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Abstract 
 
 
 The overarching goal of this dissertation is to develop reactive transport models and 
explore their applications to groundwater remediation problems. The primary focus of this 
dissertation is aimed at developing models that can support laboratory studies investigating 
remediation strategies, as this is an important intermediate step before the remediation methods 
can be scaled up to apply at field sites. As a part of this research effort, a comprehensive, one-
dimensional, multi-component reactive transport model, RT1D, which can be used for simulating 
biochemical and geochemical reactive transport problems, has been developed. The code can be 
run within the standard Microsoft EXCEL Visual Basic platform and it does not require any 
additional software tools. The capabilities of the tool were illustrated by solving several 
benchmark problems taken from the literature that have varying levels of reaction complexity. 
These literature-derived benchmarks were used to highlight the versatility of the code for solving 
a variety of practical reactive transport problems.   
This model was subsequently applied to a published experimental dataset that described 
bioaugmentation processes to remediate PCE-DNAPL trapped in a fracture system. A 
mathematical framework was first formulated to model the bioremediation processes in a PCE 
contaminated single fracture system augmented with Dehalococcoides Sp. (DHC).  The 
mathematical framework describes multi-species bioreactive transport processes that include
bacterial growth and detachment dynamics, biodegradation of chlorinated species, competitive 
inhibition of various reactive species, and the loss of daughter products due to back-partitioning 
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effects.  Two sets of experimental data, available in Schaefer et al. (2010b), were used to 
calibrate and test the model.  The simulation results indicate that the yield coefficient and the 
DHC maximum utilization rate coefficient were the two important process parameters.  A 
detailed sensitivity study was completed to quantify the sensitivity of the model to variations in 
these two parameter values. The proposed model provides a rational mathematical framework for 
simulating remediation systems that employ DHC bioaugmentation for restoring chlorinated 
solvent contaminated groundwater aquifers.    
While calibrating the DHC bioaugumentation model, several inefficiencies related to the 
use of trial and error methods for parameter estimation were identified. In order to improve the 
efficiency of the parameter estimation process, a parallel genetic algorithm (PGA) was 
developed to automate the parameter estimation process. The performance of the PGA was tested 
by solving four benchmark problems that have published experimental data or 
analytical/numerical solutions.  Benchmarking results indicate that the PGA estimated 
parameters are close to the true parameters. A shared memory parallel computing platform that 
utilized OpenMP FORTRAN was used to demonstrate the speedup of the code on a four 
processor desktop Pentium computer. The parallelized code showed linear speedup with 
increasing number of processors.  The PGA routines used in this study are generic and can be 
easily adapted to solve parameter estimation problems in other environmental modeling 
applications. 
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Chapter 1 
INTRODUCTION 
1.1 Introduction to groundwater contamination 
Groundwater is an important source of water supply used by populations all around the world 
(Todd, 1980).  In the United States, groundwater accounts for approximately twenty one percent 
of the annual water supply budget and hence it is considered as an important natural resource 
(Perlman, 2011). Figure 1 shows the schematic diagram of different sources of groundwater.  
Inadvertent discharge of harmful contaminants including metals and organics into groundwater 
aquifers poses a significant threat to this resource. Groundwater systems could be contaminated 
by leachates emanating from several anthropogenic sources including landfills, mines, leaking 
underground storage tanks (LUSTs), and other industrial waste sites.  Also, the extensive use of 
various forms of chlorinated solvents for dry cleaning and metal degreasing activities has 
resulted in widespread contamination of groundwater and soil systems (Coleman et al., 2002).  In 
addition to heavy metal and chlorinated solvent issues, contamination of aquifers by petroleum 
products released from LUSTs has been reported at several field sites in different continents 
including North America, Europe, and Australia  (Lu et al., 1999; Moreau, 1987; Prommer et al., 
1998).  In the US alone, about 10 to 20% of the estimated total of 2 million underground storage 
tanks are expected to be leaking (Atlas and Cerniglia, 1995).   Therefore, contamination of 
groundwater by LUSTs and other sources poses a significant threat to groundwater quality.   
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Figure 1.1 Schematic diagram of different sources of groundwater (Canada, 2011) 
Once contaminated, groundwater aquifers require some type of remediation strategy to 
restore its water quality to safe drinking water levels.  The type of remediation system used and 
the associated costs would depend on the type of contaminant, extent of contamination and the 
local geological conditions. Typically, most contaminated field sites are first remediated using 
some form of conventional pump-and-treat systems.  However, due to solubility limitations, 
conventional pump-and-treat methods have been ineffective at several sites.  Therefore, in recent 
years, engineers have attempted to use innovative in-situ technologies such as the bioremediation 
methods to transform the contaminants into non-toxic daughter products (Beeman and 
Bleckmann, 2002; Clement et al., 2004).  Active and passive (or natural attenuation) 
bioremediation methods can be used to treat petroleum and chlorinated solvent plumes (Clement, 
2011).  Design and application of these bioremediation methods require tools that can model the 
fate and transport of the contaminants and the associated site-specific biogeochemical reactions. 
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The modeling step is particularly important when natural attenuation methods are employed for 
managing petroleum and/or chlorinated solvent plumes (Clement et al., 2000; Lu et al., 1999; 
Prommer et al., 1998; Rolle et al., 2008).  
1.2 Numerical modeling of reactive transport problems 
Reactive transport problems can be broadly classified into either geochemical equilibrium or 
kinetic problems based on the nature of the chemical processes involved in the remediation 
methods employed. Chemical kinetics describes the rate of reaction in a fast chemical reaction 
whereas geochemical equilibrium describes the speciation at equilibrium for a slow chemical 
reaction. Currently, there are several models capable of simulating multi-species multi-
dimensional reactive transport processes in groundwater for both kinetic and geochemical 
equilibrium problems. MT3DMS developed by (Zheng and Wang, 1999) is capable of simulating 
three-dimensional advective-dispersive multi-species transport processes. Multispecies 
bioreactive transport in one-dimensional soil columns has been numerically modeled by several 
researchers (Clement et al., 2004; Clement et al., 1996; Clement et al., 1997; Schaefer et al., 
2009b; Yu and Semprini, 2004; Zysset et al., 1994). Bioplume III (Rifai et al., 1998) is a two-
dimensional, finite difference model for simulating both aerobic and anaerobic biodegradation of 
hydrocarbons in groundwater in addition to advection, dispersion, sorption and ion exchange. 
RT3D (Clement et al., 1998) combines a multispecies sequential dechlorination, biodegradation 
and first-order decay processes in groundwater in three-dimensional domain. In addition to these 
models, there are several models capable of simulating geochemistry equilibrium problems. 
MINEQL (Westall, 1976) reduces the chemical equilibrium problem into a set of nonlinear 
equations that can be solved by Newton-Raphson iteration scheme. MICROQL-I (Westall, 
1979a) computes chemical equilibrium in aqueous systems without sorbed or solid phase 
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species. MICROQL-II  (Westall, 1979b) includes additional routines for solving adsorption 
equilibria in aqueous systems using constant capacitance, diffused layer, stern layer and triple 
layer adsorption models (Kumar, 2006). 
However, most of these models are three-dimensional models developed for field scale 
evaluations with added complexity for multi-dimensional parameters. This level of complexity is 
not required for simple laboratory experiments. The column experiments done in laboratories can 
be simplified as one-dimensional problems. Furthermore, there are very few models that are 
capable of solving both geochemistry and kinetic problems in the same model. Therefore, it is 
necessary to have a simple, user-friendly, accessible, comprehensive yet robust modeling tool 
that is capable of simulating a variety of chemical, biochemical and geochemical processes. 
Therefore, one of the goals of this study is to present a comprehensive one-dimensional 
modeling tool that using Visual Basic for Applications (VBA) in Excel that is capable for 
simulating a variety of bio-geochemical problems that can be used by laboratory researchers.  
1.3 Parameter estimation using parallel genetic algorithm (GA) 
The multi-component advection-dispersion reaction equation explains the fate and transport of a 
contaminant in groundwater. The reaction part of the equation involves several kinetic 
parameters that are unique to the contaminant or remediation process. However, many of these 
reaction parameters used in the study of these experiments are theoretical and could be difficult 
to estimate using experimental studies. They may require several laboratory experiments 
isolating each chemical compound to estimate these parameters (Massoudieh et al., 2008; 
Prommer et al., 1998; Schaefer et al., 2009a; Schaefer et al., 2009b; Singh et al., 2008). The 
methods currently used for estimating the reaction parameters are trial and error-based methods 
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or use software like CXTFIT (Toride et al., 1995). However, the complexity of the problem 
increases as the number of parameters to be estimated increases. 
Modern optimization techniques such as genetic algorithm (GA) can be used to estimate 
these unknown parameters. GA follows the evolutionary concept of survival of the fittest for 
mathematical optimization using genetic recombination (Holland, 1975). GA searches through a 
solution space until it converge to a global minima or maxima. GA has been used in groundwater 
hydrology and hydrogeology for the parameter estimation with successful results (Babbar and 
Minsker, 2006; Singh et al., 2005; Sinha and Minsker, 2007; Wang, 1997). However, they are 
computationally intensive during the fitness calculation and they have to be run for long periods 
of times to find the global minima. This computational expense can be a significant drawback 
when compared to other parameter estimation techniques.  
In order to make the GAs computationally efficient, parallel computing techniques can be 
utilized. The concurrency in fitness calculations makes GA an ideal candidate for parallel 
computing (Cant?-Paz, 1998). Most loops in GA can be computed independently and this makes 
it an embarrassingly parallel problem. This means that there could be little to no communication 
between the processors. Based on the architecture, the type of parallel computers can be 
categorized into either distributed memory or shared memory computers. The new computers 
available in the market are equipped with multi-core processors and a shared memory parallel 
computing language could be used to optimize existing serial algorithms. Currently there are 
several studies involving parallel genetic algorithms for parameter estimation in groundwater 
problems in both shared memory and distributed memory architectures (Babbar and Minsker, 
2006; He et al., 2007; Sinha and Minsker, 2007). However, there are no parallel implementations 
in OpenMP FORTRAN in a desktop environment. Therefore, in this effort, we explored the use 
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of a parallel genetic algorithm (PGA) for estimating the kinetic parameters in different types of 
reactive transport problems.  
1.4 Research Objectives 
The aim of this dissertation is to develop a set of comprehensive tools for laboratory researchers 
for modeling multi-component reactive transport problems and also provide a tool to estimate the 
model parameters from laboratory experiments.  
The first objective of this dissertation study is to develop a comprehensive one-
dimensional multi-component reactive transport tool that is capable of simulating both kinetic 
and geochemical equilibrium problems. The model is also able to run both kinetic and 
geochemical equilibrium problems in a batch mode as well as couple with transport problems. 
This tool is developed using Visual Basic for Application (VBA) in Microsoft Excel without any 
additional software to be installed. This model was validated using a variety of kinetic and 
geochemistry problems published in the literature. 
The second objective of this study is to apply this model to a laboratory experiment 
involving the bioaugmentation of chlorinated ethenes using Dehalococcoides Sp. in a single 
fracture system. We have developed a mathematical framework to simulate the bioaugmentation 
of PCE-DNAPL and estimated the parameters using a trial and error process for a low flow 
experimental data. These parameters were validated using the experimental data for the high 
flow experimental data.  
The third objective of this study is to develop a GA based parameter estimation tool. The 
GAs are computationally intensive search procedures. Therefore, the GA was optimized to run in 
parallel on a multicore desktop computer using the shared memory parallel computing language 
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OpenMP using a parallel genetic algorithm (PGA). This PGA was used to estimate the model 
parameters for four problems whose true parameters are already known.  
This dissertation consists of five chapters. The first chapter (the current chapter) provides 
a basic introduction to this research, lists the objectives, and provides a brief summary of each 
chapter. The second chapter focuses on the first objective, with the outcome of this effort already 
published in Computers and Geosciences (Torlapati and Clement, 2012b). The third chapter 
focuses on the second objective and the outcome of this effort has been published in 
Groundwater Monitoring and Remediation (Torlapati et al., 2012). The fourth chapter focuses 
on the third objective and the outcome of this effort were communicated to Environmental 
Modelling and Software (Torlapati and Clement, 2012a). The fifth chapter provides a brief 
summary of the key outcomes of this research and offers recommendations for future work.  
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Chapter 2 
DEVELOPMENT OF A VISUAL-BASIC BASED MULTI-COMPONENT ONE-
DIMENSIONAL REACTIVE TRANSPORT MODELING TOOL 
2.1 Review of existing reactive transport models 
Laboratory-scale experiments are also routinely used to develop a better understanding of 
various biogeochemical transport processes expected to occur under field conditions.  Both batch 
and column studies have been employed for establishing the feasibility of proposed remediation 
methods (Schaefer et al., 2009b; Schaefer et al., 2010b).  Numerical models are also routinely 
utilized at this feasibility assessment stage to interpret the laboratory data and to develop a better 
understanding of underlying treatment processes (Clement et al., 1998; Phanikumar et al., 2002; 
Torlapati et al., 2012).  The modeling exercises can greatly help the scaling and design steps that 
are required for deploying field-scale remediation technologies.  
Currently, there are several models available that are capable of simulating multi-component, 
multi-dimensional reactive transport processes.  Zheng and Wang (1999) developed MT3DMS, 
which is capable of simulating three-dimensional advective-dispersive multi-component 
transport processes.  Clement et al. (1998) developed a reactive transport code RT3D, which is 
based on MT3DMS, that can simulate bioreactive transport scenarios involving kinetic reactions.  
Prommer et al. (1998) combined MT3DMS with PHREEQC (Parkhurst and Appelo, 1999) to 
simulate both equilibrium and kinetic reactions.  UTCHEM (de Blanc et al., 1996) and 
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BIOPLUME-II (Rafai et al., 1987) are two generic reactive transport models that are capable of 
simulating bioreactive transport processes.  BIOPLUME-II uses a modified version of the USGS 
code MOC and can simulate aerobic biodegradation of petroleum plumes.  A later version, 
known as BIOPLUME-III (Rafai et al., 1998), can simulate both aerobic and anaerobic reactions 
involved in petroleum biodegradation. BIOCHLOR (Aziz, 2000) is an EXCEL-based tool which 
implements a sequential decay analytical solution described in Sun and Clement (1999), Sun et 
al. (1999), and Clement (2001) to simulate natural attenuation processes occurring at chlorinated 
solvent contaminated sites.  However, BIOCHLOR is an analytical model and is limited by the 
capabilities of the underlying solution procedure; some of these limitations are explained in 
Quezada et al. (2004), Srinivasan and Clement (2008) and Srinivasan et al. (2007).   
Most biological processes that degrade organic contaminants such as hydrocarbons and 
chlorinated solvents are kinetic-limited reactions, and they are described using a set of ordinary 
differential equations (ODEs).  Within a numerical reactive transport formulation, these ODEs 
are normally implemented as a reaction package using the operator-split strategy and are 
independently solved by an ODE solver (Clement et al., 1998).  The geochemical processes 
(which mediate the fate and transport of inorganic contaminants such as metals) on the other 
hand are mostly equilibrium-controlled reactions that require solution to a set of non-linear 
algebraic equations. These non-linear equilibrium equations can be solved by an independent 
geochemistry routine and they can also be integrated into a transport formulation using the 
operator-split strategy (Cederberg et al., 1985; Prommer et al., 1998).  There are several 
computer codes available in the literature that can be used to solve chemical speciation problems. 
WATEQ was one of the first geochemical models that uses an iteration scheme to solve the 
system of non-linear equations; the code, however, cannot explicitly handle heterogeneous 
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reactions such as precipitation and dissolution processes (Truesdell and Jones, 1974).  MINEQL 
is a commonly used model that employs the well-known tableau approach to define and solve the 
chemical equilibrium problem.  MINEQL is capable of handling reactions such as mineral 
precipitation and dissolution (Westall, 1976).  MICROQL-I is a simplified version of the 
MINEQL code which can solve chemical equilibrium without sorbed or solid phase species 
(Westall, 1979a). MICROQL-II is an updated version that includes routines for modeling 
adsorption equilibrium using constant capacitance, diffuse layer, and triple layer adsorption 
models (Westall, 1979b).  The chemical speciation code MINTEQA2 is the most comprehensive 
software (also developed based on the ideas espoused in MINEQL and MICROQL codes) for 
modeling dilute aqueous solutions (Allison et al., 1990). PHREEQC is another widely used 
geochemical code that can perform a variety of geochemical speciation calculations (Parkhurst 
and Appelo, 1999). PHAST is a three-dimensional reactive-transport model derived from 
coupling the geochemical model PHREEQC with the solute-transport model HST3D (Kipp, 
1987). The flow and transport model is restricted to constant density, constant temperature, and 
saturated ground-water flow conditions. Chemical reactions considered in HST3D include 
mineral and gas equilibrium, ion exchange, surface complexation, solid solutions, and kinetic 
reactions (Parkhurst, 2004).  
Most of the multi-dimensional, numerical transport codes discussed above require 
considerable experience and expertise to model coupled reactive transport problems.  Therefore, 
in the published literature, laboratory researchers have developed several simpler one-
dimensional reactive transport tools to model column-scale datasets.  For example, Miller and 
Benson (1983) developed a numerical model CHEMTRN to simulate the transport of solutes in 
saturated porous media. The model simulated advection, dispersion, ion exchange, and formation 
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of aqueous-phase complexes.  Engesgaard and Kipp (1992) developed a one-dimensional 
geochemical code to simulate precipitation-dissolution and oxidation-reduction reactions and 
used it to model pyrite oxidation processes at a field site in Denmark.  Zysset et al. (1994) 
presented a numerical model for describing reactive transport processes occurring within a 
biofilm.  (Clement et al., 1996) developed a one-dimensional model to simulate bioremediation 
patterns occurring near an injection well.  Clement et al. (1997) developed a one-dimensional 
code to simulate bacterial transport and denitrification processes observed in a column 
experiment.  Prommer et al. (1998) developed a one-dimensional numerical model for predicting 
biodegradation occurring at a petroleum hydrocarbons site.  Islam and Singhal (2002) presented 
a one-dimensional multi-component reactive transport model coupled with geochemical 
equilibrium reactions to simulate the interactions between the microbial redox reactions and 
inorganic geochemical reactions.  (Amos et al., 2009) developed a numerical model to study the 
enhanced dissolution of PCE-DNAPL in presence of dechlorination bacterial cultures. Clement 
et al. (2004) developed a code for modeling DNAPL-dissolution and rate-limited sorption 
occurring in a biologically reactive one-dimensional porous media system.  Schaefer et al. 
(2009b) and Torlapati et al. (2012) developed one-dimensional models which were used to 
simulate laboratory studies that  explored the effects of bioaugmentation on chlorinated solvent 
contaminants.  
Unfortunately, most of the one-dimensional tools discussed above, which are primarily 
developed for solving a specific research problem, have little or no documentation.  Moreover, 
none of these codes are user friendly tools that can be used by other laboratory researchers.  
Also, these tools support either a kinetic formulation or an equilibrium formulation; none of 
these models provide a flexible framework, such as an EXCEL interface, which would allow 
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users to fine tune the code to their specific needs.  The objective of this effort is to develop a 
comprehensive, one-dimensional reactive transport model within a user-friendly, EXCEL-based 
Visual Basic environment.  Our goal is to provide a unified EXCEL tool that can be easily 
adapted by others to model laboratory-scale experiments involving different types of biological 
(kinetic) and geochemical (equilibrium) reactions.  In this paper, we present the details of this 
tool and demonstrate its use by solving five benchmark problems.  The benchmark problems 
illustrate the characteristics of a variety of bio-geochemical problems that would be of interest to 
a broad range of environmental scientists. The problems are described in detail to provide a 
comprehensive benchmarking database which can be used for testing other reactive transport 
codes.  
2.2 Model development and numerical solution 
Reactive transport problems in porous media systems could be mediated by either kinetic or 
equilibrium processes. Kinetic models are used to describe relatively slow chemical reactions, 
whereas equilibrium reactions are used to describe fast chemical reactions. Several reaction 
transport codes are available in the literature, but they can only handle kinetic type reactions 
(e.g., RT3D) or can handle equilibrium type reactions (Cederberg et al., 1985; Parkhurst and 
Appelo, 1999). RT1D was designed to provide a unified platform for simulating transport 
problems involving both geochemical and kinetic reactions.  However, it is important to note that 
the current version can either simulate a set of pure kinetic reactions or a set of pure geochemical 
reactions, but one cannot mix both types of reactions.  
The capabilities of RT1D model, which are designated as ?simulation options,? are 
summarized in Figure 2.1. The model currently supports four different ?simulation options? 
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involving the use of two types of reaction modules: a kinetic module and an equilibrium module 
which can simulate kinetic and equilibrium reactions, respectively.  There are four types of 
simulation options available within RT1D.  The first simulation option can be used to solve batch 
kinetic problems. The second option can be used to solve one-dimensional reactive transport 
problems involving kinetic reactions.  The third option can solve batch equilibrium problems.  
The fourth option can solve one-dimensional reactive transport problems involving geochemical 
equilibrium reactions. If the kinetic module is selected, the user should also provide a problem-
dependent reaction package.  The kinetic module supports several standard reaction models that 
are already coded within a set of pre-programmed reaction packages.  In addition to these 
preprogrammed packages, RT1D also supports a user-defined reaction package via which the 
user can input any type of kinetics.  The geochemical module, on the other hand, does not require 
a problem-dependent reaction package, and instead uses a MICROQL-based chemistry package 
to solve the equilibrium problem. The information required for formulating a specific 
geochemical problem are input using the standard tableau.  
The multi-component one-dimensional reactive transport model developed in this study, 
designated as RT1D, solves a coupled set of advection-dispersion-reaction equations for a total 
of ?n? components. The model simulates the transport of ?m? mobile components that are either 
fully or partially coupled to a set of ?n-m? immobile components.  The reactions between these 
components could be mediated by biological/geochemical kinetic reactions, or geochemical 
equilibrium reactions.  The governing set of equations solved by the model can be written in a 
general form: 
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2i i i i
2i i iC C C ?VD=- + +t R x R x R  where i = 1, 2,3? m
 (2.1) 
j jS=?t   where j = (m+1), (m+2), (m+3),? (n)  (2.2) 
 
 
Figure 2.1 Illustration of the simulation options available in RT1D 
where V is the velocity (m/day); D is the hydrodynamic dispersion coefficient (m2/day), 
Ci is the aqueous phase concentration (mg/L) of a mobile component i;  Sj is the solid phase 
concentration (mg/mg) of an immobile component j; m is the total number of mobile 
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components; n is the total number of components (note that a total of (n-m) immobile 
components are numbered sequentially after numbering all the mobile components); Ri is the 
linear retardation factor of the ith mobile component [ d?KR1 , where ? is the bulk density 
(mg/L); ? is the porosity; Kd is the linear sorption constant (L/mg)]; and ?i and ?j are the 
reactions involving mobile and immobile components, respectively. The expressions used for ?i 
and ?j terms would vary depending on the type of reactions involved in the system.  Note the 
immobile component equations do not have advection dispersion terms, but will have reaction 
terms that will be coupled to some of the mobile component reaction terms.  Also, the mobile-
component reaction terms themselves could be coupled to each other. 
The coupled set of reactive transport equations, represented by equations (1) and (2) are solved 
using the operator split approach (Clement et al., 1998; Torlapati and Clement, 2012b). Using 
this approach, the governing set of transport equations can be written as:   
ii
i
CCV=-t R x  (2.3) 
2ii
2iCCD=t R x
 (2.4) 
ii
i
dC ?=dt R  (2.5) 
j jdS=?dt  
(2.6) 
 
In the numerical code, the advection terms in all the mobile components (equation 2.3) 
are first solved using an advection solver module.  Next, the advected concentrations ( ) are C
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used to solve for dispersion terms (equation 2.4) in the mobile component transport equations 
using a dispersion solver module.  Finally, the dispersed concentrations ( ) are used to solve a 
set of coupled reaction terms involving both mobile and immobile components, represented by 
equations (2.5) and (2.6).  For transport problems involving kinetic reactions, the reaction part of 
the transport equations (equations 2.5 & 2.6) would yield a set of coupled ODEs.  These ODEs, 
referred as the kinetic reaction package, are solved using an ODE solver.  For transport problems 
involving geochemical equilibrium reactions, the reaction terms would yield a set of coupled 
non-linear equations.  These non-linear equilibrium equations are represented using the tableau 
approach (Westall, 1976) and are solved using the geochemical equilibrium solver, MICROQL, 
developed by (Westall, 1979a, b).  
2.2.1 Transport module 
The advection module provides two explicit solver options: a total variation diminishing (TVD) 
solver and an explicit finite difference solver that uses backward difference approximation. The 
advected concentrations are then used to solve the dispersion equation, within the dispersion 
module, using the implicit finite difference method. In addition to these explicit-implicit solvers, 
there is also a fully-implicit option that solves the advection-dispersion terms together using a 
fully-implicit approach.   
2.2.1.1 Explicit advection scheme 
The advection part of the transport equation can be solved using the explicit backward difference 
approximation as shown below: 
C
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n + 1 n n ni i i i- 1
i
C - C C - CV=-? t R ? x
 
(2.7) 
where n+1iC  is the concentration of the component at the current time step at the current node; niC  
is the concentration of the mobile component at the previous time step at the current node and 
ni-1C   is the concentration of the mobile component at the previous time step at the preceding 
node.  After further simplification, we can solve for the concentration of mobile component at 
the current node ( n+1iC ) as shown below: 
n + 1 n n ni i i- 1 i
i
CrC C C CR  (2.8) 
where V?tCr ?x   is known as the grid Courant number. 
2.2.1.2 Explicit TVD scheme 
Numerical dispersion is a major concern while solving the advection dominated problems. RT1D 
includes a robust total variation diminishing (TVD) scheme that minimizes numerical dispersion 
errors. Details of this scheme are given below. Using the Taylor series expansion, the standard 
Lax-Wendroff (LW) scheme for the advection term can be written as (Leveque, 2002):  
2n + 1 n n n n n n
i i i + 1 i - 1 i + 1 i i - 1C r C rC = C - ( C - C ) + ( C - 2 C + C )22 
(2.9) 
The above equation can be rearranged and written in a flux-balance format as: 
nnn + 1 n i+ 1 /2 i-1 /2ii F -FCC =-
t ?x 
(2.10) 
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Where n n n ni+ 1 /2 i i+ 1 iVF = V C + ( 1 - C r ) ( C - C )2  and n n n ni- 1 /2 i- 1 i i- 1VF = V C + ( 1 - C r ) ( C - C )2  respectively. Note 
the flux terms defined above consist of a lower and higher order flux terms. The lower order flux 
term in ni+1/2F is iVpC  and the higher order term in ni+1/2F  is i+ 1 iV (1 -Cr )(p C -p C )2 . 
Furthermore in TVD schemes, a flux limiter will be used to minimize the potential numerical 
oscillations induced by the higher order term as shown below:  
n n n ni+ 1 /2 i i+ 1 iVF = V C + ( 1 - C r ) ( C - C ) * ?2  (2.11) 
Different types of flux limiters are available in the literature and in this study we have used the 
Van-leer flux limiter given as (Leveque, 2002):  
?+??=1+?
 
(2.12) 
where 
nni i-1
nni-1 i-2C -C?=C -C  
Farthing and Miller (2001) investigated the adaptive-stencil and finite volume schemes to 
capture sharp fronts and shocks in advective-dispersive transport. They observed that the Lax-
Wendroff scheme performed better in the presence of a flux limiter.  
2.2.1.3 Implicit finite difference method for dispersion scheme 
The dispersion part of the transport equation can be numerically discretized using a central 
difference approximation.  
19 
 
n + 1 n n + 1 n + 1 n + 1i i i- 1 i i+ 1
i 2C C C 2 C CR = Dtx 
(2.13) 
Where Ci-1 is the concentration at the previous node for the current time step, Ci+1 is the 
concentration at the next node for the current time step. The above equation can be further 
simplified as follows 
n n + 1 n + 1 n + 1i i- 1 i i+ 1
i i i
? 2 ? ?C C C 1 CR R R
 
(2.14) 
Where 2Dt?=x . Assembling equation (14) on a node-by-node basis would yield a following tri-
diagonal matrix of the form: 
n+1
01
n+1
22
n+1
33
n+1
44
n+1
55
n+1
nn
C1 0 0 0 0 0 0 C
da b c 0 0 0 0 C
d0 a b c 0 0 0 C
= d0 0 a b c 0 0 C
d0 0 0 a b c 0 C
.... .. .. .. .. .. . ..
d0 0 0 0 0 0 1 C
 
(2.15) 
where i
?a=R
, i
2?b= 1R
, i
?c=R
and nid=-C ; Co is the concentration at the boundary node. 
The above matrix can be solved using a tridiagonal matrix solver to solve for all the unknown 
concentrations at the new time level.  
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2.2.1.4 Fully implicit numerical solution for advection-dispersion 
In this option, we solve the advection and dispersion together implicitly. We use a central 
difference approximation for the advection term and the numerically discretized form for the 
advection-dispersion equation is as follows: 
n + 1 n n + 1 n + 1 n + 1 n + 1 n + 1i i i+ 1 i- 1 i- 1 i i+ 1
2ii
C - C C - C C - 2 C + CVD= - +? t R 2 ? x R ? x
 
(2.16) 
The above equation can be further simplified as follows: 
n n + 1 n + 1 n + 1i i i - 1 i i i + 1C ( R . ) = ( ? + 1 )C ( 2 R . )C (1 ? )C (2.17) 
where 
2?x=
D?t  and V?x?=2D . 
Expanding the equation (2.17) for all the nodes would yield a tridiagonal matrix similar 
to (2.15). For this problem, the values of a, b, c and d are given as?+1 , i2-R. , 1-? and 
nii-C (R .?) , respectively.  
2.2.2 Reaction module 
2.2.2.1 Kinetic type problem 
For a multi-species, the reaction part shown in equation (2.5) & (2.6) simplifies into a set of 
ordinary differential equations (ODE). These ODEs are referred to as a reaction package. The set 
of ODEs described within a kinetic reaction package can be solved using two different ODE 
solvers: a standard 4th order Runge-Kutta (RK) solver, or a more robust Runge-Kutta-Fehlberg 
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(RKF) solver (Chapra and Canale, 1998). The RK solver uses a constant reaction time step, 
whereas the RKF solver will automatically subdivide the reaction time step into sub steps to 
minimize the local error. 
2.2.2.2 Geochemistry equilibrium type problem 
The geochemical equilibrium reaction problem is formulated in the form of a tableau that 
represents the interactions between all the components and species involved in the chemical 
system.  As defined by Westall (1976), a species is a chemical entity of interest present in the 
system whereas a component is a basic building block used for forming various chemical species 
in the system. The stoichiometric relationship between the components and the species can be 
represented in the form of a matrix known as the tableau.  The chemical speciation problem, 
defined by the tableau, is solved using an EXCEL-VBA version of MICROQL code.  The details 
of the numerical solution schemes employed by MICROQL are discussed in Westall (1979b).  
Within RT1D, the transport equations that involve geochemical (or equilibrium) reactions are 
solved using an approach proposed by Cederberg et al. (1985), which is slightly different from 
the approach used for the solving the transport equations involving kinetic reactions.  As 
discussed in Cederberg et al. (1985), first the aqueous concentration of a component of interest 
will be transported using the transport module.  The aqueous concentration of a component at a 
particular node is calculated by subtracting the concentrations of all the sorbed species associated 
with that component from its total concentration.  After the transport step, the updated 
(advection-dispersed) aqueous component concentration is added back to the sorbed 
concentrations of the respective component to compute the total component concentration at that 
node. This total component concentration is then transferred to MICROQL to solve the 
geochemical speciation problem. The equilibrated species concentrations are used to update the 
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values of aqueous component concentrations for the next time transport step. Further details of 
this transport algorithm are discussed in Cederberg et al. (1985). 
2.3 Testing the model 
The explicit finite difference schemes used in the advection modules of RT1D program are 
constrained by certain stability condition criteria. To ensure that the results generated by the 
numerical models are stable and error-free, researchers have used Courant number (Vdx/(R.dt)) 
and Peclet number (Vdx/D) to determine the grid size and time step for the simulations. In the 
following sections, we have tested the stability of our numerical models for different Courant 
and Peclet numbers. For explicit schemes, the Courant number should be less than 1 to obtain 
oscillation free results. If the Courant number exceeds 1, numerical oscillations are observed 
near the advective front. In addition, to obtain good quality solution the Peclet number should be 
set below 2.   
2.3.1 Pure advection  
In this section, we tested the Explicit and TVD schemes for different Courant numbers by setting 
the value of dispersion to 0. Simulations were performed for a one-dimensional column of 50 cm 
length. The pore velocity was about 1 cm/day and the simulations were performed for duration of 
20 days. The grid size was set to 1 cm and the time step was varied to generate Courant numbers 
of 1, 0.5, 0.1 and 0.01. A constant boundary condition of 1 mg/L was supplied at the inlet for the 
complete duration of the experiment. The results of the simulations for the Explicit and TVD 
schemes are shown in Figure 2.2 and 2.3 respectively. It can be observed from these figures that 
at Courant number 1, the results from both the advection schemes produce sharp advective 
fronts. However, the numerical dispersion comes into effect as the Courant number is decreased. 
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The numerical dispersion is comparatively less in case of TVD schemes than the explicit 
schemes.  
 
Figure 2.2 RT1D results for different Courant numbers for the explicit advection scheme with 
v=1 cm/day, dx=1 and a duration of 20 days 
 
Figure 2.3 RT1D results for different Courant numbers for the TVD advection scheme with v=1 
cm/day, dx=1 and a duration of 20 days 
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2.3.2 Advection dispersion modules 
The program was tested for a high and low Peclet numbers of 0.5 and 2 respectively for varying 
Courant numbers 0.01, 0.1, 0.5 and 1. A hydrodynamic dispersion coefficient of 0.05 cm2/day 
was used to perform high Peclet number simulations and a hydrodynamic dispersion coefficient 
of 0.2 cm2/day was used to perform low Peclet number simulations. A grid size of 0.1 cm and a 
pore velocity of 1 cm/day were used to perform the simulations. The results from these 
simulations were compared against the analytical solutions presented in van Genuchten and 
Alves (1982). 
2.3.2.1 Explicit advection and implicit dispersion 
Simulations were performed with a time step of 0.1, 0.05, 0.01 and 0.001 for both high and low 
Peclet numbers to generate Courant numbers of 1, 0.5, 0.1 and 0.01 respectively. Figure 2.4 and 
2.5 show the results for low and high Peclet number simulations respectively.  
 
Figure 2.4 RT1D results for low Peclet number simulations with varying Courant number using 
the explicit advection and implicit dispersion scheme (v=1cm/day, D=0.2 cm2/day, dx=0.1cm) 
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Figure 2.5 RT1D results for high Peclet number simulations with varying Courant number using 
the Explicit advection and Implicit dispersion scheme (v=1cm/day, D=0.05 cm2/day, dx=0.1cm) 
It was observed from the figures that the explicit scheme showed numerical dispersion in 
the presence of low Peclet number and this numerical dispersion decreased with increase in the 
Peclet number and the simulation results were closer to the analytical solutions.  
2.3.2.2 Fully implicit advection dispersion scheme 
Simulations were performed with a time step of 0.1, 0.05, 0.01 and 0.001 for both high and low 
Peclet numbers using the fully implicit advection dispersion scheme to generate Courant 
numbers of 1, 0.5, 0.1 and 0.01 respectively. Figure 2.6 and 2.7 show the results for low and high 
Peclet number simulations respectively.  
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Figure 2.6 RT1D results for low Peclet number simulations with varying Courant number using 
the fully implicit advection dispersion scheme (v=1cm/day, D=0.2 cm2/day, dx=0.1cm) 
It was observed from the simulations that the fully implicit scheme performed a lot better 
than the explicit scheme. However there was some numerical dispersion when the Peclet number 
was high. 
 
Figure 2.7 RT1D results for high Peclet number simulations with varying Courant number using 
the fully implicit advection dispersion scheme (v=1cm/day, D=0.05 cm2/day, dx=0.1cm) 
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2.3.2.3 TVD advection and implicit dispersion scheme 
Simulations were performed with a time step of 0.1, 0.05, 0.01 and 0.001 for both high and low 
Peclet numbers using the TVD advection and implicit dispersion scheme to generate Courant 
numbers of 1, 0.5, 0.1 and 0.01 respectively. Figure 2.8 and 2.9 show the results for low and high 
Peclet number simulations respectively. It was observed from the results that the TVD scheme 
was consistent with the analytical results for all the Courant and Peclet numbers. It is highly 
recommended that the users of the RT1D use TVD scheme for accurate results. 
 
Figure 2.8 RT1D results for low Peclet number simulations with varying Courant number using 
the TVD advection and implict dispersion scheme (v=1cm/day, D=0.2 cm2/day, dx=0.1cm) 
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Figure 2.9 RT1D results for high Peclet number simulations with varying Courant number using 
the TVD advection and implict scheme (v=1cm/day, D=0.05 cm2/day, dx=0.1cm) 
2.3.3 Advection dispersion and reaction modules 
In this section, we present the results to test the program?s stability under varying Peclet and 
Courant numbers in the presence of a first order decay constant for a single component. The 
simulations were compared with analytical solutions. For the high Peclet number simulations, the 
data from the first component of Bauer et al. (2001) was used and for low Peclet number 
simulations, the date from the first component of Quezada et al. (2004) was used. Simulations 
were performed for different Courant numbers of 0.01, 0.1, 0.5 and 1.0. The parameters for these 
simulations are presented in Table 2.1. 
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Table 2.1: Parameters for low and high Peclet number simulations 
 Parameter High Low 
Length (cm) 40 3000 
Time (days) 50 3000 
dx (cm) 0.4 5 
Velocity (cm/day) 0.4 1 
Dispersion Coefficient (cm2/day) 0.08 10 
Retardation 1 5.3 
Decay constant (1/day) 0.075 7.00E-04 
 
2.3.3.1 Explicit advection and implicit dispersion 
Simulations were performed with a time step (dt) of 1, 0.5, 0.1 and 0.01 for high Peclet number 
simulations and 26.5, 13.25, 2.65 and 0.265 days for low Peclet number simulations to generate 
Courant numbers of 1, 0.5, 0.1 and 0.01 respectively. Figure 2.10 and 2.11 show the results for 
low and high Peclet number simulations for the explicit advection and implicit dispersion 
respectively. It was observed from the figures that explicit scheme performed well with both 
high and low Peclet numbers. There was some numerical dispersion in the presence of high 
Peclet number. However, this is negligible.  
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Figure 2.10 RT1D results for low Peclet number simulations with varying Courant number using 
the explicit advection and implict dispersion scheme (v=1 cm/day, D=10 cm2/day, dx=5 cm, 
k=7.0E-4 day-1, T=3000 days) 
 
Figure 2.11 RT1D results for high Peclet number simulations with varying Courant number 
using the explicit advection and implict dispersion scheme (v=0.4 cm/day, D=0.08 cm2/day, 
dx=0.4 cm, k=7.5E-2 day-1, T=50 days) 
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2.3.3.2 Fully implicit advection dispersion scheme 
Simulations were performed with a time step of 1, 0.5, 0.1 and 0.01 for high Peclet number 
simulations and 26.5, 13.25, 2.65 and 0.265 days for low Peclet number simulations to generate 
Courant numbers of 1, 0.5, 0.1 and 0.01 respectively. Figure 2.12 and 2.13 show the results for 
low and high Peclet number simulations respectively. It was observed from the figures that 
explicit scheme performed well with both high and low Peclet numbers. There was some 
numerical dispersion in the presence of high Peclet number. However, this is negligible. 
 
Figure 2.12 RT1D results for low Peclet number simulations with varying Courant number using 
the fully implicit advection dispersion scheme (v=1 cm/day, D=10 cm2/day, dx=5 cm, k=7.0E-4 
day-1, T=3000 days) 
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Figure 2.13 RT1D results for high Peclet number simulations with varying Courant number 
using the fully implicit advection dispersion scheme (v=0.4 cm/day, D=0.08 cm2/day, dx=0.4 
cm, k=7.5E-2 day-1, T=50 days) 
2.3.3.3 TVD advection and implicit dispersion 
Simulations were performed with a time step of 1, 0.5, 0.1 and 0.01 for high Peclet number 
simulations and 26.5, 13.25, 2.65 and 0.265 days for low Peclet number simulations to generate 
Courant numbers of 1, 0.5, 0.1 and 0.01 respectively. Figure 2.14 and 2.15 show the results for 
low and high Peclet number simulations respectively.  
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Figure 2.14 RT1D results for low Peclet number simulations with varying Courant number using 
the fully implicit advection dispersion scheme (v=1 cm/day, D=10 cm2/day, dx=5 cm, k=7.0E-4 
day-1, T=3000 days) 
 
Figure 2.15 RT1D results for high Peclet number simulations with varying Courant number 
using the fully implicit advection dispersion scheme (v=0.4 cm/day, D=0.08 cm2/day, dx=0.4 
cm, k=7.5E-2 day-1, T=50 days) 
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There was some numerical dispersion for very low courant numbers in the high Peclet 
number simulations but this was negligible and the results from RT1D matched the analytical 
solutions well.  
2.4 Benchmarking RT1D  
2.4.1 First order sequential degradation 
A generalized reactive transport equation for a single component first order decay is present 
below. 
2
2C C CR = -V D k Ct x x 
(2.18) 
where C is concentration of the mobile component, k is the first order decay constant (T-1). The 
above equation simulates a tracer when the decay constant is set to zero. This reaction package 
could be written in the code form as follows: 
dydt(1)=1/R(1)*RC(1)*Conc(1) 
Where dydt(1) is the ordinary differential equation for the mobile component 1, R(1) is the 
retardation factor for component 1 and RC(1) is the user-set reaction parameter (k), Conc(1) is 
the aqueous concentration of the mobile component. In order to test this reaction package, we 
considered a test column of 40 m length with contaminant transporting through the column for 
50 days with a pore velocity of 0.4 m/day and 0.08 m2/day of hydrodynamic dispersion 
coefficient. We used a first order decay constant of 0.075 day-1 and a tracer simulation was also 
done with the decay constant set to zero and the results were compared against the analytical 
solutions presented in Quezada et al. (2004). The results from these simulations are presented in 
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Figure 2.16.  It can be observed from the figure that the simulation results from the RT1D model 
are able to match the results from the analytical solutions of both the tracer as well as the decay 
constant.  
 
Figure 2.16 RT1D simulation results for problem-1 using two different k values 
 
2.4.2 Four species coupled sequential first order degradation 
Quezada et al. (2004) presented the analytical solutions for a four species coupled sequential first 
order degradation reactions. The reaction equations simulate the transport and coupled decay of 
four mobile components. The governing equations are as follows: 
21 1 1
1 1 12C C CR = - V + D - k Ct x x 
(20) 
22 2 2
2 c 2 / c 1 c 2 / c 1 1 1 2 2 c 2 / c 3 c 2 / c 3 3 32C C CR = - V + D + F Y k C - k C + F Y k Ct x x 
(21) 
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23 3 3
3 c 3 / c 1 c 3 / c 1 1 1 c 3 / c 2 c 3 / c 2 2 2 3 32C C CR = - V + D + F Y k C + F Y k C - k Ct x x 
(22) 
24 4 4
4 c 4 / c 2 c 4 / c 2 2 2 c 4 / c 3 c 4 / c 3 3 3 4 42C C CR = - V + D + F Y k C + F Y k C - k Ct x x 
(23) 
where Ri is the retardation factor; V the seepage velocity (LT-1), D is the hydrodynamic 
dispersion coefficient (LT-2), Y is the yield coefficient, F is the fraction, k (T-1) is the first order 
decay constant. The yield coefficient determines the number of moles of a component converted 
into its daughter product. For example, the term Yc4/c2 determines the number of moles of 
component 2 converting into component 4. The yield coefficient is set to 1 for all components 
and this means there is a complete conversion of the component at each time step. The fraction 
governs the amount of total degraded component converting from one component to another. For 
example, Fc4/c2 determines the fraction of total degraded component 2 converting into component 
2. This dependence on fractions causes the coupling effects between different components. Also, 
the reaction equations themselves contain the terms for other components causing coupling 
effects. The above reaction equations could be written in code format as follows: 
dydt(1) = -RC(1) * Conc(1) / R(1) 
dydt(2) = (RC(11) * RC(5) * RC(1) * Conc(1) - RC(2) * Conc(2) + RC(12) * RC(6) * RC(3) * 
Conc(3)) / R(2) 
dydt(3) = (RC(13) * RC(7) * RC(1) * Conc(1) + RC(14) * RC(8) * RC(2) * Conc(2) - RC(3) * 
Conc(3)) / R(3) 
dydt(4) = (RC(14) * RC(9) * RC(2) * Conc(2) + RC(16) * RC(10) * RC(3) * Conc(3) - RC(4) * 
Conc(4)) / R(4) 
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where dydt(i) is the expression for ODE for component i; i could be either 1, 2, 3 or 4; 
R(i) is the retardation factor for the component i; RC(i) is the user-set reaction parameters, 
Conc(i) is the concentration of the component i. The model parameters for this problem are 
presented in Table 2.2 and the results from this simulation are presented in Figure 2.17. It can be 
observed from the figure that the results from the RT1D simulations were able to match the 
analytical solutions well. 
Table 2.2: Model parameters used in Test Problem 2 obtained from Quezada et al. (2004) 
Column Length, L (m) 40 
Dispersivity (m) 0.2 
Velocity  (m d-1) 0.4 
Singularity parameter (?) 0.1 
R1 1 
R2 2 
R3 3 
R4 4 
k1 (days-1) 0.075 
k2 (days-1) 0.05 
k3 (days-1) 0.02 
k4 (days-1) 0.045 
Yield(all) 1 
Fc2/c1 0.75 
Fc3/c1 0.25 
Fc3/c2 0.5 
Fc4/c2 0.5 
Fc2/c3 0.9 
Fc4/c3 0.1 
Boundary for Species 1 (mol l-1) 1.0  
Boundary for Species 2-4 (mol l-1) 0 
Total Time (d) 50  
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Figure 2.17 Comparison of RT1D simulation results with analytical solutions for problem-2 
2.4.3 Four component decay chain 
Bauer et al. (2001) presented analytical solutions for the transport of a decay chain for in 
homogenous porous media. The reaction equations presented in the paper were used as a built-in 
reaction package for the RT1D. The reaction equations are as follows 
21 1 1
1 1 12C C CR = - V + D - k Ct x x 
(2.23) 
22 2 2
2 1 1 1 2 2 22C C CR = - V + D + k R C - k R Ct x x 
(2.24) 
23 3 3
3 2 2 2 3 3 32C C CR = - V + D + k R C - k R Ct x x 
(2.25) 
24 4 4
4 3 3 3 4 4 42C C CR = - V + D k R C - k R Ct x x 
(2.26) 
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where Ri is the retardation factor; V the seepage velocity (LT-1), D is the hydrodynamic 
dispersion coefficient (LT-2), ki (T-1) is the first order decay constant. Further details of the model 
are available in Bauer et al. (2001). The code format for this reaction package is as follows: 
dydt(1) = -RC(1) * Conc(1) 
dydt(2) = (RC(1) * Conc(1) * R(1) - RC(2) * Conc(2) * R(2)) / R(2) 
dydt(3) = (RC(2) * Conc(2) * R(2) - RC(3) * Conc(3) * R(3)) / R(3) 
dydt(4) = (RC(3) * Conc(3) * R(3) - RC(4) * Conc(4) * R(4)) / R(4) 
The model parameters for this problem are presented in Table 2.3 and the results from this 
simulation are available in Figure 2.18. It can be observed from the figure that the RT1D 
simulations were able to match the analytical solutions well. 
 
Figure 2.18 Comparison of RT1D simulation results with analytical solutions for problem 3 
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Table 2.3: Model parameters used in problem 3 obtained from Bauer et al (2002) 
Column Length, L (m) 3000 
Dispersivity (m) 10 
Velocity  (m d-1) 1 
R1 5.30 
R2 1.90 
R3 1.20 
R4 1.30 
K1 (days-1) 7.5E-4 
K2 (days-1) 5.0E-4 
K3 (days-1) 4.5E-4 
K4 (days-1) 3.8E-4 
Boundary for Species 1 (mg l-1) 100 
Boundary for Species 2-4 (mg l-1) 0 
Total Time (d) 3000 
 
2.4.4 Modified Monod kinetics for TCE bioaugmentation 
Schaefer et al. (2009b) conducted batch experiments to study the bioaugmentation of TCE. They 
used Modified monod kinetics to model these reactions. The reaction package for this model is 
as follows: (note that there are no advection and dispersion terms as this is a batch system) 
TC E TC E TC E
TC E TC E TC E
d C q X C1=-d t R C + K
 
(2.27) 
D CE D CE D CE T CE T CE
D CE T CE T CE T CET CE
D CE D CE
T CE
d C q X C q X C11=-
d t R R C + KCC + K 1 +
I 
(2.28) 
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V C V C V C D C E D C E
V C D C ET C E D C E T C E
V C V C D C E D C E
T C E D C E T C E
d C q X C q X C11= - +
d t R RC C CC + K 1 + + C + K 1 +
I I I 
(2.29) 
T CE T CE D CE D CE V C V C
T CE T CE T CE D CE V CT CE T CE D CE
D CE D CE V C V C
T CE T CE D CE
q C q C q Cd X 1 1 1= Y X + +
d t R C + K R RC C CC + K 1 + C + K 1 + +
I I I 
(2.30) 
where Ci (mM) and X (cells/L) are the concentration of ith compound and biomass 
respectively; i can be either TCE, DCE and VC; qi is the maximum biomass utilization rate, Ki is 
the half velocity coefficient of the compound, I is the competition coefficient, Ri is the 
retardation due to the presence of air-gap. For further details about the model and the 
experimental methods, refer to Schaefer et al. (2009b). The code form of this reaction package is 
given below: 
mTCE = ((RC(4) * Conc(1)) / (Conc(1) + RC(1))) 
mDCE = ((RC(5) * Conc(2)) / (Conc(2) + RC(2) * (1 + (Conc(1) / RC(7))))) 
mVC = ((RC(6) * Conc(3)) / (Conc(3) + RC(3) * (1 + (Conc(1) / RC(7)) + (Conc(2) / RC(8))))) 
dydt(1) = (-1 / R(1)) * Conc(5) * mTCE 
dydt(2) = -Conc(5) * (mDCE / R(2) - mTCE / R(1)) 
dydt(3) = -Conc(5) * (mVC / R(3) - mDCE / R(2)) 
dydt(4) = Conc(5) * mVC / R(3) 
dydt(5) = (RC(10) * Conc(5)) * (mTCE / R(1) + mDCE / R(2) + mVC / R(3)) 
To simplify the equations, we have defined three different variables (mTCE, mDCE and 
mVC) to define the Monod terms for each component. The monod parameters used in this 
42 
 
simulations are presented in Table 2.4 and the results from the RT1D simulations and it?s 
comparison with the model simulations from Schaefer et al. (2009b) is shown in Figure 2.19. It 
can be observed from the figure that the RT1D simulations were able to predict the concentration 
trends exactly. 
Table 2.4: Model parameters regressed from batch experiments in Schaefer et al (2009) 
Component 
Initial 
Condition 
(mM) 
Boundary 
Condition 
(mg/L) 
Kd 
(L/Kg) R K (mM) q (mmol L-1 (cell h)-1) I (mM) 
DCE 0.123788 0.103157 0.070 1.340 2.00E-03 7.00E-13 5.20E-03 
VC 0 0 0.016 1.078 1.40E-02 1.40E-12 1.00E+06 
Ethene 0 0 - 1.000 - - - 
DHC 
(Immobile) 0 0 - - - - - 
DHC (mobile) 0 0 - 1.000 - - - 
 Figure 2.19 Comparison of RT1D simulation results with the published model results for 
problem-4 
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2.4.5 Rate-limited sorption reaction in porous media 
In case of non-equilibrium conditions, the sorption is controlled by a mass-transfer coefficient 
(?). When the ? value is really low, the plume acts like tracer because there is no sorption and 
when the ? value is really high, the plume acts like a retarded plume due to the linear sorption. 
This kind of rate-limited sorption kinetics can be modeled using the following reaction package: 
2
2 d
C C C SVD ? C - k Ct x x K
 
(2.31) 
d
dS ?? SC-dt ?K  
(2.32) 
   where C is the concentration of the aqueous phase component (mg/L); S is the concentration of 
the solid phase component (mg/mg); ? is the bulk density (mg/L); ? is the porosity; Kd is the 
linear sorption constant (L/mg); k is the first order decay constant (day-1); and ? is the mass 
transfer coefficient (day-1).  Clement et al. (1998) used a similar type of formulation to model 
rate-limited reactions, although their study ignored the first order decay term.  This reactive 
transport problem involves two components: a mobile component that represents the aqueous 
phase concentration (C), and an immobile component that represents the solid phase 
concentration (S).  Using the operator split strategy, the reaction kinetics for this problem can be 
formulated as: 
d
d C S? C - kCd t K
 
(2.33) 
44 
 
d
dS ?? SC-dt ?K  (2.34) 
Equations (2.33) and (2.34) are coded into a reaction package. The column was assumed 
to be initially clean and the left hand boundary condition was fixed at 1 mg/L.  The porosity of 
the column was assumed to be 0.3, the bulk density of the porous media (?) was set to 1600 g/L, 
and the sorption constant (Kd) was set at 1.875 x 10-4 L/g.  The model was run using three 
different mass transfer coefficients (?): 0.00015, 0.015, and 2 (day-1).  Other model parameters 
used in this benchmark problem are summarized in Table 2.5.  Note when the value of mass 
transfer coefficient is low, the solute is expected to behave like a tracer with R=1; on the other 
hand, when the mass transfer coefficient is high, the solute is expected to behave like a retarded 
plume with R=2. The scenarios in-between these two extreme conditions would result in rate 
limited, non-equilibrium transport conditions.  Toride et al. (1993) presented a set of analytical 
solutions for transport equations involving non-equilibrium sorption and first-order decay terms. 
Valocchi and Werth (2004) developed a web-based Java applet to implement the analytical 
solutions developed by Toride et al. (1993).  This Java applet was used to benchmark the results 
of the RT1D code. The definition of model parameters used in the analytical solution vary 
slightly from the model definitions described above; in order to compare the results, the mass 
transfer coefficient to be used in the analytical solutions must be calculated using the formula 
d
??=?K
  where ?` is the mass transfer coefficient used in the analytical solution.  
Figure 2.20a shows the aqueous phase concentrations simulated by RT1D for different 
values of mass transfer coefficients; the figure also shows the analytical solution results.  Similar 
results for solid phase concentrations are shown in Figures 2.20b, 2.20c, and 2.20d. Simulations 
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were also completed using a constant decay co-efficient (k) of 0.03 day-1 and Figure 2.21 
compares the numerical results with analytical results. The total computer time required for 
solving this benchmark problem was about 18 seconds.  The figures show that the results from 
the RT1D simulations were able to match the analytical results.  Furthermore, as expected, 
Figure 2.20a shows that the aqueous phase concentration profile was retarded by a factor of R=2, 
when the mass transfer coefficient was set to an arbitrarily high value.   
  
  
Figure 2.20 Comparison of RT1D simulations with analytical solutions for problem?5: (a) 
aqueous concentration for different mass transfer coefficients; (b) solid phase concentrations for 
?=0.00015; (c) solid phase concentrations for ?=0.015; and (d) solid phase concentrations for ?=2 
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Table 2.5: Model parameters used for problem?5 
Length (cm) 40 
Total time (days) 50 
?x 0.4 
?t 0.01 
Pore Velocity (cm/day) 0.53 
Longitudinal Dispersion Coefficient (cm2/day) 0.08 
# Mobile Species 1 
# Immobile Species 1 
 
 
Figure 2.21 Comparison of the RT1D results with the analytical solutions for problem?5 with a 
decay rate constant value of 0.03 day-1 
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2.4.6 Microbial transport and growth under denitrification conditions  
Clement et al. (1997) studied the effects of denitrifying conditions on the growth and transport of 
bacteria in a porous media column under two substrate loading conditions. A numerical model 
was developed to generate the breakthrough profiles of bacterial cells and substrates.  A first 
order attachment and detachment model was used to describe the exchange processes between 
mobile and immobile-phase bacterial cells. This benchmark problem considered three mobile 
components namely nitrate, acetate and aqueous-phase bacteria, and one immobile component 
namely immobile bacteria.   The reaction package used in the problem is given below: 
N N sNad C r X ?= -r X -d t n (2.35) 
AsA Aa rX ?dC = -r X -d t n  
(2.36) 
a d e sX a a t ad X K X ?r X K Xd t n 
(2.37) 
s a t aX s d e sd X n K Xr X K Xdt ? 
(2.38) 
where CN, CA, Xa and Xs are concentrations (mg/L) of nitrate, acetate, aqueous-phase 
bacteria and immobile-phase bacteria (mg/mg), respectively. The parameters Kat (day-1) and Kde 
(day-1) are the attachment and detachment coefficients of mobile and immobile phase bacteria, 
respectively; n is the porosity of soil; and ? is the bulk density of the soil (mg/L).  The rate 
expression  is the nitrate utilization rate described using Monod kinetics as: Nr
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N AN m a x
N N A A
C Crq K C K C,where q
max is the maximum nitrate utilization rate (mg nitrate/ 
mg biomass-day), KN is the half saturation coefficient for nitrate (mg/L); KA is the half saturation 
coefficient for acetate (mg/L). The specific utilization rate of acetate ( ) and biomass growth 
rate ( ) are given by the expressions:  and X X/N N dr Y r K , where YA/N and YX/N 
are the yield coefficients for acetate and biomass, respectively, and Kd is the cell decay rate 
coefficient (day-1).  A finite difference grid of size 1 cm and a time step of 0.001 day were used 
in this problem. Other model parameters used are summarized in Table 2.6.  Further details of 
the experiments are available in Clement et al. (1997). The total amount of computer time 
required for solving this benchmark problem was about 590 seconds.  Figure 2.22a-d compare 
RT1D simulation results with published model results and data available in the literature. Figures 
2.22a and 2.22c compare effluent concentrations of nitrate at different times and Figures 2.22b 
and 2.22d show mobile phase bacteria concentrations in the effluent.  The results show that the 
RT1D model simulations closely matched published data.  
  
Ar
Xr A A/N Nr Y r
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Table 2.6: Model parameters used for problem?6 
Pore Velocity (cm/day) 1890.91 
Length (cm) 50 
Longitudinal dispersion coefficient (cm2/day) (D) 1890.91 
Porosity (n) 0.44 
Bulk density (?) (mg/l) 1.56E6 
Time (days) 15 
Microbial decay rate (day-1) (Kd) 0.06 
Attachment coefficient (day-1) (Kat)  288 
Detachment coefficient (day-1) (Kde) 0.32  
Distribution coefficient (L/mg) 3.9E-7 
Half saturation coefficient: (mg/L) 
Acetate (KA) 
Nitrate (KN) 
1.20 
0.66 
Maximum specific nitrate utilization rate (mg 
nitrate/ mg biomass-day) (qmax) 7.21 
Yield: 
Acetate (mg acetate/mg NO3)  (YA/N) 
Biomass (mg biomass/mg NO3) (Yx/N)  
0.84 
0.13 
Initial condition (mg/L): 
Acetate (CA) 
Nitrate (CN) 
Mobile bacteria (XM) 
Immobile bacteria (mg/mg) (XIM) 
 
0 
0 
1.0E-15 
3.0E-07 
Boundary condition (Low Substrate) (mg/L): 
Acetate (CA) 
Nitrate (CN) 
Mobile bacteria (XM) 
5.0 
5.5 
0 
Boundary condition (High Substrate) (mg/L): 
Acetate (CA) 
Nitrate (CN) 
Mobile bacteria (XM) 
48.0 
58.0 
0 
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Figure 2.22 Comparison of the RT1D model results (solid line) with the published model results 
(dotted line) and published data (dots) for benchmark problem?2: (a) effluent nitrate for low 
substrate conditions; (b) effluent biomass for low substrate conditions; (c) effluent nitrate for 
high substrate conditions; and (d) effluent biomass for high substrate conditions 
2.4.7 Carbon Tetrachloride Biodegradation  
Phanikumar et al. (2002) developed a bioremediation model to predict carbon tetrachloride (CT) 
degradation processes observed in sequential column experiment. In this study, we have used 
one of their experiments, identified as once-fed (OF) column, as a benchmark problem. The 
laboratory experiment used a 200 cm long column fitted with an 11-cm long slug injection zone 
at a distance of 34 cm away from the column inlet.  The injection zone was fitted with an inlet 
and an outlet to circulate flow within this zone.  This injection-extraction setup was used to 
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inoculate the column with nutrients and mobile bacteria for about 16 minutes by circulating flow 
at rate of 20 ml/min. The inoculation step was completed just once at the beginning of the 
experiment.  It was assumed that the inoculation step completely replaced the initial contents of 
the slug injection zone and hence the concentrations in the inoculant solution were used as the 
initial conditions for the 11 cm zone.  Table 3 summarizes the details of the boundary and initial 
conditions used in this problem for the entire column. The transport problem considered four 
mobile components: carbon tetrachloride, acetate, nitrate, and mobile-phase bacteria; and two 
immobile components: sorbed carbon tetrachloride and immobile-phase bacteria. The reaction 
package used for modeling this bioremediation problem, as provided in  Phanikumar et al. (2002) 
is : 
'd C T C T M I M d C T C T?fK dC ??1 - k C ( X +X ) - 1- f K C S? dt ?
 
(2.39) 
a m a x a na M I M
a
dC ? M MR - ( X X )d t Y  
(2.40) 
m a x a n K Cnn M I M a n M I M
n n b
? M M bdCR ( X + X ) - ( 1 M ) ? M (X + X )d t Y Y
 
(2.41) 
M m a x a n K C a a t M d e a I MdX ? M M b (1 M ) K X K (1 M )Xdt  
(2.42) 
CT d C T C TdS ? 1-f K C Sdt  
(2.43) 
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IM m a x a n K C a d e a I M a t MdX ? M M b (1 M ) K (1 M ) X K Xdt  
(2.44) 
where f is the fraction of equilibrium sites, bKC is the microbial decay rate (day-1), Kat is 
the attachment coefficient (day-1), Kde is the detachment coefficient (day-1), k` is the CT reaction 
rate (day-1), ? is the nitrate reaction rate (day-1), ? is the kinetic desorption rate (day-1), ?max is the 
maximum specific growth rate (day-1), Ya, Yn and Ynb are the yield rates of acetate, nitrate and 
biomass respectively; CCT, Ca, Cn and SCT are the aqueous concentrations of carbon tetrachloride, 
acetate, nitrate and the sorbed concentration of carbon tetrachloride, respectively; XM and XIM 
are the concentrations of mobile and immobile bacteria, respectively. Also, Ma and Mn are the 
Monod terms for acetate and nitrate reactions, respectively, and given by the expressions: 
aa
sa a
CM KC and nn
sn n
CM KC  where K
sa and Ksn are the half saturation coefficients of 
acetate and nitrate utilization reactions, respectively.  The kinetic equations (2.39) to (2.41) 
describe biodegradation of carbon tetrachloride, utilization of an electron donor (acetate), and an 
electron acceptor (nitrate).  Equation (2.42) describes the growth, decay, and attachment of the 
mobile phase bacteria, equation (2.43) describes the sorption of carbon tetrachloride using a two-
site sorption model, and equation (2.44) describes the growth, decay, and detachment of 
immobile-phase bacteria.  The grid size used was 1 cm and time step was 0.001 day. Other 
model parameters are summarized in Table 2.7.  
Figure 2.23 compares RT1D simulation results with the published model results. Figure 
2.23a shows the biodegradation patterns of carbon tetrachloride within the column after 4 days. 
We present the published model data as well as the experimental in Figure 2.23a because the 
RT1D simulated concentrations were able to match the concentrations from the experimental 
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data much better than the published model data. The total amount of computer time required for 
simulating this benchmark problem was 28 seconds. As expected, the model results show 
increased biodegradation activity near the slug injection zone which was inoculated with active 
bacterial cells.  It can be observed from the figures that the results from the RT1D simulations 
match well with the published model results.  
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Table 2.7: Model parameters used for problem? 7 
Parameter Value 
Pore Velocity (cm/day) 10 
Length (cm) 200 
Longitudinal dispersion coefficient (cm2/day) (D) 2 
Porosity (?) 0.35 
Bulk density (?) (mg/L) 1.63E6 
Time (days) 4 
Microbial decay rate (day-1)(bKC) 0.221 
Fraction of equilibrium sites (f)  0.437 
Attachment coefficient (day-1) (Kat)  0.9 
Detachment coefficient (day-1) (Kde) 0.043 
Distribution coefficient (Kd) (L/mg) 3.9E-7 
Half saturation coefficient: (mg/L) 
Acetate (Ksa) 
Nitrate (Ksn) 
1.0 
12.0 
CT reaction rate (day-1) (k`) 0.189 
Nitrate utilization coefficient (day-1) (?) 5.730 
Kinetic desorption rate (day-1) (?) 0.36 
Maximum specific growth rate (day-1) (?max) 3.11 
Yield: 
Acetate (Ya) 
Nitrate (Yn) 
Biomass (Ynb) 
0.4 
0.25 
0.46 
Initial condition (ppm): 
Carbon tetrachloride (CCT) 
Acetate (Ca) 
Nitrate (Cn) 
Mobile bacteria (XM) 
Immobile bacteria (XIM) 
Sorbed CT (mg/mg) (SCT) 
0.130 
0 
42 
0 
0 
2.8E-8 
Boundary condition (ppm): 
Carbon tetrachloride (CCT) 
Acetate (Ca) 
Nitrate (Cn) 
Mobile bacteria (XM) 
Immobile bacteria (XIM) 
0.130 
0 
42 
0 
0 
Slug injection zone inoculation (ppm): 
Carbon tetrachloride (CCT) 
Acetate (Ca) 
Nitrate (Cn) 
Mobile bacteria (XM) 
Immobile bacteria (XIM) 
0.1 
1650 
42 
11.8 
0 
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Figure 2.23 Comparison between the published model data (dots) and the RT1D simulations 
(line) for benchmark problem?3: (a) carbon tetrachloride after 4 days; (b) acetate after 13 days; 
(c) nitrate after 4 days; (d) mobile KC after 7 days; (e) mobile KC after 11 days; (f) mobile KC 
after 14 days; (g) mobile KC after 4 days; and (h) mobile KC after 13 days (Note: KC is the 
strain of the mobile bacteria) 
2.4.8 Geochemical transport involving a constant capacitance model 
Cederberg et al. (1985) developed a research code, TRANQL, to simulate geochemical multi-
component transport in a saturated groundwater system.  The TRANQL code was used to study 
cadmium transport in the presence of chloride and bromide ions. The one-dimensional reactive 
transport model considered advection, dispersion, surface complexation of cadmium ion, and 
sorption of free cadmium to solids in the column.  They used the finite-element approach to 
solve the governing transport equations. The geochemical problem was defined using the tableau 
nomenclature similar to the method presented by Westall (1979a).  The chemical equilibrium 
problem considered a total of 6 components and 14 species.  Table 2.8 provides the reaction 
tableau for the problem and the log K values for all the chemical reactions.  Using the RT1D 
code, we tracked the concentrations of the following three mobile components: cadmium, 
bromide, and chloride.  The remaining three components in this problem including hydrogen ion 
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(H+), surface hydroxyl group (SOH) and electrostatic potential (Psi) were not tracked in the 
transport module for the following reasons: pH and total SOH values are fixed in this problem 
and hence remained constant throughout the simulation. The last component, electrostatic 
potential (Psi), is a hypothetical component which is only used within MICROQL calculations.  
In order to compute the aqueous cadmium component concentration, we subtracted the 
concentration of sorbed cadmium species SOCd+ (species 14 in the tableau) from the total 
cadmium component concentration.  Similar calculations can also be made for other components 
of interest, as described in Cederberg et al. (1985).  The grid size used in this problem was 0.03 
cm and the time step was 0.06 hours.  Cederberg et al. (1985) solved a total of six cases with 
different initial and boundary concentration levels. These six cases were divided into two groups 
of three cases based on the total initial and boundary concentrations of cadmium, chloride and 
bromide ions.  Further details about each of these cases are available in Cederberg et al. (1985).  
In this benchmark exercise, we solved two cases namely, Case-1 and Case-5, described in 
Cederberg et al.?s study. These two cases were chosen because Case-1 is a base case scenario 
where the initial and boundary conditions chloride and bromide ion concentrations remained the 
same at the background levels.   Case-5, on the other hand, shows the system?s response when 
bromide and chloride ion concentration levels were allowed to be higher than the background 
concentration levels. The transport parameters the initial and boundary conditions used for these 
two cases are summarized in Table 2.9.  The amount of computer time required for solving this 
benchmark problem was about 30 seconds. 
The results predicted by the RT1D are compared against TRANQL model results, 
reported in Cederberg et al., in Figures 2.24a and 2.24b.  Figure 6a shows that the aqueous-phase 
and sorbed-phase cadmium profiles predicted by RT1D are in good agreement with TRANQL 
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results.  Since concentrations of chloride and bromide remained constant during Case-1, they are 
not presented in Figure 2.24a.  However, when the concentration of chloride was increased 
(Case-5 problem), it interacted with sorbed-phase cadmium species and this, resulted in reduced 
chloride ion levels; these results are shown in Figure 2.24b.  Overall, the results from RT1D 
simulations are in excellent agreement with published results.  
  
Figure 2.24 Comparison of the RT1D results (solid lines) with the published model results (dots) 
for the benchmark problem?4: (a) simulation results for Case-I and (b) simulation results for 
Case-V  
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Table 2.8: Stoichiometry of chemical reactions (tableau) for the problem?8 
   
Cl- Br- 
 
Cd+2 SOH Psi H+ log K 
1  H[+]        0 0 0 0 0 1 0 
2 Cd+2 0 0 1 0 0 0 0 
3 Cl- 1 0 0 0 0 0 0 
4 Br- 0 1 0 0 0 0 0 
5 CdCl+ 1 0 1 0 0 0 1.8 
6 CdCl2 2 0 1 0 0 0 2.6 
7 CdBr+ 0 1 1 0 0 0 2.2 
8 CdBr2 0 2 1 0 0 0 3 
9 CdOH+ 0 0 1 0 0 -1 -12.69 
10 OH- 0 0 0 0 0 -1 -13.91 
11 SOH 0 0 0 1 0 0 0 
12 SOH2 0 0 0 1 1 1 7.4 
13 SO- 0 0 0 1 -1 -1 -9.24 
14 SOCd+ 0 0 1 1 -1 -1 -7 
 
 
  
XOH
60 
 
Table 2.9: Model parameters used for problem?8 
Parameter Value 
Pore Velocity (cm/hr) 0.33 
Length (cm) 10 
Longitudinal dispersion coefficient (cm2/hr) 0.0067 
Porosity 0.3 
Bulk density (g/l) 2500 
Time (hrs) 15 
Total no. of sites (mol/l) 0.046 
Ionic Strength (mol/l) 0.1 
pH (constant) 7 
Capacitance (F/m2) 1.06 
Solid surface area (m2/g) 1 
Boundary condition (Case-I): 
Cd2+ (M) 
Cl- (M) 
Br- (M) 
1.0E-4 
3.0E-4 
1.0E-4 
Initial condition (Case-I): 
Cd2+(M) 
Cl- (M) 
Br- (M) 
SOH (M) 
H+ (M) 
1.0E-5 
3.0E-4 
1.0E-4 
4.6E-2 
1.0E-7 
Boundary condition (Case-V): 
Cd2+ (M) 
Cl- (M) 
Br- (M) 
1.0E-4 
3.0E-2 
1.0E-2 
Initial condition (Case-V): 
Cd2+(M) 
Cl- (M) 
Br- (M) 
SOH (M) 
H+ (M) 
1.0E-4 
3.0E-3 
1.0E-3 
4.6E-2 
1.0E-7 
 
2.4.9 Multiple Sequential Batch Reactor 
Jeppu et al. (2012) proposed a sequential equilibration reactor (SER) system to investigate 
transport problems involving geochemical equilibrium reactions. They studied adsorption of 
As(V) on goethite-coated sand using three sequentially linked reactors, identified as a multiple 
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sequential batch reactors (MSER).  We simulated the results of their MSER experiment as our 
fifth benchmark problem.  In this experiment, as an initial step, the first reactor was filled with 
As(V) solution while reactors 2 and 3 were filled with clean water. This is the initial condition 
for the problem.  After equilibrating for 24 hours, the aqueous solution from the first reactor was 
transferred to the second reactor and was allowed to equilibrate with the solids in the second 
reactor.  During the same time period, new arsenic laden solution was transferred to the first 
reactor, the solution in the second reactor was transferred to the third reactor, and the solution in 
the third reactor was discharged for chemical analysis. The volume of water discharged from a 
single reactor was designated as the ?reactor volume.?  The experiment had two distinct phases; 
during the first phase, a total of 14 reactor volumes were discharged from the system while 
simultaneously renewing the solution in the first reactor with new arsenic-laden solution. During 
the second phase, a total of 4 reactor volumes were discharged while simultaneously replacing 
the solution in the first reactor with clean water.  To simulate this experiment, a hypothetical 
column with 4 finite-difference nodes was used.  The length of the each finite difference grid is 
set to 1 cm, and the total distance between node-1 to node-4 was 3 cms, representing the 3 
reactors. The velocity was assumed to be 1 cm/day and the time step used was 1 day, 
maintaining a Courant number 1.  Note, although there were 4 nodes in the system, the boundary 
node was used as an hypothetical node to define the boundary condition; geochemical reactions 
are allowed to occur only in nodes 2, 3, and 4, which represented the three sequentially coupled 
reactors. There is no hydrodynamic dispersion in this sequential batch problem and hence the 
dispersion module was not used.  The Courant number was set to 1 in the numerical model to 
allow one node explicit advection that exactly mimicked the batch transfer process without any 
numerical dispersion effects.  The total period of simulation was 18 days.  The aqueous phase 
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As(V) concentration at the inlet boundary node was set at 1.25 M for 14 days, followed by zero 
concentration for 4 more days.  Other model parameters and the tableau for representing the 
chemical reactions are given in Tables 2.10 and 2.11, respectively.  The total amount of 
computer time required for solving this benchmark problem was 2 seconds.  RT1D simulation 
results are compared against PREEQCI (Charlton and Parkhurst, 2002) results (reported in Jeppu 
et al. 2012) and the experimental data (also reported in Jeppu et al. 2012) in Figure 2.25.  It can 
be observed from the figure RT1D matched the published data well. 
Table 2.10: Model parameters used for problem?9 
Length (cm) 4 
Total time (days) 18 
Pulse time (days) 14 
?x 1 
?t 1 
Velocity (cm/day) 1 
# Mobile Species 1 
# Immobile Species 1 
Boundary condition:  
As(V) concentration (?M) 
 0-14 days 
 15-18 days 
1.25 
0 
pH (constant/fixed) 7 
Ionic strength 0.01 
Surface site density (sites/nm2) 1.04 
Surface area (m2/g) 1.08 
Sorbent concentration (mg/L) 1.0 
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Table 2.11: Stoichiometry of chemical reactions (tableau) used for problem?9 
 AsO4- SOH Psi H+ Log K 
H+ 0 0 0 1 0 
AsO4[-3]Aq 1 0 0 0 0 
FeOH 0 1 0 0 0 
OH- 0 0 0 -1 -13.91 
HAsO4[-2] 1 0 0 1 11.23 
H2AsO4[-1] 1 0 0 2 18.01 
H3AsO4 1 0 0 3 20.16 
>FeH2AsO4 1 1 0 3 31.44 
>FeHAsO4- 1 1 -1 2 26.18 
>FeAsO4-2 1 1 -2 1 20.1 
>FeOH2[+] 0 1 1 1 7.17 
>FeO[-] 0 1 -1 -1 -9.32 
 
Figure 2.25 Comparison of the RT1D results with the published model results for problem?9 
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2.4.10 Ion exchange 
Valocchi et al (1981) presented an analytical framework that allowed the characterization of 
certain key concentration profiles during the transport of ion-exchange solutes based on the 
chromatography theory. The validity of this theory was tested by applying it to a field situation 
in Palo Alto Baylands in California. The field project involved the injection of advanced 
municipal effluent into the aquifer. The principal chemical mechanism involved is the 
heterovalent ion exchange of Na+, Mg2+ and Ca2+. The pore velocity was about 1.01 m/day and 
the dispersivity was 1 m and the total length of the column was 16 m. The stoichiometric table 
for this problem is presented in Table 2.12 and the results from the RT1D simulations and the 
comparison against the published model data are available in Figure 2.26. It can be observed 
from the figures that RT1D was able to simulate the results well. 
No. Species Name Na+ Mg2+ Ca2+ X H+ Log K 
1 Na+ 1 0 0 0 0 0 
2 Mg2+ 0 1 0 0 0 0 
3 Ca2+ 0 0 1 0 0 0 
4 Na-X 1 0 0 1 -1 0 
5 Mg-X 0 1 0 2 -2 0.355 
6 Ca-X 0 0 1 2 -2 0.602 
7 H+ 0 0 0 0 1 0 
Table 2.12 Stoichiometric matrix for the simulation of Test Problem ? 10 
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Figure 2.26. Results for example problem 10 a) Breakthrough profile for Na+ b) Breakthrough 
profile for Mg2+ c) Breakthrough profile for Ca2+ 
2.5 Summary and Conclusions 
In this study, we have presented the details of a numerical modeling tool for solving a variety of 
biochemical and geochemical reactive transport problems.  The code was developed within the 
EXCEL Visual Basic platform and it can be run within the standard EXCEL without any 
additional software. The tool is capable of solving a wide range of kinetic-limited reactive 
transport problems that could be defined through a reaction package.  RT1D can also solve a 
variety of equilibrium-controlled geochemical transport problems defined through a chemical 
reaction matrix (also known as the tableau).  The capabilities of the tool were demonstrated by 
solving several benchmark problems of varying level of complexity.  The results show that 
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RT1D simulations closely matched previously published results. RT1D is a flexible tool that 
allows users to add their own routine to define any type of user-defined kinetic reactions.  The 
geochemistry package can be used to define and solve transport problems involving a variety of 
surface complexation reactions.  The tool is equipped with a robust TVD advection solver, an 
implicit dispersion solver, and an adaptive time stepping ODE solver to handle any complex 
problem.  RT1D code is a useful tool for laboratory researchers who are interested in analyzing 
batch and column data within a user-friendly EXCEL platform.  
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Chapter 3 
MODELING Dehalococcoides Sp. AUGMENTED BIOREMEDIATION IN A SINGLE 
FRACTURE SYSTEM 
3.1 Introduction 
Extensive use of various forms of chlorinated ethenes as solvents for dry cleaning and metal 
degreasing efforts has resulted in widespread contamination of groundwater and soil systems. 
The toxicity and carcinogenicity potential of these compounds can be high hence they pose a 
significant threat to human and ecological health (Coleman et al., 2002). At contaminated field 
sites, depending on the history of the spill and the heterogeneity of the subsurface, the 
chlorinated solvents discharged as a dense non-aqueous phase liquid (DNAPL) might be 
immobilized in the form of trapped blobs or as pools.  These trapped DNAPL phases continue to 
dissolve for a long time to form large aqueous chlorinated ethene plumes (Clement et al., 2004). 
The most commonly observed chlorinated ethenes in groundwater are: perchloroethene 
(PCE), trichloroethene (TCE), the dichloroethenes (cis-1,2- (cDCE), trans-1,2- (tDCE), and 1,1- 
(1,1DCE)), and vinyl chloride (VC). Microbial metabolism plays a crucial role in the degradation 
of these chlorinated compounds.  The biodegradation process can occur under both aerobic and 
anaerobic conditions (Beeman and Bleckmann, 2002).  During anaerobic degradation, PCE and 
TCE are reductively dechlorinated to form cis-DCE, VC and the end product ethane, mostly via 
halorespiration (Bradley, 2003; El Fantroussi et al., 1998; Smidt and de Vos, 2004).   
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Bioaugmentation remediation methods that employ Dehalococcoides sp. (DHC) have 
been widely tested for treating chlorinated solvent contaminant plumes (Maymo-Gatell et al., 
1997; Schaefer et al., 2009b; Schaefer et al., 2010b).   Several laboratory and field experiments 
have been conducted to study the degradation patterns of chlorinated ethenes in the presence of 
DHC.  Cupples et al (2004) studied the reductive dechlorination of PCE using DHC and 
developed the Monod kinetics model to account for competition between the electron acceptors. 
They attributed the accumulation of chlorinated intermediate compounds DCE and VC to the 
lack of appropriate microorganisms, insufficient supply of donor substrate, or reaction kinetic 
limitations.  
Lee et al (2004) used glucose as a model carbohydrate to understand the effectiveness of 
dechlorination process using a culture obtained from a PCE-contaminated site in Victoria, TX. 
They developed a numerical model that simulated the batch experiments.This model included 
kinetic expressions to simulate the competition between fermentors, methanogens, and two 
separate dehalogenator groups. Their model simulations suggested that the amount of 
dechlorination achieved was significantly affected by the initial relative population of 
dehalogenators and the H2 utilizing methanogens.  
Yu et al (2005) modeled the reductive dechlorination reaction kinetics using two models 
that employed the Michaelis-Menten equation.  In this study, the competitive and Haldane 
inhibition models were tested by fitting batch kinetic data obtained using three types of 
dechlorinating populations: PM culture (obtained from a chlorinated solvent contaminated site in 
Point Mugu, CA), EV culture (obtained from Evanite in Corvallis, OR), and BM culture (a 
binary mixture of PM and EV).  The study demonstrated that for accurate modeling a 
combination of competitive and Haldane inhibition kinetics is necessary, and such models could 
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make accurate predictions over a broad range of PCE/TCE concentrations. Schaefer et al (2009b) 
studied the fate and transport of DCE in the presence of DHC. They performed both batch and 
column experiments to evaluate the transport, growth, and dechlorination activity of DHC in a 
bioaugmentation column experiment. The results from the column experiment showed that the 
dechlorination occurred over the entire length of the column. They also observed that the 
reaction rates of DHC in the column experiments were 200 times more efficient than those 
observed in batch experiments; however, this 200-fold enhancement was not observed at the 
field scale (Schaefer et al., 2010a).  
Schaefer et al. (2010b) performed laboratory experiments in discretely fractured 
sandstone blocks to study the use of bioaugmentation to treat residual PCE-DNAPL. Results 
from these experiments indicated significant dechlorination activity and growth of DHC within 
the fracture. The DNAPL dissolution was enhanced during bioaugmentation by a factor of 5 and 
the dissolved PCE concentration levels were close to the solubility level. The extent of 
dechlorination and DNAPL dissolution enhancement depended on the fracture characteristics, 
residence time, and the dissolved concentration of PCE.  
Although considerable amount of experimental data are available to test the feasibility of 
bioaugmentation process to treat chlorinated ethenes, very few reactive transport models are 
available that can describe these experimental data by simulating the bacterial growth and 
dechlorination activity coupled with transport processes.  Development of such a model would 
help facilitate the design and operation of bioaugmentation applications.  In this study, we 
propose a comprehensive reactive transport modeling framework for modeling bioaugmentation 
remediation process that employs DHC to treat a PCE-contaminated fracture system.  The model 
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was calibrated and tested using the batch and transport experimental results presented in 
Schaefer et al (2009b) and Schaefer et al. (2010b).  
3.2 Experimental method and governing equations 
 Schaefer et al. (2010b) examined the enhanced dissolution of residual DNAPL sources in bench-
scale fractured sandstone blocks during bioaugmentation. The data reported for two experiments 
used in this study were conducted in an Arizona buff sandstone block (29 cm ? 29 cm ? 5 cm). A 
discrete linear fracture of aperture size 0.054 cm (Schaefer et al., 2009a) was created along the 
naturally occurring bedding plane in this sandstone block. The outer edges were sealed and small 
holes were drilled into the rock along the influent and effluent fracture edges. Artificial 
groundwater was used in all the experiments. The DHC used in these bioaugmentation 
experiments was a commercially available microbial culture SDC-9 (Vainberg et al., 2009). The 
biodegradation experiments were performed after residual PCE-DNAPL saturation was attained 
in the rocks as described in Schaefer et al (2009a). Residual DNAPL within the fracture served 
as a long-term source for dissolved PCE throughout the duration of the experiment. The fractures 
were flushed with an anoxic solution for 2 to 7 days before bioaugmentation with DHC was 
performed.  
Two experimental datasets were reviewed and used in this study; these were identified as 
Experiment-1 and Experiment-3 in the Schaefer et al. (2010b) paper. As reported in Schaefer et 
al. (2010b), Experiment-1 was a ?high? flow rate experiment whereas Experiment-3 was a ?low? 
flow rate experiment. In this study, we will identify Experiment-3 and Experiment-1 as 
Experiment-A and Experiment-B, respectively.  We used Experiment-A dataset for model 
calibration and Experiment-B dataset for testing the calibrated model. 
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Similar to Schaefer et al. (2009a) study, the single fracture system was conceptualized as an 
equivalent, one-dimensional porous media system with a constant transport velocity.  Reductive 
dehalogenation of PCE into TCE, DCE, VC and ethene and the growth of mobile and immobile 
DHC were modeled using Monod kinetics (Schaefer et al., 2009b; Yu et al., 2005). The 
governing transport equations with appropriate kinetic biochemical reaction terms are 
summarized below: 
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where Ci (mM) is the aqueous concentration of the compound i (where i is either PCE, 
TCE, DCE, VC, ethene or chloride), V is the transport velocity (cm/hr), D is the hydrodynamic 
dispersion co-efficient (cm2/hr) Ii (mM)is the competition coefficient, qi (mmol L-1 (cell h) -1) is 
the DHC maximum utilization rate coefficient, Ki (mM) is the half velocity coefficient, XM 
(cells/L) is the mobile phase DHC concentration XIM (cells/L) is the immobile phase DHC 
concentration, X (cells/L) is the sum of the mobile and immobile DHC (X=XM+XIM),  Y 
(cell/mM) is the yield and ?i (h-1)  is the back-partitioning coefficient, and Kdet (h-1) is the bacteria 
cell detachment coefficient.  
The reactive transport model contains 7 mobile species: PCE, TCE, DCE, VC, ethene, 
chloride and mobile DHC. The only immobile species present in the system is the DHC bacterial 
population attached to the solid phase. Note that the immobile species equation does not have 
advection and dispersion terms. 
Equations (3.1) ? (3.5) describe biodegradation of PCE into its daughter products by both 
mobile and immobile DHC. Equation (3.1) describes the degradation of PCE to TCE; equation 
(3.2) describes formation of TCE from PCE and its subsequent degradation to DCE. Similarly, 
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equations (3.3) ? (3.5) describe the formation DCE, VC and Ethene, along with the formation of 
the daughter products VC and ethene, respectively. The equations (3.2) ? (3.5) also have a model 
coefficient (?), which was used to account for the expected loss of aqueous phase contaminant 
concentration due to back-partitioning of the daughter products into residual DNAPL; this back-
partitioning mechanism was described in Schaefer et al. (2010b) and Ramsburg et al (2010). 
Note the back-partitioning process was not included in equation (3.1) because PCE cannot back-
partition onto itself.  Equation (3.6) describes the accumulation process for chloride where one 
mole of chloride is formed for every mole of the daughter product. Equations (3.7) and (3.8) 
describe the bacterial growth along with the attachment and detachment kinetics for mobile and 
immobile bacteria cells (Clement et al., 1997; Peyton et al., 1995).  
In all the numerical simulations we used a one-dimensional finite difference grid of size 1 
cm (total of 30 nodes).  Other numerical parameters used are summarized in Table 3.1.  The 
above set of equations was solved using the operator-split strategy.  The fully-implicit finite 
difference approximation was used for solving the advection and dispersion terms, and a Runge-
Kutta procedure was used for solving the reaction terms on a node-by-node basis.  Further details 
of the numerical scheme used for solving the coupled multi-species reactive transport problem 
are available in the literature (Clement et al., 2004; Clement et al., 1996; Clement et al., 1997; 
Clement et al., 1998; Walter et al., 1994; Zheng and Wang, 1999). 
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Table 3.1: Summary of numerical model parameters used for Experiment A 
Length  29 cm 
Velocity  
 6.45 if t < 13 days  
1.46 if t > 13 days 
Dispersivity   5 cm 
Simulation time  2640 hrs 
Grid size (?x)  1 cm 
Time step (?t)  0.1 hr 
Immobile bacteria per node at t=0  1.00E+06 cells/L 
Detachment factor (Kdet) 6E-07 hr-1 
 
3.3 Results and discussion 
3.3.1 Testing the batch kinetic model against Schaefer et al (2009a) model predictions 
The biodegradation kinetic model was first tested to reproduce batch simulation results reported 
in Schaefer et al (2009b). The purpose of this exercise was to test the numerical code by 
reproducing published batch simulation results. In addition, this modeling step also tested 
whether a simplified version of the kinetic model presented in the earlier section can be used to 
reproduce literature results. The governing reaction kinetic equations used in this batch 
simulation are summarized in Section 2.4.4. Note that the equations shown in the appendix are a 
simplified version of the reaction model used in equations (3.2)-(3.5).  These simplifications 
were required since this batch study used TCE instead of PCE (Schaefer et al., 2009b).  The 
biodegradation parameters used in batch simulations, summarized in Table 3.2, were obtained 
from Schaefer et al (2009b). The results from this model comparison study are shown in Figure 
3.1.  The figure shows that the current model predictions were almost identical to those predicted 
using the Schaefer et al (2009b) model, indicating an excellent match.  
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Table 3.2: Bio-augmentation parameters regressed from batch experiments in Schaefer et al 
(2009a). 
Species K(mM) q (mmol L-1 (cell hr)-1) I (mM) Yield (Cells/mM) 
PCE* 0.42 1.70E-12 2.50E -01 4.4E+09 
TCE 0.0032 1.30E-12 1.00E+06 
DCE 0.002 7.00E-13  5.20E -03 
VC 0.014 1.40E-12 1.00E+06 
 
*Note: PCE model parameters were estimates provided by the research group identified in 
Schaefer et al (2009b). 
 
 
Figure 3.1. Batch model results: Comparison of proposel model results against the model results 
reported in Schaefer et al (2009b)  
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3.3.2 Calibration of the reactive transport model 
The successful recreation of the batch results reported in Schaefer et al (2009b) provided 
sufficient basis to build a simulation model for the bio-reactive transport experiment completed 
by Schaefer et al. (2010b).   Note both Schaefer et al (2009b) and Schaefer et al. (2010b) studies 
have used identical microorganisms for simulating biodegradation.  As discussed in the methods 
section, the low velocity experiment, Experiment-A, was used for the calibration effort.  
Experiment-A was the most comprehensive dataset since it included chloride ion concentrations. 
Chloride data was important information for verifying the mass-balance closure of calibrated 
model results.  
It was inferred from the experimental data that there was substantial variations in 
dissolved PCE concentrations in both experiments. Such variation is not uncommon for DNAPL 
dissolution studies in bedrock fractures systems (Dickson and Thomson, 2003).  For the purpose 
of modeling, we conceptualized that most of the residual DNAPL was trapped near the inlet and 
contributed to the dissolved aqueous PCE concentrations.  However, in this study, we did not 
explicitly model DNAPL dissolution processes; instead an equivalent input PCE concentration 
signal was estimated from the measured values of PCE and its daughter product concentrations.  
This function was used to define the average daily input PCE concentration levels at the inlet. To 
model the bioaugmentation step, it was assumed that the initial inoculation process equally 
distributed DHC among all the 30 nodes. The model was constrained to allow bacterial 
accumulation at a node to a maximum limiting value of 1.0E+11 cells/L; this is a common 
approach used for preventing unrealistic accumulation of cells within pore spaces.  For example, 
Zysset et al (1994) studies used a parameter ?max to describe the maximum capacity for the 
adhering bacteria.  The limiting parameter used in this study employs a similar methodology.    
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Two distinct values of DHC maximum utilization rate for DCE degradation, qDCE, were 
used to account for possible inhibitory effects due to presence of high concentrations of PCE 
(Amos et al., 2009; Yu and Semprini, 2004).  When the PCE concentration was less than 0.3mM, 
the value of qDCE was assume to be identical to the batch value.  Yu and Sempirini (2004) have 
indicated that the system might show possible inhibitory effects when the concentration of PCE 
was more than 0.3mM.  Therefore, under high PCE concentration conditions, the value of qDCE 
was allowed go below the batch-estimated value.  The lower rate was estimated as a part of the 
calibration process. 
During the calibration step, we used the Monod parameters from the batch experiments, 
shown in Table 3.2, as reference values and perturbed them by an order of magnitude and used a 
trial-and-error process to fit the observed experimental data.  In addition to adjusting the Monod 
parameters, we also fitted the back-partitioning coefficient.  Based on chloride mass balance 
results, Ramsburg et al. (2010) and Schaefer et al. (2010b)  have postulated that certain fraction 
of degraded daughter products can back-partition to the original DNAPL phases, thus the 
original DNAPL can serve as a sink for the daughter species.  It was observed from the 
experimental data that DCE was the major daughter product which indicated maximum back 
partitioning.  Hence, the back-partitioning coefficient for DCE was identified as the primary 
fitting parameter.   It is logical to assume that the value of back partitioning coefficient ? would 
depend on the solubility level (which is affinity of the species to remain in the aqueous phase). 
Based on this assumption, the values of ? for the remaining daughter products were simply 
scaled using their respective values of solubility.   The equation used for this scaling process 
was: 
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i D C ED C E  s o l u b i l i t y  i n  m M? = * ?S o l u b i l i t y  o f  d a u g h t e r  p r o d u c t  i 
(3.9) 
Appendix A2 provides various values ? and the detailed calculation procedure.  
Figure 3.2 shows the comparison of the final (fitted) model results against the 
Experiment-A data. The calibrated values of Monod parameters are summarized in Table 3.3.  It 
can be observed from the Figure 3.2 that the results from the model simulations closely follow 
the trends observed in the experimental results. A qualitative assessment of the model indicated 
that the model results showed good overall mass balance and predicted the observed chloride ion 
concentrations reasonably well.  Comparison of the values shown in Table 3.3 and Table 3.2 
indicate that the fitted model parameters for the transport experiment are within an order of 
magnitude of the batch parameters. The observed differences in model parameters estimated for 
the transport and batch model could be due to the heterogeneities present in the fractured system, 
and/or the elevated PCE and DCE concentrations observed in the fracture experiments compared 
to the batch experiments that were used to derive the Monod parameters. Several published 
studies have concluded that batch and column parameters could differ due to pore-scale 
variations and other heterogeneities (Brusseau, 2006; Jeong-Hun Park et al., 2001).  
Table 3.3: Calibrated Monod parameters for the Experiment A 
Species K(mM) q (mmol L-1 (cell hr)-1) I (mM) Yield (Cells/mM) 
PCE 0.42 0.87E-12 2.50E -01 1.85E+10 
TCE 0.0032 1.05E-12 1.00E+06 
DCE 0.002      1.85E-13, 7.00E-13 5.20E -03 
VC 0.014 1.05E-12 1.00E+06 
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Figure 3.2   Model calibration results.  Continuous lines represent the model results and the 
symbols represent Experimental-A data 
3.3.3 Testing the reactive transport model  
The calibrated model developed using the low flow rate data, Experiment-A, was used to 
simulate the high-flow experimental system, Experiment-B.  It should be noted that the all the 
Monod parameters used in the validation simulation were identical to those used estimated in the 
calibration step.  However, the validation step required scaling of two physical transport 
parameters?the back-partitioning coefficient (? for DCE) and the detachment factor (Kdet) to 
scale for the high velocity conditions.  The back portioning coefficient is likely a function of the 
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residence time (higher velocity would allow less time for daughter products to back-partition into 
the DNAPL). Also, the detachment process would depend on shear forces in the system (higher 
velocity would induce more shear, as observed in Schaefer et al. 2010b).   Therefore, we 
recalibrated these two values to reflect the new transport conditions. The modified values of ?DCE 
and kdet are 0.004 hr-1, and 0.0018 hr-1, respectively.  Other parameters for this experimental 
study are presented in Table 3.4. The simulation results along with the experimental data for all 
daughter products are summarized in see Figure 3.3.  A comparison of the measured PCE 
concentration data and the modeled PCE concentrations for Experiment-B is shown in Figure 
3.4. The parent and daughter product data were reported in separate figures since the 
concentrations of PCE were much higher than any of the daughter products.  The results from 
model-simulations closely follow the trends observed in the experimental data. 
Table 3.4: Summary of numerical model parameters used for Experiment B 
Length  29 cm 
Velocity  
6.45 cm hr-1 
 
Dispersivity )  5 cm 
Simulation time 5712 hr 
Grid size (?x)  1 cm 
Time step (?t)  0.1 hr 
Immobile bacteria per node at t=0 1.33E+07 cells/L 
Detachment factor (Kdet) 0.0018 hr-1 
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Figure 3.3 Model validation results.  Continuous lines represent the model results and the 
symbols represent Experimental-B data 
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Figure 3.4 Comparison of modeled and observed PCE concentration levels  
 
3.3.4 Sensitivity Analysis  
To further understand the sensitivity of the model to variations in the parameter values, we 
completed a sensitivity study.  During the calibration step we have identified that the yield 
coefficient and DHC maximum utilization rate coefficient (q) were the most sensitive model 
parameters.  We focused on these two model parameters and perturbed them within an order of 
magnitude and explored its effects on model predicted results for Experiment-A.  The results are 
summarized in the following sections. 
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3.3.4.1 Model response to variations in the yield coefficient 
The yield coefficient is an important parameter that governs the rate of growth of the bacteria. In 
this analysis, the yield coefficient was perturbed by the following two factors: 0.5 and 5.  Figures 
3.5 and 3.6 provide a summary of these simulation results.  It can be observed from these figures 
that the growth of the bacteria increased with increase in yield coefficient and thereby causing 
significant amount of biodegradation. It can also be observed from Figure 3.6 that when the yield 
coefficient is lower, the amount of bacterial growth was low and the biodegradation activity is 
delayed until 50 days instead of the expected 20 days. However, when the yield coefficient is 
higher, as shown in Figure 3.6, the bacterial growth is faster and the biodegradation occurs 
earlier.  
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Figure 3.5 Model response to an decrease in the yield value (by 0.5) for Experiment-A 
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Figure 3.6 Model response to an increase in the yield value (by 5) for Experiment-A 
3.3.4.2 Model response to variations in the DHC maximum utilization rate constant (q) 
The parameter q governs the rate at which the chlorinated ethenes are degraded into their 
daughter products. The DHC maximum utilization rate constant (q) was varied by the following 
two factors: 0.5 and 2. Figures 3.7 and 3.8 provide a summary of these simulation results. It can 
be observed from the figures that when the values of q were higher, the biodegradation of PCE 
and its daughter products was higher as shown in Figure 3.8. This increase in biodegradation 
activity was marked by a significant increase in the chloride ion concentrations. However, 
decrease in the q value, decreased the biodegradation rate. Therefore, the predicted aqueous 
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concentrations of PCE and its daughter products are considerably lower when compared to the 
experimental data.  
 
Figure 3.7 Model response a decrease in the q value (by 0.5) for Experiment-A 
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Figure 3.8 Model response to an increase in the q value (by 2) for Experiment-A 
3.4 Summary and Conclusions 
We present a mathematical modeling framework that can be used to model bioremediation of 
PCE contamination using Dehalococcoides in a single fracture system.  The model was 
calibrated to a previously published experimental dataset.  The performance of the calibrated 
model was tested by completing another simulation where the model was used to predict a 
transport scenario involving higher flow rate. The model was able to predict the high-flow rate 
dataset using the calibrated values of biological process parameter.  Only minimal changes had 
to be made to scale transport parameters such as back-partitioning coefficient and the detachment 
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rate, to reflect the high flow conditions.  Our sensitivity studies show that the yield coefficient 
and the DHC maximum utilization rate coefficient are highly sensitive parameters that need to be 
carefully calibrated.  However, the batch estimates of yield coefficient and maximum utilization 
rate coefficient provide good estimates to guide the calibration process, and final calibrated 
values were within an order of magnitude of the batch-kinetic values presented in Schaefer et al 
(2009b). The disparities in the process scales between the batch and fracture experiments are 
probably the cause of the variations in the parameter values. The sensitivity analysis studies 
show that some of these parameters are highly sensitive and can alter the biodegradation 
processes significantly. Both batch and flow datasets considered in this study were obtained from 
well-controlled experimental conditions that might not reflect actual field conditions.  Therefore, 
future experiments and simulations studies should include field observations before this 
modeling framework could be up scaled to predict field scenarios.  
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Chapter 4 
ASSESSMENT OF PARALLEL GENETIC ALGORITHMS FOR CALIBRATING ONE-
DIMENSIONAL MULTI-COMPONENT REACTIVE TRANSPORT MODELS 
4.1 Background 
Reactive transport models have been commonly used to simulate the fate and transport of 
contaminants in both laboratory and field-scale problems. The accuracy and reliability of these 
models would strongly depend on the values of model parameters, which are commonly 
estimated from controlled laboratory and/or field experiments. These experiments are often 
conducted by isolating certain reaction steps, to fully understand the complex bio-geochemical 
interactions occurring in the subsurface. The experimental data obtained from the laboratory 
experiments are then used to formulate more general bio-kinetic or geochemical models that can 
describe contaminant transformation processes. Once the process model is formulated, several  
unknown parameters in the overall model are normally estimated by a trial and error process to 
minimize the sum-squared errors between the experimental data and the model fitted data 
(Engesgaard and Kipp, 1992; Gramling et al., 2002; Schaefer et al., 2009b; Torlapati et al., 
2012). However, the trial-and-error process could become inefficient as the number of 
parameters in the model increases.  Therefore, some type of numerical inverse routines are 
employed (e.g., CXTFIT (Toride et al., 1995)) to automatically estimate the model parameters. 
However, several of these inverse methods might converge to a local minima and their overall 
performance would depend on the robustness of the search algorithm and the choice of the 
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initial parameters supplied by the user (Toride et al., 1995). Doherty and Hunt (2010) developed 
a more robust parameter estimator, PEST, for solving highly parameterized groundwater 
problems using regularized inversion schemes. Baginska et al. (2003) applied the Annualized 
Agricultural Nonpoint Source Model (AnnAGNPS) for the prediction of export of nitrogen and 
phosphorous in Currency Creek of the Sydney Region. In addition, they have also used PEST to 
determine the sensitivity and importance of the key parameters of the model.  Yabusaki et al. 
(2007) used PEST by coupling with BIOGEOCHEM to automate the calibration procedure in 
understanding the transport and bioreduction of Uranium. More recently, genetic algorithms 
have been employed in parameter estimation of column and batch reactive transport experiments 
(Majdalani et al., 2009; Massoudieh et al., 2008).  
Genetic Algorithms (GAs) are a branch of evolutionary algorithms which are primarily used to 
optimize nonlinear problems in various fields (Massoudieh et al., 2008). The development of 
GAs are based on the concept of natural selection and the rearrangement of genetic material 
(Holland, 1975). In the field of groundwater hydrology, the GAs have been used in the 
optimization of the pumping problem and for the estimation of system parameters in  
heterogeneous aquifers (El Harrouni et al., 1996).  Wagner (1992) applied GAs to estimate the 
transport parameters in kinetically controlled one- or two-site sorption models. Wang (1997) 
studied the usefulness of GAs for calibrating rainfall-runoff models with nine parameters and 
found that the GA was able to attain the global minimum for a hypothetical catchment. Wang 
and Zheng (1997) have coupled MODFLOW and MT3D with a GA routine to find the optimal 
pumping and injection rates for a remediation process. They applied the model to a three 
dimension field problem and demonstrated the superiority of their GA solution to an existing 
solution obtained using a trial and error approach. Mulligan and Brown (1998) used a GA to 
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optimize the water quality model parameters and found that GA was a useful calibration tool to 
estimate least squares parameters by accumulating useful information about the response surface. 
Reed et al. (2000) studied GAs to find a theoretical relationship for population size and number 
of generations required for convergence in groundwater well monitoring design applications. 
Giacobbo et al. (2002) investigated the feasibility of using GAs for estimating groundwater 
contaminant transport parameters for a three-layered one-dimensional saturated flow and 
transport problem.  Singh et al. (2005) presented an interactive GA to solve an inverse problem 
that estimated the conductivity of a heterogeneous hypothetical aquifer whose value was known 
a priori. B?ranger et al. (2005) coupled a GA with an analytical, one-dimensional, multi-
component, reactive transport model to estimate the first-order decay coefficients and enrichment 
factors. Singh et al. (2008) developed a novel interactive framework, called the ?Interactive 
Multi-Objective Genetic Algorithm? (IMOGA), to solve the groundwater inverse problem 
considering different sources of quantitative data and qualitative expert knowledge. Massoudieh 
et al. (2008) used GA to minimize the error between measured and modeled breakthrough data 
for reactive transport involving Cd and tributyltin, and estimated the equilibrium constants.  Lee 
and Heber (2010) combined GA with biofiltration models to estimate unknown model 
parameters, and the model was subsequently used to predict ethylene removal efficiencies. 
Madsen and Perry (2010) coupled a simple GA with MODFLOW to optimize the net 
groundwater flow into a river by optimizing the following four input parameters: recharge rate, 
river conductance, and water levels at two general head boundaries.  
While GAs are useful tools, they are also computationally intensive routines since they search 
through a large population to find the optimal solution. The search process could take a 
substantial amount of time, if it is not optimized. Parallel computing techniques can be used to 
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improve the efficiency of GAs by exploiting the concurrency of calculations performed in 
genetic algorithms.  
Depending on their architecture, the computers capable of running parallel codes can be 
classified as either distributed memory computers or shared memory computers (Cant?-Paz, 
1998). Most of the earlier work on parallel computing efforts focused on distributed memory 
computers, where several computers are connected using a fast network to reduce 
communication time between the processors to implement parallel genetic algorithms (Abramson 
et al., 1994; Baluja, 1992; Fogarty and Huang, 1991; Tanese, 1989). In the field of groundwater, 
McKinney and Lin (1994) used parallel genetic algorithms to solve three groundwater 
management problems involving maximization of pumping from an aquifer, minimization of 
cost for a water supply problem, and minimization of cost for an aquifer remediation problem. 
They observed that the genetic algorithms performed effectively to obtain globally optimal 
solutions and the speedup of the parallel genetic algorithm was almost linear. Tsai et al. (2009) 
developed a production well management model for the water resource management in semi-arid 
areas by integrating a large-scale pressurized water distribution system management model, 
EPANET, and a three-dimensional groundwater model, MODFLOW, under a unified 
optimization framework. They used a 64 processor cluster to run the computer code in a parallel 
mode.  
The speedup on distributed memory computers is hindered by the communication time between 
the processors because each processor has its own local memory, which is not available to the 
other processors; hence, the programmer has to manually sync the variables after each 
generation. However, in shared memory computers, all the processors have access to the same 
memory and the synchronization step can be avoided (Abramson and Abela, 1991). Sarma and 
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Adeli (2002) used parallel fuzzy genetic algorithms for optimizing steel structures using two 
different schemes. The authors also presented two bi-level parallel genetic algorithms that 
combine message passing interface (MPI) and OpenMP programming languages for 
optimization. They observed almost linear speedup for 16 processors. Fredrickson et al. (2003) 
evaluated the performance of parallel genetic algorithm (PGA) using OpenMP constructs, 
kernels and application benchmarks on large-scale SMP systems using a 72 node Sun Fire 15k 
SMP node. They reported the basic timings, scalability and run times for different parallel 
regions.  
GAs are robust algorithms that have been proven to be suitable for solving different types of 
parameter estimation problems using an appropriate encoding method. The process by which a 
population is coded into a suitable form that enables genetic recombination is called encoding. 
The early studies of GA in reactive transport problems are limited by their usage of binary 
encoding especially when the parameters of different magnitudes are present (El Harrouni et al., 
1996; Massoudieh et al., 2008). Also, most of these algorithms have been optimized to solve a 
single problem and their ability to run different kinds of reactive transport problems has not been 
explored. Moreover, none of these studies considered optimizing the implementation of parallel 
GA algorithms for multicore personal computers that use shared memory architecture. 
Shared memory, multi-core PCs have become common computational platforms in the recent 
years with the introduction of INTEL and other multicore processors in desktop and laptop 
computers.  These multicore systems are powerful processors that can be used to improve the 
efficiency of current GA algorithms by implementing them using a shared memory, parallel 
computing languages such as OpenMP FORTRAN. Currently, there are no studies available in 
the hydrogeology literature that uses an OpenMP platform to parallelize a GA algorithm for 
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estimating model parameters in multi-component reactive transport models.  The objective of 
this study is to develop a general parallel genetic algorithm (PGA) that is capable of estimating 
both transport and kinetic parameters in reactive transport models.  We compare the performance 
of the PGA using four different benchmark problems.  Speedup data for the PGA are also 
presented. 
4.2 Methodology ? General Steps in Genetic Algorithm 
The six key steps involved in a traditional GA are: encoding, population generation, selection, 
crossover, mutation, and termination (Holland, 1975). The GA starts with a randomly-generated 
initial set of solutions (also known as chromosomes) and this is called the initial population. The 
fitness of this population is calculated using the objective function. The fitness of each 
chromosome in the population is used to assess its ability to survive the current generation. For a 
minimization optimization problem, a lower value of fitness is desirable. Based on this fitness 
value, two parents are selected using a selection process. The selected parents undergo a 
crossover, where the genetic information is exchanged between the parents using a crossover 
function. Since, the genetic information is transferred to the subsequent generation of children it 
is always preferable to choose individuals with better fitness in the selection process. It is also 
possible that an offspring generated from the crossover of the parents could undergo a mutation 
operation governed by a mutation probability. The fitness of the offspring is calculated and is 
combined with the entire population. The individuals with poor fitness are removed from the 
population (death) at the end of the generation.  There are several strategies available for the 
discarding bad solutions, and for implementing the process of encoding, selection, crossover, and 
mutation.  The specific methods used in this study are discussed below.  
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4.3 Genetic Algorithm Implemented in this Study 
In this study, a real value encoding is used because each parameter value in our problem could 
have a different magnitude.  It has been observed that for engineering applications, which are 
sensitive to parameter variations, real value encoding method performs better than the binary 
encoding method (Gaffney et al., 2010; Michalewicz, 1996; Reed et al., 2000) . We generated an 
initial population of 32 solutions within a specified range given by the user. The parameter 
values were then transformed to log (of base 10) scale and a uniform random number (distributed 
between 0 and 1) was used to generate various random parameter values using the formula: 
log(low)+r*[log(high) - log(low)], where r is the random number.  The random parameter values 
were then raised to the power of 10 (to transform back to real number scale) and the value was 
used for populating the chromosome. A one-dimensional multi-component reactive transport 
model was used to simulate the concentrations.  The concentrations generated from these 
parameters were used to calculate the sum square of errors (SSE) between model predicted 
concentrations and concentrations obtained from experimental data. This calculated SSE value 
was assigned as the fitness parameter for that particular chromosome. The selection of parents 
was done using a tournament selection method (Koza, 1992). In this method, the algorithm 
randomly selected 5 possible candidates for the parents from the population and the individual 
with the best fitness is chosen as the parent. The process was repeated to find the second parent. 
Tournament selection allows  the selection of individuals with best fitness so that their genetic 
material can be passed on to the next generation (Koza, 1992). The selected parents underwent a 
crossover using a weighted average. The weights between the parents are chosen by randomly 
generating a real number between 1 and 0.5. If the chosen random number is r, then the new 
parameters are calculated by the formula: r* p a re n t1 + (1 -r)* p a re n t2(Cant?-Paz, 1998). This 
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weightage within the bounds of 1 and 0.5 allows us to keep the offspring within the boundaries 
specified at the beginning of the program. If the random number generated is close to 0.5, then 
we have an average of both the parents whereas if the random number generated was close to the 
higher bound (of 1), then the value of the offspring will be closed to the first parent. A total of 8 
children were generated by performing the crossover 8 times. The total number of children and 
the initial population were ensured to be multiples of 4 so that the total load distributed on each 
processor (we used 4 Pentium processors, details given below) during parallelization is equal. 
These children could undergo a mutation step if a randomly generated number is less the 
probability of mutation (Pm). The mutation operator used in this algorithm multiplies the 
parameter by 0.5 before ensuring that it does not cross the bounds set at the beginning of the 
program. The fitness of the offspring is calculated and is combined with the initial population. 
The population is then sorted according to its fitness and the best 32 solutions are preserved for 
the next generation. The best solution is always preserved in this fashion and hence this 
algorithm can be classified as an elitist approach. The process of selection, crossover, mutation 
and death were repeated for about 100 generations, and it was observed from our sensitivity 
analysis studies that the GA solution does not improve after about 100 generations.  
4.4 Parallelization of the Genetic Algorithm  
GA provides a natural and easy approach for parallelization within each generation since most of 
the loops within a generation contain variables that are not dependent on its value at the previous 
iteration. This allows for little to virtually no communication time between the processors for 
synchronization. The parallelization of the GA was achieved by using the shared memory 
programming procedure OpenMP available within the Intel FORTRAN90 compiler. The desktop 
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computer used for performing simulations used an Intel Xeon processor with two dual core 
processors, with a total of four processors available for parallelization.   
The parallelization was accomplished by placing OpenMP constructs at the beginning and the 
end of the loop that is desired to be run in parallel mode. The OpenMP constructs are also used 
to specify the number of processors to be used for parallelization and the variables that are 
private or public to each processor and the kind of schedule to be used to distribute the load 
among the processors. A guided schedule was used in this study.  
The loops that were parallelized include the fitness calculation of the initial population since this 
was the most time consuming part of the program. Also, the fitness calculations of the offspring 
were completed in a parallel mode. Figure 4.1 illustrates the computational steps involved in 
implementing the PGA algorithm for a four processor system.  Although the selection, crossover 
and mutation processes can be performed in parallel, these are not computationally intensive 
tasks; we found the performance gains to be marginal when these loops were optimized. 
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Figure 4.1 Illustration showing the flow of a parallel genetic algorithm 
4.5 Details of the Numerical Model used for Fitness Calculation  
To calculate the fitness of the chromosomes, a multi-component one-dimensional reactive 
transport model was used.  The simulation model is a Fortran version of a previously published 
Visual Basic software RT1D (Torlapati and Clement, 2012b).  The model solves a set of 
advection-dispersion-reaction equations that describe the transport of ?m? mobile components 
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and ?n? immobile components. The general form of the transport equations are (Torlapati and 
Clement, 2012b): 
2i i i
ii2C C CR = - V + D + ?t x x  where i = 1, 2,3? m
 (4.1) 
jjjSR=?t   where j = (m+1), (m+2), (m+3)+? (m+n)  (4.2) 
Where V is the velocity (m/day), D is the hydrodynamic dispersion coefficient (m2/day), Ci is the 
aqueous phase concentration (mg/L) of mobile component ?i,? where i = 1, 2...m; Sj is the solid 
phase concentration (mg/mg) of immobile component ?j,? where j = m+1, m+2... m+n; and ?i & 
?j are the reaction terms for the mobile and immobile components, respectively.  Note the 
immobile component equations do not have the advection dispersion terms but will have a 
reaction term that might be coupled to other reaction terms in mobile components.  
The equations (4.1) and (4.2) are numerically solved using the operator split strategy (Clement et 
al., 1998; Torlapati and Clement, 2012b).  An implicit finite difference scheme was used to solve 
the advection-dispersion part of the equation and the reaction part, which reduces to a set of 
ordinary differential equations, is solved using a Runge-Kutta-Felhberg with an adaptive time 
stepping (Chapra and Canale, 1998). The model concentrations obtained for each chromosome 
were used to calculate the absolute error using the given experimental dataset. This error was 
squared and a sum of all these errors was calculated and was designated as the fitness for the 
chromosome. The objective of the PGA was to minimize this sum square error. 
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4.6 Results and Discussion 
To test the performance of PGA, four test problems that have different levels of complexity were 
selected.  All of these problems either have published experimental data, or analytical solution 
that can be used to verify the results. After completing the parameter identification step, we 
performed speedup tests by varying the number of threads and quantified the advantages of 
adding additional processors. We also performed sensitivity analysis tests to quantify the 
sensitivity of the solution to changes in the initial population size and total number of 
generations.    
4.6.1 Benchmark Problem 1 ? Parameter estimation  in a rate-limited sorption problem 
In this benchmark problem, we solve a rate-limited sorption process where non-equilibrium 
conditions exist. Clement et al. (1998) and Torlapati and Clement (2012b) modeled these kinetic 
processes using the following governing equations.  
2
2 d
C C C SVD ? C -t x x K (4.3) 
d
dS ?? SC-dt ?K  (4.4) 
where C is the concentration in the component in the aqueous phase (mg/L), S is the 
concentration of the component in the solid phase (mg/mg), ? is the bulk density (mg/L), ? is the 
porosity, Kd is the linear sorption constant (L/mg), k is the first order decay constant (day-1), and 
? is the mass transfer coefficient (day-1).   
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The unknown parameters in this problem are: D, ? and Kd. The model was run in the 
forward simulation model using known parameter values, and the aqueous phase concentrations 
predicted after 50 days was used as the data. The pore velocity used in this problem was 0.53 
cm/day.  The concentration values were made available at every 2 cm over 30 cm long column.   
The temporal and spatial time steps used are 0.4 cm and 0.01 days respectively.  The lower and 
higher bounds for each unknown model parameters were perturbed by two orders of magnitude 
(one in each direction), as Table 4.1.  The parameters estimated by the PGA after 100 
generations are given in Table 4.1 along with their true values. The minimum value of fitness 
obtained at the end of PGA simulations was 2.5E-05. It can be seen from Table 4.1 that the 
parameter values estimated by the code are close to the original values. Comparison of the 
concentration profiles simulated using PGA-estimated parameter values and the ?true? parameter 
values are shown in Figure 4.2. It can be seen from the figure that PGA-estimated model 
predictions fit this synthetic dataset well.  Table 1 also shows that the parameter values estimated 
by PGA only have about 3 to 5% difference from the original estimates. 
Table 4.1: Comparison of the PGA estimated parameters with true solutions along with their 
bounds and percentage error for benchmark problem -1 
Parameter True Value Low High PGA Estimate Error % 
Longitudinal dispersion coefficient, D 
(cm2/day) 8.00E-02 1.00E-02 1.00E-01 7.80E-02 2.50% 
Mass transfer coefficient, ? 1.50E-02 1.00E-02 1.00E-01 1.43E-02 4.67% 
Linear sorption constant, Kd (L/mg) 1.84E-04 1.00E-04 1.00E-03 1.90E-04 3.26% 
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Figure 4.2 Comparison of results from PGA estimated parameters and the true parameters for 
benchmark problem ? 1 
4.6.2 Benchmark Problem 2 ? Parameter estimation in a sequential decay problem  
Quezada et al. (2004) presented analytical solutions for solving coupled multi-dimensional multi-
species transport equations involving first-order kinetic interactions. This is a four-component 
problem with four kinetic parameters. The governing transport equations are: 
21 1 1
1 1 12C C CR = - V + D - k Ct x x
 (4.5) 
22 2 2
2 c 2 / c 1 c 2 / c 1 1 1 2 2 c 2 / c 3 c 2 / c 3 3 32C C CR = - V + D + F Y k C - k C + F Y k Ct x x
 
(4.6) 
23 3 3
3 c 3 / c 1 c 3 / c 1 1 1 c 3 / c 2 c 3 / c 2 2 2 3 32C C CR = - V + D + F Y k C + F Y k C - k Ct x x
 
(4.7) 
24 4 4
4 c 4 / c 2 c 4 / c 2 2 2 c 4 / c 3 c 4 / c 3 3 3 4 42C C CR = - V + D + F Y k C + F Y k C - k Ct x x
 
(4.8) 
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where Ci is the aqueous concentration of the component i (i=1, 2, 3 or 4) (mg/L), ki is the 
first order degradation constants for the component i (day-1), Y is the yield coefficient between 
two components, F is the fraction of yield between two components. The unknown parameters in 
this benchmark problem are:  D, k1, k2, k3, and k4. The concentrations of all the components at an 
interval of 1 cm along the 30 cm long column predicted after 50 days of transport were made 
available for the fitness calculation. The pore velocity used in this problem was 0.4 cm/day. The 
time step and the grid size used for the simulations were 0.1 days and 0.1 cm respectively. The 
yield values were set to 1. The simulation was run for 100 generations and the minimum SSE 
observed was about 1.5E-2. The comparison of the PGA estimated parameters along with their 
low and high bounds used assumed in the simulation are given in Table 4.2.   The concentration 
profiles generated using PGA-estimated parameters and the ?true? parameters are shown in 
Figure 4.3. It can be observed from the figure that both solutions match well.  The error in the 
parameter values vary by 4 to 38%.   
Table 4.2 Comparison of the GA estimated parameters with true solutions along with their 
bounds for benchmark problem - 2 
Parameter True Value Low High PGA Estimate Error % 
Longitudinal dispersion coefficient, D 
(cm2/day) 8.00E-02 1.0E-03 1.0E-01 8.40E-02 5.00% 
Decay constant for Component 1, k1 (day-1) 7.50E-02 1.0E-03 1.0E-01 7.80E-02 4.00% 
Decay constant for Component 2, k2 (day-1) 5.00E-02 1.0E-03 1.0E-01 5.80E-02 16.00% 
Decay constant for Component 3, k3 (day-1) 2.00E-02 1.0E-03 1.0E-01 2.77E-02 38.50% 
Decay constant for Component 4, k4 (day-1) 4.50E-02 1.0E-03 1.0E-01 4.00E-02 11.11% 
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Figure 4.3 Comparison of results from PGA estimated parameters and the true parameters for 
benchmark problem ? 2 
4.6.3 Benchmark Problem ? 3: Parameter estimation for a TCE Biodegradation Model 
Schaefer et al. (2009b) conducted batch experiments to study the degradation of TCE in the 
presence of Dehalococcoides Sp. They used modified Monod kinetics to model the 
bioaugmentation process and the associated biochemical reactions. The kinetic equations are:   
TC E TC E TC E
TC E TC E TC E
d C q X C1=-d t R C + K (4.9) 
D CE D CE D CE T CE T CE
D CE T CE T CE T CET CE
D CE D CE
T CE
d C q X C q X C11=-
d t R R C + KCC + K 1 +
I
 (4.10)
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V C V C V C D C E D C E
V C D C ET C E D C E T C E
V C V C D C E D C E
T C E D C E T C E
d C q X C q X C11= - +
d t R RC C CC + K 1 + + C + K 1 +
I I I 
(4.11)
 
T CE T CE D CE D CE V C V C
T CE T CE T CE D CE V CT CE T CE D CE
D CE D CE V C V C
T CE T CE D CE
q C q C q Cd X 1 1 1= Y X + +
d t R C + K R RC C CC + K 1 + C + K 1 + +
I I I 
(4.12)
 
Where Ci (mM) and X (cells/L) are the concentration of ith component and biomass 
respectively; i can be either TCE, DCE and VC; qi is the maximum biomass utilization rate 
(mmol/L/(cell h)), Ki is the half velocity coefficient of the compound (mM), I is the competition 
coefficient (mM), Ri is a retardation term that accounts for the presence of air in the system 
(Schaefer et al., 2009b). 
The unknown model parameters are: qTCE, qDCE, qVC, KTCE, KDCE, KVC and IDCE. The 
batch simulation experiments were performed for a total of 12 days and the time step used was 
about 0.01 days. The initial concentration of TCE, ethene and biomass were 0.08 mM, 0.003 mM 
and 2.8E+10 cells/L respectively. The biomass yield coefficient used in this problem was 
4.4E+09. The concentrations of TCE, DCE, VC and ethene after every hour were provided for 
the calculation of the fitness of the PGA. The PGA was run for 100 generations and the PGA 
estimated model parameters are compared with the ?true values? and the corresponding relative 
errors are given in Table 4.3. The table also provides the low and upper bounds used in this PGA 
search.  The comparison of the concentration profiles predicted using the PGA-estimated 
parameters and the ?true? parameters are shown in Figure 4.4. The figure also shows the actual 
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experimental measurements.  It can be observed from the figure that the parameters estimated 
from the PGA are able to predict the experimental results reasonably well. 
Table 4.3: Comparison of the PGA estimated parameters with true solutions along with their 
bounds for benchmark problem - 3 
Parameter True Value Low High PGA Estimate Error % 
Biomass utilization rate for TCE, qTCE 
(mmol/L/cells h) 3.2E-03 1E-04 1E-02 5.47E-03 70.94% 
Biomass utilization rate for DCE, qDCE 
(mmol/L/cells h) 2.0E-03 1E-04 1E-02 6.12E-03 206.00% 
Biomass utilization rate for VC, qVC 
(mmol/L/cells h) 1.4E-02 1E-03 1E-01 7.10E-02 407.14% 
Half velocity constant for TCE, KTCE (mM) 1.3E-12 1E-13 1E-11 1.42E-12 9.23% 
Half velocity constant for DCE, KDCE (mM) 7.0E-13 1E-14 1E-12 7.46E-13 6.57% 
Half velocity constant for VC, KVC (mM) 1.4E-12 1E-13 1E-11 5.10E-12 264.29% 
Competition coefficient for DCE, IDCE (mM) 5.2E-03 1E-04 1E-02 4.20E-03 19.23% 
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Figure 4.4 Comparison of results from PGA estimated parameters and the true parameters for 
benchmark problem ? 3 
4.6.4 Benchmark Problem ? 4: Parameter estimation for a carbon tetrachloride 
bioremediation problem 
Phanikumar et al. (2002) conducted experiments to study the bioremediation of carbon 
tetrachloride (CT) contaminated column which was intermittently fed with nutrient such as 
acetate and nitrate. They developed a reactive transport model for the system and used a 
modified version of the RT3D code to simulate their experimental data. The model included a 
total of 4 mobile and 2 immobile components. The mobile components in the system were CT, 
acetate, nitrate and the mobile bacteria whereas the immobile components were the sorbed CT 
and immobile phase bacteria. The kinetic reaction equations used in the reactive transport model 
are: 
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'd C T C T M I M d C T C T? fK d C ??1 - k C ( X + X ) - 1 - f K C S? d t ?
 (4.13) 
a m a x a na M I M
a
dC ? M MR - ( X X )d t Y
 (4.14) 
m a x a n K Cnn M I M a n M I M
n n b
? M M bdCR ( X + X ) - ( 1 M ) ? M (X + X )d t Y Y
 (4.15) 
M m a x a n K C a a t M d e a I MdX ? M M b (1 M ) K X K (1 M )Xdt
 (4.16) 
CT d C T C TdS ? 1-f K C Sdt
 (4.17) 
IM m a x a n K C a d e a I M a t MdX ? M M b (1 M ) K (1 M ) X K Xdt
 (4.18) 
  
where f is the fraction of equilibrium sites, bKC is the microbial decay rate (day-1), Kat is 
the attachment coefficient (day-1), Kde is the detachment coefficient (day-1), k` is the CT reaction 
rate (day-1), ? is the nitrate reaction rate (day-1), ? is the kinetic desorption rate (day-1), ?max is the 
maximum specific growth rate (day-1), Ya, Yn and Ynb are the yield rates of acetate, nitrate and 
biomass respectively; CCT, Ca, Cn and SCT are the aqueous concentrations of carbon tetrachloride, 
acetate, nitrate and the sorbed concentration of carbon tetrachloride, respectively; XM and XIM 
are the concentrations of mobile and immobile bacteria, respectively. Also, Ma and Mn are the 
Monod terms for acetate and nitrate reactions, respectively, and given by the expressions: 
aa
sa a
CM KC and nn
sn n
CM KC  where Ksa and Ksn are the half saturation coefficients of 
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acetate and nitrate utilization reactions, respectively. Further details of the model and the 
experiment are given in Phanikumar et al. (2002) and Torlapati and Clement (2012b).  
The unknown parameters in this model are:  k`, ?, Kde, and bKC. The known parameters 
for this model are summarized in Table 4.4. The known concentrations values after 4 days of 
operation at each node point were supplied to the PGA to calculate the fitness. The PGA was run 
for 100 generations and the SSE after 100 generation was 666.  The PGA-estimated parameters 
are compared against the ?true? values in Table 4.5; the table also provided estimated error for 
each parameter value and the lower and higher bounds values.  The concentration profiles 
predicted by the PGA-estimated parameters and compared against the simulated data points in 
Figure 4.5.  It can be observed from the figure that the results compare well.   
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Table 4.4: Model parameters used for benchmark problem ? 4 
Parameter Value 
Pore Velocity (cm/day) 10 
Length (cm) 200 
Longitudinal dispersion coefficient (cm2/day) (D) 2 
?x (cm) 1 
?t (days) 0.001 
Porosity (?) 0.35 
Bulk density (?) (mg/L) 1.63E6 
Time (days) 4 
Fraction of equilibrium sites (f)  0.437 
Attachment coefficient (day-1) (Kat)  0.9 
Distribution coefficient (Kd) (L/mg) 3.9E-7 
Half saturation coefficient: (mg/L) 
Acetate (Ksa) 
Nitrate (Ksn) 
1.0 
12.0 
Kinetic desorption rate (day-1) (?) 0.36 
Maximum specific growth rate (day-1) (?max) 3.11 
Yield: 
Acetate (Ya) 
Nitrate (Yn) 
Biomass (Ynb) 
0.4 
0.25 
0.46 
Initial condition (ppm): 
Carbon tetrachloride (CCT) 
Acetate (Ca) 
Nitrate (Cn) 
Mobile bacteria (XM) 
Immobile bacteria (XIM) 
Sorbed CT (mg/mg) (SCT) 
0.130 
0 
42 
0 
0 
2.8E-8 
Boundary condition (ppm): 
Carbon tetrachloride (CCT) 
Acetate (Ca) 
Nitrate (Cn) 
Mobile bacteria (XM) 
Immobile bacteria (XIM) 
0.130 
0 
42 
0 
0 
Slug injection zone inoculation (ppm): 
Carbon tetrachloride (CCT) 
Acetate (Ca) 
Nitrate (Cn) 
Mobile bacteria (XM) 
Immobile bacteria (XIM) 
0.1 
1650 
42 
11.8 
0 
Note: Carbon tetrachloride is abbreviated as CT.  
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Table 4.5: Comparison of the PGA estimated parameters with true solutions along with their 
bounds for benchmark problem - 4 
Parameter True Value Low High PGA Estimate Error % 
CT reaction rate (day-1) (k`) 0.189 0.1 0.5 0.282 49.21% 
Nitrate utilization coefficient (day-1) (?) 5.73 1 10 5.89 2.79% 
Detachment coefficient (day-1) (Kde) 0.043 0.01 0.1 0.063 46.51% 
Microbial decay rate (day-1)(bKC) 0.221 0.1 1 0.219 0.90% 
Note: Carbon tetrachloride is abbreviated as CT. 
  
  
Figure 4.5 Comparison of results from PGA estimated parameters and the true parameters for 
benchmark problem ? 4 
4.6.5 Scalability of Parallel GA  
The computational performance of the PGA was tested on a computer with four processors.  All 
four benchmark problems were run using 1, 2, 3 and 4 processors and the total program run time 
113 
 
was calculated using the omp_wall_time() function. This internal clock time function was called 
at the beginning of the program and subsequently at the end of the program. The difference 
between these two times gave an estimate of total program run time. The speedup of the parallel 
program was calculated using the formula: 
s e q u e n t i a l t i m es p e e d u p = p a r a lle l t i m e (4.19) 
The sequential time in equation (4.19) was obtained by solving the problems using a 
single processor.   The performance of the PGA for different benchmark problems and its 
comparison against an idealistic linear speedup function are shown in Figure 4.6.   The details of 
simulation times are summarized in Table 4.6. It can be observed from the figure that the 
performance of the PGA for all the benchmark problems is close to the ideal linear speedup 
function, except for the third problem. This is because, the total simulation time taken for 
Problem-3 was extremely small and hence the calculation of fitness was not as time intensive 
compared to other benchmark problems. In a problem where the parallelized parts of the problem 
are not as computationally intensive, as expected, the time taken to perform the non-parallelized 
tasks become a limiting factor and thereby reduce the total efficiency of the parallel operations. 
Table 4.6: Simulation times for all the benchmark problems for different number of processors in 
seconds 
# Processors BP-1 BP-2 BP-3 BP-4 
1 885.00 132.00 7.00 3920.00 
2 446.00 66.00 3.92 1976.00 
3 339.73 50.00 3.12 1479.00 
4 249.63 39.00 2.71 1100.00 
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Figure 4.6 Speedup for all benchmark problems for different number of processors 
 4.6.6 Sensitivity to Initial Population and Generations 
The final quality of the solution that GA would find would depend on the size of the initial 
population generated by the GA and the number of generations. Ideally, a larger number of 
initial solutions would allow the GA to search a larger solution space, but this also increases the 
computational burden as the fitness has to be calculated for all the initial solutions.  On the other 
hand, having a smaller initial population would limit the solution space of the GA and this could 
cause the GA to be trapped in a local minimum.   To check the sensitivity of GA to the size of 
the initial population and the number of generations, we ran all four benchmark problems using 
four different initial population sizes, 8, 16, 32 and 64; in addition, we also increased the total 
number of generation to 300. The best solution for each generation was stored to compare the 
general convergence pattern for different initial population sizes. The results from the sensitivity 
analysis for all four benchmark problems are shown in Figure 4.7 (a)-(d). It can be observed 
from the results that the convergence rate was faster when the initial population size was 
115 
 
increased; however, increasing the number of generations did not affect the quality of the 
solution found by the algorithm. Also, in the case of simulations with fewer population sizes, the 
minimum value reached was away from global minimum value. It is necessary to find an optimal 
initial population size and this could vary based on the number of parameters being estimated. 
Increasing the population size might not always result in a better solution as it can be seen that an 
increase in population size from 32 to 64 did not improve in the solutions. For problems 
involving high levels of computational complexity, evaluation of another 32 candidates for 
fitness could increase the overall simulation time drastically without improving the solution.  In 
this study, we found a population size of 32 to be the optimal number in all our simulations.   
  
  
Figure 4.7 Fitness of the best solution for each generation by varying initial population for each 
benchmark problem  
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4.6.7 Sensitivity to the Bounds of the Unknown Parameters 
The rate of convergence and the quality of the final solution is also a function of level of 
uncertainty (characterized by bounds used to define the minimum and maximum values) 
associated with the unknown parameter.  To understand the sensitivity of GA to these bounds, 
we ran the test Problem 1 multiple times using different bounds.  This problem was selected 
because some parameters in this problem were highly sensitive, and even a minor change would 
cause considerable fluctuations in the concentration profiles.  We developed four different 
scenarios to test the sensitivity of GA to parameter bounds.  In the first scenario, the bounds were 
kept within an order of magnitude of the true parameter; in the second scenario, the lower bound 
was reduced by an order of magnitude; in the third scenario, the lower bound is kept the same as 
the first scenario, but the higher bound was increased by an order of magnitude, and in the fourth 
scenario both lower and higher bounds were increased by an order of magnitude. Table 4.7 
summarizes the lower and higher bounds used in all four the scenarios. The concentration 
profiles predicted under different scenarios are shown in Figure 4.8. It was observed from the 
figure that the quality of the solution deteriorated as the bounds for the unknown parameters 
were increased above an order of magnitude in either direction.   The results were far away from 
the original solution when both upper and lower bounds were increased by an order of 
magnitude.  This shows that for highly sensitive problems one would need reasonable guesses to 
get meaningful solutions.  For problems like this, GA should perhaps be viewed as a polishing 
algorithm that can refine the solution within a known domain, rather than a true search algorithm 
that can operate on totally unknown domain. 
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Table 4.7: High and low bounds for the four difference scenarios along with the GA estimated 
value 
 Parameter Lower bound Higher Bound GA Estimated Value 
Scenario-1 
D 1.00E-02 1.00E-01 8.17E-02 
? 1.00E-02 1.00E-01 2.25E-02 
Kd 1.00E-04 1.00E-03 1.37E-04 
Scenario-2 
D 1.00E-03 1.00E-01 3.85E-02 
? 1.00E-03 1.00E-01 4.44E-02 
Kd 1.00E-05 1.00E-03 8.53E-05 
Scenario-3 
D 1.00E-02 1.00E+00 2.08E-01 
? 1.00E-02 1.00E+00 4.04E-02 
Kd 1.00E-04 1.00E-02 1.00E-04 
Scenario-4 
D 1.00E-03 1.00E+00 8.79E-01 
? 1.00E-03 1.00E+00 6.93E-01 
Kd 1.00E-05 1.00E-02 6.10E-05 
 
 
Figure 4.8 Comparison of different scenarios of the high and low bounds with the true solution 
for the benchmark problem ? 1 
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The GA used in this study works by systematically searching through a given solution space to 
find the best solution. Therefore, it is important that the initial population contains good quality 
solutions for the GA to attain the global optimum.  The quality of the initial population is largely 
dependent on the bounds set by the user at the beginning of the simulation. Most reactive 
transport problems contain a few highly sensitive parameters and small changes in these 
parameter values would significantly alter the solution. Therefore, depending on the type of 
problem, the user might have to restrict the GA within a narrow boundary, if the solution had 
convergence problems. Future studies explore options to modify the algorithm to automatically 
identify a set of sensitive parameters and automatically narrow the bounds.   
4.7 Conclusions 
In this study, we have tested the performance of a parallel version of GA by solving four 
benchmark problems that simulated both batch and reactive-transport scenarios.  The PGA 
algorithm was able to successfully estimate the model parameters for different types of reaction 
models. In all the cases, the PGA estimated parameters were close to the original parameters; 
furthermore, the simulation results from these parameters were able to match the original 
experimental or analytical/numerical data well. The PGA routines were general enough to solve 
all four benchmark problems without the need for any problem-specific modifications to the 
routines.  One of the limitations, however, is that the user must provide a good initial guess 
(which should be known within an order of magnitude) for all the model parameters to obtain 
good quality, convergent final results.  In most real cases, the order of magnitude estimates for 
parameter values can be obtained from literature data and PGA can be used to refine these 
estimates.  The user should, however, be careful not to over-constrain the problem and ensure 
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that the upper and lower parameter bounds are adequately large to generate sufficient number of 
solutions to avoid convergence to a local optimum. 
The PGA was optimized to run in parallel mode using OpenMP framework available within Intel 
FORTRAN v9.0 compiler on a shared memory system. The speedup was quantified for four 
benchmark problems and the results indicate close to linear speedup for three benchmark 
problems. The fourth benchmark (designated as Problem 3) was a much simpler problem that 
required very little computational effort and hence the parallel computing steps did not reduce 
the overall computational time.  These results show that the use of PGA was more appropriate 
for solving computationally intensive reactive transport problems.  The PGA used in this study 
was successfully demonstrated to run on a standard multi-core desktop Pentium PC platform.  
The overall computation gain obtained using this hardware was significant.  Since most modern 
desktop PCs are now equipped with multi-core processors, the methods used in this study can be 
easily adapted to take advantage of these platforms.  The proposed optimization framework, 
which was used for estimating unknown kinetic and transport parameters in our multi-component 
reactive transport problems, is a generic procedure that can be extended to solve a variety of 
environmental problems. 
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Chapter 5 
SUMMARY AND CONCLUSIONS 
5.1 Summary and Conclusion 
The overall goal of this dissertation was to develop a comprehensive set of tools that can be used 
to simulate the fate and transport of reactive contaminants in one-dimensional groundwater 
systems, as well as estimate the model parameters relevant to these systems by solving the 
inverse problem. A comprehensive one-dimensional model, RT1D, was developed and the 
capabilities of the tool were demonstrated by simulating a variety of kinetic and geochemistry 
problems. The mathematical model was then used to simulate a bioaugmentation experiment 
completed to remediate PCE-DNAPL in a single fracture system. We developed a mathematical 
framework to simulate the bioaugmentation of PCE-DNAPL in single fracture system. The 
mathematical framework describes multi-species bioreactive transport processes that include 
bacterial growth and detachment dynamics, biodegradation of chlorinated species, competitive 
inhibition of various reactive species, and the loss of daughter products due to back-partitioning 
effects. The kinetic Monod parameters evaluated from batch experiments were scaled to estimate 
the parameters for the fracture system using a trial and error method. We were able to verify and 
validate these parameters by simulating two different experimental datasets conducted using high 
and low flow velocities. The model was able to predict the data well. During the calibration 
process, we realized the limitations of trial-and-error methods and the need for a flexible 
parameter identification tool for assisting in the calibration process.  Therefore, in the final phase
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of this study, we explored the use of parallel genetic algorithms (PGA) for automatic parameter 
estimation in reactive transport models. 
We developed a PGA to estimate the kinetic parameters in a reactive transport model for 
a given experimental dataset. We demonstrated the flexibility and usefulness of the PGA code by 
solving four different benchmark problems that have published model results or analytical 
solutions. The PGA was able to estimate the parameters that were close to the true parameters. In 
some cases, the percentage error between the estimated parameters and the true parameters were 
high (over 400% in the case of benchmark problem - 3). It should be noted that the goal of the 
PGA was to minimize the sum square of errors between the given experimental data and the 
simulated concentrations from the PGA estimated parameters. The PGA was able to accomplish 
this goal as the predicted concentrations from the PGA estimated parameters and the true 
parameters are very close; however, in some cases, the error percentages are high. This suggests 
that the underlying parameter estimation problem is non-unique. As the number of unknown 
parameters increases, the non-uniqueness of the problem could become a major issue. In such 
cases, the PGA estimated parameters have to be validated using a different experimental dataset 
to ensure that the PGA estimated parameters are unique to that dataset. It was also observed that 
the GAs are computationally intensive search algorithms; however, we made it computationally 
efficient by running the GA in a parallel mode using the shared memory parallel computing 
platform and the OpenMP FORTRAN complier.  The efficiency of the parallel code showed 
close to linear speedup for a desktop computer with 4 processors.  
5.2 Recommendations for future work 
The modeling tool developed as a part of the first objective is an advanced numerical tool 
equipped with a variety of solvers. Further improvements can be made to the tool by either 
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adding better solvers or scaling it for multi-dimensional framework. In order to improve the 
solvers, accurate advection solvers that are being developed in the fluid dynamics literature can 
be incorporated and the ODE solver could also be upgraded to provide the user additional 
options for solving stiff kinetic problems. The EXCEL-VB modeling tool can also be further 
extended for solving multi-dimensional problems.   The necessary matrix and ODE solvers can 
be written in EXCEL-VB and could be integrated within a multi-dimensional modeling 
framework. However, the user-friendliness of the EXCEL-VB platform would always be 
undermined by the lack of parallel processing capabilities. Also, the overall speed of EXCEL-
VB could be slightly slower compared than other computer languages such as FORTRAN and C. 
Therefore, careful trade-off assessments should be made before developing multi-dimensional 
tools within the EXCEL framework. 
 The mathematical modeling framework developed as a part of the second objective for 
the bioaugmentation of PCE-DNAPL would be more robust if a dissolution model for DNAPL 
could be included. The dissolution of DNAPL in fractures is fraught with statistical variations 
and a dissolution model capable of accounting for these stochastic variations would be a 
significant addition to the existing mathematical framework.  
The PGA developed as a part of the third objective is a generic genetic algorithm. 
Although, this algorithm is capable of estimating variety of parameters without modifying the 
algorithm, it is dependent on the quality of initial guesses to provide a good solution space for its 
convergence. Several strategies can be employed to improve the algorithm to overcome the 
limitations caused by bad initial guess values. A preliminary analysis could be performed in the 
algorithm to identify the sensitive parameters and their sensitivity in a particular range and the 
GA could limit the variation of these parameters to this specific range. Another strategy would 
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be to use a multi-objective genetic algorithm (MOGA) by using the niche Pareto curve to find 
the ideal solution space (Singh et al., 2008). In this strategy, the MOGA can identify the ideal 
solution space by optimizing the parameters for each component and this solution space can be 
used to identify the global minimum for that problem.  Genetic algorithms are a vastly improving 
modern field and there are several ways to apply some of these modified algorithms to improve 
the parameter estimation schemes.  
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APPENDIX-A1 
RT1D PROGRAM DETAILS 
A1.1 Understanding the spreadsheet 
In this section, we will briefly discuss the different sections of the spreadsheet and illustrate their 
use to set up various problems. As explained in the earlier section, RT1D has four different 
simulation options. The parameters for the transport module can be set in Section-1 as shown in 
Figure A1.1. These parameters are used by the model when a simulation option involving 
transport module is selection (2 & 4). The left side of Section-2 is dedicated for kinetic type 
problem whereas the right side is dedicated for the geochemistry equilibrium type problem. 
Depending on the type of problem, only one of the sections is used. The program automatically 
sets the unused type of problem to ?N/A?. The Section-3 in Figure A1.1 is a ?Generate Input 
Template? button that will automatically generate a spreadsheet input table depending on the 
simulation option and the reaction-type parameters set in the Section-2. It can be observed from 
this figure that the input for kinetic-type reaction has been set to ?N/A? by the program after 
pressing the button in Section-3.  An example for a kinetic-type input sheet is shown in Figure 
A1.2 and a geochemistry-type input sheet is shown in Figure A1.3 respectively.  
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Figure A1.1. Spreadsheet layout for RT1D parameters to generate reaction-specific input 
template 
In the following section, we will briefly discuss the various steps involved in running a 
simulation using RT1D. The parameters and the required short codes for each module and 
options is made available in a textbox in the spreadsheet for the convenience of the user.  
Step 1: Transport module - To perform simulations that involve the use of a transport module, 
the advection-dispersion parameters along with the length of the column need to be input in their 
respectively columns in Section-1.  The total simulation time and the amount of time for which 
the concentration pulse has been supplied should also be provided by the user. For a continuous 
pulse, the pulse time should be equal to the total simulation time. The user should also provide 
the type of advection-dispersion solver to be used for the transport module. The simulation 
option (SO) describes the different types of problems that RT1D can solve. The options are: 
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batch kinetics (1), kinetic reactive transport (2), geochemistry (3), and geochemistry coupled 
with transport (4) 
Step 2: Simulation option parameters ? Depending on the simulation option chosen in the 
Section-1, the kinetic or the geochemistry parameters should be input in Section-2. For a kinetic-
type problem, the user should input number of mobile and immobile components, the reaction 
reaction package number and type of ODE solver module used to solve this reaction package. 
The user can also set the total number of user-defined reaction parameters that will be used with 
the reaction package.  
For a geochemistry problem, the user should input the number of components, species, 
components whose concentrations are fixed (example: fixed pH), number of aqueous component 
concentrations that need to be tracked, number of sorbed concentrations that are required for 
correcting the aqueous concentrations during transport and the type of surface complexation 
model.  
Step 3: Generate the input template ? The ?Generate Input Template? button shown in 
Section-3 of Figure A1.1 will generate a table to enter the parameters specific to the kind of 
simulation option selected by the user. Example input template for a kinetic-type and 
geochemistry equilibrium-type problem are shown in Figures A1.2 and A1.3 respectively. The 
Section-4 shown in these figures changes depending on the parameters set in Section-2 of the 
spreadsheet. 
For the simulation options 1 and 2 (kinetic), the button generates a template to input 
retardation factor, initial and boundary conditions based on the number of mobile and immobile 
species entered in Section-2. The input template also provides an area for the user to input 
reaction parameters specific to that reaction package.  
142 
 
For the simulation options 3 and 4 (geochemistry), the button (3) will generate an input layout 
similar to Figure A1.3 to enter the tableau, surface complexation parameters, initial and 
boundary conditions for the aqueous component concentrations, initial condition for the sorbed 
concentrations, the composition of the sorbed concentrations and the surface complexation 
parameters.  
 
Figure A1.2. Example input template for a kinetic-type reactive transport 
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Figure A1.3. Example input template for a geochemistry equilibrium coupled with transport 
Step 4: Solve ? Prior to running a simulation, the user should ensure that the following list of 
things is completed 
a) Kinetic problem - Simulation options (1 & 2) 
i. Pick an existing reaction package from the several built-in packages using the 
short code or go to step (b) 
ii. Program your own kinetic reaction package by opening the code editor. 
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iii. Input the reaction parameters as necessary.  
iv. Click the solve button shown in Section-5 to perform the simulation 
b) Geochemistry equilibrium problem ? Simulation options (3 & 4) 
i. Input the total component concentrations at the boundary and the initial 
concentrations at the nodes, if any.   
ii. Input the guess concentrations, this is used by the solver for the starting 
solution to converge to the correct solution. A good starting point would be 
the total concentration. Please do not input ?0? for the guess values as the 
logarithm is calculated for these guess concentrations as a part of the solution 
process. 
iii. Input the tableau and the surface complexation parameters, if any. 
iv. Input the initial sorbed concentration present in the column and the species 
that combine to form the sorbed concentration. This sorbed concentration is 
used to calculate the aqueous species concentrations at each time step. 
v. Click the solve button shown in Section-5 to perform the simulation 
Step 5: Viewing the solutions: The results are presented in Sheets 2 & 3 of the model 
spreadsheet. Sheet 2 provides the spatial variation of the component concentrations after the 
completion of the simulation time. Sheet 3 provides the breakthrough component concentrations 
at the outlet after each time step. By default, the breakthrough component concentrations are 
printed at the last node (end of the column). The program can be modified to print the 
breakthrough component concentrations at any node in the column.  
WARNING!! - The spreadsheet erases the data below the buttons (after cells A27) when either 
button 3 or 6 are pressed. The output data in Sheets 2 & 3 is cleared every time the button 5 is 
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pressed. The user is advised to use a different a spreadsheet for post-processing of the results and 
other intermediate calculations. 
A1.2 Input spreadsheet label details 
A1.2.1 Transport module 
i. Length (L) ? Length of the column for the transport module 
ii. Total time (T) ? Total simulation time  
iii. Pulse time (T) ? Total time for which the concentration is pumped through the 
column during the experiment at the boundary. This is less than or equal to the 
Total time set in (ii).  
iv. delx (L) ? Grid size. This is used to calculate the total number of nodes using the 
formula (length/delx)+1. 
v. delt (T) ? Time step. The total number of iterations is calculated using the formula 
(total time/delt).  
vi. Velocity (LT-1) ? This is the pore velocity of the liquid flowing through the 
column. This is calculated from the flowrate (Q) as follows (Q/cross-sectional 
area)/porosity. Please make sure that units are same as the length/total time 
vii. Dispersion coefficient (LT-2) ? This is the hydrodynamic dispersion coefficient 
calculated by multiplying the value of dispersivity with the velocity. Please 
provide the hydrodynamic dispersion coefficient value and not the dispersivity 
value. The code does not multiply with the velocity. 
viii. Adv-Disp type ? This takes a short code for the type of Advection-Dispersion 
solver. The choices are 0, 1, and 2 for explicit advection method, fully implicit 
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advection-dispersion or TVD advection respectively. For choices 0 and 2, 
dispersion is solved by fully implicit dispersion module.  
ix. Simulation option ? Type of problem 
  1 - Batch Kinetics 
  2 - Reactive Transport 
  3 - Batch Geochemistry 
  4 - Geochemistry coupled with Transport 
A1.2.2 Kinetic reaction module 
i. # Mobile components ? This is the number of aqueous components inside the system. 
The mobile components will have an advection/dispersion and reaction term. There 
should be at least 1 mobile species for the program to work. 
ii. # Immobile components ? This is the number of solid phase components in the system 
that do not undergo advection-dispersion. They only undergo reaction. The immobile 
components will be placed at the bottom after all the mobile components. In the reaction 
package, the immobile species number will start after the mobile species. That is, if there 
are 6 mobile species and 2 immobile species, we will count the immobile species as 7 & 
8. Please look at the example problem for a detailed explanation. 
iii. Reaction package # ? This is a short code for the type of reaction kinetics. The different 
kinds of reaction kinetics that have been pre-programmed into the RT1D model. We are 
adding more packages as we continue developing the model. The user can use their 
reaction kinetics by picking the option 10.  
1 ? First order sequential degradation 
2 ? Four-component coupled sequential degradation 
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3 ? Four-component decay chain (Bauer et al., 2001) 
4 ? Modified Monod kinetics of TCE bioaugmentation 
5 ? Rate-limited sorption (Benchmark problem ? 1 Torlapati et al., 2012) 
6 ? Denitrification (Benchmark problem ? 2 Torlapati et al., 2012) 
7 ? Biodegradation of Carbon Tetrachloride (Benchmark problem ? 3 Torlapati et 
al., 2012) 
8 ? Open 
9 ? Open 
10 ? User-defined reaction package 
iv. ODE Solver type ? Short code for the type of reaction solver 
0 ? Adaptive Runge-Kutta-Fehlberg solver 
                               1 ? Fourth order Runge-Kutta solver 
v. # Reaction parameters ? Set the number of user-defined reaction terms needed 
A1.2.3 Geochemistry equilibrium module 
These variables come into the picture only when you?re using the geochemistry module of the 
code. This is when you enter either 3 or 4 short codes for the reaction type 
i. # Components ? Number of components 
ii. # Species ? Number of species 
iii. # Fixed component concentrations ? set the number of components whose 
concentrations are fixed (Example: fixed pH) 
iv. # Aqueous components ? number of aqueous components that we are tracking 
v. # Sorbed concentrations ? the number of solid phase concentrations that are necessary 
for correcting the aqueous phase component concentrations 
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vi. SCM TYPE ? Type of surface complexation method.  
0 ? No surface complexation 
1 ? Constant capacitance 
2 ? Diffuse layer 
3 ? Stern Layer 
4 ? Triple Layer 
5 ? Generalized Two Layer Modem (Dzombak & Morel, 1990) 
A1.2.4 Kinetic reaction parameters  
These labels are generated in the Section-4 of Figure 3 when either simulation option 1 or 2 are 
chosen. The spreadsheet displays four different columns requiring the input for the following 
parameters: 
i. Component name: The input template automatically populates it with a default 
component name. This can be changed to a more appropriate name by the user. The 
program reads this name and uses for output in Sheets 2 and 3. 
ii. R (Retardation factor): In case of linear sorption, we have a retardation factor. This 
retardation factor is given by d
?K1
where ? is bulk density of the soil (mg/L), Kd is 
the linear sorption constant (L/mg) and ? is the porosity. This is equal to 1 when there is 
no sorption. Cannot be less than 1.  
iii. Initial: This is the initial concentration of the species in the column. It is possible that 
there is a residual component concentration present in the column before the simulation 
time has begun. This option sets a constant initial concentration, as specified in the 
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spreadsheet, across the all the nodes in the column. It is possible to set a variable initial 
concentration by modifying the setinit() subroutine in the code. 
iv. Boundary: This is the inlet concentration of the species at time = 0. This boundary 
concentration will be supplied to the column until the end of the pulse time.  
v. Reaction terms: Generates a table for entering the reaction terms and labels based on the 
total reaction terms. 
A1.2.5 Geochemistry equilibrium parameters (without transport) 
The input is different geochemistry package with advection and without advection. The input 
template also changes based on the kind of surface complexation reaction chosen in the 
geochemistry input sheet. 
i. Mobile species: This presents with 4 columns of different parameters for the mobile 
species.  
a. Index # is the serial number of the component name. This is automatically 
populated and should not be changed 
b. Comp. Name: A default component name is generated automatically. It is advised 
that this component name be changed to something more suitable. The 
components with fixed concentration are input after all the variable components 
have been entered into the spreadsheet cells. 
c. Total concentration: If the total concentration of the component is known, please 
enter the value here.  
d. Guess concentration: If the values are unknown, please enter a guess value so the 
program has a starting value for the iteration process. The iterative process 
converges faster if suitable starting concentrations are chosen. A good guess for 
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the guess concentration is the initial concentration itself unless it is zero. Since the 
logarithm of the guess concentrations are calculated during the solution 
procedure, please do not use 0?s as guess concentrations. If the solution does not 
converge, try a different guess value or check the problem inputs. 
ii. Tableau: This is the tableau where you fill in the stoichiometric matrix. Make sure the 
components are in the same order as the Total concentrations in the column. Also enter 
the Log K values in the end for each species for the mass action matrix. 
iii. Additional parameters are required based on the surface complexation model chosen. 
a. LSIG0: Index for PSI0 in the component list [L0 in Westall (1979)] 
b. LSIG1: Index for PSI1 in the component list [L1 in Westall (1979)] 
c. LSIG2: Index for PSI2 in the component list [L2 in Westall (1979)] 
d. LSIG3: Index for SOH in the component list [L3 in Westall (1979)] 
e. SSD: Surface site density (sites/m2) [C1 in Westall (1979)] 
f. SURFA: Specific surface area (m2/g) [C2 in Westall (1979)] 
g. CONCS: Concentration of sorbing solid (g/L) [C3 in Westall (1979)] 
h. XMU: Ionic strength (moles/L) [C4 in Westall (1979)] 
i. CAP1: Inner capacitance (F/m2) [C5 in Westall (1979)] 
j. CAP2: Outer Capacitance (F/m2) [C6 in Westall (1979)] 
iv. Sorbed Species ID: When generating isotherms, the program requires Species index 
numbers of the sorbed species in the tableau. The number of sorbed species displayed 
here is based on the ?Sorbed concentrations? set before pressing the ?Generate Input 
Template? button. Please input all the ID?s of the sorbed species here. This is used to 
calculate the amount of total sorbed species in moles/L. The program reads the 
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concentrations of all the sorbed species entered here and displays the total sum of their 
concentrations as total sorbed concentration. In case of a speciation problem where the 
sorbed concentrations are not required, this should be left blank.  
v. Component # of the aqueous species: This is only required when generating isotherms. 
Enter the component number of the aqueous species. The aqueous concentration of the 
component is calculated at the end of the simulation by subtracting the sorbed 
concentration from the total concentration of the component in moles/L.  
A1.2.6 Geochemistry equilibrium parameters (with transport) 
The input template is similar to the above except we have a few additional parameters. This 
section discusses about the additional parameters to avoid repetition. 
i. Boundary: The total concentrations of all the components at the inlet have to be entered 
here. The initial guess value for the concentrations is also entered here.  
ii. Initial: The total residual concentration of the existing in the column before the beginning 
of the simulation.  
iii. The tableau information is similar to the batch geochemistry problem 
iv. Sorbed phase concentrations: The initial concentration of the sorbed species is input in 
the cells. The number of sorbed concentrations is dependent on the input parameter set in 
Section-2. The user needs to enter the sorbed species index and the initial concentration 
for the sorbed phase.  
v. Sorbed phase species composition: In this section, we define the composition of sorbed 
phase concentrations. We have to provide the index of the sorbed phase concentration, 
and the number of species it is composed of and the species index # of all the species in 
the same row. 
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APPENDIX-A2 
CALCULATION OF BACK-PARTITIONING COEFFICIENT 
Solubility of TCE = 1100 mg/L or 8.37 mM (Molecular weight = 131 g/mol) (Information, May 
18, 2011) 
Solubility of cis-DCE = 3500 mg/L or 36 mM (Molecular weight = 96.95 g/mol) (Cleanup-
Information, April 15, 2011) 
Solubility of VC = 2763 mg/L or 44.20 mM (Molecular weight = 62.5 g/mol) (ATSDR, March 
3, 2011) 
Solubility of Ethene = 131 mg/L or 4.67 mM (Molecular weight = 28.05 g/mol) (Inchem, 2011) 
Regressed value of DCE back-partitioning coefficient for Experiment-A = 0.04 hr-1 
 
 
 
Regressed value of DCE back-partitioning coefficient for Experiment-B = 0.004 hr-1 
Similar calculations can be performed and the back-partitioning coefficients for the other 
daughter products of Experiment-B could be determined.  
136 * 0 .0 4 0 .1 7  8 .3 7T C E hr
136 * 0 .0 4 0 .0 3  44VC hr
136 * 0 .0 4 0 .3  4 .6 7E th hr

