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Abstract
Cloud Computing is a booming technology in computer science. Since Google released
the design details of the MapReduce technique in 2004 [1], cloud computing has been more
and more popular. Hadoop [2] has been developed as an open-source implementation of
MapReduce.
A new network-levitated merge mechanism (Hadoop-A) [3] improves the existing Hadoop
framework to solve many problems in the original framework. Hadoop-A avoids repetitive
merging of data and introduces a full pipeline that consists of shu e, merge and reduce
phases. However, Hadoop-A is implemented based on In niband RDMA technology, which
is not commonly deployed on commercial servers. On the other hand, data transmission
based on the TCP/IP protocol is a robust technology, its speed is becoming faster and
faster. Thus, we deem that it worthwhile to complement our RDMA-based connection with
an implementation that is built on TCP/IP protocol.
In this article, I will describe the details of design and implementation of a TCP/IP im-
plementation of Hadoop-A. Two components MOFSupplier (Server) and NetMerger (Client)
are introduced to realize the TCP/IP connection, which can fetch data from Maptasks and
send them to Reducetasks within the new network-levitated merge mechanism. Multithread-
ing technologies are used to manage memory pool, send/receive and merge data segments.
The experiment results show that the TCP/IP implementation can bring good performance
for Hadoop-A on TCP/IP. Its execution time outperforms original Hadoop by 26.7% and
can also achieve good scalability.
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Chapter 1
Introduction
Cloud computing has been popular for several years, it has been ranked as one of the
most leading emerging technologies since 2008. Gartner Inc. has predicted that 80 percent
of Fortune 1000 companies would pay for cloud-computing service, and 30 percent of these
companies can pay for cloud-computing infrastructure [4].
Cloud Computing is de ned to be the provision of computational resources on demand
via a computer network, such as applications, databases,  le services, emails, etc. [5] A great
many companies have invested a large amount of money and time on cloud computing, for
the reason that it can use lots of resources in an e ective way. Lots of big companies includ-
ing Google, Yahoo, Facebook and IBM have made great contributions to cloud computing
technology and achieved remarkable successes both commercially and technically.
Customers can reap many bene ts from cloud service. They can cut down on their
capital expenditures and take advantage of operational expenditures to increase computing
capabilities, which requires fewer IT support personnel. Companies can also change deploy-
ment size to match requirements very quickly; as a result, the  exibility of cloud services
enables their customers to use more resources at peak times. It is also convenient to access
cloud services everywhere. With the help of multiple redundant sites, services are more
reliable, and it is easy to achieve the goal of disaster recovery and business continuity. At
the same time, the cost of maintenance can be reduced.
Cloud computing can provide not only broad commercial opportunities for big IT com-
panies but also huge research space for high-performance computing scientists. By now, a
large number of new technologies have been deployed in the cloud.
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In cloud computing, Map Reduce is a programming model for processing and analyzing
large data sets. Users can  rst create a function handling a Map based on key/value pair
collection of data; then create a Reduce function to combine all of the intermediate key
values with the same value of the intermediate value.
The framework of the Map Reduce program can be executed in parallel on a large
number of computers, and this system focuses on how to split the input data, schedule
the execution of programs on a large number of machines, deal with machine failures, and
manage the communication between computers.
Google File System (GFS) [6] and Hadoop Distributed File System (HDFS) [7] are two
 le systems to support Map Reduce framework. In order to satisfy the fast growing demands
of data processing requirements, Google File System (GFS) has been developed, which is
a scalable distributed  le system for large distributed data-intensive applications. It also
supports the feature of fault tolerance when deployed on normal commercial cluster, and can
achieve very high aggregated I/O performance. The Hadoop Distributed File System(HDFS)
is used to reliably store large  les across di erent nodes in the cluster. In the Hadoop
Distributed File System,  les are stored as a sequence of blocks. The sizes of the blocks,
except the last one, are the same. In a  le, blocks are replicated for fault tolerance. Files in
HDFS are "write once" and only one writer is allowed at any time.
Hadoop is an open source implementation of MapReduce. It is a new way for companies
to store and process data [8]. It contains two key components: data storage mechanism with
the help of Hadoop Distributed File System and high-performance large-scale data processing
using MapReduce framework.
Hadoop has the ability to run on large scale commercial, shared-nothing servers. It is
easy to add or remove servers in a cluster running Hadoop and it can automatically detect
and recover from system or hardware failure.
On top of Hadoop program, Apache Pig [9] and Hive [10] are supported for data pro-
cessing and analizing, which are two examples using Hadoop. Pig is a high level execution
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framework for parallel computing which are used to deal with large amount of data. The
Hive data warehouse software helps to manage and query big data sets stored in distributed
 le system.
In niBand is a standard switched fabric adopted in high-performance computing and
industry data centers. It has a lot of bene ts such as: high throughput, low latency and
good scalability. Remote Direct Memory Access(RDMA) is supported by In niBand. RDMA
has the capability of directly accessing remote computers? memory without the operating
system being involved. RDMA achieves zero-copy communication to exchange data to or
from application memory, reducing the requirement of data copying between application
memory and operating system data bu ers, without any work done by host CPUs.
Meanwhile, 10 Gigabit Ethernet [11] de nes a version of Ethernet that is ten times
faster than traditional gigabit Ethernet. It o ers a sockets-based interface; this is the main
focus of this thesis.
Hadoop-A is an improvement of existing Hadoop project. It has solved a number of
issues in Hadoop to gain better performance from the underlying system, including the
serialization barrier between merge and reduce; repetitive disk access and merge. Hadoop-A
has developed a C++ plug in component to overcome the aforementioned issues. A new
network-levitated merge mechanism has been designed and implemented to avoid merging
data and accessing disk many times, which reduces the disk bandwidth requirement and cuts
down on the I/O bottleneck. A new pipeline is also introduced to cover the whole phases of
data processing.
However, the new algorithm is implemented based on RDMA, which is not commonly
used in commercial clusters. This restricts the good e ects of Hadoop-A?s novel network-
levitated merge algorighm, unable to expose the bene ts of reducing disk access gained
from new algorithm. Thus, to make Hadoop-A readily available on any cluster,we have
implemented a TCP/IP version of Hadoop-A.
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Figure 1.1 can give you a clear view about the relationship of these components men-
tioned above. Apache Hive and Pig are two applications for dealing with large amount of
data on top of Hadoop. Hadoop can support applications running on large commodity clus-
ter and Hadoop Distributed  le system provides data storage mechanism. Under Hadoop
is the TCP/IP implementation of Hadoop Acceleration element which is used to improve
the performance of Hadoop. It includes two components: MOFSupplier and NetMerger
connected with TCP/IP socket protocol via Ethernet.
Figure 1.1: Layered framework
The rest of my thesis is orgnized as follows. Section 2 will provide a literature review
and motivation. I then describe the design and implementation details of TCP/IP version
of Hadoop-A in Chapter 3. Chapter 4 presents experimental results and evaluation. I will
conclude my thesis in Chapter 5.
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Chapter 2
Related Work
In this section, I will  rst introduce some details about the current status of cloud
computing and the MapReduce programming model for dealing with large amount of data
in cloud computing. After that, I will talk something about Hadoop, which is an open
source implementation of MapReduce. By now, a lot of work has been done to improve
the performance of Hadoop such as Map Reduce on-line and Hadoop-A. I will also describe
them brie y and point out the exsiting problem in Hadoop-A in this chapter, which will lead
to the motivation of our work. Finally, I will present Hive and Pig Latin, which are two
application platform on top of Hadoop to boost the performance of distributed databases.
They are good examples of successful platforms using Hadoop.
2.1 Cloud Computing
Amazon Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2) are
well-known examples. They provide Internet-based, large-scale storage space and computing
resources to the users [12]. With the help of cloud computing, enterprise and personal
users no longer need purchase expensive computing systems like high-performance clusters,
mass storage devices, etc. All they need is a terminal (typically, operating system and web
browser) with network connections to remote computing services. The terminal can either
be a laptop, a desktop personal computer, or even mobile phone or other portable electronic
device. Customers can pay to use the on-demand computing service in the same way as
electricity, water and gas services, without knowing where they come from and how the
services are managed.
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2.1.1 Characteristics
Cloud computing has many characteristics [13], including: (1) Shared Infrastructure,
even if the deplyment model may be di erent, cloud computing always uses a virtualized
software model to share storage, physical services and networking capabilities; (2) Dynamic
Provisioning, which automatically supplies services as required and maintains the capability
to expand and contract service; (3) Network Access, we need to use PCs, laptops and some
mobile devices to connect cloud servers via the Internet, where applications in the cloud
range from business applications to the newest applications deployed on the smartphones;
(4) Managed Metering, where metering is used to record billing information. In this way,
customers are billed for services based on how much they used.
2.1.2 Service Models
Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a
Service (IaaS) are three main service models in cloud computing. Software as a service means
that the service provider hosts and manages the application on their own server machine,
while their customer can use it over the Internet. SaaS examples include Oracle CRM On
Demand and Netsuite. For platform as a service, the virtualized grid computing architecture
is the basis, and it always consists of development tools, middleware and database as its
infrastructure software. Through websites, developers can develop and deploy applications
on this platform without considering the complexity and cost of managing and buying the
underlying infrastructure. In some PaaS, it can provide some API and programming language
for their users. For example, developers can write Java or Python programs on Google
AppEngine. The last one is Infrastructure as a Service(IaaS), it includes the hardware
(Storage, Server and network), and some low level software such as some virtual  le system.
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2.1.3 Deployment Models
Clouds can also be divided into private, public and hybrid (Shown in Figure 2.1). For
private clouds, cloud service is used and managed within organization. In public clouds,
public cloud service providers can provide management and maintenance services, and charge
their customers for usage, which can simplify the implementation, users or companies can
access cloud server via network. Hybrid clouds consist of many types of clouds, and allow
data and/or applications to be used between one type of cloud and another, it can combine
private and public cloud through their interfaces.
Figure 2.1: Public, Private and Hybrid Cloud Deployment
2.2 MapReduce Programming Model
The paper by Dean and Ghemawat on MapReduce in Google [1]  rst proposed the
MapReduce Framework. Many implementations such as Hadoop are developed based on it.
The purpose of their work was to facilitate the use by hiding locality optimization, load-
balancing, fault-tolerance and parallelization to programming users and to show how a large
number of problems can be solved with the help of MapReduce model, including sorting,
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data mining, machine learning and many other issues. Last but not the least, Map Reduce is
designed for large clusters consisting of tens of thousands of compute nodes. It can e ciently
use compute resources suitable for dealing with large computational problems.
2.2.1 Motivation and Introduction
Nowadays, raw data is increasing dramatically. In order to deal with large amounts of
various kinds of  les, such as website information, and do some special-purpose computation,
such as indexing, searching and getting some data analysis information about websiteis, we
need a new programming model to get the input data and distribute the computation across
a large number of machines, in order to  nish the job in a limited time. This program-
ming model also needs to deal with the issues of how to partition the data, parallelize the
computation, and handle failures.
Map-Reduce is a new programming model to solve the above problems, which can hide
the complexity of data distribution, parallel programming, fault tolerance and load balance
from the user. The users only need to de ne a map operation, and apply it to the raw
input data, which can generate some temporary key pairs. After that, they can use a reduce
operation to the record which has the same key and combine the derived data appropriately.
2.2.2 Programming Model
The input of this programming model is a set of key/value pairs, and the output is also
a set of key/value pairs. Users need to write Map and Reduce functions all by themselves.
Map will get a pair of key/value and produce a set of temporary key/value pairs. Based
on these key/value pairs, the MapReduce library can combine the record with the same key
and give the result to Reduce function. In contrast, Reduce receives a key and the values,
merges the values into small set of records.
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There are many di erent implementations of the MapReduce interface. Here we will
describe the MapReduce implemented on computing environments widely used at Google:
where a large number of PC clusters are connected by switched Ethernet.
MapReduce can partition the input data into M pieces and many Map functions are
executed parallel on di erent machines. Based on the partition functions, Reduce functions
will partition the temporary key space into R splits. Users can specify the partition functions
and the number of partitions,
Figure 2.2 presents an overview of MapReduce execution. The following actions take
place when a MapReduce function is called:
1. MapReduce will  rst divide the data into M partitions (The size of every partition
is from 16MB to 64MB ) and then it will start many programs on a cluster of di erent
machines.
2. One of them is the master program; the others are workers, which can execute their
work assigned by master. Master can distribute a map task or a reduce task to an idle
worker.
3. If a worker is assigned a Map task, it will parse the input data partition and output
the key/value pairs, then pass the pair to a user de ned Map function. The map function
will bu er the temporary key/value pairs in memory
4. The pairs will periodically be written to local disk and partitioned into R pieces.
After that, the local machine will inform the master of the location of these pairs.
5. If a worker is assigned a Reduce task and is informed about the location of these
pairs, the Reducer will read the entire bu er by using remote procedure calls. After that, it
will sort the temporary data based on the key.
6. Then, the reducer will deal with all of the records. For each key and according set
of values, the reducer passes key/value pairs to a user de ned Reduce function. The output
is the  nal output of this partition.
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After all of the mappers and reducers have  nished their work, the master will return
the result to users? programs. The output is stored in R individual  les.
Figure 2.2: Architecture of MapReduce
2.2.3 Features of MapReduce
1) Fault Tolerance
In order to deal with large amounts of data, MapReduce needs to take advantage of
hundreds or thousands of cluster nodes to do the computing. As a result, it must have
the ability to handle machine failure. (1) Worker Failure: Master will periodically ping the
workers. If the worker does not respond in some  xed time, the master node will mark the
worker as dead. If the worker is working as a mapper, in order to deal with failure, the
completed work needs to be re-executed because data is stored on the local machine. If a
reducer dead, the completed work do not need to be re-executed, because their output is
stored on the local machine. MapReduce can be resilient to large numbers of worker failures.
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(2) Master Failure: By now, they just have one master. If master fails, they have to abort
the computation.
2) Locality
MapReduce has stored data on GFS locally. GFS divides data into many blocks and each
block has 3 copies. The MapReduce master gets the information about the block position
and tries to allocate a map task to the node that stores the data, which can decrease the
amount of network bandwidth required.
3) Backup tasks
Some machines may be very slow due to bad disks or slow CPUs, which may decrease
the total performance of the MapReduce operation. In order to alleviate that problem,
the master will start some backup execution of the remaining jobs when the MapReduce
operation is nearly done. The task can be  nished when either the primary or backup
worker has  nished. Experiments show that it would take 44% more time without using a
backup mechanism.
2.3 Google File System and Hadoop Distributed File System
The Google File System (GFS) has the qualities to support large-scale data processing
jobs on normal commercial clusters. Distributed applications can be supported by using
the interface extensions provided by GFS. After the reexamination of the assumptions of
traditional  le system, GFS has changed the design opinion. Component failures are treated
as the norm and the manners of storing huge  les in GFS are optimized. By constant
monitoring, replicating data and automatic recover from failure, GFS can provide the feature
of fault tolerance. In order to gain high aggregate throughput from a lot of concurrent writers
and readers performing all kinds of di erent tasks, the control of  le system is separated from
master. GFS can satisfy the storage requirement in Google and is widely used as the platform
of storage for development and research.
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Hadoop Distributed File System are developed by Yahoo! It also has a master/slave
architecture which consists of a single Namenode and a number of Datanodes. The Namenode
is a master server that manages the whole  lesystem?s namespace and controls access to  les
by clients. Every node in the cluster has a Datanode, which manages storage on that
node. Via an RPC interface, the Namenode has the ability to open, close and rename
 les and directories. It also maps blocks to Datanodes. Datanodes respond for read and
write requests from  lesystem clients and follow Namenodes? instructions to create, delete
or replicate blocks.
2.4 Hadoop
Hadoop was originally developed as infrastructure for the Nutch project [14], which
crawls the web and generates a search engine index for the crawled pages. It is an open-
source implementation of the MapReduce programming model, and a framework to support
applications running on large commodity cluster, which transparently o er applications both
data motion and reliability.
The Hadoop Map/Reduce framework has a master/slave architecture. It has only one
master server/jobtracker and many slave servers/tasktrackers, one per node. Users take
advantage of jobtrackers to interact with the framework. Firstly, users submit jobs to the
jobtracker, which then queues the jobs and serves them on a  rst-come/ rst-served basis.
The jobtracker takes charge of the allocation of map and reduce tasks to the tasktrackers.
Based on the instruction of jobtracker, the tasktrackers execute tasks and deal with data
motion between map and reduce phases.
2.5 MapReduce on-line
MapReduce on-line [15] have provided further improvements for Hadoop, they modi-
 ed MapReduce programming model that allows data to be pipelined, which extends the
MapReduce programming model beyond batch processing, decreases the execution time and
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improves the utilization of system for batch jobs. In addtion, they change the version of the
MapReduce framework to support on-line aggregation, which can helps users to get early
returns when a job is being computed.
2.6 Hadoop-A and its TCP/IP implementation
In 2011, the paper about Hadoop-A published in SC11 have found a number of issues in
Hadoop, which prevented Hadoop from achieving good performance, including a serialization
barrier that delayed the reduce task, as well as repetitive disk access and merges. Hadoop-A is
implemented by using a C++ plug-in component in Hadoop for data movement, which has
overcome the problems mentioned above. Their novel network-levitated merge algorithm
doubles throughput of data processing in Hadoop, and lowers CPU utilization by more
than 36%. However, Hadoop-A is implemented based on In niBand, which restricts the
usage of new algorithms on commercial cloud servers, and prevents them from proving their
contribution towards solving the disk I/O bottleneck. On the other hand, the speed of
TCP/IP-Ethernet connections is a steady technology for a long time, and is becoming faster
and faster. If I can implement Hadoop-A based on the TCP/IP protocol, I can solve the
problems mentioned above. In addition, I need to gain better performance on 10 Gigabit
switches versus 1 Gigabit switches. The rest of the thesis illustrates how I accomplish this,
by implementing TCP/IP-Ethernet support in Hadoop-A.
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Chapter 3
Design and Implementation Details
Because that my work is to enable the Hadoop-A plug-in?s client side and server side
to connect with each other with the help of TCP/IP protocol, I need to  rst introduce the
architecture of Hadoop-A. After that, I will present the design of my work.
3.1 Hadoop-A architecture
The Hadoop-A plug-in is implemented in C++, while the original Hadoop is imple-
mented in Java. The main reasons for adopting C++ over Java is to avoid the Java Virtual
Machine (JVM)?s overhead in processing, and to enable the RDMA connection mechanisms,
which are not available in Java now. As a result, the  rst thing I need to consider is how to
connect the C++ plug-in with Hadoop?s Java modules. I will brie y describe some features
of this new framework without lingering on technical details.
As we can see from  gure 3.1, two new components-MOFSupplier and NetMerger are
introduced to the framework of Hadoop-A. On the Java side, TaskTrackers  rst create a
Server Socket, and then lauch a C++ side MOFSupplier and NetMerger, to build connec-
tion with them. If a connection has been created successfully, the Java side will create
DataOutputStreams and DataInputStreams to store the data to/from the C++ side. On
the C++ side, both MOFSuppliers and NetMergers create connections back to TaskTrackers
and create streams for communication. In addition, they will add an event for down calls,
which can deal with commands from Map Tasks and Reduce Tasks.
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Figure 3.1: Interface between Hadoop (Java) and Roce (C++)
3.2 Interface between Hadoop (Java) and Roce (C++)
Following are details of the communication mechanism between Hadoop (Java) and
Hadoop-A plug-in (Roce):
In the beginning, task trackers create socket servers to listen for connection requests.
After that, NetMergers are started. Netmergers  rst try to connect back to the TaskTrackers.
If the connection has been successfully created, netmergers will create streams for communi-
cation, and add an event for down calls, which can receive init and exit command from task
tracker, Then, they create listeners to listen for new reduce tasks connection requests, once a
reduce task connects to a Netmerger, the connection between Reduce Tasks and NetMergers
has been established. With the help of this connection, Reduce Tasks can send requests to
Netmergers, and Netmergers will return the data that it needs.
In MOFSuppliers, an event-driven thread is created to receive control commands, and
inserts new Map output  les (MOFs) into DataEngines. As long as MOFSuppliers receive
commands from Java, it  rstly check the command header; if the command is to inform
that new map output has arrived, MOFSuppliers will create a new MOF entry and insert
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it to the list of DataEngine which is used to cache Map Output. In order to improve the
performance and take full advantage of multithreading technology, a unique thread is used
to read Map Output data from disk to memory, while other threads are used to handle some
other problems at the same time. Other commands can be initialization, exiting to init or
exit process and threads, allocate or release resource.
Next, I will describe the details of the TCP/IP connection between MOFSuppliers and
NetMergers. Many technologies are used to handle large amount of data transmission in
cloud computing.
3.3 TCP/IP Implementation in Hadoop-A
In the Hadoop-A plug-in framework, since we need to deal with a big amount of data
and at the same time guarantee the performance, a lot of techniques are used. Following are
the methods that I employed in our TCP/IP implementation.
Epoll in Linux kernel
Epoll is an I/O event noti cation mechanism used in high performance network com-
munication. It is used to replace traditional POSIX poll and select system calls. Here are
some bene ts of epoll over old poll/select mechanism: (1) the disadvantage of select is that
the number of opened  le descriptors (FD) is limited, which is sometimes not enough for
the server; epoll does not have this limitation, and the largest number of FD it supports is
the largest number of  les that can be opened, which is much larger than 2048; (2) another
disadvantage of traditional select is that when you obtain a large set of sockets, due to net-
work delay, only some of the sockets are active, but select/poll still scans all of the socket set
linearly, which can lead to e ciency proportional penalties. The problem does not exist in
epoll, since it only operates on active socket, because in Linux kernel the implementation of
epoll is based on fd?s callback function. Only the active socket will call callback function by
itself, while other idle socket will not. (3) select, poll and epoll, all require the Linux kernel
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to provide information to the user space; as a result, avoiding useless memory copies is very
important. Epoll solves this problem with the help of mmap via shared memory;
Multithreading
As we know, disk I/O is always the bottleneck and data movement is expensive and time
consuming. Consider the case where we only use one thread to read data from disk. When
we get all the data we need in the memory, we send these data to the receiver. After the
receiver gets this data, it will do some calculation and write data back, every operation in
sequence. Modern computers always have hardware which can support executing multiple
threads e ciently, such as multi-core systems. We can make use of this multithreading
technology to overlap the execution of this process. For instance, we can start a thread to
read data from the disk, at the same time letting another thread send data. In the same
way, we can also keep one thread receiving data while another thread computing the received
data. For the purpose of increasing the speed of sending or receiving data over Ethernet,
I am using multithreading to send and receive large amounts of data between Servers and
Clients.
Bu er allocation management
One of the most scarce resources in computing systems is memory. Figure 3.3 shows
our methods to manage bu er allocation. In MOFSuppliers, our program  rstly allocation
many bu ers to a Memory Pool, once a Mapper write new Map Output data on the disk,
disk read thread will get new empty bu er from memory pool to read data from disk. After
this bu er has been fully  led, the data in this bu er will be sent to NetMerger by socket.
If all of the data in this bu er has been sent out, memory pool will recycle this bu er. As
long as NetMergers receive data, the receive thread get a empty bu er from Memory Pool
and give this bu er with full  led data to merge thread. After all of the data in this memory
block has been used, our program will recycle that memory block to get more data. In order
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to avoid the overhead of allocating memory, we assign memory outside the key path of data
processing, which can save a lot of execution time.
Figure 3.2: Bu er allocation management
In the following, I?d like to present the TCP/IP implementation detail to show you how
I can realize the aforementioned design to achieve our goal.
3.3.1 MOFSupplier (Server)
Figure 3.3 is the main structure of MOFSupplier. We can see from the  gure that there
are three parts in MPFSupplier with the following functions: (1) Create a connection talking
back to the Task Tracker. (2) Create a data engine, which contains a list of MOFs, and its
according indexcache datacache (Implemented by DataEngine component). (3) Create an
OutputServer to connect with Netmerger (Implemented by MOFServer component).
Socket connection with Task Tracker
The  rst function is an event-driven thread responsible for receiving control commands.
The connection is created with sockets, for communicating command streams. We imple-
ment this function with the help of the epoll mechanism. After creating a connection with
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Figure 3.3: Structure of MOFSupplier
MOFSupplier, an event will be registered for down calls using epoll. When incoming mes-
sages from MOFSuppliers arrive, a thread will automatically inform the user to call down a
call handler. The format of commands from Hadoop is: \NO. of (header+params) : header
: param1 : param2 : ...". We separate number of (header+params), header and each pa-
rameters with colons. This format is used because we are not sure of the number and the
length of parameters.
There are three types of commands. First, initiation commands are used to initialize
resource and other process. Second, exit messages are called to clean jobs, quit threads
and so on. The third command is "NEW MAP MSG", which is to notify MOFSupplier
that new map output has been generated, based on the information in this command, so
the DataEngine can read index and data from the disk to memory to prepare to serve
NetMerger?s request.
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DataEngine
Next, I?d like to present the structure of DataEngine. In the beginning, DataEngine
will allocate a memory pool to wait for reading data from disk into memory. As soon as
MOFSupplier gets "NEW MAP MSG" commands, which means new Map Output is ready
on the disk to be read, it will add the command information into a list and notisfy Disk Read
Thread to read data into memory. In order to retrieve data quickly, DataEngine also creates
an index to tell whether the data has been loaded or not, and if it has already been loaded,
what?s its path. As we know, disk I/O is always the bottleneck which may consume a lot
of time, to gain more performance, I use one thread to read data from the disk while other
threads deal with receiving and sending issues. We try to load all the data into memory,
which can guarantee that DataEngine can serve others as long as it receives their request.
Another thing DataEngine needs to do is to serve the request from MOFServer. When
MOFServer receives a get data request from NetMerger, it will search its index to  nd the
required data. After that, DataEngine puts all of the information into one structure to
record the position of the data and receiver information. Other threads will send data to
the destination based on the message provided by the DataEngine.
MOFServer
MOFServer is the structure to receive requests from clients, search for data from the
DataEngine, and  nally send required data back to NetMerger. First of all, MOFServer
creates a listener to accept the connection request from NetMerger. We register an event
in epoll. When the connection request from NetMerger arrives, a function will be called to
initialize the connection, and add connection information into a connection list. The con-
nection list has recorded all of the connections that this MOFServer is connecting. Between
each compute node pair, there is one connection. After the connection has been established,
once the MOFServer received the request from NetMerger, it will add the request into a
queue and inform DataEngine.
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I also use data streams to send requests. The format of the request is: \jobid: mapid:
mop o set: reduceid: mem addr: request addr", for the same reason that the length of
every parameter is unknown, we seperate them by colon. Based on the received request,
DataEngine will return the data they need.
Many threads take charge of sending data from the memory to NetMergers, while at the
same time another thread reads data from the disk to the memory. These sending threads
are started at the initialization time of MOFServer. The number of threads is tunable. One
thread serves a  xed socket fd, which can make sure all of the data from the same sender
and the same receiver are in sequence. In order to achieve load balance, the number of
connections in each thread is almost the same.
The size of data sent each time is larger than the default size of the socket bu er,
one receive call is not always enough to receive the whole chunk which is a memory bu er
allocated in the beginning. To solve this problem, MOFServer  rstly send a header to inform
the size of data chunk will be sent along with a lot of other informations such as: the o set
of memory chunk used to receive data at the NetMerger side, this data is required by which
request from NetMerger and so on. Based on the size sent by MOFSupplier, the receiver
uses a while loop to call socket recv function many times, until the receiving side can get all
the data speci ed in the header.
By now, all of the functions in MOFSupplier has been described. Next, the structure
of NetMerger will be shown to you.
3.3.2 NetMerger (Client)
NetMerger is adopted to serve Reduce Tasks. Its structure is present in Figure 3.4. At
the initialization time, the TaskTracker will send commands to start and init NetMerger. If
some Reduce Task need to get data from MOFSupplier, it will send fetch requests to the
NetMerger. NetMerger receives the requests from Reduce Tasks and send them to MOF-
Supplier. As soon as required data arrives, NetMerger uses multiple threads to receive data
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and pass data to another thread to do some computation (Merge). After the computation
completes, threads will send data back to the Reduce Task and post more request to fetch
data for computation.
Figure 3.4: Structure of NetMerger
Socket connection with Task Tracker and Reduce Tasks
When Task Tracker begins to work, it will start NetMerger. In NetMerger, we register a
client downcall handler and reduce connection handler into epoll. The client downcall han-
dler is used to connect with Task Tracker, to receive commands from TaskTracker. These
commands include inits message and exit messages. If the init messages are received, Net-
Merger can prepare resources for data processing. Exit messages mean you need to release
memory and destroy some structure for exiting.
Controller
In Controller, it  rst creates an event-driven thread responsible for connecting back to
the TaskTracker and receiving reducer connection requests. The function of connecting with
22
TaskTracker has been described above. So we?d like to tell something about dealing with
Reducer connection requests. As long as the controller accepts the connection request with
a Reducer, it will add the connection information into a list. Another thread is responsible
for generating a new epoll set for the ReduceTask, creating a socket to receive fetch requests
from the reducer and using the socket to report progress for the Reducer.
Netlev Reduce Task
If NetMerger  nds that new fetch data requests have arrived from Reduce Task, it adds
that request into a queue. Another thread will notice that and try to  nd out whether there
is a connection between request sender and receiver from a connection list. If this is the
 rst time it send a request to the receiver and there is no connection between them two, the
NetMerger will send a connection request to the MOFSupplier. As long as the connection has
been created, NetMerger will add the connection into the connection list and send request to
MOFSupplier. The request includes which part of data it is asking for, the memory chunk
that is prepared to receive data from MOFSupplier in NetMerger, the pointer to the request
structure and so on.
If everything goes well, NetMerger should receive required data from MOFSupplier,
after which we start many threads to receive data, and add the pointer of received data into
a Fetched Mops Queue. Another thread uses received data to do some computation. We use
multi-threading to overlap data receiving and data computing, which can take full advantage
of modern multi-core systems to improve our implementation performance. After the merge
thread  nishes its job, it will send data results back to TaskTracker and add more Fetch
Requests into Fetch Queue for further computation. At the end of operation, the reduce
task will send an exit message to  nish the job.
Above we have stated all of the components and their functions. In the following, we
want to give you a clear view of data processing.
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3.4 Program Flow
Figure 3.5 can give you a view of the  ow of the program. I will give you a brief
description based on the  gure.
Figure 3.5: Program Flow
1. When a Reduce Task needs to fetch data from Map Task, it will send a fetch request
to the NetMerger.
2. NetMerger creates a connection with MOFSupplier and sends fetchs request to MOF-
Supplier.
3. After receiving the request from NetMerger, MOFSupplier adds the request to the
request queue, and notify DataEngine. Based on the request, DataEngine searches its Data
Cache which is read from disk by the disk read thread.
4. If the required data has been found, DataEngine sends the data back to MOFServer.
5. MOFServer invokes some send threads to send data back to the NetMerger.
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6. NetMerger uses many threads to receive data and gives received data to Merge
Thread to do computation. As soon as computation has been  nished, data will be sent to
the Reduce Task.
I have introduced the detail of my TCP/IP implementation of Hadoop-A plugin. I will
present the evaluation results in the following chapter.
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Chapter 4
Evaluation Results
This chapter presents the evaluation of TCP/IP implementation for Hadoop-A, com-
pared to the original Hadoop on Ethrenet.
4.1 Testbed
We do our experiments on a 26-nodes cluster. The con guration of our cluster is: Dual-
socket quad-core 2.13 GHz Intel Xeon processors, 8GB of DDR2 800 MHz memory and 8x
PCI-Express Gen 2.0 bus. 4 MB L2 cache is shared by four cores on one socket. We run
Linux 2.6.18-164.el5 kernel on these nodes. We equipped each node with a 250GB, 7200
RPM, Western Digital SATA hard drive.
The bandwidth of RDMA is tested with the help of perf test from OFED, while IPoIB
and Gigabit Ethernet (GigE) are tested using another netperf benchmark. From 4.1, we can
 nd that the speed of IB (RDMA) is much faster than IB (IPoIB) and Gigabit Ethernet. But
it can not support Java, that?s why the Hadoop-A plug-in uses C++ as its implementation
language. IB (IPoIB) can achieve a bandwidth of 1078.40 MB/sec for Java and 1220.39
MB/sec for C++, while the speed of Gigabit Ethernet is only about 122.00 MB/s. As a
result, if we can get better performance over Gigabit Ethernet, we will demonstrate the good
e ects of reducing disk access from Hadoop-A.
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Table 4.1: The bandwidth of RDMA, IPoIB and Gigabit Ethernet
RDMA IPoIB Gigabit Ethernet
Java - 1078.40 122.31
C++ 3239.21 1220.39 124.13
4.2 Overall Performance
First of all, we show the overall performance of my TCP/IP work compared with the
original Hadoop. TeraSort and WordCount are two benchmarks for testing Hadoop pro-
grams. As mentioned in the Hadoop-A paper, we can see that Hadoop-A can get better per-
formance on the TeraSort benchmark, but the performance of Hadoop on the WordCount
benchmark is the same as for the original. So it makes no sense to run the WordCount
benchmark.
Figure 4.1 shows the overall performance of running TeraSort. We are running 4G data
on each node, the number of nodes is from 2 to 12. Accordingly, the largest data size we have
tested is 48 GB. On each node, we run 8 Mappers and 4 Reducers. Most of the performance
of TCP/IP is 20% better than original Hadoop program. For 8 nodes 32G, our TCP/IP
implementation can gain 26.7% performance, which has proved the bene ts of Hadoop-A?s
reducing disk access.
We will take 12 nodes (48GB) as an example to explain the performance of TCP/IP
and the original Hadoop. As shown in Figure 4.2, the map tasks of TCP/IP are much faster,
especially when the map progress is greater than 50%. The reason is that, in the map phase
of TCP/IP implementation, we only execute some lightweight work.
To avoid repetitive merges, reduce tasks do not begin to merge until the completion of
last Map Output (MOF) generated by map task. Once all MOFs are ready, the reduce tasks
begin their work immediately. Data are fetched and merged from map tasks only for one
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Figure 4.1: Overall performance of TCP/IP implementation
Figure 4.2: Progress of Map Task
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time, which can reduce the times of disk access. From Figure 4.3 we can see reduce tasks
 nish their work very quickly.
Figure 4.3: Progress of Reduce Task
4.3 Scalability
Normally in High Performance Computing (HPC), one standard of evaluating the qual-
ity of a program is scalability (scaling e ciency), which means how e cient this program
can achieve when running on an increasing numbers of elements of parallel processing (CPUs
/ cores). Two basic ways can be used to test a given program?s parallel performance, called
strong scalability and weak scalability. Becasue we have more nodes to deal with data, we
want to make sure the scalability of our work is good. We have examined the total execution
time of Terasort?s strong scalability and weak scalability.
Strong scaling is that the size of problem stays  xed while the number of CPUs/cores
change, which is used to  nd a good situation that the problem can be solved in a reasonable
time and at the same time does not waste too much resource. Usually it is hard to achieve
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strong scalability due to communication overhead. To test the strong scalability of our work,
we conduct our experiment on constant amount of data (24 GB) but change the number of
nodes (from 2 to 12).
Figure 4.4: TCP/IP implementation with Increasing Number of Nodes
From Figure 4.4, we can see that, for a  xed amount of data, the TCP/IP implemen-
tation can maintain an improvement of 20% over the original Hadoop, and that both the
original Hadoop and the TCP/IP implementation of Hadoop-A can achieve good scalability.
Weak scaling means for each processing element, the size of problem stays unchanged
and more nodes are used to solve larger amount of problem. If the execution time stays the
same, we can say the weak scalability of this program is good. To test weak scalability, each
node deals with 4 GB data. The largest number of nodes used to run our program is 12, as
a result, up to 48 GB data has been tested totally.
Figure 4.5 shows the weak scalability of the original Hadoop and TCP/IP implemen-
tation of Hadoop-A. Both the original Hadoop and TCP/IP implementation can achieve
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Figure 4.5: TCP/IP implementation with Increasing Data Size
good weak scalability, becasue the total excution times with these di erent nodes remain
nearly unchanged, and as you can see, the new TCP/IP implementation can achieve better
performance than original Hadoop.
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Chapter 5
Conclusions
In this article, I have described the details of a TCP/IP implementation of Hadoop-A.
Hadoop-A has solved a number of issues in the original Hadoop, such as the serialization
barrier between merge and reduce and repetitive disk access. But that work is implemented
over In niband (RDMA), which is not always used in commercial cloud system due to the
great expense of hardware. As a result, the TCP/IP implementation of the Hadoop-A plug-in
is useful for commercial cloud systems to gain good bene ts from Hadoop-A.
We have presented some key technologies used to deal with large scale of data sets
in TCP/IP implementation of Hadoop-A, including multi-threading, epoll mechanism and
bu er allocation management. After that, we introduce two important components: MOF-
Supplier (Server) and NetMerger (Client). Once Netmerger gets a fetch request from Reduce
task, it will send that request to the MOFSupplier. In MOFSupplier, DataEngine is a thread
to read Map Output from disk, if MOFSupplier receives the fetch request from NetMerger,
another thread will be woken up to send data via TCP/IP protocol. One receive thread
in NetMerger receives data and the merge thread uses received data to merge. All of the
bu ers are allocated to a memory pool in the beginning, threads can get empty bu ers from
this memory pool to do their work and return them when they don?t need them.
From the experimental results we  nd that our TCP/IP implementation can achieve
26.7% better performance than the original Hadoop project, and the scalability is good,
which has ful lled the goal of our work.
In the future, we need to test our TCP/IP implementation on much larger commercial
cloud systems, which can better demonstrate the bene ts of our work. In addtion, we need
more test results from our implementation, including system utilization and disk read/write
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bandwidth. We also want to test the performance gained when we are running applications
on top of Hadoop.
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