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Abstract
A set of S edge-disjoint hamilton cycles in a graph G is said to be maximal if the
hamilton cycles in S form a subgraph of G such that G E(S) has no hamilton cycle. The
set of integers m for which a graph G contains a maximal set of m edge-disjoint hamilton
cycles has previously been determined whenever G is a complete graph, a complete bipartite
graph, and in many cases when G is a complete multipartite graph. In this dissertation,
some of the remaining open cases regarding complete multipartite graphs will be resolved.
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Chapter 1
Introduction
1.1 De nitions
The complete multipartite graph, Kpn is the graph with np vertices that have been par-
titioned into p parts of size n such that an edge exists between vertices u and v if and only
if u and v are in di erent parts. A hamilton cycle in a graph G is a spanning cycle of G. If
S is a set of hamilton cycles, then let G(S) be the graph induced by the edges in cycles of
S. We denote the edges in this graph by E(G(S)) or E(S). The set S is maximal in G if
G E(S) has no hamilton cycle.
1.2 History
Considerable research has come before this dissertation to  nd maximal sets of hamilton
cycles in certain graphs. Ho man, Rodger, and Rosa [7] found that there exists a maximal set
S of m edge-disjoint hamilton cycles in Kn if and only if m2
nj
n+3
4
k
;
j
n+3
4
k
+1;:::;
j
n 1
2
ko
.
It was later shown by Bryant, El-Zanati, and Rodger [1] that there exists a maximal set S of
m edge-disjoint hamilton cycles in Kn;n if and only if n4 <m n2 . Daven, MacDougall and
Rodger [3] extended the results to complete multipartite graphs, showing that there exists
a maximal set of m hamilton cycles in Kpn if and only if
(a)
l
n(p 1)
4
m
 m 
j
n(p 1)
2
k
and
(b) m> n(p 1)4 if
1. n is odd and p 1 (mod 4), or
2. p = 2, or
1
3. n = 1,
except possibly for the undecided case when n 3 is odd, p is odd and m (n+1)(p 1) 24 .
Jarrell and Rodger [8] solved these open cases when n 5, and removed all but the
smallest possible exceptional values when n = 3, showing that a maximal set of hamilton
cycles of size m exists when n = 3 and
l
n(p 1)
4
m
+ 1  m  
j
(n+1)(p 1) 2
4
k
, with strict
inequality for the lower bound of m when p 1 (mod 4). Together, these results mean that
for each odd value of p, exactly one value of m remains in doubt (namely
l
n(p 1)
4
m
+ 1 for
p 1 (mod 4) and
l
n(p 1)
4
m
for p 3 (mod 4)) and even that is only in doubt in the case
when n = 3. Naturally, each remaining case becomes more and more di cult. Indeed, for
some time it was unclear whether the remaining values would be orders of maximal sets of
hamilton cycles. To summarize, these existing results in the literature can be combined to
produce the following theorem:
Theorem 1.1 There exists a maximal set of m hamilton cycles in Kpn if and only if
1.
l
n(p 1)
4
m
 m 
j
n(p 1)
2
k
and
2. m> n(p 1)4 if
(a) n is odd and p 1 (mod 4)), or
(b) p = 2, or
(c) n = 1,
except possibly when n = 3, and m =
l
n(p 1)
4
m
+ 1 and p 1 (mod 4) or m =
l
n(p 1)
4
m
and
p 3 (mod 4).
For this dissertation, the goal is to clear up most of these last remaining cases, namely
those multipartite graphs where n = 3 and p is odd. We do so by splitting this into two
cases, one in which n = 3 and p  1 (mod 4), and the other in which n = 3 and p  3
2
(mod 4). The former case is completely resolved in Chapter 2, while the latter is resolved in
Chapter 3 when p 7 (mod 8) with two possible exceptions.
The work of this dissertation culminates in the following state of knowledge:
Theorem 1.2 There exists a maximal set of m hamilton cycles in Kpn if and only if
1.
l
n(p 1)
4
m
 m 
j
n(p 1)
2
k
and
2. m> n(p 1)4 if
(a) n is odd and p 1 (mod 4)), or
(b) p = 2, or
(c) n = 1,
except possibly when n = 3, m =
l
n(p 1)
4
m
and either p 3 (mod 8), p 19 or p2f15;23g.
1.3 The Technique of Amalgamations
The approach used to prove the theorems of this dissertation is that of amalgamations.
An amalgamation of a graph G is a graph H formed by a homomorphism f : V(G)!V(H).
So for each v2V(H), the vertices of f 1(v) can be thought of as being amalgamated into
the single vertex v in H; for each v2V(H),  (v) =jf 1(v)j is known as the amalgamation
number of v. G is said to be a disentanglement of H.
In most of our proofs, an amalgamated graph is constructed in which each color class
is connected and each vertex v is incident with 2 (v) edges of each color, thus looking like
what would be obtained by amalgamating a graph in which each color class is a hamilton
cycle. For our purposes, the two following results will be essential. The  rst result describes
properties of a graph formed by amalgamating Kn. The second will be used to show that
the amalgamated graph we construct can be disentangled (\pulled apart", if you will) to
form a subgraph of Kp3 that has a hamilton decomposition.
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Lemma 1.1 [10] Let G = Kn be an l-edge-colored graph, and let f : V(G) !V(H) be an
amalgamating function with amalgamation numbers given by the function  : V(H) !N.
Then H satis es the following conditions for any vertices w;v2V(H):
1. d(w) =  (w)(n 1),
2. m(w;v) =  (w) (v) if w6= v
3. w is incident with   (w)2  loops, and
4. dH(i)(w) = Pu2f 1(w)dG(i)(u) for 1 i l,
where m(w;v) is the number of edges between vertex w and vertex v,
Once our graph satis es the conditions of Lemma 1.1, the following theorem allows us
to disentangle the graph in such a way that we preserve connectivity and evenly divide the
edge ends among the  (u) disentangled vertices in each color class.
Theorem 1.3 [10] Let H be an l-edge-colored graph satisfying conditions (1)-(3) of Lemma
1.1 for the function  : V(H) ! N. Then there exists a disentanglement G of H that
satis es
1. G = Kn,
2. for any z2V(H);jdG(i)(v) dG(i)(u)j 1 for 1 i l and all u;v2f 1(z),
3. if dH(i)(z) (z) is an even integer for all z2V(H), then !(G(i)) = !(H(i)).
where !(G) denotes the number of components for the graph G.
Another important result that is invaluable in the main proof is the following theorem
proved by Hilton [6]. A k-edge-coloring of G is said to be evenly equitable ifjdi(v) dj(v)j 2
for 1  i < j  k and di(v) is even for 1  i k, where di(v) is the degree of v in the
subgraph induced by the edges colored i.
4
Theorem 1.4 [6] For each k 1, each  nite Eulerian graph has an evenly equitable edge-
coloring with k colors.
The use of the previous lemma and theorems and the technique of amalgamations have
allowed for much more e cient and streamlined proofs in these types of edge coloring prob-
lems.
5
Chapter 2
The p 1 (mod 4) Case
2.1 Introduction
Our aim in this chapter is to solve half of the remaining open cases in Theorem 1.1;
speci cally the case when n = 3, m =
l
n(p 1)
4
m
+ 1 and p 1 (mod 4).
In the following, edge-colorings are used to represent the hamilton cycles, so let G(i)
denote the subgraph of G induced by the edges colored i.
2.2 p 1 (mod 4)
Theorem 2.1 For the complete multipartite graph Kpn, let p = 4x+1 for some integer x 2
and let n = 3. Then there exists a maximal set of m =
l
3(p 1)
4
m
+ 1 = 3x + 1 edge disjoint
hamilton cycles in Kpn.
Proof We de ne the hamilton cycles on the vertex set Zp Z3 in which the parts are
Pi =fig Z3 for each i2Zp. As we look at this problem, it is helpful to think of the parts
of the graph arranged in p vertical columns with three vertices in each column; so each part
has a top, a middle, and a bottom vertex as shown in Figure 2.1. Our goal is to choose the
edges for our set S of hamilton cycles wisely so that we ensure that our set is maximal. In
each case S is shown to be maximal because Kpn E(S) = G(S) has a cut vertex. We do
this by splitting V(G) into 3 sections. We denote by G1 the subgraph induced by vertices
in the  rst 2x parts (part 0 to part 2x 1) together with the top vertex of the center part,
which we call u. The subgraph induced by vertices in the last 2x parts (part 2x+ 1 to part
4x) together with the bottom vertex of the center part, which we will call w, is denoted by
6
G2. Finally, the middle vertex of the center part will be called v. The vertex v will serve as
a cut vertex in G(S).
v1
v
v2
G1
G2
Figure 2.1: View of K4x+13
The edges we choose to make our set of hamilton cycles fall into the following three
types and are pictured in Figure 2.2:
Type 1: All edges in Kp3 that join vertices in G1 to vertices in G2 occur in E(S).
Type 2: Precisely 2m edges joining vertices in V(G1SG2) to v occur in E(S). (Approximately
half of these edges are incident with vertices in G1, while the others are incident with
vertices in G2.)
Type 3: Certain edges between two vertices in G1 or two vertices in G2 are  nally chosen to
make G(S) 2m-regular.
v1
v2
G1
G2
v
Figure 2.2: Type 2 and 3 Edges
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As we select Type 2 edges, we note that v is not yet adjacent to any other vertices. Thus
to produce m = 3x+ 1 hamilton cycles, we need the degree of v to be 2(3x+ 1) = 6x+ 2. If
m is even, then 3x + 1 of the edges are chosen to join vertex v to vertices in G1, while the
other 3x+ 1 are chosen to join vertex v and vertices in G2. If m is odd, then 3x of the edges
join vertex v and vertices in G1, while the other 3x+ 2 join vertex v and vertices in G2. For
the Type 3 edges, we carefully pick edges between two vertices in G1 or two vertices in G2
so that we build each vertex to degree 6x + 2. It turns out that the edges of Types 2 and
3 need not be precisely chosen if we use amalgamations to produce G. Instead we de ne H
and let Theorem 1.3 produce G.
The method used to construct the hamilton cycles is that of amalgamations. This
technique has been used successfully in this setting (see [8] for example). The amalgamation
used here is the graph homomorphism f : V(G)!V(H) = (Zpnf2xg)S(f2xg Z3) de ned
as follows. For each i2Zpnf2xgand for each j2Z3, let f((i;j)) = i, and for each j2Z3 let
f(2x;j) = (2x;j) = u;v; or w if j = 0;1; or 2 respectively. So, except for the part containing
v, f amalgamates the vertices in each part into a single vertex in H with amalgamation
number 3. The vertices in the part containing v are not amalgamated by f, so each vertex
z has amalgamation number  (z) = 1. So we will require that dH(i) = 6m = 6(3x + 1) for
each i2Zpnf2xg and dH(i) = 2m = 2(3x+ 1) for each i2fu;v;wg.
The subgraph B of H induced by the edges joining vertices in Z2x to vertices in Z4x+1n
Z2x+1 is isomorphic to 9K2x;2x. Let " = 1 or 0 if m is odd or even respectively. Join v to
vertices in Zx+1 " and Z2xnZx+1 " with 2 and 1 edges respectively, and join v to vertices
in Z3x+1+"nZ2x+1 and Z4x+1nZ3x+1+" with 2 and 1 edges respectively; these produce Type
2 edges in G. Pair the vertices in Z2xnZx+1 " and pair the vertices in Z4x+1nZ3x+1+", and
join each such pair with an edge; these produce the Type 3 edges in G. (Notice that each
set has an even size by de nition of ".)
Color the edges of H as follows. Since there exists a hamilton decomposition of K2x;2x,
the edges of B can be partitioned into 9x sets, each of which induces a hamilton cycle of H.
8
Let B0, ..., B3x be 3x+ 1 of these 9x sets, and color the edges in Bi with i for each i2Zm.
Let H1 = H Si2Z3x+1 Bi. Then dH1(i) = 4m and dH1(i;j) = 2m.
We now give the subgraph H1 of H an evenly equitable edge coloring with the 3x + 1
colors in Z3x+1. Such a coloring exists by Theorem 1.4. Thus in H1 each color appears 4
times at each vertex z with  (z) = 3 and twice at each vertex z where  (z) = 1. So in H each
color now appears 6 times at each vertex where  = 3 and once where  = 1. We are now
assured that our color classes are connected and that each color appears on the appropriate
number of edges, namely 2 (z), at each vertex z.
The aim now is to disentangle our graph so that we can pick out our maximal set of
hamilton cycles. To be able to apply Lemma 1.1 we still must add more edges to H to form
H+ so that H+ satis es properties (1-4) of Lemma 1.1 (i.e. so that it is an amalgamation of
K3p). So add edges to H so that between each pair of vertices x and y there are: exactly nine
edges if jfx;yg\fu;v;wgj = 0; exactly three edges if jfx;yg\fu;v;wgj = 1; and exactly
one edge if jfx;yg\fu;v;wgj= 2. Finally, add three loops to each vertex not in fu;v;wg.
All these additional edges and loops are colored 0. It is straightforward to check that H+
satis es properties (1-4) of Lemma 1.1, so we can now apply Theorem 1.3 to H+ to produce
G+, and edge-colored copy of K3p. Removing all edges in G+ corresponding to loops in
H+ produces Kpn, and then removing all remaining edges colored 0 produces G. Each color
class in G is 2-regular by property (2) of Theorem 1.3, and is connected by property (3),
so is a hamilton cycle. Removing the edges in these hamilton cycles from Kpn in particular
means that all Type 1 edges are removed, so produces a graph in which v is a cut vertex
(it is actually the graph induced by the edges (not loops) colored 0 in G+). So the required
maximal set of hamilton cycles has been produced.
So this chapter culminates in the following state of knowledge:
Theorem 2.2 There exists a maximal set of m hamilton cycles in Kpn if and only if
9
1.
l
n(p 1)
4
m
 m 
j
n(p 1)
2
k
and
2. m> n(p 1)4 if
(a) n is odd and p 1 (mod 4)), or
(b) p = 2, or
(c) n = 1,
except possibly when n = 3, p 3 (mod 4), and m =
l
n(p 1)
4
m
.
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Chapter 3
The p 3 (mod 4) Case
3.1 Introduction
In this chapter, we will resolve some of the cases in which n = 3 and p 3 (mod 4).
We begin in Section 3.2 by solving the two smallest cases individually, namely when p = 7
and when p = 11. Section 3.3 uses the solution for p = 7 outlined in Section 3.2 to provide
two approaches when p 7 (mod 8). One approach is based on a conjecture that, while
unproven in general, does provide a solution for the speci c case of K393 . The other approach
uses theorems of Heinrich, Lindner, Rodger, and Burling (see [5] and [2]) that provide a
solution when n = 3, p = 7 + 8 , and   3.
3.2 Small Cases p = 7 and p = 11
Theorem 3.1 There exists a maximal set of m = 5 edge disjoint hamilton cycles in K73.
Proof We begin with the complete multipartite graph K73, which we?ll refer to as G through-
out the proof. We view this complete multipartite graph as seven columns (parts named 0 to
6) and three rows (named 0, 1, and 2). Each vertex is then denoted as an ordered pair (i;j)
where i2f0;1;2;3;4;5;6g (the part) and j2f0;1;2g (the row). We divide the vertices of
the graph into three sections as follows:
L0 = f(0;0);(0;1);(0;2);(1;0);(1;1);(2;0);(2;1);(3;0);(4;0);(5;0)g,
R0 = f(1;2);(2;2);(3;2);(4;1);(4;2);(5;1);(5;2);(6;0);(6;1);(6;2)g, and
v = (3;1).
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L0 R0v
1 2 3 4 5 60
0
1
2
Figure 3.1: Setup of three sections with edge cut depicted
The proof is driven by carefully choosing edges to include in the set of hamilton cycles,
S, so that v is a cut vertex in G E(S). These edges in our hamilton cycles fall into three
categories: all edges between vertices in section L0 and vertices in section R0; certain edges
between v and vertices in section L0; and certain edges between v and vertices in section R0
(see Figure 3.2). Our plan is to make our edge set 10-regular considering only these types of
edges; it will be shown that there exists a hamilton decomposition of the subgraph induced
by these edges. The sections L0 and R0 are named to re ect the fact that the edges in S
join vertices on the left of the line in Figure 3.2 to vertices on the right, and the subscript 0
is added in anticipation of the generalization presented in 3.3.
L0 R0v
Figure 3.2: Special edges in E(S)
Next, we use the technique of amalgamations described in Chapter 1. Our amalgamation
function f : V(G[E(S)])!V(H) is de ned as follows:
12
f(i;j) =
8
>>>
>>>>
>>>
>>>
><
>>>>
>>>
>>>
>>>>
:
(0;0) if i = 0;
(i;0) if 1 i 2;j 1;
(i;0) if 3 i 5;j = 0;
(i;1) if 1 i 3;j = 2;
(i;1) if 4 i 5;j 1;
(6;1) if i = 6;
and since it plays a special role, we de ne f(3;1) = v. So, V(H) now looks like Figure 3.3.
L0
R 0
(0 , 0) (1 , 0) (2 , 0) (3 , 0) (4 , 0) (5 , 0)
(1 , 1) (2 , 1) (3 , 1) (4 , 1) (5 , 1) (6 , 1)
v
Figure 3.3: The Amalgamated H of G; the size of the vertex u represents the value of f(u).
The critical part in the proof is to color the edges in H so that for 1 i 5 (i) for all
u2V(H), dH(i)(u) = 2f(u) and (ii) each color class H(i) is connected. These conditions
will allow us to disentangle H so that each color class is a hamilton cycle by properties 2
and 3 respectively of Theorem 1.3.
Our coloring is as follows:
First, each of the  ve paths below are colored in a di erent color, namely colors 1-5.
P1 = [(3;0);(6;1);(2;0);(5;1);(1;0);(4;1);(0;0);(3;1)]
P2 = [(2;0);(1;1);(0;0);(3;1);(1;0);(2;1);(3;0);(5;1);(4;0);(6;1);(5;0);(4;1)]
P3 = [(1;0);(4;1);(3;0);(6;1);(5;0);(1;1);(4;0);(2;1);(0;0);(3;1);(2;0);(5;1)]
P4 = [(1;0);(4;1);(5;0);(2;1);(0;0);(1;1);(3;0);(6;1);(4;0);(3;1);(2;0);(5;1)]
P5 = [(2;0);(1;1);(0;0);(2;1);(1;0);(3;1);(5;0);(6;1);(4;0);(5;1);(3;0);(4;1)]
Each of these paths is then joined to a path created from the edges in Figure 3.2, namely
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Q1 = [(3;1);(1;1);(2;1);v;(4;0);(5;0);(3;0)]
Q2 = [(4;1);v;(2;0)]
Q3 = [(5;1);v;(1;0)]
Q4 = [(5;1);v;(1;0)]
Q5 = [(4;1);v;(2;0)]
This creates the following cycles Ci = Pi[Qi:
C1 = ((3;0);(6;1);(2;0);(5;1);(1;0);(4;1);(0;0);(3;1);(1;1);(2;1);v;(4;0);(5;0))
C2 = ((2;0);(1;1);(0;0);(3;1);(1;0);(2;1);(3;0);(5;1);(4;0);(6;1);(5;0);(4;1);v)
C3 = ((1;0);(4;1);(3;0);(6;1);(5;0);(1;1);(4;0);(2;1);(0;0);(3;1);(2;0);(5;1);v)
C4 = ((1;0);(4;1);(5;0);(2;1);(0;0);(1;1);(3;0);(6;1);(4;0);(3;1);(2;0);(5;1);v)
C5 = ((2;0);(1;1);(0;0);(2;1);(1;0);(3;1);(5;0);(6;1);(4;0);(5;1);(3;0);(4;1);v)
Illustrations of these paths are given in Figure 3.4.
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(0 , 0) (1 , 0) (2 , 0) (3 , 0) (4 , 0) (5 , 0)
(1 , 1) (2 , 1) (3 , 1) (4 , 1) (5 , 1) (6 , 1)
(0 , 0) (1 , 0) (2 , 0) (3 , 0) (4 , 0) (5 , 0)
(1 , 1) (2 , 1) (3 , 1) (4 , 1) (5 , 1) (6 , 1)
(0 , 0) (1 , 0) (2 , 0) (3 , 0) (4 , 0) (5 , 0)
(1 , 1) (2 , 1) (3 , 1) (4 , 1) (5 , 1) (6 , 1)
(0 , 0) (1 , 0) (2 , 0) (3 , 0) (4 , 0) (5 , 0)
(1 , 1) (2 , 1) (3 , 1) (4 , 1) (5 , 1) (6 , 1)
(0 , 0) (1 , 0) (2 , 0) (3 , 0) (4 , 0) (5 , 0)
(1 , 1) (2 , 1) (3 , 1) (4 , 1) (5 , 1) (6 , 1)
(0 , 0) (1 , 0) (2 , 0) (3 , 0) (4 , 0) (5 , 0)
(1 , 1) (2 , 1) (3 , 1) (4 , 1) (5 , 1) (6 , 1)
(0 , 0) (1 , 0) (2 , 0) (3 , 0) (4 , 0) (5 , 0)
(1 , 1) (2 , 1) (3 , 1) (4 , 1) (5 , 1) (6 , 1)
(0 , 0) (1 , 0) (2 , 0) (3 , 0) (4 , 0) (5 , 0)
(1 , 1) (2 , 1) (3 , 1) (4 , 1) (5 , 1) (6 , 1)
(0 , 0) (1 , 0) (2 , 0) (3 , 0) (4 , 0) (5 , 0)
(1 , 1) (2 , 1) (3 , 1) (4 , 1) (5 , 1) (6 , 1)
(0 , 0) (1 , 0) (2 , 0) (3 , 0) (4 , 0) (5 , 0)
(1 , 1) (2 , 1) (3 , 1) (4 , 1) (5 , 1) (6 , 1)
Figure 3.4: Ci = Pi[Qi
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We have now colored most of the edges in E(S). Left to color are the edges between
f(1;0);(2;0);(3;0)g2 L0 and f(4;1);(5;1);(6;1)g2 R0 that were not used in the cycles
denoted by Ci above. Each vertex has degree ten, so we will give these edges an evenly
equitable edge coloring with  ve colors, namely 1-5. Now each of our  ve colors appears at
each vertex u a total 2f(u) more times and each color class is connected.
The next goal is to disentangle the graph H. To be able to apply Lemma 1.1, we need
to use the same technique as in the p 1 (mod 4) case which required adding edges to our
graph H so that it is the amalgamation of the complete graph K3p. All of these additional
edges and loops are colored 0. We call this new graph H+ and note that it now satis es the
conditions of Lemma 1.1. Thus we apply Theorem 1.3 to H+ to produce G+, which is an
edge-colored copy of K3p. We now remove all edges in G+ colored 0. Using Theorem 1.3, we
see that each color class is 2-regular by (i) and connected by (ii), which implies that each
color class is a hamilton cycle. We now consider G E(S). Note that all edges between
vertices in L0 and R0 were in E(S), so we have that G E(S) has cut vertex v. So our set
of hamilton cycles is maximal.
Theorem 3.2 There exists a maximal set of m = 8 edge disjoint hamilton cycles in K113 .
Proof We begin with the complete multipartite graphK113 , which we?ll refer to asGthrough-
out the proof. This construction will be very similar to that of K73 from Section 3.1. We
view this complete multipartite graph as eleven columns (parts named 0 to 10) and three
rows (named 0, 1, and 2). Each vertex is then denoted as an ordered pair (i;j) where
i2f0;1;2;3;4;5;6;7;8;9;10g (the part) and j2f0;1;2g (the row). We divide the vertices
of the graph into three sections as follows:
L0 = f(0;0);(0;1);(0;2);(1;0);(1;1);(2;0);(2;1);(3;0);(3;1);(4;0);(4;1);(5;0);(6;0);
(7;0);(8;0);(9;0)g;
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R0 = f(1;2);(2;2);(3;2);(4;2);(5;2);(6;0);(6;1);(7;0);(7;1);(8;0);(8;1);(9;0);(9;1);
(10;0);(10;1);(10;2)g, and
v = (5;1).
L0
1 2 3 4 5 60
0
1
2
7 8 9 10
R0v
Figure 3.5: Setup of three sections with edge cut depicted
The proof is driven by carefully choosing edges to include in the set of hamilton cycles,
S, so that v is a cut vertex in G E(S). These edges in our hamilton cycles fall into three
categories: all edges between vertices in section L0 and vertices in section R0; certain edges
between v and vertices in section L0; and certain edges between v and vertices in section R0
(see Figure 3.6). Our plan is to make our edge set 16-regular considering only these types of
edges; it will be shown that there exists a hamilton decomposition of the subgraph induced
by these edges. The sections L0 and R0 are named to re ect the fact that the edges in S
join vertices on the left of the line in Figure 3.5 to vertices on the right, and the subscript 0
is added in anticipation of a general solution similar to when p 7 (mod 8).
L0 R0v
Figure 3.6: Special edges in E(S)
Next, we use the technique of amalgamations described in Chapter 1. Our amalgamation
function f : V(G[E(S)])!V(H) is de ned as follows:
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f(i;j) =
8
>>>
>>>>
>>>
>>>
><
>>>>
>>>
>>>
>>>>
:
(0;0) if i = 0;
(i;0) if 1 i 4;j 1;
(i;0) if 5 i 9;j = 0;
(i;1) if 1 i 5;j = 2;
(i;1) if 6 i 9;j 1;
(10;1) if i = 10;
and since it plays a special role, we de ne f(5;1) = v. So, V(H) now looks like Figure 3.7.
L 0
R 0
(0 , 0) (1 , 0) (2 , 0) (3 , 0) (4 , 0) (5 , 0) (6 , 0) (7 , 0) (8 , 0) (9 , 0)
(10 , 1)(1 , 1) (2 , 1) (3 , 1) (4 , 1) (5 , 1) (6 , 1) (7 , 1) (8 , 1) (9 , 1)
v
Figure 3.7: The Amalgamated H of G; the size of the vertex u represents the value of f(u).
The critical part in the proof is to color the edges in H so that for 1 i 8 (i) for all
u2V(H), dH(i)(u) = 2f(u) and (ii) each color class H(i) is connected. These conditions
will allow us to disentangle H so that each color class is a hamilton cycle by properties 2
and 3 respectively of Theorem 1.3.
Our coloring is as follows:
First, each of the eight paths below are colored in a di erent color, namely colors 1-8.
P1 = [(1;0);(4;1);(5;0);(3;1);(6;0);(2;1);(0;0);(1;1);(2;0);(5;1);(3;0);(6;1);(4;0);
(7;1);(8;0);(10;1);(9;0);(8;1);(7;0);(9;1)]
P2 = [(2;0);(4;1);(0;0);(3;1);(1;0);(5;1);(4;0);(1;1);(3;0);(2;1);(5;0);(9;1);(6;0);
(10;1);(7;0);(6;1);(8;0);(7;1);(9;0);(8;1)]
P3 = [(3;0);(1;1);(4;0);(2;1);(0;0);(3;1);(1;0);(4;1);(2;0);(6;1);(5;0);(8;1);(7;0);
(9;1);(8;0);(5;1);(9;0);(10;1);(6;0);(7;1)]
P4 = [(4;0);(3;1);(2;0);(5;1);(0;0);(1;1);(5;0);(7;1);(6;0);(8;1);(3;0);(9;1);(1;0);
18
(2;1);(7;0);(10;1);(8;0);(4;1);(9;0);(6;1)]
P5 = [(4;0);(5;1);(3;0);(4;1);(0;0);(2;1);(8;0);(3;1);(9;0);(1;1);(7;0);(10;1);(5;0);
(9;1);(6;0);(8;1);(2;0);(7;1);(1;0);(6;1)]
P6 = [(3;0);(8;1);(5;0);(10;1);(6;0);(1;1);(8;0);(6;1);(9;0);(2;1);(1;0);(5;1);(0;0);
(4;1);(7;0);(3;1);(2;0);(9;1);(4;0);(7;1)]
P7 = [(1;0);(8;1);(2;0);(1;1);(0;0);(3;1);(4;0);(2;1);(3;0);(4;1);(6;0);(5;1);(7;0);
(6;1);(5;0);(7;1);(9;0);(10;1);(8;0);(9;1)]
P8 = [(5;0);(10;1);(4;0);(9;1);(3;0);(8;1);(2;0);(7;1);(1;0);(6;1);(0;0);(5;1)]
Each of these paths is then joined to a path created from the edges in Figure 3.6, namely
Q1 = [(9;1);v;(1;0)]
Q2 = [(8;1);v;(2;0)]
Q3 = [(7;1);v;(3;0)]
Q4 = [(6;1);v;(4;0)]
Q5 = [(6;1);v;(4;0)]
Q6 = [(7;1);v;(3;0)]
Q7 = [(9;1);v;(1;0)]
Q8 = [(5;1);(4;1);(3;1);(2;1);(1;1);v;(9;0);(8;0);(7;0);(6;0);(5;0)]
This creates the following cycles Ci = Pi[Qi:
C1 = ((1;0);(4;1);(5;0);(3;1);(6;0);(2;1);(0;0);(1;1);(2;0);(5;1);(3;0);(6;1);(4;0);
(7;1);(8;0);(10;1);(9;0);(8;1);(7;0);(9;1);v)
C2 = ((2;0);(4;1);(0;0);(3;1);(1;0);(5;1);(4;0);(1;1);(3;0);(2;1);(5;0);(9;1);(6;0);
(10;1);(7;0);(6;1);(8;0);(7;1);(9;0);(8;1);v)
C3 = ((3;0);(1;1);(4;0);(2;1);(0;0);(3;1);(1;0);(4;1);(2;0);(6;1);(5;0);(8;1);(7;0);
(9;1);(8;0);(5;1);(9;0);(10;1);(6;0);(7;1);v)
C4 = ((4;0);(3;1);(2;0);(5;1);(0;0);(1;1);(5;0);(7;1);(6;0);(8;1);(3;0);(9;1);(1;0);
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(2;1);(7;0);(10;1);(8;0);(4;1);(9;0);(6;1);v)
C5 = ((4;0);(5;1);(3;0);(4;1);(0;0);(2;1);(8;0);(3;1);(9;0);(1;1);(7;0);(10;1);(5;0);
(9;1);(6;0);(8;1);(2;0);(7;1);(1;0);(6;1);v)
C6 = ((3;0);(8;1);(5;0);(10;1);(6;0);(1;1);(8;0);(6;1);(9;0);(2;1);(1;0);(5;1);(0;0);
(4;1);(7;0);(3;1);(2;0);(9;1);(4;0);(7;1);v)
C7 = ((1;0);(8;1);(2;0);(1;1);(0;0);(3;1);(4;0);(2;1);(3;0);(4;1);(6;0);(5;1);(7;0);
(6;1);(5;0);(7;1);(9;0);(10;1);(8;0);(9;1);v)
C8 = ((5;0);(10;1);(4;0);(9;1);(3;0);(8;1);(2;0);(7;1);(1;0);(6;1);(0;0);(5;1);(4;1);
(3;1);(2;1);(1;1);v;(9;0);(8;0);(7;0);(6;0))
Illustrations of these paths are given in Figures 3.8 and 3.9.
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L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
Figure 3.8: Ci = Pi[Qi; cycles 1-4
We have now colored most of the edges in E(S). Left to color are the edges between
f(0;0);(1;0);(2;0);(3;0);(4;0)g2L0 and f(6;1);(7;1);(8;1);(9;1);(10;1)g2R0 that were
not used in the cycles denoted by Ci above. Each vertex has degree sixteen, so we will give
these edges an evenly equitable edge coloring with eight colors, namely 1-8. Now each of
our eight colors appears at each vertex u a total 2f(u) more times and each color class is
connected.
The next goal is to disentangle the graph H. To be able to apply Lemma 1.1, we need
to use the same technique as in the p 1 (mod 4) case which required adding edges to our
graph H so that it is the amalgamation of the complete graph K3p. All of these additional
edges and loops are colored 0. We call this new graph H+ and note that it now satis es the
conditions of Lemma 1.1. Thus we apply Theorem 1.3 to H+ to produce G+, which is an
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L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
L0
R0
(0, 0) (1, 0)(2, 0)(3, 0)(4, 0)(5, 0)(6, 0)(7, 0)(8, 0)(9, 0)
(10, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(7, 1)(8, 1)(9, 1)
Figure 3.9: Ci = Pi[Qi; cycles 5-8
edge-colored copy of K3p. We now remove all edges in G+ colored 0. Using Theorem 1.3, we
see that each color class is 2-regular by (i) and connected by (ii), which implies that each
color class is a hamilton cycle. We now consider G E(S). Note that all edges between
vertices in L0 and R0 were in E(S), so we have that G E(S) has cut vertex v. So our set
of hamilton cycles is maximal.
3.3 p 7 (mod 8), p 31
As mentioned in the introduction to this chapter, we present two approaches to the
general case when n = 3 and p 7 (mod 8). We begin by stating the following unproven
conjecture.
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Conjecture 3.1 Let z 5. There exist 1-factorizations F = fFiji2Zzg and G = fGij
i2Zzg of Kz;z with vertex set Zz Z2 such that for all i2Zz,
1. f(0;0);(i;1)g and f(0;1);(i;0)g are in Fi if i6= 0, and f(i;0);(i;1)g is in F0,
2. f(i;0);(i;1)g is in Gi, and
3. Fi[Gi is connected if i 1.
Conditions (1-3) of Conjecture 3.1 cannot be satis ed if z 4.
Lemma 3.1 Conjecture 3.1 holds for z = 5.
Proof Let F be
F0 =ff(0;0);(0;1)g;f(1;0);(1;1)g;f(2;0);(2;1)g;f(3;0);(3;1)g;f(4;0);(4;1)gg
F1 =ff(0;0);(1;1)g;f(1;0);(0;1)g;f(2;0);(3;1)g;f(3;0);(4;1)g;f(4;0);(3;1)gg
F2 =ff(0;0);(2;1)g;f(1;0);(4;1)g;f(2;0);(0;1)g;f(3;0);(1;1)g;f(4;0);(3;1)gg
F3 =ff(0;0);(3;1)g;f(1;0);(2;1)g;f(2;0);(4;1)g;f(3;0);(0;1)g;f(4;0);(1;1)gg
F4 =ff(0;0);(4;1)g;f(1;0);(3;1)g;f(2;0);(1;1)g;f(3;0);(2;1)g;f(4;0);(0;1)gg
Let G be
G0 =ff(0;0);(0;1)g;f(1;0);(2;1)g;f(2;0);(1;1)g;f(3;0);(4;1)g;f(4;0);(3;1)gg
G1 =ff(0;0);(3;1)g;f(1;0);(1;1)g;f(2;0);(4;1)g;f(3;0);(2;1)g;f(4;0);(0;1)gg
G2 =ff(0;0);(4;1)g;f(1;0);(3;1)g;f(2;0);(2;1)g;f(3;0);(0;1)g;f(4;0);(1;1)gg
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G3 =ff(0;0);(1;1)g;f(1;0);(4;1)g;f(2;0);(0;1)g;f(3;0);(3;1)g;f(4;0);(2;1)gg
G4 =ff(0;0);(2;1)g;f(1;0);(0;1)g;f(2;0);(3;1)g;f(3;0);(1;1)g;f(4;0);(4;1)gg
Then we have hamilton cycles induced by the following sets of edges:
F1[G1 = ff(0;0);(1;1)g;f(1;0);(1;1)g;f(1;0);(0;1)g;f(4;0);(0;1)g;f(4;0);(2;1)g;
f(3;0);(2;1)g;f(3;0);(4;1)g;f(2;0);(4;1)g;f(2;0);(3;1)g;f(0;0);(3;1)gg
F2[G2 = ff(0;0);(2;1)g;f(2;0);(2;1)g;f(2;0);(0;1)g;f(3;0);(0;1)g;f(3;0);(1;1)g;
f(4;0);(1;1)g;f(4;0);(3;1)g;f(1;0);(3;1)g;f(1;0);(4;1)g;f(0;0);(4;1)gg
F3[G3 = ff(0;0);(3;1)g;f(3;0);(3;1)g;f(3;0);(0;1)g;f(2;0);(0;1)g;f(2;0);(4;1)g;
f(1;0);(4;1)g;f(1;0);(2;1)g;f(4;0);(2;1)g;f(4;0);(1;1)g;f(0;0);(1;1)gg
F4[G4 = ff(0;0);(4;1)g;f(4;0);(4;1)g;f(4;0);(0;1)g;f(1;0);(0;1)g;f(1;0);(3;1)g;
f(2;0);(3;1)g;f(2;0);(1;1)g;f(3;0);(1;1)g;f(3;0);(2;1)g;f(0;0);(2;1)gg
F, G, and Fi[Gi;1  i 4 are pictured in Figures 3.10, 3.11, and 3.12. The bold
edges represent those required by Conditions (1-2) in Conjecture 3.1.
In proving Theorem 3.4, we can use Conjecture 3.1, but could also make use of the
following result.
Let 2Kn denote the multigraph on n vertices in which each pair of vertices is joined by
exactly two edges. An i-factor of a graph G is a spanning subgraph of G that is regular of
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(0,0)
(1,0)
(2,0)
(3,0)
(4,0)
(0,1)
(1,1)
(2,1)
(3,1)
(4,1)
(0,0)
(1,0)
(2,0)
(3,0)
(4,0)
(0,0)
(1,0)
(2,0)
(3,0)
(4,0)
(0,0)
(1,0)
(2,0)
(3,0)
(4,0)
(0,0)
(1,0)
(2,0)
(3,0)
(4,0)
(0,1)
(1,1)
(2,1)
(3,1)
(4,1)
(0,1)
(1,1)
(2,1)
(3,1)
(4,1)
(0,1)
(1,1)
(2,1)
(3,1)
(4,1)
(0,1)
(1,1)
(2,1)
(3,1)
(4,1)
F1 F2
F3 F4
F0
Figure 3.10: F =fFiji2Z5g
degree i. An m-cycle decomposition of a graph G is a collection of edge-disjoint m-cycles
which partition the edge set E(G). An m-cycle decomposition C(m) is resolvable if the
m-cycles in C(m) can be partitioned into 2-factors of G. A subgraph X of a graph G is an
almost parallel class if for some vertex v, X is a 2-factor of G v. In this case v is called the
de ciency of the almost parallel class and is denoted by d(X). An m-cycle decomposition
C(m) is almost resolvable if C(m) can be partitioned into almost parallel classes.
From results of Heinrich, Lindner, Rodger, and Burling, we have the following theorem.
Theorem 3.3 [2, 5] For all m 3, there exists an almost resolvable m-cycle system of 2Kn
if and only if n 1 (mod m).
Theorem 3.4 Let   3, let n = 3, and let p = 7 + 8 . There exists a maximal set of
m =
l
3(p 1)
4
m
= 3x+ 2 edge disjoint hamilton cycles in Kpn.
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Figure 3.11: G =fGiji2Z5g
Proof The case when p = 7 is settled in Theorem 3.1, so we now use our construction for K73
to produce a maximal set S of hamilton cycles when p = 7 + 8 . Recall that in producing a
maximal set of hamilton cycles for K73, we viewed our complete multipartite graph as having
seven columns of three vertices each. We then split this graph into two sections denoted L0
and R0 and a single vertex v. As we generalize this case, we start with the aforementioned
seven parts and add more in groups of eight. We will visualize this with four parts on each
side of the original seven parts. The eight new parts are viewed as eight columns (parts
named 0 to 7) and three rows (named 0, 1, and 2). We follow the same naming convention
as before, except we include a third coordinate. The original vertices in K73 are now named
(i;j;0) instead of (i;j) as before. Each new vertex is then denoted as an ordered triple
(i;j;x) where i2f0;1;2;3;4;5;6;7g (the part), j2f0;1;2g (the row) and x2Z +1nf0g.
These vertices are then grouped into two new sections Lx and Rx, x2Z +1 as follows
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Figure 3.12: Fi[Gi;1 i 4
Lx = f(0;0;x);(0;1;x);(0;2;x);(0;3;x);(1;0;x);(1;1;x);(1;2;x);(1;3;x);
(2;0;x);(2;1;x);(2;2;x);(2;3;x)g, and
Rx = f(0;4;x);(0;5;x);(0;6;x);(0;6;x);(1;4;x);(1;5;x);(1;6;x);(1;7;x);
(2;4;x);(2;5;x);(2;6;x);(2;7;x)g
So, our vertex set isfZ7 Z3gSfZ8 Z3 Z +1nf0gg. Thus, for each x2Z +1nf0g,
Lx =fZ4 Z3 fxggnf(2;2;x);(3;2;x)gSf(4;0;x);(5;0;x)gand Rx =fZ4 Z3 fxggnLx.
Therefore, V(Kpn) = LSRSfvg, where v = (3;1;0), L = Sx2Z Lx, and R = Sx2Z Rx.
This can be viewed in Figure 3.13.
As before, our aim is to produce a set of colored edges E(S) in G = Kpn that form
m = 3p 14 = 6x+ 5 hamilton cycles such that in the complement, G E(S), v is a cut vertex
ensuring that our set is indeed maximal. The edges chosen are as follows:
Type 1: All edges that join a vertex in L to a vertex in R.
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v
L0L1L? L1 L?
R0 R1 R?R1R?
Figure 3.13: Set up of K7+8 3
Type 2: All special edges from the p = 7 case. (These were denoted as Type 2 and Type 3
edges previously.)
Type 3: Speci c edges incident with v, along with edges among vertices of Lx and edges among
vertices of Rx, namelyffv;(i;j;x)gji2f2;3g;j2f0;1g;1 x  g[ffv;(i;j;x)gj
i 2f4;5g;j 2f1;2g;1  x   g[ffv;(i;j;x)gj i 2f2;3g;j = 2;1  x   g[
ffv;(i;j;x)gji2f4;5g;j = 0;1 x  g[ff(2;2;x);(3;2;x)g;f(4;0;x);(5;0;x)ggj
1 x  g. (These are shown in Figure 3.14.)
v
L0L1 L1
R0 R1R1
Figure 3.14: Type 3 Edges
It remains to show that these edges induce a graph which has a hamilton decomposition.
To do so, the technique of amalgamations will be used to aid in the proof. The amalgamation
function f : V(G[E(S)]) !V(H) is de ned as follows and is pictured in Figure 3.15. For
all vertices in L0[R0[v, f(i;j;0) = f(i;j), where f(i;j) is de ned in the proof of Theorem
3.1. If x2f1;:::; g, then
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f(i;j;x) =
8
>>>
>>>>
>>>
>>>
><
>>>>
>>>
>>>
>>>>
:
(i;0;x) if i2f0;1g;
(i;0;x) if i2f2;3g and j20;1;
(i;0;x) if i2f4;5g and j = 0;
(i;2;x) if i2f2;3g and j = 2;
(i;2;x) if i2f4;5g and j2f1;2g;
(i;2;x) if i2f6;7g:
L0
R0 R1
L1
v
L1
R1
Figure 3.15: The Amalgamated Graph H; the size of the vertex indicated its amalgamation
number
It is helpful now to shift our view of this amalgamated graph to where the Li?s and Ri?s
each form a column. Our special vertex v is then pictured above these columns in the center
(see Figure 3.16). Vertices in the same row have the same amalgamation number.
Now, we must color our edge set so that conditions (1-4) of Lemma 1.1 are satis ed
in order that Theorem 1.3 can be applied. This is done by coloring the graph in small
pieces and then connecting them afterward. These small pieces consist of the trails, denoted
T1(x);T2(x);:::;T6(x), and hamilton cycles on the vertices of Li and Rj, denoted H(i;j;c).
Recall from Chapter 1 that trails are denoted using brackets and cycles are denoted using
parentheses. These pieces are de ned as follows:
 Hamilton cycles on the vertices in L0 and R0: Use the same construction of  ve
hamilton cycles in the proof of Theorem 3.1. We now rename these H(0;0;c), c2Z5
and picture them in Figure 3.17.
 Eulerian Trails on the vertices in L0, Rx, Lx and R0, 1  x  : The edges
of these trails are de ned below. Each trail is de ned so that (1) it spans the vertices
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(1,0,?)
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(3,0,?)
(4,0,?)
(5,0,?)
(7,2,1)
(6,2,1)
(5,2,1)
(4,2,1)
(3,2,1)
(2,2,1)
(7,2,?)
(6,2,?)
(5,2,?)
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(3,2,?)
(2,2,?)
Figure 3.16: Column View of Amalgamated Graph
fvg[L0[R0[Lx[Rx (where x2Z nf0g), and (2) each vertex has degree 2 except for
(0;0;x), (1;0;x), (6;2;x), and (7;2;x), which each have degree 4. We begin de ning
our trails with a subtrail T0i(x).
For each x2f1;:::; g, let
T00(x) = [(2;2;x);(0;0;0);(6;2;x);(2;0;0);(6;2;x);(5;0;0);(7;2;x);
(3;0;0);(5;2;x);(1;0;0);(4;2;x);(4;0;0);(7;2;x)]
T01(x) = [(2;2;x);(0;0;0);(6;2;x);(2;0;0);(7;2;x);(3;0;0);(3;2;x)
(5;0;0);(4;2;x);(1;0;0);(5;2;x);(4;0;0);(7;2;x)]
T02(x) = [(4;2;x);(3;0;0);(6;2;x);(2;0;0);(2;2;x);(0;0;0);(7;2;x);
(4;0;0);(3;2;x);(1;0;0);(5;2;x);(5;0;0);(7;2;x)]
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Figure 3.17: Hamilton Cycles H(0;0;c), 1 c 5
T03(x) = [(4;2;x);(5;0;0);(2;2;x);(2;0;0);(7;2;x);(0;0;0);(3;2;x);
(1;0;0);(5;2;x);(4;0;0);(6;2;x);(3;0;0);(6;2;x)]
T04(x) = [(5;2;x);(3;0;0);(4;2;x);(1;0;0);(2;2;x);(4;0;0);(6;2;x);
(5;0;0);(7;2;x);(2;0;0);(3;2;x);(0;0;0);(6;2;x)]
T05(x) = [(5;2;x);(5;0;0);(6;2;x);(4;0;0);(4;2;x);(1;0;0);(2;2;x);
(3;0;0);(7;2;x);(2;0;0);(3;2;x);(0;0;0);(7;2;x)]
Now, for each trail T0(x), let g(T0(x)) be the trail formed by replacing each vertex
u2V(T0(x)) with the vertex g(u), where g is de ned by:
g(i;0;x) =
8
>><
>>:
(7 i;2;x) if i2Z8 and x2Z nf0g;
(6 i;2;x) if i2Z7 and x = 0;
and g2 is the identity map on V:
De ne the required trails as follows:
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T0(x) = T00(x)[g(T00(x))[[(5;0;x);(4;0;x);v;(3;2;x);(2;2;x)][[(0;0;x);(7;2;x)]
T1(x) = T01(x)[g(T01(x))[[(5;0;x);v;(2;2;x)][[(1;0;x);(6;2;x);(1;0;x)][[(0;0;x);(7;2;x)]
T2(x) = T02(x)[g(T02(x))[[(3;0;x);v;(4;2;x)][[(0;0;x);(6;2;x);(1;0;x);(7;2;x)]
T3(x) = T03(x)[g(T03(x))[[(3;0;x);v;(4;2;x)][[(1;0;x);(7;2;x);(0;0;x);(6;2;x)]
T4(x) = T04(x)[g(T04(x))[[(2;0;x);v;(5;2;x)][[(1;0;x);(7;2;x);(0;0;x);(6;2;x)]
T5(x) = T05(x)[g(T05(x))[[(2;0;x);v;(5;2;x)][[(0;0;x);(6;2;x);(1;0;x);(7;2;x)]
 Hamilton cycles on the vertices in Lx and Ry, for 1  x;y  : These cycles
are de ned below and pictured in Figure 3.19.
H(i;j;0) = ((0;0;x);(2;2;y);(5;0;x);(7;2;y);(4;0;x);(6;2;y);(3;0;x);
(5;2;y);(2;0;x);(4;2;y);(1;0;x);(3;2;y))
H(i;j;1) = ((0;0;x);(3;2;y);(1;0;x);(2;2;y);(2;0;x);(7;2;y);(3;0;x);
(6;2;y);(5;0;x);(5;2;y);(4;0;x);(4;2;y))
H(i;j;2) = ((0;0;x);(2;2;y);(4;0;x);(3;2;y);(3;0;x);(7;2;y);(2;0;x);
(6;2;y);(5;0;x);(4;2;y);(1;0;x);(5;2;y))
H(i;j;3) = ((0;0;x);(4;2;y);(5;0;x);(3;2;y);(2;0;x);(6;2;y);(4;0;x);
(7;2;y);(3;0;x);(2;2;y);(1;0;x);(5;2;y))
H(i;j;4) = ((0;0;x);(2;2;y);(1;0;x);(4;2;y);(4;0;x);(7;2;y);(5;0;x);
(5;2;y);(3;0;x);(6;2;y);(2;0;x);(3;2;y))
H(i;j;5) = ((0;0;x);(4;2;y);(1;0;x);(3;2;y);(3;0;x);(2;2;y);(2;0;x);
(7;2;y);(5;0;x);(6;2;y);(4;0;x);(5;2;y))
 Hamilton cycles on the vertices in Lx and Rx for 1  x  : These cycles are
de ned below and shown in Figure 3.20.
32
L0 R0
(0,0,0)
(1,0,0)
(2,0,0)
(3,0,0)
(4,0,0)
(5,0,0)
(5,2,0)
(4,2,0)
(3,2,0)
(2,2,0)
(6,2,0)
(1,2,0)
Li Ri
v
T0(x)
(0,0,x)
(1,0,x)
(2,0,x)
(3,0,x)
(4,0,x)
(5,0,x)
(7,2,x)
(6,2,x)
(5,2,x)
(4,2,x)
(3,2,x)
(2,2,x)
L0 R0
(0,0,0)
(1,0,0)
(2,0,0)
(3,0,0)
(4,0,0)
(5,0,0)
(5,2,0)
(4,2,0)
(3,2,0)
(2,2,0)
(6,2,0)
(1,2,0)
Li Ri
v
T1(x)
(0,0,x)
(1,0,x)
(2,0,x)
(3,0,x)
(4,0,x)
(5,0,x)
(7,2,x)
(6,2,x)
(5,2,x)
(4,2,x)
(3,2,x)
(2,2,x)
L0 R0
(0,0,0)
(1,0,0)
(2,0,0)
(3,0,0)
(4,0,0)
(5,0,0)
(5,2,0)
(4,2,0)
(3,2,0)
(2,2,0)
(6,2,0)
(1,2,0)
Li Ri
v
T2(x)
(0,0,x)
(1,0,x)
(2,0,x)
(3,0,x)
(4,0,x)
(5,0,x)
(7,2,x)
(6,2,x)
(5,2,x)
(4,2,x)
(3,2,x)
(2,2,x)
L0 R0
(0,0,0)
(1,0,0)
(2,0,0)
(3,0,0)
(4,0,0)
(5,0,0)
(5,2,0)
(4,2,0)
(3,2,0)
(2,2,0)
(6,2,0)
(1,2,0)
Li Ri
v
T3(x)
(0,0,x)
(1,0,x)
(2,0,x)
(3,0,x)
(4,0,x)
(5,0,x)
(7,2,x)
(6,2,x)
(5,2,x)
(4,2,x)
(3,2,x)
(2,2,x)
L0 R0
(0,0,0)
(1,0,0)
(2,0,0)
(3,0,0)
(4,0,0)
(5,0,0)
(5,2,0)
(4,2,0)
(3,2,0)
(2,2,0)
(6,2,0)
(1,2,0)
Li Ri
v
T4(x)
(0,0,x)
(1,0,x)
(2,0,x)
(3,0,x)
(4,0,x)
(5,0,x)
(7,2,x)
(6,2,x)
(5,2,x)
(4,2,x)
(3,2,x)
(2,2,x)
L0 R0
(0,0,0)
(1,0,0)
(2,0,0)
(3,0,0)
(4,0,0)
(5,0,0)
(5,2,0)
(4,2,0)
(3,2,0)
(2,2,0)
(6,2,0)
(1,2,0)
Li Ri
v
T5(x)
(0,0,x)
(1,0,x)
(2,0,x)
(3,0,x)
(4,0,x)
(5,0,x)
(7,2,x)
(6,2,x)
(5,2,x)
(4,2,x)
(3,2,x)
(2,2,x)
Figure 3.18: Coloring Tc(x) with 6x+c
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Figure 3.19: Coloring H(i;j;c) with 6x+c
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H(i;i;1) = ((0;0;x);(5;2;x);(1;0;x);(3;2;x);(2;0;x);(7;2;x);(4;0;x);
(6;2;x);(5;0;x);(4;2;x);(3;0;x);(2;2;x))
H(i;i;2) = ((0;0;x);(3;2;x);(4;0;x);(5;2;x);(3;0;x);(6;2;x);(2;0;x);
(7;2;x);(5;0;x);(4;2;x);(1;0;x);(2;2;x))
H(i;i;3) = ((0;0;x);(4;2;x);(2;0;x);(5;2;x);(1;0;x);(2;2;x);(4;0;x);
(6;2;x);(3;0;x);(7;2;x);(5;0;x);(3;2;x))
H(i;i;4) = ((0;0;x);(4;2;x);(3;0;x);(5;2;x);(4;0;x);(7;2;x);(5;0;x);
(6;2;x);(2;0;x);(3;2;x);(1;0;x);(2;2;x))
H(i;i;5) = ((0;0;x);(4;2;x);(2;0;x);(7;2;x);(4;0;x);(6;2;x);(5;0;x);
(2;2;x);(3;0;x);(5;2;x);(1;0;x);(3;2;x))
Let F and G be 1-factorizations of K +1; +1 satisfying Conditions (1-3) of Conjecture
3.1. Associate the 1-factor Fx (for 1  x  ) with the colors 6x, 6x + 1, 6x + 2, 6x + 3,
6x+ 4, and 6x+ 5 as follows. (Note that F0 will be associated with only the colors 1, 2, 3, 4,
and 5. These  ve colors correspond the the construction of K73, where there is no color 0.)
For each edge f(a;0);(b;1)g, a;b6= 0, in Fx, x > 0, the hamilton cycles H(a;b;c), for each
c2Z6 are colored 6x + c. For each of the edges f(a;0);(0;1)g and f(0;0);(b;1)g in Fx, we
use the trails T0(x);T1(x);:::;T5(x) given in Figure 3.18, coloring Tc with 6x+c. For F0 we
have that all edges are of the form f(a;0);(a;1)g. For a6= 0, we color the cycles of Figure
3.20, denoted by H(i;i;c), with colors 1, 2, 3, 4, and 5. Edge f(0;0);(0;1)g corresponds to
the 5 hamilton cycles constructed for K73 that are colored as in the proof of Theorem 3.1.
At this point, we note that almost every vertex is incident with exactly 2 edges of
each color. The only exceptions are all the vertices (i;j;x) with amalgamation number 3
and x  1, namely (0;0;x), (1;0;x), (7;2;x), and (6;2;x), for all x 2f1;2;:::; g; these
exceptional vertices are incident with 4 edges of colors 6x, 6x + 1, 6x + 2, 6x + 3, 6x + 4,
and 6x+ 5 and with 2 edges of all other colors.
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(6,2,x)
(5,2,x)
(4,2,x)
(3,2,x)
(2,2,x)
(0,0,x)
(1,0,x)
(2,0,x)
(3,0,x)
(4,0,x)
(5,0,x)
(7,2,x)
(6,2,x)
(5,2,x)
(4,2,x)
(3,2,x)
(2,2,x)
(0,0,x)
(1,0,x)
(2,0,x)
(3,0,x)
(4,0,x)
(5,0,x)
(7,2,x)
(6,2,x)
(5,2,x)
(4,2,x)
(3,2,x)
(2,2,x)
(0,0,x)
(1,0,x)
(2,0,x)
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Figure 3.20: Coloring H(i;i;c) with 6x+c
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It is also important to note that the cycles and trails used to color the edges so far
purposely did not use many edges between vertices with amalgamation number 3. Namely,
there are no edges between vertices in f(0;0;x);(1;0;x)g and vertices in f(7;2;y);(6;2;y)g
for 1  x;y   , x 6= y. For 1  x   , there are precisely 4 (of the 9) edges joining
vertices inf(0;0;x);(1;0;x)gto vertices inf(7;2;x);(6;2;x)gcolored so far. For 1 x  ,
there are exactly 3 edges used between (0;0;0) and (7;2;x), (0;0;0) and (6;2;x), (6;2;0)
and (0;0;x), and (6;2;0) and (1;0;x). There are no edges used between the vertex (1;0;0)
(which has amalgamation number two) and vertices in f(7;2;x);(6;2;x)g for 1  x   
and, symmetrically, no edges used between (5;2;0) (which also has amalgamation number
two) and vertices in f(0;0;x);(1;0;x)g for 1  x  . We have done this to allow room
to connect our color classes. Most importantly, there are at least six edges left between
vertices mentioned above, with the exception that there are only  ve left between vertices
in f(0;0;x);(1;0;x)g and vertices in f(7;2;x);(6;2;x)g for 1 x  . Tables 3.1, 3.2, 3.3,
and 3.4 summarize this information. Each cell gives the number of edges used between the
vertices given in the heading of the row and column. Each cell is further divided into a 2 3
table, with cell (1;1) corresponding to the hamilton cycle or eulerian trail colored 6x, cell
(1;2) corresponding to the hamilton cycle or eulerian trail colored 6x+ 1, etc.
We now connect our color classes. To do so, we either use Conditions (2-3) of Conjecture
3.1 or we use results from [5] and [2], so we present each in turn.
Using Conjecture 3.1 to connect the color classes
By Condition (2) of Conjecture 3.1, the rainbow one factor appears as the \horizontal"
edges. For 1 x  and for each edge f(a;0);(b;1)g2Gx with a6= b (so by Condition 2
of Conjecture 3.1, a6= x), color six copies of the 4-cycle ((0;0;i);(7;2;j);(1;0;i);(6;2;j)),
the cth copy being colored with 6x + c where c 2 Z6. Note that this boosts the degree
of the vertices involved to four in each color class. (We leave out edges where a = b both
because vertices in Li and Ri are already connected in those color classes by the construction
of Tc(x), and because the vertices (0;0;x);(1;0;x);(7;2;x); and (6;2;x) for 1  x  are
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(7,2,y) (6,2,y) (5,2,y) (4,2,y) (3,2,y) (2,2,y)
 = 3  = 3  = 2  = 2  = 1  = 1
(0,0,x) 1 1 1 1 1 1
 = 3 1 1 1 1 1 1
(1,0,x) 1 1 1 1 1 1
 = 3 1 1 1 1 1 1
(2,0,x) 1 1 1 1 1 1
 = 2 1 1 1 1 1 1
(3,0,x) 1 1 1 1 1 1
 = 2 1 1 1 1 1 1
(4,0,x) 1 1 1 1 1 1
 = 1 1 1 1 1 1 1
(5,0,x) 1 1 1 1 1 1
 = 1 1 1 1 1 1 1
Table 3.1: Number of Edges used in H(i;j;c) with 0 c 5, broken down by color class
(7,2,x) (6,2,x) (5,2,x) (4,2,x) (3,2,x) (2,2,x)
 = 3  = 3  = 2  = 2  = 1  = 1
(0,0,x) 1 1 1 1 1 1
 = 3 1 1 1 1
(1,0,x) 1 1 1 1 1 1
 = 3 1 1 1 1
(2,0,x) 1 1 1 1 1 1
 = 2 1 1 1 1
(3,0,x) 1 1 1 1 1 1
 = 2 1 1 1 1
(4,0,x) 1 1 1 1 1 1
 = 1 1 1 1 1
(5,0,x) 1 1 1 1 1 1
 = 1 1 1 1 1
Table 3.2: Number of Edges used in H(i;i;c) with 1 c 5, broken down by color class
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(7,2,x) (6,2,x) (5,2,x) (4,2,x) (3,2,x) (2,2,x)
 = 3  = 3  = 2  = 2  = 1  = 1
(0,0,0) 1 1 1 1 1 1
 = 3 1 1 1 1 1 1
(1,0,0) 1 1 1 1 1 1
 = 2 1 1 1 1 1 1
(2,0,0) 1 2 1 1 1
 = 2 1 1 1 1 1 1
(3,0,0) 1 1 1 1 1 1
 = 1 1 2 1 1 1
(4,0,0) 1 1 1 1 1 1
 = 1 1 1 1 1 1 1
(5,0,0) 1 1 1 1 1 1
 = 1 1 1 1 1 1 1
Table 3.3: Number of Edges used in Tc(x) with 0 c 5, broken down by color class
(6,2,0) (5,2,0) (4,2,0) (3,2,0) (2,2,0) (1,2,0)
 = 3  = 2  = 2  = 1  = 1  = 1
(0,0,0) 1 1 1 1 1 1
 = 3 1 1 1 1
(1,0,0) 1 1 1 1 1
 = 2 1 1 1
(2,0,0) 1 1 1 1 1
 = 2 1 1 1
(3,0,0) 1 1 1 1 1
 = 1 1 1 1 1
(4,0,0) 1 1 1 1
 = 1 1 1 1 1
(5,0,0) 1 1 1 1
 = 1 1 1 1 1
Table 3.4: Number of Edges used in H(0;0;c) with 1 c 5, broken down by color class
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are already boosted to degree four in each color class.) By Condition (3) of Conjecture 3.1,
Fi[Gi forms a hamilton cycle for each i2Z nf0g, so all color classes except for colors 1,
2, 3, 4, and 5 are now connected.
We connect color classes 1,2,3,4, and 5 using the following cycles.
First suppose that is even. Color three copies of each of the four cycles (e ;j;1;e ;j;2;:::;e ;j; )
for  ;j2Z2, the dth copy of each cycle being colored with d for 1 d 3, where
e ;j;i =
8
>>>
>>>>
<
>>>>
>>>
:
( ;0;i) if i is odd and j = 0;
(7  ;2;i) if i is even and j = 0;
(7  ;2;i) if i is odd and j = 1;
( ;0;i) if i is even and j = 1:
Color two copies of each of the four cycles (e ;j;1;e ;j;2;:::;e ;j; ) for  ;j2Z2, the dth copy of
each cycle being colored with d+ 3 for 1 d 2, where
e ;j;i =
8
>>>
>>>>
<
>>>
>>>
>:
( ;0;i) if i is odd and j = 0;
(6 + ;2;i) if i is even and j = 0;
(6 + ;2;i) if i is odd and j = 1;
( ;0;i) if i is even and j = 1:
Next suppose that is odd. Color three copies of each of the two cycles (e ;1;e ;2;:::;e ;2 )
for  2Z2, the dth copy of each cycle being colored with d for 1 d 3, where
e ;j;i =
8>
<
>:
( ;0;i0) if i is odd and j = 0;
(7  ;2;i0) if i is even and j = 0;
where i0 is de ned by:
i0 =
8
><
>:
i if i  ;
i  if i> :
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Color two copies of each of the four cycles (e ;1;e ;2;:::;e ; ) for  2Z2, the dth copy of each
cycle being colored with d+ 3 for 1 d 2, where
e ;i =
8
><
>:
( ;0;i0) if i is odd and j = 0;
(6 + ;2;i0) if i is even and j = 0;
where i0 is de ned by:
i0 =
8
><
>:
i if i  ;
i  if i> :
Using Theorem 3.3 to connect the color classes
For our purposes, we need an almost resolvable  -cycle decompositionX = (X0;:::;X )
of 2K +1 on the vertex set Z +1; by Theorem 3.3, this decomposition exists for   3. We
connect our color classes using these  + 1  -cycles.
First suppose that  is even. For any X = (x1;:::;x )2X, de ne four cycles E( ;j;X =
(x1;:::;x );straight) = (e ;j;1;e ;j;2;:::;e ;j; ) for  ;j2Z2, where for 1 i  
e ;j;i =
8
>>>
>>>>
<
>>>
>>>
>:
( ;0;xi) if i is odd and j = 0;
(7  ;2;xi) if i is even and j = 0;
(7  ;2;xi) if i is odd and j = 1;
( ;0;xi) if i is even and j = 1:
For any X = (x1;:::;x )2X de ne four cycles E( ;j;X = (x1;:::;x );crossed) =
(e ;j;1;e ;j;2;:::;e ;j; ) for  ;j2Z2, where for 1 i  
e ;j;i =
8
>>>
>>>>
<
>>>
>>>
>:
( ;0;xi) if i is odd and j = 0;
(6 + ;2;xi) if i is even and j = 0;
(6 + ;2;xi) if i is odd and j = 1;
( ;0;xi) if i is even and j = 1:
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De ne C(X;straight) = E(0;0;X;straight)[E(1;0;X;straight)[E(0;1;X;straight)
[E(1;1;X;straight) and C(X;crossed) = E(0;0;X;crossed)[E(1;0;X;crossed)[
E(0;1;X;crossed)[E(1;1;X;crossed). Note that C(X;straight) and C(X;crossed) are each
2-factors on the vertex set f(0;0;x);(1;0;x);(7;2;x);(6;2;x)jx2V(X)gnf(0;0;d(X));
(1;0;d(X));(7;2;d(X));(6;2;d(X))g. For each X2X, if d(X)6= 0 then color three copies
of C(X;straight), the dth copy being colored with 6d(X) + d for 0  d 2. If d(X) = 0,
then just color two copies of C(X;straight), one with color 1 and one with color 2. For each
X 2X, color three copies of C(X;crossed), the dth copy being colored with 6d(X) + d for
3 d 5.
Next suppose that  is odd. For any X = (x1;:::;x ) 2X de ne two cycles E( ;X =
(x1;:::;x );straight) = (e ;1;e ;2;:::;e ;2 ) for  2Z2, where for 1 i 2 
e ;j;i =
8
><
>:
( ;0;xi0) if i is odd;
(7  ;2;xi0) if i is even;
where i0 is de ned by:
i0 =
8>
<
>:
i if i  ;
i  if i> :
For anyX = (x1;:::;x )2X de ne two cyclesE( ;X = (x1;:::;x );crossed) = (e ;1;e ;2;:::;e ; )
for  2Z2, where for 1 i 2 
e ;i =
8
><
>:
( ;0;xi0) if i is odd;
(6 + ;2;xi0) if i is even;
where i0 is de ned by:
i0 =
8>
<
>:
i if i  ;
i  if i> :
De ne C(X;straight) = E(0;X;straight)[E(1;X;straight) and C(X;crossed) =
E(0;X;crossed)[E(1;X;crossed). Note that C(X;straight) and C(X;crossed) are each
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2-factors on the vertex set f(0;0;x);(1;0;x);(7;2;x);(6;2;x)jx2V(X)gnf(0;0;d(X));
(1;0;d(X));(7;2;d(X));(6;2;d(X))g. For each X2X, if d(X)6= 0 then color three copies
of C(X;straight), the dth copy being colored with 6d(X) + d for 0  d 2. If d(X) = 0,
then just color two copies of C(X;straight), one with color 1 and one with color 2. For each
X 2X, color three copies of C(X;crossed), the dth copy being colored with 6d(X) + d for
3 d 5.
Continuing for both Conjecture 3.1 and Using Theorem 3.3
Color classes 1;2;3;4; and 5 now consist of two components, with the vertices (i;j;0)
inducing one of the two components. Each of the color classes 6;:::;6 + 5 is connected
because for each X2X: (i) X spans all vertices except d(X)2Z +1, and (ii) by (1) of the
de nition of F and Tc(d(X)) for 0  c 5, the vertices (i0;j0;d(X)) are joined to vertices
in (i;j;0) by edges colored 6d(X) +c.
For each vertex u 2 V(H), if u 62 T = f(0;0;0);(1;0;0);(6;2;0);(5;2;0)g then u =
(i;j;x) is incident with the same number of edges of each color as of each other color (namely
4 if (i;j) 2f(0;0), (1;0), (6;2), (7;2)g and 2 otherwise). If u2T then it has degree 4 in
each color class except for colors 1,2,3,4, and 5. in which it has degree two. In order for the
use of the evenly equitable edge-coloring in the next paragraph to work, it is critical that the
degrees of these vertices in each of the  ve color classes be raised to 4, except possibly for
one pair of vertices in one color class. Since vertices (1;0;0) and (5;2;0) have amalgamation
number two, there are only four edges between them in H, so we cannot simply use  ve
C4?s as we did when connecting our color classes. (In fact, we have already used one of the
edges between (1;0;0) and (5;2;0) in H(0;0;1), so we cannot even place four 4-cycles there.)
To boost the degree of these vertices in the  rst  ve color classes, take three copies of the
4-cycle ((0;0;0);(6;2;0);(1;0;0);(5;2;0)) and color them using colors 1,2, and 3. Take the
2-cycles ((0;0;0);(5;2;0)) and ((1;0;0);(6;2;0)) and color them using color 4. Finally, take
the 2-cycle ((0;0;0);(6;2;0)) and color it with color 5. So, the vertices (0;0;0) and (6;2;0)
are now incident with four edges of each color c, 1  c  6 + 5. Vertices (1;0;0) and
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(5;2;0), however, are each incident with four of every color, except only two edges of color
5.
De ne G to be the subgraph induced by uncolored edges of S. Note that this is precisely
the edges in S not used in the trails or cycles described previously. The degree of each vertex
in E(S) is divisible by 2(6 +5), except for vertices (1;0;0) and (5;2;0) which have degree 2
(mod 2(6 + 5)). Apply an evenly equitable edge-coloring with the colors 1;2;:::;6 + 5 to
the edges in G. This edge-coloring has the property that at each vertex each color appears
on the same number of edges as each other color, except that one color appears twice more
than each other color at the vertex (1;0;0) and (5;2;0) since G is bipartite, necessarily the
color appearing twice more at those vertices is the same, so name this color 5. It is also
important to note that this edge coloring connects the color classes 1, 2, 3, 4, and 5, which
were previously in two components. Let G0 be the subgraph induced by the vertices of
L0[R0 in G. Note that the vertex (0;0;0) has degree ten in G0, so the evenly equitable
edge coloring will produce at most 5 colors on edges to vertices in L0 [R0. So, at least
6 + 5 5 = 6 colors must be on edges joining (0;0;0) to vertices not in L0[R0. Since
a 4, 6 > 5. Name  ve of these 6 colors 1;2;3;4; and 5. The component previously
induced by the vertices of L0[R0 is now connected with the second component spanning
the rest of the graph.
Now, we must disentangle the graph. We will use the same method as with the other
cases. To be able to apply Lemma 1.1, we need to add edges to our graph H so that it is
the amalgamation of the complete graph K3p. All of these additional edges and loops are
colored 0. We call this new graph H+ and note that it now satis es the conditions of Lemma
1.1. Thus we apply Theorem 1.3 to H+ to produce G+, which is an edge-colored copy of
K3p. We now remove all edges in G+ colored 0; the resulting graph is Kp3. Using Theorem
1.3, we see that each color class is 2-regular by (i) and connected by (ii), which implies that
each color class is a hamilton cycle. We now consider G E(S). Note that all edges between
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vertices in L0 and R0 were in E(S), so we have that G E(S) has cut vertex v. So our set
of hamilton cycles is maximal.
So this chapter culminates in the following state of knowledge:
Theorem 3.5 There exists a maximal set of m hamilton cycles in Kpn if and only if
1.
l
n(p 1)
4
m
 m 
j
n(p 1)
2
k
and
2. m> n(p 1)4 if
(a) n is odd and p 1 (mod 4)), or
(b) p = 2, or
(c) n = 1,
except possibly when n = 3, m =
l
n(p 1)
4
m
and either p 3 (mod 8), p 19 or p2f15;23g.
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