Phosphorusandnitrogenbudgetforinland,salinewatershrimpondsinAlabamabyWeiSun AthesisubmitedtotheGraduateFacultyofAuburnUniversityinpartialfulfilm entoftherequirem ntsfortheDegreofMasterofScincAuburn,Alabam a Decm ber8,2012Keywords:Inlandshrim pculture,Phosphorus,Nitrogen,Low-salinityshrim pculture Copyright2012byWeiSunApprovedbyClaudeE.Boyd,Chair,ProfesorofFisheriesandAliedAquaculturesDavid.Rouse,rofesorofisriesali ulturs AsheberAbe,AsociatPresorofMthem aticsandStaistics i ABSTRACTPhosphorusandnitrogenbudgetswerpreparedforpondsinainlandlow-salinityshrim pfarm intheBlacklandPrairergionofAlabam a.Thestudywasconductedduringthe firstcropinthrepondswhichwernewlyconstructedandhadneverbeforecontainedwater.Pondswernotfertilzed,andthem aininputofphosphorusandnitrogenifedaveraged47kg/haand208.5kg/harespectively.Theseinputsrespectivelyacountedfor98.9%and95.5%oftotalinputforphosphorusandnitrogen,otherinputsofphosphorusand nitrogenwerpostlarvae,welater,ainfalandrunoffthatcombinedaveraged0.5kg/haforphosphorusand9.8kg/hafornitrogen.Them ajoroutputofphosphorusandnitrogenwashrim pharvestwhichaveraged5.2kg/haforphosphorusand45.7kg/hafornitrogen.Only10.9%ofphosphorusand21%of nitrogenappliedinfedwasincorporatedintoshrim p.Otherlosseofphosphorusandnitrogenthatresultedfromwateroutflows(epageandharvestefluent)acountedfor3.2kg/haforphosphorusand7.8kg/hafornitrogen.Itwasdificultom easurethephosphorusandnitrogenincreaseinthebottomsoilover asinglecropespecialyforthesenewponds.Phosphorusadsorptionbybottomsoilisthem ajorpathwayofphosphoruslossfrompondwater,andthediferncebetwentheinputsandoutputsithoughttoresultfromadsorptionbybottomsoils.Fornitrogen,thediscrepancybetweninputandoutputwascausedbyabsorptionbythebottomsoil, denitrifcationandNH3volatilzation.NitrogenlosscausedbydenitrifcationandNH3volatilzationwasnotm easuredinthistudy.Reuseofthewaterem ovedfrompondsatharvestisapractialwaytoreducethenutrientloadtotheenvironmentandtosavewater. i ACKNOWLEDGMENTSTheauthorwouldliketotakethischancetoexpreshisdeepestenseofgratiudetoDr.ClaudeE.Boydforhiscontinuousadviceandasitancethroughoutthecourseofthis thesi.HeacknowledgeshisgratiudetoDr.avidB.RouseandDr.AsheberAbeforservingascomm item em bers. SpecialthankstoDr.avidTeichert-Coddingtonforthesupportom akethisthesipossible. HeisalsogratefultoDr.NaparatPrapaiwongforherasitancethroughcollectingfielddata.ThanksalsoteverybodyinDr.Boyd?slabform akinghistayinAuburnapleasntandm em orableone.Mostim portantly,hethankshisparentsfortheirunconditionalsupport. iv TABLEOFCONTETSAbstract.........................................................................................................................................iAcknowledgments........................................................................................................................iv ListofTables................................................................................................................................viIntroduction...................................................................................................................................1LiteratureReviw..........................................................................................................................3MaterialndMethods.................................................................................................................11 ResultsandDiscussion...............................................................................................................17LiteratureCited...........................................................................................................................28 v LISTOFTABLESTable1PrecipitaionandclasApanevaporationdatafortheperiod20April?2Septm ber2011inpondN-10atninlandshrim pfarm inAlabam a..........................22 Table2PrecipitaionandclasApanevaporationdatafortheperiod20April?13Septm ber201inpondN-11atninlandshrim pfarm inAlabam a..........................22Table3PrecipitaionandclasApanevaporationdatafortheperiod12May?10Septm ber201inpondN-12atninlandshrim pfarm inAlabam a............................................23 Table4WaterbudgetsforpondsN-10,N-11andN-12.............................................................23Table5Am ountsandconcentrationsofphosphorusandnitrogen(drym aterbasi)ofpostlarvae,fedandofshrim pforthreponds(N-10,N-11andN-12)..............................24Table6Daysofstocking,am ountoffedused,stockdensity,Fedconversionratiosand survivalrate...................................................................................................................25Table7Averageconcentrations(m g/L)andstandarddeviationsfortotalphosphorusinrainfal,welater,andpondwaterinpondsN-10,N-11,andN-12atninlandshrim pfarm inAlabam a...............................................................................................25 Table8Averageconcentrations(m g/L)andstandarddeviationsfortotalnitrogenirainfal,welater,andpondwaterinpondsN-10,N-11,andN-12atninlandshrim pfarminAlabam a...................................................................................................................25Table9Averageconcentrations(m g/L)andstandarddeviationsforsolubleractive phosphorusinrainfal,welater,andpondwaterinpondsN-10,N-11,andN-12ataninlandshrim pfarm inAlabam a................................................................................26 vi Table10Averageconcentrations(m g/L)andstandarddeviationsfortotalm m onianitrogen(TAN)inrainfal,welater,andpondwaterinpondsN-10,N-11,andN-12atninlandshrim pfarm inAlabam a....................................................................................26Table11Averageconcentrations(m g/L)andstandarddeviationsfornitratenitrogen(NO 3)inrainfal,welater,andpondwaterinpondsN-10,N-11,andN-12atninlandshrim pfarm inAlabam a...............................................................................................26Table12PhosphorusandnitrogenbudgetsforpondsN-10,N-11,andN-12atninland shrim pfarm inAlabam a...............................................................................................27Table13pH,totaldisolvedsolids,salinityandwatertem perature...........................................27 1 INTRODUCTIONInlandshrim pculturehasbecomecomm oninm anyaresworldwide.Inlandpondsforshrim pcultureoftenaresuppliedwithlow-salinitywaterfromsaline aquifers(Royetal.,2010).Mostenvironmentalconcernsofinlandshrim pculturefocusonsalinization.However,likealotherkindsofpondaquaculture,eutrophicationcausedbyphosphorusandnitrogenithedischargeefluentfrom pondsisalsoam jorenvironmentalconcern(Boyd,2006).Comparedtonaturalwaters,aquaculturepondwatersareusualyenrichedwithphosphorusandnitrogenbecauseoftheuseoffedsandfertilzers.Nitrogenand phosphorusarethekeynutrientsthatincreaseproductivityofaquaticplantsandleadtoeutrophication.Nitrogenisanesntialcomponentofproteinandotherconstiuentsofcelular protoplasm .Thereisusualy7to10tim esm orenitrogenthanphosphoruscontainedinplants.However,sincephosphorusisquicklyrem ovedfromthewaterandboundinthesedim nt,anincreaseinphosphorusconcentrationusualywilcauseagreatr responseinplantgrowththanwithanincreaseinnitrogenconcentration.Am ajorconcernofnitrogendischargeinaquaculturersultsfromnitriteandun-ionizedam m onia. Thesetwoinorganicnitrogencompoundscanbetoxictoaquaticanim lsat relativelylowconcentrations(BoydandTucker,1998). 2 Them aininputsofphosphorusandnitrogentopondsarefrtilzersandfed(BoydandTucker,1998).Exceptfortheportionrecoveredintheharvestoftheculturespecies,therestoftheaddedphosphorusiseitheradsorbedbypondbottom soilordischargedinefluent(Boydetal.,2006).Nitrogenislostviathefollowingpathways:hrim pharvest;harvestefluent;denitrifcation;NH 3volatilzation;acumulationinbottomsoils(Grossetal.,2000).Thepurposeofthistudywastopreparephosphorusandnitrogenbudgetsforshrim ppondsandestim atethequantityofphosphorusandnitrogenrelasedinto naturalwatersthroughefluents. 3 LITERATUREVIEWShrim pispresntlythelargestinglecomm odity,byvalue,ininternationalfishtrade,acountingfor15%ofthetotalvalueofinternationalytradedfisheryproducts (FAO,2008).Theshrim pindustryhasgrownexponentialyinthepastfewdecades(LeungandEngle,2006).Globalshrim pproduction,includingwildcaughtfisheriesandaquaculture,hasignificantlyincreasedfrom2.6m iliontonsin1990to6.9 m iliontonsin2010(FAO,2008).Aquacultureplaysanim portantroleinshrim pindustry,itsuppliesabout55%(3,787,706tonsforaquaculture;6,916,956tonsfortotal)ofthetotalworldsupplyofshrim pin2010(FAO,2010). InAsia,thedominantspeciestraditionalywastheBlackTigershrim p(Penaeusmonodon)whichisnativetotropical,coastalregionsoftheIndo-Pacifcbasin.Inthewestrnhem ispheres,thedominantspecieswasthePacifcwhiteshrim p(Litopenaeus vannamei)whichisnativetothetropicalPacifcoastofLatinAm erica.Inthelate90s,thenon-nativeSPF(specifcpathogenfre)Pacifcwhiteshrim pwasintroducedtoAsian,anditsuseinaquaculturespreadthroughSoutheastAsiarpidly.The widespreaddoptionofPacifcwhiteshrim pcauseadram ticincreaseofAsianshrim pproduction.Pacifcwhiteshrim phasbecomethedominantspeciesculturedinThailand,ChinaandIndonesia(Wyban,2009).Them ainshrim pspeciescurrently 4 producedintheshrim pcultureindustryisPacifcwhiteshrim pasithaslargelyreplacedtheBlackTigershrim pinthelastdecade(Josupeit,2009).Shrim pfarm ingwasorignatedinSoutheastAsiawherewildshrim phasbeen raisedforcenturies.Modernshrim pfarm ingbeganithe1930swhenJapanesescientistdiscoveredthem ethodtonurtureKurumashrim p(Penaeusjaponicus)larvaetom aturationonalrgescale(WeidnerandRosenbery,1992).Shrim pwer m ainlyculturedinlargeextnsivesytem swhichprovidedlowproductivitybeforeabundantm arineshrim psedweravailablefromhatcheriesandwild-caughtsources(Fast,1992). Marineshrim pwertraditionalyculturedincoastalreasorestuarinewaters(Davisetal.,2004).However,withthedevelopmentofintensiveshrim pfarm ingtechnology,m anyenvironmentalisuesasociatedwithintensiveaquaculture activitieshavearisen.Destructionofm angroveandwetlandforshrim pfarmconstructionisconsideredasm ajorcauseoflossofm angroveforestandwetland(Philipsetal.,1993).IncoastalreasofTaiwan,thePhilippinesandThailand, salinizationoffreshwateraquiferswascausedbyusinggroundwaterforintensiveshrim pculture(Prim avera,1989).Diseasesuchaswhitespotsyndromevirusandtaurasyndromevirusbecomethe biggestobstacleforthedevelopmentofshrim paquaculture(WickinsandLe,2002).Inordertocontroldisease,reducepollutionandpreventdam agetothecoastalecosystem ,im provedshrim pproductionm ethodshavebeendevelopedtoreducethe dischargeofefluentandm inim izetheriskofdiseaseoutbreaks.Zerowaterxchange 5 sytem usinglinedpondsandinlandshrim pfarm ingaretwoexam ples.Reducingwaterxchangeratescanm inim izetheriskofintroducingdiseasecariersintoculturesytem s,sozerowaterxchangesytem ishighlyefctivefordiseasecontrol (Sam ochaetal.,2002).Becausetheshrim pfarm sininlandaresarem orescaterdcomparingtothoseinthecoastalreas,thewatersupplysourcesforthefarm sareisolatedandthereare lescontam inationproblem scausedbyneighboringfarm s.Moreoverthelandpriceofinlandaresim uchlowerthanthatofcoastalreas.Theinlandecosystem isalsolessensitvetopollutionthanthecoastlecosystem .Inlandshrim pfarm ingalsoavoids disturbanceofm angrovehabita.Asaeuryhalinespeciesthatcantolerateawiderangeofsalinities(0.5-45g/l)(MenzandBlake,1980;Brayetal.,1994),PacifcWhiteShrim pbecam eanexcelnt candidateforinlandlowsalinityfarm ing.Thealthypost-larvaeofPacifcwhiteshrim pareusualyavailableyarround(Davisetal.,2004).SomeofthefirstreportsofraisngthePacifcwhiteshrim pininlandsalinewel waterwerfromSm ithandLawrence(1990)inwestTexas(USA).cordingtothereport,shrim pwerraisedinearthenponds(86.7%survival)atstockingdensityof25shrim p/m 2.After120days,theshrim pgrewfrom1.2gtoabout20g(Sam ochaet al.,2002).Aftershrim pfarm ingnearlycollapsedasresultofdiseasethroughoutcoastalThailand,theshrim pfarm industryworldwidestartedtolookforalternativesto m aintainproduction(Kaosa-rdandPednekar,1996).Inlandlow-salinityshrim p 6 farm ingbecam equitesuccesfulinThailand.Thetechniquesusedininlandlow-salinityfarm inginThailandaresim lartothoseusedincoastalrea.However,insteadofusingseawtertofiltheponds,inlandlow-salinityfarm sm ixbrine solutionwithfreshwater.Thebrinesolutionisobtainedfromcoastalevaporationponds.Thebrinewaterisdilutedtoaslinitylevelof3-5pptwithfreshwatertoraisetheshrim p.AstudybyLim suwan(2002)showedthatbrinewaterwithaslinityof 200ppt,whendilutedwithfreshwatertothelevelof3-5ppt,isappropriateforshrim pfarm ing.Freshwaterinputsarealsousedtoreplacethewaterlosscausedbyevaporation andsepageduringtheproductioncyle,andthispractiecanreducethesalinitylevelstonearzerobythetim eofharvestifnom oresalinewaterorsaltareadded(Szuster,2006). Althoughtheinlandlow-salinityfarm ingtechniquesusingbrinesolutioninThailandhasbeenquitesuccesful,producersinothercountriesareusingsalinegroundwatertoraisem arinespeciesintheinlandare. InEcuador,therearesomearesthathavesalinegroundwaterthatisuitableforrearingm arineshrim p(Boyd,2001,2002).Andtherearerportsaboutinlandshrim pfarm ingatsitesnearPalestinaintheGuayasProvince(Boyd,2002).Therealsohave beenreportsofshrim pcultureinsalinewaterinBrazil(NunesandLopez,2001)andotherSouthAm ericacountries,butthecurrentstausofusingwelaterforshrim pcultureinothercountriesinotweldocumentd. 7 Ithasbeenstim atedthatabouttwo-thirdsofthecontinentalreainUSAareunderlainbysalinegroundwater(Feth,1970).Theinlandshrim pculturewasfirstdoneintheUSusinggroundwaterwithaslinityof28ppt.Nowadays,inlandshrim p culturehasbecomerathercomm oninFlorida,Alabam a,Texas,Arizonaandotherstaes.However,thesalinitiesofwelaterusedinm ostaresforinlandshrim pculturearelsthan10ppt(Royetal.,2010). Somecatfishfarm esinwest-centralAlabam astartedtoexperim entwithshrim pcultureinpondsusinggroundwaterfomwelswhichontained2to6pptsalinityin1999and2000.Actualy,somechannelcatfishfarm esinwest-centralAlabam a (about200m ilesinland)havebeenculturingcatfishinwatersof2to6pptsalinityforyears.Therearefwerdiseaseproblem sforcatfishcultureinpondsusingsalinewaterthanthoseusingnorm alfreshwater(Boydetal.,2000).Thewaterusedforthisinland shrim pculturewaspumpedfrombrackishwateraquifersabout1300ftbelowground(Teichert-Coddington,2002).Previousstudieshowedthatheproportionsofm ajorionsofpondwaters preparedbydilutingbrinesolutionwithfreshwaterinThailandwersim lartothoseinnorm alseawter.However,ionicompositonofsalinegroundwaterisdiferntfromseawterdilutedtothesam esalinity(Boydetal.,2002;Royetal.,2010). Theconcentrationsofcaliumandbicarbonatetndtobem uchhigherinsalinegroundwaterthanthatinseawter.Thehighproportionofcaliumandbicarbonateisconsideredtobedesirableforaquaculturepondwaters(BoydandTucker,1998). 8 Theconcentrationsofpotasium,m agnesiumandsulfatetndtobelowerinsalinegroundwaterthanthoseinseawterdilutedtothesam esalinity.Alowproportionofsulfatealsoisdesirablebecausesulfateisthesourceofhydrogensulfide inanaerobicpondsoils(Boyd,2001;Boydetal.,2002;BoydandThunjai,2003;Saoudetal.,2003).Lowconcentrationsofpotasiumandm agnesiumininlandlow-salinityshrim ppondsusingsalinegroundwaterwildecreaseshrim psurvivalrateand production(Royetal.,2010).Addingpotasiumandm agnesiumfertilzerstothepondswilsignificantlyincreasesurvivalandproduction(McNevinetal.,2004;Boydetal.,2007). Them ostcomm onm aterialusedaspotasiumfertilzerinthepondsispotasiumchloride(KCl),alsoknownasm uriateofpotash.Anotherm aterialusedasbothpotasiumandm agnesiumfertilzerisulfateofpotashm agnesia(K 2SO4?2MgSO4)whichisoldunderthetradenam eK-Mag.Potasiumandm agnesiuminpondwatersarelosthroughoverflow,sepage, harvestefluent,shrim pharvestandsoiladsorption.Potasiumandm agnesiumbudgetswerm adeforpondsrecivingm uriateofpotashandKm agasfertilzersinAlabam a(Boydetal.,2007;PineandBoyd,2010).Bottomsoilcanfixpotasiumby bothexchangeableandnon-exchangeableprocess,andoverhalfofthepotasiuminputswerlostotheseprocess(Boydetal.,2007).Unlikethepotasium,nearlyalofthem agnesiumisconsideredtobeexchangeable(PineandBoyd,2010). Comparedtoshrim pcultureincoastalreas,inlandfarm inghaseveraladvantagesam entionedbefore.Thewatersupplyisnotsharedwithotherfarm sand 9 thecontroloverwateruseism ucheasier.Thediseaseproblem alsocanbegreatlyreduced.Theuseoflandandwateresourcesim oreeficentbecauseinlandshrim pfarm ingtendstobem oreintensivethancoastalshrim pfarm ing(Boyd,2001). However,withtherapidgrowthofinlandlow-salinityshrim paquacultureindustry,therehavebeenm oreandm oreconcernsabouttheenvironmentalim pactsofthisindustry.Mostconcernsfocusonsalinationofstream s,aquifersandsoilscausedby ponddischarge(Royetal.,2010).Inothertypesofaquaculture,therearealsoenvironmentalconcernsabouteutrophicationcausedbydischargeofnutrients,organicm aterandsuspendedsolids.Althoughsalinationisthem ajorconcerni inlandshrim pculture,utrophicationisalsoaproblem .Thereasonthatpeoplepaym oreatentiontosalinationisthathepotentialforsalinationism oreobviousandefortoreducesaltdischargewilalsolesnrelaseofotherpollutants(Prapaiwong andBoyd,2012).Efluentsfrompondaquaculturetypicalyarenrichedinsuspendedsolids,nutrients,chlorophylandbiochem icaloxygendem and(BOD).Elevated concentrationsofphosphorusandnitrogenipondefluentsalsowilstim ulatethegrowthofalgaeandcauseutrophicationproblem inrecivingwaters(SchwartzandBoyd,1994). Inthecatfishindustry,fedisthem ajorsourceofphosphorustochannelcatfishponds(Boyd,1985).Phosphorusbudgetshadbeenm adeforchannelcatfishpondsrecivingdietswithdiferntphosphorusconcentrationsinAuburn,Alabam aby Grossetal.(1998).Thatstudyrevealedthatphosphoruslevelsindietsdidnothave 10 significantinfluenceonphosphorusconcentrationsinpondwaterandphytoplanktonactivity.Theuptakeofphosphorusbybottomsoiladsorptionprocesswasthem ajorfactorcontrollingphosphorusdynam icsinponds.Bottomsoilsusualyhavealrge capacitytoabsorbphosphorus,butthecapacityhaslim ts(MasudaandBoyd,1994;BoydandMunsir,1996).Itusualywiltake20yearsorm etosaturatebottomsoilswithphosphorusatnorm alfedingratesincatfishcultureinthesoutheastern UnitedStaes(Boyd,1995).Therefore,reducingphosphorusinputstopondsinfedcanextndthetim etosaturatepondsoils(Grossetal.,1998).Fedisalsothem ajorinputofphosphorusandnitrogenitheshrim paquaculture industry.Someappliedphosphorusisrecoveredintheharvestoftheculturespecies,andtherestislosthroughadsorbingbypondbottomsoilandharvestefluent(Boydetal.,2006).Nitrogenwaslostviathefollowingways:hrim pharvest;harvest efluent;denitrifcation;NH3volatilzation;acumulationinbottomsoils(Grossetal.,2000).Methodssuchasreducingfedingrates,m anagingpondstom inim izeefluents anddischargingefluentthroughsetlingpondscanreducethenutritonloadtotheenvironment(SchwartzandBoyd,1996). 11 MATERIALNDMETHODPondsandm anagem entThistudywasconductedinpondslocatedonacomm ercial inlandshrim pfarm nextoAlabam aHighway43about5kmnorthofForklandintheBlacklandPraireregionofwest-centralAlabam a.Threnewlyconstructed,em bankmentpondswerselctedinthestudy.Thesepondshadnotcontainedwaterbefore.Pondwatersurface areswerasfollows:N-10,1.62ha;N-11,1.53ha;N-12,1.92ha.TheaveragedepthforthrepondsN-10,N-11andN-12wer1.11m ,0.95m and0.95m ,respectivelyWhenwaterlevelsare10cm belowthetopofoverflowpipes,watershedareswer asfollows:N-10,2075m 2;N-11,2509m 2;N-12,2718m 2.PondsN-10andN-11werstockedwithpostlarvalshrim pat20/m 2and21/m 2on20AprilandN-12werstockedwithpostlarvalshrim pat21/m 2on12May.Fed containing35%crudeproteinwasusedthroughouttheproductioncyle.Pondswernottreatdwithnitrogenandphosphorusfertilzers.Eachpondwasequippedwithanelctricaly?powerdpaddlewheelaertortoavoidlowdisolvedoxygen concentration.Pondswerfiledwithsalinegroundwaterfomawel.Thedrop-filpractiewasim plem ntedtoprovidestoragecapacityofrainfalandpreventoverflowafter norm alrainfalevents(Boyd,1982;Cathcartetal.,1999).Theinitialwaterlevelsin 12 thepondswerabout10cm belowthetopsoftheoverflowpipeswhenshrim pwerstocked,andpumpedwaterwasddedtothepondstoreplacevaporationandsepage.Waterlevelswerm aintained10-15cm belowthetoptheoverflowpipe. Shrim pwerharvestedduringSeptm ber.PondN-12washarvestedarlieron10Septm berafter128daysofcultureduetothelowsurvivalrate.PondsN-10andN-1werharvestedon22Septm berand13Septm berafter155daysand146days ofculture,respectively.Duringtheharvest,waterdrainedfromthepondswaspumpedtothenextpondsthathadalreadybeenharvestosavewaterforreuse.Waterbudget aterbudgetforthethrepondsarebasedonthem ethodproposedbyBoyd(1982),whichusesthehydrologicequationasfollow:Inflows=Outflows?Changeinstorage Inflowsincludedwelater,precipitaionandrunoff.Outflowswerevaporation,sepage,overflowanddrainingforharvest.Precipitaionandevaporationwerm easuredbyastandardraingaugeanda clasAevaporationpanthatwerinstaledneartheponds.Thepancoeficentof0.81wasusedinestim atingpondevaporation(Boyd,1985).Theequationforpondevaporationwas E=pan(0.81)whereEpanisclasApanevaporation. 13 Stafgaugesweratchedtothepiersofeachpondtom easurethewaterlevel.Dischargefromthewelcouldnotbem easureddirectly,anditwascalulated(Boyd,1982)bythefollowingequation: W=(E+SO+H)?(P+R)where=waterfomwel,E=evaporation,O=overflows,H=pondwaterdepth,P=precipitaion,R=run-off. Acordingtothecurvenumberm ethod(YooandBoyd,1994),approxim ately67%rainfalingonthewatershedwouldentrthepondsinrun-off.Theequationforcalulationrun-offorapondwas: R=0.67(a/A)Pwherea=watershedare(m 2)andA=pondsurfaceare(m 2).Sepagewasetim atedduringdryperiodswhentherewernoinflowstothe ponds(Boyd,1982).Thedifernceinthedeclineinwaterlevelandevaporationissepage:S=?H?E Thewaterlevelswerm aintained10cm belowthetoptheoverflowpipetoavoidoverflow,butstafgaugeswerreadwithinafewhoursafterthem ajorrainfaleventtocheckifthewaterlevelexcededthetopofthestandpipe.Overflowwas estim atedasO=H?TwhereT=elvationoftopofdrainpipe. 14 PhosphorusandNitrogendeterm inationsThefedsam pleswerobtainedduringtheproductioncyleandshrim psam pleswercollectdatharvest.Thesam pleswerdriedat60?Cinam echanical convectionovenadpulverizedwithanIKAEconomicAnalyticalMil(Cole-Parm e,VernonHils,IL,USA).Thepulverizedsam pleswersenttotheAuburnUniversitySoilTestingLaboratoryfortotalnitrogendeterm ination. Analyseforphosphoruswerm adeacordingtothem ethodproposedbyBoydandTeichert-Coddington(1995).Portionsof1geachwerincineratedat500?Cfor8hinam ufflefurnace.A2.0Nacidsolutionwaspreparedbym ixingequalvolumesof 1NHO3and1NHCL.Fivem ililtersofthisolutionweraddedtotheash.Them ixturewasthenrubbedwitharubberpolicem anandputonahotplateuntilnearlydry.Theresidualwasdisolvedandtransferdtoa100-m lvolumetricflaskand dilutedtovolumewiththe2.0Nacidsolution.TheresultingsolutionwasfilterdthroughWhatm anNumber42filterpapertogethefinalsolution.Thefinalsolutionwasenttothesoiltestinglaboratoryfordeterm inationoftheconcentrationoftotal phosphorus.A30-cm diam etrplasticfunnelwasplacedina2-Lplasticbottletocollectrainwatersam ples.Watersam pleswercollectdfrompondsevery2weks throughouttheproductioncyleandatharvest.Sam plesofwelaterwercollectdwhenwelaterwaspumpedintotheponds.Althewatersam pleswerputinto2-Lplasticbottles,toredininsulatedicehestandtransportedtoAuburnUniversityfor analysi.Thesam pleswersubjectdtopersulfatedigestioninalkaline 15 environment(Eatonetal.,1995).Inthisprocedure,10m lofwatersam plewerpipeteinto30-m Ltestubes,5m Lof0.075NNaOHand0.1gofpotasiumpersulfatewasddedtothetestubes.Cappedtestubeswerm ixedbyinvertingtwiceand autoclavedat110Cfor30m in.Afterthesam plescooledtoroomtem perature,1m Lofboratebuffer(61.8gboricaidH3BO3and8gNaOHin1,000m Lofdistiledwater)weradded.Afterdigestion,5m lofresultingsolutionwastransferdto anothersetoftubestoanalyzetotalphosphorusbytheascorbicaidm ethod(GrossandBoyd,1998).Therem ainingsolutioninthetubeswasreadbyultravioletspectrophotometryfordeterm inationoftotalnitrogenconcentration.Filterdwater sam pleswerm easuredforsolubleractivephosphorusingm em branefiltrationandtheascorbicaidm ethod(GrossandBoyd,1998).Watersam plesweralsofilterdandanalyzedforNO 3-NwiththeNASreagentm ethod(GrossandBoyd,1998)andforTANwiththesalicylate-hypochloritem thod(BowerandHolm -ansen,1980). Soilsam pleswercollectdatninelocationsinaS-shapedpaternieachpondbottombeforepondswerfiledwithwater.Sam pleswertakenwithashoveltodepthof15cm .Theninesam pleswerthoroughlym ixedtoprovideasingle compositesam pleforanalysi.PondswercompletlydrainedforharvestinSeptm ber.Afterpondswerdrained,18sedim ntsam plesfrompondsN-10andN-11wercollectdasdescribedabove.Sincewaterdrainedfromthepondswas pumpedtothenextpondsthathadalreadybeenharvestosavewaterforreuse,pondN-12stilcontainedwaterwhenthebottomsoilsam pleswercollectd.Coreswer 16 takenwitha5-cm coresam pletubes.Becausetheavyclaysoilwasosticky,thetubecoretubecouldnotbeforcedm orethan10cm intothesoil.Onlysam plesof0-10cm layerswerobtainedfrompondN-12.Thesam pleswerdriedat60?Cina m echanicalconvectionovenandpulverizedwitham echanicalsoilcrusher(CustomLaboratoryEquipment,OrangeCity,Florida,USA)topasa40-m eshscren.Methodsusedfordeterm inationoftotalphosphorusandtotalnitrogenconcentration insoilsam pleswerthesam eastheonesusedforfedandshrim psam ples.PhosphorusandNitrogenbudgetPhosphorusandnitrogenbudgetswerpreparedforeachpondbysumm ingthe inputsandoutputsofphosphorusandnitrogen.Forphosphorus,theinputswerpostlarvalshrim p,fed,welater,ainfalandrun-off.Theoutputswershrim pharvest,overflow,sepage,andsedim ntacumulation.Fornitrogen,theinputswerpost larvalshrim p,fed,welater,ainfal,run-offandN2fixation.Theoutputswershrim pharvest,overflow,sepage,sedim ntacumulation,NH3volatilzation,anddenitrifcation.Thequantitesofthepostlarvae,fedandweightofharvestedshrim p werobtainedfromtheproductionrecordprovidedbytheowner.Volumesofwelwater,ainfal,run-off,sepage,overflow,anddraingeefluentwerobtainedbym ultiplyingthedepthofwaterm asuredinwaterbudgetsbypondares.Quantitesof inputsandoutputsofphosphorusandnitrogenwerobtainedbym ultiplyingthequantitesofinputsandoutputsofwaterbytheirphosphorusandnitrogenconcentrations. 17 RESULTANDSICUSIONPrecipitaionandclasApanevaporationdatacollectdatheshrim pfarm andobtainedfromanNationalWeatherService(NWS)gaugingstaionatDem opolis LockandDam about30kmsoutheastofthefarm areprovidedinTable1,Table2andTable3.Forevaporation,onlynorm alvalueswerobtainedfromtheNWSgaugingstaion.TotalrainfalforMayndJulywaslightlyhigherathestaionthan athefarm andthetotalrainfalthroughouttheproductioncylewashigherathefarm thanathestaion.Thenorm alvalueforevaporationwashigherathestaionthanathefarm exceptpondN-12whichhadashorterproductioncylethanN-10 andN-11becauseofthelowsurvivalrate.Boththewaterbudgetm thodandthebucketm ethodwerusedtoestim atethesepageofpondsinthistudy.Forthewaterbudgetm thod,sepagewascalulated onlyduringthedryperiodwhentherewernoinflowsoroutflowsotherthansepageandevaporation(Boyd,1982).Sepagewasm easuredthretim esforeachpondandtheaveragevaluesandstandarddeviationsforthrepondswerasfollows:N-10, 0.128?0.10cm /day;N-11,0.139?0.09cm /day;N-12,0.09?0.08cm /day.Theresultsofthebucketm ethodwerinconsistentandconsideredlesacuratethanthewaterbudget-basedstim ates.Thus,theywernotused. Waterfomthewelasthem ajorinflowduringthebudgetcyle(Table4). 18 Precipitaionandrunoffreplacedabout70%ofwaterlossecausedbyevaporationandsepage.Overfloweventswernotobservedthroughouttheproductioncyle.Theefluentdischargeduringharvestwasthelargestlossofwater.Evaporationwas m ajorlossfrompondsandsepagewasm uchsm alerlossacomparedtoharvestefluentandevaporation.Theam ountofpostlarvalshrim p,fedusedduringtheproductioncyle,and harvestedshrim pareprovidedinTable5.Table5alsoprovidesthephosphorusandnitrogenconcentrationsofthepostlarvalshrim p,fedandharvestedshrim p.ThesurvivalratesandtheFCRwernotparticularlygoodforalthreponds.PondN-12 hadthelowesturvivalrate(Table6).Only10.9%ofphosphorusand21%ofnitrogenofthefedappliedwasincorporatedintoshrim p.Therecoveryofappliedphosphorusinharvestedshrim pwasm uchlesthanthe recoveryofappliednitrogen.However,therecoveryofthesetwoelm ntsisaboutequalinfishculture(BoydandTucker,1998).Them ajorreasonthatcausesthisdifernceisthatfishhaveboneswhichontaincaliumphosphatebutshrim pdonot havebones.Livefishusualycontainabout0.5-0.75%phosphorus(Boydetal.,2007),whilethelivePacifcwhiteshrim pinthistudyonlycontained0.36%phosphorus.Moltingofshrim pcouldalsobeareasoncausesthelownutrientrecoverybecausethe m oltedshelsalsocontainphosphorusandnitrogen.Thephosphorusandnitrogenconcentrationsinrainfal,welaterandpondwaterareprovidedinTable7andTable8.Althoughthewelasthem ajorsourceof waterfortheponds,welaterwasnotam jorinputofphosphorusbecausethetotal 19 phosphorusconcentrationinthewelaterwaslow.Theaverageconcentrationsoftotalphosphorusandtotalnitrogenipondwaterm easuredatintervalsduringthegrow-outperiod(Table7andTable8)werusedto estim atethequantitesofphosphorusandnitrogenlostinsepageandoverflow.Theconcentrationsofphosphorusandnitrogenithepondwateratharvest(Table7andTable8)werm easuredforestim atingtheam ountofthesetwoelm ntsinthe harvestefluent.Theaverageconcentrationsofsolubleractivephosphorus,totalam m onianitrogenandnitratenitrogenirainfal,welaterandpondwaterareprovidedinTable9,Table10andTable11. Theharvestedshrim pwasthelargestnutrientoutputacountingforabout61%ofthetotaloutputforphosphorusand85%ofthetotaloutputfornitrogen(Table12).Thediferncebetwentheaverageinputsandoutputswer39.1kg/hafor phosphorusand164.8kg/hafornitrogen.Thediscrepancyforphosphoruswasasumedtohaveresultedfromabsorptionbythebottomsoils,butitwasnotpossibletom easuretheincreaseofphosphorusinthebottomsoilduringasinglecrop.Since althrepondsinthistudywernewpondsthatnevercontainedwaterbeforeandthedurationofthistudywasjustonesinglecrop,thephosphorusconcentrationofsoilsacrossthepondbottomhadwidevariation(MasudaandBoyd,1994)andtheincrease ofphosphorusconcentrationinpondbottomsoilduringonesinglecropwasm al.Moreover,theprecisonoftotalphosphorusanalysiforpondsoilsarerlativelylow(TavaresandBoyd,2003).Boyd(1985)reportedthesam eproblem indem onstrating achangeonphosphorusconcentrationinchannelcatfishpondsoilsduringasingle 20 crop.However,whenconsideredoverm anycrops,ithasbeenshownthatabouttwo-thirdofphosphorusappliedinfedtocatfishponds(MasudaandBoyd,1994)andshrim ppondsacumulatesinbottomsoil(Boydetal.,2006). Botomsedim ntofpondstronglyadsorbsphosphorusthroughvariousprocess.Phosphorusisboundinacidicsoilm ainlyasluminumphosphate,butsomealsoisboundasironphosphate.Insoilneutralorbasicreaction,phosphorusisboundin caliumphosphate.Clayparticlesinsoilalsocandsorbphosphorus(Boyd,2000).PhosphorusavailabilityinwaterdependsonthepHofwaterandm ud(MasudaandBoyd,1994).Underacidiconditions,phosphorusconcentrationinwateriscontrolled bysolubilitesofironandaluminumphosphates.Innear-neutralndhighalkalinitycondition,phosphorusconcentrationinwaterisdeterm inedbysolubilitesofcaliumandironphosphorus(MooreandReddy,1994).Thepreviouslym entionedstudyby MasudaandBoyd(1994)showedthatalthoughabouttwo-thirdsofphosphorusappliedtopondsinfedsandfertilzersacumulateinbottomsoils,thisphosphoruswastightlyboundandonlyasm lam ountwasatersoluble.Bottomsoilsusualy havealrgecapacitytoabsorbphosphorus,butthecapacityhaslim ts(MasudaandBoyd,1994;BoydandMunsir,1996).Itusualywiltake20yearsorm etosaturatebottomsoilswithphosphorusatnorm alfedingratesincatfishcultureinthe southeasternUnitedStaes(Boyd,1995).Therefore,reducingphosphorusinputstopondsinfedcanextndthetim etosaturatepondsoils(Grossetal.,1998).Nitrogenislostfrompondsviathefollowingpathways:hrim pharvest;harvest efluent;denitrifcation;NH3volatilzation;acumulationinbottomsoils(Grossetal., 21 2000).Thediferncebetweninputandoutputfornitrogenwascausedbydepositoninthebottomsoil,denitrifcationandNH3volatilzation.NitrogenlosscausedbydenitrifcationandNH 3volatilzationwasnotm easuredinthistudy.Itisalsodificultom easurethenitrogenincreaseinthebottomsoiloverasinglecropforthesam ereasonm entionedearlierforphosphorus. ThepHvaluesofthrepondsarequiteclose.Thevaluesoftotaldisolvedsolids,salinity,andconductivityinpondN-12arehigherthanthoseinN-10andN-11(Table13). Sepageisnoteasytocontrol,anditisunavoidableunlesim perm eablelinersareinstaled.Thehighcostofpondlinersinotaceptableatheintensityofcultureem ployedininlandshrim ppondsinAlabam a.However,sepageratesinthe BlacklandPraireusualyarenotverylargebecauseoftheavyclaysoilsinm ostplaces(YooandBoyd,1994).Moreover,sepagecanbereducedbycarefullyselctingthesitesandusinggoodconstructionm ethods(Boydetal.,2004).Overflow shouldbecontrolledbyprovidingstoragevolumeforrainfalingintopondsaswasdoneinpondsofthepresntstudy.HarvestefluentshouldberecyledtoconservewaterasdescribebyBoydetal.(2006).Reusingthewatercanreducelossofnutrients totheenvironmentandreducepollution. 22 Table1:PrecipitaionandclasApanevaporationdatafortheperiod20April?2Septm ber2011inpondN-10atinlandshrim pfarm inAlabam a:Month Precipitation(cm)ClassApanevaporation(cm)Farm NWSFarm Norm al20-30April 4.64.64.75.4 May4.67.517.316.5June 4.72.318.217.7ly 13.616.317.118.2August 4.72.415.717.11-22September21.114.810.410.3 Total53.347.983.485.2NWS:2011,Dem opolisLockandDam StaionNorm al:1956-2002,Dem opolisLockandDam Staion Table2:PrecipitaionandclasApanevaporationdatafortheperiod20April?13Septm ber201inpondN-11atinlandshrim pfarm inAlabam a:MonthPrecipitation(cm)ClassApanevaporation(cm)Farm NWSFarm Norm al20-30April 4.64.64.75.4 May4.67.517.316.5June 4.72.318.217.7ly 13.616.317.118.2August 4.72.415.717.11-13September17.710.85.96.3 Total49.943.978.981.2NWS:2011,Dem opolisLockandDam StaionNorm al:1956-2002,Dem opolisLockandDam Staion 23 Table3:PrecipitaionandclasApanevaporationdatafortheperiod12May?10Septm ber2011inpondN-12atinlandshrim pfarm inAlabam a:MonthPrecipitation(cm)ClassApanevaporation(cm)Farm NWSFarm Norm al12-31May3.75.617.311 June 3.82.318.217.7ly 13.616.317.118.2August 6.22.415.717.11-10September13.510.84.14.8Total40.837.472.468.8 NWS:2011,Dem opolisLockandDam StaionNorm al:1956-2002,Dem opolisLockandDam Staion Table4:WaterbudgetsforpondsN-10,N-11andN-12:Variable N-10 N-11 N-12Meanvolume?S.D.(3/ha)Depth(cm )Volume(m 3)Depth(cm )Volume(m 3)Depth(cm )Volume(m 3)InflowsWel 137.822302.2121.918653.4113.421750.812436.5?1237.1 Precipitation53.3 8621.449.9 7672.145.3 8681.84956403Run-off 7.5740.67 838.2 6.4824.2 478?62O utflowsO O OH arvestH H H efluent111.117994.194.514466.894.918205.210021?948Evaporation67.610938.563.99779.358.611249.16338449Sepage 19.83205.120.33105.311.52205.91719.9?494.2 O vrflowO O O 0 0 0 0 0 0 0 24 Table5:Am ountsandconcentrationsofphosphorusandnitrogen(drym aterbasi)ofpostlarvae,fedandofshrim pforthreponds(N-10,N-11andN-12):VariableDrymatter(%weteight)Phosphorus(%)Nitrogen(%) N-10(kg)N-11(kg)N-12(kg) Mean?S.D(kg/ha)Postlarvae25 1.2910.93 3 4 2?0.1 Fed 91.41.3886.166572561664793703?342Shrimp 29 1.24410.893568233911701448?800 25 Table6:Daysofstocking,am ountoffedused,stockdensity,Fedconversionratiosandsurvivalrteduringproductioncyl:DaysofstockingFed(kg)Stockdensity(postlarvae/m 2) FCR(FedConversionratios) Survival(%)N-101556572.4 20 1.8430.1-111465615.9 21 2.4018.9N-121286479.1 5.549.2 Table7:Averageconcentrations(m g/L)andstandarddeviationsfortotalphosphorusinrainfal,wlater,ndpondwatrinpondsN-10,N-11,ndN-12taninlandshrim pfarm iAlbam :Varible N-10 N-1 N-12Rinfal 0.8?.10.8?0.10.8?0.1Welwter.320.34.32.34.32.34 PondwaterAveragefocop0.281?0.3100.25?0.1490.285?0.318thrvest 0.25 0.27 0.29 Table8:Averageconcentrations(m g/L)andstandarddeviationsfortotalnitrogenirainfal,wlater,ndpondwatrinpondsN-10,N-11,ndN-12taninlandshrim pfarm inAlbam a:Varible N-10 N-1 N-12Rinfal 0.649?.3620.649?0.3620.649?0.362Welwter .0.8. .8. .8 PondwaterAveragefocop0.427?0.2350.519?0.380.421?0.257thrvest 0.68 0.72 0.78 26 Table9:Averageconcentrations(m g/L)andstandarddeviationsforsolubleractivephosphorus(SRP)inrainfl,welter,ndpondwterinpondsN-10,N-11,andN-12tninlandshrim pfarm iAlbam a: Varible N-10 N-1 N-12Rinfal 0.?.60.?0.60.?0.6 Welwter.190.19.19.19.19.19PondwaterAveragefocop0.51?0.610.6?0.630.6?0.61thrvest 0.72 .1 .172 Table10:Averageconcentrations(m g/L)andstandarddeviationsfortotalm m onianitrogen(AN)inrainfl,weltr,ndpondwterinpondsN-10,N-11,andN-12tninlandshrim pfarm iAlbam : Varible N-10 N-1 N-12Rinfal 0.179?.630.179?0.630.179?0.63 Welwter.850.859.85.859.85.859PondwaterAveragefocop0.16?0.190.17?0.270.16?0.192thrvest .382 0.39 0.542 Table11:Averageconcentrations(m g/L)andstandarddeviationsfornitratenitrogen(NO3)inrinfal,welter,andpondwaterinpondsN-10,N-11,ndN-12atninlndshrim pfarm iAlbam : Varible N-10 N-1 N-12Rinfal 0.394?.3810.394?0.3810.394?0.381 Welwter. 0.7. .7. .7PondwaterAveragefocop0.468?0.350.48?0.3210.56?0.368thrvest .24 0.37 0.35 27 Table12:PhosphorusandnitrogenbudgetsforpondsN-10,N-11,andN-12atninlandshrim pfrm inAlabam aVarible N-10(kg) N-1(kg) N-12(kg) Mean?S.D.(kg/ha)PNPNPNP NInputs Postlarvae 0.40.40.40.40.50.40.3?0.080.2?0.3Fed 83.4370.171.2316.282. 364.847?4. 208.5?19.3Rainfal&Run-of0.26.10.25. 0.26.20.1?0.13.5?0.3Welwater 0.710.90.69.10.710.70.40.36.10.6Sum84.3387.572.0431.283.15382.147.5?4. 218?20 O utptsO O O Sepage 0.91.40.81.30.60.90.5?0.10.7?0.2Drainig 4.51.341.55.313. 2.7?0.17.1?0.4Shrimpharvest12.912.78.473.94.236.95.2?.945.7?29.3Su 18.3125.413.286.710. 50.98.4?353.6?25.6 Difernce6.0426.158.424.573.0531.239.1?.5164.8?6.9Table13:pH,totaldisolvedsolids,salinityandwatertem perature: N-10N-11N-12pH (surface)H H H 8.7?0.58.9?0.68.6?0.4H (Bottom)H H H 8.40.5 8.40.58.20.3TDS(mg/l) 3883?3633796?3364602?370alinity 3.20.33.10.33.90.3Conductivity(us/cm) 6280?12426130?11887523?1393Temperature(?)(surface) 3.40.533.70.433.10.7 eeratre(?c)(bottom) 1.6?1.3 31.7?1.431.5?1.2Althewaterparam etrswerm easuredduring2:00p.m-3:00p.m. 28 LiteratureCitedBower,C.E.andT.H olm-H ansen.H HH HH H 1980.Asalicylate-hypochloritem thodfordeterm iningam m oniainseawter.CanadianJournalofFisheriesandAquaticScience37:794-798. Boyd,C.A.,C.E.Boyd,andD.B.Rouse.2007.Potasiumbudgetforinland,salinewatershrim ppondsinAlabam a.AquacultureEngineering36(1):45-50.Boyd,C.A.,C.E.Boyd,A..McNevin,andD.B.Rouse.2006.Saltdischargefromaninlandfarm form arineshrim pinAlabam a.JournaloftheWorldAquacultureSociety 37(4):345-355.Boyd,C.E.1985.Chem icalbudgetsforchannelcatfishponds.TransactionsoftheAm ericanFisheriesSociety114:291-298.Boyd,C.E.1995.Bottomsoils,edim nt,andpondaquaculture.ChapmanandHal,NewYork, NewYork,USA.Boyd,C.E.2000.Waterquality,anintroduction.KluwerAcadem icPublishers,Boston,Maschusets,USA.Boyd,C.E.2001.Inlandshrim pfarm ingandtheenvironment.WorldAquaculture32(1):10-12. Boyd,C.E.2002.Inlandfarm ingofm arineshrim p:exam plesforChina,Ecuador,ThailandandtheUnitedStaes.ReportpreparedundertheWorldBank,NAC,WFandFAOConsortiumProgram onShrim pFarm ingandtheEnvironment. orldildlifeFund,Washington,D.C.,USA. Boyd,C.E.andP.Munsir.1996.Phosphorusadsorptioncapacityandavailabilityofadded 29 phosphorusinsoilsfromaquaculturearesinThailand.JournaloftheWorldAquacultureSociety27:60-167.Boyd,C.E.andD.Teichert-Coddington.1995.Drym ater,ash,andelm ntalcompositonofpond-culturedPenaeusvannameiandP.stylirostris.JournaloftheWorldAquaculture Society26:88-92.Boyd,C.E.andT.hunjai.2003.Concentrationsofm ajorionsinwatersofinlandshrim pfarm sinChina,Ecuador,Thailand,andtheUnitedStaes.JournaloftheWorldAquacultureSociety34:524-532. Boyd,C.E.andC.S.Tucker.1998.Pondaquaculturewaterqualitym anagem ent. KluwerAcadem icPublishers,Norwel,Maschusets,USA.Boyd,C.E.,T.hunjai,andM.Boonyaratpalin.2002.Disolvedsaltsinwatersforinland,low-salinityshrim pculture.GlobalAquacultureAdvocate5(3):40-45. Boyd,C.E.,K .K K K Corpron,E.Bernard,andP.engsang.2006.Estim atesofbottomsoilandefluentloadofphosphorusatsem i-ntensivem arineshrim pfarm .JournaloftheWorldAquacultureSociety37:41-47.Boyd,C.E.,C.S.Tucker,A.McNevin,K .K K K Bostick,andJ.Clay.2007.Indicatorsofresource useficencyandenvironmentalperform ance.ReviwsinFisheriesScience15(4):327-360.Boyd,C.E.,C.A.Boyd,J.Chappel,R.H ulcher,H H H P.O akes,O O O andD.B.Rouse.2004.Additionalbestm anagem entpractiesforAlabam aAquaculture.SpecialReport3. Alabam aAgriculturalExperim entStaion,AuburnUniversity,Alabam a,USA. 30 Boyd,C.E.,J.Q ueiroz,Q Q Q J.Le,M.Rowan,G .G G G N.Whits,andA.G ross.G G G 2000.Environmentalasesm ntofchannelcatfishIctaluruspunctatusfarm inginAlabam a.JournaloftheWorldAquacultureSociety31(4):511-544.Bray,W.A.,.L.awrence,andJ.R.Leung-Trujilo.1994.Theefctofsalinityongrowth andsurvivalofPenaeusVannamei,withobservationsontheinteractionofIHNvirusandsalinity.Aquaculture122:133-146Davis,D.A.,T.M.Samocha,andC.E.Boyd.2004.Aclim atingPacifcwhiteshrim p,Litopenaeusvannam ei,toinland,low-salinitywaters.SouthernRegionalAquaculture CentrPublicationNumber2601,DeltaResarchandExtensionCentr,Stonevile,Misisippi,USA.FAO O O O .2010,Thestaeofworldfisheriesandaquaculture.FAO,Rome,Italy.Feth,J.H .H H H 1970.Salinegroundwateresourcesoftheconterm inousUnitedStaes.Water ResourcesResarch6:1454-1457G ross,G G G A.,C.E.Boyd,andC.W.Wood.2000.Nitrogentransform ationsandbalanceinchannelcatfishponds.AquacultureEngineering24:1-14.G ross,G G G A.,C.E.Boyd,R.T.Lovel,andJ.CEya.1998.Phosphorusbudgetsforchannel catfishpondsrecivingdietswithdiferntphosphorusconcentrations.JournaloftheWorldAquacultureSociety29:31-39.Josupeit,H .H H H 2009.Theglobalshrim pindustry:Currentstausofproductionandtrade,pages284-296.In:Browdy,C.LandD.E.Jory(editors).Therisngtide:Procedingsofthe SpecialSesionSustainableShrim pFarm ing,WorldAquacultureSocietyPublishers,BatonRouge,Louisiana,USA. 31 K aosa-ard,K K K M.andS.Pednekar.1996,EnvironmentalstrategyforThailand.ThailandDevelopmentResarchInstiute,Bangkok,Thailand.Leung,P.S.andC.Engle.2006.Shrim pculture:Economics,m arketandtrade,BlackwelPublishing,Am es,Iowa,USA. Masuda,K .K K K andC.E.Boyd.1994.Phosphorusfractionsinsoilandwaterofaquaculturepondsbuiltonclaye,UltisolsatAuburn,Alabam a.JournaloftheWorldAquacultureSociety25:379-395.McIntosh,A.,L.awrence,andP.M.VanWyk.2002.Reviwofsomerecntdevelopments insustainableshrim pfarm ingpractiesinTexas,Arizona,andFlorida,JournalofAppliedAquaculture12:1-42Menz,A.andB.F.Blake.1980.Experim entsonthegrowthofPenaeusvannameiBoone.JournalofExperim entalMarineBiologyandEcology. Nunes,A.J.P.andC.V.Lopez.2001.Low-salinity,inlandshrim pcultureinBrazilandEcuador?economics,diseaseisuesm ovefarm sawyfromcoast.GlobalAquacultureAdvocate4(3):62-64.Philips,M.J.,C.K K K K Lin,andM.C.M.Beveridge.1993.Shrim pcultureandtheenvironment: lesonsfromtheworld?sm ostrapidlyexpandingwarm ateraquaculturesctor.Pages171-197inR.S.V.Pullin,H.RosenthalandJ.L.Maclean,eds.EnvironmentandAquacultureinDevelopingCountries:ProcedingsoftheICLARMConfernceonEnvironmentandThirdWorldAquacultureDevelopment,ICLAR,anila,Philippines. Pine,H H H H .J.andC.E.Boyd.2011.Magnesiumbudgetforinlandlow-salinitywatershrim ppondsinAlabam a,JournaloftheWorldAquacultureSociety42:705-713. 32 Prapaiwong,N.andC.E.Boyd.2012.Efluentvolumeandpollutantloadsatninland,low-salinity,shrim pfarm inAlabam a.AquacultureEngineering48:1-5Primavera,J.H .H H H 1989.Thesocial,ecologicalndeconomicim plicationsofintensiveprawnfarm ing.AsianAquaculture11(1):1-6. Roy,L.A,D.A.Davis,I.P.Saoud,C.A.Boyd,H .H H H J.Pine,andC.E.Boyd.2010.Shrim pcultureininlandlowsalinitywaters.ReviwsinAquaculture2:191-208.Samocha,T.M.,L.H amper,H H H C.R.Emberson,A.D.avis,D.McIntosh,A.L.awrence,andP..VanWyk.2002.Reviwofsomerecntdevelopmentsinsustainableshrim p farm ingpractiesinTexas,Arizona,andFlorida.JournalofappliedAquaculture,12(1):1-42.Saoud,I.P.,D.A.Davis,andD.B.Rouse.2003.SuitabilitystudiesofinlandwelatersforLitopenaeusvannam eiculture.Aquaculture217:373-383. Schwartz,M.F.andC.E.Boyd.1994.Efluentqualityduringharvestofchannelcatfishfromwatershedponds.ProgresiveFish-Culturist56:25-32.Schwartz,M.F.andC.E.Boyd.1996.Suggestedm anagem enttoim provequalityandreducequantityofchannelcatfishpondefluents.Alabam aAgriculturalExperim entStaion, Leaflet108,AuburnUniversity,Alabam a,USA.Szuster,B.2006.Coastalshrim pfarm inginThailand:Searchingforsustainability,pages86-97.In:Hoanh,C.T,T.P.Tuong,J.W.GowingandB.Hardy(editors).EnvironmentandLivelihoodsinTropicalCoastalZones:ManagingAgriculture-Fishery-Aquaculture Conflicts,CABInternational,UK.Tavares,L.H H H H S.andC.E.Boyd.2003.PossiblefectsofsodiumchlorideonqualityofefluentsfromAlabam achannelcatfishponds.JournaloftheWorldAquacultureSociety 33 34:217-222.Teichert-Coddington,D.2002.Inlandsaltwatershrim pproductioninAlabam a:Realityandpotential.AuburnUniversityDepartm entofFisheriesandAliedAquacultures.Weidner,D.andB.Rosenbery.1992.Worldshrim pfarm ing.pages1-21InWyban,J(editor). ProcedingsoftheSpecialSesionShrim pFarm ing.WorldAquacultureSociety,BatonRouge,Louisiana,USA.Wickins,J.F.andD.O O O O ?C.,Le.2002.Crustaceanfarm ing,2ndedition.BlackwelScience,Oxford,TheUnitedKingdom. Wyban,J.2009.Worldshrim pfarm ingrevolution:Industryim pactofdomestication,bredingandwidespreaduseofspecifcpathogenfrepenaeusvannamei.pages12-21.In:Browdy,C.LandD.E.Jory(editors).TheRisngTide:ProcedingsoftheSpecialSesionSustainableShrim pFarm ing,WorldAquacultureSocietyPublishers,Baton Rouge,Louisiana,USA.Yoo,K .K K K H .H H H andC.E.Boyd.1994.Hydrologyandwatersupplyforaquaculture.ChapmanandHal,NewYork,NewYork,USA.