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Abstract

A continuum X is said to be decomposable if it can be written as a union of two proper

subcontinua; otherwise, X is said to be indecomposable. For years, topologists have used

inverse limits with continuous bonding functions to study indecomposable continua. Now

that the topic of generalized inverse limits with upper semi-continuous (or “u.s.c.”) bonding

functions has become popular, it is natural to consider how these new kinds of inverse limits

might be used to generate indecomposable (or decomposable) continua.

In this work, we build upon our past results (from “Inverse Limits with Upper Semi-

Continuous Bonding Functions and Indecomposability,” [13]) to obtain new and more gen-

eral theorems about how to generate indecomposable (or decomposable) continua from u.s.c.

inverse limits. In particular, we seek sufficient conditions for indecomposability (or decom-

posability) that are easily checked, just from a straightforward observation of the bonding

functions of the inverse limit. Our primary focus is the case of inverse limits whose factor

spaces are indexed by the positive integers, but we consider extensions to other cases as well.
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Chapter 1

Introduction

An inverse limit space is a valuable tool for topologists who wish to study indecom-

posable continua. Although a non-degenerate indecomposable continuum is a complicated

topological space by its very nature, it is often possible to represent such a space in a very

simple way—namely, as an inverse limit space with a single continuous bonding function. On

the other hand, by drawing a relatively simple bonding function f that satisfies some special

properties, we can guarantee that the inverse limit space with the single bonding function f

is an indecomposable continuum. In this way, we may easily generate more indecomposable

continua as examples for further study.

A number of topologists have done research on the relationship between inverse limits

and indecomposable continua; see Chapter 1 of [4] for highlights from the history of this topic.

However, for many years, only inverse limits with continuous bonding functions had been

seriously considered in the literature. Now, after the work of Mahavier [8] and both Ingram

and Mahavier [3], generalized inverse limits with set-valued, upper semi-continuous (u.s.c.)

bonding functions have become popular. It is therefore a natural next step to consider how

these new kinds of inverse limits might be used to generate indecomposable continua.

After we gave presentations [15] and [16] addressing the issue of u.s.c. inverse limit

spaces and indecomposability, other mathematicians began publishing results on this topic

as well. In [5] and [4], Ingram extended some of his earlier results on indecomposability

in inverse limits with continuous bonding functions to the u.s.c. case. Also, in [17], Brian

Williams gave necessary and sufficient conditions for an inverse limit to have the full pro-

jection property, a property that is vital for proving that some inverse limit spaces are

indecomposable continua.
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Still, plenty of work remains to be done: we need to find straightforward conditions

(stated in terms of the bonding functions fi : [0, 1] → 2[0,1]) to guarantee that the inverse

limit space is an indecomposable (or decomposable) continuum. The main goal of this work

is to provide many such conditions; moreover, we strive to give conditions that are simple

to check in practice. Ideally, by applying the theorems given here, one can tell from a quick

glance at the bonding functions whether or not an inverse limit is indecomposable.

In Chapter 2, we give basic topology definitions and state theorems that may serve

as background. In Chapter 3, we define inverse limits with upper semi-continuous bonding

functions and cite important theorems that will be invoked repeatedly for the rest of this

work. Then, in Chapters 4 and 5, we recall our own past results (from [13]) on the main

problem before delving into new material. Chapter 6 features major generalizations of our

previous indecomposability theorems; using these new theorems, we may show that many

more u.s.c. functions with a structure akin to the sin( 1
x
) curve give us indecomposable

inverse limits. In Chapter 7, we discuss a generalization of Ingram’s two-pass condition;

we name this new condition the “ε-two-pass” condition, and we consider its impact on the

study of indecomposable inverse limits. Next, we look into inverse limits whose factor spaces

are indexed by sets other than the positive integers: Chapter 8 addresses inverse limits

indexed by large initial segments of the ordinals (i.e., “long” inverse limits), and Chapter 9

addresses inverse limits indexed by Z (i.e., “two-sided” inverse limits). Both of these topics

have implications for the study of indecomposability as well. Finally, although we give

specific examples from time to time in the theory chapters, we set aside Chapter 10 solely

for additional examples. We then close with Chapter 11, a discussion of possible topics for

further research.
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Chapter 2

General Topology and Classic Inverse Limits Results

2.1 Background Definitions

We begin with very basic topology definitions, most of which should be covered in an

introductory topology course or may be found in an introductory text, such as [7] or [10].

For a detailed discussion of ordinal numbers, see, e.g., [6].

Let X be a set and let T be a collection of subsets of X with the following properties:

1. X ∈ T ;

2. ∅ ∈ T ;

3. If {Oi}i∈µ is a collection of members of T , then
⋃
i∈µOi ∈ T ;

4. If {Oi}ni=1 is a finite collection of members of T , then
⋂n
i=1Oi ∈ T .

Then the pair (X,T ) is called a topological space with topology T . Such a topological

space will often be referred to simply as X when the associated topology T is understood.

The members of T are called open sets.

A subset K of a topological space X is closed if X −K is open.

A topological space X is degenerate if it consists of only one point. Otherwise, X is

non-degenerate.

Suppose M is a subset of a topological space X. A point p ∈ X is a limit point of M if

every open set containing p contains a point in M different from p.
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Suppose M is a subset of a topological space X. The set of all limit points of M is

denoted by M ′. The closure of M (denoted M) is M ∪M ′.

Suppose a collection B of open sets of a space X satisfies the following property:

If x ∈ X and O is an open set containing x, then there exists a member b of B such

that x ∈ b and b ⊆ O.

Then B is a basis for the topology on X and a member b of B is called a basic open

set of X.

Suppose B is a collection of subsets of a set X such that

1. If x ∈ X, there exists some b ∈ B with x ∈ b.

2. If b1 and b2 are members of B with x ∈ b1 ∩ b2, then there exists some set b3 in B

with x ∈ b3 ⊆ (b1 ∩ b2).

Then the collection T = {
⋃
R|R ⊆ B} is a topology for X, and B is a basis for this

topology. It is said that the topology T is generated by the basis B.

A topological space X is called Hausdorff if for every pair of distinct points p, q ∈ X,

there exist disjoint open sets Op and Oq containing p and q respectively.

A space X is called regular if for every closed subset H of X and point p ∈ X not in

H, there exist disjoint open sets OH and Op containing H and p, respectively.

A space X is called normal if for every pair of disjoint closed sets H and K in X, there

exist disjoint open sets OH and OK containing H and K, respectively.

If f : X → Y is a function from X to Y , and U is a subset of X, we define f(U) =

{f(u)| u ∈ U}.
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Let X and Y be topological spaces, let f : X → Y be a function from X to Y , and let

x ∈ X. Then f is said to be continuous at the point x if, whenever V is an open set in Y

containing f(x), there exists an open set U in X containing x such that f(U) ⊆ V . If f is

continuous at each point x ∈ X, we say f is continuous. A continuous function may also be

called a mapping.

A function f : X → Y is said to be surjective if for each y ∈ Y , there exists some x ∈ X

with f(x) = y.

A function f : X → Y is said to be 1-1 if for any pair of distinct points p, q in X,

f(p) 6= f(q).

If f : X → Y is a function and y ∈ Y , then the preimage of y via f (written as f−1(y))

is {x ∈ X| f(x) = y}. If A ⊆ Y , then the preimage of A via f (written as f−1(A)) is

{x ∈ X| f(x) ∈ A}.

Suppose f : X → Y is a 1-1 surjective function. Then the function f−1 : Y → X given

by f−1(y) = x (where x is the unique point in X with the property that f(x) = y) is called

the inverse of f .

If X and Y are topological spaces and f : X → Y is 1-1, surjective, continuous, and has

a continuous inverse, then f is called a homeomorphism and the spaces X and Y are said to

be homeomorphic.

If f : X → X is a function, then we denote the composition f ◦f by f 2. More generally,

fn = f ◦ fn−1 for n ≥ 2.
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If f : X → X is a function and A ⊆ X, then we denote f−1(f−1(A)) by f−2(A). More

generally, f−n(A) = f−1(f−n+1(A)).

Let X be a topological space and let M ⊆ X. A collection of sets {Oi}i∈µ in X is said

to be an open cover of M if each Oi is open in X and M ⊆
⋃
i∈µOi.

If {Oi}i∈µ is a cover of X, γ ⊆ µ, and {Oi}i∈γ is also a cover of X, then {Oi}i∈γ is

called a subcover of the original cover {Oi}i∈µ. A subcover consisting of only finitely many

members is called a finite subcover.

A space X is compact if for every open cover {Oi}i∈µ of X, there exists a finite subcover

of X. (I.e., {Oij}nj=1 for some positive integer n.)

A collection of subsets {Gi}i∈µ of a space X is called a monotonic collection if for each

pair of members Gj, Gk in the collection, either Gj ⊆ Gk or Gk ⊆ Gj.

For each i in some arbitrary index set µ, let Xi be a topological space. Define X =∏
i∈µXi to be the set {(xi)i∈µ| xi ∈ Xi for each i}. Define a topology on X as follows: a basic

open set containing (xi)i∈µ is given by
∏

i∈µOi, where Oi is open in Xi for each i, xi ∈ Oi

for each i, and Oi = Xi for all but finitely many i.

Then X together with the topology generated by this basis may be called a product

space (on the index set µ).

In the case of a product space on the countably infinite index set consisting of the

positive integers (N), we denote the product space by
∏∞

i=1Xi. Thus,∏∞
i=1Xi = {(x1, x2, x3, . . .) | xi ∈ Xi for each positive integer i}.
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Let X =
∏

i∈µXi be a product space (with index set µ either finite or infinite). Let A

be a subset of µ. Then the function πA : X →
∏

i∈AXi defined by πA((xi)i∈µ) = (xi)i∈A

is called the projection map onto the set A. In the special case where A = {j} for some

j ∈ µ, we denote π{j} simply by πj and we call this function the projection map onto the j

coordinate.

If X, Y are topological spaces, f : X → Y is a function, and A ⊆ X, then f restricted

to A (denoted by f |A) is the function given by f |A : A→ Y , where f |A(a) = f(a) whenever

a ∈ A.

A function f : X → Y is said to be open if for each open subset U of X, f(U) is an

open subset of Y .

Suppose X is a topological space with topology T and S ⊆ X. Then the set S together

with the topology T̂ = {S ∩ O| O ∈ T} is called a subspace of X, where T̂ is the subspace

topology.

Let µ be an ordinal. Then the set {α | α is an ordinal and α < µ} is called an initial

segment of the ordinals. (Similarly, if β < µ, then {α | α is an ordinal and α < β} is an

initial segment of µ.)

Suppose X is a topological space and d : X × X → R is a function satisfying the

following properties (for all x, y, z ∈ X):

1. d(x, y) ≥ 0, and d(x, y) = 0 iff x = y.

2. d(x, y) = d(y, x).

3. d(x, z) ≤ d(x, y) + d(y, z).

7



Then the function d is said to be a metric on X. For a given p ∈ X and ε > 0, let

B(p, ε) = {x ∈ X | d(x, p) < ε}. If the collection {B(p, ε) | p ∈ X, ε > 0} is a basis for the

space X, then X is said to be a metric space.

Let X be a topological space. Two subsets H and K of X are called mutually separated

if neither set contains a point or a limit point of the other.

If X is a topological space and M ⊆ X, then M is connected if M is not the union of

two mutually separated non-empty subsets of X.

A topological space X is a continuum if X is non-empty, compact, and connected.

A continuum that is Hausdorff (but not necessarily metric) is called a Hausdorff con-

tinuum.

A continuum that is metric is called a metric continuum.

If X is a continuum and A, a subset of X, is also a continuum, then A is called a

subcontinuum of X. If the subcontinuum A is a proper subset of X, then A is a proper

subcontinuum of X.

A continuum X is decomposable if it is the union of two proper subcontinua.

If X is a continuum but X is not decomposable, then X is said to be indecomposable.

If X is a continuum and p, q ∈ X, then X is said to be irreducible between p and q if no

proper subcontinuum of X contains both p and q.

Let X be a connected set. If X − {p} is not connected, then p is a cut point of X.
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A continuum with exactly 2 non-cut points is called an arc.

A triod is a union of three arcs whose intersection is exactly one point.

A fan is a union of infinitely many arcs, all of which have exactly one point in common.

Let X be a topological space. Suppose that A, a subset of X, is an arc with the property

that whenever O ⊆ X is an open set with O ∩ A 6= ∅, there exists some point p ∈ O with

p /∈ A. Then A is called a limit arc.

A subset A of a topological space X is said to be nowhere dense in X if every non-empty

open subset of X contains a non-empty open set that misses A.

A subset A of a topological space X is said to be dense in X if every non-empty open

subset of X contains a point of A.

2.2 Background Theorems

Most of the following basic theorems may be found in a standard topology text. The

proofs of these theorems are omitted, but most of the proofs may be found in one or more

of [7], [9], and [10]. A more general statement and proof of Theorem 2.26 may be found in

[4] (Lemma 221).

Theorem 2.1. A subset M of a topological space X is closed (in X) iff M contains all of

its limit points in X.

Theorem 2.2. A subset M of a topological space X is closed (in X) iff M = M .

Theorem 2.3. If A ⊆ B, then A ⊆ B.

9



Theorem 2.4. A closed subset of a compact space is compact.

Theorem 2.5. The continuous image of a compact set is compact.

Theorem 2.6. (Tychonoff) If {Xi}i∈µ is a collection of compact topological spaces, then the

product space
∏

i∈µXi is compact.

Theorem 2.7. If {Xi}i∈µ is a collection of continua, then the product space
∏

i∈µXi is a

continuum.

Theorem 2.8. Let B be a basis for a topological space X. Then every open set of X is a

union of members of B.

Theorem 2.9. The following are equivalent for a function f : X → Y from topological space

X to topological space Y :

i. f is a continuous function.

ii. If O is a (basic) open set in Y , then f−1(O) is open in X.

Theorem 2.10. If
∏

i∈µXi is a product space and A ⊆ µ, then the projection map πA is

continuous.

Theorem 2.11. If X, Y are topological spaces, f : X → Y is continuous, and A ⊆ X, then

f |A is also continuous.

Theorem 2.12. If X is a compact Hausdorff space, then X is regular.

Theorem 2.13. If X is a compact Hausdorff space, then X is normal.

Theorem 2.14. If X is regular, then X is Hausdorff.

Theorem 2.15. If X is normal, then X is regular.

Theorem 2.16. The unit interval [0, 1] is an arc.

Theorem 2.17. Suppose M is a subset of a topological space X. If M is closed and not

connected, then M is the union of two disjoint closed sets H and K.

10



Theorem 2.18. The continuous image of a connected set is connected.

Theorem 2.19. The continuous image of a continuum is a continuum.

Theorem 2.20. The common part of a monotonic collection of continua is a continuum.

Theorem 2.21. If X is a compact space, Y is a Hausdorff space, and f : X → Y is a 1-1,

surjective, continuous function, then f−1 is continuous (and hence, f is a homeomorphism).

Theorem 2.22. A topological space X is connected iff for any two distinct points p, q ∈ X,

there exists a connected subset of X containing p and q.

Theorem 2.23. If {Ki}∞i=1 is a collection of connected subsets of a space X such that

Ki ∩Ki+1 6= ∅ for all i ≥ 1, then K =
⋃∞
i=1Ki is connected.

Theorem 2.24. If K ⊆ X is connected, then K is connected.

Theorem 2.25. If A is a dense subset of the topological space X, then A = X.

Theorem 2.26. Suppose T is an arc and T is the union of two proper subcontinua H and

K. If U and V are mutually exclusive connected open subsets of T , then one of U and V is

a subset of one of H and K.

Theorem 2.27. A Hausdorff continuum X is indecomposable iff every proper subcontinuum

of X is nowhere dense in X.

2.3 Classic Inverse Limits Definitions and Theorems

As we stated in Chapter 1, the main focus of this work is inverse limits with upper

semi-continuous bonding functions. However, for the sake of introduction, here we present

the definition of traditional inverse limits with continuous bonding maps first. We also give

basic theorems about these inverse limits to contrast with the theorems about the upper

semi-continuous inverse limits given in Chapter 3. Proofs of the following theorems may be

found in one or both of [4], [14].
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Suppose that, for each positive integer i, Xi is a topological space and fi is a continuous

function from Xi+1 to Xi. Let lim←−{Xi, fi}∞i=1 be the set {(x1, x2, x3, . . .) ∈
∏∞

i=1Xi | xi =

fi(xi+1) for all positive integers i}. Then we say lim←−{Xi, fi}∞i=1 is an inverse limit space and

a basis for the topology on lim←−{Xi, fi}∞i=1 is {O∩ lim←−{Xi, fi}∞i=1 | O is basic open in
∏∞

i=1Xi}.

The Xi’s are called the factor spaces of lim←−{Xi, fi}∞i=1, and the fi’s are continuous bonding

maps. If fi, fi+1, . . . , fj−1 are bonding maps, let us denote fi ◦ fi+1 ◦ . . . ◦ fj−1 by fi,j.

Theorem 2.28. Suppose X = lim←−{Xi, fi}∞i=1 is an inverse limit space with continuous bond-

ing maps, {ni}∞i=1 is an increasing sequence of positive numbers, gi = fni,ni+1
for each i, and

Y = lim←−{Xni , gi}∞i=1. Then X is homeomorphic to Y .

Theorem 2.29. Let X = lim←−{Xi, fi}∞i=1 be an inverse limit space with continuous bonding

maps. If there is a natural number N so that fn is an onto homeomorphism for each n ≥ N ,

then X is homeomorphic to XN .

Theorem 2.30. Let X = lim←−{Xi, fi}∞i=1 be an inverse limit space with continuous bonding

maps and suppose Xi is non-empty and compact for each i. Then X is non-empty and

compact.

Theorem 2.31. Let X = lim←−{Xi, fi}∞i=1 be an inverse limit space with continuous bonding

maps and suppose Xi is a continuum for each i. Then X is a continuum.

We note in advance that most of these theorems are false if upper semi-continuous

bonding functions are used instead of continuous bonding maps. Most importantly, as was

pointed out by Ingram and Mahavier in [3], some kind of extra hypothesis must be added

to Theorem 2.31 for that theorem to hold true in the upper semi-continuous case. (Contrast

Theorem 2.31 with, e.g., Theorem 3.3 or Theorem 3.4.)
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Chapter 3

Background on Inverse Limits with u.s.c. Bonding Functions

Suppose X and Y are compact Hausdorff spaces, and define 2Y to be the set of all

non-empty compact subsets of Y . A function f : X → 2Y is called upper semi-continuous

(u.s.c.) if for any x ∈ X and open V in Y containing f(x), there exists an open U in X

containing x so that f(u) ⊆ V for all u ∈ U . If f : X → 2Y is u.s.c. and f(x) is connected

for each x ∈ X, then f is a u.s.c. continuum-valued function; in this case, for emphasis, we

will sometimes write f : X → C(Y ) instead, where C(Y ) is the set of all subcontinua of Y .

If f : X → 2Y is u.s.c. and f(x) = {y} for some x ∈ X and y ∈ Y , then although f is

a set-valued function, we use the convention of writing simply f(x) = y. Therefore, in the

case where f : X → 2Y is u.s.c. but f(x) is degenerate for all x ∈ X, we may regard f as

the corresponding continuous function f : X → Y .

Again, let X, Y be compact Hausdorff spaces and let f : X → 2Y be a u.s.c. function.

If y ∈ Y , then the preimage of y via f is f−1(y) = {x ∈ X| y ∈ f(x)}. More generally, if

A ⊆ Y , then the preimage of A via f is f−1(A) = {x ∈ X| f(x) ∩ A 6= ∅}. We say f is

surjective if for each y ∈ Y , f−1(y) is non-empty. Assuming that f : X → 2Y is a surjective

u.s.c. function, the inverse of f , i.e., the set-valued function f−1 : Y → 2X , is given by

f−1(y) = {x ∈ X| y ∈ f(x)}. It will later become evident that if f is a u.s.c. surjective

function, then its inverse, f−1, is also a u.s.c. surjective function.

If X, Y, and Z are compact Hausdorff spaces and f : X → 2Y and g : Y → 2Z are u.s.c.

functions, then g ◦ f : X → 2Z is the u.s.c. function given by (g ◦ f)(x) = {z ∈ Z |∃y ∈ Y

such that y ∈ f(x) and z ∈ g(y)}. In the special case of a u.s.c. function f : X → 2X ,

we denote f ◦ f by f 2; moreover, for any integer n ≥ 2, let us say fn = f ◦ fn−1. It will

also sometimes be helpful to use the following convention: whenever f : X → 2X is a u.s.c.

13



function and A ⊆ X, let us denote the preimage of the preimage of A, i.e., f−1(f−1(A)), by

f−2(A). More generally, for each integer n ≥ 2, f−n(A) = f−1(f−(n−1)(A)).

Given compact Hausdorff spaces X, Y and a u.s.c. function f : X → 2Y , the graph of

f , abbreviated G(f), is the set {(x, y) ∈ X × Y | y ∈ f(x)}. The inverse of the graph is

G(f)−1 = {(y, x)|(x, y) ∈ G(f)}. If X1, X2, . . . , Xn, Xn+1 are compact Hausdorff spaces and

fi : Xi+1 → 2Xi is u.s.c. for 1 ≤ i ≤ n, then G(f1, f2, . . . , fn) = {(x1, x2, . . . , xn, xn+1) ∈∏n+1
i=1 Xi | xi ∈ fi(xi+1) for 1 ≤ i ≤ n}.

Now suppose that, for each positive integer i, Xi is a compact Hausdorff space and

fi : Xi+1 → 2Xi is an upper semi-continuous function. We define lim←−{Xi, fi}∞i=1 to be the set

{(x1, x2, x3, . . .) ∈
∏∞

i=1Xi | xi ∈ fi(xi+1) for all positive integers i}. (For convenience, we

will denote a sequence (x1, x2, x3, . . .) by the boldface x and denote the sequence of functions

(f1, f2, f3, . . .) by the boldface f. Thus, we may abbreviate lim←−{Xi, fi}∞i=1 by lim←− f.) Then we

say lim←− f is an inverse limit space with u.s.c. bonding functions, and a basis for the topology

on lim←− f is {O ∩ lim←− f | O is basic open in
∏∞

i=1Xi}. For brevity’s sake, we will sometimes

call an inverse limit space with u.s.c. bonding functions simply a u.s.c. inverse limit space.

Finally, in the special case where X is a compact Hausdorff space, f : X → 2X is u.s.c., and

f = (f, f, f, . . .), we say lim←− f is the inverse limit with the single bonding function f . (If, in

the description of a particular inverse limit, only the single bonding function f : X → 2X is

given, then it will be clear from context that lim←− f is the inverse limit with the single bonding

function f .)

As stated in Chapter 2, a continuum is a non-empty compact connected space; a con-

tinuum that is Hausdorff (but not necessarily metric) will be called a Hausdorff continuum.

We will usually assume that each factor space Xi is a non-degenerate Hausdorff continuum.

In [3], Ingram and Mahavier prove various theorems about inverse limits with u.s.c.

bonding functions. There are four especially critical theorems (originally labeled 2.1, 3.2,

4.7, and 4.8 in [3]) that we will need as background in the next chapters, and so, we restate

them here:
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Theorem 3.1. Suppose each of X and Y is a compact Hausdorff space and M is a subset

of X × Y such that if x is in X then there is a point y in Y such that (x, y) is in M . Then

M is closed if and only if there is an upper semi-continuous function f : X → 2Y such that

M = G(f).

Theorem 3.2. Suppose that for each positive integer i, Xi is a non-empty compact Hausdorff

space and fi : Xi+1 → 2Xi is an upper semi-continuous bonding function. Then lim←− f is non-

empty and compact.

Theorem 3.3. Suppose that for each positive integer i, Xi is a Hausdorff continuum, fi :

Xi+1 → 2Xi is an upper semi-continuous function, and for each x in Xi+1, fi(x) is connected.

Then lim←− f is a Hausdorff continuum.

Theorem 3.4. Suppose that for each positive integer i, Xi is a Hausdorff continuum, fi :

Xi+1 → 2Xi is an upper semi-continuous function, and for each x ∈ Xi, f
−1
i (x) is a non-

empty, connected set. Then lim←− f is a Hausdorff continuum.
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Chapter 4

Sufficient Conditions For Decomposability of u.s.c. Inverse Limits

Let us recall once more that a Hausdorff continuum X is decomposable if it is the union

of two proper subcontinua; if a Hausdorff continuum X is not decomposable, X is said to

be indecomposable. Now, suppose for each positive integer i, Xi is a Hausdorff continuum,

fi : Xi+1 → 2Xi is a u.s.c. bonding function, and lim←− f is the resulting inverse limit. Our

first major goal is to provide some simple means for recognizing when such a u.s.c. inverse

limit is a decomposable continuum. It would be especially convenient if we could infer

decomposability just from some easily-checked feature of some bonding function’s graph,

G(fi). In this chapter, we recall our previous results on this topic; these results and their

proofs may also be found in [13], but we include them here for the sake of completeness.

Theorem 4.1. Suppose that for each positive integer i, Xi is a non-degenerate Hausdorff

continuum, fi : Xi+1 → 2Xi is a surjective u.s.c. function, and fi(x) is connected for

each x ∈ Xi+1. Suppose further that, for some positive integer j, there is an open set

U ⊆ Xj+1 × Xj intersecting G(fj) so that G(fj) \ U is the graph of a u.s.c. function

h : Xj+1 → 2Xj satisfying the following conditions:

1) h(x) is connected for all x ∈ Xj+1.

2) There is an open V ⊆ Xj+1 ×Xj so that U ∩ V = ∅ and G(h) ∩ V 6= ∅.

Then lim←− f is a decomposable continuum.

Proof. By Theorem 3.3, lim←− f is a continuum. To show lim←− f is decomposable, by Theorem

2.27, it suffices to find a proper subcontinuum that is not nowhere dense. Fix some positive

integer j with fj : Xj+1 → 2Xj satisfying the hypothesis, so thatG(fj)\U is the graph of some

u.s.c. function h satisfying conditions 1 and 2. Define f̃ = (f1, f2, . . . , fj−1, h, fj+1, . . .). Then
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by Theorem 3.3, lim←− f̃ is a continuum. Moreover, because there is some (pj+1, pj) ∈ G(fj)∩U

and each fi is surjective, there is some point p = (p1, p2, . . . , pj, pj+1, . . .) with p ∈ lim←− f\lim←− f̃.

So lim←− f̃ is a proper subcontinuum of lim←− f.

Since there is a basic open subset Oj+1×Oj of V that also intersects G(h), (X1×X2×

. . .×Xj−1×Oj ×Oj+1×Xj+2× . . .)∩ lim←− f is a non-empty open subset of lim←− f̃. Thus, lim←− f̃

is not nowhere dense.

As we remarked in [13], each u.s.c. function fi must be surjective for this theorem to

succeed. There is a counterexample otherwise: Suppose that, for each positive integer i,

fi : [0, 1]→ 2[0,1] is given by the graph consisting of the straight line segments from (0, 0) to

(1, 0) and from (1, 0) to (1, 1
2
). (See Figure 4.1.) Then lim←− f is a single point, (0, 0, 0, . . .), and

is therefore an indecomposable continuum. To avoid trivial counterexamples such as this,

we will repeatedly assume that the bonding functions are surjective and the factor spaces

are non-degenerate. See Chapter 10 for examples of bonding functions for which Theorem

4.1 actually applies. In particular, Example 10.1 shows how the conditions in Theorem 4.1

are often easy to check in practice.

Figure 4.1: A bonding function that gives rise to a degenerate inverse limit space

Theorem 4.2. Suppose that for each positive integer i, Xi is a non-degenerate Hausdorff

continuum, fi : Xi+1 → 2Xi is a surjective u.s.c. function, and for each x ∈ Xi, f
−1
i (x)

is connected. Suppose further that, for some positive integer j, there is an open set U ⊆
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Xj+1×Xj intersecting G(fj) so that G(fj)\U is the graph of a u.s.c. function h : Xj+1 → 2Xj

satisfying the following conditions:

1) For all x ∈ Xj, h
−1(x) is a non-empty, connected set.

2) There is an open V ⊆ Xj+1 ×Xj so that U ∩ V = ∅ and G(h) ∩ V 6= ∅.

Then lim←− f is a decomposable continuum.

Proof. By Theorem 3.4, lim←− f is a continuum. Let f̃ = (f1, f2, . . . , fj−1, h, fj+1, . . .). Again,

by Theorem 3.4, lim←− f̃ is a continuum; the same argument as in Theorem 4.1 shows that lim←− f̃

is a proper subcontinuum that is not nowhere dense.

Theorem 4.3. Suppose that for each positive integer i, Xi is a non-degenerate Hausdorff

continuum and fi : Xi+1 → 2Xi is a surjective u.s.c. function with fi(x) connected for each

x ∈ Xi+1. Suppose there is some point x = (x1, x2, x3, . . .) ∈ lim←− f so that f−1i (xi) = xi+1

for i ≥ 2, and there is an open U ⊆ X2 × X1 so that G(f1) ∩ U is a non-empty subset of

{x2} × f1(x2). Then lim←− f is a decomposable continuum.

Proof. Theorem 3.3 implies that lim←− f is a continuum. Let O2 × O1 be a basic open subset

of U with G(f1) ∩ (O2 ×O1) a non-empty subset of {x2} × f1(x2). We note that the proper

subcontinuum f1(x2)×{x2}×{x3}× . . . of lim←− f contains the open set (O1×O2×X3×X4×

. . .) ∩ lim←− f. Thus, there exists a proper subcontinuum that is not nowhere dense.

So far, we have seen decomposability arise in certain situations where lim←− f satisfies

either Theorem 3.3 or Theorem 3.4. Now we turn to a situation where 3.3 or 3.4 no longer

apply, i.e., a situation where images (or preimages) of points need not be connected. In

general, if there exists some positive integer i and x ∈ Xi+1 with fi(x) not connected,

then lim←− f need not be connected. However, in some special cases, lim←− f turns out to be a

continuum even if fi(x) is not connected for some x ∈ Xi+1. One such special case is given

by the following theorem, a consequence of one of Ingram’s results (Theorem 3.3) in [5]: If

f : [0, 1] → 2[0,1] is a u.s.c. bonding function that is the union of two distinct continuous

functions g, h : [0, 1] → [0, 1], at least one of which is surjective, then lim←− f is a continuum.
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Our next theorem generalizes this result and also provides another sufficient condition for

decomposability.

Theorem 4.4. Suppose for each positive integer i, Xi is a non-degenerate Hausdorff con-

tinuum and fi : Xi+1 → 2Xi is a u.s.c. function that is the union of two u.s.c. functions

gi, hi : Xi+1 → 2Xi satisfying the following properties:

1) At least one of gi, hi is surjective.

2) gi(x) and hi(x) are connected for all x ∈ Xi+1.

3) G(gi) ∩G(hi) 6= ∅.

Then lim←− f is a continuum. Moreover, if there is some positive integer j so that G(gj) 6⊆

G(hj) and G(hj) 6⊆ G(gj), then lim←− f is a decomposable continuum.

Proof. We first show that lim←− f is a continuum. Since for each positive integer i, fi is u.s.c.

and each factor space is a continuum, it follows from Theorem 3.2 that lim←− f is compact. To

show that lim←− f is connected, we will show that, for any p,q ∈ lim←− f, there exists a connected

subset of lim←− f that contains p and q.

Let p = (p1, p2, p3, . . .) and q = (q1, q2, q3, . . .) be in lim←− f. Then for each positive integer

i, (pi+1, pi) ∈ G(αi), where αi ∈ {gi, hi}. Similarly, for each i, (qi+1, qi) ∈ G(βi), where βi ∈

{gi, hi}. Now define z1 = (α1, α2, α3, . . .), z2 = (β1, α2, α3, . . .), z3 = (β1, β2, α3, . . .), . . . , zi =

(β1, β2, . . . , βi−1, αi, . . .), etc. By property 3, G(gi) and G(hi) must intersect at some point

(xi+1, xi). So, since each fi is surjective, there exists some point (x1, x2, . . . , xi, xi+1, . . .) in

lim←− f that lies in both lim←− zi and lim←− zi+1. That means, for all i, lim←− zi ∩ lim←− zi+1 6= ∅.

By Theorem 3.3, lim←− zi is connected for each positive integer i. Since (lim←− zi)∩(lim←− zi+1) 6=

∅ for each i, it follows that K =
⋃∞
i=1 lim←− zi is connected. Thus, the closure of K is also

connected. We already know p ∈ lim←− z1 ⊆ K. To show that q ∈ K, we observe that, since

lim←− zi ⊆ K for each i, points of the form (q1, . . .), (q1, q2, . . .), . . . , (q1, q2, . . . , qi, . . .), etc.,

are all in K. Since q is a limit point of the set of these points, q ∈ K. Thus, both p and q

lie in the connected set K. It follows that lim←− f is connected, and hence, is a continuum.
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Now, if G(gj) 6⊆ G(hj) and G(hj) 6⊆ G(gj) for some positive integer j, lim←− f can be

decomposed into two proper subcontinua as follows. Let g̃ = (f1, f2, . . . , fj−1, gj, fj+1, . . .)

and h̃ = (f1, f2, . . . , fj−1, hj, fj+1, . . .). Then (by an argument similar to the one given above)

lim←− g̃ and lim←− h̃ are both proper subcontinua of lim←− f, and (lim←− g̃) ∪ (lim←− h̃) = lim←− f.

Corollary 4.5. Suppose that, for each positive integer i, fi : [0, 1]→ 2[0,1] is a u.s.c. function

that is the union of two distinct continuous functions gi, hi : [0, 1] → [0, 1], at least one of

which is surjective. Then lim←− f is a decomposable continuum.
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Chapter 5

Sufficient Conditions For Indecomposability of u.s.c. Inverse Limits

Our next major goal is to give straightforward conditions on u.s.c. bonding functions

fi : Xi+1 → 2Xi that guarantee that the inverse limit space lim←− f is a non-degenerate inde-

composable continuum. By way of introduction to the problem, at first we will focus only

on the case where f : [0, 1] → 2[0,1] and f = (f, f, f, . . .). That is, we will assume lim←− f is an

inverse limit with a single u.s.c. bonding function f : [0, 1] → 2[0,1]. Once again, here we

recall our earlier results from [13]; we expand our results to much more general cases in the

next chapter.

Let us begin by proving a lemma that gives us valuable information about the proper

subcontinua of lim←− f in some special cases. An inverse limit space lim←− f with factor spaces Xi

is said to have the full projection property if, whenever H is a proper subcontinuum of lim←− f,

there exists some positive integer N so that πn(H) 6= Xn for all n ≥ N .

Lemma 5.1. Let f : [0, 1] → 2[0,1] be a u.s.c. function with the property that lim←− f is a

continuum. Suppose that, for some A ( [0, 1], f |[0,1]\A is a function, f([0, 1] \ A) = [0, 1],

and P = {(p1, p2, . . .) ∈ lim←− f | pi /∈ A for all i} is a dense subset of lim←− f. Then lim←− f has

the full projection property.

Proof. Assume by way of contradiction that there is some proper subcontinuum H of lim←− f

so that, for each positive integer n, there exists some m ≥ n such that πm(H) = [0, 1]. For

any such m, we know that [0, 1] = f([0, 1] \ A) = f(πm(H) \ A) ⊆ πm−1(H); from this it

follows that πi(H) = [0, 1] for all i ≤ m. Thus, since infinitely many positive integers m

with πm(H) = [0, 1] exist, we have that πn(H) = [0, 1] for each positive integer n. We will

now show that P ⊆ H.
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Let p = (p1, p2, p3, . . .) ∈ P . Then since π1(H) = [0, 1], there exists some point in H of

form (p1, ?, ?, ?, . . .). Since π2(H) = [0, 1], there exists some point in H of form (?, p2, ?, ?, . . .).

However, p2 /∈ A and f |[0,1]\A is a function, so f(p2) is unique; therefore, f(p2) = p1. That

means some point of form (p1, p2, ?, ?, ?, . . .) lies in H. A similar argument shows that some

point of form (p1, p2, . . . , pi−1, pi, ?, ?, . . .) lies in H for all i; since p is a limit point of the set

of all such points, and H is closed, p ∈ H. Thus, P ⊆ H. But then P ⊆ H; because P is

dense, P = lim←− f, so lim←− f ⊆ H. Therefore, lim←− f = H, contradicting the assumption that H

is a proper subcontinuum.

Figure 5.1: A bonding function that gives rise to an inverse limit without the full projection
property

A remark about the full projection property is in order. Any inverse limit lim←− f with

a continuous surjective bonding function f : [0, 1] → [0, 1] has the full projection property

automatically. However, if f is u.s.c., then in general lim←− f need not have the full projection

property. Example 131 in [4] illustrates this point: For each positive integer i, let Xi = [0, 1]

and let fi : [0, 1]→ 2[0,1] be the graph consisting of the straight line segments joining (0, 0) to

(1, 0) and (0, 0) to (1, 1). (See Figure 5.1.) Then H = {(x, x, x, . . .) | x ∈ [0, 1]} is a proper

subcontinuum of lim←− f, but πi(H) = [0, 1] for all i. Thus, some kind of additional hypotheses

(like those in Lemma 5.1) are required for the full projection property to hold.

With this lemma in hand, we may prove the following theorem. We note in advance that

the example motivating this theorem is the inverse limit generated using the u.s.c. function
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f : [0, 1] → 2[0,1] whose graph is topologically equivalent to a sin( 1
x
) curve (see Figure 5.2).

In this case, the set A is simply {0}.

Figure 5.2: A u.s.c. function whose graph is topologically equivalent to a sin( 1
x
) curve

Theorem 5.2. Suppose f : [0, 1] → 2[0,1] is u.s.c. and there is some non-empty closed

nowhere dense set A ⊆ [0, 1] with the property that:

1) f(a) = [0, 1] for all a ∈ A.

2) f |[0,1]\A is an open continuous function.

3) For each a ∈ A, y ∈ [0, 1] and ε > 0:

i. If ∃b ∈ [0, 1] with b > a, then there exists some x1 ∈ [0, 1] \A such that x1 ∈ (a, a+ ε)

and f(x1) = y.

ii. If ∃b ∈ [0, 1] with b < a, then there exists some x2 ∈ [0, 1]\A such that x2 ∈ (a− ε, a)

and f(x2) = y.

Then lim←− f is an indecomposable continuum.

Proof. lim←− f is a continuum since f(x) is connected for each x ∈ [0, 1]. It remains to show

that lim←− f is indecomposable.

First, let P = {(p1, p2, p3, . . .) ∈ lim←− f | pi /∈ A ∀i}. We will show that P is dense in

lim←− f. Thus, we need to show that, for each positive integer n, if O1, O2, . . . , On ⊆ [0, 1] are

arbitrary opens sets such that O = (O1 ×O2 × · · · ×On × [0, 1]× . . . ) ∩ lim←− f is non-empty,

then O contains some point in P .
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Proof by induction on n:

If n = 1, then O = (O1 × [0, 1]× [0, 1]× · · · ) ∩ lim←− f and, since A is nowhere dense, O1

contains a point p1 not in A. By condition 3, there exists p2 /∈ A such that f(p2) = p1, there

exists p3 /∈ A such that f(p3) = p2, etc. It follows that p = (p1, p2, p3, . . .) ∈ O, and p ∈ P

also.

Now we assume the claim is true for n; we need to show it is true for n+1. So, suppose

O = (O1 ×O2 × · · · ×On ×On+1 × [0, 1]× · · · ) ∩ lim←− f is non-empty. We need to show that

O contains a point in P .

We will begin by showing that there is some point (x1, x2, . . . , xn, xn+1, . . .) ∈ O with

xn+1 /∈ A. There is at least some (x1, x2, . . . , xn, xn+1, . . .) ∈ O, since O is non-empty; if

xn+1 /∈ A, we are done. So, suppose xn+1 ∈ A. Then because xn+1 ∈ On+1, which is open,

there exists some ε > 0 such that ((xn+1 − ε, xn+1 + ε) ∩ [0, 1]) ⊆ On+1. By condition 3,

there exists some z ∈ ((xn+1 − ε, xn+1 + ε) ∩ [0, 1]) with z /∈ A and f(z) = xn. That means

(x1, x2, . . . , xn, z, . . .) ∈ O.

In any case, there exists some point (x1, x2, . . . , xn, xn+1, . . .) ∈ O with xn+1 /∈ A. Now

let Ôn+1 = On+1 \ A. Since A is closed and xn+1 ∈ Ôn+1, it follows that Ôn+1 is open

and non-empty. Moreover, by condition 2, f(Ôn+1) is open. Since f(Ôn+1) contains xn,

which lies in On, we have that On ∩ f(Ôn+1) is open and non-empty. It follows that W =

(O1×O2×· · ·×On−1×(On∩f(Ôn+1))×[0, 1]×· · · )∩lim←− f contains (x1, x2, . . . , xn, xn+1, . . .) and

is therefore a basic open set that satisfies the inductive hypothesis. So, W contains a point

(p1, p2, . . . , pn−1, pn, ?, ?, . . .) ∈ P . Since pn ∈ f(Ôn+1), there exists some pn+1 ∈ On+1 \ A

such that f(pn+1) = pn. But (by condition 3) there exists pn+2 ∈ [0, 1] \ A such that

f(pn+2) = pn+1, there exists pn+3 ∈ [0, 1] \ A such that f(pn+3) = pn+2, etc. So, we have

shown that (p1, p2, . . . , pn, pn+1, pn+2, . . .), a point in P , lies in O. This means P is dense in

lim←− f.

By condition 2, f |[0,1]\A is a function. By condition 3, f([0, 1] \ A) = [0, 1]. Thus, the

hypothesis of Lemma 5.1 is satisfied; this means that lim←− f has the full projection property.

24



Finally, suppose by way of contradiction that lim←− f is a union of two proper subcontinua

H and K. Because lim←− f has the full projection property, there exists some positive integer

N such that πn(H) 6= [0, 1] and πn(K) 6= [0, 1] for all n ≥ N . Since A is non-empty, there

exists some a ∈ A lying in either πN+1(H) or πN+1(K); without loss of generality, assume

a ∈ πN+1(H). Since πN+1(K) 6= [0, 1], πN+1(H) must be an arc; in particular, πN+1(H)

must contain either [a − ε, a] or [a, a + ε] for some ε > 0. In either case, by condition 3,

f(πN+1(H) \ A) = [0, 1], which forces πN(H) = [0, 1]. (Contradiction.)

So lim←− f is indecomposable and the proof is complete.

We improve on this result in various ways in the next chapter. For now, let us turn to

a much different condition that also guarantees indecomposability. First, however, we must

define the “itinerary space” of an inverse limit. Suppose that, for each positive integer i, Pi

is a partition of [0, 1]. That is, Pi is a collection of subsets P i
1, P

i
2, . . . , P

i
ni

of [0, 1] so that

[0, 1] =
⋃ni
k=1 P

i
k and P i

j∩P i
l = ∅ if j 6= l. Suppose for each positive integer i, fi : [0, 1]→ 2[0,1]

is u.s.c. and lim←− f is the associated inverse limit space. If x = (x1, x2, x3, . . .) ∈ lim←− f, and for

i ≥ 2, αi is the unique member of Pi containing xi, then the itinerary representation of x is

φ(x) = (x1, α2, α3, . . .). If for each positive integer i, Pi is assumed to have some topology

TPi , then I = [0, 1]×
∏∞

i=2Pi is a product space with the standard product topology. Thus,

φ : lim←− f → I is given by φ((x1, x2, x3, . . .)) = (x1, α2, α3, . . .). That is, φ maps x ∈ lim←− f to

its unique itinerary representation φ(x). Then we call φ(lim←− f) the itinerary space of lim←− f.

Our approach toward itinerary spaces here is inspired by that of Stewart Baldwin in [1].

We intend to form the partitions Pi, each with respective topology TPi , so that φ turns out to

be a homeomorphism between lim←− f and the itinerary space of lim←− f. Of course, our choice of

partition depends heavily on the nature of the bonding functions (fi), so we now introduce

the kind of bonding function that interests us here. Recall that if g is a u.s.c. bonding

function, then the inverse of the graph G(g) is given by G(g)−1 = {(y, x)|(x, y) ∈ G(g)}. Let

the graph of f : [0, 1]→ 2[0,1] be given by G(g)−1 ∪G(h)−1, where, for some fixed a ∈ (0, 1),
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1) g : [0, 1] → [0, 1] is a non-decreasing continuous function with g(0) = 0, g(1) = a,

and g((0, 1)) = (0, a).

2) h : [0, 1] → [0, 1] is a non-increasing continuous function with h(0) = 1, h(1) = a,

and h((0, 1)) = (a, 1).

Then we say f is a steeple with turning point a. Note that the graph of any steeple f

is closed, so that a steeple is automatically u.s.c. by Theorem 3.1. See Examples 10.5 and

10.6 in Chapter 10 for samples of bonding functions that are (and are not) steeples.

Now suppose that, for each positive integer i, fi : [0, 1] → 2[0,1] is a steeple with

turning point ai+1. Then for each i ≥ 2, we define the steeple partition with center ai to be

Pi = {Li, Ci, Ri}, where Li = [0, ai), Ci = {ai}, and Ri = (ai, 1]. For a given i, the topology

TPi on Pi will be {Pi, ∅, {Li}, {Ri}, {Li, Ri}}. Let I = [0, 1]×
∏∞

i=2Pi, so that I is a product

space with the usual product topology. Direct inspection reveals that the itinerary space of

lim←− f is the subspace Î of I consisting of all points of the following forms:

1) (x1, α2, α3, α4, . . .), where x1 ∈ (0, 1) and αi ∈ {Li, Ri} for each i ≥ 2.

2) (0, L2, L3, L4, . . .)

3) (0, L2, L3, . . . , Lk, Rk+1, Ck+2, αk+3, αk+4, . . .), where αi ∈ {Li, Ri} for each i ≥ k+ 3.

4) (0, R2, C3, α4, α5, . . .), where αi ∈ {Li, Ri} for each i ≥ 4.

5) (1, C2, α3, α4, . . .), where αi ∈ {Li, Ri} for i ≥ 3.

Because the only open set in Pi that contains Ci is Pi itself, Pi is not Hausdorff, and

neither is I. However, as we will see in the following lemma (and as was first pointed out in

[1]), Î turns out to be a Hausdorff subspace of I.

Lemma 5.3. Suppose for each positive integer i, fi : [0, 1]→ 2[0,1] is a steeple with turning

point ai+1. Then lim←− f is a Hausdorff continuum. Moreover, if for i ≥ 2, Pi is the steeple

partition with center ai, then φ : lim←− f→ I is a homeomorphism between lim←− f and Î.

Proof. For each positive integer i, the graph of each fi satisfies the hypothesis of Theorem

3.1, so each fi is u.s.c.; indeed, by construction, fi(x) is connected for each positive integer

i and each x ∈ [0, 1]. Thus, by Theorem 3.3, lim←− f is a Hausdorff continuum.
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We have already observed that, since each fi is a steeple, φ(lim←− f) = Î; it remains to

verify that φ is a homeomorphism between lim←− f and Î. Of course φ maps onto its range.

If x,y ∈ lim←− f and x 6= y, then either x1 6= y1 or, for some i ≥ 2, xi and yi lie in different

members of Pi, so that the itinerary representations of x and y must differ. So φ is 1-1.

To show that φ is continuous, let x = (x1, x2, x3, . . .) ∈ lim←− f so that φ(x) = (x1, α2, α3, . . .),

and let O = O1 × O2 × . . . × On × Pn+1 × . . . be a basic open set in I containing φ(x).

For convenience, shrink O to a smaller basic open set that also contains φ(x), i.e., Õ =

O1 × {β2} × {β3} × . . .× {βn} × Pn+1 × . . ., where βi = αi if αi = Li or Ri, and βi = Pi if

αi = Ci. Then let U = O1 × γ2 × γ3 × . . .× γn × [0, 1]× . . ., where γi = βi if βi = Li or Ri

and γi = [0, 1] if βi = Pi. U contains x, and φ(U) ⊆ Õ ⊆ O, so φ is continuous.

lim←− f is compact. Therefore, to show that φ−1 is continuous, it will suffice to show

that Î is Hausdorff. Suppose that y = (y1, y2, . . .) and z = (z1, z2, . . .) with y, z ∈ Î and

y 6= z. If y1 6= z1, then there exist disjoint open sets Oy1 , Oz1 ⊆ [0, 1] containing y1 and z1,

respectively, so that Oy1 ×P2× . . . and Oz1 ×P2× . . . are disjoint open sets in I containing

y and z. So, suppose y1 = z1. There are three subcases:

1) If y1 = z1 are not 0 or 1, then the remaining coordinates are all Li’s and Ri’s. Since

y 6= z, there must be some coordinate k ≥ 2 for which one of yk, zk is Lk and the other is

Rk. Thus, if Uk = {Lk}, Vk = {Rk}, and Ui = Vi = Pi for all i 6= k, then [0, 1]×
∏∞

i=2 Ui and

[0, 1]×
∏∞

i=2 Vi are disjoint open sets, one containing y and the other containing z.

2) If y1 = z1 = 1, then y2 = z2 = C2 and the remaining coordinates of y and z are only

Li’s and Ri’s. Again, since y 6= z, there must be some coordinate k ≥ 3 for which one of

yk, zk is Lk and the other is Rk. Thus, if Uk = {Lk}, Vk = {Rk}, and Ui = Vi = Pi for all

i 6= k, then [0, 1]×
∏∞

i=2 Ui and [0, 1]×
∏∞

i=2 Vi are disjoint open sets, one containing y and

the other containing z.

3) If y1 = z1 = 0, then there are two subcases:

A) y and z both have their first R in the kth coordinate. So,

y = (0, L2, L3, . . . , Lk−1, Rk, Ck+1, yk+2, yk+3, . . .), and
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z = (0, L2, L3, . . . , Lk−1, Rk, Ck+1, zk+2, zk+3, . . .). Since y 6= z, for some j ≥ k + 2, one

of yj, zj is Lj and the other is Rj. Then two disjoint open sets containing y and z respectively

can be found in a manner similar to that of case 1 and 2.

B) y has its first R in the kth coordinate but z either has no R’s at all or its first R lies

in the jth coordinate, where (without loss of generality) k > j. If z has no R’s at all, then

y and z can be separated by open sets like those in case 1 and 2; if z has its first R in the

jth coordinate, then y’s jth coordinate is Lj, and thus, it is again easy to separate y and z

with open sets.

All possible cases have been addressed, so φ(lim←− f) = Î is Hausdorff. Hence, φ−1 is

continuous, and φ is a homeomorphism.

Theorem 5.4. Suppose for each positive integer i, fi : [0, 1]→ 2[0,1] is a steeple with turning

point ai. Then lim←− f is homeomorphic to the bucket-handle continuum.

Proof. Let g : [0, 1]→ [0, 1] be the standard tent map, i.e., the function whose graph consists

of straight line segments from (0, 0) to (1
2
, 1), and from (1

2
, 1) to (1, 0). Then g is a steeple, so

lim←−g, the bucket-handle continuum, is homeomorphic to Î. Since lim←− f is also homeomorphic

to Î, lim←− f ∼= lim←−g.

Thus, because the bucket-handle is indecomposable, so is any inverse limit space on unit

intervals with bonding functions that are steeples. It is possible to give an alternate argu-

ment for indecomposability here that does not involve itineraries; we do so, and generalize

the “steeple” construction a bit further, in Chapter 7. For a more detailed discussion of

itineraries, see, e.g., [1]. The author is indebted to Michel Smith and Tom Ingram for their

help in refining our description of “steeple” bonding functions.
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Chapter 6

Further Results on Indecomposability

Most of the results in the last two chapters have already been proven in the previous

work by the author, [13], but we have included them again here for the sake of completeness.

Now we seek new and more general results on detecting indecomposability in u.s.c. inverse

limits. The main results in this chapter are generalizations of the important Theorem 5.2.

However, we will begin with some indecomposability results that are more miscellaneous,

but still interesting and useful.

Theorem 6.1. Suppose that, for each positive integer i, fi : [0, 1]→ 2[0,1] is u.s.c., surjective,

and continuum-valued. If lim←− f has the full projection property and for each i, either fi(0) =

[0, 1] or fi(1) = [0, 1], then lim←− f is an indecomposable continuum.

Proof. Assume by way of contradiction that lim←− f is a union of two proper subcontinua,

H and K. By the full projection property, there must exist some large enough integer

N so that for all n ≥ N , πn(H) 6= [0, 1] and πn(K) 6= [0, 1]. Let us consider the case

when fN(0) = [0, 1]. One of πN+1(H) or πN+1(K), but not both, must contain 0; without

loss of generality, assume πN+1(H) contains 0 but πN+1(K) does not. Thus, the set R =

{(x1, x2, x3, . . .) ∈ lim←− f | xN+1 = 0} must be a subset of H. However, since fN(0) = [0, 1],

it follows that πN(R) = [0, 1], so that πN(H) = [0, 1] also. But it was already stated that

πN(H) 6= [0, 1], so we have a contradiction. The case when fN(1) = [0, 1] is similar.

Theorem 6.2. Suppose for each positive integer i, Xi is a Hausdorff continuum that is

irreducible between two of its points (ai and bi), and fi : Xi+1 → 2Xi is u.s.c., surjective, and

continuum-valued. If lim←− f has the full projection property and for all i, either fi(ai+1) = Xi

or fi(bi+1) = Xi, then lim←− f is an indecomposable continuum.
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Proof. Assume by way of contradiction that lim←− f is a union of two proper subcontinua, H and

K. By the full projection property, there must exist some large enough integer N so that for

all n ≥ N , πn(H) 6= Xn and πn(K) 6= Xn. Now let us consider the case where fN(aN+1) =

XN . Since XN+1 is irreducible from aN+1 to bN+1, and XN+1 = πN+1(H) ∪ πN+1(K),

it follows that one of πN+1(H) or πN+1(K), but not both, must contain aN+1. Without

loss of generality, assume πN+1(H) contains aN+1 but πN+1(K) does not. Thus, the set

R = {(x1, x2, x3, . . .) ∈ lim←− f | xN+1 = aN+1} must be a subset of H. However, since

fN(aN+1) = XN , it follows that πN(R) = XN , so that πN(H) = XN also. But it was already

stated that πN(H) 6= XN , so we have a contradiction. The case when fN(bN+1) = XN is

similar.

Theorem 6.3. Suppose f : [0, 1] → 2[0,1] is u.s.c. continuum-valued with f(0) = [0, 1], and

lim←− f is an indecomposable continuum. Then {0} × [0, 1] is a limit arc of G(f).

Proof. Suppose by way of contradiction that {0} × [0, 1] is not a limit arc of G(f). Then

there is some point (0, y) that is not a limit point of G(f) \ ({0}× [0, 1]). That means there

exist some small ε1, ε2 > 0 so that the open set of form [0, ε1)× (y − ε2, y + ε2) contains no

element of G(f)\({0}×[0, 1]). If [0, ε1)×(y−ε2, 1] contains no element of G(f)\({0}×[0, 1]),

then [0, ε1) × (y − ε2, 1] may be used as the open set U in Theorem 4.1, contradicting that

lim←− f is indecomposable. A contradiction is similarly reached if [0, ε1) × [0, y + ε2) contains

no element of G(f) \ ({0} × [0, 1]). Thus, [0, ε1) × [y + ε2, 1] and [0, ε1) × [0, y − ε2] must

respectively contain points (a1, b1) and (a2, b2) from G(f) \ ({0} × [0, 1]). Since G(f) is

connected, G(f) must contain either a point (a1, b3) in [0, ε1)× [0, y − ε2] or a point (a2, b4)

in [0, ε1)× [y + ε2, 1]. In either case, we have a contradiction because f has been shown not

to be continuum-valued.

Theorem 6.4. Suppose f : [0, 1] → 2[0,1] is u.s.c. continuum-valued with f(1) = [0, 1], and

lim←− f is an indecomposable continuum. Then {1} × [0, 1] is a limit arc of G(f).

Proof. The argument is almost identical to that of the previous theorem.
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The fact that 0 and 1 are endpoints of [0, 1] was used strongly in the proof of the previous

two theorems. If instead f(a) = [0, 1] for some a ∈ (0, 1), then there is a counterexample. Let

the graph of f : [0, 1] → 2[0,1] consist of the straight line segment between the points (0, 0)

and (1
2
, 1), the straight line segment between the points (1

2
, 1) and (1

2
, 0), and the straight line

segment between the points (1
2
, 0) and (1, 1). (This is Example 209 in [4].) Then f is u.s.c.

and continuum-valued, f(1
2
) = [0, 1], and (as proved by Ingram) lim←− f is indecomposable.

However, {1
2
} × [0, 1] is not a limit arc of G(f) \ ({1

2
} × [0, 1]).

Theorem 6.5. (Michel Smith) Suppose that for each positive integer i, Xi is an indecom-

posable continuum and fi : Xi+1 → 2Xi is a surjective u.s.c. bonding function. If lim←− f is a

continuum with the full projection property, then lim←− f is indecomposable.

Proof. Assume the hypothesis and suppose by way of contradiction that lim←− f is decompos-

able. Then lim←− f is a union of two proper subcontinua H and K. Since lim←− f has the full

projection property, there exists some positive integer N so that, for all n ≥ N , πn(H) and

πn(K) are proper subcontinua of Xn. However, since each bonding function fi is surjective,

it must be the case that πN(lim←− f) = XN . From this it follows that πN(H) ∪ πN(K) = XN ,

contradicting that XN is indecomposable.

Now, we seek to generalize Theorem 5.2. The next few theorems and lemmas may

be thought of as a warm-up before the most significant and useful result in this chapter,

Theorem 6.14.

Lemma 6.6. For each positive integer i, let Xi be a Hausdorff continuum. Suppose that

fi : Xi+1 → 2Xi is a u.s.c. function for each i and lim←− f is a continuum. Suppose further that

there is a sequence of sets A2, A3, . . . so that, for each i ≥ 2, Ai ( Xi, fi−1|Xi\Ai is a function,

and fi−1(Xi \ Ai) = Xi−1. Finally, suppose that P = {(p1, p2, . . .) ∈ lim←− f |∀i ≥ 2, pi /∈ Ai}

is a dense subset of lim←− f. Then lim←− f has the full projection property.

Proof. Assume by way of contradiction that there is some proper subcontinuum H of lim←− f

so that, for each positive integer n, there exists some m ≥ n such that πm(H) = Xm. For
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any such m ≥ 2, we know that Xm−1 = fm−1(Xm \ Am) = fm−1(πm(H) \ Am) ⊆ πm−1(H);

from this it follows that πi(H) = Xi for each i ≤ m. Thus, since infinitely many positive

integers m with πm(H) = Xm exist, we have that πn(H) = Xn for each positive integer n.

We will now show that P ⊆ H.

Let p = (p1, p2, p3, . . .) ∈ P . Then since π1(H) = X1, there exists some point in H of

form (p1, ?, ?, ?, . . .). Since π2(H) = X2, there exists some point in H of form (?, p2, ?, ?, . . .).

However, p2 /∈ A2 and f1|X2\A2 is a function, so f1(p2) is unique; therefore, f1(p2) = p1. That

means some point of form (p1, p2, ?, ?, ?, . . .) lies in H. A similar argument shows that some

point of form (p1, p2, . . . , pi−1, pi, ?, ?, . . .) lies in H for all i; since p is a limit point of the set

of all such points, and H is closed, p ∈ H. Thus, P ⊆ H. But then P ⊆ H; because P is

dense, P = lim←− f, so lim←− f ⊆ H. Therefore, lim←− f = H, contradicting the assumption that H

is a proper subcontinuum.

Theorem 6.7. Suppose for each positive integer i, Xi is a Hausdorff continuum and fi :

Xi+1 → 2Xi is u.s.c. Suppose that, for each i ≥ 2, there is some non-empty closed nowhere

dense set Ai ⊆ Xi with the property that:

1) fi−1(a) = Xi−1 for all a ∈ Ai.

2) f |Xi\Ai is an open continuous function.

3) For each a ∈ Ai, y ∈ Xi−1 and open Ua ⊆ Xi containing a, there exists some

x ∈ Xi \ Ai with x ∈ Ua and fi−1(x) = y.

4) For each a ∈ Ai, if H is a non-degenerate subcontinuum of Xi containing a, then H

must contain a subset H̃ of Xi \ Ai for which f(H̃) = Xi.

Then lim←− f is an indecomposable continuum.

Proof. lim←− f is a continuum since fi is continuum-valued for each positive integer i. It remains

to show that lim←− f is indecomposable.

First, let P = {(p1, p2, p3, . . .) ∈ lim←− f | pi /∈ Ai ∀i ≥ 2}. We will show that P is dense in

lim←− f. Thus, we need to show that, for each positive integer n, if O1, O2, . . . , On are arbitrary
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opens subsets of X1, X2, . . . , Xn respectively so that O = (O1×O2×· · ·×On×Xn+1× . . . )∩

lim←− f is non-empty, then O contains some point in P .

Proof by induction on n:

If n = 1, then O = (O1 × X2 × X3 × · · · ) ∩ lim←− f. O1 is open and non-empty, so O1

contains a point p1. By condition 3, there exists p2 ∈ X2 \ A2 such that f1(p2) = p1, there

exists p3 ∈ X3 \ A3 such that f2(p3) = p2, etc. It follows that p = (p1, p2, p3, . . .) ∈ O, and

p ∈ P also.

Now we assume the claim is true for n; we need to show it is true for n+1. So, suppose

O = (O1 ×O2 × · · · ×On ×On+1 ×Xn+2 × · · · ) ∩ lim←− f is non-empty. We need to show that

O contains a point in P .

We will begin by showing that there is some point (x1, x2, . . . , xn, xn+1, . . .) ∈ O with

xn+1 /∈ An+1. There is at least some (x1, x2, . . . , xn, xn+1, . . .) ∈ O, since O is non-empty;

if xn+1 /∈ An+1, we are done. So, suppose xn+1 ∈ An+1. Then because xn+1 ∈ On+1, which

is open, by condition 3, there exists some z ∈ On+1 with z /∈ An+1 and fn(z) = xn. That

means (x1, x2, . . . , xn, z, . . .) ∈ O.

In any case, there exists some point (x1, x2, . . . , xn, xn+1, . . .) ∈ O with xn+1 /∈ An+1.

Now let Ôn+1 = On+1 \ An+1. Since An+1 is closed and xn+1 ∈ Ôn+1, it follows that Ôn+1 is

open and non-empty. Moreover, by condition 2, fn(Ôn+1) is open. Since fn(Ôn+1) contains

xn, which lies in On, we have that On∩fn(Ôn+1) is open and non-empty. It follows that W =

(O1×O2×· · ·×On−1×(On∩fn(Ôn+1))×Xn+1×· · · )∩lim←− f contains (x1, x2, . . . , xn, xn+1, . . .)

and is therefore a basic open set that satisfies the inductive hypothesis. So, W contains a

point (p1, p2, . . . , pn−1, pn, ?, ?, . . .) ∈ P . Since pn ∈ fn(Ôn+1), there exists some pn+1 ∈

On+1 \ An+1 such that fn(pn+1) = pn. But (by condition 3) there exists pn+2 ∈ Xn+2 \ An+2

such that fn+1(pn+2) = pn+1, there exists pn+3 ∈ Xn+3 \ An+3 such that fn+2(pn+3) = pn+2,

etc. So, we have shown that (p1, p2, . . . , pn, pn+1, pn+2, . . .), a point in P , lies in O. This

means P is dense in lim←− f.
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By condition 2, for each i ≥ 2, fi−1|Xi\Ai is a function. By condition 3, for each i ≥ 2,

fi−1(Xi \ Ai) = Xi−1. Thus, the hypothesis of Lemma 6.6 is satisfied; this means that lim←− f

has the full projection property.

Finally, suppose by way of contradiction that lim←− f is a union of two proper subcontinua

H and K. Because lim←− f has the full projection property, there exists some positive integer

N such that πn(H) 6= Xn and πn(K) 6= Xn for all n ≥ N . Since AN+1 is non-empty, there

exists some a ∈ AN+1 lying in either πN+1(H) or πN+1(K); without loss of generality, assume

a ∈ πN+1(H). Since πN+1(H) 6= XN+1 and πN+1(K) 6= XN+1, it follows that πN+1(H) must

be a non-degenerate subcontinuum of XN+1 containing a. By condition 4, πN+1(H) must

contain a subset H̃ of XN+1 \ AN+1 for which fN(H̃) = XN . But fN(H̃) ⊆ πN(H); since

πN(H) is closed, it follows that fN(H̃) = XN ⊆ πN(H). Thus, XN = πN(H), which gives us

a contradiction.

So lim←− f is indecomposable and the proof is complete.

Next, we present a sequence of lemmas that will lead to the very powerful Theorem

6.14.

Lemma 6.8. Suppose f : X → Y is a continuous function and there is some closed nowhere

dense subset A of X such that f |X\A is open. Then if B is a nowhere dense subset of Y ,

f−1(B) is a nowhere dense subset of X.

Proof. Let B be nowhere dense in Y . If f−1(B) is empty, we are done. So, suppose f−1(B)

is non-empty. Assume by way of contradiction that there exists a non-empty open U ⊆ X

such that every non-empty open subset of U meets f−1(B). Since A is closed and nowhere

dense, U \A is a non-empty open subset of U . Hence, f(U \A) is open in Y , and therefore

f(U \ A) contains an open set V that misses B. That means the (non-empty) open set

f−1(V ) misses f−1(B). But then f−1(V ) ∩ (U \ A) is a non-empty open subset of U that

misses f−1(B). (Contradiction.)
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Lemma 6.9. If A ⊆ X is nowhere dense in X and X is an open subset of Y , then A is

nowhere dense in Y .

Proof. Let O be open in Y . If O misses X, then O misses A. If O meets X, then O ∩X is

open in Y , so that O ∩X contains an open set U that misses A. Since U is open in X and

X is open in Y , U is open in Y .

Lemma 6.10. If A,B ⊆ X are both nowhere dense in X, then A ∪ B is nowhere dense in

X.

Proof. Let A,B be nowhere dense in X and assume O ⊆ X is open. Then O contains an

open set U that misses A. In turn, U contains an open set V that misses B. Hence, O

contains the open set V which misses A ∪B.

Lemma 6.11. If A ⊆ X is nowhere dense in X, then A is nowhere dense in X.

Proof. Suppose not, i.e., A ⊆ X is nowhere dense but A is not. Then there exists an open

set O in X such that every open U ⊆ O contains a point in A. Now since A is nowhere

dense, O contains an open set U that misses A. But U must contain a point in A, where of

course A = A ∪A′. Therefore, U must contain a point in A′. That means, by the definition

of limit point, U must contain a point in A. (Contradiction.)

Lemma 6.12. Suppose f : [0, 1] → 2[0,1] is u.s.c. and there is some non-empty closed

nowhere dense set A ⊆ [0, 1] with the property that:

1) f(a) = [0, 1] for all a ∈ A.

2) f |[0,1]\A is a continuous function, and for some B ⊆ [0, 1] \ A that is closed and

nowhere dense in [0, 1] \ A, f |[0,1]\(A∪B) is open.

3) For each a ∈ A, y ∈ (0, 1) and interval Ua of form (c, a) or (a, c) in [0, 1], there exists

some x ∈ Ua \ A with f(x) = y.

Then if O = (O1 × O2 × · · · × On × [0, 1] × · · · ) ∩ lim←− f is a non-empty basic open set

in lim←− f, πn(O) is a disjoint union V ∪ Z, where V is a non-empty open set and Z is a set
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so that if z ∈ Z, then every non-empty subset of [0, 1] of form (d, z) or (z, d) contains some

point of V .

Proof. We prove the lemma by induction on n. If n = 1, then since the bonding function

f is surjective, π1(O) is O1 itself. O1 may be written as V ∪ Z, where V = O1 and Z = ∅.

So assume the lemma is true for n; we must show it is true for n + 1. Let O = (O1 × O2 ×

· · ·×On×On+1× [0, 1]×· · · )∩ lim←− f be basic open and non-empty. The inductive hypothesis

applies to the set Õ = (O1×O2×· · ·×On× [0, 1]×· · · )∩ lim←− f; so, πn(Õ) is a disjoint union

V ∪Z where V is open and non-empty, and if z ∈ Z, then every non-empty subset of [0, 1] of

form (d, z) or (z, d) contains some point in V . We must show that the analogous statement

holds true for πn+1(O).

First, we note that πn+1(O) is the intersection of On+1 with f−1(πn(Õ)). By the

inductive assumption, πn(Õ) = V ∪Z, as already described. So now, we consider f−1(πn(Õ)).

Since f is a continuous function on [0, 1] \ A and, by condition 3, (0, 1) ⊆ f([0, 1] \ A), we

have that the preimage of V via f |[0,1]\A is a non-empty open set U in [0, 1] \A. (Moreover,

since [0, 1] \ A is open in [0, 1], U is open in [0, 1].) Since f(a) = [0, 1] for each a ∈ A, we

have that the preimage of V via f |A is A itself. Thus, f−1(V ) = U ∪ A. The preimage of

the set Z, f−1(Z), may be written as a disjoint union A ∪W for some W ⊆ [0, 1].

Now if a ∈ A, we claim that every open interval in [0, 1] of form (d, a) or (a, d) contains

a point of U . For, if we have (d, a), we may pick any y ∈ V \ {0, 1}, and then, by condition

3, there exists some x ∈ (d, a) \ A with f(x) = y. That means f |−1[0,1]\A(V ) contains x, and

x ∈ U . Since x ∈ (d, a), we are done. A similar argument applies in the case of (a, d).

Next, suppose w ∈ W ; we intend to show that every open set in [0, 1] of form (d, w)

and (w, d) contains a point in U . Since w ∈ W , we know w 6∈ A; that implies that (since

A is closed and [0, 1] is regular) there exists some δ > 0 so that (w − δ, w + δ) misses A.

Therefore, on (w − δ, w + δ), f is a continuous function. Let N be a large enough integer

so that (w − 1
N
, w) ⊆ (w − δ, w) ∩ (d, w). We will show that (w − 1

N
, w) contains a point

of U . First, we note that f((w − 1
N
, w]) cannot be identically f(w); for, if it were, then
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that would contradict the assumption that f |[0,1]\(A∪B) is an open map (since B was assumed

to be nowhere dense). So, for some x ∈ (w − 1
N
, w), either f(x) > f(w) or f(x) < f(w).

Either way, by the Intermediate Value Theorem, since f is a continuous map on [x,w], on

that interval f must achieve every value between f(x) and f(w). But f(w) is in Z. So, if

f(x) > f(w), the open set (f(w), f(x)) contains points in V ; if f(x) < f(w), the open set

(f(x), f(w)) contains points in V . Either way, U = f−1(V ) \A meets (x,w), and that shows

that every open set of form (d, w) contains a point in U . A similar argument shows that

every open set of form (w, d) contains a point in U .

Thus, we have shown that f−1(πn(Õ)) consists exactly of U ∪ f−1(Z), where U is a

non-empty open set and each point t in f−1(Z) has the property that every non-empty

subset of [0, 1] of form (d, t) or (t, d) contains some point in U . We note that, since V

and Z were disjoint, f−1(V ) and f−1(Z) have only the points of A in common; thus, U =

f−1(V ) \A and f−1(Z) are disjoint sets. Now, we consider f−1(πn(Õ))∩On+1, which equals

(U ∩On+1)∪ (f−1(Z)∩On+1). Note that U ∩On+1 and f−1(Z)∩On+1 are disjoint sets, and

U ∩ On+1 is open. Now, suppose t ∈ f−1(Z) ∩ On+1, and let (d, t) be some open interval

in [0, 1]. Since t ∈ On+1 and On+1 is open, we know that (for some small ε > 0) On+1

must contain an open interval (t− ε, t+ ε). Hence, On+1 must contain (d, t) ∩ (t− ε, t+ ε),

which equals (max{d, t − ε}, t). But (max{d, t − ε}, t) must contain points in U , so that

(d, t) contains points in U ∩ On+1. A similar argument may be given for an open interval

(t, d). Finally, the open set U ∩ On+1 is non-empty; for, if U ∩ On+1 = ∅, then because O

was non-empty (and thus, f−1(πn(Õ))∩On+1 was non-empty), f−1(Z)∩On+1 must be non-

empty. However, by the above argument, since On+1 contains points in f−1(Z), it follows

that On+1 must contain points of U . Hence, U ∩On+1 is non-empty, which is a contradiction;

we conclude that U ∩On+1 was non-empty in the first place.

We have therefore demonstrated that f−1(πn(Õ)) ∩ On+1 is a union of two disjoint

sets satisfying the condition given in the inductive hypothesis. However, πn+1(O) equals

f−1(πn(Õ)) ∩On+1, so the proof is complete.
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Lemma 6.13. Let f : [0, 1] → 2[0,1] be a u.s.c. function with the property that lim←− f is a

continuum. Suppose that, for some A ( [0, 1], f |[0,1]\A is a function, (0, 1) ⊆ f([0, 1] \ A),

and P = {(p1, p2, . . .) ∈ lim←− f | pi /∈ A ∪ {0, 1} for all i} is a dense subset of lim←− f. Then

lim←− f has the full projection property.

Proof. Assume by way of contradiction that there is some proper subcontinuum H of lim←− f

so that, for each positive integer n, there exists some m ≥ n such that πm(H) = [0, 1]. For

any such m, we know that (0, 1) ⊆ f([0, 1] \A) = f(πm(H) \A) ⊆ πm−1(H); since πm−1(H)

is closed and contains (0, 1), it follows that πm−1(H) = [0, 1]. Similarly, πi(H) = [0, 1] for all

i ≤ m. Thus, since infinitely many positive integers m with πm(H) = [0, 1] exist, we have

that πn(H) = [0, 1] for each positive integer n. We will now show that P ⊆ H.

Let p = (p1, p2, p3, . . .) ∈ P . Then since π1(H) = [0, 1], there exists some point in H of

form (p1, ?, ?, ?, . . .). Since π2(H) = [0, 1], there exists some point in H of form (?, p2, ?, ?, . . .).

However, p2 /∈ A and f |[0,1]\A is a function, so f(p2) is unique; therefore, f(p2) = p1. That

means some point of form (p1, p2, ?, ?, ?, . . .) lies in H. A similar argument shows that some

point of form (p1, p2, . . . , pi−1, pi, ?, ?, . . .) lies in H for all i; since p is a limit point of the set

of all such points, and H is closed, p ∈ H. Thus, P ⊆ H. But then P ⊆ H; because P is

dense, P = lim←− f, so lim←− f ⊆ H. Therefore, lim←− f = H, contradicting the assumption that H

is a proper subcontinuum.

We are now ready to prove the main theorem of this chapter.

Theorem 6.14. Suppose f : [0, 1] → 2[0,1] is u.s.c. and there is some non-empty closed

nowhere dense set A ⊆ [0, 1] with the property that:

1) f(a) = [0, 1] for all a ∈ A.

2) f |[0,1]\A is a continuous function, and for some B ⊆ [0, 1] \ A that is closed and

nowhere dense in [0, 1] \ A, f |[0,1]\(A∪B) is open.

3) For each a ∈ A, y ∈ (0, 1) and interval Ua of form (c, a) or (a, c) in [0, 1], there exists

some x ∈ Ua \ A with f(x) = y.
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Then lim←− f is an indecomposable continuum.

Proof. Since f(x) is connected for each x ∈ [0, 1], lim←− f is a continuum. Now we must show

it is indecomposable.

We will show that the set P = {(p1, p2, . . .) ∈ lim←− f | pi /∈ A ∪ {0, 1} for all i} is

dense in lim←− f. To that end, let O = (O1 × O2 × · · · × On × [0, 1] × · · · ) ∩ lim←− f be a non-

empty basic open subset of lim←− f; we will show that O contains a point in P . We begin by

noting that, by Lemma 6.10, A ∪ {0, 1} = A1 is nowhere dense in [0, 1]. Now f−1(A1) is the

union of the sets f |−1[0,1]\A(A1) and A; since (by Lemma 6.8) f |−1[0,1]\A(A1) is nowhere dense in

[0, 1] \ A, we conclude from Lemma 6.9 that f |−1[0,1]\A(A1) is also nowhere dense in [0, 1]. We

already know A is nowhere dense, so we have shown that f−1(A1) is a union of two nowhere

dense sets and is therefore also nowhere dense. Let us call f−1(A1) ∪ {0, 1} = A2. Again,

by Lemma 6.10, A2 is nowhere dense. Next, by similar reasoning, f−1(A2) ∪ {0, 1} = A3

is nowhere dense. Continuing this way, we find that An = f−1(An−1) ∪ {0, 1} is nowhere

dense. We note that An contains all the points of A, f−1(A), f−2(A), . . . , f−(n−1)(A), as well

as {0, 1}, f−1({0, 1}), f−2({0, 1}), . . . , f−(n−1)({0, 1}).

Now, we note that (by Lemma 6.12) the projection of O onto the nth factor space,

πn(O), contains a non-empty open set. Since An was nowhere dense, πn(O) \ An is non-

empty. Thus, there exists a point xn ∈ πn(O) \ An such that xn 6∈ A ∪ {0, 1}, f(xn) =

xn−1 6∈ A ∪ {0, 1}, f 2(xn) = xn−2 6∈ A ∪ {0, 1}, and so forth, so that xi /∈ A ∪ {0, 1} for

each positive integer i ≤ n. We may also use condition 3 to select some element xn+1 of

f−1(xn) \ (A∪ {0, 1}), and then select some element xn+2 of f−1(xn+1) \ (A∪ {0, 1}), and so

forth. The sequence x = (x1, x2, . . . , xn, xn+1, . . .) is therefore an element of P . Since xi 6∈ A

for each positive integer i, f acts as a function on each xi; so, because xn ∈ πn(O), x ∈ O.

Thus, we have shown that P = {(p1, p2, . . .) ∈ lim←− f | pi /∈ A ∪ {0, 1} for all i} is dense in

lim←− f. From this, we conclude using Lemma 6.13 that lim←− f has the full projection property.

Finally, suppose by way of contradiction that lim←− f is the union of two proper subcon-

tinua H and K. Since lim←− f has the full projection property, there exists some large enough
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integer N so that if n ≥ N , πn(H) and πn(K) are proper subcontinua of [0, 1]. Since A is

non-empty, there is some a ∈ A and either a ∈ πN+1(H) or a ∈ πN+1(K). Without loss of

generality, assume a ∈ πN+1(H). Then for some small ε > 0, either (a− ε, a) ⊆ πN+1(H) or

(a, a + ε) ⊆ πN+1(H). In either case, by condition 3, for any y ∈ (0, 1) there exists some x

in (a − ε, a) \ A or in (a, a + ε) \ A with f(x) = y. That implies that πN(H) must contain

(0, 1). But then, since πN(H) is closed, πN(H) = [0, 1]. This is a contradiction, so the proof

is complete.

With this grand theorem, we may detect indecomposability easily in a great many more

cases: See Example 10.8 in Chapter 10.
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Chapter 7

A Generalization of the Two-Pass Condition

The two-pass condition, as described by Ingram in [5] and later in [4], is important to

the question of when indecomposability arises in inverse limits with u.s.c. bonding functions.

Suppose f : [0, 1]→ 2[0,1] is u.s.c. Then f satisfies the two-pass condition if there are mutually

exclusive connected open subsets U and V of [0, 1] so that f |U and f |V are mappings and

f(U) = f(V ) = [0, 1]. A consequence of Ingram’s Theorem 4.3 from [5] is the following:

Theorem 7.1. (Ingram) Suppose f : [0, 1] → 2[0,1] is a u.s.c. function satisfying the two-

pass condition. Then if lim←− f is a continuum that has the full projection property, lim←− f is an

indecomposable continuum.

Our goal in this section is to further explore the relationship between the two-pass con-

dition, the full projection property, and indecomposability. In particular, we will introduce a

new generalization of the two-pass condition that applies to a wider variety of u.s.c. graphs.

The idea that such a generalization was possible arose in a discussion with Michel Smith,

when he noted that a certain u.s.c. graph comes within ε of satisfying the two-pass condi-

tion, for any choice of ε > 0. As it turns out, having a function f that “almost” satisfies the

two-pass condition is enough to prove an indecomposability theorem analogous to Ingram’s.

Suppose f : [0, 1] → 2[0,1] is u.s.c. Then f satisfies the ε-two-pass condition if ∀ε > 0

there exist mutually exclusive connected open sets U, V ⊆ [0, 1] so that, for some {a, b} ⊆ U

and {c, d} ⊆ V , f |{a,b} and f |{c,d} are mappings, f(a) and f(c) lie within ε of 0, and f(b)

and f(d) lie within ε of 1.

Theorem 7.2. Suppose the u.s.c. function f : [0, 1]→ 2[0,1] satisfies the ε-two-pass condition

and lim←− f is a continuum with the full projection property. Then lim←− f is indecomposable.
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Proof. Suppose lim←− f = H ∪ K, a union of two proper subcontinua. By the full projection

property, there is a positive integer N such that πn(H) 6= [0, 1] and πn(K) 6= [0, 1] for all

n ≥ N .

We consider the sets πN(H) and πN(K). Because these sets are both proper subcontinua

of [0, 1] whose union is [0, 1], one of them must contain 0 and the other must contain 1.

Without loss of generality, suppose πN(H) contains 0 and πN(K) contains 1, so that πN(H) =

[0, h] for some 0 < h < 1 and πN(K) = [k, 1] for some 0 < k < 1. Let ε = min{1−h, k}, and

now consider πN+1(H) and πN+1(K). Since f satisfies the ε-two-pass condition, there exist

mutually exclusive open subsets U and V of [0, 1] with some {a, b} ⊆ U and {c, d} ⊆ V such

that f |{a,b} and f |{c,d} are mappings, f(a) and f(c) lie within ε of 0, and f(b) and f(d) lie

within ε of 1.

Since πN+1(H) ∪ πN+1(K) = [0, 1], by Theorem 2.26, one of U and V is a subset of

one of πN+1(H) and πN+1(K). We now examine the case in which U ⊆ πN+1(H). Because

{a, b} ⊆ U , we have {a, b} ⊆ πN+1(H). Thus, because f |{a,b} is a mapping, it follows that

f(a) ∈ πN(H) and f(b) ∈ πN(H). But f(a) and f(b) lie within ε of 0 and 1, respectively,

contradicting the way ε was chosen. The remaining cases may be handled similarly.

The following examples may shed more light on the relationship between the full pro-

jection property, the two-pass condition, the ε-two-pass condition, and indecomposability.

Let the graph of f1 be given by the straight line segments from (0, 0) to (1
2
, 1), from (1

2
, 1) to

(1
2
, 0), and from (1

2
, 0) to (1, 1). Let the graph of f2 be given by the straight line segments

from (0, 0) to (1
2
, 1), from (1

2
, 1) to (1

2
, 1
2
), and from (1

2
, 1
2
) to (1, 1). (These are the graphs

from Examples 3.4 and 3.5 in Ingram’s paper, [5]; see Figures 7.1 and 7.2 below.) Let the

graph of f3 be the same as the graph of fj from Example 10.2 in Chapter 10. (See Figure

7.3.) Let the graph of f4 be the same as the graph topologically equivalent to the closure

of a sin( 1
x
) curve, as seen in Chapter 5. (See Figure 7.4.) Finally, let the graph of f5 be a

somewhat distorted version of the graph of f4, as shown in Figure 7.5.
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Figure 7.1: f1

Figure 7.2: f2

f1 satisfies the two-pass condition and lim←− f1 has the full projection property (as shown

directly by Ingram in [5] and [4]), so lim←− f1 is indecomposable. f2 does not satisfy the

two-pass condition and lim←− f2 does not have the full projection property; moreover, lim←− f2

is not indecomposable. f3 satisfies the two-pass condition but by Theorem 4.1, lim←− f3 is

decomposable. That means, by Theorem 7.1, f3 does not have the full projection property.

f4 satisfies the two-pass condition and lim←− f4 has the full projection property (as shown

in Theorem 5.2), so that lim←− f4 is indecomposable. Finally, f5 does not satisfy the two-

pass condition; however, it does satisfy the ε-two-pass condition. Since it may be shown

directly that lim←− f5 has the full projection property, it follows that lim←− f5 is indecomposable.

(Although, it must be admitted that this conclusion could have been reached other ways,

e.g., by applying Theorem 6.14.)
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Figure 7.3: f3

Figure 7.4: f4

Let f6 be the “steeple function” given in Chapter 10, Example 10.5. (See Figure 7.6.)

In Chapter 5, we used itineraries to prove that the inverse limit with this single bonding

function is indecomposable. Still, it would be helpful to have an alternate proof that does

not resort to itineraries. We note that f6 does not satisfy the two-pass condition; however, it

does satisfy the ε-two-pass condition. Thus, if we can prove that the corresponding inverse

limit has the full projection property, then by Theorem 7.2, lim←− f6 is an indecomposable

continuum.

The next major theorem (Theorem 7.4) implies that any inverse limit with bonding

functions that are steeples has the full projection property. In fact, this theorem applies to

a much more general collection of graphs that might be called “generalized steeples.” First,

we give a lemma.
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Figure 7.5: f5

Figure 7.6: f6

Lemma 7.3. Suppose A is an arc with endpoints a1, a2 and B is an arc with endpoints

b1, b2. Let f : A→ 2B be a surjective u.s.c. function that passes the horizontal line test, i.e.,

f−1(x) is degenerate for each x ∈ B. Then G(f) is an arc with endpoints {(f−1(b1), b1)}

and {(f−1(b2), b2)}.

Proof. For all i ≥ 2, let gi : A → 2A be the identity map. Then if g = (f, g2, g3, g4, . . .),

Theorem 3.4 implies lim←−g is a continuum. Thus, G(f), which is homeomorphic to the

projection of lim←−g onto its first two coordinates, is also a continuum. Since f passes the

horizontal line test, for a given x ∈ B, f−1(x) is unique. We note that, if x ∈ B \ {b1, b2},

then G(f) \ {(f−1(x), x)} is the union of two disjoint non-empty sets, (A × [b1, x)) ∩ G(f)

and (A× (x, b2])∩G(f). Thus, if x ∈ B \ {b1, b2}, {(f−1(x), x)} is a cut point of G(f). This
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means {(f−1(b1), b1)} and {(f−1(b2), b2)} are the only non-cut points of G(f), and the proof

is complete.

Theorem 7.4. Suppose that a1, a2, . . . , an is a strictly increasing subset of [0, 1] with a1 = 0,

an = 1, and n ≥ 3. Let f : [0, 1] → C([0, 1]) be a u.s.c. continuum-valued function with

f(ai) = 0 for each odd i ≤ n and f(ai) = 1 for each even i ≤ n. Suppose further that,

for each i, 1 ≤ i ≤ n − 1, f |[ai,ai+1] is a surjective u.s.c. bonding function that passes the

horizontal line test. Then if fn = f for all positive integers n, lim←− f has the full projection

property.

Proof. We will begin by assuming that n is odd, so that f(1) = 0. We intend to show

that, for each positive integer j, G(f1, f2, . . . , fj) is an arc with endpoints (0, 0, . . . , 0, 0) and

(0, 0, . . . , 0, 1) in
∏j+1

k=1[0, 1]. Proceed by induction: by the way f is defined, G(f1) is an arc

with endpoints (0, 0) and (0, 1). Assume the claim is true for j−1, so that G(f1, f2, . . . , fj−1)

is an arc with endpoints (0, 0, . . . , 0, 0) and (0, 0, . . . , 0, 1) in
∏j

k=1[0, 1].

Let [0, 1]k denote the kth factor space of lim←− f. Define h : [0, 1]j+1 → 2G(f1,f2,...,fj−1)

by h(t) = {(x1, x2, . . . , xj−1, xj) ∈ G(f1, f2, . . . , fj−1)|xj ∈ fj(t)}. Note that G(h) is home-

omorphic to G(f1, f2, . . . , fj−1, fj), so that G(h) is closed and therefore, h is u.s.c. (For

convenience, if (t, (x1, x2, . . . , xj−1, xj)) ∈ G(h), we will instead write this ordered pair in the

form of its counterpart in G(f1, f2, . . . , fj−1, fj), i.e., (x1, x2, . . . , xj−1, xj, t).) Next, note that,

for each i, 1 ≤ i ≤ n − 1, h|[ai,ai+1] is surjective and passes the horizontal line test, so that

G(h|[ai,ai+1]) is an arc (by Lemma 7.3). Moreover, if i is odd, G(h|[ai,ai+1]) is an arc whose end-

points are (0, 0, . . . , 0, 0, ai) and (0, 0, . . . , 0, 1, ai+1) in
∏j+1

k=1[0, 1], so that every other point in

G(h|[ai,ai+1]) has j+1th coordinate lying strictly between ai and ai+1. If i is even, G(h|[ai,ai+1])

is an arc whose endpoints are (0, 0, . . . , 0, 1, ai) and (0, 0, . . . , 0, 0, ai+1) in
∏j+1

k=1[0, 1], so that

every other point in G(h|[ai,ai+1]) has j + 1th coordinate lying strictly between ai and ai+1.

So, G(h) =
⋃n−1
i=1 G(h|[ai,ai+1]), a union of finitely many arcs. Note that two arcs G(h|[ak,ak+1])

and G(h|[am,am+1]), k < m, have a point in common iff k + 1 = m; in that case, they have

only one point in common, namely, (0, 0, . . . , 0, 1, ak+1) if k is odd or (0, 0, . . . , 0, 0, ak+1) if k
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is even. This means that G(h) is an arc with endpoints (0, 0, . . . , 0, 0, 0) and (0, 0, . . . , 0, 0, 1)

in
∏j+1

k=1[0, 1]. But G(f1, f2, . . . , fn) is homeomorphic to G(h), so the claim is verified.

Next, we intend to show that lim←− f has the full projection property. To that end, suppose

πn(H) = [0, 1] for infinitely many positive integers n. Since f(a1) = 0 and f(a2) = 1,

if πn(H) = [0, 1] for some n ≥ 2, then {0, 1} ⊆ πn−1(H). But πn−1(H) is connected, so

πn−1(H) = [0, 1]; it follows that πn(H) = [0, 1] for all positive integers n.

We now consider π{1,2,...,n+1}(H). Since projection maps are continuous and H is a

continuum, π{1,2,...,n+1}(H) is a subcontinuum of G(f1, f2, . . . , fn). Since {0, 1} ⊆ πn+1(H),

π{1,2,...,n+1}(H) contains the points (0, 0, . . . , 0, 0, 0) and (0, 0, . . . , 0, 0, 1), the two endpoints

of G(f1, f2, . . . fn). Since π{1,2,...,n+1}(H) is connected, π{1,2,...,n+1}(H) must therefore be all

of G(f1, f2, . . . , fn).

Finally, let p = (p1, p2, p3, . . . , pn, . . .) ∈ lim←− f. Since π{1,2,...,n+1}(H) = G(f1, f2, . . . , fn)

for all n, H contains a point of form (p1, p2, . . . , pn, ?, ?, . . .) for each n. Because p is the

limit point of the set of all such points, and H is closed, p ∈ H. Hence, lim←− f ⊆ H, and

lim←− f = H. That means lim←− f has the full projection property.

The proof is similar in case 2, where n is even. (In that case, G(f1, f2, . . . , fj) is an arc

with endpoints (0, 0, . . . , 0) and (1, 1, . . . , 1).)

Corollary 7.5. Suppose that f is a u.s.c. function satisfying the hypothesis of Theorem 7.4.

Then lim←− f is an indecomposable continuum.

Proof. By Theorem 7.4, lim←− f is a continuum with the full projection property. Since f also

satisfies the ε-two-pass condition, lim←− f is indecomposable by Theorem 7.2.

Theorem 7.4 was stated with f(ai) = 0 for each odd i ≤ n and f(ai) = 1 for each even

i ≤ n, but a similar theorem can be proven in the case where f(ai) = 1 for each odd i ≤ n

and f(ai) = 0 for each even i ≤ n. We can also give a version of Theorem 7.4 that holds in

a much more general setting:
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Theorem 7.6. For each positive integer n, let Xn be a Hausdorff continuum and let fn :

Xn+1 → 2Xn be a surjective u.s.c. function. Suppose that, for each positive integer n,

G = G(f1, f2, . . . , fn) is a continuum and there exist xn+1, yn+1 ∈ Xn+1 such that G is

irreducible between any point in G whose n+ 1 coordinate is xn+1 and any point in G whose

n+ 1 coordinate is yn+1. Then lim←− f is a continuum with the full projection property.

Proof. Since G(f1, f2, . . . , fn) is a continuum for each n, lim←− f is a continuum as well. Now

suppose H is a subcontinuum of lim←− f with πn(H) = Xn for infinitely many n. We need to

show H = lim←− f.

Let p = (p1, p2, . . . , pn, . . .) ∈ lim←− f; we need to show p ∈ H. Let M = {n | n is

a positive integer and πn(H) = Xn}. Fix some n ∈ M , n ≥ 2, and let xn, yn ∈ Xn be

such that G(f1, f2, . . . , fn−1) is irreducible between each of its points with nth coordinate

xn and each of its points with nth coordinate yn. We note that, since πn(H) = Xn, H con-

tains sequences in lim←− f of form (x1, x2, . . . , xn−1, xn, ?, ?, . . .) and (y1, y2, . . . , yn−1, yn, ?, ?, . . .).

Thus, π{1,2,...,n}(H) is a subcontinuum of G(f1, . . . , fn−1) containing (x1, x2, . . . , xn−1, xn)

and (y1, y2, . . . , yn−1, yn). Hence, by irreducibility, π{1,2,...,n}(H) = G(f1, . . . , fn−1). Since

(p1, p2, . . . , pn) ∈ G(f1, . . . , fn−1), H therefore contains a point of form (p1, p2, . . . , pn, ?, ?, . . .).

This same argument shows H must contain a point of form (p1, p2, . . . , pn, ?, ?, . . .) for

all n ∈M . Thus, because H is closed, H contains the limit point of all such points, namely,

p itself. Therefore, lim←− f ⊆ H, which says lim←− f = H. This means lim←− f has the full projection

property.

An example of a u.s.c. function that satisfies the hypothesis of Theorem 7.4, i.e., a

“generalized steeple,” may be found in Chapter 10. (See Example 10.9.)
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Chapter 8

Inverse Limits on Initial Segments of the Ordinal Numbers

In their book Inverse Limits: From Continua to Chaos, Ingram and Mahavier generalize

many of their earlier results about inverse limits indexed by the positive integers to inverse

limits indexed by more general directed sets [4]. They also give theorems that apply in the

special case of inverse limits indexed by a totally ordered directed set. In this section, we

will prove analogous theorems in the very special case where the inverse limit’s index set is

some “long” (i.e., uncountable) initial segment of the ordinals. Our proof techniques will be

different than those in [4], however, because we will heavily use transfinite induction. All of

our initial theorems here may be thought of as building up to a general theorem “template,”

i.e., Theorem 8.5.

Let γ be an ordinal. Suppose {Xα}α≤γ is a collection of continua and F = {fα,β :

Xβ → 2Xα}α<β≤γ is a collection of surjective u.s.c. functions so that ∀α < β < η ≤ γ,

fα,β ◦ fβ,η(x) = fα,η(x) for all x ∈ Xη. Then let us say the functions in F are properly

composing. We define Gγ = {(x0, x1, x2, . . . , xα, . . . , xγ) ∈
∏

α≤γ Xα | xα ∈ fα,β(xβ) ∀α <

β ≤ γ}. A basis for the topology on Gγ is given by {O ∩ Gγ | O is a basic open subset

of
∏

α≤γ Xα}. If γ is a limit ordinal, we define lim←−{Xα, fα,β, γ} = {(x0, x1, x2, . . . , xα, . . .) ∈∏
α<γ Xα | xα ∈ fα,β(xβ) ∀α < β < γ}. A basis for the topology on lim←−{Xα, fα,β, γ} is given

by {O ∩ lim←−{Xα, fα,β, γ} | O is a basic open subset of
∏

α<γ Xα}. For convenience, we will

at times denote lim←−{Xα, fα,β, γ} by G<γ.

It is an exercise in transfinite induction (using the surjectivity of the bonding functions

fα,β and the compactness of the factor spaces Xα) to show that if µ < γ, the projection

of G<γ (or of Gγ) onto the set of all coordinates ≤ µ is Gµ. We also note that, if Xα is a

continuum for each α < ω and {fα,β : Xβ → 2Xα}α<β<ω is a collection of properly composing
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surjective u.s.c. functions, then lim←−{Xα, fα,β, ω} is in fact a standard u.s.c. inverse limit

with a countable index set, i.e., lim←−{Xα, fα,α+1}∞α=0.

Theorem 8.1. Let γ be an ordinal. Suppose {Xα}α≤γ is a collection of continua and {fα,β :

Xβ → C(Xα)}α<β≤γ is a collection of properly composing surjective u.s.c. continuum-valued

functions. Then Gγ is a continuum.

Proof. By Theorem 3.3, G<ω is a continuum. Thus, Gγ is a continuum for each finite γ,

since Gγ is the projection of G<ω onto the set of all coordinates ≤ γ. So, it remains to prove

the theorem for all γ ≥ ω.

We proceed by transfinite induction on γ. Suppose the theorem holds for each ρ < γ;

we must show the theorem holds for γ. Since γ ≥ ω, we know that γ = µ+ n for some limit

ordinal µ and integer n ≥ 0.

For a given ρ < µ, let Hρ be the set of all points

x = (x0, x1, x2, . . . , xρ, . . . , xµ, xµ+1, . . . , xµ+n) in
∏

α≤µ+nXα

so that xα ∈ fα,β(xβ) for all α < β ≤ ρ, xα ∈ fα,µ+k(xµ+k) for all α ≤ ρ, 0 ≤ k ≤ n,

and xµ+k ∈ fµ+k,µ+j(xµ+j) for all 0 ≤ k < j ≤ n. We intend to show that Hρ is a continuum.

If A = {α | α ≤ µ + n}, let us define a function h : A → A as follows: h(α) = α if

α ≤ ρ or ρ + n + 2 ≤ α < µ; h(ρ + k + 1) = µ + k for 0 ≤ k ≤ n; h(µ + k) = ρ + k + 1 for

0 ≤ k ≤ n. (We note that h simply exchanges the ordinal ρ+k+1 with the ordinal µ+k for

0 ≤ k ≤ n and fixes all other ordinals.) Now, for each α ≤ γ, let Yα = Xh(α). Also, for each

α < β ≤ ρ+ n+ 1, let gα,β : Yβ → C(Yα) be given by gα,β = fh(α),h(β). Then, because of the

way Hρ was defined, the collection of functions {gα,β : Yβ → C(Yα)}α<β≤ρ+n+1 is a properly

composing collection. Thus, if we let G̃ρ+n+1 = {(yα)α≤ρ+n+1 ∈
∏

α≤ρ+n+1 Yα | yα ∈ gα,β(yβ)

for all α < β ≤ ρ + n + 1}, then since ρ + n + 1 < γ, the inductive hypothesis applies to

G̃ρ+n+1. Hence, G̃ρ+n+1 is a continuum. Finally, if B = {α | α ≤ ρ or µ ≤ α ≤ µ + n},

then it is easily seen that πB(Hρ) is homeomorphic to G̃ρ+n+1. So πB(Hρ) is a continuum.

But then, because Hρ is homeomorphic to πB(Hρ) ×
∏

α≤γ,α 6∈BXα, a product of continua,

we conclude that Hρ is a continuum.
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We note that, if ρ < η < µ, then Hρ contains Hη, so that {Hρ}ρ<µ is a monotonic

collection of continua.

Claim: Gµ+n =
⋂
ρ<µHρ.

Justification: Since Gµ+n ⊆ Hρ for each ρ < µ, and {Hρ}ρ<µ is a monotonic collection,

we have Gµ+n ⊆
⋂
ρ<µHρ. On the other hand, if x ∈

⋂
ρ<µHρ, then there are three cases.

For any ρ < µ and µ ≤ η ≤ µ + n, we have x ∈ Hρ, so that xρ ∈ fρ,η(xη). For any

µ ≤ ρ < η ≤ µ + n, since x ∈ H1, xρ ∈ fρ,η(xη). Finally, for any ρ < η < µ, since x ∈ Hη,

xρ ∈ fρ,η(xη). All cases are accounted for, so x ∈ Gµ+n. Therefore, Gµ+n =
⋂
ρ<µHρ.

Finally, we conclude that, since Gµ+n =
⋂
ρ<µHρ is the intersection of a monotonic

collection of continua, Gµ+n = Gγ is a continuum. Thus, the proof is complete.

Theorem 8.2. Suppose γ is a limit ordinal, {Xα}α<γ is a collection of continua and {fα,β :

Xβ → C(Xα)}α<β<γ is a collection of properly composing surjective u.s.c. continuum-valued

functions. Then lim←−{Xα, fα,β, γ} is a continuum.

Proof. For each ρ < γ, let Kρ = {(xα)α<γ ∈
∏

α<γ Xα | xα ∈ fα,β(xβ) ∀α < β ≤ ρ}. Then for

each ρ, Kρ is homeomorphic to Gρ×
∏

ρ+1≤α<γ Xα. By Theorem 8.1, Gρ is a continuum; thus,

Kρ is homeomorphic to a product of continua and hence, Kρ is a continuum. We also note

that {Kρ}ρ<γ is a monotonic collection of continua. But then lim←−{Xα, fα,β, γ} =
⋂
ρ<γKρ,

which is a continuum.

Theorem 8.3. Let γ be an ordinal. Suppose {Xα}α≤γ is a collection of continua and {fα,β :

Xβ → 2Xα}α<β≤γ is a collection of properly composing surjective u.s.c. functions. Suppose

further that for each α < β ≤ γ and each xα ∈ Xα, f−1α,β(xα) is a non-empty, connected set.

Then Gγ is a continuum.

Proof. Theorem 3.4 implies that the theorem is true for each finite γ. So, it remains to prove

the theorem for all γ ≥ ω. The rest of the argument is identical to the one used to prove

Theorem 8.1.
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Theorem 8.4. Suppose γ is a limit ordinal, {Xα}α<γ is a collection of continua and {fα,β :

Xβ → 2Xα}α<β<γ is a collection of properly composing surjective u.s.c. functions. Suppose

further that for each α < β < γ and each xα ∈ Xα, f−1α,β(xα) is a non-empty, connected set.

Then lim←−{Xα, fα,β, γ} is a continuum.

Proof. It suffices to use an argument analogous to the proof of Theorem 8.2.

We note that, in the proof of Theorem 8.1, all that was needed to start the transfinite

induction was the fact that the theorem was true for each finite n. Thus, instead of assuming

that each function was continuum-valued, we could have just as well assumed that each

function satisfied some property P that causes each Gn (with n finite) to be a continuum.

This observation leads us to the following “theorem template”:

Theorem 8.5. Suppose the following is true: “Let n be a positive integer. Suppose {Xα}α≤n

is a collection of continua and {fα,β : Xβ → 2Xα}α<β≤n is a collection of properly composing

surjective u.s.c. bonding functions each with property P. Then Gn is a continuum.”

Then the following is true: “Let γ ≥ ω. Suppose {Xα}α≤γ is a collection of continua

and {fα,β : Xβ → 2Xα}α<β≤γ is a collection of properly composing surjective u.s.c. bonding

functions each with property P. Then Gγ is a continuum.”

As an example of how to use this template, consider the inverse limit lim←−{Xα, fα,β, γ}

obtained when all the factor spaces Xα are the same continuum [0, 1], there is a single

surjective u.s.c. bonding function f : [0, 1]→ 2[0,1], and also f ◦ f = f (so that the functions

are properly composing). The property P could be, “f is the union of two distinct continuous

functions g and h, at least one of which is surjective.” Corollary 4.5 implies that each Gn (n

finite) is a continuum, so that (by Theorem 8.5) Gγ is also a continuum for each γ ≥ ω. Thus,

it is possible to generalize Corollary 4.5 to the case of a “long” inverse limit. Indeed, we note

that many of the indecomposability theorems from the previous chapters have analogues in

the case of a “long” inverse limit, provided that the u.s.c. bonding functions are properly

composing. (For samples of bonding functions f : [0, 1] → 2[0,1] satisfying f ◦ f = f , see
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Examples 10.10 and 10.11 in Chapter 10. We also discuss the long inverse limit spaces

produced using these functions.)
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Chapter 9

Two-Sided Inverse Limits

We turn now to another special case of an inverse limit on a totally ordered directed

set. Suppose that for each integer i, Xi is a compact Hausdorff space and fi : Xi+1 → 2Xi

is u.s.c. Then we define lim←−{Xi, fi}i∈Z to be the inverse limit space consisting of all points

of form x = (xi)i∈Z = (. . . , x−2, x−1, x0, x1, x2, . . . , xk, xk+1, . . .), where xi ∈ fi(xi+1) for each

integer i, and a basis for the topology on the space is

{O ∩ lim←−{Xi, fi}i∈Z| O is basic open in
∏

i∈ZXi}.

We will often call the space lim←−{Xi, fi}i∈Z a “two-sided” inverse limit, as opposed to the

corresponding “one-sided” inverse limit indexed by the positive integers, lim←−{Xi, fi}∞i=1. If

each fi is a continuous function, then the two-sided inverse limit is clearly homeomorphic to

the standard one-sided one. However, if each fi is u.s.c., then lim←−{Xi, fi}i∈Z may be different

from lim←−{Xi, fi}∞i=1. In this chapter, we investigate the relationship between the two-sided

inverse limit and the ordinary one-sided one. The issue of indecomposability will play a role

here as well.

Let us begin with two basic theorems that provide a sufficient condition for compact-

ness and connectedness of the two-sided inverse limit. The proofs of these theorems are

straightforward, but may be found in Chapter 5 of [14].

Theorem 9.1. Suppose that, for each integer i, Xi is a compact Hausdorff space and fi :

Xi+1 → 2Xi is u.s.c. Then lim←−{Xi, fi}i∈Z is non-empty and compact.

Theorem 9.2. Suppose that, for each integer i, Xi is a Hausdorff continuum, fi : Xi+1 →

2Xi is an upper semi-continuous function, and for each x in Xi+1, fi(x) is connected. Then

lim←−{Xi, fi}i∈Z is a Hausdorff continuum.
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The following examples show how the two-sided inverse limit may be different from the

one-sided one.

Example 9.3. For each integer i, let Xi = [0, 1] and let the graph of fi : [0, 1] → 2[0,1]

consist of the straight line segments joining (0, 0) to (1, 0) and (0, 0) to (1, 1). (This bonding

function comes from Example 131 in [4]; see Figure 5.1.)

First we consider the two-sided inverse limit. Let Az be the set of all two-sided sequences

of form (. . . , 0, 0, x, x, x, . . .), where the leftmost x appears in the zth coordinate and x ∈

[0, 1]. We note that Az is an arc for each integer z. Let A = {(. . . , x, x, x, . . .)| x ∈ [0, 1]},

so that A is also an arc. Thus, (
⋃
z∈ZAz) ∪ A = lim←−{Xi, fi}i∈Z, and (

⋂
z∈ZAz) ∩ A =

(. . . , 0, 0, 0, . . .), a single point. Thus, lim←−{Xi, fi}i∈Z is a fan.

However, this fan is not homeomorphic to the fan given by the corresponding one-sided

inverse limit, lim←−{Xi, fi}∞i=1. For, as we will show, lim←−{Xi, fi}i∈Z contains a limit arc while

lim←−{Xi, fi}∞i=1 does not.

Consider the arc A in lim←−{Xi, fi}i∈Z given by {(. . . , x, x, x, . . .)| x ∈ [0, 1]}. We will

prove that A consists entirely of limit points of (lim←−{Xi, fi}i∈Z) \ A. To that end, let O =

(
∏

i∈ZOi) ∩ lim←−{Xi, fi}i∈Z be a basic open set containing some point x = (. . . , x, x, x, . . .)

of A, where x ∈ [0, 1] and Oi = [0, 1] for all but finitely many i. If for each i, Oi = Xi,

then clearly O contains points not in A. So suppose O is a proper subset of the space.

Since Oi = [0, 1] for all but finitely many i, there must be some least integer j for which

Oj ( Xj, and some greatest integer k for which Ok ( Xk. If x 6= 0, then the sequence

(. . . , 0, 0, . . . , 0, x, x, x, . . .), where the leftmost x lies in the jth coordinate, clearly lies in O.

If x = 0, then the sequence (. . . , 0, 0, . . . , 0, 1, 1, . . .), where the leftmost 1 lies in the k + 1th

coordinate, must lie in O. Either way, O must contain a point in (lim←−{Xi, fi}i∈Z) \ A, and

thus, A is a limit arc.

On the other hand, the one-sided inverse limit lim←−{Xi, fi}∞i=1 contains no limit arc. To

see this, let B be any arc that is a subset of lim←−{Xi, fi}∞i=1, and let x = (0, 0, . . . , 0, x, x, . . .),

where x 6= 0, be any non-endpoint of B. (Assume without loss of generality that the leftmost
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x appearing in the sequence x lies in the jth coordinate.) Then, by the way the inverse limit is

defined, there is some [a, b] ⊆ (0, 1) so that B contains an arc C = {y = (0, 0, . . . , 0, y, y, . . .) |

the leftmost y of the sequence y lies in the jth coordinate, and y ∈ [a, b]} that contains x

as a non-endpoint. If O1 = [0, a/2), O2 = [0, a/2), . . . , Oj−1 = [0, a/2), and Oj = (a, b), then

(O1 ×O2 × · · · ×Oj−1 ×Oj × [0, 1]× · · · ) ∩ (lim←−{Xi, fi}∞i=1) is open, contains x, but misses

(lim←−{Xi, fi}∞i=1) \B entirely.

(See Figure 9.1.)

Figure 9.1: The spaces from Example 9.3. Left: one-sided inverse limit; right: two-sided.

Example 9.4. For each integer i, let Xi = [0, 1] and let fi : [0, 1] → 2[0,1] be defined by the

graph consisting of the following straight line segments:

i. For each integer n ≥ 0, the segment joining the points (1 − 1
2n
, 1 − 1

2n
) and (1 −

1
2n
, 1− 1

2n+1 ).

ii. For each integer n ≥ 0, the segment joining the points (1 − 1
2n
, 1 − 1

2n+1 ) and

(1− 1
2n+1 , 1− 1

2n+1 ). (See Figure 9.2.)

In this example, the one-sided inverse limit is just a (countable) union of countably many

n-cells for each positive integer n, and thus, does not contain a Hilbert cube. However, the

two-sided inverse limit does contain a Hilbert cube because it contains all points of form

(. . . , d, 7
8
, c, 3

4
, b, 1

2
, a, 0, 0, . . .), where a ∈ [0, 1

2
], b ∈ [1

2
, 3
4
], c ∈ [3

4
, 7
8
], etc. Thus, the one-sided

and two-sided inverse limits are not homeomorphic.

We note that, in Example 9.3, although the one-sided and two-sided inverse limits are

not homeomorphic, at least the one-sided inverse limit may be embedded in the two-sided
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Figure 9.2: The bonding function from Example 9.4

one. However, we will soon see that this need not be the case in general. First, we need the

following two theorems.

Theorem 9.5. Suppose f : [0, 1] → 2[0,1] is a surjective u.s.c. function such that f−1 is

a continuous map from [0, 1] to [0, 1]. Then the two-sided inverse limit lim←−{[0, 1], f}i∈Z is

homeomorphic to the one-sided inverse limit lim←−{[0, 1], f−1}∞i=1.

Proof. Since f−1 is continuous, lim←−{[0, 1], f−1}∞i=1 and lim←−{[0, 1], f−1}i∈Z are homeomorphic.

So, it will suffice to show that lim←−{[0, 1], f}i∈Z is homeomorphic to lim←−{[0, 1], f−1}i∈Z. If

(. . . , x−2, x−1, x0, x1, x2, . . .) ∈ lim←−{[0, 1], f−1}i∈Z, let us define h : lim←−{[0, 1], f−1}i∈Z →

lim←−{[0, 1], f}i∈Z by h((. . . , x−2, x−1, x0, x1, x2, . . .)) = (. . . , x2, x1, x0, x−1, x−2, . . .). It is easy

to see that h is a well-defined function, and that h is one-to-one and surjective. h is contin-

uous because the preimage via h of any basic open set
∏

i∈ZOi (where all but finitely many

Oi are proper subsets of [0, 1]) intersected with lim←−{[0, 1], f}i∈Z is
∏

i∈ZO−i intersected with

lim←−{[0, 1], f−1}i∈Z, which is open. An analogous argument shows that h−1 is continuous, so

h is a homeomorphism.

Theorem 9.6. Suppose f : [0, 1] → 2[0,1] is a surjective u.s.c. function that passes the

horizontal line test, i.e., f−1(x) is degenerate for each x ∈ [0, 1]. Then lim←−{[0, 1], f}∞i=1

(abbreviated by lim←− f) is an arc.
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Proof. Since f is surjective and u.s.c., lim←− f is non-empty, non-degenerate and compact.

Moreover, since f−1(x) is connected for each x ∈ [0, 1], Theorem 3.4 applies and lim←− f is a

continuum. We will show lim←− f is an arc by showing it has exactly two non-cut points.

By assumption, f−1(x) is degenerate for each x ∈ [0, 1]. Hence, because f is sur-

jective, {(x, f−1(x), f−2(x), . . .)|x ∈ [0, 1]} is the set of all points in lim←− f. We note that

each point (x, f−1(x), f−2(x), . . .) with x ∈ (0, 1) is a cut point of lim←− f, since the set lim←− f \

{(x, f−1(x), f−2(x), . . .)} may be separated by the two disjoint open sets [0, x) ×
∏∞

i=2[0, 1]

and (x, 1]×
∏∞

i=2[0, 1]. Every non-degenerate continuum contains at least two non-cut points;

since each point (x, f−1(x), f−2(x), . . .) with x ∈ (0, 1) is a cut point of lim←− f, only the points

(0, f−1(0), . . .) and (1, f−1(1), . . .) are non-cut points of lim←− f. That is, lim←− f is a continuum

with exactly two non-cut points, so that lim←− f must be an arc.

Example 9.7. Let f : [0, 1]→ 2[0,1] be the inverse of the Henderson map.

To analyze this example, we must first consider the Henderson map, a continuous func-

tion described in [2] and pictured in Figure 9.3. It is well-known that the one-sided inverse

limit with the Henderson map as its single bonding function is the pseudo-arc, a hereditarily

indecomposable continuum. Now let f : [0, 1]→ 2[0,1] be the inverse of the Henderson map,

as pictured in Figure 9.4. Since the Henderson map is continuous, it is also u.s.c., implying

that its inverse, f , is u.s.c. as well. f is also surjective. Now, being a continuous function,

the Henderson map passes the vertical line test; therefore, its inverse, f , passes the horizon-

tal line test. That means, by Theorem 9.6, the one-sided inverse limit lim←−{[0, 1], f}∞i=1 is an

arc. However, f−1 is the Henderson map, a continuous function from [0, 1] to [0, 1]; thus, by

Theorem 9.5, the two-sided inverse limit lim←−{[0, 1], f}i∈Z is homeomorphic to the one-sided

inverse limit lim←−{[0, 1], f−1}∞i=1, which is the pseudo-arc. Therefore, the one-sided inverse

limit lim←−{[0, 1], f}∞i=1 is an arc, but the two-sided inverse limit lim←−{[0, 1], f}i∈Z is the pseudo-

arc. It is noteworthy that, since the pseudo-arc is a hereditarily indecomposable continuum,

the one-sided inverse limit cannot be embedded into the two-sided one (or vice-versa) in this

example.
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Figure 9.3: The Henderson map

Figure 9.4: The bonding function f from Example 9.7

So, we have seen how different one-sided and two-sided u.s.c. inverse limits may be. Yet

the following theorem shows that, in the case of inverse limits with a single bonding function,

the one-sided inverse limit is a continuum iff the two-sided inverse limit is a continuum.

Theorem 9.8. Suppose X is a Hausdorff continuum and f : X → 2X is a surjective u.s.c.

function. Then lim←−{X, f}
∞
i=1 is a continuum iff lim←−{X, f}i∈Z is a continuum.

Proof. If lim←−{X, f}i∈Z is a continuum, then the projection of lim←−{X, f}i∈Z onto the 1, 2, 3, . . .

coordinates, lim←−{X, f}
∞
i=1, must be a continuum as well. On the other hand, suppose

lim←−{X, f}
∞
i=1 is a continuum. For each j ∈ Z, let Kj = {x ∈

∏
i∈ZX | xi ∈ fi(xi+1) ∀i ≥ j}.

Note that, for a given j ∈ Z, Kj is homeomorphic to (
∏

i∈Z,i<j X)× lim←−{X, f}
∞
i=j. However,

lim←−{X, f}
∞
i=j is homeomorphic to lim←−{X, f}

∞
i=1, a continuum; thus, Kj is homeomorphic to

a product of continua and hence, Kj is a continuum. Now if j < m, then clearly Kj ⊆ Km.
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So, {Kj}j∈Z is a monotonic collection of continua. This means
⋂
j∈ZKj is a continuum.

However,
⋂
j∈ZKj = lim←−{X, f}i∈Z, so the proof is complete.

Theorem 9.8 leads us to ask the following question: If the two-sided inverse limit with

the single bonding function f is an indecomposable continuum, is the corresponding one-

sided inverse limit also an indecomposable continuum? In light of Example 9.7, the answer

is no. However, the converse is true, as we see in the following theorem:

Theorem 9.9. Suppose X is a Hausdorff continuum and f : X → 2X is a surjective u.s.c.

bonding function so that lim←−{X, f}
∞
i=1 is an indecomposable continuum. Then lim←−{X, f}i∈Z

is also an indecomposable continuum.

Proof. Suppose by way of contradiction that lim←−{X, f}i∈Z = H ∪K, a union of two proper

subcontinua. If S is a subset of
∏

i∈ZX, we denote by π≥j(S) the projection of S onto

coordinates j, j + 1, j + 2, . . .. Let us note that whenever S is a proper subcontinuum

of lim←−{X, f}i∈Z, there must exist some integer j for which π≥j(S) is a proper subset of

lim←−{X, f}
∞
i=j. For, otherwise, π≥j(S) = lim←−{X, f}

∞
i=j for all j ∈ Z, and then, since S is

closed, it may be shown that S = lim←−{X, f}i∈Z. That would be a contradiction; therefore,

there exists some small enough integer j such that π≥j(H) and π≥j(K) are both proper

subcontinua of lim←−{X, f}
∞
i=j. Next, we note that since lim←−{X, f}i∈Z = H ∪K, it must follow

that lim←−{X, f}
∞
i=j = π≥j(H) ∪ π≥j(K). Thus, lim←−{X, f}

∞
i=j has been shown to be decom-

posable; however, lim←−{X, f}
∞
i=j is homeomorphic to lim←−{X, f}

∞
i=1, which is indecomposable.

(Contradiction.)

Using this result, it is easy to adjust the indecomposability theorems from the previous

chapters to apply to the case of two-sided inverse limits. Indeed, for each example of an

indecomposable one-sided inverse limit with a single u.s.c. bonding function, the two-sided

version is an indecomposable continuum as well.
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Chapter 10

Illustrative Examples

We now present various examples of inverse limits with u.s.c. functions fi : [0, 1]→ 2[0,1].

Note that, in each example, the graphs described are always closed, so that (by Theorem

3.1) the resulting bonding functions are automatically u.s.c. (Some of these examples, or

similar versions of them, were also presented in [13] or [4].)

Example 10.1. Let the graph of f : [0, 1] → 2[0,1] consist of straight line segments joining

points (0, 0) to (1
4
, 1
4
), (1

4
, 1
4
) to (1

4
, 3
4
), (1

4
, 1
4
) to (1

2
, 0), and (1

2
, 0) to (1, 1). (See Figure 10.1.)

By Theorem 4.1, the inverse limit with the single bonding function f , lim←− f, is a decom-

posable continuum. Possible choices of open sets U and V (as mentioned in the theorem)

are indicated in the diagram.

Figure 10.1: The graph of the function f from Example 10.1

Example 10.2. For each positive integer i, let fi : [0, 1] → 2[0,1] be the standard tent map,

except for some fj : [0, 1] → 2[0,1], whose graph consists of the standard tent map together

with the line segment joining points (0, 0) and (0, 1
2
). (See Figure 10.2.)
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By Theorem 4.1, lim←− f is a decomposable continuum. Were fj the standard tent map, of

course, the inverse limit would be indecomposable. It is striking that such a small adjustment

to just one bonding function can drastically alter the decomposability of the inverse limit.

(Indeed, adding to the tent map the vertical line segment that joins (0, 0) to (0, ε) for any

ε > 0 would have had the same effect.) This example shows yet again the difficulty in finding

a general “subsequence” theorem for u.s.c. inverse limits. (See also Example 3 in [3].)

Figure 10.2: The graph of the function fj from Example 10.2

Example 10.3. Let the graph of f : [0, 1] → 2[0,1] be given by the straight line segments

joining (0, 0) to (1
3
, 1
3
), from (1

3
, 1
3
) to (1

3
, 2
3
), from (1

3
, 2
3
) to (2

3
, 2
3
), and from (2

3
, 2
3
) to (1, 1).

(See Figure 10.3.)

Then (1
3
, 1
3
, 1
3
, . . .) ∈ lim←− f, f−1(1

3
) = 1

3
, and U = [0, 1]×(1

3
, 2
3
) is an open subset of [0, 1]×

[0, 1] with G(f) ∩ U ⊆ {1
3
} × f(1

3
). Thus, Theorem 4.3 applies and lim←− f is a decomposable

continuum.

Also, let us note that neither Theorem 4.1 nor Theorem 4.2 applies in this case. For, if

U is any open subset of G(f), G(f)\U is either not the graph of a u.s.c. function from [0, 1]

into 2[0,1] or it is the graph of a u.s.c. function that maps a point (1
3
) to a disconnected set.

Example 10.4. Let f : [0, 1] → 2[0,1] be defined by the graph that is the union of the

traditional tent map and the reflection of the tent map about the line y = 1
2
. (See Figure

10.4.)
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Figure 10.3: The graph of the function f from Example 10.3

Then by Theorem 4.4 (or by Corollary 4.5), lim←− f is a decomposable continuum. This

space appears to contain a fan-like structure of bucket handle continua.

Figure 10.4: The graph of the function f from Example 10.4

Example 10.5. Let the graph of f : [0, 1]→ 2[0,1] be given by drawing straight line segments

from (0, 0) to (1
3
, 1
3
), (1

3
, 1
3
) to (1

3
, 2
3
), (1

3
, 2
3
) to (1

2
, 1), and then drawing the reflection of this

figure about the line x = 1
2
. (See Figure 10.5.)

Then f is a steeple with turning point a = 1
2
. So, by Theorem 5.4, lim←− f is homeomorphic

to the bucket handle and thus, lim←− f is indecomposable.

Example 10.6. Let the graph of f : [0, 1]→ 2[0,1] be given by drawing straight line segments

from (0, 0) to (0, 1
3
), (0, 1

3
) to (1

2
, 1) and then drawing the reflection of this figure about the

line x = 1
2
. (See Figure 10.6.)
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Figure 10.5: The graph of the function f from Example 10.5

Then lim←− f is decomposable by Theorem 4.1. (The open set U from Theorem 4.1 could

be [0, 1
4
)× [0, 1

4
).) Note that f is not a steeple function because f(0) does not equal {0}.

Figure 10.6: The graph of the function f from Example 10.6

Example 10.7. Consider the u.s.c. function f : [0, 1]→ 2[0,1] mentioned in Chapter 5 whose

graph is topologically equivalent to a sin( 1
x
) curve. Specifically, let the graph of f consist of

the following straight line segments:

i. For each odd integer n ≥ 1, the segment joining the points ( 1
2n
, 0) and ( 1

2n−1 , 1).

ii. For each even integer n ≥ 2, the segment joining the points ( 1
2n
, 1) and ( 1

2n−1 , 0).

iii. The vertical line segment joining the points (0, 0) and (0, 1).

(See Figure 5.2.)
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Then, by Theorem 5.2, lim←− f is an indecomposable continuum. The projection of lim←− f

onto the first three factor spaces (i.e., inside [0, 1]3) is a countable sequence of sin( 1
x
) curves

joined end to end and limiting to a sin( 1
x
) curve on the back face of the cube. (See Fig-

ure 10.7.) We note that lim←− f has a structure reminiscent of the indecomposable continua

constructed by Michel Smith in [12].

Figure 10.7: The projection of the inverse limit from Example 10.7 onto its first three factor
spaces

Example 10.8. Let the graph of f : [0, 1] → 2[0,1] be given by the u.s.c. function shown in

Figure 10.8.

We note that the set A = {0, 1} is non-empty, closed, and nowhere dense; moreover,

f(0) = f(1) = [0, 1]. Let B be the subset of [0, 1]\{0, 1} consisting of points where f |[0,1]\{0,1}

is not differentiable. Note that B is closed in [0, 1] \ {0, 1} and also nowhere dense. Next,

note that f |[0,1]\({0,1}∪B) is an open mapping. Furthermore, for each interval of form (0, c) in

[0, 1] and each y in the interval (0, 1), there exists some x ∈ ([0, 1] \ {0, 1}) with f(x) = y.

The same statement is true for each interval of form (c, 1). Thus, the hypothesis of Theorem

6.14 is satisfied, and lim←− f is an indecomposable continuum.

Example 10.9. Let f : [0, 1] → 2[0,1] be given by squeezing two copies of the steeple graph

in Figure 10.5 into [0, 1]× [0, 1], as shown in Figure 10.9.

If we take a1 = 0, a2 = 1
4
, a3 = 1

2
, a4 = 3

4
, and a5 = 1, then the hypothesis of Theorem

7.4 is satisfied and thus, by Corollary 7.5, lim←− f is an indecomposable continuum.
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Figure 10.8: The graph of the function f from Example 10.8

Figure 10.9: The graph of the function f from Example 10.9

Finally, we give some illustrative examples of inverse limits on various kinds of linearly

ordered sets.

Example 10.10. Let the graph of g : [0, 1]→ 2[0,1] be the union of the line segment joining

the points (0, 0) and (0, 1) and the line segment joining the points (0, 0) and (1, 1).

We note that g2(x) = g(x) for each x ∈ [0, 1]; that is, g ◦ g = g. So, if Xα = [0, 1] for

each α < ω1, and gα,β = g for each α < β < ω1, we know that the collection of functions

{gα,β : Xβ → C(Xα)}α<β<ω1 is a properly composing collection of surjective u.s.c. functions

and the “long” inverse limit is well-defined. Direct inspection reveals that the “short” inverse

limit of g (denoted by lim←−{[0, 1], g, ω}) is a fan with countably many legs and one limit arc.

The long inverse limit of g, i.e., lim←−{[0, 1], g, ω1}, is a fan with uncountably many legs, where
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every leg corresponding to a limit ordinal is a limit arc of the legs corresponding to that

ordinal’s predecessors. (See Figure 10.10).

Figure 10.10: Counter-clockwise from top: The graph of g, the short inverse limit, the long
inverse limit

Example 10.11. Let the graph of h : [0, 1]→ 2[0,1] be the union of the line segment joining

the points (0, 0) and (0, 1) and the line segment joining the points (0, 1) and (1, 1).

Then h2(x) = h(x) for each x ∈ [0, 1]; i.e., h ◦ h = h. Thus, as in Example 10.10, the

long inverse limit (with hα,β = h for all α < β < ω1) is well-defined. The short inverse

limit, lim←−{[0, 1], h, ω}, is homeomorphic to [0, 1]; on the other hand, the long inverse limit,

lim←−{[0, 1], h, ω1}, is homeomorphic to the compactified long line, L. (See Figure 10.11.) We

note also that, if the index set for the inverse limit with bonding function h is [0, 1], it may

be shown directly that lim←−{[0, 1], h, [0, 1]} is homeomorphic to the Lexicographic Arc.
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Figure 10.11: Counter-clockwise from top: The graph of h, the short inverse limit, the long
inverse limit
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Chapter 11

Possibilities For Future Research

Our mission has been to find necessary and/or sufficient conditions for decomposability

or indecomposability of u.s.c. inverse limit spaces. The results we presented in [15], [16], and

[13] helped pave the way for other mathematicians’ work on this topic (e.g., in [5] and [17]).

With this dissertation, we have further developed the theory of u.s.c. inverse limits and

indecomposability. In particular, we have sought conditions for indecomposability that are

very easy to check, simply by observing some basic characteristics of the bonding functions.

We have given many such conditions, but plenty of work still remains to be done.

One of the major open problems in the theory of u.s.c. inverse limits is finding sufficient

and/or necessary conditions, stated in terms of the bonding functions fi, for lim←− f to be a

continuum. As more such conditions are discovered, we will hopefully be able to modify

these conditions to obtain new information about the decomposability or indecomposability

of the inverse limit. For example, Van Nall’s paper [11] contains many results that should

be helpful to us, as well as the wealth of material in the work of Ingram and Mahavier [4].

In general, any new theorem about how u.s.c. inverse limits can generate continua may

potentially lead to a similar theorem about u.s.c. inverse limits generating indecomposable

(or decomposable) continua.

Thus far, we have mostly considered just the property of indecomposability; what

about hereditary indecomposability? We know that there exist continuous bonding functions

f : [0, 1]→ [0, 1] such that lim←− f is a hereditarily indecomposable continuum (e.g., f could be

the Henderson map). However, hereditarily indecomposable continua produced as inverse

limits with u.s.c. bonding functions f : [0, 1] → 2[0,1] that are not singleton-valued (i.e.,

cannot be identified with continuous functions) still remain to be studied. We have shown
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that if f is the inverse of the Henderson map, then the two-sided inverse limit lim←−{[0, 1], f}i∈Z

is the pseudo-arc. However, we do not yet know of a non-singleton-valued surjective u.s.c.

bonding function f : [0, 1] → 2[0,1] such that the one-sided inverse limit lim←−{[0, 1], f}∞i=1 is

the pseudo-arc. (If such an f exists, it cannot be continuum-valued, for then G(f) would

contain some set of form {a} × [b, c], b < c, implying that the inverse limit contains an arc.)

Aside from questions about indecomposability, the more general kinds of inverse limits

seen in Chapters 8 and 9 are interesting in their own right and deserve to be studied further.

The difficulty in obtaining examples of the “long” inverse limits described in Chapter 8 is

finding collections of functions {fα,β : Xβ → 2Xα}α<β<ω1 that compose properly, so that the

long inverse limit lim←−{Xα, fα,β, ω1} is well-defined. We have noted that if Xα = X for each

α, the surjective u.s.c. function f : X → 2X satisfies f = f ◦ f , and fα,β = f for each

α < β < ω1, then {fα,β : Xβ → 2Xα}α<β<ω1 is automatically a properly composing collection

of functions. Thus, it is of interest to find necessary and sufficient conditions for a u.s.c.

function f : X → 2X (or even just f : [0, 1]→ 2[0,1]) to satisfy f ◦ f = f .

As far as the two-sided u.s.c. inverse limits are concerned, it would be helpful to have

more theorems about the relationship between one-sided and two-sided inverse limits. For

example, are there conditions on the bonding function f : [0, 1]→ 2[0,1] that would guarantee

the one-sided and two-sided inverse limits are (non)homeomorphic? Or that one space can

be embedded into the other? Also, what topological spaces are homeomorphic to some two-

sided inverse limit with a single surjective u.s.c. bonding function f : [0, 1] → 2[0,1]? What

spaces are homeomorphic to a two-sided u.s.c. inverse limit, but not a one-sided one?
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