Improve I/O performance and Energy Efficiency in Hadoop Systems
by
Yixian Yang
A dissertation submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the
requirements for the Degree of
Doctor of Philosophy
Auburn, Alabama
August 4, 2012
Keywords: MapReduce, Hadoop, HDFS, Data placement, Performance, Energy saving
Copyright 2012 by Yixian Yang
Approved by
Xiao Qin, Chair, Associate Professor of Computer Science and Software Engineering
Cheryl Seals, Associate Professor of Computer Science and Software Engineering
Dean Hendrix, Associate Professor of Computer Science and Software Engineering
Sanjeev Baskiyar, Associate Professor of Computer Science and Software Engineering
Abstract
MapReduce is one of the most popular distributed computing platforms for the large-
scale data-intensive applications. MapReduce has been applied to many areas of divide-and-
conquer problems like search engines, datamining, and dataindexing. Hadoop-developed by
Yahoo - is an open source Java implementation of the MapReduce model. In this dissertation,
we focus on approaches to improving performance and energy efficiency of Hadoop clusters.
We start this dissertation research by analyzing the performance problems of the native
Hadoop system. We observe that Hadoop?s performance highly depends on system settings
like block sizes, disk types, and data locations. A low observed network bandwidth in
a shared cluster raise serious performance issues in the Hadoop system. To address this
performance problem in Hadoop, we propose a key-aware data placement strategy called
KAT for the Hadoop distributed file system (or HDFS, for short) on clusters. KAT is
motivated by our observations that a performance bottleneck in Hadoop clusters lies in
the shu?ing stage where a large amount of data is transferred among data nodes. The
amount of transferred data heavily depends on locations and balance of intermediate data
with the same keys. Before Hadoop applications approach to the shu?ing stage, our KAT
strategy pre-calculates the intermediate data key for each data entry and allocates data
according to the key. With KAT in place, data sharing the same key are not scattered
across a cluster, thereby alleviating the network performance bottleneck problem imposed
by data transfers. We evaluate the performance of KAT on an 8-node Hadoop cluster.
Experimental results show that KAT reduces the execution times of Grep and Wordcount by
up to 21% and 6.8%, respectively. To evaluate the impact of network interconnect on KAT,
we applied the traffic-shaping technique to emulate real-world workloads where multiple
applications are sharing the network resources in a Hadoop cluster. Our empirical results
ii
suggest that when observed network bandwidth drops down to 10Mbps, KAT is capable
of shortening the execution times of Grep and Wordcount by up to 89%. To make Hadoop
clusters economically and environmentally friendly, we design a new replica architecture that
reduces the energy consumption of HDFS. The core conception of our design is to conserve
power consumption caused by extra data replicas. Our energy-efficient HDFS saves energy
consumption caused by extra data replicas in two steps. First, all disks within in a data node
are separated into two categories: primary copies are stored on primary disks and replica
copies are stored on backup disks. Second, disks archiving primary replica data are kept in
the active mode in most cases; backup disks are placed into the sleep mode. We implement
the energy-efficient HDFS that manages the power states of all disks in Hadoop clusters.
Our approach conserves energy at the cost of performance due to power-state transitions.
We propose a prediction module to hide overheads introduced by the power-state transitions
in backup disks.
iii
Acknowledgments
For this dissertation and other researches at Auburn, I would like to acknowledge the
endless support to me from many persons. It is impossible to finish this dissertation without
them.
First and foremost, I would like to present the appreciation to my advisor, Dr. Xiao
Qin, for his unwavering belief, guidance, and advice on my research. Also, I would like to
thank the effort of Dr. Xiao Qin to revise my dissertation. As my advisor, he did not only
instruct me how to design experiments, develop ideas, and write technical papers, but also
teach me how to communicate with different people and involve in group works.
I would gratefully thank all my committee members, Dr. Dean Hendrix, Dr. Cheryl
Seals, and Dr. Sanjeev Baskiyar, and my university reader, Dr Shiwen Mao from Department
of Electrical and Computer Engineering, for their valuable suggestions and advices on my
research and dissertation. My thanks also go to Dr. Kai Chang and Dr. David Umphress
for their constructive suggestions on my Ph.D. program.
I would like to name all the members in my group. They are Xiaojun Ruan, Zhiyang
Ding, Jiong Xie, Shu Yin, Jianguo Lu, Yun Tian, James Major, Ji Zhang and Xunfei Jiang.
It would be my fortune and my honor to work with such great persons. Also, it would be
my pleasure to name my friends in Auburn. They are Rui Xu, Sihe Zhang, Jiawei Zhang,
Suihan Wu, Qiang Gu, Jingshan Wang, Jingyuan Xiong, Fan Yang, Tianzi Guo, and Min
Zheng.
My deepest gratitude goes to my parents Jinming Yang and Fuzhen Cui for their years
of selfless support. Without them, I would never have a chance to do my research and finish
the dissertation in Auburn. They also gave me such freedom on the choice for my future
career.
iv
At the end, I would like to thank my girlfriend, Ying Zhu, staying by my side during
the toughest days. It was her who encouraged me to fight against myself with calm sense
and strengthen conviction. Her love becomes my power to conquer all problems.
v
Table of Contents
Abstract . ii
Acknowledgments . iv
List of Figures . ix
List of Tables . xiii
1 Introduction . 1
1.1 Data Location And Performance Problem 1
1.2 Replica Reliability And Energy Efficiency Problem 2
1.3 Contribution . 3
1.4 Organization . 4
2 Hadoop Performance Profiling and Tuning . 5
2.1 Introduction . 5
2.2 Background and Previous Work . 7
2.2.1 Log Structured File System . 8
2.2.2 SSD . 8
2.3 Hadoop Experiments And Solution Analysis 9
2.3.1 Experiments Environment . 9
2.3.2 Experiment Results Analysis . 10
2.3.3 HDD and SSD Hybrid Hadoop Storage System 17
2.4 Summary . 18
3 Key-Aware Data Placement Strategy . 20
3.1 Introduction . 20
3.2 Background and Previous Work . 25
3.2.1 MapReduce . 25
vi
3.2.2 Hadoop and HDFS . 26
3.3 Performance Analysis of Hadoop Clusters . 28
3.3.1 Experimental Setup . 28
3.3.2 Performance Impacts of Small Blocks 28
3.3.3 Performance Impacts of Network Interconnects 31
3.4 Key-Aware Data Placement . 34
3.4.1 Design Goals . 34
3.4.2 The Native Hadoop Strategy . 38
3.4.3 Implementation Issues . 39
3.5 Experimental Results . 43
3.5.1 Experimental Setup . 44
3.5.2 Scalability . 45
3.5.3 Network Traffic . 47
3.5.4 Block Size and Input Files Size . 49
3.5.5 Stability of KAT . 55
3.5.6 Analysis of Map and Reduce Processes 59
3.6 Summary . 64
4 Energy-Efficient HDFS Replica Storage System 65
4.1 Introduction . 66
4.1.1 Motivation . 66
4.2 Background and Previous Work . 69
4.2.1 RAID Based Storage Systems . 69
4.2.2 Power Savings in Clusters . 70
4.2.3 Disk Power Conservation . 71
4.3 Design and Implementation Issues . 71
4.3.1 Replica Management . 72
4.3.2 Power Management . 74
vii
4.3.3 Performance Optimization . 79
4.4 Experimental Results . 82
4.4.1 Experiments Setup . 82
4.4.2 What Do We Measure . 83
4.4.3 Results Analysis . 84
4.4.4 Discussions and Suggestions . 87
4.5 Summary . 87
5 Conclusion . 89
5.1 Observation and Profiling of Hadoop Clusters 89
5.2 KAT Data Placement Strategy for Performance Improvement 90
5.3 Replica Based Energy Efficient HDFS Storage System 91
5.4 Summary . 92
6 Future Works . 93
6.1 Data Placement with Application Disclosed Hints 93
6.2 Trace Based Prediction . 93
Bibliography . 95
viii
List of Figures
2.1 Wordcount Response Time of the Hadoop Systems With Different Block Sizes
and Input Sizes . 10
2.2 Wordcount Response Time of the Hadoop Systems With Different Block Sizes
and Different Number of Tasks . 11
2.3 Wordcount I/O Records on Machine Type I with 1GB Input Splited to 64MB
Blocks . 11
2.4 Wordcount I/O Records on Machine Type I with 1GB Input Splited to 128MB
Blocks . 12
2.5 Wordcount I/O Records on Machine Type I with 1GB Input Splited to 256MB
Blocks . 12
2.6 Wordcount I/O Records on Machine Type I with 1GB Input Splited to 512MB
Blocks . 12
2.7 Wordcount I/O Records on Machine Type I with 1GB Input Splited to 1GB Blocks 13
2.8 Wordcount I/O Records on Machine Type I with 2GB Input Splited to 64MB
Blocks . 13
2.9 Wordcount I/O Records on Machine Type I with 2GB Input Splited to 128MB
Blocks . 13
ix
2.10 Wordcount I/O Records on Machine Type I with 2GB Input Splited to 256MB
Blocks . 14
2.11 Wordcount I/O Records on Machine Type I with 2GB Input Splited to 512MB
Blocks . 14
2.12 Wordcount I/O Records on Machine Type I with 2GB Input Splited to 1GB Blocks 14
2.13 CPU Utilization of Wordcount Executing on Type V 15
2.14 Read Records of Wordcount Executing on Type V 16
2.15 Write Records of Wordcount Executing on Type V 16
2.16 CPU Utilization of Wordcount Executing on Type VI 17
2.17 Read Records of Wordcount Executing on Type VI 17
2.18 Write Records of Wordcount Executing on Type VI 18
2.19 HDD and SSD Hybrid Storage System for Hadoop Clusters 18
2.20 The Wordcount Response Time for Different Types of Storage Disks 19
3.1 An Overview of MapReduce Model [14] . 26
3.2 CPU utilization for wordcount with block size 64MB 29
3.3 CPU utilization for wordcount with block size 128MB 30
3.4 CPU utilization for wordcount with block size 256MB 30
3.5 Execution times of WordCount under good and poor network conditions; times
are measured in Second. 32
x
3.6 Amount of data transferred among data nodes running WordCount under good
and poor network conditions; data size is measured in GB. 33
3.7 Data placement strategy in the native Hadoop. Four key-value pairs (i.e., two
(1,?) and two (2,?)) are located on node A; four key-value pairs (i.e., two (1,?)
and two (2,?)) are located on node B. During the shu?ing phase, the two (1,?)
pairs on node B are transferred to node A; the two (2,?) pairs on node A are
delivered to node B. 36
3.8 KAT: a key-based data placement strategy in Hadoop. KAT assigns the four
(1,?) key-value pairs to node A and assigns the four (2,?) key-value pairs to node
B. This data-placement decision eliminates the network communication overhead
incurred in the shu?ing phase. 37
3.9 The architecture of a Hadoop cluster [34]. The data distribution module in HDFS
maintains one queue on namenode to manage data blocks with a fixed size. . . . 42
3.10 Execution Times of Grep and Wordcount on the Hadoop cluster. The number of
data nodes is set to 2, 4, and 8, respectively. 46
3.11 Network traffics of the Wordcount and Grep Applications. 48
3.12 Grep with 2GB input in 1Gbps network . 49
3.13 Grep with 4GB input in 1Gbps network . 50
3.14 Grep with 8GB input in 1Gbps network . 50
3.15 Grep with 2GB input in 10Mbps network . 51
3.16 Grep with 4GB input in 10Mbps network . 51
3.17 Grep with 8GB input in 10Mbps network . 52
xi
3.18 Wordcount with 2GB input in 1Gbps network 52
3.19 Wordcount with 4GB input in 1Gbps network 53
3.20 Wordcount with 8GB input in 1Gbps network 53
3.21 Wordcount with 2GB input in 10Mbps network 54
3.22 Wordcount with 4GB input in 10Mbps network 54
3.23 Wordcount with 8GB input in 10Mbps network 55
3.24 Standard deviation of Grep in 1Gbps network 56
3.25 Standard deviation of Grep in 10Mbps network 56
3.26 Standard deviation of Wordcount in 1Gbps network 57
3.27 Standard deviation of Wordcount in 10Mbps network 57
3.28 Wordcount Execution process of Traditional Hadoop with 1Gbit/s Bandwidth . 59
3.29 Wordcount Execution process of Traditional Hadoop with 10Mbit/s Bandwidth 60
3.30 Wordcount Execution process of KAT-Enabled Hadoop with 1Gbit/s Bandwidth 60
3.31 Wordcount Execution process of KAT-Enabled Hadoop with 10Mbit/s Bandwidth 61
4.1 Architecture Design of the Energy-Efficient HDFS 72
4.2 Data Flow of Copying Data into HDFS . 73
4.3 Wordcount execution times of the energy efficient HDFS and the native HDFS. 84
4.4 Wordcount power consumptions of energy efficient HDFS and the native HDFS. 85
4.5 Power consumptions of Wordcount on energy-efficient HDFS and the native HDFS. 86
xii
List of Tables
2.1 Comparison of SSD and HDD [45] . 8
2.2 Different Configuration Types of Computing Nodes 9
3.1 Computing Nodes Configurations . 28
3.2 Configurations of name and data nodes in the Hadoop cluster. 45
4.1 Energy-Efficient HDFS Cluster Specifications 82
xiii
Chapter 1
Introduction
In the past decade, cluster computing model has been deployed to support a variety
of large-scale data-intensive applications. These applications supported out lives in forms
of, for example, the search engines, web indexing, social network data mining and cloud
storage systems. The performance and the energy consumption are two major concerns in
the designs of computation models.
In recent years, MapReduce becomes a excellent computing model in terms of perfor-
mance. It has good scalability and easy usabilities. The programer doesn?t need complicate
distributed programming knowledge to write the parallel program. And MapReduce is guar-
anteed fully fault tolerance. However, MapReduce model is an ?all purpose? computation
model that is not tailored for any particular applications. As its most successful implemen-
tation, Hadoop represents the performance and the energy efficiency of MapReduce model.
The cluster storage system is a essential building block of Hadoop computing clusters.
It supports the distributed computing algorithms as well as the data reliability. On the
other hand, the distributed cluster storage systems cost a huge amount of the energy too.
That means that a better designed storage system can not only improve the performance of
Hadoop systems, but also save a huge amount of power consumptions. The problem can be
divided into two main issues.
1.1 Data Location And Performance Problem
Although most of people improve the Hadoop performance through better scheduling
the tasks and utilizing the CPUs and memories, we want to find the bottleneck and improve
1
it on disk I/Os. Based on what we observed, the locations of the data are divided into two
different kinds, the type of disks and the physical locations related to data nodes.
Two kinds of disks can be utilized as options, the hard drive disks and solid state disks.
The hard drive disks have very good sequential read and write performance. Comparing to
the hard drive disks, SSD has better random read performance but shorter life spans since
the SSDs have limits on the number of writes. According to the Hadoop process, there are
two different kinds of the data too, the input data and the intermediate data. Normally,
both of these data will be accessed randomly. The difference is that the input data will
be read multiple times while the intermediate data will be read and modified many times.
The access natures of different kinds of data indicate the different access patterns, and these
patterns fit to different kinds of disk attributes. So locating the data on the right type of
disks can improve the performance and fully utilize these disks.
The data locations on different data nodes affect the performance as well. The prelimi-
nary results shows multiple replica copies improve the performance and reduce the network
data transfer. Data nodes process more data replica on the local machine when the number
of replica is greater than one. Actually, the network data transfers include the intermediate
data and the original input data. If the cluster is homogenous, the input data locations do
not slow down the performance as long as the data is well balanced. However, the interme-
diate data is required to be transferred during the shu?ing stage so that the intermediate
data with the same key can be processed by the same reducer on a data node. This will be
an issue that slow down the performance.
1.2 Replica Reliability And Energy Efficiency Problem
Using replica is a secure method to make the data reliable. The more replica copies are
used, more reliable the data is. Hadoop has rollback mechanism that can recover from a
failed process or even a whole data node. This feature is called fault tolerance in Hadoop
design. The cost of this is paying more for the disk spaces and the power consumptions of
2
these spaces. And it is not only for the economical reason but also for the environmental
consideration to save the energy. There is a tradeoff between the number of replicas and
their energy consumptions. Our goal is to find a solution that can still keep all the copies of
replica while the energy consumption is reduced.
1.3 Contribution
To solve the problem mentioned above, we focus our research on the Hadoop Distributed
File System (HDFS). Our contribution consist with three different parts, the observation,
performance improvement, and energy efficient HDFS.
? We test the Hadoop with different configurations and the combination of different type
of disks. The results show that using the correct disk type and configuration settings
improves the performance. The I/O utilization records show that Hadoop doesn?t have
very intensive reads or writes during the map phase. This becomes the reason that
why we can save the energy from storage system and maintain the same throughput.
? For certain applications whose intermediate key doesn?t require complicate calcula-
tions, we developed a new data placement strategy involving the intermediate key pre-
calculation before the data is distributed to data nodes. When the data is processed
by local mappers, the intermediate data with the same key resides on the same data
nodes. And there is no need to shu?e the data between data nodes. When the network
condition is not very well, this strategy can improve the performance dramaticlly.
? Based on the observations, we propose a new data location strategy to divid the replicas
into two categories, the primary copies and backup copies. And these two kinds of
data are stored separately on different storage disks. At the most of time, the backup
replica disks are kept in standby mode for the energy saving purpose. When the extra
copies are needed, the backup replica disks are waked up to provide services. In this
3
strategy, we save most of the energy consumed by storage system. For its performance
drawbacks, we add the prediction module to minimize the disk wake-up delays.
1.4 Organization
The rest of this dissertation will be organized as following structures.
In Chapter 2, we do a lot of experiments with different system settings as well as
hardware configurations.
Based on the observations in the Chapter 2, the key-aware data placement strategy is
proposed in Chapter 3 to improve the I/O performance of Hadoop systems.
In Chapter 4, we present the energy efficient HDFS design which can save the power
consumptions from the data storage redundancies in current HDFS.
Finally, Chapter 5 summarizes the contributions in this dissertation and Chapter 6
reveals the future research directions for this dissertation.
4
Chapter 2
Hadoop Performance Profiling and Tuning
A fundamental understanding of the interplay of configurations and performance in
MapReduce model which manipulate a huge amount of data is critical to achieving a good
performance on particular hardware clusters. The MapReduce model is the most popular in
recent years and Hadoop as one of its excellent implementation is widely used in multiple
areas. In this paper, we build a test bed with Hadoop and run a number of tests with
different configurations like block sizes, disk types, number of tasks and etc. Using the result
data of these experiments, we build a performance model for Hadoop system with multiple
inputs. Our model involves cpu utilizations, disk activities as well as the test configurations.
This performance model helps the user to estimate the performance of WordCount and Grep
applications on certain configurations of hardware and software configurations so that the
users can adjust the settings on different clusters. With the performance model, the users
can make better utilization of the Hadoop clusters.
2.1 Introduction
Before optimizing the performance and the energy efficiency of Hadoop clusters, we have
to know how do Hadoop clusters run and where is the bottleneck so we can know how to
optimize these characters. First, following the instructions and tutorials we set up a Hadoop
cluster with up to twelve data nodes and another name node. All the experiments were
running on these machines with different type of configurations. To measure the performance
of Hadoop, we recorded following experiments? performances.
? response times
5
? I/O throughputs
? CPU utilizations
? Network traffics
The response times represent the core of performance, cluster speed. The most impor-
tant aspect people concerned is the time used. All we want to do is shorting the response
time while the cost of hardware is limited. That?s the reason why to optimizing the per-
formance through different way. Although we admit that using better scheduling algorithm
can improve the performance, the easiest way to achieve that is changing the system settings
according to the hardware configurations.
I/O throughputs is another important index for utilizations of storage systems. As
all we know, for those I/O intensive applications, the storage system could be the biggest
bottleneck of the whole system. So it is important to make sure all the potentials of the
storage system are utilized.
CPU utilization is definitely an important index of the performance. CPUs are the core
of computing, and their speeds and utilizations directly reflect on the response times and
total system performance. And CPUs now can have at least two cores and these cores run
parallel. Fully utilization of such complicated architecture is not a simple job.
The performance is decided by not only single machine performance but also the com-
munications between different nodes. Sometimes the network conditions have influences on
the performances too. To minimize this part of impacts, a node should send only necessary
messages and data. Another solution is to use faster network like infiniband networks [20].
However, it is not every one that has an infiniband installed because it is expensive and
requires hardware deployment. So minimizing the communication traffic is the most efficient
solution to this problem.
In this chapter, we have done a lot of tests to find the bottlenecks and possible solutions.
From the experiment results, we observed that the disk I/O is not efficient and the potentials
6
of the disk is not well utilized. These observations provide important clues for our works in
next two chapters. In this chapter, we also propose a easy solution to utilize the solid state
disk to improve the I/O speed and shows the evidence that SSD improve the overall system
performance.
2.2 Background and Previous Work
This chapter is about knowing the system and testing the benchmarks first. Then it
comes with some solutions that can improve the performance quick with less effort. There
are many models have been created for Hadoop performance and involve a lot of benchmark
testing. These evidence of the Hadoop performance on different clusters provide us an
example which we can compare to using our own data. And some of these models also
provide hints to improve the performance of Hadoop clusters and data intensive applications.
After googlepublish the MapReduce computational architecture, a variety of efforts have
been put into the research to understand the performance trends in this systems [17, 12, 49].
The problems in this system have been identified too. For example, there are overheads
between each tasks caused by input requests forshared resources and CPU content exchanges.
Besides the execution time, these tasks may experience two types of delay: (1) queuing delays
due to contention at shared resources, and (2) synchronization delays due to precedence
constraints among tasks [30]. To solve the problems, multiple solutions are proposed. The
most efficient method to improve the performance is adjusting the configurations in the
Hadoop system. In these researches, we found that enabling the JVM reuse eliminate the
Java task initiations before each task starts [47]. When the number of blocks is huge, it saves
a significant time period from the whole process. Based on the optimizations, the literature
is rich of modeling techniques to predict performance of workloads that do not exhibit
synchronization delays. In particular, Mean Value Analysis (MVA) [32] has been applied to
predict the average performance of several applications in various scenarios [23, 48]. Among
these models, it is the massive experiment data that supports their model and prediction
7
results. In this chapter, we are going to follow the same route running massive experiments
and finding solutions from these experiment results in the following chapters.
2.2.1 Log Structured File System
Log structured file system was proposed first in 1988 by John and Fred. And the design
and implementation details are introduced in Mendel and John?s paper in 1992 [39]. The
purpose of log structured file system is to improve the sequential writes? throughput. Con-
ventional file systems locate files for better read and write performances over the magnetic
and optical disks. The log structured file systems intend to write the file sequentially to the
disks like a log. Log structured file systems save the seek time for disk writes of sequence
files. We tried this file system to improve the I/O performance on Hadoop clusters. However,
it doesn?t work with our Hadoop cluster. The further investigation is needed on Hadoop disk
access patterns.
2.2.2 SSD
A solid state disk refers to the storage device using integrated circuit memories. The SSD
is well known for high speed of random accesses for the data. A comprehensive comparison
table can be found on the wikipedia page [44]. Table 2.2.2 is a short version from sandisk
support website. From the table we observe that SSDs outperform HDDs from several aspect
like power consumption and average access time. There are a number of researches focusing
on improving disk access rate using SSD.
HDD SSD
Storage Capacity Up to 4TB Up to 2TB (64 to 256GB are
common sizes for less cost)
Avg Access Time 11ms 0.11ms
Noise 29dB None
Power Consumption 20 Watts 0.38 Watts
Table 2.1: Comparison of SSD and HDD [45]
8
2.3 Hadoop Experiments And Solution Analysis
In this section, we will run comprehensive experiments with different hardware and
software configurations. The experiments will keep the records of variety of performance
indexes like CPU utilizations, I/O throughputs and response times. Based on these numbers,
we analysis the system bottleneck and propose possible solutions to improve our Hadoop
system.
2.3.1 Experiments Environment
The experiments run at following hardware configurations in Table 2.3.1. There are
two type of machine with different CPUs. We configure these two machines with different
number of memories and different types of disk. There are two reasons to use different
number of memories. First, we want to test the performance with different input/memory
ratio. Second, for the efficiency of experiments, we cut both the input and memory to
short the response time since the input size has more influences on the response times. In
our experiments, we also involve the SSD based on its great performance in others? research
mentioned in Section 2.2. Based on all the experiments, we adjust the software configurations
and propose a hybrid disk solution for both performance and reliability. And we will list the
performance results of the WordCount benchmark in Hadoop example packages.
Computing
Node
CPU Memory Disk
Type I Intel 3.0GHz Duo-Core Processor 2GByte Seagate SATA HDD
Type II Intel 3.0GHz Duo-Core Processor 4GByte Seagate SATA HDD
Type III Intel 2.4 GHz Quad-Core Processor 2GByte Seagate SATA HDD
Type IV Intel 2.4 GHz Quad-Core Processor 4GByte Seagate SATA HDD
Type V Intel 3.0GHz Duo-Core Processor 2GByte Corsair F40A SSD
Type VI Intel 2.4 GHz Quad-Core Processor 2GByte Corsair F40A SSD
Type VII Intel 3.0GHz Duo-Core Processor 2GByte Corsair F40A SSD
& Seagate SATA HDD
Table 2.2: Different Configuration Types of Computing Nodes
9
gid35gid1
gid40gid35gid1
gid36gid35gid35gid1
gid36gid40gid35gid1
gid37gid35gid35gid1
gid37gid40gid35gid1
gid38gid35gid35gid1
gid38gid40gid35gid1
gid39gid35gid35gid1
gid39gid40gid35gid1
gid40gid35gid35gid1
gid41gid39gid1 gid36gid37gid42gid1 gid37gid40gid41gid1 gid40gid36gid37gid1 gid36gid35gid37gid39gid1
gid5gid11gid19gid18gid17gid16gid19gid11gid1gid7gid12gid15gid11gid1gid21gid12gid16gid1gid19gid11gid9gid17gid16gid10gid22gid1
gid3gid8gid10gid17gid17gid18gid1gid2gid14gid17gid9gid13gid1gid6gid12gid20gid11gid1gid21gid4gid2gid22gid1
gid36gid4gid2gid1gid5gid21gid23gid27gid26gid1
gid37gid4gid2gid1gid5gid21gid23gid27gid26gid1
Figure 2.1: Wordcount Response Time of the Hadoop Systems With Different Block Sizes
and Input Sizes
2.3.2 Experiment Results Analysis
The first group of tests we did is measure the performances with different Hadoop block
sizes and input file sizes. Figure 2.1 shows the response times of the word count benchmark
with two different input file sizes and five different Hadoop block sizes on machine type I
in table 2.3.1. The results shows that, when the ratio of the input size and the block size
is greater than the number of cores in the CPU, the response time increases dramatically
since the CPU is not fully utilized of every core in it. And the time of processing 2GB input
files is slightly shorter than two times of processing 1GB input files. We can argue that
bigger file size could reduce the ratio of initialization and job processing. At last, the figure
shows the response times of using large blocks is shorter than using the small ones as long
as the ratio of input and block sizes is not exceed the number of CPU cores. Figure 2.2 gives
another evidence supporting the analysis above on a Quad-Core machine. It can improve
the performance that using larger block sizes within the limit. And the number of mappers
affect the performance according to the number of CPU cores.
10
gid26gid1
gid31gid26gid1
gid27gid26gid26gid1
gid27gid31gid26gid1
gid28gid26gid26gid1
gid28gid31gid26gid1
gid29gid26gid26gid1
gid29gid31gid26gid1
gid30gid26gid26gid1
gid30gid31gid26gid1
gid31gid26gid26gid1
gid32gid30gid1 gid27gid28gid34gid1 gid28gid31gid32gid1 gid31gid27gid28gid1
gid5gid11gid19gid18gid17gid16gid19gid11gid1gid7gid12gid15gid11gid1gid21gid19gid11gid9gid17gid16gid10gid22gid1
gid3gid8gid10gid17gid17gid18gid1gid2gid14gid17gid9gid13gid1gid6gid12gid20gid11gid1gid21gid4gid2gid22gid1
gid28gid1gid13gid7gid16gid1gid28gid1gid17gid10gid9gid19gid8gid10gid1
gid30gid1gid13gid7gid16gid1gid28gid1gid17gid10gid9gid19gid8gid10gid1
gid30gid1gid13gid7gid16gid1gid30gid1gid17gid10gid9gid19gid8gid10gid1
Figure 2.2: Wordcount Response Time of the Hadoop Systems With Different Block Sizes
and Different Number of Tasks
0
2
4
6
8
10
12
14
0 50 100 150 200 250
I/O (MB/s)
Time (in seconds)
Read
Write
Figure 2.3: Wordcount I/O Records on Machine Type I with 1GB Input Splited to 64MB
Blocks
11
0
1
2
3
4
5
6
7
8
9
10
0 50 100 150 200 250
I/O (MB/s)
Time (in seconds)
Read
Write
Figure 2.4: Wordcount I/O Records on Machine Type I with 1GB Input Splited to 128MB
Blocks
0
1
2
3
4
5
6
7
8
9
0 50 100 150 200 250
I/O (MB/s)
Time (in seconds)
Read
Write
Figure 2.5: Wordcount I/O Records on Machine Type I with 1GB Input Splited to 256MB
Blocks
0
2
4
6
8
10
12
14
16
18
20
0 50 100 150 200 250
I/O (MB/s)
Time (in seconds)
Read
Write
Figure 2.6: Wordcount I/O Records on Machine Type I with 1GB Input Splited to 512MB
Blocks
12
0
2
4
6
8
10
12
14
16
18
20
0 50 100 150 200 250 300 350 400
I/O (MB/s)
Time (in seconds)
Read
Write
Figure 2.7: Wordcount I/O Records on Machine Type I with 1GB Input Splited to 1GB
Blocks
0
2
4
6
8
10
12
14
16
18
20
0 50 100 150 200 250 300 350 400 450 500
I/O (MB/s)
Time (in seconds)
Read
Write
Figure 2.8: Wordcount I/O Records on Machine Type I with 2GB Input Splited to 64MB
Blocks
0
2
4
6
8
10
12
14
0 50 100 150 200 250 300 350 400 450
I/O (MB/s)
Time (in seconds)
Read
Write
Figure 2.9: Wordcount I/O Records on Machine Type I with 2GB Input Splited to 128MB
Blocks
13
0
2
4
6
8
10
12
14
0 50 100 150 200 250 300 350 400 450
I/O (MB/s)
Time (in seconds)
Read
Write
Figure 2.10: Wordcount I/O Records on Machine Type I with 2GB Input Splited to 256MB
Blocks
0
2
4
6
8
10
12
14
16
18
20
0 50 100 150 200 250 300 350 400 450
I/O (MB/s)
Time (in seconds)
Read
Write
Figure 2.11: Wordcount I/O Records on Machine Type I with 2GB Input Splited to 512MB
Blocks
0
2
4
6
8
10
12
14
16
18
20
0 50 100 150 200 250 300 350 400 450
I/O (MB/s)
Time (in seconds)
Read
Write
Figure 2.12: Wordcount I/O Records on Machine Type I with 2GB Input Splited to 1GB
Blocks
14
In last paragraph, we have analyzed the reason and trend of the Hadoop performance.
To backup our results, Figure 2.3-Figure 2.12 present the I/O records of the results in
Figure 2.1. From these records, we have two observations.
? The average of I/O access rate is much lower than the maximum throughput of the
disks. This observation tell us that the WordCount example in the Hadoop package
is a computation intensive application other than a data intensive application. If we
can improve the performance of computation intensive applications through the disk
accesses, then data intensive applications can benefit much more from the solution.
? Between each task runs, the I/O access rate suddenly drops due to the content switches
and disk seek and rotation delay.
These two observations inspire us to propose the hybrid storage system for Hadoop systems
later in this chapter.
gid4gid1
gid5gid4gid1
gid6gid4gid1
gid7gid4gid1
gid8gid4gid1
gid9gid4gid1
gid10gid4gid1
gid11gid4gid1
gid12gid4gid1
gid13gid4gid1
gid5gid4gid4gid1
gid5gid1 gid6gid6gid1 gid8gid7gid1 gid10gid8gid1 gid12gid9gid1
gid5gid4gid10gid1 gid5gid6gid11gid1 gid5gid8gid12gid1 gid5gid10gid13gid1 gid5gid13gid4gid1 gid6gid5gid5gid1 gid6gid7gid6gid1 gid6gid9gid7gid1 gid6gid11gid8gid1 gid6gid13gid9gid1 gid7gid5gid10gid1 gid7gid7gid11gid1 gid7gid9gid12gid1 gid7gid11gid13gid1 gid8gid4gid4gid1 gid8gid6gid5gid1 gid8gid8gid6gid1 gid8gid10gid7gid1 gid8gid12gid8gid1 gid9gid4gid9gid1 gid9gid6gid10gid1 gid9gid8gid11gid1 gid9gid10gid12gid1 gid9gid12gid13gid1 gid10gid5gid4gid1 gid10gid7gid5gid1 gid10gid9gid6gid1 gid10gid11gid7gid1 gid10gid13gid8gid1 gid11gid5gid9gid1 gid11gid7gid10gid1 gid11gid9gid11gid1 gid11gid11gid12gid1 gid11gid13gid13gid1 gid12gid6gid4gid1 gid12gid8gid5gid1 gid12gid10gid6gid1 gid12gid12gid7gid1 gid13gid4gid8gid1 gid13gid6gid9gid1 gid13gid8gid10gid1 gid13gid10gid11gid1 gid13gid12gid12gid1
gid2gid3gid5gid1gid18gid16gid11gid10gid19gid6gid16gid14gid13gid1gid21gid25gid22gid1
gid4gid10gid12gid9gid1gid21gid15gid9gid7gid14gid13gid8gid22gid1
Figure 2.13: CPU Utilization of Wordcount Executing on Type V
Figure 2.13 - Figure 2.15 show the CPU utilization and I/O records of Hadoop running
on a type V machine with 4 mapper. Another important difference is that Hadoop uses a
SSD as it storage disk instead of HDD. The same storage configurations have been applied
on a quad-core machine (Type VI) too. And the running records is shown in Figure 2.16 -
Figure 2.18.
In these two experiments, we use 4 GB input size and 4 mappers setting on both
machines. Using 4 mappers simultaneous makes both different types of CPU fully utilized.
15
gid12gid1
gid13gid1
gid14gid1
gid15gid1
gid16gid1
gid17gid1
gid18gid1
gid19gid1
gid20gid1
gid13gid1 gid14gid14gid1 gid16gid15gid1 gid18gid16gid1 gid20gid17gid1
gid13gid12gid18gid1 gid13gid14gid19gid1 gid13gid16gid20gid1 gid13gid18gid21gid1 gid13gid21gid12gid1 gid14gid13gid13gid1 gid14gid15gid14gid1 gid14gid17gid15gid1 gid14gid19gid16gid1 gid14gid21gid17gid1 gid15gid13gid18gid1 gid15gid15gid19gid1 gid15gid17gid20gid1 gid15gid19gid21gid1 gid16gid12gid12gid1 gid16gid14gid13gid1 gid16gid16gid14gid1 gid16gid18gid15gid1 gid16gid20gid16gid1 gid17gid12gid17gid1 gid17gid14gid18gid1 gid17gid16gid19gid1 gid17gid18gid20gid1 gid17gid20gid21gid1 gid18gid13gid12gid1 gid18gid15gid13gid1 gid18gid17gid14gid1 gid18gid19gid15gid1 gid18gid21gid16gid1 gid19gid13gid17gid1 gid19gid15gid18gid1 gid19gid17gid19gid1 gid19gid19gid20gid1 gid19gid21gid21gid1 gid20gid14gid12gid1 gid20gid16gid13gid1 gid20gid18gid14gid1 gid20gid20gid15gid1 gid21gid12gid16gid1 gid21gid14gid17gid1 gid21gid16gid18gid1 gid21gid18gid19gid1 gid21gid20gid20gid1
gid4gid10gid7gid9gid1gid19gid3gid2gid18gid16gid20gid1
gid5gid11gid12gid10gid1gid19gid16gid10gid8gid14gid13gid9gid20gid1
Figure 2.14: Read Records of Wordcount Executing on Type V
gid12gid1
gid17gid1
gid13gid12gid1
gid13gid17gid1
gid14gid12gid1
gid14gid17gid1
gid15gid12gid1
gid15gid17gid1
gid16gid12gid1
gid16gid17gid1
gid13gid1 gid14gid14gid1 gid16gid15gid1 gid18gid16gid1 gid20gid17gid1
gid13gid12gid18gid1 gid13gid14gid19gid1 gid13gid16gid20gid1 gid13gid18gid21gid1 gid13gid21gid12gid1 gid14gid13gid13gid1 gid14gid15gid14gid1 gid14gid17gid15gid1 gid14gid19gid16gid1 gid14gid21gid17gid1 gid15gid13gid18gid1 gid15gid15gid19gid1 gid15gid17gid20gid1 gid15gid19gid21gid1 gid16gid12gid12gid1 gid16gid14gid13gid1 gid16gid16gid14gid1 gid16gid18gid15gid1 gid16gid20gid16gid1 gid17gid12gid17gid1 gid17gid14gid18gid1 gid17gid16gid19gid1 gid17gid18gid20gid1 gid17gid20gid21gid1 gid18gid13gid12gid1 gid18gid15gid13gid1 gid18gid17gid14gid1 gid18gid19gid15gid1 gid18gid21gid16gid1 gid19gid13gid17gid1 gid19gid15gid18gid1 gid19gid17gid19gid1 gid19gid19gid20gid1 gid19gid21gid21gid1 gid20gid14gid12gid1 gid20gid16gid13gid1 gid20gid18gid14gid1 gid20gid20gid15gid1 gid21gid12gid16gid1 gid21gid14gid17gid1 gid21gid16gid18gid1 gid21gid18gid19gid1 gid21gid20gid20gid1
gid6gid15gid11gid17gid10gid1gid19gid3gid2gid18gid16gid20gid1
gid5gid11gid12gid10gid1gid19gid16gid10gid8gid14gid13gid9gid20gid1
Figure 2.15: Write Records of Wordcount Executing on Type V
From the time they used, we found that the quad-core machine is much faster than the
duo-core machine even the duo-core machine has faster frequency. The I/O records of both
machine presents a different access pattern than using HDDs. During the experiments, SSD
can continuously provide data while HDD has a rate of zero between tasks because of the
disk seeking delays. The write operations on SSD are distributed more even than the HDD
accesses. After each task, the SSD shows a write burst higher than HDDs for the intermediate
data. All in all, the SSD saves the disk seeking and rotation time and provides continuous
data to the Hadoop system. And the performance bursts show that SSDs have much more
potential for I/O accesses.
16
gid4gid1
gid5gid4gid1
gid6gid4gid1
gid7gid4gid1
gid8gid4gid1
gid9gid4gid1
gid10gid4gid1
gid11gid4gid1
gid12gid4gid1
gid13gid4gid1
gid5gid4gid4gid1
gid5gid1 gid5gid6gid1 gid6gid7gid1 gid7gid8gid1 gid8gid9gid1 gid9gid10gid1 gid10gid11gid1 gid11gid12gid1 gid12gid13gid1
gid5gid4gid4gid1 gid5gid5gid5gid1 gid5gid6gid6gid1 gid5gid7gid7gid1 gid5gid8gid8gid1 gid5gid9gid9gid1 gid5gid10gid10gid1 gid5gid11gid11gid1 gid5gid12gid12gid1 gid5gid13gid13gid1 gid6gid5gid4gid1 gid6gid6gid5gid1 gid6gid7gid6gid1 gid6gid8gid7gid1 gid6gid9gid8gid1 gid6gid10gid9gid1 gid6gid11gid10gid1 gid6gid12gid11gid1 gid6gid13gid12gid1 gid7gid4gid13gid1 gid7gid6gid4gid1 gid7gid7gid5gid1 gid7gid8gid6gid1 gid7gid9gid7gid1 gid7gid10gid8gid1 gid7gid11gid9gid1 gid7gid12gid10gid1 gid7gid13gid11gid1 gid8gid4gid12gid1 gid8gid5gid13gid1 gid8gid7gid4gid1 gid8gid8gid5gid1 gid8gid9gid6gid1 gid8gid10gid7gid1 gid8gid11gid8gid1 gid8gid12gid9gid1 gid8gid13gid10gid1 gid9gid4gid11gid1 gid9gid5gid12gid1 gid9gid6gid13gid1
gid2gid3gid5gid1gid18gid16gid11gid10gid19gid6gid16gid14gid13gid1gid21gid25gid22gid1
gid4gid10gid12gid9gid1gid21gid15gid9gid7gid14gid13gid8gid22gid1
Figure 2.16: CPU Utilization of Wordcount Executing on Type VI
gid12gid1
gid14gid1
gid16gid1
gid18gid1
gid20gid1
gid13gid12gid1
gid13gid14gid1
gid13gid1 gid13gid14gid1 gid14gid15gid1 gid15gid16gid1 gid16gid17gid1 gid17gid18gid1 gid18gid19gid1 gid19gid20gid1 gid20gid21gid1
gid13gid12gid12gid1 gid13gid13gid13gid1 gid13gid14gid14gid1 gid13gid15gid15gid1 gid13gid16gid16gid1 gid13gid17gid17gid1 gid13gid18gid18gid1 gid13gid19gid19gid1 gid13gid20gid20gid1 gid13gid21gid21gid1 gid14gid13gid12gid1 gid14gid14gid13gid1 gid14gid15gid14gid1 gid14gid16gid15gid1 gid14gid17gid16gid1 gid14gid18gid17gid1 gid14gid19gid18gid1 gid14gid20gid19gid1 gid14gid21gid20gid1 gid15gid12gid21gid1 gid15gid14gid12gid1 gid15gid15gid13gid1 gid15gid16gid14gid1 gid15gid17gid15gid1 gid15gid18gid16gid1 gid15gid19gid17gid1 gid15gid20gid18gid1 gid15gid21gid19gid1 gid16gid12gid20gid1 gid16gid13gid21gid1 gid16gid15gid12gid1 gid16gid16gid13gid1 gid16gid17gid14gid1 gid16gid18gid15gid1 gid16gid19gid16gid1 gid16gid20gid17gid1 gid16gid21gid18gid1 gid17gid12gid19gid1 gid17gid13gid20gid1 gid17gid14gid21gid1 gid17gid16gid12gid1
gid4gid10gid7gid9gid1gid19gid3gid2gid18gid16gid20gid1
gid5gid11gid12gid10gid1gid19gid16gid10gid8gid14gid13gid9gid20gid1
Figure 2.17: Read Records of Wordcount Executing on Type VI
2.3.3 HDD and SSD Hybrid Hadoop Storage System
The previous evidences show that SSDs improve the random accesses in Hadoop system.
But SSDs have a fatal disadvantage of their write limits. To solve the problem, we propose
a storage architecture to utilize the random access advantage of the SSD without shorting
its lifetime. Hadoop has two different types of data stored on local file system. The input
data is read by mappers for many times but rarely modified while the output file is written
only once per experiment. The intermediate data is modified over and over again in Hadoop
process. This access pattern can short the lifetime of the SSD dramatically. So we present
a storage structure using the SSD and HDD combination for Hadoop data. SSDs store the
input/output data and HDDs store the intermediate data. This method combines the faster
random accesses of SSDs and the longer lifetime for write operations on HDDs. Figure 2.19
17
gid12gid1
gid17gid1
gid13gid12gid1
gid13gid17gid1
gid14gid12gid1
gid14gid17gid1
gid13gid1 gid13gid14gid1 gid14gid15gid1 gid15gid16gid1 gid16gid17gid1 gid17gid18gid1 gid18gid19gid1 gid19gid20gid1 gid20gid21gid1
gid13gid12gid12gid1 gid13gid13gid13gid1 gid13gid14gid14gid1 gid13gid15gid15gid1 gid13gid16gid16gid1 gid13gid17gid17gid1 gid13gid18gid18gid1 gid13gid19gid19gid1 gid13gid20gid20gid1 gid13gid21gid21gid1 gid14gid13gid12gid1 gid14gid14gid13gid1 gid14gid15gid14gid1 gid14gid16gid15gid1 gid14gid17gid16gid1 gid14gid18gid17gid1 gid14gid19gid18gid1 gid14gid20gid19gid1 gid14gid21gid20gid1 gid15gid12gid21gid1 gid15gid14gid12gid1 gid15gid15gid13gid1 gid15gid16gid14gid1 gid15gid17gid15gid1 gid15gid18gid16gid1 gid15gid19gid17gid1 gid15gid20gid18gid1 gid15gid21gid19gid1 gid16gid12gid20gid1 gid16gid13gid21gid1 gid16gid15gid12gid1 gid16gid16gid13gid1 gid16gid17gid14gid1 gid16gid18gid15gid1 gid16gid19gid16gid1 gid16gid20gid17gid1 gid16gid21gid18gid1 gid17gid12gid19gid1 gid17gid13gid20gid1 gid17gid14gid21gid1 gid17gid16gid12gid1
gid6gid15gid11gid17gid10gid1gid19gid3gid2gid18gid16gid20gid1
gid5gid11gid12gid10gid1gid19gid16gid10gid8gid14gid13gid9gid20gid1
Figure 2.18: Write Records of Wordcount Executing on Type VI
gid4gid3gid3gid1
gid11gid11gid3gid1
gid3gid14gid28gid14gid1gid7gid24gid16gid17gid1
gid2gid9gid12gid1
gid5gid23gid25gid31gid28gid35gid1gid8gid31gid28gid25gid31gid28gid1
gid5gid23gid28gid17gid26gid22gid17gid16gid19gid14gid28gid17gid1gid3gid14gid28gid14gid1
gid6gid17gid22gid24gid26gid33gid1
gid11gid28gid24gid26gid14gid18gid17gid1gid3gid19gid27gid20gid27gid1
Figure 2.19: HDD and SSD Hybrid Storage System for Hadoop Clusters
presents the structure design of our hybrid storage system. In Figure 2.20, we test our
hybrid storage system and compare it with using a single HDD or SSD. The results disclose
that using hybrid storage system is even faster than using a single SSD. This benefit of
performance could come from parallel accesses of HDD and SSD at the same time. This
parallel access pattern reduces the conflicts of I/O activities.
2.4 Summary
In this chapter, we observes the relationship between the system performance and its
hardware/software configurations. Changing the configurations of Hadoop system can easily
18
gid33gid31gid33gid1
gid33gid32gid28gid1
gid33gid32gid33gid1
gid33gid33gid28gid1
gid33gid33gid33gid1
gid33gid34gid28gid1
gid33gid34gid33gid1
gid33gid35gid28gid1
gid33gid35gid33gid1
gid33gid36gid28gid1
gid33gid36gid33gid1
gid4gid2gid2gid1 gid4gid22gid9gid17gid13gid11gid1gid24gid4gid2gid2gid38gid6gid6gid2gid25gid1 gid6gid6gid2gid1
gid5gid11gid19gid17gid16gid15gid19gid11gid1gid7gid13gid14gid11gid1gid22gid19gid11gid9gid16gid15gid10gid23gid1
gid4gid2gid3gid6gid1gid6gid20gid16gid18gid8gid12gid11gid1gid7gid21gid17gid11gid1
Figure 2.20: The Wordcount Response Time for Different Types of Storage Disks
improve the hardware utilizations and short the response times. Besides of tuning the config-
urations, we found that, between every tasks, there is an I/O impact because of the content
switches and disk seeking/rotation delay. And SSD can eliminate the delays from disk spins
and head seeking movements. In previous researches, SSDs have been proved with limited
write times. So we propose a hybrid storage system using both HDD and SSD to utilize
the high performance of SSDs and the long life of HDDs. The experiment results shows
the performance of hybrid storage system is even higher than our expectation because the
parallel accesses of two disks further reduce the conflicts of disk accesses. The experiment
results in this chapter become fundamental instructions for the future researches in following
chapters.
19
Chapter 3
Key-Aware Data Placement Strategy
This chapter presents a key-aware data placement strategy called KAT for the Hadoop
distributed file system (or HDFS, for short) on clusters. This study is motivated by our
observations that a performance bottleneck in Hadoop clusters lies in the shu?ing stage
where a large amount of data is transferred among data nodes. The amount of transferred
data heavily depends on locations and balance of intermediate data with the same keys.
Before Hadoop applications approach to the shu?ing stage, our KAT strategy pre-calculates
the intermediate data key for each data entry and allocates data according to the key.
With KAT in place, data sharing the same key are not scattered across a cluster, thereby
alleviating the network performance bottleneck problem imposed by data transfers. We
evaluate the performance of KAT on an 8-node Hadoop cluster. Experimental results show
that KAT reduces the execution times of Grep and Wordcount by up to 21% and 6.8%,
respectively. To evaluate the impact of network interconnect on KAT, we applied the traffic-
shaping technique to emulate real-world workloads where multiple applications are sharing
the network resources in a Hadoop cluster. Our empirical results suggest that when observed
network bandwidth drops down to 10Mbps, KAT is capable of shortening the execution times
of Grep and Wordcount by up to 89%.
3.1 Introduction
Traditional Hadoop systems random strategies to choose locations of primary data
copies. Random data distributions lead to a large amount of transferred data during the
shu?ing stage of Hadoop. In this paper, we show that the performance of network intercon-
nects of clusters noticeably affect the shu?ing phase in the Hadoop systems. After reviewing
20
the design of the Hadoop distributed file system or HDFS, we observe that a driving force
behind shu?ing intermediate data is the random assignments of data with the same key
to different data nodes. We show, in this study, that how to reduce the amount of data
transferred among the nodes by distributing the data according to their keys. We design a
data placement strategy - KAT - to pre-calculate keys and to place data sharing the same
key to the same data node. To further reduce the overhead of the shu?ing phase for Hadoop
applications, our KAT data placement technique can be seamlessly integrated with data
balancing strategies in HDFS to minimize the size of transferred data.
There are three factors making our KAT scheme indispensable and practical in the
contact of cluster computing.
? There are growing needs for high-performance computing models for data-intensive
applications on clusters.
? Although the performance of the map and reduce phases in Hadoop systems have been
significantly improved, the performance of the shu?ing stage is overlooked.
? The performance of network interconnections of clusters have great impacts on HDFS,
which in turn affects the network performance of the Hadoop run-time system.
In what follows, let us describe the above three factors in details.
The first factor motivating us to perform this study is the growing needs of distributed
computing run-time systems for data-intensive applications. Typical data-intensive appli-
cations include, but not limited to, weather simulations, social network, data mining, web
searching and indexing. These data-intensive applications can be supported by an efficient
and scalable computing model for cluster computing systems, which consists of thousands
of computing nodes. In 2004, software engineers at Google introduced MapReduce - a
new key-value-pair-based computing model [14]. Applying MapReduce to develop programs
leads to two immediate benefits. First, the MapReduce model simplifies the implementa-
tion of large-scale data-intensive applications. Second, MapReduce applications tend to be
21
more scalable than applications developed using other computing models (e.g., MPI, POSIX
threads, and OpenMP [9]). The MapReduce run-time system hides the parallel and dis-
tribute system details, allowing programmers to write code without a requirement of solid
parallel programming skills. Inspired by the design of MapReduce, software engineers at
Yahoo developed Hadoop - an open source implementation of MapReduce using the Java
programming language [7]. In addition to Hadoop, a distributed file system - HDFS - is
offered by Yahoo as an open source file system [13]. The availabilities of Hadoop and HDFS
enable us to investigate the design and implementation of the MapReduce model on clusters.
During the course of this study, we pay particular attention to the performance of network
interconnections in Hadoop clusters.
Second factor that motivates us to conduct this research is the performance issue of
the shu?ing stage in Hadoop clusters. Much attention has been paid to improving the
performance of the map and reduce phases in Hadoop systems (see, for example, [46]). To
improve the performance of the scheduler in Hadoop, Zaharia et al. proposed the LATE
scheduler that helps in reducing response times of heterogeneous Hadoop systems [56]. The
LATE scheduler improves the system performance by prioritizing tasks, selecting fast nodes
to run tasks, and preventing thrashing.
The shu?e phase of Hadoop is residing between the map and the reduce phases. Al-
though there area handful of solutions to improve performance of the map and reduce phases,
these solutions can not be applied to address the performance issues in the shu?ing stage,
which may become a performance bottleneck in a Hadoop cluster. A recent study conducted
by Eltabakh et al. suggests that colocating related data on the same group of nodes can
address the performance issue in the shu?ing phase [16]. Rather than investigating data
colocation techniques, we aim to boost the performance of the shu?ing phase in Hadoop
using pre-calculated intermediate keys.
The third motivation of this study is the impacts of network interconnections in clusters
on the performance of HDFS, which in turn affects the Hadoop run-time system. Our
22
experiments indicate that the performance of Hadoop is affected not only by the the map
and reduce phases, but also by the HDFS and data placement. The performance of the map
and reduce processes largely depends mostly on process speed and main memory capacity.
One of our recent studies shows that the I/O performance of HDFS can be improved through
data placement strategies [52]. In addition to data placement, I/O system configurations
can affect the performance of Hadoop applications running on clusters.
It is arguably true that the network performance greatly affects HDFS and Hadoop
applications due to a large amount of transferred data. Data files are transferred among
data nodes in a Hadoop cluster because of three main reasons. First, data must be moved
across nodes during the map phase due to unbalanced processing capacities. In this case,
one fast node finishes processing its local data whereas other slow nodes have a large set
of unprocessed data. Moving data from the slow nodes to the fast node allows the Hadoop
system to balance the load among all the nodes in the system. Second, unbalanced data
placement forces data to be moved from nodes holding large data sets to those storing small
data sets. Third, during the shu?ing process, data with the same key must be grouped
together.
Among the above three types of data transfers, the first two types of data transfers can
be alleviated by load balancing techniques. For example, we recently developed a scheme
called HDFS-HC to place files on data nodes in a way to balanced data processing load [52].
Given a data-intensive application running on a Hadoop cluster, HDFS-HC adaptively bal-
ances the amount of data stored in each heterogeneous computing node to achieve improved
data-processing performance. Our results on two real data-intensive applications show that
HDFS-HC improves system performance by rebalancing data across nodes before performing
applications on heterogeneous Hadoop clusters.
In this study, we focus on the third type of data transfers during the shu?ing phase.
We address this data transfer issue by investigating an efficient way to reduce the amount of
transferred data during the shu?ing phase. We observe in the shu?ing phase data transfers
23
are triggered when the data with the same key are located on multiple nodes. Moving the
data sharing the same key to one node involves data communications among the nodes. We
show that the third type of data transfers can lead to severe performance degradation when
underlying network interconnects are unable to exhibit high observed bandwidth.
We design a key-aware data placement strategy called KAT to improve the performance
of Hadoop clusters by up to 21%. When data are imported into HDFS, KAT pre-processes
data sets before allocating them to data nodes of HDFS. Specifically, KAT first calculates
intermediate keys. Then, based on intermediate key values, KAT uses a hash function to
determine nodes to which data are residing.
We summarize the contributions of this paper as follows:
? We propose a new data placement strategy - KAT - for Hadoop clusters. KAT dis-
tributes data in the way that data sharing the same key are not scattered across a
cluster.
? We implement KAT as a module in the HDFS. The KAT module is triggered when
data is imported into HDFS. The module applies the KAT data placement strategy to
allocate data to nodes in HDFS.
? We conduct extensive experiments to evaluate the performance of KAT on a 8?node
cluster under various settings.
The rest of this paper is organized as follows. Section 4.2 introduces background in-
formation on Hadoop and HDFS. Section 3.3 shows that data transfers during the shu?ing
phase can lead to a performance bottleneck problem. We describe our KAT data placement
strategy in Section 4.3. Section 3.5 discusses the experimental results and analysis. Finally,
Section 3.6 concludes the paper.
24
3.2 Background and Previous Work
3.2.1 MapReduce
World Wide Web based data intensive applications, like search engines, online auctions,
webmail, and online retail sales, are widely deployed in industry. Even Social Network
Service provider Facebook is using data intensive applications. Other such applications,
like data mining and web indexing, need to access ever-expanding data sets ranging from
a few gigabytes to several terabytes or even petabytes. Google states that they use the
MapReduce model to process approximate twenty petabytes of data in a parallel manner
per day [14]. MapReduce, introduced by Google in 2004, supports distributed computing
with three major advantages. First, MapReduce does not require programmers to have solid
parallel programing experience. Second, MapReduce is highly scalable thereby makes it
capable to be extended to a cluster computing system with a large amount of computing
nodes. Finally, fault tolerance allows MapReduce to recover from errors.
Figure 3.1 presents an overview of the MapReduce model. First, the data is divided
into small blocks. These blocks are assigned to different map phase workers (mapper) to
produce intermediate data. The intermediate data is sorted and assigned to corresponding
reduce phase workers (reducer) to generate the large output files. Since some complexity
is hiden by MapReduce, users only need to defined the jobs for the mappers and reducers,
and sometimes for the combiners (workers between the map and reduce phases). Each
worker may not be aware of what the other workers are doing thereby complexity will not
be increased significantly. If an error occurs or a worker fails, the job can be redone by the
worker, or by other workers as necessary. Consequently, the system is generally secure from
faults and errors due to its fault tolerance and scalability.
Due to the advantages mentioned above, MapReduce has become one of the most pop-
ular distributed computing model. A number of implementations have been created on
different environments and platforms; for instance, data intensive applications perform well
25
User
Program
Master
(1) fork
worker
(1) fork
worker
(1) fork
(2)
assign
map
(2)
assign
reduce
split 0
split 1
split 2
split 3
split 4

output
file 0
 (6) write
worker
(3) read
worker
 (4) local write

Map
phase
Intermediate files
(on local disks)
worker outputfile 1
Input
files
(5) remote read
Reduce
phase
Output
files
Figure 3.1: An Overview of MapReduce Model [14]
on multi-core and memory shared systems using Phoenix system developed by Stanford
University [38]. Mars was developed to apply MapReduce to graphics processors(GPUs) [6].
Hadoop is another MapReduce implementation. Both hadoop and its filesystem HDFS has
been adopted by several Web based companies like Facebook and Amazon [4, 13].
3.2.2 Hadoop and HDFS
Hadoop was a project primarily initiated by Yahoo [4] and is currently maintained
by the Apache software foundation. Yahoo servers still use Hadoop to process hundreds of
terabytes of data on no less than 10000 cores [53]. Amazon, as a successful online retailer,
manages massive amount of data daily using the system [2]. Facebook also employs Hadoop
to manipulate more than 15 terabytes of new data every day. Besides web based applications,
large scale scientific simulations also benefit from the Hadoop system [40] and its high level
implementation such as Hive [18] and Pig [11].
26
Hadoop Distributed File System is a popular internet service file system, which
provides good abstraction of data management to the MapReduce framework [7]. Internet
service file system is a type of file system which is capable to handle data intensive situa-
tions [51, 1, 21]. The nodes running HDFS are called data nodes inside the Hadoop system.
HDFS applies a comprehensive rack-aware replica strategy to protect the security of the
data.
Hadoop and HDFS supports many data intensive applications: web searching, inverted
index construction, massive data management, and web access log processing. All these
applications have benefited fromMapReduce workflow. The Hadoop process hasthree stages:
map, shu?ing, and reduce (described in fig 3.1). In the map phase, input data is divided
into a number of disjoint small parts. The boundary of those parts is determined by default
settings or indicated by the user. The map function takes this input data as {key1, value1}
pairs and turns them into {key2, value2} pairs as the input for the reduce function. The
{key1, value1} pair and the {key2, value2} pair can be the same or different. After the
map phase and just before the reduce phase, all the intermediate data with the same key is
sent to the same computation node where it will be sorted. At this point, the intermediate
results are reduced to the final results. The map and reduce phases are executed mainly
on local machines, while the shu?ing transfers the data via networks. As a result, not
only the computation capacity, but also the network efficiency will affect the performance
of the MapReduce system. Solutions are proposed to improve the performance from the
shu?ing phase. For example, the performance of join operation in log processing is improved
by [16, 15, 22]. Hadoop, as the best open source implementation of MapReduce, has been
deployed on many well known computing clusters like Facebook and Yahoo servers since it
has good scalability and fault tolerance.
27
3.3 Performance Analysis of Hadoop Clusters
In order to demonstrate the performance issues in Hadoop clusters, we test the Hadoop
system using various experimental settings. By analyzing performance results collected from
a wide range of experiments, we are able to identify the flaws and bottlenecks lies in tradi-
tional Hadoop systems.
3.3.1 Experimental Setup
We perform experiments in two computing environments - a standalone (i.e., single
node) Hadoop and a multiple-node Hadoop cluster. Table 3.3.1 shows the configurations of
all the computing nodes involved in the our experiments.
Computing Node CPU Memory Disk
Node1 Duo-Core 3.0GHz 4G NA
Node2 Quad-Core 2G NA
Node3 Quad-Core 2G NA
Node4 Quad-Core 2G NA
Table 3.1: Computing Nodes Configurations
3.3.2 Performance Impacts of Small Blocks
The focus of the first experiment is to evaluate the impact of small blocks on the
performance of the WordCount application running in the single-node Hadoop system. We
set the block size to 64MB, 128MB, and 256MB, respectively. The input file size is 1GB.
X-axis and Y-axis in Figures 3.2-3.4 represent running time and CPU utilization. A general
observation drawn from the experimental results is that increasing block size noticeably
improves system performance. For example, in the worst case where the block size is as
small as 1MB, the execution time of WordCount is over 2500 seconds. When the block size
is 64MB, it takes the Hadoop system 225 seconds to complete WordCount (see Figure 3.2).
If the block is increased to 256MB, the execution time of WordCount is shorten down to
28
0
10
20
30
40
50
60
70
80
90
0 50 100 150 200 250
%user
Time (in seconds)
Hadoop Wordcount - 1GB file (64MB block size)
Figure 3.2: CPU utilization for wordcount with block size 64MB
205 seconds (see Figure 3.4. We attribute this reduction in execution time to the I/O
improvement, which is illustrated as follows.
Figures 3.2-3.4 show that when the Hadoop system finishes processing a block, the
CPU utilization drops significantly. The CPU utilization periodically slides, because the
CPU must wait a subsequent block to be loaded from the disk. When block size is 64MB
and 128MB, the CPU utilization drops eight and four times, respectively. If we increase
block size up to 256MB, the CPU utilization only periodically drops twice. A large block
size helps to reduce I/O processing time by decreasing the number of I/O accesses. As a
result, the I/O waiting time between two continuous small blocks (see Figure 3.2) is longer
than that of two continuous large blocks (see Figure 3.4).
The above experimental results show that small files have a huge impact on the Hadoop
system. In general, there are the following three approaches to solving the problem caused
by small files.
? Hadoop Archive (HAR). An HAR package compresses multiple small files into a single
large file. Unlike traditional compressed files, each small file in the HAR package can
be directly accessed thanks to an index of the small files maintained by HAR.
29
0
10
20
30
40
50
60
70
80
90
0 50 100 150 200 250
%user
Time (in seconds)
Hadoop Wordcount - 1GB file (128MB block size)
Figure 3.3: CPU utilization for wordcount with block size 128MB
0
10
20
30
40
50
60
70
80
90
100
0 50 100 150 200 250
%user
Time (in seconds)
Hadoop Wordcount - 1GB file (256MB block size)
Figure 3.4: CPU utilization for wordcount with block size 256MB
30
? Combine File Input Format. It is also known as CombineFileInputFormat, which is
implemented as one of the Hadoop?s application programming interfaces (APIs) [50].
The CombineFileInputFormat interface combines small files to form a block in a given
size.
? Sequence File. A sequence file is a flat file that contains binary key value pairs. Hadoop
intermediate results generated during the map phase are collected using this file format.
The above three solutions have some drawbacks. For example, there is no efficient way
to modify HAR files after they are created. If an HAR file is updated, the HAR file must
be recreated from ground up, which is a time consuming process when the HAR file is large.
The combined file input format and sequence file format offered as APIs of Hadoop require
application developers to write specific code to handle small files. If programmers decide to
take the last two approaches to deal with small files, the programmers have to first identify
small files manually and then apply the APIs to handle the small files. Alternatively, the
programmers may write code to automatically identify small files.
In our future study, we plan to design a mechanism to dynamically modify small files
packed inside an HAR file. The goal of this mechanism is to update small files without
recreating the entire HAR file.
3.3.3 Performance Impacts of Network Interconnects
The goal of our proposed KAT is to address the network performance issue raised in the
shu?ing phase. We expect that KAT will perform very well if network interconnects become
a performance bottleneck in Hadoop clusters. Before we design and implement KAT, we
illustrate that network interconnects have noticeable impacts on the performance of HDFS,
which relies on high-speed networks for fast data transfers.
There are two general approaches to addressing network problems in Hadoop clusters.
The first approach is to increase the bandwidth of network interconnections; the second one
31
gid24gid1
gid29gid24gid1
gid25gid24gid24gid1
gid25gid29gid24gid1
gid26gid24gid24gid1
gid26gid29gid24gid1
gid27gid24gid24gid1
gid27gid29gid24gid1
gid28gid24gid24gid1
gid28gid29gid24gid1
gid26gid1gid12gid13gid7gid8gid15gid1 gid28gid1gid12gid13gid7gid8gid15gid1 gid30gid1gid12gid13gid7gid8gid15gid1
gid4gid11gid12gid6gid5gid11gid16gid10gid13gid1gid2gid17gid5gid16gid14gid11gid10gid1gid3gid8gid9gid7gid1
gid5gid13gid14gid7gid6gid13gid19gid12gid16gid1gid2gid21gid6gid19gid17gid13gid12gid1gid4gid9gid11gid8gid1
gid5gid13gid14gid7gid6gid13gid19gid12gid16gid1gid2gid21gid6gid19gid17gid13gid12gid1gid4gid9gid11gid8gid1
gid9gid12gid1gid5gid13gid14gid15gid8gid1gid3gid8gid16gid20gid13gid14gid10gid1
Figure 3.5: Execution times of WordCount under good and poor network conditions; times
are measured in Second.
is to reduce the amount of data being transferred among data nodes. We show below that
network performance affects the execution time of Hadoop applications; we also show that
poor network performance may increase the amount of transferred data. More specifically,
we conduct two experiments to quantitatively show the impact of networks on the execution
times of a Hadoop application (i.e., WordCount) and the amount of data transferred among
the data nodes in a Hadoop cluster.
Although network interconnects in modern Hadoop clusters offer high I/O bandwidth,
observed network bandwidth from the perspective of a single application might be poor
due to resource sharing. Low observed network bandwidth is not uncommon in a cluster
computing environment, where each node is running multiple virtual machines sharing the
bandwidth.
To study the impact of observed network bandwidth available to the tested Hadoop
application, we apply the traffic shaping technique to manipulate observed network band-
width. For example, traffic shaping can significantly reduce each node?s bandwidth allocated
to the map and reduce phases of the WordCount application. We employ the ?TC? utility
32
gid24gid1
gid24gid22gid29gid1
gid25gid1
gid25gid22gid29gid1
gid26gid1
gid26gid22gid29gid1
gid27gid1
gid27gid22gid29gid1
gid28gid1
gid26gid1gid15gid16gid8gid9gid18gid1 gid28gid1gid15gid16gid8gid9gid18gid1 gid30gid1gid15gid16gid8gid9gid18gid1
gid4gid13gid14gid7gid6gid13gid16gid12gid15gid1gid2gid14gid5gid9gid6gid1gid3gid13gid10gid16gid11gid8gid1
gid5gid16gid17gid8gid7gid16gid20gid15gid19gid1gid3gid17gid6gid10gid7gid1
gid4gid16gid13gid20gid14gid9gid1
gid5gid16gid17gid8gid7gid16gid20gid15gid19gid1gid3gid17gid6gid10gid7gid1
gid4gid16gid13gid20gid14gid9gid1gid11gid15gid1gid5gid16gid17gid18gid9gid1
gid2gid9gid19gid21gid16gid17gid12gid1
Figure 3.6: Amount of data transferred among data nodes running WordCount under good
and poor network conditions; data size is measured in GB.
program to record an initial data usage on each node as well as data usage on the same node
after WordCount is completed. An entire data usage during the execution of WordCount is
calculated by aggregating all the nodes? data usage.
In our experiments, the bandwidth is limited to 500Mbps to resemble real-world cases
where two virtual machines are sharing the 1Gbps network. Figure 3.5 shows the response
time of WordCount on the Hadoop cluster. We observe that when the observed network
bandwidth is reduced from 1Gpbs down to 500Mbps, the WordCount?s response time is
increased by 12%. Comparing the 2-node, 4-node, and 8-node Hadoop clusters, we discover
that poor network bandwidth have more negative impacts on the 8-node cluster than on the
2-node cluster. This performance trend implies that when observed network bandwidth is
degraded in a large-scale cluster, Hadoop applications will experience noticeably increased
execution times.
To investigate the reason behind the negative impacts of degraded network intercon-
nects, we measure the amount of transferred data among the nodes running WordCount
under good and poor network conditions. Figure 3.6 shows that the transferred data volume
33
is increased significantly when the bandwidth is shared among multiple virtual machines.
More importantly, Figure 3.6 indicates that when the number of data nodes goes up from 2
to 8, the transferred data volume is increased by a factor of 5 and 3.8 under good and poor
network conditions.
We conclude from the above experimental results that network traffic can inevitably
affect the performance of Hadoop clusters. The preliminary results motivate us to address
the performance problem induced by the increased amount of transferred data among nodes.
In particular, we design the KAT scheme to reduce the amount of transferred data by pre-
calculating intermediate keys according to which input files are placed. KAT can alleviate the
network performance bottleneck problem imposed by data transfers, because data sharing
the same key are not scattered across nodes of a cluster.
3.4 Key-Aware Data Placement
KAT is a key-aware data placement strategy that addresses the data transfer overheads
in the shu?ing phase of Hadoop applications. In this section, we discuss challenges and
design issues of developing KAT in HDFS.
3.4.1 Design Goals
We design KAT that can be implemented as a module incorporated into Hadoop?s
HDFS. When HDFS places files on data nodes, HDFS does not take into account the at-
tributes (i.e., keys and values) of input files. HDFS indiscriminately considers all the input
data entries during the data distribution process. Although the benefit of this strategy is
to well balance load across nodes in a Hadoop cluster, it can lead to a large amount of
transferred data during the shu?ing stage of Hadoop. To address this problem, we propose
KAT - an intermediate key-aware distribution strategy - to allocate data according to pre-
calculated intermediate key values. In other words, data sets are distributed based on their
34
intermediate keys; the data distribution module is aware of data locations. The data distri-
bution is predictable and controlled by KAT. System administrators, of course, can change
the configurations of KAT according to cluster settings to optimize system performance.
The KAT strategy is implemented at both the application and system level. Since in-
termediate keys may have various values in different applications, we must facilitate each
application with a pre-calculation module. Given a Hadoop application, the Hadoop run-
time system has to be updated to maintain information regarding the pre-calculations of
intermediate keys. During the data distribution process, a hash function is used to decide
target data nodes to which data entries are allocated.
Our KAT strategy aims to improve the performance of Hadoop applications by reducing
network transmission overhead. Data transfer times are shortened during the shu?ing stage.
Moreover, performance stability can be improved by KAT thanks to the fact that data allo-
cations are predictable. When using the data placement strategy in the native Hadoop, the
namenode randomly picks a data node for input data. Such a random datanode selection
process may cause two problems. First, data placement might be unbalanced in a Hadoop
cluster due to random datanode selections. In the worst case, all the data may be placed
in a single data node, which becomes a performance bottleneck causing network commu-
nications. Second, randomly selected data data nodes make data placement unpredictable.
Consequently, network communications are unpredictable, thereby making it difficult to con-
trol the performance of Hadoop in a certain range. There is a big difference between the
best data placement decision and the worst one; there is no guarantee that random data
placement delivers the best performance every time. In our solution, data allocations are
judiciously managed by the KAT data-placement strategy. Data placement decisions made
by KAT allow each Hadoop application to exhibit stable performance.
35
Input Data:
Mapper
Node A
Mapper
Node B
Data Distribution:
Map:
Shuffling:
Reduce:
Reducer
Node A
Reducer
Node B
(1,*)
(1,*)
(1,*)
(1,*)
(2,*)
(2,*)
(2,*)
(2,*)
Figure 3.7: Data placement strategy in the native Hadoop. Four key-value pairs (i.e., two
(1,?) and two (2,?)) are located on node A; four key-value pairs (i.e., two (1,?) and two
(2,?)) are located on node B. During the shu?ing phase, the two (1,?) pairs on node B are
transferred to node A; the two (2,?) pairs on node A are delivered to node B.
36
Input Data:
Mapper
Node A
Mapper
Node B
Data Distribution:
Map:
Shuffling:
Reduce:
Reducer
Node A
Reducer
Node B
(1,*)
(1,*)
(1,*)
(1,*) (2,*)
(2,*)
(2,*)
(2,*)
(2,*)
(2,*)
(2,*)
(2,*)
(1,*)
(1,*)
(1,*)
(1,*)
pre-key-calculator
Figure 3.8: KAT: a key-based data placement strategy in Hadoop. KAT assigns the four
(1,?) key-value pairs to node A and assigns the four (2,?) key-value pairs to node B. This
data-placement decision eliminates the network communication overhead incurred in the
shu?ing phase.
37
3.4.2 The Native Hadoop Strategy
Before presenting the design of KAT, let us briefly describe the data-placement strat-
egy implemented in the native HDFS. To simplify the description, we show how data are
distributed in HDFS in the single-data-replica case, where each data set has one copy in
HDFS.
In native HDFS, data files are written into a disk through a buffer. When the buffer
is filled up with files or there is no more incoming data to the buffer, a waiting process is
triggered to pack the buffered data together and delivers the packed data to a list of target
data nodes. If files only have one local copy without any remote replica, the list of data
nodes is empty. After a data node receives the packed data, the node needs to deal with two
issues. First, the node checks the list of data nodes embedded in the package. If the list is
not empty (i.e., data have remote replicas), the data node will forward the data package to
the first node in the list. Second, the node writes the content of the package into the node?s
disk.
This native data-placement strategy may lead to a potential performance problem -
data with the same keys might be allocated to different data nodes, causing unnecessary
data transfer overheads. Figure 3.7 uses an example to illustrate the above performance
problem. In this example, four key-value pairs (i.e., two (1,?) and two (2,?)) are located on
node A; similar four key-value pairs (i.e., two (1,?) and two (2,?)) are located on node B.
During the shu?ing phase, the two (1,?) key-value pairs residing in node B are transferred
to node A; the two (2,?) key-value pairs on node A are delivered to node B.
To address the aforementioned problem, our KAT strategy assigns the four (1,?) key-
value pairs to node A and assigns the four (2,?) pairs to node B. Figure 3.8 illustrates that
the data-placement decision made by KAT eliminates the network communication overhead
incurred in the shu?ing phase.
Now we describe how the data-placement strategy in HDFS chooses target data nodes
when data nodes of a Hadoop cluster are located in multiple racks. Let us consider a
38
case where three different data nodes must be chosen to store data, the strategy in the
native HDFS guarantees that two data nodes are located within one rack while the third
node is residing in another rack. This random-selection scheme is normally employed until
unbalanced data volume reaches a specified threshold. Once the threshold is reached, a
balancing process is activated to reallocate data in a way to balance load among the data
nodes.
3.4.3 Implementation Issues
The Pre-Calculation Module
There are two approaches to reducing network communication overheads in Hadoop
clusters. The first one is to reduce the amount of transferred intermediate data; the second
one is to minimize the size of communication data including data migrated during the load
balancing process. This study is focused on the first approach because of the following
two reasons. First, the amount of migrated data is not as huge as that of transferred
intermediate data. Second, most of the network overhead introduced by migrated data
can not be eliminated. As such, we intend to take the first approach to reducing network
overhead by decreasing the amount of transferred intermediate data.
To reduce the amount of transferred intermediate data, we implement a pre-calculation
module and a data distribution module (see Section 3.4.3). The pre-calculation module (see
Figure 3.8) is responsible for pre-calculating intermediate keys for data entries; the data
distribution module is in charge of allocating data according to the pre-calculated keys. The
pre-calculation module performs in combination with the data distribution module to ensure
that data with the same intermediate key value are placed on the same data node.
The Data Distribution Module
Recall that the data distribution module aims to distribute data entries coupled with
pre-calculated key values to data nodes. In this distribution module, we implement a hash
39
function to map input data keys onto a set of data nodes. Note that the number of data
nodes in our testbed is eight. Input data are evenly distributed to all the available data
nodes. In the best case, all the data nodes complete their map phase at approximately the
same time.
Because of the evenly distributed data processed by the data distribution module in
KAT, a huge amount of migrated data can be avoided in the load balancing process. In
some cases, our hash function in the distribution module can be incorporated with the load
balancing module in the Hadoop runtime system to further improve system performance.
Figure 3.8 shows that thanks to the KAT strategy, key-value pairs with the same key no
long need to be transferred among multiple data nodes after the map phase.
Data Redistribution Module
Now we discuss the implementation issues related to the above two KAT modules. There
two cases in which which the KAT modules are invoked to pre-calculate keys and distribute
files to data nodes in a Hadoop cluster. In the first case, data files are imported into the
HDFS file system. In the second case, updated data files must be redistributed for the
purpose of load balancing.
The first case can be addressed by replacing the current data distribution module in
HDFS with our KAT modules. This approach is inexpensive in terms of computing and
data transfer overheads. The downside of this approach is that the second case can not be
covered. Nevertheless, another data redistribution module must be implemented to handle
the second case. The data redistribution module is implemented in a similar way as that of
the data distribution module in KAT.
Apart from the aforementioned approach, another candidate solution is to trigger the
data redistribution module when a data modification process is finished. This solution
addresses the above two cases. Compared with the first approach, the second solution takes
longer time periods to import files into HDFS for the first time. In the worst case, the second
40
approach needs to relocate all the data imported for the first time. Our goal is to investigate
performance improvement offered by the KAT data-placement strategy and; therefore, we
choose the first approach and implement the data redistribution module coupled with the
two KAT modules.
System-Level Implementation
The two KAT modules along with the data redistribution module can be implemented
at either the application level or the Hadoop system level. Although implementing KAT at
the application level is easy, this approach is not transparent to Hadoop applications. In our
implementation, we add the two KAT modules in the Hadoop system.
The first module is in charge of pre-calculating intermediate keys. This module obtains
intermediate key values from input entries. Hadoop applications offer hints regarding in-
termediate keys to the pre-calculation module in KAT; the hints allow the pre-calculation
module to compute key values prior to the executions of the applications.
The second module is responsible for distributing data to nodes in a Hadoop cluster.
The native module in HDFS (see Figure 3.9) maintains one queue on namenode to manage
data blocks with a fixed size. In our implementation, we extend this existing module so that
data blocks located in the single queue can be delivered to multiple data nodes. There are
the following two ways of extending the module in the native HDFS.
First, we implement multiple queues in the namenode. Each queue is dedicated to
a data node. Data blocks are dispatched to different queues according to hashing results
of intermediate keys. Although this solution is straightforward, it might not be a feasible
solution for large-scale Hadoop clusters where a large number of queues must be maintained
by the namenode.
Second, we implement distributed queues located in all data nodes. In this imple-
mentation, each data entry is examined by the pre-calculation module and is mapped to
a corresponding data node using the hash function. Then, the data entry is sent to the
41
Figure 3.9: The architecture of a Hadoop cluster [34]. The data distribution module in
HDFS maintains one queue on namenode to manage data blocks with a fixed size.
42
data node where the local queue is used to manage the data. When the local queue is full,
data stored in the queue are packed to a single data block, which is imported to the local
HDFS space. The drawbacks of this implementation is that separately delivering data entries
inevitably increases network transfer overheads.
When it comes to small-scale Hadoop clusters, the first approach (i.e., centralized queue
in the namenode) is better than the second one (i.e., distributed queues in all data nodes).
In contrast, the second implementation is better than the first one when KAT is applied to
solve the data distribution problem in large-scale Hadoop clusters.
Application-Level Implementation
Implementing KAT at the system level of Hadoop makes KAT transparent to appli-
cations. The system-level implementation has two drawbacks. First, system-level imple-
mentation is more complicated than the application-level counterpart. Second, we have
to implement an application programming interface (API) allowing applications to provide
application-specific algorithms to calculate intermediate keys at the system level. To over-
come the above shortcomings, one may implement KAT at the application level.
Given input files and a Hadoop application, the system-level KAT and application-
level KAT achieve makes the same data-placement decisions. We can use the system-level
implementation to validate the correctness of the application-level implementation, and vice
versa. We implement the KAT module at the application level to distribute data for two
real-world Hadoop applications (i.e., WordCount and Grep). We also use input files of 500
MB to validate the correctness of the KAT modules supporting the WordCount and Grep
applications.
3.5 Experimental Results
In this section, we use two real-world Hadoop applications - WordCount and Grep - to
evaluate the performance of our proposed KAT strategy. We also compare KAT with the
43
data-placement strategy implemented in the native Hadoop system. The size of input files
for the two Hadoop applications is 8 GB. We set the number of data nodes in a Hadoop
cluster to 2, 4, and 8.
3.5.1 Experimental Setup
We implement KAT and evaluate it on a 9-node Hadoop cluster, which consists of a
name node and eight data nodes connected with a 1 Gbps Ethernet switch. Table 3.2 shows
the configuration of the nodes in the tested Hadoop cluster. The name node (see Figure 3.9)
is responsible for assigning jobs and managing the data nodes; there is no map or reduce
task running on this name node. Data are stored on the eight data nodes, on which map
and reduce tasks are running. All the data nodes? names are listed in a configuration file on
the name node. We change the number of data nodes in the Hadoop cluster by updating
the configuration file for the data-node list.
Two important performance metrics measured in our experiments are execution time
and the amount of transferred data. Execution times are measured in second; data amount
is measured in GByte. To evaluate the scalability of our KAT strategy, we vary the number
of data nodes in the tested cluster (see Section 3.5.2). Using the 2-node, 4-node, and 8-
node Hadoop clusters, we show KAT?s impact on network traffic of the Hadoop system
(see Section 3.5.3). In addition to cluster size, block size and fie size are evaluated in our
experiments (see Section 3.5.4). The analysis of KAT?s stability and Map/Reduce processes
can be found in Sections 3.5.5 and 3.5.6, respectively.
We run two Hadoop applications (i.e., WordCount and Grep) on the cluster. WordCount
- a basic application for web search indexing - is an application that counts words in input
files. Grep counts the number of matches of a given input expression. The total size of
all the input files is 8 GB. Average file size is 500 MB for all the experiments. Each file is
partitioned into two equal sized blocks of 256MB according to the configuration file?s settings.
The number of map tasks is set to four for each data node, because the data nodes in the
44
Table 3.2: Configurations of name and data nodes in the Hadoop cluster.
Type Hardware Software
1?Intel Xeon 2.4 GHz processor Ubuntu
10.04
Name 1?4 GBytes of RAM Linux kernel
2.6.23
Node 1?1 GigaBit Ethernet network
card
Hadoop
0.20.2
?1 1?Seagate 160 GBytes Sata disk
(ST3160318AS)
Intel Xeon 2.4 GHz processor Ubuntu
10.04
Data 2 GBytes of RAM Linux kernel
2.6.23
Node 1 GigaBit Ethernet network card Hadoop
0.20.2
?8 1?Seagate 160 GBytes Sata disk
(ST3160318AS)
tested cluster are equipped with quad-core processors. Four map tasks can fully utilize the
quad-core processors in the Hadoop cluster. Similarly, the number of reduce tasks is limited
to up to 4 per node.
During the entire evaluation process, we conduct hundreds of tests and record all the
test outputs as text files. The output text files indicate that the number of reducers never
reaches the limit regardless of the number of data nodes. In each experiment, we run the
Hadoop benchmark for ten times and report the average of the ten measures.
3.5.2 Scalability
Now we evaluate the impact of the number of data nodes on the performance of KAT.
We test both the native Hadoop system and the KAT-enabled system on 2-node, 4-node,
and 8-node clusters, respectively. The observed network bandwidth is manipulated by the
the bandwidth control technique described in Section 3.3.
Figure 3.10 shows the execution times of WordCount and Grep running in the tested
cluster where the number of data nodes is set to 2, 4, and 8, respectively. The results show
that when the network bandwidth is 1 Gbps, KAT reduces the execution times of both
WordCount and Grep, regardless of the number of data nodes in the cluster. Comparing
45
gid38gid40gid31gid28
gid37gid1
gid35gid32gid38gid28
gid35gid1
gid33gid33gid40gid28
gid39gid1
gid39gid31gid33gid28
gid38gid1
gid35gid32gid32gid28
gid39gid1
gid33gid33gid36gid28
gid33gid1
gid36gid39gid35gid28
gid40gid1 gid37gid36gid32gid28
gid32gid1
gid32gid31gid34gid40gid28
gid36gid1
gid39gid35gid37gid28
gid40gid1
gid35gid32gid38gid28
gid38gid1
gid33gid34gid36gid28
gid34gid1
gid31gid1
gid33gid31gid31gid1
gid35gid31gid31gid1
gid37gid31gid31gid1
gid39gid31gid31gid1
gid32gid31gid31gid31gid1
gid32gid33gid31gid31gid1
gid33gid1 gid35gid1 gid39gid1
gid3gid23
gid11gid9
gid22gid20
gid16gid15
gid1gid6gid13
gid14gid11
gid1gid25gid5
gid26gid1
gid4gid22gid14gid8gid11gid17gid1gid16gid12gid1gid2gid7gid19gid7gid15gid16gid10gid11gid18gid1
gid7gid10gid22gid25gid14gid1gid4gid10gid13gid17gid17gid18gid1gid10gid21gid1gid32gid3gid11gid18gid20gid1
gid5gid2gid8gid1gid14gid16gid10gid11gid15gid14gid13gid1gid10gid21gid1gid32gid3gid11gid18gid20gid1
gid7gid10gid22gid25gid14gid1gid4gid10gid13gid17gid17gid18gid1gid10gid21gid1gid32gid31gid6gid11gid18gid20gid1
gid5gid2gid8gid1gid14gid16gid10gid11gid15gid14gid13gid1gid10gid21gid1gid32gid31gid6gid11gid18gid20gid1
(a) Wordcount execution time in 1Gbps network
gid33gid34gid31gid28
gid33gid1
gid32gid37gid31gid28
gid37gid1
gid40gid40gid28
gid36gid1
gid33gid32gid33gid28
gid35gid1
gid32gid33gid36gid28
gid40gid1
gid39gid37gid28
gid39gid1
gid33gid32gid33gid28
gid40gid1
gid35gid31gid36gid28
gid35gid1
gid39gid34gid38gid28
gid38gid1
gid33gid32gid38gid28
gid38gid1
gid32gid33gid39gid28
gid36gid1
gid39gid39gid28
gid38gid1
gid31gid1
gid32gid31gid31gid1
gid33gid31gid31gid1
gid34gid31gid31gid1
gid35gid31gid31gid1
gid36gid31gid31gid1
gid37gid31gid31gid1
gid38gid31gid31gid1
gid39gid31gid31gid1
gid40gid31gid31gid1
gid33gid1 gid35gid1 gid39gid1
gid3gid23
gid11gid9
gid22gid20
gid16gid15
gid1gid6gid13
gid14gid11
gid1gid25gid5
gid26gid1
gid4gid22gid14gid8gid11gid17gid1gid16gid12gid1gid2gid7gid19gid7gid15gid16gid10gid11gid18gid1
gid7gid10gid22gid25gid14gid1gid4gid10gid13gid17gid17gid18gid1gid10gid21gid1gid32gid3gid11gid18gid20gid1
gid5gid2gid8gid1gid14gid16gid10gid11gid15gid14gid13gid1gid10gid21gid1gid32gid3gid11gid18gid20gid1
gid7gid10gid22gid25gid14gid1gid4gid10gid13gid17gid17gid18gid1gid10gid21gid1gid32gid31gid6gid11gid18gid20gid1
gid5gid2gid8gid1gid14gid16gid10gid11gid15gid14gid13gid1gid10gid21gid1gid32gid31gid6gid11gid18gid20gid1
(b) Grep execution time in 1Gbps network
Figure 3.10: Execution Times of Grep and Wordcount on the Hadoop cluster. The number
of data nodes is set to 2, 4, and 8, respectively.
46
the two Hadoop applications, we observe that Grep gains more benefits from KAT than
WordCount does. This trend is reasonable because Grep exchanges more intermediate data
during the shu?e phase than WordCount, meaning that Grep offers more opportunities for
KAT to improve system performance.
Figure 3.10 also reveals that compared with the native Hadoop system, our KAT is
less sensitive to the number of data nodes in the cluster. This trend suggests that KAT is
much more scalable than the native Hadoop system. When the observed network bandwidth
drops down to 10Mbps, KAT significantly improves the performance over the native Hadoop
system. These results indicates that KAT performs extremely well when observed network
bandwidth of Hadoop cluster is very low.
3.5.3 Network Traffic
Recall that KAT improves the performance of the native Hadoop system by reducing
network traffic. In this group of experiment, we show evidence that KAT can alleviate
network traffic burden of Hadoop clusters running WordCount and Grep.
The three Hadoop clusters used in this experiment are the same as those described in
Section 3.5.2. Before running the Hadoop benchmark, we record the total network usage
measured in GByte. Upon the completion of the test, we record the total network usage
on each data node. Then, we derive the network usages by subtracting the network usages
measured before the test from the one measured after the test.
Figure 3.11 shows that the network usage increases when the Hadoop cluster scales
up; the average network transmission rate is getting higher when the number of data nodes
increases. Nevertheless, the observed network bandwidth will reach the system?s maximum
bandwidth when the number of nodes continues going up.
Although KAT only slightly improves the performance of the two applications when the
network bandwidth is 1Gbps, Figure 3.11 indicates that KAT noticeably reduces network
47
gid31gid28gid35gid40
gid31gid28gid35gid39
gid31gid28gid35gid34
gid31gid28gid35gid40 gid9gid18gid20gid13gid12gid18gid25gid17gid22
gid31gid28gid31gid31gid1
gid31gid28gid36gid31gid1
gid32gid28gid31gid31gid1
gid32gid28gid36gid31gid1
gid33gid28gid31gid31gid1
gid33gid28gid36gid31gid1
gid34gid28gid31gid31gid1
gid34gid28gid36gid31gid1
gid33gid17gid18gid13gid14gid21gid1 gid35gid17gid18gid13gid14gid21gid1 gid39gid17gid18gid13gid14gid21gid1
gid4gid10gid20gid22gid17gid18gid14gid1gid5gid18
gid6gid12
gid8gid1gid23gid3gid13gid7gid24gid1
gid4gid21gid15gid7gid10gid18gid1gid17gid11gid1gid2gid6gid20gid6gid16gid17gid9gid10gid19gid1
gid6gid10gid23gid26gid14gid1gid32gid3gid11gid19gid21gid1
gid4gid2gid8gid1gid32gid3gid11gid19gid21gid1
gid6gid10gid23gid26gid14gid1gid32gid31gid5gid11gid19gid21gid1
gid4gid2gid8gid1gid32gid31gid5gid11gid19gid21gid1
(a) Wordcount traffic in 1Gbps network
gid7gid18gid21gid16gid22gid16gid26gid14gid1gid2gid26gid15
gid32gid28gid37gid31 gid3gid20gid14gid19
gid34gid28gid32gid40
gid35gid28gid31gid38
gid31gid28gid34gid31
gid32gid28gid33gid36
gid35gid28gid37gid40
gid31gid28gid34gid34
gid31gid28gid33gid36
gid31gid28gid31gid35
gid31gid28gid31gid37
gid31gid28gid31gid37
gid31gid28gid31gid36
gid32gid28gid35gid35
gid33gid28gid36gid38
gid33gid28gid33gid39
gid31gid28gid38gid37
gid32gid28gid35gid33
gid34gid28gid31gid34
gid31gid28gid36gid34
gid31gid28gid37gid31
gid31gid28gid31gid31gid1
gid31gid28gid36gid31gid1
gid32gid28gid31gid31gid1
gid32gid28gid36gid31gid1
gid33gid28gid31gid31gid1
gid33gid28gid36gid31gid1
gid34gid28gid31gid31gid1
gid34gid28gid36gid31gid1
gid35gid28gid31gid31gid1
gid35gid28gid36gid31gid1
gid36gid28gid31gid31gid1
gid33gid17gid18gid13gid14gid21gid1 gid35gid17gid18gid13gid14gid21gid1 gid39gid17gid18gid13gid14gid21gid1
gid4gid10gid20gid22gid17gid18
gid14gid1gid5gid18
gid6gid12
gid8gid1gid23gid3gid13gid7gid24gid1
gid4gid21gid15gid7gid10gid18gid1gid17gid11gid1gid2gid6gid20gid6gid16gid17gid9gid10gid19gid1
gid6gid10gid23gid26gid14gid1gid32gid3gid11gid19gid21gid1
gid4gid2gid8gid1gid32gid3gid11gid19gid21gid1
gid6gid10gid23gid26gid14gid1gid32gid31gid5gid11gid19gid21gid1
gid4gid2gid8gid1gid32gid31gid5gid11gid19gid21gid1
(b) Grep traffic in 1Gbps network
Figure 3.11: Network traffics of the Wordcount and Grep Applications.
48
gid30gid27gid30gid1
gid31gid30gid27gid30gid1
gid32gid30gid27gid30gid1
gid33gid30gid27gid30gid1
gid34gid30gid27gid30gid1
gid35gid30gid27gid30gid1
gid36gid30gid27gid30gid1
gid37gid30gid27gid30gid1
gid38gid30gid27gid30gid1
gid36gid34gid1 gid31gid32gid38gid1 gid32gid35gid36gid1
gid5gid8gid11
gid7gid1gid14
gid4gid15gid1
gid2gid10gid12gid6gid9gid1gid4gid8gid13gid7gid1gid14gid3gid2gid15gid1
gid7gid9gid21gid24gid12gid1gid5gid9gid11gid16gid16gid17gid1
gid6gid2gid8gid1gid12gid15gid9gid10gid14gid12gid11gid1
Figure 3.12: Grep with 2GB input in 1Gbps network
traffic for the two Hadoop applications. In terms of network-traffic reduction, KAT has more
significant impacts on Grep than on WordCount.
KAT conserves network bandwidth for network-intensive applications sharing network
resources with Hadoop applications on clusters. Our results confirm that when most of
the network bandwidth is reserved for other network-intensive applications, KAT works
particularly well in terms of reducing network traffic of Hadoop applications that experience
slow observed network bandwidth.
3.5.4 Block Size and Input Files Size
In this group of experiments, we evaluate the impact of block size and total input-file
size on the performance of KAT. The block size can be modified in the configuration file.
The block size is chosen to be 64MB, 128MB, and 256MB, respectively; we set the total
input data size to 8GB, 4GB, and 2GB, respectively.
Figure 3.12 - 3.23 shows that when the total input file size is 2GB, decreasing block
size allows KAT to achieve better performance. When the total input file is 4GB, however,
the advantage of small blocks becomes diminished. Interestingly, when the total input file
49
gid30gid27gid30gid1
gid31gid30gid27gid30gid1
gid32gid30gid27gid30gid1
gid33gid30gid27gid30gid1
gid34gid30gid27gid30gid1
gid35gid30gid27gid30gid1
gid36gid30gid27gid30gid1
gid37gid30gid27gid30gid1
gid38gid30gid27gid30gid1
gid39gid30gid27gid30gid1
gid36gid34gid1 gid31gid32gid38gid1 gid32gid35gid36gid1
gid5gid8gid11
gid7gid1gid14
gid4gid15gid1
gid2gid10gid12gid6gid9gid1gid4gid8gid13gid7gid1gid14gid3gid2gid15gid1
gid7gid9gid21gid24gid12gid1gid5gid9gid11gid16gid16gid17gid1
gid6gid2gid8gid1gid12gid15gid9gid10gid14gid12gid11gid1
Figure 3.13: Grep with 4GB input in 1Gbps network
gid22gid19gid22gid1
gid24gid22gid19gid22gid1
gid26gid22gid19gid22gid1
gid28gid22gid19gid22gid1
gid30gid22gid19gid22gid1
gid23gid22gid22gid19gid22gid1
gid23gid24gid22gid19gid22gid1
gid28gid26gid1 gid23gid24gid30gid1 gid24gid27gid28gid1
gid5gid8gid11
gid7gid1gid14
gid4gid15gid1
gid2gid10gid12gid6gid9gid1gid4gid8gid13gid7gid1gid14gid3gid2gid15gid1
gid5gid7gid15gid17gid10gid1gid3gid7gid9gid13gid13gid14gid1
gid4gid2gid6gid1gid10gid12gid7gid8gid11gid10gid9gid1
Figure 3.14: Grep with 8GB input in 1Gbps network
50
gid30gid27gid30gid1
gid31gid30gid30gid27gid30gid1
gid32gid30gid30gid27gid30gid1
gid33gid30gid30gid27gid30gid1
gid34gid30gid30gid27gid30gid1
gid35gid30gid30gid27gid30gid1
gid36gid30gid30gid27gid30gid1
gid36gid34gid1 gid31gid32gid38gid1 gid32gid35gid36gid1
gid5gid8gid11
gid7gid1gid14
gid4gid15gid1
gid2gid10gid12gid6gid9gid1gid4gid8gid13gid7gid1gid14gid3gid2gid15gid1
gid7gid9gid21gid24gid12gid1gid5gid9gid11gid16gid16gid17gid1
gid6gid2gid8gid1gid12gid15gid9gid10gid14gid12gid11gid1
Figure 3.15: Grep with 2GB input in 10Mbps network
gid30gid27gid30gid1
gid31gid30gid30gid27gid30gid1
gid32gid30gid30gid27gid30gid1
gid33gid30gid30gid27gid30gid1
gid34gid30gid30gid27gid30gid1
gid35gid30gid30gid27gid30gid1
gid36gid30gid30gid27gid30gid1
gid36gid34gid1 gid31gid32gid38gid1 gid32gid35gid36gid1
gid5gid8gid11
gid7gid1gid14
gid4gid15gid1
gid2gid10gid12gid6gid9gid1gid4gid8gid13gid7gid1gid14gid3gid2gid15gid1
gid7gid9gid21gid24gid12gid1gid5gid9gid11gid16gid16gid17gid1
gid6gid2gid8gid1gid12gid15gid9gid10gid14gid12gid11gid1
Figure 3.16: Grep with 4GB input in 10Mbps network
51
gid22gid19gid22gid1
gid23gid22gid22gid19gid22gid1
gid24gid22gid22gid19gid22gid1
gid25gid22gid22gid19gid22gid1
gid26gid22gid22gid19gid22gid1
gid27gid22gid22gid19gid22gid1
gid28gid22gid22gid19gid22gid1
gid29gid22gid22gid19gid22gid1
gid30gid22gid22gid19gid22gid1
gid31gid22gid22gid19gid22gid1
gid28gid26gid1 gid23gid24gid30gid1 gid24gid27gid28gid1
gid5gid8gid11
gid7gid1gid14
gid4gid15gid1
gid2gid10gid12gid6gid9gid1gid4gid8gid13gid7gid1gid14gid3gid2gid15gid1
gid5gid7gid15gid17gid10gid1gid3gid7gid9gid13gid13gid14gid1
gid4gid2gid6gid1gid10gid12gid7gid8gid11gid10gid9gid1
Figure 3.17: Grep with 8GB input in 10Mbps network
gid24gid21gid24gid1
gid26gid24gid21gid24gid1
gid28gid24gid21gid24gid1
gid30gid24gid21gid24gid1
gid31gid24gid21gid24gid1
gid25gid24gid24gid21gid24gid1
gid25gid26gid24gid21gid24gid1
gid25gid28gid24gid21gid24gid1
gid25gid30gid24gid21gid24gid1
gid25gid31gid24gid21gid24gid1
gid30gid28gid1 gid25gid26gid31gid1 gid26gid29gid30gid1
gid5gid8gid11
gid7gid1gid14
gid4gid15gid1
gid2gid10gid12gid6gid9gid1gid4gid8gid13gid7gid1gid14gid3gid2gid15gid1
gid6gid8gid16gid18gid11gid1gid4gid8gid10gid14gid14gid15gid1
gid5gid2gid7gid1gid11gid13gid8gid9gid12gid11gid10gid1
Figure 3.18: Wordcount with 2GB input in 1Gbps network
52
gid15
gid24gid21gid24gid1
gid26gid24gid21gid24gid1
gid28gid24gid21gid24gid1
gid30gid24gid21gid24gid1
gid32gid24gid21gid24gid1
gid25gid24gid24gid21gid24gid1
gid25gid26gid24gid21gid24gid1
gid25gid28gid24gid21gid24gid1
gid25gid30gid24gid21gid24gid1
gid25gid32gid24gid21gid24gid1
gid26gid24gid24gid21gid24gid1
gid30gid28gid1 gid25gid26gid32gid1 gid26gid29gid30gid1
gid5gid8gid11
gid7gid1gid14
gid4gid15gid1
gid2gid10gid12gid6gid9gid1gid4gid8gid13gid7gid1gid14gid3gid2gid15gid1
gid6gid8gid16gid18gid11gid1gid4gid8gid10gid14gid14gid15gid1
gid5gid2gid7gid1gid11gid13gid8gid9gid12gid11gid10gid1
Figure 3.19: Wordcount with 4GB input in 1Gbps network
gid22gid19gid22gid1
gid26gid22gid19gid22gid1
gid23gid22gid22gid19gid22gid1
gid23gid26gid22gid19gid22gid1
gid24gid22gid22gid19gid22gid1
gid24gid26gid22gid19gid22gid1
gid27gid25gid1 gid23gid24gid28gid1 gid24gid26gid27gid1
gid5gid8gid11
gid7gid1gid14
gid4gid15gid1
gid2gid10gid12gid6gid9gid1gid4gid8gid13gid7gid1gid14gid3gid2gid15gid1
gid5gid7gid15gid17gid10gid1gid3gid7gid9gid13gid13gid14gid1
gid4gid2gid6gid1gid10gid12gid7gid8gid11gid10gid9gid1
Figure 3.20: Wordcount with 8GB input in 1Gbps network
53
gid24gid21gid24gid1
gid29gid24gid21gid24gid1
gid25gid24gid24gid21gid24gid1
gid25gid29gid24gid21gid24gid1
gid26gid24gid24gid21gid24gid1
gid26gid29gid24gid21gid24gid1
gid27gid24gid24gid21gid24gid1
gid27gid29gid24gid21gid24gid1
gid28gid24gid24gid21gid24gid1
gid28gid29gid24gid21gid24gid1
gid30gid28gid1 gid25gid26gid31gid1 gid26gid29gid30gid1
gid5gid8gid11
gid7gid1gid14
gid4gid15gid1
gid2gid10gid12gid6gid9gid1gid4gid8gid13gid7gid1gid14gid3gid2gid15gid1
gid6gid8gid16gid18gid11gid1gid4gid8gid10gid14gid14gid15gid1
gid5gid2gid7gid1gid11gid13gid8gid9gid12gid11gid10gid1
Figure 3.21: Wordcount with 2GB input in 10Mbps network
gid24gid21gid24gid1
gid25gid24gid24gid21gid24gid1
gid26gid24gid24gid21gid24gid1
gid27gid24gid24gid21gid24gid1
gid28gid24gid24gid21gid24gid1
gid29gid24gid24gid21gid24gid1
gid30gid24gid24gid21gid24gid1
gid31gid24gid24gid21gid24gid1
gid32gid24gid24gid21gid24gid1
gid30gid28gid1 gid25gid26gid32gid1 gid26gid29gid30gid1
gid5gid8gid11
gid7gid1gid14
gid4gid15gid1
gid2gid10gid12gid6gid9gid1gid4gid8gid13gid7gid1gid14gid3gid2gid15gid1
gid6gid8gid16gid18gid11gid1gid4gid8gid10gid14gid14gid15gid1
gid5gid2gid7gid1gid11gid13gid8gid9gid12gid11gid10gid1
Figure 3.22: Wordcount with 4GB input in 10Mbps network
54
gid22gid19gid22gid1
gid24gid22gid22gid19gid22gid1
gid25gid22gid22gid19gid22gid1
gid27gid22gid22gid19gid22gid1
gid28gid22gid22gid19gid22gid1
gid23gid22gid22gid22gid19gid22gid1
gid23gid24gid22gid22gid19gid22gid1
gid27gid25gid1 gid23gid24gid28gid1 gid24gid26gid27gid1
gid5gid8gid11
gid7gid1gid14
gid4gid15gid1
gid2gid10gid12gid6gid9gid1gid4gid8gid13gid7gid1gid14gid3gid2gid15gid1
gid5gid7gid15gid17gid10gid1gid3gid7gid9gid13gid13gid14gid1
gid4gid2gid6gid1gid10gid12gid7gid8gid11gid10gid9gid1
Figure 3.23: Wordcount with 8GB input in 10Mbps network
size is 8 GB, large blocks are better than small blocks in terms of performance improvement
offered by KAT.
Figs. 3.18-3.20 shows that the native Hadoop system is very sensitive to observed net-
work bandwidth. For example, the execution times of Hadoop applications are increased by
an factor of 8 when the network bandwidth is reduced from 1Gbps to 10Mbps. The bigger
the block size, the slower the performance of the native Hadoop system. In contrast, the
KAT-enabled cluster is not very sensitive to the observed network bandwidth, because KAT
substantially reduces transferred data amount. When it comes to KAT, 256MB block size
leads to better performance than the block size of 64MB for both benchmarks when the
input data set is large (e.g., 2-8 GB).
3.5.5 Stability of KAT
This group of experiments is focused on the stability of KAT. A high stability means that
KAT achieves similar performance for different experiments as long as the Hadoop computing
environment remains unchanged. To show evidence that KAT is more stable than the native
Hadoop system, we run each test 10 times and calculate the standard deviation.
55
gid23gid1
gid24gid1
gid25gid1
gid26gid1
gid27gid1
gid28gid1
gid29gid1
gid30gid1
gid31gid1
gid25gid1 gid27gid1 gid31gid1
gid7gid19gid8
gid14gid9
gid8gid17gid9
gid1gid3gid10
gid23gid12gid8
gid20gid15
gid14gid1
gid7gid12gid24gid10gid1gid15gid11gid1gid6gid14gid16gid22gid19gid1gid4gid12gid13gid10gid18gid1gid26gid5gid2gid27gid1
gid8gid10gid16gid18gid11gid29gid27gid7gid3gid1
gid8gid10gid16gid18gid11gid24gid25gid31gid7gid3gid1
gid8gid10gid16gid18gid11gid25gid28gid29gid7gid3gid1
gid6gid2gid9gid29gid27gid7gid3gid1
gid6gid2gid9gid24gid25gid31gid7gid3gid1
gid6gid2gid9gid25gid28gid29gid7gid3gid1
Figure 3.24: Standard deviation of Grep in 1Gbps network
gid23gid20gid27gid25gid1 gid23gid20gid30gid27gid1 gid26gid20
gid23gid28gid1
gid23gid20gid29gid30gid1 gid23gid20gid30gid32gid1 gid25gid20
gid29gid26gid1gid24gid20gid27gid26gid1
gid23gid20gid30gid23gid1 gid27gid20
gid28gid23gid1
gid23gid1
gid28gid23gid1
gid24gid23gid23gid1
gid24gid28gid23gid1
gid25gid23gid23gid1
gid25gid28gid23gid1
gid25gid1 gid27gid1 gid31gid1
gid7gid19gid8
gid14gid9
gid8gid17gid9
gid1gid3gid10
gid23gid12gid8
gid20gid15
gid14gid1
gid7gid12gid24gid10gid1gid15gid11gid1gid6gid14gid16gid22gid19gid1gid4gid12gid13gid10gid18gid1gid26gid5gid2gid27gid1
gid8gid10gid16gid18gid11gid29gid27gid7gid3gid1
gid8gid10gid16gid18gid11gid24gid25gid31gid7gid3gid1
gid8gid10gid16gid18gid11gid25gid28gid29gid7gid3gid1
gid6gid2gid9gid29gid27gid7gid3gid1
gid6gid2gid9gid24gid25gid31gid7gid3gid1
gid6gid2gid9gid25gid28gid29gid7gid3gid1
Figure 3.25: Standard deviation of Grep in 10Mbps network
56
gid26gid1
gid28gid1
gid30gid1
gid32gid1
gid34gid1
gid27gid26gid1
gid27gid28gid1
gid27gid30gid1
gid28gid1 gid30gid1 gid34gid1
gid7gid19gid8
gid14gid9
gid8gid17gid9
gid1gid3gid10
gid23gid12gid8
gid20gid15
gid14gid1
gid7gid12gid24gid10gid1gid15gid11gid1gid6gid14gid16gid22gid19gid1gid4gid12gid13gid10gid18gid1gid26gid5gid2gid27gid1
gid7gid10gid18gid21gid13gid32gid30gid6gid3gid1
gid7gid10gid18gid21gid13gid27gid28gid34gid6gid3gid1
gid7gid10gid18gid21gid13gid28gid31gid32gid6gid3gid1
gid5gid2gid8gid32gid30gid6gid3gid1
gid5gid2gid8gid27gid28gid34gid6gid3gid1
gid5gid2gid8gid28gid31gid32gid6gid3gid1
Figure 3.26: Standard deviation of Wordcount in 1Gbps network
gid27gid23gid30gid29gid1 gid29gid23gid31gid29gid1 gid30gid23gid28gid28gid1gid34gid23
gid29gid28gid1 gid33gid23gid34gid28gid1 gid27gid26gid23gid33gid30gid1
gid28gid23gid31gid27gid1 gid33gid23gid26gid34gid1 gid32gid23gid34gid26gid1
gid26gid1
gid28gid26gid26gid1
gid30gid26gid26gid1
gid32gid26gid26gid1
gid34gid26gid26gid1
gid27gid26gid26gid26gid1
gid28gid1 gid30gid1 gid34gid1
gid7gid19gid8
gid14gid9
gid8gid17gid9
gid1gid3gid10
gid23gid12gid8
gid20gid15
gid14gid1
gid7gid12gid24gid10gid1gid15gid11gid1gid6gid14gid16gid22gid19gid1gid4gid12gid13gid10gid18gid1gid26gid5gid2gid27gid1
gid7gid10gid18gid21gid13gid32gid30gid6gid3gid1
gid7gid10gid18gid21gid13gid27gid28gid34gid6gid3gid1
gid7gid10gid18gid21gid13gid28gid31gid32gid6gid3gid1
gid5gid2gid8gid32gid30gid6gid3gid1
gid5gid2gid8gid27gid28gid34gid6gid3gid1
gid5gid2gid8gid28gid31gid32gid6gid3gid1
Figure 3.27: Standard deviation of Wordcount in 10Mbps network
57
Figure 3.24 reveals that when the network bandwidth is 1 Gbps, the standard deviation
of Grep using the native Hadoop goes up with the increasing block size. When the total
input file size is increased from 2GB to 8GB, the deviation of the native Hadoop system
noticeably increases. Unlike the native Hadoop, KAT?s standard deviation is non-sensitive
to the total input size and block size.
Figure 3.25 shows the standard deviations when the observed network bandwidth is
10Mbps. The results plotted in Figure 3.25 reveals that a low network bandwidth leads
to a large standard deviation for the native Hadoop, the performance of which is unstable.
Fortunately, even in case of a low network bandwidth, the performance of KAT is still
very stable. Moreover, KAT?s stability is not dramatically affected by network conditions.
The performance deviations of the native Hadoop share the same trend as that shown in
Figure 3.24. The native Hadoop?s performance deviation increases along with both input
size and block size. The experimental results indicate that in the native Hadoop system,
small block sizes or input data set help applications to achieve stable performance.
Figure 3.26 shows that the standard deviation of WordCount is larger than that of Grep
in both the native Hadoop and KAT when the network bandwidth is 1Gbps. In some cases,
KAT and the native Hadoop share very similar standard deviations. Furthermore, when
the input size equals to 2GB, KAT has higher deviation than that of the native Hadoop.
Nevertheless, the stability of KAT remains unchanged when the input size increases; the
native Hadoop has higher performance deviations whein the input data set becomes larger.
We conclude from this group of experiments that KAT is expected to outperform the native
Hadoop when input data sets scale up.
Figure 3.27 indicates that in case of low network bandwidth, WordCount?s standard
deviation in the native Hadoop increases when the block size or total file size are increased.
The results also show that the stand deviation of WordCount supported by KAT is very
small, meaning that KAT offer very stable performance for WordCount. The results plotted
in Figure 3.27 are consistent with those in Figure 3.25.
58
gid12gid24gid1
gid13gid12gid24gid1
gid14gid12gid24gid1
gid15gid12gid24gid1
gid16gid12gid24gid1
gid17gid12gid24gid1
gid18gid12gid24gid1
gid19gid12gid24gid1
gid20gid12gid24gid1
gid21gid12gid24gid1
gid13gid12gid12gid24gid1
gid12gid1 gid14gid13gid1 gid14gid21gid1 gid15gid20gid1 gid16gid18gid1 gid17gid16gid1 gid18gid15gid1 gid19gid13gid1 gid20gid12gid1 gid20gid20gid1 gid21gid18gid1
gid13gid12gid17gid1 gid13gid13gid15gid1 gid13gid14gid14gid1 gid13gid15gid13gid1 gid13gid15gid21gid1 gid13gid16gid19gid1 gid13gid17gid18gid1 gid13gid18gid16gid1 gid13gid19gid16gid1 gid13gid20gid21gid1 gid14gid12gid12gid1 gid14gid14gid12gid1
gid5gid22gid20
gid14gid22gid12
gid23gid23gid1
gid7gid15gid18gid12gid1gid28gid6gid12gid10gid20gid19gid11gid23gid29gid1
gid2gid4gid8gid1
gid3gid7gid6gid9gid5gid7gid1
Figure 3.28: Wordcount Execution process of Traditional Hadoop with 1Gbit/s Bandwidth
In summary, Figures 3.24-3.27 show clear evidence that the native Hadoop?s stability
is substantially affected by block size and input file size. Small block and input data sizes
tend to give rise to more stable performance in the native Hadoop system. In addition
to block and input data sizes, network bandwidth can seriously affect the native Hadoop?s
performance stability. High network bandwidth gains better performance stability for the
native Hadoop. Unlike the native Hadoop, KAT?s performance stability is independent of
network bandwidth.
3.5.6 Analysis of Map and Reduce Processes
Now we take a close look at map and reduce tasks when KAT is applied to improve the
system performance of Hadoop. We play a particular attention to the shu?ing phase of the
application supported by KAT and the native Hadoop. In this group of experiments, the
total input file size is 8GB, block size is 256MB, and the number of data nodes is 8.
Figure 3.28 shows that when the observed network bandwidth is 1Gbps, the native
Hadoop finishes task within 227 Sec. The results illustrates that the reduce task starts just
59
gid12gid24gid1
gid13gid12gid24gid1
gid14gid12gid24gid1
gid15gid12gid24gid1
gid16gid12gid24gid1
gid17gid12gid24gid1
gid18gid12gid24gid1
gid19gid12gid24gid1
gid20gid12gid24gid1
gid21gid12gid24gid1
gid13gid12gid12gid24gid1
gid12gid1 gid14gid21gid1 gid16gid15gid1 gid17gid19gid1 gid19gid15gid1 gid20gid20gid1
gid13gid12gid14gid1 gid13gid13gid19gid1 gid13gid15gid14gid1 gid13gid16gid18gid1 gid13gid17gid21gid1 gid13gid20gid12gid1 gid13gid21gid20gid1 gid14gid14gid20gid1 gid14gid17gid17gid1 gid14gid21gid16gid1 gid16gid18gid17gid1 gid18gid17gid16gid1 gid21gid15gid19gid1 gid13gid12gid16gid21gid1
gid5gid21gid19
gid13gid21gid11
gid22gid22gid1
gid7gid14gid17gid11gid1gid27gid6gid11gid9gid19gid18gid10gid22gid28gid1
gid2gid4gid8gid1
gid3gid7gid6gid9gid5gid7gid1
Figure 3.29: Wordcount Execution process of Traditional Hadoop with 10Mbit/s Bandwidth
gid12gid24gid1
gid13gid12gid24gid1
gid14gid12gid24gid1
gid15gid12gid24gid1
gid16gid12gid24gid1
gid17gid12gid24gid1
gid18gid12gid24gid1
gid19gid12gid24gid1
gid20gid12gid24gid1
gid21gid12gid24gid1
gid13gid12gid12gid24gid1
gid12gid1 gid14gid12gid1 gid14gid21gid1 gid15gid20gid1 gid16gid19gid1 gid17gid18gid1 gid18gid17gid1 gid19gid16gid1 gid20gid15gid1 gid21gid14gid1
gid13gid12gid13gid1 gid13gid13gid12gid1 gid13gid13gid21gid1 gid13gid14gid20gid1 gid13gid15gid19gid1 gid13gid16gid18gid1 gid13gid17gid17gid1 gid13gid18gid16gid1 gid13gid19gid15gid1 gid13gid20gid14gid1 gid14gid12gid15gid1 gid14gid14gid13gid1
gid5gid21gid19
gid13gid21gid11
gid22gid22gid1
gid7gid14gid17gid11gid1gid27gid6gid11gid9gid19gid18gid10gid22gid28gid1
gid2gid4gid8gid1
gid3gid7gid6gid9gid5gid7gid1
Figure 3.30: Wordcount Execution process of KAT-Enabled Hadoop with 1Gbit/s Band-
width
60
gid12gid24gid1
gid13gid12gid24gid1
gid14gid12gid24gid1
gid15gid12gid24gid1
gid16gid12gid24gid1
gid17gid12gid24gid1
gid18gid12gid24gid1
gid19gid12gid24gid1
gid20gid12gid24gid1
gid21gid12gid24gid1
gid13gid12gid12gid24gid1
gid12gid1 gid14gid16gid1 gid15gid21gid1 gid17gid16gid1 gid18gid15gid1 gid19gid14gid1 gid19gid21gid1 gid21gid13gid1 gid21gid21gid1
gid13gid13gid16gid1 gid13gid14gid18gid1 gid13gid15gid17gid1 gid13gid16gid16gid1 gid13gid17gid13gid1 gid13gid18gid12gid1 gid13gid18gid21gid1 gid13gid20gid16gid1 gid13gid21gid13gid1 gid13gid21gid19gid1 gid14gid12gid16gid1 gid14gid14gid13gid1 gid14gid16gid13gid1
gid2gid13gid12
gid8gid13gid7
gid14gid14gid1
gid4gid9gid10gid7gid1gid15gid3gid7gid5gid12gid11gid6gid14gid16gid1
gid2gid4gid8gid1
gid3gid7gid6gid9gid5gid7gid1
Figure 3.31: Wordcount Execution process of KAT-Enabled Hadoop with 10Mbit/s Band-
width
after the map task slows down. After a period, the reduce task is completed within a very
short time interval. The map task is slowing down at 176 Sec., because data may not be
well balanced among the eight data nodes. Imbalanced input data sets among the data
nodes make some data nodes finish local jobs earlier than the others. Consequently, data are
transferred from the nodes storing larger input sets into those achieving smaller input data.
In a heterogeneous Hadoop system, data are likely to be transferred from slow nodes to fast
nodes that finish processing local data earlier than the slow ones. The above two potential
types of data transfers among data nodes inevitably cause the performance degradation.
Figure 3.28 illustrates that the reduce task starts relatively slow and then finishes very
fast, because there is a network transfer delay for data prepared for the reduce task. In other
words, the reduce tasks must wait for intermediate data transferred from remote data nodes
to the local one. In the case where the network bandwidth is high (e.g., 1Gpbs), the map
phase dominates the execution time of the tested Hadoop application. This result implies
that improving the performance of the map phase helps in reducing WordCount?s execution
time.
61
Figure 3.29 gives evidence that observed network bandwidth significantly affect the
Hadoop performance; the execution time of WordCount dramatically increases from 227 to
1065 seconds when the observed network bandwidth is significantly reduced from 1 Gbps
down to 10 Mbps due to resource sharing. Interestingly, the reducer of WordCount starts
its execution at approximately 176 seconds, which is the same as the reducer?s starting time
in an earlier case (see Figure 3.28) where the network bandwidth is 1 Gbps. Comparing
Figures 3.28 and 3.29, we confirm that the network bandwidth has no performance impact
on reduce tasks, the performance of which largely depends on the processing capacity of data
nodes.
The major performance difference between case 1 (see Figure 3.28) and case 2 (see
Figure 3.29) lies in the performance of the shu?ing phase in reduce tasks. For example,
the lengths of the shu?ing phase in case 1 and case 2 are 34 seconds (i.e., from 176 to 210
seconds) and 793 seconds (i.e., from 176 to 969 seconds), respectively. Compared with the
shu?ing phase in case 1, the length of the shu?ing phase in case 2 is increased by a fact
of 23.3 due to the reduced network bandwidth. This experiment show strong evidence that
the shu?ing phase of the native Hadoop is very sensitive to observed network bandwidth in
clusters. Our KAT strategy proposed in this study aims to address this performance issue.
Figure 3.30 demonstrates that when the network bandwidth is 1Gbps, KAT marginally
improves the Hadoop?s performance by 2.6%. Such an performance improvement is con-
tributed by the shortened length of the shu?ing phase in the KAT-enabled Hadoop, because
the network overhead of the shu?ing stage in the native Hadoop system is eliminated by
the KAT scheme.
Comparing the shu?ing phases plotted in Figures 3.28 and 3.30, we realize that the
shu?ing phase in the native Hadoop progresses very smoothly, which is not the case for the
KAT-enabled Hadoop. Figure 3.30 shows that the shu?ing process in KAT clearly pauses
twice at 77.5 and 86.5 seconds, respectively.
62
Figure 3.31 reveals that when the observed network bandwidth is low (e.g., 10 Mbps),
KAT speeds up the performance of the native Hadoop system by a factor of 4.35 (i.e., the
execution time of WordCount is reduced from 1065 seconds to 245 seconds). Unlike the
shu?ing phases depicted in Figures 3.29 and 3.30, the shu?ing phase in Figure 3.31 makes
very smooth progress during the interval between 176 and 229 seconds. This performance
trend is reasonable, because input data are better balanced in the KAT-enabled Hadoop
than in the native Hadoop.
Now let us take a close look at the map phases plotted in Figures 3.28 - 3.31. An
important observation drawn from Figure 3.28 - Figure 3.31 is that KAT allows the map tasks
to make very little progress after the reduce tasks start their execution. This performance
trend is more pronounced when the observed network bandwidth is as low as 10 Mbps. For
example, the map tasks make as little as 1% progress in the KAT-enabled Hadoop after
the reduce tasks get started (see Figure 3.31); in the native Hadoop, the map tasks make
more than 22% progress after the reduce tasks start at 176 seconds (see Figure 3.29). Map
tasks does not make any noticeable progress in the KAT-enabled Hadoop, because KAT well
balance input data sets across all the data nodes of the cluster. When it comes to KAT,
there is no demand for the map tasks to further process input data during the shu?ing
phase, because the amount of data migrated among the data node is significantly reduced
by the KAT scheme.
As aforementioned experimental results confirm that KAT speeds up the performance
of the native Hadoop system when the network bandwidth is set to both 1 Gbps and 10
Mbps. The performance improvements become possible, because KAT significantly reduces
network transfer overhead induced by intermediate data. Therefore, reduce tasks in the
KAT-enabled cluster are not slowed down in order to wait for data transferred from remote
nodes to local ones.
63
3.6 Summary
In this study, we observed that a performance bottleneck in Hadoop clusters lies in the
shu?ing stage, in which a large amount of intermediate data is transferred among data nodes.
The amount of transferred data heavily depends on locations and balance of intermediate
data with the same keys. To solve this performance problem, we proposed a key-aware
data placement strategy or KAT for Hadoop clusters. The pre-calculation module yields
intermediate keys for data entries prior to the shu?ing stage of Hadoop applications; the
data distribution module allocates data according to pre-calculated keys made by the first
module. KAT reduces the amount of transferred intermediate data during the shu?ing
phase by keeping data with the identical key to the same node. Consequently, the KAT
strategy successfully alleviates the performance-bottleneck problem introduced by excessive
data transfers.
After implementing KAT in the Hadoop distributed file system (or HDFS, for short), we
evaluated the performance of KAT on an 8-node Hadoop cluster using two real-world Hadoop
applications - Grep and WordCount. The experimental results show that KAT reduces the
execution times of Grep and Wordcount by up to 21% and 6.8%, respectively. We also applied
the traffic-shaping technique to resemble real-world workloads where multiple applications
are sharing network resources in a Hadoop cluster. We evaluated the impacts of observed
network bandwidth on the performance of KAT. The empirical results indicate that when
observed network bandwidth drops down to 10Mbps, KAT can shorten the execution times
of Grep and Wordcount by up to 89%.
64
Chapter 4
Energy-Efficient HDFS Replica Storage System
In this Chapter, we propose a new replica architecture design that reduces the energy
consumption of redundancy-based HDFS distributed file systems. The core conception of
our approach is to conserve power consumption caused by extra data replicas. There are two
steps towards achieving high energy efficiency of the HDFS system. First, all disks within
in a data node are separated into two categories: primary replicas are stored on primary
disks and replica copies are stored on backup disks. Second, disks archiving primary replica
data remain running while backup disks are placed into the sleep mode. The backup disks
may be waked up under two conditions: (1) any primary disk fails and (2) local machines
finish processing their local primary data and start help other machines to process data.
Under these conditions, corresponding sleeping disks are waked up and provide I/O service.
Theoretically speaking, our approach can reduce at least 50% of power consumption in
a replica-based storage system. The energy efficiency of our proposed scheme can further
increase when the number of backup disks is goes up. Our method saves energy at the cost of
increasing the overhead of accessing backup disks. Although such overhead have performance
impacts on heterogeneous systems, the overhead is marginal in a balanced system. In our
architecture, multiple techniques are used to predict the usage of backup disks in order to
reduce the wakeup overhead. We implement the energy-saving scheme in the HDFS system,
which manages the power states of all disks in Hadoop clusters. In the future, we will
optimize the wakeup prediction modules to further reduce the energy-saving overhead.
65
4.1 Introduction
Evidence show that new data placement strategies could not only improve system per-
formance, but also save energy consumption in Hadoop clusters. In the first part of this
dissertation research, we develop a novel data placement strategy to boost performance of
Hadoop clusters. Now we are in a position to address an important energy-efficiency issue
in Hadoop clusters. Processors, storage, and network interconnects are three main power-
consuming components. Our preliminary results show that it is feasible to save energy in the
computing and data nodes of a Hadoop cluster. We start addressing the energy-efficiency
issue by focusing on data storage in Hadoop clusters. We aim to develop energy-efficient
data placement schemes without negatively affecting computing performance.
4.1.1 Motivation
There are three factors motivate us to investigate the energy-efficiency issue in the
Hadoop Distributed File System (HDFS). Energy-efficient HDFS can reduce operational
cost of data centers by cutting large electrical bills. The cooling cost of data centers also
will be reduced if energy-efficient HDFS is deployed. Because saving cooling cost is out the
scope of this dissertation research, let us consider the following three motivations related to
energy-efficient Hadoop clusters.
? Data replicas can be used to improve both reliability and performance in clusters.
? Using multiple disks within a data node can offer fault tolerance.
? Power can be saved by placing disks archiving replicas into the low-power mode.
Applying data replicas in HDFS can achieve high reliability and performance. To main-
tain high data availability, one can place data replicas across multiple data nodes. If one
data node fails, data replicas stored on other nodes can be used to recover such a failure.
Data stored in the failed node will be restored from the extra copies from other surviving
66
nodes. Original data might be modified by mistakes; data replicas allow users to recover
the modified data back to the previous version. In the Hadoop system, fault tolerance is
a salient feature over the other parallel computing models like MPI. The fault tolerance
becomes possible in Hadoop clusters thanks to data replicas in HDFS.
In addition to high reliability, replica data can boost I/O performance of the Hadoop
system through. Our earlier studies show that network data transfer in HDFS is very expen-
sive when network resources are shared among various applications. Keeping replica copies in
Hadoop cluster can save data transfer time while improving the overall system performance.
This is especially true when it comes to heterogeneous clusters, where some nodes finish
processing local data earlier than other nodes due to heterogeneity in computing. When fast
nodes store replicas of local data of slow nodes, the fast nodes can help the slow nodes to
process data without migrating data from the slow nodes. In other words, keeping extra
copies for local data of the slow nodes on the fast nodes reduces the amount of transferred
data from the slow to fast nodes.
Our energy-saving scheme described in this Chapter is motivated by another fact that
each data node in modern Hadoop clusters contains multiple disks. In a special case where
each node consists of a single disk, it is impossible to frequently put the disk into the low-
power state unless I/O load is extremely low. Multiple-disk-equipped data nodes boost
system availability; one disk?s failure does not lead to the failure of the entire data node.
On the other hand, it is more cost-effective to leverage multiple small disks rather than one
single large one. The capacity of a hard drive depends on the hardware techniques; disk price
exponentially increases when the increase of disk capacity. Instead of deploying a single disk
with large capacity in a data node, it is cost-effective to build a virtual large disk using
multiple inexpensive small disks. Experiment results indicate that the Hadoop performance
of using multiple disks is even higher than using a single disk array, because Hadoop can
utilize multiple CPU cores to run multiple jobs accessing different files at the same time.
Our experiments also show that there is no need to deploy an expensive high-performance
67
single disk in each node of the Hadoop system. Many Hadoop applications does not benefit
a whole lot from high I/O throughput of the expensive single disks.
In this chapter, we propose an approach to conserving energy of Hadoop clusters by
placing a large number of backup disks into the low-power mode. The contributions of our
approach are summarized as follows.
? We categorize data replicas into two camps: primary copies and backup copies. Pri-
mary copies are the core data processed by map and reduce tasks. Backup copies are
used to recover primary copies in case of any disk failure. Backup copies also will be
used to improve system performance by eliminating unnecessary data migration from
slow nodes to fast nodes.
? We design a novel data placement scheme to place primary data and backup replicas on
multiple disks of each data node. In the native HDFS of the Hadoop system, all replica
copies are treated equally and stored on disks in a mixed manner. In our new scheme,
the primary data and backup replicas are stored in a way so that primary and backup
disks can apply different power management to save energy. In particular, primary
disks are controlled by the traditional power management module; the backup disks
are manipulated by a new power management module. Backup disks are placed into
the standby mode for a long period of time when the disks are sitting idle. When a data
node or a disk fails, corresponding backup disks are waked up to continue providing
I/O service.
? We address the overhead issue of waking up backup disks by proposing two methods
to reduce I/O delays incurred by our new power management module. In the first
approach, we use RAID-5 as backup disks, because the primary goal of backup replicas
is to recover the primary replicas as quickly as possible. RAID-5 is a disk array
that offers high I/O throughput and good reliability for backup disks. The second
method is to hide the disk wakeup overhead by predicting when backup disks will
68
wakeup. Our preliminary results show that our scheme can significantly reduce the
power consumption of HDFS in Hadoop clusters.
4.2 Background and Previous Work
4.2.1 RAID Based Storage Systems
Redundant array of independent disks (RAID) is a storage technique combining multiple
disks to form one unit to provide high I/O throughput and reliability [35]. RAID was first
introduced by Patterson, Gibson, and Katz in year 1988 [36] with the name of ?redundant
array of inexpensive disks?. RAID has seven levels starting from level 0 to 6. Two goals to be
achieved by all the levels of RAID are high performance or/and reliability. Prior research [10]
shows that disk arrays are a good candidate for high I/O performance and reliable secondary
storage. Among all the RAID levels, the most popular schemes are RAID-1 and RAID-5.
RAID-1 provides data mirroring without parities or striping. RAID-1 improves data
reliability by storing data identically on two disk devices. If there one disk fails, another
disk can continue I/O services. And RAID-1 can improve read performance with appropriate
operating system supports. However, RAID-1 has low space efficiency, because 50% disk
space is reserved for data mirroring.
Unlike RAID-1, RAID-5 employs data-block-level striping with distributed parities,
thereby improving both data reliability and performance without paying huge amount of
extra space. RAID-5 tolerates one disk failure; a failed disk can be rebuilt from other sur-
viving disks and parity blocks. RAID-5 is a parallel storage system providing high I/O
performance. Since parity blocks are distributed stored on all the disks in RAID-5, none of
the disks becomes a performance bottleneck of the disk system. Space efficiency of RAID-5
is high; for example, in a four- disk RAID-5, extra space for parity blocks wastes only 25%
of total disk space.
69
4.2.2 Power Savings in Clusters
A previous simulation study shows how to turn off a subset of storage nodes during
the periods of low utilization to save energy in clusters [3]. On the other hand, Willis
and Jignesh modeled a few energy-saving strategies and suggested that turning off a subset
nodes of MapReduce clusters is not an efficient way of saving energy in most cases [26]. A
handful of researchers have been working on the nature of power conservation techniques.
For example, Meisner et al. show much of power consumed by data centers is wasted in
idle systems. They propose PowerNap to quickly transition between a high-performance
active state and a low-power state [31]. Prior to that study, many schemes were proposed to
dynamically change CPU frequencies to save processor power without noticeably reducing
performance. For example, high energy efficiency can be achieved in server clusters by
lowering CPU frequency while maintaining good Quality of Service (QoS) during the non-
busy periods [41]. When we reduce the power consumption of computing clusters, the power
usage of cooling systems is reduced accordingly [5].Bash and Forman suggested to save power
of a cooling system by placing clusters in geographic locations [5]. And Facebook uses the
same strategy to place clusters in Oregon to utilize the cool and dry weather helping them
to cool down machines in the Facebook data centers.
Leverich and Kozyrakis developed an energy-efficient Hadoop cluster, where energy con-
sumption is saved by the scaling-down method [28]. GreenHDFS was proposed by Kaushik
and Bhandarkar in 2010 to save the energy from the cold zone data in HDFS [24, 25]. For
MapReduce clusters, some scheduling algorithms help in saving energy consumption. For
example, Yigitbasi proposed an energy-efficient workload scheduling to conserve energy in
heterogeneous clusters [55]. After examining the existing methods of energy saving in clus-
ters, we investigate a novel approach to conserving energy in Hadoop clusters through data
placement.
70
4.2.3 Disk Power Conservation
Magnetic disks are the most widely used storage systems in the IT industry. High
power consumption is one of a challenge issue facing large-scale data-intensive applications.
A recent study shows that energy efficiency of storage systems can be enhanced by adjusting
different disk speed and prefetching techniques [43, 8]. Narayanan proposed the write off-
loading strategy backing up the solution of spinning down disks on the aspect of writes
performance [33]. Redundancy based cache design for energy-efficient and high-performance
storage system is also available for single-speed disks [54]. Different energy conservation
techniques are employed in disk arrays [37, 29]. Lang et al. made use of data replicas to save
energy in disk arrays [27]. A similar replica scheme was proposed by Huang et.al to achieve
high energy efficiency and good I/O performance [19].
4.3 Design and Implementation Issues
Each data node in a Hadoop cluster consists of multiple disks, among which some disks
store primary copies and others store backup copies. Primary disks are likely to be kept
in the active mode, whereas backup disks are placed in the low-power mode to conserve
energy. The native HDFS is not aware of primary and backup disks in Hadoop clusters,
thereby being unable to improve energy efficiency of backup disks. In the native HDFS, all
the replicas are managed by the name node of a Hadoop cluster. The name node treats
every data replica exactly in the same way without addressing the energy-efficiency issue. In
this section, we describe how to extend the HDFS design to make this distributed file system
energy efficient. To design the energy-efficient HDFS, let us address the following issues in
the subsequent sections.
? Replica Management.
? Power Management.
? Putting Disks into the Standby Mode.
71

Figure 4.1: Architecture Design of the Energy-Efficient HDFS
? Accessing Backup Disks.
? Performance Optimization.
4.3.1 Replica Management
Replica Management is the most important and critical component in the design of the
energy-efficient HDFS. All the other components relies on the replica management module
to save energy consumed in HDFS. Recall that data managed by HDFS are divided into two
camps - primary data and backup replicas. Regardless the number of replicas for each input
file, there is only one primary copy of the data and all the other copies are considered as
backup replicas.
The goal of the energy-efficient HDFS is to save energy by putting disks storing backup
replicas into the standby mode for a long period of time. Note that a primary copy and its
72
Namenode
Datanode1 Datanode2 Datanode3
DataContent
Nodelist:1,2,3
ReplicaBit:False
DataContent
Nodelist:2,3
ReplicaBit:True
DataContent
Nodelist:3
ReplicaBit:True
Number of Replica : 3
Each Data Package Includes:
1. The content of data
2. List of Destination Datanodes
3. Boolean ReplicaBit
Figure 4.2: Data Flow of Copying Data into HDFS
backup replicas are identical; however, the primary copies and backup replicas are located
on multiple disks of different data nodes. Figure 4.1 shows an example where each data
set has a primary copy and a backup replica. Figure 4.1 depicts the hardware architecture
for the replica management design, where each data node is comprised of two independent
disks. The master node (i.e., the name node in HDFS) is copying four individual blocks into
four data nodes. As we can see from Figure 4.1, the primary copy of each block resides on a
disk different from those storing the backup replicas. Since the backup replicas are identical
to their primary copy, each replica consumes the same disk space as its primary copy. It
is straightforward to configure disks in each data node according to the number of replicas.
For instance, in the case demonstrated in Figure 4.1 where the number of replicas is 2, each
data node contains two disks with the same capacity; one disk stores primary copies and
another disk is dedicated to backup replicas.
After describing the system architecture, we present a data flow of creating data sets to
be archived in the energy-efficient HDFS. Figure 4.2 shows the data flow diagram that reveals
how data blocks are distributed among data nodes in HDFS. The primary copies of data
blocks are delivered by the name node and stored in the first data node (i.e., Datanode1).
Then, backup replicas of the primary copies are created and transferred from the first data
73
node the second data node (i.e., Datanode2). Similarly, backup replicas are passed from the
second data note to the third one. Backup replicas are repeatedly created across multiple
data nodes until the HDFS reaches the number of replicas specified in the configuration. All
the data nodes is pre-selected by the name node and saved as a list along with the data
package. Each data node removes its name from the data-node list after receiving data blocs
from the predecessor node. For example, the list contains node 1, 2, and 3 before node
1 stores primary copies; the list contains only node 2 and 3 after node 1 finishes storing
the primary copies. After the last data node finishes creating replicas, the data-node list
becomes empty.
In addition to the data-node list transferred along with data copies, we introduce an
extra bit called replica bit to identify primary copies and backup replicas. When the replica
bit is false, a data package will be processed as a primary copy and stored on primary disks.
Otherwise, the data will be treated backup replicas and stored on backup disks. For example,
in Figure 4.2, the replica bit for node 1 is set to false, meaning that data copies stored in
node 1 are primary copies. The replica bits for node 2 and 3 are set to true, which indicates
that backup disks in node 2 and 3 are used to save backup replicas.
Creating data replicas and store them on primary and backup disks can help in reducing
disk failure rates. For example, disks with high failure rate can be utilized as backup disks,
because backup disks are rarely used compared to their primary counterparts. To improve
I/O performance, we use disks offering high I/O throughput as primary disks. Configuring
disks in this way can maximize disk utilization and data availability. Primary copies, which
are treated as popular data sets in our design, are all resides on high-performance disks to
provide fast and reliable services.
4.3.2 Power Management
Each data node in a Hadoop cluster manipulates both primary and backup disks (see
Figure 4.1); our scheme strives to turn all backup disks into the standby mode after all
74
backup replicas are generated. In our implementation, we make use of a Linux system
call to put disks in the standby mode. The design challenge is when to invoke this Linux
system call to place the backup disks into the standby mode. Disk power transitions are
governed by a power management policy. In this Section, we introduce the design of the
power management policy as well as its implementation in the Hadoop system.
Distributing Primary Copies and Backup Replicas
The first challenge is how to separate backup replicas from their primary copies and
distribute them on multiple disks. In the Hadoop configuration files, there is an item speci-
fying the directory of HDFS data storage. Separating backup replicas from primary copies
is more than simply adding a backup replica directory into the configuration file.
Let us first introduce the process of copying multiple replicas into HDFS data nodes.
As mentioned in the previous section, primary copies and their backup replicas are identical
in terms of data content. And during the data copying process, we add the replica bit along
with data packages to indicate whether a package is a primary copy or a backup one. The
replica bit changes when the data packages are passed from one data node to another node.
Only the first data node receiving data packages has the replica bit set as false. All the other
data nodes receiving the same packages have the replica bit set as true.
Upon receiving data packages, a data node first checks the replica bit. If the replica
bit is false, then the packages should be treated as primary copies to be stored in primary
disks of the data node. When the replica bit is set to true, the packages must be treated as
backup replicas to be stored on backup disks in the data node. In doing so, primary copies
and backup replicas are stored in primary and backup disks, respectively.
In addition to separating backup replicas from their primary copies, separated data
blocks have to be readily accessed by Hadoop applications. Accessing data replicas can be
easily done in the following way. One convenient approach to making HDFS access multiple
disk locations is to change the configuration file in HDFS. The configuration file, supporting
75
both the reading and writing process, has one item named ?dfs.data.dir?. The value of this
item controls locations where HDFS stores and reads data copies. In our implementation,
we extend the ?dfs.data.dir? item in a way that locations of both primary copies and backup
replicas are specified and separated using comma. In order to change the locations of backup
replicas, we add an item - ?dfs.replica.dir? - in the configuration to identify the location of
backup data folders. In our design, data replicas are grouped into primary copies and backup
replicas located on primary disks and backup disks, respectively.
Putting Disks into the Standby Mode
After primary and backup replicas are respectively stored in primary and backup disks,
the backup disks can be put into the standby mode to conserve energy. Power state transi-
tions of backup disks introduce overheads in both performance and energy consumption. For
example, transitioning back from the standby mode to the active mode inevitably increases
time spent in accessing replicas on disks. Backup disks can be placed into the standby mode
either automatically or manually. We are able to adjust the disk power management policy
by setting a standby timeout; disks are automatically placed into the standby mode after
being sitting idle for a certain time period (i.e., timeout). We make use of the hdparm
command to manage disk power states by setting multiple parameters. In the automatic
approach, we use hdparm to set the timeout period to dynamically turn disks into standby.
On the other hand, we manually execute hdparm to force target disks to switch into the
standby mode. Note that when we manually control disk power, the parameters in hdparm
are disabled; rather, the sleep parameter can put the disks into the standby mode. In sum-
mary, both method allow our disk power manager to place backup disks into the standby
mode in HDFS.
76
Accessing Backup Disks
Disks in the standby mode are waked up if any data stored on them are accessed. To
avoid the frequent power-state transitions, we strictly control the number of transitions. And
the disk power manager embedded in HDFS manipulates backup disks? power status. Both
the automatic and manual methods are implemented in the power manager. The automatic
and manual schemes are cooperating together to manage the power states of backup disks in
HDFS. The manual scheme manages the power of backup disks when the disks are intensively
reading or writing data during the data copying process or recovering process. Copying data
into HDFS and recovering any failed disks tiger disks issue a large number of writes and
reads in a short period of time. During the copying and recovering processes, the disk power
manager performs in the manual model. In all the other cases, the disk power manager
works in the automatic mode. If a disk has been sitting idle for a period of time since
the last access, the standby mode is triggered. These cases include data content updates,
synchronization, and meta data updates.
In heterogeneous clusters, processing heterogeneity raise another performance optimiza-
tion issue. Because computing capability of data nodes in a heterogeneous cluster may dra-
matically vary, data are likely to be migrated from slow data nodes to fast data ones thanks
to the load balancing mechanism in Hadoop. Backup replicas can be used to speed up map
processes by eliminating time spent in transferring migrated data from the slow nodes to the
fast ones. Rather than migrating data from slow nodes, replicas of primary copies stored in
the slow nodes can be archived in the backup disks of the fast nodes. In doing so, migrated
data no longer need to be transferred from the slow nodes, since data replicas can be found
in the backup disks of the fast nodes.
In last paragraph, we mentioned about avoiding the access to the backup replica disks.
To address the heterogeneity issue in Hadoop, we extend the original design of energy-efficient
HDFS. We split the dfs.data.dir values into two categories - primary-copy directories and
backup-replica directories. In the earlier version of our design, backup replica directories
77
1 Runtime r = Runtime . getRuntime() ;
2 try
3 {
4 /?
5 ? Here we are executing the UNIX command hdparm for disk mode operation .
6 ? The text returned is system message from executing the hdparm command
7 ? This message could be stored in log fil e for future investigation
8 ?/
9 Process p = r . exec(?sudo hdparm ?Y /dev/sdb?) ;
10 BufferedReader br = new BufferedReader(new InputStreamReader (new
BufferedInputStream(p. getInputStream()))) ;
11 // Read the feedback and output the message from system
12 String line ;
13 while ((line = br()) != null)
14 {
15 System . out . println (line) ;
16 }
17 // Check for ls failure
18 } catch (IOException e)
19 {
20 System . err . println (e . getMessage ()) ;
21 }
Listing 4.1: Java System Call Source Code
are implemented as a stand alone item in the configuration file. HDFS accesses data in
primary disks in most cases. If backup replicas must be accessed to avoid aforementioned
data migrations, HDFS will provide the addresses of the required data blocks to let Hadoop
access the data from the backup disks. Please note that a short time period to wakeup a
backup disk before backup replicas can be accessed.
Java System Call
In Section 4.3.2, we proposed two power management schemes. The default scheme can
be implemented by specifying the timeout parameters in the hdparm configuration file under
the etc directory in the Linux system. On the other hand, the manual power management
scheme implemented in the Java language has to be incorporated into HDFS. The integration
is accomplished by the Java system call function executing the system command inside a
java process.
78
In code listing 4.1, we present a fraction of the code as an example of executing a Linux
command inside HDFS using Java. Executing the Linux command using the Java language
offers two immediate benefits. One is that it allows us to change the disks? power mode as
the same as what we did using Linux command. Since Java is a high level language without
low level system control interfaces, using Java system call provides a convenient channel to
achieve our goal. On the other hand, using Java system call allows HDFS to directly control
system call commands and to seamlessly cooperate with the local file system. This approach
makes it possible for other researchers to apply other power management strategies in HDFS
in the future. After such an extension, HDFS is able to collaborate with the local file system.
Our integration fills up the gap between HDFS and the local system.
4.3.3 Performance Optimization
With our energy-efficient HDFS in place, the energy efficiency of the Hadoop system is
improved by keeping backup disks in the standby mode for a long period of time. We observe
that it takes extra overhead to transit disk power from the standby mode. There are three
general approaches to tackling this performance problem. First, one can deploy disks with
short power-state transition time to immediately reduce the overhead. Second, reducing the
number of power-state transitions can substantially minimize overheads caused by power-
state transitions. For example, employing disks with low failure rates can help in reducing
the number of power transitions incurred by disk recovery. on the backup replica disks.
Third, we can develop prediction algorithms to hide the delays introduced by power-state
transitions. For example, if we can accurately predict the time at which backup disks should
be waked up, then HDFS can wake up the backup disks a few seconds prior to that time.
Thus, when the backup disks are about to be accessed, they have already been transited
back to the active mode.
79
Deploying RAID in HDFS
We decide to deploy RAID in HDFS to offer high I/O throughput and low data failure
rate. Please refer to Section 4.2.1 for the background of the RAID systems and all different
RAID levels. In our design, we choose to use RAID-5 as backup disks to optimize the perfor-
mance of energy-efficient HDFS. Recall that RAID-5 has a block level striping structure (see
Section 4.2.1), meaning that data can be accessed in parallel to achieve high I/O throughput.
RAID-5 can continuously provide I/O service even in case of one failed disk in the array.
The failure rate, R, of RAID-5 is expressed as Equation 4.1 in terms of the number of drives,
n, and the drive failure rate, r. In this reliability model, disk drives in the array are identical
and independent of each others.
R = n(n?1)r2 (4.1)
Another advantage of RAID-5 is that parity blocks are uniformly distributed across
on all disks; as a result, no disk becomes performance bottleneck in RAID-5. Although
RAID-5 improves the overall performance by the virtue of high I/O throughput, employing
RAID-5 does not affect or hide performance delay caused by disk power-state transitions.
In the native Hadoop system, high disk I/O throughput might not be needed, because in
many Hadoop applications, the memory and CPUs of Hadoop clusters rather than disks are
performance bottlenecks. Unlike traditional Hadoop, our energy efficient HDFS relies on
RAID-5 to offer high-performance I/Os for back replicas. In homogeneous clusters, backup
replicas are rarely accessed as local mappers? inputs; in most cases, the backup replicas are
used to recover failed disks where primary copies must be recovered. During the primary
disk recovery process, RAID-5 can quickly access backup replicas in parallel. Thus, RAID-5
substantially speeds up the data recovery process.
80
Prediction for Wake-Ups
RAID-5 improves the overall performance of energy efficient HDFS. However, RAID-
5 can not eliminate delays caused by power-state transitions. This fact motivate us to
investigate prediction solutions that can help to hide the performance delays in energy-
efficient HDFS.
The prediction module aims to waking up backup disks a few seconds prior to the time
when the backup disks must be active. Waking up the disks in advance can guarantee that
the backup disks are in the active mode when the disks are about to be accessed.
Pay attention to access patterns of backup replicas, we observe that backup replicas are
only accessed in a few cases described in Section 4.3.2). Some cases can be directly predicted
whereas others can not be predicted without hints provided by applications. Note that it
is extremely difficult if not impossible to predict the time when primary disks encounter
failures.
Now let us consider a case where accesses to backup replicas can be predicted. Data
nodes are aware of data being processed and data left over to be processed. Data nodes keep
track of primary-data processing, being aware of when the process will be finished. When
map tasks fetch the last block of primary data, backup disks are immediately waked up by
HDFS. After waking up the backup disks in advance, the following steps will be performed.
First, if the primary copies of those backup replicas has not been finished yet on the other
slow data nodes, the map tasks on the local fast nodes continuously process the unprocessed
data content loading from the backup disks. Second, when the Hadoop system is about to
finish, backup disks are ready to store the backup replicas of the processes? results.
The prediction module aims to hide the latency incurred by power-state transitions in
backup disks. The overall performance of energy-efficient HDFS is improved by applying
the prediction module to wake up backup disks in advance. Different prediction algorithms
lead to various performances and energy efficiencies. The goal of the prediction algorithms
81
is to make good tradeoffs between performance and energy savings. Such tradeoffs can be
managed by system administrators of Hadoop clusters.
4.4 Experimental Results
In this section, we conduct preliminary tests to compare the energy efficiency and per-
formance of our energy-efficient HDFS system against the native HDFS. We start this section
by introducing the experiment settings. After presenting performance analysis, we provide
suggestions on how to configure energy-efficient HDFS based on workload conditions.
4.4.1 Experiments Setup
Table 4.1: Energy-Efficient HDFS Cluster Specifications
Type Hardware Software
1?Intel Xeon 2.4 GHz processor Ubuntu 10.04
Name 1?4 GBytes of RAM Linux kernel
2.6.23
Node 1?1 GigaBit Ethernet network card Hadoop 0.20.2
?1 1?Seagate 160 GB SATA disk
Intel Xeon 2.4 GHz processor Ubuntu 10.04
Data 2 GBytes of RAM Linux kernel
2.6.23
Node 1 GigaBit Ethernet network card Hadoop 0.20.2
?3 1?Seagate 500 GB SATA disk
1?1.5 TB external SATA Disk Array of RAID 5
Wecarry outa set of experiments on a 4-data-nodecluster. Table 4.1shows thehardware
specifications of the tested cluster containing two types of nodes - namenode and data nodes.
The namenode controls all the data nodes of the cluster and schedules tasks during the course
of applications? executions. The three data nodes store all primary and backup replicas. The
namenode in our energy-efficient HDFS is similar to that of the native HDFS in terms of
hardware configuration, because the namenode is energy-efficient at the software level. The
data nodes in the energy-efficient HDFS is different from the native HDFS with respect to
both hardware and software. For example, each data node in the energy-efficient HDFS
82
consists of an external RAID-5 disk array serving as backup disks. In addition, each data
node is comprised of an energy-efficient management module.
In many cases, primary and back disks in a data node are identical. Nevertheless,
it is not assumed, by any means, that disks in data nodes are homogeneous. Data disks
and backup ones may be heterogeneous in terms of both capacity and performance. In our
testbed, we an input data set of 75GB consists of 150 text files (500MB/file), which are
evenly distributed on three data nodes with 25 GB primary data residing on each primary
replica disk. These data files only require 150GB space to accommodate two backup replicas
on the three data nodes when the number of replicas is set to 3. The capacity of external
disk arrays in the testbed meets the space requirement. We use a power meter (i.e. P4400
Kill A Watt) to measure the energy consumption of the tested cluster. The measurement
errors of P4400 is below 0.2%. Each data node and its disk array are connected to a power
meter used to measure power usage.
4.4.2 What Do We Measure
The primary goal of energy-efficient HDFS is to reduce energy consumption caused
by data nodes in a Hadoop cluster. Normally, high energy efficiency comes at the cost
of performance. In our experiment, we also measure response times to quantify impact
energy-efficient HDFS on the performance of the tested cluster. The power consumption is
measured in the unit of KWH, whereas response time is recorded in minute. The minimum
unit measured by the P4400 power meters is 0.01 KWH, which is considered as a large value
for each data-node?s power measurement. To address this issue, we increase the size of input
data sets to boost the data nodes? power consumption that can be accurately measure by
P4400. The power consumption of each data node ranges anywhere from 70 to 120 watts.
We run WordCount as a benchmark application on the tested Hadoop cluster, because
WordCount is a real-world read-intensive Hadoop application. Note that WordCount is a
very popular benchmark used to evaluate performance of Hadoop clusters.
83
gid5gid2gid4gid7 gid12gid12gid5gid2gid4gid7 gid9gid23gid10
gid31gid29gid33 gid28gid22gid32gid36gid33gid35gid29gid32gid30gid37 gid28gid22gid33gid29gid32gid30gid36gid33gid35gid29 gid28gid21gid29
gid28gid1
gid30gid28gid1
gid32gid28gid1
gid34gid28gid1
gid36gid28gid1
gid29gid28gid28gid1
gid29gid30gid28gid1
gid29gid32gid28gid1
gid29gid34gid28gid1
gid29gid36gid28gid1
gid3gid17gid12gid18gid14gid20gid24gid3gid13gid11gid15gid12gid17gid19gid1gid5gid2gid4gid7gid1 gid6gid18gid15gid14gid15gid17gid9gid16gid1gid5gid2gid4gid7gid1
gid6gid9gid16gid14gid13gid12gid16gid9gid1gid7gid10gid11gid9gid1gid23gid11gid10gid12gid20gid17gid9gid24gid1
Figure 4.3: Wordcount execution times of the energy efficient HDFS and the native HDFS.
4.4.3 Results Analysis
Figure 4.3 and Figure 4.4 show both the response time and power consumption of the
energy-efficient HDFS and the native HDFS. The Figure 4.3 indicates the average running
time (measured in minutes) of the WordCount benchmark on the energy-efficient HDFS and
the native HDFS system. Figure 4.4 reveals the two HDFS systems? power consumptions
measured in the unit of KWh. The results show that the energy-efficient HDFS consumes
0.26 KWH power during the period of 162 minutes to run the WordCount application;
the native HDFS consumes 0.32 KWH power within 153 minutes to complete the same
WordCount benchmark. The results suggest that the energy-efficient HDFS reduce the
power consumption of the native HDFS by 18.75% with a marginal increase in execution
time. The execution time of WordCount is merely increased by 5.88% in the energy-efficient
HDFS. In many applications, it is reasonable to trade 5.88% increase in execution time for
18.75% savings in energy consumption.
To quantify tradeoff between energy efficiency and performance, we introduce a indicator
PowerTime or Pt, which is a product of power cost P and response time T (see Equation 4.2).
84
gid31gid29gid33 gid28gid22gid33gid31gid36gid33gid30gid30gid29gid35 gid28gid22gid32gid34gid29gid32gid35gid35gid36gid31 gid28gid22gid36gid21gid28gid22gid30
gid31gid29gid33 gid28gid22gid33gid32gid33gid29gid30gid31gid29gid33 gid28gid22gid32gid33gid32gid36gid35gid34gid36gid33 gid28gid22gid37gid21gid28gid22gid29
gid31gid29gid33 gid28gid22gid33gid33gid29gid35gid30gid32gid29gid32 gid28gid22gid32gid32gid36gid30gid35gid33gid36gid34 gid29gid21gid28
gid28gid1
gid28gid22gid28gid33gid1
gid28gid22gid29gid1
gid28gid22gid29gid33gid1
gid28gid22gid30gid1
gid28gid22gid30gid33gid1
gid28gid22gid31gid1
gid28gid22gid31gid33gid1
gid3gid17gid12gid18gid14gid20gid24gid3gid13gid11gid15gid12gid17gid19gid1gid5gid2gid4gid7gid1 gid6gid18gid15gid14gid15gid17gid9gid16gid1gid5gid2gid4gid7gid1
gid5gid13
gid21gid9
gid15gid1gid2
gid13gid12
gid16gid20
gid11gid14
gid18gid13
gid12gid1gid23
gid4gid8
gid3gid24
gid1
Figure 4.4: Wordcount power consumptions of energy efficient HDFS and the native HDFS.
The goal of the energy-efficient HDFS is to lower the Pt value, because a low value of Pt
means high energy efficiency and performance. Applying Equation 4.2 to the tested Hadoop
cluster, we obtain the Pt values of the energy-efficient HDFS and the native HDFS. Thus,
the Pt value of our HDFS is as low as 42.12 and the Pt value of the native HDFS is 48.96,
meaning that the Pt value of our system is 13.97% lower than that of the native HDFS.
Pt = P ?T (4.2)
Ptc =
??
???
?
???
??
P/P? if only Power is considered
? ? PP? + ? ? TT? ? and ? are between 0 and 1, and their sum equals 1
T/T? if only Performance is considered
(4.3)
For some applications (e.g., real-time applications), high performance is more important
than high energy efficiency. In other applications, reducing energy consumption is more
85
gid22gid19gid24gid1
gid22gid19gid24gid23gid1
gid22gid19gid24gid24gid1
gid22gid19gid24gid26gid1
gid22gid19gid24gid27gid1
gid22gid19gid25gid1
gid22gid19gid25gid23gid1
gid22gid19gid25gid24gid1
gid22gid19gid25gid26gid1
gid4gid14gid6
gid1
gid2gid10gid12gid9gid5gid1gid5gid11gid7gid1gid3gid8gid14gid5gid1gid16gid5gid10gid15gid8gid13gid1
gid6gid16gid13gid12gid13gid15gid8gid14gid1gid5gid2gid4gid7gid1
gid3gid15gid10gid16gid12gid18gid1gid3gid11gid9gid13gid10gid15gid17gid1gid5gid2gid4gid7gid1
Figure 4.5: Power consumptions of Wordcount on energy-efficient HDFS and the native
HDFS.
critical than improving performance. Ideally, we should be able to configure the energy-
efficient HDFS according to target applications? performance requirements. We introduce
another comparison model (see Equation 4.3) to show under which circumstances our energy-
efficient HDFS outperforms the native one. The parameter P? in Equation 4.3 indicates the
sum of average power consumptions of the two HDFS system, whereas T? is the sum of
average response times of the two systems. ? and ? are two coefficients representing the
importance of energy efficiency and performance. Note that sum of ? and ? equals to 1.
Figure 4.5 shows the comparisons between the two HDFS systems under various ? and ?
values. The figure shows our energy-efficient HDFS achieves lower Ptc than the native HDFS
when the value of ? is larger than 0.2. This result indicates that applications favouring high
energy-efficiency can obtain benefits from our energy-efficient HDFS.
86
4.4.4 Discussions and Suggestions
We observe from Figure 4.4 that the energy-efficient HDFS improve the energy efficiency
of the native HDFS. Although our implementation is independent of any specific Hadoop
applications, the performance and energy efficiency of our system largely depends on I/O
access patterns of Hadoop applications. The application used to test our system is Word-
Count - a benchmark in the Hadoop example package. The WordCount application issues a
huge number of reads and very few writes to HDFS. Such an access pattern of WordCount
reduces the chance of accessing replicas located in backup disks, which explore excessive
opportunities to transit into the low-power state to conserve energy. The energy savings
provided by the energy-efficient HDFS become possible thanks to standby backup disks.
We suggest to optimize energy efficiency of Hadoop clusters by addressing the following
hardware-configuration issues. First, a disk-capacity ratio between backup disks and primary
disks relies on the number of replicas in the configuration file. For example, if the number of
replicas is n, the capacity ratio is (n-1)/1, meaning that the capacity of backup disks must
be at least n?1 times larger than that of primary disks on each data node. Second, one may
run profiling tests for target Hadoop applications on a cluster. After a few profiling tests are
completed, we can simply evaluate performance and energy efficiency of the Hadoop cluster
using appropriate ? and ? values depending on the requirements of the target applications.
Third, write-intensive applications receive little benefits from the energy-efficient HDFS and;
therefore, we prevent backup disks from transitioning into the standby mode under any write-
intensive workload condition. This approach allows our system keep write performance as
high as that of the native HDFS for all write-intensive applications.
4.5 Summary
In this chapter, we proposed an energy-efficient HDFS system that can conserve the
energy consumption of Hadoop clusters. Our system provides energy savings by aggressively
placing backup disks in each data note into the standby mode while keeping primary disks
87
active to ensure high I/O performance. The backup disks may be waked up if any primary
disk fails or local machines start helping other machines to process data.
We implemented and tested our idea on a small-scale cluster. The preliminary results
show that our approach improves the energy efficiency of Hadoop clusters by 13% with
marginal increases in time of accessing backup disks. Although such overhead have perfor-
mance impacts on heterogeneous systems, the overhead is marginal in a balanced system.
We suggest three ways of optimizing the energy-efficient HDFS. These methods include
(1) the configuration of the disk-capacity ratio between backup disks and primary disks;
(2) conducting profiling tests for target Hadoop applications; and (3) keeping backup disks
active for write-intensive applications. We believe that with appropriate settings, the energy-
efficient HDFS can achieve both good performance and energy efficiency for a wide range of
Hadoop applications.
88
Chapter 5
Conclusion
In this dissertation, we first proposed two data-placement strategies to improve the
performance of Hadoop cluster. Next, we described an energy-efficient Hadoop distributed
file system (HDFS). This chapter summarizes all the contributions made in this dissertation
study. Chapter 6 discusses the future work as an extension of this dissertation.
5.1 Observation and Profiling of Hadoop Clusters
We tested a Hadoop cluster using various experimental settings in order to identify
performance issues in the Hadoop system. After analyzing performance results collected
from a large set of experiments, we successfully found a few flaws and bottlenecks in the
traditional Hadoop system. We tested an array of solutions, among which only few work
well.
To better tune the performance of Hadoop clusters, we studied the impacts of system
parameters on the performance of Hadoop. Our experiments show that the block size, file
size, JVM usage, and number of map and reduce tasks are the major factors affecting the
Hadoop performance. We observed from our initial experiments that that all the above
affecting factors are somehow related to I/O usage, which in turn has significant impact on
the overall Hadoop performance.
Our earlier experiments results indicate that there exist many random I/O accesses
rather than sequence ones. Thus, we deployed solid state disks (SSDs) into the Hadoop
cluster to improve the performance of random reads and writes. The results confirm that
SSD improves the cluster performance by reducing response times of random I/O requests.
However, SSDs have some drawbacks on the write performance and the lifetime issue related
89
to writes. Since intermediate data are frequently written and read in HDFS, the lifetime
of SSDs are likely to be shorten by write-intensive applications. To solve this problem,
we proposed a hybrid solution combining SSDs with hard drives in HDFS of the Hadoop
cluster. SSDs store original input files, which are read multiple times once they are available
in HDFS. Then, we configured HDFS in a way to allow hard drives handle intermediate
data, which have no impact on the lifetime of the hard drives.
In this part of work, we identified that small file accesses downgrade system performance.
Small blocks in HDFS cause frequent job exchanges, which in term make CPU and disks
underutilized. A few existing scheme might offer solutions to this problem. For example, the
HAR archive is a solution that is included as part of the HDFS package. HAR groups all
small files and uses an index file to record the small file positions in a single HAR file. This
is the most convenient method to address the small-file problem, because the small files in
the HAR file can still be accessed through the index file. Once the HAR file is generated, it
can not be modified. The only way to change the file?s content is generate an new HAR file
again. Another solution is using the sequence file access function in the Hadoop APIs. The
function defined input format for map tasks, small files are considered as a single file with
different IDs. However, this approach requires an extra effort from programmers to correctly
format input files.
5.2 KAT Data Placement Strategy for Performance Improvement
we observed that a performance bottleneck in Hadoop clusters lies in the shu?ing stage,
in which a large amount of intermediate data is transferred among data nodes. The amount
of transferred data heavily depends on locations and balance of intermediate data with the
same keys. To solve this performance problem, we proposed a key-aware data placement
strategy or KAT for Hadoop clusters. The pre-calculation module yields intermediate keys
for data entries prior to the shu?ing stage of Hadoop applications; the data distribution
module allocates data according to pre-calculated keys made by the first module. KAT
90
reduces the amount of transferred intermediate data during the shu?ing phase by keeping
data with the identical key to the same node. Consequently, the KAT strategy successfully
alleviates the performance-bottleneck problem introduced by excessive data transfers.
After implementing KAT in the Hadoop distributed file system (or HDFS, for short), we
evaluated the performance of KAT on an 8-node Hadoop cluster using two real-world Hadoop
applications - Grep and WordCount. The experimental results show that KAT reduces the
execution times of Grep and Wordcount by up to 21% and 6.8%, respectively. We also applied
the traffic-shaping technique to resemble real-world workloads where multiple applications
are sharing network resources in a Hadoop cluster. We evaluated the impacts of observed
network bandwidth on the performance of KAT. The empirical results indicate that when
observed network bandwidth drops down to 10Mbps, KAT can shorten the execution times
of Grep and Wordcount by up to 89%.
5.3 Replica Based Energy Efficient HDFS Storage System
To improve energy efficiency of Hadoop clusters, we proposed an energy-efficient HDFS
system that conserves energy consumption in clusters supporting Hadoop applications. The
design of our new energy-efficient HDFS provides energy savings by aggressively placing
backup disks in data notes into the standby mode while keeping primary disks active to offer
high I/O performance. The backup disks are waked up in case of any primary-disk failure
or balancing load (i.e., local machines start helping other machines to process data).
We implemented and tested our idea on a real-world Hadoop cluster. The preliminary
results show that our HDFS system improves the energy efficiency of Hadoop clusters by 13%
with marginal increases in time of accessing backup disks. We proposed three approaches to
optimizing the performance of our energy-efficient HDFS. First, we can configure the disk-
capacity ratio between backup disks and primary disks. Second, one may conduct profiling
tests for target Hadoop applications. Third, we are able to improve performance by keeping
91
backup disks active for write-intensive applications. With appropriate settings, the energy-
efficient HDFS can achieve both good performance and energy efficiency for a wide range of
Hadoop applications.
5.4 Summary
In this dissertation study, we developed two strategies to improve the performance of
Hadoop cluster by optimizing the shu?ing stage where a large amount of data is transferred
among data nodes. In our approaches, data sharing the same key are not scattered across
a cluster, thereby alleviating the network performance bottleneck problem imposed by data
transfers. We also implement a prototype of the energy-efficient HDFS, which conserves
power consumption caused by extra data replicas in Hadoop clusters. We firmly believe
that the performance of our proposed approach can be further improved if solid state disks
are appropriately incorporated in Hadoop clusters to handle primary data and intermediate
data.
92
Chapter 6
Future Works
In this dissertation study, we improve both the performance and energy efficiency of
Hadoop clusters. During the course of the study, we face a variety of issues to be addressed
in our future studies. In this chapter, we briefly discuss these open issues that have not been
solved in this dissertation.
6.1 Data Placement with Application Disclosed Hints
The performance of our proposed KAT data-placement strategy largely depends on the
nature of applications. Such an application dependency is a big disadvantage of KAT, be-
cause the data-distribution module is implemented and integrated into HDFS. Nevertheless,
this issue can be addressed by using application disclosed hints. Access patterns of Hadoop
applications can be analyzed using a profiling tool, which allows application developers or
system administrators to estimate the best data-placement solutions. These pre-calculated
data-placement decisions are used as hints provided by the applications. An interface can be
implemented in HDFS to process file requests as well as performance-improvement informa-
tion issued by applications. HDFS can coordinate with the Hadoop applications to improve
the performance.
6.2 Trace Based Prediction
In Chapter 4, we introduced the prediction module for reducing the overhead caused
by disk wake-ups. In addition to this prediction method, we will develop another prediction
method that aims at using historical data to estimate the time at which any data-node
failure occurs. The disk and data node failures are not only related to application types but
93
also read and write access patterns. Recently studies show that different types of disks have
various annual failure rates. Given a Hadoop cluster, the failure rates of each data node and
its disks can be estimated from historical data (e.g., I/O traces and log files). According to
the historical access patterns recorded in the trace and log files, one may implement a module
to automatically predict data-node failures for Hadoop clusters. Based on the predictions,
corresponding backup disks will be waked up to handle potential replicas for data nodes that
are likely to fail. This proposed solution is expected to solve the disk and data-node failure
prediction problem described in Chapter 4.
94
Bibliography
[1] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and Alexan-
der Rasin. Hadoopdb: an architectural hybrid of mapreduce and dbms technologies for
analytical workloads. Proc. VLDB Endow., 2(1):922?933, August 2009.
[2] Amazon. Amazon elastic compute cloud. http://aws.amazon.com/ec2.
[3] Hrishikesh Amur, James Cipar, Varun Gupta, Gregory R. Ganger, Michael A. Kozuch,
and Karsten Schwan. Robust and flexible power-proportional storage. In Proceedings
of the 1st ACM symposium on Cloud computing, SoCC ?10, pages 217?228, New York,
NY, USA, 2010. ACM.
[4] apache.org. http://lucene.apache.org/hadoop.
[5] Cullen Bash and George Forman. Cool job allocation: measuring the power savings
of placing jobs at cooling-efficient locations in the data center. In 2007 USENIX An-
nual Technical Conference on Proceedings of the USENIX Annual Technical Conference,
ATC?07, pages 29:1?29:6, Berkeley, CA, USA, 2007. USENIX Association.
[6] B.He, W.Fang, Q.Luo, N.Govindaraju, and T.Wang. Mars: a MapReduce framework
on graphics processors. ACM, 2008.
[7] Dhruba Borthakur. The Hadoop Distributed File System: Architecture and Design. The
Apache Software Foundation, 2007.
[8] Enrique V. Carrera, Eduardo Pinheiro, and Ricardo Bianchini. Conserving disk energy
in network servers. In In 17 th International Conference on Supercomputing, 2003.
[9] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable
Shared Memory Parallel Programming (Scientific and Engineering Computation). The
MIT Press, 2007.
[10] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A. Pat-
terson. Raid: High-performance, reliable secondary storage. ACM Computing Surveys,
26:145?185, 1994.
[11] C.Olston, B.Reed, U.Srivastava, R.Kumar, and A.Tomkins. Pig latin: a not-so-foreign
language for data processing. In SIGMOD ?08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 1099?1110. ACM, 2008.
95
[12] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmeleegy,
and Russell Sears. Mapreduce online. In Proceedings of the 7th USENIX conference on
Networked systems design and implementation, NSDI?10, pages 21?21, Berkeley, CA,
USA, 2010. USENIX Association.
[13] D.Borthakur. The Hadoop Distributed File System: Architecture and Design. The
Apache Software Foundation, 2007.
[14] Jeffrey Dean, Sanjay Ghemawat, and Google? Inc. Mapreduce: simplified data process-
ing on large clusters. IN OSDI?04: Proceedings of the 6th conference on symposium on
operating systems design &implementation, 2004.
[15] Jens Dittrich, Jorge-Arnulfo Quian?e-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay Setty, and
J?org Schad. Hadoop++: making a yellow elephant run like a cheetah (without it even
noticing). Proc. VLDB Endow., 3(1-2):515?529, September 2010.
[16] Mohamed Y. Eltabakh, Yuanyuan Tian, Fatma ?Ozcan, Rainer Gemulla, Aljoscha Kret-
tek, and John McPherson. Cohadoop: flexible data placement and its exploitation in
hadoop. Proc. VLDB Endow., 4:575?585, June 2011.
[17] Archana Sulochana Ganapathi. Predicting and Optimizing System Utilization and Per-
formance via Statistical Machine Learning. PhD thesis, EECS Department, University
of California, Berkeley, Dec 2009.
[18] Hive. http://hive.apache.org/.
[19] Hai Huang, Wanda Hung, and Kang G. Shin. Fs2: dynamic data replication in free disk
space for improving disk performance and energy consumption. SIGOPS Oper. Syst.
Rev., 39(5):263?276, October 2005.
[20] Infiniband. http://en.wikipedia.org/wiki/InfiniBand.
[21] Jaql. http://code.google.com/p/jaql.
[22] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. The performance of mapreduce: an
in-depth study. Proc. VLDB Endow., 3(1-2):472?483, September 2010.
[23] Henk Jonkers. Queueing models of parallel applications: The glamis methodology. In
Gnter Haring and Gabriele Kotsis, editors, Computer Performance Evaluation, volume
794 of Lecture Notes in Computer Science, pages 123?138. Springer, 1994.
[24] Rini T. Kaushik and Milind Bhandarkar. Greenhdfs: towards an energy-conserving,
storage-efficient, hybrid hadoop compute cluster. In Proceedings of the 2010 interna-
tional conference on Power aware computing and systems, HotPower?10, pages 1?9,
Berkeley, CA, USA, 2010. USENIX Association.
[25] Rini T. Kaushik, Milind Bhandarkar, and Klara Nahrstedt. Evaluation and analysis
of greenhdfs: A self-adaptive, energy-conserving variant of the hadoop distributed file
system. In Proceedings of the 2010 IEEE Second International Conference on Cloud
96
Computing Technology and Science, CLOUDCOM ?10, pages 274?287, Washington,
DC, USA, 2010. IEEE Computer Society.
[26] Willis Lang and Jignesh M. Patel. Energy management for mapreduce clusters. Proc.
VLDB Endow., 3(1-2):129?139, September 2010.
[27] Willis Lang, Jignesh M. Patel, and Jeffrey F. Naughton. On energy management, load
balancing and replication. SIGMOD Rec., 38(4):35?42, June 2010.
[28] Jacob Leverich and Christos Kozyrakis. On the energy (in)efficiency of hadoop clusters.
SIGOPS Oper. Syst. Rev., 44(1):61?65, March 2010.
[29] Dong Li and Jun Wang. Eeraid: energy efficient redundant and inexpensive disk array.
In Proceedings of the 11th workshop on ACM SIGOPS European workshop, EW 11, New
York, NY, USA, 2004. ACM.
[30] De-Ron Liang and Satish K. Tripathi. On performance prediction of parallel compu-
tations with precedent constraints. IEEE Trans. Parallel Distrib. Syst., 11(5):491?508,
May 2000.
[31] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Powernap: eliminating server
idle power. SIGPLAN Not., 44(3):205?216, March 2009.
[32] Daniel A. Menasce, Lawrence W. Dowdy, and Virgilio A. F. Almeida. Performance by
Design: Computer Capacity Planning By Example. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2004.
[33] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write off-loading:
Practical power management for enterprise storage. Trans. Storage, 4(3):10:1?10:23,
November 2008.
[34] Michael Noll. http://www.michael-noll.com/.
[35] D A Patterson, P Chen, G Gibson, and R H Katz. Introduction to redundant arrays of
inexpensive disks (raid), 1989.
[36] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays
of inexpensive disks (raid). In Proceedings of the 1988 ACM SIGMOD international
conference on Management of data, SIGMOD ?88, pages 109?116, New York, NY, USA,
1988. ACM.
[37] Eduardo Pinheiro and Ricardo Bianchini. Energy conservation techniques for disk array-
based servers. In Proceedings of the 18th annual international conference on Supercom-
puting, ICS ?04, pages 68?78, New York, NY, USA, 2004. ACM.
[38] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating
mapreduce for multi-core and multiprocessor systems. High-Performance Computer
Architecture, International Symposium on, 0:13?24, 2007.
97
[39] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a
log-structured file system. ACM Trans. Comput. Syst., 10(1):26?52, February 1992.
[40] R.Pike, S.Dorward, R.Griesemer, and S.Quinlan. Interpreting the data: Parallel analysis
with Sawzall, volume 13. IOS Press, 2005.
[41] Cosmin Rusu, Re Ferreira, Claudio Scordino, Aaron Watson, Rami Melhem, and Daniel
Moss. Energy-efficient real-time heterogeneous server clusters. In In Proceedings of
RTAS, pages 418?428. IEEE Computer Society, 2006.
[42] Ratnesh K. Sharma, Cullen E. Bash, Chandrakant D. Patel, Richard J. Friedrich, and
Jeffrey S. Chase. Balance of power: Dynamic thermal management for internet data
centers. IEEE Internet Computing, 9(1):42?49, January 2005.
[43] Seung Woo Son and Mahmut Kandemir. Energy-aware data prefetching for multi-speed
disks. In Proceedings of the 3rd conference on Computing frontiers, CF ?06, pages 105?
114, New York, NY, USA, 2006. ACM.
[44] SSD. http://en.wikipedia.org/wiki/SSD.
[45] SSD. http://kb-zh.sandisk.com/.
[46] Chao Tian, Haojie Zhou, Yongqiang He, and Li Zha. A dynamic mapreduce scheduler
for heterogeneous workloads. Grid and Cloud Computing, International Conference on,
0:218?224, 2009.
[47] Apache Tutorial. http://hadoop.apache.org/.
[48] Elizabeth Varki. Mean value technique for closed fork-join networks. In PROCEED-
INGS OF ACM SIGMETRICS CONFERENCE ON MEASUREMENT AND MODEL-
ING OF COMPUTER SYSTEMS, pages 103?112, 1999.
[49] Guanying Wang, Ali R. Butt, Prashant Pandey, and Karan Gupta. Using realistic
simulation for performance analysis of mapreduce setups. In Proceedings of the 1st
ACM workshop on Large-Scale system and application performance, LSAP ?09, pages
19?26, New York, NY, USA, 2009. ACM.
[50] Apache Hadoop Wiki. http://wiki.apache.org/hadoop.
[51] W.Tantisiriroj, S.Patil, and G.Gibson. Data-intensive file systems for internet services:
A rose by any other name ... Carnegie Mellon University Parallel Data Lab Technical
Report CMU-PDL-08-114, October 2008.
[52] Jiong Xie and Xiao Qin. The 19th heterogeneity in computing workshop (hcw 2010).
In Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE
International Symposium on, pages 1 ?5, april 2010.
[53] Yahoo. Yahoo! launches worlds largest hadoop production application.
http://tinyurl.com/2hgzv7.
98
[54] Xiaoyu Yao and Jun Wang. Rimac: a novel redundancy-based hierarchical cache ar-
chitecture for energy efficient, high performance storage systems. SIGOPS Oper. Syst.
Rev., 40(4):249?262, April 2006.
[55] Nezih Yigitbasi, Kushal Datta, Nilesh Jain, and Theodore Willke. Energy efficient
scheduling of mapreduce workloads on heterogeneous clusters. In Green Computing
Middleware on Proceedings of the 2nd International Workshop, GCM ?11, pages 1:1?
1:6, New York, NY, USA, 2011. ACM.
[56] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica.
Improving mapreduce performance in heterogeneous environments. In Proceedings of
the 8th USENIX conference on Operating systems design and implementation, OSDI?08,
pages 29?42, Berkeley, CA, USA, 2008. USENIX Association.
99

