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Abstract
The amount of unstructured data, also known as Big Data in Internet is growing every
day. Because the Big data is unstructured, a large-scale distributed batch processing in-
frastructure like Hadoop is used instead of traditional databases. Hadoop is an open source
framework, which uses MapReduce programming model to process large data set.
Hadoop?s true power lies in while working in a cluster of machines in data centers.
Hadoop?s master-slave architecture enables master node to control the slave nodes to store
and process the data. When a client application submits a job to Hadoop, the scheduler in
master node schedules tasks on every available slave to process the job in parallel fashion.
Many existing Hadoop schedulers do not consider the nature of the job, workload, power and
temperature distribution in the data center, which is very critical and important to improve
life of devices and cut down on cooling costs, which is about 25% of total investment in data
centers.
Based on thorough investigations of Hadoop?s existing schedulers, we propose a couple of
new thermal aware schedulers that schedules tasks to balance the outlet temperature across
all nodes and reduce AC costs in data center. First is a dynamic scheduler, which schedules
a job based on the CPU and disk?s temperature and utilization feedback given by all slave
nodes at run-time. Second is a static scheduler, which assigns tasks to slaves based on CPU
and disk?s temperature and stored job information. Both these schedulers are implemented
on top of Hadoop?s FIFO scheduler. We test our schedulers and FIFO scheduler by running
a set of standard Hadoop benchmark applications like WordCount, DistributedGrep, PI at
di erent temperature, utilization thresholds and cluster sizes. The experimental results show
that our schedulers achieve average outlet temperature saving of  2 C over the default FIFO
scheduler that saves about 15% of cooling cost with little performance overhead.
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Chapter 1
Introduction
Cloud computing often referred to as simply the cloud, is leading emerging utility com-
puting, which provides the basic level of computing service that is considered essential to
meet the everyday needs of the general community. Gartner Inc. have predicted that at
year-end 2016, more than 50% of Global 1000 companies will have stored customer-sensitive
data in the public cloud [12]. IDC have predicted that 80% of new commercial enterprise
apps will be deployed on cloud platforms [11]. Without any doubts we can say that term
cloud computing phrase has become "du jour" of the computing world.
Although the cloud computing has existed now for over a decade, it is still a new
business model in computing world and lacks proper de nition. IBM in [9], de nes Cloud
computing as the delivery of on-demand computing resources, which includes everything
from applications to data centers, over the Internet and on a pay-for-use basis. Gartner in
[4], de nes Cloud computing as a style of computing where scalable and elastic IT-related
capabilities are provided as services to external customers using Internet technologies. NIST
(National Institute of Standards and Technology) in [15], de nes Cloud Computing as a
model for enabling ubiquitous, convenient, on-demand network access to a shared pool of
con gurable computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management e ort or service
provider?s interaction.
Cloud computing has been very popular with small and medium business where Cloud
computing gives access to the software, technologies and other services for low cost. Cloud
computing can save money when the service provider provides fast machines, installs soft-
ware, maintains and runs it for client without having client to invest individually on each
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of them. Clients also save on investments like the IT support, hardware space, maintenance
and cost of infrastructure to support the hardware. The high availability trait of cloud com-
puting allows clients to access the software applications from anywhere using a computer
system that is connected to the internet. On the performance side, the clients get access to
the powerful distributed or grid computing infrastructure which is very useful for jobs which
require complex calculations and large data processing.
According to the Software Engineering Institute[22], the cloud computing environments
can either be public or private. These computing environments represent the way the services
are o ered to the clients. In public environment the services are o ered to clients either free
or for a fee. The private environments are generally limited to organizations in which services
are deployed behind the organization?s  rewall. The computing environments should take
one of the 3 popular service models as described below:
 Infrastructure-as-a-Service (IaaS): The computational infrastructure includes of a set
of virtual machines that have computation and storage capacity and are available for
access over the Internet. In this model, clients can run computation intensive or a data
intensive job using a variety of interfaces that facilitate the interaction. The services
are provided over an infrastructure and client?s programs do not have rights to access
or modify it. Some examples of IaaS include: Amazon Cloud Formation, Rackspace
Cloud and Google Compute Engine.
 Platform-as-a-Service (PaaS): This service model provides the basic platform upon
which the clients can write their own applications and deploy it. The platform in-
cludes operating systems, libraries, environments, services, supporting tools provided
by the service provider. Like IaaS, PaaS also does not allow user programs to alter the
underlying infrastructure. However, they can modify and change the settings that are
in application?s scope and environment [14].
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 Software-as-a-Service (SaaS): In this service model, Software developed by the client,
provider or by a third party is provided as service to the client. The client do not
run the application locally, instead it would use an API to communicate with the
application that runs in the cloud platform remotely. These APIs cannot modify the
underlying cloud infrastructure, however they can still be used to customize and change
the application?s con guration. A few examples of SaaS include GMail, GDocs and
O ce 365.
Along with service models like Iaas and PaaS, MapReduce and BigData processing
are growing in popularity every day. In fact, popular IaaS models like Google Compute
Engine are used along with the distributed processing framework like Apache Hadoop which
implements MapReduce framework to process and analyze the Big Data. Microsoft Azure,
Amazon EC2 also use di erent distributions of Hadoop to implement PaaS and deploy
applications. There are several real world example and prototypes of PaaS and IaaS being
built entirely on the Hadoop framework [23, 20]. It is believed that Cloud Computing based
on Hadoop will be the next big trend in the IT industry.
To supply the demand for large computing power and storage space in service models like
IaaS, PaaS and SaaS, the service providers are inclined towards creating new data centers.
Data centers are facilities that host hundreds of thousands of servers which concurrently
support a myriad of distinct services and applications[14]. With the growth of private cloud,
the enterprises already having the traditional data center infrastructure want to use their
data centers with Cloud. That helps the service providers save cost by bulk deployment,
instill cloud infrastructure and help them to easily manage and maintain the resources. Also,
 exibility of cloud helps them to easily consolidate discrete cloud environments with discrete
data centers and morph data centers to much more e cient and e ective infrastructure than
its current state of a airs[16].
The amount of unstructured data, also known as Big Data in Internet is growing every
day. In 2012 Big data is expected to grow 48% larger to 2.7 Zetta (2.7*1021) bytes annually
3
and by 2015 it is expected to triple to 8 Zeta bytes given the rising popularity of sites like
Facebook, Twitter, Amazon and YouTube. The Big data is large and unstructured, so it is
really hard to process and analyze using the traditional database models like RDBMS. In
cloud computing, MapReduce is the programming model used for processing and analyzing
large data sets. Google introduced MapReduce1: a large-scale distributed batch process-
ing infrastructure to analyze and process these large data sets. MapReduce programming
model is used in Apache?s Hadoop as well which is open sourced software framework for
processing large data. Hadoop could actually process "web-scale" data on the order of hun-
dreds of gigabytes to terabytes or petabytes[30]. Hadoop is designed to e ciently process
large volumes of information by connecting many commodity computers together to work
in parallel. Hadoop uses the Hadoop Distributed File System to store the large data and
provide streaming access to the data to every node in the cluster while working in parallel.
MapReduce and HDFS together give Hadoop the power to process and analyze the data.
Hadoop is being used in areas of web crawling, analytics machine learning, image processing
and data mining which have huge jobs that are typically handled in data centers having tens
of thousands of computers.
1.1 Overview of MapReduce Framework in Hadoop
MapReduce is a programming model designed for processing large volumes of data in
parallel by dividing the work into a set of independent tasks. The model does not work by
sharing the data arbitrarily between the nodes. Instead, the data elements in the MapReduce
are immutable. The data is written only once and read many times. The data read from the
input  les in HDFS are processed and converted to intermediate values and further processed
to generate outputs. Any changes on the input  les during this process are not re ected on
the actual  les.
1"MapReduce" is the name for both programming model and distributed processing infrastructure in-
troduced by Google. To disambiguate, we further refer distributed programming infrastructure with name
"MapR" and as is for programming model.
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As the name suggests MapReduce programs process the input data in two stages- Map
stage and Reduce stage. In the mapping stage, the mapper takes one item at a time from the
input list of data elements that are fetched from the HDFS and transforms to an intermediate
output data element. The Map operations are paralleled when input  le set is  rst split to
several pieces called File Splits or Input Splits. Every mapper would have exactly one input
split; the number of mappers created is dependent on the number of input splits. Splitting
the input  le set helps in paralleling the processing as the mappers do not have to synchronize
and contend to read the  le. Moreover, mappers do not have any identities of their own, so
all mappers are the same and are not aware of each other?s existence let alone communication
taking place between them.
Every mapper that receives the input split processes it in a speci ed format. The input
split parser (or Record Reader) in the mapper parses the split and generates the key-value
pairs. The key-value pairs are processed in parallel by the mappers, one at a time to generate
exactly one intermediate key-value pair for every (key,value) pair. The output (key,value)
pair of the mapper serves as input to the reducer.
When the mapping phase has completed, the intermediate (key, value) pairs must be
exchanged between machines to send all values with the same key to a single reducer. The
reducer receives the intermediate data generated by the mapper as input, combines the values
of all mapper outputs and generates a single output data corresponding to the input data
fetched by the mapper. The reducers reduce a key value that is unique to each other, so
reducers are same as mappers in the sense that they do not have to communicate with each
other and also remain anonymous to each other.
1.2 Overview of Hadoop Distributed File System
The Network File System (NFS) is the most commonly used distributed  le system,
where the  le system exists on some node in a network. The  lesystem appears as the single
drive and its storage capacity is limited to the HDD capacity of that node, which means
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that large amount of information cannot be stored in NFS. However, to store the peta or
tera bytes of data we need to add a node with HDD to the network, but the  lesystems in
both these nodes would be discrete and would appear as discrete drives in the client. For
example, to store a  le of 1TB size in NFS having 2 nodes of 500GB storage each, we have to
split the 1TB  le to 2 di erent  les and store each  le in the 2 nodes in network. So, when
the client requests a read/write to the  le, it has to manage 2 di erent  le pointers or more
if the  le were any bigger and the NFS had more storage nodes. On the other hand, if there
are many clients trying to access information in one  le, the server gets overloaded with
requests and  lesystem throughput drops signi cantly. Second drawback of using the NFS is
that it is not reliable, i.e if the storage node goes down then the information is unavailable.
Last important drawback of NFS is that the clients should always copy the data to the local
machines before they can operate on it.
Hadoop Distributed File System (HDFS) is a  lesystem designed for storing very large
 les with streaming data access patterns, running on clusters on commodity hardware[7]. It
is designed to run in user space making it extremely portable across platforms. For the sake
of dealing with large  les, it provides high throughput access of data to application rather
than low latency access. Like any other local  le system, HDFS also divides the  les in
the  le system to blocks, but block sizes in HDFS are larger in contrast to local  le system
blocks. Finally to improve reliability, HDFS replicates the data by a factor as con gured by
user and it uses strategies to replicate the data in an e cient manner to improve availability
of data and reduce network bandwidth utilization.
Like MapReduce, HDFS implementation also follows the master/slave architecture in
the cluster. The master node known as NameNode manages the system namespace and
regulates the access to  les by clients. In addition there are DataNodes, which are the
slaves, and usually exist in every node in the cluster. The NameNode is responsible to open,
close, rename the  les and DataNodes are responsible for storing, reading, writing data and
follow the instructions of NameNode [7]. In addition to the NameNode and the DataNode
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there is a Secondary NameNode to improve reliability and fault tolerance which acts as
NameNode when the primary NameNode fails.
1.3 Reliability and Fault tolerance in MapReduce and HDFS of Hadoop
The user never explicitly marshals information from one machine to another; all data
transfer is handled by the Hadoop MapReduce platform itself, guided implicitly by the dif-
ferent keys associated with values [32]. This is fundamental element of Hadoop MapReduce?s
reliability. Hadoop gets periodic reports from the DataNodes or TaskTrackers which helps
the master node to identify a failed node and restart the task assigned to it. If the failed
nodes have been performing side-e ects tasks, e.g., communicating with the outside world,
then the shared state must be restored in a restarted task. By eliminating communication
and side-e ects, restarts can be handled more gracefully.
1.4 Job Schedulers in Hadoop
The performance of a master-worker system like MapReduce system closely ties to its
task scheduler on the master. Hadoop schedulers are designed as jar module and can be
easily plugged in to any Hadoop distro. Although there have been lot of work on schedulers,
they are still in the early stages of its life compared to OS?s schedulers. Still, there are quite
a few popular schedulers that are worth mentioning:
 The FIFO scheduler is the default scheduler in Hadoop which uses a single queue for
scheduling tasks (partitioned jobs) with a FIFO method.
 Yahoos capacity scheduler uses multiple queues for scheduling. It schedules jobs and
assigns resources to jobs based on resources capacity allocated for the queue of jobs
and usage density density of capacities.
 Facebooks fair scheduler uses multiple queues for allocating di erent resources in the
cluster. The fair scheduler maintains a pool of jobs with each pool having a dedicated
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number of Map and Reduce slots. It runs a job by using the map and reduce slots and
if a pool is not running any job then the free slots can be allocated to other pools.
 Dynamic Priority Scheduler is a parallel task scheduler in which it allows users to
control their allocated capacity by adjusting their spending over time.
1.5 Need for thermal management
Although data centers running Map-Reduce framework are e cient in processing Big-
Data, it comes at the cost of investments in various forms like realty, electricity, servers,
maintenance etc. In recent years big companies like Facebook, Microsoft and Google have
invested billions of dollars in just maintaining the infrastructure of the data center supporting
cloud services. The high maintenance cost is predominantly due to high electricity and
cooling costs, which is 25% of the total investment. In fact, the cooling costs of a data center
are higher than the entire IT equipment it supports [3].
Tremendous amount of data storage, computation power and the access to the data
centers nowadays result in high power consumption on servers in data centers. The demand
for data and short job latency result in high CPU and disk utilization. High utilization over a
period of time gets CPU and disk heated up and cooling systems work hard to normalize the
heat generated and hence increases the cooling costs. So, it becomes extremely important to
manage temperature and power in a data center. There are a number of works on thermal
and power management of data centers. Some works are based on developing a scheduler
for temperature balancing, workload balancing and computing energy minimization. Some
works reduce the heat recirculation and some techniques develop a scheduler to manage in
constant and linear cooling model.
Most of the schedulers in Hadoop have concentrated on looking at the scheduling prob-
lem from the masters perspective, where the scheduler on the master node tries to assign
equal work across all the worker nodes[33]. None of the Hadoop schedulers developed so far
considers the nature of the job, the power consumption of the node and most importantly
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the thermal model of the data center while scheduling the jobs. Although there have been
many works on scheduling the tasks in the data center to make data center more thermal
aware, none of the schedulers have been implemented in Hadoop to see their performance in
reality.
1.6 Motivation
Many thermal aware algorithms are primarily simulation based. There are su cient
evidences to prove that Computational Fluid Dynamics is too complex and not suitable for
Online scheduling [26] [18]. Most of the algorithms do not consider the nature of the tasks,
a task might be a CPU intensive task, or it might be a data intensive task. The CPU and
the disk temperature rise by scheduling the job on a node is ignored. The algorithms do not
have means to manage the temperature and the performance if the temperature of the nodes
if they are above certain threshold. Finally, the algorithms are not implemented in Hadoop
and may not be accurate for Hadoop.
1.7 Our Contribution
Based on thorough investigations of the shortcoming of Hadoop?s existing schedulers,
we propose a couple of new thermal aware schedulers that schedules tasks on the slave nodes
with only intention of balancing the temperature across all nodes and reduce AC costs in data
center. We formulate an algorithm for a dynamic scheduler, which schedules the job based
on the CPU and disk temperatures and utilization feedback given by the slave nodes. Second
is a static scheduler, which assigns a job to slave based on its CPU and disk temperature and
stored pro le information of job of same kind. Both these schedulers are implemented on top
of Hadoops FIFO scheduler. We run a set of standard Hadoop benchmarks and application
like word count, distributed grep, pi at di erent temperature thresholds, cluster sizes and
utilization on our schedulers and Hadoop?s FIFO scheduler. The experimental results show
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that our schedulers achieve average outlet temperature saving of 1-2 C over the default
scheduler which saves about 15%-10%of cooling cost with little performance overhead.
1.8 Organization
This thesis is organized as follows. Chapter 2 explains in detail the Hadoop?s archi-
tecture, HDFS and MapReduce framework in Hadoop. Chapter 3 explains the problem
and explains existing solutions. Chapter 4 describes design of our thermal aware scheduler.
Chapter 5 analyzes the results and performance of our schedulers with the Hadoop?s default
FIFO scheduler. Chapter 6 refers to future work and concludes the thesis.
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Chapter 2
Hadoop
Apache Hadoop is an open source software project that enables the distributed process-
ing of large data sets across clusters of commodity servers. It is designed to scale up from
a single server to thousands of machines, with a very high degree of fault tolerance. Rather
than relying on high-end hardware, the resiliency of these clusters comes from the softwares
ability to detect and handle failures at the application layer. Hadoop enables a computing
solution that is scalable, cost e ective,  exible and fault tolerant [10].
2.1 Hadoop Architecture
Hadoop is implemented using relatively simple model of Client-Master-Slave design
pattern. There are two masters in the architecture, which are responsible for the controlling
the slaves across the cluster. The  rst master is the NameNode, which is dedicated to manage
the HDFS and control the slaves that store the data. Second master is JobTracker, which
manages parallel processing of HDFS data in slave nodes using the MapReduce programming
model. The rest of the cluster is made up of slave nodes which runs both DataNode and
TaskTracker daemons. DataNodes obey the commands from its master NameNode and store
parts of HDFS data decoupled from the meta-data in the NameNode. TaskTrackers on the
other hand obeys the commands from the JobTracker and does all the computing work
assigned by the JobTracker. Finally, Client machines are neither Master or a Slave. The
role of the Client machine is to give jobs to the masters to load data into HDFS, submit
Map Reduce jobs describing how that data should be processed, and then retrieve or view
the results of the job when its  nished.
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Figure 2.1: Hadoop Architecture
Figure 2.1 [8] shows the basic organization of the Hadoop cluster. The client machines
communicates with the NameNode to add, move, manipulate, or delete  les in HDFS. The
NameNode in turn calls the DataNodes to store, delete or make replicas of data being
added to HDFS. When the client machines want to process the data in the HDFS, they
communicate to the JobTracker to submit a job that uses MapReduce. JobTracker divides
the jobs to map/reduce tasks and assigns it to the TaskTracker to process it.
Typically, all nodes in Hadoop cluster are arranged in the air cooled racks in a data
center. The racks are linked with each other with the help of rack switches which runs on
TCP/IP.
2.2 HDFS
Hadoop Distributed File System is the  lesystem designed for Hadoop to store the large
sets of data reliably and stream those data to the user application at the high throughput
rather than providing low latency access. Hadoop is designed in Java and that makes it
incredibly portable across platform and operating systems. Like the other distributed  le
systems like Lustre and PVFS, HDFS too stores the meta data and the data separately. The
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Figure 2.2: HDFS Architecture
NameNode stores the meta-data and the DataNodes store the application data. But, unlike
Lustre and PVFS, the HDFS stores the replicas of the data to provide high throughput
data access from multiple sources and also data redundancy increases the fault tolerance of
HDFS.
When the HDFS replicates it does not replicate the entire  le, it divides the  les into
 xed sized blocks and the blocks are placed and replicated in the DataNodes. The default
block size in Hadoop is 64MB and is con gurable.
2.2.1 NameNode, DataNode and Clients
The Figure 2.2 [28] shows the HDFS architecture in Hadoop which contains three im-
portant entities- NameNode, DataNode and Client. The NameNode is responsible for storing
the meta-data, and track the memory available and used in all the DataNodes. The client
which wants to read the data in the HDFS  rst contacts the NameNode. The Namenode
then looks for the block?s DataNode which is nearest to the client and tells the client to
access the data from it. Similarly, when the client wants to write a  le to the HDFS, it
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requests the NameNode to nominate 3 DataNodes to store the replicas and the client writes
to it in streamline fashion. The HDFS would work e ciently if it stored the  les of larger
size, at least size of a block because the HDFS stores the Namespace RAM. If it were all
smaller  les in HDFS then the inodes information would occupy the entire RAM leaving no
room for other operations.
The NameNode would register all the DataNodes at the start-up based on the NamspaceID.
The NameSpaceID would be generated when the NameNode formats the HDFS. The DataN-
odes are not allowed to store any blocks of data if the NamespaceID does not match with
the ID of the NameNode. Apart from the registering the DataNodes in the start-up the
DataNodes send the block reports to the NameNode periodically. The block report contains
the block id, the generation report and the length of the each block that DataNode holds.
Every tenth report sent from the DataNode is a block report to keep the NameNode updated
about all the blocks. A DataNode also sends the HeartBeat messages that just notify the
NameNode that it is still healthy and all the blocks in it are intact. When the NameNode
does not receive a heartbeat message from the DataNode for about 10 seconds, it assumes
that the DataNode is dead and uses it?s policies to replicate the data blocks in the dead
node to other nodes that are alive.
Similar to most conventional  le systems, HDFS supports operations to read, write and
delete  les, and operations to create and delete directories. The user references  les and
directories by paths in the namespace. The user application generally does not need to know
that  le system metadata and storage are on di erent servers, or that blocks have multiple
replicas.
2.2.2 Backup Node and Secondary NameNode
The NameNode is the single point of failure for the Hadoop cluster, so the HDFS copies
the of the Namespace in NameNode periodically to a persistent storage for reliability and
this process is called checkpointing. Along with the NameSpace it also maintains a log of
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the actions that change the Namespcace, this log is called journal. The checkpoint node
copies the NameSpace and journal from NameNode to applies the transactions in journal on
the Namespace to create most up to date information of the namespace in NameNode. The
backup node however copies the Namespace and accepts journal stream of Namespace and
applies transactions on the namespace stored in its storage directory. It also stores the upto-
date information of the Namespace in memory and synchronizes itself with the NameSpace.
When the NameNode fails, the HDFS picks up the Namespace from either BackupNode or
CheckPointNode.
2.2.3 Replica and Block Management
HDFS makes replicas of a block with a strategy to enhance both the performance and
reliability. By default the replica count is 3, and it places the  rst block in the node of
the writer, the second is placed in the same rack but di erent node and the third replica is
placed in di erent rack. In the end, no DataNode contains more than one replica of a block
and no rack contains more than two replicas of same block. The nodes chosen on the basis
of proximity to the writer, to place the blocks.
There are situations when the blocks might be over-replicated or under-replicated. In
case of over-replication the NameNode deletes the replicas within the same rack  rst and from
the DataNode, which has least available space. In case of under-replication, the NameNode
maintains a priority queue for the blocks to replicate and the priority is high for the least
replicated blocks.
There are tools in HDFS to maintain the balance and integrity of the data. Balancer
is a tool that balances the data placement based on the node disk utilization in the cluster.
The Block Scanner is a tool used to check integrity using checksums. Distcp is a tool that
is used for inter/intra cluster copying.
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2.3 MapReduce
In Introduction chapter we understood that MapReduce is a programming model de-
signed for processing large volumes of data in parallel by dividing the work into a set of
independent tasks. MapReduce programs are in uenced by functional programming con-
structs used for processing lists of data. The MapReduce fetches the data from the HDFS
for parallel processing. These data are divided in to blocks as mentioned in the section
above.
2.3.1 JobTracker and TaskTracker
JobTracker is the master, to which the applications submit MapReduce jobs. The
JobTracker gets the map tasks based on input splits and assigns tasks to TaskTracker nodes
in the cluster. The JobTracker is aware of the data block location in the cluster and machines
which are near the data. The JobTracker assigns the job to TaskTracker that has the data
with it and if it cannot, then it schedules it to the nearest node to the data to optimize
the network bandwidth. The TaskTracker sends a HeartBeat message to the JobTracker
periodically, to let JobTracker know that it is healthy, and in the message it includes the
memory available, CPU frequency and etc. If the TaskTracker fails to send a HeartBeat to
the JobTracker, the JobTracker assumes that the TaskTracker is down and schedules the
task to the other node which is in the same rack as the failed node.
The Figure 2.3 [31] shows the data  ow of MapReduce in couple of nodes . The steps
below explains the  ow of the MapReduce [31].
1. Split the  le: First the data in the HDFS are split up and read in InputFromat speci ed.
InputFormat can be speci ed by the user and any InputFormat chosen would read
the  les in the directory, select the  les to be split into InputSplits and give it to
RecordReader to read the records in (key, value) pair that would be processed in
further steps. Standard InputFormats provided by the MapReduce are
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Figure 2.3: MapReduce data  ow.
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 TextInputFormat reads text  les where the byte o set is key and line contents is
value.
 KeyValueInputFromat reads (key,val) pair. Keys and values are separated with
a <tab> key.
 SequenceFileInputFormat is Hadoop speci c high-performance binary format where
key and value are user de ned.
The InputSplit is the unit work that comprises a single map task in a MapReduce
program. The job submitted by the client is divided into the number of tasks, which
is equal to the number of InputSplits. The default InputSplit size is 64MB and can
be con gured by modifying split size parameter. The InputSplits enable the parallel
processing of MapReduce by scheduling the map tasks on other nodes in cluster at
same time. When the HDFS splits the  le into blocks, the task assigned to that node
accesses the data locally.
2. Read the records in InputSplit: The InputSplit although is ready to be processed it
still does not make sense to the MapReduce program as the input to it is not in key-
value format. The RecordReader actually loads the data and converts it to <key,value>
pair expected by the Mapper task. The calls to RecordReader calls map() method of
Mapper
3. Process the records: When the Mapper gets the key-value pair from the RecordReader,
it calls the map() function to process the input key-value pair and output an intermedi-
ate key-value pair. While these mappers are reading their share of data and processing
it in parallel fashion across the cluster, they do not communicate with each other as
they have no data to share. Along with the key-value pair, the Mapper also gets couple
of objects, which indicates where to forward the output and report the status of task.
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4. Combiner1 combines all the <key,value> pair with same keys before sending intermediate
data to the Reducer. It is in some ways a mini Reducer.
5. Partition and Shu e: The mappers output the key,value pair which is the input for the
reducer. This stage the mappers begin exchanging the intermediate outputs and the
process is called shu ing. The reducer reduces the intermediate value with the same
key and it partitions all the intermediate output with the same key. The partitioner
determines which partition a given <key,value> pair go to. The intermediate data are
sorted before they are presented to the Reducer.
6. Reduce the mapper?s output: For every key in the assigned partition in the reducer a
reduce() function is called. Because the reducer reduces the partition with the same
key, it iterates over the partition to generate the output. The OutputFormat will
specify the format of the output records, and the reporter object reports the status.
The RecordWriter writes the data to  le speci ed by the OutputFormat.
1This is an optional step and absolutely used for optimization. It is easy to implement using the Reducer
interface.
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Chapter 3
Motivation and Existing Solutions
In chapter 1 we saw that the data center investments include realty, electricity, servers,
maintenance etc and many big companies like Facebook, Microsoft and Google have invested
billions of dollars in just maintaining the infrastructure of the data center supporting cloud
services. Microsoft in [5] have analyzed associated cost in a data center shown as in Table
3.1. The Servers and Network are one time investment even after considering the hardware
failures. The Power and the Infrastructure is about 40% of total cost which is spent every
month or every year.
Amortized Cost Component Sub-Components
45% Servers CPU, memory, storage systems
25% Infrastructure Power distribution and cooling
15% Power Draw Electrical utility costs
15% Network Links, transit, equipment
Table 3.1: Costs in Data Center
Although the Infrastructure is just 25% of the total cost at data center level, the cost
might scale up to millions-billions of dollars because data centers have tens of thousands
of nodes and each drawing tens of Mega-Watts of power at peak. Even at cost of few
cents or dollars per kilowatts of power used it scales up to thousands-millions of dollars.
Power Usage E ciency = (Total facility power)/Total IT Power is a metric introduced by
the Green Grid [6] estimates that for a reasonable PUE value of 1.7, the total cost of power
would sum up to 9.3 million $ a year, out of which cooling cost is about 33% of total cost. So,
it is extremely important to improve the thermal performance of data centers to optimize
computing resources, improve reliability, improve utilization, and maximize computation
capability.
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3.1 Thermal model of a data center
In the data center the server nodes are arranged in the racks. The racks are installed in
the raised  oor which has perforated  oor tiles. The Air Conditioner, Heating, Ventilation
Air Conditioner (HVAC) or Computer Room Air Conditioner (CRAC) deliver the cold air
from the raised  oor. The cool air enters the racks from the front side and leaves from the
rear end of rack. While the cool air exists the rack it picks up the heat generated by all the
servers in the nodes. The heated air forms the hot zone behind the racks which is extracted
back to the air conditioner intakes which is positioned above the hot zone and this heat
dissipated from the hot-zone controls the CRAC supply air. The setup of a typical data
center is shown in Figure 3.1, [1] below.
Figure 3.1: Data center layout
Many researches have begun on the dynamic optimization of the data center thermal
environment. The CFD model provides the dynamics of a data center which helps con-
sidering di erent parameters like the co-e cient of performance, supply temperature, inlet
temperature, outlet temperature, air density, computing power of a node etc. Table 3.2 will
give you and overview of frequently used terms in the thermal management formulation of
a data center and in this thesis.
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Notion Meaning
Tsup Air temperature as supplied from cooling unit.
Tin Inlet air temperature of node.
Tout Outlet air temperature of a node.
Tred Redline temperature of data center.
N number of nodes in cluster.
T Air temperature.
Q Amount of heat carried by the air fow in unit time.
 Air density. (Typical value: 1.19kg/m3)
f Flow rate. (Typical value: 520CFM = 0.2454 m3/s)
cp Speci c heat of air. (Typical value: 1005J/kg/K)
PTotal Total power consumed.
PC Sum of total computing power.
PAC Power used for cooling data center.
G Hardware dependent speci cations.
CTot Total task set.
Ci Total task set assigned to a node i.
Cut Total tasks assigned when temperature is below threshold.
Cuop Total tasks assigned when temperature is above threshold,
but below TCPUAvg or TDiskAvg.
TCPU CPU temperature.
TDisk Disk temperature.
TrCPU Redline temperature for CPU.
TrDisk Redline temperature for Disk.
TCPUAvg Average CPU temperature in cluster.
TDiskAvg Average Disk temperature in cluster.
UCPU CPU utilization.
UDisk Disk utilization.
UtCPU Threshold for CPU utilization.
UtDisk Trheshold for Disk utilization.
UCPUAvg Average CPU utilization in cluster.
UDiskAvg Average Disk utilization in cluster.
tn Total time take to run job.
a power consumption of node i?s power unit.
b Power consumption of node i running a task.
Table 3.2: Table of Symbols to thermally model a data center.
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In the data center layout  gure 3.1 in [1], the cold air that comes from the perforated
 oor to cool the nodes is the supply temperature Tsup in the table 3.2. The supply tem-
perature Tsup when it enters the room mixes with the hot air produced by the heat-zones
and increases to operating temperature to the Tin which is called the inlet temperature.
The inlet temperature is the temperature, which goes inside the node to take away the heat
generated by the nodes in the data center. In data centers, the Tsup is set to a temperature
to maintain Tin below a certain threshold temperature called redline temperature denoted
by Tred. The redline temperature is the threshold temperature, above which hardware risks
failure. The hot air coming out of the node is outlet temperature, represented as Tout. This
outlet temperature is absorbed by the vents above and based on this temperature the supply
temperature is further increased or decreased.
Q is the amount of heat carried by the air  ow in unit time. According to the law of
energy conservation, it is given by the equation:
Q =  fcpT (3.1)
where  is the is the air density, f is the air  ow rate, cp is the speci c heat of air, and
T is the air temperature.The nodes are placed in the di erent places in a huge data center
and the air  ow rate may vary for each node, so we denote it using f i for each node, where i
is the node. Similarly, the inlet and outlet temperature changes for the node, which can be
given as Tiin and Tiout.
The total power consumed (PTotal) is sum of total computing power(PC) and power used
for cooling (PAC). The lighting costs and other energy costs have negligible contribution to
the total costs.
PTotal = PAC +PC (3.2)
The di erence between the Tiout and the Tiin is the heat emitted which is generated
by the computation work by the node. The total power consumed for computation in the
23
entire cluster is the sum of the power consumed by all nodes in the cluster. It is given by
the equation
Pc =
NX
i=1
Pi: (3.3)
The power consumed by the individual node in the cluster is given by
Pi = GiCi: (3.4)
where Gi depends on the hardware speci cations of the node and Ci is the task-set of the
total tasks assigned to node i.
The relationship between the power consumed and the inlet and outlet temperature is
given by
Pi = Gi(Tiout  Tiin): (3.5)
substituting  ficp for Gi, we have Pi as
Pi =  ficp(Tiout  Tiin): (3.6)
The energy cost of air conditioning depends on the heat removed or reduced and the
Coe cient Of Performance (COP) of the air conditioner. The COP in [17] is de ned as the
amount of heat removed by the air conditioner to the total energy consumed to remove that
heat, i.e
COP = heatremovedenergyconsumedtoremovetheheat (3.7)
The COP obtained for the water chilled CRAC unit in the HP utility data center will
be considered as reference in this thesis. The COP model is given by
COP = (0:0068T2sup + 0:0008Tsup + 0:458) (3.8)
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where, Tsup is the supply temperature. The COP graph at di erent Tsup are given in
the Figure 3.2 [17]
Figure 3.2: Coe cient of Performance
CoP is not linear and normally increases with the supplied air temperature. Higher the
Tsup, higher is the COP. Higher COP means that the air conditioner does not have to work
hard to cool the nodes in data center and hence, save cooling costs. The power consumed
by air condition for cooling in equation can be represented in terms of computing power and
COP as
PAC = PCCOP (3.9)
substituting for PAC in we have,
PTotal = (1 + 1COP )(
NX
i=1
GiCi) s:tCtot =
NX
i=1
Ci (3.10)
In the equation the Ctot is the total number of tasks that has been given to Hadoop to
distribute to the TaskTrackers in the node. These tasks basically boil down to few machine
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Figure 3.3: The rise in the Disk utilization increases the Outlet temperature
instructions, which take di erent times to execute, but at the cluster level, all TaskTrackers
are executing the same instructions as they all are executing the same task. So it is safe to
assume that all the TaskTrackers are utilized approximately the same and have same power
consumption. Furthermore in [24], they show that there is a linear relationship between the
power consumption and CPU utilization of a machine. The power consumption and the
temperature rise have linear model. So from transitive property, the CPU utilization and
the temperature rise have linear relationship. The CPU temperature rise has linear model
with the outlet temperature.
P = aCutil +b
P  Cutil
TCPU  P
TOut  TCPU
(3.11)
Its not just CPU temperature which contributes to the outlet temperature, in [13]
they show that the increase in the Disk utilization also increases the outlet temperature by
almost 1.5 degrees, as shown in the Figure 5.1. It can be observed from the Figure 5.1, the
Disk utilization and temperature are not linear like CPU utilization and temperature. The
relationship can be expressed as linear regression function.
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The goal is to maximize Tsup which is achieved by minimizing the Tout, which would
minimize the Tin and hence maximize the Tsup.
3.2 Related Work
There have been many works on thermal and power management of a data center. We
will see few works that consider the thermal model of the data center.
[21] is based on Hadoop based storage data centers in which they ensure that each node
in the data center operates at a temperature below the threshold (TMax) and try to minimize
the power consumed by AC by scheduling the tasks based on 4 constraints.
 Compatible with thermal model of data center.
 The outlet temperature is less than the threshold temperature. (TMax < TOut
 A task is assigned only to 1 node at a time among all other nodes having the data
block.
 0 is power consumption when a node is idle, else it is p.
The algorithm basically assigns a cost for running a task on every node and calculates
the Tout resulting from it. If the chosen system has high Tout then it is given to the nodes
having less Tout, and then they calculate the Tsup, which satis es the above conditions and if
the new Tsup is higher than the current Tsup, task is assigned else some other node is chosen
and all the steps are re-executed.
There are three thermal aware schedulers proposed in [27]. The temperature measure-
ment is at chassis level and the task assignment granularity is at the processor level. The
 rst algorithm is Uniform Outlet pro le in which most tasks are given to the processor with
low inlet temperature and fewer tasks are given to the node with high inlet temperature.
The goal of the the algorithm is to balance the outlet temperature between all the nodes
and reduce the recirculation of the hot air. Second algorithm is Minimal computing energy,
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which tries to minimize the number of active processors. It tries to distribute the jobs to the
coolest processors among the active ones. The idle processors are turned o to save energy
and hence does not need to be cooled. The third scheduler distributes the job evenly among
all the processors and the work done and heat generated by them is same.
HP and Duke University published works [19] [2] developed online measurement and
control techniques to improve energy-e ciency of data centers. Notions like Supply Heat
Index (SHI) and Return Heat Index (RHI) characterizes the energy e ciency of datacenter
cooling system. They discussed that di erent datacenter layouts and con gurations that lead
to hotspots and non uniform thermal distribution. Using CFD they could  nd out hotspots
in a data center and took remidial actions like dynamic relocation of workload to achieve
thermal balancing in inside a datacenter when the datacenter is overheated.
[18] [25] algorithms reduce the Heat recirculation by distributing the task and power
accordingly. The MinHR algorithms are based on calculating the HeatRecirculationFac-
tor(HRF) for each rack. The HRF is the ratio of the HRF contributed from the rack to the
sum of all other racks. If the HeatRecirculationFactor is high for a rack, then it is assigned
fewer tasks compared to other racks. The HRF is assigned after several pro ling runs. A
small HRF indicates that rack is very huge contributor to the recirculation and assigned
fewer tasks. The di erence between [17] and [25] is that, the former is designed to place the
power budget and latter is designed to place tasks.
Thermal Aware Task Scheduler(TASA) proposed in the [29] does not utilize the CFD
model, because the CFD schedulers are hard to apply in online schedulers. Instead it uses
thermal map of the data centers to schedule the jobs. The TASA scheduler schedules the
jobs periodically and gets the temperature of all the nodes. It then sorts the nodes based on
their temperatures from coolest-hottest. The hottest nodes which are above a pre-de ned
threshold are allowed to cool down for a period of time without running any tasks and later
when they are cool, they are all used to schedule the hottest job.
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Chapter 4
Design of Cool Schedulers
Scheduler in Hadoop primarily deigned to share the cluster between di erent jobs and
users for better utilization of the cluster resources. Without the scheduler it is possible that
a job might occupy all the resources and the other jobs might just be left waiting until this
job  nishes or terminates. Hadoop schedulers are designed as pluggable interface and it is
possible to switch between schedulers for di erent jobs just by changing the scheduler?s class
in the con guration  le. As we saw in Chapter 1, Hadoop is shipped with 3 schedulers-
FIFO, Fair and Capacity scheduler. All are designed with di erent intentions and they all
handle resources optimally. But, none of these schedulers are thermal aware and they do
not do any thermal management in Hadoop cluster. To make Hadoop thermal aware, rather
than developing a new thermal aware scheduler, the best strategy would be to implement a
thermal module inside the existing scheduler. So, to design and implement our thermal aware
module, we pick Hadoop?s default FIFO scheduler, because of its simplicity of assigning tasks.
It also suits our algorithm design compared to the Fair or the Capacity scheduler. Because
we are just focusing on task assignment portion of the scheduler, we investigate, analyze and
explain task management in Hadoop scheduler rather than block or replica management.
4.1 Hadoop FIFO scheduler
FIFO scheduler is the default Hadoop scheduler. In Hadoop the jobs are divided into
tasks based on the InputSplit size and the FIFO scheduler maintains a task queue. The
JobTracker is responsible for assigning a task from that queue to one of the TaskTracker
that is free and ready to execute it. The job assignment and communication between the
TaskTracker and the JobTracker happens primarily through the HeartBeat messages. The
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Figure 4.1: High Level TaskAssignment.
basic task assignment  ow in Hadoop happens between the TaskTracker, JobTracker and
scheduler as shown in the  gure 4.1.
1. The TaskTracker sends a HeartBeat message to the JobTracker with the number of
available slots to run Map or Reduce tasks.
2. The JobTracker receives the HeartBeat messages from the allowed TaskTrackers and
requests the scheduler to assign tasks for the TaskTracker.
3. The scheduler takes the  rst task in the queue and gives it to JobTracker to assign it
to the requesting TaskTracker.
4. The JobTracker composes the HeartBeat response along with the tasks to assign and
sends it to the TaskTracker to execute.
In the essence, HeartBeat is a mechanism for TaskTrackers to announce their availabil-
ity on the cluster. It is sent periodically to JobTracker to let the JobTracker know that the
TaskTracker is alive. If a HeartBeat message is not received for a long duration then the
JobTracker marks the TaskTracker as unhealthy and blacklists it. In addition to announc-
ing its availability, the heartbeat protocol also includes information about the state of the
TaskTracker.
 Max Map and Reduce tasks.
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 Total Physical Memory and Available Physical Memory
 Total virtual memory and Available Virtual Memory
 Available space
 Map and Reduce Slot memory size
 Number of Processors
 CPU frequency, CPU time.
 Health report
Most of the  elds related to the resource status of the TaskTracker are obtained form
the undelying OS in TaskTracker. Because Hadoop is a Java based platform, it does not
have direct access to the resources, it either uses the system commands or read system  les
to  ll up the  elds in HeartBeat.
On the other hand, the JobTracker receives the heartbeat messages and decides whether
the TaskTracker is  t enough for executing a task based on it?s health report and available
Map/Reduce slots. It will further assign Map/Reduce tasks based on the number of free slots
it has. The TakTrackers usually have 2 map and reduce slots, which means that TaskTracker
can only run 2 Map or 2 Reduce tasks at a time. Generally, the number of Map/Reduce slots
in a TaskTracker are con gured based on the number of cores it has, one slot for each core
is widely followed setting. If a node has at least 1 Map slot then the node gets a Mapper
task, else it will do the Reduce task.
1. Process HeartBeat: JobTracker receives a HeartBeat from a TaskTracker with all the
above  elds and accepts it only if an allowed TaskTracker sent it. If the HeartBeat is
duplicate then JobTracker will ignore it. Else, it will process the HeartBeat, process a
response and check for the tasks to execute.
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2. Get a Task: When the TaskTracker is ready to run a task, JobTracker gets the list
tasks that are either a setup or clean-up task.
3. Choose a task from list: The scheduler iterates through the set up task list, and it
chooses a task if the task is runnable, not running and is a failed task. It will remove
a task from the list if task is scheduled, killed, completed, running or failed on this
TaskTracker before.
4. Check for Flaky TaskTracker: After it obtains the Map or Reduce task, it checks if
many tasks have failed on this TaskTracker before; If yes, then it does not schedule
the task. Otherwise, marks the task as schedulable.
5. Available Map Slot: Once the task is marked schedulable, scheduler checks if Task-
Tracker has any available Map slots to run a map task.
6. Create a Map/Reduce Task: Get the number of Map slots required to run, create a
Map/Reduce task by giving the job File, partition this TaskTracker owns and sets the
Output directory in HDFS and creates a task entry and informs the JobTracker that
this task exists. The tasks here are maintained in a FIFO queue, hence the name FIFO
scheduler.
7. Assign the created Map/Reduce Task: Get the TaskTracker?s total Map and Reduce
Slots and get total Map and Reduce slots across the pool to calculate the load factor
of Map and Reduce. Find a new Task from the FIFO queue and ensure it has all the
resources and process the tasks in the order of:
 Failed Task
 Non-running Task
 Speculative Task.
 No Location information Task.
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The task is assigned smartly using cache and cache levels, such that the TaskTracker
has the data to be processed local to it. Scheduler tries to schedule it on local  rst, rack-
local next, o -switch next or schedules a speculative task if other three are unavailable.
8. Launch the task: After the task is assigned, it launches the task in the TaskTracker
and starts a timer. If the TaskTracker does not respond to this task for too long then
it will mark the task as failed task.
9. JobTracker further checks for any jobs to be killed, cleaned up or tasks that needs to
be committed. In the HeartBeat response, it checks if any restart information should
be included before sending it to the TaskTracker.
All the Hadoop jobs are either CPU intensive or I/O intensive or both. In the previous
chapter, we saw that the CPU and the Disk have signi cant contributions to a node?s outlet
temperature. Besides, every node may have di erent computation capacity as Hadoop uses
commodity hardware to run the tasks. For Ex: A node may have a powerful CPU and have
a moderate disk. In this case the CPU intensive tasks can be processed easily by this node
rather than a disk intensive one. On the other hand, a node may be good in processing the
data intensive task easily but not CPU intensive ones. This is one of the motivation for our
thermal aware schedulers. So, in order to make the default Hadoop FIFO scheduler thermal
aware, we propose a couple of strategies which are explained coming sections.
4.2 Design of our scheduler
To reduce the CPU or disk temperature and outlet temperature in particular, we im-
plement the following strategies.
1. Di erentiate between the CPU intensive task and Disk intensive task
2. Consider CPU and Disk utilization while scheduling
3. Maintain CPU and Disk under a threshold temperature.
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4. Maintain the average CPU and disk temperature across the cluster and as a result we
maintain the average outlet temperature across cluster.
One simple way to di erentiate between the CPU and Disk intensive job, is by main-
taining a log pro le  le of both CPU and I/O usage for every job that is run on the cluster.
The pro led  le is stored in the local storage directory (not HDFS) of the JobTracker and
would include information like:
1. App ID
2. TaskTracker identi cation
3. Total number of tasks submitted to this TaskTracker
4. CPU utilization
5. Disk Utilization
The information in the pro led log  le are not generated by the JobTracker itself, but
provided by the TaskTrackers and client application. The TaskTracker sends the utilization
reports of the CPU and Disk periodically while running the job. The JobTracker receives
these reports from all the TaskTrackers and maintains a data structure to store the Task-
Tracker name or ID and average utilization of Disk and CPU for that job. The utilization
may change for di erent jobs and makes it impossible to  gure out which job had how much
utilization on a TaskTracker, so we group the utilization records of a TaskTracker by the
AppID. A sample record example is given in the Figure below.
It can be seen in Figure 4.2 that there are two TaskTrackers in the cluster and they have
di erent Disk and CPU utilization reports for two di erent jobs. The records are grouped
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by the Application name or ID. The last  eld in the record gives the count of number of
tasks that were run on that TaskTracker.
4.2.1 Static scheduler
A good pro le information log can be used to categorize an application as the CPU
intensive application, Disk intensive application or both. We can set a threshold utilization
beyond which, if a task tracker is utilized either on CPU or Disk, we mark it as intensive.
The jobs are categorized into 4 categories for a TaskTracker
1. Not intensive.
2. Disk intensive only.
3. CPU intensive only.
4. Both CPU and Disk intensive.
For example, if the Disk and CPU utilization threshold was set at 40% and 70% re-
spectively, for node jedi01 the job AppID 3 would be both CPU and disk intensive, and for
jedi02 it would not be both intensive. Similarly for AppID 4 if the utilization threshold for
Disk and CPU were set at 40% and 30% repectively then for the node jedi02 JobTracker
would categorize it to be CPU intensive only and none intensive for node jedi01.
Static scheduler would use the categorization strategy to schedule the jobs, when the
same AppID job is submitted to the cluster again. The JobTracker would verify if there was a
Job submitted by the same application before, by matching the application?s AppID with the
AppID in the job pro le log. If there is a match found then it loads the utilization information
of the pro le log to its data structures for all the TaskTrackers. It then categorizes the job
as the CPU intensive or Disk intensive for a TaskTracker. After the tasks of a job are
categorized, the scheduler could simply schedule the tasks on a node, which is neither disk
intensive or CPU intensive  rst and then it would schedule disk or CPU intensive only
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jobs on the one which had less disk utilization or CPU utilization respectively. If the job
was both CPU and Disk intensive for a TaskTracker, it would not schedule any tasks to
it. The scheduler would not work if it does not consider the current temperature of the
Tasktrackers, because it would assign the tasks to a node which is already hot or assign
no jobs to a TaskTracker which is cool, but had high utilization when the job had run
on this node before. For that reason, static scheduler also considers the CPU and HDD
temperature at the time of scheduling a task. The static scheduler also considers the CPU
and HDD temperature while scheduling, it checks if the TaskTracker is not CPU or Disk hot
while scheduling tasks.
In a data center, the Tin is maintained to be lower than the Tred the Redline temper-
ature, which is typically set at 25 C. The CPU temperature TCPU, is always higher than
the inlet temperature Tin even in idle condition and any rise in TCPU would cause the Tout
to increase and hence Tin would rise. So we try to maintain the CPU temperature TCPU
under a CPU redline temperature represented by TrCPU. Similarly, the Disk temperature
TDisk, rise would also contribute to the rise in the the outlet temperature Tout, we try to
maintain the TDisk under the redline threshold for disk, TrDisk.
Tin <= Tred
TiCPU <= TrCPU
TiDisk <= TrDisk
(4.1)
The application of Disk/CPU utilization and current temperature of a TaskTracker to
assign a task is shown in Algorithm 1.
When the TaskTracker sends the HeartBeat message, we incorporate CPU temperature,
disk temperature and utilization information in it. The TaskTracker java thread polls the OS
for the temperature and utilization adds it to the HeartBeat message. The commands used
for polling the temperature for CPU and disk are sensors and hddtemp respectively. Both
these temperature commands give the result in degree centigrade. For the CPU and disk
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Algorithm 1 Algorithm for "static scheduler", to schedule the jobs from job pro le
Maintain the temperature information of all TaskTrackers
while ( a TaskTracker sent a HeartBeat ) do
TrackerName = getTaskTrackerName()
UCPU = getCPUUtilizationFromFile(TrackerName)
UDisk = getDiskUtilizationFromFile(TrackerName)
TCPU = getCPUTemperatureFromHeartBeat(TrackerName)
TDisk = getDiskTemperatureFromHeartBeat(TrackerName)
if (UCPU  UtCPU) && (UDisk  UtDisk) then
JobTtype = EasyJob
else if (UCPU >UtCPU) && (UDisk <UtDisk) then
JobType = CPUIntensiveJob.
else if (UCPU <UtCPU) && (UDisk >UtDisk) then
JobType = DiskIntensiveJob.
else
JobType = CPUDiskIntensiveJob.
end if
if (TCPU  TrCPU) && (TDisk  TrDisk) then
Schedule the job
else if (TDisk <TrDisk) && (JobType == DiskIntensiveJob OR EasyJob) then
Schedule the job
else if (TCPU <TrCPU) && (JobType == CPUIntensiveJob OR EasyJob) then
Schedule the job
else
Do not schedule; Process next TaskTracker.
end if
end while
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Figure 4.2: Static Scheduler communication Flow
utilization, we use the iostat command. The HeartBeat message interval sets the accuracy
of the temperature information we have on the JobTracker.
The Figure 4.2 shows the communication between the TaskTracker and the JobTracker.
Each step has a number in the scheduler  ow diagram which is explained below
1. The HeartBeat messages are sent by the TaskTracker with the information of CPU,
Disk temperature and utilization along with the other HeartBeat  elds periodically.
The Disk temperature, CPU temperature and the utilization are extracted from the
TaskTracker with system commands.
2. The JobTracker receives the heartBeat message and extracts the TaskTracker status.
3. The JobTracker then extracts the message and requests the scheduler to schedule the
task.
4. The scheduler meanwhile iterates through the set up task list, and it chooses a task,
or removes a task if it is completed or killed. It then checks if the TaskTracker is
healthy and has available map slots. It then obtains the task chosen before to create a
map/reduce task. When the task is ready, the TaskTracker is assigned to execute the
created task.
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5. The scheduler then calls the Algorithm 1 to assign tasks based on the thermal model
 Open the job pro le  le and pick up the information about the TaskTracker that
has sent the HeartBeat.
 If the Utilization is greater than the threshold utilization we set a task as data or
Disk Intensive, CPU intensive or both.
 If the temperature for both the disk and CPU are below threshold schedule it.
 Schedule the data intensive task on a TaskTracker if the disk temperature is below
the disk threshold temperature. It does not matter if the CPU is hot as the task
is only disk intensive, and will increase only disk temperature.
 Similarly, schedule the CPU intensive task on a TaskTracker if the CPU temper-
ature is below the CPU threshold temperature and it does not matter if the disk
temperature is high or low.
 If the disk is hot and it is a disk intensive task or CPU is hot and it is a CPU
intensive task or if the CPU or disk both are hot, it does not schedule any task.
6. Launch the task that is scheduled in the TaskTracker.
7. The scheduler then processes cleaned up tasks,killed tasks, and process a HeartBeat
response.
The static scheduler intelligently schedules the job by keeping track of the jobs that
were run on the cluster. The disk intensive tasks are only scheduled on the disk with low
temperature and the CPU intensive task are scheduled only on TaskTracker with low CPU
temperature. With Hadoop running either the Disk intensive or the CPU intensive the
scheduler really  ts to the scheme of things. The scheduler balances the temperature of the
disk and the CPU across the cluster, but there is an overhead of creating and managing the
job pro le  le. If the di erent applications are run then the  le would be huge and also if
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the cluster size is huge, then the data structure that manages would also be huge along with
the pro le  le.
4.2.2 The Dynamic Feedback scheduler
The static scheduler always needs the  le with the pro led information and it might be
huge  le if the data center increases the number of nodes it supports. In order to get away
from the  le and still reduce the temperature of the disk, CPU and outlet temperature, we
implement the following strategies
1. Di erentiate between the CPU intensive task and Disk intensive task
2. Consider the CPU and Disk utilization while scheduling
3. Maintain the CPU and Disk under a threshold temperature.
4. Maintain the average CPU and disk temperature across the cluster as a result we
maintain the average outlet temperature across cluster.
Like static scheduler, this scheduler still gets the feedback of TaskTracker?s status by the
HeartBeat message. We still set the threshold redline temperature for the Disk and the CPU
and try to maintain it below the threshold redline temperature. Existing thermal aware and
static scheduler do not schedule any tasks, when every node in the cluster is hot, as a result
the job stalls, the response time for the job increases and hence the performance drops. To
manage the temperature even when all nodes are busy we need to do load balancing and
keep track of the coolest nodes in the cluster to get the job going in hot conditions. We
maintain data-structure to track the average cluster CPU and Disk utilization represented
by UCPUavg and UDiskavg and CPU, Disk temperature represented by TCPUavg, TDiskavg
respectively. The Dynamic scheduler is bound by constraints and one goal, to maximize
Coe cient of Performance.
1. try TiCPU <TrCPU else TiCPU <TCPUAvg
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2. try TiDisk <TrDisk else TiDisk <TDiskavg
3. TDiskavg <TDiskMax & TCPUavg <TCPUMax
4. Tiout  (PNi=1 Tout) / N
5. Each TaskTracker is assigned only one task at a time
6. Each task is assigned to utmost one Node.
7. Minimize response time of job
The  rst and second constraints are that, when the disk and CPU temperature are
below the threshold and make sure they operate at a temperature below the threshold
temperatures. If the nodes in the cluster are already above the redline threshold, then balance
the temperature by assigning the tasks to the coolest node in the cluster. The third constraint
speci es that the average disk or CPU temperature is above the max temperature, then stop
scheduling all the jobs as we might risk hardware failure. The fourth constraint speci es
that the outlet temperature of a TaskTracker is same as the average outlet temperature of
the cluster. The  fth and sixth constraints make sure that a node gets utmost 1 task and
task is executed at utmost 1 node at a time. The last one tries to  nish the job as soon as
possible achieving optimal solution.
1. The HeartBeat messages are sent by the TaskTracker with the information of CPU,
Disk temperature and utilization along with the other HeartBeat  elds periodically.
The Disk temperature, CPU temperature and the utilization are extracted from the
TaskTracker with system commands.
2. The JobTracker receives the heartBeat message and extracts the TaskTracker status.
3. The JobTracker then extracts the message and requests the scheduler to schedule the
task.
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Algorithm 2 Algorithm for "Dynamic scheduler", to schedule the jobs based on real time
information
Maintain the temperature information of all TaskTrackers
while ( a TaskTracker sent a HeartBeat ) do
TrackerName = getTaskTrackerName()
UCPU = getCPUUtilizationFromHB()
UDisk = getDiskUtilizationFromHB()
TCPU = getCPUTemperatureFromHB()
TDisk = getDiskTemperatureFromHB()
TCPUavg = calculateAvg(TCPU, n)
TDiskavg = calculateAvg(TCPU, n)
UCPUavg = calculateAvg(UCPU, n)
UDiskavg = calculateAvg(UDisk,n)
if (TCPU  TrCPU) && (TDisk  TrDisk) then
Schedule the job
else if (TDisk  TDiskavg) && (TCPU  TCPUavg) && (UCPU  UCPUavg) && (UDisk
 UDiskavg) then
Schedule the job as the node is cooler than the most node in clusters
else if (TDisk <TDiskavg) && (TCPU >TCPUavg) && (UCPU >UCPUavg) && (UDisk
<UDiskavg) then
Schedule the disk intensive job
else if (TDisk >TDiskavg) && (TCPU <TCPUavg) && (UCPU <UCPUavg) && (UDisk
>UDiskavg) then
Schedule the CPU intensive job
else
Do not schedule; Process next TaskTracker.
end if
end while
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4. The scheduler meanwhile iterates through the set up task list, and it chooses a task,
or removes a task if it is completed or killed. It then checks if the TaskTracker is
healthy and has available map slots. It then obtains the task chosen before to create a
map/reduce task. When the task is ready, the TaskTracker is assigned to execute the
created task.
5. The scheduler then calls the Algorithm 2 to assign tasks based on the thermal model.
 Extract the Disk, CPU utilization and temperatures from the HeartBeat message.
 Calculate the average temperature and utilization for the CPU and disk across
cluster.
 If the temperature for both the disk and CPU are below threshold, then schedule
it.
 Else if the TaskTracker has both low utilization and temperature for the Disk and
CPU across the cluster, schedule it.
 Else if the CPU is hotter than the entire cluster, and disk is cooler than entire
cluster, schedule disk intensive task. Scheduling disk intensive task to coolest disk
in cluster keeps the disk temperature in balance across the cluster.
 Similarly, if the Disk is hotter than the entire cluster, and CPU is cooler than
entire cluster, schedule CPU intensive task. Scheduling CPU intensive task to
coolest CPU in cluster keeps the CPU temperature in balance across the cluster.
 If the disk is hotter than entire cluster or CPU is hotter than entire cluster or
CPU, Disk utilization is more than entire cluster, it does not schedule any task.
6. Launch the task that is scheduled in the TaskTracker.
7. The scheduler then processes cleaned up tasks,killed tasks, and process a HeartBeat
response.
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To summarize, the algorithm above schedules equal tasks if all nodes are cool, if not, it
then assigns tasks to the coolest nodes w.r.t disk and CPU to achieve uniform outlet pro le.
Technically, the dynamic feedback scheduler is a combination of the schedulers- Uniform
Outlet Pro le and Uniform Task mentioned in the previous chapter. When the temperature
of the TaskTrackers are below redline threshold, the tasks are distributed equally to all the
TaskTrackers in the cluster (Uniform Tasks scheduler) otherwise it uses the Uniform Output
Pro le scheduler.
Revisitng the power consumed, we analyze the temperature saved using our dynamic
scheduler. The power consumption for a node when the TaskTrackers equally share the tasks
is given by:
Pi = Gi(CtotN ) (4.2)
When few TaskTrackers are already hot, we assign the jobs on coolest nodes and try to
achieve thermal balancing of the outlet temperature which means that all the TaskTracker?s
outlet temperature should be the same (Uniform Outlet Pro le scheduler). i.e Tiout = Tjout
= Tc.
From equation 3.2 we have the power consumption for a node when the TaskTrackers
are running to achieve thermal balancing:
Pi =  ficp(Tc  Tiin) (4.3)
If a job assigned to Hadoop takes tn seconds to  nish, out of which, if it spent n
seconds running same number of tasks on all TaskTrackers then it spent remaining seconds
in achieving thermal balance.
tn = nt
n
+ (1  nt
n
) (4.4)
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If the number of tasks performed during n seconds is represented as Cut, then the
number of tasks performed during the thermal balancing is Cuop = Ctot - Cut. Total power
consumed while running the job using the Dynamic feedback scheduler will be:
NX
i=1
Pi = (nt
n
)(
NX
i=1
GiCut) + (1  nt
n
)(
NX
i=1
Gi(Ctot  Cut)) (4.5)
NX
i=1
Pi = (nt
n
)(
NX
i=1
GiCut) + (1  nt
n
)(
NX
i=1
Gi(TC  Tiin)) (4.6)
To  nd the di erence in the temperature saving we express the equation in TC
TC =
PN
i=1Pi  (
n
tn)(
PN
i=1GiCut) + (1  
n
tn)(
PN
i=1Gi(T
i
in))
(1  ntn)PNi=1Gi (4.7)
TC =
PN
i=1Pi  (
n
tn)(
PN
i=1 ficpCut) + (1  
n
tn)(
PN
i=1 ficp(T
i
in))
(1  ntn)PNi=1 ficp (4.8)
If we consider the re-circulation e ect, where aij is the re-circulation coe cient when
the hot outlet air from a node j a ects a node i.
TC =
PN
i=1Pi  (
n
tn)(
PN
i=1aij ficpCut) + (1  
n
tn)(
PN
i=1aij ficp(T
i
in))
(1  ntn)PNi=1aij ficp (4.9)
The di erence between the Tout and Tc would give us the outlet temperature saving
that we have achieved using our scheduler over the default Hadoop FIFO scheduler.
 =
NX
i=1
(Tiout  Tc) (4.10)
The standard deviation of the outlet temperature Tiout would give us if we achieved
thermal balancing or not.
StdDev[(Tout)] (4.11)
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Because the outlet temeprature is a result of CPU and Disk temperature, we also con-
sider the standard deviation of the CPU and Disk temperature as an indication of thermal
balance across cluster.
4.3 Di erence between Static and Dynamic scheduler
The table 4.1 summarizes and highlights key di erences between the Hadoop schedulers
proposed to maintain thermal balance and reduce cooling costs in a datacenter.
Static Dynamic
Schedules tasks based on previously
utilization information in a  le
Schedules task based on utilization and
temperature information at run time
Assigns CPU intensive tasks to CPU
powerful nodes and Disk intensive task
to Disk powerful nodes
Assigns tasks to the coolest node at any
point in cluster
Does not schedule task if nodes are hot
and utilization is high
schedules tasks on coolest node at any
point in cluster
Does not try to maintain the uniform
temperature across cluster
Maintains uniform temperatre across
cluster
Active nodes are nodes that are below
the temperature threshold
At least 50% are active nodes at any
given time in cluster
Storage and maintainance overhead
when cluster size increases or job types
are di erent
Overhead of communication as Task-
Tracker report to JobTracker periodi-
cally
Works better even with smaller cluster Works better with larger cluster
Overhead of maintaining a pro le  le
and job information of all nodes in clus-
ter
Overhead of communication of temper-
ature and utilization information from
TaskTracker to JobTracker
Table 4.1: Di erences between Static scheduler and Dynamic scheduler
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Chapter 5
Results and Interpretation
The performance of the Hadoop schedulers were measured using actual Hadoop cluster
implementation. Unlike the data center clusters, we implemented a cluster of relatively
small scale of 14 nodes and performed experiments and gathered the performance data of
our schedulers. Similarly, due to unavailability of the large data sets, we scaled down the
data set to suit the performance of the cluster size.
5.1 Experiment Setup
Using the commodity hardware we setup a Hadoop cluster composed of a JobTracker,
NameNode and 13 DataNodes and TaskTrackers. All the nodes were installed with couple
of real minigoose temperature sensors used to measure the inlet and outlet temperatures.
Another temperature sensor at the AC duct, would give the supply temperature Tsup to the
cluster. Apart from the real world sensors, we also measured the HDD temperature and
CPU using the commands hddtemp and sensors respectively which makes use of internal
sensors in a node.
5.1.1 Hardware
The commodity hardware used in the Hadoop cluster is a mixture of di erent con gu-
ration as it is in real data center. The con guration nodes used are given in the Table 5.1
below.
All the nodes were connected with full-duplex 10/100 Mbps Ethernet network interface
cards connected to a 100 Mbps Cisco network hub.
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Node Processor and Speed RAM Storage
HP Xeon 4 core * 2.8 GHz 2 GB 143GB
Dell 4 core * 2.8 GHz 2 GB 143GB
Dell 1 core 1GB 143GB
Table 5.1: Node Information in Cluster
5.1.2 Software
All nodes in Hadoop cluster were running on Linux Ubuntu 10.04 operating system.
For Hadoop, we used the stable version of 1.0.3 across all nodes in the cluster. To support
Hadoop 1.0.3, java version of 1.6 was installed on all nodes. The nodes had password free
access between them for starting the tasks and exchange of intermediate data. The nodes
were also installed with the sensors, hddtemp to measure the CPU temperature and Disk
temperature.
5.1.3 Cluster size and Data set
To evaluate the performance our schedulers, we change the cluster size and data set
sizes. Several experiments are conducted with cluster size of 5, 10 and 14. The data sets
are varied as well at sizes of 80GB, 60GB and 40GB respectively. All nodes had default
map/reduce slot settings, block size and input split size. The replication factor was set to 3
in all experiments.
5.1.4 Benchmarks
The schedulers were evaluated using standard Hadoop Benchmarks. The benchmarks
were diligently chosen upon the criteria of CPU utilization and Disk utilization. The bench-
marks used for testing are:
 WordCount
 Distributed Grep
 PI
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The  rst 2 application benchmarks are used for evaluating both CPU temperature and
HDD temperature performance mutually. The last one is only a CPU intensive benchmark.
5.2 Results
5.2.1 Temperature Reduction
The temperature were set at di erent threshold values for di erent cluster sizes. Because
CPU and Disk have di erent threshold for temperature, we have di erent values for the CPU
and Disk as shown in the table 5.2. So, instead of checking the performance of di erent supply
temperatures, we keep the supply temperature constant and evaluate at di erent threshold
values.
CPU Disk
32 27
35 28
38 29
41 30
44 31
47 32
33
Table 5.2: Temperature Threshold for CPU and Disk
5.2.2 Static scheduler
In case of static scheduler, initially we run the experiment without the thermal module
in the FIFO scheduler, to obtain the CPU and Disk utilization in a pro le  le. The stored
pro le  le will serve as reference for our static scheduler for scheduling the jobs of same
kind in future. The experiments with di erent threshold temeperatures, cluster sizes and
application benchmarks are executed and analysed in this section.
14 Nodes, 80GB, Word count, Grep
Experiment setup included running the default Hadoop FIFO scheduler and our static
scheduler for a data size of 80GB in the HDFS on a 14 node cluster. The graphs in  gure5.1
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Figure 5.1: The CPU and Disk utilization
show the CPU and Disk utilization and jobs submitted to every hot node that exceeded the
threshold utilization of 50% for both CPU and Disk.
The CPU and disk temperature control achieved by the static scheduler for 14 nodes,
80GB is shown in  gure below.
Figure 5.2: Avg. CPU temperature of 14
nodes in WordCount for Static scheduler vs
FIFO scheduler
Figure 5.3: Avg. HDD temperature of 14
nodes in WordCount for Static scheduler vs
FIFO scheduler
Discussion
As shown in  gure 5.1, initially when Hadoop job was run with FIFO scheduler without
thermal module in it, to store the utilization information of Disk and CPU in pro le  le.
Using that pro led information, we obtain the utilization graph for CPU and Disk, which are
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Figure 5.4: Avg. CPU temperature of
14 nodes in Grep for Static scheduler vs
FIFO scheduler
Figure 5.5: Avg. HDD temperature of
14 nodes in Grep for Static scheduler vs
FIFO scheduler
represented by  rst 2 bars in the  gure 5.1 and the rest are at di erent threshold temperature
of CPU according using our static scheduler.
From the  gure, we can see that nodes that were most utilized in FIFO scheduler are
underutilized in static scheduler. The nodes hpx03 and hpx06 in a cluster, had high disk
utilization for a job and for the same job, nodes jedi04 and hpx08 had high CPU utilization.
Our static scheduler learned from the pro led information that the nodes with high utilization
created or could create a hot-spot. Using the knowledge of utilization patterns, our static
scheduler gave jobs only if the nodes were cool at the time when tasks were assigned. When
the jobs are assigned to only cool nodes, the Disk and CPU utilization in hot node drops in
static scheduler as compared with FIFO scheduler. An exception to this case is seen in Disk
utilization at T38 and T44, where the temperature was below temperature threshold for the
nodes with high utilization at the time of task assignment.
By reducing the utilization, static scheduler gave the CPU and Disk intensive tasks to
CPU and Disk powerful machines only, which prevented from creating a hot-spot and achieve
temperature reduction by running at relatively low utilization. As shown in  gure 5.4, in
static scheduler we were able to achieve best to  2 C reduction in average CPU temperature
for CPU threshold temperature of 32(T32) and the average cluster temperature gradually
increases as we increase the threshold temperature. Similarly, for the Disk temperature, we
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were able to achieve a temperature drop of  2.5 C, which again gradually increases with
higher threshold temperatures.
The grep application did not show as much improvement as Word count, as the utiliza-
tion for CPU remained below the threshold value of 50%. When the utilization is below the
threshold, the static scheduler is same as FIFO scheduler. However, for the Disk, there was
a slight disk temperature drop of for  0.65 C lowest disk temperature threshold. In other
words, grep application was not as CPU intensive or disk intensive as WordCount and hence
our static scheduler categorizes all job as "easy jobs" as mentioned in chapter 4.
5 Nodes, 40GB, Word count and Grep
Experiment setup included running the default Hadoop FIFO scheduler and our dynamic
scheduler for a data size of 40GB in the HDFS on a 5 node cluster.
Figure 5.6: Avg. CPU temperature of 5
nodes in WordCount for Static scheduler
vs FIFO scheduler
Figure 5.7: Avg. HDD temperature of 5
nodes in WordCount for Static scheduler
vs FIFO scheduler
Discussion
In WordCount, the average CPU temperature across cluster showed similar behavior to
14 node WordCount as shown in 5.6. The maximum temperature di erence of  4.7 C was
again for lowest CPU threshold and FIFO scheduler. Again, as the threshold increased, the
static scheduler showed same behavior as FIFO scheduler. Similarly, for Disk the maximum
temperature di erence of  1.2 C was observed for lowest disk threshold. As shown in  gures
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Figure 5.8: Avg. CPU temperature of
5 nodes in Grep for Static scheduler vs
FIFO scheduler
Figure 5.9: Avg. HDD temperature of
5 nodes in Grep for Static scheduler vs
FIFO scheduler
5.8 and ref g:5statdugrep, the Grep job showed no improvements in 5 node cluster as well
because the utilization for the disk and CPU remained below the threshold value.
5.2.3 Dynamic scheduler
Unlike static scheduler, in Dynamic Scheduler the utilization and temperature informa-
tion for the Disk and CPU are given at the run-time. The scheduler tries schedule the job
when the nodes are cool and maintains the average temperature across cluster by scheduling
the jobs on coolest nodes leaving the hot nodes idle.
14 Nodes, 80GB for WordCount, Grep adn Pi application
Experiment setup included running the default Hadoop FIFO scheduler and our dynamic
scheduler for a data size of 80GB in the HDFS on a 14 node cluster. The graphs show the
average CPU and HDD temperature of the cluster and standard deviation of HDD nad CPU
temperatures by running a Hadoop jobs of Word count, Grep and Pi on a data size of 80GB.
Discussion
As shown in the  gure 5.10, the job was run  rst on a default Hadoop scheduler, followed
by the dynamic scheduler runs at di erent CPU temperature. The maximum temperature
saving of  5 C was obtained at lowest CPU temperature threshold and average CPU cluster
temperature increases as the threshold increases, but the time taken to run the job decreases.
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Figure 5.10: Avg. CPU temperature
for 14 nodes in WordCount for Dynamic
scheduler vs FIFO scheduler
Figure 5.11: StdDev. of average CPU
temperature of 14 nodes, in WordCount
for Dynamic scheduler vs FIFO scheduler
Figure 5.12: Avg. HDD temperature
for 14 nodes in WordCount for Dynamic
scheduler vs FIFO scheduler
Figure 5.13: StdDev. of average HDD
temperature of 14 nodes, in WordCount
for Dynamic scheduler vs FIFO scheduler
At lower CPU threshold, not many nodes are available to execute the job and with that the
time for execution increases. The average CPU temperatures are close to t  38 C thresholds
after T32, because most nodes had CPU temperatures at same value and our scheduler tries
to maintain the temperatures at same value. When all the nodes in cluster are around
average temperature, the tasks are switched too frequently compared to the Hadoop FIFO
scheduler.
Similarly, the Hard Disk temperature in Figure 5.12 showed least temperature at the
lowest threshold(T28) and maximum temperature for the original FIFO scheduler. Again,
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Figure 5.14: Avg. CPU temperature for
14 nodes in Grep for Dynamic scheduler
vs FIFO scheduler
Figure 5.15: StdDev. of average CPU
temperature of 14 nodes, in Grep for Dy-
namic scheduler vs FIFO scheduler
Figure 5.16: Avg. HDD temperature for
14 nodes in Grep for Dynamic scheduler
vs FIFO scheduler
Figure 5.17: StdDev. of average HDD
temperature of 14 nodes, in Grep for Dy-
namic scheduler vs FIFO scheduler
like the CPU temperature, HDD temperature increases with the increase in the threshold
disk temperature. The maximum saving of  1.4 C was obtained with threshold value of
T28, and least of  0.43 C at threshold value of T32. The time taken to  nish the job was
26% more than default FIFO scheduler at T28 and drops to 4.2% at T32.
To measure the uniformity of CPU temperature in cluster, we measure the standard
deviation of average CPU temperature for our dynamic scheduler at di erent thresholds
and compare results with FIFO scheduler. In  gure 5.11 and 5.11, the standard deviation
of the FIFO scheduler is the highest. In contrast, the dynamic scheduler manages to keep
the standard deviation of CPU and Disk temperature around the same value or lesser than
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Figure 5.18: Avg. CPU temperature for
5 nodes in PI for Dynamic scheduler vs
FIFO scheduler
Figure 5.19: StdDev. of average CPU
temperature of 5 nodes, in Pi for Dynamic
scheduler vs FIFO scheduler
the FIFO scheduler, which shows that our dynamic scheduler keeps the CPU temperature
uniform across the cluster by a margin of 18.5% and 23% for HDD temperature in worst
cases.
In Grep application, although the temperature increased for both CPU and Disk in case
of FIFO scheduler, the temperature remained uniform across the cluster because the Grep
job was not computation intensive or disk intensive. From Figure 5.14 and 5.15, we can
infer that using dynamic scheduler gives a maximum temperature saving of 2.8 C for almost
all CPU temperature thresholds. However, for HDD (5.16 and 5.17), the HDD temperature
increased with increase in temperature threshold for HDD or Disk. Using dynamic scheduler
for disk intensive task in Grep application would reduce the temperature by 1 C-0.3 C.
Pi job computes value of PI, and is primarily a CPU intensive job unlike WordCount
and Grep, which are also disk intensive job. In fact, pi job does not actually need any data
in HDFS to work on. So in our results, we just consider the changes in CPU temperature
and standard deviation of CPU temperature. The  gure 5.29 shows temperature reduction
of around 3 C-2 C for all thresold values of CPU temeprature. The standard deviation of
CPU temperature in  gure 5.19, at various threshold shows improvement of 20%.
10 Nodes, 60GB, for Word count and Grep
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Experiment setup included running the default Hadoop FIFO scheduler and our dynamic
scheduler for a data size of 60GB in the HDFS on a 10 node cluster. The graphs show the
average CPU and HDD temperature of the cluster and standard deviation of HDD and CPU
temperatures by running a Hadoop jobs of Word count, Pi and Grep on a data size of 60GB.
Figure 5.20: Avg. CPU temperature
for 10 nodes in WordCount for Dynamic
scheduler vs FIFO scheduler
Figure 5.21: StdDev. of average CPU
temperature of 14 nodes, in WordCount
for Dynamic scheduler vs FIFO scheduler
Figure 5.22: Avg. HDD temperature
for 10 nodes in WordCount for Dynamic
scheduler vs FIFO scheduler
Figure 5.23: StdDev. of average HDD
temperature of 14 nodes, in WordCount
for Dynamic scheduler vs FIFO scheduler
Discussion
As shown in the  gure 5.20 unlike 14 node cluster, temperature saving of just  3.5 C
was obtained at lowest CPU temperature threshold and the CPU temperature increased as
threshold temperature increased. Similarly, in WordCount disk intensive application, using
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Figure 5.24: Avg. CPU temperature for
10 nodes in Grep for Dynamic scheduler
vs FIFO scheduler
Figure 5.25: StdDev. of average CPU
temperature of 10 nodes, in Grep for Dy-
namic scheduler vs FIFO scheduler
Figure 5.26: Avg. HDD temperature for
10 nodes in Grep for Dynamic scheduler
vs FIFO scheduler
Figure 5.27: StdDev. of average HDD
temperature of 10 nodes, in Grep for Dy-
namic scheduler vs FIFO scheduler
dynamic scheduler reduces the HDD temperature (5.22) by 1 -0.5 C. As shown in  gures 5.21
and 5.23, the dynamic scheduler manages to keep the CPU and Disk temperature uniform
across the cluster by a margin of 20% and 44% respectively at the lowest temperature
threshold values.
Similarly for Grep, unlike 14 node cluster, average temperature saving of  5 C was
obtained at lowest CPU temperature threshold and temperature saving is  3 C for the rest
of threshold values(5.24). It means that in a smaller cluster, the temperature saving drops
as the threshold increases, as the scheduler has less chances to schedule jobs on cooler nodes,
and it rather tries to keep temperature uniform. Similarly, in Grep disk intensive application,
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Figure 5.28: Avg. CPU temperature for
10 nodes in Pi for Dynamic scheduler vs
FIFO scheduler
Figure 5.29: Avg. CPU temperature for
5 nodes in Pi for Dynamic scheduler vs
FIFO scheduler
using dynamic scheduler reduces the HDD temperature by 0.8 C at lowest threshold(5.26).
From  gures 5.25 and 5.27, we can infer that the dynamic scheduler manages to keep the
CPU and Disk temperature uniform across the cluster by a margin of 25% each for almost
all temperature threshold values.
For Pi, the temeprature di erence remained almost the same as Pi on 14 node cluster,
but the temperature at higher threshold temperature increases the temperature.
5 Nodes, 40GB, for WordCount and Grep
Experiment setup included running the default Hadoop FIFO scheduler and our dynamic
scheduler for a data size of 40GB in the HDFS on a 5 node cluster. The graphs show the
average CPU and HDD temperature of the cluster and standard deviation of HDD and CPU
temperatures by running a Hadoop jobs of WordCount, Pi and Grep on a data size of 40GB.
Discussion
When the cluster size was further reduced to 5 nodes (Figures 5.30, 5.31, 5.32, 5.33.
5.29), our dynamic scheduler executed for a longer time without signi cant impact on the
average temperature of the cluster for both Disk and CPU, WordCount, Pi and Grep jobs.
The dynamic scheduler tries to schedule the jobs on cooler nodes, but when there are fewer
nodes in cluster, not every node is available for task scheduling. Even if these nodes were
available, these small number of cool nodes o set the tasks of hot nodes by increasing the
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Figure 5.30: Avg. CPU temperature for 5
nodes in WordCount for Dynamic sched-
uler vs FIFO scheduler
Figure 5.31: Avg. HDD temperature for 5
nodes in WordCount for Dynamic sched-
uler vs FIFO scheduler
Figure 5.32: Avg. CPU temperature for
5 nodes in Grep for Dynamic scheduler vs
FIFO scheduler
Figure 5.33: Avg. HDD temperature for
5 nodes in Grep for Dynamic scheduler vs
FIFO scheduler
time take to execute a job with minimal temperature saving. It is worth observing that static
scheduler was faster the dynamic scheduler and fared better in reducing the temperature for
the same con guration, which means that static scheduler depends on the job type and
utilization thresholds more than cluster size and dynamic scheduler depends more on cluster
size.
Scalability
Our dynamic scheduler is scalable, the performance improves when the cluster size is
high and drops for small clusters. Table 5.3 shows time taken and temperature saved to
execute the job with node to data ratio is maintained for di erent cluster sizes at lowest
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threshold for disk and CPU. The time taken to execute job and temperature saving is not
linear as expected. The larger cluster shows better thermal management and performance
compared to smaller one.
#nodes CPU Disk Time
14 6.2 3.5 1.3s
10 3.4 1 1.7s
5 1 0.3 2.1s
Table 5.3: Scalability comparison at di erent cluster size
5.3 Overall Performance
To measure the power consumed for computation and cooling and measure saving ob-
tained in cooling costs, we measured the inlet and outlet temperatures for original FIFO
scheduler, static scheduler and dynamic scheduler. The Figure 5.34 and 5.35 shows the dif-
ference in the inlet and outlet temperature for static and dynamic scheduler, and the table
5.4 shows total power consumed, power consumed for computation and power consumed for
cooling. In table 5.4 the D and C represents the disk and CPU threshold respectively. For
example, D27 represents the disk threshold of 27 and C32 represents CPU threshold of 32.
The sensors were used to measure the inlet and outlet temperature and from  gure 5.34 and
5.35 it is clear that both static and dynamic scheduler reduces the di erence between node?s
outlet and inlet temperatures. The temperature reduction means that Tsup does not have
to be reduced, which increases the cooling power and cost. The power of computation and
AC are calculated from the formulas in Chapter 3. The values of air density, heat of air and
 ow rate of air are picked from [27].
From the table 5.4 , the total power savings are calculated as shown in table 5.5.
Use of static and dynamic scheduler can save lot of power both on computation and
cooling fronts. The average CPU and Disk utilization across the cluster was around 50%-
60%. Since with the utilization increases the computation power and cooling power, any
further increase in either of utilization will save more power and cooling costs. Although
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Scheduler Computation
Power(PC)
Cooling Power
(PAC)
Total
Power(P)
Original 2592.231 877.981 3470.212
dynamic D27 and C32 2198.244 753.795 2952.039
dynamic D29 and C38 2224.899 761.259 2986.159
dynamic D31 and C43 2272.578 777.047 3049.625
dynamic D33 and C45 2318.228 786.788 3105.016
dynamic D35 and C47 2338.321 795.242 3133.564
static D29 and C38 2164.083 740.050 2924.133
static D31 and C43 2226.992 750.105 2976.098
static D33 and C45 2280.925 777.455 3058.381
static D35 and C47 2306.779 772.607 3079.386
Table 5.4: Power consumption in KW for scheduler
Scheduler Total Power saving(in %)
dynamic D27 and C32 14.932%
dynamic D29 and C38 13.949%
dynamic D31 and C43 12.120%
dynamic D33 and C45 10.5%
dynamic D35 and C47 9.7%
static D29 and C38 15.7%
static D31 and C43 14.23%
static D33 and C45 11.86%
static D35 and C47 11.26%
Table 5.5: Power saving for scheduler
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Figure 5.34: Outlet-Inlet temperatures
for Static scheduler
Figure 5.35: Outlet-Inlet temperatures
for Dynamic scheduler
our schedulers save power, it comes at the cost of performance and execution time. It is a
trade o to use which threshold values keeping execution time in mind. In fact, increase
execution time does not increase the computation power as some nodes which are hot are
idle and idle nodes consume less power compared to nodes running on high utilization. The
execution time increased 20%-70% for static scheduler and 56%-9% for dynamic scheduler
for lowest-highest threshold values. Ideally, all real time scheduling of high priority tasks
should have highest threshold as job execution time is critical in that scenario and o ine
data processing, web analysis, low priority jobs which do not have strict time constraints
should be executed in our scheduler with low threshold values for temperature.
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Chapter 6
Conclusions and Future Work
6.1 Conclusions
In chapter 1 we saw how unstructured data is booming in the digital world and how
Cloud Computing is being adopted by corporate world to analyze, manage and store the data.
The we outlined how a distributed framework like Hadoop with MapReduce programming
model is widely being used by many organizations in their Data centers to analyze big
data. We then outlined the need for thermal management in data centers and described how
cooling cost in data centers is increasing and becoming una ordable. The need of thermal
management in data centers is aggravated by the absence of thermal management module
in Hadoop.
In chapter 2, we discussed about Hadoop architecture and how it works with it?s two
main components, MapReduce and HDFS. We understood that Hadoop?s master-slave-client
architecture and the purposes of 2 masters and slaves. We learned about HDFS- the  lesys-
tem of Hadoop used to store the data set of size peta bytes or tera bytes in form of small
uniform sized blocks. The blocks are replicated to improve reliability and job localization.
We also learned how MapReduce processing model then processes the data in the HDFS as
<key,value> pair. The synchronization of map and reduce tasks and exchange of data were
explained in this chapter.
In chapter 3, we discussed thermal model of data center in detail. The chapter explained
about the power consumed for computation, cooling and various temperature that is related
to the thermal model of data centers. In chapter 3, we further explained existing solutions
that were proposed to reduce the cooling costs and manage heat in data center e ectively.
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These solutions included e ciently scheduling tasks based on thermal model in data center
and hence reduce or minimize the heat dissipated by the nodes.
In chapter 4, we proposed our solutions to manage heat and reduce cooling costs in data
center. We proposed 2 schedulers, a static scheduler which learns from the previous job runs
to schedule the tasks on cool nodes based on utilization reports and temperature stored in
pro le  le. The second scheduler is a dynamic scheduler which schedules the job based on
current utilization and temperature of disk and CPU. We implemented both the scheduler
on top of Hadoop?s default FIFO scheduler and developed a thermal model using the design
of our scheduler.
Finally in chapter 5, we evaluated the performance of our schedulers against Hadoop?s
FIFO scheduler by testing our scheduling algorithms against benchmarks like WordCount,
Pi and Grep. The temperature of CPU and Disk were observed at various threshold tem-
peratures of Disk and CPU and cluster sizes. We showed that our scheduler works better
with large cluster sizes and works better with hot spots and also schedules job based on
utilization pattern. In a cluster with same temperature across all nodes, the performance of
the dynamic scheduler remained same as the FIFO scheduler. We successfully showed that
the outlet temperature is reduced by using our scheduler and the computation power, cooling
power and total power are reduced by ~15% even for a moderate disk and CPU utilization.
6.2 Future Work
There are several lines of research arising from the work presented in this thesis. Some
of interesting future researches include:
 Integrate dynamic and static scheduler: Both our schedulers work on di erent prin-
ciples, one schedules the job on prior knowledge and another schedules the job based
on current utilization. Integrating both these schedulers could use prior job knowledge
and current conditions to schedule the job e ciently in data center cluster.
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 Implement Re-circulation Matrix: We did not consider re-circulation e ect in our
thesis. But, there are schedulers which schedules the job with intention of minimizing
Heat re-circulation. Our scheduler?s design is  exible, it can take threshold values
for each node in cluster implemented as matrix and schedule the job. Considering
re-circulation matrix in our scheduler can achieve better thermal balance.
 Implement thermal module on Fair and Capacity scheduler: The thermal module is
implemented currently on FIFO scheduler which has single queue to maintain tasks.
The scheduler developed by Facebook and Yahoo, have multiple queues and parallel
scheduling capabilities. Implementing thermal module on top of these schedulers might
be interesting both on thermal management and performance fronts.
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