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Abstract 
 
 
In recent years, rapid developments in technology facilitated the collection of vast 
amount of data from different industrial processes. The data has been utilized in many 
different areas, such as data-driven soft sensor development and process monitoring, to 
control and optimize the process. The performance of these data-driven schemes can be 
greatly improved by selecting only the vital variables that strongly affect the primary var-
iables, rather than all the available process variables. Consequently, variable selection has 
been one of the most important practical concerns in data-driven approaches. By identify-
ing the irrelevant and redundant variables, variable selection can improve the prediction 
performance, reduce the computational load and model complexity, obtain better insight 
into the nature of the process, and lower the cost of measurements [1], [2]. 
A comprehensive evaluation of different variable selection methods for soft sen-
sor development will be presented in this work. Among all the variable selection meth-
ods, seven algorithms are investigated. They are stepwise regression, PLS-BETA, PLS-
VIP, UVE-PLS, PLS-SA, CARS-PLS and GA as discussed below. Stepwise regression 
methods are often used for variable selection in linear regression [3]. The procedure is 
carried out in such a way that individual predictor/secondary variable is sequentially in-
troduced into the model to observe its relation to the primary variables. Partial Least 
Squares (PLS) regression is a model parameter based algorithm. Both the regression co-
efficients estimated by PLS (PLS-BETA) and variable importance in projection (PLS-
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VIP) are discussed [4]. Another model parameter based method, called Uninformative 
Variable Elimination by PLS (UVE-PLS), is also related to regression coefficients. How-
ever, instead of looking at the regression coefficients only, the reliability of the coeffi-
cients is explored [5]. Variable selection algorithms based on sensitivity analysis, PLS-
SA, are also studied. In these approaches, the importance of variables is defined by their 
sensitivity, which is defined as the change in primary variables by varying the secondary 
variable in its allowable range [6]. Furthermore, properties of genetic algorithms (GA), 
which have been recently proposed for variable selection applications [7], are also inves-
tigated.  
The algorithms of these variable selection methods and their characteristics will 
be presented. In addition, the strength and limitations when applied for soft sensor devel-
opment are studied. The soft sensor prediction performance of models developed by these 
variable selection methods are compared using PLS. 
A simple simulation case is used to investigate the properties of the selected vari-
able selection methods. The dataset is generated to mimic the typical characteristics of 
process data, such as the magnitude of correlations between variables and the magnitude 
of signal to noise ratio, etc. [4]. In addition, the algorithms are applied to an industrial 
soft sensor case study. In both cases, independent test sets are used to provide fair com-
parison and analysis of different algorithms. The final performances are compared to 
demonstrate the advantages and disadvantages of the different methods in order to pro-
vide useful insights to practitioners in the field. 
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Chapter 1. Introduction 
In recent years, rapid developments in technology facilitated the collection of vast 
amount of data from different industrial processes. The data has been utilized in many 
different areas, such as data-driven soft sensor development and process monitoring, to 
control and optimize the process. The performance of these data-driven schemes can be 
greatly improved by selecting only the vital variables that strongly affect the primary var-
iables, rather than all the available process variables. Consequently, variable selection has 
been one of the most important practical concerns in data-driven approaches. By identify-
ing the irrelevant and redundant variables, variable selection can improve the prediction 
performance, reduce the computational load and model complexity, obtain better insight 
into the nature of the process, and lower the cost of measurements [1], [2]. 
A comprehensive evaluation of different variable selection methods for soft sen-
sor development will be presented in this work. Among all the variable selection meth-
ods, seven algorithms are investigated. They are stepwise regression, PLS-BETA, PLS-
VIP, UVE-PLS, PLS-SA, CARS-PLS and GA-PLS as discussed below. Stepwise regres-
sion methods are often used for variable selection in linear regression [3]. The procedure 
is carried out in such a way that individual predictor/secondary variable is sequentially 
introduced into the model to observe its relation to the primary variables. Partial Least 
Squares (PLS) regression is a model parameter based algorithm. Both the regression co-
efficients estimated by PLS (PLS-BETA) and variable importance in projection (PLS-
VIP) are discussed [4]. Another model parameter based method, called Uninformative 
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Variable Elimination by PLS (UVE-PLS), is also related to regression coefficients. How-
ever, instead of looking at the regression coefficients only, the reliability of the coeffi-
cients is explored [5]. Variable selection algorithms based on sensitivity analysis, PLS-
SA, are also studied. In these approaches, the importance of variables is defined by their 
sensitivity, which is defined as the change in primary variables by varying the secondary 
variable in its allowable range [6]. Furthermore, properties of genetic algorithms (GA), 
which have been recently proposed for variable selection applications [7], are also inves-
tigated.  
Stepwise regression has been applied to the selection of predictors for both classi-
fication and multivariate calibrations [8], especially in near-infrared (NIR) spectral. Gau-
chi and Chagnon proposed a stepwise variable selection method based on maximum    
and applied to manufacturing processes in oil, chemical and food industries [9]. 
Broadhurst et al. applied genetic algorithm to pyrolysis mass spectrometric data 
and showed that GA is able to determine the optimal subset of variables to provide better 
or equal prediction performance [10]. Arcos et al. successfully applied GA to a wave-
length selection for PLS calibration of mixtures of indomethacin and acemethacin, in 
spite of the fact that the two compounds have almost identical spectra [11]. A modified 
genetic algorithm-based wavelength selection method has been proposed by Hiromasa 
Kaneko and Kimito Funatsu to select process variables and dynamic simultaneously [12]. 
This method is named as genetic algorithm-based process variables and dynamics selec-
tion method, GAVDS. The result of GAVDS, based on its application to a dynamic pro-
cess of distillation column in Mitsubishi Chemical Corporation, shows its robustness to 
the presence of nonlinearity and multicollinearity in process data. GA has also been well 
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recognized in molecular modeling. Jones et al. have shown three application of GA in 
chemical structure handling and molecular recognition [13]. 
A modified uninformative variable elimination method based on the principle of 
Monte Carlo (MC) was applied in quantitative analysis of NIR spectra by Cai et al. [14]. 
UVE-MC is proven to be capable of selecting important wavelength and making the pre-
diction more robust and accurate in quantitative analysis. Some researchers also suggest-
ed to combine UVE with wavelet transform to further simplify the model and to reduce 
computation time [14], [15]. In the work of Koshoubu et al., they have extended UVE to 
eliminate uninformative samples (USE) that do not contribute much in the calibration 
model [16], [17]. They proposed an algorithm where the uninformative wave-
lengths/variables are eliminated first by UVE-PLS, and then the uninformative samples, 
which are determined by their standard deviation of prediction error calculated from 
leave-one-out cross validation, are eliminated from the calibration.  Another new method 
which combined UVE with successive projection algorithm (SPA) has been proposed by 
[18]. UVE is implemented to remove uninformative variables before application of SPA 
to improve the efficiency of variable selection by SPA. 
Sensitivity analysis has become more popular in selection of optimal variable 
subsets in recent years. Zamprogna et al. has introduced a novel methodology based on 
principal component analysis (PCA) to select the most suitable soft sensor inputs [19]. 
Instead of using the secondary variables directly, the instantaneous sensitivity of each 
secondary variable to the primary variables are estimated and utilized as the regressor 
inputs. Li and Shao have proposed a novel method using sensitivity analysis to select the 
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optimal secondary variables to be used as inputs to kernel ridge regression (KRR) to im-
plement online soft sensing of distillation column compositions [20]. 
Competitive adaptive reweighted sampling (CARS) method has been proposed by 
Li et al. [21]. CARS is model independent. In other words, CARS can be combined with 
any regression or classification models. In [22], [23], CARS has been applied in combi-
nation with partial least squares linear discriminant analysis (PLSLDA) to effectively 
classify two classes of samples in colorectal cancer data. 
Variable importance in the projection (VIP) and regression coefficients (BETA) 
have been broadly adapted as a criterion in partial least squares modeling paradigm for 
variable selection. Both PLS-VIP and PLS-BETA are model based variable selection 
methods. Mehmood et al. presented an algorithm that balances the parsimony and predic-
tive ability of model using variables selection based on PLS-VIP [24]. It is shown that the 
proposed method increases the understandability and consistency of the model and re-
duces the classification error. Lindgren et al. also implemented PLS-VIP on a benchmark 
data for variable selection, Selwood dataset [25]. In their study, PLS-VIP is combined 
with permutation test to extensively investigate the technique. A bootstrap-PLS-VIP has 
been implemented as a wavelength interval selection method in spectral imaging applica-
tions by Gosselin et al. [26]. Their result demonstrates its ability to identify relevant spec-
tral intervals and its simplicity and relatively low computational cost. PLS-VIP and PLS-
BETA have also been seen in food science. Andersen and Bro applied PLS-VIP and PLS-
BETA to NIR spectral of beer sample and obtained useful insight of the process [27]. A 
variable selection algorithm based on the standardized regression coefficients are pro-
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posed in [28]. The developed models are optimized by the leave-one-out    values and 
validated by an external testing set.  
The algorithms of these variable selection methods and their characteristics will 
be presented. In addition, the strength and limitations when applied for soft sensor devel-
opment are studied. The soft sensor prediction performance of models developed by these 
variable selection methods are compared using PLS. 
A simple simulation case is used to investigate the properties of the selected vari-
able selection methods. The dataset is generated to mimic the typical characteristics of 
process data, such as the magnitude of correlations between variables and the magnitude 
of signal to noise ratio, etc. [4]. In addition, the algorithms are applied to an industrial 
soft sensor case study. In both cases, independent test sets are used to provide fair com-
parison and analysis of different algorithms. The final performances are compared to 
demonstrate the advantages and disadvantages of the different methods in order to pro-
vide useful insights to practitioners in the field. 
This work is structured as follows. In Chapter 2, a brief review of the multivariate 
statistical techniques is presented, which will be required for further discussion on varia-
bles selection methods. Chapter 3 provides detail descriptions of algorithms of different 
variable selection methods covered in this work: Stepwise Regression (SR), Genetic Al-
gorithm with Partial Least Squares (GA-PLS), Uninformative Variables Elimination by 
Partial Least Squares (UVE-PLS), Partial Least Squares with Sensitivity Analysis (PLS-
SA), Competitive Adaptive Reweighted Sampling with Partial Least Squares (CARS-
PLS), Partial Least Squares with Variable Importance in Projection (PLS-VIP), and Par-
tial Least Squares with regression coefficients (PLS-BETA). In Chapter 4, application of 
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all seven variable selection methods on simulated case study and industrial case study 
will be investigated. The simulation case is generated to mimic the typical characteristics 
of industrial data by considering four factors: proportion of relevant predictors, magni-
tude of correlation between predictors, structure of regression coefficients, and magnitude 
of signal to noise ratio. A detailed description of data generation will be provided. The 
industrial case study is focused on the process data of polyester resin production plant. A 
brief specification of the plant will be included, followed by discussion of characteristics 
of batch process. The results and comparison of variable selections on both simulated and 
industrial case studies will be investigated. Chapter 5 will conclude this work with major 
discussion and contributions. Furthermore, suggestions on future works will be provided. 
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Chapter 2. Soft Sensor Development 
Soft sensors have been developed and implemented decades ago, where predictive 
models have been built based on large amount of data being measured stored in process 
industries [29], [30]. Soft sensors can be classified into two categories: model-driven and 
data-driven. The model-driven soft sensors are based on the first principle models that 
describe the physical and chemical characteristics of the process. Data-driven soft sensors 
are based on the data measured and collected within the plants[29?32]. The most popular 
soft sensor techniques include principal component analysis (PCA) [33] and partial least 
squares (PLS) [34], artificial neural networks [35], neuro-fuzzy systems [36] and support 
vector machines [37]. In our work, only the linear models are considered. 
2.1 Multiple Linear Regression  
The goal of multiple linear regression (MLR) is to establish a linear relationship 
between the secondary variables and primary variables in the form of Equation (2.1), 
where    is the secondary variable,   is the primary variable,    is the sensitivity, and   is 
the residuals. 
   ?      
 
   
 (2.1) 
 The above linear relationship can also be written in matrix form as: 
        (2.2) 
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2.2 Principal Component Analysis 
Principal component analysis (PCA) is linear technique that transforms the origi-
nal data matrix   into a smaller set of uncorrelated variables   that would capture most of 
the information in the original space. This linear transformation can be expressed as in 
Equation (2.7), where   is the score matrix and   is the loading matrix. 
         (2.3) 
2.3 Principal Component Regression (PCR) 
Principal component regression (PCR) is a combination of PCA and MLR. MLR 
can be written in the form of score matrix, which has better properties than the original 
data matrix.  
        (2.4) 
2.4 Partial Least Squares Regression 
Partial least squares (PLS) regression has established itself as a valuable alterna-
tive for analyzing secondary variables that are highly correlated, with high measurement 
noise, and of high dimensionality. PLS model is built based on the properties of NIPALS 
algorithms by letting the score matrix represent the data matrix [38]. In PLS, the decom-
position of matrix   and   are done in such a way that the covariance is maximized. The 
algorithm of PLS were developed by Wold et al. [39]. The decomposition of data matrix 
  is done by Equation (2.3). And the decomposition of   can also be done in a similar 
way by Equation (2.7), where   and   is the score and loading matrices of  , respective-
ly, and   is the residual. 
         (2.5) 
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The objective of PLS is to describe maximum amount of variation in   and get a 
useful relation between   and   simultaneously. This can be done by introducing a linear 
model between the score matrices of   and Y.  
      (2.6) 
Consequently, matrix   can be estimated as in Equation (2.7),   is to be mini-
mized. The detail algorithm of PLS can be found in [38?40]. 
  ?         (2.7) 
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Chapter 3. Variable Selection Theory and Algorithm 
Due to prompt development of technology, thousands of process measurements 
are collected by process computers every day. Researchers have been utilizing these data 
to build soft sensor, which is also known as data-driven soft sensor. By correlating the 
secondary variables with the primary variables, soft sensors can provide information on 
those immeasurable, but important variables. Furthermore, soft sensors can provide pre-
diction on infrequently measured variable so that control actions can be taken to prevent 
process failure. It has been proved by many studies that the performance of soft sensor 
can be tremendously improved if only the few vital variables are included in soft sensor 
development. Consequently, variable selection has been one of the most important practi-
cal concerns in data-driven approaches. By identifying the relevant variables, variable 
selection can improve the prediction performance of soft sensor, reduce the computation 
load and model complexity, provide better insight into the nature of the process, and low-
er the measurement cost [2], [27].  
Seven variable selection methods are explored in this work. They are selected 
based on their popularity, implementation practicability, complexity, and artificial based 
criterion. They can be categorized into four groups: iterative methods (stepwise regres-
sion and genetic algorithm combined with PLS), methods based on artificial standard 
(uninformative variable elimination method combined with PLS and PLS based on sensi-
tivity analysis), enforced variable elimination methods (competitive adaptive reweighted 
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sampling method with PLS), and methods based on predictive properties (PLS based on 
variable importance in projection and PLS based on regression coefficients). 
Stepwise regression has been applied to the selection of predictors for both classi-
fication and multivariate calibrations [8], especially in near-infrared (NIR) spectral. Gau-
chi and Chagnon proposed a stepwise variable selection method based on maximum    
and applied to manufacturing processes in oil, chemical and food industries [9]. 
Broadhurst et al. applied genetic algorithm to pyrolysis mass spectrometric data 
and showed that GA is able to determine the optimal subset of variables to provide better 
or equal prediction performance [10]. Arcos et al. successfully applied GA to a wave-
length selection for PLS calibration of mixtures of indomethacin and acemethacin, in 
spite of the fact that the two compounds have almost identical spectra [11]. A modified 
genetic algorithm-based wavelength selection method has been proposed by Hiromasa 
Kaneko and Kimito Funatsu to select process variables and dynamic simultaneously [12]. 
This method is named as genetic algorithm-based process variables and dynamics selec-
tion method, GAVDS. The result of GAVDS, based on its application to a dynamic pro-
cess of distillation column in Mitsubishi Chemical Corporation, shows its robustness to 
the presence of nonlinearity and multicollinearity in process data. GA has also been well 
recognized in molecular modeling. Jones et al. have shown three application of GA in 
chemical structure handling and molecular recognition [13]. 
A modified uninformative variable elimination method based on the principle of 
Monte Carlo (MC) was applied in quantitative analysis of NIR spectra by Cai et al. [14]. 
UVE-MC is proven to be capable of selecting important wavelength and making the pre-
diction more robust and accurate in quantitative analysis. Some researchers also suggest-
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ed to combine UVE with wavelet transform to further simplify the model and to reduce 
computation time [14], [15]. In the work of Koshoubu et al., they have extended UVE to 
eliminate uninformative samples (USE) that do not contribute much in the calibration 
model [16], [17]. They proposed an algorithm where the uninformative wave-
lengths/variables are eliminated first by UVE-PLS, and then the uninformative samples, 
which are determined by their standard deviation of prediction error calculated from 
leave-one-out cross validation, are eliminated from the calibration.  Another new method 
which combined UVE with successive projection algorithm (SPA) has been proposed by 
[18]. UVE is implemented to remove uninformative variables before application of SPA 
to improve the efficiency of variable selection by SPA. 
Sensitivity analysis has become more popular in selection of optimal variable 
subsets in recent years. Zamprogna et al. has introduced a novel methodology based on 
principal component analysis (PCA) to select the most suitable soft sensor inputs [19]. 
Instead of using the secondary variables directly, the instantaneous sensitivity of each 
secondary variable to the primary variables are estimated and utilized as the regressor 
inputs. Li and Shao have proposed a novel method using sensitivity analysis to select the 
optimal secondary variables to be used as inputs to kernel ridge regression (KRR) to im-
plement online soft sensing of distillation column compositions [20]. 
Competitive adaptive reweighted sampling (CARS) method has been proposed by 
Li et al. [21]. CARS is model independent. In other words, CARS can be combined with 
any regression or classification models. In [22], [23], CARS has been applied in combi-
nation with partial least squares linear discriminant analysis (PLSLDA) to effectively 
classify two classes of samples in colorectal cancer data. 
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Variable importance in the projection (VIP) and regression coefficients (BETA) 
have been broadly adapted as a criterion in partial least squares modeling paradigm for 
variable selection. Both PLS-VIP and PLS-BETA are model based variable selection 
methods. Mehmood et al. presented an algorithm that balances the parsimony and predic-
tive ability of model using variables selection based on PLS-VIP [24]. It is shown that the 
proposed method increases the understandability and consistency of the model and re-
duces the classification error. Lindgren et al. also implemented PLS-VIP on a benchmark 
data for variable selection, Selwood dataset [25]. In their study, PLS-VIP is combined 
with permutation test to extensively investigate the technique. A bootstrap-PLS-VIP has 
been implemented as a wavelength interval selection method in spectral imaging applica-
tions by Gosselin et al. [26]. Their result demonstrates its ability to identify relevant spec-
tral intervals and its simplicity and relatively low computational cost. PLS-VIP and PLS-
BETA have also been seen in food science. Andersen and Bro applied PLS-VIP and PLS-
BETA to NIR spectral of beer sample and obtained useful insight of the process [27]. A 
variable selection algorithm based on the standardized regression coefficients are pro-
posed in [28]. The developed models are optimized by the leave-one-out    values and 
validated by an external testing set. 
3.1 Stepwise Regression 
Stepwise regression has been widely used for variable selection in linear regres-
sion [3]. Stepwise regression is a combination of forward selection and backward elimi-
nation methods [9]. Both are well known methods for variable selection in multiple re-
gressions. The forward selection and backward elimination methods are done by intro-
duction or elimination of the variables one-by-one according to the specific thresholds. In 
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stepwise regression, a sequence of regression models is constructed iteratively by adding 
or removing variables. The variables are selected according to their statistical signifi-
cance in a regression [8]. Partial F-test or t-test is used for determination of its signifi-
cance.  
The standard stepwise regression procedure is illustrated in Figure 3.1and summa-
rized as follows: 
1. Define thresholds of probability of incorrectly rejecting the true null hy-
pothesis, which is also known as Type I error. The threshold for adding a 
variable to a model is 0.05,         , and the threshold for removing a 
variable from the model is 0.1,         . 
2. Assume the total number of variables is  , and    {          } 
is a subset of variables included in linear regression model. The unselected 
variables are examined by calculating their partial F-statistic using equa-
tions (3.1) and (3.2), where     is the residual sum of squares due to re-
gression, and     is the mean square error. The variable with maximum 
F-statistic among all the unselected ones is added to the model, provided 
that       .  
       (  |          )  
 (             )
 (3.1) 
    (  |       )     (          )    (       ) (3.2) 
3. Once a new subset of variables is determined, the same procedure is car-
ried out to check if any of these variables inside the model should be re-
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moved. The variable with the smallest F-statistic is removed, provided that 
       . Otherwise, the variable is retained in the model. 
4. Repeat Step 2 and Step 3 until no other variables can be added into or re-
moved from the model. 
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Figure 3.1 Stepwise Regression Algorithm 
3.2 Genetic Algorithm 
Genetic algorithm has been used widely in solving complex problems of optimi-
zation and search problems [41]. More recently, GA has been used to find the optimum 
subset of regressor variables for a given modeling method based on the results of cost 
function evaluations for all candidate genetic chromosomes [42].  
The original algorithm can be found in [43?45]. Generally speaking, there are five 
steps in GA: coding of variables, initiation of population, evaluation of the responses, re-
productions, and mutations [46]. The last three steps are implemented iteratively until a 
termination criterion is reached. In our work, GA combined with PLS regression model is 
studied. These following terms must be defined: 
1. Initiation of population. Percentage of variables included in the initial 
population (30% -50%).  
16 
 
2. Population size. This value is dependent on the total number of variables. 
There is a tradeoff between the initial coverage of the original space and 
computation load.  
3. Maximum number of generations (50-500). This could be used as one of 
the termination criterion. 
4. Percentage of the population retained after each generation (50% -80%). 
This number defines the top percentage of populations to be kept in each 
generation. In other words, only the remaining populations will go through 
reproduction. 
5. Breeding crossover rule (single or double crossover). It is analogous to re-
production. It is a genetic operator used to vary programming of chromo-
somes from one generation to the next. 
6. Mutation rate (0.001-0.01). Chance of alternation of genes after crossover. 
An initial population is generated by randomly choosing 30% of the total varia-
bles. This is repeated multiple times depending on the population size. A PLS model is 
built for each population/chromosomes. Populations are then sorted in descending order 
by its cross validation metrics. Only the top percentages of the populations are remained 
unchanged, and the rest will undergo crossover/reproduction. A new generation of chro-
mosomes is then produced. This is done iteratively until a termination criterion is 
reached.  This termination criterion can be based on the maximum number of generations 
or prediction improvement deficiency. The algorithm is also shown in Figure 3.2. 
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Figure 3.2 Genetic Algorithm with PLS 
3.3 Uninformative Variable Elimination 
A method for eliminating uninformative variables by comparing with artificial 
variables was proposed by V. Center, et al. [5]. Models are built using both experimental 
and artificial variables. The analysis is based on the regression coefficients from the 
model. 
In our work, uninformative variable elimination by Partial Least Squares (UVE-
PLS) will be studied. The procedure is illustrated in Figure 3.3 and summarized as fol-
lows: 
1. For a given set of experimental variables,       , generate an artificial 
random variable matrix with very small magnitude and same dimension as 
the experimental variables. This results in a matrix with dimension of   by 
  ,        . 
2. Build PLS model for    based on leave-one-out procedure. This will 
yield a regression coefficient matrix,        .  
3. Calculate the reliability index of each variable   using Equation (3.3), 
where    and  (  ) are the mean and standard deviation of variable   ob-
tained from leave-one-out procedure. 
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       ( 
 )
 (3.3) 
    ?    
 
   
  (3.4) 
  (  )  (? (      )
  
   
   )
   
 (3.5) 
4. Determine the maximum absolute reliability index of the artificial varia-
bles,    (   (      )). The experimental variables with absolute reliabil-
ity index less than    (   (      ))  are eliminated, i.e.,    (  )  
   (   (      )). 
5. A new PLS model is built using only the remaining variables. 
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Figure 3.3 Procedure of Uninformative Variable Elimination with PLS  
3.4 Partial Least Squares with Sensitivity Analysis 
A novel variable selection algorithm proposed in [6] that combines Partial Least 
Squares with sensitivity analysis [47], PLS-SA, is investigated. The sensitivity of each 
variable is often expressed in terms of its regression coefficient in linear regression mod-
els. In PLS models, the coefficients calculated are a mixture of the original variables. 
Hence, an alternative measure of sensitivity of individual variable is proposed. In 
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Rueda?s work, the sensitivity of each variable is defined as the absolute maximum change 
in the PLS prediction (maximum minus the minimum values), when the value of    is 
varied in its allowable range and all other variable are kept constant at their mean/median 
value [6]. This measurement is referred as   ?  
 
.  
In PLS-SA, the value of   ?  
 
 is only computed over the training set; the remaining 
samples are used to measure the predictive power of the model. The relevance of each 
variable is determined by comparing its sensitivity to that of a random variable, RV. The 
effect of RV to the response variable should be insignificant since it is random. In sensi-
tivity analysis, a RV is added to the original dataset, and then its sensitivity,   ?   , is com-
puted.  
To balance the comparison fairness and computational load, the extended data is 
divided into several subsets. PLS models are built for each subset. The sensitivity values 
along with their averages and standard deviations are also computed. A variable    is 
found significant if inequality (3.6) is satisfied. The process is carried out in an iterative 
manner. In every iteration, the variables with sensitivity values below the sensitivity of 
random variable are eliminated. The predictive power of the new set of variables is de-
termined. The variables are eliminated permanently only if the predictive power is im-
proved. The process stops when no more variables can be dropped from the model. The 
stepwise algorithm of PLS-SA is illustrated in Figure 3.4.  
   ?  
 
????
        ?
   
   ?   
??????
        ?
   
 (3.6) 
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Figure 3.4 PLS-SA Algorithm 
3.5 Competitive Adaptive Reweighted Sampling with Partial Least Squares 
Hongdong Li et al. have proposed a novel strategy based on the principle ?surviv-
al of the fittest?, named competitive adaptive reweighted sampling (CARS) [21], [22]. 
This method utilizes the absolute values of the regression coefficients to evaluate varia-
bles? importance. In an iterative manner,   subsets of variables are selected by CARS 
from   Monte Carlo (MC) sampling runs. At the end, cross validation is employed to 
evaluate each subset. The general procedure can be described as follows and shown in 
Figure 3.7: 
1. In each MC sampling run, a PLS model is built using 80-90% of the ran-
domly selected samples. The regression coefficients are normalized using 
Equation (3.7), where   is the total number of variables. 
     
  
?        (3.7) 
2. In CARS, an exponentially decreasing function (EDF) is introduced as in 
Equation (3.8). EDF is utilized to eliminate variables with relatively small 
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absolute regression coefficients by force. The ratio of variables to be re-
tained in the     sampling run is calculated by Equation (3.8) to (3.10), 
where 
          (3.8) 
 
  (  )
 
    
 
(3.9) 
     (   )
    
(3.10) 
3. Adaptive reweighted sampling (ARS) is followed by EDF-based reduction 
to further eliminate variables in a competitive way. In other words, varia-
bles with larger regression coefficients will be selected with higher fre-
quency. 
 
Figure 3.5 Graphical illustration of the exponentially decreasing function 
Stage 1 
Fast Selection 
Stage 2 
Refined Selec-
tion 
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The EDF process in Step 2 is roughly divided into two stages. In the first stage, 
the variables are eliminated rapidly, so it is called fast selection. In the second stage, the 
variables are eliminated in a much slower fashion, thus it is called refined selection. An 
example of EDF is shown in Figure 3.5. Hence, EDF becomes a very efficient algorithm 
for removing the variables with little information.  
The ARS in Step 3 mimics ?survival of fittest? principle. The idea of ARS is illus-
trated in Figure 3.6. Three scenarios are considered, equal weight, little weight differ-
ence, and large weight difference. 
 Weights of Variables  Sampled Variable  
 1 2 3 4 5   
Case 1: 0.20 0.20 0.20 0.20 0.20  2 1 3 4 5 
Case 2: 0.30 0.30 0.20 0.10 0.10  1 1 2 3 2 
Case 3: 0.40 0.05 0.40 0.10 0.05  1 3 3 3 1 
 
Figure 3.6 Illustration of adaptive reweighted sampling technique using five variables in 
three cases as an example. The variables with larger weights will be selected with higher 
frequency. E m p l o y  
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Figure 3.7 General Procedure of CAR-PLS 
3.6 Partial Least Squares with Variable Important in Projection 
Variable importance in the projection (VIP) score estimates the importance of 
each variable in the projection used in a PLS model. It was first published in [48]. The 
VIP score for the     variable can be calculated using Equation (3.11), where   (    )  
        .    is the     column vector of score matrix  .    is the     element of regression 
23 
 
coefficient vector  .    is the     column vector of weighting matrix . It gives the 
weighted variability of       variable in the retained dimensions. VIP score calculates the 
contribution of each variable according to variance explained by each PLS component 
[26]. The expression     ?  ? represents the importance of     variable in the     PLS 
component. The   (    ) is the variance of   explained by the     PLS component. And 
the summation of   (    ), denominator term, is the total variance explained by the PLS 
model with   components. 
      ? ?(  (    )(    ? 
 ?
)
 
) ?  (    )
 
   
 
   
 (3.11) 
A variable selection method based on VIP scores estimated by PLS regression 
model is known as PLS-VIP. In general, ?greater than one rule? is used as criterion for 
variable selection. In other words, only variables with VIP values greater than one are 
considered significant. However, it has been suggested by Il-Gyo Chong et al. that the 
proper cutoff value for VIP can be utilized to increase the performance of PLS-VIP [4]. 
This value is defined by the following equation: 
  
 
  
{   (       
  {            }
 ( ))    (       
  {            }
 ( ))}
  
(3.12) 
where   varies from 0.01 to 3 with increments of 0.01. And  , the geometric mean of 
sensitivity and specificity, is a function of   defined by Equation (3.13). Sensitivity is 
defined as proportion of selected relevant predictors among relevant predictors. Specifici-
ty is the proportion of unselected irrelevant predictors among irrelevant predictors. They 
are both calculated from the confusion matrix shown in Table 3.1. The every   value 
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chosen, the elements in the confusion matrix will change. Therefore, the sensitivity, spec-
ificity, and   will change as well. The value of   ranges between 0 and 1, where 1 indi-
cates all the predictors are classified correctly. For every run/replication, the   values that 
maximize   are identified. The optimal cutoff value for VIP,   , is obtained by taking the 
average of the identified  ?s using Equation (3.12). 
   (                       )    (3.13) 
               (   ) (3.14) 
               (   ) (3.15) 
 
Table 3.1 Confusion Matrix and Descriptions of Its Entries 
  Predicted classes 
  Irrelevant predictor 
(IR) 
Relevant predictor  
(R) 
True classes Irrelevant predictor 
(IR) 
a: the number of ir-
relevant predictors 
classified correctly 
 
b: the number of ir-
relevant predictors 
classified incorrectly 
Relevant predictor  
(R) 
c: the number of rel-
evant predictors 
classified incorrectly 
d: the number of rel-
evant predictors 
classified correctly 
   
Overall PLS-VIP procedure can be described as follows and presented in Figure 
3.8: 
1. Build PLS model using all the variables. Apply cross validation to deter-
mine the optimal number of PC?s.  
2. Calculate VIP score for each variable using Equation (3.11).  
3. Select variables with VIP scores greater than the cutoff value. 
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4. Calculate   and the proper cutoff value using Equations (3.13) and (3.12). 
Repeat Step 3 with the new cutoff value found. (Note: This step is only as-
sessable for simulated case study.) 
5. Rebuild PLS model with only the retained variables. 
6. Evaluate the model performance using different indexes. 
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Figure 3.8 Procedure of PLS-VIP 
3.7 Partial Least Squares with Regression Coefficients 
Partial least squares with regression coefficients is a variable selection method 
that is very similar to PLS-VIP. It is also known as PLS-BETA. The only difference is 
PLS-BETA utilizes the regression coefficients estimated by PLS regression instead of 
VIP scores. The significant variables are selected according to the magnitude of the abso-
lute values of the regression coefficients. The procedure of PLS-BETA is illustrated in 
Figure 3.9. 
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Figure 3.9 Procedure of PLS-BETA 
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Chapter 4. Variable Selection Method with Its Application to Simulated 
and Industrial Dataset 
4.1 Introduction  
The characteristics of these seven variable selection methods will be illustrated 
using a simulated case study and an industrial case study. The results presented here are 
based on the rules of thumb of each method to choose the model parameters, for the pur-
pose of just comparing the base line of the methods studied. Further tuning of the pa-
rameters can be done to optimize the performance of each model.  
The simulation case is generated to mimic the typical characteristics of industrial 
data by considering four factors: proportion of relevant predictors, magnitude of correla-
tion between predictors, structure of regression coefficients, and magnitude of signal to 
noise ratio. A detailed description of data generation will be provided. The industrial case 
study is focused on the process data of polyester resin production plant. A brief specifica-
tion of the plant will be included, followed by discussion of characteristics of batch pro-
cess and their necessary preprocessing steps. The results and comparison of variable se-
lections on both simulated and industrial case studies will be investigated. Two aspects 
are studied: correctly identify all the variables and prediction performance. The former 
one is only applicable in simulated case study, where the ground truth of the data is 
known. It is evaluated by the geometric mean of sensitivity and specificity discussed in 
Chapter 3. In this aspect, we also look at the consistency of the models produced by each 
variable selection method. In other words, the robustness of each method to data selection 
is explored. For both case studies, the data are permuted 100 times to generate different 
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combinations of training and validation sets. Frequency plots of selection of each variable 
are generated to assess the consistency of the models. The second aspect is also one of 
the most important factors in soft sensor development, since the optimal goal is to im-
prove the prediction performance of soft sensor schemes. Two performance metrics are 
considered to evaluate the prediction performance: root mean square error (RMSE) and 
mean absolute percentage error (MAPE).  
      ?? (    ? ) 
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4.2 Simulated Case Study 
Four factors are considered in data generation to mimic the characteristic of in-
dustrial data. They are proportion of the number of relevant predictors, the magnitude of 
correlations between predictors, the structure of regression coefficients, and the magni-
tude of signal to noise ratio. The dataset is generated following a linear model as in(4.3), 
    ?        
 
   
 (4.3) 
where    is normal distributed random error with zero mean and specified standard devia-
tion (described below). The data matrix   of 500 sample points is generated considering 
the four factors. 
? For convenience, the number of relevant predictors is set to be 10. The total num-
ber of predictors,  , in data matrix can be varied, which would yield different 
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proportion of relevant predictors. The total number of predictors,  , in data matrix 
are varied in three levels, 20, 40 and 100.  
                (4.4) 
? Data matrix   is generated from multivariate normal distribution with zero mean 
vector and variance-covariance matrix of  . The elements of matrix   are func-
tion of the magnitude of correlations between predictors,  . The magnitude of 
correlations between predictors,  , is also varied in three levels, 0.5, 0.7 and 0.9.  
      |   | (          ) (4.5) 
Two types of equal and unequal coefficients are compared. Each type has two 
levels according to their locations of relevant predictors: in the middle of the range and at 
the extremes. All the irrelevant predictors have zero coefficients in both types. For the 
case with 10 relevant predictors, the regression coefficients are generated as follows: 
? Equal coefficients in the middle of range 
      (                  ) (4.6) 
? Equal coefficients at the extreme  
      (                     ) (4.7) 
? Unequal coefficients in the middle of range 
    (    |     (   )|)  (                 ) (4.8) 
? Unequal coefficients at the extreme 
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   (|     (   )|     (    ))  
(                     ) 
(4.9) 
? The magnitude of signal to noise ratio is introduced by manipulating the standard 
deviation of error terms in  , where   is the reciprocal of signal to noise ratio. The 
magnitude of reciprocal of signal to noise ratio,  , is varied in three levels as well, 
0.33, 0.74 and 1.22.  
    ?   (  ) (4.10) 
 
4.2.1 Results 
All seven variable selection methods are implemented with the simulated case 
study. The four parameters are varied one at a time while holding the others constant. The 
sensitivity results of these fours parameters considered are summarized in Table 4.1 to 
Table 4.4. The individual result is compared with model before and after variable selec-
tion. PLS-BETA performs the best in the sensitivity of proportion of relevant predictors. 
It outperforms other variables selection methods in all three levels of total number of pre-
dictors. The improvement in MAPE of the validation set runs from 1% to 9%. PLS-VIP 
performs the best when the correlation is at its highest level. However, the improvement 
is not significant. PLS-BETA yields best performance for correlation at the lower two 
levels, by 2-3% in MAPE. UVE-PLS gives best performance in the case with unequal 
regression coefficients with improvement of 3% in MAPE. Surprisingly, CARS-PLS 
shows performance improvement of 7% in terms of MAPE when the signal to noise ratio 
is at its lowest. 
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To visualize the result, they are also demonstrated in Figure 4.1 to Figure 4.20. 
The performances are evaluated using the geometric mean of sensitivity and specificity 
( ), root mean square error (RMSE), and mean absolute percentage error (MAPE). The 
values plotted in Figure 4.5 to Figure 4.20 are the improvement compared to the full 
models. The ones with values higher than zero indicate improvement of reduced models 
compared to the full model; and the ones with values lower than zero imply performance 
deterioration of the reduced models. 
From Figure 4.1 to Figure 4.4, one can see that all the variables selection methods 
yields relatively high   values except PLS-SA and CARSPLS. The sensitivities of pre-
diction performance of each variable selection method to different data generation pa-
rameters are illustrated in Figure 4.5 to Figure 4.20. The results are presented in percent-
age improved in the average performance metrics. The percentage improvement is calcu-
lated by comparing the reduced models to their corresponding full model of each case. 
The results of calibration models shown in Figure 4.5 and Figure 4.12 indicate no im-
provement from the models produced by the variable selection methods compared with 
the full models. Especially for PLS-SA, the performance deteriorates by 75% in RMSE 
and 77% in MAPE. From the prediction performance of validation models shown in Fig-
ure 4.13 to Figure 4.20, the prediction performance of the reduced models are improved 
compared with the full models, with exception of PLS-SA. Performance of PLS-BETA 
worsens significantly when the regression coefficients are unequal. PLS-BETA only se-
lects the variables with larger regression coefficients. In other words, even if the variable 
is relevant to the primary variable, it is not selected by PLS-BETA since its coefficient is 
relatively small. 
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Table 4.1 Comparison of Sensitivity of Different Variable Selection Methods to Propor-
tion of Relevant Predictors 
    Training Validation 
Model   No. Sel G RMSE MAPE RMSE MAPE 
Full 
20 20 -- 1.5357 3.0418 1.5724 3.1222 
40 40 -- 1.4802 3.0229 1.6177 3.3173 
100 100 -- 1.3914 2.8289 1.7140 3.4910 
SR 
20 10+/-1 0.9767 1.5463 3.0641 1.5613 3.1014 
40 11+/-1 0.9784 1.5131 3.0884 1.5828 3.2434 
100 14+/-2 0.9765 1.4920 3.0349 1.6052 3.2716 
GA 
20 12+/-1 0.8721 1.5858 3.1446 1.6110 3.2032 
40 16+/-2 0.8746 1.5510 3.1687 1.6417 3.3622 
100 26+/-5 0.9008 1.4840 3.0181 1.6446 3.3517 
UVE 
20 12+/-1 0.9989 1.5465 3.0639 1.5612 3.1021 
40 12+/-1 0.9856 1.5199 3.1008 1.5758 3.2303 
100 12+/-1 0.9947 1.5234 3.0991 1.5723 3.2036 
SA 
20 14+/-2 0.4580 2.1686 4.3078 2.2198 4.4048 
40 23+/-3 0.4720 2.5455 5.2190 2.6748 5.4793 
100 55+/-6 0.4991 2.4337 4.9977 2.7491 5.6427 
CARS 
20 18+/-4 0.1722 1.5381 3.0471 1.5700 3.1177 
40 20+/-13 0.7057 1.5065 3.0738 1.5900 3.2584 
100 17+/-17 0.9384 1.5024 3.0560 1.5933 3.2448 
VIP 
20 10+/-0 0.9918 1.5807 3.1335 1.5930 3.1667 
40 11+/-1 0.9874 1.5230 3.1075 1.5721 3.2219 
100 13+/-1 0.9849 1.5247 3.1023 1.5710 3.2007 
BETA 
20 10+/0 1 1.5504 3.0732 1.5571 3.0936 
40 10+/-0 1 1.5241 3.1097 1.5712 3.2204 
100 10+/-0 1 1.5287 3.1097 1.5659 3.1893 
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Table 4.2 Comparison of Sensitivity of Different Variable Selection Methods to Magni-
tude of Correlation between Predictors 
    Training Validation 
Model   No. Sel G RMSE MAPE RMSE MAPE 
Full 
0.5 40 -- 1.4802 3.0229 1.6177 3.3173 
0.7 40 -- 1.7618 3.0547 1.8912 3.2944 
0.9 40 -- 2.1383 3.1542 2.2216 3.2872 
SR 
0.5 11+/-1 0.9784 1.5131 3.0884 1.5828 3.2434 
0.7 11+/-1 0.9836 1.7854 3.0947 1.8581 3.2348 
0.9 10+/-1 0.9526 2.1409 3.1561 2.2252 3.2908 
GA 
0.5 16+/-2 0.8746 1.5510 3.1687 1.6417 3.3622 
0.7 15+/-3 0.8873 1.7979 3.1205 1.8937 3.2956 
0.9 15+/-3 0.8344 2.1432 3.1594 2.2484 3.3246 
UVE 
0.5 12+/-1 0.9856 1.5199 3.1008 1.5758 3.2303 
0.7 14+/-2 0.9636 1.7882 3.0994 1.8568 3.2331 
0.9 28+/-3 0.8452 2.1383 3.1511 2.2220 3.2879 
SA 
0.5 23+/-3 0.4720 2.5455 5.2190 2.6748 5.4793 
0.7 28+/-3 0.4566 2.2565 3.9257 2.3950 4.1815 
0.9 36+/-3 0.2399 2.1798 3.2195 2.2625 3.3511 
CARS 
0.5 20+/-13 0.7057 1.5065 3.0738 1.5900 3.2584 
0.7 20+/-13 0.6731 1.7800 3.0856 1.8697 3.2553 
0.9 18+/-12 0.7439 2.1441 3.1603 2.2220 3.2850 
VIP 
0.5 11+/-1 0.9874 1.5230 3.1075 1.5721 3.2219 
0.7 13+/-1 0.9536 1.7913 3.1040 1.8532 3.2277 
0.9 16+/-1 0.9000 2.1412 3.1543 2.2087 3.2693 
BETA 
0.5 10+/-0 1 1.5241 3.1097 1.5712 3.2204 
0.7 10+/-0 0.9995 1.7959 3.1132 1.8492 3.2198 
0.9 10+/-0 0.9851 2.1552 3.1772 2.2162 3.2759 
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Table 4.3 Comparison of Sensitivity of Different Variable Selection Methods to Regres-
sion Coefficient Structure 
    Training Validation 
Model   No. Sel G RMSE MAPE RMSE MAPE 
Full 
EM 40 -- 1.6078 2.9768 1.7471 3.2427 
EE 40 -- 1.4802 3.0229 1.6177 3.3173 
UM 40 -- 21.80 3.0353 23.54 3.2896 
UE 40 -- 18.50 3.0014 20.19 3.2909 
SR 
EM 11+/-1 0.9779 1.6442 3.0432 1.7093 3.1696 
EE 11+/-1 0.9784 1.5131 3.0884 1.5828 3.2434 
UM 9+/-1 0.8830 22.34 3.1090 23.11 3.2238 
UE 9+/-1 0.8861 18.93 3.0704 19.84 3.2307 
GA 
EM 16+/-3 0.8865 1.6558 3.0641 1.7377 3.2224 
EE 16+/-2 0.8746 1.5510 3.1687 1.6417 3.3622 
UM 14+/-3 0.8065 22.52 3.1327 23.54 3.2850 
UE 14+/-3 0.8091 19.20 3.1129 20.28 3.3039 
UVE 
EM 12+/-1 0.9928 1.6502 3.0546 1.7021 3.1576 
EE 12+/-1 0.9856 1.5199 3.1008 1.5758 3.2303 
UM 9+/-2 0.9281 22.46 3.1262 22.95 3.2012 
UE 9+/-1 0.8944 19.06 3.0897 19.70 3.2098 
SA 
EM 24+/-3 0.4866 2.5117 4.6580 2.6385 4.8940 
EE 23+/-3 0.4720 2.5455 5.2190 2.6748 5.4793 
UM 22+/-3 0.4950 36.44 5.1019 38.03 5.3456 
UE 22+/-3 0.4797 35.04 5.7135 36.74 6.0067 
CARS 
EM 19+/-12 0.7196 1.6373 3.0301 1.7154 3.1844 
EE 20+/-13 0.7057 1.5065 3.0738 1.5900 3.2584 
UM 16+/-11 0.6912 22.40 3.1169 23.23 3.2568 
UE 17+/-12 0.6584 19.00 3.0799 20.03 3.2644 
VIP 
EM 10+/-1 0.9948 1.6557 3.0650 1.6963 3.1466 
EE 11+/-1 0.9874 1.5230 3.1075 1.5721 3.2219 
UM 7+/-1 0.8618 22.74 3.1654 23.06 3.2189 
UE 8+/-1 0.9095 19.13 3.1034 19.71 3.2112 
BETA 
EM 10+/-0 1 1.6563 3.0658 1.6957 3.1458 
EE 10+/-0 1 1.5241 3.1097 1.5712 3.2204 
UM 5+/-1 0.6977 25.09 3.4904 25.67 3.5808 
UE 5+/-1 0.6932 22.23 3.6071 22.85 3.7205 
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Table 4.4 Comparison of Sensitivity of Different Variable Selection Methods to Magni-
tude of Signal to Noise Ratio 
    Training Validation 
Model   No. Sel G RMSE MAPE RMSE MAPE 
Full 
0.33 40 -- 1.6078 2.9768 1.7471 3.2427 
0.74 40 -- 3.6020 5.6126 3.9212 6.1351 
1.22 40 -- 5.9373 7.3677 6.4675 8.0715 
SR 
0.33 11+/-1 0.9779 1.6442 3.0432 1.7093 3.1696 
0.74 11+/-1 0.9757 3.6872 5.7435 3.8349 5.9951 
1.22 9+/-2 0.8775 6.1020 7.5759 6.3888 7.9648 
GA 
0.33 16+/-3 0.8865 1.6558 3.0641 1.7377 3.2224 
0.74 16+/-2 0.8781 3.6853 5.7405 3.8758 6.0561 
1.22 15+/-3 0.8435 6.0636 7.5197 6.3973 7.9827 
UVE 
0.33 12+/-1 0.9928 1.6502 3.0546 1.7021 3.1576 
0.74 11+/-1 0.9928 3.6988 5.7612 3.8195 5.9728 
1.22 11+/-2 0.9928 6.1032 7.5697 6.3022 7.8635 
SA 
0.33 24+/-3 0.4866 2.5117 4.6580 2.6385 4.8940 
0.74 22+/-3 0.4837 3.6020 5.6126 3.9212 6.1351 
1.22 21+/-3 0.4939 5.9373 7.3677 6.4675 8.0715 
CARS 
0.33 19+/-12 0.7196 1.6373 3.0301 1.7154 3.1844 
0.74 24+/-13 0.5429 3.6630 5.7062 3.9015 6.1003 
1.22 20+/-13 0.5948 6.0540 7.5116 6.4418 7.5116 
VIP 
0.33 10+/-1 0.9948 1.6557 3.0650 1.6963 3.1466 
0.74 10+/-1 0.9936 3.7122 5.7838 3.8046 5.9502 
1.22 10+/-1 0.9902 6.1185 7.5934 6.2758 7.8297 
BETA 
0.33 10+/-0 1 1.6563 3.0658 1.6957 3.1458 
0.74 9+/-1 0.9596 3.7381 5.8259 3.8548 6.0291 
1.22 8+/-1 0.8462 6.1565 7.6452 6.4054 7.9873 
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Figure 4.1 Sensitivity of Proportion of Relevant Predictors in Terms of Average G 
 
Figure 4.2 Sensitivity of Magnitude of Correlation between Predictors in Terms of 
Average G 
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Figure 4.3 Sensitivity of Regression Coefficient Structure in Terms of Average G 
 
Figure 4.4 Sensitivity of Magnitude of Signal to Noise Ratio in Terms of Average G 
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Figure 4.5 Sensitivity of Proportion of Relevant Predictors in Terms of Average RMSE in 
Training Set 
 
Figure 4.6 Sensitivity of Magnitude of Correlation between Predictors in Terms of Aver-
age RMSE in Training Set 
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Figure 4.7 Sensitivity of Regression Coefficient Structure in Terms of Average RMSE in 
Training Set 
 
Figure 4.8 Sensitivity of Magnitude of Signal to Noise Ratio in Terms of Average RMSE 
In Training Set 
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Figure 4.9 Sensitivity of Proportion of Relevant Predictors in Terms of Average MAPE 
in Training Set 
 
Figure 4.10 Sensitivity of Magnitude of Correlation between Predictors in Terms of Av-
erage MAPE in Training Set 
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Figure 4.11 Sensitivity of Regression Coefficient Structure in Terms of Average RMSE 
in Training Set 
 
Figure 4.12 Sensitivity of Magnitude of Signal to Noise Ratio in Terms of Average 
MAPE in Training Set 
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Figure 4.13 Sensitivity of Proportion of Relevant Predictors in Terms of Average RMSE 
in Validation Set 
 
Figure 4.14 Sensitivity of Magnitude of Correlation between Predictors in Terms of Av-
erage RMSE in Validation Set 
43 
 
 
Figure 4.15 Sensitivity of Regression Coefficient Structure in Terms of Average RMSE 
in Validation Set 
 
Figure 4.16 Sensitivity of Magnitude of Signal to Noise Ratio in Terms of Average 
RMSE in Validation Set 
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Figure 4.17 Sensitivity of Proportion of Relevant Predictors in Terms of Average MAPE 
in Validation Set 
 
Figure 4.18 Sensitivity of Magnitude of Correlation between Predictors in Terms of Av-
erage MAPE in Validation Set 
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Figure 4.19 Sensitivity of Regression Coefficient Structure in Terms of Average MAPE 
in Validation Set 
 
Figure 4.20 Sensitivity of Magnitude of Signal to Noise Ratio in Terms of Average 
MAPE in Validation Set 
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Figure 4.21 Frequency of Variables Selected by SR 
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Figure 4.22 Frequency of Variables Selected by SR 
?      
?    7 
?    9 
48 
 
 
 
 
 
Figure 4.23 Frequency of Variables Selected by SR 
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Figure 4.24 Frequency of Variables Selected by SR 
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Figure 4.25 Frequency of Variables Selected by GA-PLS 
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Figure 4.26 Frequency of Variables Selected by GA-PLS 
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Figure 4.27 Frequency of Variables Selected by GA-PLS 
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Figure 4.28 Frequency of Variables Selected by GA-PLS 
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Figure 4.29 Frequency of Variables Selected by UVE-PLS 
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Figure 4.30 Frequency of Variables Selected by UVE-PLS 
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Figure 4.31 Frequency of Variables Selected by UVE-PLS 
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Figure 4.32 Frequency of Variables Selected by UVE-PLS 
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Figure 4.33 Frequency of Variables Selected by PLS-SA 
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Figure 4.34 Frequency of Variables Selected by PLS-SA 
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Figure 4.35 Frequency of Variables Selected by PLS-SA 
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Figure 4.36 Frequency of Variables Selected by PLS-SA 
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Figure 4.37 Frequency of Variables Selected by CARS-PLS 
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Figure 4.38 Frequency of Variables Selected by CARS-PLS 
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Figure 4.39 Frequency of Variables Selected by CARS-PLS 
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Figure 4.40 Frequency of Variables Selected by CARS-PLS 
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Figure 4.41 Frequency of Variables Selected by PLS-VIP 
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Figure 4.42 Frequency of Variables Selected by PLS-VIP 
?      
?    7 
?    9 
68 
 
 
 
 
 
Figure 4.43 Frequency of Variables Selected by PLS-VIP 
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Figure 4.44 Frequency of Variables Selected by PLS-VIP 
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Figure 4.45 Frequency of Variables Selected by PLS-BETA 
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Figure 4.46 Frequency of Variables Selected by PLS-BETA 
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Figure 4.47 Frequency of Variables Selected by PLS-BETA 
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Figure 4.48 Frequency of Variables Selected by PLS-BETA 
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Another aspect of investigation is to examine the model?s consistency, i.e., if a 
variable is selected once, will this variable be selected in next run? In order to check 
models? consistency, frequency of variable selection plots are generated and illustrated in 
Figure 4.21 to Figure 4.48. As shown in Figure 4.21 to Figure 4.24, SR is able to correct-
ly identify most of the relevant predictors with 100% frequency. However, it also selects 
the irrelevant predictors at times. When the correlation between predictors increases, and 
signal to noise ratio decreases; SR no longer selects relevant predictors with 100% fre-
quency. None of the relevant predictors are selected by GA-PLS with 100% frequency as 
shown in Figure 4.25 to Figure 4.28. Its performance worsens when the correlation be-
tween predictors and reciprocal of signal to noise ratio increase. Based on Figure 4.29 to 
Figure 4.32, UVE-PLS performs fairly well in the cases with unequal regression coeffi-
cients and low signal to noise ratio. However, UVE-PLS select some irrelevant predictors 
non-randomly when the correlation between predictors is at its higher level. From Figure 
4.33 to Figure 4.36, one can see that PLS-SA selects both relevant and irrelevant predic-
tors with same frequency in all cases. From Figure 4.37, CARS-PLS selects almost all the 
variables when the proportion of relevant predictors is high. Also, CARS-PLS selects ir-
relevant predictor with around 30-40% frequency in all other cases, which can be seen in 
Figure 4.37 to Figure 4.40. PLS-VIP and PLS-BETA are the ones with the most ?clean? 
frequency plots. In many cases, most of the irrelevant predictors are selected with 0% 
frequency. Only a few irrelevant predictors are selected with very low frequency in the 
case with low signal to noise ratio. 
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4.2.2 Conclusion and Discussion 
Based on the results shown in simulated case study, PLS-VIP and PLS-BETA 
yield the best results among all seven variable selection methods studied. However, the 
performance of PLS-BETA does decay significantly when the regression coefficients are 
not equal and cover a wide range. PLS-BETA only selects the ones with large regression 
coefficients and discards the ones with smaller coefficients even though they are related 
to the primary variables. The prediction performance also deteriorates accordingly. In the 
opposite, UVE-PLS performs the best in the case with unequal regression coefficients. 
Performance of SR is in the middle range among all seven variable selection methods. 
The consistency of selection is quite good for SR. However, irrelevant predictors are se-
lected by SR at lower frequency. Performance of GA-PLS is one of the ones in the mid-
dle range as well. Similar behavior is observed in GA-PLS as in SR. However, in terms 
of computational effort, SR requires less computation time. CARS-PLS is sensitive to 
proportion of relevant predictors. It selects all the irrelevant predictors with higher than 
80% when the proportion of relevant predictors is high. CARS-PLS also selects irrelevant 
predictors with around 30-40% frequency in all other cases. Among all the variable selec-
tion methods considered in this work, PLS-SA yields the worst performance in most 
training and validation set. And the computation time of PLS-SA is quite intensively 
compare to other methods.  
These conclusions are made purely based on the results obtained from this simu-
lated case study.  
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4.3 Industrial Case Study 
This industrial dataset was obtained from the request to Dr. Barolo. This process 
is the production of polyester resin used in the manufacturing of coatings via batch poly-
condensation between a diol and a long-chain dicarboxylic acid [49]. The main part of 
this plant is a 12 m3 stirred tank reactor, which is used for the production of different res-
ins.  Water is also formed in the poly-condensation reaction as a byproduct. A packed 
distillation column, along with an external water-cooled condenser and a scrubber, are 
installed to remove the water. In addition, a vacuum pump is equipped to maintain the 
vacuum in the reactor. 
There are several online measurement sensors supplied in the plant. Thirty-four 
variables are routinely measured online and recorded by a process computer every 30 se-
conds. The number of samples is in the range between 4500 and 7500 from batch to 
batch. These are process measurements (temperature, pressures and valve openings, etc.) 
and controller settings (which are adjusted manually by the operators). A list of these 
thirty-four variables is shown in Table 4.5. Product quality measurements, acidity number 
and viscosity, are not measured online and are not available for the entire duration of the 
batch. The product samples are taken manually by the operators. The sampling is uneven-
ly and infrequently. There are only 15 to 25 measurements available per batch. 33 batches 
are made available in 16-month period of time. The autoscaled process data of one of the 
batches is shown in Figure 4.49, and the quality variables are plotted in Figure 4.50. 
More details about this process can be found in [49], [50]. 
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Table 4.5 List of Process Variables Included in Polyester Resin Dataset 
Online Monitored Variable Column MA-PLS 
Date and time of the day 1  
Mixing rate (%) 2 X 
Mixing rate 3 X 
Mixing rate SP 4  
Vacuum line temperature (?C) 5 X 
Inlet dowtherm temperature (?C) 6 X 
Outlet dowtherm temperature (?C) 7 X 
Reactor temperature (sensor 1) (?C) 8 X 
(dummy) 9  
Column head temperature (?C) 10 X 
Valve V25 temperature (?C) 11  
Scrubber top temperature (?C) 12 X 
Inlet water temperature (?C) 13 X 
Column bottom temperature (?C) 14 X 
Scrubber bottom temperature (?C) 15 X 
Reactor temperature (sensor 2) (?C) 16 X 
Condenser inlet temperature (?C) 17 X 
Valve V14 temperature (?C) 18 X 
Valve V15 temperature (?C) 19 X 
Reactor differential pressure 20 X 
(dummy) 21  
Column top temperature PV (?C) 22 X 
Column top temperature SP (?C) 23  
V42 way-1 valve opening (%) 24 X 
Inlet dowtherm temperature PV (?C) 25 X 
Inlet dowtherm temperature SP (?C) 26  
V42 way-2 valve opening (%) 27 X 
Reactor temperature PV(?C) 28 X 
Reactor temperature SP (?C) 29  
(dummy) 30  
Valve V25 temperature PV (?C) 31  
Valve V25 temperature SP (?C) 32  
Valve V42 valve opening (%) 33 X 
Reactor vacuum PV (mbar) 34 X 
Reactor vacuum SP (mbar) 35  
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Figure 4.49 Visualization of Autoscaled Process Data from A Reference Batch in Polyes-
ter Production 
 
Figure 4.50 Product Quality Variables from A Reference Batch in Polyester Production. 
(a) is the acidity number in gNaOH/gresin; (b) is the viscosity in poise. 
(a) 
(b) 
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4.3.1 Data Preprocessing 
For a batch process, the data are stored in a three-dimension array,       , as 
shown in Figure 4.51. Each row corresponds to one of the   batches, while each column 
contains one of the   variables;   is the total number of samples taken in     batch. This 
is one of the typical characteristics of batch process, where batch duration is not fixed. 
Thus, a preprocessing step is required to synchronize the batch-to-batch durations. Three 
preprocessing methods are considered in this work: 
1. Only retain the process samples when the quality variables are available. 
All the process samples without their corresponding quality variables are 
eliminated. 
2. Instead of eliminate all those samples points, the average of them are tak-
en and utilized as soft sensor inputs. 
3. Similar to the previous one, but integral over time is taken as the soft sen-
sor inputs. 
The approach taken to unfold the three-way array is to preserve the direction of 
the variables [51]. The resulting matrix has dimension of   by  , where   ?       . A 
previous approach proposed by Nomikos and MacGregor [52], [53] is to unfold the three-
way matrix so that the batch direction is preserved. This results in matrix with dimension 
of   by (?         ). Since variable selection is our purpose, the approach that pre-
serves the direction of variables is adopted.  
To provide fair comparison, the batches are permuted 100 times before unfolding 
to generate different combinations of training and validation set. In every permutation, 
the first 27 batches are used for training, and the remaining is used for validation. The 
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visualization of the autoscaled process data using the first preprocessing method and the 
quality data from one of the permutation runs are shown in Figure 4.52 and Figure 4.53, 
respectively. 
 
Figure 4.51 Illustration of Unfolding Three-Dimension Array to Preserve the Direction of 
Variables 
 
Figure 4.52 Dynamic Parallel Coordinate Plot of Autoscaled Unfolded Process 
Data of A Permutation Run of Polyester Resin Dataset 
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Figure 4.53 Product Quality Variables of A Permutation Run of Polyester Produc-
tion. (a) is the acidity number in gNaOH/gresin; (b) is the viscosity in poise. 
4.3.2 Results 
Variable selection methods are applied individually to each quality variables. On-
ly the training set is utilized for variable selection. Models developed by these variable 
selection schemes are then validated using the validation set. The results of three different 
preprocessing methods are presented in Table 4.6 and Table 4.8.  
Based on the results obtained from the first preprocessing method, all the variable 
selection methods is able to identify a subset of variables that would improve the model 
prediction performance, with the exception of PLS-SA. For acidity number model, the 
one with the best prediction performance is produced by PLS-VIP. Over 100 permutation 
runs, model with average number of 13 variables are created by PLS-VIP. The prediction 
performances on the external validation set are improved by 23.2% and 27.1% in RMSE 
and MAPE, respectively. For the calibration models, the best results are actually given by 
(a) 
(b) 
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SR with an average size of 12 variables. Nevertheless, the results on the validation set are 
not as great as PLS-VIP. This indicates that the model produced by SR may tend to over-
fit the training data. For viscosity model, the best performance model is again produced 
by PLS-VIP with model size of 14 variables in average. The prediction performances on 
the external validation set are improved by 28.1% and 23.3% in RMSE and MAPE, re-
spectively. In addition, this is the only model that gives such superior performance; all 
the other methods only improve the prediction performance up to 6%.  
Results of acidity number and viscosity models from the second preprocessing 
method show that the most superior prediction performance is still given by PLS-VIP. 
The model size is increased from 13 to 16 variables for acidity number model and 14 to 
16 for viscosity model. The prediction performances of acidity number model are boosted 
by 26% and 13% in RMSE and MAPE, respectively. For viscosity model, the prediction 
performances are advanced by 36.5 % and 29.2% in RMSE and MAPE, respectively. SR 
also produces best calibration models for both acidity number and viscosity in this pre-
processing method. 
Once again, best prediction performance of acidity number model is provided by 
PLS-VIP in the third preprocessing method, by 10% in RMSE and 8% in MAPE. The 
average model size is only 9 variables. The results of the viscosity model are different 
from the previous two methods. The highest prediction performance is actually provided 
by CARS-PLS with improvement of 13% in both RMSE and MAPE. The model is rela-
tively small with 9 variables. The standard deviation of model size is almost half of the 
average value, which means CARS-PLS is sensitive to data selection. Furthermore, the 
prediction errors of the last method are almost doubled compared to the previous ones. 
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Table 4.6 Comparison of Different Variable Selection for Preprocessing Method 1 
 Model No. of Var-iables Training Validation RMSE MAPE RMSE MAPE 
Acidity 
Number 
PLS 34 1.7031 24.4044 2.2175 32.9926 
Stepwise 12+/-2 1.6166 22.1661 1.8587 26.4972 
GA-PLS 13+/-2 1.6327 23.0392 1.8183 26.6951 
UVE-PLS 18+/-2 1.6795 23.5050 2.0449 29.4195 
PLS-SA 27+/-2 1.7752 25.1340 2.2777 33.8493 
CARS-PLS 8+/-2 1.7402 23.9638 1.8849 27.2733 
PLS-VIP 13+/-1 1.6653 22.5347 1.7021 24.0513 
PLS-BETA 16+/-1 1.6737 22.7862 1.9947 28.0227 
Viscosity 
PLS 34 0.6885 11.7796 1.0662 17.5609 
Stepwise 11+/-2 0.6869 12.0458 1.0068 17.0644 
GA-PLS 11+/-3 0.6936 11.6718 0.9951 16.5112 
UVE-PLS 18+/-3 0.7475 13.2438 1.0368 17.4080 
PLS-SA 29+/-2 0.7084 12.1746 1.0951 17.9966 
CARSPLS 9+-/4 0.7270 12.1278 1.0234 16.6214 
PLS-VIP 14+/-1 0.7344 13.0173 0.7661 13.4600 
PLS-BETA 16+/-2 0.6884 11.8257 1.0341 17.1061 
 
Table 4.7 Comparison of Different Variable Selection for Preprocessing Method 2 
 Model No. of Var-iables Training Validation RMSE MAPE RMSE MAPE 
Acidity 
Number 
PLS 34 1.4498 22.8617 2.0488 29.1595 
Stepwise 11+/-2 1.4200 22.5903 1.6558 25.9971 
GA-PLS 11+/-2 1.4292 23.1971 1.5874 26.4053 
UVE-PLS 20+/-1 1.4604 23.4277 1.8858 29.4339 
PLS-SA 28+/-2 1.5008 23.7984 2.0197 29.8083 
CARS-PLS 9+/-3 1.4511 23.7552 1.5500 25.6226 
PLS-VIP 16+/-0 1.4605 23.8432 1.5245 25.3108 
PLS-BETA 17+/-1 1.4406 22.6302 1.7180 26.9167 
Viscosity 
PLS 34 0.7079 12.6513 1.1777 19.3988 
Stepwise 11+/-2 0.6902 12.0718 1.0320 17.5915 
GA-PLS 10+/-2 0.6965 12.2571 1.0391 17.5482 
UVE-PLS 21+/-3 0.7196 13.0370 1.1227 18.7715 
PLS-SA 28+/-2 0.7539 13.7273 1.2775 21.1849 
CARSPLS 9+-/5 0.7413 13.4055 1.0976 18.7016 
PLS-VIP 16+/-1 0.7228 13.2627 0.7476 13.7396 
PLS-BETA 15+/-2 0.6950 12.4778 1.0176 17.6031 
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Table 4.8 Comparison of Different Variable Selection for Preprocessing Method 3 
 Model No. of Var-iables Training Validation RMSE MAPE RMSE MAPE 
Acidity 
Number 
PLS 34 3.0584 53.1167 3.7931 57.7093 
Stepwise 14+/-2 3.0806 53.1855 4.0081 58.4953 
GA-PLS 11+/-2 2.9637 49.3168 4.0584 56.3860 
UVE-PLS 28+/-1 3.1057 52.4875 4.5632 62.0594 
PLS-SA 32+/-1 3.0722 53.4689 3.7646 57.7600 
CARS-PLS 12+/-7 3.0216 49.0159 3.7139 53.9567 
PLS-VIP 9+/-1 3.0576 50.6028 3.4143 52.9578 
PLS-BETA 14+/-1 2.9966 51.0542 3.8230 56.2184 
Viscosity 
PLS 34 1.7437 32.7257 2.2371 43.3408 
Stepwise 10+/-2 1.6001 31.0598 2.4125 45.0485 
GA-PLS 11+/-2 1.5842 30.7862 2.3106 43.2504 
UVE-PLS 27+/-2 1.6804 31.7349 2.3896 44.1047 
PLS-SA 29+/-5 1.7580 32.9440 2.1602 41.7313 
CARSPLS 9+-/5 1.5539 30.3764 1.9422 37.7724 
PLS-VIP 14+/-1 1.7392 32.5318 1.9951 39.9705 
PLS-BETA 17+/-1 1.6217 31.0373 2.1733 41.9445 
 
Based on the results summarized in the above Tables and Figure 4.54 to Figure 
4.57, among three preprocessing methods, the third method yields the largest prediction 
error. Also, the improvement by variable selection for the third method is least signifi-
cant. The results from the first two methods are comparable. In acidity number model, the 
second preprocessing method yields the best performance, while the first preprocessing 
method performs the best in viscosity model. The sizes of models produced by the second 
preprocessing method are slightly larger the first method. However, more significant im-
provement in prediction performance is observed in the second preprocessing method. 
The computation time is also equivalent. The results are also illustrated in Figure 4.58 to 
Figure 4.65. The performance indicators shown are compared with the full model from 
each preprocessing method, with positive values implying improvement in prediction 
performance and negative values implying deteriorations in prediction performance.  
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Figure 4.54 Comparison of Acidity Number Full Models from Each Preprocessing Meth-
od in Terms of RMSE 
 
Figure 4.55 Comparison of Acidity Number Full Models from Each Preprocessing Meth-
ods in Terms of MAPE 
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Figure 4.56 Comparison of Viscosity Full Models from Each Preprocessing Methods in 
Terms on RMSE 
 
Figure 4.57 Comparison of Viscosity Full Models from Each Preprocessing Methods in 
Terms of MAPE 
87 
 
 
Figure 4.58 Comparison of Different Preprocessing Method of Acidity Number Model in 
Terms of RMSE in Training Set 
 
Figure 4.59 Comparison of Different Preprocessing Method of Acidity Number Model in 
Terms of MAPE in Training Set 
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Figure 4.60 Comparison of Different Preprocessing Method of Acidity Number Model in 
Terms of RMSE in Validation Set 
 
Figure 4.61 Comparison of Different Preprocessing Method of Acidity Number Model in 
Terms of MAPE in Validation Set 
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Figure 4.62 Comparison of Different Preprocessing Method of Viscosity Model in Terms 
of RMSE in Training Set 
 
Figure 4.63 Comparison of Different Preprocessing Method of Viscosity Model in Terms 
of MAPE in Training Set 
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Figure 4.64 Comparison of Different Preprocessing Method of Viscosity Model in Terms 
of RMSE in Validation Set 
 
Figure 4.65 Comparison of Different Preprocessing Method of Viscosity Model in Terms 
of MAPE in Validation Set 
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Figure 4.66 Selection Frequency of SR Acidity Number Model 
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Figure 4.67 Selection Frequency of SR in Viscosity Model 
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Figure 4.68 Selection Frequency of GA in Acidity Number Model 
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Figure 4.69 Selection Frequency of GA in Viscosity Model 
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Figure 4.70 Selection Frequency of UVE in Acidity Number Model 
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Figure 4.71 Selection Frequency of UVE in Viscosity Model 
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Figure 4.72 Selection Frequency of PLS-SA in Acidity Number Model 
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Figure 4.73 Selection Frequency of PLS-SA in Viscosity Model 
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Figure 4.74 Selection Frequency of CARS-PLS in Acidity Number Model 
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Figure 4.75 Selection Frequency of CARS-PLS in Viscosity Model 
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Figure 4.76 Selection Frequency of PLS-VIP in Acidity Number Model 
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Figure 4.77 Selection Frequency of PLS-VIP in Viscosity Model 
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Figure 4.78 Selection Frequency of PLS-BETA Acidity Number Model 
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Figure 4.79 Selection Frequency of PLS-BETA in Viscosity Model 
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Consistency of variable selection is also studied for the industrial case. The fre-
quency plots are presented in Figure 4.66 through Figure 4.79. Frequency of selection is 
shown in percentage. As results shown, PLS-VIP is the most consistent one among all 
seven variable selection methods. Variables are either selected with extreme high fre-
quency or not selected at all. Only a few variables are selected in the lower or middle 
range. The consistency of PLS-BETA is better in the acidity number model than that of 
the viscosity model. Compare to PLS-VIP, the model size of PLS-BETA are generally 
larger than PLS-VIP. CARS-PLS produces the smallest models. The consistency of 
CARS-PLS is unacceptable. Only a few variables are selected with high frequency, and 
many variables are selected with frequency in the lower range. This agrees with results 
found in the simulated case study that CARS-PLS is sensitive to data selection. The per-
formance of SR and GA-PLS are the ones in the middle range. UVE-PLS produces mod-
els with second largest size. It frequency of selection is relatively consistent. PLS-SA 
generates the largest models. Also, the prediction performances are actually worsened 
after variable selection by PLS-SA. This is also the only method that yields worse per-
formance than the original model.  
4.3.3 Conclusion and Discussion 
According to the analysis of results obtained from three preprocessing methods, 
the first two preprocessing methods should be adopted. The performances of the first pre-
processing methods are very competitive, while the third method is not quite comparable. 
Especially in prediction performance, the prediction errors are doubled compared to those 
of the first two preprocessing methods. The improvement after variable selection is not as 
significant as the other ones. 
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Based on results obtained from industrial case study, PLS-VIP yields the most su-
perior performance in terms of prediction and selection consistency. In the first two pre-
processing methods, PLS-VIP outperforms the other variable selection methods for both 
acidity number model and viscosity model. Even though CARS-PLS gives best model in 
the third preprocessing method, due to its inconsistency, CARS-PLS should be applied 
with care. 
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Chapter 5. Conclusions and Future Works 
5.1 Conclusions 
The goal of this project is to implement variable selection algorithms in data-
driven soft sensors to improve their predictive power. Seven variable selection methods 
are investigated: stepwise regression (SR), genetic algorithm (GA) with PLS, uninforma-
tive variable elimination (UVE) with PLS, PLS with sensitivity analysis (SA), competi-
tive adaptive reweighted sampling (CARS) with PLS, PLS with variable importance in 
projection (VIP) and regression coefficients (BETA). The characteristics of these meth-
ods are explored by using a simulated case study and an industrial case study. 
Based on the analysis results, PLS-VIP gives the most superior performance in 
both simulated and industrial case. PLS-VIP is very straight-forward, which selects the 
relevant predictors based on its importance in the PLS projection. It is shown that the 
submodels produced by PLS-VIP outperform other methods significantly, especially in 
the industrial case study. Furthermore, the models produced by PLS-VIP are very con-
sistent from one sampling run to the other, which shows its robustness to data selection. 
On the other hand, CARS-PLS is quite sensitive to data selection. The standard devia-
tions of the models produced by CARS-PLS are much larger than the other ones. The 
next in line would be PLS-BETA and SR. PLS-BETA performs very well when the con-
tributions of each relevant predictor are in the same range. However, this is not always 
the case the industrial processes. PLS-BETA tends to only select the variables with dom-
inating contribution, which may over simplify the model and cause overfit. SR also has 
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issues with overfitting. From the results shown in the industrial case study, SR always 
gives the greatest calibration models, but prediction performance on the external valida-
tion set is not quite ideal. GA-PLS yields similar results to SR. However, the computation 
time of GA-PLS is much longer than that of SR. GA-PLS also required more tedious pre-
liminary setting of GA parameters. UVE-PLS and PLS-SA generates models with rela-
tively large size. Nonetheless, UVE-PLS is able to identify a subset of variables that 
would improve the prediction performance, whereas the submodels produced by PLS-SA 
worsen the prediction performance. The strength and limitations of each method are 
summarized in Table 5.1. 
Table 5.1 Limitations and Strengths of Each Variable Selection Method 
Models Pros Cons 
SR 
? Produce high performance train-
ing model 
? Relatively consistent selection 
? Developed model tend to overfit 
the model 
GA-PLS 
? Performance can be improved by 
tuning the parameters 
? Require a lot of user input to op-
timize performance 
? Selects irrelevant predictors 
? Computation load 
UVE-PLS 
? Relatively consistent selection  
? Improvement observed in predic-
tion performance 
? Large model size 
PLS-SA ? Selection consistency ? Low prediction performance ? Heavy computation load 
CARS-PLS ? Use as preliminary variable re-duction in wavelength selection ? Selection inconsistency 
PLS-VIP 
? Selection consistency 
? High prediction performance 
? Least computation load 
? May select some irrelevant pre-
dictors around the relevant ones 
PLS-BETA 
? Selection consistency 
? High prediction performance 
? Low computation load 
? User input requires for the cutoff 
value of BETA 
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5.2 Future Works 
Variable reduction can be carried out prior to variable selection based on two 
rules: elimination of variables with zero-variance and elimination of highly correlated 
variables. The variable selection methods can also be improved by considering the appli-
cation of modeling power approach. Modeling power approach balances the predictive 
and descriptive abilities of model. 
Application of wavelength selection is also of interest. The next step of research is 
to implement these seven variable selection methods on a benchmark dataset, NIR spec-
tral of diesel fuel. 
The optimal goal of our study is to implement variable selection method in the 
framework of Statistics Pattern Analysis (SPA). Due to the characteristics of SPA, it is 
very likely that the number of regressors would be greater than the number of samples. 
Variable selection method could be implemented to eliminate the uninformative variables 
prior to SPA. In addition, variable selection can also be employed to select useful statis-
tics in statistics pattern generation. 
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