Interactions between SOFC Interconnect Spinel Coating Materials and Chromia by Yingjia Liu A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama December 8, 2012 Keywords: SOFC interconnect, interaction, (Mn,Co) 3 O 4 coating, Cr 2 O 3 oxidation layer, doping Copyright 2012 by Yingjia Liu Approved by Jeffrey W. Fergus, Chair, Professor of Materials engineering Bart Prorok, Associate Professor of Materials engineering Dong-Joo Kim, Associate Professor of Materials engineering Curtis Shannon, Professor of Chemistry and biochemistry ii Abstract The SOFC technology has been developed toward lower operation temperature in the range of 500 o C - 800 o C, which brings wider materials choice for the interconnect. Ferritic stainless steels have been widely used as SOFC interconnect candidates, but their high temperature oxidation and chromium volatilization can lead to cathode poisoning and cell degradation. Applying ceramic conductive coating is an effective technique to protect the metallic interconnects, and manganese cobalt spinel oxides Mn 1.5 Co 1.5 O 4 have demonstrated promising performances as coating material. However, the reasons for their excellent properties have not been completely understood. This work aims to provide a fundamental understanding of (Mn,Co) 3 O 4 coating in high- temperature operation, and to improve the performance of protective coatings. The interactions between (Mn,Co) 3 O 4 spinel coatings and chromia at high temperature were investigated, and Chapter 2 discusses the mass transport behavior. The interactions lead to the change in chemical composition and microstructure of the original coating. To evaluate the long-term stability, the properties of the reaction layer need further characterization. Chapter 3 focuses on the effect of chromium doping on the electrical conductivity, cation distributions and thermal expansion of Mn 1.5 Co 1.5 O 4 at SOFC operation condition. The relationship of cation distributions with transport properties in the reaction layer was also discussed. In addition, the effects of different transition metal dopants in the spinel coating material on the mass transport behavior were studied to identify the improved coatings. The effects of iron doping in spinel oxides are investigated on iii transport behavior in the interaction, and compared with that of titanium doping in Chapter 4. The interaction of nickel or copper substituted (Mn,Co) 3 O 4 with chromia at high temperature are evaluated in Chapter 5. The differences in the mass transport behavior of transition metal dopants studied in this work provide helpful information on selection in novel spinel coatings. iv Acknowledgments I would like to express my genuine gratitude to my advisor, Dr. Jeffrey Fergus, for his academic guidance and support. His constructive suggestions helped me a lot in my research work and dissertation writing. Besides the knowledge of materials science, the research attitude he conveyed is the most important spirit I learn from him during these years. I also want to thank my committee member, Dr. Dong-Joo Kim, Dr. Bart Prorok and Dr. Curtis Shannon for their valuable advices and insight, which is beneficial to finish this dissertation. The appreciation will also be given to the outside reader Dr. Wei Zhan for his kind help in this work. I would like to further thank Dr. Clarina Dela Cruz at Oak Ridge National Laboratory for providing me great help in analyzing the samples with neutron diffraction. The special thanks are given to Dr. Kangli Wang, who helped me a lot on the chromium reaction experiment at the early stage of this work, and gave me useful discussions. Besides, I also thank Dr. Yu Zhao, Henglong Wang, Alex, et al., for helping me solve problems during my research. The friendship from my friends in Materials Engineering is highly appreciated. I enjoy the happy time in Auburn during my PhD study. I also acknowledge the financial support from the Department of Energy through the Building EPSCoR-State/Nation Laboratory Partnerships Program. v Last but not least, I would like to express my great gratitude to my family for their consistent company, love and encouragement which enable me to discover life is always beautiful. vi Table of Contents Abstract ......................................................................................................................................... ii Acknowledgments........................................................................................................................ iv List of Tables ............................................................................................................................... ix List of Figures ............................................................................................................................... x List of Abbreviations ................................................................................................................. xiv Chapter 1 Introduction .................................................................................................................. 1 1.1 Background of SOFC ................................................................................................. 1 1.2 Interconnect of SOFC ............................................................................................... 4 1.2.1 Materials requirements for SOFC interconnect ............................................. 4 1.2.2 Lanthanum chromites interconnect ................................................................ 5 1.2.3 Metallic alloy interconnect .......................................................................... 10 1.2.3.1 Chromium-based alloys ..................................................................... 12 1.2.3.2 Ni-Cr-based alloys ............................................................................. 13 1.2.3.3 Fe-Cr-based alloys ............................................................................. 15 1.2.4 Problems with metallic interconnect materials ............................................ 21 1.2.4.1 Oxidation problem ............................................................................. 21 1.2.4.2 Chromium poisoning ......................................................................... 22 1.3 Interconnect coating materials for SOFC ................................................................ 24 1.3.1 Reactive elements coating ............................................................................ 25 vii 1.3.2 Perovskite coating ........................................................................................ 26 1.3.3 Spinel coating ............................................................................................... 28 1.4 Objectives of the dissertation ................................................................................... 33 Chapter 2 Interactions between (Mn,Co) 3 O 4 coating materials and Cr 2 O 3 scale ....................... 35 2.1 Introduction .............................................................................................................. 35 2.2 Experimental procedure ........................................................................................... 36 2.3 Results and discussions ............................................................................................ 37 2.3.1 Surface morphology and structure ................................................................. 37 2.3.2 Mass transport properties in Mn 1.5 Co 1.5 O 4 ..................................................... 45 2.4 Conclusions .............................................................................................................. 47 Chapter 3 Electrical properties, cation distributions and thermal expansion of manganese cobalt chromite Mn 1.5-0.5x Co 1.5-0.5x Cr x O 4 (x=0-2) spinels ....................................................... 49 3.1 Introduction .............................................................................................................. 49 3.2 Experimental ............................................................................................................. 51 3.3 Results and discussions ............................................................................................ 52 3.3.1 X-ray diffraction ............................................................................................ 52 3.3.2 Electrical conductivity ................................................................................... 54 3.3.3 Cation distribution in Mn 1.5 Co 1.5 O 4 and MnCoCrO 4 at high temperature ...... 58 3.3.4 Thermal expansion test .................................................................................. 64 3.4 Conclusions .............................................................................................................. 65 Chapter 4 Electrical properties of transition metal-doped (Mn,Co)3O4 (TM = Fe, Ti) spinels and their interaction with chromia for SOFC interconnect coatings ................................. 66 4.1 Introduction .............................................................................................................. 66 4.2 Experimental ............................................................................................................ 67 viii 4.3 Results and discussions ............................................................................................ 68 4.3.1 X-ray Diffraction .......................................................................................... 68 4.3.2 Neutron Diffraction ....................................................................................... 69 4.3.3 Interaction with Chromia ............................................................................... 75 4.3.3.1 Surface Morphology ............................................................................ 75 4.3.3.2 Concentration Gradients ...................................................................... 77 4.3.4 Electrical conductivity ................................................................................... 81 4.3.5 Comparison in the effect of Fe and Ti doping ............................................... 84 4.4 Conclusions .............................................................................................................. 86 Chapter 5 Interaction of transition metal-doped (Mn,Co) 3 O 4 (TM = Ni, Cu) spinels with chromia for SOFC interconnect coatings .................................................................................. 88 5.1 Introduction .............................................................................................................. 88 5.2 Experimental ............................................................................................................ 89 5.3 Results and discussions ............................................................................................ 90 5.3.1 Mass transport in Mn 1.5-0.5x Co 1.5-0.5x TM x O 4 (TM=Ni,Cu) ............................. 90 5.3.2 Effect of Co/Ni ratio .................................................................................... 100 5.4 Conclusions ............................................................................................................ 104 Chapter 6 Conclusions and Perspectives .................................................................................. 106 References ............................................................................................................................... 111 ix List of Tables Table 1.1 CTEs of La 0.9 Sr 0.1 Cr 1-x M x O 3 (M= Mg, Al, Sc, Ti, Mn, Fe, Co, Ni, 0~1000 o C), Solid State Ionics, 69 (1994) 127-136. [45] A. Holt, and P. Kofstad, Electrical conductivity and defect structure of Cr 2 O 3 . II. Reduced temperatures (<~1000 o C), Solid State Ionics, 69 (1994) 137-143. [46] W. C. Hagel, and A. U. Seybolt, Cation diffusion in Cr 2 O 3 , J. Electrochem. Soc., 108 (1961) 1146-1152. [47] H. Nagai, T. Fujikawa, and K. I. Shoji, Electrical Conductivity of Cr 2 O 3 Doped with La 2 O 3 , Y 2 O 3 and NiO, Trans. Japan Inst. Met., 24 (1983) 581-588. [48] P. Kofstad, Nonstoichometry, diffusion and electrical conductivity in binary metal oxides, Robert E. Krieger Publishing Company, Malabar, FL, 1983. [49] Z. Yang, K. S. Weil, D. M. Paxton, and J. W. Stevenson, Selection and evaluation of heat-resistant alloys for SOFC interconnect applications, J. Electrochem. Soc., 150 (2003) A1188-A1201. [50] Y. F. Gu, H. Harada, and Y. Ro, Chromium and chromium-based alloys: Problems and possibilities for high-temperature service, J. Minerals Metals Mater. Soc., 56 (2004) 28-33. [51] A. H. Sully, Ductile Chromium and its Alloys, Am. Soc. Metals, Materials Park, OH, 1957. [52] P. Kofstad, R. Bredesen, High temperature corrosion in SOFC environments, Solid State Ionics, 52 (1992) 69-75. [53] S. Linderoth, P. V. Hendriksen, M. Mogensen, Investigations of metallic alloys for use 117 as interconnects in solid oxide fuel cell stacks, J. Mater. Sci., 31 (1996) 5077-5082. [54] J. Fergus, Metallic interconnects for solid oxide fuel cells, Mater. Sci. Eng. A, 397 (2005) 271-283. [55] Y. Larring, R. Haugsrud, and T. Norby, HT corrosion of a Cr-5wt% Fe-1wt% Y 2 O 3 alloy and conductivity of the oxide scale: Effects of water vapor, J. Electrochem. Soc., 150 (2003) B374-B379. [56] W. J. Quadakkers, H. Greiner, and W. Knock, Proceedings of the First European Solid Oxide Fuel Forum, Lucerne, Switzerland, (1994) 525. [57] N. Lahl, D. Bahadur, K. Singh, L. Singheiser, and K. Hilpert, Chemical interactions between aluminosilicate base sealants and the components on the anode side of solid oxide fuel cells. J. Electrochem. Soc., 149 (2002) A607-A614. [58] D. M. England, and A. V. Virkar, Oxidation kinetics of some nickel based supperalloy foils and electronic resistance of the oxide scale formed in air Part I, J. Electrochem. Soc., 146 (1999) 3196-3202. [59] D. M. England, and A. V. Virkar, Oxidation kinetics of some nickel-based supperalloy foils in humidified hydrogen and electronic resistance of the oxide scale formed Part II, J. Electrochem. Soc., 148 (2001) A330-A338. [60] Z. Yang, G. Xia, and J. W. Stevenson, Evaluation of Ni-Cr-base alloys for SOFC interconnect applications, J. Power Sources, 160 (2006) 1104-1110. [61] M. F. Rothman, and H. M. Tawancy, Low thermal expansion superalloy, U.S. Pat. 4,818,486, (1988). 118 [62] S. J. Geng, J. H. Zhu, and Z. G. Lu, Evaluation of Haynes 242 alloy as SOFC interconnect material, Solid State Inoics, 177 (2006) 559-568. [63] S. J. Geng, J. H. Zhu, and Z. G. Lu, Investigation on Haynes 242 Alloy as SOFC Interconnect in Simulated Anode Environment, Electrochem. Solid-State Lett., 9 (2006) A211-A214. [64] P. Jablonski, and D. Alman, Oxidation resistance and mechanical properties of experimental low coefficient of thermal expansion (CTE) Ni-base alloys, Int J. Hydro. Energy, 32 (2007) 3705-3712. [65] J. O. Anderson and B. Sundman, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 11 (1987). [66] Z. Yang, J. S. Hardy, M. S. Walker, G. Xia, S. P. Simner, and J. W. Stevenson, Structure and conductivity of thermally grown scales on ferritic Fe-Cr-Mn steel for SOFC interconnect applications, J. Electrochem. Soc., 151 (2004) A1825-A1831. [67] T. Brylewski, M. Nanko, T. Maruyama, K. Przybylski, Application of Fe-16Cr ferritic alloy to innterconnector for a solid oxide fuel cell, Solid State Ionics, 143 (2001) 131?150. [68] N. K. Othman, J. Zang, D. J. Young, Temperature and water vapour effects on the cyclic oxidation behaviour of Fe?Cr alloys, Corr. Sci., 52 (2010) 2827-2836. [69] B. A. Pint, Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect, Oxida. Met., 45 (1996) 1-37. [70] E-Brite superferritic stainless steel (UNS S44627) product specifications, from website: http://www.atimetals.com/products/Pages/e-brite.aspx. 119 [71] S. Geng, and J. Zhu, Promising alloys for intermediate-temperature solid oxide fuel cell interconnect application, J. Power Sources, 160 (2006) 1009-1016. [72] Crofer 22 APU material data sheet No. 4046, from website: http: //www.thyssenkrupp-vdm.com/. [73] J. Robertson, The mechanism of high temperature aqueous corrosion of stainless steels, Corro. Sci., 32 (1991) 443-465. [74] Y. Liu, Performance evaluation of several commercial alloys in a reducing environment, J. Power Sources, 179 (2008) 286-291. [75] S. Fontana, S. Chevalier, and G. Caboche, Metallic interconnects for solid oxide fuel cell: Effect of water vapor on oxidation resistance of differently coated alloys, J. Power Sources, 193 (2009) 136-145. [76] E. Konysheva, U. Seeling, A. Besmehn, L. Singheiser, an K. Hilpert, Chromium vaporization of the ferritic steel Crofer22APU and ODS Cr5Fe1Y 2 O 3 alloy, J. Mater. Sci., 42 (2007) 5778-5784. [77] Z. Lu, J. Zhu, E. A. Payzant, M. P. Paranthaman, Electrical conductivity of the manganese chromite spinel solid solution, J. Am. Ceram. Soc., 88 (2005) 1050-1053. [78] J. Rufner, P. Gannon, P. White, M. Deibert, S. Teintze, R. Smith, and H. Chen, Oxidation behavior of stainless steel 430 and 441 at 800 degrees C in single (air/air) and dual atmosphere (air/hydrogen) exposures, Int. J. Hydro. Energy, 33 (2008) 1392-1398. [79] N. Shaigan, D. G. Ivey, and W. Chen, Metal-oxide scale interfacial imperfections and performance of stainless steels utilized as interconnects in solid oxide fuel cells, J. Elelctrochem. Soc., 156 (2009) 765-B770. 120 [80] Fuel Cell Interconnector, from website: http://www.hitachimetals.com/. [81] A. Toji, and T. Uehara, Stability of oxidation resistance of ferritic Fe-Cr alloy for SOFC interconnects, ECS Trans., 7 (2007) 2117-2124. [82] A. Martinez-Villafane, J. G. Chacon-Nava, C. Gaona-Tiburcio, F. Almeraya-Calderon, G. Dominguez-Patino, and J. G. Gonzalez-Rodriguez, Oxidation performance of a Fe-13Cr alloy with additions of rare earth elements, Mater. Sci. Eng. A, 363(2003) 15-19. [83] X. Yu and Y. Sun, The oxidation improvement of Fe3Al based alloy with cerium addition at temperature above 1000 o C, Mater. Sci. Eng. A, 363 (2003) 30-39. [84] P. Y. Hou, J. Stringer, The effect of reactive elements additions on the selective oxidation growth and adhesion of chromia scales, Mater. Sci. Eng. A, 202 (1995) 1-10. [85] W. J. Quadakkers, J. Piron-Abellan, V. Shemet, and L. Singheiser, Metallic interconnectors for solid oxide fuel cells - a review, Mater. High Temp., 20 (2003) 115-127. [86] S. Geng, J. Zhu, M. P. Bardy, H. U. Anderson, X. Zhou, and Z. Yang, A low-Cr metallic interconnect for intermediate-temperature solid oxide fuel cells, J. Power Sources, 172 (2007) 775-781. [87] M. Monteiro, S. Saunders, and F. Rizzo, The effect of water vapour on the oxidation of high speed steel, kinetics and scale adhesion, Oxida. Met., 75 (2011) 57-76. [88] G. Hultquist, B. Tveten, and E. H?rnlund, Hydrogen in chromium: Influence on the high-temperature oxidation kinetics in H 2 O, oxide-growth mechanisms, and scale adherence, Oxida. Met., 54 (2000) 1-10. [89] Y. Matsuzaki, and I. Yasuda, Electrochemical properties of a SOFC cathode in contact 121 with a chromium-containing alloy separator, Solid State Ionics, 132 (2000) 271-278. [90] Y. Matsuzaki, and I. Yasuda, Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes, J. Elelctrochem. Soc., 148 (2001) A126. [91] S. P. Jiang, J. P. Zhang, L. Apateanu, and K. Foger, Deposition of chromium species at Sr-doped LaMnO 3 electrodes in solid oxide fuel cells. I. Mechanism and kinetics, J. Elelctrochem. Soc.,147 (2000) 4013-4022. [92] S. P. Jiang, J. P. Zhang, L. Apateanu, and K. Foger, Deposition of chromium species at Sr-doped LaMnO 3 electrodes in solid oxide fuel cells. II. Effect on O 2 reduction reaction, J. Elelctrochem. Soc.,147 (2000) 3195-3205. [93] S. P. Jiang, J. P. Zhang, L. Apateanu, and K. Foger, Deposition of chromium species at Sr-doped LaMnO 3 electrodes in solid oxide fuel cells. III. Effect of Air Flow, J. Elelctrochem. Soc.,148 (2001) C447. [94] H. Asteman, J. E. Svensson, and L. G. Johansson, Evidence for chromium evaporation influencing the oxidation of 304L: The effect of temperature and flow rate, Oxida. Met., 57 (2002) 193-216. [95] P. Wei, Spinel coatings for solid oxide fuel cell interconncts and crystal structure of Cu-Mn-O, Thesis, McMaster University, 2009. [96] D. Chatterjee, and S. Biswas, Development of chromium barrier coatings for solid oxide fuel cells, Int. J. Hydro. Energy, 36 (2011) 4530-4539. [97] H. Yokokawa, T. Horita, N. Sakai, K. Yamaji, M. E. Brito, Y. P. Xiong, and H. Kishimoto, Thermodynamic considerations on Cr poisoning in SOFC cathodes, Solid 122 State Ionics, 177 (2006) 3193-3198. [98] C. Sun, R. Hui, and J. Roller, Cathode materials for solid oxide fuel cells: a review, J. Solid State Electrochem., 14 (2010) 1125-1144. [99] Z. Shao, and S. M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 431 (2004) 170-173. [100] C. Fu, K. Sun, X. Chen, N. Zhang, and D. Zhou, Electrochemical properties of A-site deficient SOFC cathodes under Cr poisoning conditions, Electrochim. Acta, 54 (2009) 7305-7312. [101] B. Liu, Y. Gu, L. Kong, Y. Zhang, Evaluation of nano-structured Ir 0.5 Mn 0.5 O 2 as a potential cathode for intermediate temperature solid oxide fuel cell, J. Power Sources, 185 (2008) 946-951. [102] G. Y. Lau, M. C. Tucker, C. P. Jacobson, S. J. Visco, S. H. Gleixner, and L. C. DeJonghe, Chromium transport by solid state diffusion on solid oxide fuel cell cathode, J. Power Sources, 195 (2010) 7540-7547. [103] A. Montenegro-Hernandez, J. Vega-Castillo, L. Mogni, and A. Caneiro, Thermal stability of Ln 2 NiO 4+? (Ln: La, Pr, Nd) and their chemicalcompatibility with YSZ and CGO solid electrolytes, Int. J. Hydro. Energy, 36 (2011) 15704-15714. [104] Y. Li, M. W. Xu, and J. B. Goodenough, Electrochemical performance of Ba 2 Co 9 O 14 + SDC composite cathode for intermediate-temperature solid oxide fuel cells, J. Power Sources, 209 (2012) 40-43. [105] W. J. Quadakkers, M. H?nsel, T. Rieck, Carburization of Cr-based ODS alloys in SOFC relevant environments, Mater. Corros., 49 (1998) 252?258. 123 [106] W. Qua, J. Lia, and D. G. Iveyb, Sol-gel coatings to reduce oxide growth in interconnects used for solid oxide fuel cells, J. Power Sources, 138 (2004) 162-173. [107] S. Chevalier, C. Valot, G. Bonnet, J. C. Colson, and J. P. Larpin, The reactive element effect on thermally grown chromia scale residual stress, Mater. Sci. Eng. A, 343 (2003) 257-264. [108] S. Fontana, R. Amendola, S. Chevalier, P. Piccarod, G. Caboche, M. Viviani, R. Molins, and M. Sennour, Metallic interconnects for SOFC : characterization of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys, J. Power Sources, 171 (2007) 652-662. [109] S.H. Kim, J.Y. Huh, J.H. Jun, J.H. Jun, J. Favergeon, Thin elemental coatings of yttrium, cobalt, and yttrium/cobalt on ferritic stainless steel for SOFC interconnect applications, Curr. App. Phys., 10 (2010) S86-S90. [110] R. Lacey, A. Pramanick, J. C. Lee, J. Jun, B. Jiang, D. D. Edwards, R. Naum, S. T. Misture, Evaluation of Co and perovskite Cr-blocking thin films on SOFC interconnects, Solid State Ionics, 181 (2010) 1294-1302. [111] J. H. Zhu, Y. Zhang, A. Basu, Z. G. Lu, M. Paranthaman, D. F. Lee, and E. A. Payzant, LaCrO 3 -based coatings on ferritic stainless steel for solid oxide fuel cell interconnect applications, Surf. Coat. Technol., 177-178 (2004) 65-72. [112] N. Shaigan, D. G. Ivey, and W. Chen, Co/LaCrO 3 composite coatings for AISI 430 stainless steel solid oxide fuel cell interconnects, J. Power Sources, 185 (2008) 331-337. 124 [113] W. J. Shong, C. K. Liu, C. Y. Chen, C. C. Peng, H. J. Tu, G. T. Fey, R. Y. Lee, and H. M. Kao, Effects of lanthanum-based perovskite coatings on the formation of oxide scale for ferritic SOFC interconnect, Mater. Chem. Phys., 127 (2011) 45-50. [114] G. V. Pattarkine, N. Dasgupta, and A. V. Virkar, Oxygen transport resistant of electrically conductive perovskite coatings for solid oxide fuel cell interconnects, J. Electrochem. Soc., 155 (2008), B1036-B 1046. [115] Z. Yang, G. Xia, G. D. Maupin, and J. W. Stevenson, Evaluation of perovskite overlay coatings on ferritic stainless steels for SOFC interconnect applications, J. Electrochem. Soc., 153 (2006) A1852-A1858. [116] R. V. Chopdekar, F. J. Wong, Y. Takamura, E. Arenholz, and Y. Suzuki, Growth and characterization of superconducting spinel oxide LiTi 2 O 4 thin films, Physica C: Superconductivity, 469 (2009) 1885-1891. [117] C.B. Carter, N.M. Grant, Ceramic materials: Science and Engineering, Springer Science and Busines Media, LLC, New York, USA, 2007. [118] X. Liu and C. T. Prewitt, High-temperature X-ray diffraction study of Co 3 O 4 : Transition from normal to disordered spinel, Phys. Chem. Miner., 17 (1990) 168 -172. [119] S. Sasaki, Radial distribution of electron density in magnetite, Fe 3 O 4 , Acta. Cryst., B53 (1997) 762-766. [120] R. J. Harrison, S. A. T. Redfern, and H. S. C. O?Neill, The temperature dependence of the cation distribution in synthetic hercynite from in-situ neutron structure refinements, Am. Miner., 83 (1998), 1092?1099. [121] A. Petric, H. Ling, Electrical conductivity and thermal expansion of spinels at elevated 125 temperatures, J. Am. Ceram. Soc., 90 (2007) 1515-1520. [122] B. E. Martin, A. Petric, Electrical properties of copper?manganese spinel solutions and their cation valence and cation distribution, J. Phys. Chem. Solids, 68 (2007) 2262-2270. [123] M. R. Bateni, P. Wei, X. Deng, A. Petric, Spinel coatings for UNS 430 stainless steel interconnects, Surf. Coat. Technol., 201 (2007) 4677-4684. [124] P. Wei, X. Deng, M.R. Bateni, A. Petric, Oxidation and electrical conductivity behavior of spinel coatings for metallic interconnects of solid oxide fuel cells, Corrosion Science Section, 63 (2007) 529-536. [125] P. Wei, X. Deng, M. R. Bateni, and A. Petric, Oxidation behavior and conductivity of UNS 430 stainless steel and Crofer 22 APU with spinel coatings, ECS Trans., 7 (2007) 2135-2143. [126] B. Hua, W. Zhang, J. Wu, J. Pu, B. Chi, L. Jian, A promising NiCo 2 O 4 protective coating for metallic interconnects of solid oxide fuel cells, J. Power Sources, 195 (2010) 7375-7379. [127] Z. H. Bi, J. H. Zhu, and J. L. Batey, CoFe 2 O 4 spinel protection coating thermally converted from the electroplated Co?Fe alloy for solid oxide fuel cell interconnect application, J Power Sources, 195 (2010), 3605-3611. [128] Y, Liu, D. Y. Chen, Protective coatings for Cr 2 O 3 -forming interconnects of solid oxide fuel cells, Inter J. Hydrogen Energy, 34 (2009) 9220-9226. [129] W. Zhang, J. Pu, B. Chi, and L. Jian, NiMn 2 O 4 spinel as an alternative coating material for metallic interconnects of intermediate temperature solid oxide fuel cells, J. Power Sources, 196 (2011) 5591-5594. 126 [130] Z. Yang, G. Xia, X. Li, and J. W. Stevenson, (Mn,Co) 3 O 4 spinel coatings on ferritic stainless steels for SOFC interconnect applications, Inter J. Hydrogen Energy, 32 (2007) 3648-3654. [131] Z. Yang, G. Xia, C. Wang, Z. Nie, J. Templeton, J. W. Stevenson, and P. Singh, Investigation of iron-chromium-niobium-titanium ferritic stainless steel for solid oxide fuel cell interconnect applications, J. Power Sources, 183 (2008) 660-667. [132] Y. Larring, and T. Norby, Spinel and perovskite functional layers between plansee metallic interconnect (Cr-5 wt % Fe-1 wt % Y 2 O 3 ) and ceramic (La 0.85 Sr 0.15 ) 0.91 MnO 3 cathode materials for solid oxide fuel cells, J. Electrochem. Soc., 147 (2000) 3251-3256. [133] X. Chen, P. Y. Hou, C. P. Jacobson, S. J. Visco, and L. C. De Jonghe, Prptective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties, Solid State Ionics, 176 (2005) 425-433. [134] J. J. Choi, J. Ryu, B. D. Hahn, W. H. Yoon, B. K. Lee, and D. S. Park, Dense spinel MnCo 2 O 4 film coating by aerosol deposition on ferritic steel alloy for protection of chromic evaporation and low-conductivity scale formation, J Mater Sci., 44 (2009): 843-848. [135] B. Hua, Y. Kong, F. Lu, J. Zhang, J. Pu, and J. Li, The electrical property of MnCo 2 O 4 and its application for SUS 430 metallic interconnect, Chin. Sci. Bulletin, 55 (2010) 3831-3837. [136] Y. Fang, C. Wu, X. Duan, S. Wang, and Y. Chen, High-temperature oxidation process analysis of MnCo 2 O 4 coating on Fe-21Cr alloy, Inter. J. Hydro. Energy, 36 (2011) 127 5611-5616. [137] R. S. Roth, Phase Equilibria Diagrams, Fig. 9570, Vol. 11, The American Ceramic Society, Westerville, OH, 1995. [138] Z. Yang, G. Xia, S. P. Simmer, J. W. Stevenson, Thermal growth and performance of manganese cobaltite spinel protection layers on ferritic stainless steel SOFC interconnects, J. Electrochem. Soc., 152 (2005) A1896-A1901. [139] X. Xin, S. Wang, Q. Zhu, Y. Xu, T. Wen, A high performance nano-structure conductive coating on a crofer22 APU alloy fabricated by a novel spinel powder reduction coating technique, Electrochem. Commun., (2009), doi: 10.1016 /j.elecom.2009.10.031. [140] X. Montero, F. Tietz, D. Sebold, H.P. Buchkremer, A. Ringuede, M. Cassir, A. Laresgoiti, I. Villarreal, MnCo 1.9 Fe 0.1 O 4 spinel protection layer on commercial ferritic steels for interconnect applications in solid oxide fuel cells, J Power Sources, 184 (2008) 172-179. [141] X. Montero, N. Jordan, J. Piron-Abellan, F. Tietz, D. Stover, M. Cassir, and I. Villarreal, Spinel and Perovskite Protection Layers Between Crofer22APU and La 0.8 Sr 0.2 FeO 3 Cathode Materials for SOFC Interconnects, J. Electrochem. Soc.,156 (2009) B188 - B196. [142] J. Wu, C. D. Johnson, R. S. Gemmen, X. Liu, The performance of solid oxide fuel cells with Mn?Co electroplated interconnect as cathode current collector. J. Power Sources, 15 (2009) 1106 -1113. [143] W. Wei, W. Chen, and D. G. Ivey, Oxidation resistance and electrical properties of anodically electrodeposited Mn-Co oxide coatings for solid oxide fuel cell interconnect 128 applications, J. Power Sources, 186 (2009) 428-434. [144] Z. Yang, G. Xia, G. D. Maupin, and J. W. Stevenson, Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications, Surf. Coat. Tech., 201 (2006) 4476-4483. [145] M. J. Lewis, and J. H. Zhu, A process of synthesis (Mn,Co) 3 O 4 spinel coatings for proctecting SOFC Interconnect Alloys, Electrochem. Solid-State Lett., 14 (2011) B9-B12. [146] E. Saoutieff, G. Bertrand, M. Zahid, and L. Gautier, APS deposition of MnCo 2 O 4 on commercial alloys K41X used as solid oxide fuel cell interconnect: The importance of post heat-treatment for densification of the protective layer, ECS Trans., 25 (2009) 1397-1402. [147] A. Navrotsky, O.J. Kleppa, The thermodynamics of cation distributions in simple spinels, J. Inorg. nucl. Chem., 29 (1967) 2701-2714. [148] K. Wang, data report, Auburn, 2009. [149] K. Wang, Y. Liu, J. W. Fergus, Interactions between SOFC interconnect coating materials and chromia, J. Am. Ceram. Soc., 94 (2011) 4490-4495. [150] W. Qu, L. Jian, J. M. Hill, and D. G. Ivey, Electrical and Microstructural Characterization of Spinel Phases as Potential Coatings for SOFC Metallic Interconnects, J. Power Sources, 153 (2006) 114-124. [151] V. F. Sears, Neutron News, 3 (1992) 29-37. [152] J. Rodriguez-Carvajal, Proceedings of the Satellite Meeting on Powder Diffraction, Toulouse, France (1990). 129 [153] JCPDS, International Center for Diffraction Data. [154] A. Purwanto, A. Fajar, H. Mugirahardjo, J. W. Fergus, K. Wang, Cation distribution in spinel (Mn,Co,Cr) 3 O 4 at room temperature, J. Appl. Cryst, 43 (2010), 394-400. [155] R. D. Shannnon, Revised effective ionic radii and systematic studies of interatomic distance in Halides and Chalcogenides, Acta. Cryst., A32 (1976) 751. [156] R. Schmidt, A. Basu, and A. W. Brinkman, Small Polaron Hopping in Spinel Manganates, Phys. Rev. B, 72 (2005) 1-9. [157] N. M. Kovtun, V. K. Prokopenko, and A. A. Shamyakov, Electroconductivity and Electron Exchange in Spinel Structures, Solid State Comm., 26 (1978) 877-878. [158] R. Schmidt, A. Basu, and A. W. Brinkman, Small polaron hopping in spinel manganates, Phys. Rev. B, 72 (2005) 1-9. [159] H. Bordeneuve, A. Rousset, C. Tenailleau, and S. Guillement-Fritsch, Cation distribution in manganese cobaltite spinels Co 3?x Mn x O 4 (0?x?1) determined by thermal analysis, J. Therm. Anal. Calorim., 101 (2010) 137-142. [160] S. Wang, X. Liu, Y. Feng, Q. He, and H. Wang, In situ high-temperature powder X-ray diffraction study on the spinel solid solutions (Mg 1?x Mn x )Cr 2 O 4 , Phys. Chem. Mater., (2011) 10.1007/s00269-011-0474-8. [161] B. Gillot, J. L. Baudour, F. Bouree, R. Metz, R. Legros, and A. Rousset, Ionic configuration and cation distribution in cubic nickel manganite spinels Ni x Mn 3?x O 4 (0.57