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Abstract
This thesis uses novel three dimensional sensors like the Microsoft Kinect [1] and the
Asus Xtion Pro Live [2] to generate three dimensional environments and use the recon-
structed environment with a predictive model in order to assist the teleoperation of mobile
vehicles. Ultimately this work would be applicable to any teleoperated vehicle equipped
with sensors providing three dimensional data of the environment, such as an automated
ATV with a stereo vision system or a Velodyne LiDAR [3] system. The challenges related
to utilizing dense three dimensional data in a way that is practical for teleoperation scenar-
ios are identi ed, and solutions are proposed and implemented. To simplify the approach,
the problem is split into three smaller tasks: three dimensional mapping, teleoperation and
telemetry visualization, and latency reduction techniques. The three dimensional mapping
pertains to using the three dimensional sensor data in concert with the mobile vehicle nav-
igation solution to generate a three dimensional map of the environment in real-time. The
resulting map must be e ciently sent to the teleoperator and visualized in the teleoperation
and telemetry visualization section of the thesis. Additionally, latency greatly reduces the
teleoperator?s ability to drive the vehicle, so methods for reducing the perceived latency are
investigated, including using a vehicle model to simulate the vehicle motion in the absence
of timely telemetry updates. It is shown that existing mapping techniques can be used e -
ciently and e ective to aid teleoperation, even in low bandwidth environments. Experimental
results show that by giving the teleoperator three dimensional information about the envi-
ronment, the teleoperator can more successfully navigate tight obstacles and reduce impacts
with the environment. Finally, experiments are conducted that show having a prediction of
the vehicle motion based on user input can improve teleoperation in high latency situations.
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Chapter 1
Introduction
This work is motivated by the need for improved teleoperation techniques in commercial
and military applications. Given three dimensional information about the environment, a
much better representation of the environment can be presented to the teleoperator. The
reconstructed environment provides an advantage to traditional two dimensional images by
providing spatial awareness and multiple view points of the same scene. Applications of
this sort of technology include: maneuvering a teleoperated vehicle in tight quarters like a
city alley, teleoperating a robotic arm in a cluttered environment, or navigating an indoor
robot in an o ce environment. The advantages of this three dimensional map bring related
disadvantages that must be minimized in many teleoperation scenarios to make the bene t
worth the cost. In most teleoperation scenarios things like computing resources, battery life,
power, and bandwidth are at a premium. These scarce resources are problematic when con-
sidering the three dimensional mapping system as it can use considerable computer resources
to process the three dimensional data and produce a map of the environment. Additionally,
the resulting map can be quite large, depending on the resolution of the map and the size of
the area being represented. Thus, when considering the use of these three dimensional maps
in teleoperation scenarios, techniques for minimizing the processing and bandwidth must be
considered. Furthermore, in many teleoperation scenarios the communications link is quite
latent, due to being a satellite or cellular system. The increased latency in a teleoperation
system signi cantly reduces the teleoperator?s ability to control the vehicle - impacting both
their obstacle avoidance capabilities and top speeds [5].
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1.1 Mapping
Mapping three dimensional environments has become a hot research topic in the past
few years, and some amount of that trend can be attributed to the Microsoft Kinect [1].
Since its release in November of 2010 [6], the Kinect has enabled researchers and enthusiasts
all over the world by giving them access to high quality three dimensional data in an available
and a ordable sensor package. The experimental part of this work takes advantage of the
innovation of Kinect technology and applies it to the teleoperation of mobile robot vehicles.
With the increasing availability of three dimensional spatial data from sensors like the
Primesense based Red Green Blue-Depth (RGB-D) cameras [7] and registering sweeping
laser range  nders with cameras [5], being able to store, transmit and manipulate this data
in an e cient manner has become important. There are a number of applications for this
type of three dimensional information - for example: three dimensional or six dimensional
Simultaneous Localization and Mapping (SLAM) [8], three dimensional teleoperation [5],
and robotic path planning [9]. Because of this surge in the availability of three dimensional
data, commonly represented as a point cloud, a new open library aimed at manipulating
and processing point clouds has risen to popularity. This library is known as the the Point
Cloud Library (PCL) [10], and it provides many high quality data structures and algorithms
for processing point clouds.
Outdoor and indoor environments can be di cult to capture in full three dimensional
space. One of the issues with mapping three dimensional space is that the computing re-
sources (like processing time, memory usage, and network bandwidth) can be prohibitive to
storing, transmitting, and processing the map. Octrees have a long history of being used in
three dimensional applications [11], surface reconstruction [12], and computer graphics [13].
Recent work has shown that three dimensional maps can be stored e ciently using octrees
for use in robotics applications [14]. The research by A. Hornung, et. al. resulted in an open
source library called octomap [14]. The primary use of the octomap library so far has been
in occupancy based motion planning for robots and robotic manipulators [9]. This thesis
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work applies the octree-based spatial database methods described in the octomap paper to
mapping three dimensional environments with teleoperation of robotic vehicles in mind.
This thesis work shows that three dimensional mapping can be preformed using novel
three dimensional sensors, like the Microsoft Kinect, indoors in real-time. It also shows that
these three dimensional maps can aid teleoperation of robotic vehicles by providing useful
additional information to the teleoperator. Finally, it shows that using a vehicle model
to predict the position of the vehicle in the presence of latency can reduce the negative
e ects on teleoperation. The rest of this thesis will cover the system design process and
resulting artifacts in Chapter 2, the three dimensional mapping subsystem in Chapter 3, the
teleoperation subsystem in Chapter 4, discuss the techniques for latency reduction in Chapter
5, describe the experimental setup and results in Chapter 6, and  nally draw conclusions
and look toward future work in Chapter 7.
3
Chapter 2
System Design
There are several groups that have previously aimed to provide a more photo realistic
three dimensional environment in order to improve teleoperation scenarios. In particular
Huber, et. al. from Carnegie Mellon University describe a system with a multi faceted ap-
proach to representing the environment in three dimensional space [5]. Their system showed
that it was possible to achieve a high level of  delity when representing the environment.
They employed several techniques to reconstruct the environment including billboards, voxel
grids, point clouds, and ground plane estimation and modeling. Additionally, they showed
that their system improved teleoperation of automated vehicles, and they characterized the
a ects of latency on the teleoperators. Their work did not address the problems of pro-
cessing or bandwidth. Instead, their system had an umbilical  ber optic cable to transmit
the telemetry back to an on-site trailer where the telemetry was converted into the three
dimensional components using a rack of several servers. Therefore, one of the goals of this
thesis is to address some of those concerns by simplifying the representation of the three
dimensional environment and by leveraging di erent storage structures and methodologies
when building the map and transmitting it to the teleoperator.
2.1 Problem Statement and Requirements Analysis
The system should take telemetry from the robotic vehicle and use it to produce a
visually accurate three dimensional map of the environment. The resulting map should
be displayed to the user, also known as the teleoperator, and the input of the user should
be used to control the robotic vehicle. The telemetry should include both proprioceptive
data which will provide information about the location of the vehicle in its environment
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and exteroceptive data which provides three dimensional data about the environment. By
combining these two types of data, a three dimensional model of the vehicle is placed in a
reconstruction of the environment and is displayed to the teleoperator. The mechanism by
which the reconstructed environment is transmitted to the teleoperator must work in low
bandwidth and high latency networks.
2.1.1 System of Systems Architecture
The system design follows from the problem statement and the requirements analysis as
a system of systems in a client-server architecture. The system can clearly be divided into
a robotic vehicle subsystem, a three dimensional mapping subsystem, and a teleoperation
subsystem. The robotic vehicle subsystem can be abstracted and therefore decoupled from
the mapping and teleoperation subsystems. The three dimensional mapping system takes the
abstracted telemetry from the robotic vehicle with which it maintains a three dimensional
map of the environment. This map is then provided to the teleoperation system which
transmits the map and visualizes it for the teleoperator. Additionally, the teleoperation
subsystem takes the user input which is communicated to the command interface of the
robotic vehicle. The teleoperator and his machine can be viewed as the client, and the
robotic vehicle is the server which provides processed telemetry and executes input from the
teleoperator. A high level diagram of the system is seen in Figure 2.1.
The above design assumes that all of the telemetry is processed by the mapping sub-
system before being transmitted by the teleoperation subsystem. It would be possible to
transmit the raw telemetry to the teleoperator and then process it on the teleoperator?s
machine, but this was not the selected design pattern because the network bandwidth and
latency was more valued than the processing power on the robotic vehicle. This design at-
tempts to meet the lowest common denominator by minimizing processing for the mapping
and then transmitting the completed map, which can be much more concise than the raw
telemetry.
5
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Figure 2.1: Subsystem Layout
By decoupling the three subsystems, replacing one implementation of a subsystem with
another is much easier. Because the interface of the robotic vehicle consist of one or more
exteroceptive sensors, a proprioceptive pose solution, and a velocity command interface, the
underlying robotic vehicle can be replaced with any robotic subsystem that can conform
to that interface. Similarly, the mapping subsystem can be replaced with any individual
mapping system that takes the telemetry from the robotic vehicle and produces a map for
the teleoperation subsystem.
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2.2 System Speci cation
Breaking the subsystems down further provides implementation speci c details. Figure
2.2 shows the three subsystems in more detailed and more tightly integrated  gure. Though
the interfaces are missing here the  ow of information remains the same from the subsystem
layout in Figure 2.1.
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Display 
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Display 
Map
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Movement 
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Figure 2.2: Overview of System Design, the separation of activities by computer system are
shown more clearly
As mentioned above, Figure 2.2 describes the overall system design. The three di-
mensional data in the form of point clouds are collected from one or more sensors like the
Microsoft Kinect. These point clouds are combined with a navigation solution from the
robotic base to transform the data points into a common map coordinate frame. At this
point the point clouds are inserted into the map using a probabilistic insertion method which
is described in Chapter 3. A maximum likelihood version of the map is generated and is
stored in, what this work will refer to as, the server map. The server map is now ready to be
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used in teleoperation, so the server map is subtracted from the current client?s map resulting
in map deltas (changes in the map). The map deltas, or some smaller subset of the map
deltas, are sent to the client and united with the current client map. If all of the di erences
are sent, then the client map and the server map should then be synchronized, i.e. the client
map is up-to-date. Otherwise successive iterations of this process will eventually result in
an up-to-date client map. Simultaneously, input from the teleoperator is sent to the robotic
vehicle to allow teleoperation.
The above description, or theory of operation, of the system makes references to several
as yet unde ned processes and design decisions. There are more details on the Mapping and
Teleoperation subsystems in Chapters 3 and 4, respectively. The robotic subsystem and it
aforementioned navigation solution are discussed in the next section and the Experimental
Setup in Section 6.1.
2.3 Robot Navigation
A necessary component of the proposed teleoperation system is the ability for the robotic
vehicle to provide an accurate pose estimate. Because the system proposed does not rely
on Iterative Closest Point (ICP) or feature mapping to combine successive point clouds, as
in P. Henry, M. Krainin, and E. Herbst [15], the pose estimate from the robotic vehicle
must be very accurate. The trade o is that a much smaller amount of processing is re-
quired to generate the map, but the resulting quality of the map is sensitive to errors in the
pose estimate. Outdoor navigation systems like the Novatel SPAN system can provide  2
centimeters positional accuracy and 1/10th degree angular accuracy [16], which would be
acceptable for mapping. Indoor robots, like the experimental setup for this paper, require
some other means of estimating its position in an arbitrary global coordinate frame. The
experimental system in this work uses an implementation of grid SLAM, which combines
odometry from the wheel encoders with laser range  nder data from a Sick LMS151. An
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o -the-shelf SLAM library is used to get a high quality pose estimate indoors, and the li-
brary uses a grid based approach with particle  lters to map and localize the environment.
The library is called the gmapping library [17] [18], which is an open source library and can
be found on openslam.org. These navigation systems attempt give a high accuracy, drift
resistant pose solution of the vehicle indoors.
9
Chapter 3
Three Dimensional Mapping
As with the top level system design, other mapping solutions are analyzed before design
begins. In the following section a survey of past work is presented.
3.1 Previous Work
Recent work has been done to create three dimensional maps of the environment using
octrees and a probabilistic insertion method that is well suited for robotic activities where
noise is present in the data and uncertainty in the pose of the robot. A. Hornung, et. al.
described and implemented this system, and it resulted in an open-source library called
octomap. [14] This work uses octomap as the octree mapping library, and a description of
octomap and how it works is in Section 3.2.
There are two main elements of the octomap research that are useful in a three dimen-
sional teleoperation system. First, the probabilistic method for adding new three dimen-
sional information to the map is ideal for a system that needs to be updated continuously.
Uncertainty from the navigation solution will result in point clouds that are transformed in-
correctly, and this causes inconsistencies and skews in the resulting map. The probabilistic
manner in which the scans are inserted into the octree help to alleviate this inconsistency
by allowing for some error in the point clouds in relation to the map. This error is further
alleviated by the nature of the octree data structure because inserting the point clouds into
the octree essentially results in a down-sampling of the original data to the resolution of the
octree.
Second, limiting the query depth on the octree will e ectively and e ciently down-
sample the map. The down-sampling allows for an adjustable quality level of the map being
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sent over the wire to match the available resources like network bandwidth and network
latency. Having adjustable quality is important because most teleoperation systems work
over a wireless and unreliable communication layer, which often su ers from low data rates
and large latencies. An analogy can be drawn to how on-line video streaming services will
adjust the compression of a video to accommodate the connection being used, but in these
systems the main concern is bandwidth, not latency.
In addition to the work done by A. Hornung, et. al. with octomap, three dimensional
mapping done speci cally with RGB-D cameras from Primesense was done by P. Henry,
M. Krainin, and E. Herbst [15]. In that publication they used alignment techniques like
features with RANdom SAmple Consensus (RANSAC), Iterative Closest Point (ICP), and
loop closure techniques to produce a very high quality map from the RGB-D data [15].
The mapping approach in this thesis di ers in that it relies on other sensors and existing
navigation solutions to provide accurate transforms for the points clouds in an attempt to
make the system more processor e cient and run closer to real-time. The work by P. Henry,
M. Krainin, and E. Herbst still managed to perform the processing in a relatively small
amount of time, but processing in that paper has not gotten to the speeds required for
real-time teleoperation.
Very recent work by Microsoft using the Kinect has achieved real-time mapping with the
Kinect in a project called KinectFusion [19]. Additional work has seen this technology demo
reproduced using PCL and extended spatially [20]. This technique employs new methods for
combining Kinect data on the Graphics Processing Unit of the video card in the computer.
This technology is very immature, but most likely will be a suitable replacement for the
mapping system presented in this work. The advantage to the mapping system presented in
this work is that it requires less processing than the KinectFusion system.
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3.2 The Mapping Process
This section describes the process of combining the three dimensional data from the
sensor and six dimensional poses from the robot base into three dimensional maps of the
environment. As previously mentioned in Section 3.1, A. Hornung, et. al. have already shown
that octrees combined with a probabilistic insertion method can provide a good solution when
creating three dimensional maps. A portion of this section explains their work [14] and how
it is used in the teleoperation system described in this thesis work. The obvious  rst step
of this process is obtaining the three dimensional data and the six dimensional pose of the
robotic base from which the map is constructed, which is described brie y in Section 6.1.
3.2.1 Transforming the Point Clouds
Each time new data from the three dimensional sensor is received by the computer
the data needs to be transformed into a common arbitrary global frame or ?map? frame.
Figure 3.1 shows a typical transformation tree for the robotic setup. The ?base link? frame is
commonly referred to as the vehicle frame. The transformation between the ?map? frame and
the ?base link? frame represents absolute transformation given by the pose estimate of the
robotic vehicle. The transformations between the ?base link? frame and the ?laser link? frame
and the ?camera link? frame are static geometric relationships and represent the position
of the sensors on the robot chassis. When new point clouds are received they are in the
?camera link? coordinate frame and need to be converted into the ?map? coordinate frame as
that is the corrected global frame in this situation.
In order to transform the point clouds into the global coordinate frame, each point in the
point cloud must be transformed into the global coordinate frame. Each point is represented
by the homogeneous vector in Equation (3.1).
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Figure 3.1: Typical Coordinate Transform Tree
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The points are transformed using the homogeneous transform matrix [21], de ned in
Equation (3.2).
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In the homogeneous transform matrix  is Roll about the x-axis,  is pitch about the
y-axis, and  is Yaw about the z-axis. xt, yt, and zt are the translational components of the
transform matrix.
By multiplying each of the points in the point cloud by this transform matrix, the entire
point cloud is transformed into the global coordinate frame and is ready to be inserted into
the map.
3.2.2 Inserting New Data
Once the point cloud data has been transformed into the global coordinate frame, the
data needs to be added to the map. As previously mentioned, inserting data is done by the
octomap library, but the process is described here for clarity. The underlying data structure
for this map is an octree where each leaf has a probability of occupation. The octree is in
e ect a three dimensional occupancy grid with octree storage where each leaf of the tree is a
voxel, also known as grid cell, in the grid. The transformed data and the origin of the sensor
in the global coordinate frame are required for the insertion. The insertion method starts
by iteratively ray tracing from the origin of the sensor to each data point in the point cloud.
For each voxel that the ray trace passes through the probability of occupation of that voxel
is decreased by a given amount. For the voxel that the ray trace ends in, the probability of
that voxel being occupied is increased by a given amount. In this way several points must
fall into a voxel to have voxel considered to be occupied, and allows for fringe voxels, caused
by noise, to be cleared by additional new data.
Figure 3.2 shows this process in a two dimensional example where the gray voxels are
the robot, the red dot is the sensor origin, the black dot is the point from the point cloud, the
green voxels are having their occupancy decreased, and the red voxel is having its occupancy
increased. This method of voxel ray tracing is originally proposed by Amanatides, J. and
Woo, A., and is referenced in the octomap paper [22].
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Figure 3.2: Two Dimensional Example of Voxel Ray Tracing
3.3 Sources of Error During Three Dimensional Mapping
With this approach to three dimensional mapping, map quality can be adversely a ected
by several di erent sources of error, including the uncertainty in the pose estimate of the
robotic vehicle, random and systematic error in the three dimensional data, and systematic
errors due to timing and geometric misalignment. Figure 3.3 shows the resulting octree map
with the map from the Simultaneous Localization and Mapping (SLAM) algorithm, which
is good enough in this instance to be considered truth. The octree map generally lines up
with the SLAM map but has a lot of areas where the result is less than desirable.
3.3.1 Vehicle Pose Uncertainty
A major component of the error introduced in mapping with this system is the vehicle
pose uncertainty. In most robotic systems, and in the system presented in this thesis, the
pose estimate is a blend of multiple sensors, some that drift and some that bound error
growth. In this case the pose estimate will have a cycle where the error grows until it is
sharply bound by a measurement update. In the system in this thesis, bounding occurs when
a SLAM update occurs. The SLAM algorithm provides updates to the pose of the vehicle
at about 1 Hz, and between these updates the integrated wheel odometry is used to provide
poses. The integrated wheel odometry quickly diverges from the true path of the vehicle and
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Figure 3.3: A top down, orthographic view of a three dimensional map generated from Kinect
data with a map created by the SLAM library
the uncertainty grows quickly, especially when turning in place where the non-linear e ects
of slip are neglected in the integration of the encoders. Therefore the uncertainty grows and
then is sharply snapped back on a SLAM update. This e ect can be seen in Figure 3.4,
where the misalignment of the laser data, and the map becomes obvious. After a SLAM
update the pose estimate is much better. Just before a SLAM update the pose is generally
at its highest uncertainty, so inserting a point cloud at this point in time would produce the
worst results for mapping.
Another problem that comes up in the mapping process is that inserting point clouds
into the octree map is computationally expensive. The computation required is a ected by
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Figure 3.4: Integrated wheel odometry diverging from the pose provided by SLAM when
turning
the density of the point cloud data and the resolution of the map. Some sensors, like the
Kinect and Xtion Pro Live, produce this point cloud data at high rates, which can be as high
as thirty hertz. Due to the computational limitations and the high rate of speed of the data,
many of the point clouds have to be dropped. This is not necessarily a problem for mapping
in the system presented here, because of the rate of the point cloud data and the speed of
the robotic vehicle, 1-2 meters per second, much of the point cloud data is redundant.
A practical solution to both of these problems is to opportunistically select point clouds
to insert. In this system only point clouds that comes after SLAM updates are inserted.
Timing is a critical component at this stage, it is important to match SLAM transform
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timestamps to point cloud timestamps as closely as possible to avoid further misalignment
in the map.
Another solution to this problem is to simply produce a better navigation solution.
Though not pursued in this work, combining the odometry with an Inertial Measurements
Unit (IMU) or simply a yaw rate gyro with a Kalman Filter would likely reduce the error
from the grow-bound cycle in the mapping process. Point clouds would still need to be
throttled, but which point clouds used would no longer matter as much.
3.3.2 Sensor Random Error
Another less prominent source of error is the random error in RGB-D cameras like
present in the Kinect and the Xtion Pro Live. Three sources of error in the this data are:
loss of precision on depth measurements at greater distances, discretization error on depth
measurements, and decreased density of data at greater distances. The most prominent of
these error sources is the variance in the depth measurement. Khoshelham, K. showed that
the random error in the depth of the Kinect data could be modeled from the theoretical
principal of the depth sensor [23]. In the paper by Khoshelham, K., they show theoretically
and experimentally that the depth variance at 4 meters is about 5 centimeters. This variance
changes over distance, with smaller distances yielding more precise measurements than at
greater distances.
In order to help minimize this error, a practical solution might be to ignore data that
is further than 3 or 4 meters as the variance grows quite large. The system in this work,
however, makes a small modi cation to the method of insertion used by octomap. Instead
of having a constant hit and miss value for ray tracing each point in each point cloud, the
hit and miss values change based on the distance to the origin of the sensor. In this way
data that is further from the sensor, especially greater than 3 or 4 meters, is less likely to
make a voxel occupied and less likely to clear an occupied voxel. The variable hit and miss
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Figure 3.5: This  gure demonstrates the variable hit and miss values used during ray tracing.
values allow the system to incorporate data past 4 meters, but also takes into account the
decreased precision.
Figure 3.5 shows the e ect of long and short ray casts with the above proposed changes.
In the  gure the values are varied linearly by distance from the sensor origin, but in practice
the system uses a quadratic scaling of the hit and miss values. Additionally, the scaling does
not start until 3 meters from the sensor. These two changes from the simple linear scaling
method re ect the fact that the data under 4 meters is quite good, and the data degrades
non-linearly at greater distances. The results of this tactic on mapping are noticeable in
speci c situations, but overall improvements are marginal compared to the mapping error
induced by errors in the navigation solution.
19
Chapter 4
Teleoperation
While the three dimensional map is being continuously generated, the client needs to
be updated regularly so that the teleoperator has up-to-date telemetry from which to make
decisions about the commands to send to the robotic vehicle. This step is where the applica-
tion of the three dimensional mapping to teleoperation occurs. Periodically the probability
octree that represents the current best guess as to the occupancy of the environment is
converted to a maximum likelihood tree. This maximum likelihood tree is compared to the
client?s map of the environment. The di erences are sent over the wire to the client, where
the di erences are united with the current client map, e ectively updating the map used for
visualization. Iterating these actions in parallel with the three dimensional mapping process
allows for timely updates and a gracefully degrading di erence model based on available
bandwidth.
4.1 Maximum Likelihood Representation
The point clouds are initially inserted into an occupancy probability octree where the
leaves contain the probability of occupation, but this representation is large and not suited
for processing and transmitting the map over the wire in a low bandwidth and/or latent
network. The map is therefore periodically transformed into a maximum likelihood version
of the probabilistic octree. This transformation is performed by applying a probability high
pass  lter on the probabilistic octree, where the voxels that are most likely occupied are seen
in the transformed octree. The maximum likelihood octree is much more compact because
each leaf can be represented with exactly two bits each [14]. Two bits per leaf allows for four
unique states for each leaf - of which three are utilized, occupied, unoccupied, or unknown.
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4.2 Map Streaming
Once the map is in the maximum likelihood tree format, the map needs to be transmitted
to the client. In some cases, however, there is more data to send than there is bandwidth
available. In these cases a lower resolution version of the map di erences can be sent and
more detailed di erences can be sent in the future when more bandwidth is available.
4.2.1 Octree Set Di erence
The  rst step in synchronizing the server and client octrees is to detect what has changed
since the last update. In order to determine this, the client octree is set di erenced with the
server octree which yields the changes in the server from a previous point in time. In order
to  nd the set di erence between the two octrees Algorithm 1 is used. This algorithm is a
simple element-wise di erence and can be considered a volumetric di erence.
Algorithm 1 Algorithm for Pairwise Di erence of Octrees
fO0 is the server occupancy treeg
fO1 is the client occupancy treeg
fd is the set di erenceg
for all leafs in O0 do
if leaf not in O1 then
d leaf
end if
end for
return d
4.2.2 Bandwidth Adjustment Algorithm
Once the di erences have been determined, the di erences need to be sent over the
network to the client computer to be united with the current client map. If not enough
bandwidth is available, the di erences can be reduced by di erencing the two octrees at a
lower resolution. The lower resolution versions of the trees can be obtained by limiting the
depth of the query into the octree. For example, if the leaf size of the octree is 2 centimeters,
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then reducing the query depth by one will result in a subtree with leaves, 4 centimeters in
size. This phenomenon is demonstrated in a map of the Shelby Center at Auburn University
by Figure 4.1. The visualization in Figure 4.1 was done using octovis [14], which is part of
octomap.
Figure 4.1: Partial map of a hallway showing the e ect of limiting the query depth. From
left to right the resolution is 0.05m, 0.1m, 0.2m, and 0.4m.
The algorithm for selecting the depth is proposed in Algorithm 2 and simply continues
to degrade the resolution until enough bandwidth is available to transmit or until there
resolution cannot be degraded further.
Algorithm 2 Algorithm for Determining Di erence Depth
fO0 is the server map octreeg
fO1 is the client map octreeg
fd is the set di erenceg
fBd is the bandwidth required to transmit the di g
fBa is the available bandwidthg
fTu is the update period in secondsg
fhmax is the maximum size of a leaf to be transmittedg
i 0
repeat
O00= depth(O0;height(O0) i)
O10= depth(O1;height(O1) i)
d = O00[O10
Bd = size(d)=Tu
Ba = currentAvailableBandwidth()
i = i+ 1
until Bd Bakresolution(i) hmax
return d
The depth function simply returns a subtree of the given tree at the given height, and
the height function gives the height of the speci ed tree. The resolution function simply
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returns the dimension of a leaf at the given level. The current available bandwidth function
could be implemented in several ways, which has been covered in the literature [24]. The
principle behind the bandwidth estimation includes metrics like round-trip-time, average
delay, packet loss, and throughput to determine the bandwidth currently available. In this
thesis testing, as discussed in Chapter 6, the bandwidth was arti cially controlled to exercise
this component of the system. Arti cially controlling the bandwidth used by the mapping
system will also allow for quality of service to be enforced. Quality of service would allow
the system to prioritize things like teleoperation commands, video, or other telemetry over
the map update.
4.2.3 Octree Set Union
The  nal stage of synchronizing the server and client octrees is to unite the di erences
with the client octree. This algorithm is just a simple union operation and can be performed
by simply inserting every voxel of the di erences into the client map using the normal octree
insertion method as in [25].
4.3 Visualization
The purpose of mapping the environment and streaming that map to the client is so
that the teleoperator might gain some improvement of control when teleoperating the robotic
vehicle. In addition to the map being sent to the client, the position of the robotic vehicle
in the map coordinate frame must be sent to the client as well. With these two pieces of
information the visualization of the vehicle in the three dimensional environment is possible.
4.3.1 Rviz
Rviz [26] is a visual debugging tool provided by the Robotic Operating System (ROS)
[27]. ROS is used at large in the experimental implementation of this system. Rviz provides
interfaces to visualize generic data types commonly found in robotics, like point clouds,
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laser scans, odometry, transforms, and others. In addition to these generic data formats,
rviz allows for more general drawing programmatically using primitive shapes like cylinders,
spheres, boxes, and points. More advanced shapes and custom shapes are also allowed.
These shapes can be seen in Figure 4.2.
Figure 4.2: Demo of drawing types in rviz [4]
Since the underlying system is already using ROS and rviz provides methods for drawing
custom three dimensional information, rviz was chosen as the basis for the visualization
system.
4.3.2 Rendering the Map
In order to visualize or render the map using rviz, the map data must be put into a
format that rviz supports. There is no standard data type that satis es the display of an
octree. Though each leaf of the octree could be represented as a point in a point cloud, each
leaf also can have di erent sizes - i.e. not all leaves in the octree are the lowest depth of the
tree. Therefore custom drawing tools are required for drawing the octree correctly.
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For e ciency in drawing, one of the custom drawing types is a ?cube list?, in contrast
to just a ?cube? drawing type. In a cube list, a single message is sent to rviz which is of type
?cube list? and has an array of positions and colors for each cube in the list. Sending cube
lists is far more e cient than sending a message to rviz for each leaf in the octree. Each
cube in a cube list, however, must be the same size. Therefore, a cube list must exist for
each level of the octree.
Algorithm 3 Algorithm for Drawing an Octree in Rviz
fO is the client map octreeg
fcubelists is an array of leaf setsg)
for leaf in leaves(O) do
cubelistsfsize(leaf)g= cubelistsfsize(leaf)g\leaf
end for
for i = 0 to height(O) do
sendCubeList(cubelistsfig;size(cubelistsfigf0g))
end for
The algorithm for drawing an octree in rviz is displayed above in Algorithm 3. In the
algorithm the leaves function returns an array of the leaves in the given octree, the size func-
tion returns the dimensions of the voxel represented by a given leaf, and the sendCubeList
function sends the given set of leaves to rviz to be rendered at the given size. This algorithm
sorts the leaves of the octree into sets by height. Then each set of leaves can be sent as one
?cube list? of the appropriate size for that height to be rendered in rviz.
4.3.3 Coloring the Octree
When rendering the octree, a few options are available on how to color them. One
obvious option is to make all the leaves the same  at color. However, a single color makes
it di cult to see the three dimensional structure, so this color method is not used. Another
option is to color the voxels of the octree by height in the global coordinate frame. The height
map coloring gives some context to the voxels, where the lowest to the ground voxels will
be one color and voxels near the ceiling will be a di erent color. The height map coloring is
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the most e ective method of rendering the voxels such that the teleoperator can understand
the three dimensional structure.
Another option is to color the voxels by the color they would have in the real envi-
ronment. Per point coloring requires that the system, like the Kinect or Xtion Pro Live,
provides color per point in the incoming point clouds. This information is stored in the
octree as an average of the colors of points that raytraced to each leaf. This representation
can add a more photo realistic quality to the environment for the teleoperator but consumes
additional bandwidth and does not render well when the map is at a low resolution, therefore
the height color map was chosen as the standard for the experiments.
4.4 Teleoperator Input
The  nal responsibility of the teleoperation subsystem is to collect the input from the
teleoperator and transmit the input to the robotic vehicle. Capturing the input is achieved
using a Human Interface Device (HID) like a gamepad or a joystick. In addition to a
gamepad or joystick, a more vehicle like system could be used like a steering wheel and
pedals. The input from one of these devices is mapped to linear and angular velocities that
are appropriate for the vehicle being teleoperated. These linear and angular velocities are
then sent to the robotic vehicle when they are executed by that subsystem.
26
Chapter 5
Latency Reduction
One of the largest factors in a teleoperator?s ability to control a vehicle e ectively is
how much latency is in the teleoperation system. Previous work has shown that as latency
increases the teleoperator?s average speed goes down, and the ability to navigate around
obstacles decreases [5] [28]. In this chapter a method for reducing the e ects of latency is de-
scribed. By using a model of the robotic vehicle and the control input from the teleoperator,
the position of the robotic vehicle can be estimated in the three dimensional environment.
This gives the teleoperator immediate visual feedback about their control input even before
the robotic vehicle receives the commands and even longer before the telemetry about the
robotic vehicles movement is received by the teleoperator?s computer.
5.1 Latency
The transmission latency experienced in a teleoperation system can be described as
two parts, the send latency and the receive latency. The send latency is the time it takes
for information generated on the teleoperator computer to be sent to the robotic vehicles
computer. The receive latency is the time for the reverse to occur, i.e. for data generated
on the robotic vehicles computer to be sent to the teleoperator computer. In most networks
the latency to and from a remote network node are about the same, meaning that round
trip time (RTT) is split even between sending and receiving. The RTT being split evenly is
true on average, but the latency, especially over reliable wireless networks, varies randomly
with environmental conditions. Even over short periods the RTT can vary quite a bit, but
in systems that have su cient bandwidth and good signal strength this variance is minimal.
It is also important to note that when referring to RTT latency the time spent processing
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on the remote machine is not included, which is why it is often broken into sending and
receiving latencies.
In addition to the transmission latency there exists processing latency on both sides of
the teleoperation system. On the robotic vehicle system there is a latency between when
something physically occurs and when the data indicating the change is sent to the teleoper-
ator. In the case of a camera there is a delay between when the image is captured and when
it is sent caused by processing the image and preparing or packaging it for transmission.
This is more pronounced when the data being transmitted is aggregated data. For instance,
when new three dimensional data is received, there is latency incurred while inserting the
new data into the map before the map is then packaged and transmitted to the teleoperator
computer. On the teleoperator computer there is overhead due to transmitting data to the
robotic vehicle computer, but the commands sent are usually small and this latency is in-
signi cant. If the teleoperator computer, however, needed to transmit a map to the robotic
vehicle computer for some reason, then this e ect would be greater.
5.2 Reducing Latency
One method for reducing the e ects of latency while teleoperating the robotic vehicle is
to provide the teleoperator an estimate of the robot vehicles pose based on the teleoperators
input. In order to create this estimate, the teleoperator computer uses the latest available
robot vehicle position in conjunction with the user input since that latest position to simulate
the motion of the robotic vehicle on the teleoperator computer interface. Motion is simulated
over a period of time bounded by the time stamp of the latest robot vehicle pose and the
current time. The simulation is run continuously at a constant rate incorporating new user
input as time moves forward, but the entire simulation must be rerun when new telemetry
from the robot is received. This adds a constraint on the simulation look ahead time, in that
the simulation cannot accurately predict the vehicle position into the future because there
is no user input for the future.
28
t = 0 t = 1 t = 2 t = 3
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6
t = 4 t = 5 t = 6
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
0 m/s
1 m/s
0 m/s
1 m/s Telemetry
Truth
Estimate
Time
Commanded Speed
Position
meters
Round Trip Time: 2s
Send Time: 1s
Receive Time: 1s
Figure 5.1: Shows the limit of the estimate, in this  gure the RTT latency is two seconds,
one second in both directions
Figure 5.1 shows process of the estimation with a vehicle starting at stand still and
driving forward for a brief time. In the  gure the RTT is two seconds which means that
there is one second before commands reach the robotic vehicle, and an additional second
before telemetry of the movement is received by the teleoperator computer. The  gure
shows that the estimate moves immediately with input from the teleoperator, but since it
takes one second for the robotic vehicle to receive the command, the truth data does not
move one meter until two seconds into the scenario. Finally, three seconds into the scenario
the teleoperator will observe the telemetry of the robotic vehicle move one meter. As the
teleoperator decreases the commanded velocity the estimate, truth, and telemetry converge.
At a given speed the simulated vehicle position will never extend further than the speed
times the RTT.
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5.3 Vehicle Model
In order to produce the estimated vehicle position based on the teleoperator input, a two
dimensional kinematic model of the vehicle is used to simulate the changes in position over
time in this thesis. The purpose of this thesis is to show that using a model to predict the
position of the vehicle is useful for improving teleoperation performance, and the vehicle used
to test is well described using a simple kinematic model. This thesis work is designed such
that a more so sticated, dynamic model can easily be substituted is desired. The kinematic
model of the di erential, non-holonomic system is given by Equation (5.1).
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In Equation (5.1)  is a vector that represents the change in position in the robot, or
vehicle, frame. The  vector has components  x which is displacement in x direction of the
robot frame,  y which is the displacement in the y direction, and   which is the change
in heading in the robot frame. These displacements are given by the right most vector in
Equation (5.1). The Vl term is the linear velocity from the teleoperator input, the V is the
angular velocity from the teleoperator input, and the  t component is the change in time
between simulation steps. The simulation is stepped by a constant  t so a estimated path
is produced, not just a estimate for the current position or for each change in teleoperator
input.
For each set of changes in the position,  , the changes must be rotated into the odometry
frame from the robot frame. This rotation is given by the rotation matrix in Equation (5.2).
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In Equation (5.2) the  term is the current vehicle heading. This rotation matrix is
multiplied by the  vector in Equation (5.1) to rotate those changes into the odometry
frame, and then these changes in the odometry frame are added to the existing robot state,
completing the simulation step. This is shown in Equation (5.3).
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The simulation is iterated as described until the simulation time matches the current
time. The result is a series of states from the time of the latest robotic vehicle telemetry
to the current time. In order to use this data to assist the teleoperator the data must be
visualized in a useful manner, which is discussed in the following section.
5.4 Visualizing the Estimate
Like the visualization of the mapping system, which is described in the Section 4.3.2,
the visualization of the model prediction is done in rviz. Initially each of the simulation
states were inserted into a ?Path? message, which is a list of positions which are rendered as
a line. This gave the teleoperation an arc, which originated from the telemetry origin, and
indicated the path the vehicle would take. This method had a draw back, in that when the
robotic vehicle was commanded to turn in place, no line was given, as the simulated states
all have the same position, but di erent headings.
To solve the issue of zero radius turning, an array of arrows were used, instead of a line,
to display the predicted path of the vehicle. This method allowed for indication of motion
when turning in place while still providing a good indication of the path when driving straight
and turning. One problem with just using the array of arrows is that when the telemetry
from the robot is being displayed using a three dimensional model of the robot, the arrows
tend to get covered up.
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To further help the teleoperator make use of the model predictions a duplicate three
dimensional model of the robot is placed at the current estimated position. This model is
colored red and gives an indication of the position of the robot as the teleoperator varies their
input. Figure 5.2 shows the red three dimensional model leading the light colored telemetry
model of the robot, indicating the position of the vehicle due the input from the teleoperator.
The image on the right in Figure 5.2 shows the model prediction from below the vehicle,
which reveals the array of arrows representing the path being taken by the model prediction.
These arrows are normally hidden to the teleoperator, but the teleoperator could rotate the
camera to see them if they wish.
Figure 5.2: Example of the model prediction visualization, the left image is a top down view,
and the right image is a bottom up view
Experiments designed to test the e ect of the vehicle model prediction in the presence
of latency are described in Section 6.3.
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Chapter 6
Latency Reduction and Three Dimensional Mapping Experiments
This chapter covers the latency reduction and three dimensional mapping experiments,
the hardware and software systems used execute the experiments, and the results of the
experiments. The goals of the experiments are outlined, showing their purpose and relevance.
In order to carry out the described experiments a experimental test  xture was constructed,
consisting of various hardware and software components, which are described in detail here
due to their bearing on experiment setups. The experimental methodology is also described
here, which points out the elements that in uence the results of the experiments.
6.1 The Experimental Test Fixture
To facilitate the latency reduction experiments and the three dimensional mapping ex-
periments several robotic test vehicles were constructed. All of the robotic vehicles had some
similar components and used similar navigation techniques and software. Each robotic ve-
hicle was equipped with a Sick LMS151 LiDAR which provided two dimensional data about
the environment and wheel encoders which were integrated over time to provide odome-
try measurements. Additionally, each vehicle combined the LiDAR data with the wheel
odometry using SLAM [17] [18] to provide an accurate indoor navigation solution. Though
con gurations for the wheel odometry and SLAM algorithm di ered between vehicles, each
vehicle used similar setups to provide accurate two dimensional poses of the robot indoors.
Each vehicle also provides three dimensional data about the environment using one of
the RGB-D camera systems available, like the Microsoft Kinect or the ASUS Xtion Live Pro.
Early experiments and data sets used the Microsoft Kinect as the three dimensional data
source, but the  nal system tests used the ASUS Xtion Pro Live. This due to the ASUS
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Xtion Pro Live hardware image registration and simpler power requirements. One other
advantage to the ASUS Xtion Pro Live is that it is smaller, lighter, and easier to mount that
the Kinect, which made adjusting and calibrating the sensor much simpler.
6.1.1 SegwayRMP 200
Though there are many similarities in the di erent robotic vehicle test  xtures, the
hardware con guration of each di ered signi cantly. There have been three robotic vehicle
platforms during the course of this research. The  rst system was based on a Segway RMP200
ATV platform. This robotic vehicle had a Mac Mini with a 2.6GHz Core 2 Duo processor and
four gigabytes of RAM. The sensor package consisted of a Sick LMS151, wheel odometry,
and a Microsoft Kinect. This platform was electrically damaged a few months into the
research and new platform had to be pursued. Only a small amount of data collected with
machine was used in the  nal research, but it served as a learning platform when the  rst
proof of concepts for this work were underway. Additionally, a software artifact in the form
of the library ?libsegwayrmp? resulted from this part of the work. The library is middleware
agnostic, i.e. not ROS or MOOS speci c, and is in use at as many as ten di erent institutes
outside of Auburn to date. The hardware con guration of the Segway RMP200 vehicle can
be seen in Figure 6.1.
6.1.2 Autonomous Lawnmower
The second robotic vehicle used as the test  xture was to be an iRobot ATRV, but this
vehicle needed a lot of work before it would be useful for research. In the mean time, to
collect data for a publication, the Auburn autonomous lawnmower was used as a robotic
vehicle platform for a short time. Data taken on the autonomous lawnmower was used
in this thesis work and was used in another publication related to this work. Like the
Segway platform, the lawnmower has the Sick LMS151, the Microsoft Kinect, and wheel
odometry. Additionally, it has the Point Grey Research Bumblebee2 stereo vision system
34
Figure 6.1: Segway RMP200 ATV Robotic Vehicle Platform
which produces three dimensional data similar to the data produced by RGB-D sensors. The
lawnmower has less accurate odometry, due to low resolution encoders, and this increased
the error discussed in the Section 3.3.1. The autonomous lawnmower and its hardware
con guration for this thesis work can be seen in Figure 6.2.
6.1.3 iRobot ATRV
The  nal robotic vehicle used as the test  xture is based on an iRobot ATRV. This
robotic vehicle is used in the latency reduction trials and is to be the basis for future work.
The ATRV is equipped with the Sick LMS151, high resolution wheel encoders, the Microsoft
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Figure 6.2: Autonomous Lawnmower Mower Robotic Vehicle Platform
Kinect and the ASUS Xtion Pro Live. The higher resolution encoders provided a much better
pose estimate between SLAM updates, resulting in much better results during mapping.
The option of using the ASUS Xtion Pro Live also allowed more  exibility on adjusting the
mounting and less processing while registering the color image to the three dimensional data.
The ATRV and its con guration for the latency reduction trials can be seen in Figure 6.3.
6.1.4 Software
In addition to the robotic vehicle hardware and device interface software, there exists
several software components and artifacts which were created to allow the test  xture to
perform the planned experiments. All of the robotic platforms used very similar software.
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Figure 6.3: ATRV Robotic Vehicle Platform
The middleware used on all of the robotic platforms was ROS, the Robotics Operating Sys-
tem [27]. ROS provides a build system, code organization tools, inter process communication,
standard data types common in robotics, debugging tools, visualization tools, implementa-
tions of common algorithms, and a large open community. Because of the common ground
provided by ROS and its tools, many software packages were available to speed up the de-
velopment of the robotic platforms. For example, the ROS community provides drivers for
common hardware, some of which was used on the test  xtures. ROS provides an complete
and e cient interface to RGB-D sensors like the Microsoft Kinect and ASUS Xtion Pro Live.
Additionally, the message passing conventions and tools provided by ROS makes it very easy
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to abstract components of the system in a manner described in Chapter 2. Because of the
well de ned interfaces and decoupling of the software components, the mapping system can
use data from either the ASUS Xtion Pro Live or the Microsoft Kinect with absolutely no
changes to the source code. With drivers for the RGB-D sensors and tight integration with
perception libraries like octomap and PCL, ROS was the best engineering decision for the
robotic platform and this work.
Working with ROS involves several software tasks like wrapping drivers in ROS code,
describing the robot?s geometry in the Uni ed Robot Description Format (URDF), and
drawing a model of the robot in blender for use in the teleoperation visualization, as shown
in Figure 6.4.
Figure 6.4: ATRV Robotic Vehicle Platform in Blender
The approach for writing hardware interfacing software, or drivers, and other programs
in ROS is to make an agnostic library with a thin layer of ROS speci c code around it, often
called a wrapper. This design pattern allows the majority of the code to remain agnostic of
the middleware, allowing software to move to another middleware or to a monolithic system
on a micro-controller or in a product, if needed. The geometry of the robot is described in
a generic format called the URDF. Once the robot was setup with a URDF and all of the
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hardware interfaces were working, the vehicle was ready to have its sensors visualized and
recorded. Using rviz, the sensors on the vehicle can be visualize because they all adhere to
the common data types de ned by the ROS community.
In addition to the message passing between programs and data visualization, the logging
system needed to be able to keep up with the Kinect and laser data. The Kinect, and similar
sensors, produce signi cant amounts of data and the logging system would need to be very
e cient in order to keep up with the high data rates. Table 6.1 shows how much data is
produces by the Kinect at di erent resolutions.
Table 6.1: Bandwidth of Raw Kinect Data at Di erent Resolutions
Resolution Megabytes per second
VGA 640x480 76.6
QVGA 320x240 50.5
QQVGA 160x120 30.5
The rates in 6.1 are empirical because the actual rate can be e ected by the scene being
imaged. The number of points converted from the depth map can change due to the e ects
of some scene con gurations, for example where a close object shadows other objects in the
room obstructing them from the point cloud data. The data rate can fall from the maximum
thirty hertz if the system is over taxed or if data is purposely dropped to reduce processing
costs. Even with these reductions in the amount of information, recording all of the sensors
on the robotic vehicle system results in log  les that are two to four gigabytes per minute in
size.
These software components together enable a test  xture that can reliably execute
commands and collect data for the three dimensional mapping and latency reduction tri-
als. Having a stable and well designed test  xture and test implementations are a crucial
component to enabling this research to move forward.
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Figure 6.5: Results from one of the three dimensional mapping acceptance tests, with the
three dimensional map above the SLAM map(left), and an image of the scene from a color
camera(right)
6.2 Three Dimensional Mapping Experiments
The experiments, which are responsible for validating the three dimensional mapping
system, take the form of acceptance tests. Acceptance testing is simply running the software
manually over a give set of inputs and manually examining the results. Due to the fact
that mapping system can be run o recorded data sets, i.e. there is no closed loop from the
teleoperator, the mapping system can also be tested against recorded data sets. Using the
 exibility of recorded data sets, a series of acceptance tests were devised using select data
sets which were known to cause problems or errors in the mapping process. These acceptance
tests are executed by simply running the mapping system over each of the previously selected
data sets and visually examining the results. The results can be a ected by changes in
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the mapping system or by changes in the navigation system of the robot. Therefore data
contained in the test data sets contain all of the data needed to recompute the navigation
solution o -line. Recomputing the navigation solution with di erent parameters allowed the
mapping system to be tested under di erent noise and error conditions without rerunning the
robot under di erent settings. Figure 6.5 shows the results from one of the three dimensional
mapping acceptance tests, with the three dimensional map above the SLAM map on the left,
and an image of the scene from a color camera on the right.
In addition to testing the three dimensional mapping portion of the overall system, these
acceptance tests provide an opportunity to test parts of the teleoperation system like the
transmission of the maps between computers. Figure 6.6 shows some statistics about the
bandwidth required to transmit the map over the network during one of the test data sets.
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Figure 6.6: Bandwidth usage for transmitting the map over the network versus time
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In Figure 6.6 the bandwidth limit was set to in nity, setting no constraint on the band-
width usage over a period of time. If a bandwidth constraint were to be placed on the
synchronization system, then when the amount of data being sent divided by the synchro-
nization period is greater than the constraint limit, a down-sampled version of the map
di erences would be sent. This down-sampling action is made very e cient because of the
nature of octrees. Because the down-sample changes are united with both the client map
on the teleoperator computer and the vehicle computer subsequent iterations of the syn-
chronization process will send the high resolution di erences at a later date. Looking at the
data in Figure 6.6, the large peaks correspond with periods when the vehicle is mapping new
areas. When new areas are being mapped for the  rst time the map must be expanded and
a lot of newly occupied cells are transmitted in the changes. Conversely, when the vehicle
is traveling though areas it has been before the amount of bandwidth consumed is reduced
resulting in periods of low bandwidth usage.
6.3 Latency Reduction Trials
In order to measure the e ectiveness of the latency reduction techniques described in
Chapter 5, a series of trials are performed and recorded. The purpose of these trials is
to show the e ect of latency on the teleoperators, and the improvement of teleoperation
when using the three dimensional map and a predictive vehicle model. These trials involved
driving the vehicle under varying teleoperation setups with varying latencies induced on the
system. A test course was setup in and around the lab to try and have a repeatable, short,
and challenging environment to test the teleoperators against. Figure 6.7 shows the path
the vehicle takes during the trials.
The vehicle begins in the lab, at its charging station, where it can be seen in the bottom
left corner of Figure 6.7. The teleoperator must rotate the vehicle and drive the length of
the lab and exit through the door into the hallway. In the raw trial data in Appendix A
that stretch of the course is referred to as ?Segment 1?. ?Segment 2? is the vehicle traveling
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Teleoperator
Figure 6.7: Map of the path taken by the robotic vehicle during the latency reduction trials
from the door frame to the obstacle in the hallway, seen at the top of the path in Figure 6.7.
?Segment 3? is part of the course where the vehicle is maneuvering around the obstacle and
ends when the vehicle has cleared the left side of the obstacle and is returning to the door.
The  nal segment, ?Segment 4? is the vehicle traveling from the obstacle in the hall back
through the door of the lab. Finally the total time is marked when the vehicle is back where
it started next to the charging station in the lab. In addition to travel times the number of
hits or potential hits of the vehicle are recorded. A hit is counted as any time the vehicle
touches an obstacle or wall along the course. Additionally, the safety person following the
vehicle while it is traversing the course will notify the teleoperator if they about to strike
something, which is also counted as a strike. Figure 6.7 also shows the location of the
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teleoperator during the trials. The position of the teleoperator prevents them from having
visual contact with the vehicle at any point during the trial. The teleoperator is using a
workstation which is running the teleoperation visualization software and that is equipped
with a gamepad for driving the vehicle.
For each run of the trials, the conditions are di erent. There are three di erent latency
settings and three di erent teleoperation setups used in the trials. The three teleoperation
setups are: front facing camera only, camera and three dimensional map, and camera, three
dimensional map, and predictive vehicle model. For each teleoperation setup three di erent
latencies are used: no latency, one second round trip time, and two second round trip time.
This totals to nine permutations for the trials, but since running the predictive vehicle
model with no latency has no e ect that particular permutation is ignored, resulting in eight
total runs by each teleoperator. To try and curb any learning bias or progression bias, the
teleoperators are given the di erent scenarios in random order. Before the trials begin the
teleoperators are given a test loop around the test course so that they can become familiar
with the teleoperation system and the controls of vehicle. Additionally, the three dimensional
map is reset for each consecutive run.
It should be noted that the teleoperator, in the case of three dimensional map and three
dimensional map with predictive vehicle model, only had access to the three dimensional
map and the position of the vehicle. Figure 6.7 shows the three dimensional map and the
SLAM map, which is not available to the teleoperators, because it is a by product of the
navigation solution. On an outdoor vehicle, the SLAM map may not be available, therefore
it was excluded from the data presented to the teleoperator.
Figure 6.8 shows a more typical view for the teleoperator on the left and a camera
picture of the vehicle passing through the same doorway on the right. The setup on the left
is the three dimensional map only, no predictive vehicle model, but is properly lacking the
two dimensional SLAM map as described above.
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Figure 6.8: Top down view of the robotic vehicle navigating through a doorway using the
three dimensional map as a reference(right), and a camera picture from behind during the
navigation through the doorway(left)
The complete results of the latency reduction trials are listed in Appendix 1. Figure 6.9
shows the average times for each of the trial scenarios.
Figure 6.10 shows the average number of hits, actual and near hits that were prevented,
plotted against each teleoperation scenario and for each latency setting.
Figures 6.9 and 6.10 are averages over the  ve sets of results from the trials, but the
individual teleoperators varied considerably. as some teleoperators were cautious and others
were aggressive, causing di erent ratios of times to hits for each teleoperator. In addition to
di erences in style, the teleoperators di ered considerably in overall skill. Some teleoperators
outperformed their peers in both time and number of hits. Consistency in the teleoperators
was also a problem, where some results departed from what was common place due to getting
stuck at a particular part or by getting lucky with avoiding an obstacle. All of these problems
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Figure 6.9: Average time to complete the trial course in seconds by scenario and latency
and the problem of teleoperators improving through learning can be diminished with larger
sample sizes.
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Figure 6.10: Average number of hits during a trial run by scenario and latency
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Chapter 7
Conclusion
This thesis has shown that three dimensional maps of the environment can be con-
structed using novel three dimensional sensors like the Microsoft Kinect and ASUS Xtion
Pro Live, and that applying those maps to aid in teleoperation can make improvements in
teleoperation speed and accuracy. Furthermore, this thesis work has shown that latency
can cause teleoperation performance to slow down and become more error prone, and that
using a vehicle model can help reduce the e ects of latency. The predictive vehicle model is
especially useful in high latency systems, but would also be useful in faster moving systems
with moderate latency.
From discussions with the teleoperators that performed the latency reduction trials and
from the data results of the latency reduction trials some conclusions can be drawn, and
other speculations made. From the results and watching the teleoperators it is obvious that
latency, especially high amounts of latency are extremely detrimental to teleoperation. There
is a relationship between the amount of tolerable latency and the speed of the vehicle. Since
the robotic test vehicle was relatively slow, about one meter per second, a larger amount
of latency was tolerable. Latencies of 500 milliseconds RTT were scarcely di erent from no
latency on the ATRV, but if the vehicle traveled faster, say 5 meters per second, then 500
milliseconds of latency RTT might not be acceptable.
The consensus amongst the latency reduction trial teleoperators was that the thee di-
mensional map of the environment was most useful when navigating tight obstacles like the
doorway. With only a camera it was di cult to navigate near obstacles which had fallen out
of the  eld of view of the camera. For instance the doorway was di cult unless you lined
up perfectly before driving through with only the camera. With the three dimensional map
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the teleoperator has some notion of where the vehicle is in relation to obstacles on the sides
of the vehicle or behind the vehicle. This helps to adjust the course of the vehicle when near
obstacles that are not in front of the vehicle.
A trend in the data suggests, however, that the teleoperators were faster using just
the camera. The theory here is that without additional spatial information the teleoperator
has to just go through or past obstacles somewhat blindly. When the three dimensional
data is available the teleoperators are more careful when navigating obstacles, constantly
adjusting the three dimensional camera to check if the vehicle is clearing the obstacles. If
there was an automatted method for selecting the best camera angle, some time could be
saved. Though the data suggests that less obstacles are hit when using the three dimensional
map and predictive vehicle model, the teleoperators do not produce perfect, hit free runs
even with the assistance. Sometimes when errors in the mapping system would occur and
produce incorrect maps, the teleoperators would make errors, so some of the hits during
three dimensional assisted trials might be due to problems with the mapping system.
Some of the teleoperators did not  nd the predictive vehicle model to be consciously
useful, but there seemed to be less over shooting when turning in place and the teleoperators
moved forward with more con dence when they had the predictive vehicle model. There
seemed to be a subconscious improvement from the predictive vehicle model, allowing for
more con dent movement and longer spurts of movement as well. Some teleoperators, how-
ever, found the predictive vehicle model very useful and preformed much better with it than
without it. Especially when turning in place and when making fast short linear movements.
Another important aspect of the predictive vehicle model is that it gives instant visual feed-
back to the teleoperator?s input to the gamepad. Without the immediate visual feedback,
the teleoperators actions become mentally decoupled with the perceived robot movement,
which is pointed out in the the work from Huber, et. al. at Carnegie Mellon University [5].
The predictive vehicle model did not perfectly match the motion of the robotic vehicle
in all cases. The linear displacement of the model matched that of the vehicle fairly well,
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but the in place turning estimate was less accurate. This is due, in part, to the fact that the
ATRV does not perfectly execute the commanded angular velocity. For example, when the
vehicle is commanded zero linear velocity and 0.2 angular velocity, the ATRV might turn in
place at 0.1 angular velocity. This causes a discrepancy in the predicted and actual change
in heading. The heading error and other errors could be alleviated in two di erent fashions.
The robotic vehicle could be made to follow commanded velocities better by integrating a
yaw rate observation into the closed loop controller. Alternatively, the vehicle model could
be augmented with elements that properly describe the disparity of the commanded and
actual velocities.
7.1 Future Work
This thesis work shows the viability of a system that produces a three dimensional map
and that the map and other latency reducing techniques can be successfully applied to the
teleoperation activities. However, the mapping process is far from perfect, the evidence of
the improvement to teleoperation is incomplete, and the scope of the experiments narrow,
all of which could be enhanced by the following additional research.
7.1.1 Improved Mapping
Three dimensional mapping is a hot  eld of study at the moment and many alternative
methods for producing three dimensional maps in real time are still being developed as of the
writing of this thesis. Some examples of this have been mentioned already in this thesis, like
the KinectFusion work that has been going on in the past year [19]. Such technologies could
make three dimensional maps with much high  delity and accuracy, increasing their impact
on the teleoperator?s ability to control vehicles in tight obstacle con gurations. Another
aspect of the mapping system that could be improved is the robotic vehicle?s navigation
solution, which directly a ects the resulting map quality. A di erent navigation system or
a more tightly integrated system might o er better results.
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7.1.2 Dynamic Vehicle Models
The above section touched on the fact that the vehicle model does not perfectly match
the actions of the robotic vehicle. This is true even of the low dynamic ATRV, but on more
dynamic systems where things like non-linear dynamics, suspensions, and terrain a ect the
predictions, a more sophisticated vehicle model will be required. Developing and integrating
a more sophisticated vehicle model to be tested on a more dynamic robotic vehicle is another
avenue of future work.
7.1.3 More Latency Reduction Studies
The results of the latency reduction techniques are interesting, but incomplete. There
are still many aspects of the experiments which could be biasing the outcomes, like: tele-
operator learning, always having a camera (i.e. there were no trials where the camera was
unavailable), and the short duration of the trials. More extensive and comprehensive trials
could produce more information about the nature of the improvements gained from the three
dimensional data and predictive vehicle model.
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Appendix A
Latency Reduction Trials Results
The tables that follow contain the raw timings for the latency reduction trials. Each
trial consists of eight trips around the trial course with di erent latencies and teleoperation
setups. The segments are points through out the trial course. The number of hits are counted
as the number of times the vehicle struck or was going to strike an obstacle or wall of the
trial course.
Trial 1
Segment 1 Segment 2 Segment 3 Segment 4 Final Time Number of Hits
Camera with no latency
0:45 1:30 3:00 4:00 4:15 1
Camera with one second round trip time
1:04 2:13 7:40 9:36 9:44 8
Camera with two second round trip time
2:33 3:59 9:37 11:38 12:54 6
Camera and three dimensional map with no latency
1:07 2:26 3:25 4:32 5:00 1
Camera and three dimensional map with one second round trip time
1:21 2:46 4:51 6:17 6:47 3
Camera and three dimensional map with two second round trip time
1:43 3:09 5:02 8:33 9:19 2
Camera, 3D map, and vehicle model with one second round trip time
0:47 1:53 3:32 4:47 5:16 0
Camera, 3D map, and vehicle model with two second round trip time
1:05 2:43 4:09 6:04 6:44 1
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Trial 2
Segment 1 Segment 2 Segment 3 Segment 4 Final Time Number of Hits
Camera with no latency
0:38 1:28 2:08 2:55 3:09 1
Camera with one second round trip time
1:00 2:11 2:55 3:58 4:15 0
Camera with two second round trip time
0:49 2:00 3:04 4:12 4:41 2
Camera and three dimensional map with no latency
0:46 1:37 3:08 4:27 4:41 0
Camera and three dimensional map with one second round trip time
0:44 1:36 2:25 3:16 3:29 0
Camera and three dimensional map with two second round trip time
1:19 2:34 4:00 5:28 5:49 4
Camera, 3D map, and vehicle model with one second round trip time
0:36 1:32:00 2:27 3:10 3:24 2
Camera, 3D map, and vehicle model with two second round trip time
1:12 2:54 4:38 6:22 6:51 1
Trial 3
Segment 1 Segment 2 Segment 3 Segment 4 Final Time Number of Hits
Camera with no latency
0:36 1:22 2:00 2:41 3:02 5
Camera with one second round trip time
0:53 1:57 2:46 3:41 4:16 1
Camera with two second round trip time
1:23 2:59 5:05 1:09 6:41 2
Camera and three dimensional map with no latency
3:43 8:07 12:59 19:34 21:03 8
Camera and three dimensional map with one second round trip time
0:45 2:12 3:13 4:22 4:53 2
Camera and three dimensional map with two second round trip time
2:11 3:48 5:18 6:31 7:10 3
Camera, 3D map, and vehicle model with one second round trip time
2:43 4:27 5:58 6:45 7:52 2
Camera, 3D map, and vehicle model with two second round trip time
1:30 3:11 4:30 5:28 6:10 3
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Trial 4
Segment 1 Segment 2 Segment 3 Segment 4 Final Time Number of Hits
Camera with no latency
1:01 1:41 2:12 2:42 3:02 2
Camera with one second round trip time
1:28 2:40 3:31 5:48 6:05 4
Camera with two second round trip time
1:28 2:23 3:03 4:03 4:22 4
Camera and three dimensional map with no latency
0:45 1:05 1:27 2:02 2:24 3
Camera and three dimensional map with one second round trip time
1:03 2:04 2:42 3:59 4:49 1
Camera and three dimensional map with two second round trip time
1:08 2:24 3:34 5:10 6:06 5
Camera, 3D map, and vehicle model with one second round trip time
0:54 1:34 2:03 3:10 3:37 5
Camera, 3D map, and vehicle model with two second round trip time
1:31 2:51 4:43 6:43 7:41 4
Trial 5
Segment 1 Segment 2 Segment 3 Segment 4 Final Time Number of Hits
Camera with no latency
1:03 2:21 3:06 4:50 5:17 2
Camera with one second round trip time
1:44 3:54 6:11 11:17 12:11 4
Camera with two second round trip time
1:42 3:44 6:58 9:31 11:02 1
Camera and three dimensional map with no latency
1:03 2:49 4:02 5:59 6:30 1
Camera and three dimensional map with one second round trip time
1:04 2:38 3:38 5:10 5:54 0
Camera and three dimensional map with two second round trip time
1:36 3:34 5:56 8:25 9:46 0
Camera, 3D map, and vehicle model with one second round trip time
0:58 2:13 3:47 5:17 5:58 1
Camera, 3D map, and vehicle model with two second round trip time
1:36 3:45 6:57 9:14 10:07 1
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Appendix B
ATRV User Guide
The purpose of this appendix is to aid future researchers whom want to use the this
thesis work as the basis of new research or to perform more trials.
B.1 Installation
Before ?installation? of the thesis work, the dependencies must be met on both the
teleoperator computer and the robotic vehicle computer.
B.1.1 Install the Robotic Operating System
The build system, communications, and many of the tools that support this thesis are
in the ROS ecosystem and so ROS must be installed. Current installation instructions
can always be found at http://www.ros.org/wiki/ROS/Installation. The thesis work is
known to work with ROS Fuerte on Ubuntu Linux, and that is the recommended system
con guration for both the teleoperator computer and the robotic vehicle computer. ROS
will include the PCL library which is used in this work.
B.1.2 Install Octomap Libraries
The required Octomap libraries are split into a few di erent packages. The octomap
library is a stand alone library which is hosted at http://octomap.sourceforge.net/.
In addition to the base octomap library, there are some octomap related ROS stacks which
provide tools for using octomap in ROS: octomap mapping, octomap msgs, and octomap ros.
On Ubuntu Linux and using ROS Fuerte, the required octomap libraries can be installed via
?apt-get?:
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sudo apt-get install ros-fuerte-octomap-ros
sudo apt-get install ros-fuerte-octomap-mapping
sudo apt-get install ros-fuerte-octomap-msgs
B.1.3 Setting up Robotic Vehicle Computer
First setup a ROS workspace. A ROS workspace is a folder which contains one or more
ROS ?stacks? which contain one or more ROS ?packages?. The ROS workspace makes it easy
to add di erent ROS ?stacks? to your environment and de ne and resolve dependencies be-
tween ROS ?stacks? and ?packages?. See http://www.ros.org/wiki/ROS/Introduction for
more information on generic ROS concepts like ?stacks? and ?packages?. For more information
about ROS workspaces see: http://www.ros.org/wiki/rosws. Create a ROS workspace
with the following commands:
mkdir ~/3d_teleop_ws
rosws init ~/3d_teleop_ws /opt/ros/fuerte
cd ~/3d_teleop_ws
source setup.bash
The above commands assume that the workspace is being setup in the ? /3d teleop ws?
folder and that the current ROS version is Fuerte and that it is located at ?/opt/ros/fuerte?.
Change these values if that is not the case.
Next add the necessary ROS ?stacks? to the workspace. First add the stacks required to
run the ATRV by merging the ATRV ?rosinstall?  le into the workspace with these commands:
rosws merge https://raw.github.com/GAVLab/gavlab_atrv/master/gavlab_atrv.rosinstall
Next add the stacks required for the three dimensional teleoperation server:
rosws merge https://raw.github.com/wjwwood/3d_teleop/master/3d_teleop.rosinstall
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Now that all of the rosinstall  les have been merged into the workspace, the stacks need
to be fetched by executing rosinstall:
source setup.bash
rosinstall .
source setup.bash
This should fetch all of the stacks into the workspace folder. The ?source setup.bash?
commands ensure that any changes to the workspace have been applied to your current
terminal session. Similarly, each time you open a new terminal you will need to execute
?source /3d teleop ws/setup.bash? in order for this workspace to be in e ect.
Now that everything has been fetched and the workspace has been applied to the current
terminal session the source can be built:
rosmake teleop_server
The above command will build the teleop server and all other ROS ?packages? required
to run the system.
B.1.4 Setting up the Teleoperator Computer
Begin by creating a ROS workspace:
mkdir ~/3d_teleop_ws
rosws init ~/3d_teleop_ws /opt/ros/fuerte
cd ~/3d_teleop_ws
source setup.bash
Add the required ROS ?stacks? to the workspace:
rosws merge https://raw.github.com/GAVLab/gavlab_atrv/master/gavlab_atrv.rosinstall
rosws merge https://raw.github.com/wjwwood/3d_teleop/master/3d_teleop.rosinstall
rosws merge https://raw.github.com/wjwwood/3d_teleop_vis/master/3d_teleop_vis.rosinstall
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Update the workspace and fetch the ROS ?stacks?:
source setup.bash
rosinstall .
source setup.bash
Build all required ROS ?packages?:
rosmake teleop_client
B.2 Running the System
Now that all the dependencies have been installed or built and the teleop client and
server have been built, the system is ready to be run.
B.2.1 Running the Teleoperation Server
Start the teleop server system on the robotic vehicle computer by executing:
source ~/3d_teleop_ws/setup.bash
roslaunch teleop_server teleop_server.launch
This will run all of the hardware interfaces for the ATRV, start the navigation system
including SLAM, and start the mapping program which creates the three dimensional map.
B.2.2 Running the Teleoperation Client
On the teleoperator computer run the command:
source ~/3d_teleop_ws/setup.bash
roslaunch teleop_client teleop_client.launch master:=atrv
62
The above commands will run the teleoperation synchronization software, launch rviz
with the appropriate visual con gurations, launch the dynamic recon gure GUI which al-
lows control of the latency settings, and will run the vehicle prediction system. The part
?master:=atrv? is indicating the DNS name of the robotic vehicle computer. In this case the
name of the computer is ?atrv?, but could be di erent.
B.3 Using the Teleoperation Interface
Now that everything is running, the  rst joystick on the system should be able to drive
the ATRV with the left stick (if it is a gamepad). The bottom left trigger will scale the
joystick input, i.e. it is the turbo button. In rviz, the visualization window, clicking and
dragging the mouse on the three dimensional view will rotate the viewpoint. Scrolling the
mouse wheel will zoom. A ?dynamic recon gure? window will also have appeared. Click on
the drop down menu and select ?latency reduction? and the send/receive latencies will appear
and can be edited in real-time to adjust the latency on the system.
An up-to-date version of these instructions can be found online at https://github.
com/wjwwood/3d_teleop/wiki/ATRV-User-Guide.
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