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Abstract 

 

 

Teacher quality is one of the most important school related variables associated with 

student achievement.  Therefore, raising the quality of the U.S. public education teaching force is 

essential to ensure that every child has the opportunity to achieve academic success.  In order to 

accomplish this, significant analytical inspection of teachers is needed to assist with the 

determination of whether teachers contribute appropriately to students attaining adequate yearly 

growth.  The primary objective of this research was to fill the need of augmenting Alabama’s 

formative educator evaluation system, EDUCATEAlabama, with a precise and stable teacher 

effectiveness index based on student growth.  The methodology of computing such an index 

consisted of three phases.  Phase I entailed calculating four teacher effectiveness metrics.  

Subject-specific and overall teacher index values were calculated in Phase II utilizing the Phase I 

metrics and principal component analysis.  The principal components served as the inputs to 

Phase III, Cluster Analysis, with Ward’s clustering method employed as a general prescription to 

illuminate teachers with similar characteristics (principal components) in the data.  A medium-

sized, suburban district in Alabama and a dataset from the National Center for Education 

Statistics consisting of 17 urban districts from across the United States provided the requisite 

student and teacher data to fully implement the process, which concluded with successfully 

placing teachers into effectiveness categories by grade, subject(s), and year.   
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Chapter 1 :  Introduction 

 

1.1  Teacher Quality 

 Teacher quality is one of the most important school related variables associated with 

student achievement.  Many education accountability systems built around student test results 

ignore the initial conditions of the students and merely measure a status at a specific point in 

time.  Teacher evaluations based solely on a snapshot of the number of students that have 

attained a particular testing proficiency level without consideration of the initial conditions of 

those students are flawed.  Certainly, status model (snapshot) evaluations provide useful 

information to administrators, but they do not account for student growth and are “confounded 

with other non-school factors” (Lissitz & Doran, 2009, p. 39).    A snapshot of student scores 

could portray a teacher to be ineffective despite tremendous student growth occurring within the 

classroom, or effective despite little student growth occurring within the classroom.  A favorable 

alternative to status evaluations is to determine which teachers contribute appropriately to 

students attaining adequate yearly growth.  Therefore, a statistically supportable measure of 

teacher effectiveness based on student growth is desired.   

1.2  No Child Left Behind   

 The No Child Left Behind Act (NCLB) of 2001, a reauthorization of the Elementary and 

Secondary Education Act (ESEA) of 1965, is a performance-based accountability system built 

around student test results.  It requires Adequate Yearly Progress (AYP) determinations for 

schools to be based on a snapshot of the number of students that have attained proficiency.  
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Therefore, several states gained approval from the U.S. Department of Education to use “growth 

models” to augment AYP calculations.  These states could use longitudinal testing data to 

extrapolate the expected growth for individual students over time thereby accounting for 

“differences in the initial conditions of the students” (Pearson & Stecher, 2004, p. 99).  This 

expected growth would then become benchmarks for students to meet in order to be counted for 

making AYP.  “Fifteen states now have approved growth models:  North Carolina, Tennessee, 

Delaware, Arkansas, Florida, Iowa, Ohio, Alaska, Arizona, Michigan, Missouri, Colorado, 

Minnesota, Pennsylvania and Texas” (“Secretary Spellings,” 2009, para. 5). 

 The subsequent reauthorization of the ESEA titled “A Blueprint for Reform”, released by 

the U.S. Department of Education in March 2010, now requires all state accountability systems 

to  “recognize progress and growth” (“A Blueprint for Reform,” 2010, p. 9).  It goes further by 

requiring states to “identify effective and highly effective teachers and principals on the basis of 

student growth” (“A Blueprint for Reform,” 2010, p. 4).  Mathematical techniques presently 

employed in growth models that augment AYP calculations can be applied to this new state 

requirement of measuring teacher effectiveness.   

 A specific application of “growth models” is a Value Added Model (VAM).  VAMs can 

measure the influence of educational entities on student growth using student longitudinal testing 

data.  This measure of influence is the additional value that a teacher brings to the classroom 

above that of his/her peers.  Several states currently calculate a quantitative indicator of value 

that identifies teachers who employ pedagogical strategies or exhibit certain behaviors that 

positively impact student learning.  Alabama (AL) is absent from this group of states that have 

such a measure, yet it desires to improve its existing educator evaluation system and meet the 

requirement of A Blueprint for Reform (Bice, 2010). 
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1.3  Alabama’s Race to the Top 

 The U.S. Department of Education created the Race to the Top grant program to allow 

states to compete for federal funding that supports needed education reform.  The structure of the 

program allows $4 billion to be funded for state reforms in the following four areas:   

1.  “Adopting standards and assessments that prepare students to succeed in college and 

the workplace;  

2.  Building data systems that measure student growth and success, and inform teachers 

and principals how to improve instruction;  

3.  Recruiting, developing, rewarding, and retaining effective teachers and principals, 

especially where they are needed most; and  

4.  Turning around their lowest-performing schools” (“Delaware and Tennessee,” 2011, 

para. 6).  

Alabama submitted a Phase I application to the U.S. Department of Education in January 2010 

along with 39 other states and the District of Columbia.  Tennessee and Delaware won grants for 

Phase I and were awarded $500 million and $100 million respectively (“Delaware and 

Tennessee,” 2011, para. 3).  “Delaware and Tennessee [had] aggressive plans to improve teacher 

and principal evaluation, use data to inform instructional decisions, and turn around their lowest-

performing schools” (“Delaware and Tennessee,” 2011, para. 8).  Phase II of the program 

commenced after the announcement of the Phase I winners in March 2010 and had $3.4 billion 

still available for reform grants.        

 Based on recommendations from the reviewers of Alabama’s Phase I application, the 

Alabama State Department of Education (ALSDE) attempted to bolster its Phase II application 

by including reforms in teacher and principal evaluation in which teacher and principal 

effectiveness ratings are tied to student growth.  In order to include such reforms in the Phase II 

application, stakeholder support had to come from the ALSDE Board.  In a contentious 5-4 vote 
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on May 27, 2010, with Governor Bob Riley providing the swing vote, the ALSDE Board passed 

the Educator Effectiveness Resolution tying teacher and principal effectiveness to student 

performance (Morton, 2010, p. 3).  This special session of the ALSDE board on the eve of the 

Phase II application deadline of June 1, 2010, was critical to being able to submit the 

comprehensive document of reforms that the ALSDE believed it needed.    

 Alabama submitted its Phase II Race to the Top grant application, “Advancing Education 

as the 21
st
 Century Civil Right”, to the U.S. Department of Education on June 1, 2010.  The 

Phase II application contained language throughout that supports research in measuring teacher 

and principal effectiveness based on student growth.  A sample of the reforms follows: 

1.  “Create data systems…that are readily available to colleges and universities for 

research” (“Alabama’s Race,” 2010, p. 4) 

2.  “Alabama will redesign the current accountability system …as measured by student 

growth” (“Alabama’s Race,” 2010, p. 9).    

3.  “Alabama will apply a growth model to existing data…to develop predictive 

trajectories for its students” (“Alabama’s Race,” 2010, p. 9). 

4.  “The Educator Effectiveness Resolution allow[s] the use of multiple and objective 

measures of student growth outcomes as the predominant factor for determining teacher 

and principal effectiveness” (“Alabama’s Race,” 2010, p. 86).        

 Alabama came in last place out of the 36 states that submitted Phase II applications.  Dr. 

Joseph Morton, State Superintendent of Education, sent an open letter to Arne Duncan, U.S. 

Secretary of Education, dated September 1, 2010, following the announcement of the Phase II 

winners.  In the letter Dr. Morton critically addressed the grading of the applications with his 

assertion that reviewers placed unnecessarily high importance on the ability of states to have 

charter schools, teacher union support of measuring teacher effectiveness based on student 

achievement, and adoption of the Common Core Standards.  At the time of the application, 

Alabama had none of those elements.  Dr. Morton stated that despite knowing Alabama’s 
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application would not be competitive in Phase II, it would serve as a foundation for needed 

reforms.  The letter demonstrates the conviction of Dr. Morton to provide a document of reforms 

for the State in spite an anticipated poor outcome and the difficulty to even obtain the authority 

to submit it (Morton, 2010).             

1.4  Educator Evaluation System   

Alabama desires an objective effectiveness index in its educator evaluation system to 

augment its presently used formative assessment, EDUCATEAlabama.  The combination of the 

two components would produce a yearly effectiveness score for each teacher in order to place 

teachers into “at least” four categories: 

1.  Extraordinary gains in student growth.  

2.  Meets student growth.   

3.  Did not meet student growth but produce evidence that progress is being made.   

4.  Consistently failed to produce student growth for multiple or consecutive years 

(“Alabama’s Race,” 2010, p. 90).       

 The most important aspect of obtaining such categories is being able to implement 

policies and practices aimed at preparing every student  “to graduate from high school ready for 

college and a career” (“A Blueprint for Reform,” 2010, p. 3).  For example, effectiveness 

categories could be used to ensure the equitable distribution of effective teachers, target 

incentives at effective teachers to teach in high-need schools, and target professional 

development for those teachers not able to demonstrate effectiveness.  Following the 

development of the new evaluation system, “alignment” of the two components is desired 

through refinement of the formative component (“Alabama’s Race,” 2010, p. 90).  
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 Alabama’s Race to the Top application contains an aggressive but systematic plan to 

implement an educator evaluation system that has teacher effectiveness ratings tied to student 

growth.  The application as well as the Educator Effectiveness Resolution passed by the ALSDE 

Board on May 27, 2011, stipulate that the Education Reform and Innovation Council (ERIC) will 

be formed to identify an approach to measure teacher and principal effectiveness based on 

student growth.  According to the application, the council was to convene in the summer of 2010 

and develop approaches to measuring student growth and teacher and principal effectiveness by 

December 2010 (“Alabama’s Race,” 2010, p. 86,89).   

 The Educator Effectiveness Resolution stated that the ALSDE Board would receive the 

recommendations in early 2011 to review, discuss, and take possible action in order for “full 

implementation to occur with the first day of school in 2011” (“Educator Effectiveness 

Resolution,” 2010).  The Race to the Top application was less optimistic.  It required the 

development and implementation of an evaluation system that includes an objective measure 

based on student growth by the 2012-2013 school year (“Alabama’s Race,” 2010, p. 86).  

 Regardless of the implementation date for the new evaluation system, the ERIC never 

convened to provide the required recommendations.  The ALSDE acknowledged that it “did not 

know where to start” (Bice, 2010).  More study was necessary before the council could come 

together to determine how to include teacher effectiveness, as measured by student growth, in an 

educator evaluation system (Bice, 2010). 

 In addition to determining how to best measure teacher effectiveness with student 

growth, a practical matter exists for Alabama to link student achievement data with teachers.  

According to the Alabama’s Race to the Top application, Alabama currently meets 10 of the 12 

data elements of the America Creating Opportunities to Meaningfully Promote Excellence in 
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Technology, Education, and Science (COMPETES) Act (“Alabama’s Race,” 2010, pp. 59–61).  

On January 4, 2011 President Obama signed into law the America COMPETES reauthorization 

Act which further authorizes the investment in “research and development, education, 

innovation, and competitiveness” (Holdren, 2011, para. 2). 

 Alabama stated clearly that it met data element No. 8 of America COMPETES which 

requires a “teacher identifier with the ability to link teachers to students” (“Alabama’s Race,” 

2010, p. 60).  Certainly a difference exists between having the “ability” to link student data to 

teachers  and analyzing student data incorporating teacher identifiers.  The State does not provide 

the linked testing data to the districts nor does it provide analysis as a result of the linkage 

(Crouse, 2011; DiChiara, 2011).  Presently, the ALSDE considers it difficult to link student data 

with teachers due to the requirement to merge a teacher scheduling database with a student 

achievement database (Larson, 2010).  Districts only receive yearly student achievement data 

and are not provided longitudinal student data to allow longitudinal analysis to occur (Crouse, 

2011).  Therefore, the lack of teacher-linked, longitudinal data endures as an administrative 

issue, not a technical one.  

1.5  Research Objectives 

 The primary objective of this research is to fill the need of augmenting Alabama’s 

formative educator evaluation system, EDUCATEAlabama, with a precise and stable teacher 

effectiveness index based on student growth.  This index will be determined with an analytical 

process involving principal component and cluster analysis that uses multiple and objective 

measures of teacher effectiveness to minimize the risk inherent in isolating the value that a 

teacher brings to the classroom above that of his/her peers.  In order to accomplish the primary 

objective, this research intends to accomplish the following sub-objectives: 
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 1)  Develop techniques with Alabama’s database infrastructure to streamline the process 

of establishing longitudinal data from existing yearly data in order to make this 

information readily accessible to school districts. 

2)  Develop techniques with Alabama’s database infrastructure to streamline the process 

of linking student achievement data with teachers in order to make this information 

readily accessible to school districts.      

 3)  Confirm or modify Alabama’s effectiveness rating categories based on being able to 

detect statistically different groups of teachers by effectiveness.  

4)  Report all teachers in accordance with the rating categories for an Alabama school 

district using the newly developed objective effectiveness index.  

5)  Provide an assessment of Alabama’s educator evaluation system, compare and 

contrast the results of an objective effectiveness index with observational teacher 

evaluation data, and propose an observational, summative assessment for Alabama that is 

a predictor of student achievement gains and correlated with an objective effectiveness 

index. 

1.6  Organization of Research 

 The structure needed to accomplish the research objectives of Chapter 1 consists of five 

additional chapters.  Chapter 2 contains a literature review to provide the technical context for 

the development of a teacher effectiveness index.  Through the use of an example, Chapter 3 

describes the methodology of computing the Risk-Mitigated Teacher Effectiveness Index 

(RMTEI) within a three phase process.  Phase I entails calculating four teacher effectiveness 

metrics: 

 1)  Linear Mixed Model Teacher Effect - statistical prediction of the relative value of a 

particular teacher by measuring the teacher deviation from the district mean; greater is 

better. 

2)  Overall Linear Mixed Model Value-Added Measure - a teacher’s average of the 

difference between students’ actual achievement and predicted achievement had they 

been taught by the average teacher in the district; greater is better. 

3)  Median Student Growth Percentile - serves as an indicator of student growth 

associated with each teacher by calculating the median of a teacher’s student growth 
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percentiles.  A student’s growth percentile is obtained by determining what percentage of 

other students had less growth in testing achievement; greater is better. 

4)  Overall Quantile Regression Value-Added Measure - a teacher’s average of the 

difference between students’ actual achievement and predicted achievement of a typical 

student within the district; greater is better. 

Subject-specific and overall teacher index values are calculated in Phase II with an analytical 

process involving principal component analysis.  Since teachers’ Phase I metrics for a given 

subject, grade, and year have varying units of measurement, the principal components are 

obtained from the standardized version of those metrics by calculating the eigenvectors of the 

metrics’ correlation matrix.  The variance of the principal component scores from the dominant 

principal component is the largest eigenvalue associated with the corresponding eigenvector.  

This eigenvalue absorbs the preponderance of the variation of the system, and the principal 

component scores from the dominant principal component become teachers’ subject-specific 

RMTEI values.  If teachers instruct mathematics and reading, then an overall teacher 

effectiveness index is obtained by taking the mean of their two subject indexes.  Otherwise, the 

single, subject index is the teachers’ overall values.   

The principal components serve as the inputs to Phase III, Cluster Analysis.  Since the 

RMTEI process produces a dominant principal component that continually leads to elliptically 

shaped clusters in two dimensions, Ward’s clustering method, which expects elliptically shaped 

clusters, is employed as a general prescription of the RMTEI process.  Ward’s clustering method 

illuminates teachers with similar characteristics (principal components) in the data, which 

provides better assignments to teacher effectiveness categories compared to clustering with a 

single Phase I metric.     

The methodology is placed into practice in Chapter 4 by examining five years of student 

and teacher data from an Alabama school district and four years of student and teacher data from 
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418 elementary schools in 17 urban districts from across the United States.  Further analysis is 

undertaken in Chapter 4 to confirm the desired outcome of a precise and stable teacher 

effectiveness index along with a discussion of the results.  Chapter 5 provides an assessment of 

Alabama’s educator evaluation system, and then propose an observational, summative 

assessment for Alabama that is a predictor of student achievement gains and correlated with the 

Risk-Mitigated Teacher Effectiveness Index.  Lastly, Chapter 6 concludes the dissertation and 

provides recommendations for future study. 
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Chapter 2 :  Literature Review 

 

2.1  Introduction 

 Most prominent methods of analytically measuring teacher effectiveness are rooted in the 

application of Linear Mixed Models.  Another analytical method that is currently applied to 

determining school effectiveness in the state of Colorado, which can be extended to teacher 

effectiveness, employs Quantile Regression (Betebenner, 2007).  Methods rooted in the 

application of Linear Mixed Models based on longitudinal student testing data either derive 

individual teacher effects in order to make teacher comparisons or make student test score 

projections for the successive year.  For the latter case students’ projections can be compared 

against their actual performance at the end of the year.  If students’ actual scores are above the 

projections, then their teachers have provided instruction that contributed to obtaining 

appropriate growth.  Conversely, if students’ actual scores are below projections, then their 

teachers have not provided instruction that contributed to obtaining appropriate growth. 

 Quantile Regression has been applied to student testing scores within a school district in 

order to calculate a growth percentile for each student which can be viewed similarly to a child’s 

growth chart assessment following a visit to the doctor.  The median of a school’s aggregated 

student growth percentiles can be calculated and compared to other schools’ medians in the 

district.  These comparisons contribute to schools obtaining recognition for performance 

(“Colorado,” 2008, p. 10).  The calculations needed to make these comparisons, however, 

deserve investigation as a technique to be applied to measuring teacher effectiveness. 



12 

 

2.2  Linear Mixed Models (LMMs) 

 The most prominent LMM approach to measure teacher effectiveness belongs to Dr. 

William Sanders of the SAS institute who implemented the Tennessee Value-Added Assessment 

System (TVAAS) in 1992 (Braun, Chudowsky, & Koenig, 2010, p. 3; McCaffrey, Lockwood, 

Koretz, & Hamilton, 2004, p. 2).  This methodology is now packaged as the SAS Education 

Value Added Assessment System (EVAAS) for K-12 and commercially available for 

implementation by states and school districts.  Tennessee, Pennsylvania, Ohio, and North 

Carolina presently use SAS EVAAS for K-12 as a means to measure the effects of teachers on 

the academic growth of their students (“SAS EVAAS,” 2010). 

 LMMs are statistical models that “quantify the relationship between a continuous 

dependent variable and various predictor variables” (West, Welch, & Galecki, 2007, p. 9).   

Datasets that can be analyzed with LMMs include:  nested data (i.e. students in classrooms) and 

longitudinal or repeated measures studies (subjects are measured regularly over time or under 

different conditions) (West et al., 2007, p. 1).  LMMs get their name from the fact that the model 

is a linear function of the predictor coefficients (parameters), and the predictors, themselves, can 

be a mix of fixed and random effects (West et al., 2007, p. 1).  Fixed effects can be either 

continuous or categorical and describe the relationship between the predictors and the response 

for the entire population (West et al., 2007, p. 9).  If an effect has factor levels that can expand 

during the course of study, then the effect can be considered a sample of the population and thus 

random (i.e., teachers will change during a study as new teachers emerge each year) (Lissitz & 

Doran, 2009, p. 24).  Random effects model the random variation in the response variable for 

different levels in the data (West et al., 2007, p. 9).      
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Whether to estimate teacher effectiveness as a fixed or random effect has consequences 

for LMMs.  If one considers teachers a random effect, then the variance of the estimates is 

reduced at the expense of introducing more bias (Braun et al., 2010, p. 52).  Conversely, 

modeling teacher effectiveness as a fixed effect reduces bias but tends to produce “quite volatile” 

estimates particularly for teachers with small numbers of students (Braun et al., 2010, p. 52).  By 

believing something is known about the distribution of teacher effects, “a large positive or 

negative estimate of the teacher effect is unlikely and is probably the result of random errors” 

(Braun et al., 2010, p. 52).  Most well-known models estimating teacher effects specify the 

effects to be random.  The random effects are calculated as Empirical Best Linear Unbiased 

Predictors (EBLUPs) and shrunk toward the mean with reduced variance but, perhaps, with the 

introduction of some bias (Braun et al., 2010, p. 52).  One can then obtain variability estimates of 

the random teacher effects in order to make inferences about the random effects within the 

population (West et al., 2007, p. 2).  

Students are often the subjects of analysis nested within teachers nested within schools.  

Longitudinal data exists when multiple evaluations are made on the same subject (student) over 

time.  Evaluations of the same subject over time are most likely correlated, and LMMs capture 

this correlation by estimating the covariance parameters.  With improvements in software, 

LMMs can now fit different covariance structures to the data while capturing this correlation.  

Depending on the covariance structure specified in formulation, efficiency can be obtained by 

not having to estimate the full covariance structure of the multivariate normal model.  For 

example, one could specify that the covariance between random effects is zero, thus the structure 

of the D matrix (see section 2.2.1) for two random effects can be reduced: 

1 1

2 2

( ) 0 ( )
( )

0 ( ) ( )

i i

i D

i i

Var u Var u
D Var u

Var u Var u


   
      

   
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 In addition to the benefit of being able to specify the covariance structure in the model 

formulation, one can also fit a LMM to a dataset with missing observations (West et al., 2007, 

pp. 2–3).  

2.2.1  Linear Mixed Model General Specification 

LMMs can be specified in a general or hierarchical manner.  Statistical software packages 

such as SAS, SPSS, and R follow the general formulation, whereas Hierarchical Linear Model 

(HLM) software follows the hierarchical formulation (West et al., 2007, p. 1).  This section 

follows the general formulation by West et al. in which a Linear Mixed Model is initially 

presented for just a single student i with scores from 1,..., in  followed by a description of the 

matrices for the collection of students (2007, pp. 16–22) 

i i i i i

fixed random

Y X Z u      
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ii
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iY  is an in × 1 observation vector of test scores for the ith student. 
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iX is a known in × p matrix, which represents the values of the p predictors, such as previous test 

scores in a particular subject.  In a model including an intercept term, the first column would be 

equal to 1 for all observations.     
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    is an unknown p × 1 vector of fixed effects to be estimated from the data. 


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iZ is a known  in  × q matrix of observed values for the q predictor variables for the ith student 

that vary randomly across students.  A model in which only the intercept is assumed to be 

random from student to student, the Z matrix would be a column of 1’s.  
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iu  is an unknown q × 1 vector of random effects to be estimated from the data: 

1
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D is a q × q variance-covariance matrix that reflects the correlation among the random effects.  

Elements along the main diagonal represent the variances of each random effect in iu and off 

diagonal elements represent the covariance between two corresponding random effects.  D is 

symmetric and positive definite (an n × n real symmetric matrix M is positive definite if 

0Tz Mz   for all non-zero vectors z with real entries).   
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  is a non-observable 
in × 1 random vector variable representing unaccountable random 

variation. 

1

2
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iR  is a positive definite symmetric covariance matrix of the form: 
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One assumes the residuals of different subjects are independent of each other and the vector of 

residuals, 1,..., m  , and random effects, 1,..., mu u , are independent of each other.  

One can also specify the LMM for all students as: 

.
randomfixed

Y X u           
~ (0, )

~ (0, )

u N G

N R
 

Y is a n × 1 vector where in n  .  This is a result of placing all iY as defined above on top of 

each other.  The X matrix is n × p obtained by placing all iX on top of each other.  Z is a block-

diagonal matrix, with the iZ ’s stated above on the diagonal.  The u  vector places all iu on top of 

each other.  The   vector places all i on top of each other.  The G matrix is a block-diagonal 

matrix representing the variance-covariance matrix for all random effects with blocks of D as 

stated above for each subject along the diagonal.  The R matrix is an n × n block-diagonal matrix 

representing the variance-covariance matrix for all residuals with blocks of iR  along the 

diagonal.   
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2.2.2  Linear Mixed Model Hierarchical Specification  

The Hierarchical Model Specification belongs to the work of Raudenbush and Bryk 

(2002) and will involve three levels of data and models.  It begins with the student-level 

predictor variables and one student-level outcome variable:  test score gain.    This constitutes the 

Level 1 Model (Student): 

(1) (2)

0 1 2( ) ( )ijk jk ijk ijk ijkTestGain b X X        

where ),0(~ 2 Nijk .  The outcome variable for student i with teacher j nested in school 

k depends on an unobserved intercept specific to teacher j  nested in school k , the fixed effects 

1  and 2 for the student predictors of (1)X  and (2)X , and student residuals.   

Level 2 Model (Teacher): 

(1)

0 0 3( )jk k jk jkb b T u     

where ),0(~ 2
teacherjk Nu  .  The level 1 intercept, jkb0 , teacher j  nested in school k , depends 

on an unobserved intercept specific to school k , kb0 , a teacher specific effect 3  for teacher 

predictor (1)T ,  and a random effect, jku , associated with teacher j  within school k .    

Level 3 Model (School): 

(1)

0 0 4( )k k kb S u     

where ),0(~ 2
schoolk Nu  .  The level 2 school specific intercept, kb0 , depends on the overall 

fixed intercept 0 , a school specific effect 4  for school predictor (1)S , and the random effect 

ku associated with the intercept for school k.   

The nesting of students within teachers within schools is problematic with longitudinal 

data consisting of more than one test score for a student due to students not receiving instruction 
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from the same teacher every year.  Even in a two-level model consisting of students and schools, 

the HLM structure is difficult to apply with longitudinal data due to the transient nature of some 

students as they move to different schools after a school year.  Removing transient students in a 

two-level model as a remedy to the problem would likely not be appropriate for a researcher 

trying to develop the best model incorporating every type of student.  With multiple yearly test 

scores for students as predictors, the HLM structure cannot be sustained.  With a single test score 

as a predictor, the elegant structure of the HLM is easily satisfied (Lissitz & Doran, 2009, p. 25).   

In order to implement an HLM and longitudinal data, the process would have to be a 

yearly one.  A researcher would need to separate the longitudinal data into single year data and 

apply an HLM every year based on a single test score as a predictor.  Although practical and 

efficient, this approach would yield less accurate predictions of student achievement since all 

prior known information would not be used.   

In either the general or hierarchical specification of the LMM, a final model can be 

developed to predict MathGain scores for all students using data from the previous cohort of 

students.  This is done to offset the inherent lack of randomization of students being assigned to 

teachers and the subsequent confounding nature of student test scores with other characteristics 

of students (Lissitz & Doran, 2009, p. 20).   “This predicted score can be thought of as each 

student’s counterfactual level of achievement – that is, their predicted achievement had they been 

taught by a different teacher (say, the average teacher in the district)” (Corcoran, 2010, p. 10).  

The difference between the prediction and the student’s actual performance becomes the 

teacher’s value-added measure for that student.  Averaging the value-added measures for a 

teacher’s students becomes his/her final value-added measure for the year (Corcoran, 2010, p. 

10). 
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2.2.3  Linear Mixed Model Implementation in Texas   

In order to meet several of its own legislative acts as well as Federal requirements to 

include growth in its AYP calculations, Texas developed the Texas Projection Measure (TPM) 

(Texas Education Agency, 2009, p. 6).   The TPM uses Linear Mixed Models to augment their 

AYP calculations as discussed in Section 1.2.  The Texas Education Agency’s Growth Model 

Pilot Application to the U.S. Department of Education in January 2009 describes its Linear 

Mixed Model implementation methods whereby Texas is credited for students projected to meet 

proficiency and met proficiency with regard to AYP (Texas Education Agency, 2009).   

The TPM is used to make projections of student achievement test scores in reading and 

mathematics at selected evaluation grades in the future (Texas Education Agency, 2009, p. 1).  

The models use current year scale scores in reading and mathematics and school-level mean 

scores in the projection subject as predictors.   Development of the models, however, is 

accomplished the year prior with data from the previous cohort of students.  For example, 3
rd

 and 

4
th

 grade data from cohort 2019 can be used to develop a model to make a 4
th

 grade prediction 

using Linear Mixed Models.   The model is applied to the successive cohort (class that just 

finished 3
rd

 grade, cohort 2020).  The development of the models using the data of the previous 

year allows school administrators to know projected scores of their current students prior to the 

beginning of the school year. 

In terms of AYP, projections contribute to the calculations by adding the number of 

students who are projected to meet the proficiency target at a specific evaluation grade in the 

future to the number of students who already meet the proficiency target at the current grade 

(Texas Education Agency, 2009, p. 12).  This sum divided by the number of students in the 

particular grade determines the AYP percentage.  This percentage is compared with the state 
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objectives for that grade.  Whether aggregation occurs at the state, district, or school level, AYP 

above stated objectives defines success for the year.      

2.3  Quantile Regression (QR) 

A linear regression model identifies the conditional-mean function.  It assumes constant 

variance and normality with its residuals.  Difficulties arise when trying to overcome model 

inadequacy should assumption violations be present.  Outliers also negatively affect a linear 

regression model by having an undue influence on the results.  As a result, some linear 

regression models may not account for the full distributional properties of the response and can 

be invalid.  An alternative modeling approach is desired to remedy these inadequacies (Hao & 

Naiman, 2007, pp. 22,24–25).     

 To address these issues of conditional-mean estimates, Quantile Regression was 

developed to estimate the effect of predictors on various quantiles that make up the distribution 

of the data.  Similar to linear regression, Quantile regression models can deal with continuous 

response variables.  Unlike linear regression, quantile regression can account for the full 

distributional properties of the response (Hao & Naiman, 2007, p. 29).  In terms of educational 

data, estimation of a quantile is accomplished with students’ scores at time t using the students’ 

prior scores at times 1, 2,…, t-1 as the conditioning variables (Betebenner, 2007, p. 3).   

 As a means to showcase Quantile Regression, a comparison with Linear Regression is 

developed in Table 2.1 using the QR notation of Hao and Naiman (2007). 
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Table 2.1:  Linear and Quantile Regression Comparison 

Model Formulation Equation 

Linear 
Regression 

0 1
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The estimators 0̂ and 
1̂ of least-squares estimation minimize the sum of squared distances 

between data points ( , )i ix y and the fitted line 0 1
ˆ ˆŷ x   .  Extending this concept to QR, one 

seeks to find estimators that minimize the sum of weighted vertical distances between data points 

and a fitted line where points below the fitted line are weighted 1 p and points above the fitted 

line are weighted p .  Each p (.05, .25, .50 for example) leads to a different fitted line, called a 

conditional-quantile function, that has p  number of points below the fitted line and 1 p points 

above the fitted line (Hao & Naiman, 2007, pp. 33–34).  An example of the linear 

parameterization of QR is shown in Figure 2.1.  

 

Figure 2.1:  Linear Parameterization of Quantile Regression  
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2.3.1  Computing QR Coefficients 

 Each line in the ( , )x y  plane of the form 0 1y x   has a corresponding point 
0 1( , )   

in the 
0 1( , )  plane.  Conversely, lines in the 

0 1( , )  plane of the form 

1 0( / ) (1/ )y x x   correspond to points in the ( , )x y  plane.  The goal is to find a line in the 

( , )x y  plane that minimizes the sum of weighted vertical distances between the data points and 

the line.  This line corresponds to a point in the 
0 1( , )   plane.  For example, a sample of lines in 

the ( , )x y plane has a corresponding set of points in the 0 1( , )   plane that form polygonal 

regions.  Figure 2.2 depicts lines in the ( , )x y  plane corresponding to points in the 0 1( , )  plane 

of the same color with lines in the 0 1( , )   plane corresponding to points in the ( , )x y  plane of 

the same color.    

 

Figure 2.2:  Point/Line Duality (Edgeworth, 1888) 

The vertices of these polygonal regions in the 0 1( , )   plane are extreme points.  Each polygonal 

region in the 0 1( , )  plane corresponds to a family of lines in the ( , )x y plane that maintain the 

same number of points above or below the line.  Based on exterior point algorithms for solving 

linear-programming problems, one can start at one of the vertices in the 0 1( , )   plane and 
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iteratively move from vertex to vertex along the edge of the polygonal region, choosing at each 

vertex the correspondingly smallest value of:   

0 1 0 1

ˆ ˆ

ˆ ˆ ˆ ˆ( ) (1 ) ( )
i i i i

i i i i

y y y y

p y x p y x   
 

            (2-1) 

In the ( , )x y  plane, one is iteratively moving from line to line defined by pairs of data points, at 

each step “deciding which new data point to swap with one of the two current ones by picking 

the one that leads to the smallest value in Equation (2-1) (Hao & Naiman, 2007, pp. 34–38).  

Practically, the Quantile Regression Procedure in SAS “offers simplex, interior point, and 

smoothing algorithms for estimation” (“SAS/STAT 9.2,” 2009, p. 5354).  Figure 2.2 depicts the 

point in the 0 1( , )   plane that corresponds to the line in the ( , )x y  plane that minimizes 

Equation (2-1) for 25.p to arrive at the .25 quantile.     

2.3.2  Quantile Regression Extended to Cubic Splines 

“A spline of degree 3 is a piecewise cubic curve whose values, slopes, and curvature 

coincide at the knots. Visually, a cubic spline is a smooth curve, and it is the most commonly 

used spline when a smooth fit is desired” (“SAS/STAT 9.2,” 2009, p. 387).  

Given ),(),...,,(),,( 1100 nn yxyxyx , one can approximate the data by fitting a cubic spline through 

two consecutive data points.  By extending the formulation of quadratic splines by Kaw and 

Keteltas (2009), the cubic splines are the following (2009, p. 6): 

3 2

1 1 1 1 0 1( )f x a x b x c x d x x x           (2-2) 

3 2

2 2 2 2 1 2a x b x c x d x x x            (2-3)  

3 2

1n n n n n na x b x c x d x x x     
 



24 

 

These cubic splines generate 4n coefficients that can be determined by simultaneously solving 4n 

equations.  2n equations are created as a result of each spline going through two consecutive data 

points: 

3 2

1 0 1 0 1 0 1 0

3 2

1 1 1 1 1 1 1 1

3 2

1 1 1 1

3 2

( )

( )

( )

( )

n n n n n n n n
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a x b x c x d f x

a x b x c x d f x

a x b x c x d f x

a x b x c x d f x

   

   
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   
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The cubic splines must be continuous at interior points.  At a particular interior point (where two 

splines meet), the first derivatives must also be equal (have the same slope).  For example the 

first derivative of Equations (2-2) and (2-3) are equal at 1x : 

2 2

1 1 1 1 1 2 1 2 1 2

2 2

1 1 1 1 1 2 1 2 1 2

2 2

1 1 1 1 1 1 1

3 2 3 2

3 2 3 2 0

3 2 3 2 0n n n n n n n n n n

a x b x c a x b x c

a x b x c a x b x c

a x b x c a x b x c      
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These equations produce 1n equations.   Lastly, the second derivative of each spline at each 

interior point must be equal (curvature must be the same) (House, 2010, p. 6): 

1 1 1 2 1 2

1 1 1 2 1 2

1 1 1 1

6 2 6 2

6 2 6 2 0

6 2 6 2 0n n n n n n

a x b a x b

a x b a x b

a x b a x b   

  

    

   

  

This also produces 1n equations.  The sum of the equations generated 

is 2 1 1 4 2n n n n      .  In order to produce two additional equations, assume the second 

derivatives are zero at the endpoints to produce a natural spline (Mathews, 2004, para. 2).  A 

natural spline has endpoints that are inflection points. 
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With the 4n equations with 4n unknowns, one can solve for the coefficients to arrive at each 

cubic spline.  An extension of the process above is to express each individual cubic 

spline )(xf as a linear combination of the cubic spline basis functions to create a single 

interpolating function, which is more stable during numerical calculations (Kincaid & Cheney, 

2002, p. 366).  The interpolating function evaluates the spline curves in basis form.  

2.3.3  Quantile Regression and B-Splines 

The coefficients or weights of the cubic splines obtained in the previous section are 

determined explicitly given a select number of points that connect the cubic splines.  Given a 

large dataset, however, one must determine the best coefficients for an interpolating function that 

describes the data knowing the boundaries and interior locations (knots) that help give the spline 

its shape.  This is achieved through quantile regression in which the coefficients are chosen that 

minimize the sum of weighted residuals for a specific quantile.  Following the text of Hao and 

Naiman, the thp quantile-regression coefficients are the values that minimize the weighted sum 

of distances between ˆ
iy  and iy , where a weight of 1 p  is used if the fitted value ˆ

iy   

overpredicts the observed value iy  and a weight of p is used if it underpredicts the observed 

value.  Specifically, minimization of a weighted sum of residuals, ˆ
i iy y , is desired where 

positive residuals receive a weight of p  and negative residuals receive a weight of 1 p : 

ˆ ˆ

ˆ ˆ(1 )
i i i i

i i i i

y y y y

p y y p y y
 

     (2007, p. 37).  
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The Colorado Department of Education currently implements a model that 

“parameterize[s] the conditional quantile functions as linear combinations of B-spline basis 

functions” (Betebenner, 2007, p. 5).  As Betebenner (2007) points out, models of B-spline basis 

functions do a good job of interpolating data that is skewed or does not have constant variance: 

“Using B-splines is attractive both theoretically and computationally in that they provide 

excellent data fit, seldom lead to estimation problems, and are simple to implement in 

available software.  As will be seen when examining goodness-of-fit, use of B-splines 

instead of linear percentile curves leads to appreciable improvement in goodness-of-fit 

over the more common linear parameterization of the conditional percentile functions” 

(2007, p. 5).   

The implication with education data is that B-splines can account for “slightly greater variability 

for higher… scale scores than for lower scores” (Betebenner, 2007, p. 5). 

2.3.4  Quantile Regression Implementation in Colorado 

Quantile Regression Analysis is used by the state of Colorado to calculate Student 

Growth Percentiles (SGP) and determine whether a student has made a year’s worth of growth 

over a period of a year.  The resulting model calculates a SGP for each student based on a 

normative comparison with all other students with the same testing history.  The minimum 

testing history is two successive Colorado Student Assessment Program (CSAP) tests in at least 

one academic subject (Betebenner, 2007, p. 2).  SGPs can also be compared to the “50
th

 

percentile representing typical growth or one year’s growth in one year’s time” and evaluated in 

order to determine whether growth is sufficient “to reach proficient and advanced levels of 

achievement within one, two, and three years” (“Colorado,” 2008, p. 10).    

For example, models are developed for five different percentiles with Quantile 

Regression using a dataset of scaled 3
rd

 Grade Mathematics test scores and the MathGain 

obtained following the administration of the 4
th

 Grade Mathematics Test.  Three equally spaced 
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knots positioned between the minimum and maximum values of 3
rd

 Grade Mathematics Score 

are chosen.  Individual Student Growth Percentiles (SGP) are determined by plotting the 

individual’s 3
rd

 Grade Mathematics Score versus his/her MathGain to provide a reference for 

individuals with respect to the population.  For example, a student with a score of 50 on the 3
rd

 

Grade Mathematics test obtains a 77 on the 4
th

 Grade Mathematics Test.  The MathGain of 27 is 

used to complete the plot in Figure 2.3 and obtain a SGP of 75%.  Therefore, the student’s 

growth was greater or equal to 75% of students with the same testing history (“Colorado,” 2008, 

p. 9). 

 

Figure 2.3:  Cubic B-Spline Parameterization of Student Growth Percentiles 

Colorado currently calculates the medians of individual SGPs to “quantify the level of 

student growth attained at specific schools and districts relative to other schools and districts 

within the state” (“Colorado,” 2008, p. 6).   
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 “The median SGP computed for each school serves as an indicator of student growth 

associated with each school,…describes a characteristic of a school’s students as a group 

and can be used to evaluate school outcomes,…[and] measures the relative growth that 

has occurred for the group attending a specific school” (“Colorado,” 2008, p. 10).   

An extension of this process to be discussed in Chapter 3 can be to calculate the median of 

individual SGPs for a teacher and compare it to the median of other teachers within the same 

population.   

As stated previously, Quantile Regression chooses the best coefficients for each quantile 

interpolating function given boundaries of the dataset and interior locations, knots, which help 

give the spline its shape.  One can choose any location for the desired knots when determining an 

interpolating function for each quantile.  If knots that are not equidistant from each other are 

selected, then one has a Non-Uniform Rational B-Spline (NURB).  Significant literature exists 

for different knot placement techniques that may lead to better fitting models.  The Colorado 

Department of Education author, Betebenner, followed the work of Wei and He (2006) in which 

they preselected a set of knots for growth charts “using [their] general understanding of growth 

patterns” (Wei & He, 2006, p. 2073).  Wei and He (2006) placed more knots during rapid 

changes in the data, such as during infancy and puberty, compared to other times.   They stated, 

“In this paper, we do not go into the issue of automated knot selection” (Wei & He, 2006, p. 

2073).   Betebenner (2007), however, never states how he chose knots other than to say that the 

number and placement of knots would change the fit of the percentile curves (2007, p. 10). 

Colorado had initially used Linear Mixed Models in 2004, but after a few years switched 

to student growth percentiles to address the main objective of a Colorado law (HB 07-1048) to 

determine whether students attain adequate yearly growth.  The Colorado Department of 

Education determined that it could not adequately address this with the Linear Mixed Model 

approach, thus it changed due to the following shortcomings of the Model: 
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1.  “The model fit a linear growth trajectory to each student and used that trajectory to 

predict future achievement.  Longitudinal achievement of students across vertical CSAP 

scale is not linear but displays a negative concavity.  The use of a linear trend resulted in 

higher predicted achievement than was likely for low achieving students” (“Colorado,” 

2008, p. 7). 

2.  “The percentage of students projected to be proficient was strongly correlated with 

current status measures and likely confounded growth of students at a given school with 

their initial status” (“Colorado,” 2008, p. 7). 

2.4  Discussion 

The ability to definitively state that a student’s yearly growth in testing achievement is 

attributable to a particular teacher serves as one of the main goals of value-added modeling.  The 

method to ideally determine teachers’ effectiveness would be to randomly assign students to 

teachers, measure the achievement of those students, and then make inferences regarding the 

differences in effectiveness between the teachers based on the scores.  Although the 

randomization of students assigned to teachers is ideal for measuring teacher effectiveness, it 

does not exist practically.  As a result, efforts to offset this lack of randomization are 

accomplished by constructing a model to predict a student’s yearly gain in testing with data from 

a previous cohort of students.  The model provides predictions for successive students with the 

theory that those students were taught by the average teacher in the population being studied.    

 Model construction takes on added importance when determining which variables to 

include in addition to prior achievement that predict the yearly gain in testing achievement.  

Lissitz and Doran (2009) propose that variable selection should be based on the intended purpose 

of the study.  For example, if the desire is to determine what student characteristics are 

associated with successful students, then the study should include background variables such as 

socioeconomic status, gender, or race.  If the desire is to look for academic attributes associated 
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with the learning environment that can be changed for the betterment of students, then student 

background characteristics should not be included in a model (Lissitz & Doran, 2009, p. 27).   

The No Child Left Behind Act of 2001 and the next reauthorization of the Elementary 

and Secondary Education Act does not/will not permit the use of student background 

characteristics in predictive growth models for determining whether a student can be counted for 

making Adequate Yearly Progress.  Their exclusion prevents the implication of “different 

expectations for students of different sociodemographic classes” (Braun et al., 2010, p. 43).  

Sanders, Saxton, and Horn (1997) assert that the use of student longitudinal test data precludes 

including student background characteristics in their LMM (1997, p. 138).  They state, “Each 

child can be thought of as a blocking factor that enables the estimation of school system, school, 

and teacher effects free of the socio-economic confounding that historically have rendered unfair 

any attempt to compare districts and schools based on the inappropriate comparison of group 

means”(Sanders et al., 1997, p. 138).  Including socio-economic factors into analysis that is not 

longitudinal in nature does allow the comparison of districts, schools, and teachers without bias; 

however, the effort to gather accurate data that is often incomplete creates other problems that 

cannot be overcome (Sanders et al., 1997, p. 138).  In addition to the difficulty of obtaining 

accurate and complete information regarding demographic attributes of students, Ballou, 

Sanders, and Horn (2004) determined that including such variables in the analysis had a 

negligible impact on the estimates of teacher effects. 

Small sample sizes also present challenges for measuring teacher effectiveness.  Precision 

of the results becomes greater for middle school teachers who may teach a greater number of 

students compared to an elementary school teacher who may teach a single class multiple 

subjects.  Research performed by McCaffrey et al. (2004) consistently found large standard 
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errors such that about two-thirds of teacher effects from teacher effectiveness models are not 

statistically different from the mean (Braun et al., 2010, p. 45).  The precision of the results may 

also lead to a lack of stability from year to year.  McCaffrey, Sass, and Lockwood (2009) 

compared the teacher effectiveness results from two successive cohorts of students in four 

counties of Florida elementary and middle schools and found low correlations of teacher 

effectiveness between the two years (Braun et al., 2010, pp. 45–46). 

2.4.1  Measures of Effective Teaching (MET) Project 

The Bill and Melinda Gates Foundation initiated the MET project in the Fall of 2009 to 

“develop and test multiple measures of teacher Effectiveness” (“Working with Teachers,” 2010, 

p. 1).  Similar to “A Blueprint for Reform”, the MET project cites research declaring that 

teachers have the greatest impact on student learning compared to other factors controlled by 

school systems.  Therefore, the project aims at increasing the quality of teacher effectiveness 

information that is presently provided to education leaders to improve teacher feedback, direct 

professional development, and make informed decisions regarding teacher placement and 

retention (“Working with Teachers,” 2010, p. 3). 

 The MET project is led by several prominent academic institutions, nonprofit 

organizations, and for-profit education consultants.  The project clearly states that teacher 

evaluation has two components:  one based on student growth in standardized testing and another 

based on classroom-observed “aspects of teaching” that are valid predictors of student learning 

(“Working with Teachers,” 2010, pp. 4–5).  The two components of teacher evaluation are 

constructed with five measures related to teacher effectiveness: 

1)  Student achievement gains on assessments 

2)  Classroom observations and teacher reflections 
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3)  Teachers’ pedagogical content knowledge 

4)  Student perceptions of the classroom instructional environment 

5)  Teachers’ perceptions of working conditions and instructional support at their schools 

(“Working with Teachers,” 2010, pp. 6–8) 

 Stage 1 of the project consists of measuring the unique influence of individual teachers 

on student growth for 2009-10 with a single VAM to establish baseline values.  The VAM will 

use three years of student testing data and control for “student demographics and teacher 

characteristics (such as degrees, certification, licensing scores, tenure, district performance 

review ratings, years of experience, and [National Board for Professional Teaching Standards] 

(NBPTS) status)” (“Working with Teachers,” 2010, p. 8).  Stage 2 consists of combining 

measures two through five “to form a composite indicator of effective teaching” by assigning a 

weight to each measure based on how much each measure contributes to predicting student 

achievement gains (“Working with Teachers,” 2010, p. 8).  Lastly, stage 3 will attempt to show 

that the composite score of effective teaching is a stable predictor of teachers’ student 

achievement gains.  Included in stage 3 is a process to show if baseline value added measures 

accurately predict student achievement gains for 2010-11 in which students were randomly 

assigned to teachers unlike in 2009-10 (“Working with Teachers,” 2010, p. 9).     

 The MET project is ambitious and comprehensive in scope.  A preliminary report of the 

project was published in December 2010 with four general findings: 

1)  Teachers’ value added estimates are one of the strongest predictors of teachers’ future 

student achievement gains (“Learning about Teaching,” 2010, p. 4). 

2)  “Teachers with the highest value-added scores on state tests also tend to help students 

understand math concepts or demonstrate reading comprehension through writing” 

(“Learning about Teaching,” 2010, p. 4). 

3)  “The average student knows effective teaching when he or she experiences it” 

(“Learning about Teaching,” 2010, p. 5). 
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4)  “Valid feedback need not be limited to test scores alone” (“Learning about Teaching,” 

2010, p. 5).   

The ultimate goal of the MET project as with this research is to improve the quality of teachers 

by providing quality information to education leaders to make decisions regarding teachers’ 

professional development, placement, and retention.  

2.4.2  A Risk-Mitigated Approach 

 Despite some of the concerns addressed above, quantifying teacher effectiveness using 

student growth has significant merit.  Each approach comes with some risk and should not be the 

sole basis of measuring teacher effectiveness.  Risk takes the form of identifying teachers that are 

effective when they are ineffective, and identifying teachers as ineffective when they are 

effective.   

The amount of risk allowed in either scenario depends upon one’s perspective of the 

situation.  If one views the situation from a statistical and student perspective where the null 

hypothesis is framed negatively, then the risk of identifying teachers as effective when they are 

ineffective should be extremely small.  Therefore, the risk of identifying teachers as ineffective 

when they are effective would be correspondingly higher.  For example, consider rejecting the 

following null hypothesis:  
0

1

: Teacher is ineffective

: Teacher is effective

H

H
.  If the teacher is, in fact, ineffective, then 

this would be classified as Type I error.  Alternatively, consider failing to reject the null 

hypothesis:  
0

1

: Teacher is ineffective

: Teacher is effective

H

H
.  If the teacher is, in fact, effective, then this would be 

classified as Type II error.  
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Conversely, viewing the situation from the perspective of the teacher would require 

assuming smaller risk for identifying teachers as ineffective when they are effective.  For 

example, consider rejecting the following null hypothesis:  
0

1

: Teacher is effective

: Teacher is ineffective

H

H
.  If the 

teacher is, in fact, effective, then this would be classified as Type I error.  Alternatively, consider 

failing to reject the null hypothesis:  
0

1

: Teacher is effective

: Teacher is ineffective

H

H
.  If the teacher is, in fact, 

ineffective, then this would be classified as Type II error.   

With either a student or teacher perspective regarding risk, a process is needed to 

combine different indicators of teacher effectiveness to arrive at an index of teacher effectiveness 

that contains less overall risk (sum of Type I and Type II error) than that of any single 

measurement.  Ultimately, the goal is to produce a teacher effectiveness index with the smallest 

error as possible.  Although the desire is to have an index that will provide a more nuanced 

approach to effectiveness (i.e., “at least” four effectiveness categories compared to the binary 

approach discussed above), placement of teachers across the boundary between “did not meet 

growth” and “meets student growth” must be met with redundancy to ensure any errors are 

minimized (“Alabama’s Race,” 2010, p. 89).  In the end classroom observations by 

administrators serve to augment any objective result.   

Several techniques to harness the desired redundancy exist in the literature.  Principal 

Component Analysis can reduce dimensionality of highly correlated variables to allow Cluster 

Analysis to assign a set of items into groups of comparable quality.  As a result, Principal 

Component and Cluster Analysis are reviewed in the following sections to show their 

applicability in producing a risk-mitigated teacher effectiveness index.  
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2.5  Principal Component Analysis 

 “Principal component analysis is concerned with explaining the variance-covariance 

structure of a set of variables through a few linear combinations of these variables.  Its general 

objectives are 1) data reduction, 2) interpretation.   Although p components [variables] are 

required to reproduce the total system variability, often much of this variability can be accounted 

for by a small number k of the principal components.  The k  principal components can then 

replace the initial p variables, and the original dataset, consisting of n  measurements on 

p variables, is reduced to a dataset consisting of n  measurements on k  principal components.   

An analysis of principal components often reveals relationships that were not previously 

suspected and thereby allows interpretations that would not ordinarily result” (Johnson & 

Wichern, 2007, p. 430).   

Following the development of Johnson and Wichern (2007), let random vector 

1, 2,[ ..., ]pX X X X   have a covariance matrix   with eigenvalues 1 2 ... 0    , where 0   

if and only if the column vectors are not linearly independent (2007, pp. 431–437).  Consider the 

linear combinations: 

1 1 11 1 12 2 1

2 2 21 1 22 2 2

1 1 2 2

...

...

...

p p

p p

p p p p pp p

Y a X a X a X a X

Y a X a X a X a X

Y a X a X a X a X

    

    

    

 

Obtain 

 
( ) 1,2,...,

( , ) , 1,2,...,

i i i

i k i k

Var Y a a i p

Cov Y Y a a i k p

  

  
 

The principal components are those linear combinations 1, 2 ,..., pY Y Y whose variances are as large 

as possible, coefficient vectors are of unit length, and covariance between them is zero. 
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Let random vector 1, 2,[ ..., ]pX X X X   have a covariance matrix ∑ with eigenvalue-eigenvector 

pairs 1 1 2 2( , ), ( , ),..., ( , )p pe e e    where 1 2 ... 0p      .  The principal component is given by  

1 1 2 2

,

... 1,2...,

( ) 1,2,...,

( , ) 0

, 1,2,...,
i k

i i i i ip p

i i i i

i k i k

ik i

Y X

kk

Y e X e X e X e X i p

with Var Y e e i p

Cov Y Y e e i k

e
i k p








     

   

   

 

 

The proportion of total population variance due to the kth principal component =     

1 2

, 1,2,..., .
...

k

p

k p


  


  
 

“If most (for instance, 80 to 90%) of the total population variance, for large p , can be attributed 

to the first one, two, or three components, then these components can “replace” the original p  

variables without much loss of information” (Johnson & Wichern, 2007, p. 433).   

 Principal components can be calculated similarly if the variables are standardized.  

Standardized variables need to be calculated if ranges of the variables are significantly different 

or units of measurement are dissimilar (Johnson & Wichern, 2007, p. 439).  The ith principal 

component of the standardized variables 1 2[ , ,..., ]pZ Z Z Z  with ( )Cov Z   is:  

1,2,...,i iY e Z i p    with           1 1

,

( ) ( )

, 1,2,...,
i k

p p

i i

i i

Y Z ik i

Var Y Var Z p and

e i k p 

 

 

 

 
 

 1 1 2 2( , ), ( , ),..., ( , )p pe e e    are the eigenvalue-eigenvector pairs for  , where 

1 2 ... 0p      .   The proportion of standardized population variance due to kth principal 

component = , 1,2,..., .k k p
p


    
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Principal components with variables
iX  that have large positive or negative coefficients 

typically have large correlations between that variable iX and iY .  Thus, both measures 

(coefficients and correlations) provide similar results of what they contribute to the component.  

Johnson and Wichern (2007) recommend, however, that both coefficients and correlations be 

examined to determine variable contribution to a component (2007, p. 434).       

The development of principal components is normally an intermediate step leading to 

some final analysis.  Principal component analysis can be an input to cluster analysis.  To 

provide context for teacher effectiveness, principal components can be calculated to represent the 

varying metrics of teacher effectiveness for each teacher.  Cluster analysis can then identify 

teachers with similar characteristics (principal components) in the data. 

2.6  Cluster Analysis  

 Cluster analysis can be considered as an assignment of a set of items into groups so that 

items of the same group are of comparable quality.  It is conducted without any assumptions 

regarding the number or structure of groups present in the data (Johnson & Wichern, 2007, p. 

671).  The groups are formed based on “distances” where “closeness” equates to being similar.  

Many distance measures exist in the literature to determine similarity (Euclidean, Minkowski, 

Canberra, etc.) (Johnson & Wichern, 2007, pp. 673–674).  Due to the computationally expensive 

nature of examining all grouping possibilities, clustering algorithms have been developed to find 

good clusters without having to check all possible clustering configurations.   

 Hierarchical Clustering Methods form groups by either “agglomerative” or “divisive” 

techniques.  With agglomerative techniques the most similar objects are first grouped together 

followed by combining those groups that are most similar.  Divisive techniques place all objects 
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in a single group with subsequent subgroups partitioned away that are farther from the other 

objects in another subgroup (Johnson & Wichern, 2007, pp. 680–681).    

 An agglomerative hierarchical clustering method of J.H. Ward is based on minimizing 

the increase in an error sum of squares criterion (sum of squared deviations of every item in the 

cluster to the centroid).  Each cluster begins as a single object with that object being the centroid.  

An iteration of the method considers every combination of merging two clusters.  The merger of 

two clusters that produces the smallest increase in error sum of squares is completed.  Iterations 

are performed until all objects are contained in a single cluster (Johnson & Wichern, 2007, pp. 

692–693).     

 Several statistics exist to aid in determining the number of clusters that naturally exist in 

the data.  For compact or slightly elongated clusters with a preference for roughly multivariate 

normal clusters, the three best statistics for hierarchical clustering methods are the pseudo 

F statistic, pseudo 2t  statistic, and the Cubic Clustering Criterion (CCC) (“SAS/STAT 9.2,” 

2009, p. 245).  The clustering methods produce the statistics at each step of the algorithm to 

evaluate the cluster solution.  The pseudo F statistic measures “the separation among all the 

clusters at the current level” with local maximum values indicating a good number of clusters 

(“SAS/STAT 9.2,” 2009, p. 1267).  It equals the ratio, 
( ) / ( 1)

/ ( )

G

G

T P K

P n K

 


, with T equal to the 

total sum of squares, GP  equal to the within group sum of squares, and K equal to the number of 

clusters (“SAS/STAT 9.2,” 2009, p. 1258).  Essentially it is “a ratio of the mean sum of squares 

between groups to the mean sum of squares within group” (Lim, Acito, & Rusetski, 2006, p. 

508).  The pseudo 2t statistic measures “the separation between the two clusters most recently 

joined” (“SAS/STAT 9.2,” 2009, p. 1267).  Good candidates for the number of clusters are “the 
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number of clusters one greater than the level at which [a] large pseudo 2t value is displayed” 

(“SAS/STAT 9.2,” 2009, p. 1283).  The pseudo 2t statistic is a variant of Hoetelling’s 2T in 

which large values provide evidence that the “two clusters being considered should not be 

combined since the mean vectors of these two clusters can be regarded as different” 

(Schmidhammer, 2010, p. 20) .  Therefore, clusters can be combined for small values of the 

pseudo 2t .  “The CCC is based on the assumption that a uniform distribution on a hyperrectangle 

will be divided into clusters shaped roughly like hypercubes” (“SAS/STAT 9.2,” 2009, p. 245).  

Local maximum values of the CCC suggest a good number of clusters by rejecting the null 

hypothesis that the data has been sampled from a uniform distribution on a hyperrectangle.  The 

alternative is then accepted that “the data has been sampled from a mixture of spherical 

multivariate normal distributions with equal variances and sampling probabilities…[and] the 

obtained 2R value is greater than would be expected if the sampling was from a uniform 

distribution” (Schmidhammer, 2010, p. 17).       

 Nonhierarchical clustering methods are less computationally expensive than hierarchical 

methods as a matrix of distances between clusters do not have to be calculated.  Larger datasets 

can be examined with nonhierarchical methods as a result.  The method begins with user defined 

initial clusters or a set of seed points that form the centroid of the clusters.  A popular 

nonhierarchical clustering method is the K-Means Method (MacQueen, 1967).  The algorithm 

consists of three steps:             

1.  Place all items into user defined K clusters and calculate the initial centroid.  

Alternatively one can just specify K initial centroids. 

2.  Review each item and determine which centroid is closest.  Assign item to the cluster 

of the nearest centroid.  Recalculate the centroid for the gaining and losing cluster after 

assignment of each item.   

3.  Repeat Step 2 until no item switches clusters. 
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Johnson and Wichern contend that the final assignment of items is often dependent upon the 

initial partition or seed point of the cluster.  Also, clustering methods that fix the number of 

clusters prior to analysis can be ineffective if the data includes outliers, if the data does not 

support the specified K clusters, and/or if random seed points place centroids near each other 

during step one above (Johnson & Wichern, 2007, pp. 696,701–702).  

2.7  Summary 

 A review of the literature to evaluate the effectiveness of teachers has highlighted two 

general techniques.  Firstly, LMMs produce estimates of the random teacher effect in the form of 

EBLUPs, and, secondly, LMMs produce predictions of student achievement scores in order to 

calculate teachers’ value-added measures by comparing the students’ actual achievement scores 

with the predicted scores.  Colorado currently calculates SGPs using Quantile Regression to 

determine school effectiveness by comparing the medians of schools’ student growth percentiles.    

 The two general techniques to measure teacher effectiveness produce risk of not properly 

identifying the quality of teachers.  As a result, they should not be the sole basis of measuring 

teacher effectiveness.  Multiple objective measures of teacher effectiveness must be employed to 

isolate the value that a teacher brings to the classroom.  A teacher’s “specific causal impact on 

learning cannot be discerned only from [a] single descriptive measure” (“Colorado,” 2008, p. 

10).   

 To expand the measures of teacher effectiveness, this research proposes to calculate two 

additional metrics.  Specifically, Quantile Regression will be used to calculate a third objective 

measure of teacher effectiveness by analyzing student test scores within a school district and 

calculating a growth percentile for each student.   The median of a teacher’s aggregated student 

growth percentiles will be calculated and compared to other teachers’ medians within the 
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population.  Lastly, a fourth method to measure teacher effectiveness will be developed by 

combining Quantile Regression with the LMM practice of making achievement score predictions 

to derive teachers’ value-added measures.  The 0.5 quantile model generated by Quantile 

Regression will produce predictions of student achievement scores in order to calculate teachers’ 

value-added measures by comparing the students’ actual achievement scores with the predicted 

scores.  

   In order to exploit these multiple measures of teacher effectiveness, an analytical process 

involving principal component and cluster analysis will be developed.  The principal components 

of the four objective measures of teacher effectiveness become composite indicators of teacher 

effectiveness, unlike Stage 2 of the MET Project that augments a single measure based on 

student achievement scores with a composite indicator based on measures not tied to student 

achievement scores.  The principal components then serve as the inputs to Cluster Analysis.  The 

process will isolate the value that a teacher brings to the classroom above that of his/her peers 

while minimizing the risk of not properly identifying the quality of teachers.  The desired 

outcome is a precise and stable teacher effectiveness index to augment Alabama’s formative 

educator evaluation system, EDUCATEAlabama. 
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Chapter 3 :  Risk-Mitigated Teacher Effectiveness Index   

 

3.1  Introduction 

Various methods exist to measure teacher effectiveness using student growth.  Each 

method generates some risk of not properly identifying the quality of teachers.  As a result, one 

method should not be the sole basis of measuring teacher effectiveness.  An analytical process 

that uses multiple and objective measures of teacher effectiveness to isolate the value that a 

teacher brings to the classroom above that of his/her peers warrants development for the state of 

Alabama.   

 The development of the Risk-Mitigated Teacher Effectiveness Index (RMTEI) consists of 

three phases.  Phase I begins with the calculation of four teacher effectiveness metrics:  Linear 

Mixed Model Teacher Effect, Overall Linear Mixed Model Value-Added Measure, Median 

Student Growth Percentile, and Overall Quantile Regression Value-Added Measure.  Phase II 

consists of determining the principal components of the four metrics determined in Phase I and 

providing each teacher with a quantitative indicator of effectiveness.  The principal components 

from Phase II serve as the inputs to Phase III, Cluster Analysis.  Phase III will then illuminate 

teachers with similar characteristics (principal components) in the data in order to place them 

into effectiveness categories. 

 Through the use of an example, Chapter 3 describes the methodology of computing the 

RMTEI within the three phase process.  The data for this example was obtained from the Early 

Childhood Longitudinal Study [United States] of the Kindergarten class of 1998-1999 (“Fifth 

Grade Data Codebook,” 2006).  Researchers of this study recorded a vast amount of data of a 
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singular class of students from kindergarten to fifth grade.  The data involved every aspect of 

childhood education with investigation of schools, teachers, parents, and students.  The nested, 

hierarchical nature of the data supports study at multiple levels.   In order to provide an 

instrument to develop the RMTEI process, the data received some structuring to align with a 

typical school district of six elementary schools with five teachers per grade.  Although teachers 

were appropriately linked with students in the Early Childhood Longitudinal Study, the number 

of students per teacher rarely resembled a classroom.  However, the number of students per 

school presented desirable numbers for classroom analysis.  Therefore, schools were regarded as 

the “teachers”, and the actual schools’ region were then analyzed at the “school” level.   

This research finds the data restructuring appropriate for the purpose of demonstrating the 

RMTEI process.  The analysis of Chapter 3 is truly at the school and region level while being 

called “teacher” and “school”.  The literature supports the study of any two-level hierarchical 

data structure.  Therefore, lowering the examination of the data by one level in name only does 

not alter the results or render them inadequate. 

3.2  Phase I:  Teacher Effectiveness Metrics 

Every year a student earns a score in a particular subject on a standardized test that is 

vertically scaled to allow for comparisons from year to year.  The process to compute scaled 

scores is called equating with one such method being Item Response Theory (IRT).  The scores 

of the Chapter 3 example are IRT scores.  “IRT uses the pattern of right, wrong, and omitted 

responses to the items actually administered in an assessment and the difficulty, discriminating 

ability, and ‘guess-ability’ of each item to place each child on a continuous ability scale.  IRT 

scoring makes possible longitudinal measurement of gain in achievement over time, even though 

the assessments that are administered are not identical at each point. The common items 
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present…allow the scores to be placed on the same scale” (“Fifth Grade Data Codebook,” 2006, 

pp. 3–5, 3–6).      

Every teacher within a district has a unique teacher identification code.  The student’s 

teacher in that particular subject and year has his/her teacher identification code recorded against 

the student’s standardized test score.  The result is a row vector of data with student, teacher, 

school, yearly score, …, and yearly score.  Given data of this nature for all students in a district, 

the desire is to extract what teachers contribute to their students obtaining a year’s growth in a 

year’s time as measured by the difference in the current year score and the previous year’s score.  

This difference is captured in a new variable, MathGain, to allow further analysis to focus on the 

current teacher.  An excerpt of the example dataset is shown in Table 3.1 that illustrates the 

structure described above. 

Table 3.1:  Excerpt of Example Dataset for Phase I Metrics 

 

This example dataset consists of 718 students nested in 33 teachers nested in four schools and 

will be used to calculate all of the teacher effectiveness metrics.  

 The application of LMMs to longitudinal student testing data will provide two objective 

measures of teacher effectiveness by calculating individual teacher effects (see Section 2.2.1) 

and teacher value-added measures by comparing students’ actual achievement scores with their 
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predicted scores (see Section 2.2.2).  The application of QR to longitudinal student testing data 

will provide two additional objective measures of teacher effectiveness.  Subsequent to 

calculating a growth percentile for each student (see Section 2.3.4), the median of a teacher’s 

aggregated student growth percentiles will be calculated and compared to other teachers’ 

medians within the population.  Lastly, the 0.5 quantile model generated by QR will produce 

predictions of student achievement scores in order to calculate teachers’ value-added measures 

by comparing the students’ actual achievement scores with the predicted scores.  With all four 

Phase I metrics, larger values represent greater value that teachers bring to the classroom above 

that of their peers. 

3.2.1  Linear Mixed Model Teacher Effect 

 The general LMM specification for an individual response follows:   

(1) (2) (1) (1)

0 1 2 3 4( ) ( ) ( ) ( ) }

}

fixed

random

ijk ijk ijk jk k

jk ijk

MathGain X X T S

u

    



     



ijkMathGain  represents the value of the dependent variable for student i  nested in teacher 

j nested in school k . 0  through 4 represent the fixed intercept and the fixed effects of the 

student (1) (2)( , )X X , teacher ( (1)T ), and school level predictors ( (1)S ).  jku is the random effect 

associated with the intercept for teacher j nested in school k, and ijk represents the residual.  The 

assumed distribution of the random effects associated with teachers nested in schools is:  

2~ (0, )jk teacheru N  .  The assumed distribution of the residuals of student scores is:  

),0(~ 2 Nijk .  The assumption is made that and jk ijku  are mutually independent.   

 For this example, only student level predictors will be in the model: 
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Sections 4.2.3 and 4.3.2 describe the process of selecting model predictors at the student, school, 

and teacher level.  The PROC MIXED procedure in SAS is used to calculate the solutions for the 

fixed and random effects of the model with 3
rd

 Grade Reading and Mathematics Test Scores 

predicting the MathGain obtained after completing 4
th

 grade.  The partial output of the solution 

for random effects is shown in Table 3.2. 

Table 3.2:  Partial Output of Solution for Random Effects 

  

A result of modeling teacher effects as random is that the estimates for the teacher intercepts are 

Empirical Best Linear Unbiased Predictors (EBLUPs).  EBLUPs are linear, unbiased, and have 

minimum variance among all linear estimators.  They are also known as “shrinkage estimators” 

because the random teacher effects are smaller in value than if teacher effects were modeled as 

fixed (West et al., 2007, p. 45).  The estimated teacher effect is a statistical numerical prediction 

of the relative value of a particular teacher and a “direct measure of the teacher deviation from 

the [district] mean” of the corresponding TestGain for a particular grade (Sanders et al., 1997, p. 

156).   

3.2.2  Linear Mixed Model Value-Added Measure  

 In either the general or hierarchical specification of the LMM, a final model can be 

developed to predict MathGain scores for all students using data from the previous cohort of 
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students.  The difference between the prediction of the student’s score and the student’s actual 

performance becomes the teacher’s value-added measure for that student.  Averaging the value-

added measures for a teacher’s students becomes his/her final value-added measure. 

 Analyzing data from the previous cohort of students following their completion of 4
th

 

grade yields the following solution and model: 

Solution for Fixed Effects 

    Standard 
Effect       Estimate       Error      DF    t Value    Pr > |t| 
 
Intercept     30.2771      2.2158      40      13.66      <.0001 
read3         0.07181     0.02170     676       3.31      0.0010 
math3         -0.1922     0.02508     676      -7.66      <.0001 

 

30.2771 .07181(3 Read ) .1922(3 )ijk ijk ijkMathGain rd Gr rd Gr Math    

Applying this model to the following cohort of students leads to predictions for MathGain, which 

can be compared to the students’ actual performance, and the calculation of teachers’ value-

added measures.  Partial output of the LMM Value-Added Measure is contained in Table 3.3.  

Each row in Table 3.3 represents a child with a LMM MathGain prediction. 

Table 3.3:  Partial Output of LMM Value-Added Measure  

 

The difference between the prediction and the student’s actual performance becomes the 

teacher’s value-added measure for that student.  As discussed in Section 2.2.2 averaging the 

value-added measures for a teacher’s students becomes the teacher’s final value-added measure.  

In Table 3.3 Teacher 11 obtained an overall LMM Value-Added Measure of 2.82.  Therefore, 
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Teacher 11 contributed to the growth of his/her students that was, on average, 2.82 test score 

units more than predicted without teacher effects.      

3.2.3  Median Student Growth Percentile 

Based on the discussion in Section 2.3.4 Quantile Regression cubic B-spline models are 

developed for percentiles 1-99 using the dataset of scaled 3
rd

 Grade Mathematics and Reading 

test scores.  The variables of 3
rd

 Grade Mathematics and Reading test scores predict the 

MathGain quantiles for all students.  Individual Student Growth Percentiles (SGP) are calculated 

for all students by determining the quantile prediction closest to the actual MathGain for each 

student.  The closest quantile prediction provides a reference of the student with respect to the 

population.  For example, a student has scores of 140.86, 116.66, and 132.7 on the 3
rd

 Grade 

Reading test, 3
rd

 Grade Mathematics test, and 4
th

 Grade Mathematics test, respectively.  

Therefore, MathGain is 16.04.  The quantile closest to the student’s actual MathGain score is the 

0.31 quantile.  Therefore, the student obtains a SGP of 31.  Upon determining the growth 

percentiles for all students, the median of a teacher’s aggregated SGPs is calculated and 

compared to other teachers within the same population.  Partial output of the Median SGP metric 

is contained in Table 3.4. 

Table 3.4:  Partial Output of Median SGP Metric 

 

In Table 3.4 Teacher 11 from School 1 obtained a Median SGP of 60.  Teacher 1212 

from School 4 obtained a Median SGP of 36.  Therefore, Teacher 11 contributed to the growth of 
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his/her students that was 10 percentile points greater than typical growth placing him/her near the 

top of the effectiveness ratings.  Conversely, Teacher 1212 contributed to the growth of his/her 

students that was 14 percentile points less than typical growth placing him/her near the bottom of 

the effectiveness ratings.      

3.2.4  Quantile Regression Value-Added Measure 

 Similar to calculating the LMM Value-Added Measure, Quantile Regression can use a 

single cohort of students to develop a model and make a prediction of MathGain for all students.  

For example, 3
rd

 and 4
th

 grade data from cohort 2019 can be used to develop a model to make a 

4
th

 grade prediction using QR.   The model is applied to the successive cohort (class that just 

finished 3
rd

 grade, cohort 2020).  The goal is to predict each student’s MathGain along the 50
th

 

growth percentile using the student’s 3
rd

 Grade Reading and 3
rd

 Grade Mathematics scores.  

When cohort 2020 finishes the 4
th

 grade, the students’ predicted MathGain can be compared 

against their actual mathematics gain.  If a student’s actual gain is greater than the predicted gain, 

then the teacher’s value added measure (actual-predicted) is positive.  If a student’s actual gain is 

less than the predicted gain, then the teacher’s value added measure (actual-predicted) is 

negative.   Averaging the value-added measures for a teacher’s students becomes his/her final 

value added measure for the year.  Partial output of the Overall QR Teacher Value-Added 

Measure is shown in Table 3.5.    

Table 3.5:  Partial Output of Overall QR Teacher Value-Added Measure 
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Each row in Table 3.5 represents a teacher with an Overall QR Value Added Measure.  For 

example Teacher 1212 from School 4 contributed to the growth of his/her students that was, on 

average, 2.79 test score units less than expected.   

3.3  Phase II:  Principal Component Analysis (PCA) 

 Phase II of the process to determine the Risk-Mitigated Teacher Effectiveness Index 

consists of determining the principal components of the four metrics determined in Phase I.  The 

Phase I metrics are shown for all 33 teachers in Table 3.6. 
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Table 3.6:  Output of Phase I Metrics 

 

PCA needs correlated responses to be effective and will transform input variables into a smaller 

set of uncorrelated variables without losing much information.  The literature suggests that if the 

transformed space accounts for 80-90% of the variance, then PCA achieved its objective of 

dimension reduction.  Based on the construction of the four Phase I metrics, which all measure 

teacher effectiveness with TestGain scores as the dependent variable, the expectation is that the 

metrics will be highly correlated.  Not only is the expectation that the metrics will be highly 
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correlated, but also that the metrics will be transformed into a single variable with almost as 

much information as the original four.  In fact this research hypothesizes this outcome to be a 

general conclusion applicable to all academic datasets.       

In the case of the Chapter 3 example, the four Phase I metrics in Table 3.6 are highly 

correlated and will be projected onto a lower-dimensional surface in order to discover 

relationships between the effectiveness metrics.  The correlation matrix of the Phase I metrics is 

shown in Table 3.7. 

Table 3.7:  Correlation Matrix of Phase I Metrics  

 Phase I Metric 
Pearson Correlation Coefficient 

(p-value) 

Metric Overall LMM Value-
Added Measure 

Median 
SGP 

Overall QR Value-
Added Measure 

LMM Teacher 
Effect 

.994 

(.000) 

.954 

(.000) 

.946 

(.000) 

Overall LMM 
Value-Added 

Measure 

 .939 

(.000) 

.939 

(.000) 

Median SGP   .937 

(.000) 

 

As stated in Section 2.5, the different units of measurement across all four of the metrics listed in 

Table 3.6 triggers calculating the eigenvalues and eigenvectors from the correlation matrix 

instead of the covariance matrix.  The PROC PRINCOMP procedure in SAS accounts for this 

and produces the principal components of the Phase I metrics (LMM Teacher Effect, Overall 

LMM Value-Added Measure, Median SGP, and Overall QR Value-Added Measure). 

 The eigenvectors of the correlation matrix provide the coefficients of the newly 

constructed uncorrelated components.  Let random vector 1, 2,[ ..., ]pX X X X   have eigenvectors 

1 2, ,..., pe e e .  The principal component is given by:  
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1 1 2 2 ... 1,2...,i i i i ip pY e X e X e X e X i p      .  The eigenvectors of the Phase I metrics are 

shown in Table 3.8. 

Table 3.8:  Eigenvectors of the Correlation Matrix 

 

Principal Component 1, 2, 3, and 4 then become: 

Prin 1 .5051( ) .5023( ) .4967( ) .4958( )

Prin 2 .4186( ) .5589( ) .3953( ) .5968( )

Prin 3 .0045( ) .1293( ) .7650( ) .6309(

LMM Effect LMM Value Med SGP QR Value

LMM Effect LMM Value Med SGP QR Value

LMM Effect LMM Value Med SGP Q

   

    

      )

Prin 4 .7547( ) .6470( ) .1086( ) .0046( )

R Value

LMM Effect LMM Value Med SGP QR Value    

 

Principal component scores for all 33 teachers are shown in Table 3.9.   
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Table 3.9:  Output of Principal Component Scores   

 

The objective of PCA, however, is to provide a lower-dimensional surface as the input 

for Phase III, Cluster Analysis.  Recall in Section 2.5, the eigenvalues of the correlation matrix 

provide the variance of the corresponding principal components with Principal Component 1 

having the largest eigenvalue, Principal Component 2 having the second largest eigenvalue, etc.  

As shown in Table 3.10, PCA 1 accounts for 96.63% of the variance within the system.   



55 

 

Table 3.10:  Eigenvalues of the Correlation Matrix 

 

The structure of the correlation matrix and the ability of PCA to reduce dimensionality 

efficiently confirm that the teacher effectiveness metrics are highly correlated.  Furthermore, the 

scree plot in Figure 3.1 identifies the distinct bend at 2i  .   

 

Figure 3.1:  Scree Plot 

There is clearly one dominant principal component as the remaining eigenvalues are relatively 

small and about the same size.   

LMM Teacher Effect and Overall LMM Value-Added Measure are the largest 

contributors of the first principal component due to their coefficients.  Both of the QR regression 

metrics, Median SGP and Overall QR Value-Added Measure, follow closely behind.  LMM 

Teacher Effect and Overall LMM Value-Added Measure also share the largest correlations with 

the first principal component as displayed in Table 3.11. 



56 

 

Table 3.11:  Correlation of Phase I Metrics with Principal Component 1 

 

The correlation of the metrics to the first principal component “measure only the univariate 

contribution of an individual [metric] to [the] component” (Johnson & Wichern, 2007, p. 433).  

It does not capture the importance of the metric to the principal component while considering the 

presence of the other metrics.   Johnson and Wichern (2007) contend, however, that using 

coefficients, which is a multivariate evaluation of importance to the principal component, or 

correlations, tends to yield similar results when evaluating the contributions of the metrics to the 

principal components (2007, p. 434).  As a result, the first principal component is a weighted 

sum of all Phase I metrics.   

This dominant principal component represents the axis of greatest variability in a 

transformed space.  For example, the highly correlated data provided by the four Phase I metrics 

are projected onto the two-dimensional surface in Figure 3.2.   
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Figure 3.2:  Subject-specific RMTEI Value along Dominant Principal Component Axis  

Principal Component 1 is dominant and proceeds along the long axis of the data cloud in the 

transformed space.  Effectively, one can represent all of the Phase I metrics and the majority of 

the variance within the system with a lone principal component.  Therefore, teachers’ principal 

component scores along this dominant principal component will become their subject-specific 

RMTEI values.  If teachers instruct mathematics and reading, then an overall teacher 

effectiveness index will be obtained by taking the mean of their two subject indexes.  Otherwise, 

the single, subject index will become teachers’ overall values.        

3.4  Phase III:  Cluster Analysis 

The purpose of Phase III, Cluster Analysis, is to illuminate teachers with similar 

characteristics (principal components) in the data in order to place them into effectiveness 



58 

 

categories.  Figure 3.2, a simple scatterplot of teachers in two dimensions, provides the starting 

point to extract clusters of teachers with similar attributes. The scatterplot suggests that the 

clusters could be compact and elliptical in nature with the long axis of an ellipse in the direction 

of principal component 1 due to its greater range of values compared to principal component 2.  

No assumption is made, however, regarding the number of clusters to form.  Therefore, 

hierarchical clustering techniques will be analyzed in an effort to derive the appropriate number 

of effectiveness categories to retain.   

Ward’s clustering method “is based on the notion that the clusters of multivariate 

observations are expected to be roughly elliptically shaped” (Johnson & Wichern, 2007, p. 693).  

It is a hierarchical, agglomerative clustering method as described in Section 2.6 that is based on 

minimizing the increase in an error sum of squares criterion (sum of squared deviations of every 

item in the cluster to the centroid).  The scatter plot in Figure 3.2 suggests elliptical clusters.  

Also, a feature of the RMTEI process, as described in Section 3.3, is its ability to produce a 

dominant principal component that will continually lead to elliptical shaped clusters in two 

dimensions.  Therefore, Ward’s Method should be employed as a general prescription of the 

RMTEI process. 

Ward’s Method generated the pseudo F statistic, pseudo 2t  statistic, and the Cubic 

Clustering Criterion (CCC) in accordance with Section 2.6 after execution.  The evidence directs 

fixing the number of clusters at 5K  .  In Figure 3.3 local peaks of the CCC and 

pseudo F statistic as well as the point (number of clusters) prior to a large jump in value when 

viewing the pseudo 2t plot from right to left are desired.   
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Figure 3.3:  Ward’s Clustering Method Statistics for Determining Number of Clusters 

Ward’s Method produced the Effectiveness Clusters in Figure 3.4 for 5K   with the variables, 

principal component 1 and 2. 
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Figure 3.4:  Ward’s Clustering of Teachers by Effectiveness  

Having illuminated teachers with similar principal components in the data, the 

development of the Risk-Mitigated Teacher Effectiveness Index concludes with determining 

whether Ward’s Method produced clusters with statistically dissimilar characteristics.  

Multivariate Analysis of Variance (MANOVA) confirms there is a statistical difference between 

the clusters at the  = 0.05 level.  The null hypothesis of equal mean vectors, 

0 1 2 3 4 5:H         , for all clusters is rejected where 1 2,l lX X are principal component 1 

and 2 scores for cluster 1,2,...,5l  : 

11, 12

21, 22

51, 52

Cluster 1:  ,

Cluster 1:  ,

Cluster 5:  ,

X X

X X

X X
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The alternative is accepted which states there is at least one cluster that has a statistically 

different mean vector.  Conducting Analysis of Variance (ANOVA) on the variables, Principal 

Component 1 and 2, demonstrates that only Principal Component 1 is statistically different 

between the clusters at the  = 0.05 level.  Computing 95% Bonferroni simultaneous confidence 

intervals validates that each cluster is statistically different than every other cluster for Principal 

Component 1.  For example, Cluster 1 is statistically different than Clusters 2, 3, 4, and 5.  

Cluster 2 is statistically different than Clusters 3, 4, and 5.  Cluster 3 is statistically different than 

Clusters 4 and 5.  The pattern concludes with Cluster 4 being statistically different than Cluster 

5.   

For the example dataset Ward’s clustering method produced five statistically different 

clusters of teachers while considering their principal component 1 scores.  In Table 3.12, for 

example, teachers 2092 and 966 had comparable values for the Phase I metrics and demonstrated 

they had extraordinary gains in student growth.  Likewise in Table 3.13, teachers 430 and 7393 

had comparable values and demonstrated they had poor gains in student growth. 

Table 3.12:  Sample of Teachers with Extraordinary Gains in Student Growth 

 

Table 3.13:  Sample of Teachers with Poor Gains in Student Growth 
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3.4.1   Comparison of Clustering Results with Phase I Metrics 

Figure 3.4 captures the Effectiveness Clusters produced by Ward’s Method for 5K   

with the variables, principal component 1 and 2.  A natural question emerges; do these clusters 

provide better information than the clusters formed using only a single Phase I metric?  The 

answer is “yes”.  Ward’s clustering method produced the results contained in Figure 3.5 in which 

clustering was performed for each of Phase I metrics and the inputs from PCA (principal 

component 1 and 2).   
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Figure 3.5:  Comparison of Clustering Results with Phase I Metrics      

The data highlights two thoughts.  Firstly, the clusters are similar across the variables.  This is 

expected due to the correlational structure presented in Table 3.7.  Secondly, the clustering 

results using principal component 1 and 2 successfully represent the collection of the metrics’ 

results with no one metric being identical to the clustering results using the input from PCA.  
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Therefore, the final clustering results are not based on a single measure, and the risk associated 

with crafting accurate effectiveness categories has been mitigated.                   

3.5  Summary 

Principal component scores for all 33 teachers are shown in Table 3.9.  As shown in 

Table 3.10, PCA 1 accounts for 96.36% of the variance within the system.  Teachers’ PCA 1 

scores are their Mathematics RMTEI values.  If teachers also taught reading, then an overall 

teacher effectiveness index would be obtained by taking the mean of their two subject indexes.  

Otherwise, the Mathematics RMTEI values are the teachers’ overall values.     

Ward’s clustering method produced five statistically different clusters of teachers while 

considering teachers’ principal component 1 scores.  Confidence in crafting clusters of teachers 

with similar attributes is paramount.  Therefore, future work must consider the results of Ward’s 

Method in determining the assignment of teachers to teacher effectiveness categories.   

 The Alabama State Department of Education desires to place teachers into “at least” four 

categories following the development of an objective measure of teacher effectiveness based on 

student growth that augments its presently used formative assessment, EDUCATEAlabama 

(“Alabama’s Race,” 2010, p. 89).  Based on Ward’s clustering method statistics with the 

example dataset, the evidence suggests fixing the number of clusters at five.  A modification of 

the initially proposed categories in Section 1.4 complements the clusters found in Figure 3.4: 

1.  Extraordinary gains in student growth.  

2.  Significant gains in student growth. 

3.  Meets student growth.   

4.  Did not meet student growth.  

5.  Poor gains in student growth. 
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The Phase I metrics presented in this chapter are normative.  The LMM Teacher Effect is 

a measure of the teacher deviation from the district mean.  The LMM Value-Added Measure is 

based on the difference between actual scores and predicted scores had students been taught by 

the average teacher in the district.  The QR Value-Added Measure is based on the difference 

between actual scores and typical gains within a district.    The Median SGP is based on 

determining for each student in a district the percentage of other students that had less gain in 

testing achievement.  Since everything is normative, how can one be sure, for example, that 

teachers at the bottom compared to their peers have poor gains such that the pursuit of college 

and workplace readiness has been negatively impacted?  Regrettably, no assurances regarding 

adequate progress toward college and workplace readiness can be established following the 

RMTEI process.  The only statement that can be made is that teacher gains are relative to their 

peers within the evaluated population. 

As stated in Section 3.1 the results of Chapter 3 are truly measuring school effectiveness 

while being called “teacher effectiveness”.  The literature supports the study of any two-level 

hierarchical data structure.   Therefore, the practicality of labeling the data is this manner 

provided an instrument to showcase the methodology of the RMTEI.   

In order to place the methodology of Chapter 3 into practice, longitudinal student and 

teacher data will be examined in Chapter 4.  Success depends on the following: 

1)  Develop techniques with Alabama’s database infrastructure to streamline the process 

of establishing longitudinal data from existing yearly data  

2)  Develop techniques with Alabama’s database infrastructure to streamline the process 

of linking student achievement data with teachers  

Further analysis will be undertaken in Chapter 4 to confirm the desired outcome of a precise and 

stable teacher effectiveness index with a discussion of the results.  Chapter 5 provides an 
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assessment of Alabama’s educator evaluation system, and then proposes an observational, 

summative assessment for Alabama that is a predictor of student achievement gains and 

correlated with the Risk-Mitigated Teacher Effectiveness Index.  Lastly, Chapter 6 concludes the 

dissertation and provides recommendations for future study. 
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Chapter 4 :  Data Analysis 

 

4.1  Introduction 

Implementation of the methodology discussed in Chapter 3 began with the acquisition of 

student achievement and teacher data.  A significant amount of energy was put forth to obtain 

quality student and teacher data from the Alabama State Department of Education (ALSDE) and 

Alabama Local Education Agencies (LEA).  This consisted of extensive written and verbal 

communication with individuals from these organizations who have the authority and ability to 

provide the data.  Despite receiving approval from the ALSDE and several LEAs at the 

beginning of the process, action to provide the data rarely took place despite repeated requests at 

all levels of the organizational structure.  In the end only a single district provided the requisite 

data to fully implement the RMTEI process.  The district is classified as medium-sized with a 

student population of approximately 4,000 students (“System Profile,” 2009).  It is situated in a 

suburban area with approximately 50% of its students available for free/reduced lunch (“System 

Profile,” 2009).   

Examining only this single Alabama school district would limit the applicability of this 

research due to the lack of a large, urban school district.  A large, urban school district would 

provide more breadth in the analysis by presenting an additional learning environment to the 

RMTEI process.  In order to remedy this limitation, data was obtained from the National Center 

for Education Statistics (NCES), which “is the primary federal entity for collecting and analyzing 

data related to education” (“National Center for Education Statistics,” n.d.).  The NCES falls 
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under the Institute of Education Sciences, which “is the research arm of the U.S. Department of 

Education” (“Institute of Education Sciences,” n.d., para. 1) 

The NCES data consisted of student achievement and teacher data from 418 elementary 

schools (Kindergarden-5th Grade) in 17 urban districts from across the United States.  “Although 

the districts selected for the study did not form a statistically representative sample of the nation, 

they were drawn from 13 states with a variety of regulatory, administrative, and demographic 

contexts” (Glazerman et al., 2010, p. 3).  The data began with testing in 2005 and concluded in 

2008.  The data’s original use consisted of evaluating the benefits of comprehensive teacher 

induction training for beginning teachers compared to the existing, less intensive induction 

services provided by the district (Glazerman et al., 2010, p. vi).  The benefits of comprehensive 

teacher induction could be positive impacts on classroom practices, a positive impact on teacher 

retention, and a statistically significant impact on student achievement (Glazerman et al., 2010, 

p. viii).  Observational evaluations were conducted in 2006 by trained observers to score the 

effective teaching practices of both teacher groups (Glazerman et al., 2010, p. xiv).  These 

observational evaluations will be discussed and compared to the teacher effectiveness outcomes 

obtained with the RMTEI in Chapter 5.  

4.2  Alabama Data Analysis 

Upon acquiring five years of student and teacher data from an Alabama district, methods 

were developed to accomplish two of this research’s sub-objectives:  

1)  Develop techniques with Alabama’s database infrastructure to streamline the process 

of establishing longitudinal data from existing yearly data  

2)  Develop techniques with Alabama’s database infrastructure to streamline the process 

of linking student achievement data with teachers  
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As stated in Section 1.4, Alabama claims to have the ability to link student data with teachers, 

yet it does not provide the linked testing data to the districts or provide analysis as a result of the 

linkage.  Districts only receive yearly student achievement data via distributed compact disks 

from the Alabama State Department of Education.  The lack of effective data extraction methods 

limits the ability of districts to analyze testing data.      

This research developed procedures to create longitudinal student data linked with 

current year teachers.  For example, analysis for 2009 required merging student scaled scores 

from the 2006-07, 2007-08, and 2008-09 Alabama Reading and Mathematics Test (ARMT) with 

the students’ respective mathematics and reading teachers for the 2008-09 school year.  Much of 

this pre-analysis work consisted of extracting students and their teachers from a schedule dataset 

using the desired grade and course (mathematics or reading).  Care was taken, especially in older 

grades, to find the appropriate courses/teachers that would ultimately be linked with the reading 

and mathematics student achievement data of the current year.  See Appendix 1 for the SAS code 

and its description that accomplishes these two research sub-objectives. 

 Similar to the example in Chapter 3, every teacher and student within the district had a 

unique identification code.  Teachers were already linked to students in the schedule dataset.  

Student achievement files consisted of a matrix with column vectors of Student Identification 

Number, grade, school, and a single year of ARMT Reading and Mathematics Scores.  The 

student identification number from the student achievement files provides the linkage to 

teachers/students in the schedule dataset.   Upon merging the files, the desire is to extract what 

teachers contribute to their students obtaining a year’s growth in a year’s time as measured by 

the difference in the current year score and the previous year’s score.  This difference is captured 

in the new variables, ReadGain and MathGain, to allow further analysis to focus on the current 
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teacher.  An excerpt from the 6
th

 grade, 2009 dataset is contained in Table 4.1 that illustrates the 

structure described above. 

Table 4.1:  Excerpt from 6
th

 grade, 2009 Dataset     

 

4.2.1  Alabama Reading and Mathematics Test   

The ARMT is a criterion-referenced test administered to 3-8 Grade students.  It is built 

using portions of the Stanford Achievement Test (Stanford 10) and additionally developed 

subtests.  This combination ensures that all state-level content standards are appropriately tested.  

A student must take the items in Table 4.2 to receive ARMT reading and mathematics scores. 

Table 4.2:  Components of Alabama Reading and Mathematics Test     

ARMT Reading ARMT Mathematics 

Stanford 10 Word Study Skills 
(Grade 3) 

Stanford 10 Mathematics 

Procedures (Grades 3-8) 

Stanford 10 Reading 
Vocabulary (Grades 3-8) 

Stanford 10 Mathematics 

Problem Solving (Grades 3-8) 

Stanford 10 Reading 
Comprehension (Grades 3-8) 

ARMT Part 2 Mathematics 

Subtest 

ARMT Part 2 Reading Subtest  

 

In addition to providing the points possible, points earned, percent correct, and achievement 

levels, the ARMT provides scaled scores that can be used to determine the amount of progress 

that is earned between years.  These scaled scores are a focus of this research and contribute to 

studying change in performance over time, which is one of the primary purposes of the ARMT.  

Additionally, ARMT results for grades 3-8 are used to meet No Child Left Behind legislation 
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requirements with Adequate Yearly Progress determinations (“Alabama Reading and 

Mathematics Test:  Interpreting the Student Report,” 2009, p. I–1; Pugh, 2008).  

4.2.2  Testing Histories 

To prepare for calculating the Phase I metrics, mutually exclusive groups of students, 

each with a different testing history, were created in order to compare similar students.  The 

students of a typical school district have different testing histories based on their grade and 

multiple, personal circumstances.  Students in grades 3-5 have fewer testing opportunities, thus 

they have immature testing histories.  Although students in grades 6-8 should have robust testing 

histories, there are many reasons why that is not always the case.  For example, new students 

from outside of the State and absences during testing contribute to a lack of data for students.  

Even new students from outside of the district , but within the State, contribute to the issue as 

there is not a systemic process at the district level to electronically capture the testing data from 

the previous district.    

Testing histories consist of consecutive, yearly mathematics and readings scores in the 

ARMT with the minimum testing history being two consecutive years.  For example, analysis in 

2009 creates two testing histories for grades 5-8 (4
th

 grade has a single testing history of 

Mathematics and Reading scores in 2008 and 2009): 

1)  Mathematics and Reading scores in 2007, 2008, and 2009 

2)  Mathematics and Reading scores in 2008 and 2009   

Linear Mixed Model Phase I metrics were calculated within the testing history groups 

and then placed together in order to calculate an overall value for each metric.  In the case of the 

Linear Mixed Model Teacher Effect, teachers received an effect for the testing histories in which 

they were present.  A weighted sum for each teacher was then calculated based on the number of 
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students in each testing history group.  Secondly, Linear Mixed Model Value Added Measures 

were calculated for each student within a testing history group.  The testing history groups were 

placed back together with their new value added measures.  The mean was then calculated for 

each teacher to determine the final Value Added Measure. 

Student Growth Percentiles on the other hand were calculated for each student within a 

single testing history group of two years.  This ensured one large testing history group to create 

99 quantiles within the data.  The median was calculated for each teacher to determine the 

Median Student Growth Percentile metric.  When multiple testing history groups were 

considered, the medium-sized district would produce small testing history groups that did not 

accommodate the number of parameters to be estimated.  For example analysis of 6
th

 grade in 

2011 resulted in a student testing history group of 17 students that had mathematics and reading 

scores in 2009, 2010, and 2011.  This testing history group encountered errors with all previous 

year scores in the predicted subject and the prior year score in the non-predicted subject as model 

predictors (i.e., MathGain would have Mathematics scores in 2009 and 2010 and Reading scores 

in 2010 as predictors); see Section 4.2.3 for discussion of model predictors.  Quantile Regression 

attempted to calculate seven parameters ( 0 1 2 3, , ,a a a a and 1 2 3, ,b b b ) for each of the three 

independent variables in order to calculate the independent variable’s component of the QR 

prediction:   
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In this example the QR prediction for each student would be the sum of the three independent 

variable components plus an intercept.  The number of parameters was greater than the number 

of observations, thus the model lacked the requisite degrees of freedom and did not provide a QR 
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prediction for each student.  As a result, individual SGPs could not be calculated to allow for the 

calculation of teachers’ Median SGP.  Lastly, Quantile Regression Value-Added Measures were 

also calculated for each student within the minimum, two year testing history.  The mean was 

calculated for each teacher to determine the final Quantile Regression Value Added Measure. 

4.2.3  Student, Teacher, and School Level Predictors for Alabama Data 

Any future effort to implement the RMTEI process at the district level should undergo an 

evaluative procedure to assess the adequacy of model predictors.  This research examined 

predictors at all levels (student, teacher, and school) in an attempt to improve the predictive 

capability of the models used to generate the four Phase I metrics.  The process began with using 

a student’s entire testing history to predict MathGain and ReadGain.  For example, a testing 

history in 2009 consists of Mathematics and Reading scores in 2007, 2008, and 2009.  Therefore, 

ARMT Reading 2007 - ARMT Reading 2008 and ARMT Mathematics 2007 - ARMT 

Mathematics 2008 predict ReadGain and MathGain in separate models.   This method of analysis 

produced similar results for all grades and years in which the scores of all previous years in the 

predicted subject were significant at an .05  , and only the prior year score in the non-

predicted subject were statistically significant.  For example, only the prior year reading score 

was significant for MathGain in addition to all previous math scores.   

Adding predictors at the teacher level led to varying results.  Teacher data provided by 

the districts included teaching experience expressed in months teaching in district, state (not 

including the district), public (outside the district or state), and private systems.   It also included 

the teacher’s highest degree obtained, expressed as a bachelor’s, master’s, greater than 6 years 

(working toward a doctorate), or doctorate degree.  In many instances, teaching experience and 

highest degree obtained were not statistically significant.   
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  Adding predictors at the school level also led to varying results.  This research applied 

the methods of the Texas Projection Measure, discussed in Section 2.2.3, by considering campus 

mean of the predicted subject as a predictor of student achievement.  In many instances, 

MathMean and ReadMean for a given campus were not significant predictors of MathGain and 

ReadGain respectively.  Secondly, this research obtained the Reduced/Free lunch percentages of 

the different campuses within the two districts and considered them as predictors of student 

achievement.  Obtaining results similar to using the campus mean of the predicted subject as a 

predictor, schools’ Reduced/Free lunch percentages were not significant predictors of student 

achievement.   

Output follows for the solution of fixed effects from 4
th

 grade, 2011, where the predictor, 

myrs_employ, is a math teacher’s experience expressed in years.  Included are student, teacher, 

and school level predictors as described above.  All of the teacher and school level predictors for 

the minimum testing history group failed to reject the null hypotheses, 

0 3 0 4 0 5 0 6: 0, : 0, : 0, : 0H H H H        at an .05  significance level: 

Solution for Fixed Effects 
 
                            mhighest_                Standard 
    Effect                  degree       Estimate       Error      DF    t Value    Pr > |t| 
 
    Intercept                              784.97      422.11       9       1.86      0.0959 
    ARMT_Math_2010                        -0.4637     0.04811     256      -9.64      <.0001 
    ARMT_Read_2010                         0.2700     0.05393     256       5.01      <.0001 
    Percent_Free_Reduced                   8.7894     28.4892     256       0.31      0.7579 
    MathMean                              -1.0404      0.6834     256      -1.52      0.1291 
    myrs_employ                            0.2164      0.2985     256       0.73      0.4691 
    mhighest_degree         6             -0.6414     11.5877     256      -0.06      0.9559 
    mhighest_degree         B              0.2089      5.5794     256       0.04      0.9702 
    mhighest_degree         M                   0           .       .        .         . 

The result of examining model predictors for the Alabama district led to an approach 

similar to the Chapter 3 example in which only student-level predictors were included in the 

models.  The only difference, however, is that multiple years of test scores in the predicted 

subject were included for LMMs that utilized testing histories as discussed in Section 4.2.2.  
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Table 4.3 summarizes the outcome with each check mark representing the inclusion of the 

independent variable(s) in the corresponding model for each Phase I metric.  

Table 4.3:  Summary of Model Predictors for Alabama Data     

Metric 
 

LMM Teacher 
Effect 

Overall LMM 
Value-Added 

Measure 

Median SGP Overall QR 
Value-Added 

Measure 
Dep Var 

Indep Var 
MathGain ReadGain MathGain ReadGain MathGain ReadGain MathGain Readgain 

Math Score 
(previous year 

only) 

 
  

 
          

Math Score (all 
previous years)   

 
  

     

Reading Score 
(previous year 

only) 
  

 
  

 
        

Reading 
Score(all 

previous years) 

 
  

 
  

    

Teacher-Level 
Predictors 

        

School-Level 
Predictors  

        

4.3  National Center for Education Statistics Data Analysis 

The data from the National Center for Education Statistics is significant in that it captures 

student achievement data linked to 1009 beginning teachers from 17 urban districts over 4 years.  

Several items of interest with regard to the data are the following: 

1)  the data's original use consisted of evaluating the benefits of comprehensive teacher 

training for beginning teachers compared to the existing, less intensive training services 

provided by the district; 

2)  each district chose one of two providers for the comprehensive training services;  

3)  comprehensive training services lasted one or two years; 

4)  schools within districts were randomly assigned to receive comprehensive training 

services; and 

5)  student achievement data are recorded as z-scores to account for the difficulty of 

comparing 1009 teachers across 43 different tests that use scaled scores, normal curve 

equivalents, percent correct, or percentile rankings (Glazerman et al., 2010, p. 33)   
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The student achievement data is comprised of three files (2006, 2007, 2008) each representing a 

cohort of students who are taught by the same beginning teachers.  Each file has a student pre-

test and post-test score for mathematics and reading.  The pre-test score from 2006 is obtained 

from testing at the conclusion of the 2004-2005 school year.  Students’ post-test scores from 

2006 are the same scores as the pre-test scores from 2007.  This pattern continues through 2008; 

therefore, the data contains four years of student achievement scores. 

Student identification codes are not recorded in the student files.  To account for students, 

the files contain teacher identification codes which are repeated with each observation 

representing a single student.  Teachers are linked with their students’ achievement scores unlike 

the methods presently employed by the Alabama State Department of Education.  The nature of 

the data, however, precludes the ability to track students over time and create additional testing 

histories as discussed in Section 4.2.2.  Therefore, all four Phase I metrics were calculated within 

a single two year testing history for each year as shown in Table 4.4. 

Table 4.4:  NCES Testing Histories 

Year 
Variables 

2006 2007 2008 

Mathematics 
and Reading 
Test Scores 

2005, 2006 2006, 2007 2007, 2008 

 

"Each district was assigned to one of the two providers of treatment services, either 

Educational Testing Service (ETS) or New Teacher Center (NTC), based primarily on district 

preferences" (Glazerman et al., 2010, p. 8).  Districts then received either one or two years of 

treatment services determined, principally, by the availability of mentors for the second year 

(Glazerman et al., 2010, p. 3).  This research’s approach was to analyze districts individually by 

grade.  As a result one does not encounter issues related to comparing teachers who may be 
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receiving similar induction services but from different providers and for different lengths of time.  

Furthermore, “the preference-based method of assigning districts to providers does not allow for 

and should not be used to make direct comparisons of one provider to the other. Observed 

differences in impacts between ETS and NTC districts may be due to the programs or to the set 

of districts each provider worked with; those effects cannot be separated” (Glazerman et al., 

2010, p. 8). 

  Analysis within a district did not concern itself with treatment status.  All district 

teachers (treatment and control) by grade were compared with each other.  However, the 

knowledge of teachers’ treatment status precipitated answering the following research question 

related to the RMTEI results that will be addressed in Section 4.8: 

Are the RMTEI results related to whether teachers received induction services (treatment 

vs. control) while considering length of induction?  Glazerman et al. (2010) did observe a 

statistically significant difference in student achievement with teachers who received two 

years of induction services (2010, p. 92). 

4.3.1  NCES Student Achievement Data Recorded as Z-Scores 

Student achievement data from the NCES are recorded as z-scores, mean subtracted from 

the test score divided by the standard deviation.   Population mean and standard deviation of a 

particular grade, subject, and test were approximated by a state or national norm sample 

depending on the administered test (Glazerman et al., 2010, p. A–13).  A single z-score 

represents the percentage of the standard deviation away from the mean.  The natural question 

then becomes, can a student’s growth be measured with z-scores?   In fact, a student’s growth 

can be measured with z-scores.  For example, a teacher can move a student to a better position by 

either obtaining a smaller percentage of the standard deviation away from the mean if the 

student’s test score is less than the mean or obtaining a larger percentage of the standard 
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deviation away from the mean if the test score is greater than the mean.  The difference of the 

pre-test and post-test z-scores was captured in the new variables, ReadGain and MathGain, to 

allow analysis to focus on the current teacher who provided instruction leading to the 

administration of the post-test .  This difference represents the movement of a student “relative to 

their local reference group” (Glazerman et al., 2010, p. A–14).  A larger, positive movement 

compared to other students would be considered more growth.   

In order to ensure the adequacy of using z-scores with the NCES data, the teacher values 

obtained with the RMTEI process using scaled scores from the Alabama district were compared 

to the teacher values obtained with the RMTEI process after converting the scaled scores to z-

scores.  The z-scores were computed using the mean and standard deviation of the scaled scores 

by grade and year.  The RMTEI results using both types of scores were nearly identical, perfectly 

correlated, and not different with statistical significance.  The results confirm the ability to safely 

complete the RMTEI process with z-scores for the NCES data. 

4.3.2  Student, Teacher, and School Level Predictors for NCES Data  

As with the Alabama district data, this research examined predictors with the NCES data 

in an attempt to improve the predictive capability of the models used to generate the four Phase I 

metrics.  The process of selecting predictors began with using a student’s pre-test in mathematics 

and reading to predict MathGain and ReadGain.  For example, the 2006 models started with the 

Pre-Read and Pre-Math scores from the spring of 2005 as predictors for ReadGain and MathGain 

in separate models.   This method of analysis produced similar results for all grades, districts, 

and years in which the pre-test scores were significant at an .05   for both ReadGain and 

MathGain models.   Therefore, Pre-Read and Pre-Math scores were included as predictors in all 

models for 2006, 2007, and 2008.     
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Adding predictors at the teacher level led to inconsistent results.  NCES teacher data 

included many variables that received evaluation as predictors for student reading and 

mathematics growth:   

1)  Route into teaching 

2)  Highest degree 

3)  Holds a degree in an education–related field 

4)  Hired after the school year began 

5)  Attended a competitive college
1
   

6)  Not a beginning teacher 

7)  Held a nonteaching job for five or more years 

8)  Type of teaching certificate/licensure/credential currently held 

9)  How teacher entered the teaching profession 

In most instances teacher level predictors were not statistically significant.  Therefore, teacher 

level predictors were not included in models for 2006, 2007, and 2008.         

  Adding predictors at the school level also led to unreliable results.  This research applied 

the methods of the Texas Projection Measure, discussed in Chapter 2, by considering campus 

mean of the predicted subject as a predictor of student achievement.  In many instances, 

MathMean and ReadMean for a given campus were not significant predictors of MathGain and 

ReadGain respectively.  Secondly, the NCES data contained the Reduced/Free lunch percentages 

of the different campuses within the districts and considered them as predictors of student 

achievement.  Obtaining results similar to using the campus mean of the predicted subject as a 

                                                 
1
Glazerman et al. (2010) provide the definition:  “A “highly selective” college or university is one that is rated as 

“most competitive,” “highly competitive,” or “very competitive” by the 2003 edition of the Barron’s Profile of 

American Colleges.” (2010, p. 13).   
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predictor, schools’ Reduced/Free lunch percentages were not significant predictors of student 

achievement.   Therefore, school level predictors were not included in models for 2006, 2007, 

and 2008.          

An example follows for the solution of fixed effects from a district, 4
th

 grade, 2006, 

where the predictors, COMPCOLLEGE
2
 and EDFIELD, are categorical variables for whether 

the math teacher attended a competitive college and holds a degree in an education–related field 

respectively.  Also included are student, teacher, and school level predictors as described above.  

All of the teacher and school level predictors for the minimum testing history group failed to 

reject the null hypotheses, 0 3 0 4 0 5 0 6 0 7: 0, : 0, : 0, : 0, : 0H H H H H          at an 

.05  significance level: 

Solution for Fixed Effects 
 
                                  COMPCOLLEGE. 
                                  Attended Most,       EDFIELD. Has a 
                        highest_  Highly, or Very      degree in education            Standard 
  Effect                degree    competitive college  related field        Estimate     Error    DF t Value    Pr > |t| 
 
  Intercept                                                                   0.3388    0.3005     5    1.13      0.3107 
  PRE_MATH                                                                   -0.5598   0.05764   157   -9.71      <.0001 
  PRE_READ                                                                    0.3270   0.07742   157    4.22      <.0001 
  MathMean                                                                  -0.01909    0.2165   157   -0.09      0.9298 
  percent_free_reduced                                                      -0.00534  0.004399   157   -1.21      0.2265 
  COMPCOLLEGE                     0 = No                                      0.2000    0.1257   157    1.59      0.1136 
  COMPCOLLEGE                     1 = Yes                                          0         .     .      .          . 

  EDFIELD                                              0 = No               -0.04655   0.09863   157   -0.47      0.6376 
  EDFIELD                                              1 = Yes                     0         .     .      .          . 
  highest_degree        B                                                          0         .     .      .          . 
  

 

The result of examining model predictors for the NCES data also led to an approach 

similar to the Chapter 3 example in which only student-level predictors were included in the 

models.  Table 4.5 summarizes the outcome with each check mark representing the inclusion of 

the independent variable in the corresponding model for each Phase I metric.  

                                                 
2
 Glazerman et al. (2010) provide the definition:  “A “highly selective” college or university is one that is rated as 

“most competitive,” “highly competitive,” or “very competitive” by the 2003 edition of the Barron’s Profile of 

American Colleges.” (2010, p. 13).   
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Table 4.5:  Summary of Model Predictors for NCES Data       

Metric 
 

LMM Teacher 
Effect 

Overall LMM 
Value-Added 

Measure 

Median SGP Overall QR 
Value-Added 

Measure 
Dep Var 

Indep Var 
MathGain ReadGain MathGain ReadGain MathGain ReadGain MathGain Readgain 

Pre-Math 
(previous year 

score) 
                

Pre-Read 
(previous year 

score) 
                

Teacher-Level 
Predictors 

        

School-Level 
Predictors  

        

4.4  Checking Model Assumptions for the Final Linear Mixed Models 

Analysis of the final models began by examining the EBLUPs for the random teacher 

effects.  The values yielded consistent results of failing to reject normality with no outliers.   An 

example is shown in Figure 4.1 for the Alabama mathematics teacher effects for 4
th

 grade, 2009. 
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Figure 4.1:  Distribution Analysis of Mathematics LMM Teacher Effects      

Secondly, analysis of the conditional studentized residuals validated the model 

assumptions of normality and constant variance.  “The conditional studentized residual for an 

observation is the difference between the observed value and the predicted value, based on both 



81 

 

the fixed and random effects in the model, divided by its estimated standard error” (West et al., 

2007, p. 104).  An example is shown in Figure 4.2 from the MathGain model using Alabama 

data from the cohort preceding 4
th

 grade, 2009. 
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Figure 4.2:  Distribution Analysis of Studentized Residuals from Mathematics LMM  

 Lastly, a paired comparison of MathGain and its conditional predicted value yielded 

inferences about their difference in means.  The 95% confidence interval for the difference in 

means contains zero.  Therefore, one would fail to reject the null hypotheses:  0 : 0i jH    .  

The difference in means of the two variables is not significant.    An example is shown in Figure 

4.3 from the MathGain model using Alabama data from the cohort preceding 4
th

 grade, 2009. 
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Figure 4.3:  Paired Comparison of MathGain and Conditional Predicted Value 

The paired comparison of MathGain and its conditional predicted value also yielded inferences 

about their difference in means for each teacher.   The 95% confidence intervals for the 

differences in means for each teacher contain zero; therefore, the differences in means are not 

significant. 

4.5  Diagnostics for the Final Quantile Regression Models   

Analysis of the final model for the QR Value-Added Measure metric began by examining 

some diagnostic plots from the predicted 0.5 quantile of MathGain and ReadGain, “which 

expresses the conditional median of a response variable given predictor variables” (Hao & 

Naiman, 2007, p. 56).  Recall that the median can be a more suitable measure of central location 

than the conditional mean if the conditional mean’s model suffers from inadequacy due to 

assumption violations.   

Although not unexpected, the plot of predicted values versus standardized residuals in 

Figure 4.4 produces a double bow effect indicating the variance of the errors is not constant 
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(West et al., 2007, p. 131).  This is also seen in Figure 4.4 when the distribution of standardized 

residuals is not homogeneous across mathematics teachers (West et al., 2007, p. 106).  Both 

graphs in Figure 4.4 originate from analysis of the medium-sized Alabama district for 4
th

 grade, 

2009.   
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Figure 4.4:  Variance Analysis of Standardized Residuals from 0.5 QR Mathematics Model 

One would expect the points to be symmetrically distributed around a diagonal line in a plot of 

observed versus predicted values for a Linear Mixed Model.  Since the median is often used to 

indicate the center of skewed distributions, it is not unexpected for the symmetry to be absent in 

Figure 4.5 for the plot of MathGain versus the 0.5 quantile prediction of MathGain for 4
th

 grade, 

2009, in the Alabama district (Hao & Naiman, 2007, pp. 12–13).   
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Figure 4.5:  Agreement Plot of MathGain versus 0.5 QR Prediction of MathGain     

The plot in Figure 4.6, however, illustrates the normal nature of the standardized residuals from 

the 0.5 quantile prediction of MathGain for 4
th

 grade, 2009, in the Alabama district.    

 

Figure 4.6: Distribution Analysis of Standardized Residuals from 0.5 QR Mathematics Model  

4.6  Principal Component Analysis (PCA) 

After the applying the methods of the previous sections, Phase I concluded with 

calculating the four teacher effectiveness metrics:  Linear Mixed Model Teacher Effect, Overall 

Linear Mixed Model Value-Added Measure, Median Student Growth Percentile, and Overall 
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Quantile Regression Value-Added Measure; see Appendix 3 for the Alabama district’s results 

and Appendix 4 for a district from the NCES dataset.  Phase II consists of determining the 

principal components of the four metrics determined in Phase I.  Recall from Chapter 2 that the 

correlation matrix of the four metrics is used to extract the eigenvalue-eigenvector pairs, 

1 1 2 2( , ), ( , ),..., ( , )p pe e e   , due to the dissimilar units of measurement for the Phase I metrics.  

The high correlation between metrics and the ability of PCA to reduce dimensionality efficiently 

often led to one dominant principal component.  For the Alabama district in a given grade and 

year, the Phase I metrics with MathGain as the dependent variable produced a single, large 

eigenvalue and principal component that absorbed the preponderance of the variance in the 

system.  ReadGain, however, would clearly have a dominant eigenvalue but without the near 

total absorption of the variance.   Table 4.6 summarizes the results for the Alabama district.     

Table 4.6:  Proportion of the Total Variance for First Principal Component in the Alabama 

District  

 

Similarly, a district in the NCES dataset produced the results in Table 4.7. 
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Table 4.7:  Proportion of the Total Variance for First Principal Component in a NCES District  

 

Principal component analysis allowed this research to project the four metrics into a single 

dimension to obtain a teacher effectiveness index by subject.  If a teacher taught mathematics 

and reading, then an overall teacher effectiveness index was obtained by taking the mean of the 

two subject indexes.  Otherwise, the single subject index became the teacher’s overall teacher 

effectiveness index.   

In addition to reducing the dimensionality of the Phase I metrics, PCA discovered the 

relationship between the effectiveness metrics.  In every instance the first principal component 

was a weighted sum of all Phase I metrics.  Based on the grade, year, and subject, the weights 

(coefficients) for the metrics were different; however, the prevailing theme was that each metric 

was highly correlated with the first principal component and contributed nearly the same 

proportion (compared to the other metrics) of its value to the principal component score.  

Lastly, PCA provided the inputs for Phase III, Cluster Analysis, in which clustering took 

place based on principal component scores in a single subject.  Clustering was also performed 
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based on overall teacher effectiveness index values.  An example of the input for Cluster 

Analysis is contained in Table 4.8.      

Table 4.8:  Results from PCA for 4
th

 Grade, 2011, in the Alabama District    

 

4.7  Cluster Analysis 

The purpose of Phase III, Cluster Analysis, is to accomplish two of this research’s sub-

objectives methods:  

1)  Confirm or modify Alabama’s effectiveness rating categories based on being able to 

detect statistically different groups of teachers by effectiveness.  

2)  Report all teachers in accordance with the ratings categories for an Alabama school 

district using the newly developed objective effectiveness index.  

As described in Section 3.4, the agglomerative hierarchical clustering method of J.H. 

Ward produced clusters based on the first two principal component scores (simultaneously) in a 

single subject.  The results produced statistically different clusters when considering the cluster 

means of the first principal component score in a single subject.  Clustering was also performed 

based on overall teacher effectiveness values, and the results produced statistically different 
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clusters when considering the cluster means of the overall teacher effectiveness index value.  The 

analysis of the medium-sized Alabama district could not replicate the result of Chapter 3, 

however, by producing five statistically different clusters within a specific grade, subject, and 

year.  This can be attributed to the size of the district with the number of teachers per grade being 

less than the Chapter 3 example.  In many instances grades 5-8 would only have three teachers 

for a single subject.   In these situations, statistically different clusters did not provide useful 

information.  Clustering based on the overall teacher effectiveness index values always produced 

greater statistically different clusters since the pool of teachers was greater (both mathematics 

and reading teachers are included).  The number never exceeded four statistically different 

clusters, however.  The graphs of Figure 4.7 capture the discussion above for the Alabama 

district for all three years.   
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Figure 4.7:  Linear Relationship of the Number of Clusters and Teachers for the Alabama 

District 

An example follows of the Bonferroni confidence intervals for the difference of cluster means 

(Overall Index Value) for 4
th

 Grade, 2011, in the Alabama school district: 

Bonferroni (Dunn) t Tests for Overall Index Value 
 
                               Alpha                        0.05 
                               Error Degrees of Freedom       11 
                               Error Mean Square         0.11881 
                               Critical Value of t       3.20812 
 
                 Comparisons significant at the 0.05 level are indicated by ***. 
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                                     Difference 
                        CLUSTER         Between     Simultaneous 95% 
                       Comparison         Means    Confidence Limits 
 
                         4 - 3           3.4750      2.1982   4.7519  *** 
                         4 - 1           4.6573      3.4751   5.8394  *** 
                         4 - 2           6.7909      5.5546   8.0273  *** 
                         3 - 4          -3.4750     -4.7519  -2.1982  *** 
                         3 - 1           1.1822      0.4192   1.9453  *** 
                         3 - 2           3.3159      2.4713   4.1605  *** 
                         1 - 4          -4.6573     -5.8394  -3.4751  *** 
                         1 - 3          -1.1822     -1.9453  -0.4192  *** 
                         1 - 2           2.1337      1.4406   2.8268  *** 
                         2 - 4          -6.7909     -8.0273  -5.5546  *** 
                         2 - 3          -3.3159     -4.1605  -2.4713  *** 
                         2 - 1          -2.1337     -2.8268  -1.4406  *** 
 

Computing 95% Bonferroni simultaneous confidence intervals validates that each cluster is 

statistically different than every other cluster for the Overall Index Value.  For example, Cluster 

1 is statistically different than Clusters 2, 3, and 4.  Cluster 2 is statistically different than 

Clusters 3 and 4.  Lastly, Cluster 3 is statistically different than Cluster 4.  The result of placing 

teachers in effectiveness categories using their overall effectiveness index values is shown in 

Figure 4.8 for 4
th

 Grade, 2011, in the Alabama school district. 
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Figure 4.8:  4
th

 Grade, 2011, Effectiveness Categories for the Alabama District
3
 

                                                 
3
 Cluster values have been modified to ensure Cluster 1 represents extraordinary gains in student growth,…, and 

Cluster 4 represents poor gains.      
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Due to the nature of the NCES study, districts were analyzed separately with only 

beginning teachers included in the study.  In several instances districts did not have any or few 

beginning teachers of a specific grade, subject, and year.  Similar to the medium-sized Alabama 

district, the analysis of the NCES data could not replicate the result of Chapter 3 by producing 

five statistically different clusters within a specific grade, subject, and year.  The graphs of 

Figure 4.9 for a district in the NCES dataset also capture the linear relationship of the number of 

clusters and teachers for all three years.   

432

23

20

17

14

11

8

5

Number of Statistically Different Clusters

N
u

m
b

e
r 

o
f 

T
e

a
c
h

e
rs

3

4

5

Grade

Linear Relationship of Number of Clusters and Teachers by Grade

432

23

20

17

14

11

8

5

Statistically Different Clusters

N
u

m
b

e
r 

o
f 

T
e

a
c
h

e
rs

Math

Overall

Read

RMTEI

Linear Relationship of Number of Clusters and Teachers by RMTEI Value

 

Figure 4.9:  Linear Relationship of Number of Clusters and Teachers for a NCES District 

4.7.1  Comparison of Clustering Results with Phase I Metrics 

  Ward’s clustering method produced the results in Figure 4.10 and Figure 4.11 in which 

clustering was performed for each of Phase I metrics and the input from PCA (principal 

components 1 and 2).   
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Figure 4.10:  Mathematics Clustering Results for 4
th

 Grade, 2011, in the Alabama District
4
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Figure 4.11:  Mathematics Clustering Results for 3
rd

 Grade, 2006, in a NCES District
5
   

                                                 
4
 Values have been modified to ensure clusters across the variables are on the same scale (i.e., Cluster 1 represents 

extraordinary gains in student growth,…, and Cluster 4 represents poor gains).      

5
 Values have been modified to ensure clusters across the variables are on the same scale (i.e., Cluster 1 represents 

extraordinary gains in student growth,…, and Cluster 4 represents poor gains). 
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Once again a question must be asked; do the clusters provided by principal components 1 and 2 

provide better information than the clusters formed using only a single Phase I metric?  The 

clusters remain similar across the variables, and the clustering results using principal component 

1 and 2 successfully represent the collection of the metrics’ results with no one metric being 

identical to the clustering results using the input from PCA.  Therefore, the final clustering 

results provide better information, are not based on a single measure, and have mitigated the risk 

associated with crafting accurate effectiveness categories. 

4.8  Subject-Specific and Overall RMTEI Values 

 Five years of student and teacher data from a medium-sized Alabama district produced 

subject-specific and overall Risk-Mitigated Teacher Effectiveness Index values for grades 4-8 

for the 2008-09, 2009-10, and 2010-11 school years; see Appendix 3 for complete results.  Four 

years of student and teacher data from the NCES yielded subject-specific and overall Risk-

Mitigated Teacher Effectiveness Index values for grades 3-5 for the 2005-06, 2006-07, 2007-08 

school years; see Appendix 4 for complete results from a district in the NCES dataset.   An 

excerpt of the final results from the medium-sized Alabama district is shown in Table 4.9 with 

each 4
th

 grade teacher receiving a sparkline, “small, high-resolution graphics embedded in a 

context of words, numbers, images” to capture the index values over time (Tufte, 2006, p. 7). 
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Table 4.9:  Excerpt of Final Results Sorted by the 2009 Mathematics RMTEI value       

 

The ability to detect consistent teachers, positively or negatively, relative to their peers is readily 

achieved with the sparklines.  A positive index value places a teacher in the top half of the 

population of teachers in terms of attaining student growth.  The graph in Figure 4.12 allows the 

comparison of 4
th

 grade mathematics teachers over the same three year span. 
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Figure 4.12:  Final 4
th

 Grade Mathematics RMTEI values     

Based on Figure 4.12 the preliminary indication is that the index does not suffer from stability 

concerns from year to year due to the majority of teachers having modest movement of their 

mathematics-specific index value over time.  Nine of 14 teachers would fall into this category, 

which does not include teacher 5629 with a single value in 2011.    This notion as well as the 

precision of the index will be explored fully, however, in Sections 4.9 and 4.10.   

 Lastly, NCES analysis was undertaken to determine whether there is a statistical 

difference between induction groups (control vs. treatment) while considering their RMTEI 

values and length of induction.  The analysis required merging district RMTEI results by years of 

induction services (one or two years) for the districts’ treatment group.  Recall, Glazerman et al. 
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(2010)  did observe a statistically significant difference in student achievement with teachers 

who received two years of induction services (2010, p. 92).   

The grouping of ten (10) one-year districts led only to a significance of Treatment Status 

(one year of comprehensive induction versus the existing, less intensive training) for 

mathematics teachers in the third year (p-value=.0245).  Reading and Overall RMTEI values 

failed to reject 
0 1 2:H    at an  = 0.05 level for 2006, 2007, and 2008.  The grouping of 

seven (7) two-year districts led only to a significance of Treatment Status (two years of 

comprehensive induction versus the existing, less intensive training) for mathematics teachers in 

the third year (p-value=.0084).  Reading and Overall RMTEI values failed to reject 0 1 2:H    

at an  = 0.05 level for 2006, 2007, and 2008.  Considering the analysis above, this research 

concludes in the third year that there is a statistical difference between treatment and control 

teachers’ performance while considering their RMTEI mathematics values for both one-year and 

two-year districts.  As a result, this research asserts that comprehensive induction services for 

beginning teachers have a greater impact on student achievement in mathematics compared to 

reading.  An excerpt of the results is contained in Table 4.10. 
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Table 4.10:  Excerpt of Treatment Status Analysis  

 Dep Var:  Mathematics RMTEI 
Source:  Treatment (p-value) 

Dep Var:  Reading RMTEI 
Source:  Treatment (p-value) 

Dep Var:  Overall RMTEI 
Source:  Treatment (p-value) 

Year 
Districts 

2006 2007 2008 2006 2007 2008 2006 2007 2008 

One-year 
districts 

0.3643 0.2989 0.0245 0.8439 0.1091 0.8343 0.5240 0.1446 0.1315 

Two-year 
districts 

0.1399 0.9192 0.0084 0.8471 0.6842 0.8470 0.4822 0.7763 0.0631 

4.9  Precision of the Risk-Mitigated Teacher Effectiveness Index   

    As stated in Section 2.4 small sample sizes present challenges for measuring teacher 

effectiveness.  Precision of the results still remain an issue, however, for middle school teachers 

who may teach a greater number of students compared to an elementary school teacher who may 

teach a single class multiple subjects.  Lockwood, Louis, and McCaffrey (2002) investigated the 

precision of teacher effects from value-added models and found that variation in most scenarios 

caused “estimated rankings [to] be sufficiently imprecise to preclude distinguishing among all 

but the most extreme teachers” (McCaffrey et al., 2004, p. 107).    Therefore, one of the primary 

objectives of this research is to overcome this lack of precision when measuring teacher 

effectiveness. 

Since teachers’ Phase I metrics for a given subject, grade, and year have varying units of 

measurement, the Teacher Effectiveness Index values were obtained from the standardized 

version of those metrics by calculating the eigenvectors of the metrics’ correlation matrix.  The 

correlation matrix captures the variation of the Phase I metrics.  The eigenvectors of the 

correlation matrix form the four distinct principal components.   The variance of the principal 

component scores from the dominant principal component is the largest eigenvalue associated 

with the corresponding eigenvector.  This eigenvalue absorbed the preponderance of the 

variation of the system, and the principal component scores from the dominant principal 
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component became teachers’ subject-specific RMTEI values.  Section 4.7 demonstrated that the 

results of cluster analysis consistently produced statistically different clusters when considering 

the cluster means of the first principal component score in a single subject.  Clustering also 

produced statistically different clusters based on the overall teacher effectiveness index values, 

thereby allowing teacher effectiveness to be measured in an overall and subject-specific manner.         

After compiling the final results for all subject-specific and overall Risk-Mitigated 

Teacher Effectiveness Index values, analysis was undertaken to ascertain the precision of the 

RMTEI.  Considering the results following a specific year in which teachers taught both 

mathematics and reading, teachers earned two subject-specific index values and an overall 

effectiveness index value for that year.  An excerpt of the final results is contained in Table 4.9.  

To form an analogy, the values were treated as automobile part measurements in a 

manufacturing process where one could determine whether the process was in a state of 

statistical control through the use of a control chart.  With assessments over three years, an 

individual teacher could consist of a subgroup of three Mathematics, Reading, or Overall RMTEI 

values.  All teachers, acting as subgroups, then contributed to being able to determine whether 

the RMTEI process was in a state of statistical control.  “The purpose of any control chart is to 

identify occurrences of special causes of variation that come from outside of the usual process” 

since a stable process only contains variation from common causes (Johnson & Wichern, 2007, 

p. 239).  The analysis produced the control charts in Figure 4.13 and Figure 4.14 for 4
th

 grade 

and 3
rd

 grade mathematics teachers, respectively.      
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Figure 4.13:  Control Chart Analysis for Alabama 4
th

 Grade Mathematics Teachers     
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Figure 4.14:  Control Chart Analysis for 3
rd

 Grade Mathematics Teachers in a NCES District       
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The charts in Figure 4.13 and Figure 4.14 of the process mean and process range over the 

span of the mathematics teachers as subgroups reveal two noteworthy items.  Firstly, the R-

Chart, which measures within-subgroup variability, remains in control.  Secondly, the x chart, 

which measures between-subgroup variability, determines that several teachers fall outside of the 

control limits.  The following paragraph from Trietsch (1999) articulates why the control charts 

demonstrate the adequacy of the RMTEI process for these grades, subject, and districts:  

“As discussed in AT&T (1958), control charts may be used to verify whether a given 

measurement instrument is adequate for a particular job.  The main idea there is that 

multiple measurements of the same item are used as subgroups, and if the measurement 

instrument is adequate, many points in the x chart should fall outside the control limits.  

In other words, we expect the variation between parts to be large relative to the range of 

multiple measurements of the same part” (1999, p. 38).   

4.10  Stability of the Risk-Mitigated Teacher Effectiveness Index   

As stated in Section 2.4, McCaffrey, Sass, and Lockwood (2009) compared the teacher 

effectiveness results from two successive cohorts of students in four counties of Florida 

elementary and middle schools and found low correlations of teacher effectiveness between the 

two years (Braun et al., 2010, pp. 45–46).  The literature suggests that teacher effectiveness 

measurement instruments lack stability from year to year.  Therefore, one of the primary 

objectives of this research is to overcome this lack of stability and demonstrate high correlation 

between the subject-specific and overall Risk Mitigated Teacher Effectiveness Index values for 

the Alabama and NCES datasets in 2009-2011 and 2006-2008, respectively.  

 The first three years of data, 2007-2009, were used to generate the 2009 subject-specific 

and overall Risk-Mitigated Teacher Effectiveness Index values for the medium-sized Alabama 

School district.  Years 2010 and 2011 were used to demonstrate the stability and precision of the 

Effectiveness Index values.  Effectiveness index values for grades 4-8 were determined for 2010 
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and 2011 based on 2007-2010 and 2007-2011 data, respectively.  These index values were 

compared to the index values obtained from 2009 for the same teachers.  For example, Mr. Jones 

taught 7
th

 grade mathematics to cohort 2014 in 2009 and received an effectiveness index.  This 

value can be compared to the effectiveness index obtained following the 2010 school year in 

which he taught 7
th

 grade mathematics to cohort 2015.  Collectively, effectiveness index values 

were generated for all teachers in grades 4-8 for 2009, 2010, and 2011.  Stability analysis is 

shown in Figure 4.15 and Table 4.11 for mathematics teachers in the Alabama district. 

   

 

Figure 4.15:  Excerpt of Final Stability Analysis for the Alabama District  
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Table 4.11:  Correlation of Yearly RMTEI Math Values for the Alabama District 

 Mathematics RMTEI 
Pearson Correlation Coefficient 

(p-value) 

 year 2009 2010 2011 

Mathematics 
RMTEI 

2009 1.0000 

 

.4858 

(.0138) 

.6317 

(.0009) 

2010  1.0000 .6448 

(.0005) 

2011   1.000 

 

As the analysis suggests in Table 4.11, mathematics index values remained stable with 

statistically significant correlation between 2009 and 2010, 2009 and 2011, and 2010 and 2011.  

Reading index values remained stable with statistically significant correlation between 2009 and 

2010 as well as between 2010 and 2011.  Reading index values, however, did not demonstrate 

statistically significant correlation between 2009 and 2011.  The reason for this fact remains 

elusive although future study as discussed in Chapter 6 may suggest that the reading portion of 

the ARMT may suffer from faulty test-forms equating.  As a result, overall RMTEI values 

remained stable with statistically significant correlation between 2009 and 2010 as well as 

between 2010 and 2011.  The correlation of overall RMTEI values between 2009 and 2011 was 

almost statistically significant at an  = 0.05 with a p-value = .0507.  Table 4.12 summarizes the 

results for yearly reading and overall RMTEI values.    
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Table 4.12:  Correlation of Yearly Reading, Overall RMTEI Values for the Alabama District   

 Reading RMTEI 
Pearson Correlation Coefficient 

(p-value) 

Overall RMTEI 
Pearson Correlation Coefficient 

(p-value) 

 year 2009 2010 2011 2009 2010 2011 
Reading 
RMTEI 

2009 1.0000 .3853 

(.0268) 

.0645 

(.7491) 

   

2010  1.0000 .3769 

(.0481) 

   

2011   1.0000    

Overall 
RMTEI 

2009    1.0000 .4344 

(.0036) 

.3236 

(.0507) 

2010     1.0000 .4127 

(.0081) 

2011      1.0000 

       

 In addition to testing whether correlation values differed from zero with a null hypothesis 

of 0 : 0H   (depicted in Table 4.11 and Table 4.12), this research was interested in using a 

Fisher’s z-transformation to test differences between the correlations.  For example, is there a 

statistical difference between the correlation of 2009-2010 and 2009-2011 for Mathematics 

RMTEI values?  A desirable feature of the RMTEI process would be no statistical significance in 

the difference of correlation values.  Conducting a Fisher’s z-transformation of the correlation 

values with the corresponding hypotheses, 

0 2009,2010 2009,2011 0 2009,2010 2010,2011 0 2009,2011 2010,2011: 0, : 0, : 0H H H           , demonstrated 

no statistical difference between the correlation values in each set of Mathematics, Reading, and 

Overall RMTEI values for the Alabama district.          

The first two years of the NCES data, 2005-2006, were used to generate the 2006 subject-

specific and overall Risk-Mitigated Teacher Effectiveness Index values for 17 school districts.  

Years 2007 and 2008 were used to demonstrate the stability and precision of the Effectiveness 

Index values.  Effectiveness Index values for grades 3-5 were determined for 2007 and 2008 

based on 2006-2007 and 2007-2008 data respectively.  These index values were compared to the 
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index values obtained from 2006 for the same teachers.  Collectively, Effectiveness Index values 

were generated for all teachers in grades 3-5 for 2006, 2007, and 2008.  Stability analysis is 

shown in Figure 4.16 and Table 4.13 for mathematics teachers from the NCES districts.  

 

Figure 4.16:  Excerpt of Final Stability Analysis for NCES Data 

Table 4.13:  Correlation of Yearly Mathematics RMTEI Values for NCES Data 

 Mathematics RMTEI 
Pearson Correlation Coefficient 

(p-value) 

 year 2006 2007 2008 

Mathematics 
RMTEI 

2006 1.0000 

 

.3564 

(<.0001) 

.1906 

(.0825) 

2007  1.0000 .2838 

(.0093) 

2008   1.000 
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As the analysis suggests in Table 4.13, mathematics index values remained stable with 

statistically significant correlation between 2006 and 2007 as well as between 2007 and 2008.  

Reading index values remained stable with statistically significant correlation between 2006 and 

2007 as well as between 2007 and 2008.    Reading and Mathematics index values, however, did 

not demonstrate statistically significant correlation between 2006 and 2008.  A reason for this 

can likely be attributed to the two years of comprehensive induction services obtained by 

approximately half of the treatment teachers who generated statistically significant difference in 

student achievement in the third year compared to the control group of teachers (Glazerman et 

al., 2010, p. 92).   Overall RMTEI values, however, remained stable with statistically significant 

correlation between all three years.  Table 4.14 summarizes the results for yearly reading and 

overall RMTEI values.    

Table 4.14:  Correlation of Yearly Reading and Overall RMTEI Values for NCES Data 

 Reading RMTEI 
Pearson Correlation Coefficient 

(p-value) 

Overall RMTEI 
Pearson Correlation Coefficient 

(p-value) 

 year 2006 2007 2008 2006 2007 2008 

Reading 
RMTEI 

2006 1.0000 .2823 

(.0016) 

.1597 

(.1418) 

   

2007  1.0000 .2503 

(.0217) 

   

2008   1.0000    

Overall 
RMTEI 

2006    1.0000 .3819 

(<.0001) 

.2432 

(.0202) 

2007     1.0000 .3144 

(.0030) 

2008      1.0000 

   

In addition to testing whether the NCES correlation values differed from zero with a null 

hypothesis of 0 : 0H   (depicted in Table 4.13 and Table 4.14), this research used a Fisher’s z-

transformation to test differences between the correlations.  Conducting a Fisher’s z-

transformation of the correlation values with the corresponding hypotheses, 
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0 2006,2007 2006,2008 0 2006,2007 2007,2008 0 2006,2008 2007,2008: 0, : 0, : 0H H H           , demonstrated 

no statistical difference between the correlation values in each set of Mathematics, Reading, and 

Overall RMTEI values for the NCES dataset.          

4.10.1  Comparison of Stability Results with Phase I Metrics 

Correlation analysis produced the results of Figure 4.17 and Figure 4.18 in which 

correlation coefficients were calculated for each of the mathematics Phase I metrics and 

Mathematics RMTEI values.  Figure 4.17 indicates the correlation of the mathematics values 

between 2009 and 2010 as well as between 2009 and 2011.       

 

Figure 4.17:  Mathematics Correlation Results in the Alabama District for 2009 

Figure 4.18 indicates the correlation between the mathematics values of 2010 and 2011. 
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Figure 4.18:  Mathematics Correlation Results in the AL District between 2010 and 2011 

The purpose of the preceding analysis is to compare the stability results of the RMTEI values 

with the Phase I metrics; are the RMTEI values more stable than a single Phase I metric?  The 

results are mixed.  The Mathematics RMTEI values attained greater correlation than the LMM 

metrics but fell below both QR metrics between 2009 and 2010 as well as between 2009 and 

2011.  The Mathematics RMTEI values attained greater correlation than all of the mathematics 

Phase I metrics between 2010 and 2011.  Reading values also produced mixed results.  The 

Reading RMTEI values attained greater correlation than all of the reading Phase I metrics for the 

values between 2009 and 2010 as well as between 2009 and 2011.  The Reading RMTEI values, 

however, only attained greater correlation than LMM Teacher Effect and Median SGP between 

2010 and 2011.      

Figure 4.19 indicates the correlation of the mathematics values between 2006 and 2007 as 

well as between 2006 and 2008 for a district in the NCES dataset. 
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Figure 4.19:  Mathematics Correlation Results for 2006 in a NCES District  

Figure 4.20 indicates the correlation between the mathematics values of 2007 and 2008 for the 

same district in the NCES dataset. 

 

Figure 4.20:  Mathematics Correlation Results between 2007 and 2008 for a NCES District    

Once again, the results are mixed.  The Mathematics RMTEI values attained greater correlation 

than all of the Phase I metrics between 2006 and 2007, but fell below only Median SGP between 
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2006 and 2008.  The Mathematics RMTEI values, however, only attained greater correlation 

than the LMM metrics between 2007 and 2008.  The Reading RMTEI values attained greater 

correlation than all of the reading Phase I metrics for the values between 2006 and 2007; 

however, the Reading RMTEI values fell below all of the Phase I metrics for the values between 

2006 and 2008 and between 2007 and 2008. 

The stability results from the Alabama and NCES districts demonstrate that the RMTEI 

process improved the stability of teacher effectiveness measurement while not fully solving the 

problem of poor stability from year to year.  The RMTEI process did not fully overcome the 

unreliable nature of the Phase I metrics when applied individually.  Testing revealed, however, 

that the correlation between years was statistically different from zero while not being 

statistically different from each other.   

4.11  Summary 

The methodology of Chapter 3 was placed into practice in Chapter 4 by examining five 

years of student and teacher data from a medium-sized Alabama school district.  Overall and 

subject-specific Risk-Mitigated Teacher Effectiveness Index values were calculated for grades 4-

8 for the 2008-09, 2009-10, and 2010-11 school years.  Analysis of the NCES data yielded 

overall and subject-specific Risk-Mitigated Teacher Effectiveness Index values for the 2005-06, 

2007-08, 2008-09 school years.  Analysis was also undertaken in Chapter 4 to confirm the 

desired outcome of a precise and stable teacher effectiveness index.       

The NCES RMTEI values for the 2005-06 school year were calculated based on a two-

year process instead of three years (two years of data to generate a model from the previous 

cohort with application of the model in the current, third year).  Linear Mixed Model and 

Quantile Regression Value-Added Measures were calculated based on a model generated from 
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the current year cohort and not the previous cohort.  Linear Mixed Model Teacher Effect and 

Median Student Growth Percentile were calculated as previously discussed in Chapter 3.  All 

four metrics utilized a single testing history of two consecutive years (2005 and 2006).   

The NCES RMTEI values for the 2006-07 and 2007-08 schools years were calculated in 

the same fashion as the medium-sized Alabama district while utilizing only a single testing 

history group of two years.  Analysis of the NCES data, which consists of 17 urban districts from 

across the United States, remedied the limitation of only exploring a medium-sized district in 

Alabama.  In addition the NCES data also overcame the Alabama data limitation of only being 

from a suburban area.     

Recall that the Alabama State Department of Education desires to place teachers into “at 

least” four categories following the development of an objective measure of teacher effectiveness 

based on student growth that augments its presently used formative assessment, 

EDUCATEAlabama (“Alabama’s Race,” 2010, p. 89).  Teachers can be assigned to more 

subject-specific effectiveness categories in grades with a greater number of teachers (large 

districts, evaluating more than one district at a time, or grades within elementary schools).  Also, 

teachers can be assigned to more effectiveness categories using the overall effectiveness index 

since the pool of teachers is greater (includes both mathematics and reading teachers).  In the end 

the evidence suggests fixing the number of clusters at a maximum of four for a medium-sized 

district.   A modification of the initially proposed categories in Section 1.4 complements the 

clusters found in Section 4.7: 

1.  Extraordinary gains in student growth.  

2.  Meets student growth.   

3.  Did not meet student growth.  

4.  Poor gains in student growth. 
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Chapter 5 :  Assessment of Teacher Evaluation in Alabama   

 

5.1  Introduction   

 The Alabama State Department of Education (ALSDE) implemented the Professional 

Education Personnel Evaluation (PEPE) system for administrators and teachers in 1993 and 1997 

respectively (“AL PEPE for Teachers,” 1998, pp. 9–10).  The ALSDE then implemented 

EDUCATEAlabama to replace PEPE as the educator evaluation system for typical classroom 

teachers prior to the 2010-2011 School Year (SY) (“EDUCATEAlabama Webinar,” 2011, p. 8).  

School counselors, school librarians, Alabama Reading Initiative Reading Coaches, and all 

special educators (pre-K, psychometrist/school psychologists, speech-language pathologists, and 

“special educators that teach students who generally take the Alabama Alternate Assessment”) 

will be integrated into the EDUCATEAlabama evaluation system for the 2011-2012 SY 

(“Alabama Professional,” 2011, sec. 2).   School administrators will remain under the PEPE 

system until the ALSDE finalizes the development of a new administrator evaluation system, 

LEADAlabama, at a date to be published (“EDUCATEAlabama Webinar,” 2011, p. 46). 

 Prior to the implementation of EDUCATEAlabama, the PEPE system led school 

administrators to provide non-tenured teachers with annual summary scores for eight 

competencies.  These eight competencies were then summed to provide a composite competency 

score to be used for summative purposes.  Tenured teachers received a composite competency 

score every year, two years, or three years at the discretion of the local school system 

(“Professional Education,” 2008, p. 15).   
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5.2  Professional Education Personnel Evaluation (PEPE) 

The PEPE system required instructional leaders to evaluate teachers’ performance against 

eight competencies “which effective educators are known to possess” (“Professional Education,” 

2008, p. 1).  The competencies include:  Preparation for Instruction, Presentation of Organized 

Instruction, Assessment of Student Performance, Classroom Management, Positive Learning 

Climate, Communication, Professional Development and Leadership, and Performance of 

Professional Responsibilities (“Professional Education,” 2008, p. B–3–B–8).  A four point scale 

was used to score all eight competencies: 

1)  “Unsatisfactory - Indicates the educator's performance in this position requirement is 

not acceptable.  Improvement activities must be undertaken immediately. 

2)  Needs Improvement - Indicates the educator’s performance sometimes but not always 

meets expectations in this position requirement. Improvement activities are required for 

performance to consistently meet standards. 

3)  Area of Strength - Indicates the educator consistently meets and sometimes exceeds 

expectations for performance in this position requirement. Performance can be improved 

in the area(s) indicated, but current practices are clearly acceptable. 

4)  Demonstrates Excellence - Indicates the educator does an outstanding job in this 

position requirement. No area for improvement is readily identifiable” (“Professional 

Education,” 2008, p. 19). 

Multiple observations, an interview, and a review supported the final summary score for each 

competency.  The eight competencies were then summed to provide a composite competency 

score for each teacher. 

5.3  EDUCATEAlabama 

 “EDUCATEAlabama is a formative system designed to provide information about an 

educator’s current level of practice within the Alabama Continuum for Teacher Development, 

which is based on the Alabama Quality Teaching Standards (AQTS)” (“EDUCATEAlabama,” 

http://alex.state.al.us/leadership/alqts_full.pdf
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n.d.).  The Alabama Continuum for Teacher Development provides benchmarks of performance 

for each teaching standard along the teacher continuum:  pre-service, beginning, emerging, 

applying, integrating, and innovating (“Alabama Continuum,” 2009).  The system is a means to 

encourage dialogue between the educator and the instructional leader.   

 EDUCATEAlabama begins with an educator self-assessment that is completed at the 

beginning of the school year based on the AQTS.  The educator and instructional leader then 

complete a Professional Learning Plan focused on a select number of areas that demand the 

greatest attention.  Based on observations and continued dialogue throughout the school year, 

evidence of educator growth is recorded for the corresponding areas of the Professional Learning 

Plan.   Instructional leaders close educators’ evaluations following the conclusion of the school 

year and open a new evaluation prior to the beginning of the next school year.  The 

EDUCATEAlabama process does not generate summative evaluation data 

(“EDUCATEAlabama Webinar,” 2011). 

 Based on the focus of U.S. Education policy to close achievement gaps and research 

demonstrating that teachers have the greatest impact on student learning compared to other 

factors controlled by school systems, Alabama has moved away from measures that offer teacher 

accountability and development (PEPE) and focused entirely on teacher development 

(EDUCATEAlabama).  This dissertation research intends to provide evidence of whether NCES 

teacher observational data from 2006 are a stable predictor of teachers’ student achievement 

gains and correlated with the Risk-Mitigated Teacher Effectiveness Index.  The desired outcome 

is evidence of quantitative, observational evaluations being a stable predictor of student 

achievement gains, a complement to the Risk-Mitigated Teacher Effectiveness Index, and an 

appropriate tool for Alabama to provide teacher accountability and development.      
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5.4  NCES Teacher Effectiveness Scoring Analysis 

 Teacher observational data obtained from 17 urban school districts from 2006 contain 

scoring of effectiveness practices for approximately 700 beginning teachers that received either 

comprehensive teacher induction or the existing, less intensive induction services provided by 

the district.  Student Achievement data from the same 17 school districts will be used to provide 

evidence of whether the observational effectiveness scoring is a stable predictor of teachers’ 

student achievement gains and correlated with the Risk-Mitigated Teacher Effectiveness Index.    

Data from cohort 1, 2005-2006, were used to generate Risk-Mitigated Teacher 

Effectiveness Index values for all teachers with pre-test and post-test student achievement scores.  

The 2006 teachers who then received a classroom observation (all teachers who taught literacy 

but not English as a Second Language, special education, or those with one year or greater 

experience) were subsequently analyzed.  Teachers were not separated by grade since students’ 

z-scores allow comparison of teachers across grades.  Both treatment and control groups were 

included.  Approximately 180 teachers met all requirements. 

“Observers scored teachers in each of three constructs based on a set of items that are 

believed to be indicators of good practice: implementation of a lesson, content of a lesson, and 

classroom culture” (Glazerman et al., 2010, p. 32).  The three domains of good teaching practice 

consisted of multiple indicators that were measured on a five-point scale:  (1) no evidence, (2) 

limited evidence, (3)  moderate evidence, (4) consistent evidence, and (5) extensive evidence.  

Each domain then received an overall composite score consisting of the average of the domain’s 

indicators (Glazerman et al., 2010, p. 32).   

Concurrent to the development of the RMTEI values, NCES teacher effectiveness scores 

in 2006 were analyzed as predictors for student achievement gains in 2006.  Specifically, teacher 
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composite scores for Content of a Lesson, Classroom Culture, and Implementation of a Lesson 

(CSLITIMP) were examined as predictors for student reading gains.  The results were clear that 

the observational evaluations were a strong predictor for student achievement gains in reading 

with each composite score being statistically significant at the 0.05  level.  P-values for 

Content of a Lesson, Classroom Culture, and Implementation of a Lesson were .0136, < .0001, 

and .0003, respectively.    

In order to suggest a relationship between observational evaluations and an objective 

measure of teacher effectiveness, a requirement exists to ascertain the correlation of NCES 

teacher effectiveness scores with the Risk-Mitigated Teacher Effectiveness Index computed for 

the 2005-2006 school year.  Recall Alabama’s Race to the Top Phase II application that 

expressed the need for correlated components of a teacher evaluation system.  As a result, Figure 

5.1 and Table 5.1 show a comparison of the RMTEI values for reading against the observational 

evaluations. 
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Figure 5.1:  Scatter Plots of RMTEI Reading Values versus Observational Evaluations 

Table 5.1:  Correlation of RMTEI Reading Values and Observational Evaluations  

 Observational Domains 
Pearson Correlation Coefficient 

(p-value) 

Domain 
RMTEI 

Content of 
Lesson 

Classroom 
Culture 

Implementation 
of Lesson 

r2006 .2289 

(.0019) 

.3266 

(<.0001) 

.1239 

(.0965) 

 

The reading index values showed statistically significant correlation at an  = 0.05 with Content 

of a Lesson and Classroom Culture from the 2006 classroom observations.  Reading index values 

showed near statistically significant correlation with Implementation of a Lesson.  These 

correlation results also confirm the precision of RMTEI values.  
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As a final bit of investigation for the group of literacy teachers that received 

observational evaluations in 2006, analysis was undertaken to determine whether there is a 

statistical difference between induction groups (control vs. treatment) while considering their 

RMTEI values.   Glazerman et al. did not observe statistically significant differences between 

treatment and control teachers’ performance on observational scoring (2010, p. xxxi).   Years of 

induction services (one or two years) did not merit consideration for the treatment group since 

only one year had transpired when the observational evaluations took place.  This research 

similarly concludes there is not a statistical difference between treatment and control teachers’ 

performance while considering their RMTEI reading values.  Conducting an ANOVA to test if 

teachers’ Treatment Status affects the RMTEI reading values demonstrated that one fails to 

reject 0 1 2:H    at an  = 0.05 level.   

5.5  Summary 

The Alabama State Department of Education has expended significant resources 

developing EDUCATEAlabama as the next evolution of teacher evaluation.  This process 

provides an approach for instructional leaders to communicate with educators, to chart a path for 

development, and to make a final assessment of the established goals.  There is no accountability 

mechanism in place with this formative assessment that is directly tied to student growth, 

however.  Alabama is heading in the opposite direction of the strategical framework established 

by the U.S. Department of Education in “A Blueprint for Reform”.   

 According to Alabama’s Race to the Top Phase II application, the ultimate desire is 

correlated components of a teacher evaluation system tied to student growth that are able to place 

teachers into “at least” four effectiveness categories (“Alabama’s Race,” 2010, p. 89).    The Risk 
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Mitigated Teacher Effectiveness Index along with the observational assessment system in the 

Teacher Induction Study provide the Alabama State Department of Education with an approach 

to meet its stated need. 
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Chapter 6 :  Research Summary   

 

6.1  Conclusion 

Alabama's Race to the Top Phase II application clearly stated a desire to research and 

develop a process to measure teacher effectiveness based on student growth with Race to the Top 

funds.  Alabama came in last place out of the 36 states that submitted Phase II applications, thus 

it was not granted funds by the U.S. Department of Education.  Dr. Morton, the former State 

Superintendent of Education, stated that despite knowing Alabama’s application would not be 

competitive in Phase II, it would serve as a foundation for needed reforms.  As a result, the 

primary objective of this research was to fill the need of augmenting Alabama’s formative 

educator evaluation system, EDUCATEAlabama, with a precise and stable teacher effectiveness 

index based on student growth.  This was accomplished. 

A review of the literature to evaluate the effectiveness of teachers highlighted two 

general techniques.  Firstly, LMMs produce estimates of the random teacher effect in the form of 

EBLUPs.  Secondly, LMMs produce predictions of student achievement scores in order to 

calculate teachers’ value-added measures by comparing the students’ actual achievement scores 

with the predicted scores.   

Colorado calculated SGPs using Quantile Regression to determine school effectiveness 

by comparing the medians of schools’ student growth percentiles.   This research used Quantile 

Regression to determine a third objective measure of teacher effectiveness by calculating a 

growth percentile for each student.   The median of a teacher’s aggregated student growth 

percentiles was calculated and compared to other teachers’ medians within the population.  
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Lastly, a fourth method to measure teacher effectiveness was developed by combining Quantile 

Regression with the LMM practice of calculating achievement score predictions to derive 

teachers’ value-added measures.  The 0.5 quantile model generated by Quantile Regression 

produced predictions of student achievement scores in order to calculate teachers’ value-added 

measures by comparing the students’ actual achievement scores with the predicted scores. 

The development of the Risk-Mitigated Teacher Effectiveness Index comprised three 

phases.  Phase I entailed calculating the four teacher effectiveness metrics described above: 

 1)  Linear Mixed Model Teacher Effect - statistical prediction of the relative value of a 

particular teacher by measuring the teacher deviation from the district mean; greater is 

better. 

2)  Linear Mixed Model Value-Added Measure - a teacher’s average of the difference 

between students’ actual achievement and predicted achievement had they been taught by 

the average teacher in the district; greater is better. 

3)  Median Student Growth Percentile - serves as an indicator of student growth 

associated with each teacher by calculating the median of a teacher’s student growth 

percentiles.  A student’s growth percentile is obtained by determining what percentage of 

other students had less growth in testing achievement; greater is better. 

4)  Quantile Regression Value-Added Measure - a teacher’s average of the difference 

between students’ actual achievement and predicted achievement of a typical student 

within the district; greater is better. 

Subject-specific and overall teacher index values were calculated in Phase II with an analytical 

process involving principal component analysis that used the four teacher effectiveness metrics 

determined in Phase I.   

Since teachers’ Phase I metrics for a given subject, grade, and year have varying units of 

measurement, the principal components were obtained from the standardized version of those 

metrics by calculating the eigenvectors of the metrics’ correlation matrix.  The variance of the 

principal component scores from the dominant principal component is the largest eigenvalue 

associated with the corresponding eigenvector.  This eigenvalue absorbs the preponderance of 
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the variation of the system, and the principal component scores from the dominant principal 

component became teachers’ subject-specific RMTEI values.  If teachers instruct mathematics 

and reading, then an overall teacher effectiveness index was obtained by taking the mean of their 

two subject indexes.  Otherwise, the single, subject index was the teachers’ overall values.   

The principal components served as the inputs to Phase III, Cluster Analysis.  Since the 

RMTEI process produces a dominant principal component that continually leads to elliptically 

shaped clusters in two dimensions, Ward’s clustering method, which expects elliptically shaped 

clusters, was employed as a general prescription of the RMTEI process.  Ward’s clustering 

method illuminated teachers with similar characteristics (principal components) in the data, 

which provided better assignments to teacher effectiveness categories compared to clustering 

with a single Phase I metric.  Categories can be then used to identify teachers who employ 

pedagogical strategies or exhibit certain behaviors that positively impact student learning.     

In order to accomplish the primary objective of this research, the following sub-

objectives were completed: 

1)  Develop techniques with Alabama’s database infrastructure to streamline the process 

of establishing longitudinal data from existing yearly data in order to make this 

information readily accessible to school districts (see Appendix 1). 

2)  Develop techniques with Alabama’s database infrastructure to streamline the process 

of linking student achievement data with teachers in order to make this information 

readily accessible to school districts (see Appendix 1). 

 3)  Confirm or modify Alabama’s effectiveness rating categories based on being able to 

detect statistically different groups of teachers by effectiveness.  

4)  Report all teachers in accordance with the rating categories for an Alabama school 

district using the newly developed objective effectiveness index.  

5)  Provide an assessment of Alabama’s educator evaluation system, compare and 

contrast the results of an objective effectiveness index with observational teacher 

evaluation data, and propose an observational, summative assessment for Alabama that is 
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a predictor of student achievement gains and correlated with an objective effectiveness 

index. 

Specifically addressing sub-objective five (5), Alabama’s educator evaluation system, 

EDUCATEAlabama, does not contain an accountability mechanism directly tied to student 

growth.  It is not in compliance with “A Blueprint for Reform”.  The Risk Mitigated Teacher 

Effectiveness Index provides the Alabama State Department of Education (ALSDE) with an 

objective measure of teacher effectiveness.  It is correlated with the observational assessment 

system in the Teacher Induction Study.  The combination of these two assessment instruments 

that are based on student growth provides the ALSDE with a structure to meet its Race to the 

Top requirement of a new evaluation system with correlated components.   

6.2  Limitations of the Risk Mitigated Teacher Effectiveness Index 

As with any endeavor whose purpose is to improve the quality of an existing process, 

there are always certain aspects of that endeavor that cannot be fully addressed or improved.  

The Risk Mitigated Teacher Effectiveness Index is no exception; however, the Index’s purpose 

by definition is to reduce the negative consequences that exist in the literature when measuring 

teacher effectiveness.  Many of those negative consequences have been addressed in the 

preceding sections, but some limitations of the process remain and deserve discussion. 

6.2.1  Limitations in Reporting 

The RMTEI process places teachers into categories following the development of an 

objective measure of teacher effectiveness based on student growth.  The range of categories 

extends from extraordinary to poor gains of student growth.  Despite the importance of knowing 

such information, a limitation exists in its reporting by not being able to explicitly state why 
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certain teachers have appropriate growth whereas others do not.  Although this is characteristic 

of many teacher effectiveness measuring instruments, education leaders would then have to 

conduct observational evaluations to ascertain the nature of a teacher’s performance that leads to 

the corresponding student growth.   

    Secondly, measuring teacher effectiveness through the use of student testing data 

precludes conducting assessments of teachers in certain subjects and grades.  While mathematics 

and reading testing typically commence yearly for grades 3-8, the lack of yearly testing of other 

subjects does not allow student growth to be measured or linked to a teacher.  Therefore, the 

application of the RMTEI process can rarely take place beyond the eighth grade or in subjects 

other than mathematics and reading due to data limitations.  Alabama presently administers the 

tests in Table 6.1 (“Alabama Student Assessment Program Overview,” n.d.). 

Table 6.1:  Alabama Student Assessment Program Overview   

Grades Subject Test 

3-8 Reading and Mathematics Stanford 10 and ARMT 

9-12 Mathematics, Reading, 

Language, Social Studies, 

Science/Biology 

Alabama High School 

Graduation Exam (AHSGE) 

5, 7, and 10 Writing Alabama Direct Assessment 

of Writing (ADAW) 

5 and 7 Science Alabama Science Assessment 

(ASA) 

8 English, Mathematics, 

Reading, and Science 

EXPLORE 

 

Lastly, with the creation of mutually exclusive testing histories for the Alabama district 

as described in Section 4.2.2 for LMMs (NCES students only formed the minimum, two year 

testing history), all students became part of a testing history except those without a recorded test 

in the previous year and those who did not have a linked teacher.  The lack of a linked teacher 
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only applies to the Alabama district as the NCES data had all teachers linked with their students’ 

achievement scores.  Therefore, the excluded students fell under one of the three classifications: 

1)  A lone test in the current year (students new to the school district); 

2)   No recorded test for the previous year (students who may have been in the district for 

an extended period but failed to take the previous year test); and 

3)  A teacher could not be linked to the student for the current year, which only applies to 

the Alabama district (for unknown reasons the scheduling database did not contain the 

student despite the student having recorded test scores).  

All students in the testing histories then contributed to the creation of the two Phase I LMM 

metrics.  Median Student Growth Percentiles and Quantile Regression Value-Added Measures 

on the other hand were calculated from students within a single testing history of two years.  

Once again, select students were omitted from the analysis.  In this case, however, only students 

without a linked teacher in the current year were omitted (Alabama district only).  As a result, 

the research findings apply only to students likely to be tested and free of errors with regard to 

recording student schedules.    

6.2.2  RMTEI Values and Small Populations of Teachers 

Alabama’s effectiveness index values in 2009 and 2010 were analyzed as predictors for 

student achievement gains in 2010 and 2011, respectively.  The analysis paints a clear picture 

that the effectiveness index values are statistically significant predictors of student achievement 

gains for larger populations of teachers for each grade.  For example, grades 5-8 would routinely 

have only three teachers for a single subject, thus the significance of the index values was rarely 

achieved.  Grade 4, however, typically consisted of 14 teachers and produced subject-specific 

and overall effectiveness index values that were statistically significant predictors of student 

achievement gains for the next school year as stated above.  The lone exception was the 2009 4
th
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grade reading index value that was not a statistically significant predictor of reading gains for 

2010 with a p-value of .0843.   

 The precision of the RMTEI, as demonstrated with control charts in Section 4.9, was 

limited to larger populations of teachers.  Specifically, when an individual teacher consisted of a 

subgroup of three or fewer effectiveness values and was compared to few teachers (e.g., two 

teachers per subject in grades 5-8 for the Alabama district) , the x chart, which measures 

between-subgroup variability, determined that most teachers fell within the control limits and did 

not adequately distinguish teachers.   The R-Chart, which measures within-subgroup variability, 

consistently remained in control as desired.   

6.3  Future Study   

As stated in Section 4.1 a significant amount of energy was put forth by this research to 

obtain quality student and teacher data from the ALSDE and Alabama Local Education 

Agencies.  Much of the energy expenditure was of little benefit to this research as only a single 

medium-sized district provided the requisite data to fully implement the RMTEI process.  As a 

result, additional data was obtained from the NCES.  Alabama’s Phase II Race to the Top 

application clearly stated a desire to create partnerships with the research institutions of the State 

and to make data readily available to them.  The ALSDE must take action to accomplish these 

goals.   

Future study remains whereby additional data must be obtained from Alabama to fully 

investigate the usefulness of the RMTEI approach for the State.  The results of this research 

clearly allow one to offer its conclusions to the State, but the findings would have broader 

implications had the preponderance of the data come from Alabama.  This research also proposes 

future study of the test-forms equating for the reading portion of the ARMT.  Based on the 
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analysis of the previous chapters, reading RMTEI values trailed behind mathematics RMTEI 

values in correlation across years and as predictors for future reading gains.  Additional data can 

illuminate whether this is a persistent issue or particular to the lone medium-sized Alabama 

district for the specific study years.  If the future study also suffers from these issues, then 

analysis must be undertaken to determine if successive reading forms of the ARMT are equally 

difficult.  For example, “if a test form is more difficult than those that precede and follow, it will 

systematically make the first measure of gain too low and the second too high” (Bock, Wolfe, & 

Fisher, 1996, p. 13).                

As a means to “help campuses and educators identify individual students in need of 

intervention”, desirable research in Alabama includes calculating statistical projections of test 

scores to the next grade and evaluating those projections versus desired proficiency levels (Texas 

Education Agency, 2009, p. 25).  Intervention methods of administrators would be employed 

when presented with the following two scenarios:  

1)  Students who currently meet the standard but are projected to not meet the proficiency 

standard.   

2)  Students who currently do not meet the standard and are projected to not meet the 

proficiency standard (Texas Education Agency, 2009, p. 25). 

Alabama included similar language on this topic in its reform agenda as part of the Race to the 

Top application whereby it wants to “develop predictive trajectories for its students through 

graduation…[and] create a dashboard-style early warning system for teachers” (“Alabama’s 

Race,” 2010, p. 9).  Any state’s strategic education plan would be wise to consider this method 

of projection “to accelerate student achievement, close achievement gaps, [and] inspire our 

children to excel” (“A Blueprint for Reform,” 2010, p. 2). 
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Lastly, the documents supporting EDUCATEAlabama’s development provide an 

excellent structure to return teacher accountability to the evaluation.  Noteworthy is the cross-

walk established in the Alabama Continuum for Teacher Development that provides benchmarks 

of performance for the Alabama Quality Teaching Standards along the teacher continuum:  pre-

service, beginning, emerging, applying, integrating, and innovating (“Alabama Continuum,” 

2009).  Therefore, future study consists of developing a summative assessment comprised of the 

observational effectiveness scoring in the Teacher Induction Study to be incorporated into 

EDUCATEAlabama to provide teacher accountability and development.   

 

http://alex.state.al.us/leadership/alqts_full.pdf
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Appendix 1:  Establishing Longitudinal Student Achievement Data Linked with Teacher 

Information 

 

 

The process to create longitudinal student data linked with current year teachers began 

with actions at the school district level followed by the actions of this research.  Appendix 1 will 

describe each set of actions in order to offer these methods to other districts within Alabama.  

I.  District Actions 

 The medium-sized Alabama District provided four types of files for this research:  

Schedule, Course Counts, Teacher Information, and Student Achievement. 

 A.  Schedule  

 The schedule dataset was obtained by a Structured Query Language (SQL) program that 

queried the STI Education Data Management Solutions database.  The SQL program requested 

the specific fields of student identification number, period, course number, teacher identification 

number, and school identification number to export to a comma delimited/Comma Separated 

Values (CSV) file.  In order to account for the manner in which students were recorded in 

‘terms’, the district had to perform a query for elementary schools and an additional query for 

secondary schools.  Elementary school students are recorded in a single term for a year whereas 

secondary school students are recorded in two terms for a single year.   This accounts for 

secondary students possibly having different schedules in the second half of the school year.   

B.  Course Counts 

The ‘course counts’ dataset was obtained by a SQL program that queried the STI 

Education Data Management Solutions database.  The SQL program requested the specific fields 

of course number, short name, long name, school identification number, and the number of 

students to export to a CSV file.  The course counts information was queried separately from the 
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schedule information due to the applicable data being in a different STI table.  The district 

technology coordinator acknowledged that the schedule and course counts information could 

possibly be obtained together in a single query.     

C.  Teacher Information 

The teacher information dataset was obtained from the yearly Local Education Agency 

Personnel System (LEAPS) report.  This report is generated from a query of the McAleer 

Accounting System database.  The district provided this research with a portion of the CSV 

LEAPS report, specifically the fields of school year, teacher identification number, gender, 

ethnicity, highest degree obtained, school, and teaching experience. 

D.  Student Achievement  

School districts receive yearly student achievement files via distributed compact disks 

from the Alabama State Department of Education.  The student achievement files are CSV in 

nature and consist of a matrix with over 200 column vectors reporting the nature of students and 

their respective ARMT scores.  The district provided this research with a portion of the CSV 

student achievement files, specifically Student Identification Number, grade, school, and ARMT 

Reading and Mathematics Scores.   

II.  Researcher Actions 

The process to create longitudinal student data linked with current year teachers began 

with extracting students and their teachers from the schedule dataset using the desired grade and 

course (mathematics or reading).  The schedule datasets were yearly in nature and consisted of 

elementary and secondary school files.  For example, two Rectangular format files (columns 

represent variables and rows represent observations) with comma separated values contained the 

schedules of all students in 2009: 
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1)  2008-2009 Elementary School (kindergarten – 4
th

 grade) 

2)  2008-2009 Secondary School (5
th

 grade – 8
th

 grade) 

The files contained the column headings of student identification number, period, course 

number, teacher identification number, and school identification number.  For each student, 

his/her student identification code was repeated to capture the different courses and 

corresponding periods.  The teacher identification code also repeated if that teacher taught all 

subjects for that student.  The school identification number also repeated for the student.  An 

excerpt of the schedule dataset is presented in Table 6.2. 

Table 6.2:  Excerpt of Schedule Dataset   

 

The ‘course counts’ dataset for each year was used to discern the course name for each 

course number.  Column headings consisted of course number, short name, long name, school 

identification number, and the number of students in that particular course number.  The course 

numbers were devised to represent not only a particular course in a particular grade, but also the 

particular section.  The course number along with the school identification number depicted an 

actual classroom of students.   An excerpt of the ‘course counts’ dataset is presented in Table 6.3. 
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Table 6.3:  Excerpt of Course Counts Dataset     

  

The reading and mathematics course numbers for each grade and year were then recorded to 

create the requisite extraction from the schedule dataset.   

After importing the schedule dataset into SAS, sorting by teacher, and specifying the year 

and grade for analysis, the appropriate template found the appropriate courses/teachers in the 

schedule dataset that would be linked with the reading and mathematics student achievement 

data of the current year.   For example, the user specifies the year and grade to be 2009 and 6
th

 

grade respectively.  As a result, the required schedule dataset is retrieved (secondary school 

dataset) followed by the extraction of reading and mathematics courses/teachers for that 

particular grade and year using a range of course numbers: 

%let year=2009; 

%let SY='2008-2009'; 

%let grade=6; 

 

%macro teachers (year=); 

data mathtchrs; 

if &grade = 4 then set schedule.elemtchrs&year; 

else if &grade=5 and &year=2007 then set schedule.elemtchrs&year; 

else if &grade=5 and &year=2008 then set schedule.elemtchrs&year; 

else if &grade=5 and &year>2008 then set schedule.sectchrs&year; 

else if &grade>=6 then set schedule.sectchrs&year; 

 

if &grade= 6 and &year=2009 then 

if school ne 40 or cnum < 6300.01 then delete; 

else if cnum > 6350.02 then delete; 

MTeacher=teacher; 

run; 
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data readtchrs; 

if &grade = 4 then set schedule.elemtchrs&year; 

else if &grade=5 and &year=2007 then set schedule.elemtchrs&year; 

else if &grade=5 and &year=2008 then set schedule.elemtchrs&year; 

else if &grade=5 and &year>2008 then set schedule.sectchrs&year; 

else if &grade>=6 then set schedule.sectchrs&year; 

 

if &grade=6 and &year=2009 then  

if school ne 40 or cnum < 6100.01 then delete; 

else if cnum > 6550.03 then delete; 

else if 6130.03<cnum<6500.01 then delete; 

RTeacher=teacher; 

run; 

%mend teachers; 

The medium-sized Alabama district also provided a CSV teacher information file.  It 

contained the column headings of school year, teacher identification number, gender, ethnicity, 

highest degree obtained, school, and teaching experience expressed in months teaching in the 

district, state (not including the district), public (outside the district or state), and private systems.   

An excerpt of the teacher information file is presented in Table 6.4.  

Table 6.4:  Excerpt of Teacher Information File   

 

The teacher information for the current year was imported into SAS, sorted by teacher, and 

merged with the teachers/students extracted from the schedule dataset.   

data District_mathtchrs; 

merge mathtchrs teacher_info; 

by teacher; 

if year = ' ' then year= &SY ; 

if Student_ID_Number = ' ' then delete; 

myrs_employ=(system+state+public+private)/12; 

mhighest_degree=highest_degree; 

if myrs_employ=' ' then myrs_employ =0; 
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run; 

 

 

data District_readtchrs; 

merge readtchrs teacher_info; 

by teacher; 

if year = ' ' then year= &SY; 

if Student_ID_Number = ' ' then delete; 

ryrs_employ=(system+state+public+private)/12; 

rhighest_degree=highest_degree; 

if ryrs_employ=' ' then ryrs_employ =0; 

run; 

 

Following the merge, the new datasets were then sorted by student identification number instead 

of teacher in preparation for the merge with the student achievement files.   

proc sort data=District_mathtchrs nodupkey; 

by student_ID_number; 

run; 

 

proc sort data=District_readtchrs nodupkey; 

by student_ID_number; 

run;   

The nodupkey option precludes multiple teachers for the same student in a particular subject.  

The goal is a single teacher for a single student in a particular subject.   The option selects the 

first teacher listed in the dataset for a particular student.  This action is desired as the teachers 

had been previously extracted from the schedule dataset by a priority system.  For instance, a 

student may have a reading teacher as well as reading intervention teacher.  The reading teacher 

was extracted first from the schedule dataset followed by the reading intervention teacher.  The 

nodupkey then removed the reading intervention teacher.  Therefore, the student has the 

appropriate reading teacher linked for future analysis.       

Analysis for 6
th

 grade in 2009, for example, required merging student scaled scores from 

the 2006-07, 2007-08, and 2008-09 Alabama Reading and Mathematics Test (ARMT) with the 

students’ respective mathematics and reading teachers for the 2008-09 school year.  Districts 

only receive yearly student achievement files via distributed compact disks from the Alabama 

State Department of Education.  The student achievement files are CSV in nature and consist of 
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a matrix with column vectors of Student Identification Number, grade, school, and a single year 

of ARMT Reading and Mathematics Scores.  The files were imported into SAS and sorted by 

student identification number.  Thereafter, three files of student achievement data, a reading 

teachers’ file, and a mathematics teachers’ file were merged to allow subsequent longitudinal 

analysis.  The student identification number provides the linkage of student data to teacher data. 

data District_students; 

if &year=2009 then merge student.studata&year2 student.studata&year3 

student.studata&year4 District_mathtchrs District_readtchrs; 

by Student_ID_Number; 

 

if &currentgrade_SY ne &grade then delete; 

if Student_ID_Number = ' ' then delete; 

run; 

An excerpt from the 6
th

 grade, 2009 dataset is shown in Table 6.5 that displays the outcome of 

the process described in this appendix. 

Table 6.5:  Excerpt from 6
th

 grade, 2009 Dataset     

 

A flowchart to illustrate and summarize the entire process is contained in Figure 6.1.   



141 

 

 

Figure 6.1:  Establishing Longitudinal Student Achievement Data Linked with Teacher 

Information 

   



142 

 

Appendix 2:  SAS Code 

 

 

Input File: 

LIBNAME student 'F:\Auburn\PhD Research\District A\Student Data\'; 

LIBNAME lunch 'F:\Auburn\PhD Research\District A\Free Reduced Lunch\'; 

LIBNAME appen3 'F:\Auburn\PhD Research\INSY 8990\Dissertation 

Defense\Chapters 4-6\appen3'; 

 

%let myear1=ARMT_Math_2006; 

%let myear2=ARMT_Math_2007; 

%let myear3=ARMT_Math_2008; 

%let myear4=ARMT_Math_2009; 

%let myear5=ARMT_Math_2010; 

%let myear6=ARMT_Math_2011; 

 

%let ryear1=ARMT_Read_2006; 

%let ryear2=ARMT_Read_2007; 

%let ryear3=ARMT_Read_2008; 

%let ryear4=ARMT_Read_2009; 

%let ryear5=ARMT_Read_2010; 

%let ryear6=ARMT_Read_2011; 

 

%let mcheck=0; 

%let rcheck=0; 

%let ivcheck=0; 

 

%let j=2007;   /*initiates count for datasets.  remains the same regardless 

of year below  */ 

/*-------------------------------------------------------------------------*/ 

/*  need to change with a different year           */ 

 

%let year=2009; 

%let model_year=2008; 

 

%let k = 2008;     /*= model_year*/ 

%let k_1=2007;    /*  k-1 with minimum of 2007; used to accommodate 5th 

grade's  testing hist:  1,2,2,2 for years 2008,09,10,11 */ 

%let k_2=2007;   /*  k-2 with a minimum of 2007; used to accommodate 6th 

grade's testing hist:  1,2,3,3 for years 2008,09,10,11*/ 

%let currentgrade_SY=Grade_SY2009;  

%let modelgrade_SY=Grade_SY2008; 

  

%let SY='2008-2009';    /*current year; 2006-07, 2007-08, 2008-2009, 2009-

2010, 2010-11  */ 

%let Model_SY='2007-08';    /*model year; 2006-07, 2007-08, 2008-2009, 2009-

2010, 2010-11  */ 
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Phase I, II, III: 

%Macro RMTEI (grade=); 

 

proc datasets lib=work kill nolist memtype=data; 

quit; 

 

/*-------------------------------------------------------------------------*/ 

/*Organize data for current cohort of students*/ 

 

data District_RMTEI; 

set student.district_students&grade&year; 

int=1; 

if &ryear3 ne ' ' and &myear3 ne ' ' and &ryear2 ne ' ' and &myear2 ne ' ' 

then indicator=2007; 

else if &ryear3 ne ' ' and &myear3 ne ' ' then indicator=2008;   

readgain=&ryear4-&ryear3; 

mathgain=&myear4-&myear3; 

run; 

 

proc sort data=District_RMTEI; 

by school; 

run; 

 

proc means data=District_RMTEI; 

by school; 

var ARMT_Math_&model_year; 

output out=campus_MathMean mean=MathMean/autolabel; 

run; 

 

proc means data=District_RMTEI; 

by school; 

var ARMT_Read_&model_year; 

output out=campus_ReadMean mean=ReadMean/autolabel; 

run; 

 

%macro LMM_datasets;/*creation of groups of students based on testing 

histories*/ 

%do i = &j %to &k; 

data LMM&grade&i ; 

merge District_RMTEI campus_MathMean campus_ReadMean lunch.ses&model_year; 

by school; 

if &i ne indicator then delete; 

if mteacher=' ' or rteacher=' ' then delete; 

run; 

%end; 

%mend LMM_datasets; 

%LMM_datasets 

 

data SGP&grade;  /*all students included without consideration of testing 

histories*/ 

merge District_RMTEI campus_MathMean campus_ReadMean; 

by school; 

if mteacher=' ' or rteacher=' ' then delete; 

run; 
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/*-------------------------------------------------------------------------*/ 

/*Organize data to develop model from previous cohort of students*/ 

 

data Model_RMTEI; 

set student.model_students&grade&year; 

if &ryear2 ne ' ' and &myear2 ne ' ' and &ryear1 ne ' ' and &myear1 ne ' ' 

then indicator=2007; 

else if &ryear2 ne ' ' and &myear2 ne ' ' then indicator=2008; 

readgain=&ryear3-&ryear2; 

mathgain=&myear3-&myear2; 

run; 

 

proc sort data=Model_RMTEI; 

by school; 

run; 

 

%let prioryr_model = %eval(&model_year-1); 

proc means data=Model_RMTEI; 

by school; 

var ARMT_Math_&prioryr_model; 

output out=Modelcampus_MathMean mean=MathMean/autolabel; 

run; 

 

proc means data=Model_RMTEI; 

by school; 

var ARMT_Read_&prioryr_model; 

output out=Modelcampus_ReadMean mean=ReadMean/autolabel; 

run; 

 

%macro model_datasets;  

%do i = &j %to &k; 

data model&grade&i; 

merge Model_RMTEI Modelcampus_MathMean Modelcampus_ReadMean 

lunch.ses&prioryr_model; 

by school; 

if &i ne indicator then delete; 

if mteacher=' ' or rteacher=' ' then delete; 

run; 

%end; 

%mend model_datasets; 

%model_datasets 

 

/*-------------------------------------------------------------------------*/ 

/*Calculate LMM Teacher Effects for Math and Reading*/ 

 

%macro teacher_effects; 

%do i = &j %to &k; 

ods output solutionr=meffects&grade&i ; 

proc mixed data=LMM&grade&i covtest ; 

class mteacher school ; 

model mathgain = ARMT_Math_&i-ARMT_Math_&k ARMT_Read_&k-ARMT_Read_&k / 

solution ; 

random int/ solution subject= mteacher(school); 

run; 

 

ods output solutionr=reffects&grade&i ; 

proc mixed data=LMM&grade&i covtest ; 
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class rteacher school ; 

model readgain = ARMT_Math_&k-ARMT_Math_&k ARMT_Read_&i-ARMT_Read_&k  / 

solution; 

random int/ solution subject= rteacher(school); 

run; 

 

data mtcheffects&grade&i; 

set meffects&grade&i; 

MLMM_Teacher_Effect&grade&i=estimate; 

DF&grade&i=df; 

estimate&grade&i=MLMM_Teacher_Effect&grade&i*DF&grade&i; 

run; 

 

proc sort data=mtcheffects&grade&i; 

by mteacher; 

run; 

 

data rtcheffects&grade&i; 

set reffects&grade&i; 

RLMM_Teacher_Effect&grade&i=estimate; 

DF&grade&i=df; 

estimate&grade&i=RLMM_Teacher_Effect&grade&i*DF&grade&i; 

run; 

 

proc sort data=rtcheffects&grade&i; 

by rteacher; 

run; 

%end; 

%mend teacher_effects; 

%teacher_effects 

 

%macro check; 

 %if &grade= 4 %then %do; 

data mtcheffects&grade; 

merge mtcheffects&grade&k-mtcheffects&grade&k; 

by mteacher; 

Est_total=sum(of estimate&grade&k-estimate&grade&k); 

DFtotal= sum(of DF&grade&k-DF&grade&k); 

MLMM_Teacher_Effect=Est_total/DFtotal; 

If DFtotal = " " then MLMM_Teacher_Effect=0; 

run; 

 

data rtcheffects&grade; 

merge rtcheffects&grade&k-rtcheffects&grade&k; 

by rteacher; 

Est_total=sum(of estimate&grade&k-estimate&grade&k); 

DFtotal= sum(of DF&grade&k-DF&grade&k); 

RLMM_Teacher_Effect=Est_total/DFtotal; 

If DFtotal = " " then RLMM_Teacher_Effect=0; 

run; 

 %goto exit; 

 %end; 

 

 %if &grade= 5 %then %do; 

data mtcheffects&grade; 

merge mtcheffects&grade&k_1-mtcheffects&grade&k; 

by mteacher; 
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Est_total=sum(of estimate&grade&k_1-estimate&grade&k); 

DFtotal= sum(of DF&grade&k_1-DF&grade&k); 

MLMM_Teacher_Effect=Est_total/DFtotal; 

If DFtotal = " " then MLMM_Teacher_Effect=0; 

run; 

 

data rtcheffects&grade; 

merge rtcheffects&grade&k_1-rtcheffects&grade&k; 

by rteacher; 

Est_total=sum(of estimate&grade&k_1-estimate&grade&k); 

DFtotal= sum(of DF&grade&k_1-DF&grade&k); 

RLMM_Teacher_Effect=Est_total/DFtotal; 

If DFtotal = " " then RLMM_Teacher_Effect=0; 

run; 

 %goto exit; 

 %end; 

 

 %if &grade=6 %then %do; 

data Mtcheffects&grade; 

merge mtcheffects&grade&k_2-mtcheffects&grade&k; 

by mteacher; 

Est_total=sum(of estimate&grade&k_2-estimate&grade&k); 

DFtotal= sum(of DF&grade&k_2-DF&grade&k); 

MLMM_Teacher_Effect=Est_total/DFtotal; 

If DFtotal = " " then MLMM_Teacher_Effect=0; 

run; 

 

data rtcheffects&grade; 

merge rtcheffects&grade&k_2-rtcheffects&grade&k; 

by rteacher; 

Est_total=sum(of estimate&grade&k_2-estimate&grade&k); 

DFtotal= sum(of DF&grade&k_2-DF&grade&k); 

RLMM_Teacher_Effect=Est_total/DFtotal; 

If DFtotal = " " then RLMM_Teacher_Effect=0; 

run; 

 %goto exit; 

 %end; 

 

 %if &grade>=7 %then %do; 

data Mtcheffects&grade; 

merge mtcheffects&grade&j-mtcheffects&grade&k; 

by mteacher; 

Est_total=sum(of estimate&grade&j-estimate&grade&k); 

DFtotal= sum(of DF&grade&j-DF&grade&k); 

MLMM_Teacher_Effect=Est_total/DFtotal; 

If DFtotal = " " then MLMM_Teacher_Effect=0; 

run; 

 

data rtcheffects&grade; 

merge rtcheffects&grade&j-rtcheffects&grade&k; 

by rteacher; 

Est_total=sum(of estimate&grade&j-estimate&grade&k); 

DFtotal= sum(of DF&grade&j-DF&grade&k); 

RLMM_Teacher_Effect=Est_total/DFtotal; 

If DFtotal = " " then RLMM_Teacher_Effect=0; 

run; 

 %goto exit; 
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 %end; 

 

%exit: %mend check; 

%check 

 

/*-------------------------------------------------------------------------*/ 

/*Calculate Median SGP for Math and Reading*/ 

 

%macro QR_SGP; 

proc quantreg data=SGP&grade  ci=resampling ; 

effect sp=spline (ARMT_Math_&k ARMT_Read_&k  /details ); 

model mathgain = sp/quantile=.01 .02 .03 .04 .05 .06 .07 .08 .09 .1  

.11 .12 .13 .14 .15 .16 .17 .18 .19 .2    

.21 .22 .23 .24 .25 .26 .27 .28 .29 .3  

.31 .32 .33 .34 .35 .36 .37 .38 .39 .4 

.41 .42 .43 .44 .45 .46 .47 .48 .49 .5  

.51 .52 .53 .54 .55 .56 .57 .58 .59 .6  

.61 .62 .63 .64 .65 .66 .67 .68 .69 .7  

.71 .72 .73 .74 .75 .76 .77 .78 .79 .8  

.81 .82 .83 .84 .85 .86 .87 .88 .89 .9  

.91 .92 .93 .94 .95 .96 .97 .98 .99 ;  

output out=chp3_2_3m&grade pred=p quantile=q  ; 

run; 

 

data msgpbase; 

set chp3_2_3m&grade; 

keep mteacher school mathgain p1-p99; 

run; 

 

data mconvert; 

set msgpbase; 

array test{*}_numeric_; 

DO i = 4 to dim(test); 

test(i)=abs(test(i)-test(3)); 

end; 

drop i; 

mindev=min(of p1-p99);/* p1-p99 become the abs deviations due to array test*/ 

/*   columns  4  102  */ 

run; 

 

data msgp&grade; 

set mconvert; 

sgp=0; 

array test{*} _numeric_; 

do i=4 to 102; 

if test{i}=mindev then sgp=i-3;/*will give the higest sgp if multiple values 

are mindev*/ 

end; 

if mindev= ' ' then sgp=' ' ; 

drop i; 

run; 

 

/* Read SGP  */ 

proc quantreg data=SGP&grade  ci=resampling ; 

effect sp=spline (ARMT_Math_&k ARMT_Read_&k /details ); 

model readgain = sp/quantile=.01 .02 .03 .04 .05 .06 .07 .08 .09 .1  

.11 .12 .13 .14 .15 .16 .17 .18 .19 .2    
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.21 .22 .23 .24 .25 .26 .27 .28 .29 .3  

.31 .32 .33 .34 .35 .36 .37 .38 .39 .4 

.41 .42 .43 .44 .45 .46 .47 .48 .49 .5  

.51 .52 .53 .54 .55 .56 .57 .58 .59 .6  

.61 .62 .63 .64 .65 .66 .67 .68 .69 .7  

.71 .72 .73 .74 .75 .76 .77 .78 .79 .8  

.81 .82 .83 .84 .85 .86 .87 .88 .89 .9  

.91 .92 .93 .94 .95 .96 .97 .98 .99 ;  

output out=chp3_2_3r&grade pred=p quantile=q ; 

run; 

 

data rsgpbase; 

set chp3_2_3r&grade; 

keep rteacher school readgain p1-p99; 

run; 

 

data rconvert; 

set rsgpbase; 

array test{*}_numeric_; 

DO i = 4 to dim(test); 

test(i)=abs(test(i)-test(3)); 

end; 

drop i; 

mindev=min(of p1-p99);/* p1-p99 become the abs deviations due to array test*/ 

/*            4  102  */ 

run; 

 

data rsgp&grade; 

set rconvert; 

sgp=0; 

array test{*} _numeric_; 

do i=4 to 102; 

if test{i}=mindev then sgp=i-3;/*will give the higest sgp if multiple values 

are mindev*/ 

end; 

if mindev= ' ' then sgp=' ' ; 

drop i; 

run; 

%mend QR_SGP; 

%QR_SGP 

 

data msgp; 

set msgp&grade; 

run; 

 

proc sort data=msgp; 

by mteacher; 

run; 

 

data rsgp; 

set rsgp&grade; 

run; 

 

proc sort data=rsgp; 

by rteacher; 

run; 
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proc means data=msgp; 

by mteacher; 

var sgp; 

output out=msgrowthper&grade median=MTeacher_Median_SGP n=Mnumber_students; 

run; 

 

proc means data=rsgp ; 

by rteacher; 

var sgp; 

output out=rsgrowthper&grade median=RTeacher_Median_SGP n=Rnumber_students; 

run; 

 

/*-------------------------------------------------------------------------*/ 

/*LMM Value added measure   */ 

 

%macro LMM_model_build; /*creating the model from previous cohort of 

students*/ 

%do i = &j %to &k ; 

%let m= %eval(&i-1); 

%let n=%eval(&k-1); 

 

ods output solutionf=mfixed&grade&i ; 

ods graphics on; 

proc mixed data=model&grade&i boxplot covtest; 

class mteacher school ; 

model mathgain = ARMT_Math_&m-ARMT_Math_&n ARMT_Read_&n-ARMT_Read_&n 

/solution ; 

random int/subject= mteacher(school) solution;  

run; 

ods graphics off; 

 

ods output solutionf=rfixed&grade&i; 

proc mixed data=model&grade&i covtest; 

class rteacher school ; 

model readgain = ARMT_Math_&n-ARMT_Math_&n ARMT_Read_&m-ARMT_Read_&n  

/solution; 

random int/subject= rteacher(school) solution;  

run; 

%end; 

%mend LMM_model_build; 

%LMM_model_build 

 

/*  apply created models  */ 

/* use data (indep vars) from cohort requiring predictions*/ 

%macro LMM_apply_model; 

%if &grade= 4 %then %do; 

%do i = &k %to &k ; 

Proc IML; 

Reset NoLog; /* send output to the listing file */ 

/* Read the data into the matrix X */ 

use LMM&grade&i; 

read all var{int} into x1; 

read all var("ARMT_Math_&i":"ARMT_Math_&k") into x2; 

read all var("ARMT_Read_&k":"ARMT_Read_&k") into x3; 

close LMM&grade&i; 

x=x1||x2||x3; 
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use mfixed&grade&i var{estimate}; /*  coefficients calculated from model data  

*/ 

read all var{estimate} into y; 

close mfixed&grade&i; 

pred=x*y; 

create MLMMpredicted&grade&i var{pred}; 

append var{pred}; 

close MLMMpredicted&grade&i; 

Reset log; 

 

/* Reading LMM Value Added Measure   */ 

use LMM&grade&i; 

read all var{int} into x1; 

read all var("ARMT_Math_&k":"ARMT_Math_&k") into x2; 

read all var("ARMT_Read_&i":"ARMT_Read_&k") into x3; 

close LMM&grade&i; 

x=x1||x2||x3; 

use rfixed&grade&i var{estimate}; /*  coefficients calculated from model data  

*/ 

read all var{estimate} into y; 

close rfixed&grade&i; 

pred=x*y; 

create RLMMpredicted&grade&i var{pred}; 

append var{pred}; 

close RLMMpredicted&grade&i; 

Reset log; 

Quit; 

 

data chp3_2_2_1&grade&i; 

merge LMM&grade&i MLMMpredicted&grade&i; 

vam=mathgain-pred; 

run; 

data chp3_2_2_2&grade&i; 

merge LMM&grade&i RLMMpredicted&grade&i; 

vam=readgain-pred; 

run; 

%end; 

 

data chp3_2_2_1; 

set chp3_2_2_1&grade&k-chp3_2_2_1&grade&k; 

run; 

 

data chp3_2_2_2; 

set chp3_2_2_2&grade&k-chp3_2_2_2&grade&k; 

run; 

%end; 

 

%if &grade= 5  %then %do; 

%do i = &k_1 %to &k ; 

Proc IML; 

Reset NoLog; /* send output to the listing file */ 

/* Read the data into the matrix X */ 

use LMM&grade&i; 

read all var{int} into x1; 

read all var("ARMT_Math_&i":"ARMT_Math_&k") into x2; 

read all var("ARMT_Read_&k":"ARMT_Read_&k") into x3; 

close LMM&grade&i; 
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x=x1||x2||x3; 

use mfixed&grade&i var{estimate}; /*  coefficients calculated from model data  

*/ 

read all var{estimate} into y; 

close mfixed&grade&i; 

pred=x*y; 

create MLMMpredicted&grade&i var{pred}; 

append var{pred}; 

close MLMMpredicted&grade&i; 

Reset log; 

 

/* Reading LMM Value Added Measure   */ 

use LMM&grade&i; 

read all var{int} into x1; 

read all var("ARMT_Math_&k":"ARMT_Math_&k") into x2; 

read all var("ARMT_Read_&i":"ARMT_Read_&k") into x3; 

close LMM&grade&i; 

x=x1||x2||x3; 

use rfixed&grade&i var{estimate}; /*  coefficients calculated from model data  

*/ 

read all var{estimate} into y; 

close rfixed&grade&i; 

pred=x*y; 

create RLMMpredicted&grade&i var{pred}; 

append var{pred}; 

close RLMMpredicted&grade&i; 

Reset log; 

Quit; 

 

data chp3_2_2_1&grade&i; 

merge LMM&grade&i MLMMpredicted&grade&i; 

vam=mathgain-pred; 

run; 

data chp3_2_2_2&grade&i; 

merge LMM&grade&i RLMMpredicted&grade&i; 

vam=readgain-pred; 

run; 

%end; 

 

data chp3_2_2_1; 

set chp3_2_2_1&grade&k_1-chp3_2_2_1&grade&k; 

run; 

 

data chp3_2_2_2; 

set chp3_2_2_2&grade&k_1-chp3_2_2_2&grade&k; 

run; 

%end; 

 

%if &grade=6 %then %do; 

%do i = &k_2 %to &k ; 

Proc IML; 

Reset NoLog; /* send output to the listing file */ 

/* Read the data into the matrix X */ 

use LMM&grade&i; 

read all var{int} into x1; 

read all var("ARMT_Math_&i":"ARMT_Math_&k") into x2; 

read all var("ARMT_Read_&k":"ARMT_Read_&k") into x3; 
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close LMM&grade&i; 

x=x1||x2||x3; 

use mfixed&grade&i var{estimate}; /*  coefficients calculated from model data  

*/ 

read all var{estimate} into y; 

close mfixed&grade&i; 

pred=x*y; 

create MLMMpredicted&grade&i var{pred}; 

append var{pred}; 

close MLMMpredicted&grade&i; 

Reset log; 

 

/* Reading LMM Value Added Measure   */ 

use LMM&grade&i; 

read all var{int} into x1; 

read all var("ARMT_Math_&k":"ARMT_Math_&k") into x2; 

read all var("ARMT_Read_&i":"ARMT_Read_&k") into x3; 

close LMM&grade&i; 

x=x1||x2||x3; 

use rfixed&grade&i var{estimate}; /*  coefficients calculated from model data  

*/ 

read all var{estimate} into y; 

close rfixed&grade&i; 

pred=x*y; 

create RLMMpredicted&grade&i var{pred}; 

append var{pred}; 

close RLMMpredicted&grade&i; 

Reset log; 

Quit; 

 

data chp3_2_2_1&grade&i; 

merge LMM&grade&i MLMMpredicted&grade&i; 

vam=mathgain-pred; 

run; 

data chp3_2_2_2&grade&i; 

merge LMM&grade&i RLMMpredicted&grade&i; 

vam=readgain-pred; 

run; 

%end;  

 

data chp3_2_2_1; 

set chp3_2_2_1&grade&k_2-chp3_2_2_1&grade&k; 

run; 

 

data chp3_2_2_2; 

set chp3_2_2_2&grade&k_2-chp3_2_2_2&grade&k; 

run; 

%end; 

 

%if &grade>=7 %then %do; 

%do i = &j %to &k ; 

Proc IML; 

Reset NoLog; /* send output to the listing file */ 

/* Read the data into the matrix X */ 

use LMM&grade&i; 

read all var{int} into x1; 

read all var("ARMT_Math_&i":"ARMT_Math_&k") into x2; 



153 

 

read all var("ARMT_Read_&k":"ARMT_Read_&k") into x3; 

close LMM&grade&i; 

x=x1||x2||x3; 

use mfixed&grade&i var{estimate}; /*  coefficients calculated from model data  

*/ 

read all var{estimate} into y; 

close mfixed&grade&i; 

pred=x*y; 

create MLMMpredicted&grade&i var{pred}; 

append var{pred}; 

close MLMMpredicted&grade&i; 

Reset log; 

 

/* Reading LMM Value Added Measure   */ 

use LMM&grade&i; 

read all var{int} into x1; 

read all var("ARMT_Math_&k":"ARMT_Math_&k") into x2; 

read all var("ARMT_Read_&i":"ARMT_Read_&k") into x3; 

close LMM&grade&i; 

x=x1||x2||x3; 

use rfixed&grade&i var{estimate}; /*  coefficients calculated from model data  

*/ 

read all var{estimate} into y; 

close rfixed&grade&i; 

pred=x*y; 

create RLMMpredicted&grade&i var{pred}; 

append var{pred}; 

close RLMMpredicted&grade&i; 

Reset log; 

Quit; 

 

data chp3_2_2_1&grade&i; 

merge LMM&grade&i MLMMpredicted&grade&i; 

vam=mathgain-pred; 

run; 

 

data chp3_2_2_2&grade&i; 

merge LMM&grade&i RLMMpredicted&grade&i; 

vam=readgain-pred; 

run; 

%end; 

 

data chp3_2_2_1; 

set chp3_2_2_1&grade&j-chp3_2_2_1&grade&k; 

run; 

 

data chp3_2_2_2; 

set chp3_2_2_2&grade&j-chp3_2_2_2&grade&k; 

run; 

%end; 

%mend LMM_apply_model; 

%LMM_apply_model 

 

proc sort data=chp3_2_2_1; 

by mteacher; 

run; 
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proc sort data=chp3_2_2_2; 

by rteacher; 

run; 

 

proc means data = chp3_2_2_1; 

by mteacher; 

var vam; 

output out=MLMMvam&grade mean=Overall_MLMM_Teacher_VAM ; 

run; 

 

proc means data = chp3_2_2_2; 

by rteacher; 

var vam; 

output out=RLMMvam&grade mean=Overall_RLMM_Teacher_VAM; 

run; 

 

/*-------------------------------------------------------------------------*/ 

/*QR value added measure   */ 

 

%macro QR_VAM;  

ods graphics on; 

proc quantreg data=SGP&grade ci=resampling plots=all ; 

effect sp=spline (ARMT_Math_&k ARMT_Read_&k /details); 

model mathgain = sp/quantile=.5 diagnostics;  

output out=chp3_2_4m&grade pred=p50 sresidual=sresid; 

run; 

ods graphics off; 

 

proc quantreg data=SGP&grade ci=resampling ; 

effect sp=spline (ARMT_Math_&k ARMT_Read_&k /details ); 

model readgain = sp/quantile=.5; 

output out=chp3_2_4r&grade pred=p50;  

run; 

 

/*QR estimates */ 

data mqrestimate; 

set chp3_2_4m&grade; 

mqrvamstud=mathgain-p50; 

run; 

 

data rqrestimate; 

set chp3_2_4r&grade; 

rqrvamstud=readgain-p50; 

run; 

%mend QR_VAM; 

%QR_VAM 

 

proc sort data=mqrestimate; 

by mteacher; 

run; 

 

proc sort data=rqrestimate; 

by rteacher; 

run; 

 

proc means data = mqrestimate; 

by mteacher; 
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var mqrvamstud; 

output out=mqrteacher&grade mean=Overall_MQR_Teacher_VAM; 

run; 

 

proc means data = rqrestimate; 

by rteacher; 

var rqrvamstud; 

output out=rqrteacher&grade mean=Overall_RQR_Teacher_VAM; 

run; 

 

/*-------------------------------------------------------------------------*/ 

/*  Chapter 3_2table creation   */ 

 

data chp3_2mtable;  

merge mtcheffects&grade MLMMvam&grade mqrteacher&grade msgrowthper&grade; 

by mteacher; 

keep mteacher school  

MLMM_Teacher_Effect         

Overall_MLMM_Teacher_VAM    

MTeacher_Median_SGP         

Overall_MQR_Teacher_VAM  

Mnumber_students; 

if Mnumber_students < 5 then delete;   

run; 

 

data chp3_2rtable;  

merge rtcheffects&grade RLMMvam&grade rqrteacher&grade rsgrowthper&grade; 

by rteacher; 

keep rteacher school  

RLMM_Teacher_Effect 

Overall_RLMM_Teacher_VAM  

RTeacher_Median_SGP  

Overall_RQR_Teacher_VAM 

Rnumber_students; 

if Rnumber_students < 5 then delete; 

run; 

 

/*-------------------------------------------------------------------------*/ 

/*  Phase II and III for Math teachers  */ 

 

/*  Principal Component Analysis   */ 

ods graphics on; 

proc princomp data=chp3_2mtable out=mteacher_prn1 PLOTS=(SCORE(NCOMP=2 

ellipse)patternprofile ) ; 

var MLMM_Teacher_Effect         

Overall_MLMM_Teacher_VAM    

MTeacher_Median_SGP         

Overall_MQR_Teacher_VAM; 

run; 

ods graphics off; 

 

Proc IML; 

Reset NoLog; /* send output to the listing file */ 

/* Read the data into the matrix X */ 

use mteacher_prn1 var{MLMM_Teacher_Effect         

Overall_MLMM_Teacher_VAM    

MTeacher_Median_SGP         
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Overall_MQR_Teacher_VAM}; 

read all var{MLMM_Teacher_Effect         

Overall_MLMM_Teacher_VAM    

MTeacher_Median_SGP         

Overall_MQR_Teacher_VAM} into x; 

close mteacher_prn1; 

/* Number of Observations and Variables */ 

n=nrow(x); 

p=ncol(x); 

/* Compute sample mean, covariance, and inverse */ 

one=J(n,1,1); 

xbar=(X`*one)/n; 

print "Sample Means", xbar; 

xstar=X-one*xbar`; 

s=xstar`*xstar/(n-1); 

print "Sample Covariance Matrix", s; 

rho=corr(x); 

print "Sample Correlation Matrix", rho; 

detrho=det(rho); 

print detrho; 

call eigen(lambda,Evecs,rho); 

print lambda, Evecs; 

d=sqrt(diag(lambda)); 

print d; 

/*  compute correlation of metric with prin comp  */ 

corr=evecs*d; 

print corr; 

Reset log; 

Quit; 

 

proc sort data=mteacher_prn1; 

by prin1; 

run; 

 

Proc GPlot Data=mteacher_prn1; 

 Plot Prin1*Prin2=1 / HRef=0 VRef=0 VAxis=Axis1 HAxis=Axis2; 

 Axis1 Label=(A=90 "Principal Component 1"); 

 Axis2 Label=("Principal Component 2");        

 Symbol1 C=Black V=Dot H=0.7 I=None PointLabel=(C=Black "#mteacher"); 

 title "Mathematics Teachers"; 

Run; symbol1;Quit; 

title; 

 

/*  Cluster Analysis   */ 

/*  Ward's Method  */ 

ods graphics on; 

proc cluster data=mteacher_prn1 outtree=mtree 

method=ward plots=all; 

id mteacher; 

var prin1 prin2; 

run; 

ods graphics off; 

 

%macro mcluster_check;  

%do y = 4 %to 2 %by -1; 

proc tree data=mtree noprint out=mout&y n=&y; 

copy prin1 prin2; 
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run; 

 

ods output CLDiffs=mbonci&y&grade; 

proc glm data=mout&y; 

  class cluster; 

  model prin1 = cluster ; 

  means cluster/bon cldiff; 

run; 

quit; 

 

proc means data=mbonci&y&grade; 

var significance; 

output out=msigmean&y&grade mean=sigmean; 

run; 

 

data mcheck&y&grade; 

set msigmean&y&grade; 

if sigmean = 1 then CALL SYMPUT('mcheck',1) ; 

run; 

 

%if &mcheck =1 and &y =4 %then %do; 

data appen3.mbonci&grade&year; 

set mbonci&y&grade; 

run; 

%global m_numclust; 

%let m_numclust=4; 

%let mcheck=0; 

%goto exit; 

%end; 

 

%if &mcheck=1 and &y =3 %then %do; 

data appen3.mbonci&grade&year; 

set mbonci&y&grade; 

run; 

%global m_numclust; 

%let m_numclust=3; 

%let mcheck=0; 

%goto exit; 

%end; 

 

 

%if &mcheck=1 and &y=2 %then %do; 

data appen3.mbonci&grade&year; 

set mbonci&y&grade; 

run; 

%global m_numclust; 

%let m_numclust=2; 

%let mcheck=0; 

%goto exit; 

%end; 

 

%if &mcheck=0 and &y =2 %then %do; 

data appen3.mbonci&grade&year; 

set mbonci&y&grade; 

run; 

%global m_numclust; 

%let m_numclust=1; 
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%goto exit; 

%end; 

 

%end; 

 

%exit: %mend mcluster_check; 

%mcluster_check 

 

proc tree data=mtree noprint out=mout n=&m_numclust; 

copy prin1 prin2; 

run; 

 

proc sgplot data=mout; 

scatter y=prin1 x=prin2 /group=Cluster ; 

title "Ward Clustering of Mathematics Teachers "; 

run; 

title; 

 

 

/*  MANOVA, ANOVA, and Bon CI's to determine if clusters are statistically 

different  */  

proc sort data=mout; 

  by _name_; 

  run; 

 

data mward; 

set mout; 

ident=_n_; 

keep _name_ cluster ident; 

run; 

 

proc sort data=mteacher_prn1; 

by mteacher; 

run; 

 

data mteacher_prn3; 

set mteacher_prn1; 

ident=_n_; 

run; 

 

data mcombine; 

  merge mteacher_prn3 mward; 

  by ident; 

  mprin1=prin1; 

  mprin2=prin2; 

  mcluster=cluster; 

  run; 

 

proc glm data=mcombine; 

  class cluster; 

  model prin1 prin2 = cluster; 

  means cluster/bon cldiff; 

  lsmeans cluster / out=Mmeansout; 

  manova h=cluster ; 

  run; 

  quit; 
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/*-------------------------------------------------------------------------*/ 

/*  Phase II and III for Reading teachers  */ 

 

/*  Principal Component Analysis   */ 

ods graphics on; 

proc princomp data=chp3_2rtable out=rteacher_prn1 plots=scree ; 

var RLMM_Teacher_Effect 

Overall_RLMM_Teacher_VAM  

RTeacher_Median_SGP  

Overall_RQR_Teacher_VAM; 

run; 

ods graphics off; 

 

Proc IML; 

Reset NoLog; /* send output to the listing file */ 

/* Read the data into the matrix X */ 

use rteacher_prn1 var{RLMM_Teacher_Effect 

Overall_RLMM_Teacher_VAM  

RTeacher_Median_SGP  

Overall_RQR_Teacher_VAM}; 

read all var{RLMM_Teacher_Effect 

Overall_RLMM_Teacher_VAM  

RTeacher_Median_SGP  

Overall_RQR_Teacher_VAM} into x; 

close rteacher_prn1; 

/* Number of Observations and Variables */ 

n=nrow(x); 

p=ncol(x); 

/* Compute sample mean, covariance, and inverse */ 

one=J(n,1,1); 

xbar=(X`*one)/n; 

print "Sample Means", xbar; 

xstar=X-one*xbar`; 

s=xstar`*xstar/(n-1); 

print "Sample Covariance Matrix", s; 

rho=corr(x); 

print "Sample Correlation Matrix", rho; 

detrho=det(rho); 

print detrho; 

call eigen(lambda,Evecs,rho); 

print lambda, Evecs; 

d=sqrt(diag(lambda)); 

print d; 

/*  compute correlation of metrics with prin comps  */ 

corr=evecs*d; 

print corr; 

Reset log; 

Quit; 

 

proc sort data=rteacher_prn1; 

by prin1; 

run; 

 

Proc GPlot Data=rteacher_prn1; 

 Plot Prin1*Prin2=1 / HRef=0 VRef=0 VAxis=Axis1 HAxis=Axis2; 

 Axis1 Label=(A=90 "Principal Component 1"); 

 Axis2 Label=("Principal Component 2");        
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 Symbol1 C=Black V=Dot H=0.7 I=None PointLabel=(C=Black "#rteacher"); 

 title "Reading Teachers"; 

Run; Symbol1; 

title; 

Quit; 

 

/*  Cluster Analysis   */ 

/*  Ward's Method  */ 

ods graphics on; 

proc cluster data=rteacher_prn1 outtree=rtree 

method=ward plots=all; 

id rteacher; 

var prin1 prin2; 

run; 

ods graphics off; 

 

%macro rcluster_check;  

%do y = 4 %to 2 %by -1; 

proc tree data=rtree noprint out=rout&y n=&y; 

copy prin1 prin2; 

run; 

 

ods output CLDiffs=rbonci&y&grade; 

proc glm data=rout&y; 

  class cluster; 

  model prin1 = cluster ; 

  means cluster/bon cldiff; 

run; 

quit; 

 

proc means data=rbonci&y&grade; 

var significance; 

output out=rsigmean&y&grade mean=sigmean; 

run; 

 

data rcheck&y&grade; 

set rsigmean&y&grade; 

if sigmean = 1 then CALL SYMPUT('rcheck',1) ; 

run; 

 

%if &rcheck =1 and &y =4 %then %do; 

data appen3.rbonci&grade&year; 

set rbonci&y&grade; 

run; 

%global r_numclust; 

%let r_numclust=4; 

%let rcheck=0; 

%goto exit; 

%end; 

 

%if &rcheck=1 and &y =3 %then %do; 

data appen3.rbonci&grade&year; 

set rbonci&y&grade; 

run; 

%global r_numclust; 

%let r_numclust=3; 

%let rcheck=0; 
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%goto exit; 

%end; 

 

 

%if &rcheck=1 and &y=2 %then %do; 

data appen3.rbonci&grade&year; 

set rbonci&y&grade; 

run; 

%global r_numclust; 

%let r_numclust=2; 

%let rcheck=0; 

%goto exit; 

%end; 

 

%if &rcheck=0 and &y =2 %then %do; 

data appen3.rbonci&grade&year; 

set rbonci&y&grade; 

run; 

%global r_numclust; 

%let r_numclust=1; 

%goto exit; 

%end; 

 

%end; 

 

%exit: %mend rcluster_check; 

%rcluster_check 

 

proc tree data=rtree noprint out=rout n=&r_numclust; 

copy prin1 prin2; 

run; 

 

/*  MANOVA, ANOVA, and Bon CI's to determine if clusters are statistically 

different  */  

proc sort data=rout; 

  by _name_; 

  run; 

 

data rward; 

set rout; 

ident=_n_; 

keep _name_ cluster ident; 

run; 

 

proc sort data=rteacher_prn1; 

by rteacher; 

run; 

 

data rteacher_prn3; 

set rteacher_prn1; 

ident=_n_; 

run; 

 

data rcombine; 

  merge rteacher_prn3 rward; 

  by ident; 

  rprin1=prin1; 
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  rprin2=prin2; 

  rcluster=cluster; 

  run; 

 

proc glm data=rcombine; 

  class cluster; 

  model prin1 prin2 = cluster ; 

  means cluster/bon cldiff; 

  lsmeans cluster / out=Rmeansout; 

  manova h=cluster ; 

  run; 

  quit; 

 

/*-------------------------------------------------------------------------*/ 

/* combining prin1 from both math and reading processes to calculate an 

overall value*/ 

 

data RMTEI; 

merge mcombine rcombine; 

by _name_; 

if mprin1 = " " then IndexValue = rprin1; 

else if rprin1= " " then IndexValue = mprin1; 

else IndexValue=(mprin1+rprin1)/2; 

keep _name_ school mprin1 mprin2 rprin1 rprin2 indexvalue 

MLMM_Teacher_Effect Overall_MLMM_Teacher_VAM MTeacher_Median_SGP 

Overall_MQR_Teacher_VAM 

RLMM_Teacher_Effect Overall_RLMM_Teacher_VAM RTeacher_Median_SGP 

Overall_RQR_Teacher_VAM 

mteacher rteacher mcluster rcluster Mnumber_students Rnumber_students; 

run; 

 

/*Cluster Analysis of overall value    */ 

/*  Ward's Method  */ 

ods graphics on; 

proc cluster data=RMTEI outtree=tree 

method=ward plots=all; 

id _name_; 

var IndexValue; 

run; 

ods graphics off; 

 

%macro ivcluster_check;  

%do y = 4 %to 2 %by -1; 

proc tree data=tree noprint out=ivout&y n=&y; 

copy indexvalue; 

run; 

 

ods output CLDiffs=ivbonci&y&grade; 

proc glm data=ivout&y; 

  class cluster; 

  model indexvalue = cluster ; 

  means cluster/bon cldiff; 

run; 

quit; 

 

proc means data=ivbonci&y&grade; 

var significance; 
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output out=ivsigmean&y&grade mean=sigmean; 

run; 

 

data ivcheck&y&grade; 

set ivsigmean&y&grade; 

if sigmean = 1 then CALL SYMPUT('ivcheck',1) ; 

run; 

 

%if &ivcheck =1 and &y =4 %then %do; 

data appen3.ivbonci&grade&year; 

set ivbonci&y&grade; 

run; 

%global iv_numclust; 

%let iv_numclust=4; 

%let ivcheck=0; 

%goto exit; 

%end; 

 

%if &ivcheck=1 and &y =3 %then %do; 

data appen3.ivbonci&grade&year; 

set ivbonci&y&grade; 

run; 

%global iv_numclust; 

%let iv_numclust=3; 

%let ivcheck=0; 

%goto exit; 

%end; 

 

%if &ivcheck=1 and &y=2 %then %do; 

data appen3.ivbonci&grade&year; 

set ivbonci&y&grade; 

run; 

%global iv_numclust; 

%let iv_numclust=2; 

%let ivcheck=0; 

%goto exit; 

%end; 

 

%if &ivcheck=0 and &y =2 %then %do; 

data appen3.ivbonci&grade&year; 

set ivbonci&y&grade; 

run; 

%global iv_numclust; 

%let iv_numclust=1; 

%goto exit; 

%end; 

 

%end; 

 

%exit: %mend ivcluster_check; 

%ivcluster_check 

 

proc tree data=tree noprint out=out n=&iv_numclust; 

copy IndexValue; 

run; 

 

proc sgplot data=out; 
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scatter y=indexvalue x=_name_ / group=cluster; 

xaxis label="Teacher"; 

title "Ward's Cluster Analysis for Teachers by Overall Index Value"; 

run; 

 

Proc GPlot Data=out; 

 Plot indexvalue*_name_=cluster/HRef=0 VRef=0 VAxis=Axis1 HAxis=Axis2 ; 

 Axis1 Label=(A=90 "Index Value");/*A=90 rotates title 90 degrees*/ 

 Axis2 Label=("Teacher");        

 Symbol1  H=1 PointLabel=(C=Black "#_name_"); 

Run;  

Symbol1; 

title; 

Quit; 

 

/*  MANOVA, ANOVA, and Bon CI's to determine if clusters are statistically 

different  */ 

proc glm data=out; 

  class cluster; 

  model Indexvalue = cluster ; 

  means cluster/bon cldiff; 

  lsmeans cluster / out=meansout; 

  manova h=cluster ; 

  run; 

  quit; 

 

/*-------------------------------------------------------------------------*/ 

/*  create final file  */ 

 

proc sort data=out; 

by _name_; 

run; 

 

data final; 

merge RMTEI out; 

by _name_; 

drop clusname; 

teacher=input(_name_,best12.); 

run; 

 

data appen3.appen3&grade&year; 

set final; 

run; 

 

%MEND RMTEI; 

 

%macro reports; 

%do p = 4 %to 8; 

%RMTEI(grade=&p); 

%end; 

%mend reports; 

 

%reports 
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Appendix 3:  Alabama District Results 

 

 

2009: 
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Appendix 4:  NCES District Results  
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