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Abstract

A continuum X is said to be decomposable if it can be written as a union of two proper
subcontinua; otherwise, X is said to be indecomposable. For years, topologists have used
inverse limits with continuous bonding functions to study indecomposable continua. Now
that the topic of generalized inverse limits with upper semi-continuous (or “u.s.c.”) bonding
functions has become popular, it is natural to consider how these new kinds of inverse limits
might be used to generate indecomposable (or decomposable) continua.

In this work, we build upon our past results (from “Inverse Limits with Upper Semi-
Continuous Bonding Functions and Indecomposability,” [13]) to obtain new and more gen-
eral theorems about how to generate indecomposable (or decomposable) continua from u.s.c.
inverse limits. In particular, we seek sufficient conditions for indecomposability (or decom-
posability) that are easily checked, just from a straightforward observation of the bonding
functions of the inverse limit. Our primary focus is the case of inverse limits whose factor

spaces are indexed by the positive integers, but we consider extensions to other cases as well.
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Chapter 1

Introduction

An inverse limit space is a valuable tool for topologists who wish to study indecom-
posable continua. Although a non-degenerate indecomposable continuum is a complicated
topological space by its very nature, it is often possible to represent such a space in a very
simple way—namely, as an inverse limit space with a single continuous bonding function. On
the other hand, by drawing a relatively simple bonding function f that satisfies some special
properties, we can guarantee that the inverse limit space with the single bonding function f
is an indecomposable continuum. In this way, we may easily generate more indecomposable
continua as examples for further study.

A number of topologists have done research on the relationship between inverse limits
and indecomposable continua; see Chapter 1 of [4] for highlights from the history of this topic.
However, for many years, only inverse limits with continuous bonding functions had been
seriously considered in the literature. Now, after the work of Mahavier [8] and both Ingram
and Mahavier [3], generalized inverse limits with set-valued, upper semi-continuous (u.s.c.)
bonding functions have become popular. It is therefore a natural next step to consider how
these new kinds of inverse limits might be used to generate indecomposable continua.

After we gave presentations [15] and [16] addressing the issue of u.s.c. inverse limit
spaces and indecomposability, other mathematicians began publishing results on this topic
as well. In [5] and [4], Ingram extended some of his earlier results on indecomposability
in inverse limits with continuous bonding functions to the u.s.c. case. Also, in [17], Brian
Williams gave necessary and sufficient conditions for an inverse limit to have the full pro-
jection property, a property that is vital for proving that some inverse limit spaces are

indecomposable continua.



Still, plenty of work remains to be done: we need to find straightforward conditions
(stated in terms of the bonding functions f; : [0,1] — 2[%!) to guarantee that the inverse
limit space is an indecomposable (or decomposable) continuum. The main goal of this work
is to provide many such conditions; moreover, we strive to give conditions that are simple
to check in practice. Ideally, by applying the theorems given here, one can tell from a quick
glance at the bonding functions whether or not an inverse limit is indecomposable.

In Chapter 2, we give basic topology definitions and state theorems that may serve
as background. In Chapter 3, we define inverse limits with upper semi-continuous bonding
functions and cite important theorems that will be invoked repeatedly for the rest of this
work. Then, in Chapters 4 and 5, we recall our own past results (from [13]) on the main
problem before delving into new material. Chapter 6 features major generalizations of our
previous indecomposability theorems; using these new theorems, we may show that many
more u.s.c. functions with a structure akin to the sin(%) curve give us indecomposable
inverse limits. In Chapter 7, we discuss a generalization of Ingram’s two-pass condition;
we name this new condition the “e-two-pass” condition, and we consider its impact on the
study of indecomposable inverse limits. Next, we look into inverse limits whose factor spaces
are indexed by sets other than the positive integers: Chapter 8 addresses inverse limits
indexed by large initial segments of the ordinals (i.e., “long” inverse limits), and Chapter 9
addresses inverse limits indexed by Z (i.e., “two-sided” inverse limits). Both of these topics
have implications for the study of indecomposability as well. Finally, although we give
specific examples from time to time in the theory chapters, we set aside Chapter 10 solely
for additional examples. We then close with Chapter 11, a discussion of possible topics for

further research.



Chapter 2

General Topology and Classic Inverse Limits Results

2.1 Background Definitions

We begin with very basic topology definitions, most of which should be covered in an
introductory topology course or may be found in an introductory text, such as [7] or [10].

For a detailed discussion of ordinal numbers, see, e.g., [6].

Let X be a set and let T" be a collection of subsets of X with the following properties:
1. X eT,
2. 0eT;

3. If {O;}ie, is a collection of members of 7', then | J,., O; € T}

1N
4. If {O;}7, is a finite collection of members of T', then (), O; € T'.
Then the pair (X, T) is called a topological space with topology T'. Such a topological

space will often be referred to simply as X when the associated topology 71" is understood.

The members of T are called open sets.

A subset K of a topological space X is closed if X — K is open.

A topological space X is degenerate if it consists of only one point. Otherwise, X is

non-degenerate.

Suppose M is a subset of a topological space X. A point p € X is a limit point of M if

every open set containing p contains a point in M different from p.



Suppose M is a subset of a topological space X. The set of all limit points of M is
denoted by M’. The closure of M (denoted M) is M U M'.

Suppose a collection B of open sets of a space X satisfies the following property:

If z € X and O is an open set containing z, then there exists a member b of B such
that z € band b C O.

Then B is a basis for the topology on X and a member b of B is called a basic open

set of X.

Suppose B is a collection of subsets of a set X such that

1. If x € X, there exists some b € B with = € b.

2. If by and by are members of B with € by N by, then there exists some set b3 in B
with = € by C (by N by).

Then the collection T = {{J R|R C B} is a topology for X, and B is a basis for this

topology. It is said that the topology T is generated by the basis B.

A topological space X is called Hausdorff if for every pair of distinct points p,q € X,

there exist disjoint open sets O, and O, containing p and ¢ respectively.

A space X is called regular if for every closed subset H of X and point p € X not in

H, there exist disjoint open sets Oy and O, containing H and p, respectively.

A space X is called normal if for every pair of disjoint closed sets H and K in X, there

exist disjoint open sets Oy and Ok containing H and K, respectively.

If f: X — Y is a function from X to Y, and U is a subset of X, we define f(U) =
{f(u)l weU}.



Let X and Y be topological spaces, let f : X — Y be a function from X to Y, and let
x € X. Then f is said to be continuous at the point x if, whenever V is an open set in Y
containing f(x), there exists an open set U in X containing = such that f(U) C V. If f is
continuous at each point z € X, we say f is continuous. A continuous function may also be

called a mapping.

A function f : X — Y is said to be surjective if for each y € Y, there exists some x € X

with f(x) =v.

A function f : X — Y is said to be 1-1 if for any pair of distinct points p, ¢ in X,
f(p) # f(a).

If f: X — Y is a function and y € Y, then the preimage of y via f (written as f~1(y))
is {z € X| f(z) = y}. If A C Y, then the preimage of A via f (written as f~'(A)) is
{z € X| f(z) € A}.

Suppose f : X — Y is a 1-1 surjective function. Then the function f~!:Y — X given
by f~'(y) = & (where z is the unique point in X with the property that f(z) = y) is called

the inverse of f.

If X and Y are topological spaces and f : X — Y is 1-1, surjective, continuous, and has
a continuous inverse, then f is called a homeomorphism and the spaces X and Y are said to

be homeomorphic.

If f: X — X is a function, then we denote the composition fo f by f2. More generally,
fr=fofrtforn>2.



If f: X — X is a function and A C X, then we denote f~*(f~'(A)) by f2(A). More
generally, f7"(A) = f71(f7"1(A)).

Let X be a topological space and let M C X. A collection of sets {O; }ic, in X is said

to be an open cover of M if each O; is open in X and M C Uiey O;.

If {O;}ie, is a cover of X, v C p, and {O;}ie, is also a cover of X, then {O;}ic, is
called a subcover of the original cover {O;};c,. A subcover consisting of only finitely many

members is called a finite subcover.

A space X is compact if for every open cover {O; };¢, of X, there exists a finite subcover

of X. (Le., {O;;}}j, for some positive integer n.)

A collection of subsets {G;};c,, of a space X is called a monotonic collection if for each

pair of members G, G}, in the collection, either G; C G or G, C Gj.

For each 7 in some arbitrary index set pu, let X; be a topological space. Define X =
[1ic, Xi to be the set {(z)ic,| : € X for each i}. Define a topology on X as follows: a basic

open set containing (x;),e, is given by [[.., Oi, where O; is open in X; for each i, x; € O;

TEM
for each 7, and O; = X for all but finitely many .
Then X together with the topology generated by this basis may be called a product

space (on the index set p).

In the case of a product space on the countably infinite index set consisting of the
positive integers (N), we denote the product space by [[;2, X;. Thus,

[, Xi = {(x1, 22, 23,...) | x; € X; for each positive integer i}.



Let X = [],c, X; be a product space (with index set p either finite or infinite). Let A
be a subset of y. Then the function 74 : X — [[,., Xi defined by ma((2:)icu) = (%i)ica
is called the projection map onto the set A. In the special case where A = {j} for some
J € p, we denote ;) simply by 7; and we call this function the projection map onto the j

coordinate.

If X,Y are topological spaces, f : X — Y is a function, and A C X, then f restricted
to A (denoted by f|4) is the function given by f|4 : A — Y, where f|a(a) = f(a) whenever
ac A

A function f: X — Y is said to be open if for each open subset U of X, f(U) is an

open subset of Y.

Suppose X is a topological space with topology T"and S C X. Then the set S together
with the topology 7' = {SNO| O €T} is called a subspace of X, where T is the subspace

topology.

Let p be an ordinal. Then the set {« | « is an ordinal and « < p} is called an initial
segment of the ordinals. (Similarly, if 5 < p, then {« | « is an ordinal and o < S} is an

initial segment of p.)

Suppose X is a topological space and d : X x X — R is a function satisfying the
following properties (for all z,y, z € X):

1. d(z,y) > 0, and d(x,y) =0 iff z = y.

2. d(z,y) = d(y, ).

3. d(x, z) < d(z,y) + d(y, z).



Then the function d is said to be a metric on X. For a given p € X and € > 0, let
B(p,e) ={z € X | d(z,p) < €}. If the collection {B(p,¢) | p € X, € > 0} is a basis for the

space X, then X is said to be a metric space.

Let X be a topological space. Two subsets H and K of X are called mutually separated

if neither set contains a point or a limit point of the other.

If X is a topological space and M C X, then M is connected if M is not the union of

two mutually separated non-empty subsets of X.

A topological space X is a continuum if X is non-empty, compact, and connected.

A continuum that is Hausdorff (but not necessarily metric) is called a Hausdorff con-
tinuum.

A continuum that is metric is called a metric continuum.

If X is a continuum and A, a subset of X, is also a continuum, then A is called a
subcontinuum of X. If the subcontinuum A is a proper subset of X, then A is a proper
subcontinuum of X.

A continuum X is decomposable if it is the union of two proper subcontinua.

If X is a continuum but X is not decomposable, then X is said to be indecomposable.

If X is a continuum and p,q € X, then X is said to be wrreducible between p and q if no

proper subcontinuum of X contains both p and gq.

Let X be a connected set. If X — {p} is not connected, then p is a cut point of X.



A continuum with exactly 2 non-cut points is called an arc.

A triod is a union of three arcs whose intersection is exactly one point.

A fan is a union of infinitely many arcs, all of which have exactly one point in common.

Let X be a topological space. Suppose that A, a subset of X, is an arc with the property
that whenever O C X is an open set with O N A # (), there exists some point p € O with
p ¢ A. Then A is called a limit arc.

A subset A of a topological space X is said to be nowhere dense in X if every non-empty

open subset of X contains a non-empty open set that misses A.

A subset A of a topological space X is said to be dense in X if every non-empty open

subset of X contains a point of A.

2.2 Background Theorems

Most of the following basic theorems may be found in a standard topology text. The
proofs of these theorems are omitted, but most of the proofs may be found in one or more
of [7], [9], and [10]. A more general statement and proof of Theorem 2.26 may be found in
[4] (Lemma 221).

Theorem 2.1. A subset M of a topological space X is closed (in X ) iff M contains all of

its limat points in X.
Theorem 2.2. A subset M of a topological space X is closed (in X ) iff M = M.

Theorem 2.3. If AC B, then A C B.



Theorem 2.4. A closed subset of a compact space is compact.
Theorem 2.5. The continuous image of a compact set is compact.

Theorem 2.6. (Tychonoff) If {X;}ie, ts a collection of compact topological spaces, then the

product space [[.., X; is compact.

S
Theorem 2.7. If {X;}ic, is a collection of continua, then the product space HZ.GH X; is a

continuum.

Theorem 2.8. Let B be a basis for a topological space X. Then every open set of X is a

union of members of B.

Theorem 2.9. The following are equivalent for a function f : X — 'Y from topological space
X to topological space Y :
1. f is a continuous function.

it. If O is a (basic) open set in'Y, then f~(O) is open in X.

Theorem 2.10. If [[,., X; is a product space and A C pu, then the projection map w4 s

1EN

continuous.

Theorem 2.11. If X, Y are topological spaces, f: X — Y is continuous, and A C X, then

fla is also continuous.

Theorem 2.12. If X is a compact Hausdorff space, then X is regular.
Theorem 2.13. If X is a compact Hausdorff space, then X is normal.
Theorem 2.14. If X is reqular, then X s Hausdorff.

Theorem 2.15. If X is normal, then X is reqular.

Theorem 2.16. The unit interval [0,1] is an arc.

Theorem 2.17. Suppose M is a subset of a topological space X. If M is closed and not

connected, then M is the union of two disjoint closed sets H and K.
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Theorem 2.18. The continuous image of a connected set is connected.
Theorem 2.19. The continuous image of a continuum is a continuum.
Theorem 2.20. The common part of a monotonic collection of continua is a continuum.

Theorem 2.21. If X is a compact space, Y is a Hausdorff space, and f: X —Y is a 1-1,

surjective, continuous function, then f=1 is continuous (and hence, f is a homeomorphism).

Theorem 2.22. A topological space X is connected iff for any two distinct points p,q € X,

there exists a connected subset of X containing p and q.

Theorem 2.23. If {K;}2, is a collection of connected subsets of a space X such that

KiNKi1 #0 for alli > 1, then K = ;2 K; is connected.
Theorem 2.24. If K C X is connected, then K is connected.
Theorem 2.25. If A is a dense subset of the topological space X, then A = X.

Theorem 2.26. Suppose T is an arc and T s the union of two proper subcontinua H and
K. If U and V' are mutually exclusive connected open subsets of T', then one of U and V is
a subset of one of H and K.

Theorem 2.27. A Hausdorff continuum X is indecomposable iff every proper subcontinuum

of X s nowhere dense in X.

2.3 Classic Inverse Limits Definitions and Theorems

As we stated in Chapter 1, the main focus of this work is inverse limits with upper
semi-continuous bonding functions. However, for the sake of introduction, here we present
the definition of traditional inverse limits with continuous bonding maps first. We also give
basic theorems about these inverse limits to contrast with the theorems about the upper
semi-continuous inverse limits given in Chapter 3. Proofs of the following theorems may be

found in one or both of [4], [14].

11



Suppose that, for each positive integer 7, X; is a topological space and f; is a continuous
function from X1 to X;. Let @{Xi,fi}ﬁl be the set {(z1, 29, 23,...) € [[2, Xi | i =
fi(zs41) for all positive integers i}. Then we say @{Xi, fi}e2, is an inverse limit space and
a basis for the topology on @{Xi, fite, is {Oﬂl'&n{Xh fi}2, | O is basic open in [, X;}.
The X;’s are called the factor spaces of I'&n{Xi, fi}2,, and the f;’s are continuous bonding

maps. If f;, fiz1, ..., fj—1 are bonding maps, let us denote f; o fiz10...0 f;_1 by fi,.

Theorem 2.28. Suppose X = @{Xi, fi}2, is an inverse limit space with continuous bond-
ing maps, {n;}2, is an increasing sequence of positive numbers, g; = fu, n, ., for each i, and

Y = @{Xni, g:}2,. Then X is homeomorphic to Y .

Theorem 2.29. Let X = l’&n{X,, fi}2, be an inverse limit space with continuous bonding
maps. If there is a natural number N so that f, is an onto homeomorphism for each n > N,

then X is homeomorphic to Xy.

Theorem 2.30. Let X = l'&n{Xh fi}2, be an inverse limit space with continuous bonding
maps and suppose X; is non-empty and compact for each i. Then X 1is non-empty and

compact.

Theorem 2.31. Let X = l'&l{Xi, fi}2, be an inverse limit space with continuous bonding

maps and suppose X; is a continuum for each i. Then X is a continuum.

We note in advance that most of these theorems are false if upper semi-continuous
bonding functions are used instead of continuous bonding maps. Most importantly, as was
pointed out by Ingram and Mahavier in [3], some kind of extra hypothesis must be added
to Theorem 2.31 for that theorem to hold true in the upper semi-continuous case. (Contrast

Theorem 2.31 with, e.g., Theorem 3.3 or Theorem 3.4.)

12



Chapter 3

Background on Inverse Limits with u.s.c. Bonding Functions

Suppose X and Y are compact Hausdorff spaces, and define 2% to be the set of all
non-empty compact subsets of Y. A function f : X — 2" is called upper semi-continuous
(u.s.c.) if for any z € X and open V in Y containing f(z), there exists an open U in X
containing = so that f(u) CV forallu € U. If f: X — 2¥ is u.s.c. and f(x) is connected
for each x € X, then f is a u.s.c. continuum-valued function; in this case, for emphasis, we
will sometimes write f : X — C(Y)) instead, where C(Y") is the set of all subcontinua of Y.
If f:X — 2Yisus.c and f(z) = {y} for some x € X and y € Y, then although f is
a set-valued function, we use the convention of writing simply f(x) = y. Therefore, in the
case where f : X — 2Y is w.s.c. but f(x) is degenerate for all x € X, we may regard f as
the corresponding continuous function f: X — Y.

Again, let X,Y be compact Hausdorff spaces and let f : X — 2¥ be a u.s.c. function.
If y € Y, then the preimage of y via fis f~*(y) = {x € X|y € f(x)}. More generally, if
A CY, then the preimage of A via fis f71(A) = {z € X| f(x)N A # 0}. We say f is
surjective if for each y € Y, f~(y) is non-empty. Assuming that f: X — 2Y is a surjective
u.s.c. function, the inverse of f, i.e., the set-valued function f=' : Y — 2%, is given by
fYy) = {x € X| y € f(x)}. It will later become evident that if f is a u.s.c. surjective
function, then its inverse, f~!, is also a u.s.c. surjective function.

If X,Y, and Z are compact Hausdorff spaces and f: X — 2¥ and g : Y — 27 are u.s.c.
functions, then go f : X — 27 is the u.s.c. function given by (go f)(z) ={z€ Z |y e Y
such that y € f(x) and z € g(y)}. In the special case of a w.s.c. function f : X — 2%,
we denote f o f by f?; moreover, for any integer n > 2, let us say f* = fo f* L It will

also sometimes be helpful to use the following convention: whenever f : X — 2% is a u.s.c.

13



function and A C X, let us denote the preimage of the preimage of A, i.e., f~'(f1(A)), by
f7%(A). More generally, for each integer n > 2, f(A) = f~1(f~""V(A)).

Given compact Hausdorff spaces X,Y and a u.s.c. function f : X — 2, the graph of
f, abbreviated G(f), is the set {(z,y) € X xY | y € f(x)}. The inverse of the graph is
G ' ={(y,2)|(z,y) € G(f)}. If X1, Xs,...,X,, X1 are compact Hausdorff spaces and
fi + Xip1 — 2% isus.c. for 1 < i < n, then G(f1, fo, ..., fu) = {(x1, 22, ..., Tp, Tpy1) €

:.fll X; | z; € fi(wiq) for 1 <i <n}.

Now suppose that, for each positive integer i, X; is a compact Hausdorff space and
fi » Xip1 — 2% is an upper semi-continuous function. We define @{Xi, fi}32, to be the set
{(z1,29,23,...) € ][5, Xi | ; € fi(x;41) for all positive integers i}. (For convenience, we
will denote a sequence (z1, xa, x3, . ..) by the boldface x and denote the sequence of functions
(f1, f2, f3,...) by the boldface f. Thus, we may abbreviate @{Xi, fite2, by l&nf) Then we
say Y&nf is an inverse limit space with u.s.c. bonding functions, and a basis for the topology
on limfis {O N limf | O is basic open in [, X;}. For brevity’s sake, we will sometimes
call an inverse limit space with u.s.c. bonding functions simply a w.s.c. inverse limit space.
Finally, in the special case where X is a compact Hausdorff space, f : X — 2% is u.s.c., and
f=(f,f.f,...), we say l'glf is the inverse limit with the single bonding function f. (If, in
the description of a particular inverse limit, only the single bonding function f : X — 2% is
given, then it will be clear from context that lgl f is the inverse limit with the single bonding
function f.)

As stated in Chapter 2, a continuum is a non-empty compact connected space; a con-
tinuum that is Hausdorff (but not necessarily metric) will be called a Hausdorff continuum.
We will usually assume that each factor space X; is a non-degenerate Hausdorff continuum.

In [3], Ingram and Mahavier prove various theorems about inverse limits with u.s.c.
bonding functions. There are four especially critical theorems (originally labeled 2.1, 3.2,
4.7, and 4.8 in [3]) that we will need as background in the next chapters, and so, we restate

them here:
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Theorem 3.1. Suppose each of X and Y is a compact Hausdorff space and M 1is a subset
of X XY such that if x is in X then there is a point y in'Y such that (x,y) is in M. Then
M is closed if and only if there is an upper semi-continuous function f : X — 2V such that

M = G(f).

Theorem 3.2. Suppose that for each positive integer i, X; is a non-empty compact Hausdorff
space and f; : X;11 — 2% is an upper semi-continuous bonding function. Then @n_f S non-

empty and compact.

Theorem 3.3. Suppose that for each positive integer 1, X; is a Hausdorff continuum, f; :
X1 — 2% is an upper semi-continuous function, and for each x in X;y1, fi(x) is connected.

Then l&n_f 1s a Hausdorff continuum.

Theorem 3.4. Suppose that for each positive integer 1, X; is a Hausdorff continuum, f; :
Xip1 — 2% ds an upper semi-continuous function, and for each v € X, fi_l(x) 18 a non-

empty, connected set. Then lgn fis a Hausdorff continuum.
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Chapter 4

Sufficient Conditions For Decomposability of u.s.c. Inverse Limits

Let us recall once more that a Hausdorff continuum X is decomposable if it is the union
of two proper subcontinua; if a Hausdorff continuum X is not decomposable, X is said to
be indecomposable. Now, suppose for each positive integer ¢, X; is a Hausdorff continuum,
fi  Xip1 — 2% is a u.s.c. bonding function, and I'&nf is the resulting inverse limit. Our
first major goal is to provide some simple means for recognizing when such a u.s.c. inverse
limit is a decomposable continuum. It would be especially convenient if we could infer
decomposability just from some easily-checked feature of some bonding function’s graph,
G(fi;). In this chapter, we recall our previous results on this topic; these results and their

proofs may also be found in [13], but we include them here for the sake of completeness.

Theorem 4.1. Suppose that for each positive integer i, X; is a non-degenerate Hausdorff
continuum, f; @ Xiw — 2% is a surjective u.s.c. function, and fi(z) is connected for
each x € X, 1. Suppose further that, for some positive integer j, there is an open set
U C X, x X; intersecting G(f;) so that G(f;) \ U is the graph of a w.s.c. function
h: X1 — 2% satisfying the following conditions:

1) h(x) is connected for all x € X4.

2) There is an open V C X1 X X; so that UNV =0 and G(h) NV # 0.

Then @f 15 a decomposable continuum.

Proof. By Theorem 3.3, lglf is a continuum. To show T&nf is decomposable, by Theorem
2.27, it suffices to find a proper subcontinuum that is not nowhere dense. Fix some positive
integer j with f; : X;41 — 2% satisfying the hypothesis, so that G(f;)\U is the graph of some

u.s.c. function A satisfying conditions 1 and 2. Define f = (f1, fo, -y fi=1,h, fiz1,...). Then
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by Theorem 3.3, @f is a continuum. Moreover, because there is some (p;41,p;) € G(f;)NU
and each f; is surjective, there is some point p = (p1,p2, - .., Pj, Pj+1,-..) with p € l&nf\lgnﬂf
So ILnAf/ is a proper subcontinuum of I'&nf.

Since there is a basic open subset O; 11 x O; of V' that also intersects G(h), (X7 x X X
X XU X0 x Oy X Xjpa X .o N @nf is a non-empty open subset of lﬁnﬂfz Thus, 1&1?

is not nowhere dense. O

As we remarked in [13], each u.s.c. function f; must be surjective for this theorem to
succeed. There is a counterexample otherwise: Suppose that, for each positive integer i,
fi : [0,1] — 201 is given by the graph consisting of the straight line segments from (0, 0) to
(1,0) and from (1,0) to (1, 3). (See Figure 4.1.) Then lim f is a single point, (0,0,0,...), and
is therefore an indecomposable continuum. To avoid trivial counterexamples such as this,
we will repeatedly assume that the bonding functions are surjective and the factor spaces
are non-degenerate. See Chapter 10 for examples of bonding functions for which Theorem
4.1 actually applies. In particular, Example 10.1 shows how the conditions in Theorem 4.1

are often easy to check in practice.

Ve

0 1

Figure 4.1: A bonding function that gives rise to a degenerate inverse limit space

Theorem 4.2. Suppose that for each positive integer i, X; is a non-degenerate Hausdorff
continuum, fi : Xi1 — 2% is a surjective w.s.c. function, and for each v € X;, f ()

1s connected. Suppose further that, for some positive integer j, there is an open set U C
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Xj+1x X intersecting G(f;) so that G(f;)\U is the graph of a u.s.c. function h : X1 — 2%
satisfying the following conditions:

1) For all x € X;, h™*(x) is a non-empty, connected set.

2) There is an open V. C X1 X X; so that UNV =0 and G(h) NV # 0.

Then 1&1]" 18 a decomposable continuum.

Proof. By Theorem 3.4, @f is a continuum. Let f = (f1, fo, -y fi=1, b fixa,...). Again,
by Theorem 3.4, T&l?is a continuum; the same argument as in Theorem 4.1 shows that 1&11?

is a proper subcontinuum that is not nowhere dense. O

Theorem 4.3. Suppose that for each positive integer i, X; is a non-degenerate Hausdorff
continuum and f; : X;41 — 2% is a surjective u.s.c. function with f;(x) connected for each
x € Xii1. Suppose there is some point x = (x1,22,3,...) € l'glf so that f7(z;) = zi
for i > 2, and there is an open U C Xo X X; so that G(f1) NU is a non-empty subset of

{z2} X fi(xs). Then Wm f is a decomposable continuum.

Proof. Theorem 3.3 implies that @f is a continuum. Let Oy x O; be a basic open subset
of U with G(f1) N (O x O1) a non-empty subset of {z2} X fi(x2). We note that the proper
subcontinuum fi(zg) X {za} x {z3} x ... of Jim f contains the open set (O1 X Og x X3 x Xy X

)N 1'£1f. Thus, there exists a proper subcontinuum that is not nowhere dense. O

So far, we have seen decomposability arise in certain situations where lé'r_nf satisfies
either Theorem 3.3 or Theorem 3.4. Now we turn to a situation where 3.3 or 3.4 no longer
apply, i.e., a situation where images (or preimages) of points need not be connected. In
general, if there exists some positive integer i and x € X;,; with f;(x) not connected,
then @f need not be connected. However, in some special cases, @f turns out to be a
continuum even if f;(x) is not connected for some z € X;,1. One such special case is given
by the following theorem, a consequence of one of Ingram’s results (Theorem 3.3) in [5]: If
f:[0,1] = 2% is a ws.c. bonding function that is the union of two distinct continuous

functions g, h : [0,1] — [0, 1], at least one of which is surjective, then @f is a continuum.
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Our next theorem generalizes this result and also provides another sufficient condition for

decomposability.

Theorem 4.4. Suppose for each positive integer i, X; is a non-degenerate Hausdorff con-
tinuum and f; : Xip1 — 2% is a w.s.c. function that is the union of two u.s.c. functions
Gi» hi : Xip1 — 2% satisfying the following properties:

1) At least one of g;, h; is surjective.

2) gi(x) and hi(x) are connected for all x € X; 1.

3) G(g:) N G(hi) # 0.

Then 1&1]‘ is a continuum. Moreover, if there is some positive integer j so that G(g;) €

G(h;) and G(h;) € G(g;), then m f is a decomposable continuum.

Proof. We first show that @f is a continuum. Since for each positive integer 4, f; is u.s.c.
and each factor space is a continuum, it follows from Theorem 3.2 that @ f is compact. To
show that l'&nf is connected, we will show that, for any p,q € l'&nf, there exists a connected
subset of l'glf that contains p and q.

Let p = (p1,p2,p3,...) and q = (q1, ¢2, g3, - - .) be in I'Lnf. Then for each positive integer
i, (pir1,pi) € G(oy), where oy € {g;, h;}. Similarly, for each i, (¢i11,q;) € G(f;), where ; €
{gi, hi}. Now define zy = (v, o, g, .. .), 29 = (B1, o, 3, ...), 23 = (B, B2, a3, .. )y ooy 2y =
(B1, Ba, -, Bic1, i, - . .), ete. By property 3, G(g;) and G(h;) must intersect at some point
(i1, ;). So, since each f; is surjective, there exists some point (1, s, ..., Z;, Tiyq,...) in
@f that lies in both @zi and l'&nziﬂ. That means, for all 4, @zi N @zi+1 # .

By Theorem 3.3, lim z; is connected for each positive integer ¢. Since (@ Zi)ﬂ(l'&l Zit1) 7
() for each i, it follows that K = LJ;’;l&nZZ is connected. Thus, the closure of K is also
connected. We already know p € @nzl C K. To show that q € K, we observe that, since
limz; C K for each i, points of the form (g1, ), (1,92, --2), ooy (q1sa25 -5 Giy- - ), €tCe,
are all in K. Since q is a limit point of the set of these points, q € K. Thus, both p and q

lie in the connected set K. It follows that 1&1 f is connected, and hence, is a continuum.
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Now, if G(g;) € G(h;) and G(h;) € G(g;) for some positive integer j, imf can be
decomposed into two proper subcontinua as follows. Let g = (f1, f2, ..., fi=1, 9;, fi+1,---)
and h = (f1, f2,- -, fi=1, hj, fj+1,-..). Then (by an argument similar to the one given above)

lim g and @E are both proper subcontinua of lim f, and (@ g)uU (@ h) = Jm f. O

Corollary 4.5. Suppose that, for each positive integeri, f; : [0,1] — 2101

s a u.s.c. function
that is the union of two distinct continuous functions g;, h; : [0,1] — [0, 1], at least one of

which 1s surjective. Then @f 15 a decomposable continuum.
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Chapter 5

Sufficient Conditions For Indecomposability of u.s.c. Inverse Limits

Our next major goal is to give straightforward conditions on u.s.c. bonding functions
fi + Xip1 — 2% that guarantee that the inverse limit space T&nf is a non-degenerate inde-
composable continuum. By way of introduction to the problem, at first we will focus only
on the case where f : [0,1] — 2% and £ = (f, f, f,...). That is, we will assume lim f is an
inverse limit with a single u.s.c. bonding function f : [0,1] — 2[%!. Once again, here we
recall our earlier results from [13]; we expand our results to much more general cases in the
next chapter.

Let us begin by proving a lemma that gives us valuable information about the proper
subcontinua of M f in some special cases. An inverse limit space @ f with factor spaces X;
is said to have the full projection property if, whenever H is a proper subcontinuum of @nf,

there exists some positive integer N so that m,(H) # X, for all n > N.

Lemma 5.1. Let f : [0,1] — 20U be a w.s.c. function with the property that lim f is a
continuum. Suppose that, for some A C [0,1], floipa s a function, f([0,1]\ A) = [0,1],

and P = {(p1,p2,...) € I&Hf| pi & A for all i} is a dense subset of Wm f. Then Jim f has
the full projection property.

Proof. Assume by way of contradiction that there is some proper subcontinuum H of lgnf
so that, for each positive integer n, there exists some m > n such that m,,(H) = [0, 1]. For
any such m, we know that [0,1] = f([0,1]\ A) = f(mn(H) \ A) C mp,—1(H); from this it
follows that m;(H) = [0,1] for all ¢ < m. Thus, since infinitely many positive integers m
with 7, (H) = [0, 1] exist, we have that m,(H) = [0, 1] for each positive integer n. We will

now show that P C H.
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Let p = (p1, pa, p3,-..) € P. Then since m (H) = [0, 1], there exists some point in H of
form (p1,7,7,7,...). Since mo(H) = [0, 1], there exists some point in H of form (7, ps,7,7,...).
However, po, ¢ A and f|p a4 is a function, so f(p2) is unique; therefore, f(p2) = p;. That
means some point of form (py,p2,7,7,7,...) lies in H. A similar argument shows that some
point of form (py,ps, ..., pi—1,pi, 7,7, ...) lies in H for all i; since p is a limit point of the set
of all such points, and H is closed, p € H. Thus, P C H. But then P C H; because P is
dense, P = @f, SO @f C H. Therefore, @f = H, contradicting the assumption that H

is a proper subcontinuum. O

Figure 5.1: A bonding function that gives rise to an inverse limit without the full projection
property

A remark about the full projection property is in order. Any inverse limit @f with
a continuous surjective bonding function f : [0,1] — [0, 1] has the full projection property
automatically. However, if f is u.s.c., then in general I'&nf need not have the full projection
property. Example 131 in [4] illustrates this point: For each positive integer i, let X; = [0, 1]
and let f; : [0,1] — 2[%U be the graph consisting of the straight line segments joining (0, 0) to
(1,0) and (0,0) to (1,1). (See Figure 5.1.) Then H = {(z,z,z,...) | € [0,1]} is a proper
subcontinuum of Jim f; but m;(H) = [0, 1] for all i. Thus, some kind of additional hypotheses
(like those in Lemma 5.1) are required for the full projection property to hold.

With this lemma in hand, we may prove the following theorem. We note in advance that

the example motivating this theorem is the inverse limit generated using the u.s.c. function
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f:10,1] — 2[%1 whose graph is topologically equivalent to a sin(1) curve (see Figure 5.2).

In this case, the set A is simply {0}.

V

Figure 5.2: A u.s.c. function whose graph is topologically equivalent to a sin(2) curve

T

Theorem 5.2. Suppose f : [0,1] — 201 s w.s.c. and there is some non-empty closed
nowhere dense set A C [0, 1] with the property that:

1) f(a) =10,1] for all a € A.

2) floapa s an open continuous function.

3) For each a € A, y € [0,1] and € > 0:

i. If 3b € [0, 1] with b > a, then there exists some x1 € [0,1]\ A such that z1 € (a,a+€)
and f(z) = y.

. If 3b € [0, 1] with b < a, then there exists some xo € [0,1]\ A such that xo € (a—¢€,a)
and f(zs) = y.

Then l'glf 1s an indecomposable continuum.

Proof. lim f is a continuum since f (x) is connected for each x € [0,1]. It remains to show
that @ f is indecomposable.

First, let P = {(p1,p2,p3,...) € @f | pi ¢ A Vi}. We will show that P is dense in
@f. Thus, we need to show that, for each positive integer n, if O1,0,,...,0, C [0, 1] are
arbitrary opens sets such that O = (O; x Oy x -+ x O, x [0,1] x ...)N lim f is non-empty,

then O contains some point in P.
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Proof by induction on n:

If n=1, then O = (O x [0,1] x [0,1] x ---) N im f and, since A is nowhere dense, Oy
contains a point p; not in A. By condition 3, there exists ps ¢ A such that f(py) = p1, there
exists p3 ¢ A such that f(ps) = po, ete. It follows that p = (p1,p2,p3,...) € O, and p € P
also.

Now we assume the claim is true for n; we need to show it is true for n+1. So, suppose
O=(0; X0y x--+xX0pXOpy1x[0,1] x---)N @f is non-empty. We need to show that
O contains a point in P.

We will begin by showing that there is some point (x1,z,..., Ty, Tyt1,...) € O with
Tnr1 ¢ A. There is at least some (x1,x9,...,%,, Tpyi1,...) € O, since O is non-empty; if
Tnt1 € A, we are done. So, suppose z,,1 € A. Then because x, 1 € O, 1, which is open,
there exists some € > 0 such that ((x,41 — €, 2,41 +€) N [0,1]) € O,41. By condition 3,
there exists some z € ((zp41 — €, Tpy1 +€) N[0,1]) with z ¢ A and f(z) = z,,. That means
(X1, 22, ..., Tp, 2,...) € O.

In any case, there exists some point (x1, Za,. .., Tp, Tpt1,...) € O with z,41 ¢ A. Now
let O/n: = Opy1 \ A. Since A is closed and x,.; € O/n\+1, it follows that O/n\+1 is open
and non-empty. Moreover, by condition 2, f (O/n;) is open. Since f (O/n:) contains .,
which lies in O,,, we have that O, N f (O/n:) is open and non-empty. It follows that W =
(O1x0g % - -xOn,lx(Onﬂf(O/n\H))x [0,1]x- -+ )Nlim f contains (#1, 22, - - ., Tn, Tns1, - . .) and
is therefore a basic open set that satisfies the inductive hypothesis. So, W contains a point
(p1, P2y sPn1,Pn, %, ?,...) € P. Since p, € f(O/n:), there exists some p,11 € Opq1 \ A
such that f(pni1) = pn. But (by condition 3) there exists p,.2 € [0,1] \ A such that
f(Pnt2) = DPnt1, there exists p,i3 € [0,1] \ A such that f(pni3) = Pnie, etc. So, we have
shown that (p1,p2, ..., Dn, Prits Pnt2, - - ), & point in P, lies in O. This means P is dense in
Jim f.

By condition 2, f|pi\a is a function. By condition 3, f([0,1] \ A) = [0,1]. Thus, the

hypothesis of Lemma 5.1 is satisfied; this means that 1&1 f has the full projection property.
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Finally, suppose by way of contradiction that @ f is a union of two proper subcontinua
H and K. Because @f has the full projection property, there exists some positive integer
N such that 7,(H) # [0,1] and m,(K) # [0,1] for all n > N. Since A is non-empty, there
exists some a € A lying in either 7wy (H) or my41(K); without loss of generality, assume
a € myy1(H). Since myy1(K) # [0,1], mn41(H) must be an arc; in particular, mxq(H)
must contain either [a — €,a] or [a,a + €] for some € > 0. In either case, by condition 3,
f(rn1(H) \ A) =0, 1], which forces my(H) = [0, 1]. (Contradiction.)

So @f is indecomposable and the proof is complete. O

We improve on this result in various ways in the next chapter. For now, let us turn to
a much different condition that also guarantees indecomposability. First, however, we must
define the “itinerary space” of an inverse limit. Suppose that, for each positive integer ¢, P;
is a partition of [0,1]. That is, P; is a collection of subsets P{, P;,..., P. of [0,1] so that
[0,1] = UL, Piand PINP} = Qif j # I. Suppose for each positive integer 7, f; : [0,1] — 21
is u.s.c. and l'glf is the associated inverse limit space. If x = (x, 29, 23,...) € @f, and for
1 > 2, o is the unique member of P; containing x;, then the itinerary representation of x is
d(x) = (x1, a9, a3, ...). If for each positive integer i, P; is assumed to have some topology
Tp,, then Z = [0,1] x [[;=, P; is a product space with the standard product topology. Thus,
o l'&nf—> 7 is given by ¢((z1,x2,23,...)) = (21,0, 3,...). That is, ¢ maps x € @fto
its unique itinerary representation ¢(x). Then we call gb(l&n f) the itinerary space of T&nf.

Our approach toward itinerary spaces here is inspired by that of Stewart Baldwin in [1].
We intend to form the partitions P;, each with respective topology 7p,, so that ¢ turns out to
be a homeomorphism between l&l f and the itinerary space of lgnf. Of course, our choice of
partition depends heavily on the nature of the bonding functions (f;), so we now introduce
the kind of bonding function that interests us here. Recall that if g is a u.s.c. bonding
function, then the inverse of the graph G(g) is given by G(g)™! = {(y, z)|(z,y) € G(9)}. Let

the graph of f : [0,1] — 2! be given by G(g)~' UG(h)™!, where, for some fixed a € (0, 1),

25



1) g : [0,1] — [0,1] is a non-decreasing continuous function with ¢g(0) = 0, ¢g(1) = q,
and g((0,1)) = (0,a).
2) h :[0,1] — [0,1] is a non-increasing continuous function with A(0) = 1, h(1) = a,

and h((0,1)) = (a, 1).

Then we say f is a steeple with turning point a. Note that the graph of any steeple f
is closed, so that a steeple is automatically u.s.c. by Theorem 3.1. See Examples 10.5 and
10.6 in Chapter 10 for samples of bonding functions that are (and are not) steeples.

Now suppose that, for each positive integer i, f; : [0,1] — 2% is a steeple with
turning point a;,1. Then for each i > 2, we define the steeple partition with center a; to be
P; ={L;,C;, R;}, where L; = [0,a;),C; = {a;}, and R; = (a;, 1]. For a given i, the topology
Tp, on P; will be {P;, 0, {L;},{R;},{Li, Ri}}. Let T = [0,1] x [[;=, Pi, so that Z is a product
space with the usual product topology. Direct inspection reveals that the itinerary space of

@f is the subspace ZofT consisting of all points of the following forms:

—_

) (z1, 9, i3, g, . . .), where z1 € (0,1) and «; € {L;, R;} for each i > 2.
2) (0, Lo, L3, Ly, . ..)
3

(
(
(0, Lo, L3, ..., Ly, Rkx1, Cryo, Qr3, g, - - ), where o € {L;, R;} for each i > k+ 3.
(0, Ry, C3, g, x5, . . .), where a; € {L;, R;} for each i > 4.

(

)
4)
5) (1,Cy, as, ay, . ..), where o; € {L;, R;} for i > 3.

Because the only open set in P; that contains C; is P; itself, P; is not Hausdorff, and

neither is Z. However, as we will see in the following lemma (and as was first pointed out in

1)), Z turns out to be a Hausdorff subspace of Z.

Lemma 5.3. Suppose for each positive integer i, f; : [0,1] — 219 is a steeple with turning
point a;1. Then @f 1s a Hausdorff continuum. Moreover, if for i > 2, P; is the steeple

partition with center a;, then ¢ : l&n_f—> T 1s a homeomorphism between lér_nf and I.

Proof. For each positive integer i, the graph of each f; satisfies the hypothesis of Theorem
3.1, so each f; is w.s.c.; indeed, by construction, f;(z) is connected for each positive integer

i and each x € [0,1]. Thus, by Theorem 3.3, @f is a Hausdorff continuum.
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We have already observed that, since each f; is a steeple, qb(l&n f) = f; it remains to
verify that ¢ is a homeomorphism between @f and Z. Of course ¢ maps onto its range.
Ifx,y € l'glf and x # y, then either x; # y; or, for some ¢ > 2, x; and y; lie in different
members of P;, so that the itinerary representations of x and y must differ. So ¢ is 1-1.
To show that ¢ is continuous, let x = (21,9, z3,...) € l'glf so that ¢(x) = (1, a0, as, .. .),
and let O = O1 X Oy X ... X O, X Pyy1 X ... be a basic open set in Z containing ¢(x).
For convenience, shrink O to a smaller basic open set that also contains ¢(x), i.e., O =
O1 x {Ba} x {83} x ... x {Bn} X Pny1 X ..., where 3; = o; if oy = L; or R;, and §; = P; if
a; = C;. Thenlet U = O1 X y2 X 3 X ... X v, X [0,1] x ..., where v; = §; if 5; = L; or R;
and v; = [0,1] if 8; = P;. U contains x, and ¢(U) C O C O, so ¢ is continuous.

l'&nf is compact. Therefore, to show that ¢! is continuous, it will suffice to show
that Z is Hausdorff. Suppose that y = (y1,99,...) and z = (21, 29,...) with y,z € 7 and
y # z. If y; # 2z, then there exist disjoint open sets O,,,0,, C [0, 1] containing y; and 2,
respectively, so that O,, x Py x ... and O, x Py x ... are disjoint open sets in Z containing
y and z. So, suppose y; = z;. There are three subcases:

1) If y; = 21 are not 0 or 1, then the remaining coordinates are all L;’s and R;’s. Since
y # z, there must be some coordinate £ > 2 for which one of y, ;. is Ly and the other is
Ry. Thus, if Uy = {Ly}, Vi = {Ry}, and U; = V; = P, for all ¢ # k, then [0,1] x [[2, U; and
0,1] x T[;=, V; are disjoint open sets, one containing y and the other containing z.

2) If yy = z; = 1, then y, = 29 = C5 and the remaining coordinates of y and z are only
L;’s and R;’s. Again, since y # z, there must be some coordinate k > 3 for which one of
Yk, 2 1 Ly and the other is Ry. Thus, if Uy = {Li}, Vi = {Ry}, and U; = V; = P; for all
i # k, then [0,1] x [[;2, U; and [0,1] x [];2, Vi are disjoint open sets, one containing y and
the other containing z.

3) If y; = z; = 0, then there are two subcases:

A) y and z both have their first R in the kth coordinate. So,

y = (0> Lo, Ls, ..., Li_1, Ri, Cki1, Yrt2, Y3, - - ~)> and
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z=(0,Lo,Ls,...,Lg_1, R, Cki1, Zks2, Zk+3, - - -). Since y # z, for some j > k + 2, one
of y;, z; is L; and the other is R;. Then two disjoint open sets containing y and z respectively
can be found in a manner similar to that of case 1 and 2.

B) y has its first R in the kth coordinate but z either has no R’s at all or its first R lies
in the jth coordinate, where (without loss of generality) k > j. If z has no R’s at all, then
y and z can be separated by open sets like those in case 1 and 2; if z has its first R in the
jth coordinate, then y’s jth coordinate is L;, and thus, it is again easy to separate y and z
with open sets.

All possible cases have been addressed, so (b(lgl f) = 7 is Hausdorff. Hence, ¢! is

continuous, and ¢ is a homeomorphism. O

Theorem 5.4. Suppose for each positive integer i, f; : [0,1] — 210U is a steeple with turning

point a;. Then I&H‘f 18 homeomorphic to the bucket-handle continuum.

Proof. Let g : [0,1] — [0, 1] be the standard tent map, i.e., the function whose graph consists
of straight line segments from (0,0) to (3, 1), and from (3,1) to (1,0). Then g is a steeple, so
@ g, the bucket-handle continuum, is homeomorphic to 7. Since lgn f is also homeomorphic

tof,@fg@g. O

Thus, because the bucket-handle is indecomposable, so is any inverse limit space on unit
intervals with bonding functions that are steeples. It is possible to give an alternate argu-
ment for indecomposability here that does not involve itineraries; we do so, and generalize
the “steeple” construction a bit further, in Chapter 7. For a more detailed discussion of
itineraries, see, e.g., [1]. The author is indebted to Michel Smith and Tom Ingram for their

help in refining our description of “steeple” bonding functions.
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Chapter 6

Further Results on Indecomposability

Most of the results in the last two chapters have already been proven in the previous
work by the author, [13], but we have included them again here for the sake of completeness.
Now we seek new and more general results on detecting indecomposability in u.s.c. inverse
limits. The main results in this chapter are generalizations of the important Theorem 5.2.
However, we will begin with some indecomposability results that are more miscellaneous,

but still interesting and useful.

Theorem 6.1. Suppose that, for each positive integer i, f; = [0,1] — 219 is u.s.c., surjective,
and continuum-valued. If T&nf has the full projection property and for each i, either f;(0) =

[0,1] or fi(1) = [0, 1], then @f is an indecomposable continuum.

Proof. Assume by way of contradiction that I’Lnf is a union of two proper subcontinua,
H and K. By the full projection property, there must exist some large enough integer
N so that for all n > N, m,(H) # [0,1] and 7,(K) # [0,1]. Let us consider the case
when fn(0) = [0,1]. One of my41(H) or mn11(K), but not both, must contain 0; without
loss of generality, assume 7y, 1(H) contains 0 but mn,1(K) does not. Thus, the set R =
{(z1,29,23,...) € Jm f | y4+1 = 0} must be a subset of H. However, since fx(0) = [0, 1],
it follows that my(R) = [0,1], so that my(H) = [0, 1] also. But it was already stated that

wn(H) # [0, 1], so we have a contradiction. The case when fx(1) = [0, 1] is similar. O

Theorem 6.2. Suppose for each positive integer i, X; is a Hausdorff continuum that is
irreducible between two of its points (a; and b;), and f; : X; 11 — 2% is w.s.c., surjective, and
continuum-valued. If l&nf has the full projection property and for all i, either fi(a;+1) = X;

or fi(bix1) = X, then @f is an indecomposable continuum.
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Proof. Assume by way of contradiction that l&l f is a union of two proper subcontinua, H and
K. By the full projection property, there must exist some large enough integer NV so that for
alln > N, 7, (H) # X,, and 7,(K) # X,,. Now let us consider the case where fy(ayi1) =
Xn. Since Xpyyq is irreducible from anyq to byi1, and Xy = v (H) U myyga (K),
it follows that one of myxy1(H) or myy1(K), but not both, must contain ay,;. Without
loss of generality, assume 7y, 1(H) contains ayi; but my;1(K) does not. Thus, the set
R = {(z1,29,23,...) € @f | £ny41 = any1}) must be a subset of H. However, since
fn(ans1) = Xy, it follows that mx(R) = Xy, so that my(H) = Xy also. But it was already
stated that my(H) # Xy, so we have a contradiction. The case when fy(byi1) = Xy is

similar. O

Theorem 6.3. Suppose f : [0,1] — 20 is w.s.c. continuum-valued with f(0) = [0,1], and

lm f is an indecomposable continuum. Then {0} x [0,1] is a limit arc of G(f).

Proof. Suppose by way of contradiction that {0} x [0, 1] is not a limit arc of G(f). Then
there is some point (0,y) that is not a limit point of G(f) \ ({0} x [0, 1]). That means there
exist some small €1, €5 > 0 so that the open set of form [0,€1) X (y — €2,y + €) contains no
element of G(f)\ ({0} x [0, 1]). If [0, 1) x (y— €2, 1] contains no element of G(f)\ ({0} %[0, 1]),
then [0,€1) X (y — €2, 1] may be used as the open set U in Theorem 4.1, contradicting that
@f is indecomposable. A contradiction is similarly reached if [0,€;) X [0,y + €2) contains
no element of G(f) \ ({0} x [0,1]). Thus, [0,€61) X [y + €,1] and [0,€1) X [0,y — €] must
respectively contain points (ai, b;) and (ag,bsy) from G(f) \ ({0} x [0,1]). Since G(f) is
connected, G(f) must contain either a point (a1, b3) in [0,€1) X [0,y — €] or a point (as, by)
in [0, €1) X [y + €2, 1]. In either case, we have a contradiction because f has been shown not

to be continuum-valued. O

Theorem 6.4. Suppose f : [0,1] — 20 is w.s.c. continuum-valued with f(1) = [0,1], and

lm f is an indecomposable continuum. Then {1} x [0,1] is a limit arc of G(f).

Proof. The argument is almost identical to that of the previous theorem. m
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The fact that 0 and 1 are endpoints of [0, 1] was used strongly in the proof of the previous
two theorems. If instead f(a) = [0, 1] for some a € (0, 1), then there is a counterexample. Let
the graph of f : [0,1] — 2% consist of the straight line segment between the points (0, 0)
and (1, 1), the straight line segment between the points (3,1) and (3,0), and the straight line
segment between the points (3,0) and (1,1). (This is Example 209 in [4].) Then f is u.s.c.
and continuum-valued, f(3) = [0,1], and (as proved by Ingram) lim f is indecomposable.

However, {1} x [0,1] is not a limit arc of G(f) \ ({3} x [0, 1]).

Theorem 6.5. (Michel Smith) Suppose that for each positive integer i, X; is an indecom-
posable continuum and f; : X; 1, — 2% is a surjective u.s.c. bonding function. If l&nf S a

continuum with the full projection property, then @ f is indecomposable.

Proof. Assume the hypothesis and suppose by way of contradiction that T&lf is decompos-
able. Then l'glf is a union of two proper subcontinua H and K. Since I'Lnf has the full
projection property, there exists some positive integer N so that, for all n > N, m,(H) and
7, (K) are proper subcontinua of X,,. However, since each bonding function f; is surjective,
it must be the case that 7TN(1'£1 f) = Xy. From this it follows that 7y (H) Uy (K) = Xy,

contradicting that X is indecomposable. O]

Now, we seek to generalize Theorem 5.2. The next few theorems and lemmas may
be thought of as a warm-up before the most significant and useful result in this chapter,

Theorem 6.14.

Lemma 6.6. For each positive integer i, let X; be a Hausdorff continuum. Suppose that
fi: Xip1 — 2% is a w.s.c. function for each i and I'Lnf s a continuum. Suppose further that
there is a sequence of sets Ay, As, ... so that, for eachi > 2, A; C X;, fi—1|x,\a, s a function,
and fi1(X; \ 4;) = X;_1. Finally, suppose that P = {(p1,ps,...) € @f Vi > 2, p; ¢ Ai}

1 a dense subset ofl’glf. Then @f has the full projection property.

Proof. Assume by way of contradiction that there is some proper subcontinuum H of @f

so that, for each positive integer n, there exists some m > n such that ,,(H) = X,,. For
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any such m > 2, we know that X,,_; = f,1(Xon \ An) = fono1(m(H) \ A1) € Tt (H);
from this it follows that m;(H) = X; for each i@ < m. Thus, since infinitely many positive
integers m with m,,(H) = X,, exist, we have that m,(H) = X,, for each positive integer n.
We will now show that P C H.

Let p = (p1,p2,p3,...) € P. Then since m(H) = X, there exists some point in H of
form (p1,7,7,7,...). Since mo(H) = X5, there exists some point in H of form (7, ps,?7,7,...).
However, ps ¢ As and fi|x,\ 4, is a function, so fi(p) is unique; therefore, fi(p2) = p1. That
means some point of form (py,p2,7,7,7,...) lies in H. A similar argument shows that some
point of form (py, pa, ..., Pi—1, P, 7,7, ...) lies in H for all 4; since p is a limit point of the set
of all such points, and H is closed, p € H. Thus, P C H. But then P C H; because P is
dense, P = @f, SO l&qf C H. Therefore, l'glf = H, contradicting the assumption that H

is a proper subcontinuum. ]

Theorem 6.7. Suppose for each positive integer i, X; is a Hausdorff continuum and f; :
X1 — 2% is w.s.c. Suppose that, for each i > 2, there is some non-empty closed nowhere
dense set A; C X; with the property that:

1) fizi(a) = X;—1 for all a € A;.

2) f

3) For each a € A;, y € X;—1 and open U, C X; containing a, there exists some

Xi\4; 8 an open continuous function.

x € X;\ A withx € Uy and fi_1(z) = y.

4) For each a € A;, if H is a non-degenerate subcontinuum of X; containing a, then H

must contain a subset H of X; \ A; for which f(H) = X;.

Then lﬂlf 15 an indecomposable continuum.

Proof. 1&1 fis a continuum since f; is continuum-valued for each positive integer . It remains
to show that l'glf is indecomposable.
First, let P = {(p1,p2,p3,...) € @f | pi & A; Vi > 2}. We will show that P is dense in

l’&lf. Thus, we need to show that, for each positive integer n, if Oy, O, ..., O, are arbitrary
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opens subsets of X1, Xs,..., X, respectively so that O = (01 X Og X -+ - X Op X X;41 X ... )N
@f is non-empty, then O contains some point in P.

Proof by induction on n:

Ifn=1,then O = (01 x Xog x Xz x---)N l'glf. O, is open and non-empty, so O,
contains a point p;. By condition 3, there exists ps € X5 \ Ay such that fi(p2) = p1, there
exists p3 € X3 \ Az such that fo(p3) = po, etc. It follows that p = (p1,p2,ps,...) € O, and
p € P also.

Now we assume the claim is true for n; we need to show it is true for n+1. So, suppose
O=(01 X03%x -+ XO0pXOpsy1 X XpyaX--+)N l'glf is non-empty. We need to show that
O contains a point in P.

We will begin by showing that there is some point (x1, 2z, ..., %y, Tyi1,...) € O with
Tpt1 & Apy1. There is at least some (21,29, ..., %y, i1, ...) € O, since O is non-empty;
if 2,41 ¢ Any1, we are done. So, suppose x,11 € A,1. Then because =, 1 € O,,1, which
is open, by condition 3, there exists some z € O, with z ¢ A, and f,(z) = x,. That
means (1, To,..., Ty, 2,...) € O.

In any case, there exists some point (z1,xa, ..., T, Tpi1,...) € O with z,41 ¢ Anyq.
Now let O/n\H = Opt1 \ Ant1. Since A, is closed and z,,41 € O/n\ﬂ, it follows that O/n\H is
open and non-empty. Moreover, by condition 2, fn(O/n:) is open. Since fn(O/n:) contains
Z,, which lies in O,,, we have that O,,N fn(d;) is open and non-empty. It follows that W =
(O1 X0y %x -+ xOp_q X (Onﬁfn(O/n\H)) X Xpg1 X e )ﬂ@fcontains (T1, T2y oy Ty Ty - - -)
and is therefore a basic open set that satisfies the inductive hypothesis. So, W contains a
point (p1,pay--Dn1,Pn, 5 %,...) € P. Since p, € fn(O/n;), there exists some p, 1 €
Ops1 \ Ansq such that f,(pny1) = pn. But (by condition 3) there exists pyio € Xpi2 \ Anio
such that fni1(pnt2) = Prs1, there exists pnys € Xpqs \ Angs such that fii2(prts) = Pte
etc. So, we have shown that (p1,p2,...,Pn, Pri1s Put2,--.), & point in P, lies in O. This

means P is dense in @f.
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By condition 2, for each i > 2, f; 4

X:\4, i1s a function. By condition 3, for each ¢ > 2,
fic1(Xi \ A;) = X,;_1. Thus, the hypothesis of Lemma 6.6 is satisfied; this means that @f
has the full projection property.

Finally, suppose by way of contradiction that 1&1 f is a union of two proper subcontinua
H and K. Because T&lf has the full projection property, there exists some positive integer
N such that 7,(H) # X,, and 7,(K) # X, for all n > N. Since Ay,; is non-empty, there
exists some a € Ay lying in either my 1 (H) or mn11(K); without loss of generality, assume
a € mny1(H). Since myy1(H) # Xny1 and my 1 (K) # Xy, it follows that my,1(H) must

be a non-degenerate subcontinuum of Xy, containing a. By condition 4, 7y 1(H) must

contain a subset H of Xni1 \ Aysq for which fN(ﬁ) = Xy. But fN(I;T) C mn(H); since
mn(H) is closed, it follows that fy(H) = Xy C mn(H). Thus, Xy = mn(H), which gives us
a contradiction.

So @f is indecomposable and the proof is complete. O

Next, we present a sequence of lemmas that will lead to the very powerful Theorem

6.14.

Lemma 6.8. Suppose f: X — Y is a continuous function and there is some closed nowhere
dense subset A of X such that f|x\a is open. Then if B is a nowhere dense subset of Y,

f~YB) is a nowhere dense subset of X.

Proof. Let B be nowhere dense in Y. If f~(B) is empty, we are done. So, suppose f~1(B)
is non-empty. Assume by way of contradiction that there exists a non-empty open U C X
such that every non-empty open subset of U meets f~!(B). Since A is closed and nowhere
dense, U \ A is a non-empty open subset of U. Hence, f(U \ A) is open in Y, and therefore
f(U\ A) contains an open set V' that misses B. That means the (non-empty) open set
S7YV) misses f~!(B). But then f~1(V) N (U \ A) is a non-empty open subset of U that

misses f~!(B). (Contradiction.) O
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Lemma 6.9. If A C X is nowhere dense in X and X is an open subset of Y, then A is

nowhere dense in'Y .

Proof. Let O be open in Y. If O misses X, then O misses A. If O meets X, then O N X is
open in Y, so that O N X contains an open set U that misses A. Since U is open in X and

X isopenin Y, U is open in Y. O

Lemma 6.10. If A, B C X are both nowhere dense in X, then AU B is nowhere dense in
X.

Proof. Let A, B be nowhere dense in X and assume O C X is open. Then O contains an
open set U that misses A. In turn, U contains an open set V' that misses B. Hence, O

contains the open set V' which misses AU B. O
Lemma 6.11. If A C X is nowhere dense in X, then A is nowhere dense in X.

Proof. Suppose not, i.e., A C X is nowhere dense but A is not. Then there exists an open
set O in X such that every open U C O contains a point in A. Now since A is nowhere
dense, O contains an open set U that misses A. But U must contain a point in A, where of
course A = AU A’. Therefore, U must contain a point in A’. That means, by the definition

of limit point, U must contain a point in A. (Contradiction.) O

Lemma 6.12. Suppose f : [0,1] — 200U 4s w.s.c. and there is some non-empty closed
nowhere dense set A C [0, 1] with the property that:

1) f(a) =10,1] for all a € A.

2) floapa s a continuous function, and for some B C [0,1] \ A that is closed and
nowhere dense in [0,1] \ A, flo\(aup) is open.

3) For each a € A, y € (0,1) and interval U, of form (c,a) or (a,c) in [0,1], there exists
some x € U, \ A with f(z) =y.

Then if O = (O1 X Oy X -+ x O, X [0,1] X ---) N m f is a non-empty basic open set

m @ﬁ m(0) is a disjoint union VU Z, where V' is a non-empty open set and Z is a set
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so that if z € Z, then every non-empty subset of [0, 1] of form (d,z) or (z,d) contains some

point of V.

Proof. We prove the lemma by induction on n. If n = 1, then since the bonding function
f is surjective, m(0) is Oy itself. O; may be written as V U Z, where V = O; and Z = 0.
So assume the lemma is true for n; we must show it is true for n 4+ 1. Let O = (O; x O4 X
X Op X Opyp x[0,1] x -+ )N M f be basic open and non-empty. The inductive hypothesis
applies to the set O = (O] X Oy X ++- x Oy x [0,1] x - - - ) Nlim f; so, 7,(0) is a disjoint union
V' UZ where V is open and non-empty, and if z € Z, then every non-empty subset of [0, 1] of
form (d, z) or (z,d) contains some point in V. We must show that the analogous statement
holds true for m,,1(0).

First, we note that m,.1(O) is the intersection of O,; with f‘l(ﬂn(a)). By the
inductive assumption, m,(O) = VUZ, as already described. So now, we consider f~1(r,(0)).
Since f is a continuous function on [0,1] \ A and, by condition 3, (0,1) C f([0,1] \ A), we
have that the preimage of V' via fj01)\4 is a non-empty open set U in [0, 1] \ A. (Moreover,
since [0,1] \ A is open in [0,1], U is open in [0, 1].) Since f(a) = [0,1] for each a € A, we
have that the preimage of V via f|4 is A itself. Thus, f~'(V) = U U A. The preimage of
the set Z, f~!(Z), may be written as a disjoint union AU W for some W C [0, 1].

Now if a € A, we claim that every open interval in [0, 1] of form (d, a) or (a, d) contains
a point of U. For, if we have (d, a), we may pick any y € V' \ {0, 1}, and then, by condition
3, there exists some = € (d,a) \ A with f(z) = y. That means f|[6711]\A(V) contains z, and
x € U. Since x € (d,a), we are done. A similar argument applies in the case of (a, d).

Next, suppose w € W; we intend to show that every open set in [0,1] of form (d,w)
and (w,d) contains a point in U. Since w € W, we know w ¢ A; that implies that (since
A is closed and [0, 1] is regular) there exists some 6 > 0 so that (w — J,w + §) misses A.
Therefore, on (w — 0, w + ¢), f is a continuous function. Let N be a large enough integer
so that (w —

~ w) € (w—6,w)N (d,w). We will show that (w — +,w) contains a point

of U. First, we note that f((w — +,w]) cannot be identically f(w); for, if it were, then
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that would contradict the assumption that f| 1\ aup) is an open map (since B was assumed
to be nowhere dense). So, for some z € (w — +,w), either f(z) > f(w) or f(z) < f(w).
Either way, by the Intermediate Value Theorem, since f is a continuous map on [z, w]|, on
that interval f must achieve every value between f(z) and f(w). But f(w) isin Z. So, if
f(z) > f(w), the open set (f(w), f(x)) contains points in V; if f(z) < f(w), the open set
(f(x), f(w)) contains points in V. Either way, U = f~*(V)\ A meets (z,w), and that shows
that every open set of form (d,w) contains a point in U. A similar argument shows that
every open set of form (w, d) contains a point in U.

Thus, we have shown that f~!(m,(0)) consists exactly of U U f~1(Z), where U is a
non-empty open set and each point ¢ in f~!(Z) has the property that every non-empty
subset of [0,1] of form (d,t) or (t,d) contains some point in U. We note that, since V'
and Z were disjoint, f~!(V) and f~'(Z) have only the points of A in common; thus, U =
FHV)\ A and f~1(Z) are disjoint sets. Now, we consider f~1(m,,(0)) N Op1, which equals
(UNO,1)U(f~H(Z)N0O,41). Note that UN O, 41 and f~1(Z) N O,y are disjoint sets, and
U N O,y is open. Now, suppose t € f~1(Z) N O,11, and let (d,t) be some open interval
in [0,1]. Since t € O,y and O,y is open, we know that (for some small € > 0) O,
must contain an open interval (¢t — €,t + ¢€). Hence, O, 1 must contain (d,t) N (t —€,t + €),
which equals (max{d,t — €},t). But (max{d,t — €},¢) must contain points in U, so that
(d,t) contains points in U N O,41. A similar argument may be given for an open interval
(t,d). Finally, the open set U N O, is non-empty; for, if U N 0,11 = 0, then because O
was non-empty (and thus, f~!(m,(0)) N O,41 was non-empty), f~1(Z) N O,41 must be non-
empty. However, by the above argument, since O, contains points in f~(Z), it follows
that O,,.1 must contain points of U. Hence, UN O, is non-empty, which is a contradiction;
we conclude that U N O,,,; was non-empty in the first place.

We have therefore demonstrated that f‘l(ﬁn(é)) N O,41 is a union of two disjoint
sets satisfying the condition given in the inductive hypothesis. However, m,.1(O) equals

f (7 (0)) N Opy1, so the proof is complete. O
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Lemma 6.13. Let f : [0,1] — 20U be a w.s.c. function with the property that m f is a
continuum. Suppose that, for some A C [0,1], floipa is a function, (0,1) C f([0,1] \ A),
and P = {(p1,p2,...) € @f| pi ¢ AU{0,1} for all i} is a dense subset of Wm f. Then

@f has the full projection property.

Proof. Assume by way of contradiction that there is some proper subcontinuum H of l'glf
so that, for each positive integer n, there exists some m > n such that m,,(H) = [0, 1]. For
any such m, we know that (0,1) C f([0,1]\ A) = f(mm(H)\ A) C 1,1 (H); since 7,1 (H)
is closed and contains (0, 1), it follows that m,,_1(H) = [0, 1]. Similarly, m;(H) = [0, 1] for all
i < m. Thus, since infinitely many positive integers m with ,,(H) = [0, 1] exist, we have
that 7, (H) = [0, 1] for each positive integer n. We will now show that P C H.

Let p = (p1,pa2, ps3, . ..) € P. Then since m (H) = [0, 1], there exists some point in H of
form (p1,7,7,7,...). Since my(H) = [0, 1], there exists some point in H of form (7, ps, 7,7, ...).
However, p, ¢ A and flpi\a is a function, so f(ps) is unique; therefore, f(p2) = p1. That
means some point of form (py, pe,?,7,7,...) lies in H. A similar argument shows that some
point of form (py, pa, ..., Pi—1, P, 7,7, -..) lies in H for all 4; since p is a limit point of the set
of all such points, and H is closed, p € H. Thus, P C H. But then P C H; because P is
dense, P = @f, SO @f C H. Therefore, @f = H, contradicting the assumption that H

is a proper subcontinuum. ]
We are now ready to prove the main theorem of this chapter.

Theorem 6.14. Suppose f : [0,1] — 201 s w.s.c. and there is some non-empty closed
nowhere dense set A C [0, 1] with the property that:

1) f(a) =10,1] for all a € A.

2) floapa is a continuous function, and for some B C [0,1] \ A that is closed and
nowhere dense in [0,1] \ A, f|p1\(aup) 5 open.

3) For each a € A, y € (0,1) and interval U, of form (c,a) or (a,c) in [0, 1], there exists

some x € U, \ A with f(z) =y.
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Then Jim fis an indecomposable continuum.

Proof. Since f(z) is connected for each z € [0, 1], lim f is a continuum. Now we must show
it is indecomposable.

We will show that the set P = {(p1,p2,...) € Jim f | pi ¢ AU{0,1} for all i} is
dense in limf. To that end, let O = (01 x Oy X ++- x Op x [0,1] x --+) N limf be a non-
empty basic open subset of lgnf; we will show that O contains a point in P. We begin by
noting that, by Lemma 6.10, AU {0,1} = A; is nowhere dense in [0,1]. Now f~'(A;) is the
union of the sets f\[?)}l]\A(Al) and A; since (by Lemma 6.8) f][?)}l]\A(Al) is nowhere dense in
[0,1] \ A, we conclude from Lemma 6.9 that f|[6’11]\A(A1) is also nowhere dense in [0, 1]. We
already know A is nowhere dense, so we have shown that f~!(A;) is a union of two nowhere
dense sets and is therefore also nowhere dense. Let us call f~'(A4;) U {0,1} = Ay. Again,
by Lemma 6.10, A is nowhere dense. Next, by similar reasoning, f~1(A3) U {0,1} = A3
is nowhere dense. Continuing this way, we find that A, = f~1(A4,_1) U {0,1} is nowhere
dense. We note that A, contains all the points of A, f~'(A), f2(A),..., f~""V(A), as well
as {0,1}, f1({0,1}), f2({0,1}), ..., f~ "7 V({0,1}).

Now, we note that (by Lemma 6.12) the projection of O onto the nth factor space,
7,(0), contains a non-empty open set. Since A, was nowhere dense, 7,(0) \ A, is non-
empty. Thus, there exists a point z,, € m,(O) \ A, such that x, ¢ AU{0,1}, f(z,) =
o1 & AU{0,1}, f2(z,) = xpo € AU{0,1}, and so forth, so that z; ¢ AU {0,1} for
each positive integer ¢ < n. We may also use condition 3 to select some element x,; of
fHzn) \ (AU{0,1}), and then select some element z,, 19 of f~'(x,1)\ (AU{0,1}), and so
forth. The sequence x = (x1, g, ..., Ty, Tyi1,...) is therefore an element of P. Since x; ¢ A
for each positive integer 4, f acts as a function on each z;; so, because z,, € m,(0), x € O.
Thus, we have shown that P = {(p1,pa,...) € Jim f | pi ¢ AU{0,1} for all ¢} is dense in
@f. From this, we conclude using Lemma 6.13 that @ f has the full projection property.

Finally, suppose by way of contradiction that @f is the union of two proper subcon-

tinua H and K. Since l‘&nf has the full projection property, there exists some large enough
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integer N so that if n > N, m,(H) and 7,(K) are proper subcontinua of [0,1]. Since A is
non-empty, there is some a € A and either a € my.1(H) or a € my.1(K). Without loss of
generality, assume a € my41(H). Then for some small € > 0, either (a —€,a) C w1 (H) or
(a,a +€) C i1 (H). In either case, by condition 3, for any y € (0, 1) there exists some x
in (a —e€,a)\ Aorin (a,a+e€)\ A with f(z) =y. That implies that my(H) must contain
(0,1). But then, since my(H) is closed, my(H) = [0,1]. This is a contradiction, so the proof

is complete. O

With this grand theorem, we may detect indecomposability easily in a great many more

cases: See Example 10.8 in Chapter 10.
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Chapter 7

A Generalization of the Two-Pass Condition

The two-pass condition, as described by Ingram in [5] and later in [4], is important to
the question of when indecomposability arises in inverse limits with u.s.c. bonding functions.
Suppose f : [0,1] — 2/%Uisu.s.c. Then f satisfies the two-pass condition if there are mutually
exclusive connected open subsets U and V' of [0, 1] so that f|y and f|y are mappings and

f(U) = f(V)=10,1]. A consequence of Ingram’s Theorem 4.3 from [5] is the following:

Theorem 7.1. (Ingram) Suppose f : [0,1] — 200U 4s a w.s.c. function satisfying the two-
pass condition. Then if @ fis a continuum that has the full projection property, 1&1 fisan

indecomposable continuum.

Our goal in this section is to further explore the relationship between the two-pass con-
dition, the full projection property, and indecomposability. In particular, we will introduce a
new generalization of the two-pass condition that applies to a wider variety of u.s.c. graphs.
The idea that such a generalization was possible arose in a discussion with Michel Smith,
when he noted that a certain u.s.c. graph comes within e of satisfying the two-pass condi-
tion, for any choice of € > 0. As it turns out, having a function f that “almost” satisfies the
two-pass condition is enough to prove an indecomposability theorem analogous to Ingram’s.

Suppose f : [0,1] = 2% is u.s.c. Then f satisfies the e-two-pass condition if Ye > 0
there exist mutually exclusive connected open sets U,V C [0, 1] so that, for some {a,b} C U
and {c,d} €V, flapy and fli.q are mappings, f(a) and f(c) lie within € of 0, and f(b)
and f(d) lie within € of 1.

Theorem 7.2. Suppose the u.s.c. function f : [0,1] — 200U satisfies the e-two-pass condition

and @f 1 a continuum with the full projection property. Then I'&nf 1s indecomposable.
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Proof. Suppose @f = H U K, a union of two proper subcontinua. By the full projection
property, there is a positive integer N such that m,(H) # [0,1] and 7, (K) # [0, 1] for all
n > N.

We consider the sets 7y (H) and 7y (K). Because these sets are both proper subcontinua
of [0,1] whose union is [0, 1], one of them must contain 0 and the other must contain 1.
Without loss of generality, suppose my (H ) contains 0 and 7y (K') contains 1, so that 7n(H) =
0, h] for some 0 < h < 1 and 7y (K) = [k, 1] for some 0 < k < 1. Let € = min{1 — h, k}, and
now consider my41(H) and mn41(K). Since f satisfies the e-two-pass condition, there exist
mutually exclusive open subsets U and V' of [0, 1] with some {a,b} C U and {¢,d} C V such
that f|(as and f|{q are mappings, f(a) and f(c) lie within € of 0, and f(b) and f(d) lie
within € of 1.

Since my41(H) U myy1(K) = [0, 1], by Theorem 2.26, one of U and V is a subset of
one of my41(H) and mn11(K). We now examine the case in which U C 7y,1(H). Because
{a,b} C U, we have {a,b} C my;1(H). Thus, because f|(,p is a mapping, it follows that
f(a) € nn(H) and f(b) € ny(H). But f(a) and f(b) lie within € of 0 and 1, respectively,

contradicting the way € was chosen. The remaining cases may be handled similarly. O]

The following examples may shed more light on the relationship between the full pro-
jection property, the two-pass condition, the e-two-pass condition, and indecomposability.

Let the graph of f; be given by the straight line segments from (0, 0) to (%, 1), from (%, 1) to

(3,0), and from (3,0) to (1,1). Let the graph of f, be given by the straight line segments
from (0,0) to (3,1), from (3,1) to (3,1), and from (3,1) to (1,1). (These are the graphs
from Examples 3.4 and 3.5 in Ingram’s paper, [5]; see Figures 7.1 and 7.2 below.) Let the
graph of fs3 be the same as the graph of f; from Example 10.2 in Chapter 10. (See Figure
7.3.) Let the graph of f; be the same as the graph topologically equivalent to the closure

of a sin(2) curve, as seen in Chapter 5. (See Figure 7.4.) Finally, let the graph of f5 be a

T

somewhat distorted version of the graph of f;, as shown in Figure 7.5.
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Figure 7.1: f;

Figure 7.2: f,

f1 satisfies the two-pass condition and l'&nﬂ has the full projection property (as shown
directly by Ingram in [5] and [4]), so limf; is indecomposable. f does not satisfy the
two-pass condition and @fg does not have the full projection property; moreover, @fg
is not indecomposable. f3 satisfies the two-pass condition but by Theorem 4.1, @fg is
decomposable. That means, by Theorem 7.1, f3 does not have the full projection property.
fa1 satisfies the two-pass condition and 1'&1& has the full projection property (as shown
in Theorem 5.2), so that lgnfai is indecomposable. Finally, f; does not satisfy the two-
pass condition; however, it does satisfy the e-two-pass condition. Since it may be shown
directly that l.glfg) has the full projection property, it follows that I'Lnfg) is indecomposable.
(Although, it must be admitted that this conclusion could have been reached other ways,

e.g., by applying Theorem 6.14.)
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Figure 7.3: f3

Figure 7.4: f4

Let fs be the “steeple function” given in Chapter 10, Example 10.5. (See Figure 7.6.)
In Chapter 5, we used itineraries to prove that the inverse limit with this single bonding
function is indecomposable. Still, it would be helpful to have an alternate proof that does
not resort to itineraries. We note that fg does not satisfy the two-pass condition; however, it
does satisfy the e-two-pass condition. Thus, if we can prove that the corresponding inverse
limit has the full projection property, then by Theorem 7.2, T&lfe is an indecomposable
continuum.

The next major theorem (Theorem 7.4) implies that any inverse limit with bonding
functions that are steeples has the full projection property. In fact, this theorem applies to
a much more general collection of graphs that might be called “generalized steeples.” First,

we give a lemma.
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Figure 7.5: f5

Figure 7.6: f4

Lemma 7.3. Suppose A is an arc with endpoints ay,as and B is an arc with endpoints
bi,by. Let f: A — 28 be a surjective u.s.c. function that passes the horizontal line test, i.e.,

f7Y(x) is degenerate for each x € B. Then G(f) is an arc with endpoints {(f~'(b1),b1)}
and {(f~(b2),b2)}-

Proof. For all i > 2, let g; : A — 2% be the identity map. Then if g = (f, g2, 93,94, - - -),
Theorem 3.4 implies @g is a continuum. Thus, G(f), which is homeomorphic to the
projection of lgng onto its first two coordinates, is also a continuum. Since f passes the
horizontal line test, for a given x € B, f~'(x) is unique. We note that, if z € B\ {by, b2},
then G(f) \ {(f~(z),z)} is the union of two disjoint non-empty sets, (A X [by,x)) N G(f)
and (A X (z,b5]) NG(f). Thus, if x € B\ {by, b2}, {(f~(z),z)} is a cut point of G(f). This
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means {(f~1(b1),b1)} and {(f~(by),b2)} are the only non-cut points of G(f), and the proof

is complete. O

Theorem 7.4. Suppose that ay,as, . .., a, is a strictly increasing subset of [0, 1] with a; = 0,
a, =1, and n > 3. Let f :]0,1] — C([0,1]) be a u.s.c. continuum-valued function with
f(a;) = 0 for each odd i < n and f(a;) = 1 for each even i < n. Suppose further that,
foreach i, 1 <i <n—1, flaa.,, i a surjective u.s.c. bonding function that passes the

horizontal line test. Then if f, = f for all positive integers n, @f has the full projection
property.

Proof. We will begin by assuming that n is odd, so that f(1) = 0. We intend to show
that, for each positive integer j, G(fi, fa, ..., f;) is an arc with endpoints (0,0, ...,0,0) and
(0,0,...,0,1) in [[L51[0, 1]. Proceed by induction: by the way f is defined, G(f;) is an arc
with endpoints (0, 0) and (0,1). Assume the claim is true for j —1, so that G(f1, fa, ..., fj-1)
is an arc with endpoints (0,0,...,0,0) and (0,0,...,0,1) in Hizl[o, 1].

Let [0, 1] denote the kth factor space of Hmf. Define h : [0,1]41 — 26ULF20fiz1)
by h(t) = {(x1,29,...,2j_1,2;) € G(f1, fa,..., fi—1)|z; € f;(t)}. Note that G(h) is home-
omorphic to G(f1, fo, ..., fi—1, f;), so that G(h) is closed and therefore, h is u.s.c. (For
convenience, if (¢, (z1, %2, ..., z;_1,%;)) € G(h), we will instead write this ordered pair in the
form of its counterpart in G(f1, fa, ..., fi-1, f;j), L.e., (x1, 22, ..., 2j_1,2;,t).) Next, note that,
for each i, 1 < i <n—1, hlq,

G(h

ai+,] 18 surjective and passes the horizontal line test, so that

lai,a511)) 15 an arc (by Lemma 7.3). Moreover, if i is odd, G(h|(4,,4,,,]) is an arc whose end-
points are (0,0,...,0,0,a;) and (0,0,...,0,1,a;41) in H{;ll [0, 1], so that every other point in
G(h|a;,a,,1)) has j+1th coordinate lying strictly between a; and a;11. If i is even, G(h|(q;,0,,,])

is an arc whose endpoints are (0,0,...,0,1,a;) and (0,0,...,0,0,a;41) in H?;ll [0, 1], so that

every other point in G(h
So, G(h) =S G(h

[ai,ais:]) Das j + 1th coordinate lying strictly between a; and a4 .

[ai,ai41]), @ union of finitely many arcs. Note that two arcs G(h|(ay,05.1])
and G(h|(,,.am.11), K < m, have a point in common iff £ + 1 = m; in that case, they have

only one point in common, namely, (0,0,...,0,1,axy1) if k£ is odd or (0,0,...,0,0,ax1) if k
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is even. This means that G(h) is an arc with endpoints (0,0,...,0,0,0) and (0,0,...,0,0,1)
in H?;ll [0,1]. But G(f1, f2,. .., fn) is homeomorphic to G(h), so the claim is verified.

Next, we intend to show that @ f has the full projection property. To that end, suppose
mn(H) = [0,1] for infinitely many positive integers n. Since f(a;) = 0 and f(ay) = 1,
if 7,(H) = [0,1] for some n > 2, then {0,1} C 7,_1(H). But m,_1(H) is connected, so
mn-1(H) = [0, 1]; it follows that m,(H) = [0, 1] for all positive integers n.

We now consider 7o nﬂ}(H ). Since projection maps are continuous and H is a
continuum, 7o . ni13(H) is a subcontinuum of G(fi, fa, ..., f). Since {0,1} C 7,41 (H),
T1,2,..n+1}(H) contains the points (0,0,...,0,0,0) and (0,0,...,0,0,1), the two endpoints
of G(fi, fa,... fn). Since mg o, ny13(H) is connected, 712, ni13(H) must therefore be all
of G(f1, f2,- -+, fn)-

Finally, let p = (p1,p2,03, -+, Pny---) € @f. Since mp1 9, a1y (H) = G(f1, fos -5 fn)

for all n, H contains a point of form (py,p2,...,pn,7,7,...) for each n. Because p is the
limit point of the set of all such points, and H is closed, p € H. Hence, @f C H, and
@f = H. That means T&nf has the full projection property.

The proof is similar in case 2, where n is even. (In that case, G(fi, fo,..., fj) is an arc

with endpoints (0,0,...,0) and (1,1,...,1).) H

Corollary 7.5. Suppose that f is a u.s.c. function satisfying the hypothesis of Theorem 7.4.

Then I&H fis an indecomposable continuum.

Proof. By Theorem 7.4, @ f is a continuum with the full projection property. Since f also

satisfies the e-two-pass condition, @ f is indecomposable by Theorem 7.2. O

Theorem 7.4 was stated with f(a;) = 0 for each odd i <n and f(a;) = 1 for each even
i < mn, but a similar theorem can be proven in the case where f(a;) = 1 for each odd i < n
and f(a;) = 0 for each even ¢ < n. We can also give a version of Theorem 7.4 that holds in

a much more general setting:
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Theorem 7.6. For each positive integer n, let X,, be a Hausdorff continuum and let f, :
Xop1 — 2% be a surjective u.s.c. function. Suppose that, for each positive integer n,
G = G(fi, f2,---, [n) is a continuum and there exist T, 1,Yns1 € Xni1 such that G is
wrreducible between any point in G whose n+ 1 coordinate is x,1 and any point in G whose

n + 1 coordinate is y,.1. Then @nf s a continuum with the full projection property.

Proof. Since G(fi1, f2,..., fn) is a continuum for each n, @nf is a continuum as well. Now
suppose H is a subcontinuum of lim f with m(H) = X, for infinitely many n. We need to
show H = @f.

Let p = (p1,p2,---,Pny---) € l'&nf; we need to show p € H. Let M = {n | n is
a positive integer and m,(H) = X,}. Fix some n € M, n > 2, and let x,,y, € X, be
such that G(fi, fa,..., fu_1) is irreducible between each of its points with nth coordinate
x, and each of its points with nth coordinate y,. We note that, since m,(H) = X,,, H con-
tains sequences in I'Lnfof form (21,29, ..., Zp_1, 20,7, 7, ) and (Y1, Y2y -« s Yn1, Yny 7y 7y - - 1)
Thus, m2,..(H) is a subcontinuum of G(fi,..., fo—1) containing (z1,%2,...,%Tn_1,Zn)
and (Y1,Y2,-.-,Yn—1,¥Yn). Hence, by irreducibility, 712, ny(H) = G(fi,..., fa—1). Since
(p1,p2y---s0n) € G(f1, ..., fu_1), H therefore contains a point of form (p1,pa, ..., pn, 7, 7,...).

This same argument shows H must contain a point of form (p1,ps,...,pn, 7, 7,...) for
all n € M. Thus, because H is closed, H contains the limit point of all such points, namely,

p itself. Therefore, M f C H, which says I&n f = H. This means M f has the full projection

property. ]

An example of a u.s.c. function that satisfies the hypothesis of Theorem 7.4, i.e., a

“generalized steeple,” may be found in Chapter 10. (See Example 10.9.)
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Chapter 8

Inverse Limits on Initial Segments of the Ordinal Numbers

In their book Inverse Limits: From Continua to Chaos, Ingram and Mahavier generalize
many of their earlier results about inverse limits indexed by the positive integers to inverse
limits indexed by more general directed sets [4]. They also give theorems that apply in the
special case of inverse limits indexed by a totally ordered directed set. In this section, we
will prove analogous theorems in the very special case where the inverse limit’s index set is
some “long” (i.e., uncountable) initial segment of the ordinals. Our proof techniques will be
different than those in [4], however, because we will heavily use transfinite induction. All of
our initial theorems here may be thought of as building up to a general theorem “template,”
i.e., Theorem 8.5.

Let v be an ordinal. Suppose {X,}a<, is a collection of continua and F = {fa3 :
Xg — 2Xa}a<59 is a collection of surjective u.s.c. functions so that Vo < f < n < v,
fapo fon(@) = fan(x) for all x € X,. Then let us say the functions in F are properly
composing. We define G, = {(zg, 21,22, ..., Tas -, Ty) € [[ocy Xa | Ta € fap(rs) Va <
B < ~v}. A basis for the topology on G, is given by {O NG, | O is a basic open subset
of HaSv X} If v is a limit ordinal, we define l.ﬂl{Xa,faﬂg,’y} = {(zo, x1,%2, ..., Ta,...) €
[locy Xa | 24 € fap(xs) Va < B <~} A basis for the topology on im{Xy, fa,5,7} is given
by {O N @{Xa,faﬁ,v} | O is a basic open subset of []

a<y Xa}. For convenience, we will
at times denote @{Xm fap, v} by G

It is an exercise in transfinite induction (using the surjectivity of the bonding functions
fap and the compactness of the factor spaces X,) to show that if ;1 < +, the projection
of G-, (or of G,) onto the set of all coordinates < p is G,. We also note that, if X, is a

continuum for each o < w and {f, 5 : X3 — 2%}, 5, is a collection of properly composing
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surjective u.s.c. functions, then le{Xa, fap,w} is in fact a standard u.s.c. inverse limit

with a countable index set, i.e., @{Xa, foot1}o20-

Theorem 8.1. Let v be an ordinal. Suppose {X,}a<y is a collection of continua and {fup :
X — C(Xa) a<p<y is a collection of properly composing surjective u.s.c. continuum-valued

functions. Then G is a continuum.

Proof. By Theorem 3.3, G, is a continuum. Thus, G, is a continuum for each finite -,
since G, is the projection of G, onto the set of all coordinates < 7. So, it remains to prove
the theorem for all v > w.

We proceed by transfinite induction on . Suppose the theorem holds for each p < 7;
we must show the theorem holds for . Since v > w, we know that v = 4 n for some limit
ordinal p and integer n > 0.

For a given p < pu, let H, be the set of all points

X = (T0, 01,22, .., Lpy ooy, Ty Tyt 1y - -+ s Lpyg) 1D Hagu—&-nXa

so that x, € fap(zg) for all a < B8 < p, xo € fautk(Tusr) forall a < p, 0 < k < n,
and 2,1 € futhpurj(Tus;) for all0 <k < j <n. We intend to show that H, is a continuum.

If A={a|a< pu+n} let us define a function h : A — A as follows: h(a) = « if
a<porp+n+2<a<uphlp+k+1l)=p+kfor0<k<n;h(u+k)=p+k+1for
0 < k <n. (We note that h simply exchanges the ordinal p+ k+ 1 with the ordinal p+ & for
0 < k < n and fixes all other ordinals.) Now, for each o < =, let Y,, = X h(a)- Also, for each
a<f<p+n+l,let gop:Ys— C(Ys) be given by ga g = fa(a)n)- Then, because of the
way H, was defined, the collection of functions {gas : Y3 = C(Ya)}a<p<ptn+1 IS & properly
composing collection. Thus, if we let ép+n+1 ={(¥a)a<ptnt1 € [lacpini1 Yo | Yo € Ga,p(ys)
for all « < f < p+n+ 1}, then since p +n + 1 < 7, the inductive hypothesis applies to
CNJp+n+1. Hence, CNJP+n+l is a continuum. Finally, if B = {a | a < por p < a < pu+ n},
then it is easily seen that mp(H,) is homeomorphic to éﬁnﬂ. So mp(H,) is a continuum.
But then, because H, is homeomorphic to mp(H,) X [[,<, .¢p Xa, & product of continua,

we conclude that H, is a continuum.
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We note that, if p < n < p, then H, contains H,, so that {H,},<, is a monotonic
collection of continua.

Claim: Gy =, Hy-

Justification: Since G4, C H,, for each p < p1, and {H,},<, is a monotonic collection,

we have G, € (),_, H,- On the other hand, if x € N

pp Hp H,, then there are three cases.

p<u
For any p < pand ¢ < n < p+n, we have x € H,, so that =z, € f,,(z,). For any
p<p<n<p+n,since x € Hy, z, € f,,(x,). Finally, for any p < n < p, since x € H,,
zp € fpn(zy). All cases are accounted for, so x € G, Therefore, G, = (1, H).

Finally, we conclude that, since G4, = ) p<u Hp 1s the intersection of a monotonic

collection of continua, G4, = G is a continuum. Thus, the proof is complete. O

Theorem 8.2. Suppose 7 is a limit ordinal, { X, }a<y 15 a collection of continua and { f, s :
X5 — C(Xa)acp<y is a collection of properly composing surjective u.s.c. continuum-valued

functions. Then @{Xa, fap, Y} is a continuum.

Proof. For each p < v, let K, = {(%a)a<y € [[oey, Xa | Ta € fas(5) Va < B < p}. Then for

each p, K, is homeomorphic to G, x[] X,. By Theorem 8.1, G, is a continuum,; thus,

ptl<a<y
K, is homeomorphic to a product of continua and hence, K, is a continuum. We also note
that {K,},<, is a monotonic collection of continua. But then l'gl{Xa, fop: 7t = Myery Ko,

which is a continuum. O

Theorem 8.3. Let v be an ordinal. Suppose {X,}a<y is a collection of continua and {f, 3 :
Xpg — 2%} c5< is a collection of properly composing surjective u.s.c. functions. Suppose
further that for each o < 8 <~ and each x, € X,, f;é(xa) s a mon-empty, connected set.

Then G is a continuum.

Proof. Theorem 3.4 implies that the theorem is true for each finite 7. So, it remains to prove
the theorem for all v > w. The rest of the argument is identical to the one used to prove

Theorem 8.1. O
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Theorem 8.4. Suppose v is a limit ordinal, { X, }a<y s a collection of continua and {fup :
Xg — 2%} 5oy is a collection of properly composing surjective u.s.c. functions. Suppose
further that for each o < B <~ and each x, € X,, f;é(ma) s a non-empty, connected set.

Then hm{Xo, fa,5,7} is a continuum.
Proof. 1t suffices to use an argument analogous to the proof of Theorem 8.2. [

We note that, in the proof of Theorem 8.1, all that was needed to start the transfinite
induction was the fact that the theorem was true for each finite n. Thus, instead of assuming
that each function was continuum-valued, we could have just as well assumed that each
function satisfied some property P that causes each G,, (with n finite) to be a continuum.

This observation leads us to the following “theorem template”:

Theorem 8.5. Suppose the following is true: “Let n be a positive integer. Suppose {Xa}a<n
is a collection of continua and {fap: X — 2% }oacp<n is a collection of properly composing
surjective u.s.c. bonding functions each with property P. Then G, is a continuum.”

Then the following is true: “Let v > w. Suppose {Xa}a<y is a collection of continua
and {fop : Xg — 2%} ocp<y is a collection of properly composing surjective u.s.c. bonding

functions each with property P. Then G is a continuum.”

As an example of how to use this template, consider the inverse limit I'Ln{Xa, fap, 7}
obtained when all the factor spaces X, are the same continuum [0, 1], there is a single
surjective u.s.c. bonding function f : [0,1] — 2[% and also fo f = f (so that the functions
are properly composing). The property P could be, “f is the union of two distinct continuous
functions g and h, at least one of which is surjective.” Corollary 4.5 implies that each G,, (n
finite) is a continuum, so that (by Theorem 8.5) G, is also a continuum for each v > w. Thus,
it is possible to generalize Corollary 4.5 to the case of a “long” inverse limit. Indeed, we note
that many of the indecomposability theorems from the previous chapters have analogues in
the case of a “long” inverse limit, provided that the u.s.c. bonding functions are properly

composing. (For samples of bonding functions f : [0,1] — 21 satisfying f o f = f, see
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Examples 10.10 and 10.11 in Chapter 10. We also discuss the long inverse limit spaces

produced using these functions.)
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Chapter 9

Two-Sided Inverse Limits

We turn now to another special case of an inverse limit on a totally ordered directed
set. Suppose that for each integer i, X; is a compact Hausdorff space and f; : X;,, — 2%
is u.s.c. Then we define @{Xi, fi}iez to be the inverse limit space consisting of all points
of form x = (x;)icz = (..., T2, T_1, To, T1, T2, . . ., Tk, Tpt1, - - -), Where x; € fi(z;41) for each
integer ¢, and a basis for the topology on the space is

{O N l'&n{Xh fitiez| O is basic open in [].., X;}.

i€Z

We will often call the space @{Xi, fitiez a “two-sided” inverse limit, as opposed to the
corresponding “one-sided” inverse limit indexed by the positive integers, lgl{Xi, fiye, It
each f; is a continuous function, then the two-sided inverse limit is clearly homeomorphic to
the standard one-sided one. However, if each f; is u.s.c., then @{Xi, fi}iez may be different
from lgl{Xi, fi}2y. In this chapter, we investigate the relationship between the two-sided
inverse limit and the ordinary one-sided one. The issue of indecomposability will play a role
here as well.

Let us begin with two basic theorems that provide a sufficient condition for compact-

ness and connectedness of the two-sided inverse limit. The proofs of these theorems are

straightforward, but may be found in Chapter 5 of [14].

Theorem 9.1. Suppose that, for each integer i, X; is a compact Hausdorff space and f; :

Xip1 — 2% is u.s.c. Then l'gl{Xi, fitiez is non-empty and compact.

Theorem 9.2. Suppose that, for each integer i, X; is a Hausdorff continuum, f; : X;11 —
2Xi is an upper semi-continuous function, and for each x in X;y1, f;(x) is connected. Then

l'&n{X,;, fitiez is a Hausdorff continuum.
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The following examples show how the two-sided inverse limit may be different from the

one-sided one.

Example 9.3. For each integer i, let X; = [0,1] and let the graph of f; : [0,1] — 201
consist of the straight line segments joining (0,0) to (1,0) and (0,0) to (1,1). (This bonding

function comes from Ezample 131 in [}]; see Figure 5.1.)

First we consider the two-sided inverse limit. Let A, be the set of all two-sided sequences
of form (...,0,0,z,x,,...), where the leftmost x appears in the zth coordinate and = €
[0,1]. We note that A, is an arc for each integer z. Let A = {(...,z,z,x,...)| = € [0,1]},
so that A is also an arc. Thus, (|J,.,A.) UA = @{Xi,fi}iez, and ((,zA4.) NA =
(...,0,0,0,...), a single point. Thus, l’&n{Xh fitiez is a fan.

However, this fan is not homeomorphic to the fan given by the corresponding one-sided
inverse limit, l'gl{Xi, fi}22,. For, as we will show, I'LH{XZ‘, fitiez contains a limit arc while
l’&n{Xi, fi}s2, does not.

Consider the arc A in lim{X;, fi}icz given by {(...,z,z,z,...)| x € [0,1]}. We will
prove that A consists entirely of limit points of (I'Ln{Xi, fitiez) \ A. To that end, let O =
([Lez Oi) N @{Xi, fi}icz be a basic open set containing some point x = (..., z,z,z,...)
of A, where x € [0,1] and O; = [0,1] for all but finitely many 4. If for each i, O; = X;,
then clearly O contains points not in A. So suppose O is a proper subset of the space.
Since O; = [0, 1] for all but finitely many 4, there must be some least integer j for which
O; € Xj, and some greatest integer k for which O, C Xj. If z # 0, then the sequence
(...,0,0,...,0,z,2,x,...), where the leftmost z lies in the jth coordinate, clearly lies in O.
If z = 0, then the sequence (...,0,0,...,0,1,1,...), where the leftmost 1 lies in the k + 1th
coordinate, must lie in O. Either way, O must contain a point in (l'gl{Xi, fitiez) \ A, and
thus, A is a limit arc.

On the other hand, the one-sided inverse limit I'Ln{Xi, fi}2, contains no limit arc. To
see this, let B be any arc that is a subset of @n{Xi, fit2,, and let x = (0,0,...,0,z,x,...),

where z # 0, be any non-endpoint of B. (Assume without loss of generality that the leftmost
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x appearing in the sequence x lies in the jth coordinate.) Then, by the way the inverse limit is
defined, there is some [a, b] C (0, 1) so that B contains an arc C' = {y = (0,0,...,0,y,y,...) |
the leftmost y of the sequence y lies in the jth coordinate, and y € [a,b]} that contains x
as a non-endpoint. If O; =[0,a/2),0, = [0,a/2),...,0;_1 = [0,a/2), and O; = (a,b), then
(O1 X Oy x -+ x 01 x 0 x[0,1] x---)N (T&H{Xi, fi}2,) is open, contains x, but misses
(@{Xi, fi}2,) \ B entirely.

(See Figure 9.1.)

Figure 9.1: The spaces from Example 9.3. Left: one-sided inverse limit; right: two-sided.

Example 9.4. For each integer i, let X; = [0,1] and let f; : [0,1] — 2191 be defined by the
graph consisting of the following straight line segments:

i. For each integer n > 0, the segment joining the points (1 — 2%, 1 - 2%) and (1 —

1 1
2_n71_ 2n+1)'

ii. For each integer n > 0, the segment joining the points (1 — Qin, 1 - 2n1+1) and

(1 = 57,1 — 557). (See Figure 9.2.)

In this example, the one-sided inverse limit is just a (countable) union of countably many
n-cells for each positive integer n, and thus, does not contain a Hilbert cube. However, the
two-sided inverse limit does contain a Hilbert cube because it contains all points of form
(...,d, %,c, %,b, %,a,0,0, ...), where a € [0,3],b € [}, %],c € [%, %], etc. Thus, the one-sided

and two-sided inverse limits are not homeomorphic.

We note that, in Example 9.3, although the one-sided and two-sided inverse limits are

not homeomorphic, at least the one-sided inverse limit may be embedded in the two-sided
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Figure 9.2: The bonding function from Example 9.4

one. However, we will soon see that this need not be the case in general. First, we need the

following two theorems.

Theorem 9.5. Suppose f : [0,1] — 2% is a surjective u.s.c. function such that f~' is
a continuous map from [0,1] to [0,1]. Then the two-sided inverse limit 1'&1{[0, 1], fYiez is

homeomorphic to the one-sided inverse limit T&n{[o, 1], 7112,

Proof. Since f~! is continuous, im{[0, 1], f~'}22; and Jim{[0, 1], f ' }iez are homeomorphic.
So, it will suffice to show that @{[O, 1], f }iez is homeomorphic to l'&n{[(), 1, f ez It
(o 2,21, 20,1, 22,...) € Um{[0,1], f7'}icz, let us define h : Wm{[0,1], f'}iez —
@{[O, 1, ftiez by h((...,x_2, 21,20, 21, 2T2,...)) = (..., X2, X1, T, T_1,T_2,...). 1t is easy
to see that h is a well-defined function, and that h is one-to-one and surjective. h is contin-
uous because the preimage via h of any basic open set [],., O; (where all but finitely many

O; are proper subsets of [0, 1]) intersected with 1'&11{[0, 1], ftiez is [ [,e7 O—i intersected with

i€z,
@{[O, 1], f~'}icz, which is open. An analogous argument shows that h~! is continuous, so

h is a homeomorphism. O

Theorem 9.6. Suppose f : [0,1] — 20U is a surjective u.s.c. function that passes the
horizontal line test, i.e., f~1(x) is degenerate for each x € [0,1]. Then I'&n{[o, 1, 124

(abbreviated by lglf) s an arc.
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Proof. Since f is surjective and u.s.c., @f is non-empty, non-degenerate and compact.
Moreover, since f~!(z) is connected for each z € [0,1], Theorem 3.4 applies and T&nf is a
continuum. We will show l'&nf is an arc by showing it has exactly two non-cut points.

By assumption, f~!(z) is degenerate for each x € [0,1]. Hence, because f is sur-
jective, {(z, f~1(x), f~%(x),...)|z € [0,1]} is the set of all points in lim f. We note that
each point (z, f~'(z), f*(x),...) with z € (0,1) is a cut point of limf, since the set lim f\
{(z, f~Y(x), f2(z),...)} may be separated by the two disjoint open sets [0,z) x []:2,[0, 1]
and (z, 1] < [[:2,[0,1]. Every non-degenerate continuum contains at least two non-cut points;
since each point (z, f~!(z), f~*(z),...) with 2 € (0,1) is a cut point of lim f, only the points
(0, £71(0),...) and (1, f~%(1),...) are non-cut points of Hm f. That is, im f is a continuum

with exactly two non-cut points, so that I&H f must be an arc. O
Example 9.7. Let f : [0,1] — 20U be the inverse of the Henderson map.

To analyze this example, we must first consider the Henderson map, a continuous func-
tion described in [2] and pictured in Figure 9.3. It is well-known that the one-sided inverse
limit with the Henderson map as its single bonding function is the pseudo-arc, a hereditarily
indecomposable continuum. Now let f : [0,1] — 2[%! be the inverse of the Henderson map,
as pictured in Figure 9.4. Since the Henderson map is continuous, it is also u.s.c., implying
that its inverse, f, is u.s.c. as well. f is also surjective. Now, being a continuous function,
the Henderson map passes the vertical line test; therefore, its inverse, f, passes the horizon-
tal line test. That means, by Theorem 9.6, the one-sided inverse limit Jm{[0, 1], f}72, is an
arc. However, f~! is the Henderson map, a continuous function from [0, 1] to [0, 1]; thus, by
Theorem 9.5, the two-sided inverse limit 1&1{[0, 1], f }iez is homeomorphic to the one-sided
inverse limit @{[O, 1], f71}5°,, which is the pseudo-arc. Therefore, the one-sided inverse
limit 1&1{[0, 1], f}$2, is an arc, but the two-sided inverse limit @{[0, 1], f }iez is the pseudo-
arc. It is noteworthy that, since the pseudo-arc is a hereditarily indecomposable continuum,
the one-sided inverse limit cannot be embedded into the two-sided one (or vice-versa) in this

example.

o8



Figure 9.3: The Henderson map

Figure 9.4: The bonding function f from Example 9.7

So, we have seen how different one-sided and two-sided u.s.c. inverse limits may be. Yet
the following theorem shows that, in the case of inverse limits with a single bonding function,

the one-sided inverse limit is a continuum iff the two-sided inverse limit is a continuum.

Theorem 9.8. Suppose X is a Hausdorff continuum and f : X — 2% is a surjective u.s.c.

function. Then @{X, f}e2, is a continuum iff l'gl{X, ftiez is a continuum.

Proof. 1f I'Lm{X, f }iez is a continuum, then the projection of 1'£1{X, f}iez onto the 1,23, ...
coordinates, @{X , 12, must be a continuum as well. On the other hand, suppose
@{X, f}2, is a continuum. For each j € Z, let K; = {x € [[,., X | #; € fi(zi1) Vi > j}.
Note that, for a given j € Z, K; is homeomorphic to (J];cz,;.; X) x Im{X, f}72;. However,
l’&n{X , f}72; is homeomorphic to 1&1{){ , 122, a continuum; thus, K is homeomorphic to

a product of continua and hence, K is a continuum. Now if 7 < m, then clearly K; C K,,.
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So, {K;}jez is a monotonic collection of continua. This means [, K is a continuum.

However, ﬂjeZ K; = @n{X, f }iez, so the proof is complete. H

Theorem 9.8 leads us to ask the following question: If the two-sided inverse limit with
the single bonding function f is an indecomposable continuum, is the corresponding one-
sided inverse limit also an indecomposable continuum? In light of Example 9.7, the answer

is no. However, the converse is true, as we see in the following theorem:

Theorem 9.9. Suppose X is a Hausdorff continuum and f : X — 2% is a surjective u.s.c.
bonding function so that lglll{X, Y2, is an indecomposable continuum. Then lé'r_n{X, f ez

18 also an indecomposable continuum.

Proof. Suppose by way of contradiction that I'LH{X, f}iez = HU K, a union of two proper
subcontinua. If S is a subset of [],., X, we denote by 7>;(S) the projection of S onto
coordinates j,7 + 1,7 + 2,.... Let us note that whenever S is a proper subcontinuum
of lgl{X , [ }iez, there must exist some integer j for which 7>;(S) is a proper subset of
@{X, [} For, otherwise, m>;(S) = l'&l{X, [y for all j € Z, and then, since S is
closed, it may be shown that S = l&l{X , f}iez- That would be a contradiction; therefore,
there exists some small enough integer j such that 7>;(H) and 7>;(K) are both proper
subcontinua of @{X, f}2;. Next, we note that since l'gl{X, ftiez = HU K, it must follow
that I'LH{X, 12, = m>;(H) Ums;(K). Thus, @{X, f}2; has been shown to be decom-
posable; however, @{X , f}32, is homeomorphic to @{X , 122, which is indecomposable.

(Contradiction.) O

Using this result, it is easy to adjust the indecomposability theorems from the previous
chapters to apply to the case of two-sided inverse limits. Indeed, for each example of an
indecomposable one-sided inverse limit with a single u.s.c. bonding function, the two-sided

version is an indecomposable continuum as well.
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Chapter 10

[llustrative Examples

We now present various examples of inverse limits with u.s.c. functions f; : [0, 1] — 2[%1.
Note that, in each example, the graphs described are always closed, so that (by Theorem
3.1) the resulting bonding functions are automatically u.s.c. (Some of these examples, or

similar versions of them, were also presented in [13] or [4].)

Example 10.1. Let the graph of f : [0,1] — 219 consist of straight line segments joining

points (0,0) to (3,1), (3,3) to (3,3), (1,1) to (3,0), and (5,0) to (1,1). (See Figure 10.1.)

FNTY

By Theorem 4.1, the inverse limit with the single bonding function f, @f, is a decom-
posable continuum. Possible choices of open sets U and V' (as mentioned in the theorem)

are indicated in the diagram.

Figure 10.1: The graph of the function f from Example 10.1

Example 10.2. For each positive integer i, let f; : [0,1] — 2% be the standard tent map,
except for some f; : [0,1] — 201 whose graph consists of the standard tent map together

with the line segment joining points (0,0) and (0, 3). (See Figure 10.2.)
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By Theorem 4.1, 1£1 f is a decomposable continuum. Were f; the standard tent map, of
course, the inverse limit would be indecomposable. It is striking that such a small adjustment
to just one bonding function can drastically alter the decomposability of the inverse limit.
(Indeed, adding to the tent map the vertical line segment that joins (0,0) to (0,¢) for any
¢ > 0 would have had the same effect.) This example shows yet again the difficulty in finding

a general “subsequence” theorem for u.s.c. inverse limits. (See also Example 3 in [3].)

Figure 10.2: The graph of the function f; from Example 10.2

Example 10.3. Let the graph of f : [0,1] — 2% be given by the straight line segments
joining (0,0) to (%, %), from (%,%) to (%, %), from (%, %) to (%,%), and from (%, %) to (1,1).
(See Figure 10.5.)

Then (3,3, 3,---) € limf, f7(3) =3, and U = [0,1] x (3, 2) is an open subset of [0, 1] x
[0,1] with G(f)nU C {%} X f(%) Thus, Theorem 4.3 applies and lé'r_nf is a decomposable
continuum.

Also, let us note that neither Theorem 4.1 nor Theorem 4.2 applies in this case. For, if

U is any open subset of G(f), G(f)\ U is either not the graph of a u.s.c. function from [0, 1]

into 201 or it is the graph of a u.s.c. function that maps a point (%) to a disconnected set.

Example 10.4. Let f : [0,1] — 20U be defined by the graph that is the union of the

traditional tent map and the reflection of the tent map about the line y = % (See Figure
10.4.)
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Figure 10.3: The graph of the function f from Example 10.3

Then by Theorem 4.4 (or by Corollary 4.5), @f is a decomposable continuum. This

space appears to contain a fan-like structure of bucket handle continua.

Figure 10.4: The graph of the function f from Example 10.4

Example 10.5. Let the graph of f : [0,1] — 219 be given by drawing straight line segments
from (0,0) to (3,3), (5,3) to (3,3), (3,2) to (3,1), and then drawing the reflection of this

figure about the line x = 5. (See Figure 10.5.)

Then f is a steeple with turning point a = % So, by Theorem 5.4, 1£1 f is homeomorphic

to the bucket handle and thus, T&nf is indecomposable.

Example 10.6. Let the graph of f : [0,1] — 2% be given by drawing straight line segments
from (0,0) to (0,3), (0,3) to (5,1) and then drawing the reflection of this figure about the

line x = . (See Figure 10.6.)
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Figure 10.5: The graph of the function f from Example 10.5

Then I&lf is decomposable by Theorem 4.1. (The open set U from Theorem 4.1 could

be [0,1) x [0, 1).) Note that f is not a steeple function because f(0) does not equal {0}.

Figure 10.6: The graph of the function f from Example 10.6

Example 10.7. Consider the u.s.c. function f : [0,1] — 2191 mentioned in Chapter 5 whose
graph is topologically equivalent to a sm(%) curve. Specifically, let the graph of f consist of
the following straight line segments:

i. For each odd integer n > 1, the segment joining the points (5+,0) and (57=,1).

i1. For each even integer n > 2, the segment joining the points (2%, 1) and (271%1, 0).

iii. The vertical line segment joining the points (0,0) and (0,1).

(See Figure 5.2.)
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Then, by Theorem 5.2, l'glf is an indecomposable continuum. The projection of l'&lf

onto the first three factor spaces (i.e., inside [0, 1]?) is a countable sequence of sin() curves

joined end to end and limiting to a sin(1) curve on the back face of the cube. (See Fig-

ure 10.7.) We note that @f has a structure reminiscent of the indecomposable continua

constructed by Michel Smith in [12].

Figure 10.7: The projection of the inverse limit from Example 10.7 onto its first three factor
spaces

Example 10.8. Let the graph of f : [0,1] — 2% be given by the u.s.c. function shown in
Figure 10.8.

We note that the set A = {0, 1} is non-empty, closed, and nowhere dense; moreover,
f(0) = f(1) = [0,1]. Let B be the subset of [0,1]\ {0, 1} consisting of points where f|o 1)\{0,1}
is not differentiable. Note that B is closed in [0,1] \ {0,1} and also nowhere dense. Next,
note that flj1)\(f0,13up) is an open mapping. Furthermore, for each interval of form (0, ¢) in
[0,1] and each y in the interval (0, 1), there exists some = € ([0,1] \ {0,1}) with f(z) = y.
The same statement is true for each interval of form (¢, 1). Thus, the hypothesis of Theorem

6.14 is satisfied, and @f is an indecomposable continuum.

Example 10.9. Let f : [0,1] — 20U be given by squeezing two copies of the steeple graph

in Figure 10.5 into [0,1] x [0, 1], as shown in Figure 10.9.

If we take a1 = 0,a, = }l, as = %, ay = %, and a5 = 1, then the hypothesis of Theorem

7.4 is satisfied and thus, by Corollary 7.5, l'glf is an indecomposable continuum.
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Figure 10.8: The graph of the function f from Example 10.8

Figure 10.9: The graph of the function f from Example 10.9

Finally, we give some illustrative examples of inverse limits on various kinds of linearly

ordered sets.

Example 10.10. Let the graph of g : [0,1] — 210U be the union of the line segment joining

the points (0,0) and (0,1) and the line segment joining the points (0,0) and (1,1).

We note that g?(x) = g(x) for each = € [0,1]; that is, go g = g. So, if X, = [0,1] for
each a < wy, and g, = ¢ for each o < 8 < w;y, we know that the collection of functions
{905 : X5 = C(Xa) ba<p<w is a properly composing collection of surjective u.s.c. functions
and the “long” inverse limit is well-defined. Direct inspection reveals that the “short” inverse
limit of ¢ (denoted by @{[O, 1], g,w}) is a fan with countably many legs and one limit arc.

The long inverse limit of g, i.e., l.ﬂl{[o, 1], g, w1}, is a fan with uncountably many legs, where
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every leg corresponding to a limit ordinal is a limit arc of the legs corresponding to that

ordinal’s predecessors. (See Figure 10.10).

Figure 10.10: Counter-clockwise from top: The graph of g, the short inverse limit, the long
inverse limit

Example 10.11. Let the graph of h : [0,1] — 201 be the union of the line segment joining

the points (0,0) and (0,1) and the line segment joining the points (0,1) and (1,1).

Then h*(z) = h(zx) for each z € [0,1]; i.e., ho h = h. Thus, as in Example 10.10, the
long inverse limit (with h,g = h for all @ < f < w;) is well-defined. The short inverse
limit, @{[o, 1], h,w}, is homeomorphic to [0,1]; on the other hand, the long inverse limit,
@1{[0, 1], h, w1 }, is homeomorphic to the compactified long line, L. (See Figure 10.11.) We
note also that, if the index set for the inverse limit with bonding function A is [0, 1], it may

be shown directly that T&n{[(), 1], h, [0, 1]} is homeomorphic to the Lexicographic Arc.
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Figure 10.11: Counter-clockwise from top: The graph of h, the short inverse limit, the long
inverse limit
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Chapter 11

Possibilities For Future Research

Our mission has been to find necessary and/or sufficient conditions for decomposability
or indecomposability of u.s.c. inverse limit spaces. The results we presented in [15], [16], and
[13] helped pave the way for other mathematicians’ work on this topic (e.g., in [5] and [17]).
With this dissertation, we have further developed the theory of u.s.c. inverse limits and
indecomposability. In particular, we have sought conditions for indecomposability that are
very easy to check, simply by observing some basic characteristics of the bonding functions.
We have given many such conditions, but plenty of work still remains to be done.

One of the major open problems in the theory of u.s.c. inverse limits is finding sufficient
and/or necessary conditions, stated in terms of the bonding functions f;, for lgnf to be a
continuum. As more such conditions are discovered, we will hopefully be able to modify
these conditions to obtain new information about the decomposability or indecomposability
of the inverse limit. For example, Van Nall’s paper [11] contains many results that should
be helpful to us, as well as the wealth of material in the work of Ingram and Mahavier [4].
In general, any new theorem about how u.s.c. inverse limits can generate continua may
potentially lead to a similar theorem about u.s.c. inverse limits generating indecomposable
(or decomposable) continua.

Thus far, we have mostly considered just the property of indecomposability; what
about hereditary indecomposability? We know that there exist continuous bonding functions
f:10,1] = [0, 1] such that lim f'is a hereditarily indecomposable continuum (e.g., f could be
the Henderson map). However, hereditarily indecomposable continua produced as inverse
limits with w.s.c. bonding functions f : [0,1] — 2% that are not singleton-valued (i.e.,

cannot be identified with continuous functions) still remain to be studied. We have shown
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that if f is the inverse of the Henderson map, then the two-sided inverse limit 1'&1{[0, 1], ftiez
is the pseudo-arc. However, we do not yet know of a non-singleton-valued surjective u.s.c.
bonding function f : [0,1] — 2% such that the one-sided inverse limit 1&1{[0, 1, f}2, is
the pseudo-arc. (If such an f exists, it cannot be continuum-valued, for then G(f) would
contain some set of form {a} x [b, c],b < ¢, implying that the inverse limit contains an arc.)

Aside from questions about indecomposability, the more general kinds of inverse limits
seen in Chapters 8 and 9 are interesting in their own right and deserve to be studied further.
The difficulty in obtaining examples of the “long” inverse limits described in Chapter 8 is
finding collections of functions {fa 5 : X — 2¥*},_5-,, that compose properly, so that the
long inverse limit I'&H{Xa, fap, w1} is well-defined. We have noted that if X, = X for each
@, the surjective w.s.c. function f : X — 2% satisfies f = fo f, and f,p3 = f for each
a < f < wi, then {fas: X5 — 2%}, 5-., is automatically a properly composing collection
of functions. Thus, it is of interest to find necessary and sufficient conditions for a u.s.c.
function f: X — 2% (or even just f:[0,1] — 2[%U) to satisfy fo f = f.

As far as the two-sided u.s.c. inverse limits are concerned, it would be helpful to have
more theorems about the relationship between one-sided and two-sided inverse limits. For
example, are there conditions on the bonding function f : [0, 1] — 2[% that would guarantee
the one-sided and two-sided inverse limits are (non)homeomorphic? Or that one space can
be embedded into the other? Also, what topological spaces are homeomorphic to some two-
sided inverse limit with a single surjective u.s.c. bonding function f : [0, 1] — 2[%1? What

spaces are homeomorphic to a two-sided u.s.c. inverse limit, but not a one-sided one?
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