
INVESTIGATION OF ETHERYATRI’S COMPATIBILITY WITH IPV6

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not

include proprietary or classified information.

Srinivasa Sankar Nemani

Certificate of Approval:

______________________________ ______________________________
Dean Hendrix Homer Carlisle, Chair
Associate Professor Associate Professor
Computer Science and Computer Science and
Software Engineering Software Engineering

______________________________ ______________________________
Gerry Dozier Stephen L. McFarland
Associate Professor Dean
Computer Science and Graduate School
Software Engineering

INVESTIGATION OF ETHERYATRI’S COMPATIBILITY WITH IPV6

Srinivasa Sankar Nemani

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
August 7, 2006

 iii

INVESTIGATION OF ETHERYATRI’S COMPATIBILITY WITH IPV6

Srinivasa Sankar Nemani

Permission is granted to Auburn University to make copies of this thesis at its discretion,
upon request of individuals or institutions and at their expense. The author reserves all

publication rights.

__
Signature of Author

__
Date of Graduation

 iv

VITA

Srinivasa Sankar Nemani, son of Venkata Narayana Sarma and Nagamani

Nemani was born 1975, in Vizianagaram, Andhra Pradesh, India. He graduated from

Andhra University in 1996, with a Bachelor of Engineering degree in Mechanical

Engineering. He joined Graduate School, Auburn University in 1996.

 v

THESIS ABSTRACT

INVESTIGATION OF ETHERYATRI’S COMPATIBILITY WITH IPV6

Srinivasa Sankar Nemani

Master of Science, August 7, 2006
(Bachelors of Engineering, Andhra University, India, 1996)

89 Typed Pages

Directed by Homer Carlisle

Internet Protocol version six (IPv6) enjoys only a scant existence today. Many

universities, companies and other organizations are building protocol stacks, hardware

and applications to support IPv6, awaiting its full-fledged emergence into consumers’

lives. This thesis is such an effort to add a .NET based mobile agent system to the list of

application frameworks that support IPv6. An IPv6 enabled mobile agent framework

would help researchers and enthusiasts in their pursuit for a killer application that could

spur IPv6’s growth. Mobile agent community could also benefit in a similar way from

this. This would get mobile agent technology into more hands, there by improving the

chance of finding a killer application, mobile agent community is waiting for.

EtherYatri.NET is one such mobile agent system built using Microsoft .NET Framework.

This thesis investigates EtherYatri.NET’s support for IPv6 and adds the support where

needed. Microsoft .NET Framework SDK 2.0, Visual Studio 2005 Beta2 and

EtherYatri.NET v0.5.7 are used for this thesis.

 vi

ACKNOWLEDGEMENTS

The author would like to express his special thanks to his advisor, Dr. Homer

Carlisle, Associate Professor, Department of Computer Science and Software

Engineering for the guidance and support provided during his research work. The author

would also like to thank his committee members Dr. Dean Hendrix & Dr. Gerry Dozier

for their help with his thesis. The author would like to thank Dr. Hari Narayan, other

professors and staff members of the Department of Computer Science and Software

Engineering for providing inspiration and contributing to the author’s understanding of

various topics of Computer Science.

The author acknowledges Dr. P. K. Raju and Dr. Mrinal Takhur, professors in the

Department of Mechanical Engineering for their support through out his stay at Auburn.

 vii

Style manual or journal used: Guide to preparation and Submission of Theses and

Dissertations, Graduate School, Auburn University

Computer software used: MS Office 2003

 viii

TABLE OF CONTENTS

LIST OF FIGURES ………………………………………………………………….. x

LIST OF SOURCE CODE SAMPLES ……………………………………………… xi

CHAPTER 1: INTRODUCTION TO IPV6 …………………………………………. 1

1.1 Network protocols ………………………………………………………………... 1

1.1.1 The OSI model …………………………………………………………………. 3

1.1.2 The TCP/IP model ……………………………………………………………... 6

1.1.2.1 Internet Protocol V4 ………………………………………………………….. 8

1.1.2.2 Internet Protocol V6 ………………………………………………………….. 13

CHAPTER 2: INTRODUCTION TO ETHERYATRI.NET ………………………… 23

2.1 Software Agents ………………………………………………………………….. 23

2.2 Mobile Agents, a closer look …………………………………………………….. 25

2.2.1 Advantages of Mobile Agents ………………………………………………….. 26

2.2.2 Mobile Agent Frameworks …………………………………………………….. 28

2.2.3 .NET Framework for Mobile Agents …………………………………………... 29

2.2.4 EtherYatri.NET ………………………………………………………………… 33

CHAPTER 3: LITERATURE REVIEW …………………………………………….. 34

3.1 Agent Technologies ……………………………………………………………… 34

3.1.1 Non-Intelligent Agents …………………………………………………………. 34

3.1.2 Intelligent Agents ………………………………………………………………. 35

3.1.3 Mobile Agents ………………………………………………………………….. 37

3.2 Internet Protocol v6 ………………………………………………………………. 45

 ix

CHAPTER 4: ENABLING IPV6 IN ETHERYATRI.NET …………………………. 48

4.1 The Research Environment ………………………………………………………. 48

4.1.1 Setting up an IPv6 test environment …………………………………………… 48

4.1.2 Setting up EtherYatri.NET development environment ………………………… 57

4.3 Enabling IPv6 in EtherYatri.NET ………………………………………………... 62

CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH POSSIBILITIES …... 67

5.1 Conclusions ………………………………………………………………………. 67

5.2 Potential future research ………………………………………………………….. 69

BIBLIOGRAPHY ……………………………………………………………………. 72

 x

LIST OF FIGURES

Figure 1.1 7 layers in the OSI model ………………………………………………… 4

Figure 1.2 Classification of IP addresses …………………………………………….. 9

Figure 1.3 Number of hosts in IP classes …………………………………………….. 10

Figure 1.4 Make up of an IP packet ………………………………………………….. 12

Figure 1.5 Global unicast address ……………………………………………………. 17

Figure 1.6 Local unicast address ……………………………………………………... 17

Figure 1.7 Site local address …………………………………………………………. 18

Figure 1.8 Multicast address …………………………………………………………. 18

Figure 1.9 Make up of an IPv6 header ……………………………………………….. 20

Figure 1.10 IPv6 Extension headers …………………………………………………. 22

Figure 2.1 Communication between a client and a server …………………………… 25

Figure 2.2 Communication between mobile agents ………………………………….. 26

Figure 3.1 IP v6 support in various operating systems ………………………………. 47

Figure 4.1 Windows IP Configuration on host1 before installing IPv6 ……………… 49

Figure 4.2 Installing IPv6 protocol on Windows Server 2003 ………………………. 49

Figure 4.3 Windows IP Configuration on host1 after installing IPv6 ……………….. 50

Figure 4.4 Building the source files using the .NET Framework 2.0 Redistributable .. 56

Figure 4.5 the chat client and server communicating over IPv6 ……………………... 57

Figure 4.6 Two instances of WinAH running on ports 8000 and 8001 respectively … 59

Figure 4.7 creating the HelloWorldDemo agent at port 8000 ………………………... 60

Figure 4.8 sending the agent to another host using the Send Agent dialog ………….. 60

Figure 4.9 Message showing that agent has arrived at the destination ………………. 61

Figure 4.10 Exception - when IPv6 address was used in the destination URL ……… 63

Figure 4.11 Exception - after a valid URL format was used for the destination URL . 64

 xi

LIST OF SOURCE CODE SAMPLES

Source code 4.1 The ConcurrentIO class from Chat.IO.cs …………………………... 52

Source code 4.2 the Chat.Server class from Chat.Server.cs …………………………. 53

Source code 4.3 the Chat.Client class from Chat.Client.cs …………………………... 55

Source code 4.4 using the bindTo property of the channels to bind to IPv6 addresses 65

Source code 4.5 using the bindTo property of the channels to bind to IPv6 addresses 65

 1

CHAPTER 1

INTRODUCTION TO IPV6

Just as humans have gone beyond a solo existence, the days of isolated

information appliances are quickly fading away as wireless networks, the Internet, the

World Wide Web (WWW), broadband connectivity and intranets spread across the

information technology landscape. A variety of devices including house hold appliances,

home and personal entertainment systems, personal communication devices and

computers are providing information to the consumers to help improve their quality of

life. Examples of such devices include alarm clocks, refrigerators, microwave ovens,

televisions, set-top boxes, cell phones, PDAs, camcorders, MP3 players and laptops. The

advent of these information appliances is increasing the demand for connectivity

infrastructure more sophisticated than that currently exists in the world of computer

networks. Future computer networks must support a huge number of devices, enable

secure communications and support always-on devices. Computer network infrastructure

consists of both hardware and software. Advancements to network infrastructure need to

be made in both hardware and software to support the plethora of informational devices.

1.1 Network protocols

Protocol stacks are one of the building blocks of network software. Abstraction of

lower level systems is a key ingredient in the recipe to develop extensible information

systems. The same applies to the development of computer networks as well. Network

 2

software hides hardware complexities and low-level communications details providing a

high-level abstraction for applications. And so, most application programs rely on

network software to communicate instead of interacting with the network hardware

directly [1].

Software that runs network hardware made by different vendors must agree on a

set of rules to be used while communicating. These sets of rules are known as protocols.

“An agreement that specifies the format and meaning of messages computers exchange is

known as a communication protocol” [1].

There are several aspects to network communication. Communicating with

hardware, addressing and handling application specific rules are few of those. Network

protocols would have been very complex, had they addressed all the aspects of network

communication with one set of rules. For that reason, designers have chosen to break the

network protocol into pieces. These pieces most commonly are modeled as layers. In the

layering model, a protocol suite can be designed by specifying a protocol for each of the

layers. Protocols are put to practical use through standards. ISO (International

Organization for Standardization), ANSI (American National Standards Institute), ITIC

(Information Technology Industry Council), IEEE (Institute of Electrical and Electronic

Engineers), EIA/TIA (Electronic Industries Alliance/Telecommunications Industry

Association), ITU-T (International Telecommunication Union - Telecommunication

Standardization Sector) and ETSI (European Telecommunications Standards Institute)

are a few of the international organizations that are responsible for managing the

standards development process [2]. ISO’s OSI model and TCP/IP model are the two most

known layering networking models.

 3

1.1.1 The OSI model

The Open Systems Interconnect Reference Model’s (also known as The OSI

Model) original goal was to provide basis for designing a universal protocol suite. Even

though the suite did not enjoy a widespread and exact implementation, the model became

valuable for education and development of other models. The model defines a set of

layers and a number of concepts that make understanding networks easier.

In the late 1970s, two projects, one administered by the International Organization

for Standardization (ISO), and the other by the International Telegraph and Telephone

Consultative Committee (CCITT), each developed networking models that were very

similar. Later in 1983, these two models merged to form The Basic Reference Model for

Open Systems Interconnection (The OSI Model). In 1984 ISO published it as ISO 7498

and CCITT published it as X.200 [3].

The OSI model which is also known as 7-layer model, defines 7 layers namely

Physical, Data link, Network, Transport, Session, Presentation and Application; Physical

being the lowest and Application being the highest layer.

 4

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 1.1 7 layers in the OSI model

• Physical layer

Layer1: The physical layer carries digital data using electrical and physical

signals. The specifications in physical layer also define voltages & layouts, how

connections are established & terminated and how resources are shared. DSL, ISDN, Fast

Ethernet and ATM are examples of physical layer components.

• Data link layer

Layer2: The Data link layer provides an abstraction for the physical layer.

Physical addresses that are hard-coded into the network cards are used for addressing and

connectivity is available only among locally attached nodes. This layer provides the

services such as error detection and correction to the physical layer. Breaking network

packets into frames of data, controlling access to the media are done at this layer.

Ethernet, HDLC, ADCCP, Aloha and LLC are examples of Data link layer protocols.

 5

• Network layer

Layer3: The Network layer provides addressing, routing, segmentation & de-

segmentation functions for transferring data. The addressing scheme is logical and

hierarchical. IP and IPv6 are examples of Network layer protocols.

• Transport layer

Layer4: Transport layer controls reliability, state and connection for a

communication session. By using port numbers, transport layer can uniquely identify

different applications on a single node on the network. TCP and UDP are examples of

transport layer protocols.

• Session layer

Layer5: The Session layer provides for initiation, termination and restart of

dialogues between application processes. Setting up and closing down TCP/IP sessions is

an example of functionality provided at this layer.

• Presentation layer

Layer6: The Presentation layer abstracts the issues related to data representation

from the application layer. MIME encoding, encryption and similar manipulation are

done at this layer. Converting an ASCII encoded text into a Unicode is an example of

work done at this layer.

• Application layer

Layer7: This layer is the highest layer of the OSI model and interfaces directly to

the application processes. Telnet, FTP, HTTP are examples of Application layer

protocols. [4].

 6

Real world implementations of network protocol suites do not reflect the OSI

model. The failure of the OSI model in this context is attributed to bad timing, bad

technology, bad implementations and bad politics. The competing TCP/IP protocols were

already in widespread use by research universities by the time OSI protocols appeared.

OSI was too complex, some layers are empty (ex: session and presentation) while some

layers are overfull (ex: physical and data link). OSI model has some functions such as

addressing, flow control and error control redundantly defined in different layers. Due to

its complexity, the initial implementations were huge, unwieldy and slow while some

competing implementations were quite good and free. OSI model protocols did not

address issues specific to internetworking. Involvement of governmental organizations

did not help much either [5].

1.1.2 The TCP/IP model

TCP stands for Transmissions Control Protocol and IP stands for the Internet

Protocol. Research work for TCP/IP was started in the late 1960s and early 1970s funded

by the Advanced Research Projects Agency (ARPA), the research wing of the US

Department of Defense (DoD). BBN, an ARPA hired firm developed a research network

called ARPANET that became operational first in 1972. DoD, after building MILNET

(Military Installation in US) and MINET (Military Installation in Europe), to encourage

the wide adoption of TCP/IP, funded BBN and University of California, Berkley to

implement TCP/IP in Berkley version of UNIX. TCP/IP has been the foundation for the

Internet.

ARPA’s goal for TCP/IP was to develop a network that is completely

decentralized and fully redundant so that few non-functioning computers could not bring

 7

the whole network down. The network should be flexible enough to support time-

sensitive applications such as voice.

The TCP/IP model consists of 4 layers namely Network Interface, Internet,

Transport and Application. The network interface layer is the equivalent of OSI model’s

physical and data link layer while the application layer combines the aspects of session,

presentation and application layers from OSI model. The Internet and transport layers

operate at the network and transport layers of the OSI model. With all these goals and

reasons mentioned earlier, TCP/IP stood as a pragmatic approach to network models.

TCP/IP is the most widely used protocol suite in computer networks today. Even though

TCP/IP bears the name TCP, in the transport layer it is not limited to TCP and supports

other protocols such as UDP. The transport layer usually defines ports to uniquely

address various applications running on a host. For example, HTTP applications listen on

TCP port 80.

TCP/IP’s internet layer uses a number of protocols including IP, ARP and ICMP.

IP stands for Internet Protocol and is responsible for addressing and routing packets. ARP

stands for Address Resolution Protocol and is used to match hardware addresses to the IP

address. ICMP stands for Internet Control Management Protocol and is used to report

errors and send messages about the delivery of the packets [6].

1.1.2.1 Internet Protocol V4

In both TCP/IP and the OSI models, network layer is responsible for addressing

and thus dictates the number of devices that can be hosted on a network. The network

layer protocol used in the TCP/IP model is IP (Internet Protocol). The IP standard

specifies that each host is assigned a unique 32-bit number known as the host’s Internet

Protocol address or IP address where a host is any machine that has a two-way access to

other machines on the network [7].

An internetwork is a network of networks. To make routing efficient, the IP

address is divided into two parts. The first part (prefix) identifies a network on the

internetwork while the second part (suffix) identifies a host inside a network. The number

of bits assigned to each of the two parts is not the same across networks. If the sizes were

the same, the number hosts per network would be constant and impractical. For instance,

a small organization may want a network of its own but may not have as many hosts as a

bigger organization. Consequently, there are more small organizations than large

organizations that have a large number of hosts per network. To accommodate varying

sizes of networks, the IP address was originally divided into 5 classes namely A, B, C, D

and E. These classes not only have different number of bits assigned to the prefix and

suffix but also have different address spaces. For instance class A has a smaller prefix

size than its suffix size. So class A can accommodate fewer networks but a large number

of hosts per network. At the same time class A is allocated a bigger address space making

the overall number hosts in the class larger than that of other classes [1].

Figure 1.2 Classification of IP addresses

 8

The fist four bits of an address determine which class the address belongs to and

thus determine the network address and the host address parts of the IP address. Although

IP addresses are represented in binary format in network software, a more user-friendly

notation called dotted decimal notation is used in the user interfaces to the software. The

dotted notation shows the decimal value of each byte (8 bits) of the 4 bytes delimited by a

period (.). Ex: a 32-bit binary number 10000001 00110100 00000110 00000000 is shown

in dotted notation as 129.52.6.0. In dotted decimal notation, the first octet values for

Class A addresses range from 0-127, Class B addresses range from 128-191, Class C

addresses range from 192-223, Class D addresses range from 224-239 and Class E

addresses range from 240-255. Class A addresses are usually registered by huge multi-

national companies with large networks [8]. GE, IBM, AT&T Bell Laboratories and

Xerox have Class A addresses [9]. Auburn University, University of Washington,

Purdue, and MIT have Class B addresses. Usually small businesses and small universities

have Class C addresses. Sometimes small universities and businesses get Class A&B IP

addresses through a registration authority which had leased some Class A&B address

space. Class D addresses are reserved for multicasts and Class E addresses are reserved

for experimental purposes.

Figure 1.3 Number of hosts in IP classes

Since addresses were assigned in one of the three classes shown above, a lot of

addresses were being wasted. For example, if a business wanted 100 addresses, it would

 9

 10

be assigned the smallest class i.e., C which would still waste 156 addresses. Also as the

internet grew, the class based addressing has made the routing tables in the backbone

routers long and less efficient. To overcome these problems, Classless Inter Domain

Routing (CIDR) has been implemented in early 1990s. Instead of being limited to

network identifiers of 8, 16 or 24 bits, CIDR currently uses prefixes anywhere from 13 to

27 bits. Thus, blocks of addresses can be assigned to networks as small as 32 hosts or to

those with over 500,000 hosts. This allows for address assignments that much more

closely fit an organization's specific needs. A CIDR address includes the standard 32-bit

IP address and also information on how many bits are used for the network prefix. For

example, in the CIDR address 206.13.01.48/25, the "/25" indicates the first 25 bits are

used to identify the unique network leaving the remaining bits to identify the specific

host. [10].

There are some IP addresses that are reserved for special purposes [1].

• Network Address

An IP address that has all host bits set to 0 refers to the entire network that is

identified by the network bits of the IP address. Such an address is called Network

Address. Since the Network Address refers to an entire network and not a single host, it

should never appear as the destination address in a packet [1].

• Directed Broadcast Address

An IP address that has all host bits set to 1 is a Directed Broadcast Address for the

network that is identified by the network bits of the IP address. Packets sent to this

address will be delivered to all hosts on the destination network.

 11

• Limited Broadcast Address

An IP address that has all bits (both network and host) set to 1 is a Limited

Broadcast Address. This address is used to send packets to all the hosts that are on the

same local physical network as the sending host.

• This Computer Address

An IP address that has all bits (both network and host) bits set to 0 refers to the

host that it is running on. This computer address is different from a Loopback Address.

For example a host that is configured to request a dynamic IP at startup using DHCP

(Dynamic Host Configuration Protocol), wouldn’t know its own IP (since it has not

requested one yet) and neither would it know the DHCP server’s IP address. In that case

the packets sent contain a source IP address of 0.0.0.0 (This Computer Address) and a

destination IP address of 255.255.255.255 (Limited Broadcast Address).

• Loopback Address

Any IP address with a prefix of 127 is a Loopback Address. The rest of the bits do

not matter. So 127.0.0.1, 127.1.23.47, 127.0.0.0, 127.255.255.255 all are valid examples

of a Loopback Addresses. Network application developers use loopback addresses to test

their applications. The applications that communicate through the protocol stack could

run on the same computer. When one application sends data to another data travels down

the protocol stack to the IP software which forwards it back up through the protocol stack

to the second program. These packets however do not go through the physical layer.

The data in IP layer is sent as packets/datagrams and each packet has a header

area and data area. IP allows the size of datagrams to be determined by the applications,

thus making IP adaptable to many applications.

Figure 1.4 Make up of an IP packet

The IP datagram begins with 4-bit protocol version number and a 4-bit header

length that specifies the number of 32-bit quantities in the header. The SERVICE TYPE

field contains a value to indicate sender’s preference between a route with minimal delay

and a route with maximum throughput. The TOTAL LENGTH field contains a 16-bit

integer that specifies the total number of octets in the datagram including the header and

the data. A sender places a unique identification number in the IDENTIFICATION field

of each outgoing datagram. The identification number is used in reassembling fragmented

datagrams. The FLAGS field indicates whether a datagram is fragmented. The

FRAGMENT OFFSET field tells a receiver how to order fragments within a given

datagram. The TIME TO LIVE field contains the number of hops the datagram can travel

before being discarded. This is used to prevent a datagram from traveling forever around

a path that contains a loop that could be caused by a software malfunction. The TYPE

field identifies the higher layer protocol carried in the datagram [11]. The HEADER

CHECKSUM field ensures that bits of the header are not changed in transit. After that

come the source IP address and the destination IP address. If IP OPTIONS field size does

 12

 13

not add up to a 32 bit multiple, PADDING field is used to contain zero bits to make the

size a 32 bit multiple.

1.1.2.2 Internet Protocol V6

Since its inception in the 80’s, IPv4 has not changed substantially, but its usage by

consumers and their demands have changed. To meet the increasing demands, both the

network hardware and software had to work around IPv4. Examples include local

interpretations of Type of Service field. The following are some of IPv4’s limitations:

• IPv4 addresses have become relatively scarce. Many organizations today

use some sort of Network Address Translation (NAT) services to provide multiple private

IP address that share one public IP address. Often ports have to be mapped from the

public IP address to one of the private IP addresses to accept incoming connections into

the network. That means only one of the hosts on the private network can offer a specific

kind of service. For example there can be only one web server on the private network that

can accept incoming connections on the well known HTTP port 80. Application

developers that develop network applications have to spend time and resources planning

for their applications to work with computers on a private network.

• Due to the way IPv4 addressing works, routers have to maintain large

routing tables.

• Configuring IP addresses and automating the configuration is complex and

could be simplified.

• IPv4 did not provide for encryption at the IP level. Even the IPSec

standard is optional and encryption is a lot of times implemented at the application layer.

(Ex: SSL).

 14

• IPv4 also did not provide for Quality of Service and real-time support.

Real-time delivery of audio and video require efficient routing [12].

The initial work on the next version of IP was referred to as IP – The Next

Generation (IPng). Since the version number 5 was used for an experimental protocol

known as ST, IPng was given the version number 6 and consequently became what is

now known as IPv6.

IPv6 brings with it, the successful design features from IPv4. For example, IPv6 is

connectionless, provides a way to avoid infinite travel of a packet and retains most of the

general features from IPv4 that are essential for network layer. At the same time, IPv6 is

designed from ground up keeping in mind the future demands of the Internet.

There are 5 main groups of features that are new in IPv6 [1].

• Address Size

The most obvious improvement in IPv6 is the size of the address. Address size in

IPv6 is 128 bits as opposed to 32 bits in IPv4. This allows for 2128 or

340,282,366,920,938,463,463,374,607,431,768,211,456 (or 3.4x1038) unique addresses.

Even to assign a unique IP address to every device that needs one, this number is too big.

The reason behind having such large an address space is not only to connect a large

number of devices but also to encourage hierarchical addressing and routing that reflects

the Internet topology making routing more efficient. Initially only a small portion of this

address space is available for use by hosts. Conserving public addresses is no longer

going to be the reason to have hosts on a private LAN using NATs.

 15

• Header Format

By introducing extension headers and not providing backward compatibility with

IPv4 header format, IPv6’s header format is made more efficient for processing by

routers and other network hardware and software. The IPv6 header is a fixed size (40

bytes) and non-essential, optional fields are specified in the extension headers.

• Extension Headers

IPv6 supports extension headers. Extension headers bring extensibility to the IPv6

protocol. When new features are required, the elements that are needed by the feature can

be placed in an extension header. Routers can still transmit the datagram, while network

hardware and software that support the new feature can interpret the extension header.

• Support for audio and video

New fields are defined in IPv6 to help routers make smart choices when a high-

quality/low-cost path is required. Support for Quality of Service is built in.

• Automatic address configuration

IPv6 hosts can configure addresses themselves both in a DHCP (Dynamic Host

Configuration Protocol)’s presence and in its absence. Hosts on a link can automatically

obtain an IP address for that link called link-local addresses making ad hoc connections

easy. These addresses can also be derived from prefixes advertised by local routers.

• Built-in security

IPSec is required in IPv6. Since it is part of the protocol, there is no need for

proprietary implementations and consequently interoperability is easier to achieve.

 16

IPv6 addresses are divided along 16-bit boundaries that are represented in

hexadecimal values and are separated by colons (:). This notation is known as colon-

hexadecimal notation.

For example: 105.220.136.100.255.255.0.0.0.0.18.128.12.10.255.255 is an IPv6

address in dotted decimal notation which in binary format would look like:

01101001 11011100 10001000 01100100 11111111 11111111 00000000 00000000

00000000 00000000 00010010 10000000 00001100 00001010 11111111 11111111

The same in colon-hexadecimal notation would be:

69DC:8864:FFFF:0000:0000:1280:0C0A:FFFF which can further be simplified

by using leading zero suppression which removes leading zeros in each block but

retaining at least one digit in the block. After leading zero suppression, the address looks

like:

69DC:8864:FFFF:0:0:1280:C0A:FFFF which can then be simplified using zero

compression which replaces sequence of zeros with two colons (::). With zero

compression the address becomes 69DC:8864:FFFF::1280:C0A:FFFF. Zero compression

can only be used on one sequence of zeros per address [1].

These techniques are important because many addresses in the IPv6 address space

are expected to have strings of zeros. Especially the IPv4 addresses that are mapped to

IPv6 to help with the transition will contain 96 zero bits in the higher order bits.

In IPv6 the prefix (the network id part) of the address is specified using the CIDR

notation: The address followed by a / and the size of the prefix.

 17

There are a variety of IPv6 addresses [13]:

• Global Unicast Addresses

A global unicast address is routable and reachable on the public IPv6 network. A

global unicast address hast the three high-order bits set to 001. So the address prefix for

the global unicast addresses is 2000::/3. It is followed by a 45-bit Global Routing Prefix.

The three fixed bits and the 45-bits together are referred to as a site prefix. The site prefix

is followed by a 16-bit subnet ID which is followed by a 64-bit interface ID that identifies

an interface on a subnet.

001 Global Routing Prefix Subnet ID Interface ID
3 bits 45-bits 16-bits 64-bits

Public Topology (48-bits) Site Topology Interface Identifier

Figure 1.5 Global unicast address

Public topology includes public internet service providers while site topology

includes the local network services to a site. Network cards are identified by interface

identifiers [14].

• Local Unicast Addresses

Link-Local and Site-Local are the two types of local-use unicast addresses.

Following is the format for Link-Local addresses:

1111111010 0 Interface ID
10 bits 54-bits 64-bits

Figure 1.6 Local unicast address

 18

The prefix for Link-local addresses is always FE80::/64. Link-Local addresses are

valid only on a single link. Example uses include automatic address configuration and

neighbor discovery.

Following is the format for Site-Local addresses:

1111111011 Subnet ID Interface ID
10 bits 54-bits 64-bits

Figure 1.7 Site local address

Site-local addresses are designed to be used for addressing inside of a site without

the need for a global prefix. Site-local addresses have been deprecated by RFC 3879 due

to their ambiguity and fuzzy definition of sites [15] and are still mentioned to be

deprecated in the internet draft on IPv6 addressing [16].

• Multicast Addresses

An IPv6 multicast address identifies a group of interfaces typically on different

nodes. All multicast IPv6 addresses start with a binary 11111111. There are permanently

assigned, reserved, pre-defined and solicited multicast addresses. Multicast addresses

have the following format:

11111111 Flags Scope Group ID
8 bits 4-bits 4-bits 112-bits

Figure 1.8 Multicast address

• Anycast Addresses

An IPv6 anycast address is an address that is used to identify any of the interfaces

that are assigned the same address. A packet sent to an anycast address is routed to the

 19

“nearest” host with that address depending on the distance calculated by the routing

protocols.

Anycast addresses are allocated from the same address space as the unicast

addresses and share the same syntax and format. When a unicast address is assigned to

more than one interface, it turns into an anycast address and the nodes to which the

address is assigned must be explicitly configured as having an anycast address [16]. For

example a subnet router anycast address could be used to provide a more efficient service

by providing multiple routers that can route packets for a subnet.

• Required Addresses

A host and a router are required to identify themselves with their Link-Local

Addresses, any other configured Unicast and Anycast Addresses, the loopback address

and all multicast addresses that resolve to their interfaces.

• Special Addresses

The address 0:0:0:0:0:0:0:0, which can also be written as :: in zero compressed

format, is known as the unspecified address. It is not a valid address to be assigned to any

node or to be routed by an IPv6 router. This address is used to indicate the absence of an

address and is used in situations such as automatic address configuration where the

initializing host does not know the address to be specified in the Source Address field.

The unicast address 0:0:0:0:0:0:0:1, which can also be written as ::1 in zero

compressed format is known as the loopback address and can be used by a node to send

an IPv6 packet to itself. It is a link-local unicast address assigned to a virtual interface

and is not assigned to any physical interface. Packets that are sent outside of a single

node never contain this as the source address or the destination address, routers never

 20

forward a packet with this address as the destination address and packets received on a

physical interface are dropped if they contain this address as the destination address [16].

• IPv6 addresses with embedded IPv4 addresses

IPv4 mapped IPv6 addresses are used for interoperability with IPv4 applications.

The IPv6 address ::FFFF:x.y.z.w represents the IPv4 address x.y.z.w. With an IPv4

mapped IPv6 address, IPv6 only clients and servers can interoperate with IPv4 clients and

servers.

• IPv6 Header:

4-bits 4-bits 4-bits 4-bits 4-bits 4-bits 4-bits 4-bits

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Figure 1.9 Make up of an IPv6 header

• Version: This 4-bit long field indicates the version of IP and is set to 6 in

an IPv6 header.

• Traffic Class: The size of this field is 8-bits. It is used to specify an IPv6

packet’s class or priority. This field is similar to IPv4’s Type of Service field in its

functionality.

• Flow Label: The 20-bit Flow Label field in the IPv6 header is used to

specify the flow to which the IPv6 packet belongs to. There can be zero or more flows

between a source and a destination. By default, the value for this field is zero which

 21

indicates that the packet belongs to the default flow. Flows are used for quality of service

required by communications such as audio and video. Intermediate routers provide

special handling for packets with flow labels.

• Payload Length: It is a 16-bit unsigned integer that indicates the length of

the IPv6 payload following this header in bytes. The length includes the extension

headers. If the payload is bigger than that can be defined with 16-bits (65,535 bytes), the

Jumbo Payload option is used in the Hop-by-Hop Options extension header.

• Next Header: These 8-bits indicate the type of header immediately

following the IPv6 header. Usually indicates the next extension header or the upper level

protocol such as TCP, UDP etc. When indicating an upper layer protocol above the

Internet layer, the same values used in the IPv4 Protocol field are used here. There are

several extension headers, each with a header format. The extension headers have the

following Next Header values:

 22

Next Header

0 Hop-by-Hop Options Header

6 TCP

17 UDP

41 Encapsulated IPv6 Header

43 Routing Header

44 Fragment Header

46 Resource Reservation Protocol

50 Encapsulating Security Payload

51 Authentication Header

58 ICMPv6

59 No next header

60 Destination Options Header

Figure 1.10 IPv6 Extension headers

• Hop Limit: The size of this field is 8 bits. The Hop Limit is similar to the

IPv4 TTL field and is used to avoid infinite travel of packets due to loops.

• Source Address: 128-bit address of the originating host.

• Destination Address: 128-bit address of the intended recipient of the

packet (possibly not the ultimate recipient, if a Routing extension header is present).

 23

CHAPTER 2

INTRODUCTION TO ETHERYATRI.NET

2.1 Software Agents

As computer networks grow and enabling technologies mature, modern software

developers must fit the systems they build into a complex information grid consisting of

servers and clients connected by a plethora of local- and wide-area networks. One of the

most promising ideas for both unleashing the power of distributed systems and reducing

their complexity is agent technology, especially "intelligent" agents. It is difficult to find

a concise definition for agent that is in-line with most researchers’ and developers’ idea

of what an agent should be. The definition given King, J.A. in AI Expert states, “An

intelligent agent is considered to be a computer surrogate for a person or process that

fulfills a stated need or activity. The surrogate entity provides decision-making

capabilities that are similar to the described intentions of a human. This surrogate can be

given enough of the persona of a user or the gist of a process to perform a clearly defined

or delimited task. An intelligent agent can operate within the confines of a general or

precisely represented need and within the boundaries of a given information space” [17].

A more expansive definition of Intelligent Agents given by IBM defines, “Intelligent

Agents are software entities that carry out some set of operations on behalf of a user or

another program with some degree of independence or autonomy, and in so doing,

employ some knowledge or representation of the user's goals or desires. Intelligent agents

 24

can further be described in terms of a space defined by these two dimensions of agency

and intelligence” [18]. These and other definitions of agents indicate that agents should

possess several or all of the following characteristics [18], [19]:

• Autonomy

• Authority

• Mobility

• Interaction with the system

• Asynchrony

• User representation

• Collaboration

• Adaptation, flexibility

• Reasoning and learning

• Independence

• Persistence

• Goal oriented

• Active/proactive

Agents are usually small in size; their collaboration with other agents is what

makes applications. Mobile agents replace the old paradigm of "bringing the data to the

computation" by a new one that says "move the computation to the data". Mobile agents

have the ability to transport themselves from one host to another host that is reachable

over a network. This ability allows mobile agent to move to the host at which the data or

objects that the agent want to interact or collaborate with reside.

2.2 Mobile Agents, a closer look

Mobile agents provide advantages over the traditional client/server architectures.

The following figure illustrates the network behavior of a typical client/server

application.

Host

Client Application

Host

Server Application

In a typical client/server scenario, client and
server applications communicate via

requests and responses causing several
roundtrips across the network

Figure 2.1 Communication between a client and a server

A client/server application typically consists of two components: a client

component and a server component. The client and server components are usually on

separate machines and they communicate over a network. When the client needs to

access data or other resources on the server, it sends a request to the server over the

network. The server in turn sends a response to the request. This request/response

communication occurs many a time in the traditional client/server architectures, such as

Remote Procedure Calls (RPC).

As opposed to the traditional client/server architecture, the mobile agent

architecture does not depend solely on the Remote Procedure Call. The following figure

illustrates the network behavior of mobile agent architecture.

 25

Host

Client Application

Host

Server Application

Client Application
Transports

In a mobile agent architecture, the client
moves to the server and the

requests/responses take place on the
server’s host avoiding too many round trips

across the network

Figure 2.2 Communication between mobile agents

Just like in the client/server architecture, there is a client component and a server

component. When the client needs to access data or other resources that are on the

server’s host, it migrates to the server’s host and makes its requests to the server within

the host as opposed to across the network. When the client finishes its transaction with

the server component, it moves back to its host. For this process to take place the mobile

agent architecture has to provide means to transport state and code. State consists of the

properties of the object before it starts its journey and is used to reconstruct the object

when it arrives at the destination. Code includes the behavior that the object exhibits

upon arrival at the destination [20].

 26

 27

2.2.1 Advantages of Mobile Agents

Mobile agent architectures have myriad advantages to it in the network computing

world. Danny B. Lange and Mitsuru Oshima, mention the following as seven good

reasons to using mobile agents [20]:

• They reduce the network load

• They over come network latency

• They encapsulate protocols

• They execute asynchronously and autonomously

• They adapt dynamically

• They are naturally heterogeneous

• They are robust and fault-tolerant

Mobile agents reduce the network load by packaging conversations and

dispatching to the destination host and in turn reduce the flow of raw data in the network.

As mobile agents can be dispatched from a central controller to act locally and directly

execute the controller’s directions, they facilitate real-time systems such as robots by

reducing latencies. Since mobile agents move to the host to communicate with the

components, it is easier to abstract protocols, thus making it easy for protocols to evolve.

After being dispatched, the mobile agent can continue to work independent of its

originating process and host even with the originating host disconnected. Mobile agent

paradigm lends itself to let programmers, program adaptability into the components.

Mobile agents by nature need to be heterogeneous for them to move to a variety of host

systems. Since mobile agent systems need to be independent, they tend to be fault-

tolerant and recover themselves in an unfavorable situation.

 28

These characteristics allow mobile agents to be used to build applications in a

variety of domains including Electronic Commerce, Personal assistance, Secure

brokering, Distributed information retrieval, Telecommunication network services,

Workflow applications and group ware, Monitoring and notification, Information

dissemination and Parallel processing [21].

2.2.2 Mobile Agent Frameworks

Mobile agents demand certain features from the technologies that are used to

implement the infrastructure. These features include:

• An RPC (Remote Procedure Call) or RMI (Remote Method Invocation)

mechanism for hosts to communicate with each other and for the agents to notify (call

methods on) other agents on remote hosts.

• An object transfer capability for messages to carry objects back and forth.

This capability helps a host to send an agent to another host by allowing the agent object

to be passed as a parameter to a message.

• A dynamic type loader that can load types into the remote host’s memory to

rebuild the agent that is transferred.

• Platform independence, to let agents that are created on one platform to be run

on a remote host on a different platform.

• Security on the host to protect the host’s local resources from a malicious

agent.

Besides the above mentioned requirements, there are some other features that

make the agent frameworks more useful to the developers and users. These include:

 29

• A simple, robust and scalable programming environment preferably with rapid

application development capabilities that include a vast set of APIs (Application

Programming Interfaces)

• Platform independent GUI (Graphical User Interface) support including Drag

and Drop features for the users to be able to interact with the agents in a consistent way

independent of the operating system they are running the agent system on.

• Secure protocol support for the communication channels that carry agents and

their data from one host to another.

• Multi-threading support to isolate agents from each other for enhanced

security.

• An object oriented development environment that makes it easy to develop

reusable components and behavior repositories to make agent development faster.

• Ability to work through firewall restrictions in corporate environments.

2.2.3 .NET Framework for Mobile Agents

The .NET Framework consists of two main parts: the common language runtime

(CLR) and a vast class library. The .NET Framework provides support for several of the

features needed to implement a mobile agent framework.

• The .NET Remoting provides tools and APIs for .NET applications to invoke

methods on and pass parameters to objects that are hosted in a separate process usually

on a remote machine. Using the .NET Remoting API, one can develop the

communications layer required for the mobility of the agents and for agents to

communicate with agent hosts and other agents residing in remote agent hosts. The .NET

Framework also provides support for developing and consuming web services and APIs

 30

for socket programming. Mobile agent frameworks that cannot be built using the .NET

Remoting could use web services or low-level socket communication.

• The .NET Framework provides several ways to serialize objects. Objects can

be serialized using binary serialization, XML serialization, SOAP serialization and

custom serialization. Binary, XML and SOAP can further be customized by use of

attributes and other mechanisms. Object serialization allows for objects that are in

memory to be converted into bytes. Since agents are typically modeled as objects, they

need to be serialized to be transmitted to remote hosts.

• The .NET Framework has built in support to dynamically download

assemblies and load them into memory. This capability can be used by agent hosts to

download the necessary assemblies while receiving an agent from another agent host.

• CLR acts as a virtual machine by abstracting the underlying platform from

applications built on the .NET Framework. These applications are referred to as managed

applications. It is possible for managed applications that are built on one platform to run

on a different platform as long as the target platform has a CLR available for it. Mobile

agent frameworks built using the .NET Framework implicitly are platform independent

and allow agents to be platform independent as well.

• Code Access Security is an integral part of the CLR and provides services that

can be utilized to verify the identity of an assembly against tampering. The .NET

Framework Class Library contains several classes that can be used for authenticating,

authorization and cryptography. These classes along with Code Access Security can

provide the necessary security infrastructure for developing mobile agent frameworks as

 31

security is a critical requirement in an environment where agents can arrive from remote

computers and perform tasks on a local computer.

The .NET Framework has several other features mentioned below, that make it

attractive for both mobile agent framework developers and mobile agent application

developers.

• The .NET Framework provides support for multiple-programming languages

by allowing language compilers to compile code into Intermediate Language (IL) that can

be understood by the CLR. And the .NET Framework SDK comes with two

programming languages namely C# and VB.NET. Both C# and VB.NET are rich with

object oriented features such as encapsulation, inheritance, selective polymorphism,

operator overloading, event driven programming using delegates, enhanced loops and

switch statements, generics etc. C# offers a syntax that is familiar to Java, C and C++

programmers while VB.NET offers a syntax that is familiar to Visual Basic developers.

The .NET Framework provides features such as automatic memory management, runtime

type checking and a huge library of classes. These features make .NET a simple, robust

and scalable programming environment.

• The .NET Framework Class Library includes several classes to support

encryption and decryption of data. This can be used to encrypt communication between

agent hosts and agents.

• The .NET Framework allows for creating AppDomains that can load agent

assemblies and can be isolated from the agent host AppDomain. Through its support for

inter AppDomain and inter process communication using .NET Remoting and other

 32

features, the .NET Framework lets developers provide enhanced security to agent hosts

and agents from malicious agents.

• There are various Integrated Development Environments (IDEs) that are

available for developers to build .NET applications. Microsoft Visual Studio .NET is

such an IDE that integrates web and windows development and through its plug-in

architecture supports multiple languages in the same IDE. Project and code templates can

be used to implement repositories of agent behaviors and promote re-usability. Thses

Rapid Application Development features both in the languages and in the IDE make the

.NET Framework and Visual Studio .NET attractive for mobile agent developers.

Through its support for multiple languages, it welcomes even more programmers to the

community.

• ASP.NET, and integral part of the .NET Framework provides support for web

applications and web services thus opening the possibility for developing a mobile agent

framework that can use Hyper Text Transfer Protocol (HTTP) and Extensible Markup

Language (XML) to overcome firewall restrictions.

The .NET Framework is also the foundation for many technologies that Microsoft

is releasing in the near future. These include:

• Windows Presentation Foundation code named Avalon consists of a

declarative programming language called Extensible Application Markup Language

(XAML) and a library of classes that can utilize the rich UI experience provided by the

framework. XAML should encourage agent developers to build nice graphical user

interfaces that would improve the usability of agent hosts and agent based applications.

 33

• Windows Communications Foundation code named Indigo provides the

communications infrastructure necessary for building future mobile agent frameworks.

Indigo has features such as built-in security, transaction management, service-oriented

programming model, web services architecture and pluggable communication channels.

These features allow for the development of a mobile agent framework that can

overcome firewall restrictions, is secure, collaborate with other mobile agent frameworks,

is adaptive to newer communication protocols such as IPv6 and potentially drive towards

a mobile agent protocol that can be used by heterogeneous systems.

2.2.4 EtherYatri.NET

EtherYatri.NET is one of the few mobile agent frameworks developed using the

.NET Framework. EtherYatri.NET was initially developed in 2003 by Siddharth Uppal of

National Institute of Technology, Warangal, India as part of his undergraduate project.

The toolkit is further developed and enhanced by its open source community [21], [22].

EtherYatri.NET toolkit includes Windows Agent Host (WinAH) that hosts mobile agents.

It also comes with Visual Studio item templates that make it easy to develop mobile

agents. EtherYatri.NET framework uses .NET features such as object serialization,

remoting, object-oriented design etc. With the introduction of EtherYatri.NET, mobile

agent community is now equipped with yet another framework to build mobile agent

applications with. Providing IPv6 support for EtherYatri.NET encourages both the IPv6

and mobile agent communities to help find applications for both technologies. This thesis

investigates IPv6 support in EtherYatri.NET.

 34

CHAPTER 3

LITERATURE REVIEW

Many research hours have been spent in both mobile agents and IPv6. The result

is various mobile agent frameworks in Java & .NET and quite a few applications and

frameworks that are IPv6 enabled.

3.1 Agent Technologies

Existing work in the area of Agent Technologies can be categorized into three

categories:

• Non-Intelligent Agents

• Intelligent Agents

• Mobile Agents

3.1.1 Non-Intelligent Agents

Lot of existing software applications come into this category. Typically any

program that has characteristics such as asynchronous execution, scheduling etc., is an

agent. Anti-Virus programs can monitor currently running applications asynchronously

for any malicious activity and/or can be scheduled to run in the absence of the user to

scan for viruses. System tools under windows operating systems when configured, search

for unused temporary files and delete them to save disk space on the computer. More

advanced applications such as online stock brokerage systems have program logic that

can buy or sell stocks in the absence of the user when certain criteria are met. Some

 35

online job search websites such as Monster.com and Dice.com have search agents that

can be configured to notify the users through various communication channels such as e-

mail etc., when jobs that match users’ interests are available.

Above mentioned applications are only a few of the many applications that are

currently helping users to perform tasks on behalf of the users. Although seldom accepted

by researchers as Software Agents due to their lack of intelligence, some of the above

mentioned applications are already known to the masses as Agents. Some other names

that are in use for such programs include knowbots (short for knowledge-based robots),

softbots (short for software robot), taskbots (short for task-based robots), userbots (short

for user robots), personal agents, autonomous agents and personal assistants. These

applications are acting asynchronously on behalf of the users. They are intelligent to the

extent of the logic users build into them. But they are not intelligent enough to change

their own logic or learn from their past.

3.1.2 Intelligent Agents

There are numerous software applications that come into this category. These

applications often possess Artificial Intelligence capabilities and thus are autonomous.

Existing Intelligent Agent projects include:

• NARVAL Project - Intelligent Personal Assistant

NARVAL an acronym for Network Assistant Reasoning with a Validating Agent

Language is an open-sourced framework that includes a language, an interpreter and an

Integrated Development Environment for setting up intelligent personal assistants (IPA).

Using NARVAL one can setup a Personal Assistant that can run on one’s machine or on

 36

a remote server and can be communicated with via various communication mechanisms

such as email etc [23].

• CLIPS

CLIPS stands for C Language Integrated Production System. It provides a

development environment for creating expert systems based on rules or objects [24].

CLIPS uses the Rete algorithm to process rules efficiently [25].

• JESS

JESS stands for Java Expert System Shell. JESS a rule engine and scripting

environment developed using Sun's Java TM language by Ernest Friedman-Hill at Sandia

National Laboratories in Livermore, CA [26]. JESS’s design was inspired by the CLIPS

system and added capabilities such as backwards chaining and the ability to “reason”.

Using Jess, one can build Java applets, applications and scripts that have the capacity to

work as intelligent agents using pre-defined knowledge in the form of declarative rules.

Like CLIPS, Jess uses the Rete algorithm to process rules efficiently [25].

• LISA

LISA stands for Lisp-based Intelligent Software Agents. LISA is implemented in

the Common Lisp Object System (CLOS). LISA is a production-rule system influenced

by CLIPS and JESS and uses Rete algorithm [25]. LISA does not impose special contract

restrictions such as inheriting from a specific class on Java objects and thus makes it

possible to add reasoning functionality to existing CLOS applications. Since LISA is an

extension to Common Lisp, all the features of Lisp are available [27].

 37

• IDOL Agents from Autonomy

Intelligent Data Operating Layer (IDOL) is a digital content processing system

developed by the Autonomy Corporation in San Francisco; CA. IDOL offers several

features that enable organizations to effectively use digital content. Personalized Agents

is one such feature. IDOL’s Personalized Agents can be configured to alert and present

users with customized reports by monitoring a variety of content repositories including

news feeds, chat-streams, intranet and internet content [28].

3.1.3 Mobile Agents

Agents, due to their representative nature, have an inherent desire to network with

systems including other agents to perform a task delegated by the owner in the most

optimal way possible. As computer networks became more common, the demand for

distributed applications increased tremendously. And many frameworks that enabled

agents to use resources and data on remote systems were developed expanding the reach

of a personal intelligent agent far away from the user’s computer. Many of these

frameworks were built with support for inter-agent communication while some had

support for migration of the agents themselves. Following are some of the frameworks

and enabling technologies:

• KQML

KQML stands for Knowledge Query and Manipulation Language [29]. KQML,

developed by the external interfaces working group of the DRAPA Knowledge Sharing

Effort, is a language for communication between agents. KQML is intended to be a high-

level language to be used by knowledge-based systems to share knowledge at run time.

 38

KQML provides a universal communication language that allows for interaction and

interoperation with other software agents.

• JASPER

JASPER stands for Joint Access to Stored Pages with Easy Retrieval [30].

JASPER is an intelligent agent system that facilitates agents which on behalf of the user

can retrieve information from the internet based on the user’s input, learn from user’s

behavior and communicate with other agents allowing users to quickly and effectively

share relevant information.

• JAT

JAT stands for Java Agent Template [31]. JAT is developed using the Java

language and provides a template for building agents which communicate with other

agents over the Internet. JAT abstracts the low level messaging and communication

functionality so that agent authors can focus on application design. JAT agents are very

close to being mobile agents but do not have built-in functionality to migrate from one

host to another. Agents communicate with each other using KQML messages and could

use Java’s Remote Method Invocation (RMI) to migrate to another host via an agent. JAT

agents could be Java applications or Applets.

While distributed agent frameworks and enabling technologies evolved, the

underlying Remote Procedure Call (RPC) mechanisms also became more sophisticated

and virtual machines were built. Some of the popular RPC mechanisms that let programs

running on heterogeneous systems interact are Common Object Request Broker

Architecture (CORBA) [32], Java Remote Method Invocation (RMI) [33], Microsoft

Distributed Component Object Model (DCOM), .NET Remoting [34] and Web Services

 39

[35], [36]. And the virtual machines supported the popular “Write Once Run Anywhere”

paradigm. With these technologies in place, building frameworks that enabled software

programs to communicate with and send objects to programs running on remote systems

became more feasible.

Now, many mobile agent frameworks are available that support migration of

agents. These include:

• AgentSpace

AgentSpace [37] is a mobile agent system built using Voyager [38] for

communication layer and Java as the development environment. AgentSpace system

consists of three components: a server, a client and an API. The server hosts and provides

necessary services for the agents. The AgentSpace client is a loosely coupled system of

applets that enables management of the agents and the servers remotely. AgentSpace API

is used to develop agents that adhere to the contracts defined by the framework [39].

AgentSpace offers some additional features that usual Java based mobile agent

frameworks don’t offer. These include a database to store agents, a sophisticated

middleware offered via Voyager that brings a richer communication mechanism than

Java RMI and allows agent authors to specify a custom callback method using Java

reflection, thus allowing for a more elegant code. Voyager is an Object Request Broker

(ORB) from Recursion Software, Inc. Voyager simultaneously supports both CORBA

and RMI and has support for Web Services through the integration of SOAP and WSDL.

• Aglets SDK

Aglet SDK is a mobile agent software development kit developed at IBM’s Tokyo

research laboratories [40]. Aglet stands for light weight agent. IBM’s Aglets SDK is built

 40

on Java RMI and ships with Tahiti, an Aglet server. Aglets framework uses Agent

Transfer Protocol (ATP) as the underlying protocol to transport agents. One can develop

Aglets using the SDK and host them in Tahiti. Tahiti has a simple to use user interface to

manage the Agent Host. Since Aglets SDK is built on top of JDK, one can use all the

libraries that can be used from any Java program. Besides the support for mobility, Aglets

SDK also supports persistence of the agents.

• Ajanta

Ajanta is a mobile agent platform [41] built in Java. Agents can be deployed and

run in the context of Agent Servers and can migrate from one server to another one.

Applications built using Ajanta include “Active Monitoring of Network Systems using

Mobile Agents" [42].

• ARA

Agents for Remote Action (ARA), is a Tcl-based mobile agent framework from

the University of Kaiserslautern [43]. Agents are executed as independent processes so

that they can be isolated from potentially malicious agents. Agents run in the core that is

a single application process on top of the operating system. ARA also supports agents

that are developed in different programming languages through interpreters. Mobile

agents are usually run in an interpreter for reasons of portability and security.

• Concordia

Mitsubishi’s Concordia [44] offers a full-featured middleware infrastructure for

the development and management of network-efficient mobile agent applications. Similar

to other Java Mobile Agent Frameworks, Concordia’s agents are hosted in agent servers.

In Concordia system, agents migrate through Conduit Servers. One of the important

 41

differences between Concordia and other agent frameworks is the ability to have different

entry points for the agent at different stops during its itinerary.

• D’Agents

D’Agents, formerly known as Agent Tcl is an academic project from Dartmouth

[45] and is based mainly on Tool Control Language (TCL). Security is one of the main

research areas and is implemented with Safe-TCL, a restricted environment for TCL.

Unlike many mobile agent environments the D’Agents since 2.0 has support for multiple

languages.

• FarGo

FarGo [46] is an environment for portable applications. The programming model

extends Java, yet remains as close as possible to the regular Java programming model.

FarGo has the capability to move an entire application among hosts while the application

is still running. The layout can be programmed separately from the application's logic

either within the application, or externally using a scripting language. Unlike in the other

mobile agent environments, in FarGo complex applications which may include clients

and servers take the place of agents. So rather than moving an agent FarGo has the ability

to move an entire multi-tier application among hosts. FarGo is a research project,

conducted at the Technion - Israel Institute of Technology, Department of Electrical

Engineering.

• Tryllian’s Agent Development Kit

Agent Development Kit (ADK) [47] is one of the few Mobile Agent Frameworks

available commercially. ADK is built in Java, Extensible Markup Language (XML) [48]

and JXTA [49]. The peer-to-peer communication between agents is achieved through a

 42

JXTA-based distributed architecture with XML message-based communication that

supports both FIPA [50] and SOAP. ADK environment comprises of Habitats, Rooms

and Agents. Habitat is where agents, rooms, and messaging are hosted. A habitat is a

collection of rooms that share a common code base and a Java Virtual Machine (JVM). A

habitat also provides an Agent Runtime Environment (ARE), i.e., a JVM that provides

various services. Examples of services include the agent execution model, inter platform

communication, inter habitat agent travel, room & agent persistence and security model.

A room is a container that holds agents and their resources. A room is the travel

destination for mobile agents and the rooms typically provide agents with a registry

service, where agents can check in and out when they enter or leave the room. This is

also where agents can advertise their properties and capabilities, in order for other agents

to find them. Each room has a unique address that agents use during their travels. An

agent has the ability to move itself to another location, but the location needs to have a

habitat installed. Besides these components, as a commercial development kit, ADK

comes with some pre-built agent behaviors to shorten development times.

• Gypsy

The Gypsy project on mobile agents is a mobile agent development environment

developed by the Distributed Systems Group of the Information Systems Institute at the

Technical University of Vienna. Gypsy has Agent Servers, Communicators, Places and

Agents themselves. Agents move from one Place that is hosted in a Gypsy Server to

another Place hosted on another Gypsy Server through Communicators [51]. Gypsy has

the capability to transport agents by email through its Email Agent Communicator.

 43

Gypsy also implements the agents as Java Beans [52] which enables these agents to be

managed in a Graphical User Interface environment with features such as drag and drop.

• TACOMA

TACOMA (Tromse And COrnell Moving Agents) [53] project is a collaboration

among the University of Tromsø, Norway, Cornell University and University of

California, San Diego. Originally based on UNIX and Tcl-TCP (Transmission Control

Protocol), the latest version of TACOMA is written in C and supports agents that are

written in various programming languages such as C, Tcl/Tk, PERL, Python and Scheme.

TACOMA has also been ported to Windows NT, Windows CE and Palm OS.

The .NET Framework allows mobile agent frameworks to provide multiple

programming language support to agent authors. There are rapid development tools

available from Microsoft to speed up the process of developing agent frameworks as well

as agents. Several mobile agent frameworks are built using the .NET Framework.

• MAPNET

MAPNET [54] is a .NET based mobile agent platform. Its basic design is based

on the Mobile Agent System Interoperability Facilities (MASIF) [55] specification. The

MAPNET system is developed at the Technical University of Varna, Bulgaria and

includes an agent server that hosts mobile agents. It relies heavily on .NET features such

as threading, remoting, serialization and security. They’ve also implemented a global

service for registering agents and agent service using remoting. Future work directions

include strengthening security by enforcing agents' permissions, and extending the class-

loading service.

 44

• EtherYatri.NET

EtherYatri.NET [21] was originally developed as a research project at National

Institute of Technology in Warangal, India. It later has been improved and maintained by

the open source community. EtherYatri.NET is a .NET based mobile agent system. It

includes WinAH (Windows Agent Host) that hosts mobile agents and leverages Visual

Studio.NET’s rapid application development capabilities by providing agent templates

and using declarative programming model at places. EtherYatri is also used at Monash

University in Australia as part of their mobile agent coursework. Current improvements

are being made to the framework by the open source community [22].

Some other mobile agent technologies are JATLite from Stanford University,

Jumping Beans from Aramira Corporation, Knowbot System Software from Corporation

for National Research Initiatives, Mobile Agent Platform from Universita' di Catania,

Mobile Code Toolkit from Carleton University, MONADS from the University of

Helsinki, Plangent from Toshiba Corporation and SOMA: Secure and Open Mobile

Agent from University of Bologna. FIPA, JAFMAS [56] and MARS [57] are standards

and frameworks that facilitate interoperation of heterogeneous agent systems.

David Wallace Croft’s “Intelligent Software Agents: Definitions and

Applications” [58] and “Software Agents Fundamentals” from BTexact Technologies

[59] have definitions for many kinds of agents that include Software Agents, Intelligent

Software Agents, Mobile Agents, Distributed Agents, Multiple Agents, Collaborative

Agents, Social Agents, Interface Agents, Reactive Agents and Hybrid Agents. They also

have useful discussions about what agents are and what they are not.

 45

3.2 Internet Protocol v6

A lot of research work is going on to define IPv6 protocol, addressing and other

pieces. At the same time much work has been done by universities, corporations and

open-source communities to get IPv6 implementations into as many hands as possible.

The result is that now many operating systems ship with one or more implementations

that support IPv6.

Shortage of IP addresses, technical limitations of IPv4 were among several

reasons that prompted IETF in 1992, to start the initial discussions about a new internet

protocol. The initial proposals used several names including “IPv7” for the new protocol.

A common name, IP: Next Generation (IPng) was introduced in the initial Requests for

Comments (RFC) to generally identify the eventual next generation of IP. A comparison

of proposals submitted in May 1993 [60] and a white paper solicitation in December

1993 [61] are examples of such RFCs. After two years of discussions, IPv6 was chosen

as the final IPng proposal and starting with a specification for IPv6 in December 1995

[62], many proposals have been made covering various aspects of IPv6 and rendering

some previous proposals obsolete [63]. Specifications in several areas of IPv6 have

matured over many revisions while other areas of IPv6 are still being worked on. There

have been new proposals made as late as 2005 including one on IPv6 scoped address

architecture in March 2005 [64].

Microsoft Research made available an IPv6 implementation in 1998. Two years

later, in March 2000 a technology preview for Windows 2000 systems was released.

When Windows XP was released in October 2001, it included an IPv6 stack and

necessary components for developers to enable IPv6 in their applications. The first

 46

production stack and components were shipped with Microsoft Windows Server 2003

family of operating systems in March 2003. The Advanced Networking Pack for

Windows XP that was released in July 2003 included an IPv6 Internet Connection

Firewall and a Teredo client. With the release of Windows XP Service Pack 2 in August

2004, Microsoft replaced the IPv6 Internet Connection Firewall by adding support for

IPv6 in their regular Windows Firewall. Today both Windows Server 2003 family and

Windows XP ship with various implementations of IPv6 including a dual stack and IPv6

over IPv4 tunneling protocols such as Teredo, Intra-Site Automatic Tunnel Addressing

Protocol (ISATAP) [65].

Other operating systems such as Macintosh, UNIX, Linux and several routers

provide IPv6 implementations. Macintosh OS X, also known as Jaguar supports IPv6

since version 10.2. The KAME project and INRIA provide free implementations of IPv6

for BSD Unix. Following is a table that shows IPv6 support in various flavors of UNIX.

 47

UNIX OS Earliest version with

built-in support

Earliest version

supporting KAME

Earliest version

supporting INRI

IBM AIX 4.3

BSDI 3.1 4.0 3.1

COMPAQ Tru64 4.0D

Free BSD 4.0 2.2.8 2.2.5

IRIX 6.5.19

LINUX Kernel 2.2

Net BSD 1.5 1.4.2 1.3.3

Open BSD 2.7 2.7

Solaris 8

HP-UX 11i

Figure 3.1 IP v6 support in various operating systems

Several router vendors such as Cisco, Hitachi, Nortel Networks, Juniper

Networks, 6wind, IIJ and Yamaha offer hardware that support IPv6 [66].

With support available from OS and hardware vendors, many researchers and

enthusiasts started porting several applications to run on IPv6. These applications span a

across areas such as mail, multi-media, DNS and Remote Access [67]. Both Java and the

.NET Framework have support for enabling IPv6 in the applications. There is ongoing

research work in the area of building IPv6 enabled distributed applications based on Java

& the .NET Framework. The topic of thesis and a unicast discovery protocol

implemented using IPv6 and JINI [68] are examples of such work.

 48

CHAPTER 4

ENABLING IPV6 IN ETHERYATRI.NET

This thesis investigates the IPv6 capabilities of the EtherYatri.NET mobile agent

framework. An IPv6 test environment is setup using virtual machines. The

EtherYatri.NET framework’s open source project is used to understand its architecture

and the framework is evaluated against the test IPv6 network. A list of items to be altered

in the framework for it to work with IPv6 protocol is formed. These changes are made in

the open source project and the project is re-evaluated against the IPv6 test network.

4.1 The Research Environment

The environment used for this investigation consists of the following components:

• Virtual PC virtual machine software

• Windows Server 2003 operating system with built-in IPv6 stack

• Visual Studio 2005 development environment

• .NET Framework SDK 2.0

• EtherYatri.NET mobile agent toolkit

4.1.1 Setting up an IPv6 test environment

Two virtual computers named host1 and host2 are created using the Virtual PC

software and Windows Server 2003. A local only network is setup between host1 and

host2. On a local only virtual network, virtual machines can see each other and are

isolated from the host machine’s network. Other kinds of networks supported by the

Virtual PC are used to transfer files to and from the host machine.

By default, IPv6 is disabled in Windows Server 2003. The ipconfig command can

be used to see the IP configuration on a windows machine.

Figure 4.1 Windows IP Configuration on host1 before installing IPv6

IPv6 is enabled on both the computers using the install protocol feature in the

network adapter properties dialog.

Figure 4.2 Installing IPv6 protocol on Windows Server 2003

 49

Running the ipconfig command after installing the IPv6 protocol shows the IPv6

address, Teredo Tunneling address and Automatic Tunneling address. Installing IPv6

protocol automatically creates the Teredo and Automatic Tunneling interfaces.

Figure 4.3 Windows IP Configuration on host1 after installing IPv6

To test the IPv6 setup and the IPv6 capabilities of the .NET Framework, a simple

client-server program is written using C# and System.Net classes of the .NET

Framework. This program consists of three files namely Chat.IO.cs, Chat.Server.cs and

Chat.Client.cs.

The Chat.IO.cs file contains a multi-threaded Chat.IO.ConcurrentIO class that

simultaneously sends local console input to the remote stream and prints text from the

remote stream on the local console. This class is used by both Server and Client classes

for IO.

 50

 51

using System;
using System.IO;
using System.Threading;

namespace Chat.IO
{
 public class ConcurrentIO
 {
 private Stream mRemoteStream;

 public ConcurrentIO(Stream remoteStream)
 {
 this.mRemoteStream = remoteStream;
 }

 private ManualResetEvent mLocalInputWaitHandle = new ManualResetEvent(false);
 private ManualResetEvent mRemoteInputWaitHandle = new ManualResetEvent(false);
 public void Start()
 {
 Thread remoteInputThread, localInputThread;
 Console.WriteLine("Enter ^Z to end.");

 localInputThread = new Thread(new ParameterizedThreadStart(this.ReadWrite));
 localInputThread.IsBackground = true;
 localInputThread.Start(false);

 remoteInputThread = new Thread(new ParameterizedThreadStart(this.ReadWrite));
 remoteInputThread.IsBackground = true;
 remoteInputThread.Start(true);

 int index = EventWaitHandle.WaitAny(new WaitHandle[]
 { this.mLocalInputWaitHandle, this.mRemoteInputWaitHandle });
 throw new ApplicationException((index == 0 ? "Local" : "Remote")
 + " input has ended.");
 }

 private void ReadWrite(object useRemoteStreamAsInput)
 {
 TextReader reader = null;
 TextWriter writer = null;
 ManualResetEvent waitHandleToBeSet = null;
 string line = null;

 try
 {
 if((bool)useRemoteStreamAsInput)
 {
 reader = new StreamReader(this.mRemoteStream);
 writer = Console.Out;
 waitHandleToBeSet = this.mRemoteInputWaitHandle;
 }
 else
 {
 reader = Console.In;
 writer = new StreamWriter(this.mRemoteStream);

 52

 waitHandleToBeSet = this.mLocalInputWaitHandle;
 }

 while ((line = reader.ReadLine()) != null)
 {
 writer.WriteLine(line);
 writer.Flush();
 }
 }
 catch(IOException ioex){}
 finally
 {
 waitHandleToBeSet.Set();
 }
 }
 }
}

Source code 4.1 The ConcurrentIO class from Chat.IO.cs

The Chat.Server.cs file contains a Chat.Server class that opens a socket and

listens for incoming connections on an IP address and a port number that can be passed as

command line arguments. It accepts a single connection, prints out the connection end

point information and hands over the remote stream to an instance of the ConcurrentIO

class for IO processing.

 53

using System;
using System.Net;
using System.Net.Sockets;

namespace Chat
{
 class Server
 {
 static void Main(string[] args)
 {
 Socket connection=null;
 try
 {
 if (args.Length != 2)
 {
 Console.WriteLine("Usage: Chat.Server <ipaddress> <port>");
 return;
 }
 TcpListener server = new TcpListener
 (IPAddress.Parse(args[0]), int.Parse(args[1]));
 server.Start();
 connection = server.AcceptSocket();

 Console.WriteLine("Local:");
 Console.WriteLine("\tIP Address:\t\t" +
((IPEndPoint)(connection.LocalEndPoint)).Address.ToString());
 Console.WriteLine("\tIP Address Family:\t" +
((IPEndPoint)(connection.LocalEndPoint)).AddressFamily);
 Console.WriteLine("\tTCP Port:\t\t" + ((IPEndPoint)(connection.LocalEndPoint)).Port);
 Console.WriteLine("Remote:");
 Console.WriteLine("\tIP Address:\t\t" +
((IPEndPoint)(connection.RemoteEndPoint)).Address.ToString());
 Console.WriteLine("\tIP Address Family:\t" +
((IPEndPoint)(connection.RemoteEndPoint)).AddressFamily);
 Console.WriteLine("\tTCP Port:\t\t" + ((IPEndPoint)(connection.RemoteEndPoint)).Port);

 Chat.IO.ConcurrentIO io =
 new Chat.IO.ConcurrentIO(new NetworkStream(connection));
 io.Start();
 }
 catch(Exception ex)
 {
 if(ex.Message.StartsWith("Local"))
 connection.Close();
 Console.WriteLine(ex.Message);
 }
 }
 }
}

Source code 4.2 the Chat.Server class from Chat.Server.cs

 54

The Chat.Client.cs file contains a Chat.Client class that opens a socket connection

to a server listening on an IP address and a port number that can be passed as command

line arguments. Once the connection is established, it prints out the connection end point

information and hands over the remote stream to an instance of the ConcurrentIO class

for IO processing.

using System;
using System.Net;
using System.Net.Sockets;

namespace Chat
{
 class Client
 {
 static void Main(string[] args)
 {
 Socket connection = null;
 IPAddress serverIP = null;
 try
 {
 if (args.Length != 2)
 {
 Console.WriteLine("Usage: Chat.Client <ipaddress> <port>");
 return;
 }
 serverIP = IPAddress.Parse(args[0]);
 connection = new Socket(serverIP.AddressFamily,
 SocketType.Stream, ProtocolType.Tcp);
 connection.Connect(serverIP, int.Parse(args[1]));
 Console.WriteLine("Local:");
 Console.WriteLine("\tIP Address:\t\t" +
((IPEndPoint)(connection.LocalEndPoint)).Address.ToString());
 Console.WriteLine("\tIP Address Family:\t" +
((IPEndPoint)(connection.LocalEndPoint)).AddressFamily);
 Console.WriteLine("\tTCP Port:\t\t" + ((IPEndPoint)(connection.LocalEndPoint)).Port);
 Console.WriteLine("Remote:");
 Console.WriteLine("\tIP Address:\t\t" +
((IPEndPoint)(connection.RemoteEndPoint)).Address.ToString());
 Console.WriteLine("\tIP Address Family:\t" +
((IPEndPoint)(connection.RemoteEndPoint)).AddressFamily);
 Console.WriteLine("\tTCP Port:\t\t" + ((IPEndPoint)(connection.RemoteEndPoint)).Port);

 Chat.IO.ConcurrentIO io =
 new Chat.IO.ConcurrentIO(new NetworkStream(connection));
 io.Start();
 }

 55

 catch (Exception ex)
 {
 if (ex.Message.StartsWith("Local"))
 connection.Close();
 Console.WriteLine(ex.Message);
 }
 }
 }
}

Source code 4.3 the Chat.Client class from Chat.Client.cs

The Micrsoft .NET Framework Version 2.0 Redistributable Package (x86) is

available for free on Microsoft Developer Network downloads site and includes the

compilers and libraries needed to build and run the chat client and server programs. By

default the redistributable package installs the files under a

Microsoft.NET\Framework\v2.0.50727 folder under the windows folder. This folder is

referred to as the .NET Framework folder in the rest of this document. A folder by the

name chat is created to store the files created for the chat program. Chat.IO.cs,

Chat.Server.cs and Chat.Client.cs files are saved in this folder. First the Chat.IO.cs

compiled as a dynamic linked library (dll) using the csc compiler that resides in the .NET

Framework folder. Then Chat.Server.cs and Chat.Client.cs files are compiled into two

separate executables (exes) by referencing the Chat.IO.dll.

Figure 4.4 Building the source files using the .NET Framework 2.0 Redistributable

The same process is repeated in both host1 and host2. Chat.Server is run on host1

using host1’s IPv6 address and port 1234. Chat.Client is run on host2 by passing host1’s

IPv6 address and port 1234. Messages that are printed out by the client and the server
 56

indicate that an IPv6 connection has been established between the two. Some test

messages are exchanged between the two and a stream terminator input is used to

terminate the input on the client which then closes the connections both on the server and

the client.

Figure 4.5 The chat client and server communicating over IPv6 between host1 and host2

4.1.2 Setting up EtherYatri.NET development environment

EtherYatri.NET is an open source project and the source code is available to

download from GotDotNet workspace [22]. The latest version of the code available has

 57

 58

Visual Studio projects included to organize the source code into multiple dll projects. To

take advantage of the new features, especially the IPv6 capabilities of the .NET

Framework 2.0, the EtherYatri.NET project files were converted to Visual Studio 2005.

The HelloWorld Demo agent that comes with EtherYatri.NET was used for initial

testing of the projects after converting them to the .NET Framework 2.0. Two instances

of WinAH (EtherYatri.NET Windows Agent Host) were run one on port 8000 and the

other on port 8001 both using the HTTP protocol and on the same machine. Each

instance of the agent host can be used to create agents, host them and send them to other

agent hosts. The two instances of the agent hosts listen on URLs

http://sankarsdell:8000/AgentHost, http://sankarsdell:8001/AgentHost respectively where

sankarsdell was the machine’s name the hosts were running on. Using the NewAgent

function, a new instance of the HelloWorldDemo agent was created at port 8000. When

the agent was successfully created it was shown in a grid in the Active Agents tab. The

using the SendAgent function, that agent was sent to the agent host running on port 8001.

When the agent was successfully sent to the destination, it was removed from the source

agent host’s Active Agents tab and a message appeared on the destination agent host’s

output window to show that the agent had arrived.

http://sankarsdell:8000/AgentHost
http://sankarsdell:8001/AgentHost

Figure 4.6 Two instances of WinAH running on ports 8000 and 8001 respectively

 59

Figure 4.7 Creating the HelloWorldDemo agent at port 8000

 60
Figure 4.8 Sending the agent to another host using the Send Agent dialog

Figure 4.9 Message showing that agent has arrived at the destination

Understanding how EtherYatri.NET works

EtherYatri.NET uses .NET Remoting for communication between agent hosts.

Agents are created using dynamic invocation features such as .NET Reflection. Once

agents are created, they are given unique identifiers and their references are held by the

agent host. To move an agent from one agent host to another, EtherYatri.NET simply

invokes the Execute method on the remote agent host object and passes the serialized

agent object and the bytes from the assembly that defines the agent class to the method.

For an agent host to invoke an Execute method on a remote agent host, the remote agent

host registers itself as a remotable object with the Remoting infrastructure. Remoting

channels are created and registered to facilitate the communication. Once agents are sent

to the remote hosts, the sending agent or agent host can invoke a method on the remote

agent through the receiving agent host. This is done by using another remote method

 61

 62

called InvokeAgentMethodOnRemoteHost. The unique identifier of the agent, method

name and the serialized parameters are passed to this method and the remote host uses

.NET Reflection to find and invoke the method. There are several areas where

EhterYatri.NET could be improved to take advantage of the .NET framework features but

this thesis only addresses the IPv6 aspect of the potential improvements.

4.2 Enabling IPv6 in EtherYatri.NET

First EtherYatri.NET was tested on IPv6 to see if the framework already worked

with IPv6. The HelloWorldDemo agent was used for this experiment as well. Two agent

hosts were run on ports 8000 and 8001 listening on HTTP. Once the agent was created, in

the send agent dialog, an IPv6 address was used instead of machine name or IPv4

address. When the send button was clicked, EtherYatri.NET displayed an exception

message indicating that the send operation failed. The error message displayed indicated

that the URL was being parsed as an IPv4 URL and failing as the IPv6 address contained

colon (:) characters that were used to separate the address from the port number in a

URL.

 63

System.UriFormatException occurred
 Message="Invalid URI: A port was expected because of there is a colon (':') present but the port could not
be parsed."
 Source="mscorlib"
 StackTrace:
 Server stack trace:
 at System.Uri.CreateThis(String uri, Boolean dontEscape, UriKind uriKind)
 at System.Net.WebRequest.Create(String requestUriString)
 at System.Runtime.Remoting.Channels.Http.HttpClientTransportSink.SetupWebRequest(IMessage
msg, ITransportHeaders headers)
 at System.Runtime.Remoting.Channels.Http.HttpClientTransportSink.ProcessAndSend(IMessage msg,
ITransportHeaders headers, Stream inputStream)
 at System.Runtime.Remoting.Channels.Http.HttpClientTransportSink.ProcessMessage(IMessage msg,
ITransportHeaders requestHeaders, Stream requestStream, ITransportHeaders& responseHeaders, Stream&
responseStream)
 at System.Runtime.Remoting.Channels.SoapClientFormatterSink.SyncProcessMessage(IMessage
msg)
 Exception rethrown at [0]:
 at System.Runtime.Remoting.Proxies.RealProxy.HandleReturnMessage(IMessage reqMsg, IMessage
retMsg)
 at System.Runtime.Remoting.Proxies.RealProxy.PrivateInvoke(MessageData& msgData, Int32 type)
 at EtherYatri.IAgentHost.Execute(Byte[] agentAssemblyBytes, Byte[] agentState, String
agentTypeName, AgentId agentId)
 at EtherYatri.AgentHost.MoveAgent(String destinationAddress, AgentId agentId)

Figure 4.10 Exception thrown when IPv6 address was used in the destination URL

RFC 2732 addresses the cause for the above exception. According to the RFC,

when literal IPv6 addresses are used as part of URLs, the IP address needs to be specified

within square-brackets. Ex: http:://[::]:8000/AgentHost [69]. When the above test was run

using the square-brackets in the URL, the UriFormatException did not occur.

Attempting to send an agent with the correct URL format resulted in a

WebException., indicating that the source agent host was not able to connect to the

destination agent host. This was caused due to the fact that EtherYatri.NET was not

listening on the IPv6 address used in the URL.

 64

System.Net.WebException occurred
 Message="Unable to connect to the remote server"
 Source="mscorlib"
 StackTrace:
 Server stack trace:
 at System.Net.HttpWebRequest.GetRequestStream()
 at System.Runtime.Remoting.Channels.Http.HttpClientTransportSink.ProcessAndSend(IMessage msg,
ITransportHeaders headers, Stream inputStream)
 at System.Runtime.Remoting.Channels.Http.HttpClientTransportSink.ProcessMessage(IMessage msg,
ITransportHeaders requestHeaders, Stream requestStream, ITransportHeaders& responseHeaders, Stream&
responseStream)
 at System.Runtime.Remoting.Channels.SoapClientFormatterSink.SyncProcessMessage(IMessage
msg)
 Exception rethrown at [0]:
 at System.Runtime.Remoting.Proxies.RealProxy.HandleReturnMessage(IMessage reqMsg, IMessage
retMsg)
 at System.Runtime.Remoting.Proxies.RealProxy.PrivateInvoke(MessageData& msgData, Int32 type)
 at EtherYatri.IAgentHost.Execute(Byte[] agentAssemblyBytes, Byte[] agentState, String
agentTypeName, AgentId agentId)
 at EtherYatri.AgentHost.MoveAgent(String destinationAddress, AgentId agentId)

Figure 4.11 Exception thrown after a valid URL format was used for the destination URL

EtherYatri.NET used HTTP and TCP Channels of .NET Remoting infrastructure

for the agent hosts to accept incoming requests. These channels when registered with the

.NET Remoting, by default, were binding to all known IPv4 addresses on the host

machine and not binding to any IPv6 addresses. Connections to URLs with the machine

name, localhost, the loop-back IP address and the configured IPv4 addresses were

successful. And connections to URLs with IPv6 address were not successful. To fix this,

the code was modified to create HTTP and TCP channels with the “bindTo” property set

to “::”. Setting that property makes the channels listen for incoming requests on all IPv6

addresses configured on the host.

 65

 Hashtable channelProps = new Hashtable();
 channelProps.Add("port", AgentHost.portNumber);
 channelProps.Add("bindTo", "[::]");
 Hashtable sinkProps = new Hashtable();

 // Expose AgentHost using http or tcp as specified by the user
 if (protocol.ToLower().CompareTo("http") == 0)
 {
 AgentHost.channel = new System.Runtime.Remoting.Channels.Http.HttpChannel(channelProps,
 null, null);
 }
 else if (protocol.ToLower().CompareTo("tcp") == 0)
 {
 AgentHost.channel = new System.Runtime.Remoting.Channels.Tcp.TcpChannel(channelProps,
 null, null);
 }

Source code 4.4 Using the bindTo property of the channels to bind to IPv6 addresses

After setting the bindTo property of the channels, an agent was successfully sent

from one agent host to another agent host using an IPv6 address in the URL.

 // Expose AgentHost using http or tcp as specified by the user
 Hashtable ipv6ChannelProps = new Hashtable();
 ipv6ChannelProps.Add("port", AgentHost.portNumber);
 ipv6ChannelProps.Add("name", "ipv6channel");
 ipv6ChannelProps.Add("bindTo", "[::]");

 Hashtable ipv4ChannelProps = new Hashtable();
 ipv4ChannelProps.Add("port", AgentHost.portNumber);

 // Expose AgentHost using http or tcp as specified by the user
 if (protocol.ToLower().CompareTo("http") == 0)
 {
 AgentHost.channels.Add(new
System.Runtime.Remoting.Channels.Http.HttpChannel(ipv6ChannelProps, null, null));
 AgentHost.channels.Add(new
System.Runtime.Remoting.Channels.Http.HttpChannel(ipv4ChannelProps, null, null));
 }
 else if (protocol.ToLower().CompareTo("tcp") == 0)
 {
 AgentHost.channels.Add(new
System.Runtime.Remoting.Channels.Tcp.TcpChannel(ipv6ChannelProps, null, null));
 AgentHost.channels.Add(new
System.Runtime.Remoting.Channels.Tcp.TcpChannel(ipv4ChannelProps, null, null));
 }

Source code 4.5 Using different channels for IPv4 and IPv6 addresses

Setting the bindTo property of the channels to bind to IPv6 addresses, made the

agent hosts listen only on the IPv6 addresses and connections to IPv4 addresses stopped

 66

working. To fix this, two channels with different bindTo properties were created and

registered so that connections to IPv4 addresses were received by the IPv4 channel and

connections to IPv6 addresses were received by the IPv6 channel. When the channels

were created, by default they were assigned a name that was same as the protocol used

(EX: HTTP, TCP etc.). Creating two different channels for the same protocol, one for

IPv4 and one for IPv6 failed with an error saying that a channel with the name already

existed. So the name property of the channel was used to explicitly assign a name for the

channels to make it work. With these changes, EtherYatri.NET started communication on

IPv6 as well as IPv4.

 67

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH POSSIBILITIES

5.1 Conclusions

IPv6 was enabled in EtherYatri.NET by taking advantage of the built-in support

for IPv6 in the .NET socket libraries. Other changes have been made to the

EtherYatri.NET framework. These changes include making the channels configurable

and displaying the network information about the agents.

IPv6 is an emerging protocol that is being supported by many operating systems.

Although the protocol may be subject to future changes, the specifications have gone

through many updates and are now well defined. Many implementations of IPv6 exist

today and more sophisticated and integrated implementations are still being introduced

(EX: Microsoft has introduced a dual layer implementation in Windows Vista as opposed

to a dual stack architecture in Windows XP). Domain Name Service for IPv6 is still not

available in many implementations.

The process of enabling IPv6 protocol in network applications depends on the

application code, the communication mechanism it uses and the built-in support the

operating system and the network libraries have for IPv6. Yet, there usually are some

steps in the process that are applicable for many network applications. Following are

some of the steps that may apply to other network applications as well:

 68

1. Identify and investigate the APIs used by the application for network

communications to make sure that the APIs support IPv6. Most of the network APIs

today have built-in support for IPv6. If the APIs used by the application do not support

IPv6, one may need to change the application so that it uses a network API that supports

IPv6. It is a good design practice to abstract the communications layer so that future

enhancements to communication mechanisms can be easily incorporated. EtherYatri.NET

uses .NET Remoting as the communication mechanism. .NET Remoting uses .NET

sockets that have built-in support for IPv6.

2. Study the APIs to understand how to use IPv6 in the application. This usually

involves writing simple network client and server to communicate via IPv6. A chat client

and server were written in C# to understand how IPv6 could be used in .NET sockets.

3. Identify the end points in the application code where the underlying

communication mechanism is directly used. A socket bind, a .NET Remoting channel

registration are examples of direct calls into the communication infrastructure from the

application. Once these end points are identified, changes may need to be made to the end

points’ code to enable IPv6 communication. Abstracting direct calls to the

communications APIs by means of application code helps in this step. EtherYatri.NET

has two different places where it registers .NET Remoting channels using the .NET API

for Remoting directly. Changes had to be made in both the places to register an IPv6

channel as well.

4. Enumerate the several of forms of input that the application has to accept host

identifiers (URIs, IP addresses, host names etc.) to be used while initiating the end points.

These may include user interfaces, persistent storage (configuration files, databases,

 69

registry etc.), hard coded values in the code and input received during network

communications. Application code sometimes alters the input before it uses the input to

initiate an end point. For each of the enumerated forms of input, code needs to be

examined to make sure any alterations to the input do not create a problem in establishing

IPv6 based communication.

5. Applications sometimes verify the input they receive. An IPv4 based network

application may validate IP addresses input that the application receives to be in the IPv4

dotted notation (a.b.c.d) and may stop the application code from establishing network

communication. For each of the various forms of input, the verification code may need to

be updated to accommodate IPv6 address formats as well.

6. Test the application on IPv6. Setting up an IPv6 environment using

virtualization software seems to be convenient for experiments. This may include

examining the established connections to make sure they are using IPv6. This is essential

especially for the operating systems that do not support IPv6 only networking. In a mixed

environment with the current support in the communications APIs, it is possible that

some settings are required to ensure IPv6 communication.

Automated tools are not currently available to enable IPv6 in network

applications. The number of APIs available for network communications, the number of

ways in which network applications can make use of these APIs make it hard for any one

tool to provide such capability. Network APIs that have built-in support for IPv6

minimize the changes that are needed in the application code. A well defined software

design will definitely help in enabling IPv6 or any other communication enhancements.

 70

5.2 Potential future research

With new IPv6 implementations, more sophisticated distributed frameworks such

as Windows Communication Foundation, Internet 2 and mobile roaming high-speed

internet, there are more opportunities to enhance and extend the concept of moving code

and also study & augment the capabilities of IPv6. Following are some of the potential

research projects that have been identified while working on this thesis:

• A mobile agent framework based on Windows Communication

Foundation that could potentially include features such as:

o Support for scripting based agents (moving scripts)

o Communications among hosts behind firewalls

o Support for pluggable communication protocols

o Tools and libraries that make it easy to create agents

o Support for transactions (distributed and stand-alone)

o Take advantage of new UI technologies such as Asynchronous Javascript

And XML (AJAX) and Windows Presentation Foundation.

• Study DNS support in various IPv6 implementations

o Make necessary changes to EtherYatri.NET to work with IPv6 DNS

• Research application of mobile code in areas such as multi-player network

gaming and other forms of digital communication and entertainment.

• Research the impact of IPv6 on private IPs.

• Study the need for a web based network translation service that could help

hosts behind firewalls listen on public ports. Several file and song sharing applications

currently provide identity for hosts outside their private network. For example if a host

 71

inside a firewall or a private local LAN with a private IP address wants to listen for

mobile agents, currently the router or firewall has to open the port and forward requests

to the host. IPv6 address space could solve the problem or a service like the one being

proposed could help hosts get a virtual IPv6 address that can forward the requests to the

host.

These and many other projects could help researchers, companies and other

interested parties find new applications for both mobile code and IPv6 protocol.

 72

BIBLIOGRAPHY

[1] Douglas E. Comer: Computer Networks and Internets

[2] Charles M. Kozierok: International Networking Standards Organizations, The

TCP/IP Guide,

http://www.tcpipguide.com/free/t_InternationalNetworkingStandardsOrganizations.htm.

[3] Charles M. Kozierok: History of the OSI Reference Model, The TCP/IP Guide,

http://www.tcpipguide.com/free/t_HistoryoftheOSIReferenceModel.htm.

[4] Wikipedia: Description of Layers, OSI Model,

http://en.wikipedia.org/wiki/OSI_model.

[5] Andrew S. Tanenbaum: A Critique of the OSI Model and Protocols, Computer

Networks, Section 1.4.4

[6] Whatis.com: Development of TCP/IP, Understanding TCP/IP,

http://whatis.techtarget.com/definition/0,,sid9_gci989915,00.html.

[7] Whatis.com: Host, http://whatis.techtarget.com/definition/0,,sid9_gci212254,00.html.

[8] Howstuffworks.com: What is an IP address?

http://computer.howstuffworks.com/question549.htm.

[9] Internet Assigned Numbers Authority: Internet Protocol V4 Address Space,

http://www.iana.org/assignments/ipv4-address-space.

 [10] Pacific Bell Internet: Classless Inter-Domain Routing (CIDR) Overview, CIDR Info

http://public.pacbell.net/dedicated/cidr.html.

http://www.tcpipguide.com/free/t_InternationalNetworkingStandardsOrganizations.htm
http://www.tcpipguide.com/
http://en.wikipedia.org/wiki/OSI_model
http://whatis.techtarget.com/definition/0,,sid9_gci989915,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci212254,00.html
http://computer.howstuffworks.com/question549.htm
http://www.iana.org/assignments/ipv4-address-space
http://public.pacbell.net/dedicated/cidr.html

 73

[11] Internet Assigner Numbers Authority: Protocol Numbers,

http://www.iana.org/assignments/protocol-numbers.

[12] Microsoft Corporation: Introduction to IP Version 6, Microsoft Windows Server

2003 White Paper, published September 2003, updated March 2004

http://download.microsoft.com/download/5/2/5/525343cc-7ba4-4e3b-a96a-

c7a040d98d2d/IPv6.doc.

 [13] Hinden, R., Deering, S.: RFC 3513 - Internet Protocol Version 6 (IPv6) Addressing

Architecture, Network Working Group http://www.faqs.org/rfcs/rfc3513.html.

[14] Hinden, R., O’Dell, M., Deering, S.: RFC 2374 - An IPv6 Aggregatable Global

Unicast Address Format, Network Working Group

http://www.faqs.org/rfcs/rfc2374.html.

[15] Huitema, C., Carpenter, B.: RFC 3879 - Deprecating Site Local Addresses, Network

Working Group http://www.faqs.org/rfcs/rfc3879.html.

[16] Hinden, R., Deering, S.: IP Version 6 Addressing Architecture,

http://www.ietf.org/internet-drafts/draft-ietf-ipv6-addr-arch-v4-04.txt.

 [17] King, J. A: Intelligent Agents: Bringing Good Things to Life, AI Expert, February,

1995, pp. 17-19.

[18] Atkinson, B., et al: IBM Intelligent Agents, presented at Unicom Seminar on Agent

Software, London, UK, May 25, 1995.

[19] Todd Sundsted: Agents on the move, Java World, July 1998

http://www.javaworld.com/javaworld/jw-07-1998/jw-07-howto.html.

 [20] Danny B. Lange, Mitsuru Oshima: Programming and Deploying Java Mobile

Agents with Aglets

http://www.iana.org/assignments/protocol-numbers
http://download.microsoft.com/download/5/2/5/525343cc-7ba4-4e3b-a96a-c7a040d98d2d/IPv6.doc
http://download.microsoft.com/download/5/2/5/525343cc-7ba4-4e3b-a96a-c7a040d98d2d/IPv6.doc
http://www.faqs.org/rfcs/rfc3513.html
http://www.faqs.org/rfcs/rfc2374.html
http://www.faqs.org/rfcs/rfc3879.html
http://www.ietf.org/internet-drafts/draft-ietf-ipv6-addr-arch-v4-04.txt
http://www.javaworld.com/javaworld/jw-07-1998/jw-07-howto.html

 74

[21] Siddharth Uppal, EtherYatri.NET

http://www.geocities.com/siddharthuppal/EtherYatri.htm.

[22] EtherYatri workspace,

http://www.gotdotnet.com/Workspaces/Workspace.aspx?id=4d8ceb9e-b334-4d96-8b95-

8d3480cabc71.

[23] Narval, http://www.logilab.org/projects/narval.

[24] CLIPS: A Tool for Building Expert Systems, http://www.ghg.net/clips/CLIPS.html.

[25] Charles L. Forgy: Rete: A Fast Algorithm for the Many Pattern/ Many Object

Pattern Match Problem, Artificial Intelligence 19(1982), 17-37.

[26] Jess, The Rule Engine for The Java Platform, http://herzberg.ca.sandia.gov/jess/.

[27] The Lisa Project, http://lisa.sourceforge.net/.

[28] Personalized Agents from Autonomy,

http://www.autonomy.com/content/Products/IDOL/f/Agents.html.

[29] UMBC KQML Web, http://www.cs.umbc.edu/kqml/.

[30] John Davies, Richard Weeks, and Mike Revett: Jasper: Communicating Information

Agents for WWW, http://www.w3.org/Conferences/WWW4/Papers/180/.

[31] Java Agent Template, http://www-cdr.stanford.edu/ABE/JavaAgent.html.

[32] The OMG’s CORBA Website, http://www.corba.org/.

[33] Java Remote Method Invocation - Distributed Computing for Java,

http://java.sun.com/marketing/collateral/javarmi.html.

[34] Microsoft .NET Remoting: A Technical Overview,

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dndotnet/html/hawkremoting.asp.

http://www.geocities.com/siddharthuppal/EtherYatri.htm
http://www.gotdotnet.com/Workspaces/Workspace.aspx?id=4d8ceb9e-b334-4d96-8b95-8d3480cabc71
http://www.gotdotnet.com/Workspaces/Workspace.aspx?id=4d8ceb9e-b334-4d96-8b95-8d3480cabc71
http://www.logilab.org/projects/narval
http://www.ghg.net/clips/CLIPS.html
http://herzberg.ca.sandia.gov/jess/
http://lisa.sourceforge.net/
http://www.autonomy.com/content/Products/IDOL/f/Agents.html
http://www.cs.umbc.edu/kqml/
http://www.w3.org/Conferences/WWW4/Papers/180/
http://www-cdr.stanford.edu/ABE/JavaAgent.html
http://www.corba.org/
http://java.sun.com/marketing/collateral/javarmi.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/hawkremoting.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/hawkremoting.asp

 75

[35] Simple Object Access Protocol (SOAP), http://www.w3.org/TR/SOAP/.

[36] Web Services Description Language (WSDL), http://www.w3.org/TR/wsdl.

[37] AgentSpace, a Next-Generation Mobile Agent System,

http://berlin.inesc.pt/agentspace/.

[38] Voyager http://www.recursionsw.com/products/voyager/orbpro.asp.

[39] Alberto Silva, Jose Delgado: AgentSpace as a Framework to Support Interlibrary

Cooperation, http://berlin.inesc-id.pt/alb/static/papers/1998/crimea98.pdf.

[40] About Aglets, http://www.trl.ibm.com/aglets/about_e.htm.

[41] Ajanta Programmers’ Guide, http://www.cs.umn.edu/Ajanta/papers/Guide/toc.html.

[42] Anand Tripathi, Tanvir Ahmed, Sumedh Pathak, Abhijit Pathak, Megan Carney,

Murlidhar Koka, and Paul Dokas: Active Monitoring of Network Systems using Mobile

Agents, To appear in proceedings of Networks 2002, a joint conference of ICWLHN

2002 and ICN 2002.

[43] The ARA Platform for Mobile Agents, http://wwwagss.informatik.uni-

kl.de/Projekte/Ara/index_e.html.

[44] Mitsubishi Electric ITA, Horizon Systems Laboratory, 1432 Main Street, Waltham,

MA 02154, USA: Concordia: An Infrastructure for Collaborating Mobile Agents,

http://www.cis.upenn.edu/~bcpierce/courses/629/papers/Concordia-

MobileAgentConf.html.

[45] D’Agents: Mobile Agents at Dartmouth College, http://agent.cs.dartmouth.edu/.

[46] Ophir Holder, Israel Ben-Shaul, Hovav Gazit: Dynamic layout of distributed

applications in FarGo, Proceedings of the 21st International Conference on Software

Engineering, Los Angeles, California, United States, 1999, pp. 163-173.

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://berlin.inesc.pt/agentspace/
http://www.recursionsw.com/products/voyager/orbpro.asp
http://berlin.inesc-id.pt/alb/static/papers/1998/crimea98.pdf
http://www.trl.ibm.com/aglets/about_e.htm
http://www.cs.umn.edu/Ajanta/papers/Guide/toc.html
http://wwwagss.informatik.uni-kl.de/Projekte/Ara/index_e.html
http://wwwagss.informatik.uni-kl.de/Projekte/Ara/index_e.html
http://www.cis.upenn.edu/%7Ebcpierce/courses/629/papers/Concordia-MobileAgentConf.html
http://www.cis.upenn.edu/%7Ebcpierce/courses/629/papers/Concordia-MobileAgentConf.html
http://agent.cs.dartmouth.edu/

 76

[47] Tryllian’s Agent Development Kit,

http://www.tryllian.com/technology/product1.html.

[48] Extensible Markup Language (XML), http://www.w3.org/XML/.

[49] Project JXTA, http://wwws.sun.com/software/jxta/.

[50] Foundation of Intelligent Physical Agents, http://www.fipa.org/.

[51] M. Jazayeri and W. Lugmayr: Gypsy: A Component-based Mobile Agent System,

Accepted at the 8th Euromicro Workshop on Parallel and Distributed Processing

(PDP2000) (Rhodos, Greece, January 19 -21, 2000).

[52] Java Beans, http://java.sun.com/products/javabeans/.

[53] Dag Johansen, Robbert van Renesse, and Fred B. Schneider: An Introduction to the

TACOMA Distributed System Version 1.0, Technical Report 95-23, Department of

Computer Science, University of Tromsø, Norway, June 1995.

[54] Dilyana Staneva, Denitsa Dobreva, The Technical University of Varna, Bulgaria:

MAPNET: A .NET Based Mobile Agent Platform. Presented at the International

Conference on Computer Systems and Technologies - CompSysTech’2004.

http://ecet.ecs.ru.acad.bg/cst04/Docs/sII/213.pdf,

http://ecet.ecs.ru.acad.bg/cst04/Docs/sI/15.pdf.

[55] MASIF Specification. http://www.omg.org.

[56] JAFMAS, Java Based Framework for Multi-Agent Systems,

http://www.ececs.uc.edu/~abaker/JAFMAS/.

[57] MARS, Mobile Agent Reactive Space, http://polaris.ing.unimo.it/MOON/MARS/.

http://www.tryllian.com/technology/product1.html
http://www.w3.org/XML/
http://wwws.sun.com/software/jxta/
http://www.fipa.org/
http://java.sun.com/products/javabeans/
http://ecet.ecs.ru.acad.bg/cst04/Docs/sII/213.pdf
http://ecet.ecs.ru.acad.bg/cst04/Docs/sI/15.pdf
http://www.omg.org/
http://www.ececs.uc.edu/%7Eabaker/JAFMAS/
http://polaris.ing.unimo.it/MOON/MARS/

 77

[58] David Wallace Croft, Senior Intelligent Systems Engineer, Special Projects

Division, Information Technology, Analytic Services, Inc.: Intelligent Software Agents:

Definitions and Applications,

http://www.alumni.caltech.edu/~croft/research/agent/definition/.

[59] Software Agent Fundamentals from BTexact Technologies,

http://more.btexact.com/projects/agents.htm.

[60] Dixon, T.: RFC 1454 - Comparison of Proposals for Next Version of IP, Network

Working Group http://www.faqs.org/rfcs/rfc1454.html.old.

[61] Bradner, S., Mankin, A.: RFC 1550 - IP: Next Generation (IPng) White Paper

Solicitation, Network Working Group http://www.faqs.org/rfcs/rfc1550.html.

[62] Deering, S., Hinden, R.: RFC 1883 - Internet Protocol, Version 6 (IPv6)

Specification, Network Working Group http://www.faqs.org/rfcs/rfc1883.html.

[63] Hinden, R., Deering, S.: RFC 2460 - Internet Protocol, Version 6 (IPv6)

Specification, Network Working Group http://www.faqs.org/rfcs/rfc2460.html.

[64] Deering, S., Haberman, B., Jinmei, T., Nordmark, E., Zill, B.: RFC 4007 - IPv6

Scoped Address Architecture, Network Working Group

http://www.faqs.org/rfcs/rfc4007.html.

[65] Microsoft’s Objectives for IP Version 6,

http://www.microsoft.com/windowsserver2003/techinfo/overview/ipv6.mspx.

[66] IPv6 Implementations, http://www.ipv6.org/impl/index.html.

[67] IPv6 Enabled Applications, http://www.ipv6.org/v6-apps.html.

[68] Momin, M.: An implementation of unicast discovery protocol using IPV6 and JINI,

Thesis (M.S.) Advisor: Dr. Carlisle, H.--Auburn University, 2004.

http://www.alumni.caltech.edu/%7Ecroft/research/agent/definition/
http://more.btexact.com/projects/agents.htm
http://www.faqs.org/rfcs/rfc1454.html.old
http://www.faqs.org/rfcs/rfc1550.html
http://www.faqs.org/rfcs/rfc1883.html
http://www.faqs.org/rfcs/rfc2460.html
http://www.faqs.org/rfcs/rfc4007.html
http://www.microsoft.com/windowsserver2003/techinfo/overview/ipv6.mspx
http://www.ipv6.org/impl/index.html
http://www.ipv6.org/v6-apps.html

 78

[69] Hinden, R., Carpenter, B., Masinter, L.: RFC 2732 - Format for Literal IPv6

Addresses in URL's, Network Working Group http://www.faqs.org/rfcs/rfc2732.html.

http://www.faqs.org/rfcs/rfc2732.html

	i-ii Approval & Title.doc
	iii-vi CR,Vita, Abs, Ack, Style & TOC.doc
	Main Body.doc

