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 Programmable Input/Output (I/O) cells are an integral part of any Field 
Programmable Gate Array (FPGA).  The resources associated with the programmable I/O 
cells are increasing as newer architectures of FPGAs are being developed and this 
increases the importance of testing them.  A general Built-In Self-Test (BIST) 
architecture to test the programmable I/O cells in FPGAs or associated with the FPGA 
core of System-on-Chip (SoC) implementations is proposed.  The I/O cells are tested for 
various modes of operation along with their associated programmable routing resources.
 The proposed BIST architecture has been implemented and verified on Atmel 
AT94K10 and AT94K40 SoCs.  A total of 161 and 303 configuration downloads are 
required to test the I/O cells of AT94K10 and AT94K40 devices, respectively.  The use 
of an embedded processor for dynamic partial reconfiguration reduced the number of 
 vi
configuration downloads to three for both the AT94K10 and AT94K40 devices.  The 
implementation of dynamic partial reconfiguration gave a speed up of 99.39 times in test 
time and a reduction in configuration memory storage requirements by 101 times for 
AT94K40 devices. 
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 Chapter 1 
 
Introduction 
 
 The feature sizes of a transistor on a Very Large Scale Integrated (VLSI) circuit 
are reducing by almost 10.5% every year, which results in an increase of transistor 
density by 22.1% [1].  Furthermore, an equal amount (around 22%) of increment in 
transistor density is provided by wafer and chip size improvements, along with other 
circuit design and process innovations [2].  This amounts to more than double the number 
of transistors on an Integrated Circuit (IC) every two years, which agrees closely with 
Moore?s law of doubling the number of transistors on an IC every 18 months [3].  As the 
number of transistors on a chip increases, the probability that the chip contains at least 
one faulty transistor increases, which in turn increases the probability of the whole chip 
being faulty [1].  The defects which cause the faults may be due to impurities in the 
original silicon or in the manufacturing process [4].  As the feature size keeps decreasing, 
the defects that can occur during the fabrication process increase [5].  As the number of 
defects during the fabrication process increases, the importance of testing a chip increases.  
Currently, Field Programmable Gate Arrays (FPGAs) and System on Chips (SoCs) are 
among the devices with the highest transistor integration and are more prone to defects 
than other VLSI chips. 
 With the advent of VLSI technologies, the complexity and functionality of digital 
circuits increased dramatically, allowing more and more circuitry to be packed onto a 
 2
single chip.  The increase in package density reduces the circuit costs, but increases the 
testing costs due to the reduction in controllability and observability (lack of access to the 
innermost resources) of the VLSI chips.  Also, surface mount technology, in which 
components are mounted on both sides of the board, makes bed-of-nails testing either too 
expensive or unfeasible [6].  Bed-of-nails testers make contact with the solder joints of 
the Printed Circuit Board (PCB) to test the components soldered to it.  The advantages of 
VLSI, namely reduced system cost, better performance, and greater reliability, are being 
offset by high system testing costs.  Testing costs may be as high as 55% of the total cost 
of a complex IC and it is likely to increase proportionately with the increase in 
complexity of VLSI chips [7]. 
1.1 Overview of FPGAs 
 FPGAs are devices which can be programmed by a user [8].  The user can 
describe the circuit design using a Hardware Description Language (HDL) and it can be 
synthesized and implemented easily on an FPGA with just a computer and some cables.  
FPGAs have two important benefits: they have lower Non-Recurring Engineering costs 
and faster time to market compared to Application Specific Integrated Circuits (ASICs) 
[9]. 
 The FPGA is an array of Programmable Logic Blocks (PLBs) with programmable 
routing resources used to interconnect PLBs and programmable Input/Output (I/O) cells 
[9], as shown in Figure 1.1.  The programmability, nowadays, is mostly implemented by 
Static Random Access Memory (SRAM), requiring FPGAs to be configured 
(programmed) every time the circuit powers up [10].  A typical PLB in an FPGA has a 
set of combinatorial and sequential logic resources that can be programmed to operate in 
various modes.  The combinatorial logic part generally consists of RAM-based Look-Up 
Tables (LUTs) and the sequential logic part consists of latches and/or flip-flops [10].  
PLBs generally incorporate three or four-input LUTs to implement three or four-input 
combinatorial logic functions, respectively.  The small logic functions implemented by a 
PLB are expanded using the programmable routing or interconnect network to implement 
bigger logic functions. 
 
Figure 1.1: Basic FPGA Architecture 
 The programmable routing network is used to connect a PLB with other PLBs or 
with the I/O cells.  The programmable routing consists of wire segments that can be 
connected or disconnected by Configurable Interconnect Points (CIPs) (also referred to as 
Programmable Interconnect Points, or PIPs) [11]. 
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 Reconfigurable cores like FPGAs are now being integrated into SoCs.  The 
improvements in fabrication technology have created the ability to place all the system 
functions that were being placed on a single PCB onto a single chip, known as a SoC [12].  
SoCs which have a reconfigurable core, like a FPGA, are called Configurable SoCs 
(CSoCs).  Recently, FPGAs containing processor(s) are also being fabricated [13].  In 
CSoCs and also the FPGAs with processors, the processors have the capability to 
configure or reconfigure the FPGA [13].  CSoCs and FPGAs with processor cores have 
become highly popular because of the availability of the processor and also due to the 
advantages provided by reconfiguring an FPGA using the processor.  All FPGAs and 
CSoCs communicate with other devices through programmable I/O cells to transmit and 
receive data.  So, programmable I/O cells are an important part of any FPGA or SoC. 
1.2 Overview of Programmable I/O Cell 
 The architecture of an example programmable I/O cell is shown in Figure 1.2.  
The programmable I/O cell consists of a bi-directional buffer, logic circuitry like flip-
flops or multiplexers, and routing resources.  The I/O buffer, shown as the shaded portion 
in Figure 1.2, constitutes the pad and some analog circuitry, like pull-up or pull-down 
transistors, delay elements and Schmitt trigger.  The I/O buffers are used to communicate 
with other devices present on the PCB.  The bonding pad is the interface between the die 
and the package [14].  A programmable buffer can be configured as an input buffer, 
which uses the input side of the I/O cell, as an output buffer, which uses the output side 
of an I/O cell, or as a bi-directional buffer, which uses both the output and input sides of 
the I/O cell.  The tri-state signal is activated (put in a high impedance state) mainly when 
the I/O cell is being used as an input cell.  Configuration bits are used to program the 
logic and routing resources of an I/O cell.  For example, the configuration bits, CBs 
shown in Figure 1.2, are used to activate registered or non-registered input/output by 
programming the multiplexer. 
 
CB ? Configuration Bit 
Figure 1.2: Example of a Programmable I/O Cell 
 The I/O cells can be classified as bonded I/O cells and unbonded I/O cells.  If the 
pads of the I/O cells are bonded to the pins of the package then the I/O cells are called 
bonded I/O cells; otherwise they are called unbonded I/O cells.  The unbonded I/O cells 
cannot exchange information with the outside world [15].  For a given sized FPGA with a 
fixed number of I/O cells, different package sizes have different number of bonded and 
unbonded I/O cells.  The buffer part of the I/O cell alters the characteristics of signals in 
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such a way that the signal characteristics become compatible with other devices 
connected to the chip when there is any information exchange between the chip and the 
outside world.  As the performance of chips continues to increase, the I/O cells play a key 
role in maintaining high speed data transfer between packaged devices on a PCB or 
between different PCBs [16]. 
 The I/O cells present in a FPGA are gradually increasing in number and also 
complexity as they integrate new functions [13].  As the number of functions in an I/O 
cell increases, the logic and routing resources associated with each I/O cell also increase 
and they become more prone to defects.  So, testing of I/O cells is becoming an important 
issue. 
1.3 Overview of the Prior Work in I/O Cell Testing 
 While a number of Built-In Self-Test (BIST) approaches have been developed for 
testing the programmable logic and routing resources in the FPGA core, they have 
neglected testing the I/O cells and the routing resources associated with them.  BIST has 
been implemented to test the speed of I/O in [17].  Additional circuitry, including a Delay 
Locked Loop (DLL), test registers and comparators, was included for each register under 
test.  This BIST circuit was developed for implementation in an ASIC to test the setup 
and hold time of the registers in the I/O cell.  But other resources present in the I/O cell 
are not tested by this method [17]. 
 A quiescent current-based (IDDQ) testing approach for I/O cells in an FPGA was 
proposed in [18].  In the steady state of CMOS circuits there is no direct connection 
between power supply (VDD) and ground, so the steady state current, or quiescent 
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current, should be zero.  But the presence of defects can provide a path for flow of 
current, thus defects can be detected by measuring IDDQ.  The technique proposed in 
[18] is an external test approach.  In this technique the input and output sides of the I/O 
cell are tested separately.  The input side of the I/O cell is tested by applying the inputs 
externally and the output side of the I/O cell is tested by monitoring the output signals 
externally, where the input side of one I/O cell and output side of another I/O cell are 
tested at the same time.  Until now there has been no work on implementing BIST for 
programmable I/O cells. 
1.4 Overview of Built-In Self-Test 
 Design-for-Testability (DFT) techniques were developed to keep the testing costs 
low.  BIST is a DFT technique in which test pattern generation and output response 
analysis is done by on-chip circuitry [6].  The basic idea of BIST is to incorporate test 
circuitry along with the normal system circuitry to verify the proper functionality of the 
system.  The BIST circuitry consists of a Test Patter Generator (TPG), which sources the 
test patterns to the Circuit Under Test (CUT), an Output Response Analyzer (ORA), 
which analyzes the output responses of the CUT, and a controller, which controls the test 
procedure [5].  BIST circuitry must be able to test the system quickly and should provide 
high fault coverage [1].  An example BIST architecture for a system is shown in Figure 
1.3. 
 
Figure 1.3: Basic BIST Architecture 
 The advantages of BIST are vertical testability, i.e., same test circuitry can be 
used at wafer level (before packaging) testing, device level (after packaging) testing and 
also at system-level testing, feasibility of at-speed test and often the overall test cost is 
reduced.  The disadvantages of BIST include area overhead due to additional circuitry, 
longer design time and sometimes the fault coverage from BIST may be less than the 
fault coverage obtained from external tests [5].  The inclusion of BIST certainly increases 
the initial cost of the system.  So, BIST feasibility for a system must be evaluated using 
benefit cost analysis, assessing the total life cycle costs compared to the initial cost [19]. 
Unlike conventional BIST, FPGA BIST does not include any area overhead or 
performance degradation.  As an FPGA can be reconfigured any number of times, it is 
tested by reconfiguring logic and routing resources in different modes to test all the 
FPGA resources.  The only requirement is additional memory for storing the 
configuration data to be written to the configuration memory of an FPGA to configure 
(program) it for BIST [19]. 
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1.5 Thesis Statement 
 As the size of FPGAs (in terms of the number of transistors, the amount of logic 
that can be emulated and the number of I/O cells) increases, the problem of testing them 
also increases.  Previously, BIST has been applied to test the PLBs and routing resources 
present inside an FPGA, but no work has been done in testing the logic and routing 
resources associated with the I/O cells of an FPGA using BIST.  The goal of this thesis is 
to propose a BIST approach to test programmable I/O cells and to develop and implement 
BIST configurations for the Atmel FPGAs and SoCs, which can be used to test all the 
routing and logic resources associated with an I/O cell. 
 The thesis is organized as follows:  In Chapter 2, the general architecture of 
FPGAs and I/O cells, as well as the architecture of Atmel FPGAs and SoCs, is described 
along with the previous work in BIST for FPGAs and I/O cell testing.  In Chapter 3 the 
BIST architectures used for testing the I/O cells of Atmel FPGAs will be described.  In 
Chapter 4, the use of an embedded processor present in the Atmel SoCs will be described 
for BIST execution and partial reconfiguration, which reduces the test time.  Finally, the 
thesis will be summarized and concluded in the Chapter 5, describing the major 
contributions and possible future work.  A list of acronyms used in this thesis is included 
in Appendix A. 
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 Chapter 2 
 
Background 
 
 This chapter begins with a general architectural description of FPGAs and 
programmable I/O cells.  Then the architecture of the Atmel AT94K Field Programmable 
System Level Integrated Circuits (FPSLIC) and their resources is described.  This chapter 
also describes the prior work in I/O cell testing and BIST architectures for testing logic, 
routing and RAM cores in FPGAs.  Finally, this chapter concludes with a re-statement of 
the thesis goals. 
2.1 General Overview of FPGAs 
 Programmability in FPGAs can be implemented with anti-fuses, Erasable 
Programmable Read-Only Memories (EPROM), Electrically Erasable PROMs 
(EEPROM) or SRAMs [20].  Most of the current FPGAs on the market use SRAM 
technology.  SRAM cells are volatile, so the FPGA has to be configured each time the 
power is supplied.  Programming an SRAM-based FPGA consists of writing bits into the 
SRAM to connect the required wire segments and define logic functions.  The bits 
written into the SRAM to configure the FPGA are called configuration bits and SRAM 
memory which stores the configuration bits is called the configuration memory.   
 From this point on, the architecture of the SRAM-based FPGAs is discussed.  
FPGAs consist of an array of PLBs interconnected using a programmable routing 
network and is surrounded by programmable I/O cells.  The architectures of a typical 
PLB, routing network and I/O cell are discussed in next sections. 
2.1.1 Programmable Logic Blocks 
 PLBs generally consist of LUTs, D-type flip-flop(s), multiplexers and other logic 
resources.  The basic architecture of an example PLB in its simplest form is shown in 
Figure 2.1.  The implementation of a two input LUT is shown in Figure 2.2a, where the 
configuration memory can contain any combination of 1?s and 0?s.  As each 
configuration bit can contain a logic ?1? or ?0?, using 4 bits a total of 2
4 
= 16 logic 
combinations can be formed using a two input LUT.  The implementation of a LUT for a 
two input OR gate is shown in Figure 2.2b. 
 
Figure 2.1:General Architecture of a Programmable Logic Block 
 
                                (a) General                                      (b) OR Gate 
Figure 2.2: LUT Implementation 
 11
2.1.2 Routing in FPGAs 
 The programmable interconnect network consists of wire segments that can be 
connected or disconnected by CIPs [5].  The basic CIP structure consists of a 
transmission gate controlled by a configuration memory bit, as shown in Figure 2.3a.  
Depending on the logic value of the configuration memory bit, the two wire segments 
may be connected or disconnected.  There are four basic types of CIPs - cross point CIP, 
break point CIP, multiplexer CIP and compound CIP [5].  A break point CIP connects 
two wire segments which are in the same plane, as shown in Figure 2.3b.  A cross point 
CIP is used to connect two wire segments which are in different planes.  For example, a 
horizontal Wire P can be connected to a vertical Wire Q using a cross point CIP, where 
Wire P has to be above or below Wire Q, so they are in different planes.  Multiplexer 
CIPs select one of the several inputs and connect it to the output.  A compound CIP is a 
combination of four cross point CIPs and two break point CIPs [5].  The flexibility in 
routing a design can be improved by increasing the number of interconnects.  So, modern 
FPGAs include large amounts of routing resources to improve the flexibility in 
implementing a design. 
 
                (a) General Structure              (b) Break Point CIP        (c) Cross Point CIP 
Figure 2.3: Configurable Interconnect Point [5]
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2.1.3 Programmable I/O Cells 
 The example architecture of an I/O cell was shown in Figure 1.2 and the 
introduction was given in Section 1.2.  In this section a detailed discussion of the 
resources in the I/O cells will be presented.  To transmit the signals correctly, a Direct 
Current (DC) output signal should supply enough voltage, current, power or energy to 
drive the loads connected to it.  To receive the input signal, the voltage level should be 
interpreted correctly [22].  These output and input signal properties are generally 
managed by the I/O buffer. 
 The general programmable features of an I/O buffer are:  
Output drive capability: Usually the output drive current can be programmed to different 
values and its value is generally chosen on the basis of power dissipation and loading 
considerations. 
Pull-up/Pull-down: On activating either the programmable pull-up or pull-down 
transistor, a weak logic value of ?1? or ?0? will be supplied to the pad when all the other 
drivers are off.  This helps in maintaining known voltage levels when the output is tri-
stated [15]. 
I/O standards:  The logic voltage threshold level of the pad can be set to be compatible 
with I/O standards like TTL or CMOS or with any of the available I/O standards. 
Schmitt Trigger:  Schmitt trigger is a regenerative comparator that adds hysteresis to the 
incoming signal, which improves its rise and fall times.  It also helps in filtering out the 
noise and removing the glitches due to switch bounces [22].  The Schmitt trigger circuit 
is generally present on the input side of the I/O buffer. 
Delay: The input signal can be programmed to have different intrinsic delays [15][24].  
The delay helps in meeting the hold time requirements of the incoming signal. 
Tri-State: Most I/O buffers have a programmable tri-state select signal on the output side 
of the I/O cell.  Having a tri-state control signal allows using the same pad for input and 
output so that the tri-state is always activated (put in a high impedance state) when used 
as an input buffer.  The tri-state select signal can be activated or deactivated permanently, 
or can be controlled by an internal logic signal.  Two different implementations of tri-
state buffer are shown in Figure 2.4 [23].  When the I/O cell is acting as input cell, the 
output enable is made low and data is taken from the pad through ?Data In?.  When acting 
as an output cell, the output enable is made high and depending on the value of ?Data 
Out?, the pad is connected to either VDD or ground. 
 
Figure 2.4: Implementation of Tri-state Buffer 
 These are some of the important programmable features of an I/O buffer present 
in most of the FPGAs.  Other than the buffer, the I/O cell has logic components like flip-
flops for providing registered inputs and outputs, multiplexers for selecting signals and 
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inverters to invert the signal values.  The logic resources associated with the I/O cells are 
increasing continuously as newer architectures are being developed to allow high speed 
data transfer.  The Xilinx Virtex-4 FPGA has 32 multiplexers and 10 flip-flops in its I/O 
cell [24].  Table 2.1 shows the gradual increase in the number of I/O cells and registers in 
the I/O cells in different architectures of Atmel and Xilinx FPGAs. 
 
Table 2.1: I/O Cell Resources in Atmel and Xilinx FPGAs/SoCs 
 
FPGA/Soc 
Number of 
Registers per I/O 
Cell 
Year 
Maximum 
Number of I/O 
Cells 
Device 
Atmel AT40K 0 1999 384 AT40K40 
Atmel AT94K40 2 2002 288 AT94K40 
Xilinx Virtex 3 2002 512 XCV1000 
Xilinx Virtex E 3 2002 804  XCV3200E 
Xilinx Virtex II 
PRO 
6 2003 1164  
XC2VP70/100/ 
XC2VPX70 
Xilinx Spartan 3 6 2005 784  XC3S5000 
Xilinx Virtex 4 10 2005 960  XC4VLX200 
Xilinx Virtex 5 10 2006 1200  XC5VLX330 
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 For the PLBs to communicate with the I/O cells in the FPGA, some dedicated 
routing resources are associated with the I/O cells in every FPGA.  But the routing 
architecture is dependent on the FPGA manufacturer and it has considerable variation 
from one manufacturer to another.  Xilinx FPGAs use an array of compound cross-point 
CIPs for routing whereas Atmel FPGAs use multiplexer CIPs which will be discussed in 
section 2.2.1. 
2.2 Atmel AT94K Architecture 
 Atmel AT94K series devices are called FPSLICs and they are a family of 
configurable SoCs.  They have an AT40K SRAM-based FPGA core, an 8-bit Advanced 
Virtual Reduced Instruction Set Computer (RISC) processor core, referred to as the AVR, 
and some RAM cores [15].  The architecture of the FPGA and AVR cores in the AT94K 
FPSLICs will be described in this section. 
2.2.1 FPGA Core Architecture 
 The FPGA core has an NxN array of identical PLBs arranged in a symmetrical 
fashion.  The value of N = 24 for AT94K10 series FPGAs and N = 48 for AT94K40 
series FPGAs.  The FPGA core has bonded I/O cells on three sides and the fourth side 
has the interface with the AVR microprocessor, along with some unbonded I/O cells [15].  
The architecture of the FPGA core for an 8x8 PLB array is shown in Figure 2.5.  A block 
consisting of a 4x4 array of PLBs with a set of horizontal and vertical repeaters and a 
RAM core is repeated over the FPGA architecture.  Each PLB consists of two 3-input 
LUTs, which can be combined using a multiplexer to implement any 4-input 
combinational logic function, a D flip-flop and some multiplexers to provide routing and 
logic flexibility [15].  A part of the PLB is shown in Figure 2.6. 
 
Vertical
Repeater
Free
Ram
PLB
Primary I/O Cell
Horizontal
Repeater
Secondary I/O Cell
 
Figure 2.5: Architecture of AT94K FPSLIC 
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Figure 2.6: AT94K PLB 
 Every PLB has direct routing connections with all other surrounding PLBs and 
the PLBs located at the edges have direct connections with the I/O cells.  The direct 
routing connections of a PLB with surrounding PLBs are shown in Figure 2.7. 
PLB
X
XX
X
Y
YY
Y
A
B
C
D
E
F
G
H
A, E ? Direct connections to/from 
horizontally adjacent PLBs
C, G  ? Direct connections to/from 
vertically adjacent PLBs
B, D, F, H ? Direct connections to/from 
diagonally adjacent PLBs
 
Figure 2.7: Direct Routing Connections for a PLB 
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 All the PLBs at the periphery have three sets of direct connections with the I/O 
cells.  For example, a PLB which is located at the bottom edge of the FPGA, the direct 
connections F, G and H would be connected to or from I/O cells.  In Figure 2.7, the 
horizontal and vertical connections of a PLB are denoted as ?Y? and the diagonal 
connections are denoted as ?X?.  Along with these dedicated local connections, the inputs 
to the PLB can also be sourced from global routing connections. 
 The global routing connections are present around every PLB.  Figure 2.8 shows 
the global routing connections associated with a single PLB.  There are five horizontal 
and vertical bussing planes and each plane has two express buses and one local bus.  The 
local buses span a length of 4 PLBs, whereas the express buses span a length of 8 PLBs 
[15].  The LUTs can get inputs from any of the local buses of the routing resources or 
from the direct routing connections of the adjacent PLBs.  The output of the PLB can be 
sent onto any local bus or to an adjacent PLB by using global routing resources and direct 
connections, respectively. 
 
Figure 2.8: Global Routing Resources Associated with a PLB 
 19
 As the local and express buses span a length of 4 and 8 PLBs, the logic signals are 
buffered using the repeaters.  The repeaters are also used to provide routing flexibility.  A 
horizontal repeater with possible interconnections is shown in Figure 2.9.  A repeater 
makes connections between express and local buses.  The repeater internally consists of 
four 3-input multiplexer CIPs to enable connections between any two buses.  Using the 
repeater, any input to it can be connected to the output of the other three lines.  It can also 
be used to make more than one connection between the buses if there is no conflict in the 
utilization of the multiplexer resources inside the repeater [15]. 
 
 
Figure 2.9: Simplified View of a Repeater 
2.2.2 Data and Program Memory 
 A 36KByte SRAM memory core is partitioned into data memory and program 
memory.  The data memory can be accessed by both FPGA and AVR, whereas the 
program memory can be accessed only by AVR.  There is a 20KByte fixed program 
memory, a 4KByte fixed data memory, and the remaining 12KBytes is partitioned into 
three 4KByte blocks which can be configured to be used as either program memory or 
data memory.  The AVR instructions to be fetched during execution are stored in the 
program memory [15]. 
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 The interface between the FPGA core, data SRAM core and the embedded AVR 
microcontroller is shown in Figure 2.10 [15][21].  The FPGA core can be directly 
accessed by the AVR core.  Up to 16 decoded address lines are available from the AVR 
to the FPGA interface.  Also there are 16 interrupts from the FPGA to the AVR with 
different priority levels.  The FPGAIORE and FPGAIOWE signals are activated for one 
AVR clock cycle whenever data is read from the AVR data bus or written to the AVR 
data bus, respectively [15]. 
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Figure 2.10: AVR, FPGA and SRAM Interface 
2.2.3 Architecture of the Embedded AVR Microcontroller 
 The embedded AVR microcontroller is an 8-bit RISC architecture based 
microcontroller.  The AVR uses Harvard architecture and has separate memories and 
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buses for program and data.  The program memory has a single level pipeline such that 
next instruction can be fetched from memory while an instruction is being executed.  
During interrupts or subroutine calls, the return address of the program counter is stored 
in a stack, which is also a part of data SRAM.  As a result, the size of the stack is limited 
by the size of the data SRAM [15]. 
2.2.4 AVR Write to FPGA Configuration Memory 
 The AVR is capable of writing to the configuration memory of the FPGA.  There 
is an 8-bit data bus which is used by the AVR to write to the configuration memory of the 
FPGA core.  The AVR can do dynamic full or partial reconfiguration of the FPGA 
without any loss of data [15].  The registers FPGAX, FPGAY and FPGAZ control the 
address of the configuration SRAM to which the data is to be written and FPGAD 
controls the data to be written.  Each register is 8-bits wide and the configuration memory 
is byte addressable.  The FPGAX and FPGAY describe the horizontal and vertical co-
ordinates of the resources in the FPGA and FPGAZ describes the resources of the FPGA 
to be reconfigured like PLB, RAM, I/O cell or routing resources [15].  Figure 2.11 shows 
the FPGA access scheme.  The Atmel FPSLIC devices do not have the capability for the 
AVR to read the configuration memory [15].  As the configuration memory is not bit 
addressable and as each byte may contain combination of bits related to different 
resources in the FPGA, the lack of configuration memory read back will become a 
stumbling block when only specific resources are need to be reconfigured (partial 
reconfiguration) without affecting the configuration of other resources. 
 
Figure 2.11: Internal FPGA Configuration Access 
2.2.5 Architecture of Atmel AT94K I/O Cells 
 In this section, the architecture, characteristics and special features of the Atmel 
I/O cells, which are the target of the BIST approach in this thesis, are discussed.  In 
Atmel FPGAs the I/O cells are mainly classified into two types, namely primary I/O cells 
and secondary I/O cells, based on their position with respect to the nearest PLB.  In 
Figure 2.12, I/O1, I/O3 and I/O5 are primary I/O cells and I/O2, I/O4 and I/O6 are 
secondary I/O cells.  Each primary I/O cell has direct access to one PLB and each 
secondary I/O cell has direct access to two PLBs, whereas the connections for the I/O 
cells at the corners are slightly different.  The connections between PLBs and I/O cells 
shown in Figure 2.12 are direct connections.  The corner I/O cells have access to only one 
PLB as shown for I/O2 cell in Figure 2.12.  The corner I/O cells are almost the same as 
primary or secondary I/O cells, the only difference being the number of direct 
connections for secondary I/O cells [15]. 
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Figure 2.12: Location of Primary and Secondary I/O cells 
2.2.5.1 Resources in I/O Cell 
 The output drive capability of the buffer can be programmed to be fast, medium 
or slow in terms of the slew rates of the I/O buffer, where slew rate is the rate of change 
in the output voltage [14].  The Fast slew rate option produces a drive capability of 
20mA, medium produces 14mA and slow produces 6mA of drive current.  The I/O buffer 
has programmable pull-up and pull-down transistors.  The input threshold level can be 
programmed to be compatible with either TTL or CMOS.  A Schmitt trigger circuit can 
be enabled on the input side.  Also, the input buffer can be programmed to have four 
different intrinsic delays of approximately 0ns, 1ns, 3ns and 5ns.  These are the 
programmable resources present in the I/O buffer [15]. 
 The logic resources in the I/O cell consist of two positive-edge-triggered D flip-
flops with asynchronous reset signal.  The asynchronous reset signal can be programmed 
to be active high or active low and is sourced from an I/O cell.  All the I/O cells have a 
break point CIP connection to the global reset (GRST in Figures 2.13 and 2.15), so any 
I/O cell can be configured as a global reset input pin.  The flip-flops are present only on 
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the input and output data signals and the tri-state control signal does not have any flip-
flop to provide a registered value.  Each I/O cell has four multiplexers.  The data 
multiplexer selects the data to be sent to the I/O pad and the tri-state multiplexer selects 
the control signal to the I/O buffer.  The other two multiplexers select either registered or 
non-registered data at the input and output of the I/O cell.  A total of 144 and 288 general 
purpose I/O cells are present in AT94K10 and AT94K40 FPSLICs, respectively.  The 
number of I/O pads connected to the package pins varies from package to package as 
shown in Table 2.1.  In addition to the logic resources, the I/O cells have transmission 
gates to provide routing flexibility.  These are the general features of I/O cells in the 
Atmel FPGA core [15].  The logic and routing resources of the unbonded I/O cells are 
quite often utilized by the FPGA Computer Aided Design (CAD) tools for very dense 
designs. 
 
Table 2.2: Number of Package Pins (Bonded I/O Cells) in Different Packages 
Package 
Device 
Maximum 
Number of 
I/O Cells AJ AQ BQ DQ 
AT94K10 144 46 58 84 116 
AT94K40 
280 Not 
Available 
Not 
Available 
84 120 
 
2.2.5.2 Primary I/O Cells 
 The primary I/O cells, shown in Figure 2.13, are located orthogonal to the PLBs 
at the periphery of the FPGA core.  They are present on three sides of the FPGA core, 
other than the side which interfaces to the AVR.  Each primary I/O cell has seven inputs 
to the data multiplexer and eight inputs to the tri-state multiplexer as shown in Figure 
2.13.  Of the seven inputs to the data multiplexer, IOOD is a direct connection from the 
orthogonal PLB, IOOC is clock-wise connection from global routing, IOOCC is counter 
clock-wise connection from global routing, IOOX is connected from the express bus of 
the global routing and IOOL is connected from the local bus of the global routing 
resources.  Two other inputs, hardwired to logic ?1? and ?0?, provide constant values at 
the output of the I/O cell.  The same seven inputs are connected to the tri-state 
multiplexer as well and their naming convention is shown in Figure 2.13.  In addition to 
these inputs, the tri-state multiplexer has a banked tri-state input which is common for a 
set of eight adjacent I/O cells, of which four are primary and four are secondary [15]. 
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Figure 2.13: Primary I/O Cell of ATMEL AT94K FPSLIC Devices 
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 The four inputs to the multiplexers that come from the global routing resources of 
the FPGA have transmission gates connected to them as shown in Figure 2.13, with their 
actual implementation shown in Figure 2.14.  The transmission gates are mainly used to 
provide routing flexibility when the I/O cells are configured as input cells.  The input 
from the I/O cell can be directly connected to a PLB at the periphery using the direct 
connection.  To make connections with other PLBs, the transmission gates are used to 
route the input signals to the global routing resources of the FPGA.  The two paths ?A? 
and ?B? that can be used to route the input signals to the routing resources are shown in 
Figure 2.14. 
 
Figure 2.14: I/O Cell Configured as Input 
2.2.5.3 Secondary I/O Cells 
 The secondary I/O cells, shown in Figure 2.12, are located diagonally to all the 
PLBs present at the periphery of the FPGA core adjacent to the primary I/O cells.  The 
secondary I/O cells are also present on the side in which the AVR core is interfaced to the 
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FPGA core, all of these being unbonded I/O cells without flip-flops.  The secondary I/O 
cells have six inputs to the data multiplexer and seven inputs to the tri-state multiplexer 
as shown in Figure 2.14.  Of the six inputs, two are direct connections from two diagonal 
PLBs, two are from the global routing resources, and the other two are the hardwired ?1? 
and ?0?.  The additional input present to the tri-state multiplexer is the banked tri-state 
signal which is same as the one for a primary I/O cell.  Similar to the primary I/O cell, the 
two connections to the global routing resources have transmission gates [15]. 
PAD
PULL-
UP
PULL-
DOWN
VCC
GND
DELAY
SCHMITT
TT
L/
CMOS
DRIVE
TRI-ST
ATE
RST
OCL
K
ICLK
?0?
Multiplexer
Transmission 
Gate
RS
T
Flip-Flop
?1?
?0?
Routing ResourcesTri-State 
Multiplexer
Data Multiplexer
Banked 
Tristate
GRST
?1?
IOOCC
IOOC
IOODCC
IOODC
IOTCC
IOTC
IOTDCC
IOTDC
 
Figure 2.15: Secondary I/O Cell of Atmel AT94K FPSLIC Devices 
2.2.5.4 Clock I/O Cells 
 Along with the primary and secondary I/O cells, clock I/O cells are also present to 
connect the clock input to the FPGA.  There are six global clock I/O cells and all of them 
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are present in the corners of the FPGA.  Depending on their location with respect to the 
primary or secondary I/O cells, they have the architectures of secondary or primary I/O 
cells, respectively.  The differences between clock I/O cells and general I/O cells 
(primary and secondary) are that the clock I/O cells do not have any flip-flops and instead 
of a GRST connection to the global reset network, they have connection to the global 
clock network. 
2.2.6 Macro Generation Language 
 Macro Generation Language (MGL) is a high level programming language 
specially designed by Atmel to allow the users to create their own design.  MGL can be 
used to implement designs only on the Atmel FPGAs.  MGL has the ability to place and 
route designs, which is not supported by other HDLs.  Designs described using MGL can 
be edited, compiled and debugged using Figaro software provided by Atmel [25].  MGL 
can implement parameterized designs, so designs developed for smaller FPGAs can be 
easily extended to be implemented in larger FPGAs. 
 Using MGL, the routing interconnections can be specified exactly for every path 
and the signals can be routed to unconnected inputs of the multiplexers as well.  MGL 
gives access to unbonded I/O cells so that the unbonded I/O cells can be activated and 
their logic resources can be utilized.  Using MGL, the functionality of each PLB can be 
specified exactly.  All the above mentioned features are not supported by other HDLs. 
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2.3 Previous Work in I/O Cell Testing 
 The prior work presented in Section 1.3 will be discussed in more detail in this 
section.  In [17], a technique to test the setup and hold time of the flip-flops in the I/O 
cells is proposed.  In this technique, a DLL is used to generate two clocks named setup 
and hold clocks with fixed delays with respect to the master clock.  Two additional test 
flip-flops are present for each flip-flop in the I/O cell.  The setup and hold clocks are 
applied to the two test flip-flops and the same input is applied to the test flip-flops and the 
flip-flop of the I/O cell.  The data captured in the flip-flop of the I/O cell is compared 
with the data captured in the test flip-flops to test for setup and hold times of the flip-
flops in the I/O cell.  The additional circuitry used for this BIST technique consists of two 
flip-flops and two comparators for every flip-flop under test and a DLL to generate the 
setup and hold clocks.  By using additional buffers to drive the setup and hold clocks 
generated, the same DLL can be used to test the flip-flops in all I/O cells.  The high area 
overhead makes this suitable only for specific high performance circuits. 
 In the IDDQ test approach presented in [18], the I/O cells and the routing 
resources associated with the I/O cells are tested by configuring half of the I/O cells as 
input cells and the rest as output cells, as shown in Figure 2.16, in the first test phase.  
When configured as an input cell, the input side of the I/O cell is tested by externally 
applying test patterns and the results are externally monitored through another output 
cell, testing the output side of that I/O cell at the same time.  In the second phase the roles 
of the input and output I/O cells are reversed.  In two phases, both the input and output 
sides of the I/O cells are tested.  Since the number of input signals is limited, extra test 
signals for testing the resources of the output cell like tri-state and clock enable are 
generated using the internal resources.  These tests are useful only for the manufacturing 
testing, since the resources associated with the unbonded I/O cells cannot be tested after 
packaging.  So, the test approach presented in [18] is not a BIST approach and unbonded 
I/O cells can be tested only during the manufacturing tests.  Also to test the packaged 
FPGAs, the tests have to be developed separately for each package. 
 
Figure 2.16: External Test Approach to Test I/O Cells of an FPGA 
 In [26] also, the same external test approach as used in [18] to configure some I/O 
cells as input cells and the others as output cells to perform the test has been described.  
In this paper, a technique is proposed to detect the stuck-at faults in the routing resources 
associated with the I/O cell.  The routing resources are considered to be switch matrix 
based and the test techniques were proposed specifically.  As this is also an external test 
technique, it also has the same disadvantages as described for [18]. 
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2.4 BIST for FPGAs 
 In this section the general BIST techniques to test PLBs and routing resources of 
the FPGA cores will be described. 
2.4.1 BIST for PLBs 
 The PLBs in FPGAs generally have a regular array of MxN blocks, M and N 
being even numbers in most cases.  To test the PLBs, they are divided into 3 groups: 
TPGs, ORAs and Blocks Under Test (BUTs) as shown in Figure 2.17.  The TPG may be 
either a counter or a Linear Feedback Shift Register (LFSR) and the structure of the 
ORAs will be discussed shortly.  The PLBs configured as BUTs are tested with test 
patterns being supplied by two identical TPGs and the results being analyzed by ORAs 
[19].  Each TPG supplies test patterns to alternate column of BUTs.  After performing the 
test in a particular BUT configuration, the BUTs are then reconfigured to be tested in a 
different mode.  BUTs are repeatedly reconfigured until the logic resources are tested 
completely [5].  Each reconfiguration of the FPGA to test a different mode of PLB 
operation is referred to as a test phase.  A test session is a collection of test phases that 
completely test the BUTs in all possible modes of operation.  Once the BUTs are 
completely tested, the BIST architecture is flipped to reverse the roles of the PLBs as 
shown in Test Session 2 of Figure 2.17.  So the PLBs previously configured as TPGs and 
ORAs now function as BUTs and the previous BUTs function as TPGs and ORAs [5].  
After testing the PLBs in one test session, the results are retrieved before going to the 
next test session.  The ORA results can be extracted by reading the contents of the ORA 
flip-flops from the configuration memory, if configuration memory readback is 
supported, or by connecting the ORAs in the form of a scan chain as shown in Figure 
2.17 to scan out the results through the FPGA I/O [19][27].  Some of the previous logic 
BIST approaches were described in [19][27] and the logic BIST for the embedded FPGA 
core in Atmel FPSLICs has been described in.[28]
 
 
Figure 2.17: BIST Architectures of PLBs 
 To implement a comparison-based ORA with scan chain, a total of five inputs are 
required as shown in Figure 2.18.  Since a PLB in Atmel has only four inputs, the ORA 
shown in Figure 2.18 would require two PLBs and this would increase the total number 
of configurations required to test all the PLBs.  To implement an ORA with single PLB, 
the structure of the ORA is changed as shown in Figure 2.19.  In the normal test mode the 
ORA is configured as shown in Figure 2.19a.  The OR gate and the flip-flop combined 
will latch up any mismatches between the two inputs from BUTs.  After performing the 
test, dynamic partial reconfiguration is performed such that the ORA architecture is 
changed as shown in Figure 2.19b [29].  When Shift Control is at logic ?0?, the output of 
 33
the flip-flop is fed back to the input and ORA results are retained.  When Shift Control is 
made logic ?1?, the ORAs are connected in the form of a scan chain and the results are 
scanned out. 
 
Figure 2.18: Comparison Based ORA with Scan Chain 
                            (a) Test Mode                                                   (b) Scan Mode 
Figure 2.19: ORA used for Logic BIST 
2.4.2 Routing BIST 
 In routing BIST, a subset of routing resources is divided into two sets and the test 
patterns generated from the TPG PLBs are routed on those two sets of wires under test 
(WUTs).  The outputs of the two sets of wires are analyzed by PLBs which are 
configured as comparison-based ORAs [30].  The sample setup for two similar sets of 
wires under test is shown in Figure 2.20.  The TPG would be an M-bit counter and the 
value of M depends on the number of wires under test. 
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Figure 2.20: Routing BIST architecture 
 An alternate parity-based routing BIST approach is described in [31].  In this 
approach, instead of routing the same set of test patterns on two sets of wires, the TPG 
generates a parity bit which would be transmitted on a single wire.  Now the ORA has to 
be changed to parity-based ORA, which would have a parity decoding circuit and a 
comparator [31].  Some of the previous routing BIST approaches were described in  
[30][31][32] and the routing BIST approach for the embedded FPGA core in Atmel 
FPSLICs has been described in [28]. 
2.4.3 BIST for RAM Cores 
 In the logic BIST architecture shown in Figure 2.17, the BUTs in the middle 
column are compared by two ORAs whereas the BUTs at the edges are compared by only 
one ORA.  The comparison of a BUT by a single ORA causes a loss in diagnostic 
resolution.  To test the RAMs in Atmel FPGAs there are sufficient PLBs to implement a 
two PLB based ORA with scan.  So, the ORA in Figure 2.18 has been used in BIST for 
RAMs without any need for partial reconfiguration [21].  The output of the first BUT is 
compared with the output of the last BUT, this implementation is known as circular 
comparison.  A diagnostic procedure based on multiple faulty cell locator 
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(MULTICELLO) has already been developed in [19].  The algorithm has been extended 
to diagnose multiple faulty PLBs when circular comparison based BIST is implemented.  
Overall, circular comparison provides better fault diagnosis [33]. 
2.5 Thesis Re-statement 
 The increase in the logic resources of the programmable I/O cell and the 
importance of the I/O cell as the interface for the FPGA core are the main reasons for 
developing BIST for I/O cells.  The implementation of I/O cell BIST should also provide 
near 100% fault coverage for the FPGA as the BIST approaches to test the other 
resources in a FPGA have already been proposed.  In this thesis, a general BIST approach 
to test the logic and routing resources associated with the programmable I/O cells of any 
FPGA will be described.  The BIST approach and its implementation on the I/O cells of 
the Atmel AT94K FPSLICs is described in Chapter 3.  After general implementation, the 
use of the embedded AVR microcontroller in reducing the test time by performing 
dynamic partial reconfiguration will be described.  The implementation results of the 
proposed BIST approach for Atmel AT94K FPSLIC devices, along with the limitations 
of the approach will also be described in Chapter 4.  The proposed BIST approaches can 
be used for manufacturing testing as well as for system-level testing by the end user 
without any additional test equipment. 
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 Chapter 3 
 
BIST for I/O Cells 
 
 This chapter discusses the BIST architectures used to test the logic and routing 
resources associated with the I/O cells in the Atmel AT94K FPSLICs.  First, a general 
BIST architecture that can be applied to test the logic and routing resources of 
programmable I/O cells in any FPGA will be discussed.  Then the BIST architectures 
used to test the resources specific to Atmel FPGAs will be discussed.  Finally the number 
of test configurations and the test time of BIST for I/O cells is compared with the BIST 
for logic, routing and RAMs. 
3.1 BIST Architecture 
 Figure 3.1 shows the I/O cell BIST architecture.  This general BIST architecture 
can be applied to test the programmable I/O cells of any FPGA.  The basic approach used 
in implementing the BIST for I/O cells in the FPGAs is: 
? Some of the PLBs are configured as a TPG and some of them are configured as 
comparison-based ORAs. 
? The I/O cells are configured as bidirectional cells by activating both the input and 
output sides of the I/O cells. 
? The test patterns are supplied by the PLBs configured as a TPG to the output side of 
the I/O cell. 
? The output responses of the I/O cells are looped back into the FPGA from the pad 
through the input side. 
? The output responses of the I/O cells are analyzed by comparing with the responses 
of other identically configured I/O cells, forming a circular comparison. 
 
 
Figure 3.1: I/O BIST Architecture 
 This BIST architecture enables the testing of all bonded and un-bonded I/O cells, 
so it is package independent.  The PLBs and their associated routing resources present in 
the FPGA are assumed to be already tested with the logic and routing BIST approaches 
[28], so a single TPG can be used to source the test patterns, as it is supposed to be fault-
free.  The response of every I/O cell is compared with the responses of two other I/O cells, 
thus circular comparison is achieved.  If there are N I/O cells under test, then there would 
be N ORAs for circular comparison, whereas there would only be N-1 ORAs for a non-
circular comparison based approach. 
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 For Atmel FPGAs the maximum number of routing resources common to the data 
and tri-state (excluding banked input) multiplexers is five for primary I/O cells.  So, the 
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TPG is designed to be a 6-bit counter with the five Least Significant Bits (LSBs) of the 
counter being applied as inputs to the data and tri-state multiplexers, shown in Figures 
2.13 and 2.15.  The Most Significant Bit (MSB) of the counter is used to drive the reset 
signal to the flip-flops of the I/O cell.  The I/O cells are repeatedly configured in various 
modes of operation, such as activating pull-up or pull-down, selecting different 
multiplexer inputs, selecting registered or non-registered inputs and outputs, etc.  
Similarly, the routing resources associated with the I/O cells are also tested by repeated 
reconfiguration of the connections made from the TPG to the I/O cells and from the I/O 
cells to the ORAs.  The minimum number of BIST configurations required to test the I/O 
cells and the associated routing resources is usually a function of the number of possible 
signal paths to the output side of the I/O cell.  For Atmel FPGAs, the minimum number 
of configurations is determined by the number of inputs to the largest multiplexer in the 
I/O cell.  Since the tri-state multiplexer has the highest number of inputs it will determine 
the minimum number of configurations required. 
 In Atmel FPGAs, dedicated X and Y connections are present between the PLBs 
on the periphery of the FPGA and the I/O cells.  So, the PLBs at the periphery are just 
used for routing the TPG and ORA signals, as shown in Figures 3.3 and 3.6.  For every 
PLB in the periphery there are three I/O cells, since each PLB can be associated with a 
primary and two secondary I/O cells.  For a FPGA with a 24x24 array of PLBs, 48 I/O 
cells are present on all three sides and 24 I/O cells on the side interfaced with the AVR.  
Each PLB can have a maximum of three outputs, one X, one Y and one to local routing 
resources, shown in Figure 2.8.  If two outputs are used to route the TPG signals to the 
primary and secondary I/O cells through the dedicated routing resources, the responses of 
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both the I/O cells cannot be routed back through the dedicated routing resources 
associated with the same PLB.  This limitation in the number of outputs from a PLB 
requires the primary and the secondary I/O cells to be tested in separate configurations.  
The BIST approaches for primary and the secondary I/O cells are discussed in the next 
two sub sections. 
3.1.1 BIST for Primary I/O Cells 
 The architecture of the primary I/O cells was described in Section 2.2.5.2.  The 
signals from the TPG are routed to all the inputs of the data and tri-state multiplexers.  
Each primary I/O cell has four inputs from the routing resources and those resources are 
shared by two adjacent primary and secondary I/O cells as shown in Figure 3.2.  All the 
inputs from the routing resources have to pass through repeaters at the edge to reach the 
I/O cells.  The TPG outputs are named from T1 through T6, where T1 is the LSB of the 
counter and T6 is the MSB.  When the same input of the multiplexer is selected in the 
two adjacent I/O cells, they have different TPG signals activated.  In Figure 3.4, if the 
first input of the data multiplexer is activated then TPG signals T4, T1, T4, T1, and so on 
are selected by the multiplexers in adjacent primary I/O cells.  As a result, all the 
alternate I/O cells are compared with each other instead of being compared with adjacent 
I/O cells.  If adjacent ORAs are compared then T4 would be compared with T1, which 
would always cause a mismatch.  So, ORAs are divided into two circular comparison 
loops, comparing alternate I/O cells. 
 The test patterns are routed in the same manner to all the primary I/O cells as 
shown in Figures 3.2 and 3.3.  The PLBs at the periphery of the FPGA are used only for 
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routing the TPG and ORA signals, using the direct connections between PLBs and I/O 
cells.  The routing connections of the periphery PLBs with the primary I/O cells are 
shown in Figure 3.3.  Consider two inputs IOOC (clock-wise connection) and IOOCC 
(counter clock-wise connection), the input which behaves as  the clock-wise connection 
for I/O cells, named as IOOC, present on the South becomes a counter clock-wise 
connection for the I/O cells present on North, named as IOOCC.  Even though same 
signal is selected by the multiplexers present on North and South, they are sourced 
different test patterns on each side.  For example, consider two multiplexers of I/O cells 
which are routed in the same manner on North and South sides, if the IOOC is selected 
by both the multiplexers, the multiplexer on the South may activate the T3 signal whereas 
the multiplexer on the North may activate T2.  So, the responses from the I/O cells of 
different sides will be different, even though the same input IOOC has been selected by 
the multiplexers.  Since the ORAs on one side of the FPGA cannot be compared with the 
ORAs on the other side, individual circular comparison loops are formed by the ORAs 
for I/O cells on each side.  Two ORA circular comparison loops are present on each side 
as shown in Figure 3.5. 
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Figure 3.2: Routing Interconnections between the Primary and Secondary I/O Cells 
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Figure 3.3: Direct Routing Connections from PLBs to Primary I/O cells 
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Figure 3.4: Routing Interconnections between the Primary I/O Cells 
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Figure 3.5: ORA Loops on Each Side 
 The TPG signals are routed to all the inputs of the data and tri-state multiplexers 
of primary I/O cells.  The first four bits of the TPG are routed through the global routing 
resources as shown in Figure 3.4.  The fifth bit of the TPG, T5, is routed through the 
direct input connection from the PLB to the multiplexer, shown in Figure 3.3, and the 
sixth bit of the TPG, T6, is routed to the reset signal of the flip-flops.  If an additional 
output (such as T7) is routed to the banked tri-state input, there will be routing 
contentions with the already routed TPG signals (T1 to T4).  As a result, TPG input T4 
was routed to the banked tri-state input to remove the routing contentions. 
 The tri-state multiplexer consists of eight inputs, and a total of nine configurations 
are required to test all the multiplexer inputs of both data and tri-state multiplexers.  If we 
exclude the hardwired ?0? of both the multiplexers, the remaining seven inputs of the tri-
state multiplexer and six inputs of the data multiplexer can be tested in seven 
configurations.  Separate configurations are needed to test hard wired ?0? inputs of the tri-
state and data multiplexers, as testing a hard wired ?0? of one multiplexer would block 
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any fault affect on the other multiplexer output.  So, a total of nine configurations are 
required to test the multiplexer inputs of the primary I/O cells.  In the same nine 
configurations, the logic resources associated with the I/O cell are also tested by 
configuring them in all possible modes.  The resources tested in each configuration are 
summarized in Table 3.1.  Note that most of the logic resources get tested more than once 
as they can be tested in fewer than nine configurations. 
 
Table 3.1: Configuration Modes of Primary I/O Cells 
Config- 
urations 
Data 
Mux 
Tri-State 
Mux 
Delay
(ns) 
Drive 
(mA) 
I/O Flip-
Flop 
Pup/ 
Pdown 
TTL/ 
CMOS 
Schmitt
1 IOOX IOTCC 2 6 Both Pup TTL Active 
2 IOOC IOTL 5 14 Input Pdown CMOS Inactive
3 IOOCC IOTX 8 20 Output Pup CMOS Inactive
4 IOOL IOTC 0 6 None Pdown CMOS Active 
5 IOO1 IOTD 2 14 None Pup TTL Inactive
6 IOO0 IOTD 5 20 None Pup TTL Active 
7 IOOCC IOT0 8 6 None Pdown TTL Active 
8 IOOD IOTB 0 14 None Pdown CMOS Inactive
9 IOTD IOT1 2 20 Both Pup TTL Active 
 
3.1.2 Secondary I/O cells 
 The architecture of the secondary I/O cells was described in Section 2.2.5.2.  As 
TPG patterns are routed to all the inputs of the primary multiplexer, they get routed to the 
multiplexer inputs of the secondary I/O cell as shown in Figure 3.6, since the routes are 
being shared with primary I/O cells.  The sharing of the routing resources between the 
primary and secondary I/O cells is shown in Figure 3.2.  Secondary I/O cells have two 
inputs from the global routing resources and two are direct connections from PLBs.  As 
the TPG patterns are already routed to all the multiplexer inputs of the secondary I/O cell, 
the routing scheme of T1-T4 TPG signals for the secondary I/O cells is kept same as that 
of the primary I/O cells.  For secondary I/O cells also, the PLBs at the periphery are just 
used for routing the TPG and ORA signals as shown in Figure 3.6.  For secondary I/O 
cells also, two ORA loops also have been formed due to the regularity in multiplexer 
inputs, on each side of the FPGA as shown in Figure 3.7. 
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Figure 3.6: Direct Routing Connections from PLBs to Secondary I/O cells 
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Figure 3.7: Routing Connections to the Secondary I/O Cells 
 The TPG signals are routed to all the inputs of the data and tri-state multiplexers 
of the secondary I/O cells.  Two of the first four TPG bits are routed through the routing 
resources as shown in Figure 3.2.  The fifth bit of the TPG, T5, is routed through the 
direct input connection from the PLBs to the multiplexer, shown in Figure 3.6, and the 
sixth bit of the TPG, T6, is routed to the reset signal of the flip-flops.  As the banked tri-
state is same for the set of four primary and secondary I/O cells, the banked tri-state input 
for secondary I/O cells is also connected to T4.  The tri-state and data multiplexers 
consist of seven and six inputs, respectively, one input less than that of primary 
multiplexers.  So, a total of eight configurations are required to test all the inputs 
(compared to nine for the primary).  The resources tested in each configuration are shown 
in Table 3.2.  In the same eight configurations, the logic resources associated with the I/O 
cell are also tested by configuring in all possible modes.  In one of the eight 
configurations, the other direct connection to the PLB is also tested. 
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Table 3.2: Configuration Modes of Secondary I/O Cells 
Config- 
urations 
Data Mux 
Tri-State 
Mux 
Delay
(ns) 
Drive 
(mA) 
I/O Flip-
Flop 
Pup/ 
Pdown 
TTL/ 
CMOS 
Schmitt
1 IOODCC IOTCC 2 6 Both Pup TTL Active 
2 IOOC IOTDCC 5 14 Input Pdown CMOS Inactive
3 IOOCC IOTDC 8 20 Output Pup CMOS Inactive
4 IOO1 IOTC 0 6 None Pdown CMOS Active 
5 IOO0 IOTC 2 14 None Pup TTL Inactive
6 IOODC IOTB 5 20 None Pdown TTL Active 
7 IOOC IOT0 8 6 None Pdown TTL Active 
8 IOODC IOOT1 0 14 Both Pdown CMOS Inactive
 
3.1.3 Testing Transmission Gates 
 The I/O cells have transmission gates that allow the input and output portions of 
the I/O cell to share the same programmable routing resources.  Four transmission gates 
are associated with the primary I/O cells and two are associated with the secondary I/O 
cells.  Two types of faults, known as stuck-on and stuck-off, are associated with the 
transmission gates.  A Stuck-on fault means a gate is always turned on and stuck-off fault 
means it is always turned off, irrespective of its configuration bits.  These transmission 
gates have already been tested for stuck-on faults while the multiplexer inputs are tested.  
If the transmission gates are stuck-on, they back drive the TPG inputs when the flip-flops 
are activated as shown in Figure 3.8.  The output response of one I/O cell can back drive 
the TPG signal of an adjacent I/O cell as well. 
 
Figure 3.8: Transmission Gate Stuck-on Test 
 A slightly different approach is used to test the transmission gates for stuck-off 
faults to reduce the complexity of routing from the output of the input buffer to the ORA 
using different transmission gates.  To route to the ORA using the transmission gates and 
paths a or b shown in Figure 3.9 is complex, so the feedback loop path and the direct 
connection to the PLB are used.  When the configuration is downloaded into the FPGA, 
the flip-flops in the I/O cells are automatically initialized to complementing values with 
the input flip-flop initialized to ?1?.  In this approach there is no TPG, the flip-flops in the 
I/O cells themselves act as the TPG.  The test configuration is as shown in Figure 3.9, a 
feedback loop is created between the input and output portions of the I/O cell.  Now, as 
the flip-flops are clocked, the values stored in them will be toggled, as shown in Figure 
3.10, and the output of the flip-flop present on the input side of the I/O cell will be 
monitored by the ORA.  The flip-flops are clocked for few cycles to test for the stuck-off 
fault of the transmission gate.  To test a different transmission gate, a new configuration 
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has to be downloaded.  The first configuration of this approach is also generated by 
manipulating the bitstream generated by MGL.  The actual implemented way of testing 
transmission gates is discussed in Chapter 4.  
 
Figure 3.9: Transmission Gate Stuck-off BIST Configuration 
 
Figure 3.10: Transmission Gate Stuck-off BIST Configuratio 
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3.2 Testing the Global Reset CIP 
 As shown in Figures 2.13 and 2.15, all the primary and secondary I/O cells have 
access to the global reset network, except the secondary I/O cells present on the side 
interfaced to the AVR.  By activating the global reset CIP, the I/O pin controls the global 
reset connection to all the flip-flops with reset activated.  So, the global reset CIP of the 
every I/O cell has to be tested for stuck-on and stuck-off faults. 
3.2.1 Stuck-On Test 
 To test the global reset CIP for a stuck-on fault an additional ORA is required to 
be added to the general BIST architecture and the test for stuck-off faults requires a 
totally different BIST architecture.  Stuck-on faults of the global reset CIPs of all I/O 
cells are detected in parallel using the BIST architecture shown in Figure 3.1.  The stuck-
on fault can be detected by inserting a special ORA as shown in Figure 3.11.  To detect 
the fault, both the flip-flops in the I/O cell have to be activated and reset prior to the BIST 
sequence.  The tri-state control signal is made logic ?1? and the previously active global 
reset connection has to be deactivated before this test is performed.  If none of the global 
reset CIPs are stuck-on, the TPG would source ?1?s and ?0?s which would reach the ORA 
with delay of two clock cycles and the ORA will latch up the first ?1? it observes.  If any 
of the global reset CIPs is stuck-on, then the first ?1? from the TPG would be latched in 
the output flip-flop and the same value would also be sent to the global reset network.  
Since the reset is asynchronous, it will reset all the flip-flops, including the output flip-
flop, and the input flip-flop and the ORA would never latch up a ?1?.  Hence, all I/O cells 
are tested in parallel for the global reset CIP stuck-on fault. 
 
Figure 3.11: Global Reset CIP Stuck-on Test Configuration 
3.2.2 Stuck-Off Test 
 To test for the global reset CIP stuck-off fault, the BIST architecture has to be 
completely changed.  The global reset connection of each CIP has to be tested 
individually, so a separate BIST configuration is needed for each I/O cell to test its ability 
to drive the global reset.  The BIST architecture for the global reset CIP stuck-off test is 
shown in Figure 3.12.  Each CIP stuck-off fault is tested by making it the global reset 
signal and then a flip-flop with global reset connected is checked to see if it is being reset 
or not.  During this BIST sequence, the TPG generates the expected output response of 
the flip-flop to be reset for the comparison in the ORA.  The TPG is designed to be a 2-
bit counter with the MSB (C1) being used as the input to the global reset and the 
complement of LSB (C0), being used as the input to the flip-flop being reset.  Whenever 
?C1? is logic ?1?, the flip-flop is asynchronously reset, otherwise the ?C0? is clocked 
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through the flip-flop to the ORA.  Here the flip-flop being reset can also be considered as 
a part of the ORA as it is being used to test the affect of global reset signal. 
 
Figure 3.12: Global Reset CIP Stuck-off Test Configuration 
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 A single ORA and a flip-flop is sufficient to test the functioning of the global 
reset.  Since there are many unused resources in the FPGA, the number of ORAs has 
been increased to test most of the column-based resets.  As shown in Figure 2.5, the 
Atmel FPGA has a 4x4 array of PLBs.  Every column in the 4x4 array has a common 
reset connection.  For example, if two flip-flops are activated in a column of a 4x4 array, 
then both the flip-flops should have an active or inactive reset connection.  The column 
resets are also tested, along with the global reset CIP stuck-off faults, by having a flip-
flop with an active reset connection in that column.  Only half of the column resets can be 
tested because the remaining PLB columns are used to instantiate the TPG and ORAs, 
which should not have active reset connections to their flip-flops.  Insertion of additional 
ORAs does not increase the test time but the scan out time of the results will be increased.  
The scan out time is negligible when compared with the download time.  The column 
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reset connections are tested again, even though they are already tested during the BIST 
for logic resources. 
3.3 BIST Configurations 
 To test the logic and routing resources associated with the primary I/O cells, 
excluding the global reset CIP stuck-off fault, a total of 13 configurations are required, 
nine for testing the multiplexer inputs along with the associated logic and routing 
resources and four for testing the transmission gates.  Similarly, 10 configurations are 
required to test the logic and routing resources of the secondary I/O cells, eight to test the 
multiplexer inputs along with the associated logic and routing resources and two for 
testing the transmission gates.  These 23 configurations are independent of the number of 
I/O cells present in the FPGA.  The global reset CIP stuck-on test is performed during 
these 23 configurations.  But the number of configurations required to test the global 
reset CIP stuck-off is dependent on the number of I/O cells.  An Atmel AT94K10 
FPSLIC has 138 general I/O cells which have connection to the global reset and an 
AT94K40 FPSLIC has 280 of them.  The total number of BIST configurations has been 
tabulated in Table 3.3. 
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Table 3.3: Total Number of Configurations Required to Test the I/O Cells 
Primary I/O cells Secondary I/O cells 
FPSLIC 
MODEL Multiplexer 
Inputs 
Transmission 
Gates 
Multiplexer 
Inputs 
Transmission 
Gates 
Global 
Reset 
Total Number 
of 
Configurations
AT94K10 9 4 8 2 138 161 
AT94K40 9 4 8 2 280 303 
 
 A gate level model of the primary and secondary I/O cells was developed using 
Auburn Simulation Language and the fault simulation was performed using AUSIM [34].  
The fault simulation results for primary and secondary I/O cells are shown in Figure 3.13.  
It can be seen that the last four configurations of primary I/O cells and the last two 
configurations of secondary I/O cells have constant fault coverage as only the 
transmission gate CIP connection is modified.  Fault coverage of around 99.5% has been 
achieved for primary and secondary I/O cells from 13 and 10 configurations, respectively.  
100% fault coverage is achieved after performing the global reset CIP stuck-off test. 
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Figure 3.13: Individual and Cumulative Fault Coverage for Atmel AT94K I/O Cell BIST 
Configurations 
 Timing analysis was performed to find the paths with worst case delay.  The 
maximum path delays in all three configurations for AT94K10 and AT94K40 FPSLICs is 
shown in Table 3.2.  As the number of secondary I/O cells under test is high compared to 
the number of primary I/O cells, the load on the TPG is higher when secondary I/O cells 
are tested.  So, the delay for the secondary I/O cells is higher than that of the primary I/O 
cells.  As the TPG for the global reset signal drives all the primary and secondary I/O 
cells, it has the highest delay.  But the delay from the reset signal to the ORA is less in 
this case, as it uses the global reset network. 
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Table 3.4: Timing Analysis for the Worst Case Path Delays 
FPSLIC 
Model 
Primary 
I/O cells 
Secondary 
I/O cells 
Global 
Reset 
AT94K10 24.46ns 36.46ns 33.69ns 
AT94K40 37.21ns 53.97ns 69.11ns 
 
3.4 Automatic Configuration Generation Using MGL 
 The process of implementing the configurations using MGL is as follows: 
? The TPG is described in MGL and is placed at some particular PLB locations. 
? The I/O cells are then instantiated as bidirectional I/O cells and the TPG signals are 
routed to the data and tri-state multiplexers of the I/O cells.  Using MGL, the 
unbonded I/O cells can be instantiated and the signals can be routed to unconnected 
multiplexer inputs which cannot be done using any HDL. 
? The routing from the TPG to every I/O cell is described from the starting point of the 
TPG output, which comes from a PLB, to the end point of the multiplexer inputs of 
the I/O cell. 
? After routing the TPG patterns to the I/O cells, the ORAs with the scan chain 
implementation are instantiated. 
? The design described in MGL can be viewed in the Figaro window.  Any unrouted 
nets can be routed using the Figaro tool itself.  The tool will notify the user if there 
are any routing contentions. 
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? Routing contentions can be removed using the ?optimize routing? function supported 
by Figaro.  When ?optimize routing? is used, it will modify some of the already 
described routes and it might remove some routes when it cannot route them. 
? The design is then verified to see if all the required routing connections are still 
present after the routing has been optimized.  If some of the inputs to the multiplexer 
have been removed, then the MGL routing description has to be changed. 
? The bitstream for the described design is also generated using Figaro. 
 The bitstream will then be downloaded into the FPGA and the BIST clock is 
applied to execute the BIST sequence.  At the end of the BIST sequence the results are 
stored in the ORAs and then the ORA results have to be scanned out.  All the routes to 
the I/O cell have already been used by the TPG and therefore the ORA results cannot be 
scanned out through an I/O cell.  So, the AVR interface is used to read the ORA results.  
The ORA results are first written into the AVR data memory and then read from the data 
memory.  The ORA results are analyzed using a ?C? program.  To verify the sanity of the 
ORA results, a string of 1?s is scanned out at the end of the scan chain.  If there are no 
faults in the I/O cells then all the ORAs should have 0?s, with 1?s at the end of the scan 
chain.  The absence of 1?s at the end of the scan chain indicates that the ORA results are 
not scanned out properly or that an ORA is faulty. 
 Three different MGL programs for testing primary I/O cells, secondary I/O cells 
and global reset CIP stuck-off were developed for each device, excluding the 
configurations for transmission gate stuck-off.  First they were developed for AT94K10 
FPSLICs and then for AT94K40 FPSLICs.  The parameterized MGL programs 
developed for AT94K10 FPSLICs cannot be extended to AT94K40 FPSLICs just by 
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changing the array size.  The routing contentions for AT94K40 FPSLICs were different 
from those of AT94K10 FPSLICs, so the routing has to be slightly modified.  Also in 
AT94K40 FPSLICs, two fast clock I/O cells are present on west side of the FPGA core 
instead of general I/O cells, so these I/O cells are not included in the test.  As a result, 
separate MGL programs were developed for the two different-sized devices.  Therefore, a 
total of six MGL programs were developed for both the AT94K devices.  The number of 
lines of non-commented source code for the MGL programs is shown in Table 3.5. 
 
Table 3.5: Number of Lines of MGL Source Code for Different Master Configurations 
FPSLIC 
Model 
For Primary I/O 
Cells 
For Secondary I/O 
Cells 
For Global Reset CIP 
Stuck-off 
AT94K10 484 573 308 
AT94K40 470 574 450 
 
 The bitstreams for the three master BIST configurations are generated from the 
MGL programs using Figaro.  The subsequent bitstreams are generated by modifying the 
master bitstreams.  In the subsequent bitstreams, the TPG and the routing information of 
the FPGA remains the same and only the bits associated with the logic and routing of the 
I/O cells are modified and this can be done using a simple program.  Thus all the 
bitstreams for the remaining configurations are generated. 
 The generated bitstreams are then downloaded into the FPGA and executed.  The 
configurations were verified by injecting some faults.  The faults were injected by 
modifying the configuration bits related to a particular I/O cell before being downloaded.  
The I/O cell which is configured differently from the other I/O cells would latch up 1?s in 
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two ORAs.  The developed BIST configurations have been tested on actual faulty chips 
as well.  The configurations have been applied on nine AT94K10 FPSLICs which were 
made faulty by zapping some wire segments inside them with lasers.  The information on 
the zapped wires has not been disclosed.  Of the nine FPGAs, four of them failed the I/O 
cell BIST configurations.  None of them showed faults in the I/O cells but most of the 
faults were detected by not scanning out 1?s at the end of the scan chain.  One of the 
devices could not successfully download the bitstream, indicating the fault is with some 
other core of the FPSLIC rather than FPGA core. 
 When the test was performed on fault-free devices in configurations with flip-
flops activated, some initialization faults in the registers of the I/O cells were detected.  
After the BIST configuration had been downloaded, it was observed that all the output 
flip-flops were initialized to logic ?0? and all the input flip-flops were initialized to ?1? in 
AT94K10 FPSLICs.  Whereas in AT94K40 FPSLICs it was observed that one output 
flip-flop and one input flip-flop were not initialized correctly, they were initialized to 
their opposite states when compared with the initialization values of the registers in the 
other I/O cells.  Another fault was identified when the secondary I/O cells of AT94K10 
and AT94K40 devices were tested.  It was observed that one of the I/O cell present along 
the side that interfaces with the AVR always failed, indicating that there was no loop 
back connection whereas it is shown in Figaro with a loop back connection.  These 
results were consistent with all the FPGAs that were used, which indicate that these faults 
are actually minor design errors in the AT94K10 and AT94K40 FPSLICs. 
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3.5 Untested Resources 
 Even though 100% fault coverage is achieved, the resources which are not 
considered under fault simulation and the resources of the I/O cell which are not being 
tested are discussed in this section.  All the routing resources from PLBs other than direct 
connections have to pass through the repeaters at the edges of the PLB array to reach the 
input of the data and tri-state multiplexers.  The input signals to the I/O cells can also 
pass through the repeaters at the edge of the array (paths a and b in Figure 3.9) to reach 
the PLBs in the middle of the FPGA.  The repeaters at the edges can be completely tested 
only when the signals are routed to or from the I/O cells.  Only a few connections of the 
repeaters are tested, as the TPG signals are routed through the repeaters to the input side 
of the data and tri-state multiplexers. 
 The resources associated with the I/O clock cells described in Section 2.2.5.4 are 
also not tested.  The I/O clock cells cannot be routed as normal I/O cells in bi-directional 
mode using MGL.  To test the I/O clock cells, the TPG signals to the I/O cells and the 
ORA signals from the I/O cells to the ORAs have to be implemented by bitstream 
manipulation or processor reconfiguration, which is very difficult.  So, the resources in 
the I/O clock cells and their connection to the global clock network are also not tested. 
 In some of the packages of the Atmel AT94K40 FPSLICs, two I/O cells are 
dedicated I/O fast clock cells.  In other packages of the AT94K40 FPSLICs, the two 
dedicated I/O fast clock cells are replaced by normal I/O cells.  But it is observed that the 
I/O cells that are replaced by fast clock I/O cells do not have flip-flops, similar to the 
clock I/O cells.  Since their functionality would differ from the functionality of normal 
I/O cells, the I/O cells at the location of the fast clock I/O cells are also not tested. 
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3.6 Testing Time 
 The total test time includes the time required to download the BIST configuration, 
the test run time and results retrieval time.  The total test time is dominated by the 
configuration download time, as the configuration memory is very large.  The logic and 
routing resources present in the Atmel FPSLICs can be completely tested in 68 
configurations [36], fewer than the 161 I/O cell BIST configurations for AT94K10 and 
303 I/O cell BIST configurations for AT94K40 FPSLICs.  The download time 
comparison is shown in Table 3.4. 
 
Table 3.6: Download Time Comparison for Logic, Routing and RAM with I/O BIST [37]  
Total Number of Downloads
Total Download Time 
(sec) 
FPSLIC 
Model 
Time for one 
Download 
(ms) 
Logic, 
Routing and 
RAM 
I/O cells 
Logic, 
Routing and 
RAM 
I/O cells 
AT94K10 63 68 161 4.3 10.14 
AT94K40 523 68 303 35.6 158.5 
 
 The download time of 158.5sec for testing the I/O cells is much higher when 
compared with the download time of 35.6sec for testing the rest of the resources in the 
FPGA core of AT94K40 FPSLICs.  So, the test time for testing the resources associated 
with the I/O cells takes almost five times as much time than that required to test the rest 
of the resources in the FPGA core.  This is primarily due to the number of configurations 
required for the global reset CIP stuck-off test. 
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 In this chapter, three different BIST architectures, required to test all the resources 
of the programmable I/O cells in Atmel devices, have been discussed.  It is observed that 
the download time and configuration memory storage requirements to test the I/O cells 
are high when compared with the download time and configuration memory requirements 
for Logic, Routing and RAM BIST approaches.  In Chapter 4, some techniques to reduce 
the download time and configuration memory storage requirements, using the assistance 
of the embedded AVR processor, are discussed. 
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 Chapter 4 
 
Processor Assisted BIST for I/O cells 
 
 In the previous chapter it is observed that the download time for testing the I/O 
cells is much higher compared to testing the rest of the resources present in the FPGA.  In 
this chapter, techniques to reduce the number of downloads by performing internal partial 
dynamic reconfiguration using the embedded processor are discussed along with their 
advantages and disadvantages.  A new technique to generate the BIST clock signal using 
embedded processor reconfiguration will also be presented.  Finally this chapter 
concludes with experimental results showing reduction in test time and configuration 
memory storage requirements. 
4.1 Dynamic Partial Reconfiguration for BIST 
 The process of implementing and executing BIST through embedded processor 
reconfiguration has already been investigated for logic, routing and RAM resources in 
Atmel FPSLICs [21][28][34].  The maximum operating speed of the AVR processor is 
25MHz, whereas the configuration memory download speed is only 1MHz.  As the 
operation speed of the AVR processor is much faster, reconfiguration from the processor 
can reduce the test time.  The main advantage of dynamic partial reconfiguration is that 
only selected bits can be modified while the rest of the configuration bits remain 
unmodified.  In most of the BIST configurations the variation in configuration memory 
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bits from one configuration to the next is very small.  In such cases, selected bits can be 
easily reconfigured using the AVR processor.  This completely avoids the download 
required for the next BIST configuration and hence the download time for the next BIST 
configuration is eliminated. 
 To test the I/O cells by doing the reconfiguration using the embedded processor, 
the bitstream generated from the MGL is downloaded into the FPGA along with a 
program to be executed by the AVR.  In this AVR program, the initial BIST 
configuration is executed under the control of the AVR through internal generation of the 
BIST clock.  After executing the BIST sequence, instead of scanning out the ORA results 
and downloading the next BIST configuration, the I/O cells under test are reconfigured 
without scanning the ORA results.  The I/O cells are reconfigured by the AVR processor 
according to the downloaded program and the BIST sequence is now executed for that 
BIST configuration.  The successive BIST configurations are generated by the AVR 
processor unless the logic and routing resources associated with the FPGA have to be 
reconfigured. 
 This procedure is continued until all the multiplexer inputs and logic resources in 
the I/O cells are tested, in the first nine configurations.  Next the transmission gates 
associated with the I/O cells are tested.  For this, the I/O cells have to be configured in 
loop back mode, complementing values have to be stored in the input and output flip-
flops of the I/O cells and all the TPG signals driving the multiplexer inputs have to be 
blocked.  The feedback loop is activated by reconfiguring the transmission gates.  
Complementing values are stored in the flip-flops when the test is performed in the 
previous configuration (i.e., in the ninth configuration), and all the TPG signals are 
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blocked by reconfiguring the repeaters at the edge of the PLB array.  The repeaters at the 
edges are sometimes used to route the ORA signals, so the repeaters which route the 
ORA signals are not reconfigured.  After reconfiguring the repeaters the transmission 
gate test is ready to be performed by internally generating the BIST clock.  To test the 
next transmission gate configuration, the currently active transmission gate has to be 
turned off and a new one has to be activated, and also the data multiplexer input has to be 
changed.  Thus all the transmission gates are tested. 
 After testing the transmission gates, the ORA results are scanned out.  So, the 
shift signal is made ?1? and the output of the scan chain is connected to the AVR interface.  
As a single MGL program is used to generate the first BIST configuration for primary 
I/O cells, it is called the master MGL program for primary I/O cells. 
 When the primary I/O cells in Atmel devices are being tested, the bitstream 
generated by MGL is downloaded into the FPGA.  The T4 bit of the TPG is routed to the 
tri-state control signal.  But the tri-state multiplexer has two T4 signals, one from the 
banked tri-state and the other from the global routing resources of the FPGA core.  One 
of the two inputs is selected by the Figaro routing tool and the selection is done randomly.  
To make sure that the same input is tested in all the I/O cells, the I/O cells are 
reconfigured even before they are tested in their first BIST configuration.  The bitstream 
generated by MGL could be modified using a ?C? program before being downloaded but 
AVR reconfiguration is an easier process. 
 The configuration required to test the secondary I/O cells is different from the 
configuration developed to test the primary I/O cells, as the I/O cells along the AVR 
interface are also included in the test.  This increases the number of ORAs to be 
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instantiated and the direct connections from the edge PLBs to the I/O cells also have to be 
changed.  To instantiate and route the ORAs and also to modify the existing routing 
connections using the AVR processor reconfiguration only, requires considerable 
development time.  Instead, a separate BIST configuration for testing the secondary I/O 
cells was developed using MGL, with a simpler program generated for AVR processor 
reconfiguration. 
 The secondary I/O cells are tested in a similar manner to primary I/O cells.  First 
the bitstream generated by MGL is downloaded and the secondary I/O cells are 
reconfigured before getting tested in their first BIST configuration, for the same reason as 
mentioned for primary I/O cells.  The remaining BIST configurations and the tests for the 
transmission gates are performed in a similar way to that of primary I/O cells. 
 After testing the primary and secondary I/O cells, the global reset CIP stuck-off 
test is performed.  As the architecture to test the global reset CIP is also completely 
different, the initial bitstream to be downloaded into the FPGA is generated using MGL 
along with a program to be executed by the AVR for BIST reconfiguration and results 
retrieval.  After downloading the bitstream and the AVR program, the test is performed in 
the first configuration to test the global reset CIP stuck-off fault of a single I/O cell.  
After the test is performed, the global reset CIP of the I/O cell which has been tested is 
deactivated and the global reset CIP of the next I/O cell to be tested is activated.  The 
successive reconfigurations are obtained by just reconfiguring two CIPs instead of 
downloading the whole configuration.  Partial reconfiguration saves a lot of download 
time and memory storage requirements when testing the global reset CIPs for stuck-off 
faults. 
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 Three different AVR reconfiguration programs have been written for primary, 
secondary and global reset CIP stuck-off configurations of each FPGA.  The programs 
required to communicate with the AVR were already developed in [21][29].  A total of 
six AVR reconfiguration programs have been developed, three for AT94K10 FPSLICs 
and three for AT94K40 FPSLICs.  The number of lines of non-commented source code 
for the six programs is shown in Table 4.1.  The programs are compiled using the AVR 
?C? compiler.  The program memory requirements of the AVR processor reconfiguration 
programs are shown in Table 4.2 and require less than 10% of the total program memory 
space available.  The bitstream generated by MGL and the hex file generated by the AVR 
?C? compiler are combined using Atmel System Designer tool and downloaded into the 
FPGA [37].  The configuration bitstream is downloaded into the FPGA and the 
reconfiguration procedure is stored in the AVR program memory. 
 
Table 4.1: Number of Lines of AVR ?C? Code 
Device Model Primary Secondary Global Reset 
AT94K10 638 673 339 
AT94K40 682 687 354 
 
Table 4.2: Memory Required for Storing the AVR Program 
Device Model 
Primary 
(Bytes) 
Secondary 
(Bytes) 
Global Reset 
(Bytes) 
AT94K10 1120 2498 2228 
AT94K40 1152 1366 1128 
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4.2 Retrieving BIST Results 
 If the BIST configurations are executed by downloading every configuration 
separately, then the ORA results are scanned out at the end of each configuration.  If the 
BIST is executed by doing AVR reconfiguration instead of external downloads, then the 
BIST results are scanned out only at the end of all BIST configurations for that download.  
So, the BIST results are scanned out only three times, firstly after testing all the primary 
I/O cells, secondly after testing all the secondary I/O cells, and finally after testing all the 
global reset CIPs for their stuck-off faults.  Scanning out the results only three times 
reduces the test time but the diagnosis results can only identify the faulty I/O cell instead 
of identifying the faulty resource in the I/O cell.  Whereas the global reset CIP stuck-off 
tests will just indicate that one of the global reset CIPs is stuck-off and the faulty I/O cell 
cannot be identified. 
 If the ORA results are scanned out at the end of every configuration after 
performing the test, the ORA flip-flops have to be cleared before the test is performed in 
the next configuration, as a string of 1?s is scanned into the ORA shift register.  If more 
accuracy is required in diagnosing a faulty resource, then the ORA results can be scanned 
at the end of every BIST configuration, followed by clearing the ORA contents before 
executing next BIST configuration. 
 There is another disadvantage in testing the secondary I/O cells using processor-
assisted BIST.  In Figure 3.6, ORA3 compares the responses of I/O0 and I/O4.  If the 
PLBs are reconfigured to test the other direct connection from the secondary I/O cell, the 
ORA3 now compares the responses of I/O6 and I/O2.  In such a case, if a mismatch is 
latched up in one of the ORAs, the faulty I/O cell cannot be uniquely diagnosed.  To 
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diagnose a faulty I/O cell exactly, only one direct connection from secondary I/O cell to 
the PLB can be tested. 
4.3 Generating BIST Clock Cycles 
 In order to execute the BIST sequence, the clock must be generated from the 
AVR.  The FPGAIORE signal from the AVR was previously used as the clock signal for 
Logic and Routing BIST approaches, which used reconfiguration from the AVR 
processor [21][29].  The FPGAIORE enable signal was routed to a clock I/O cell in order 
to connect to the clock network.  The connection between the FPGAIORE and the clock 
I/O cell cannot be activated using MGL as MGL does not have access to the AVR 
processors? resources.  The routing resources have to be reconfigured from the AVR 
processor to connect the FPGAIORE signal to the clock I/O cell.  The FPGAIORE signal 
and the clock I/O cell are shown in Figure 4.1. 
 In the actual implementation, shown in Figure 4.1, the input to the clock I/O cell 
has been connected from a PLB close to FPGAIORE and this route is connected using 
MGL.  Then the FPGAIORE signal is routed from the AVR to the PLB, which is easier 
when compared to routing the FPGAIORE directly to the I/O clock cell.  To route the 
FPGAIORE signal from the AVR, the repeaters and the CIPs of the routing resources 
have to be programmed without causing conflicts with the other routing resources. 
 So, the routing from the AVR to the clock I/O cell has to be changed according to 
the routing of the other cells.  Even small changes in design would change the routing, so 
the route from FPGAIORE has to be modified every time, accordingly.  To remove this 
problem of routing from the AVR to the clock I/O cell, the clock can be generated from 
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the hard-wired ?1? and ?0? signals present at the data multiplexer of the I/O cell via partial 
reconfiguration by the AVR.  A brief description of clock I/O cells was given in Section 
2.2.5.4. 
 To generate the clock, the clock I/O cell is reconfigured in bidirectional mode 
using the AVR and the output of the data multiplexer is toggled between ?1? and ?0? by 
reconfiguring the data multiplexer selection signal.  The two configurations of the clock 
I/O cell are shown in Figure 4.2.  So, this procedure is more convenient to be 
implemented than the previous approach of routing and generating the clock from 
FPGAIORE. 
 
 
 Repeaters 
 
PLB
Clock I/O Cell
FPGAIORE
Figure 4.1: FPGAIORE and I/O Clock Cell Connection in BIST for Primary I/O Cells 
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Figure 4.2: Clock Generation using Multiplexer Reconfiguration 
 The FPGAIORE generates a clock pulse whenever the FISUA register, a register 
present in the processor, is written with a value.  To generate a clock signal from 
FPGAIORE, some value is repeatedly read into the FISUA register.  To generate a clock 
cycle using FPGAIORE, one instruction is required, whereas to generate a clock cycle 
using clock I/O cell reconfiguration, two instructions are required, one for selecting 
hardwired ?0? and the other for selecting hardwired ?1?.  So, the frequency of the clock 
generated by reconfiguring the clock I/O cell reconfiguration is about half that of the 
frequency of the clock generated by FPGAIORE. 
 Using the clock generation by reconfiguring the data multiplexer of the clock I/O 
cell, any clock I/O cell can be used to generate the BIST clock, whereas the FPGAIORE 
signal is difficult to route to the clock I/O cells present on the other side of the FPGA or 
which are located away from that signal.  As any of the clock I/O cells can be used to 
generate a clock by data multiplexer reconfiguration from the AVR, all the clock I/O 
cells can be easily activated and their proper functioning can be tested. 
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4.4 Testing Time 
 The BIST configurations for testing the I/O cells can be categorized into three 
master BIST configurations, namely primary I/O cell configurations, secondary I/O cell 
configurations and global reset CIP stuck-off configurations.  For all three master BIST 
configurations, an initial download is required and the successive BIST configurations 
are generated by AVR processor reconfiguration.  The test time for each master BIST 
configuration includes the download time, the AVR reconfiguration and test run time, 
and the time required to scan out the ORA results.  The reconfiguration time, the test run 
time and the time required to scan out the ORA results can be collectively referred to as 
the processor execution time.  The processor execution times are calculated using AVR 
Studio, a tool provided by Atmel for simulating and debugging AVR programs.  The 
processor execution times for BIST configurations of primary I/O cells are shown in 
Table 4.3.  Atmel?s AVR Studio gives the number of clock cycles required by the AVR 
to execute the instructions.  The clock cycles required for reconfiguring and testing 
multiplexer inputs and transmission gates and the clock cycles required for scanning out 
the ORA results are also shown in Table 4.3 [15].  The AVR processor can operate at a 
maximum frequency of 25MHz [15] and this frequency is used to calculate the time 
required for executing the given number of clock cycles. 
 
 
 
 
 
 
 
 75
Table 4.3: Processor Execution Time for Primary I/O Cells 
Number of Clock Cycles 
Device 
Model 
Multiplexer 
Input 
Configurations 
Transmission 
Gate 
Configurations
Scanning 
the ORA 
Results 
Total 
Processor 
Execution 
Time 
(ms) 
AT94K10 87,684 26,917 8,724 123,325 4.93 
AT94K40 154,193 53,050 33,238 240,481 9.61 
 
 The number of I/O cells to be reconfigured in the AT94K40 device (280) is nearly 
twice the number of I/O cells to be reconfigured in the AT94K10 (138) device.  The 
processor execution times of 9.61ms and 4.93ms are also proportional by the same ratio.  
Therefore, it can be stated that the total reconfiguration time dominates the test run time, 
since the test run times are same for both devices.  The time required to scan out the ORA 
results depends on the number of ORAs, as well as the number of 1?s being scanned at 
the end of the scan chain.  The total number of bits scanned out of the scan chain for the 
AT94K40 devices is four times more than the number of bits scanned out for AT94K10 
devices.  The number of clock cycles required to scan them out is also proportional to 
that. 
 The processor execution times required to test the secondary I/O cells of the 
Atmel devices are shown in Table 4.4, where the format of the table is same as that for 
the primary I/O cells. 
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Table 4.4: Processor Execution Time for Secondary I/O Cells 
Number of Clock Cycles 
Device 
Model 
Multiplexer 
Input 
Configurations 
Transmission 
Gate 
Configurations
Scanning 
the ORA 
Results 
Total 
Processor 
Execution Time 
(ms) 
AT94K10 106,348 27,054 15,175 148,577 5.94 
AT94K40 201,619 55,651 56,705 313,975 12.56 
 
 The processor execution times of AT94K10 (5.94ms) and AT94K40 (12.56ms) 
devices are also proportional to the number of I/O cells.  Even though the number of 
configurations required to test the multiplexers of secondary I/O cells (eight) is less than 
that of primary (nine), the number of secondary I/O cells under test that are to be 
reconfigured is higher in number (22 additional I/O cells on the interface to the AVR).  
As the reconfiguration takes more time than executing the test, the number of clock 
cycles required to test the multiplexer inputs of the secondary I/O cells (106,348 and 
201,619) is higher than the number of clock cycles required to test those of primary I/O 
cells (87,684 and 154,193). 
 The I/O cells present on the interface to the AVR have no flip-flops, so the 
transmission gates of those I/O cells are not being tested.  As the number of primary and 
secondary I/O cells under test for transmission gate tests are same, they almost have an 
equal number of clock cycles (53,050 and 56,705).  The number of ORA results being 
scanned out in BIST configurations of the primary and secondary I/O cells of both the 
devices is equal.  But the number of ORA cycles for scanning out the ORA results of the 
secondary I/O cells is found to be higher, even though the same ?C? program has been 
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used in both the cases.  The difference in times was due to different assembly language 
implementation of the same ?C? program by the AVR ?C? compiler.  A part of the ?C? 
program with its implementation in assembly language is shown in Table 4.5. 
 
Table 4.5: Implementation of ?C? Program by AVR in Assembly Language 
Implementation 1 Implementation 2 
 149          for ( i = 1; i < 8; i++ ) 
LDI  R16,LOW(1) 
CPI  R16,8 
BRSH _0xF 
 150          { 
 151   ora [ ii ] = ora[ii] << 1; 
MOV  R30,R4 
LDD  R26,Y+3 
LDD  R27,Y+3+1 
LDI  R31,0 
ADD  R30,R26 
ADC  R31,R27 
PUSH R31 
PUSH R30 
MOV  R30,R4 
LDI  R31,0 
ADD  R26,R30 
ADC  R27,R31 
LD   R30,X 
LSL  R30 
POP  R26 
POP  R27 
ST   X,R30 
 152   temp = FISUA; 
IN   R17,20 
 153   temp = temp & 0x01; 
ANDI R17,LOW(1) 
 154   ora[ii] = ora[ii] | temp; 
 143          for ( i = 1; i < 8; i++ ) 
LDI  R16,LOW(1) 
CPI  R16,8 
BRSH _0xF 
 144          { 
 145   ora [ ii ] = ora[ii] << 1; 
RCALL SUBOPT_0x4 
ADD  R30,R26 
ADC  R31,R27 
PUSH R31 
PUSH R30 
RCALL SUBOPT_0x4 
ADD  R26,R30 
ADC  R27,R31 
LD   R30,X 
LSL  R30 
POP  R26 
POP  R27 
ST   X,R30 
 146   temp = FISUA; 
IN   R17,20 
 147   temp = temp & 0x01; 
ANDI R17,LOW(1) 
 148   ora[ii] = ora[ii] | temp; 
 
 In the implementations shown in Table 4.5, the lines with the numbers at the 
beginning are the commands in ?C? language and the assembly language implementation 
of the same command is shown below it.  Implementation1 of the ?C? program took 8,724 
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cycles for execution and Implementation 2 took 15,175 cycles for executing the same 
loop an equal number of times.  The reason for the higher number of clock cycles for 
Implementation 2 is the subroutine calls, highlighted in Implementation 2 column of 
Table 4.5.  The ?C? code in Implementation 1 is similar to that of a macro.  As macros can 
be executed faster than subroutine calls, Implementation 1 takes fewer clock cycles than 
Implementation 2.  In Table 4.8, it is shown that this affect is negligible. 
 The number of clock cycles and processor execution times required for the global 
reset CIP stuck-off tests are shown in Table 4.6. 
 
Table 4.6: Processor Execution Time for Global Reset CIP Stuck-off Tests 
Number of Clock Cycles 
Device 
Model 
Testing All 
Global Reset 
CIPs 
Scanning the ORA Results Total 
Processor 
Execution Time 
(ms) 
AT94K10 28,874 14,711 43,585 1.74 
AT94K40 59,495 56,193 115,688 4.63 
 
 The number of clock cycles for testing all the global reset CIPs is proportional to 
the number of I/O cells of the devices.  As the number of ORAs scanned out for 
AT94K40 devices is four times higher than the AT94K10 devices, the number of clock 
cycles for scanning the ORA results are also proportional.  Implementation 2 of Table 4.5 
was used by the AVR ?C? program for scanning out the ORA results. 
 The processor execution times, for the AT94K10 and AT94K40 devices using 
AVR reconfiguration, are shown in Table 4.7.  Even though the AT94K40 devices are 
four times larger than the AT94K10 devices, the number of I/O cells in AT94K10 
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devices is only twice compared to AT94K10 devices and the total processor execution 
times (12.61ms and 26.8ms) are almost proportional. 
 
Table 4.7: Total Processor Execution Time 
Processor Execution Time 
Device Model Primary I/O 
Cells 
(ms) 
Secondary I/O 
Cells 
(ms) 
Global Reset 
CIP Stuck-off 
(ms) 
Total Processor 
Execution Time
(ms) 
AT94K10 4.93 5.94 1.74 12.61 
AT94K40 9.61 12.56 4.63 26.8 
 
 The total test time, including the download time, and a comparison of the 
download time with the processor execution time is shown in Table 4.8.  It can be seen 
that the percentages, 93.75 and 98.32, of download time are very high and dominate the 
total test time.  Therefore, the un-optimized subroutines by AVR ?C? compiler, as shown 
in Table 4.5, do not have much affect on the test time even though additional clock cycles 
are required for processor execution. 
 
Table 4.8: Total Test Time Using AVR Reconfiguration and Percentage of Download 
Time 
Device Model 
Download 
Time 
(ms) 
Processor 
Execution Time 
(ms) 
Total Test Time 
(ms) 
% of Download 
Time in Total 
Test Time 
AT94K10 63 x 3 = 189 12.61 201.61 93.75 
AT94K40 523 x3 = 1569 26.8 1595.8 98.32 
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 The total reduction in test time using AVR reconfiguration, compared to the test 
time using MGL downloads is shown in Table 4.9.  The test download times using MGL 
are taken from Table 3.6 and test run time and ORA scan out times have been added. 
 
Table 4.9: Comparison of Total Test Times 
Device 
Model 
Test Time Using MGL 
(sec) 
Test Time Using AVR 
Reconfiguration 
(ms) 
Speed Up 
Achieved 
AT94K10 10.196 201.61 50.57 
AT94K40 158.606 1595.8 99.39 
 
4.5 Configuration Memory Storage Requirements 
 The number of downloads required to test the I/O cells in the Atmel devices using 
MGL is 161 for the AT94K10 and 303 for the AT94K40.  This has been reduced to three, 
and also the number is independent of the array size of the FPGA core.  The 
configuration memory storage requirements for configurations using MGL and AVR-
based reconfiguration are shown in Table 4.10.  There is more than two orders of 
magnitude reduction in configuration memory storage requirements for the AT94K40 
devices. 
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Table 4.10: Comparison of Configuration Memory Storage Requirements 
Total Downloads 
Total Configuration 
Memory 
(MB) FPGA 
Model 
Configuration 
Memory 
(KB) 
MGL AVR MGL AVR 
Configuration 
Memory 
Storage 
Requirements 
are Reduced 
by 
AT94K10 16.947 161 3 2.728 0.051 53.67 
AT94K40 65.115 303 3 19.73 0.195 101 
 
 A speed up of 99.39 times and the reduction in configuration memory storage 
requirements by 101 times are achieved using the reconfiguration by the embedded AVR 
processor.  It can also be seen that as the size of the device is increased, the speed up time 
is increased, along with the reduction in configuration memory storage requirements.  So, 
as the size of the FPGA increases, the use of embedded processor reconfiguration has 
more advantages. 
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 Chapter 5 
 
Summary and Conclusions 
 
 A general BIST approach to test the logic and routing resources of the 
programmable I/O cells in a FPGA or associated with the FPGA core of a SoC was 
presented.  None of the prior BIST approaches to test the programmable logic and routing 
resources in FPGAs have addressed testing the I/O cells.  The approach proposed in this 
thesis can be applied to test the I/O cells of any FPGA.  The technique was applied to the 
I/O cells of Atmel FPGAs and FPGA cores in SoCs.  It is observed that the proposed 
BIST technique can test all the logic resources but it cannot test all the routing resources 
associated with the I/O cells.  So, two additional test approaches have been developed to 
completely test the associated routing resources.  The additional BIST approaches are 
used to test the transmission gates, a part of the routing resources, and the global reset 
connection associated with the I/O cells. 
 The proposed I/O cell BIST approach can be used to test the I/O cells at 
manufacturing level and also at device level.  The I/O cell BIST approach can test all the 
bonded and unbonded I/O cells, so it is package independent.  The BIST for I/O cells can 
detect all the faults associated with the logic and routing resources, along with the major 
defects in the analog programmable features, like pull-up and pull-down capabilities.  But 
it cannot detect all of the parametric faults that affect the analog programmable features 
of the I/O cell, like V
OL
, V
OH
, V
IL
, V
IH
, current sink and source capabilities, 
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programmable delays, etc.  The BIST approach can detect the faults in the configuration 
bits controlling the analog parametric features.  For example, if the configuration bits for 
drive capability do not provide any drive then the fault can be detected.  Similarly, if the 
delay offered by the delay element is too large and does not meet the set up time of the 
ORA flip-flops then those faults can also be detected. 
 Even though the BIST configurations can be used for manufacturing as well as 
device level testing, they cannot be used at the system-level testing as the connections 
from other devices on the same PCB may back drive the I/O cells which are normally 
configured as input cells.  If all the inputs from the other devices present on the PCB can 
be tri-stated, then the developed BIST configurations can be applied to test at the system-
level.  Sometimes the loads connected to the I/O cell will increase the worst case path 
delays of the I/O cells and this might require reduction in the BIST clock frequency for 
the test to be performed with the I/O cells being loaded [38]. 
5.1 Main Contributions 
 BIST configurations to test the programmable I/O cells in the FPGA core of 
Atmel AT94K10 and AT94K40 devices were developed.  100% stuck-at gate level fault 
coverage of the I/O cells was obtained with the developed BIST configurations.  The 
100% stuck-at gate level fault coverage was verified by performing fault simulation.  
Three master BIST configurations, for primary I/O cells, secondary I/O cells and global 
reset CIP stuck-off, were developed using MGL for each of the AT94K10 and AT94K40 
devices.  Separate AVR reconfiguration programs were also developed for each of the 
master BIST configurations.  All of these BIST configurations have been downloaded 
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and verified on the Atmel AT94K10-25BQC and AT94K40-25AJC packages of the 
Atmel FPSLICs.  Some of the material associated with this development was published in 
[39] and [40]. 
 A new BIST clock generation scheme by AVR-based reconfiguration of the data 
multiplexer of the I/O clock cell has been designed and implemented.  The new clock 
generation scheme is easier to implement when compared with the previous BIST clock 
generation scheme.  Also, this new clock generation scheme enables testing of all the CIP 
connections to the global clock network from all the I/O clock cells without any routing 
modification requirements. 
5.2 Potential Application to Other FPGAs/SoCs 
 The proposed general BIST architecture for testing the I/O cells can be used to 
test the logic resources of programmable I/O cells in any FPGA or SoC.  But some new 
BIST configurations might be required to test the routing resources, depending on the 
routing architecture.  The special features included in the programmable I/O cells might 
vary from one FPGA or SoC manufacturer to another and might require different BIST 
configurations to test them.  The BIST architecture was also investigated to test the logic 
resources in the I/O cells of the Xilinx Virtex-4 devices.  From the fault simulation results, 
a maximum gate level stuck-at fault coverage of 98.56% can be obtained with seven 
BIST configurations using the same BIST approach proposed in this thesis [38].  This 
demonstrates the general application of the I/O cell BIST approach. 
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5.3 Areas of Future Research and Development 
 The proposed BIST approach is not parameterized to test a given subset of I/O 
cells.  If the BIST approach can be parameterized to test a given set of I/O cells, then the 
BIST configurations can be used to test the FPGAs or SoCs at the system-level as well.  
At system-level testing, parameterized BIST configurations can be used to test the I/O 
cells which are configured as output and bi-directional cells, and the unbonded I/O cells 
can also be tested.  The I/O cells configured as inputs might back drive the I/O cells 
under test and may not be included in the test.  Even the I/O cells configured as output 
cells might be required to be tested at different BIST clock frequencies, depending on 
their loading, because the larger loads will increase the worst case path delay. 
 In most of the recent Xilinx FPGAs, a pair of programmable I/O cells can be 
configured in a differential pair mode and have dedicated routing resources to be used in 
the differential pair mode.  A new BIST architecture should be developed to the test the 
programmable I/O cells configured in the differential pair mode. 
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APPENDIX A 
LIST OF ACRONYMS
 
ASIC - Application Specific Integrated Circuit 
AVR - Advanced Virtual RISC 
BIST - Built-In Self-Test 
BUT - Block Under Test 
CAD - Computer Aided Design 
CIP - Configurable Interconnect Point 
CUT - Circuit Under Test 
CSoC - Configurable System on Chip 
DC - Direct Current 
DFT - Design For Testability 
DSP - Digital Signal Processor 
DLL - Delay Locked Loop 
EPROM - Erasable Programmable Read-Only Memory 
EEPROM - Electrically Erasable Programmable Read-Only Memory 
FPGA - Field Programmable Gate Array 
FPSLIC - Filed Programmable System Level Integrated Circuit 
HDL - Hardware Description Language 
IC - Integrated Circuit 
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I/O - Input/Output 
LUT - Look-Up Table 
LSB - Least Significant Bit 
LFSR - Linear Feedback Shift Register 
MGL - Macro Generation Language 
ORA - Output Response Analyzer 
PCB - Printed Circuit Board 
PIP - Programmable Interconnect Point 
PLB - Programmable Logic Block 
RISC - Reduced Instruction Set Computer 
SoC - System on Chip 
SRAM - Static Random Access Memory 
TPG - Test Pattern Generator 
VLSI - Very Large Scale Integration 
WUT - Wire Under Test 

