at both the BS and the RNs beforetheir scheduled transmission

time, thus allowing advanced cooperative transmission techniques (e.g. interference alignment)

to be adopted for streaming videos. In particular, we incorporate interference alignment to allow

transmitters collaboratively send encoded signals to all CRusers, such that undesired signals will

be canceled and the desired signal can be decoded at each CR user.

We present a stochastic programming formulation, as well asa reformulation that greatly re-

duces computational complexity. In the cases of a single licensed channel and multiple licensed

channels with channel bonding, we develop an optimal distributed algorithm with proven con-

vergence and convergence speed. In the case of multiple channels without channel bonding, we

develop a greedy algorithm with a proven performance bound.

4.4.1 Network Model and Assumptions

The cooperative CR network is illustrated in Fig. 4.6. There is a CR BS (indexed1) and

(K − 1) CR RNs (indexed from2 to K) deployed in the area to serveN active CR users. Let

U = {1, 2, · · · , N} denote the set of active CR users. We assume that the BS and all the RNs are

equipped with multiple transceivers: one is tuned to the common control channel and the others

are used to sense multiple licensed channels at the beginning of each time slot, and to transmit

encoded signals to CR users. We consider the case where each CR user has one software defined

radio (SDR) based transceiver, which can be tuned to operate on any of the(M + 1) channels. If

the channel bonding/aggregation techniques are used [44,70], a transmitter can collectively use all

the available channels and a CR user can receive from all the available channels simultaneously.

Otherwise, only one licensed channel will be used by a transmitter and a CR user can only receive

from a single chosen channel at a time.

Consider the three channels in a traditional cooperative relay link. Usually the BS and RNs

are mounted on high towers, and the BS–RN channel has good quality due to line-of-sight (LOS)

communications and absence of mobility. On the other hand, aCR user is typically on the ground

level. The BS–user and RN–user channels usually have much poorer quality due to obstacles,
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Figure 4.6: Illustration of the cooperative CR network.

attenuation, multipath propagation and mobility. To support high quality video service, we assume

a well planned relay network, where the RNs are connected to the BS via broadband wireline

connections (e.g., as in femtocell networks [13]). Alternatively, free space optical links can also be

used to provide multi-gigabit rates between the BS and the RNs [91]. As a result, the video packets

will always be available for transmission (with suitable channel coding and retransmission) at the

RNs at their scheduled transmission time. To cope with the much poorer BS–user and RN–user

channels, the BS and RNs adopt interference alignment to cooperatively transmit video packets to

CR users, while exploiting the spectrum opportunities in thelicensed channels.

Spectrum Access

The BS and the RNs sense the licensed channels and exchange their sensing results over

the common control channel during the sensing phase. Recall that in Section 2.5.1 and 2.5.1.

GivenL sensing results obtained for channelm, the corresponding sensing result vector is~Θm
L =

[Θm
1 ,Θ

m
2 , · · · ,Θm

L ]. Let PA
m(
~Θm
L ) := PA

m(Θ
m
1 ,Θ

m
2 , · · · ,Θm

L ) be the conditional probability that
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channelm is available, which can be computed iteratively as shown in our prior work [13]:

PA
m(Θ

m
1 ) =

[

1 +
ηm

1− ηm
× (δm1 )

1−Θm
1 (1− δm1 )Θ

m
1

(ǫm1 )
Θm

1 (1− ǫm1 )1−Θm
1

]−1

PA
m(~Θ

m
l ) := PA

m(Θ
m
1 ,Θ

m
2 , · · · ,Θm

l )

=

{

1 +

[

1

PA
m(Θ

m
1 ,Θ

m
2 , · · · ,Θm

l−1)
− 1

]

× (δml )
1−Θm

l (1− δml )Θ
m
l

(ǫml )
Θm

l (1− ǫml )1−Θm
l

}−1

, l ≥ 2.

For each channelm, define an index variableDm(t) for the BS or RNs to access the channel

in time slott. That is,

Dm(t) =











0, access channelm in time slott

1, otherwise,
m = 1, 2, · · · ,M. (4.20)

With sensing resultPA
m(~Θ

m
L ), each channelm will be opportunistically accessed. Let the

probability bePD
m (~Θm

L ) that channelm will be accessed in time slott (i.e., whenDm(t) = 0). The

optimal channel access probability can be computed as:

PD
m (~Θm

L ) = min
{

γm/
[

1− PA
m(
~Θm
L )
]

, 1
}

. (4.21)

LetA(t) be the set of available channels in time slott. It follows thatA(t) := {m | Dm(t) = 0}.

Interference Alignment

We next briefly describe the main idea of interference alignment considered in this paper.

Interested readers are referred to [76, 90] for insightful examples, a classification of various inter-

ference alignment scenarios, and practical considerations.

Consider two transmitters (denoted ass1 ands2 ) and two receivers (denoted asd1 andd2).

Let X1 andX2 be the signals corresponding to the packets to be sent tod1 andd2, respectively.

With interference alignment, the transmitterss1 ands2 send compound signalsa1,1X1 + a1,2X2

anda2,1X1 + a2,2X2, respectively, to the two receiversd1 andd2 simultaneously. If channel noise
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is ignored, the received signalsY1 andY2 can be written as:







Y1

Y2






=







G1,1 G1,2

G2,1 G2,2







T 





a1,1 a1,2

a2,1 a2,2













X1

X2






:= GT ×A× ~X, (4.22)

whereGi,j is the channel gain from transmittersi to receiverdj.

From (4.22), it can be seen that both receivers can perfectlydecode their signals if the trans-

formation matrixA is chosen to be
{

GT
}−1

, i.e., the inverse of the channel gain matrix. With this

technique, the transmitters are able to send packets simultaneously and the interference between

the two concurrent transmissions can be effectively canceled at both receivers [76].

4.4.2 Problem Formulation

We formulate the problem of interference alignment for scalable video streaming over coop-

erative CR networks in this section. As discussed in Section 4.3.1, the video packets are available

at both the BS and all the RNs before their scheduled transmission time; the BS and RNs adopt

interference alignment to overcome the poor BS–CR user and RN–CRuser channels.

Let Xj denote the signal to be transmitted to userj, which has unit power. As illustrated in

Section 4.4.1, transmitterk sends a compound signal
∑

j∈U ak,jXj to all active CR users, where

ak,j ’s are the weights to be determined. Ignoring channel noise,we can compute the received

signalYn at a usern as:

Yn =
K
∑

k=1

Gk,n

N
∑

j=1

ak,jXj =
K
∑

k=1

N
∑

j=1

ak,jGk,nXj

=
N
∑

j=1

Xj

K
∑

k=1

ak,jGk,n, n = 1, 2, · · · , N, (4.23)

whereGk,n is the channel gain from the BS (i.e.,k = 1) or an RNk to usern. For usern, only

signalXn should be decoded and the coefficients of all other signals should be forced to zero. The
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zero-forcing constraintscan be written as:

K
∑

k=1

ak,jGk,n = 0, for all j 6= n. (4.24)

Usually the total transmit power of the BS and every RN is limited by a peak powerPmax.

SinceXj has unit power, for allj, the power of each transmitted signal is the square sum of allthe

coefficientsa2k,j. Thepeak power constraintcan be written as

N
∑

j=1

|ak,j|2 ≤ Pmax, k = 1, · · · , K. (4.25)

Recall that each CR user has one SDR transceiver that can be tuned to receive from any of the

(M + 1) channels, when channel bonding is not adopted. Letbmj be a binary variable indicating

that userj selects licensed channelm. It is defined as

bmj =











1, if usern receives from channelm

0, otherwise,
j = 1, · · · , N, m = 1, · · · ,M. (4.26)

Then, we have the followingtransceiver constraint:

∑

m∈A(t)

bmj ≤ 1, j = 1, · · · , N. (4.27)

After introducing the channel selection variablesbmj ’s, the overall channel gain becomes

Gk,j =
∑

m∈A(t)

bmj H
m
k,j, (4.28)

whereHm
k,j is the channel gain from the BS (i.e.,k = 1) or an RNk to userj on channelm.

Letwtj be the PSNR of userj’s reconstructed video at the beginning of time slott andW t
j the

PSNR of userj’s reconstructed video at the end of time slott. In time slott, wtj is already known,
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while W t
j is a random variable depending on the resource allocation and primary user activity

during the time slot. That is,wt+1
j is a realization ofW t

j .

As discussed in Section 3.3.5, the quality of reconstructedMGS video can be modeled with a

linear equation [53]:

W (R) = α + β ×R, (4.29)

whereW (R) is the average peak signal-to-noise ratio (PSNR) of the reconstructed MGS video,R

is the average data rate, andα andβ are constants depending on the specific video sequence and

codec.

We formulate a multistage stochastic programming problem to maximize the sum of expected

logarithm of the PSNR’s at the end of the GOP, i.e.,
∑N

j=1 E
[

log(W T
j )
]

, for proportional fair-

ness among the video sessions [71]. It can be shown that the multistage stochastic programming

problem can be decomposed intoT serial sub-problems, one for each time slott, as [9]:

maximize:
N
∑

j=1

E
[

log(W t
j )|wtj

]

(4.30)

subject to:W t
j = wtj +Ψt

j (4.31)

bmj ∈ {0, 1}, ak,j ≥ 0, for all m, j, k (4.32)

Constraints (4.24), (4.25) and (4.27),

whereΨt
j is a random variable that depends on spectrum sensing, powerallocation, and channel

selection in time slott. This is a mixed integer nonlinear programming problem (MINLP), with

binary variablesbmj ’s and continuous real variablesak,j ’s.

In particular,Ψt
j can have two possible values: (i) zero, if the packet is not successfully

received due to collision with primary users; (ii) the PSNR increase achieved in time slott if the

packet is successfully received, denoted asλtj. The PSNR increase can be computed as:

λtj =
βjB

T
log2



1 +
1

N0

(

K
∑

k=1

ak,jGk,j

)2


 , (4.33)
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whereN0 is the noise power andB is the channel bandwidth.

Userj can successfully receive a video packet from channelm if it tunes to channelm (i.e.,

bmj = 1) and the BS and RNs transmit on channelm (i.e., with probabilityPD
m (~Θm

L )). The proba-

bility that userj successfully receives a video packet, denoted asP t
j , is

P t
j =

∑

m∈A(t)

bmj P
D
m (~Θm

L ). (4.34)

Therefore, we can expand the expectation in (4.30) to obtaina reformulated problem:

maximize:
N
∑

j=1

E
[

P t
j log(w

t
j + λtj) + (1− P t

j ) log(w
t
j)
]

(4.35)

subject to: constraints (4.24), (4.25), (4.27), and (4.32).

4.4.3 Solution Algorithms

In this section, we develop effective solution algorithms to the stochastic programming prob-

lem (4.30). In Section 4.4.3, we first consider the case of a single licensed channel, and derive a

distributed, optimal algorithm with guaranteed convergence and bounded convergence speed. We

then address the case of multiple licensed channels. If channel bonding/aggregation techniques

are used [44, 70], the distributed algorithm in Section 4.4.3 can still be applied to achieve optimal

solutions. We finally consider the case of multiple licensedchannels without channel bonding, and

develop a greedy algorithm with a performance lower bound inSection 4.4.3.

Case of a Single Channel

Property Consider the case when there is only one licensed channel, i.e., whenM = 1. The

K transmitters, including the BS and(K − 1) RNs, send video packets to active users using the

licensed channel when it is sensed idle.

Definition 4.1. A set of vectors islinearly independentif none of them can be written as a linear

combination of the other vectors in the set [77].
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For userj, the weight and channel gain vectors are:~aj = [a1,j , a2,j , · · · , aK,j ]T and ~Gj =

[G1,j , G2,j , · · · , GK,j ]
T, whereT denotesmatrix transpose. Due to spatial diversity, we assume

that the~Gj vectors are linearly independent [74].

Lemma 4.1. To successfully decode each signalXj, j = 1, 2, · · · , N , the number of active users

N should be smaller than or equal to the number of transmittersK.

Proof. From (4.24), it can be seen that~aj is orthogonal to the(N − 1) vectors~Gn’s, for n 6= j.

Since~aj is aK by 1 vector, there are at most(K − 1) vectors that are orthogonal to~aj. Since the

~Gj vectors are linearly independent, it follows that(N − 1) ≤ (K − 1) and thereforeN ≤ K.

According to Lemma 4.1, the following additional constraints should be enforced for the

channel selection variables.

N
∑

j=1

bmj ≤ K, for all m ∈ A(t). (4.36)

That is, the number of active users receiving from any channel m cannot be more than the number

of transmitters on that channel, which isK in the single channel case and less than or equal toK

in the multiple channels case. We first assume thatN is not greater thanK, and will remove this

assumption in the following subsection.

Reformulation and Complexity Reduction With a single channel, all active users receive from

channel 1. Thereforeb1j = 1, andbmj = 0, for m > 1, j = 1, 2, · · · , N . The formulated problem

is now reduced to a nonlinear programming problem with constraints (4.24), (4.25), and (4.32). If

the number of active users isN = 1, the solution is straightforward: all the transmitters send the

same signalX1 to the single user using their maximum transmit powerPmax.

In general, the reduced problem can be solved with the dual decomposition technique [69]

(i.e., a primal dual algorithm). This problem hasK × N primal variables (i.e., theak,j ’s), and

we need to defineN(N − 1) dual variables (or, Lagrangian Multipliers) for constraints (4.24) and

K dual variables for constraints (4.25). These numbers couldbe large for even moderate-sized
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systems. Before presenting the solution algorithm, we first derive a reformulation of the original

problem (4.35) that can greatly reduce the number of primal and dual variables, such that the

computational complexity can be reduced.

Lemma 4.2. Each vector~aj = [a1,j , a2,j , · · · , aK,j ]T can be represented by the linear combination

of r nonzero, linearly independent vectors, wherer = K −N + 1.

Proof. From (4.24), each vector~aj is orthogonal to~Gi wherej 6= i. Define a reduced matrix

G−j obtained by deleting~Gj from G, i.e., G−j = [ ~G1, · · · , ~Gj−1, ~Gj+1, · · · , ~GN ]. Then~aj is

a solution to the homogeneous linear systemGT

−j~x = 0. Since we assume that the~Gi’s are all

linearly independent, the columns ofG−j are also linearly independent [77]. Thus the rank of

G−j is (N − 1). The solution belongs to the null space ofG−j. The dimension of the null space is

r = K−(N−1) according to the Rank-nullity Theorem [77]. Therefore, each~aj can be presented

by the linear combination ofr linearly independent vectors.

Let ej = {~ej,1, ~ej,2, · · · , ~ej,r} be abasisfor the null space ofG−j. There are many methods to

obtain the basis, such as Gaussian Elimination. However, weshow that it is not necessary to solve

the homogeneous linear systemGT

−j~x = 0 to get the basis for every differentj value. Therefore

the computational complexity can be further reduced.

Our algorithm for computing a basis is shown in Table 4.3. In Steps 1–6, we first solve the

homogeneous linear systemGT~x = 0 to get a basis[~v1, ~v2, · · · , ~vK−N ]. Note that ifK is equal

to N , the basis is the empty set∅. We then set theK − N basis vectors to be the firstK − N

vectors in all the bassesej, j = 1, 2, · · · , N . In Step 8, we orthogonalize eachG−j and obtain

(N − 1) orthogonal vectors~ωj,i, i = 1, 2, · · · , N − 1. Finally in Step 9, we let therth vector~ej,r

be orthogonal to all the~ωj,i’s by subtracting all the projections on each~ωj,i from ~Gj (recall that

r = K −N + 1). The operation is:

~ej,r = ~ej,N−K+1 = ~Gj −
N−1
∑

i=1

~GT

j ~ωj,i

~ωT

j,i~ωj,i
~ωj,i. (4.37)
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Table 4.3: Basis Computation Algorithm
1: IF (K > N )
2: Solve homogeneous linear systemGT~x = 0 and get

basis[~v1, · · · , ~vK−N ];
3: FORi = 1 toK −N
4: ~ej,i = ~vi, for all j;
5: END FOR
6: END IF
7: FORj = 1 toN
8: OrthogonalizeG−j and get(N − 1) orthogonal vectors~wj,i’s;
9: Calculate~ej,r as in (4.37);
10: END FOR

Lemma 4.3. The solution space constructed by the basis[~v1, ~v2, · · · , ~vK−N ] is a sub-space of the

solution space ofGT

−j~x = 0 for all j.

Proof. It is easy to see that each vector~vi is a solution ofGT

−j~x = 0 by substituting~x with ~vi, for

i = 1, 2, · · · , K −N .

Lemma 4.4. The vectors[~v1, ~v2, · · · , ~vK−N , ~ej,r] computed in Table 4.3 is a basis of the null space

of G−j.

Proof. Obviously, the~vi’s are linearly independent. From (4.37), it is easy to verify that~ej,r is

orthogonal to all the~ωj,i’s. Therefore,~ej,r is also a solution to systemGT

−j~x = 0. Since~Gj and~ωj,i

are orthogonal to all the~vi’s, and~ej,r is a linear combination of~Gj and~ωj,i, ~ej,r is also orthogonal

and linearly independent to all the~vi’s. The conclusion follows.

Define coefficients~cj = [cj,1, cj,2, · · · , cj,r]T. Then we can represent~aj as a linear combina-

tion of the basis vectors, i.e.,~aj =
∑r

l=1 cj,l~ej,l = ej~cj. Eq. (4.33) can be rewritten as

λtj =
βjB

T
log2

(

1 +
1

N0

(

~cTj e
T

j
~Gj

)2
)

=
βjB

T
log2

(

1 +
1

N0

(

cj,r~e
T

j,r
~Gj

)2
)

. (4.38)

The second equality is because the firstK − N column vectors inej are orthogonal toGj. The

random variableW t
j in the objective function now only depends oncj,r. The peak power constraint
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Table 4.4: Comparison of Computational Complexity
Original Problem Reformulated Problem

Primal Variables KN (K −N + 1)N
Dual Variables N(N − 1) +K K

can be revised as:

N
∑

j=1

[ej(k)~cj]
2 ≤ Pmax, k = 1, · · · , K, (4.39)

whereej(k) is thekth row of matrixej.

With such a reformulation, the number of primal and dual variables can be greatly reduced.

In Table 4.4, we show the numbers of variables in the originalproblem and in the reformulated

problem. The number of primary variables is reduced fromKN to (K − N + 1)N , and the

number of dual variables is reduced fromN(N − 1) +K toK. Such reductions result in greatly

reduced computational complexity.

Distributed Algorithm To solve the reformulated problem, we define non-negative dual vari-

ables~µ = [µ1, · · · , µK ]T for the inequality constraints. The Lagrangian function is

L(c, ~µ) =
N
∑

j=1

E
[

log(W t
j (cj,r))|wtj

]

+
K
∑

k=1

µk(Pmax −
N
∑

j=1

[ej(k)~cj]
2)

=
N
∑

j=1

Lj(~cj, ~µ) + Pmax

K
∑

k=1

µk, (4.40)

wherec is a matrix consisting of all column vector~cj ’s and

Lj(~cj, ~µ) = E
[

log(W t
j (cj,r))|wtj

]

−
K
∑

k=1

µk[ej(k)~cj]
2.

The corresponding problem can be decomposed intoN sub-problems and solved iteratively

[69]. In Stepτ ≥ 1, for given vector~µ(τ), each CR user solves the following sub-problem using
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local information

~cj(τ) = argmaxLj(~cj, ~µ(τ)). (4.41)

Obviously, the objective function in (4.41) is concave. Therefore, there is a unique optimal solu-

tion. The CR users then exchange their solutions over the common control channel. To solve the

primal problem, we adopt the gradient method [69].

~cj(τ + 1) = ~cj(τ) + φ∇Lj(~cj(τ), ~µ(τ)), (4.42)

where∇Lj(~cj(τ), ~µ(τ)) is the gradient of the primal problem andφ is a small positive step size.

The master dual problem for a givenc(τ) is:

min
µi≥0,i=1,··· ,K

q(~µ) =
N
∑

j=1

Lj(~cj(τ), ~µ) + Pmax

K
∑

k=1

µk. (4.43)

Since the Lagrangian function is differentiable, the subgradient iteration method can be adopted.

~µ(τ + 1) = [~µ(τ)− ρ(τ)~g(τ)]+, (4.44)

whereρ(τ) = q(~µ(τ))−q(~µ∗)
||~g(τ)||2

is a positive step size,~µ∗ is the optimal solution,~g(τ) = ∇q(~µ(τ)) is

the gradient of the dual problem, and[·]+ denotes the projection onto the nonnegative axis. Since

the optimal solution~µ∗ is unknown a priori, we choose the mean of the objective values of the

primal and dual problems as an estimate for~µ∗ in the algorithm. The updatedµk(τ +1) will again

be used to solve the sub-problems (4.41). Since the problem is convex, we have strong duality; the

duality gap between the primal and dual problems will be zero. The distributed algorithm is shown

in Table 4.5, where0 ≤ κ≪ 1 is a threshold for convergence.

132



Table 4.5: Algorithm for the Case of a Single Channel
1: IF (N = 1)
2: Setak,j to Pmax for all k;
3: ELSE
4: Setτ = 0; ~µ(0) to positive values;c(0) to random values;
5: Compute basesej ’s as in Table 4.3;
6: DO
7: τ = τ + 1 ;
8: Compute~cj(τ) as in (4.42);
9: Broadcast~cj(τ) on the common control channel;
10: Update~µ(τ) as in (4.44);
11: WHILE (||~µ(τ)− ~µ(τ − 1)|| > κ);
12: Computeak,j ’s;
13: END IF

Performance Analysis We analyze the performance of the distributed algorithm in this section.

In particular, we prove that it converges to the optimal solution at a speed faster than
√

1/τ asτ

goes to infinity.

Theorem 4.1.The seriesq(~µ(τ)) converges toq(~µ∗) asτ goes to infinity and the square error sum
∑∞

τ=1(q(~µ(τ))− q(~µ∗))2 is bounded.

Proof. For the optimality gap, we have:

||~µ(τ + 1)− ~µ∗||2 = ||[~µ(τ)− ρ(τ)~g(τ)]+ − ~µ∗||2

≤ ||~µ(τ)− ρ(τ)~g(τ)− ~µ∗||2

= ||~µ(τ)− ~µ∗||2 − 2ρ(τ)(~µ(τ)− ~µ∗)T~g(τ) + (ρ(τ))2||~g(τ)||2

= ||~µ(τ)− ~µ∗||2 − 2ρ(τ)(q(~µ(τ))− q(~µ∗)) + (ρ(τ))2||~g(τ)||2.

Since the step size isρ(τ) = q(~µ(τ))−q(~µ∗)
||~g(τ)||2

, it follows that

||~µ(τ + 1)− ~µ∗||2 ≤ ||~µ(τ)− ~µ∗||2 − (q(~µ(τ))− q(~µ∗))2

||~g(τ)||2

≤ ||~µ(τ)− ~µ∗||2 − (q(~µ(τ))− q(~µ∗))2

ĝ2
, (4.45)
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whereĝ2 is an upper bound of||~g(τ)||2. Since the second term on the right-hand-side of (4.45) is

non-negative, it follows thatlimτ→∞ q(~µ(τ)) = q(~µ∗).

Summing Inequality (4.45) overτ , we have

∞
∑

τ=1

(q(~µ(τ))− q(~µ∗))2 ≤ ĝ2||~µ(1)− ~µ∗||2.

That is, the square error sum is upper bounded.

Theorem 4.2.The sequence{q(~µ(τ))} converges faster than{1/√τ} asτ goes to infinity.

Proof. Assumelimτ→∞

√
τ(q(~µ(τ)) − q(~µ∗)) > 0. Then there is a sufficiently largeτ ′ and a

positive numberξ such that
√
τ(q(~µ(τ))− q(~µ∗)) ≥ ξ, for all τ ≥ τ ′. Taking the square sum from

τ ′ to∞, we have:

∞
∑

τ=τ ′

(q(~µ(τ))− q(~µ∗))2 ≥ ξ2
∞
∑

τ=τ ′

1

τ
=∞. (4.46)

Eq. (4.46) contradicts with Theorem 4.1, which states that
∑∞

τ=1(q(~µ(τ)) − q(~µ∗))2 is bounded.

Therefore, we have

lim
τ→∞

q(~µ(τ))− q(~µ∗)

1/
√
τ

= 0, (4.47)

indicating that the convergence speed ofq(~µ(τ)) is faster than that of1/
√
τ .

Case of Multiple Channels with Channel Bonding

When there are multiple licensed channels, we first consider the case where the channel bond-

ing/aggregation techniques are used by the transmitters and CR users [44,70]. With channel bond-

ing, a transmitter can utilize all the available channels inA(t) collectively to transmit the mixed

signal. We assume that at the end of the sensing phase in each time slot, CR users tune their SDR

transceiver to the common control channel to receive the setof available channelsA(t) from the
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BS. Then each CR user can receive from all the channels inA(t) and decode its desired signal

from the compound signal it receives.

This case is similar to the case of a single licensed channel.Now all the active CR users

receive from the set of available channelsA(t). We thus havebmj = 1, form ∈ A(t), andbmj = 0,

for m /∈ A(t), j = 1, 2, · · · , N . When all thebmj ’s are determined this way, problem (4.30) is

reduced to a nonlinear programming problem with constraints (4.24) and (4.25). The distributed

algorithm described in Section 4.4.3 can be applied to solvethis reduced problem to get optimal

solutions.

Case of Multiple Channels without Channel Bonding

We finally consider the case of multiple channels without channel bonding, where each CR

user has a narrow band SDR transceiver and can only receive from one of the channels. We

first present a greedy algorithm that leverages the optimal algorithm in Table 4.5 for near-optimal

solutions, and then derive a lower bound for its performance.

Greedy Algorithm WhenM > 1, the optimal solution to problem (4.30) depends also on the

binary variablesbmj ’s, which determines whether userj receives from channelm. Recall that there

are two constraints for thebmj ’s: (i) each user can use at most one channel (see (4.27)); (ii) the

number of users on the same channel cannot exceed the number of transmittersK (see (4.36)). Let

~b be the channel allocation vector with elementsbmj ’s, andΦ(~b) the corresponding objective value

for a given user channel allocation~b.

We take a two-step approach to solve problem (4.30). First, we apply the greedy algorithm

in Table 4.6 to choose one available channel inA(t) for each CR user (i.e., to determine~b). Sec-

ond, we apply the algorithm in Table 4.5 to obtain a near-optimal solution for the given channel

allocation~b.

In Table 4.6,~υmj is a unit vector with 1 for the[(j − 1) ×M + m]-th element and0 for all

other elements, and~b = ~b + ~υm
′

j′ indicates choosing channelm′ for userj′. In each iteration, the
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Table 4.6: Channel Selection Algorithm for the Case of Multiple Channels without Channel Bond-
ing

1: Initialize~b to a zero vector, user setU = {1, · · · , N}
and user-channel setC = U ×A(t);

2: WHILE (C 6= ∅)
3: Find the user-channel pair{j′,m′}, such that

{j′,m′} = argmax{(j,m)∈C}{Φ(~b+ ~υmj )− Φ(~b)};
4: Set~b = ~b+ ~υm

′

j′ and removej′ from U ;
5: IF (

∑N
j=1 b

m′

j = K)
6: Removem′ fromA(t);
7: END IF
8: Update user-channel setC = U ×A(t);
9: END WHILE

user-channel pair(j′,m′) that can achieve the largest increase in the objective valueis chosen, as

in Step 3. The complexity of the greedy algorithm in the worstcase isO(K2M2).

Performance Bound We next analyze the greedy algorithm and derive a lower boundfor its

performance. Letνl be the sequence from the first to thelth user-channel pair selected by the

greedy algorithm. The increase in objective value is denoted as:

Fl := F (νl, νl−1) = Φ(νl)− Φ(νl−1). (4.48)

Sum up (4.48) from 1 toL. We have
∑L

l=1 Fl = Φ(νL) sinceΦ(ν0) = 0. Let Ω be the global

optimal solution for user-channel allocation. Defineπl as a subset ofΩ. For givenνl, πl is the

subset of user-channel pairs that cannot be allocated due tothe conflict with thel-th user channel

allocationνl (but not conflict with the user-channel allocations inνl−1).

Lemma 4.5. Assume the greedy algorithm stops inL steps, we have

Φ(Ω) ≤ Φ(νL) +
L
∑

l=1

∑

σ∈πl

F (σ ∪ νl−1, νl−1).

Proof. The proof is similar to the proof of Lemma 7 in [13] and is omitted for brevity.
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Theorem 4.3. The greedy algorithm for channel selection in Table 4.6 can achieve an objective

value that is at least 1
|A(t)|

of the global optimum in each time slot.

Proof. According to Lemma 4.5, it follows that:

Φ(Ω) ≤ Φ(νL)+
L
∑

l=1

|πl|Fl ≤ Φ(νL)+(|A(t)|−1)
L
∑

l=1

Fl = |A(t)|Φ(νL). (4.49)

The second inequality is due to the fact that each user can choose at most one channel and there

are at most(|A(t)| − 1) pairs inπl according to the definition. The equality in (4.49) is because
∑L

l=1 Fl = Φ(νL). Then we have:

1

|A(t)|Φ(Ω) ≤ Φ(νL) ≤ Φ(Ω). (4.50)

The greedy heuristic solution is lower bounded by1/|A(t)| of the global optimum.

Define competitive ratioχ = Φ(νL)/Φ(Ω) = 1/|A(t)|. Assume all the licensed channels

have identical utilizationη. Since|A(t)| is a random variable, we take the expectation ofχ and

obtain:

E[χ] = ηM +
M
∑

n=1

(

1

n

)

ηM−n(1− η)n. (4.51)

In Fig. 4.7, we evaluate the impact of channel utilizationη and the number of licensed chan-

nelsM on the competitive ratio. We increaseη from 0.05 to 0.95 in steps of0.05 and increaseM

from 6 to 12 in steps of2. The lower bound (4.50) becomes tighter whenη is larger or whenM

is smaller. For example, whenη = 0.6 andM = 6, the greedy algorithm solution is guaranteed

to be no less than 52.7% of the global optimal. whenη is increased to 0.95, the greedy algorithm

solution is guaranteed to be no less than 98.3% of the global optimal.
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Figure 4.7: Competitive ratioE[χ] defined in (4.51) versus channel utilizationη.

4.4.4 Performance Evaluation

We evaluate the performance of the proposed algorithms witha MATLAB implementation

and the JVSM 9.13 Video Codec. We present simulation results for the following two scenarios:

(i) a single licensed channel and (ii) multiple licensed channels without channel bonding, since

we observe similar performance for the case of multiple licensed channels with channel bonding.

For comparison purpose, we also developed two simpler heuristic schemes that do not incorporate

interference alignment.

• Heuristic 1: each CR user selects the best channel inA(t) based on channel condition. The

time slot is equally divided among the active users receiving from the same channel, to send

their signals separately in each time slice.

• Heuristic 2: in each time slot, the active user with the best channel is selected for each

available channel. The entire time slot is used to transmit this user’s signal.
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Figure 4.8: Received video quality for each CR user with a single channel.

Case of a Single Licensed Channel

In the first scenario, there areK = 4 transmitters, i.e., one BS and three RNs. The channel

utilizationη is set to 0.6 and the maximum allowable collision probability γ is set to 0.2. There are

three active CR users, each receives an MGS video stream from the BS:Busto CR user 1,Mobile

to CR user 2, andHarbor to CR user 3. The video sequences are in the Common Intermediate

Format (CIF, 252×288). The GOP size of the videos is 16 and the delivery deadlineT is 10. The

false alarm probability isǫml = 0.3 and the miss detection probability isδml = 0.3 for all spectrum

sensors. The channel bandwidthB is 1 MHz. The peak power limit is 10 W for all the transmitters,

unless otherwise specified.

We first plot the average Y-PSNRs of the three reconstructed MGS videos in Fig. 4.8, i.e.,

only the Y (Luminance) component of the original and reconstructed videos are used. Among

three schemes, the proposed algorithm achieves the highestPSNR value, while the two heuristic

algorithms have similar performance. Note that the proposed algorithm is optimal in the single

channel case. It achieves significant improvements rangingfrom 3.1 dB to 5.25 dB over the two

heuristic algorithms. Such PSNR gains are considerable, since in video coding and communica-

tions, a half dB gain is distinguishable and worth pursing.
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Figure 4.9: Convergence rate of the distributed algorithm with a single channel.

We next examine the convergence rate of the distributed algorithm. According to Theo-

rem 4.2, the distributed algorithm converges at a speed faster than1/
√
τ asymptotically. We

compare the optimality gap of the proposed algorithm, i.e.,|q(τ) − q∗|, with series10/
√
τ in

Fig. 4.9. Both curves converge to 0 asτ goes to infinity. It can be seen that the convergence speed,

i.e., the slope of the curve, of the proposed scheme is largerthan that of10/
√
τ after about10

iterations. The convergence of the optimality gap is much faster than10/
√
τ , which exhibits a

heavy tail.

In the case of multiple channels with channel bonding, the performance of the proposed algo-

rithm is similar to that in the single channel case. We omit the results for lack of space.

Case of Multiple Channels without Channel Bonding

We next investigate the second scenario with six licensed channels and four transmitters.

There are 12 CR users, each streaming one of the three different videosBus, Mobile, andHarbor.

The rest of the parameters are the same as those in the single channel case, unless otherwise

specified. Eq. (4.49) can also be interpreted as an upper bound on the global optimal, i.e.,Φ(Ω) ≤

|A(t)|Φ(νL), which is also plotted in the figures. Each point in the following figures is the average
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Figure 4.10: Reconstructed video quality vs. channel utilization η in the multi-channel without
channel bonding case.

of 10 simulation runs with different random seeds. The 95% confidence intervals are plotted as

error bars, which are generally negligible.

The impact of channel utilizationη on received video quality is presented in Fig. 4.10. We

increaseη from 0.3 to 0.9 in steps of0.15, and plot the Y-PSNRs of reconstructed videos averaged

over all the 12 CR users. Intuitively, a smallerη allows more transmission opportunities for CR

users, thus allowing the CR users to achieve higher video rates and better video quality. This is

shown in the figure, in which all four curves decrease asη is increased. We also observe that the

gap between the upper bound and proposed schemes becomes smaller asη gets larger, from 32.65

dB whenη = 0.3 to 0.63 dB whenη = 0.9. This trend is also demonstrated in Fig. 4.7. The

proposed scheme outperforms the two heuristic schemes withconsiderable gains, ranging from

0.8 dB to 3.65 dB.

Finally, we investigate the impact of the number of transmittersK on the video quality. In

this simulation we increaseK from 2 to 6 with step size 1. The average Y-PSNRs of all the

12 CR users are plotted in Fig. 4.11. As expected, the more transmitters, the more effective the

interference alignment technique, and thus the better the video quality. The proposed algorithm
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Figure 4.11: Reconstructed video quality vs. number of transmittersK in the multi-channel with-
out channel bonding case.

achieves gains ranging from 1.78 dB (whenK = 2) to 4.55 dB (whenK = 6) over the two

heuristic schemes.

4.5 Conclusions

In this chapter, we first studied the problem of cooperative relay in CR networks. We modeled

the two cooperative relay strategies, i.e., DF and AF, whichare integrated withp-Persistent CSMA.

We analyzed their throughput performance and compared themunder various parameter ranges.

Cross-point with the AF and DF curves are found when some parameter is varied, indicating that

each of them performs better in a certain parameter range; there is no case of dominance for the

two strategies. Considerable gains were observed over conventional DL transmissions, as achieved

by exploiting cooperative diversity with the cooperative relays in CR networks.

Then, we investigated the problem of interference alignment for MGS video streaming in

a cooperative relay enhanced CR network. We presented a stochastic programming formation,

and derived a reformulation that leads to considerable reduction in computational complexity. A
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distributed optimal algorithm was developed for the case ofa single channel and the case of multi-

channel with channel bonding, with proven convergence and convergence speed. We also presented

a greedy algorithm for the multi-channel without channel bonding case, with a proven performance

bound. The proposed algorithms are evaluated with simulations and are shown to outperform two

heuristic schemes without interference alignment with considerable gains.
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Chapter 5

CR Femtocell Networks

5.1 Introduction

Due to the use of open space as transmission medium, capacityof wireless networks are

usually limited by interference. When a mobile user moves away from the base station, a consider-

ably larger transmit power is needed to overcome attenuation, while causing interference to other

users and deteriorating network capacity. To this end, femtocells provide an effective solution

that brings network infrastructure closer to mobile users.A femtocell is a small (e.g., residential)

cellular network, with afemto base station(FBS) connected to the owner’s broadband wireline

network [5,92,93]. The FBS serves approved users when they are within the coverage. Among the

many benefits, femtocells are shown effective on improving network coverage and capacity [5].

Due to reduced distance, transmit power can be greatly reduced, leading to prolonged battery life,

improved signal-to-interference-plus-noise ratio (SINR), and better spatial reuse of spectrum.

Femtocells have received significant interest from the wireless industry. Although highly

promising, many important problems should be addressed to fully harvest their potential, such as

interference mitigation, resource allocation, synchronization, and QoS provisioning [5, 92]. It is

also critical for the success of this technology to support important applications such as real-time

video streaming in femtocell networks.

In this chapter, we first investigate the problem of data multicast in femtocell networks. It is

not atypical that many users may request for the same content, as often observed in wireline net-

works. By allowing multiple users to share the same downlink multicast transmission, significant

spectrum and power savings can be achieved.

In particular, we adoptsuperposition coding(SC) andsuccessive interference cancellation

(SIC), two well-known PHY techniques, for data multicast in femtocell networks [94]. With SC,
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a compound signal is transmitted, consisting of multiple signals (or, layers) from different senders

or from the same sender. With SIC, a strong signal can be first decoded, by treating all other

signals as noise. Then the decoder will reconstruct the signal from the decoded bits, and subtract

the reconstructed signal from the compound signal. The nextsignal will be decoded from the

residual, by treating the remaining signals as noise. And soforth. A special strength of the SC with

SIC approach is that it enables simultaneous unicast transmissions (e.g., many-to-one or one-to-

many). It has been shown that SC with SIC is more efficient thanPHY techniques with orthogonal

channels [94,95].

We adopt SC and SIC for the unique femtocell network environment, and investigate how

to enable efficient data multicast from the femtocells to multiple users. We formulate a Mixed

Integer Nonlinear Programming (MINLP) problem, which is NP-hard in general. The objective

is to minimize the total BS power consumption. Then we reformulate the MINLP problem into a

simpler form, and derive upper and lower performance bounds. We also derive a simple heuristic

scheme that assigns users to the BS’s with a greedy approach. Finally, we consider three typical

connection scenarios in the femtocell network, and developoptimal and near-optimal algorithms

for the three scenarios. The proposed algorithms have low computational complexity, and are

shown to outperform the heuristic scheme with considerablegains.

Then, we investigate the problem of video streaming in femtocell cognitive radio (CR) net-

works. We consider a femtocell network consisting of amacro base station(MBS) and multiple

FBS’s. The femtocell network is co-located with a primary network with multiple licensed chan-

nels. This is a challenging problem due to the stringent QoS requirements of real-time videos

and, on the other hand, the new dimensions of network dynamics (i.e., channel availability) and

uncertainties (i.e., spectrum sensing and errors) found inCR networks.

We adopt Scalable Video Coding (SVC) in our system. SVC encodesa video into multiple

substreams, subsets of which can be decoded to provide different quality levels for the recon-

structed video [53]. Such scalability is very useful for video streaming systems, especially in
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CR networks, to accommodate heterogeneous channel availabilities and dynamic network condi-

tions. We consider H.264/SVC medium grain scalable (MGS) videos, since MGS can achieve

better rate-distortion performance over Fine-Granularity-Scalability (FGS), although it only has

Network Abstraction Layer (NAL) unit-based granularity [53].

The unique femtocell network architecture and the scalablevideo allow us to develop a frame-

work that captures the key design issues and trade-offs, andto formulate astochastic programming

problem. It has been shown that the deployment of femtocellshas a significant impact on the

network performance [5]. In this paper, we examine three deployment scenarios. In the case of a

single FBS, we applydual decompositionto develop a distributed algorithm that can compute the

optimal solution. In the case of multiple non-interfering FBS’s, we show that the same distributed

algorithm can be used to compute optimal solutions. In the case of multiple interfering FBS’s,

we develop a greedy algorithm that can compute near-optimalsolutions, and prove a closed-form

lower bound for its performance based on aninterference graphmodel. The proposed algorithms

are evaluated with simulations, and are shown to outperformthree alternative schemes with con-

siderable gains.

The remainder of this chapter is organized as follows. The related work is discussed in Sec-

tion 5.2. We investigate the problem of data multicast over fenmtocell networks in Section 5.3. The

problem of streaming multiple MGS videos in a femtocell CR network is discussed in Section 5.4.

Section 5.5 concludes this paper.

5.2 Background and Related Work

Femtocells have attracted considerable interest from bothindustry and academia. Technical

and business challenges, requirements and some preliminary solutions to femtocell networks are

discussed in [5]. Since FBS’s are distributedly located and are able to spatially reuse the same

channel, considerable research efforts were made on interference analysis and mitigation [35,96].
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A distributed utility based SINR adaptation scheme was presented in [96] to alleviate cross-tire in-

terference at the macrocell from co-channel femtocells. Lee, Oh and Lee [35] proposed a fractional

frequency reuse scheme to mitigate inter-femtocell interference.

Deploying femtocells by underlaying the macrocell has beenproved to significantly improve

indoor coverage and system capacity. However, interference mitigation in a two-tier heteroge-

neous network is a challenging problem. In [97], the interference from macrocell and femtocells

was mitigated by a spatial channel separation scheme with codeword-to-channel mapping. In [98],

the rate distribution in the macrocell was improved by subband partitioning and modest gains were

achieved by interference cancellation. In [99], the interference was controlled by denying the ac-

cess of femtocell base stations to protect the transmissionof nearby macro base station. A novel

algorithmic framework was presented in [100] for dynamic interference management to deliver

QoS, fairness and high system efficiency in LTE-A femtocell networks. Requiring no modification

of existing macrocells, CR was shown to achieve considerableperformance improvement when

applied to interference mitigation [101]. In [102], the orthogonal time-frequency blocks and trans-

mission opportunities were allocated based on a safe/victim classification.

SIC has high potential of sending or receiving multiple signals concurrently, which improves

the transmission efficiency. In [95], the authors developedMAC and routing protocols that ex-

ploit SC and SIC to enable simultaneous unicast transmissions. Sen, et al. investigated the pos-

sible throughput gains with SIC from a MAC layer perspective[103]. Power control for SIC

was comprehensively investigated and widely applied to code division multiple access (CDMA)

systems [104–108]. Applying game theory, Jean and Jabbari proposed an uplink power control

under SIC in direct sequence-CDMA networks [104]. In [105], the authors introduced an iterative

two-stage SIC detection scheme for a multicode MIMO system and showed the proposed scheme

significantly outperformed the equal power allocation scheme. A scheme on joint power control

and receiver optimization of CDMA transceivers was presented in [106]. In [107,108], the impact

of imperfect channel estimation and imperfect interference cancellation on the capacity of CDMA

systems was examined.
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5.3 Multicast in Femtocell Networks with Superposition Coding and Successive Interfer-

ence Cancellation

In this section, we formulate a Mixed Integer Nonlinear Programming (MINLP) problem

of data multicast in femotcell networks, which is NP-hard ingeneral. Then we reformulate the

MINLP problem into a simpler form, and derive upper and lowerperformance bounds. We also

derive a simple heuristic scheme that assigns users to the BS’s with a greedy approach. Finally,

we consider three typical connection scenarios in the femtocell network, and develop optimal and

near-optimal algorithms for the three scenarios. The proposed algorithms have low computational

complexity, and are shown to outperform the heuristic scheme with considerable gains.

5.3.1 System Model and Problem Statement

System Model

Consider a femtocell network with an MBS (indexed0) andM FBS’s (indexed from1 toM )

deployed in the area. TheM FBS’s are connected to the MBS and the Internet via broadband

wireline connections. Furthermore, we assume a spectrum band that is divided into two parts,

one is allocated to the MBS with bandwidthB0 and the other is allocated to theM FBS’s. The

bandwidth allocated to FBSm is denoted byBm. When there is no overlap between the coverages

of two FBS’s, they can spatially reuse the same spectrum. Otherwise, the MBS allocates disjoint

spectrum to the FBS’s with overlapping coverages. We assumedthe spectrum allocation is known

a priori.

There areK mobile users in the femtocell network. Each user is equippedwith one transceiver

that can be tuned to one of the two available channels, i.e., connecting to a nearby FBS or to the

MBS. The network is time slotted. We assume block-fading channels, where the channel condition

is constant in each time slot [94]. We focus on a multicast scenario, where the MBS and FBS’s

multicast a data file to theK users. The data file is divided into multiple packets with equal length
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Figure 5.1: Superposition coding and successive interference cancellation.

and transmitted in sequence with the same modulation scheme. Once packetl is successfully

received and decoded at the user, it requests packet(l + 1) in the next time slot.

We adopt SC and SIC to transmit these packets [94], as illustrated in Fig. 5.1. In each time slot

t, the compound signal hasL layers(or, levels), denoted asD1(t), · · · , DL(t). Each levelDi(t),

i = 1, · · · , L, is a packet requested by some of the users in time slott. A user that has successfully

decodedDi(t), for all i = 1, · · · , l−1, is able to subtract these signals from the received compound

signal and then decodesDl(t), while the signals fromDl+1(t) toDL(t) are treated as noise.

Problem Statement

For the SC and SIC scheme to work, the transmit powers for the levels should be carefully

determined, such that there is a sufficiently high SNR for thelevels to be decodable. It is also

important to control the transmit powers of the BS’s to reduceinterference and leverage frequency

reuse. The annual power bill is a large part of a mobile operator’s costs [109]. Minimizing BS

power consumption is important to reduce not only the operator’s OPEX, but also the global CO2

emission; an important step towards “green” communications.

Therefore, we focus on BS power allocation in this paper. The objective is to minimize the

total power of all the BS’s, while guaranteeing a target rateRtar for each user. Recall that the

data file is partitioned into equal-length packets. The target rateRtar ensures that a packet can be

transmitted within a time slot, for given modulation and channel coding schemes.

Define binary indicatorIkm, for allm andk, as:

Ikm =











1, if userk connects to BSm

0, otherwise.
(5.1)
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Consider a general time slott whenL data packets, or levels, are requested. We formulate the

optimal power allocation problem (termed OPT-Power) as follows.

minimize:
M
∑

m=0

L
∑

l=1

Pm
l (5.2)

subject to:Bm log2(1 + γkmI
k
m) ≥ RtarI

k
m, for all k (5.3)

M
∑

m=0

Ikm = 1, for all k (5.4)

Pm
l ≥ 0, for all l,m, (5.5)

wherePm
l is the power of BSm for transmitting the levell packet;γkm is the SNR at userk if it

connects to BSm. Constraint (5.3) guarantees the minimum rate at each user. Constraint (5.4) is

due to the fact that each user is equipped with one transceiver, so it can only connect to one BS.

Let Ul denote the set of users requesting the levell packet. A userk ∈ Ul has decoded all

the packets up toDl−1. It subtracts the decoded signals from the received signal and treats signals

Dl+1, · · · , DL as noise. The SNR at userk ∈ Ul, for l = 1, · · · , L− 1, can be written as:

γkm = Hk
mP

m
l /

(

N0 +Hk
m

L
∑

i=l+1

Pm
i

)

, (5.6)

whereHk
m is the random channel gain from BSm to userk andN0 is the noise power. For user

k ∈ UL that requests the last packetDL, the SNR is

γkm = Hk
mP

m
L /N0. (5.7)

The optimization variables in Problem OPT-Power consist ofthe binary variablesIkm’s and the

continuous variablesPm
l ’s. It is an MINLP problem, which is NP-hard in general. In Section 5.3.2,

we first reformulate the problem to a obtain a simpler form, and then develop effective algorithms

for optimal and suboptimal solutions.
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5.3.2 Reformulation and Power Allocation

In this section, we reformulate Problem OPT-Power to obtaina simpler form, and derive

an upper bound and a lower bound for the total BS power. The reformulation also leads to a

simple heuristic algorithm. Finally, we introduce power allocation algorithms for three connection

scenarios.

Problem Reformulation

Due to the monotonic logarithm functions and the binary indicatorsIkm, constraint (5.3) can

be rewritten as:

γkmI
k
m ≥ ΓkmI

k
m, m = 0, 1, · · · ,M, (5.8)

whereΓkm = Γm =: 2Rtar/Bm − 1 is the minimum SNR requirement at userk that connects to BS

m. To further simplify the problem, defineQm
l =

∑L
i=l P

m
i , with Qm

L+1 = 0. Then powerPm
l is

the difference

Pm
l = Qm

l −Qm
l+1. (5.9)

Problem OPT-Power can be reformulated as:

minimize
M
∑

m=0

Qm
1 (5.10)

subject to:Hk
m(Q

m
l −Qm

l+1)/
(

N0+H
k
mQ

m
l+1

)

Ikm ≥ ΓmI
k
m,

for all k ∈ Ul, l = 1, · · · , L (5.11)

Qm
l ≥ Qm

l+1, l = 1, · · · , L (5.12)
M
∑

m=0

Ikm = 1, for all k. (5.13)
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For l ≤ L, constraint (5.11) can be rewritten as:

Qm
l I

k
m ≥

[

N0Γm/H
k
m + (1 + Γm)Q

m
l+1

]

Ikm. (5.14)

LetUml be the subset of users connecting to BSm in Ul. SinceQm
l ≥ Qm

l+1, (5.14) can be rewritten

as,

Qm
l = max

{

Qm
l+1,max

k∈Um
l

[

N0Γm/H
k
m + (1 + Γm)Q

m
l+1

]

}

. (5.15)

From (5.15), we define a functionQm
l = Fm(Q

m
l+1,Uml ) as:

Fm(Q
m
l+1,Uml ) =











Qm
l+1, Uml = ∅

maxk∈Um
l

{

N0Γm

Hk
m

+ (1 + Γm)Q
m
l+1

}

, Uml 6= ∅.
(5.16)

Obviously,Fm(Qm
l+1,Uml ) is non-decreasing with respect toQm

l+1. It follows that

Qm
1 = Fm(Q

m
2 ,Um1 ) = Fm(Fm(Q

m
3 ,Um2 ),Um1 )

= Fm(· · · (Fm(Qm
L+1,UmL ),UmL−1), · · · ,Um1 )

= Fm(· · · (Fm(0,UmL ),UmL−1), · · · ,Um1 ). (5.17)

If none of the subsetsUml (l = 1, · · · , L) is empty, we can expand the above recursive term

using (5.16). It follows that

Qm
1 = N0Γm

L
∑

l=1

(1 + Γm)
cm
l max
k∈Um

l

{

1/Hk
m

}

, (5.18)

where the exponentcml is defined ascm1 = 0 andcml+1 = cml + 1. Otherwise, if a subsetUml = ∅ for

somem, we have thatQm
l = Qm

l+1, maxk∈Um
l

{

1/Hk
m

}

= maxk∈∅
{

1/Hk
m

}

= 0, andcml = cml−1.

Eq. (5.18) still holds true.
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Finally, the objective function (5.10) can be rewritten as

M
∑

m=0

N0Γm

L
∑

l=1

(1 + Γm)
cm
l max
k∈Um

l

{

1/Hk
m

}

. (5.19)

Since(1 + Γm) > 0, it can be seen that to minimize the total BS power, we need to keep thecml ’s

as low as possible.

Performance Bounds

The reformulation and simplification allow us to derive performance bounds for the total BS

power consumption. First, we derive the upper bound for the objective function (5.10). Define a

variable

Gm = max
l∈{1,··· ,L}

max
k∈Um

l

{

Γm/H
k
m

}

, (5.20)

which corresponds to the user with the worst channel condition among all users that connect to BS

m. It follows that:

M
∑

m=0

Qm
1 = N0

M
∑

m=0

L
∑

l=1

(1 + Γm)
cm
l max
k∈Um

l

{

Γm/H
k
m

}

≤N0

M
∑

m=0

L
∑

l=1

(1 + Γm)
cm
l Gm

≤N0

M
∑

m=0

Gm

L
∑

l=1

(1 + Γm)
l−1

= N0

M
∑

m=0

Gm

[

(1 + Γm)
L − 1

]

/Γm. (5.21)

In (5.21), the first inequality is from the definition ofGm. The second inequality is from the

definition ofcml+1. Specifically,cm1 = 0; whenUml 6= ∅, we havecml = cml−1 + 1; whenUml = ∅, we

havecml = cml−1. It follows thatcml ≤ l − 1. Therefore, (5.21) is an upper bound on the objective

function (5.10).
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Furthermore, by definingG = maxm∈{0,··· ,M}

{

Gm

}

, andΓ = maxm∈{0,··· ,M} {Γm}, we can

get a looser upper bound from 5.21 as

M
∑

m=0

Qm
1 ≤ N0G(M + 1)

[

(1 + Γ)L − 1
]

/Γ. (5.22)

Next, we derive a lower bound for (5.10). Define











Gl = minm∈{0,··· ,M} maxk∈Um
l

{

Γm/H
k
m

}

Γ = minm∈{0,··· ,M} {Γm} .
(5.23)

We have that

M
∑

m=0

Qm
1 = N0

M
∑

m=0

L
∑

l=1

(1 + Γm)
cm
l max
k∈Um

l

{

Γm/H
k
m

}

≥N0

M
∑

m=0

L
∑

l=1

(1 + Γm)
cm
l Gl

≥N0

L
∑

l=1

Gl
M
∑

m=0

(1 + Γ)c
m
l

≥N0(M + 1)
L
∑

l=1

Gl(1 + Γ)

∑M
m=0 cm

l
M+1

≥N0(M + 1)
L
∑

l=1

Gl(1 + Γ)
l−1
M+1 . (5.24)

In (5.24), the first inequality is from the definition ofGl. The second inequality is due to the

definition ofΓ. The third inequality is due to the fact that(1 + Γ)c
m
l is a convex function. The

fourth inequality is because that each level must be transmitted by at least one BS. Thus for each

level l, there is at least onecml = cml−1 + 1 for somem. It follows that the sum
∑M

m=0 c
m
l should be

greater thanl − 1. Therefore, (5.24) provides a lower bound for (5.10).
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Furthermore, by definingG = minl∈{1,··· ,L}
{

Gl
}

, we can obtain a looser lower bound from

(5.24) as
M
∑

m=0

Qm
1 ≥ N0G(M + 1)

(1 + Γ)
L

M+1 − 1

(1 + Γ)
1

M+1 − 1
. (5.25)

A Simple Heuristic Scheme

We first describe a greedy heuristic algorithm that solves OPT-Power with suboptimal solu-

tions. With this heuristic, each user compares the channel gains from the MBS and the FBS’s. It

chooses the BS with the best channel condition to connect to, thus the values of the binary vari-

ablesIkm are determined. Once the binary variables are fixed, all the subsetsUml ’s are determined.

Starting withQm
L+1 = 0, we can apply (5.15) iteratively to find theQm

l ’s. Finally, the transmit

powersPm
l can be computed using (5.9).

With this approach, among the users requesting the levell packet, it is more likely that some

of them connect to the MBS and the rest connect to some FBS’s, dueto the random channel gains

in each time slot. In this situation, both MBS and FBS will have to transmit all the requested

data packets. Such situation is not optimal for minimizing the total power, as will be discussed in

Section 5.3.2.

Power Allocation Algorithms

In the following, we develop three power allocation algorithms for three different connection

scenarios with a more structured approach.

Case I–One Base Station We first consider the simplest connection scenario where alltheK

users connect to the same BS (i.e., either the MBS or an FBS). Assume all the users connect to BS

m. Then we haveIkm = 1 for all k, and all the subsetsUml are non-empty;Ikm′ = 0 for all k and all

m′ 6= m, and all the subsetsUm′

l are empty form′ 6= m.
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From (5.16), we can derive the optimal solution as:

Qm∗
l = (1 + Γm)Q

m∗
l+1 + max

k∈Um
l

{

N0Γm/H
k
m

}

,

= N0Γm

L
∑

i=l

(1 + Γm)
i−l max

k∈Um
l

{

1/Hk
m

}

, l = 1, 2, · · · , L. (5.26)

Recall thatQm∗
L+1 = Qm

L+1 = 0, the optimal power allocation for Problem OPT-Power in thiscase

is:

Pm′∗
l =











Qm∗
l −Qm∗

l+1, m′ = m, for all l

0, m′ 6= m, for all l.
(5.27)

Case II–MBS and One FBS We next consider the case with one MBS and one FBS (i.e.,

M = 1), where each user has two choices: connecting to either the FBS or the MBS.

Recall thatU0
l andU1

l are the subset of users who connected to the MBS and the FBS, respec-

tively, and who request the levell packet. Examining (5.18), we find that the total power of BSm

can be significantly reduced if one or more levels are not transmitted, since the exponentcml will

not be increased in this case. Furthermore, consider the twochoices: (i) not transmitting levell,

and (ii) not transmitting levell′ > l from BSm. The first choice will yield larger power savings,

since more exponents (i.e.,cml , c
m
l+1, · · · , cml′−1) will assume smaller values. Therefore, we should

let these two subsets be empty whenever possible, i.e., either U0
l = ∅ or U1

l = ∅. According to

this policy, all the users requesting the levell packet will connect to the same BS. We only need to

make the optimal connection decision for each subset of users requesting the same level of packet,

rather than for each individual user.

Since not transmitting a lower level packet yields more power savings for a BS, we calculate

the power from the lowest to the highest level, and decide whether connecting to the MBS or

the FBS for users in each level. DefineG0
l = maxk∈Ul

{

1/Hk
0

}

andG1
l = maxk∈Ul

{

1/Hk
1

}

.

The algorithm for solving Problem OPT-Power in this case is given in Table 5.1. In Steps2–10,

the decision on whether connecting to the MBS or the FBS is made by comparing the expected

increments in the total power. The user subsetsU0
l andU1

l are determined in Steps4 and7. In
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Table 5.1: Power Allocation Algorithm For Case II
1: Initialize all c0l , c

1
l ,Q

0
L+1 andQ1

L+1 to zero;
2: FORl = 1 TOL

3: IF (Γ0(1 + Γ0)
c0
lG0

l ≤ Γ1(1 + Γ1)
c1
lG0

l )
4: SetU0

l = Ul andU1
l = ∅;

5: c0l = c0l + 1;
6: ELSE
7: SetU0

l = ∅ andU1
l = Ul;

8: c1l = c1l + 1;
9: END IF
10: END FOR
11: FORl = L TO 1
12: Q0

l = F0(Q
0
l+1,U0

l ) andP 0
l = Q0

l −Q0
l+1;

13: Q1
l = F1(Q

1
l+1,U1

l ) andP 1
l = Q1

l −Q1
l+1;

14: END FOR

Steps11–14, Qm
l ’s and the correspondingPm

l ’s are computed in the reverse order, based on the

determined subsetsU0
l andU1

l .

The computational complexity of this algorithm isO(L).

Case III–MBS and Multiple FBS’s Finally, we consider the general case with one MBS and

multiple FBS’s in the network. Each user is able to connect to the MBS or a nearby FBS. Recall

that we defineUl as the set of users requesting the levell packet, andUml as the subset of users in

Ul thatconnectto BSm. These sets have the following properties.











⋃M
m=0 Uml = Ul
Uml
⋂Um′

l = ∅, for all m′ 6= m.

The first property is due to the fact that each user must connect to the MBS or an FBS. The second

property is because each user can connect to only one BS. The user subsets connecting to different

BS’s do not overlap. Therefore,Uml ’s is apartition of Ul with respect tom.
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In addition, we defineSml as the set of possible users that arecoveredby BSm and request

the levell packet. These sets have the following properties.























⋃M
m=1 Sml = S0

l = Ul
Sml
⋂S0

l = Sml , for all m 6= 0

Sml
⋂Sm′

l = ∅, for all m′ 6= m andm,m′ 6= 0.

The first property is because all users in each femtocell are covered by the MBS. The second

property indicates that the users covered by FBSm are a subset of the users covered by the MBS.

The third property shows that the user subsets in different femtocells do not overlap. We can see

that theSml ’s, form = 1, · · · ,M , are also a partition ofUl.

DefineWm(U) = maxk∈U
{

1/Hk
m

}

, whereU is the set of users andm = 0, · · · ,M . If the

setU is empty, we defineWm(∅) = 0. For example, consider Case II whereM = 1. We have

S0
l = S1

l = Ul,W0(Ul) = G0
l , andW1(Ul) = G1

l .

The power allocation algorithm for Case III is presented in Table 5.2. The algorithm iteratively

picks users from theeligible subsetSml and assigns them to theallocatedsubsetUml . In each step

l, Ψ is the subset of FBS’s that will transmit the levell packet; the complementary setΨ is the

subset of FBS’s that will not transmit the levell packet. The expected increment in total power for

each partition is computed, and the partition with the smallest expected increment will be chosen.

∆m
l is the power of BSm for transmitting the levell data packet. In Steps6–15, the MBS and

FBS combinationΨ is determined for transmitting the levell packet, with the lowest power∆0. In

Steps16–30, elements inSml are assigned toUml according toΨ. In Steps31–35, power sumsQm
l

and the corresponding power allocationsPm
l are calculated in the reverse order from the known

Uml ’s.

The complexity of the algorithm isO(ML).
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Table 5.2: Power Allocation Algorithm For Case III
1: Initialize: cml = 0 andQm

L+1 = 0, for all l,m;
2: FORl = 1 TOL
3: FORm = 0 TOM
4: ∆m

l = Γm(1 + Γm)
cm
l Wm(Sml );

5: END FOR
6: SetΩ = {1, · · · ,M} andΨ = ∅;
7: WHILE (Ω 6= ∅)
8: m′ = argminm∈Ω ∆m

l ;
9: Compute∆′ = Γ0(1 + Γ0)

c0
lW0(

⋃

m∈Ψ∪m′ Sml );
10: IF ((

∑

m∈Ψ∪m′ ∆m
l +∆′) < ∆0)

11: Addm′ to Ψ;
12: ∆0 =

∑

m∈Ψ ∆m
l +∆′;

13: END IF
14: Removem′ from Ω;
15: END WHILE
16: IF (Ψ = ∅)
17: U0

l = S0
l ;

18: c0l = c0l + 1;
19: SetUml = ∅, for allm 6= 0;
20: ELSE
21: U0

l =
⋃

m∈Ψ Sml ;
22: IF (|Ψ| < M )
23: c0l = c0l + 1;
24: END IF
25: FORm ∈ Ψ
26: cml = cml + 1;
27: Uml = Sml ;
28: END FOR
29: END IF
30: END FOR
31: FORl = L TO 1
32: FORm = 0 TOM
33: Qm

l = Fm(Q
m
l+1,Uml ) andPm

l = Qm
l −Qm

l+1;
34: END FOR
35: END FOR

5.3.3 Performance Evaluation

We evaluate the performance of the proposed power allocation algorithms using MATLABTM.

Three scenarios corresponding to the three cases in Section5.3.2 are simulated: (i) Case I: a single

MBS; (ii) Case II: one MBS and one FBS; and (iii) Case III: one MBS and three FBS’s.
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Figure 5.2: Case I vs. Case II: interference footprints.

Since we do not find any similar schemes in the literature, we made the following compar-

isons. First, we compare Cases I and II with respect to BS power consumption and interference

footprint. In both cases, there areK = 8 users andL = 4 levels. In Case I, the MBS bandwidth

is B0 = 2 MHz. In Case II, the MBS and the FBS share the2 MHz total bandwidth; the MBS

bandwidth isB0 = 1 MHz and the FBS bandwidth isB1 = 1 MHz. The target data rateRtar is set

to 2 Mbps. The channel gain from a base station to each user is exponentially distributed in each

time slot.

The interference footprints in the three dimensional spaceare plotted in Fig. 5.2. The height

B of the cylinders indicates the spectrum used by a BS, while theradiusr is proportional to the

BS transmit power. In Case I when only the MBS is used, the total BS power is45.71 dBm and

the volume of the cylinder isπr2B = 18, 841 MHz m2. In Case II when both the MBS and FBS

are used, the total BS power is34.58 dBm and the total volume of the two cylinders is2, 378 MHz

m2. Using an additional FBS achieves a11.13 dB power saving and the interference footprint is

reduced to12.62% of that in Case I. This simple comparison clearly demonstrate the advantages

of femtocells achieved by bringing BS’s closer to users.
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Figure 5.3: Case III: impact of number of levelsL.

We next consider the more general Case III, using a femtocell network of one MBS and three

FBS’s. The MBS bandwidth isB0 = 1 MHz and each FBS is assigned with bandwidthBm = 1

MHz, m = 1, 2, 3. The target data rate is still2 Mbps. In Figs. 5.3 and 5.4, we plot four curves,

each obtained with: (i) the heuristic scheme described in Section 5.3.2; (ii) The proposed algorithm

presented in Section 5.3.2; (iii) The upper bound; and (iv) the lower bound derived in Section 5.3.2.

Each point in the figures is the average of10 simulation runs. The95% confidence intervals are

plotted as error bars, which are all negligible.

In Fig. 5.3, we examine the impact of the number of packet levels L on the total BS transmit

power. We increaseL from 2 to 6, and plot the total power of base stations. As expected, the

more packet levels, the larger the BS power consumption. Both the proposed and heuristic curves

lie in between the upper and lower bound curves. WhenL is increased from2 to 6, the power

consumption of the heuristic scheme is increased by12.22 dB, while the power consumption of

the proposed algorithm is increased by9.94 dB. The power savings achieved by the proposed

algorithm over the heuristic scheme range from3.92 dB to6.45 dB.

In Fig. 5.4, we show the impact of the BS bandwidths. The numberof levels isL = 4. We

fix the total bandwidth at2 MHz, which is shared by the MBS and FBS’s. We increase the MBS
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Figure 5.4: Case III: impact of MBS bandwidthB0.

bandwidth from0.4 MHz to 1.6 MHz in steps of0.2 MHz, while decrease the bandwidth of FBS’s

from 1.6 MHz to 0.4 MHz. We find that the total power consumption is increased asB0 gets

large. This is due to the fact that as the FBS bandwidth gets smaller, the FBS’s have to spend more

power to meet the minimum data rate requirement. The curve produced by the proposed algorithm

has a smaller slop than that of the heuristic scheme: the overall increase in the total power of

the proposed algorithm is4.86 dB, while that of the heuristic scheme is20.84 dB. This implies

that the proposed scheme is not very sensitive to the bandwidth allocation between the MBS and

FBS’s. The proposed algorithm also achieves consider power savings over the heuristic scheme.

WhenB0 = 1.6 MHz, the total power of the proposed algorithm is20.75 dB lower than that of the

heuristic scheme.

5.4 Video over CR Femtocell Networks

In this section, we investigate the problem of video streaming in femtocell cognitive radio

(CR) networks and formulate astochastic programmingproblem to examine three deployment sce-

narios. In the case of a single FBS, we applydual decompositionto develop an optimum-achieving

distributed algorithm, which is shown also optimal for the case of multiple non-interfering FBS’s.
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In the case of multiple interfering FBS’s, we develop a greedyalgorithm that can compute near-

optimal solutions, and prove a closed-form lower bound for its performance based on aninter-

ference graphmodel. The proposed algorithms are evaluated with simulations, and are shown to

outperform three alternative schemes with considerable gains.

5.4.1 System Model and Preliminaries

Spectrum and Network Model

We consider a spectrum consisting of(M + 1) channels, including one common, unlicensed

channel (indexed as channel0) andM licensed channels (indexed as channels1 to M ). TheM

licensed channels are allocated to a primary network, and the common channel is exclusively used

by all CR users. We assume all the channels follow a synchronized time slot structure [14]. The

capacity of each licensed channel isB1 Mbps, while the capacity of the common channel isB0

Mbps. The channel states evolve independently, while the occupancy of each licensed channel

follows a two-state discrete-time Markov process as described in Section 2.3.1.

The femtocell CR network is illustrated in Fig. 5.5. There is an MBS andN FBS’s deployed

in the area to serve CR users. TheN FBS’s are connected to the MBS (and the Internet) via

broadband wireline connections. Due to advances in antennatechnology, it is possible to equip

multiple antennas at the base stations. The MBS has one antenna that is always tuned to the

common channel. Each FBS is equipped with multiple antennas (e.g.,M ) and is able to sense

multiple licensed channels at the beginning of each time slot. There areKi CR users in femtocell

i, i = 1, 2, · · · , N , and
∑N

i=1Ki = K. Each CR user has a software radio transceiver, which can

be tuned to any of theM+1 channels. A CR user will either connect to a nearby FBS using one or

more of the licensed channels or to the MBS via the common channel.

Although the CR users are mobile, we assume constant topologyduring a time slot. If the

topology is changed during a time slot, the video transmission will only be interrupted for the time

slot, since the proposed algorithms are executed in every time slot for new channel assignment and

schedule.
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Figure 5.5: A femtocell CR network with one MBS and four FBS’s.

Spectrum Sensing and Access

The femtocell CR network is within the coverage of the infrastructure-based primary network.

Both FBS’s and CR users sense the channels to identify spectrum opportunities in each time slot.

Each time slot consists of (i) asensing phase, when CR users and FBS’s sense licensed channels,

(ii) a transmission phase, when CR users and FBS’s attempt to access licensed channels, and (iii)

anacknowledgment phase, when acknowledgments (ACK) are returned to the source.

As described in Section 2.5.1, cooperative sensing policy is also adopted here. We also adopt

a hypothesis testto detect channel availability. We assume that each CR user chooses one channel

to sense in each time slot, since it only has one transceiver.The sensing results will be shared

among CR users and FBS’s via the common channel in the sensing phase. GivenL sensing results

on channelm, the availability of channelm, i.e.,PA
m(Θ

m
1 , · · · ,Θm

L ), can be computed iteratively
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as follows.

PA
m(Θ

m
1 ) =

[

1 +
ηm

1− ηm
× (δm1 )

1−Θm
1 (1− δm1 )Θ

m
1

(ǫm1 )
Θm

1 (1− ǫm1 )1−Θm
1

]−1

(5.28)

PA
m(~Θ

m
l ) = PA

m(Θ
m
1 ,Θ

m
2 , · · · ,Θm

l )

=

{

1 +

[

1

PA
m(Θ

m
1 ,Θ

m
2 , · · · ,Θm

l−1)
− 1

]

×

(δml )
1−Θm

l (1− δml )Θ
m
l

(ǫml )
Θm

l (1− ǫml )1−Θm
l

}−1

, l = 2, · · · , L. (5.29)

As in Section 2.5.1, we adopt a probabilistic approach: based on sensing results~Θm, we

haveDm(t) = 0 with probabilityPD
m (~Θm) andDm(t) = 1 with probability 1 − PD

m (~Θm). For

primary user protection, the collision probability with primary users caused by CR users should be

bounded. The probabilityPD
m (~Θm) is determined as follows

PD
m (~Θm) = min

{

γm/
[

1− PA
m(
~Θm)

]

, 1
}

. (5.30)

Let A(t) := {m|Dm(t) = 0} be the set of available channels in time slott. ThenGt =
∑

m∈A(t) P
A
m(Θ

m
1 ) is the expected number of available channels. These channels will be accessed

in the transmission phase of time slott.

Channel Model

Without loss of generality, we consider independent block fading channels that is widely used

in prior work [110]. The channel fading-gain process is piecewise constant on blocks of one time

slot, and fading in different time slots are independent. Let f i,jX (x) denote theprobability density

functionof the received SINRX from a base stationi at CR userj. We assume the packet can

be successfully decoded if the received SINR exceeds a thresholdH. The packet loss probability

from base stationi to CR userj is

Pi,j = Pr{X ≤ H} =
∫ H

0

f i,jX (x)dx = F i,j
X (H), (5.31)
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whereF i,j
X (H) is the cumulative density function ofX.

In the case of correlated fading channels, which can be modeled as finite state Markov Pro-

cess [111], the packet loss probability in the next time slotcan be estimated from the known state

of the previous time slot and the transition probabilities.If the packet is successfully decoded,

the CR user returns an ACK to the base station in the ACK phase. We assume ACKs are always

successfully delivered.

Video Performance Measure

We assume each active CR user receives a real-time video stream from either the MSB or

an FSB. Without loss of generality, we adopt the MGS option of H.264/SVC, for scalability to

accommodate the high variability of network bandwidth in CR networks.

Due to real-time constraint, each Group of Pictures (GOP) ofa video stream must be delivered

in the nextT time slots. With MGS, enhancement layer NAL units can be discarded from a quality

scalable bit stream, and thus packet-based quality scalable coding is provided. Our approach is to

encode the video according to the maximum rate the channels can support. During transmission,

only part of the MGS video gets transmitted as allowed by the current available channel bandwidth.

The video packets are transmitted in decreasing order of their significance in decoding. When a

truncated MGS video is received and decoded, the PSNR is computed by substituting the effective

rate of the received MGS video into (5.32) given below, thus the original video is not required.

Without loss of generality, we assume that the last wirelesshop is the bottleneck; video data

is available at the MBS and FBS’s when they are scheduled to be transmitted. The quality of

reconstructed MGS video can be modeled as [53]:

W (R) = α + β ×R, (5.32)

whereW (R) is the average peak signal-to-noise ratio (PSNR) of the reconstructed video,R is the

received data rate,α andβ are constants depending on the video sequence and codec.
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Figure 5.6: Rate-distortion curves of three H.264/SVC MGS videos.

We verified (5.32) using an H.264/SVC codec and theBus, Mobile, andHarbour test se-

quences. In Fig. 5.6, the markers are obtained by truncatingthe encoded video’s enhancement

layer at different positions to obtain different effectiverates, while the curves are computed using

(5.32). The curves fit well with measurements for the three sequences. It is worth noting that

PSNR may not be a good measure of video quality as compared with alternative metrics such as

MS-SSIM [112]. The main reason for choosing PSNR is that there is a closed-form model relating

it to network level metrics–video rate. With the closed-form model, we can have a mathemat-

ical formulation of the scheduling/resource allocation problem, and derive effective algorithms.

Should such closed-form models be available for MS-SSIM, itis possible to incorporate it into the

optimization framework as well.

5.4.2 MGS Video over Femtocell CR Networks

In this section, we address the problem of resource allocation for MGS videos over femtocell

CR networks. We first examine the case of a single FBS, and then the more general case of multiple

non-interfering or interfering FBS’s. The algorithms for the single and non-interfering FBS cases

are distributed ones and optimal. The algorithm for the interfering FBS case is a centralized one
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that can be executed at the MBS. To simplify notation, we omit the time slot indext for most of

the variables in this Section. For example,x represents a variable for time slott, x− represents the

variable in time slot(t− 1), andx+ represents the variable in time slot(t+ 1).

Case of Single FBS

Formulation We first consider the case of a single FBS in the CR network, wherethe FBS can

use all theG available channels to stream videos toK active CR users. Letwj be the PSNR of CR

userj at the beginning of time slott andWj the PSNR of CR userj at the end of time slott. In

time slott, wj is already known;Wj is a random variable that depends on channel condition and

primary user activity; andw+
j is a realizationof Wj. Let ξ0,j andξ1,j indicate the random packet

losses from the MBS and FBS, respectively, to CR userj in time slot t. That is,ξi,j is 1 with

probabilityP̄i,j = 1− Pi,j and0 with probabilityPi,j. Due to block fading channels,Pi,j ’s do not

change within the time slot.

Let ρ0,j and ρ1,j be the portions of time slott when CR userj receives video data from

the MBS and FBS, respectively. The average PSNR is computed every T time slots. We first have

Wj(0) = αj, whent = 0. In each time slott, the CR user receivesξ0,jρ0,jB0 bits through the MBS,

andξ1,jρ1,jGB1 bits through the FBS (assuming that OFDM is used), which contribute an increase

of β(ξ0,jρ0,jB0+ξ1,jρ1,jGB1)/T to the total PSNR in thisT time slot interval, according to (5.32).

Therefore we have the following recursive relationship:Wj = W−
j +β(ξ0,jρ0,jB0+ξ1,jρ1,jGB1)/T

= W−
j + ξ0,jρ0,jR0,j + ξ1,jρ1,jGR1,j, whereR0,j = βB0/T andR1,j = βB1/T .

For proportional fairness, we aim to maximize the sum of the logarithms of the PSNRs of

all CR users [71]. We formulate amultistage stochastic programming problemby maximizing the
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expectationof the logarithm-sum at timeT .

maximize:
K
∑

j=1

E[log(Wj(T ))] (5.33)

subject to:Wj = W−
j + ξ0,jρ0,jR0,j + ξ1,jρ1,jGR1,j , j = 1, · · · , K, t = 1, · · · , T

K
∑

j=1

ρi,j ≤ 1, i = 0, 1, t = 1, · · · , T

ρi,j ≥ 0, i = 0, 1, j = 1, · · · , K, t = 1, · · · , T.

R0,j = βjB0/T andR1,j = βjB1/T are constants for thej-th MGS video.

At the beginning of the last time slotT , a realizationξ[T−1] = [~ξ1, ~ξ2, · · · , ~ξT−1] is known,

where~ξt = [ξt0,1, ξ
t
0,2, · · · , ξt0,K , ξt1,1, · · · , ξt1,K ], t = 1, 2, · · · , T − 1. It can be shown that the

multistage stochastic programming problem (5.33) can be decomposed intoT serial sub-problems,

each to be solved in a time slott [9].

maximize:
K
∑

j=1

E{log(Wj)|ξ[t−1]} (5.34)

subject to:Wj = W−
j + ξ0,jρ0,jR0,j + ξ1,jρ1,jGR1,j , j = 1, · · · , K

K
∑

j=1

ρi,j ≤ 1, i = 0, 1

ρi,j ≥ 0, i = 0, 1, j = 1, · · · , K,

whereE{log(Wj)|ξ[t−1]} denotes theconditional expectationof log(Wj) given realizationξ[t−1].

W−
j is known given the realization. Whent = 1, the conditional expectation becomes an uncondi-

tional expectation.

Since a CR user has only one transceiver, it can operate on either one or more licensed chan-

nels (i.e., connecting to the FBS) or the common channel (i.e., connecting to the MBS), but not

both simultaneously. Assume CR userj operates on the common channel with probabilitypj and
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one or more licensed channels with probabilityqj. We then rewrite problem (5.34) as

maximize:
K
∑

j=1

[

pjP̄0,j log(W
−
j + ρ0,jR0,j) + qjP̄1,j log(W

−
j + ρ1,jGR1,j)

]

subject to:
K
∑

j=1

ρi,j ≤ 1, i = 0, 1

pj + qj = 1, j = 1, · · · , K

ρi,j , pj, qj ≥ 0, i = 0, 1, j = 1, · · · , K.

Properties In this section, we analyze the formulated problem (5.35) and derive its properties.

We have Lemmas 1, 2, and 3 and Theorem 1 and provide the proofs in the following.

Lemma 5.1. Problem (5.35) is a convex optimization problem.

Proof. First, it can be shown that the single termpjP̄0,j log(W
−
j + ρ0,jR0,j) + qjP̄1,j log(W

−
j +

ρ1,jGR1,j) is a concave function, because itsHessian matrixis negative semi-definite. Then, the

objective function is concave since the sum of concave functions is also concave. Finally, all the

constraints are linear. We conclude that problem (5.35) is convex with a unique optimal solution.

Lemma 5.2. If [ρ, p, q] is a feasible solution to problem (5.35), then[ρ, q, p] is also feasible.

Proof. Since[ρ, p, q] is feasible, we havep+ q = 1. Switching the two probabilities, we still have

q + p = 1. Therefore, the derived new solution is also feasible.

Lemma 5.3. Let the optimal solution be[ρ∗, p∗, q∗]. If p∗j ≥ q∗j , thenP̄0,j log(W
−
j + ρ∗0,jR0,j) is

greater than or equal tōP1,j log(W
−
j + ρ∗1,jGR1,j). And vice versa.

Proof. AssumeP̄0,j log(W
−
j + ρ∗0,jR0,j) is less thanP̄1,j log(W

−
j + ρ∗1,jGR1,j). Sincep∗j ≥ q∗j ,

the sum of the productp∗j P̄0,j log(W
−
j + ρ∗0,jR0,j) + q∗j P̄1,j log(W

−
j + ρ∗1,jGR1,j) is smaller than

the sum of the productq∗j P̄0,j log(W
−
j + ρ∗0,jR0,j) + p∗j P̄1,j log(W

−
j + ρ∗1,jGR1,j). Thus we can

obtain an objective value larger than the optimum by switching the values ofp∗j andq∗j , which is
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still feasible according to Lemma 2. This conflicts with the assumption that[ρ∗, p∗, q∗] is optimal.

The reverse statement can be proved similarly.

Theorem 5.1.Let the optimal solution be[ρ∗, p∗, q∗]. If p∗j > q∗j , then we havep∗j = 1 andq∗j = 0.

Otherwise, we havep∗j = 0 andq∗j = 1.

Proof. If p∗j > q∗j , we haveP̄0,j log(W
−
j + ρ∗0,jR0,j) ≥ P̄1,j log(W

−
j + ρ∗1,jGR1,j) according to

Lemma 3. Since the objective function is linear with respectto pj andqj, the optimal value can

be achieved by settingpj to its maximum value 1 andqj to its minimum value 0. The reverse

statement can be proved similarly.

According to Theorem 1, a CR user is connected to either the MBS or the FBS for theentire

duration of a time slot in the optimal solution. That is, it does not switch between base stations

during a time slot under optimal scheduling.

Distributed Solution Algorithm To solve problem (5.35), we define non-negativedual vari-

ablesλ = [λ0, λ1] for the two inequality constraints. TheLagrangian functionis

L(p, ρ, λ) =
K
∑

j=1

[

pjP̄0,j log(W
−
j + ρ0,jR0,j) + (1− pj)P̄1,j log(W

−
j + ρ1,jGR1,j)

]

+

λ0(1−
K
∑

j=1

ρ0,j) + λ1(1−
K
∑

j=1

ρ1,j)

=
K
∑

j=1

Lj(pj, ρ0,j , ρ1,j , λ0, λ1)+λ0+λ1, (5.35)

where

Lj(pj, ρ0,j , ρ1,j , λ0, λ1) = pjP̄0,j log(W
−
j + ρ0,jR0,j) +

(1− pj)P̄1,j log(W
−
j + ρ1,jGR1,j)− λ0ρ0,j − λ1ρ1,j.

The corresponding problem can be decomposed intoK sub-problems and solved iteratively.

In Stepτ ≥ 1, for givenλ0(τ) andλ1(τ) values, each CR userj solves the following sub-problem
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using local information.

[p∗j(τ), ρ
∗
0,j(τ), ρ

∗
1,j(τ)] = argmax

pj ,ρ0,j ,ρ1,j≥0
Lj(pj, ρ0,j , ρ1,j , λ0(τ), λ1(τ)). (5.36)

There is a unique optimal solution since the objective function in (5.36) is concave. The CR users

then exchange their solutions. Themaster dual problem, for givenp(τ) andρ(τ), is:

min
λ≥0
L(p(τ), ρ(τ), λ) =

K
∑

j=1

Lj(pj(τ), ρ0,j(τ), ρ1,j(τ), λ0, λ1) + λ0 + λ1. (5.37)

Since the Lagrangian function is differentiable, thegradient iterationapproach can be used.

λi(τ + 1) =

[

λi(τ)− s×
(

1−
K
∑

j=1

ρ∗i,j(τ)

)]+

, i = 0, 1, (5.38)

wheres is a sufficiently small positivestep sizeand[·]+ denotes the projection onto the nonnegative

axis. The updatedλi(τ + 1) will again be used to solve the sub-problems, and so forth. Since the

problem is convex, we havestrong duality; theduality gapbetween the primal and dual problems

is zero. The dual variablesλ(τ) will converge to the optimal values asτ goes to infinity. Since

the optimal solution to (5.36) is unique, the primal variablesp(τ) andρi,j(τ) will also converge to

their optimal values whenτ is sufficiently large.

The distributed solution procedure is presented in Table 5.3. In the table, Steps 3–8 solve the

sub-problem in (5.36); Step 9 updates the dual variables. The thresholdφ is a prescribed small

value with0 ≤ φ ≪ 1. The algorithm terminates when the dual variables are sufficiently close to

the optimal values.

Case of Multiple Non-interfering FBS’s

We next consider the case ofN > 1 non-interfering FBS’s. The coverages of the FBS’s

do not overlap with each other, as FBS 1 and 2 in Fig. 5.5. Consequently, each FBS can use all

the available licensed channels without interfering otherFBS’s. Assume each CR user knows the
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Table 5.3: Algorithm for the Case of Single FBS
1: Setτ = 0, λ0(0) andλ1(0) to some nonnegative value;
2: DO % (each CR userj executes Steps 3–8)

3: ρ0,j(τ)=
[

P̄0,j

λ0(τ)
− W−

j

R0,j

]+

, ρ1,j(τ)=
[

P̄1,j

λ1(τ)
− W−

j

R1,jG

]+

;

4: IF
[

P̄0,j log(W
−
j + ρ0,j(τ)R0,j)− λ0(τ)ρ0,j(τ)

]

>
[

P̄1,j log(W
−
j + ρ1,j(τ)GR1,j)− λ1(τ)ρ1,j(τ)

]

5: Setpj(τ) = 1 andρ1,j(τ) = 0;
6: ELSE
7: Setpj(τ) = 0 andρ0,j(τ) = 0;
8: END IF
9: MBS updatesλi(τ + 1) as in (5.38);
10: τ = τ + 1;
11: WHILE

(
∑1

i=0(λi(τ + 1)− λi(τ))2 > φ
)

nearest FBS and is associate with it. LetUi denote the set of CR users associated with FBSi. The

resource allocation problem becomes:

maximize:
K
∑

j=1

pjP̄0,j log(W
−
j + ρ0,jR0,j) +

N
∑

i=1

∑

j∈Ui

qjP̄i,j log(W
−
j + ρi,jGRi,j) (5.39)

subject to:
K
∑

j=1

ρ0,j ≤ 1

∑

j∈Ui

ρi,j ≤ 1, i = 1, · · · , N

pj + qj = 1, j = 1, · · · , K

ρi,j, pj, qj ≥ 0, i = 1, · · · , N, j = 1, · · · , K.

Since all the available channels can be allocated to each FBS with spatial reuse, problem (5.39)

can be solved using the algorithm in Table 5.3 with some modified notation:ρ1,j(τ) now becomes

ρi,j(τ) andλ1(τ) becomesλi(τ), i = 1, · · · , N . The dual variables are iteratively updated as

λ0(τ + 1) =

[

λ0(τ)− s×
(

1−
K
∑

j=1

ρ∗0,j(τ)

)]+

(5.40)

λi(τ + 1) =

[

λi(τ)− s×
(

1−
∑

j∈Ui

ρ∗i,j(τ)

)]+

, i = 1, · · · , N. (5.41)
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Table 5.4: Algorithm for the Case of Multiple Non-Interfering FBS’s
1: Setτ = 0, andλ0(0) andλi(0) to some nonnegative values, for

all i;
2: DO % (each CR userj executes Steps 3–8)

3: ρ0,j(τ)=
[

P̄0,j

λ0(τ)
− W−

j

R0,j

]+

, ρi,j(τ)=
[

P̄i,j

λi(τ)
− W−

j

Ri,jG

]+

;

4: IF
[

P̄0,j log(W
−
j + ρ0,j(τ)R0,j)− λ0(τ)ρ0,j(τ)

]

>
[

P̄i,j log(W
−
j + ρi,j(τ)GRi,j)− λi(τ)ρi,j(τ)

]

5: Setpj(τ) = 1 andρi,j(τ) = 0;
6: ELSE
7: Setpj(τ) = 0 andρ0,j(τ) = 0;
8: END IF
9: MBS updatesλi(τ + 1) as in (5.40) and (5.41);
10: τ = τ + 1;

11: WHILE
(

∑N
i=0(λi(τ + 1)− λi(τ))2 > φ

)

The modified solution algorithm is presented in Table 5.4. Asin the case of single FBS, the

algorithm is jointly executed by the CR users and MBS, by iteratively updating the dual variables

λ0(τ) andλi(τ)’s, and the resource allocationsρ∗0,j(τ) and ρ∗i,j(τ)’s. It can be shown that the

distributed algorithm can produce the optimal solution forproblem (5.39).

Case of Multiple Interfering FBS’s

Formulation Finally, we consider the case of multiple interfering FBS’s.Assume that the cover-

ages of some FBS’s overlap with each other, as FBS 3 and 4 in Fig. 5.5. They cannot use the same

channel simultaneously, but have to compete for the available channels in the transmission phase.

Definechannel allocation variablesci,m for time slott as:

ci,m =











1, if channelm is allocated to FBSi

0, otherwise.
(5.42)

Given an allocation, the expected number of available channels for FBSi isGi=
∑

m∈A(t) ci,mP
A
m.

We useinterference graphto model the case of overlapping coverages, which is defined below.
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FBS 1 FBS 2 FBS 3 FBS 4

Figure 5.7: Interference graph for the femtocell CR network shown in Fig. 5.5.

Definition 5.1. An interference graphGI = (VI , EI) is an undirected graph where each vertex

represents an FBS and each edge indicates interference between the two end FBS’s.

For the example given in Fig. 5.5, we can derive an interference graph as shown in Fig. 5.7.

FBS 3 and 4 cannot use the same channel simultaneously, as summarized in the following lemma.

Lemma 5.4. If channelm is allocated to FBSi, the neighboring vertices of FBSi in the interfer-

ence graphGI , denoted asR(i), cannot use the same channelm simultaneously.

Further define index variablesdki as

dki =











1, if FBS i is an endpoint of linkk ∈ GI

0, otherwise.
(5.43)

The interference constraint can be described as
∑N

i=1 d
k
i ci,m ≤ 1, for m = 0, · · · ,M , and for all

link k ∈ GI . We then have the following problem formulation.

maximize:
K
∑

j=1

pjP̄0,j log(W
−
j + ρ0,jR0,j) +

N
∑

i=1

∑

j∈Ui

qjP̄i,j log(W
−
j + ρi,jGiRi,j) (5.44)

subject to:
K
∑

j=1

ρ0,j ≤ 1

∑

j∈Ui

ρi,j ≤ 1, i = 1, · · · , N

pj + qj = 1, j = 1, · · · , K

Gi =
∑

m∈A(t)

ci,mP
A
m , i = 1, · · · , N

N
∑

i=1

dki ci,m ≤ 1,m = 0, · · · ,M, for link k ∈ GI ,

ρi,j , pj, qj, ci,m ≥ 0, i = 1, · · · , N, j = 1, · · · , K, m = 0, · · · ,M.
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Table 5.5: Channel Allocation Algorithm for Case of Interfering FBS’s
1: Initializec to a zero matrix, FBS setN = {1, · · · , N}, and

FBS-channel setC = N ×A(t);
2: WHILE (C is not empty)
3: Find FBS-channel pair{i′,m′}, such that

{i′,m′} = argmax
{i,m}∈C

{Q(c+ ei,m)−Q(c)};

4: Setc = c+ ei′,m′ ;
5: Remove{i′,m′} from C;
6: RemoveR(i′)×m′ from C;
7: END WHILE

Solution Algorithm The optimal solution to problem (5.44) depends on the channel allocation

variablesci,m. Problem (5.44) can be solved with the algorithm in Table 5.4if the ci,m’s are

known. LetQ(c) be the suboptimal objective value for a given channel allocation c, wherec =

[~c1,~c2, · · · ,~cN ] and~ci is a vector of elementsci,m, for FBS i and channelsm ∈ A(t). If all the

FBS’s are disjointedly distributed with no overlap, each FBS can use all the available channels.

We haveci,m = 1 for all i andm ∈ A(t), i.e., it is reduced to the case in Section 5.4.2.

To solve problem (5.44), we first apply agreedy algorithmto allocate the available channels

in A(t) to the FBS’s (i.e., to determinec). We then apply the algorithm in Table 5.4 with the

computedc to obtain a near-optimal solution. Letei,m be a matrix with1 at position{i,m} and

0 at all other positions, representing the allocation of channelm ∈ A(t) to FBS i. The greedy

channel allocation algorithm is given in Table 5.5, where the FBS-channel pair that can achieve

the largest increase inQ(·) is chosen in each iteration. The worst case complexity of thegreedy

algorithm isO(N2M2).

Performance Lower Bound We next present a lower bound for the greedy algorithm. Let

e(l) be thel-th FBS-channel pair chosen in the greedy algorithm, andπl denote the sequence

{e(1), e(2), · · · , e(l)}. The increase in object value (5.44) due to thel-th allocated FBS-channel

pair is denoted as

∆l := ∆(πl, πl−1) = Q(πl)−Q(πl−1). (5.45)
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SinceQ(π0) = Q(∅) = 0, we have

L
∑

l=1

∆l = Q(πL)−Q(πL−1) + · · ·+Q(π1)−Q(π0)

= Q(πL)−Q(π0) = Q(πL).

For two FBS-channel pairse(l) ande(l′), we saye(l) conflicts withe(l′) when there is an edge

connecting the FBS ine(l) and the FBS ine(l′) in the interference graphGI , and the two FBS’s

choose the same channel. LetΩ be the global optimal solution. We defineωl as the subset ofΩ

that conflicts with allocatione(l) but not with the previous allocations{e(1), e(2), · · · , e(l − 1)}.

Lemma 5.5. Assume the greedy algorithm in Table 5.5 stops inL steps. The global optimal

solutionΩ can be partitioned intoL non-overlapping subsetsωl, l = 1, 2, · · · , L.

Proof. According to the definition ofωl, theL subsets of the optimal solutionΩ do not intersect

with each other. Assume the statement is false, then the union of theseL subsets is not equal to the

optimal setΩ. Let theset differencebeωL+1 = Ω \ (∪Ll=1ωl). By definition,ωL+1 does not conflict

with the existingL allocations{e(1), · · · , e(L)}, meaning that the greedy algorithm can continue

to at least the(L + 1)-th step. This conflicts with the assumption that the greedy algorithm stops

in L steps. It follows thatΩ = ∪Ll=1ωl.

Let ∆(π2, π1) = Q(π2) − Q(π1) denote the difference between two feasible allocationsπ1

andπ2. We next derive a lower bound on the performance of the greedyalgorithm. We assume

two properties for function∆(π2, π1) in the following.

Property 5.1. Consider FBS-channel pair setsπ1, π2, andσ, satisfyingπ1 ⊆ π2 andσ ∩ π2 = ∅.

We have∆(π2 ∪ σ, π1 ∪ σ) ≤ ∆(π2, π1).

Property 5.2. Consider FBS-channel pair setsπ, σ1, andσ2 satisfyingσ1 ∩ π = ∅, σ2 ∩ π = ∅,

andσ1 ∩ σ2 = ∅. We have∆(σ1 ∪ σ2 ∪ π, π) ≤ ∆(σ1 ∪ π, π) + ∆(σ2 ∪ π, π).

In Property 1, we haveσ ∩ π1 = ∅ sinceπ1 ⊆ π2 andσ ∩ π2 = ∅. This property states

that the incremental objective value does not get larger as more channels are allocated and as
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the objective value gets larger. Property 2 states that the incremental objective value achieved by

allocating multiple FBS-channel pair sets does not exceed the sum of the incremental objective

values achieved by allocating each individual FBS-channel pair set. These are generally true for

many resource allocation problems [71].

Since we choose the maximum incremental allocation in each step of the greedy algorithm,

we have Lemma 5.6 that directly follows Step 3 in Table 5.5.

Lemma 5.6. For any FBS-channel pairσ ∈ ωl, we haveQ(πl−1 ∪ σ) − Q(πl−1) = ∆(πl−1 ∪

σ, πl−1) ≤ ∆l.

Lemma 5.7. Assume the greedy algorithm stops inL steps, we have

Q(Ω) ≤ Q(πL) +
L
∑

l=1

∑

σ∈ωl

∆(σ ∪ πl−1, πl−1).

Proof. The following inequalities hold true according to the properties of the∆(·, ·) function:

Q((∪Li=l+1ωi) ∪ πl) = Q((∪Li=l+2ωi) ∪ πl) + ∆((∪Li=l+1ωi) ∪ πl, (∪Li=l+2ωi) ∪ πl)

≤ Q((∪Li=l+2ωi) ∪ πl) + ∆(ωl+1 ∪ πl, πl)

≤ Q((∪Li=l+2ωi) ∪ πl+1) + ∆(ωl+1 ∪ πl, πl)

≤ Q((∪Li=l+2ωi) ∪ πl+1) +
∑

σ∈ωl+1

∆(σ ∪ πl, πl).

We haveπ0 = ∅ andωL+1 = ∅ (see Lemma 5.5). With induction froml = 0 to l = L− 1, we have

Q((∪Li=1ωi) ∪ ∅) = Q(Ω) andQ(Ω) ≤ Q(πL) +
∑L

l=1

∑

σ∈ωl
∆(σ ∪ πl−1, πl−1).

Lemma 5.8. The maximum size ofωl is equal to the degree, in the interference graphGI , of the

FBS selected in thel-th step of the greedy algorithm, which is denoted asD(l).
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Proof. Once FBSi is allocated with channelm, the neighboring FBS’s inGI , R(i), cannot use

the same channelm anymore due to the interference constraint. The maximum number of FBS-

channel pairs that conflict with the selected FBS-channel pair {i,m}, i.e., the maximum size ofωl,

is equal to the degree of FBSi in GI .

Then we have Theorem 5.2 that provides a lower bound on the objective value achieved by

the greedy algorithm given in Table 5.5.

Theorem 5.2. The greedy algorithm can achieve an objective value that is at least 1
1+Dmax

of the

global optimum, whereDmax is the maximum node degree in the interference graphGI of the

femtocell CR network.

Proof. According to Lemmas 5.7 and 5.8, we have:

Q(Ω) ≤ Q(πL) +
L
∑

l=1

D(l)∆l = Q(πL) + D̄
L
∑

l=1

∆l

= (1 + D̄)Q(πL), (5.46)

whereD̄ =
∑L

l=1D(l)∆l/
∑L

l=1∆l. The second equality is due to the facts that
∑L

l=1 ∆l =

Q(πL).

To further simplify the bound, we replaceD(l) with the maximum node degreeDmax. We

then haveD̄ ≤∑L
l=1Dmax∆l/

∑L
l=1 ∆l = Dmax and

1

1 +Dmax

Q(Ω) ≤ Q(πL) ≤ Q(Ω), (5.47)

which provides a lower bound on the performance of the greedyalgorithm.

When there is a single FBS in the CR network, we haveDmax = 0 andQ(πL) = Q(Ω)

according to Theorem 5.2. The proposed algorithm produces the optimal solution. In the case of

multiple non-interfering FBS’s, we still haveDmax = 0 and can obtain the optimal solution using

the proposed algorithm. For the femtocell CR network given inFig. 5.5 (with interference graph
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shown in Fig. 5.7), we haveDmax = 1 and the low bound is a half of the global optimal. Note that

(5.46) provides a tighter bound for the optimum than (5.47),but with higher complexity. These are

interesting performance bounds since they bound the achievable video quality, an application layer

performance measure, rather than lower layer metrics (e.g., bandwidth or time share).

5.4.3 Simulation Results

We evaluate the performance of the proposed algorithms using MATLAB and JSVM 9.13

Video codec. Two scenarios are used in the simulations: a single FBS CR network and a CR

network with interfering FBS’s. In every simulation, we compare the proposed algorithms with

the following three more straightforward heuristic schemes:

• Heuristic 1 based onequal allocation: each CR user chooses the better channel (i.e., the

common channel or a licensed channel) based on the channel conditions; time slots are

equally allocated among active CR users;

• Heuristic 2 exploitingmultiuser diversity: the MBS and each FBS chooses one active CR

user with the best channel condition; the entire time slot isallocated to the selected CR user.

• SCA-MACproposed in [23]: with this scheme, the successful transmission rate is evaluated

based on channel packet loss rate and collision probabilitywith primary users; the channel-

user pair with the highest transmission probability is selected.

We choose SCA-MAC because it adopts similar models and assumptions as in this paper. Once

the channels are selected, the same distributed algorithm is used for scheduling video data for all

the three schemes.

We adopt the Raleigh block fading model and the packet loss probability is between [0.004,

0.028]. The frame rate is set to 30 fps and the GoP size is 16. The base layer mode is set to be

AVC compatible. The motion search mode is set to Fast Search with search range 32. Each point

in the figures presented in this section is the average of 10 simulation runs with different random

seeds. We plot 95% confidence intervals in the figures, which are generally negligible.
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Figure 5.8: Convergence of the two dual variables in the single FBS case.

Case of Single FBS

In the first scenario, there areM = 8 channels and the channel parametersPm
01 andPm

10 are

set to 0.4 and 0.3, respectively, for allm. The maximum allowable collision probabilityγm is set

to 0.2 for allm. There is one FBS and three active CR users. Three Common Intermediate Format

(CIF, 352×288) video sequences are streamed to the CR users, i.e.,Busto CR user 1,Mobile to

CR user 2, andHarbor to CR user 3. We haveT = 10 as the delivery deadline. Both probabilities

of false alarmǫ and miss detectionδ are set to 0.3 for all the FBS’s and CR users, unless otherwise

specified.

First we investigate the convergence of the distributed algorithm. The traces of the two dual

variables are plotted in Fig. 5.8. To improve the convergence speed, the correlation in adjacent

time slots can be exploited. In particular, we set the optimal values for the optimization variables

in the previous time slot as the initialization values for the variables in the current time slot. By

doing so, the convergence speed can be improved. It can be seen that both dual variables converge

to their optimal values after 300 iterations. After convergence, the optimal solution for the primary

problem can be obtained.
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Figure 5.9: Single FBS: received video quality vs. number of channels (computed with (9) and
measured by PSNR).

Our proposed scheme achieves the best performance among thethree algorithms, with up to

4.3 dB improvement over the two heuristic schemes and up to 2.5 dB over SCA-MAC. Such gains

are significant with regard to video quality, since a 0.5 dB difference is distinguishable by human

eyes. Compared to the two heuristic schemes and SCA-MAC, the video quality of our proposed

scheme is well balanced among the three users, indicating better fairness performance.

In Fig. 5.9, we examine the impact of the number of channelsM on received video quality.

First, we validate the video quality measure used in our formulation by comparing the PSNR value

computed using (5.32) with that computed from real decoded video frames. The average PSNR

for three received videos are plotted in the figure. It can be seen that the real PSNRs are very close

to those predicted by (5.32), with overlapping confidence intervals. This is also consistent with

the results shown in Fig. 5.6. Second, as expected, the more licensed channels, the more spectrum

opportunities for CR users and the higher PSNR for received videos. SCA-MAC performs better

than two heuristics, but is inferior to the proposed scheme.

We also plot the MS-SSIM of the received videos at the three CR users in Fig. 5.10 [112].

Similar observations can be made from the MS-SSIM plot. All MS-SSIMs for the four curves

are more than 0.97 and very close to 1. The proposed scheme still outperforms the other three
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Figure 5.10: Single FBS: received video quality vs. number ofchannels (measured by MS-SSIM).

schemes. In the remaining figures, we will use model predicted PSNR values, since the model

(5.32) is sufficient to predict the real video quality.

In Fig. 5.11, we demonstrate the impact of channel utilization η on received video quality.

The average PSNRs achieved by the four schemes are plotted when η is increased from 0.3 to

0.7. Intuitively, a smallerη allows more spectrum opportunities for video transmission. This is

illustrated in the figure where all the three curves decreaseasη gets larger. The performance of

both heuristics are close and the proposed scheme achieves again about 3 dB over the heuristics

and 2 dB over SCA-MAC.

We also compare the MGS and FGS videos while keeping other parameters identical. We

find that MGS video achieves over 0.5 dB gain in video quality over FGS video. The results are

omitted for brevity.

Case of Interfering FBS’s

We next investigate the second scenario with three FBS’s, andeach FBS has three active CR

users. Each FBS streams three different videos to the corresponding CR users. The coverages of

FBS 1 and 2 overlap with each other, and the coverages of FBS 2 and3 overlap with each other.
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Figure 5.11: Single FBS: received video quality vs. channel utilization.

In Fig. 5.12, we examine the impact of the number of channelsM on the received video

quality. The average PSNRs of all the active CR users are plotted in the figure when we increase

M from 12 to 20 with step size 2. As mentioned before, more channels imply more transmission

opportunities for video transmission. In this scenario, heuristic 2 (with a multiuser diversity ap-

proach) outperforms heuristic 1 (with an equal allocation approach). But its PSNRs are still about

0.3∼ 0.5 dB lower that those of the proposed algorithm. The proposed scheme has up to 0.4 dB

improvement over SCA-MAC. In Fig. 5.12, we also plot an upper bound on the optimal objective

value, which is obtained as in (5.46). It can be seen that the performance of our proposed scheme

is close to optimal solution since the gap between the upper bound and our scheme is generally

small (about 0.5 dB).

Next, we examine the impact of sensing errors on the receivedvideo quality. In Fig. 5.13, we

test five pairs of{ǫ, δ} values:{0.2,0.48}, {0.24,0.38}, {0.3,0.3}, {0.38,0.24}, and{0.48,0.2}. It

is interesting to see that the performance of all the four schemes get worse when the probability of

one of the two sensing errors gets large. We can trade-off between false alarm and miss detection

probabilities to find the optimal operating point for the spectrum sensors. Moreover, the dynamic

range of video quality is not big for the range of sensing errors simulated, compared to that in
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Figure 5.12: Interfering FBS’s: received video quality vs. number of channels.
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Figure 5.13: Interfering FBS’s: received video quality vs. sensing error probability.

Fig. 5.12. This is because both sensing errors are modeled and treated in the algorithms. Again,

our proposed scheme outperforms the two heuristic schemes and SCA-MAC with considerable

margins for the entire range.

We also investigate the impact of the bandwidth of the commonchannelB0. In this simulation,

we fixB1 at 0.3 Mbps and increaseB0 from 0.1 Mbps to 0.5 Mbps with step size 0.1 Mbps. The
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Figure 5.14: Interfering FBS’s: received video quality vs. bandwidth of the common channel.

results are presented in Fig. 5.14. We notice that the average video quality increases rapidly as

the common channel bandwidth is increased from 0.1 Mbps to 0.3 Mbps. Beyond 0.3 Mbps,

the increases of the PSNR curves slow down and the curves get flat. This implies that a very

large bandwidth for the common channel is not necessary, since the gain for additional bandwidth

diminishes asB0 gets large. Again, the proposed scheme outperforms the other three schemes and

the gap between our scheme and the upper bound is small.

Next, we stop the distributed algorithm after a fixed amount of time, and evaluate the subop-

timal solutions. In particular, we vary the duration of timeslots, and let the distributed algorithm

run for 5% of the time slot duration at the beginning of the time slot. Then the solution obtained

this way will be used for the video data transmissions. The results are presented in Fig. 5.15. It

can be seen that when the time slot is 5 ms, the algorithm does not converge after 5%×5 = 0.25 ms

and the PSNR produced by the distributed algorithm is close to that of Heuristic 1, and lower than

those of Heuristic 2 and SCA-MAC. When the time slot is sufficiently large, the algorithm can get

closer to the optimal and the proposed algorithm produces better video quality as compared to the

two heuristic algorithms and SCA-MAC. Beyond 20 ms, the increase in PSNR is small since all
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Figure 5.15: Video quality achieved by the algorithms when they are only executed for 5% of the
time slot duration.

the curves gets flat. Therefore the proposed algorithm couldbe useful even when there is no time

for it to fully converge to the optimal.

During the simulations, we find the collision rate with primary users are strictly kept below

the prescribed collision toleranceγ. These results are omitted for brevity.

5.5 Conclusions

In this chapter, we first addressed the problem of multicasting FGS video in CR networks.

The problem formulation took video quality and proportional fairness as objectives, while con-

sidering cross-layer design factors such as FGS coding, spectrum sensing, opportunistic spectrum

access, primary user protection, scheduling, error control and modulation. We proposed efficient

optimization and scheduling algorithms for highly competitive solutions, and proved the complex-

ity and optimality bound of the proposed greedy algorithm. Our simulation results demonstrate

not only the viability of video over CR networks, but also the efficacy of the proposed approach.

Then, we studied the challenging problem of streaming multiple scalable videos in a multi-hop

CR network. The problem formulation considered spectrum sensing and sensing errors, spectrum
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access and primary user protection, video quality and fairness, and channel/path selection for con-

current video sessions. We first solved the formulated MINLPproblem using a sequential fixing

scheme that produces lower and upper bounds on the achievable video quality. We then applied

dual decomposition to derive a distributed algorithm, and analyzed its optimality and convergence

performance. Our simulations validated the efficacy of the proposed scheme.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In the previous chapters, we investigated several challenging problems of effective CR net-

working and scalable video streaming over CR networks. Our research consisted of network mod-

eling, cross-layer design and optimization, performance analysis, algorithm development, and sim-

ulation validation.

In Chapter 2, we first studied the problem of design and analysis of MAC protocols for CR

networks. We explicitly considered sensing errors in the design of MAC protocols and developed

analytical models to evaluate the performance of the proposed protocols. In the second part, we

considered the problem of interference mitigation via channel assignment and power allocation

for CR users. We proposed a distributed greedy algorithm thatonly needs local channel gain

information. It was shown to outperform other two alternatives via simulations.

In Chapter 3, a more challenging problem, scalable video streaming in CR networks, was

investigated. We first studied the problem of scalable videomulticast over infrastructure based

CR networks. We proposed an efficient greedy algorithm with proved complexity and optimal-

ity bound. Then, we considered the problem of streaming multiple videos over multi-hop CR

networks. We developed a distributed algorithm by applyingdual decomposition and proved its

optimality and convergence conditions.

In Chapter 4, we first investigated the problem of cooperativerelay in CR networks. We

compared two typical cooperative relay strategies and developed an analysis for the comparison.

We found each of the strategies performed better in a certainparameter range and diversity gain was

achieved by cooperative relays. Then, we investigated the problem of interference alignment for

MGS video streaming in a cooperative relay enhanced CR network. We developed a distributed
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optimal algorithm for the case of a single channel and the case of multi-channel bonding, with

proven convergence and convergence speed. We also proposeda greedy algorithm for the multi-

channel without channel bonding case, with a proven performance bound.

In Chapter 5, we first investigated the problem of data multicast in femtocell networks that

incorporates SC and SIC. We developed optimal and near-optimal algorithms with low compu-

tational complexity, as well as performance bounds. Then, we tackled the problem of streaming

multiple MGS videos in a femtocell CR networks. A distributedoptimal algorithm was devel-

oped in the case of non-interfering FBS’s and a greedy algorithm for near-optimal solutions was

proposed in the case of interfering FBS’s with proved lower bound.

6.2 Summary of Contributions

Wireless video has been a challenging area with considerable research efforts. However, video

over CR networks has not been well studied, since the main stream CR research has focused on

spectrum sensing and access. It was not clear if video can be offered in such highly dynamic

networks even a few years ago. There is a compelling need for innovative research in this area

given the Cisco prediction of exploding wireless video traffic in the next few years.

In this dissertation, we investigated the problem of effective CR networking with applica-

tion to multi-user video communications over four emergingCR networking paradigms, including

infrastructure-based CR networks, multi-hop ad hoc CR networks, CR femtocell networks, and

relay-assisted CR networks. This research provides in-depth treatment of the problems with both

theory and algorithm ingredients. The findings not only successfully demonstrate the feasibility of

video CR networks, but also shed useful insights on developing practical CR video systems.
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6.3 Open Problems and Future Work

Although considerable progresses have been made through this dissertation work in the area

of video over CR networks, there are many interesting open problems to be explored in this im-

portant problem area. Some of such open problems are briefly described below, which we plan to

investigate in our future research.

In most of our prior work, we assumed that the occupancy of each licensed channel evolves

over time following a two state discrete-time Markov process and the primary user activities on

different channels are independent. Although this assumption makes the problem manageable, it

may not hold true in certain CR networks. The primary user transmission may be modeled as a

more general process, while the primary transmissions on different channels may be statistically

correlated. Thus, a more sophisticate spectrum sensing andaccess scheme is required to be inte-

grated into the cross-layer optimization framework. The accuracy of the sensing process could be

improved by exploiting the sensing results from adjacent channels and historic sensing results.

Similarly, another assumption is that the lowest video quality requirement for CR users can

always be guaranteed. However, the network capacity for CR users strongly depends on both the

primary user transmissions and randomly fading and shadowing channels. Therefore, an admission

control mechanism is required that can estimate the level ofQoS that a new video session will

have and whether there is enough bandwidth available to serve that session. A simple yet efficient

admission control mechanism that considers both primary user activities and channel conditions is

essential for QoS provisioning for video over CR networks.

We investigated several challenging problems in CR networksusing video as a reference ap-

plication. In an operating CR network, there will be multipleapplications that generate different

types of traffic flows, all sharing the extra bandwidth provided by CRs. It is thus interesting to

investigate how to provide quality of service (QoS) guarantees for different traffic flows each with

different characteristics and different QoS requirements. This is a general problem for both wire-

line and wireless networks. The Internet adopts the Integrated Services (intserv) and Differenti-

ated Services (diffserv) approaches to address this problem. We conjecture a certain classification
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scheme should be adopted to intelligently identify and classify application traffic according to

their characteristics and QoS requirements, and a resourceallocation scheme will be used to treat

the different classes of traffic flows differently. These areinteresting problems that worth further

investigation.

We presented a theoretical framework for video streaming inCR networks and demonstrated

the performance with extensive simulations. In the future,we are interested in building a CR video

streaming testbed network, such that the system performance can be demonstrated under a realistic

wireless environment. Our research will focus on the combination of hardware components (e.g.

USRP models) and software techniques (e.g. network optimization algorithms). Such a CR video

testbed can not only validate the theoretical results, but also reveal new practical constraints that

should be considered in the modeling and analysis, as well identifying new research problems.
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