

NEED A NERD – Adapting PCSE (Practitioner Centered Software Engineering) to

develop a Web Application

by

Prabhu Selvaraj

A thesis submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Master of Science

Auburn, Alabama

December 8, 2012

Keywords: software process, PCSE, Django,

timelog, changelog

Copyright 2012 by Prabhu Selvaraj

Approved by

David A. Umphress, Chair, Associate Professor of Computer Science & Software Engineering

James H. Cross II, Professor of Computer Science & Software Engineering

Hari Narayanan, Professor of Computer Science & Software Engineering

ii

Abstract

Practitioner Centered Software Engineering (PCSE) is the most recent incarnation of Auburn

University’s personal self-improvement process for helping software engineers control, manage, and

improve the way they work. It helps them make accurate plans, consistently meet commitments, improve

QPPC (Quality, Predictability, Productivity and Customer satisfaction), and deliver high-quality products.

PCSE is a tailored collection of different elements from various software processes such as Personal

Software Process (PSP), Team Software Process (TSP), Extreme Programming (XP), Feature Driven

Development (FDD), SCRUM, Rational Unified Process (RUP) etc. PCSE was developed by

Dr. David A. Umphress, Department of Computer Science & Software Engineering, Auburn University,

in an effort to bring engineering discipline to one-person software development teams.

 The objective of this thesis is to apply PCSE to develop a web based application

“NEED-A-NERD” using Django. Django is a web application framework written in Python. PCSE is a

one-person team process and it has been used in the past for the development of conventional

applications. It would be a challenge to follow PCSE in a web development environment (to develop a

web based application), as it would require a few modifications in different phases in the software process

and in producing the artifacts during the different stages. This thesis would give a good measure of how

efficiently PCSE could be used in the development of web applications. On successful completion, the

web application is expected to be used by the employees and students of the Department of Computer

Science and Software Engineering at Auburn University for their on-campus job pursuit.

iii

Acknowledgments

I take this opportunity to thank all those who helped and guided me throughout this research.

I consider it a special privilege to convey my prodigious and everlasting thanks to my advisory

committee chair, Dr. David A. Umphress, Computer Science & Software Engineering department,

Auburn University for all the advice, guidance and support given to me right from the beginning of

the thesis. I express my deep sense of gratitude to Dr. James H. Cross II, Computer Science &

Software Engineering department, Auburn University, and Dr. Hari Narayanan, Computer Science

and Software Engineering department, Auburn University, for their valuable advice, insight, and

critical reviews provided throughout my thesis work.

My special thanks to our PCSE research team members, Asmae Mesbahi El Aouame (PhD

student), Jackie Hundley (Instructor), Russell Thackston (PhD student), Susan Hammond (PhD

student), Brad Dennis(PhD student), William Symon(MS student), Michael Zekoff(MS student) and

Yasmeen Rawajfih (PhD Student), Computer Science and Software Engineering department, Auburn

University, for their support.

With immense pleasure and satisfaction, I express my sincere thanks to all my family

members and friends for their kind help and unstinted cooperation and companionship during the

thesis work.

iv

Table of Contents

Abstract ……………………………………………………………………………………

ii

Acknowledgements ……………………………………………………………………….. iii

List of Tables ……………………………………………………………………………... viii

List of Figures …………………………………………………………………………….. ix

List of Abbreviations ……………………………………………………………………... xi

Problem Description ……………………………………………………………………..

 1

 Software Process …………………….…………………………………………….

 1

 Need for lightweight software process ………………………………………….....

 1

 Practice Centered Software Engineering (PCSE) ………………………………...

 2

 PCSE in a web development environment ………………………………………..... 3

Literature Review ………………………………………………………………………….

 5

 Agile Software Development………………………………..……………………... 5

 The Personal Software Process …………………………………………………… 6

 A Theoretical Agile Process Framework for Web Applications ………………..… 7

 The PCSE Life Cycle ………………..……………………………………………. 8

 8

 Analysis …………………..……………………………………………….

10

 Architecture ………………..……………………………………………...

12

 Project Plan ……………...………………………………………………...

 15

 Calculating the size matrix ……………………………………….

17

v

 Example for calculating raw lines of code (LOCr) ………..………

20

 Calculating Planned lines of code (LOCp) and Planned duration …

20

 Calculating confidence …………………………………………...

22

 Size prediction interval …………………………………………..

23

 Correlation coefficient …………………………………………… 24

 Confidence on size prediction interval …………………………...

24

 Time prediction interval …………………………………………. 24

 Confidence on time prediction interval ………………………….. 25

 Iteration Plan ……………………………………………………………. 25

 Select/revise scenario set …………………………………………. 26

 Set iteration goal ………………………………………………… 26

 Schedule work ……………………………………………………

26

 Burn-down chart ………………………………………………… 28

 Burn down chart example case ………………………………….. 28

 Diary ……………………………………………………………... 29

 Construction ………………………………………………..…………….. 34

 Test Driven Development ………………………………………..

35

 Review …………………………………………………………………..

36

 Refactor ………………………………………………………………….

37

 Integration ……………………………………………………………….

40

 Post Mortem ……………………………………………………………..

40

 Code Complete ……………………………………………………………..

 41

vi

 Introduction to Django ……………………………………………………………..

 41

 Design the model ………………………………………………………….

 42

 Install it ………..………………………………………………………….

 43

 Design our URLs ………………………………………………………..

 43

 Write our views …….……………………………………………………..

 44

 Design our templates …………………………………………………….

 45

Changes in PCSE process and artifacts ………………………………………………….

 48

 Objective ………………………..…………………………..……………………... 48

 Changes made to PCSE ………..…………………………………………………… 48

Web Application in Django using PCSE ………………………………………………….

50

 Analysis ……………………………………………………..……………………... 51

 Architecture ……………………………………………………………………… 53

 Model ……………..……………………………………………………….

54

 Template ………..………………………………………………………….

55

 View ……………………………………………………………………..

 56

 Project Plan ……………...………………………………………………................ 57

 Iteration Plan ………………………………………………………………………. 57

 Select/revise scenario set …………………..……………………………... 57

 Set iteration goal ……………………………………………………… 58

 Schedule work ……………………………………………………………

58

 Estimating for first iteration ……………………………………………… 60

 Estimating for future iterations …………………………………………… 61

vii

 Estimating the template design and templates ……………………………

61

 Construction ……………………………………………………………………… 62

 Models …………………….………………..……………………………... 62

 Views ……………………………………………………………………... 63

 Templates ……..…………………………………………………………..

65

 Review ……………………………………………………………………………..

66

 Refactor ……………………………………………………………….…………….

67

 Integration ………………………………………………….……………………….

67

 Post Mortem …………………………………….…………………………………..

68

 Code Complete ……………………………………………………………………..

 68

 PCSE Measures …………………………………………………………………….. 68

 Timelog ………………………………..……………..………………....... 69

 Changelog ……………………………………………………………….. 70

Conclusion & Future Work ……………………………………………………………….. 74

 Summary …………………………………………………………………………... 74

 Conclusion …..…………………………………………………………………….. 74

 Future Work …..………………………………………………………………….. 75

 References ………………………………………………………………………… 77

viii

List of Tables

Table 1: Interface Operational Scenario – nominal ……………………………………….

11

Table 2: Interface Operational Scenario – anomalous ……………………………………. 11

Table 3: User Operational Scenario – nominal …………………………………………… 12

Table 4: Example project history …………………………………………………………. 16

Table 5: Example proxy history …………………………………………………………... 17

Table 6: Size matrix formula ……………………………………………………………...

17

Table 7: Size matrix calculation without considering type ………………………………..

18

Table 8: Relative size mapping from size matrix …………………………………………

19

Table 9: New proxies ……………………………………………………………………...

20

Table 10: Raw lines of code (LOCr) calculation for new proxies ………………………...

20

Table 11: Historical project data …………………………………………………………..

22

Table 12: Size and Time prediction intervals calculation …………………………………

23

Table 13: Diary (Example case) – Planned Vs Actual …………………………………….

32

Table 14: Diary (Example case) after Re-estimate ………………………………………..

34

Table 15: Defect Standard Type …………………………………………………………..

71

ix

List of Figures

Figure 1: PCSE Life Cycle ………………………………………………………………...

10

Figure 2: Scenario – Component map …………………………………………………….. 14

Figure 3: Estimation Fundamentals ………………………………………………………. 21

Figure 4: Calendar ………………………………………………………………………… 27

Figure 5: A sample burn-down chart ……………………………………………………... 28

Figure 6: Example burn-down chart ………………………………………………………

29

Figure 7: PCSE construction artifacts ……………………………………………………..

35

Figure 8: Test driven development cycle ………………………………………………….

36

Figure 9: Review test code ………………………………………………………………...

36

Figure 10: Refactor production code ………………………...

38

Figure 11: User Story Prioritization ……………………………………………………....

52

Figure 12: Example User Story on Index card ……………………………………………..

53

Figure 13: CRC cards for Models ……………………………………………………….. 55

Figure 14: CRC cards for Templates ……………………………………………………...

55

Figure 15: CRC cards for Views …………………………………………………………

56

Figure 16: Work Breakdown Structure for the project …………………………………..

58

Figure 17: Calendar for iterations 2 and 3 ………………………………………………..

59

Figure 18: Diary for iterations 2 and 3 ………………………………………………

60

x

Figure 19: Estimated and actual effort calculations ……………………………………… 61

Figure 20: Code Review …………………………………………………………………. 66

Figure 21: Timelog ……………….....…………………………………………………… 70

Figure 22: Changelog ……………………………….…………………………………….. 73

xi

List of Abbreviations

PCSE Practice Centered Software Engineering

PSP Personal Software Process

TSP Team Software Process

XP Extreme Programming

FDD Feature Driven Development

RUP Rational Unified Process

QPPC Quality, Productivity, Predictability, Customer Satisfaction

LOC Line of Code

CRC Class Responsibility Collaborator

LOCr Raw lines of code

LOCp Planned lines of code

LOCa Actual lines of code

Ep Planned Effort

Ea Actual Effort

LPI Lower Prediction Interval

UPI Upper Prediction Interval

EV Earned Value

PV Planned Value

TDD Test Driven Development

1

1. Problem Description

1.1 Software Process

Software process is the set of tasks needed to produce quality software [1]. It helps developers

make accurate plans, consistently meet commitments, improve QPPC (Quality, Predictability,

Productivity and Customer satisfaction), and deliver high-quality products. It is a structured framework of

forms, guidelines, activities, and procedures for developing software. A growing body of software

development organizations implements process methodologies, employing methodologies which are

intended to improve software quality, such as Personal Software Process (PSP), Team Software Process

(TSP), Extreme Programming (XP), Feature Driven Development (FDD), SCRUM, Rational Unified

Process (RUP), etc.

Each of these methodologies describes approaches to a variety of tasks or activities that take

place during software development. However, there are no restrictions such that one has to follow a

particular methodology while practicing software process. It is generally based on the type of the industry

and the nature of the project, apart from other factors such as the budget, technology used, resources, etc.

The explosive growth of one-person development efforts for mobile devices -- as exemplified by

the Android and iPhone markets -- suggests there is an audience for individualized process. The

preponderance of processes today is for multi-person efforts. The Personal Software Process (PSP) is the

only published process that addresses development at the one-person level; but, its data collection

requirements have proven encumbering to the point where it has fallen out of use.

1.2 Need for Light-weight software process

There are many software development methodologies in use today and the list grows daily. Many

developers have their own customized methodology for developing their software, while others use off-

http://en.wikipedia.org/wiki/Software_development_process#Process_models

2

the-shelf commercial methodologies. The following factors play an important role in selecting a

methodology: budget, team size, project criticality, technology used, documentation, training, tool and

techniques etc.

 The traditional project methodologies that many developers use are considered to be bureaucratic

or predictive in nature, and they have resulted in many unsuccessful projects [2]. They can be so tedious

that the whole pace of design, development and deployment actually slows down.

A lightweight software process is a software development methodology that has only a few rules

and practices or ones which are easy to follow. It emphasizes the need to deal with changes in

requirements and changes in environment or technology by being flexible and adaptive. In lightweight

software process, after each build or iteration, the developer adjusts the process to correct issues on the

project, forming an improvement cycle throughout the project.

The following are the major advantages of lightweight methodologies [2].

1.) They accommodate change well.

2.) They are people-oriented rather than process-oriented. They tend to work with people rather

than against them.

3.) They are complemented by the use of dynamic checklists.

4.) They focus more on software than on documents.

The number of frequent cycles in the lightweight methodologies also provides more opportunities

for developers to review the project definition and redefine it for new business needs. It has room to add

new requirements and change the requirements list, adjusting priorities accordingly. Another benefit of

the lightweight methodologies is their focus on producing value-added releases and addressing

architectural risk early in the project, which would be difficult with a heavyweight methodology.

1.3 Practice Centered Software Engineering (PCSE)

The Practice Centered Software Engineering (PCSE) is a lightweight software engineering

process developed by Dr. David A. Umphress, Department of Computer Science & Software

3

Engineering, Auburn University [1]. It is the most recent rendition of Auburn University’s personal self-

improvement process that helps software engineers control, manage, and improve the way they work.

Using common industry practices, PCSE describes the following activities/phases that are performed

within the software development process: Analysis, Architecture, Project plan, Iteration plan,

Construction, Review, Refactoring, Integration, Post mortem and Code complete. Each of these activities

is associated with a particular artifact such as the Operational specification, Scenario-Component map,

Iteration map, Conceptual design, Size matrix, Time log, Change log, Iteration map, Burn-down chart,

Calendar, Diary etc. The flow of the activities and the use of the artifacts are detailed in the forthcoming

chapters.

1.4 PCSE in a web development environment

 PCSE has been used to develop a variety of applications in the past, but all of these applications

have been conventional applications rather than web-based applications. This thesis aims to apply PCSE

to develop a web based application and measure how efficiently PCSE could be used in the development

of web based applications by one-person teams. In the past, PCSE has been used to develop applications

where the software components developed would fall into one of the following four categories:

 Logic,

 Data,

 Calculation and

 I/O

 So, when we develop any kind of application, the software components we develop should belong

to one of the above categories. But in case of our web based application, the components we are dealing

with – that is, the components that implement the Model-View-Controller architecture used by web

applications -- do not quite fit into these standard component types. We need to define new component

categories, which, in turn alter the way in which PCSE deals with the different phases of the development

4

process including architecture, planning, and construction. In short, artifacts produced for web-based

applications are not code segments written in a common language and style. Instead, a web application

consists of code, HTML, XML, JSON, and other dissimilar artifacts. This thesis gives an insight into how

to modify PCSE so that it can be used to develop nonhomogeneous software artifacts, focusing

specifically on adaptations for web application software development.

5

2. Literature Review

The important literature relevant to single person process and web application development

methodologies is as follows:

2.1 Agile Software Development[5]

Agile software development is a group of software development methods based on iterative and

incremental development, where requirements and solutions evolve through collaboration between self-

organizing, cross-functional teams. It promotes adaptive planning, evolutionary development and

delivery, a time-boxed iterative approach, and encourages rapid and flexible response to change[5].

The principles of Agile Software Development are: [5]

 Customer satisfaction by rapid delivery of useful software

 Welcome changing requirements, even late in development

 Working software is delivered frequently (weeks rather than months)

 Working software is the principal measure of progress

 Sustainable development, able to maintain a constant pace

 Close, daily co-operation between business people and developers

 Face-to-face conversation is the best form of communication (co-location)

 Projects are built around motivated individuals, who should be trusted

 Continuous attention to technical excellence and good design

 Simplicity- The art of maximizing the amount of work not done - is essential

 Self-organizing teams

 Regular adaptation to changing circumstances.

file:///C:/Users/pzs0019/Desktop/Prabhu/Summer%202012/Thesis/NEED-A-NERD%20-%20Chapter%201,2.docx%23Self-organization_in_agile_software_development
file:///C:/Users/pzs0019/Desktop/Prabhu/Summer%202012/Thesis/NEED-A-NERD%20-%20Chapter%201,2.docx%23Self-organization_in_agile_software_development
http://en.wikipedia.org/wiki/Cross-functional_team
http://en.wikipedia.org/wiki/Time_boxing

6

2.2 The Personal Software Process (PSP):

The Personal Software Process (PSP) [6] is a structured software development process for a

single developer, created by Watts Humphrey in Software Engineering Institute. PSP aims to provide

software engineers with disciplined methods for improving personal software development processes that

help developers produce zero-defect, quality products on schedule. One of the core aspects of the PSP is

using historical data to analyze and improve process performance[6].

The PSP helps software engineers to:

 Improve their estimating and planning skills.

 Make commitments they can keep.

 Manage the quality of their projects.

 Reduce the number of defects in their work.

The following are the advantages of PSP [6]:

 It helps the developer understand his performance.

 It helps the developer to manage his work.

 It helps to plan and manage the quality of products produced.

 It helps to make detailed plans and precisely measure and report the status.

 It helps to judge the accuracy of your estimates and plans.

 It helps to communicate precisely with users, other developers, managers, and customers about

the work.

 It helps to identify the process steps that cause the most trouble.

 It helps to improve the personal performance.

 It will simplify training and facilitate personal mobility.

 Well-defined process definitions can be reused or modified to make new and improved processes.

Although PSP is aimed at helping single developers to develop software, PSP cannot be used to

develop the web application in context. First, PSP is encumbering due its requirements for data collection.

7

Another major reason is the historical data analysis which is the core aspect of the planning and

estimation process used by PSP. Since we are dealing with a web based application, we don’t have any

historical data to work with. PSP is a predictive process which predicts the size and effort of the project

based on the historical data. But we need an agile approach which is adaptive, so we can adapt the process

and apply it into a new environment.

2.3 A Theoretical Agile Process Framework for Web Applications Development in Small Software

Firms[8]

The software development methodologies available today are viewed by many as outdated and

inappropriate for rapid development and web application development. Most of the web application

development methodologies used are extensions of standard software engineering methodologies. The

usual iterative waterfall model is too rigid an approach to developing web applications. The waterfall

model process was perfect for developing a file maintenance program for mainframes but a far too

restrictive process for developing web applications. Web application development needs to be an iterative

process and most agree that a spiral approach is the best. Web application development is certainly

component-oriented and the process that should be used needs to be object-oriented.

Agile processes are intended to support early and quick production of working code. This is

achieved by structuring the development process into iterations, where an iteration focuses on delivering

working code and other artifacts that provide value. Sometimes developers think that code is the only

deliverable that matters and ignore the role of design models and documentation. Agile process critics

point out that emphasis on code could lead to corporate memory loss because there is little emphasis on

producing good documentation to support software creation[8].

Designing web applications is not an easy task. It is not just using HTML or web development

software such as Front Page or Dreamweaver and few images, menus and hyperlinked documents, etc.

Web application development process seems very complex and it has a lot of challenging requirements. It

8

needs more of planning, web architecture, system design, testing, quality assurance, performance,

evaluation, continual update and maintenance of the system as the requirements.

Many practitioners in the field of web engineering have commented on the lack of suitable software

engineering processes that can be used to build web applications. If a web application development

process needs to be successful, then it has to address the following issues [8].

 Short development life-cycle times

 Delivery of tailored solutions

 Multidisciplinary development teams

 Small development teams working in parallel on similar tasks

 Analysis and Evaluation

 Requirements and Testing

 Maintenance.

2.4 PCSE Lifecycle

The Practice Centered Software Engineering (PCSE) is the most recent version of Auburn

University’s personal self-improvement process for helping software engineers control, manage, and

improve the way they work. PCSE was developed to introduce a light-weight software process and

practice the major software process tools that are widely recognized and used in the industry.

This section explains the PCSE life cycle. The different activities involved in PCSE are explained

in detail. Each artifact that belongs to a particular activity is explained with sample examples.

All information, content, explanations and examples referred to in this chapter originated from

the following sources:

xi

 Dr. David A. Umphress personal communication.

 “Software Process” (COMP 6700) class presentations, videos.

 Interaction with the PCSE research team.

Although PCSE is well defined, it undergoes continuous improvement. There is considerable

room for enhancing PCSE by introducing new techniques and tools. The current PCSE research team is

working along with Dr. Umphress to identify the scope for improvement.

10

The following figure illustrates the different activities and their flow involved in PCSE:

Analysis

Architecture

Project Plan

Iteration Plan

Construction

Review

Refactor

Integration

Post Mortem

Code Complete

Figure 1: PCSE Life Cycle

Each of the different activities and their corresponding artifacts is described below:

2.4.1 Analysis:

Analysis is the process of breaking a complex topic into smaller parts to gain a better

understanding of it. This stage includes identifying the desired behavior of the system. The outcome of

the analysis phase is an operational specification which is a list of scenarios, where each scenario is a

representative collection of desired behaviors expected of the software component under consideration

[1].

There are two major types of operational specification:

1.) Interface operational specification – illustrates component-to-component interaction

2.) User operational specification – illustrates user-to-component interaction

The following are examples of interface and user operational specifications:

11

Tuple # Type Actor Event/Actor response

description
Example

1 Event Test Driver call average with valid list Statistics.average([1,2,3,4,5])

2 Response Blackbox returns average of list 3.0

3 Event Test Driver call median with valid list

containing odd number of

values

Statistics.median([1,2,3])

4 Response Blackbox returns median of list 2.0

5 Event Test Driver call median with valid list

containing even number of

values

Statistics.median([1,2,3,4])

6 Response Blackbox returns median of list 3.5

7 Event Test Driver call stdev with valid list Statistics.stdev(list)

8 Response Blackbox returns standard deviation of

list
1.29

Table 1: Interface Operational Scenario – nominal [1]

Tuple # Type Actor Event/Actor response

description
Example

1 Event Test Driver call stdev with empty list Statistics.stdev([])

2 Response Blackbox raises exception Runtime Error

3 Event Test Driver call stdev with one-element list Statistics.stdev([5])

4 Response Blackbox raises exception Runtime Error

Table 2: Interface Operational Scenario – anomalous [1]

Tuple # Type Actor Event/Actor response

description
Example

1 Event User Start application

2 Response Blackbox "Enter filename or stop"

3 Event User User enters file name assignment1test1.txt

12

4 Response Blackbox Display number of values in the

file
10

5 Response Blackbox Display average of values in the

file
42

6 Response Blackbox Display the median of the

values in file
39.5

7 Response Blackbox Display the stdev of the values

in the file
2.7

8 Response Blackbox "Enter filename or stop"

9 Event User User enters "stop"

10 Response Blackbox "Program terminated"

Table 3: User Operational Scenario – nominal [1]

2.4.2 Architecture:

The main motive of this phase is to develop a high-level design and to identify major components

sufficient to begin scoping the effort required by the project. This phase focuses on allocating

functionality. During this phase, the output of the analysis phase is used to partition the system into

conceptual components using CRC (Class Responsibility Collaborator) cards [1]. This activity entails

identifying parts within the black box at a limited level of abstraction, i.e., identifying major components

called proxies, usually objects and functions. This provides the basis for estimation, task identification

and scheduling. CRC cards can be visualized as a textual/tabular version of UML class diagrams.

A CRC card contains the following elements:

a.) Proxy Name: denotes the name of the class or function

b.) Design Approach: either Object Oriented (or) Functional

c.) Super class: denotes a parent proxy

d.) Component Type: either Logic (or) Calculation (or) Data (or) Input/output

e.) Collaborators: represents other components which have a relationship with this component

f.) Operations: represents the functionalities

13

The following are examples of CRC cards:

1.) Proxy Name: print_proxy_history

Design Approach: Functional

Parent Proxy:

Attributes (optional):

Component Type: I/O

Collaborators: ProxyHistory

Operations: print_proxy_history

2.) Proxy Name: ProxyHistory

Design Approach: Object-oriented

Parent Proxy:

Attributes (optional):

Component Type: Logic

Collaborators: SourceFile

Operations: initialize, generate_project_history, generate_proxy_history

calculate_average_size

3.) Proxy Name: SourceFile

Design Approach: Object-oriented

Parent Proxy:

Attributes (optional):

Component Type: Calculation

Collaborators:

Operations: initialize, count_lines, validate_count, validate_blocks,

file_name, count_proxyblock, validate_proxyblocks,

14

count_proxymethod, get_proxytype, each_proxy

After identifying the major components (CRC cards) in the Architecture phase and the scenarios

in the Analysis phase, the developer comes up with a Scenario-Component Map. This allows the

developer to map each operation in the component to their respective scenarios.

The following table illustrates the scenario-component map:

 Component1 Component 2 Component 3 Component n

Scenario 1 Op 1a
Op 1b

Op 2b

Scenario 2 Op 2a
Op 2b

Scenario 3 Op 1a
Op 1c

 Op 3a
Op 3b
Op 3c

Scenario n Op na

Op nb

Scenario 1

Scenario 2

Scenario 3

Operational Specification Scenario 4

Scenario n

CRC

C1

(3 ops)

CRC

C2

 (2 ops)

CRC

C3

(3 ops)

CRC

Cn

(2 ops)

15

Figure 2: Scenario – Component map

2.4.3 Project Plan:

The main motive of this phase is to estimate the overall effort. In PCSE, estimation is done by

Proxy-Based Estimation setup, where it relies on historical project data (i.e. both project history and

proxy history). The Project and Proxy history consists of the following data:

Project History:

1.) LOCr – Raw lines of code

2.) LOCp – Planned lines of code

3.) LOCa – Actual lines of code

4.) Ep – Planned duration

5.) Ea – Actual duration

Proxy history:

1.) Proxy Name

2.) Total LOC

3.) Methods

4.) Type

5.) Size

6.) LOC/method

7.) Ln(LOC/Method)

First, a size matrix is constructed based on the historical project data, which results in calculating the size

ranges. The size ranges are categorized into Very Small (VS), Small (S), Medium (M), Large (L), and

Very Large (VL). The size matrix is used to derive the raw lines of code (LOCr) for the new project, from

which the planned lines of code (LOCp) and the planned estimate time (Ep) can be calculated.The

following section explains in detail the calculation of the size matrix and deriving the LOCp and Ep for a

new project.

Let’s assume we have the following project and the proxy history.

16

Project history:

Project Name LOCr LOCp LOCa Ep Ea

Project 1 30 30 48 145 249

Project 2 45 45 168 190 419

Project 3 65 65 146 290 438

Project 4 273 339 274 627 577

Project 5 203 270 182 589 513

Table 4: Example project history

Proxy history:

Proxy Name Total

LOC
Methods Type LOC/meth ln(LOC/meth)

SourceFile 48 4 Calculation 12.00 2.48

SourceFile 211 10 Calculation 21.10 3.05

print_each_proxy 20 1 I/O 20.00 3.00

ProxyHistory 120 4 Logic 30.00 3.40

print_proxy_history 25 1 I/O 25.00 3.22

print_schedule 45 1 I/O 45.00 3.81

Schedule 178 3 Calculation 59.33 4.08

TaskList 19 3 Logic 6.33 1.85

Task 12 3 Data 4.00 1.39

Calendar 20 3 Data 6.67 1.90

print_tcurve 43 1 I/O 43.00 3.76

17

TCurve 139 7 Calculation 19.86 2.99

Table 5: Example proxy history

The Mean and the Standard Deviation are calculated using the following:

Mean = AVERAGE (ln (LOC/meth))

StdDev = STDEV (ln (LOC/meth))

2.4.3.1 Calculating the size matrix:

The size matrix is calculated using the following template:

 Low Mid High

VS 1 =CEILING(EXP(Average-

2*StdDev),1)
=CEILING(EXP(Average-

1.5*StdDev),1)
S =CEILING(EXP(Average-

1.5*StdDev),1)
=CEILING(EXP(Average-

StdDev),1)
=CEILING(EXP(Average-

0.5*StdDev),1)
M =CEILING(EXP(Average-

0.5*StdDev),1)
=CEILING(EXP(Average),1) =CEILING(EXP(Average+0.5*

StdDev),1)
L =CEILING(EXP(Average+0.5

*StdDev),1)
=CEILING(EXP(Average+Std

Dev),1)
=CEILING(EXP(Average+1.5*

StdDev),1)
VL =CEILING(EXP(Average+1.5

*StdDev),1)
=CEILING(EXP(Average+2*

StdDev),1)
Big

Table 6: Size matrix formula

The size matrix can be calculated for each type (i.e. Calculation, I/O, Logic, and Data) (or)

without considering the types. The following is the size matrix calculation based on the example proxy

history provided in Table 5.

18

Proxy Name Type LOC/meth ln(LOC/meth)

SourceFile Calculation 12.00 2.48

SourceFile Calculation 21.10 3.05

print_each_proxy I/O 20.00 3.00

ProxyHistory Logic 30.00 3.40

print_proxy_history I/O 25.00 3.22

print_schedule I/O 45.00 3.81

Schedule Calculation 59.33 4.08

TaskList Logic 6.33 1.85

Task Data 4.00 1.39

Calendar Data 6.67 1.90

print_tcurve I/O 43.00 3.76

TCurve Calculation 19.86 2.99

 Low Mid Upper

VS 1 3 5

S 5 8 12

M 12 18 28

L 28 43 66

VL 66 100 Big

Table 7: Size matrix calculation without considering type.

Once the size matrix is calculated, the raw lines of code (LOCr) for the new project can be

calculated by the following steps:

 Identify the relative size for each of the history proxies from the size matrix. This is done by

getting the LOC/method for each historical proxy and finding which bucket it falls into. For

19

example, the proxy “ProxyHistory” in the Table 5has a LOC/Method of 30. If we map 30 in the

size matrix, it falls in the Large (L) category.

The following table shows the relative size for each of the history proxies by mapping it

with the size matrix:

Proxy Name Type LOC/meth ln(LOC/meth) Rel Size

SourceFile Calculation 12.00 2.48 M

SourceFile Calculation 21.10 3.05 M

print_each_proxy I/O 20.00 3.00 M

ProxyHistory Logic 30.00 3.40 L

print_proxy_history I/O 25.00 3.22 M

print_schedule I/O 45.00 3.81 L

Schedule Calculation 59.33 4.08 L

TaskList Logic 6.33 1.85 S

Task Data 4.00 1.39 VS

Calendar Data 6.67 1.90 S

print_tcurve I/O 43.00 3.76 L

TCurve Calculation 19.86 2.99 M

Table 8: Relative size mapping from size matrix.

 In order to calculate the raw lines of code (LOCr) for the new project, list down all the proxies

and the number of operations from the components identified in the Architecture phase.

 Identify the estimated relative size (i.e. VS, S, M, L, or VL) from the size matrix for each of the

listed proxies in the new project by comparing it with the historical proxy.

 The raw lines of code (LOCr) for each proxy in the new project are calculated by multiplying the

number of operations/methods with the relative size (Mid value) from the size matrix.

20

2.4.3.2 Example for calculating raw lines of code (LOCr):

Let’s assume we have the following new proxies in our new project:

Proxy Name Operations

print_checkconsistency 1

check_consistency 1

Cvalidate 8

Table 9: New proxies

By comparing the historical proxies, we identify the estimated relative size for each of these

proxies from the size matrix. Then, the mid value of the corresponding relative size from the size matrix

is taken and multiplied with the number of operations to get the LOCr. Finally the total LOCr is

calculated by summing up the LOCr of all the new proxies as shown below:

Proxy Name Operations Estimated Rel. Size LOCr

print_checkconsistency 1 M 18

check_consistency 1 L 43

Cvalidate 8 L 344

Total LOCr = 405

Table 10: Raw lines of code (LOCr) calculation for new proxies

2.4.3.3 Calculating Planned lines of code (LOCp) and Planned duration (Ep):

Once the raw lines of code (LOCr) is calculated, we can calculate the planned lines of code

(LOCp) and the planned duration(Ep) with the help of the project history. The following estimation

fundamentals will help us understand better how LOCp and Ep are calculated:

21

Figure 3: Estimation Fundamentals

In the left graph, the dots represent the number of historical projects. The x-axis represents the

raw lines of code (LOCr) and the y-axis represents the actual lines of code (LOCa). The line that passes

through the historical projects represents the average of LOCa to LOCr. The blue dot represents the raw

lines of code (LOCr) for the new project/development (i.e. 405 lines in our example case). The red line

that passes through the line is a mapping of LOCr to LOCa for the new development, which results in the

planned lines of code (LOCp) for the new development (i.e. NewLOCp is obtained by multiplying

NewLOCr with the average). The average ∑ LOCa / ∑ LOCr actually represents the productivity. For

example, if the average is 1.33, it means that 1.33 lines of code can be written in one minute, but again it

depends upon the language, code etc.

In the right graph, the dots represent the number of historical projects. The x-axis represents the

actual lines of code (LOCa) and the y-axis represents the actual duration (Ea). The line that passes

through the historical projects represents the average of Ea to LOCa. The blue dot represents the planned

22

lines of code (LOCp) for the new project/development.The red line that passes through the line is a

mapping of LOCa to Ea for the new development, which results in the planned duration (Ep) for the new

development (i.e. NewEp is obtained by multiplying NewLOCp with the average). The average ∑ Ea / ∑

LOCa actually represents the productivity. For example, if the average is 2.68, it means that it almost

takes 3 minutes to write a line of code, but again it depends upon the language, code etc.

Let’s assume from the historical database, we have the following data:

Project Name LOCr LOCa Ea

Project 1 30 48 249

Project 2 45 168 419

Project 3 65 146 438

Project 4 273 274 577

Project 5 203 182 513

∑ LOCa / ∑ LOCr = 1.33

∑ Ea / ∑ LOCa = 2.68

Table 11: Historical project data

Therefore, If the raw size (LOCa) is 405, then the planned size (LOCp) is ceil(405 * 1.33) = 539

lines and the planned duration (Ep) is ceil(539 * 2.68) = 1445 minutes.

2.4.3.4 Calculating confidence:

Calculating confidence involves calculating lower prediction interval (LPI) and upper prediction

interval (UPI). The rule is as follows:

For size estimates:

LPI = Estimate * largest historical underestimation error

23

UPI = Estimate * largest historical overestimation error

For time estimates:

LPI = Estimate * fastest historical productivity

UPI = Estimate * slowest historical productivity

From the historical data, we can calculate the size prediction interval and time prediction interval as

follows:

Project Name LOCr LOCa Ea LOCa/LOCr (LOCa/Ea) *

60
(Unit:

LOC/Hr)
Project 1 30 48 249 1.6 11.4

Project 2 45 168 419 3.73 24.0

Project 3 65 146 438 2.25 19.8

Project 4 273 274 577 1.00 28.8

Project 5 203 182 513 0.90 21.0

New LOCr = 405; New LOCp = 539

Table 12: Size and Time prediction intervals calculation

2.4.3.5 Size prediction interval:

Therefore, Lower Prediction Interval (LPI) = biggest underestimation error

= New LOCr * min(LOCa/LOCr)

= 405 * 0.90

= 365 lines

Upper Prediction Interval (UPI) = biggest overestimation error

= New LOCr * max(LOCa/LOCr)

= 405 * 3.73

= 1511 lines

24

2.4.3.6 Correlation coefficient:

 The correlation coefficient, a concept from statistics is a measure of how well trends in the

predicted values follow trends in past actual values. It is a measure of how well the predicted values from

a forecast model "fit" with the real-life data.

 The correlation coefficient is a number between 0 and 1. If there is no relationship between the

predicted values and the actual values, the correlation coefficient is 0 or very low (the predicted values are

no better than random numbers). As the strength of the relationship between the predicted values and

actual values increases so does the correlation coefficient. A perfect fit gives a coefficient of 1.0. Thus

the higher the correlation coefficient the better [9].

Let the correlation coefficient ranges be set as follows:

1.0 < r
2
< .75 --------- High (means estimation very close to actual values)

.75 < r
2
<.50 ---------- Medium (means estimation fairly close to actual values)

.50 < r
2
 ---------------- Low (means estimation is very poor)

2.4.3.7 Confidence on size prediction interval:

 In order to find the confidence on the size prediction interval, calculate correlation coefficient

which is done as follows:

= [CORREL(∑ LOCa / ∑ LOCr)]^2

= 0.70 [Medium]

Note:

set UPI to New LOCp if UPI<New LOCp

set LPI to 1 if LPI >New LOCp

also set confidence to low

2.4.3.8 Time prediction interval:

Therefore, Lower Prediction Interval (LPI) = biggest overestimation error

= New LOCp / max(LOCa/Ea) * 60

25

= 539 / 28.8 * 60

= 1123 minutes

Upper Prediction Interval (UPI) = biggest underestimation error

= New LOCp / min(LOCa/Ea) * 60

= 539 / 11.4 * 60

= 2837 minutes

2.4.3.9 Confidence on time prediction interval:

In order to find the confidence on the time prediction interval, calculate correlation

coefficient which is done as follows:

= [CORREL(∑ Ea / ∑ LOCa)]^2

= 0.93 [High]

Note:

set UPI to NewEp if UPI<NewEp

set LPI to 1 if LPI >NewEp

also set confidence to low

2.4.4 Iteration Plan:

IBM Rational Unified Process (RUP) [10], an iterative software development process framework,

says that iteration plan is a fine-grained plan with a time-sequenced set of activities and tasks, with

assigned resources, containing task dependencies, for the iteration.

Iteration also involves the redesign and implementation of a task from the operational

specification list, and the analysis of the current version of the system. It helps identify problems or

faulty assumptions at periodic intervals.

PCSE has the following major goals during this phase:

a) Select/revise scenario set

http://en.wikipedia.org/wiki/Iterative
http://en.wikipedia.org/wiki/Software_development_process

26

b) Set iteration goal

c) Schedule work

2.4.4.1 Select/revise scenario set:

During every iteration, one can select the next set of scenarios identified in the Analysis phase,

for the implementation. The operational specification can also be revisited to modify any scenario or add

new scenarios.

2.4.4.2 Set iteration goal:

The iteration goal is a plan or a set of tasks intended to be achieved by the end of the iteration.

Some of the iteration goals are:

1) A list of major classes or packages that must be completely implemented.

2) A list of scenarios or use cases that must be completed by the end of the iteration.

3) A list of risks that must be addressed by the end of the iteration.

4) A list of changes that must be incorporated in the product (bug fixes, changes in requirements)

etc.

2.4.4.3 Schedule work:

One of the important artifacts of iteration plan in PCSE is the iteration map, where each part in

the component identified during the architecture phase is mapped to an iteration. However the number of

iterations is not limited. There are situations where we write mock code before we write production code.

Each of these can be easily captured and tracked using an iteration map. The iteration map also leads an

easy way to schedule and track the effort, using calendar, burn-down chart, and diary. At the other end,

the iteration map can also be mapped to scenarios.

http://en.wikipedia.org/wiki/Use_cases

27

After we know the effort for each iteration, the work can be scheduled using a calendar and

tracked using the burn down chart and diary. The calendar, burn-down chart, and dairy are important

artifacts in PCSE in order to schedule and track the effort.

The following figure illustrates how calendar is used to measure and track effort for every iteration.

Figure 4: Calendar

The iteration map is scheduled to complete 13 parts in 4 iterations with an estimated duration of 1445

minutes. The calendar is used to plan the effort on a daily basis. In the above figure, the numbers in the

center (green in color) represents the number of minutes the developer has planned on writing the part on

the given day. The number at the bottom right end (blue in color) of each day is the cumulative total of

minutes planned so far (cumulative planned time), from which the day an iteration will end is known).

For example, iteration1 (i1) requires an effort of 333 minutes. So, from the calendar above, iteration1 will

be completed on day 6. The end of each iteration is marked in red at the top left end of the completion

day. The actual effort spent during each day can be tracked using a burn-down chart and a diary.

28

2.4.4.4 Burn-down chart:

A burn-down chart is a graphical representation of work left to do versus time. The outstanding

work (or backlog) is often on the vertical axis, with time along the horizontal. That is, it is a run chart of

outstanding work. It is useful for predicting when all of the work will be completed. The end of each day

is termed as the recording point and the end of each iteration is termed as assessment point [11].

Figure 5: A sample burn-down chart for a completed iteration, showing remaining effort and

tasks for each of the 21 work days of the 1-month iteration.

2.4.4.5 Burn down chart example case:

The following is an example burn-down chart constructed based on the work scheduled in the

iteration map and the calendar. It represents the Planned Effort(Ep), Actual Effort (Ea) and the

replannedeffort. i1, i2, i3, i4 etc. represent each iteration. The x-axis represents the days and the y-axis

refers to remaining effort.

After each day the progress is marked on the chart and after each iteration the developer projects

forward to see whether or not the target end date will be hit.

http://en.wikipedia.org/wiki/Run_chart

29

In the diagram below, the developer had gone through three iterations, and the dotted line (work

effort to maintain schedule) suggests he had fallen quite badly behind schedule. After the first iteration

the developer was making good progress, but things changed in the second and third iteration. Although

the developer was behind the planned schedule at the end of the second iteration, he thought that he could

still finish the remaining parts. Since the remaining time was not realistic to finish the remaining parts, the

developer decided to reschedule at the end of third iteration.

Figure 6: Example burn-down chart

2.4.4.6 Diary:

A diary is used for measuring the project progress. It provides a way to track and make decisions

at periodic intervals, particularly when the developer completes the tasks in a different order than

30

originally planned. Planned Value (PV) and Earned Value (EV) are two important measures that represent

the planned work and completed work respectively. PV and EV are also termed as Planned Velocity and

Earned Velocity.

Planned Value (PV): The percentage of total planned project time that the planned task

represents.

Earned Value (EV): The planned value of a task is earned when the task is completed. There is

no partial credit for partially completed tasks; i.e. Earning a EV means

method is completed passing all the tests.

If the Earned value (EV) is less than the Planned value (PV), then the developer is accomplishing

the work late or behind schedule. If the Earned value (EV) is equal or more than the Planned value (PV),

then the developer is accomplishing the work on, or ahead of plan.

A diary holds both the planned and the actual data. The following are the important data used in

the Diary for measuring the progress:

Planned Time: Planned effort for a day.

Planned Burn Down: Total planned effort – Planned Time.

Planned Iteration: Mark the completion of a set of planned parts.

Cum PV: The running cumulative sum of the planned values.

Actual Time: Actual effort spent on planned tasks on a day.

Cum Actual Time: The running cumulative sum of the actual time.

Actual Burn Down: Total actual effort – Actual time.

Cum EV: The running cumulative sum of earned values for the completed tasks.

Backlog ∆: represent the total amount of work.

The following is an example diary constructed based on the work scheduled in the iteration map

and the calendar. From the historical project data, the estimated planned duration (Ep) was calculated as

1445 minutes. The number of parts determined in the iteration plan was 13 parts in 4 iterations (i1: 3

parts, i2: 5 parts, i3: 2 parts, i4: 3 parts). The number of days scheduled in the calendar was 16 days.

31

After each day the progress is marked on the chart and after each iteration the developer project

forward to see whether or not he will hit the target end date. At the end of iteration 1 (i1) on day 6, the

developer had completed 3 parts and so the earned value (EV) is 3. In, iteration 2 (i2), the developer did

not progress well and so he earned only 1 part as against the planned value (PV), 5 parts. Although the

developer was behind the planned schedule at the end of the second iteration, he thought that he could

still finish the remaining parts. At the end of iteration 3 (i3) on day 13, the developer had earned only 1

part against the PV, 3 parts. Also, in iteration 3 (i3), the developer discovered that he needed to write 2

more new parts in order to complete the project. Since the remaining time was not realistic to finish the

remaining parts, the developer decided to reschedule at the end of third iteration.

Day Planned

Time

Planned

Burn

Down

Planned

Iteration

Cum

PV

Actual

Time

Cum

Actual

Time

Actual

Burn

Down

Cum

EV

Backlog

∆

1 90 1410 0 90 90 1410 0 0

2 60 1350 0 60 150 1350 0 0

3 0 1350 0 30 180 1320 0 0

4 90 1260 0 0 180 1320 0 0

5 0 1260 0 0 180 1320 0 0

6 120 1140 i1: 1167

(Effort:

333)

3 120 300 1200 3 -3

7 360 780 3 120 420 1080 3 0

8 240 540 i2: 610

(Effort:

557)

8 80 500 1000 4 -1

9 0 540 8 100 600 900 5 -1

10 90 450 8 0 600 900 5 0

11 0 450 8 0 600 900 5 0

12 0 450 8 0 600 900 5 0

13 90 360 i3: 388

(Effort:

10 10 610 890 5 +2

32

222)

14 120 240 10

15 90 150 10

16 150 0 i4: 55

(Effort:

333)

13

Table 13: Diary (Example case) – Planned Vs Actual

At the end of i3 on day 13, the developer earned 5 parts and also discovered that he need to write 2 more

new parts. Hence the total amount of work (Backlog) to complete becomes:

Backlog of work = 13 (planned parts) – 5 (EV at i3)

= 8 + 2 (newly discovered)

= 10 parts

The total backlog is 10 parts and the developer decided to change the iteration plan such that he

will complete the remaining parts in 3 iterations as follows: (i4: 4 parts, i5: 3 parts, i6: 3 parts). To re-

estimate the time for each iteration, the developer has to make use of the cumulative actual time spent and

number of EV earned until end of i3. The calculation is done as follows:

Re-estimate (i4) = cum actual time / items built (EV) * items to build in i4

 = 610 / 5 * 4

= 488

Re-estimate (i5) = cum actual time / items built (EV) * items to build in i5

= 610 / 5 * 3

= 366

Re-estimate (i5) = cum actual time / items built (EV) * items to build in i6

 = 610 / 5 * 3

= 366

The total new planned duration is: 1220 (488 + 366 + 366).

33

The developer starts recalculating the burndown at the end of i3 on day 13 as follows:

Recalculate burndown = (new planned duration - time remaining in the day (Day 13))

= 1220 – 80

= 1140

Once the burndown is recalculated, the calendar is scheduled and the planned time for each day is

recorded in the diary. The following is the diary after re-estimate.

Day Planned

Time

Planned

Burn

Down

Planned

Iteration

Cum

PV

Actual

Time

Cum

Actual

Time

Actual

Burn

Down

Cum

EV

Backlog

∆

1 90 1410 0 90 90 1410 0 0

2 60 1350 0 60 150 1350 0 0

3 0 1350 0 30 180 1320 0 0

4 90 1260 0 0 180 1320 0 0

5 0 1260 0 0 180 1320 0 0

6 120 1140 i1: 1167

(Effort:

333)

3 120 300 1200 3 -3

7 360 780 3 120 420 1080 3 0

8 240 540 i2: 610

(Effort:

557)

8 80 500 1000 4 -1

9 0 540 8 100 600 900 5 -1

10 90 450 8 0 600 900 5 0

11 0 450 8 0 600 900 5 0

12 0 450 8 0 600 900 5 0

13 90 1140

i3: 388

(Effort:

222)

10 10 610 890 5 +2

recalculate burndown (1220 - time remaining in the day) = 1220 – 80 = 1140

34

14 120 1020 5

15 90 930 5

16 150 780 5

17 0 780 5

18 240 540 i4: 732

(Effort:

488)

9

19 60 480 9

20 0 480 9

21 120 360 i4: 366

(Effort:

366)

12

22 180 180 12

23 100 80 12

24 80 0 i4: 0

(Effort:

366)

15

Table 14: Diary (Example case) after Re-estimate

2.4.5 Construction:

Construction is the activity of building code given a high-level design, which involves low-level

design, coding and unit testing.

In PCSE, the following are the important activities of this phase:

a.) Develop low-level design

b.) Build code and unit tests via TDD

35

Figure 7: PCSE construction artifacts

Traditionally testing was done after the coding activity, but PCSE uses Test Driven Development (TDD)

approach where first the tests are written and then code to pass them.

Design  Code  Test

Traditional Approach

Design  Test  Code

PCSE Approach

The problems of the traditional approach are:

a.) Tests are often written based on non-code artifacts, which may work for black-box tests (that tests

the functionality of an application), but not necessarily for white-box tests (a method of

testing software that tests internal structures or workings of an application).

b.) Tests may be written by non-coders who lack white box knowledge.

c.) Testing is done after code is written

2.4.5.1 Test Driven Development [12]:

Test-driven development (TDD) is a software development process that relies on the repetition of

a very short development cycle: first the developer writes a failing automated test case that defines a

desired improvement or new function, and then produces code to pass that test [12]. It is a systematic

approach to programming where the tests determine what code to write.

The advantages of TDD approach are:

a.) all delivered code is accompanied by tests

b.) no code goes into production untested

Production Code Test Code

(Validation tests +

White box tests)

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Test_case

36

Test Code

(Blackbox tests +

White box tests)

c.) writing tests first yield a better understanding of what the code is to do

The following figure represents a complete test driven development cycle:

Low level design

Construct failing test cases

Implement Fix if test case --- Log changes

doesn’t pass

pass test case

Figure 8: Test driven development cycle

Test cases can also be written using automated testing tools such as JUnit, NUnit etc.

2.4.6 Review:

Review is a phase where the developer examines the test code for coverage. This is the phase

where the developer ensures enough black box tests and white box tests are constructed. If the test code is

not covered, then the developer can add tests appropriately and fix it via TDD.

Figure 9: Review Test Code

37

The better the quality, the lower the cost. Test code reviews help ensure better quality and

standards. It will not only improve the quality of the test code, but it can also expose any assumptions

made by the developer and help in generating more test cases. Some of the most common problems to

look for during a test code review are:

a) Creating test code that tests functionality already tested in a different test method. For example

testing a "get" along with a “set” and also having a separate test method for testing the "get".

b) Testing the same functionality dropped in two different releases by rewriting existing test cases

just for the new release. Existing test code should be written in a way that it works across

multiple releases.

c) Re-writing functions that have part of the same functionality implemented by other methods

should be avoided. For example, if functionality involves opening a file, reading a value from it,

connecting to a database and getting values out and if methods exist for each of these tasks then

they should be reused instead of creating a new method that does all three tasks.

d) Verifications should be performed for all possible fields of the object being tested. This should

include core fields and also audit fields such as created, updated date etc. [13]

The advantages of performing a test code review are:

a) Tests reveal the intention behind the code much better than the code itself. That means it's easier

to discover logical bugs in the code by reading a test.

b) Tests are declarative by default - the developer declares what the code is supposed to be

accomplishing.

c) Tests are faster and shorter to read and understand. [14]

2.4.7 Refactor:

Code refactoring is the process of changing a computer program's source code without modifying

its external functional behavior in order to improve some of the nonfunctional attributes of the software.

38

Production Code

Also the internal structure of the software is improved. Advantages include improved code readability and

reduced complexity to improve the maintainability of the source code, as well as a more expressive

internal architecture or object model to improve extensibility [15].

The purpose of refactoring is

a.) To make software easier to understand

b.) To help find bugs

c.) To prepare software for next iteration

d.) To speed development process

Figure 10: Refactor production code

Refactoring is usually motivated by noticing a code smell. For example the method at hand may

be very long, or it may be a near duplicate of another nearby method. Once recognized, such problems

can be addressed by refactoring the source code, or transforming it into a new form that behaves the same

as before but that no longer "smells". We can also add/modify tests appropriately and fix it via TDD, if

we notice code smell in the production code.

The following are some examples of code smell that can be addressed through refactoring [1]:

a.) Data clumps: member fields that clump together but are not part of the same class.

b.) Primitive obsession: characterized by the use of primitives in place of class methods

39

c.) Switch statements: often duplicated code that can be replaced by polymorphism

d.) Parallel inheritance hierarchies: duplicated code in subclasses that share a common

ancestor.

e.) Duplicated code

f.) Long method

g.) Large class

h.) Long parameter list

i.) Divergent change: one type of change requires changing one subset of modules; another type of

change requires changing another subset.

j.) Shotgun surgery: a change requires a lot of little changes to a lot of different classes.

k.) Feature envy: a method in a class seems not to belong.

l.) Lazy class: a class that has little meaning in the context of the software

m.) Speculative generality: methods (often stubs) that are placeholders for future features.

n.) Temporary field: a variable that is used only under certain circumstances and is reused later under

other circumstances.

o.) Message chains: object that requests an object for another object.

p.) Middle man: a class that is just a “pass-through” method with little logic

q.) Inappropriate intimacy: violation of private parts.

r.) Alternate class with different interfaces: two methods that do the same thing, but have different

interfaces.

s.) Incomplete library classes: a framework that doesn’t do everything you need.

t.) Data class: classes that have getters and setters, but no real function.

u.) Refused bequest: a subclass that over-rides most of the functionality provided by its super class.

v.) Comments: text that explains bad code (vs fixing the code).

40

2.4.8 Integration:

This is a phase where the software component undergoes regression tests before its actual

integration.

Regression testing is any type of software testing that seeks to uncover software errors by

partially retesting a modified program. The intent of regression testing is to provide a general assurance

that no additional errors were introduced in the process of fixing other problems. Regression testing is

commonly used to test the system efficiently by systematically selecting the appropriate minimum suite

of tests needed to adequately cover the affected change. Common methods of regression testing include

rerunning previously run tests and checking whether previously fixed faults have re-emerged. "One of the

main reasons for regression testing is that it's often extremely difficult for a programmer to figure out how

a change in one part of the software will echo in other parts of the software" [16].

The following methodology is followed in PCSE to ensure all test cases introduced in one particular

iteration do not alter the behavior of the overall system:

For i in regression tests

 If not passed(i)

 Declare i invalid & discard

 Defer i to backlog

 Fix i this iteration

2.4.9 Post Mortem:

This is a phase to prepare for the next iteration. The major activities addressed in PCSE during

this phase are:

a.) Baseline the production source code in version control

b.) Baseline the test code in version control

c.) Revisit estimation if necessary

d.) Revisit iteration map if necessary

e.) Revisit backlog to add/remove scenarios etc.

41

2.4.10 Code Complete:

Code complete is to mark the end of the development. Some of the major activities carried out during this

phase are:

1.) Final testing of the system.

2.) User documentation.

3.) Deployment.

4.) Training.

5.) Documentation of findings, information to improve future efforts.

2.5 Introduction to Django

 Django is an open source web application framework, written in Python, which follows

the model-view-controller architectural pattern. Django's primary goal is to ease the creation of complex,

database-driven websites. Django emphasizes reusability and "pluggability" of components, rapid

development, and the principle of don't repeat yourself. Python is used throughout, even for settings, files,

and data models. Django also provides an optional administrative create, read, update and delete interface

that is generated dynamically through introspection and configured via admin models [17].

The core Django MVC framework consists of an object-relational mapper which mediates

between data models (defined as Python classes) and a relational database ("Model"); a system for

processing requests with a web templating system ("View") and a regular-expression-

based URL dispatcher ("Controller").Also included in the core framework are:

 A lightweight, standalone web server for development and testing.

 A form serialization and validation system which can translate between HTML forms and values

suitable for storage in the database.

 A caching framework which can use any of several cache methods.

42

 Support for middleware classes which can intervene at various stages of request processing and

carry out custom functions.

 An internal dispatcher system which allows components of an application to communicate events

to each other via pre-defined signals.

 An internationalization system, including translations of Django's own components into a variety

of languages.

 A serialization system which can produce and read XML and/or JSON representations of Django

model instances.

 A system for extending the capabilities of the template engine.

 An interface to Python's built-in unit test framework.

2.5.1 Design the model

Although we can use Django without a database, it comes with an object-relational mapper in

which we describe our database layout in Python code [18].

The data-model syntax offers many rich ways of representing our models. Here’s a quick

example, which might be saved in the file mysite/news/models.py:

 class Reporter(models.Model):

 full_name=models.CharField(max_length=70)

 def__unicode__(self):

 returnself.full_name

 class Article(models.Model):

https://docs.djangoproject.com/en/1.4/topics/db/models/

43

 pub_date=models.DateTimeField()

 headline=models.CharField(max_length=200)

 content=models.TextField()

 reporter=models.ForeignKey(Reporter)

 def__unicode__(self):

 return self.headline

2.5.2 Install it

Next, run the Django command-line utility to create the database tables automatically:

 manage.py syncdb

The syncdb command looks at all our available models and creates tables in your database for whichever

tables don't already exist [18].

2.5.3 Design our URLs

A clean, elegant URL scheme is an important detail in a high-quality Web application. To design

URLs for an app, we create a Python module called a URLconf. A table of contents for our app, it

contains a simple mapping between URL patterns and Python callback functions. URLconfs also serve to

decouple URLs from Python code [18].

Here's what a URLconf might look like for the Reporter/Article example above:

From django.conf.urls import patterns,url,include

https://docs.djangoproject.com/en/1.4/ref/django-admin/#django-admin-syncdb
https://docs.djangoproject.com/en/1.4/topics/http/urls/

44

urlpatterns=patterns('',

(r'^articles/(\d{4})/$','news.views.year_archive'),

(r'^articles/(\d{4})/(\d{2})/$','news.views.month_archive'),

(r'^articles/(\d{4})/(\d{2})/(\d+)/$','news.views.article_detail'),

)

The code above maps URLs, as simple regular expressions, to the location of Python callback

functions ("views"). The regular expressions use parenthesis to "capture" values from the URLs. When a

user requests a page, Django runs through each pattern, in order, and stops at the first one that matches the

requested URL. (If none of them matches, Django calls a special-case 404 view.) This is blazingly fast,

because the regular expressions are compiled at load time.

Once one of the regexes matches, Django imports and calls the given view, which is a simple

Python function. Each view gets passed a request object -- which contains request metadata -- and the

values captured in the regex.

For example, if a user requested the URL "/articles/2005/05/39323/", Django would call the

functionnews.views.article_detail(request, '2005', '05', '39323').

2.5.4 Write our views

Each view is responsible for doing one of two things: Returning an HttpResponse object

containing the content for the requested page, or raising an exception such as Http404. The rest is up to

us. Generally, a view retrieves data according to the parameters, loads a template and renders the template

with the retrieved data [18]. Here's an example view for year_archive from above:

 def year_archive(request,year):

https://docs.djangoproject.com/en/1.4/ref/request-response/#django.http.HttpResponse
https://docs.djangoproject.com/en/1.4/topics/http/views/#django.http.Http404

45

 a_list=Article.objects.filter(pub_date__year=year)

 return render_to_response('news/year_archive.html',{'year':year,'article_list':a_list})

This example uses Django's template system, which has several powerful features but strives to

stay simple enough for non-programmers to use.

2.5.5 Design our templates

The code above loads the news/year_archive.html template. Django has a template search path,

which allows us to minimize redundancy among templates. In our Django settings, we specify a list of

directories to check for templates. If a template doesn't exist in the first directory, it checks the second,

and so on [18].

Let's say the news/year_archive.html template was found. Here's what that might look like:

{%extends"base.html"%}

{%block title%}Articles for {{year}}{%endblock%}

{%block content%}

<h1>Articles for {{year}}</h1>

{%for article in article_list%}

<p>{{article.headline}}</p>

<p>By{{article.reporter.full_name}}</p>

<p>Published {{article.pub_date|date:"F j, Y"}}</p>

{%endfor%}

https://docs.djangoproject.com/en/1.4/topics/templates/

46

{%endblock%}

Variables are surrounded by double-curly braces. {{ article.headline }} means "Output the value

of the article's headline attribute." But dots aren't used only for attribute lookup: They also can do

dictionary-key lookup, index lookup and function calls.

Note {{ article.pub_date|date:"F j, Y" }} uses a Unix-style "pipe" (the "|" character). This is

called a template filter, and it's a way to filter the value of a variable. In this case, the date filter formats a

Python datetime object in the given format (as found in PHP's date function; yes, there is one good idea in

PHP).

We can chain together as many filters as we'd like. We can write custom filters. We can write

custom template tags, which run custom Python code behind the scenes.

Finally, Django uses the concept of "template inheritance": That's what

the {% extends "base.html" %} does. It means "First load the template called 'base', which has defined a

bunch of blocks, and fill the blocks with the following blocks." In short, that lets us dramatically cut down

on redundancy in templates: each template has to define only what's unique to that template.

Here's what the "base.html" template might look like:

<html>

<head>

<title>{%blocktitle%}{%endblock%}</title>

</head>

<body>

<imgsrc="sitelogo.gif"alt="Logo"/>

47

{%blockcontent%}{%endblock%}

</body>

</html>

It defines the look-and-feel of the site (with the site's logo), and provides "holes" for child

templates to fill. This makes a site redesign as easy as changing a single file -- the base template. It also

lets us create multiple versions of a site, with different base templates, while reusing child templates.

Django's creators have used this technique to create strikingly different cell-phone editions of sites --

simply by creating a new base template.

Note that we don't have to use Django's template system if we prefer another system. While Django's

template system is particularly well-integrated with Django's model layer, nothing forces us to use it. For

that matter, we don't have to use Django's database API, either. We can use another database abstraction

layer, we can read XML files, we can read files off disk, or anything we want. Each piece of Django --

models, views, templates -- is decoupled from the next [18].

48

3. Changes in PCSE process and artifacts

3.1 Objective

 The goal of this thesis work was to apply PCSE process to develop a web application in a web

development environment. In the past, PCSE had been used to develop only conventional applications.

All the phases of PCSE were designed in a way to suit the development of conventional applications. The

main challenge of the thesis was to adapt PCSE phases and artifacts to accommodate the unique aspects

of web application development. The PCSE lifecycle was adapted to fit the non-homogenous artifacts that

resulted during the development of the web application. The different modifications made to the PCSE

process are explained in the next section.

3.2 Changes made to PCSE

 The changes that were made to the different phases of the PCSE lifecycle were as follows:

 Analysis – Analysis is the process of breaking a complex topic into smaller parts to gain a

better understanding of it. This stage includes identifying the desired behavior of the system.

The artifact produced is usually user scenarios for each task of the system. Since the web

application had raw user needs, the requirements were written as user stories on index cards.

Each requirement was written on a separate index card and was represented as an individual

feature.

 Architecture - The main motive of this phase was to develop a high-level design and to

identify major components sufficient to begin scoping the effort required by the project. The

49

artifacts produced were CRC cards which is the usual PCSE artifact for architecture. But, the

traditional component types defined by PCSE were not enough to accommodate the non-

homogenous artifacts of the web application. So, three new component types model, template

and view were defined to fit these artifacts.

 Planning – The planning and estimation method used by PCSE is the proxy based estimation

method. It depends on the historical data for predicting the size and effort of the development

of new components. Since we were dealing with a web application for the first time, there

was no historical data to aid the planning phase. So, a new estimation method was used. The

method used was story point based estimation. The size of the features was calculated relative

to a base feature and the effort was calculated relative to the effort of the base feature. The

templates (web pages and style sheets) were estimated relative to the size of the existing

templates.

 Construction – Construction in PCSE is done by Test-Driven Development (TDD). The

construction for the web application was done by following TDD. Different methods were

employed to test the different component types. The web pages were tested by the use of

Django’s built-in test client class.

 The details of the changes made to the PCSE process and the different artifacts produced are

discussed in detail in the next chapter.

50

4. Web Application in Django using PCSE

 The following sections illustrate the objective of this thesis by using PCSE to develop the web

application “NEED-A-NERD” that entailed building Python code, Django template code, and XHTML.

To understand how well PCSE could be applied to develop web based applications, a web based

application was implemented using the PCSE process. The web application called “NEED-A-NERD” was

developed to be used by the faculty, staff and students of the Computer Science and Software Engineering

department at Auburn University for their on-campus job search. The web based interface would let

faculty and staff do a variety of functions including adding new jobs to the site, editing their existing job

postings, search for students based on skill set they expect, download students’ resumes and so on. The

students can do a lot of functions including applying for specific jobs, search for jobs, update their resume

and profile information and so on. There will also be an administrator who will handle all the

maintenance functions.

 The application was developed in Django, which is a web application framework written in

Python. It was constructed using TDD (Test-Driven Development). The Eclipse IDE was used for

development purposes. A plugin for the Eclipse IDE called PyDev was used to develop the Python code.

PyDev also has a unit-testing framework for testing Python code which was used for testing purposes. A

custom MySQL database was used as the backend instead of the built-in SQLite3 database. HTML and

CSS were used in constructing the web pages.

51

4.1 Analysis

 Analysis is the phase where the requirements of the system are identified. Analysis was done with

the help of user stories. A user story, also called as scenario, expresses one very specific need that a user

has. It usually consists of a few simple sentences. The user stories were written as plain text in English.

Any user would be able to read a user story and immediately understand what it means. To put it simply,

a user story is a raw user need. It is something that the user needs to do on the interface. User stories

were written on index cards since they are easy to work with. Each requirement was written on an index

card.

The following are a few important facts about user stories [20].

 Users – Since the users are faculty, staff and students of the Computer Science Department,

members of the PCSE research team (includes faculty and students) played a major role in

building user stories.

 Estimated size – Each user story was given an estimate of how much effort it would take to

implement. The way we estimated was to assign user story points to each card, a relative

indication of how long it will take a programmer to implement the story. For example, if the

programmer has determined that it takes an average of three hours to implement a story point, the

number of hours to implement a user story will be roughly three times the number of story points.

 Priority – Requirements were prioritized according to the importance of the feature described by

the user story. We assigned priorities to each user story and implemented the most important user

stories in the first iteration, then the next set of prioritized user stories in the next iteration and so

on. If the priority of a story changed over time, we moved it to the most appropriate iteration.

52

Figure 11: User story prioritization[20]

 Unique identifier – Each card also included a unique identifier for the user story. The reason this

was done was to maintain some sort of traceability between the user story and other artifacts.

Figure 12 illustrates a sample user story.

53

Figure 12: Example user story on index card

User stories that generated during the analysis phase were

 Students should be able to post their resumes.

 Students should be able to update their profile information.

 Employers should be able to post new jobs

 Employers should be able to search for students based on skill set

 Admin should be able to put the site on maintenance mode

 System should be able to expire resumes on a periodic basis

 System must be able to update the recently posted jobs on the site.

4.2 Architecture

 Architecture is the phase where the components of the system are identified with the help of CRC

cards. Each user story is taken separately and the components that are needed to implement the user story

54

are identified. In other words, each user story is mapped onto the corresponding components that need to

be built to complete the task proposed by the user story. Traditionally, since PCSE has been used to

develop conventional applications, the four different components that PCSE defines are:

 Data

 Calculation

 I/O and

 Logic

 Since we were dealing with a web based application, the components did not quite fit into any of

these four categories. We decided to define three new component types for the web application to be

developed in Django. These three new component types were:

 Model

 Template and

 View

 4.2.1 Model

 A model in Django is a Python class that wraps a database table. Django models are persistent.

Every time we create a new instance of the model, it becomes an object (a tuple in the database table).

Models can inherit from other models just as classes do. Models can also use fields from other models as

references (foreign keys). In other words, models can collaborate with other models. Similar to classes,

models have member variables which become columns in the database table. They have member

functions which can be used to access and manipulate the data from the database table. Figure 13 gives

the CRC cards for some of the models in the web application developed.

55

Figure 13: CRC cards for Models

 4.2.2 Template

 Templates in Django are the web pages and the stylesheets that go along with the content of the

pages. In our web applications, all web pages were designed using HTML and CSS. So, the templates are

basically the HTML pages and the CSS documents that guide the styles of the HTML pages.

Figure 14: CRC cards for templates

56

 A few of the CRC cards developed for templates in the web application can be seen in Figure 14.

Each HTML page and each CSS document is denoted by a single CRC card.

 4.2.3 View

 Each view is a standalone Python method which retrieves the data to be displayed on a particular

web page. A view in Django is the component that controls the data that will be displayed on a web page.

The view decides on the contextual data that would be displayed to different types of users. Generally, a

view retrieves the data according to the parameters, loads a template and renders the template after

populating it with the retrieved data.

Figure 15: CRC cards for views

 Figure 15 shows the CRC card for a Django view. Each Django view collaborates with Django

models that the view accesses and retrieves the data from. Also, the view collaborates with the templates

that it loads the retrieved data with. So each Django view is represented as a separated CRC card in PCSE

architecture.

57

4.3 Project Plan

 The estimation method originally used in PCSE was based on proxies that represent historical

data. This method could not be used to estimate the web application since it required that all proxies

represent homogeneous components.

 For the web application developed, the estimation method used was based on story points rather

than estimation line-of-code-based size. In simple terms, a story point is a measure of complexity. This is

to differentiate it from hourly estimates, which are measures of effort. Story points are a relative measure.

We defined a user story having a story point value of one (which was the least complex user story) as the

base reference for all other stories [22]. We then estimated every other user story relative to this one. For

example, if another user story is thrice as complex as the base story, then we give it a value of three

points. The difference between complexity and effort is that complexity is a property of the story whereas

the effort depends both on the story and the person implementing it.

 We took all the user stories from the analysis phase. We took a base story point -- the least

complex user story -- and assigned it a value of one point. Likewise, we gave a story point value to every

other user story relative to this one. A few changes in story points were made as the project went on. In

that case, the user stories were just re-estimated and then developed.

4.4 Iteration Plan

 4.4.1 Select feature set

 In PCSE, the project is split into several iterations. The idea is to have a working product at

periodic intervals. During each iteration, we select a set of user stories or features. We call this set of

features, a feature set. This will be the set of features that have to be completed at the end of that

particular iteration.

58

 4.4.2 Set iteration goal

 The iteration goal is a plan or a set of tasks intended to be achieved by the end of the iteration.

Some of the iteration goals were:

 A list of models that need to be developed

 A list of Django views that need to be developed during the iteration

 The list of templates or web pages that need to be constructed

 A list of changes that must be incorporated in the product.

4.4.3 Schedule work

After we know the effort for each iteration, the work can be scheduled using a calendar and

tracked using the burn down chart and diary. The calendar, burn-down chart, and dairy are important

artifacts in PCSE in order to schedule and track the effort. The detail on how the effort was calculated for

each iteration is explained in the next section. Figure 16 shows the Work Breakdown Structure for the

iterations in the project.

Figure 16: Work Breakdown Structure for the project

59

 The following figure shows a part of the calendar of the entire project. It includes the calendar for

the second and third iterations.

Figure 17: Calendar for Iteration 2 and 3

 The diary for the iterations 2 and 3 of the project is shown in the following Figure 18. It shows

the entire breakdown for the corresponding iterations.

60

Figure 18: Diary for iterations 2 and 3

 4.4.4 Estimation for first iteration

 Since there was no historical data to aid the estimation of the product, the method used for

estimation was story point estimation, as explained earlier. For the first iteration, we decided to develop a

total of 4 features totaling 6 story points. To calculate effort, we had to make a guess on the amount of

time that would be needed to develop a story point. Since the features were quite simple, we gave a value

of 200 minutes to develop one story point. But since there was quite a bit of learning curve in the first

iteration, the estimation was a bit off. At the end of the first iteration, it took about 354 minutes to develop

one story point.

61

 4.4.5 Estimation for future iterations

 The estimation for subsequent iterations started to become more accurate as we had historical

data to work with after the first iteration. For example, to start with the second iteration, we estimated

effort by assigning a development time of 354 minutes (actual effort per story point from iteration 1) per

story point. The actual effort for iterations started getting closer to the estimated effort as the project went

on.

Figure 19: Estimated and actual effort calculations

 Figure 19 shows the estimated and actual effort calculations for iterations 3 and 4. The third

iteration begins with an estimated effort per story point equal to the average of the actual effort per story

point from the first two iterations. The fourth iteration takes an average of actual effort from second and

third iterations and so on. The story point estimation worked out well as the project went on and we had

some historical data.

 4.4.6 Estimating the template design and stylesheets

 The Auburn University website templates and stylesheets were used to begin with. There were a

few modifications made to the stylesheets and the web page templates as the project went on. To do the

estimation for the stylesheets, the existing stylesheets were used as a baseline and the new styles were

estimated relative to the existing ones.

62

 Since we used the already built-in templates and stylesheets as the baseline, we estimated the size

of the new templates and stylesheets rather than the effort. Again story-point based estimation was used to

estimate the size of the new stylesheets and templates.

4.5 Construction

 Construction was done using TDD. There were three different kinds of components, models,

templates and views when developing the web application in Django. There were different ways to write

tests and the production code for each of three component types.

 4.5.1 Models

 Since models are Python classes, the traditional method of testing classes can be applied to testing

the models. Below is an example test case for a model named Jobs.

def test_jobsAddTest(self):

self.job=Jobs.objects.create(title='TestJob',description='This is a test
job',contact_info='334-332-9561')

 self.assertEquals(self.job.get_title(), 'TestJob')

 The above test will fail if the model named two parameters to the assert function that do not

match. We just create a new object and test it within the test case. What follows is a way to test if the

actual data exists in the database table.

def test_jobsAddTest(self):

self.job=Jobs.objects.get(pk=1)
 self.assertEquals(self.job.get_title(), 'TestJob')

 The above test will fail if the corresponding object for the model “Jobs” does not exist in the

database. If it fails, then you have to insert the tuple into the database and then run the test again to make

it pass. Also, the member function get_title() has to be implemented in the model “Jobs” and it should

63

return the title of the Jobs object. All these have to implemented in the production code to make the test

pass. In this way, each and every function and variable for the models were constructed in the production

code by writing failing tests and making them pass.

 4.5.2 Views

 Django’s test client was used to test the views of the web application. Some of the things the test

client lets us do are [19]:

 Simulate GET and POST requests on a URL and observe the response -- everything from low-

level HTTP (result headers and status codes) to page content.

 Test that the correct view is executed for a given URL.

 Test that a given request is rendered by a given Django template, with a template context that

contains certain values.

When retrieving pages, we need to specify the path of the URL and not the entire address. Here is an

example of how the test client works.

c=Client()
response = c.get('/logout/')

 self.assertEquals(response.status_code, 302)

 reponse.content

 The above test case instantiates a test client and tries to make a call to the URL ‘/logout/’. The

test client looks for URL matches in the URL configuration of the web application. If it finds a match, it

passes the test and executes the corresponding view and retrieves the web page specified by the view. The

status code 302 here denotes that the view returns an HttpResponseRedirect object, which is just a page

redirect. A status code 200 means the view returns an HttpResponse object. The response.content prints

out the content of the web page that is retrieved by the view. In our case, the response.content will contain

HTML code of the web page that is being retrieved. It looks something like,

64

'<!DOCTYPE html...'

………

 We can also make a POST request on the provided path and return a Response object, which is

documented below. The key-value pairs in the data dictionary are used to submit POST data. For

example:

 c = Client()

 response=c.post('/login/', {'username': 'prabhu', 'password': '111111'})

...will result in the evaluation of a POST request to this URL:

 /login/

...with this POST data:

 username=prabhu&password=111111

 A status code of 200 after the execution of this post means a successful login and anything else is

an incorrect username/password combination.

 Similarly, we can make a GET request on the provided path and return a Response object, which

is documented below. The key-value pairs in the data dictionary are used to create a GET data payload.

For example:

 c = Client()

 response=c.get('/jobdetails/', { 'id': 7})

...will result in the evaluation of a GET request equivalent to:

 /jobdetails/?id=7

 Submitting files is a special case. To POST a file, we need only provide the file field name as a

key, and a file handle to the file we wish to upload as a value. For example:

65

 c=Client()

 f=open(‘…/file.pdf’)

 c.post(‘/addresume/’, {‘attachment’: f})

 f.close()

 All the URLs in the URL configuration of the web application and all the views were tested using

the test client.

 4.5.3 Templates

 Django doesn’t provide a way to test the content of web pages directly. We can test the

template ‘context’ instance that was used to render the template that produced the response content. If the

rendered page used multiple templates, then context will be a list of Context objects, in the order in which

they were rendered. Regardless of the number of templates used during rendering, we can retrieve context

values using the [] operator [19]. Here is an example:

 response = client.get('/studentprofile/')

response.context['name']

will result in

'Prabhu'

The content of the web page can be tested by calling the response.content as explained in the

previous section. By calling the response.templates, we can get a list of template instances used to render

the final content in the order they were rendered. For each template in the list, we can

use template.name to get the template's file name, if the template was loaded from a file. (The name is a

66

string such as 'templates/index.html'.) All templates were tested for context values using this method of

the test client.

4.6 Review

Review is a phase where we examine the test code for coverage. This is the phase where we

ensure enough black box tests and white box tests are constructed. If the test code is not covered, then we

can add tests appropriately and fix it via TDD. Code review was done at the end of each iteration to make

sure some of the common bugs from previous iterations were fixed early. A review checklist is

constructed in the planning phase that has some of the common mistakes that were made in earlier

iterations. This review checklist is then updated during each iteration plan. The following figure shows a

couple of items in the review checklist and the number of times that defect was found during the review

phase.

Figure 20: Code review

 In the review phase, the number of defects that occurred in the project listed on the review list is

checked to see if it matches the historical defect count as seen in the above figure. The test code is

67

checked for correctness and coverage. The test code was reviewed and it was made sure that it tests the

entire production code. Also, it was made sure that all the test cases in the test case pass without any bugs.

In case of any missing test cases, new test cases were written and fixed through TDD.

4.7 Refactoring

 Refactoring is the phase where we identify and fix bad smells in the code. This is where we

change the non-functional requirements of the software. Refactoring was done at the end of each iteration

after the review phase. Some of the bad smells that were found and fixed during the refactoring phase

were:

 Long method – There were several long Django views that were written during the construction

phase. All of them were broken down into smaller, reusable methods during this phase.

 Duplicate code – Some of the functionality was repeated in some of the views. This repeated

functionality was written as a separate method and then used in the other view. This reduced

code redundancy.

 Temporary fields – A few temporary variables were used in the views when trying to

manipulate the data. These temporary variables were fixed during this phase.

 Comments – Comments were inserted into the code wherever necessary to make the code more

understandable.

 Overall, refactoring was done during each iteration and it ensured that the code was well readable

and understandable.

4.8 Integration

 Regression tests were done at this phase to ensure that the changes in the code during the

previous iteration did not affect the functionality of the software. In other words, we check to ensure that

the new or modified code did not introduce new bugs in the software. In cases where there were bugs

68

introduced, they were also fixed during this phase. Very few bugs were found in this phase and were

again fixed via TDD.

4.9 Post Mortem

 Post Mortem is the last phase of each iteration. It is done before we prepare to start the next

iteration. Some of the things done during the post mortem were:

 Baseline the production code in version control on local file system and test server

 Baseline test code in version control on local file system and test server

 It was analyzed as to what went well and what went wrong during the previous iteration and what

could be changed to improve the future iterations.

 One important thing done during this phase was to revisit estimation and see how well the

iteration plan was done. It was used to improve the estimation and planning of the subsequent

iterations.

4.10 Code complete

 Code complete was the last phase in PCSE which marks the end of the development. This

includes the completion of the production and test code and the final testing of the system. At the end of

this phase, it is ensured that all the requirements have been satisfied by the software.

4.11 PCSE Measures

 PCSE has two measures [21]:

1.) The time spent per phase (Timelog).

2.) The defects found per phase (Changelog).

69

The time per phase is a simple record of the clock time spent in each part of the process. The

defects found per phase are a simple record of the specified data for every defect the developer find

during compiling and testing.

The reason for gathering both time and defect data is that it will help the developer assess the

quality of work and to help plan and manage his projects. These data will show where the developer

spends his time and where he inject and fix the most defects. The data will also help the developer see

how his performance changes as he modifies the process. The developer can then decide for himself how

each process change affects his productivity and the quality of work products.

4.11.1 Timelog:

Timelog is an important artifact used to record the time the developer spends on each project

activity.

The following are the important timelog data and their instructions:

 Record all of the time spend on the project

 Record the time in minutes

 Be as accurate as possible

 If the developer forgets to record the starting, stopping, or interruption time for an activity,

promptly enter the best estimate.

Date: Enter the date when the developer starts working on a process activity.

Start time: Enter the time when the developer starts working on a process activity.

Stop time: Enter the time when the developer stops working on a process activity.

Interrupt time: Record any interruption time (e.g. phone calls, questions or other things) that

 was spent on the process activity. The reason for the interrupt is usually recorded

 in the comments section.

Delta: Enter the clock time the developer actually spent working on the process activity, less the

70

 interruption time.

Phase: Enter the process activity (e.g. Analysis, Architecture, Project Plan, Iteration Plan etc.).

Feature Set: Enter the current iteration the developer is in.

Comments: Enter any other pertinent comments that might later remind the developer of any

 unusual circumstances regarding this activity.

The timelog is useful for the following:

1) Calculating the actual time

2) Evaluating what percentage of the developer’s time is spent on each area

3) Determining how much time the developer takes to do a task

4) Measuring productivity

5) Understanding the interruption problem and figure out ways to address it.

The following figure shows a part of the timelog during the development of the web application.

Figure 21: Timelog

4.11.2 Changelog:

The changelog is another important artifact that is used to hold the data on the defects the

developer finds and corrects. A defect is counted every time the developer changes a program to fix a

problem. The change could be one character or multiple statements.

71

 The change log will record the following basic data:

1.) The defect type.

2.) The phase in which the defect was injected.

3.) The phase in which the defect was removed.

4.) The fix time.

5.) A brief description of the defect.

PCSE uses the PSP defect type standard [21]. Although this standard is quite simple, it should be

sufficient to cover most of the developer’s needs.

Documentation Comments, Message

Syntax spelling, punctuation, typos, improper programming language grammar

Build, package change management, library, version control

Assignment declaration, duplicate names, scope, limits

Interface module calls and references, user formats

Checking error messages, inadequate bound/type/format checking

Data structure, content

Function logic, pointers, loops, recursion, computation, functional defects

System configuration, timing, memory

Environment programming tools

Table 15: Defect Standard Type

The following are the important Changelog data and their instructions:

General: Record each defect separately and completely.

Type: Enter the defect type from the defect type list. Use the best judgment in selecting which

 type applies.

Inject: Enter the phase this defect was injected. Use the best judgment.

72

Remove: Enter the phase during which the developer fixes the defect. This will generally be the

 phase when the developer found the defect.

Inject Feature set: Enter the iteration this defect was injected.

Remove Feature set: Enter the iteration this defect was removed.

Fix Time: Enter the time the developer took to find and fix the defect. This time can be

 determined by stopwatch or judgment.

Fix Reference: If the developer injected this defect while fixing another defect, record the

 number of the improperly fixed defect. If the developer cannot find the defect

 number, enter an X.

Description: Write a succinct description of the defect that is clear enough to later remind the developer

about the error and help the developer to remember why he made it.

The changelog is useful for the following:

1.) Deciding where and how to improve the developer’s process.

2.) Observing fix time data can help the developer evaluate the cost and schedule consequences of

his personal process improvements.

3.) Analyzing defects for pattern.

4.) Preventing defects.

5.) Creating a review checklist for commonly occurring defects.

 The following figure shows a part of the changelog that was obtained during the development of

the web application.

73

Figure 22: Changelog

74

5. Conclusion and Future Work

5.1 Summary

 The following are a few important points that summarize the thesis:

 The web application was developed using the PCSE process. A few modifications were done

in the different phases and artifacts of PCSE to fit the artifacts produced during the

development process.

 The web application was developed in Django, a web application framework written in

Python.

 The traditionally used proxy based estimation in PCSE process was not used here. A new

story point based estimation method was used to develop the web application. This showed

how different planning techniques can be used to develop different kinds of applications.

 The web application is expected to be used by the faculty, staff and students of the Computer

Science and Software Engineering department at Auburn University for their on-campus job

requirements.

5.2 Conclusion

This study was intended to apply PCSE in a web development environment. This thesis

also gave a good measure of how well PCSE can be adapted to develop Web based applications.

This study also provided a way to document the PCSE lifecycle and to explain the different

activities of PCSE. The following are the major conclusions of this study:

 This work showed that although PCSE was used traditionally to develop conventional

applications, it could be adapted to develop web applications.

75

 This work also demonstrated how PCSE phases and artifacts were adapted to

accommodate the unique aspects of web application development.

 PCSE has been traditionally designed to fit homogenous components. But that was

not the case with the web application developed. The web application had non-

homogenous components. This thesis illustrated how PCSE was adapted to fit in

these non-homogenous artifacts.

 Different planning techniques were used to estimate the size and effort of the

different components developed. This showed how more than one planning technique

could be employed within the same project depending on the component type.

 This work introduced a new estimation method into PCSE – the story point based

estimation method which was based on complexity rather than effort.

 A new architecture technique that fits the MVC pattern of web applications was

introduced.

 This work also showed how TDD could be applied in a web development

environment to develop a web application.

5.3 Future Work

 Although the modifications applied to PCSE worked really well during the development

of the web application, there are a few more enhancements that can be done:

 First, there were several changes made to the PCSE process during each phase of

development. The changes and the techniques used worked very well and they were

highly efficient in the development of web application. But, different techniques

could be applied during the different phases to develop more web applications in the

future using PCSE and this could in turn give way to more efficient techniques.

76

 The web application was developed in Django. The components in Django were

models, templates or views. In the future, PCSE can be used to develop more web

applications in other web application frameworks. Different web application

frameworks have different structure and hence, different component types. So,

developing web applications in another platform would pose a different challenge and

might require more changes to the techniques involved in PCSE process to

accommodate the changes in artifacts.

77

References

[1] Software Process course notes, Fall 2010, By Dr. David A. Umphress, Computer Science and

Software Engineering Department, Auburn University.

[2] “Heavyweight vs. lightweight methodologies” (2002, December 03), In Builder.com, By Jason P.

Charvat, from

http://www.builderau.com.au/strategy/projectmanagement/soa/Heavyweight-vs-lightweight-

methodologies/0,339028292,320270383,00.htm

[3] “Django (web framework)”. (2012, June 1). In Wikipedia, The Free Encyclopedia. Retrieved 18:30,

June 2, 2012, from

http://en.wikipedia.org/wiki/Django_(web_framework)

[4] Django documentation by 2005-2012, Django Software Foundation –

https://docs.djangoproject.com/en/dev/faq/

[5] “Agile Software Development”. (2012, July 5). In Wikipedia, The Free Encyclopedia. Retrieved

00:19, July 6, 2012, from

http://en.wikipedia.org/wiki/Agile_software_development

http://www.builderau.com.au/strategy/projectmanagement/soa/Heavyweight-vs-lightweight-methodologies/0,339028292,320270383,00.htm
http://www.builderau.com.au/strategy/projectmanagement/soa/Heavyweight-vs-lightweight-methodologies/0,339028292,320270383,00.htm
http://en.wikipedia.org/wiki/Django_(web_framework)
https://docs.djangoproject.com/en/dev/faq/
http://en.wikipedia.org/wiki/Agile_software_development

78

[6] “Personal Software Process”. (2012, June 12). In Wikipedia, The Free Encyclopedia. Retrieved 00:50,

July 6, 2012, from

http://en.wikipedia.org/wiki/Personal_software_process

[7] A Discipline for Software Engineering, by Watts S. Humphrey.

[8]Haroon Altarawneh and Asim El Shiekh. 2008. A Theoretical Agile Process Framework for Web

Applications Development in Small Software Firms. In Proceedings of the 2008 Sixth International

Conference on Software Engineering Research, Management and Applications(SERA '08). IEEE

Computer Society, Washington, DC, USA, 125-132.

http://www.cin.ufpe.br/~hsf/Referencial%20Teorico/A%20Theoretical%20Agile%20Process%2

0Framework%20for%20Web%20Applications%20Development.pdf

[9] What is Correlation Coefficient, By 1997-2005. Financial Forecast Center LLC -

http://forecasts.org/cc.htm

[10] IBM Rational Unified Process. (2012, July 9). In Wikipedia, The Free Encyclopedia. Retrieved

20:30, July12, 2012, from –http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process

[11]Burn down chart. (2012, July 3). In Wikipedia, The Free Encyclopedia. Retrieved 22:40, July 12,

2012, from - http://en.wikipedia.org/wiki/Burn_down_chart

[12]Test-driven development. (2012, June 28). In Wikipedia, The Free Encyclopedia. Retrieved 17:27,

July 11, 2012, from - http://en.wikipedia.org/wiki/Test-driven_development

http://en.wikipedia.org/wiki/Personal_software_process
http://www.cin.ufpe.br/~hsf/Referencial%20Teorico/A%20Theoretical%20Agile%20Process%20Framework%20for%20Web%20Applications%20Development.pdf
http://www.cin.ufpe.br/~hsf/Referencial%20Teorico/A%20Theoretical%20Agile%20Process%20Framework%20for%20Web%20Applications%20Development.pdf
http://forecasts.org/cc.htm
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://en.wikipedia.org/wiki/Burn_down_chart
http://en.wikipedia.org/wiki/Test-driven_development

79

[13]Test Automation Code Review Guidelines, By Devin A. Rychetnik, Microsoft Inc. -

http://msdn.microsoft.com/en-us/library/ff519670.aspx

[14] Test Reviews Vs. Code Reviews - Some Helpful Tips, By Roy Osherove -

http://weblogs.asp.net/rosherove/archive/2007/03/13/test-reviews-vs-code-reviews-some-helpful-tips.aspx

[15]Code refactoring. (2012, June 12). In Wikipedia, The Free Encyclopedia. Retrieved 12:57, July 12,

2012, from -http://en.wikipedia.org/wiki/Code_refactoring

[16]Regression testing. (2012, May 28). In Wikipedia, The Free Encyclopedia. Retrieved 13:41, July 12,

2012, from - http://en.wikipedia.org/wiki/Regression_testing

[17]Django (web framework). (2012, June 27). In Wikipedia, The Free Encyclopedia. Retrieved 20:51,

July 12, 2012, from -http://en.wikipedia.org/wiki/Django_(web_framework)

[18]Django at a glance- Django documentation by 2005-2012, Django Software Foundation -

https://docs.djangoproject.com/en/dev/intro/overview/

[19] Testing Django Applications- Django documentation by 2005-2012, Django Software Foundation -

https://docs.djangoproject.com/en/dev/topics/testing/?from=olddocs

[20] Introduction to User Stories, by 2003-2009 Scott W. Ambler -

 http://www.agilemodeling.com/artifacts/userStory.htm

[21] PSP – A Self-Improvement Process for Software Engineers, by Watts S. Humphrey

http://msdn.microsoft.com/en-us/library/ff519670.aspx
http://weblogs.asp.net/rosherove/archive/2007/03/13/test-reviews-vs-code-reviews-some-helpful-tips.aspx
http://en.wikipedia.org/wiki/Code_refactoring
http://en.wikipedia.org/wiki/Regression_testing
http://en.wikipedia.org/wiki/Django_(web_framework)
https://docs.djangoproject.com/en/dev/intro/overview/
https://docs.djangoproject.com/en/dev/topics/testing/?from=olddocs
http://www.agilemodeling.com/artifacts/userStory.htm

80

[22] What is Story Point Estimation, by 2007 Silver Stripe Software Private Ltd.

 http://toolsforagile.com/blog/archives/155/what-is-story-point-estimation

http://toolsforagile.com/blog/archives/155/what-is-story-point-estimation

