
Cooling Hadoop: Temperature Aware Schedulers in Data Centers

by

Sanjay Kulkarni

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 4, 2013

Keywords: Hadoop, HDFS, MapReduce, Temperature, Scheduler, Distributed Computing,
Cloud Computing, Cluster, Data Center

Copyright 2013 by Sanjay Kulkarni

Approved by

Xiao Qin, Chair, Associate Professor of Computer Science and Software Engineering
Alvin Lim, Associate Professor of Computer Science and Software Engineering
Saad Biaz, Associate Professor of Computer Science and Software Engineering

Abstract

The amount of unstructured data, also known as Big Data in Internet is growing every

day. Because the Big data is unstructured, a large-scale distributed batch processing in-

frastructure like Hadoop is used instead of traditional databases. Hadoop is an open source

framework, which uses MapReduce programming model to process large data set.

Hadoop’s true power lies in while working in a cluster of machines in data centers.

Hadoop’s master-slave architecture enables master node to control the slave nodes to store

and process the data. When a client application submits a job to Hadoop, the scheduler in

master node schedules tasks on every available slave to process the job in parallel fashion.

Many existing Hadoop schedulers do not consider the nature of the job, workload, power and

temperature distribution in the data center, which is very critical and important to improve

life of devices and cut down on cooling costs, which is about 25% of total investment in data

centers.

Based on thorough investigations of Hadoop’s existing schedulers, we propose a couple of

new thermal aware schedulers that schedules tasks to balance the outlet temperature across

all nodes and reduce AC costs in data center. First is a dynamic scheduler, which schedules

a job based on the CPU and disk’s temperature and utilization feedback given by all slave

nodes at run-time. Second is a static scheduler, which assigns tasks to slaves based on CPU

and disk’s temperature and stored job information. Both these schedulers are implemented

on top of Hadoop’s FIFO scheduler. We test our schedulers and FIFO scheduler by running

a set of standard Hadoop benchmark applications like WordCount, DistributedGrep, PI at

different temperature, utilization thresholds and cluster sizes. The experimental results show

that our schedulers achieve average outlet temperature saving of ∼2◦C over the default FIFO

scheduler that saves about 15% of cooling cost with little performance overhead.

ii

Acknowledgments

There are many people in Auburn who deserve my gratitude for helping me pursue my

M.S dreams. Foremost among them is Dr. Xiao Qin, who has truly been an outstanding

adviser. Without his broad vision and continuous support, this thesis would never have

been possible. I shall forever remain indebted to him for his guidance in my research and my

career. I would also like to thank Dr. Saad Biaz and Dr. Alvin Lim for serving as members

of my advisory committee.

I also owe much gratitude to Dr. Daniela Marghitu, Dr. David Umphress and Dr.

Kai Chang for shaping my graduate student career for the better. I would also like to

acknowledge the efforts of Ms. Michelle Wheeles, Ms. Jo Lauraitis, Ms. Carol Lovvorn and

Ms. Penny Christopher in helping me keep my school and immigration paper work in order.

My thanks also go out to my colleagues at Shelby 3139 and Shelby 2104. In particular, I

would like to thank the group of Ajit Chavan, Yun Tian, Ji Zhang, Xunfei Jiang and Tausif

for suggestions and help. I am also deeply indebted to the families of Dr. Dave Sree and Mr.

Nagaraj Ejantkar for ensuring that I missed none of the festivals celebrated back home. In

addition to these families, I would also like to thank my brother Santosh Kulkarni, my friends

Adarsh Jain, Harish Rao, Vijay Sheshadri, Abilash Kittanna, Prateek Hejmady, Nitilaksh

Hiremath, Amith Jain, Poojita Puligundla, Kanika Grover, Swathi Dumpala, Ramaraju

Yelavarthy, Harsha Banavara, Pratap Simha, Deepika Rao and Rakshith Venkatesh for all

their support, laughs and companionship.

Above all, I would like to express my deepest gratitude to my family for their love,

compassion and support in my endeavor. Together they define my existence and it is to

them that I lovingly dedicate this work.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vi

List of Tables . x

1 Introduction . 1

1.1 Overview of MapReduce Framework in Hadoop 4

1.2 Overview of Hadoop Distributed File System 5

1.3 Reliability and Fault tolerance in MapReduce and HDFS of Hadoop 7

1.4 Job Schedulers in Hadoop . 7

1.5 Need for thermal management . 8

1.6 Motivation . 9

1.7 Our Contribution . 9

1.8 Organization . 10

2 Hadoop . 11

2.1 Hadoop Architecture . 11

2.2 HDFS . 12

2.2.1 NameNode, DataNode and Clients 13

2.2.2 Backup Node and Secondary NameNode 14

2.2.3 Replica and Block Management . 15

2.3 MapReduce . 16

2.3.1 JobTracker and TaskTracker . 16

3 Motivation and Existing Solutions . 20

3.1 Thermal model of a data center . 21

iv

3.2 Related Work . 27

4 Design of Cool Schedulers . 29

4.1 Hadoop FIFO scheduler . 29

4.2 Design of our scheduler . 33

4.2.1 Static scheduler . 35

4.2.2 The Dynamic Feedback scheduler . 40

4.3 Difference between Static and Dynamic scheduler 46

5 Results and Interpretation . 47

5.1 Experiment Setup . 47

5.1.1 Hardware . 47

5.1.2 Software . 48

5.1.3 Cluster size and Data set . 48

5.1.4 Benchmarks . 48

5.2 Results . 49

5.2.1 Temperature Reduction . 49

5.2.2 Static scheduler . 49

5.2.3 Dynamic scheduler . 53

5.3 Overall Performance . 61

6 Conclusions and Future Work . 64

6.1 Conclusions . 64

6.2 Future Work . 65

Bibliography . 67

Appendices . 70

v

List of Figures

2.1 Hadoop Architecture . 12

2.2 HDFS Architecture . 13

2.3 MapReduce data flow. 17

3.1 Data center layout . 21

3.2 Coefficient of Performance . 25

3.3 The rise in the Disk utilization increases the Outlet temperature 26

4.1 High Level TaskAssignment. 30

4.2 Static Scheduler communication Flow . 38

5.1 The CPU and Disk utilization . 50

5.2 Avg. CPU temperature of 14 nodes in WordCount for Static scheduler vs FIFO

scheduler . 50

5.3 Avg. HDD temperature of 14 nodes in WordCount for Static scheduler vs FIFO

scheduler . 50

5.4 Avg. CPU temperature of 14 nodes in Grep for Static scheduler vs FIFO scheduler 51

5.5 Avg. HDD temperature of 14 nodes in Grep for Static scheduler vs FIFO scheduler 51

vi

5.6 Avg. CPU temperature of 5 nodes in WordCount for Static scheduler vs FIFO

scheduler . 52

5.7 Avg. HDD temperature of 5 nodes in WordCount for Static scheduler vs FIFO

scheduler . 52

5.8 Avg. CPU temperature of 5 nodes in Grep for Static scheduler vs FIFO scheduler 53

5.9 Avg. HDD temperature of 5 nodes in Grep for Static scheduler vs FIFO scheduler 53

5.10 Avg. CPU temperature for 14 nodes in WordCount for Dynamic scheduler vs

FIFO scheduler . 54

5.11 StdDev. of average CPU temperature of 14 nodes, in WordCount for Dynamic

scheduler vs FIFO scheduler . 54

5.12 Avg. HDD temperature for 14 nodes in WordCount for Dynamic scheduler vs

FIFO scheduler . 54

5.13 StdDev. of average HDD temperature of 14 nodes, in WordCount for Dynamic

scheduler vs FIFO scheduler . 54

5.14 Avg. CPU temperature for 14 nodes in Grep for Dynamic scheduler vs FIFO

scheduler . 55

5.15 StdDev. of average CPU temperature of 14 nodes, in Grep for Dynamic scheduler

vs FIFO scheduler . 55

5.16 Avg. HDD temperature for 14 nodes in Grep for Dynamic scheduler vs FIFO

scheduler . 55

5.17 StdDev. of average HDD temperature of 14 nodes, in Grep for Dynamic scheduler

vs FIFO scheduler . 55

vii

5.18 Avg. CPU temperature for 5 nodes in PI for Dynamic scheduler vs FIFO scheduler 56

5.19 StdDev. of average CPU temperature of 5 nodes, in Pi for Dynamic scheduler vs

FIFO scheduler . 56

5.20 Avg. CPU temperature for 10 nodes in WordCount for Dynamic scheduler vs

FIFO scheduler . 57

5.21 StdDev. of average CPU temperature of 14 nodes, in WordCount for Dynamic

scheduler vs FIFO scheduler . 57

5.22 Avg. HDD temperature for 10 nodes in WordCount for Dynamic scheduler vs

FIFO scheduler . 57

5.23 StdDev. of average HDD temperature of 14 nodes, in WordCount for Dynamic

scheduler vs FIFO scheduler . 57

5.24 Avg. CPU temperature for 10 nodes in Grep for Dynamic scheduler vs FIFO

scheduler . 58

5.25 StdDev. of average CPU temperature of 10 nodes, in Grep for Dynamic scheduler

vs FIFO scheduler . 58

5.26 Avg. HDD temperature for 10 nodes in Grep for Dynamic scheduler vs FIFO

scheduler . 58

5.27 StdDev. of average HDD temperature of 10 nodes, in Grep for Dynamic scheduler

vs FIFO scheduler . 58

5.28 Avg. CPU temperature for 10 nodes in Pi for Dynamic scheduler vs FIFO scheduler 59

5.29 Avg. CPU temperature for 5 nodes in Pi for Dynamic scheduler vs FIFO scheduler 59

viii

5.30 Avg. CPU temperature for 5 nodes in WordCount for Dynamic scheduler vs

FIFO scheduler . 60

5.31 Avg. HDD temperature for 5 nodes in WordCount for Dynamic scheduler vs

FIFO scheduler . 60

5.32 Avg. CPU temperature for 5 nodes in Grep for Dynamic scheduler vs FIFO

scheduler . 60

5.33 Avg. HDD temperature for 5 nodes in Grep for Dynamic scheduler vs FIFO

scheduler . 60

5.34 Outlet-Inlet temperatures for Static scheduler 63

5.35 Outlet-Inlet temperatures for Dynamic scheduler 63

ix

List of Tables

3.1 Costs in Data Center . 20

3.2 Table of Symbols to thermally model a data center. 22

4.1 Differences between Static scheduler and Dynamic scheduler 46

5.1 Node Information in Cluster . 48

5.2 Temperature Threshold for CPU and Disk . 49

5.3 Scalability comparison at different cluster size 61

5.4 Power consumption in KW for scheduler . 62

5.5 Power saving for scheduler . 62

x

Chapter 1

Introduction

Cloud computing often referred to as simply the cloud, is leading emerging utility com-

puting, which provides the basic level of computing service that is considered essential to

meet the everyday needs of the general community. Gartner Inc. have predicted that at

year-end 2016, more than 50% of Global 1000 companies will have stored customer-sensitive

data in the public cloud [12]. IDC have predicted that 80% of new commercial enterprise

apps will be deployed on cloud platforms [11]. Without any doubts we can say that term

cloud computing phrase has become ”du jour” of the computing world.

Although the cloud computing has existed now for over a decade, it is still a new

business model in computing world and lacks proper definition. IBM in [9], defines Cloud

computing as the delivery of on-demand computing resources, which includes everything

from applications to data centers, over the Internet and on a pay-for-use basis. Gartner in

[4], defines Cloud computing as a style of computing where scalable and elastic IT-related

capabilities are provided as services to external customers using Internet technologies. NIST

(National Institute of Standards and Technology) in [15], defines Cloud Computing as a

model for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or service

provider’s interaction.

Cloud computing has been very popular with small and medium business where Cloud

computing gives access to the software, technologies and other services for low cost. Cloud

computing can save money when the service provider provides fast machines, installs soft-

ware, maintains and runs it for client without having client to invest individually on each

1

of them. Clients also save on investments like the IT support, hardware space, maintenance

and cost of infrastructure to support the hardware. The high availability trait of cloud com-

puting allows clients to access the software applications from anywhere using a computer

system that is connected to the internet. On the performance side, the clients get access to

the powerful distributed or grid computing infrastructure which is very useful for jobs which

require complex calculations and large data processing.

According to the Software Engineering Institute[22], the cloud computing environments

can either be public or private. These computing environments represent the way the services

are offered to the clients. In public environment the services are offered to clients either free

or for a fee. The private environments are generally limited to organizations in which services

are deployed behind the organization’s firewall. The computing environments should take

one of the 3 popular service models as described below:

• Infrastructure-as-a-Service (IaaS): The computational infrastructure includes of a set

of virtual machines that have computation and storage capacity and are available for

access over the Internet. In this model, clients can run computation intensive or a data

intensive job using a variety of interfaces that facilitate the interaction. The services

are provided over an infrastructure and client’s programs do not have rights to access

or modify it. Some examples of IaaS include: Amazon Cloud Formation, Rackspace

Cloud and Google Compute Engine.

• Platform-as-a-Service (PaaS): This service model provides the basic platform upon

which the clients can write their own applications and deploy it. The platform in-

cludes operating systems, libraries, environments, services, supporting tools provided

by the service provider. Like IaaS, PaaS also does not allow user programs to alter the

underlying infrastructure. However, they can modify and change the settings that are

in application’s scope and environment [14].

2

• Software-as-a-Service (SaaS): In this service model, Software developed by the client,

provider or by a third party is provided as service to the client. The client do not

run the application locally, instead it would use an API to communicate with the

application that runs in the cloud platform remotely. These APIs cannot modify the

underlying cloud infrastructure, however they can still be used to customize and change

the application’s configuration. A few examples of SaaS include GMail, GDocs and

Office 365.

Along with service models like Iaas and PaaS, MapReduce and BigData processing

are growing in popularity every day. In fact, popular IaaS models like Google Compute

Engine are used along with the distributed processing framework like Apache Hadoop which

implements MapReduce framework to process and analyze the Big Data. Microsoft Azure,

Amazon EC2 also use different distributions of Hadoop to implement PaaS and deploy

applications. There are several real world example and prototypes of PaaS and IaaS being

built entirely on the Hadoop framework [23, 20]. It is believed that Cloud Computing based

on Hadoop will be the next big trend in the IT industry.

To supply the demand for large computing power and storage space in service models like

IaaS, PaaS and SaaS, the service providers are inclined towards creating new data centers.

Data centers are facilities that host hundreds of thousands of servers which concurrently

support a myriad of distinct services and applications[14]. With the growth of private cloud,

the enterprises already having the traditional data center infrastructure want to use their

data centers with Cloud. That helps the service providers save cost by bulk deployment,

instill cloud infrastructure and help them to easily manage and maintain the resources. Also,

flexibility of cloud helps them to easily consolidate discrete cloud environments with discrete

data centers and morph data centers to much more efficient and effective infrastructure than

its current state of affairs[16].

The amount of unstructured data, also known as Big Data in Internet is growing every

day. In 2012 Big data is expected to grow 48% larger to 2.7 Zetta (2.7*1021) bytes annually

3

and by 2015 it is expected to triple to 8 Zeta bytes given the rising popularity of sites like

Facebook, Twitter, Amazon and YouTube. The Big data is large and unstructured, so it is

really hard to process and analyze using the traditional database models like RDBMS. In

cloud computing, MapReduce is the programming model used for processing and analyzing

large data sets. Google introduced MapReduce1: a large-scale distributed batch process-

ing infrastructure to analyze and process these large data sets. MapReduce programming

model is used in Apache’s Hadoop as well which is open sourced software framework for

processing large data. Hadoop could actually process ”web-scale” data on the order of hun-

dreds of gigabytes to terabytes or petabytes[30]. Hadoop is designed to efficiently process

large volumes of information by connecting many commodity computers together to work

in parallel. Hadoop uses the Hadoop Distributed File System to store the large data and

provide streaming access to the data to every node in the cluster while working in parallel.

MapReduce and HDFS together give Hadoop the power to process and analyze the data.

Hadoop is being used in areas of web crawling, analytics machine learning, image processing

and data mining which have huge jobs that are typically handled in data centers having tens

of thousands of computers.

1.1 Overview of MapReduce Framework in Hadoop

MapReduce is a programming model designed for processing large volumes of data in

parallel by dividing the work into a set of independent tasks. The model does not work by

sharing the data arbitrarily between the nodes. Instead, the data elements in the MapReduce

are immutable. The data is written only once and read many times. The data read from the

input files in HDFS are processed and converted to intermediate values and further processed

to generate outputs. Any changes on the input files during this process are not reflected on

the actual files.

1”MapReduce” is the name for both programming model and distributed processing infrastructure in-
troduced by Google. To disambiguate, we further refer distributed programming infrastructure with name
”MapR” and as is for programming model.

4

As the name suggests MapReduce programs process the input data in two stages- Map

stage and Reduce stage. In the mapping stage, the mapper takes one item at a time from the

input list of data elements that are fetched from the HDFS and transforms to an intermediate

output data element. The Map operations are paralleled when input file set is first split to

several pieces called File Splits or Input Splits. Every mapper would have exactly one input

split; the number of mappers created is dependent on the number of input splits. Splitting

the input file set helps in paralleling the processing as the mappers do not have to synchronize

and contend to read the file. Moreover, mappers do not have any identities of their own, so

all mappers are the same and are not aware of each other’s existence let alone communication

taking place between them.

Every mapper that receives the input split processes it in a specified format. The input

split parser (or Record Reader) in the mapper parses the split and generates the key-value

pairs. The key-value pairs are processed in parallel by the mappers, one at a time to generate

exactly one intermediate key-value pair for every (key,value) pair. The output (key,value)

pair of the mapper serves as input to the reducer.

When the mapping phase has completed, the intermediate (key, value) pairs must be

exchanged between machines to send all values with the same key to a single reducer. The

reducer receives the intermediate data generated by the mapper as input, combines the values

of all mapper outputs and generates a single output data corresponding to the input data

fetched by the mapper. The reducers reduce a key value that is unique to each other, so

reducers are same as mappers in the sense that they do not have to communicate with each

other and also remain anonymous to each other.

1.2 Overview of Hadoop Distributed File System

The Network File System (NFS) is the most commonly used distributed file system,

where the file system exists on some node in a network. The filesystem appears as the single

drive and its storage capacity is limited to the HDD capacity of that node, which means

5

that large amount of information cannot be stored in NFS. However, to store the peta or

tera bytes of data we need to add a node with HDD to the network, but the filesystems in

both these nodes would be discrete and would appear as discrete drives in the client. For

example, to store a file of 1TB size in NFS having 2 nodes of 500GB storage each, we have to

split the 1TB file to 2 different files and store each file in the 2 nodes in network. So, when

the client requests a read/write to the file, it has to manage 2 different file pointers or more

if the file were any bigger and the NFS had more storage nodes. On the other hand, if there

are many clients trying to access information in one file, the server gets overloaded with

requests and filesystem throughput drops significantly. Second drawback of using the NFS is

that it is not reliable, i.e if the storage node goes down then the information is unavailable.

Last important drawback of NFS is that the clients should always copy the data to the local

machines before they can operate on it.

Hadoop Distributed File System (HDFS) is a filesystem designed for storing very large

files with streaming data access patterns, running on clusters on commodity hardware[7]. It

is designed to run in user space making it extremely portable across platforms. For the sake

of dealing with large files, it provides high throughput access of data to application rather

than low latency access. Like any other local file system, HDFS also divides the files in

the file system to blocks, but block sizes in HDFS are larger in contrast to local file system

blocks. Finally to improve reliability, HDFS replicates the data by a factor as configured by

user and it uses strategies to replicate the data in an efficient manner to improve availability

of data and reduce network bandwidth utilization.

Like MapReduce, HDFS implementation also follows the master/slave architecture in

the cluster. The master node known as NameNode manages the system namespace and

regulates the access to files by clients. In addition there are DataNodes, which are the

slaves, and usually exist in every node in the cluster. The NameNode is responsible to open,

close, rename the files and DataNodes are responsible for storing, reading, writing data and

follow the instructions of NameNode [7]. In addition to the NameNode and the DataNode

6

there is a Secondary NameNode to improve reliability and fault tolerance which acts as

NameNode when the primary NameNode fails.

1.3 Reliability and Fault tolerance in MapReduce and HDFS of Hadoop

The user never explicitly marshals information from one machine to another; all data

transfer is handled by the Hadoop MapReduce platform itself, guided implicitly by the dif-

ferent keys associated with values [32]. This is fundamental element of Hadoop MapReduce’s

reliability. Hadoop gets periodic reports from the DataNodes or TaskTrackers which helps

the master node to identify a failed node and restart the task assigned to it. If the failed

nodes have been performing side-effects tasks, e.g., communicating with the outside world,

then the shared state must be restored in a restarted task. By eliminating communication

and side-effects, restarts can be handled more gracefully.

1.4 Job Schedulers in Hadoop

The performance of a master-worker system like MapReduce system closely ties to its

task scheduler on the master. Hadoop schedulers are designed as jar module and can be

easily plugged in to any Hadoop distro. Although there have been lot of work on schedulers,

they are still in the early stages of its life compared to OS’s schedulers. Still, there are quite

a few popular schedulers that are worth mentioning:

• The FIFO scheduler is the default scheduler in Hadoop which uses a single queue for

scheduling tasks (partitioned jobs) with a FIFO method.

• Yahoos capacity scheduler uses multiple queues for scheduling. It schedules jobs and

assigns resources to jobs based on resources capacity allocated for the queue of jobs

and usage density density of capacities.

• Facebooks fair scheduler uses multiple queues for allocating different resources in the

cluster. The fair scheduler maintains a pool of jobs with each pool having a dedicated

7

number of Map and Reduce slots. It runs a job by using the map and reduce slots and

if a pool is not running any job then the free slots can be allocated to other pools.

• Dynamic Priority Scheduler is a parallel task scheduler in which it allows users to

control their allocated capacity by adjusting their spending over time.

1.5 Need for thermal management

Although data centers running Map-Reduce framework are effcient in processing Big-

Data, it comes at the cost of investments in various forms like realty, electricity, servers,

maintenance etc. In recent years big companies like Facebook, Microsoft and Google have

invested billions of dollars in just maintaining the infrastructure of the data center supporting

cloud services. The high maintenance cost is predominantly due to high electricity and

cooling costs, which is 25% of the total investment. In fact, the cooling costs of a data center

are higher than the entire IT equipment it supports [3].

Tremendous amount of data storage, computation power and the access to the data

centers nowadays result in high power consumption on servers in data centers. The demand

for data and short job latency result in high CPU and disk utilization. High utilization over a

period of time gets CPU and disk heated up and cooling systems work hard to normalize the

heat generated and hence increases the cooling costs. So, it becomes extremely important to

manage temperature and power in a data center. There are a number of works on thermal

and power management of data centers. Some works are based on developing a scheduler

for temperature balancing, workload balancing and computing energy minimization. Some

works reduce the heat recirculation and some techniques develop a scheduler to manage in

constant and linear cooling model.

Most of the schedulers in Hadoop have concentrated on looking at the scheduling prob-

lem from the masters perspective, where the scheduler on the master node tries to assign

equal work across all the worker nodes[33]. None of the Hadoop schedulers developed so far

considers the nature of the job, the power consumption of the node and most importantly

8

the thermal model of the data center while scheduling the jobs. Although there have been

many works on scheduling the tasks in the data center to make data center more thermal

aware, none of the schedulers have been implemented in Hadoop to see their performance in

reality.

1.6 Motivation

Many thermal aware algorithms are primarily simulation based. There are sufficient

evidences to prove that Computational Fluid Dynamics is too complex and not suitable for

Online scheduling [26] [18]. Most of the algorithms do not consider the nature of the tasks,

a task might be a CPU intensive task, or it might be a data intensive task. The CPU and

the disk temperature rise by scheduling the job on a node is ignored. The algorithms do not

have means to manage the temperature and the performance if the temperature of the nodes

if they are above certain threshold. Finally, the algorithms are not implemented in Hadoop

and may not be accurate for Hadoop.

1.7 Our Contribution

Based on thorough investigations of the shortcoming of Hadoop’s existing schedulers,

we propose a couple of new thermal aware schedulers that schedules tasks on the slave nodes

with only intention of balancing the temperature across all nodes and reduce AC costs in data

center. We formulate an algorithm for a dynamic scheduler, which schedules the job based

on the CPU and disk temperatures and utilization feedback given by the slave nodes. Second

is a static scheduler, which assigns a job to slave based on its CPU and disk temperature and

stored profile information of job of same kind. Both these schedulers are implemented on top

of Hadoops FIFO scheduler. We run a set of standard Hadoop benchmarks and application

like word count, distributed grep, pi at different temperature thresholds, cluster sizes and

utilization on our schedulers and Hadoop’s FIFO scheduler. The experimental results show

9

that our schedulers achieve average outlet temperature saving of 1-2◦C over the default

scheduler which saves about 15%-10%of cooling cost with little performance overhead.

1.8 Organization

This thesis is organized as follows. Chapter 2 explains in detail the Hadoop’s archi-

tecture, HDFS and MapReduce framework in Hadoop. Chapter 3 explains the problem

and explains existing solutions. Chapter 4 describes design of our thermal aware scheduler.

Chapter 5 analyzes the results and performance of our schedulers with the Hadoop’s default

FIFO scheduler. Chapter 6 refers to future work and concludes the thesis.

10

Chapter 2

Hadoop

Apache Hadoop is an open source software project that enables the distributed process-

ing of large data sets across clusters of commodity servers. It is designed to scale up from

a single server to thousands of machines, with a very high degree of fault tolerance. Rather

than relying on high-end hardware, the resiliency of these clusters comes from the softwares

ability to detect and handle failures at the application layer. Hadoop enables a computing

solution that is scalable, cost effective, flexible and fault tolerant [10].

2.1 Hadoop Architecture

Hadoop is implemented using relatively simple model of Client-Master-Slave design

pattern. There are two masters in the architecture, which are responsible for the controlling

the slaves across the cluster. The first master is the NameNode, which is dedicated to manage

the HDFS and control the slaves that store the data. Second master is JobTracker, which

manages parallel processing of HDFS data in slave nodes using the MapReduce programming

model. The rest of the cluster is made up of slave nodes which runs both DataNode and

TaskTracker daemons. DataNodes obey the commands from its master NameNode and store

parts of HDFS data decoupled from the meta-data in the NameNode. TaskTrackers on the

other hand obeys the commands from the JobTracker and does all the computing work

assigned by the JobTracker. Finally, Client machines are neither Master or a Slave. The

role of the Client machine is to give jobs to the masters to load data into HDFS, submit

Map Reduce jobs describing how that data should be processed, and then retrieve or view

the results of the job when its finished.

11

Figure 2.1: Hadoop Architecture

Figure 2.1 [8] shows the basic organization of the Hadoop cluster. The client machines

communicates with the NameNode to add, move, manipulate, or delete files in HDFS. The

NameNode in turn calls the DataNodes to store, delete or make replicas of data being

added to HDFS. When the client machines want to process the data in the HDFS, they

communicate to the JobTracker to submit a job that uses MapReduce. JobTracker divides

the jobs to map/reduce tasks and assigns it to the TaskTracker to process it.

Typically, all nodes in Hadoop cluster are arranged in the air cooled racks in a data

center. The racks are linked with each other with the help of rack switches which runs on

TCP/IP.

2.2 HDFS

Hadoop Distributed File System is the filesystem designed for Hadoop to store the large

sets of data reliably and stream those data to the user application at the high throughput

rather than providing low latency access. Hadoop is designed in Java and that makes it

incredibly portable across platform and operating systems. Like the other distributed file

systems like Lustre and PVFS, HDFS too stores the meta data and the data separately. The

12

Figure 2.2: HDFS Architecture

NameNode stores the meta-data and the DataNodes store the application data. But, unlike

Lustre and PVFS, the HDFS stores the replicas of the data to provide high throughput

data access from multiple sources and also data redundancy increases the fault tolerance of

HDFS.

When the HDFS replicates it does not replicate the entire file, it divides the files into

fixed sized blocks and the blocks are placed and replicated in the DataNodes. The default

block size in Hadoop is 64MB and is configurable.

2.2.1 NameNode, DataNode and Clients

The Figure 2.2 [28] shows the HDFS architecture in Hadoop which contains three im-

portant entities- NameNode, DataNode and Client. The NameNode is responsible for storing

the meta-data, and track the memory available and used in all the DataNodes. The client

which wants to read the data in the HDFS first contacts the NameNode. The Namenode

then looks for the block’s DataNode which is nearest to the client and tells the client to

access the data from it. Similarly, when the client wants to write a file to the HDFS, it

13

requests the NameNode to nominate 3 DataNodes to store the replicas and the client writes

to it in streamline fashion. The HDFS would work efficiently if it stored the files of larger

size, at least size of a block because the HDFS stores the Namespace RAM. If it were all

smaller files in HDFS then the inodes information would occupy the entire RAM leaving no

room for other operations.

The NameNode would register all the DataNodes at the start-up based on the NamspaceID.

The NameSpaceID would be generated when the NameNode formats the HDFS. The DataN-

odes are not allowed to store any blocks of data if the NamespaceID does not match with

the ID of the NameNode. Apart from the registering the DataNodes in the start-up the

DataNodes send the block reports to the NameNode periodically. The block report contains

the block id, the generation report and the length of the each block that DataNode holds.

Every tenth report sent from the DataNode is a block report to keep the NameNode updated

about all the blocks. A DataNode also sends the HeartBeat messages that just notify the

NameNode that it is still healthy and all the blocks in it are intact. When the NameNode

does not receive a heartbeat message from the DataNode for about 10 seconds, it assumes

that the DataNode is dead and uses it’s policies to replicate the data blocks in the dead

node to other nodes that are alive.

Similar to most conventional file systems, HDFS supports operations to read, write and

delete files, and operations to create and delete directories. The user references files and

directories by paths in the namespace. The user application generally does not need to know

that file system metadata and storage are on different servers, or that blocks have multiple

replicas.

2.2.2 Backup Node and Secondary NameNode

The NameNode is the single point of failure for the Hadoop cluster, so the HDFS copies

the of the Namespace in NameNode periodically to a persistent storage for reliability and

this process is called checkpointing. Along with the NameSpace it also maintains a log of

14

the actions that change the Namespcace, this log is called journal. The checkpoint node

copies the NameSpace and journal from NameNode to applies the transactions in journal on

the Namespace to create most up to date information of the namespace in NameNode. The

backup node however copies the Namespace and accepts journal stream of Namespace and

applies transactions on the namespace stored in its storage directory. It also stores the upto-

date information of the Namespace in memory and synchronizes itself with the NameSpace.

When the NameNode fails, the HDFS picks up the Namespace from either BackupNode or

CheckPointNode.

2.2.3 Replica and Block Management

HDFS makes replicas of a block with a strategy to enhance both the performance and

reliability. By default the replica count is 3, and it places the first block in the node of

the writer, the second is placed in the same rack but different node and the third replica is

placed in different rack. In the end, no DataNode contains more than one replica of a block

and no rack contains more than two replicas of same block. The nodes chosen on the basis

of proximity to the writer, to place the blocks.

There are situations when the blocks might be over-replicated or under-replicated. In

case of over-replication the NameNode deletes the replicas within the same rack first and from

the DataNode, which has least available space. In case of under-replication, the NameNode

maintains a priority queue for the blocks to replicate and the priority is high for the least

replicated blocks.

There are tools in HDFS to maintain the balance and integrity of the data. Balancer

is a tool that balances the data placement based on the node disk utilization in the cluster.

The Block Scanner is a tool used to check integrity using checksums. Distcp is a tool that

is used for inter/intra cluster copying.

15

2.3 MapReduce

In Introduction chapter we understood that MapReduce is a programming model de-

signed for processing large volumes of data in parallel by dividing the work into a set of

independent tasks. MapReduce programs are influenced by functional programming con-

structs used for processing lists of data. The MapReduce fetches the data from the HDFS

for parallel processing. These data are divided in to blocks as mentioned in the section

above.

2.3.1 JobTracker and TaskTracker

JobTracker is the master, to which the applications submit MapReduce jobs. The

JobTracker gets the map tasks based on input splits and assigns tasks to TaskTracker nodes

in the cluster. The JobTracker is aware of the data block location in the cluster and machines

which are near the data. The JobTracker assigns the job to TaskTracker that has the data

with it and if it cannot, then it schedules it to the nearest node to the data to optimize

the network bandwidth. The TaskTracker sends a HeartBeat message to the JobTracker

periodically, to let JobTracker know that it is healthy, and in the message it includes the

memory available, CPU frequency and etc. If the TaskTracker fails to send a HeartBeat to

the JobTracker, the JobTracker assumes that the TaskTracker is down and schedules the

task to the other node which is in the same rack as the failed node.

The Figure 2.3 [31] shows the data flow of MapReduce in couple of nodes . The steps

below explains the flow of the MapReduce [31].

1. Split the file: First the data in the HDFS are split up and read in InputFromat specified.

InputFormat can be specified by the user and any InputFormat chosen would read

the files in the directory, select the files to be split into InputSplits and give it to

RecordReader to read the records in (key, value) pair that would be processed in

further steps. Standard InputFormats provided by the MapReduce are

16

Figure 2.3: MapReduce data flow.

17

• TextInputFormat reads text files where the byte offset is key and line contents is

value.

• KeyValueInputFromat reads (key,val) pair. Keys and values are separated with

a ¡tab¿ key.

• SequenceFileInputFormat is Hadoop specific high-performance binary format where

key and value are user defined.

The InputSplit is the unit work that comprises a single map task in a MapReduce

program. The job submitted by the client is divided into the number of tasks, which

is equal to the number of InputSplits. The default InputSplit size is 64MB and can

be configured by modifying split size parameter. The InputSplits enable the parallel

processing of MapReduce by scheduling the map tasks on other nodes in cluster at

same time. When the HDFS splits the file into blocks, the task assigned to that node

accesses the data locally.

2. Read the records in InputSplit: The InputSplit although is ready to be processed it

still does not make sense to the MapReduce program as the input to it is not in key-

value format. The RecordReader actually loads the data and converts it to ¡key,value¿

pair expected by the Mapper task. The calls to RecordReader calls map() method of

Mapper

3. Process the records: When the Mapper gets the key-value pair from the RecordReader,

it calls the map() function to process the input key-value pair and output an intermedi-

ate key-value pair. While these mappers are reading their share of data and processing

it in parallel fashion across the cluster, they do not communicate with each other as

they have no data to share. Along with the key-value pair, the Mapper also gets couple

of objects, which indicates where to forward the output and report the status of task.

18

4. Combiner1 combines all the ¡key,value¿ pair with same keys before sending intermediate

data to the Reducer. It is in some ways a mini Reducer.

5. Partition and Shuffle: The mappers output the key,value pair which is the input for the

reducer. This stage the mappers begin exchanging the intermediate outputs and the

process is called shuffling. The reducer reduces the intermediate value with the same

key and it partitions all the intermediate output with the same key. The partitioner

determines which partition a given ¡key,value¿ pair go to. The intermediate data are

sorted before they are presented to the Reducer.

6. Reduce the mapper’s output: For every key in the assigned partition in the reducer a

reduce() function is called. Because the reducer reduces the partition with the same

key, it iterates over the partition to generate the output. The OutputFormat will

specify the format of the output records, and the reporter object reports the status.

The RecordWriter writes the data to file specified by the OutputFormat.

1This is an optional step and absolutely used for optimization. It is easy to implement using the Reducer
interface.

19

Chapter 3

Motivation and Existing Solutions

In chapter 1 we saw that the data center investments include realty, electricity, servers,

maintenance etc and many big companies like Facebook, Microsoft and Google have invested

billions of dollars in just maintaining the infrastructure of the data center supporting cloud

services. Microsoft in [5] have analyzed associated cost in a data center shown as in Table

3.1. The Servers and Network are one time investment even after considering the hardware

failures. The Power and the Infrastructure is about 40% of total cost which is spent every

month or every year.

Amortized Cost Component Sub-Components
45% Servers CPU, memory, storage systems
25% Infrastructure Power distribution and cooling
15% Power Draw Electrical utility costs
15% Network Links, transit, equipment

Table 3.1: Costs in Data Center

Although the Infrastructure is just 25% of the total cost at data center level, the cost

might scale up to millions-billions of dollars because data centers have tens of thousands

of nodes and each drawing tens of Mega-Watts of power at peak. Even at cost of few

cents or dollars per kilowatts of power used it scales up to thousands-millions of dollars.

Power Usage Efficiency = (Total facility power)/Total IT Power is a metric introduced by

the Green Grid [6] estimates that for a reasonable PUE value of 1.7, the total cost of power

would sum up to 9.3 million $ a year, out of which cooling cost is about 33% of total cost. So,

it is extremely important to improve the thermal performance of data centers to optimize

computing resources, improve reliability, improve utilization, and maximize computation

capability.

20

3.1 Thermal model of a data center

In the data center the server nodes are arranged in the racks. The racks are installed in

the raised floor which has perforated floor tiles. The Air Conditioner, Heating, Ventilation

Air Conditioner (HVAC) or Computer Room Air Conditioner (CRAC) deliver the cold air

from the raised floor. The cool air enters the racks from the front side and leaves from the

rear end of rack. While the cool air exists the rack it picks up the heat generated by all the

servers in the nodes. The heated air forms the hot zone behind the racks which is extracted

back to the air conditioner intakes which is positioned above the hot zone and this heat

dissipated from the hot-zone controls the CRAC supply air. The setup of a typical data

center is shown in Figure 3.1, [1] below.

Figure 3.1: Data center layout

Many researches have begun on the dynamic optimization of the data center thermal

environment. The CFD model provides the dynamics of a data center which helps con-

sidering different parameters like the co-efficient of performance, supply temperature, inlet

temperature, outlet temperature, air density, computing power of a node etc. Table 3.2 will

give you and overview of frequently used terms in the thermal management formulation of

a data center and in this thesis.

21

Notion Meaning
Tsup Air temperature as supplied from cooling unit.
Tin Inlet air temperature of node.
Tout Outlet air temperature of a node.
Tred Redline temperature of data center.
N number of nodes in cluster.
T Air temperature.
Q Amount of heat carried by the air fow in unit time.
ρ Air density. (Typical value: 1.19kg/m3)
f Flow rate. (Typical value: 520CFM = 0.2454 m3/s)
cp Specific heat of air. (Typical value: 1005J/kg/K)
PTotal Total power consumed.
PC Sum of total computing power.
PAC Power used for cooling data center.
G Hardware dependent specifications.
CTot Total task set.
Ci Total task set assigned to a node i.
Cut Total tasks assigned when temperature is below threshold.
Cuop Total tasks assigned when temperature is above threshold,

but below TCPUAvg or TDiskAvg.
TCPU CPU temperature.
TDisk Disk temperature.
TrCPU Redline temperature for CPU.
TrDisk Redline temperature for Disk.
TCPUAvg Average CPU temperature in cluster.
TDiskAvg Average Disk temperature in cluster.
UCPU CPU utilization.
UDisk Disk utilization.
UtCPU Threshold for CPU utilization.
UtDisk Trheshold for Disk utilization.
UCPUAvg Average CPU utilization in cluster.
UDiskAvg Average Disk utilization in cluster.
tn Total time take to run job.
a power consumption of node i’s power unit.
b Power consumption of node i running a task.

Table 3.2: Table of Symbols to thermally model a data center.

22

In the data center layout figure 3.1 in [1], the cold air that comes from the perforated

floor to cool the nodes is the supply temperature T sup in the table 3.2. The supply tem-

perature T sup when it enters the room mixes with the hot air produced by the heat-zones

and increases to operating temperature to the T in which is called the inlet temperature.

The inlet temperature is the temperature, which goes inside the node to take away the heat

generated by the nodes in the data center. In data centers, the T sup is set to a temperature

to maintain Tin below a certain threshold temperature called redline temperature denoted

by T red. The redline temperature is the threshold temperature, above which hardware risks

failure. The hot air coming out of the node is outlet temperature, represented as T out. This

outlet temperature is absorbed by the vents above and based on this temperature the supply

temperature is further increased or decreased.

Q is the amount of heat carried by the air flow in unit time. According to the law of

energy conservation, it is given by the equation:

Q = ρfcpT (3.1)

where ρ is the is the air density, f is the air flow rate, cp is the specific heat of air, and

T is the air temperature.The nodes are placed in the different places in a huge data center

and the air flow rate may vary for each node, so we denote it using f i for each node, where i

is the node. Similarly, the inlet and outlet temperature changes for the node, which can be

given as T i
in and T i

out.

The total power consumed (PTotal) is sum of total computing power(PC) and power used

for cooling (PAC). The lighting costs and other energy costs have negligible contribution to

the total costs.

PTotal = PAC + PC (3.2)

The difference between the T i
out and the T i

in is the heat emitted which is generated

by the computation work by the node. The total power consumed for computation in the

23

entire cluster is the sum of the power consumed by all nodes in the cluster. It is given by

the equation

Pc =
N∑
i=1

Pi. (3.3)

The power consumed by the individual node in the cluster is given by

Pi = GiCi. (3.4)

where G i depends on the hardware specifications of the node and C i is the task-set of the

total tasks assigned to node i.

The relationship between the power consumed and the inlet and outlet temperature is

given by

Pi = Gi(T
i
out − T i

in). (3.5)

substituting ρficp for G i, we have P i as

Pi = ρficp(T
i
out − T i

in). (3.6)

The energy cost of air conditioning depends on the heat removed or reduced and the

Coefficient Of Performance (COP) of the air conditioner. The COP in [17] is defined as the

amount of heat removed by the air conditioner to the total energy consumed to remove that

heat, i.e

COP =
heat removed

energy consumed to remove the heat
(3.7)

The COP obtained for the water chilled CRAC unit in the HP utility data center will

be considered as reference in this thesis. The COP model is given by

COP = (0.0068T 2
sup + 0.0008Tsup + 0.458) (3.8)

24

where, T sup is the supply temperature. The COP graph at different T sup are given in

the Figure 3.2 [17]

Figure 3.2: Coefficient of Performance

CoP is not linear and normally increases with the supplied air temperature. Higher the

T sup, higher is the COP. Higher COP means that the air conditioner does not have to work

hard to cool the nodes in data center and hence, save cooling costs. The power consumed

by air condition for cooling in equation can be represented in terms of computing power and

COP as

PAC =
PC

COP
(3.9)

substituting for PAC in we have,

PTotal = (1 +
1

COP
)(

N∑
i=1

GiCi) s.t Ctot =
N∑
i=1

Ci (3.10)

In the equation the C tot is the total number of tasks that has been given to Hadoop to

distribute to the TaskTrackers in the node. These tasks basically boil down to few machine

25

Figure 3.3: The rise in the Disk utilization increases the Outlet temperature

instructions, which take different times to execute, but at the cluster level, all TaskTrackers

are executing the same instructions as they all are executing the same task. So it is safe to

assume that all the TaskTrackers are utilized approximately the same and have same power

consumption. Furthermore in [24], they show that there is a linear relationship between the

power consumption and CPU utilization of a machine. The power consumption and the

temperature rise have linear model. So from transitive property, the CPU utilization and

the temperature rise have linear relationship. The CPU temperature rise has linear model

with the outlet temperature.

P = aCutil + b

P α Cutil

TCPU α P

TOut α TCPU

(3.11)

Its not just CPU temperature which contributes to the outlet temperature, in [13]

they show that the increase in the Disk utilization also increases the outlet temperature by

almost 1.5 degrees, as shown in the Figure 5.1. It can be observed from the Figure 5.1, the

Disk utilization and temperature are not linear like CPU utilization and temperature. The

relationship can be expressed as linear regression function.

26

The goal is to maximize T sup which is achieved by minimizing the T out, which would

minimize the T in and hence maximize the T sup.

3.2 Related Work

There have been many works on thermal and power management of a data center. We

will see few works that consider the thermal model of the data center.

[21] is based on Hadoop based storage data centers in which they ensure that each node

in the data center operates at a temperature below the threshold (TMax) and try to minimize

the power consumed by AC by scheduling the tasks based on 4 constraints.

• Compatible with thermal model of data center.

• The outlet temperature is less than the threshold temperature. (TMax ¡ TOut

• A task is assigned only to 1 node at a time among all other nodes having the data

block.

• 0 is power consumption when a node is idle, else it is p.

The algorithm basically assigns a cost for running a task on every node and calculates

the Tout resulting from it. If the chosen system has high Tout then it is given to the nodes

having less Tout, and then they calculate the Tsup, which satisfies the above conditions and if

the new Tsup is higher than the current Tsup, task is assigned else some other node is chosen

and all the steps are re-executed.

There are three thermal aware schedulers proposed in [27]. The temperature measure-

ment is at chassis level and the task assignment granularity is at the processor level. The

first algorithm is Uniform Outlet profile in which most tasks are given to the processor with

low inlet temperature and fewer tasks are given to the node with high inlet temperature.

The goal of the the algorithm is to balance the outlet temperature between all the nodes

and reduce the recirculation of the hot air. Second algorithm is Minimal computing energy,

27

which tries to minimize the number of active processors. It tries to distribute the jobs to the

coolest processors among the active ones. The idle processors are turned off to save energy

and hence does not need to be cooled. The third scheduler distributes the job evenly among

all the processors and the work done and heat generated by them is same.

HP and Duke University published works [19] [2] developed online measurement and

control techniques to improve energy-efficiency of data centers. Notions like Supply Heat

Index (SHI) and Return Heat Index (RHI) characterizes the energy efficiency of datacenter

cooling system. They discussed that different datacenter layouts and configurations that lead

to hotspots and non uniform thermal distribution. Using CFD they could find out hotspots

in a data center and took remidial actions like dynamic relocation of workload to achieve

thermal balancing in inside a datacenter when the datacenter is overheated.

[18] [25] algorithms reduce the Heat recirculation by distributing the task and power

accordingly. The MinHR algorithms are based on calculating the HeatRecirculationFac-

tor(HRF) for each rack. The HRF is the ratio of the HRF contributed from the rack to the

sum of all other racks. If the HeatRecirculationFactor is high for a rack, then it is assigned

fewer tasks compared to other racks. The HRF is assigned after several profiling runs. A

small HRF indicates that rack is very huge contributor to the recirculation and assigned

fewer tasks. The difference between [17] and [25] is that, the former is designed to place the

power budget and latter is designed to place tasks.

Thermal Aware Task Scheduler(TASA) proposed in the [29] does not utilize the CFD

model, because the CFD schedulers are hard to apply in online schedulers. Instead it uses

thermal map of the data centers to schedule the jobs. The TASA scheduler schedules the

jobs periodically and gets the temperature of all the nodes. It then sorts the nodes based on

their temperatures from coolest-hottest. The hottest nodes which are above a pre-defined

threshold are allowed to cool down for a period of time without running any tasks and later

when they are cool, they are all used to schedule the hottest job.

28

Chapter 4

Design of Cool Schedulers

Scheduler in Hadoop primarily deigned to share the cluster between different jobs and

users for better utilization of the cluster resources. Without the scheduler it is possible that

a job might occupy all the resources and the other jobs might just be left waiting until this

job finishes or terminates. Hadoop schedulers are designed as pluggable interface and it is

possible to switch between schedulers for different jobs just by changing the scheduler’s class

in the configuration file. As we saw in Chapter 1, Hadoop is shipped with 3 schedulers-

FIFO, Fair and Capacity scheduler. All are designed with different intentions and they all

handle resources optimally. But, none of these schedulers are thermal aware and they do

not do any thermal management in Hadoop cluster. To make Hadoop thermal aware, rather

than developing a new thermal aware scheduler, the best strategy would be to implement a

thermal module inside the existing scheduler. So, to design and implement our thermal aware

module, we pick Hadoop’s default FIFO scheduler, because of its simplicity of assigning tasks.

It also suits our algorithm design compared to the Fair or the Capacity scheduler. Because

we are just focusing on task assignment portion of the scheduler, we investigate, analyze and

explain task management in Hadoop scheduler rather than block or replica management.

4.1 Hadoop FIFO scheduler

FIFO scheduler is the default Hadoop scheduler. In Hadoop the jobs are divided into

tasks based on the InputSplit size and the FIFO scheduler maintains a task queue. The

JobTracker is responsible for assigning a task from that queue to one of the TaskTracker

that is free and ready to execute it. The job assignment and communication between the

TaskTracker and the JobTracker happens primarily through the HeartBeat messages. The

29

Figure 4.1: High Level TaskAssignment.

basic task assignment flow in Hadoop happens between the TaskTracker, JobTracker and

scheduler as shown in the figure 4.1.

1. The TaskTracker sends a HeartBeat message to the JobTracker with the number of

available slots to run Map or Reduce tasks.

2. The JobTracker receives the HeartBeat messages from the allowed TaskTrackers and

requests the scheduler to assign tasks for the TaskTracker.

3. The scheduler takes the first task in the queue and gives it to JobTracker to assign it

to the requesting TaskTracker.

4. The JobTracker composes the HeartBeat response along with the tasks to assign and

sends it to the TaskTracker to execute.

In the essence, HeartBeat is a mechanism for TaskTrackers to announce their availabil-

ity on the cluster. It is sent periodically to JobTracker to let the JobTracker know that the

TaskTracker is alive. If a HeartBeat message is not received for a long duration then the

JobTracker marks the TaskTracker as unhealthy and blacklists it. In addition to announc-

ing its availability, the heartbeat protocol also includes information about the state of the

TaskTracker.

• Max Map and Reduce tasks.

30

• Total Physical Memory and Available Physical Memory

• Total virtual memory and Available Virtual Memory

• Available space

• Map and Reduce Slot memory size

• Number of Processors

• CPU frequency, CPU time.

• Health report

Most of the fields related to the resource status of the TaskTracker are obtained form

the undelying OS in TaskTracker. Because Hadoop is a Java based platform, it does not

have direct access to the resources, it either uses the system commands or read system files

to fill up the fields in HeartBeat.

On the other hand, the JobTracker receives the heartbeat messages and decides whether

the TaskTracker is fit enough for executing a task based on it’s health report and available

Map/Reduce slots. It will further assign Map/Reduce tasks based on the number of free slots

it has. The TakTrackers usually have 2 map and reduce slots, which means that TaskTracker

can only run 2 Map or 2 Reduce tasks at a time. Generally, the number of Map/Reduce slots

in a TaskTracker are configured based on the number of cores it has, one slot for each core

is widely followed setting. If a node has at least 1 Map slot then the node gets a Mapper

task, else it will do the Reduce task.

1. Process HeartBeat: JobTracker receives a HeartBeat from a TaskTracker with all the

above fields and accepts it only if an allowed TaskTracker sent it. If the HeartBeat is

duplicate then JobTracker will ignore it. Else, it will process the HeartBeat, process a

response and check for the tasks to execute.

31

2. Get a Task: When the TaskTracker is ready to run a task, JobTracker gets the list

tasks that are either a setup or clean-up task.

3. Choose a task from list: The scheduler iterates through the set up task list, and it

chooses a task if the task is runnable, not running and is a failed task. It will remove

a task from the list if task is scheduled, killed, completed, running or failed on this

TaskTracker before.

4. Check for Flaky TaskTracker: After it obtains the Map or Reduce task, it checks if

many tasks have failed on this TaskTracker before; If yes, then it does not schedule

the task. Otherwise, marks the task as schedulable.

5. Available Map Slot: Once the task is marked schedulable, scheduler checks if Task-

Tracker has any available Map slots to run a map task.

6. Create a Map/Reduce Task: Get the number of Map slots required to run, create a

Map/Reduce task by giving the job File, partition this TaskTracker owns and sets the

Output directory in HDFS and creates a task entry and informs the JobTracker that

this task exists. The tasks here are maintained in a FIFO queue, hence the name FIFO

scheduler.

7. Assign the created Map/Reduce Task: Get the TaskTracker’s total Map and Reduce

Slots and get total Map and Reduce slots across the pool to calculate the load factor

of Map and Reduce. Find a new Task from the FIFO queue and ensure it has all the

resources and process the tasks in the order of:

• Failed Task

• Non-running Task

• Speculative Task.

• No Location information Task.

32

The task is assigned smartly using cache and cache levels, such that the TaskTracker

has the data to be processed local to it. Scheduler tries to schedule it on local first, rack-

local next, off-switch next or schedules a speculative task if other three are unavailable.

8. Launch the task: After the task is assigned, it launches the task in the TaskTracker

and starts a timer. If the TaskTracker does not respond to this task for too long then

it will mark the task as failed task.

9. JobTracker further checks for any jobs to be killed, cleaned up or tasks that needs to

be committed. In the HeartBeat response, it checks if any restart information should

be included before sending it to the TaskTracker.

All the Hadoop jobs are either CPU intensive or I/O intensive or both. In the previous

chapter, we saw that the CPU and the Disk have significant contributions to a node’s outlet

temperature. Besides, every node may have different computation capacity as Hadoop uses

commodity hardware to run the tasks. For Ex: A node may have a powerful CPU and have

a moderate disk. In this case the CPU intensive tasks can be processed easily by this node

rather than a disk intensive one. On the other hand, a node may be good in processing the

data intensive task easily but not CPU intensive ones. This is one of the motivation for our

thermal aware schedulers. So, in order to make the default Hadoop FIFO scheduler thermal

aware, we propose a couple of strategies which are explained coming sections.

4.2 Design of our scheduler

To reduce the CPU or disk temperature and outlet temperature in particular, we im-

plement the following strategies.

1. Differentiate between the CPU intensive task and Disk intensive task

2. Consider CPU and Disk utilization while scheduling

3. Maintain CPU and Disk under a threshold temperature.

33

4. Maintain the average CPU and disk temperature across the cluster and as a result we

maintain the average outlet temperature across cluster.

One simple way to differentiate between the CPU and Disk intensive job, is by main-

taining a log profile file of both CPU and I/O usage for every job that is run on the cluster.

The profiled file is stored in the local storage directory (not HDFS) of the JobTracker and

would include information like:

1. App ID

2. TaskTracker identification

3. Total number of tasks submitted to this TaskTracker

4. CPU utilization

5. Disk Utilization

The information in the profiled log file are not generated by the JobTracker itself, but

provided by the TaskTrackers and client application. The TaskTracker sends the utilization

reports of the CPU and Disk periodically while running the job. The JobTracker receives

these reports from all the TaskTrackers and maintains a data structure to store the Task-

Tracker name or ID and average utilization of Disk and CPU for that job. The utilization

may change for different jobs and makes it impossible to figure out which job had how much

utilization on a TaskTracker, so we group the utilization records of a TaskTracker by the

AppID. A sample record example is given in the Figure below.

It can be seen in Figure 4.2 that there are two TaskTrackers in the cluster and they have

different Disk and CPU utilization reports for two different jobs. The records are grouped

34

by the Application name or ID. The last field in the record gives the count of number of

tasks that were run on that TaskTracker.

4.2.1 Static scheduler

A good profile information log can be used to categorize an application as the CPU

intensive application, Disk intensive application or both. We can set a threshold utilization

beyond which, if a task tracker is utilized either on CPU or Disk, we mark it as intensive.

The jobs are categorized into 4 categories for a TaskTracker

1. Not intensive.

2. Disk intensive only.

3. CPU intensive only.

4. Both CPU and Disk intensive.

For example, if the Disk and CPU utilization threshold was set at 40% and 70% re-

spectively, for node jedi01 the job AppID 3 would be both CPU and disk intensive, and for

jedi02 it would not be both intensive. Similarly for AppID 4 if the utilization threshold for

Disk and CPU were set at 40% and 30% repectively then for the node jedi02 JobTracker

would categorize it to be CPU intensive only and none intensive for node jedi01.

Static scheduler would use the categorization strategy to schedule the jobs, when the

same AppID job is submitted to the cluster again. The JobTracker would verify if there was a

Job submitted by the same application before, by matching the application’s AppID with the

AppID in the job profile log. If there is a match found then it loads the utilization information

of the profile log to its data structures for all the TaskTrackers. It then categorizes the job

as the CPU intensive or Disk intensive for a TaskTracker. After the tasks of a job are

categorized, the scheduler could simply schedule the tasks on a node, which is neither disk

intensive or CPU intensive first and then it would schedule disk or CPU intensive only

35

jobs on the one which had less disk utilization or CPU utilization respectively. If the job

was both CPU and Disk intensive for a TaskTracker, it would not schedule any tasks to

it. The scheduler would not work if it does not consider the current temperature of the

Tasktrackers, because it would assign the tasks to a node which is already hot or assign

no jobs to a TaskTracker which is cool, but had high utilization when the job had run

on this node before. For that reason, static scheduler also considers the CPU and HDD

temperature at the time of scheduling a task. The static scheduler also considers the CPU

and HDD temperature while scheduling, it checks if the TaskTracker is not CPU or Disk hot

while scheduling tasks.

In a data center, the T in is maintained to be lower than the T red the Redline temper-

ature, which is typically set at 25◦C. The CPU temperature TCPU , is always higher than

the inlet temperature T in even in idle condition and any rise in TCPU would cause the T out

to increase and hence T in would rise. So we try to maintain the CPU temperature TCPU

under a CPU redline temperature represented by T rCPU . Similarly, the Disk temperature

TDisk, rise would also contribute to the rise in the the outlet temperature T out, we try to

maintain the TDisk under the redline threshold for disk, T rDisk.

Tin <= Tred

T i
CPU <= TrCPU

T i
Disk <= TrDisk

(4.1)

The application of Disk/CPU utilization and current temperature of a TaskTracker to

assign a task is shown in Algorithm 1.

When the TaskTracker sends the HeartBeat message, we incorporate CPU temperature,

disk temperature and utilization information in it. The TaskTracker java thread polls the OS

for the temperature and utilization adds it to the HeartBeat message. The commands used

for polling the temperature for CPU and disk are sensors and hddtemp respectively. Both

these temperature commands give the result in degree centigrade. For the CPU and disk

36

Algorithm 1 Algorithm for ”static scheduler”, to schedule the jobs from job profile

Maintain the temperature information of all TaskTrackers
while (a TaskTracker sent a HeartBeat) do

TrackerName = getTaskTrackerName()
UCPU = getCPUUtilizationFromFile(TrackerName)
UDisk = getDiskUtilizationFromFile(TrackerName)
TCPU = getCPUTemperatureFromHeartBeat(TrackerName)
TDisk = getDiskTemperatureFromHeartBeat(TrackerName)
if (UCPU ≤ U tCPU) && (UDisk ≤ U tDisk) then

JobTtype = EasyJob
else if (UCPU >UtCPU) && (UDisk <UtDisk) then

JobType = CPUIntensiveJob.
else if (UCPU <UtCPU) && (UDisk >UtDisk) then

JobType = DiskIntensiveJob.
else

JobType = CPUDiskIntensiveJob.
end if
if (TCPU ≤ T rCPU) && (TDisk ≤ T rDisk) then

Schedule the job
else if (TDisk <TrDisk) && (JobType == DiskIntensiveJob OR EasyJob) then

Schedule the job
else if (TCPU <TrCPU) && (JobType == CPUIntensiveJob OR EasyJob) then

Schedule the job
else

Do not schedule; Process next TaskTracker.
end if

end while

37

Figure 4.2: Static Scheduler communication Flow

utilization, we use the iostat command. The HeartBeat message interval sets the accuracy

of the temperature information we have on the JobTracker.

The Figure 4.2 shows the communication between the TaskTracker and the JobTracker.

Each step has a number in the scheduler flow diagram which is explained below

1. The HeartBeat messages are sent by the TaskTracker with the information of CPU,

Disk temperature and utilization along with the other HeartBeat fields periodically.

The Disk temperature, CPU temperature and the utilization are extracted from the

TaskTracker with system commands.

2. The JobTracker receives the heartBeat message and extracts the TaskTracker status.

3. The JobTracker then extracts the message and requests the scheduler to schedule the

task.

4. The scheduler meanwhile iterates through the set up task list, and it chooses a task,

or removes a task if it is completed or killed. It then checks if the TaskTracker is

healthy and has available map slots. It then obtains the task chosen before to create a

map/reduce task. When the task is ready, the TaskTracker is assigned to execute the

created task.

38

5. The scheduler then calls the Algorithm 1 to assign tasks based on the thermal model

• Open the job profile file and pick up the information about the TaskTracker that

has sent the HeartBeat.

• If the Utilization is greater than the threshold utilization we set a task as data or

Disk Intensive, CPU intensive or both.

• If the temperature for both the disk and CPU are below threshold schedule it.

• Schedule the data intensive task on a TaskTracker if the disk temperature is below

the disk threshold temperature. It does not matter if the CPU is hot as the task

is only disk intensive, and will increase only disk temperature.

• Similarly, schedule the CPU intensive task on a TaskTracker if the CPU temper-

ature is below the CPU threshold temperature and it does not matter if the disk

temperature is high or low.

• If the disk is hot and it is a disk intensive task or CPU is hot and it is a CPU

intensive task or if the CPU or disk both are hot, it does not schedule any task.

6. Launch the task that is scheduled in the TaskTracker.

7. The scheduler then processes cleaned up tasks,killed tasks, and process a HeartBeat

response.

The static scheduler intelligently schedules the job by keeping track of the jobs that

were run on the cluster. The disk intensive tasks are only scheduled on the disk with low

temperature and the CPU intensive task are scheduled only on TaskTracker with low CPU

temperature. With Hadoop running either the Disk intensive or the CPU intensive the

scheduler really fits to the scheme of things. The scheduler balances the temperature of the

disk and the CPU across the cluster, but there is an overhead of creating and managing the

job profile file. If the different applications are run then the file would be huge and also if

39

the cluster size is huge, then the data structure that manages would also be huge along with

the profile file.

4.2.2 The Dynamic Feedback scheduler

The static scheduler always needs the file with the profiled information and it might be

huge file if the data center increases the number of nodes it supports. In order to get away

from the file and still reduce the temperature of the disk, CPU and outlet temperature, we

implement the following strategies

1. Differentiate between the CPU intensive task and Disk intensive task

2. Consider the CPU and Disk utilization while scheduling

3. Maintain the CPU and Disk under a threshold temperature.

4. Maintain the average CPU and disk temperature across the cluster as a result we

maintain the average outlet temperature across cluster.

Like static scheduler, this scheduler still gets the feedback of TaskTracker’s status by the

HeartBeat message. We still set the threshold redline temperature for the Disk and the CPU

and try to maintain it below the threshold redline temperature. Existing thermal aware and

static scheduler do not schedule any tasks, when every node in the cluster is hot, as a result

the job stalls, the response time for the job increases and hence the performance drops. To

manage the temperature even when all nodes are busy we need to do load balancing and

keep track of the coolest nodes in the cluster to get the job going in hot conditions. We

maintain data-structure to track the average cluster CPU and Disk utilization represented

by U CPUavg and UDiskavg and CPU, Disk temperature represented by TCPUavg, TDiskavg

respectively. The Dynamic scheduler is bound by constraints and one goal, to maximize

Coefficient of Performance.

1. try T i
CPU <T rCPU else T i

CPU <TCPUAvg

40

2. try T i
Disk <T rDisk else T i

Disk <TDiskavg

3. TDiskavg <TDiskMax & TCPUavg <TCPUMax

4. T i
out ≤ (

∑N
i=1Tout) / N

5. Each TaskTracker is assigned only one task at a time

6. Each task is assigned to utmost one Node.

7. Minimize response time of job

The first and second constraints are that, when the disk and CPU temperature are

below the threshold and make sure they operate at a temperature below the threshold

temperatures. If the nodes in the cluster are already above the redline threshold, then balance

the temperature by assigning the tasks to the coolest node in the cluster. The third constraint

specifies that the average disk or CPU temperature is above the max temperature, then stop

scheduling all the jobs as we might risk hardware failure. The fourth constraint specifies

that the outlet temperature of a TaskTracker is same as the average outlet temperature of

the cluster. The fifth and sixth constraints make sure that a node gets utmost 1 task and

task is executed at utmost 1 node at a time. The last one tries to finish the job as soon as

possible achieving optimal solution.

1. The HeartBeat messages are sent by the TaskTracker with the information of CPU,

Disk temperature and utilization along with the other HeartBeat fields periodically.

The Disk temperature, CPU temperature and the utilization are extracted from the

TaskTracker with system commands.

2. The JobTracker receives the heartBeat message and extracts the TaskTracker status.

3. The JobTracker then extracts the message and requests the scheduler to schedule the

task.

41

Algorithm 2 Algorithm for ”Dynamic scheduler”, to schedule the jobs based on real time
information

Maintain the temperature information of all TaskTrackers
while (a TaskTracker sent a HeartBeat) do

TrackerName = getTaskTrackerName()
UCPU = getCPUUtilizationFromHB()
UDisk = getDiskUtilizationFromHB()
TCPU = getCPUTemperatureFromHB()
TDisk = getDiskTemperatureFromHB()
TCPUavg = calculateAvg(TCPU , n)
TDiskavg = calculateAvg(TCPU , n)
UCPUavg = calculateAvg(UCPU , n)
UDiskavg = calculateAvg(UDisk,n)
if (TCPU ≤ T rCPU) && (TDisk ≤ T rDisk) then

Schedule the job
else if (TDisk ≤ TDiskavg) && (TCPU ≤ TCPUavg) && (UCPU ≤ UCPUavg) && (UDisk

≤ UDiskavg) then
Schedule the job as the node is cooler than the most node in clusters

else if (TDisk <TDiskavg) && (TCPU >TCPUavg) && (UCPU >UCPUavg) && (UDisk

<UDiskavg) then
Schedule the disk intensive job

else if (TDisk >TDiskavg) && (TCPU <TCPUavg) && (UCPU <UCPUavg) && (UDisk

>UDiskavg) then
Schedule the CPU intensive job

else
Do not schedule; Process next TaskTracker.

end if
end while

42

4. The scheduler meanwhile iterates through the set up task list, and it chooses a task,

or removes a task if it is completed or killed. It then checks if the TaskTracker is

healthy and has available map slots. It then obtains the task chosen before to create a

map/reduce task. When the task is ready, the TaskTracker is assigned to execute the

created task.

5. The scheduler then calls the Algorithm 2 to assign tasks based on the thermal model.

• Extract the Disk, CPU utilization and temperatures from the HeartBeat message.

• Calculate the average temperature and utilization for the CPU and disk across

cluster.

• If the temperature for both the disk and CPU are below threshold, then schedule

it.

• Else if the TaskTracker has both low utilization and temperature for the Disk and

CPU across the cluster, schedule it.

• Else if the CPU is hotter than the entire cluster, and disk is cooler than entire

cluster, schedule disk intensive task. Scheduling disk intensive task to coolest disk

in cluster keeps the disk temperature in balance across the cluster.

• Similarly, if the Disk is hotter than the entire cluster, and CPU is cooler than

entire cluster, schedule CPU intensive task. Scheduling CPU intensive task to

coolest CPU in cluster keeps the CPU temperature in balance across the cluster.

• If the disk is hotter than entire cluster or CPU is hotter than entire cluster or

CPU, Disk utilization is more than entire cluster, it does not schedule any task.

6. Launch the task that is scheduled in the TaskTracker.

7. The scheduler then processes cleaned up tasks,killed tasks, and process a HeartBeat

response.

43

To summarize, the algorithm above schedules equal tasks if all nodes are cool, if not, it

then assigns tasks to the coolest nodes w.r.t disk and CPU to achieve uniform outlet profile.

Technically, the dynamic feedback scheduler is a combination of the schedulers- Uniform

Outlet Profile and Uniform Task mentioned in the previous chapter. When the temperature

of the TaskTrackers are below redline threshold, the tasks are distributed equally to all the

TaskTrackers in the cluster (Uniform Tasks scheduler) otherwise it uses the Uniform Output

Profile scheduler.

Revisitng the power consumed, we analyze the temperature saved using our dynamic

scheduler. The power consumption for a node when the TaskTrackers equally share the tasks

is given by:

Pi = Gi(
Ctot

N
) (4.2)

When few TaskTrackers are already hot, we assign the jobs on coolest nodes and try to

achieve thermal balancing of the outlet temperature which means that all the TaskTracker’s

outlet temperature should be the same (Uniform Outlet Profile scheduler). i.e T i
out = T j

out

= T c.

From equation 3.2 we have the power consumption for a node when the TaskTrackers

are running to achieve thermal balancing:

Pi = ρficp(Tc − T i
in) (4.3)

If a job assigned to Hadoop takes tn seconds to finish, out of which, if it spent n

seconds running same number of tasks on all TaskTrackers then it spent remaining seconds

in achieving thermal balance.

tn =
n

tn
+ (1 − n

tn
) (4.4)

44

If the number of tasks performed during n seconds is represented as Cut, then the

number of tasks performed during the thermal balancing is Cuop = Ctot - Cut. Total power

consumed while running the job using the Dynamic feedback scheduler will be:

N∑
i=1

Pi = (
n

tn
)(

N∑
i=1

GiCut) + (1 − n

tn
)(

N∑
i=1

Gi(Ctot − Cut)) (4.5)

N∑
i=1

Pi = (
n

tn
)(

N∑
i=1

GiCut) + (1 − n

tn
)(

N∑
i=1

Gi(TC − T i
in)) (4.6)

To find the difference in the temperature saving we express the equation in TC

TC =

∑N
i=1 Pi − (n

tn
)(
∑N

i=1GiCut) + (1 − n
tn

)(
∑N

i=1Gi(T
i
in))

(1 − n
tn

)
∑N

i=1Gi

(4.7)

TC =

∑N
i=1 Pi − (n

tn
)(
∑N

i=1 ρficpCut) + (1 − n
tn

)(
∑N

i=1 ρficp(T
i
in))

(1 − n
tn

)
∑N

i=1 ρficp
(4.8)

If we consider the re-circulation effect, where aij is the re-circulation coefficient when

the hot outlet air from a node j affects a node i.

TC =

∑N
i=1 Pi − (n

tn
)(
∑N

i=1 aijρficpCut) + (1 − n
tn

)(
∑N

i=1 aijρficp(T
i
in))

(1 − n
tn

)
∑N

i=1 aijρficp
(4.9)

The difference between the Tout and Tc would give us the outlet temperature saving

that we have achieved using our scheduler over the default Hadoop FIFO scheduler.

δ =
N∑
i=1

(T i
out − Tc) (4.10)

The standard deviation of the outlet temperature T i
out would give us if we achieved

thermal balancing or not.

StdDev[(Tout)] (4.11)

45

Because the outlet temeprature is a result of CPU and Disk temperature, we also con-

sider the standard deviation of the CPU and Disk temperature as an indication of thermal

balance across cluster.

4.3 Difference between Static and Dynamic scheduler

The table 4.1 summarizes and highlights key differences between the Hadoop schedulers

proposed to maintain thermal balance and reduce cooling costs in a datacenter.

Static Dynamic
Schedules tasks based on previously
utilization information in a file

Schedules task based on utilization and
temperature information at run time

Assigns CPU intensive tasks to CPU
powerful nodes and Disk intensive task
to Disk powerful nodes

Assigns tasks to the coolest node at any
point in cluster

Does not schedule task if nodes are hot
and utilization is high

schedules tasks on coolest node at any
point in cluster

Does not try to maintain the uniform
temperature across cluster

Maintains uniform temperatre across
cluster

Active nodes are nodes that are below
the temperature threshold

At least 50% are active nodes at any
given time in cluster

Storage and maintainance overhead
when cluster size increases or job types
are different

Overhead of communication as Task-
Tracker report to JobTracker periodi-
cally

Works better even with smaller cluster Works better with larger cluster

Overhead of maintaining a profile file
and job information of all nodes in clus-
ter

Overhead of communication of temper-
ature and utilization information from
TaskTracker to JobTracker

Table 4.1: Differences between Static scheduler and Dynamic scheduler

46

Chapter 5

Results and Interpretation

The performance of the Hadoop schedulers were measured using actual Hadoop cluster

implementation. Unlike the data center clusters, we implemented a cluster of relatively

small scale of 14 nodes and performed experiments and gathered the performance data of

our schedulers. Similarly, due to unavailability of the large data sets, we scaled down the

data set to suit the performance of the cluster size.

5.1 Experiment Setup

Using the commodity hardware we setup a Hadoop cluster composed of a JobTracker,

NameNode and 13 DataNodes and TaskTrackers. All the nodes were installed with couple

of real minigoose temperature sensors used to measure the inlet and outlet temperatures.

Another temperature sensor at the AC duct, would give the supply temperature T sup to the

cluster. Apart from the real world sensors, we also measured the HDD temperature and

CPU using the commands hddtemp and sensors respectively which makes use of internal

sensors in a node.

5.1.1 Hardware

The commodity hardware used in the Hadoop cluster is a mixture of different configu-

ration as it is in real data center. The configuration nodes used are given in the Table 5.1

below.

All the nodes were connected with full-duplex 10/100 Mbps Ethernet network interface

cards connected to a 100 Mbps Cisco network hub.

47

Node Processor and Speed RAM Storage
HP Xeon 4 core * 2.8 GHz 2 GB 143GB

Dell 4 core * 2.8 GHz 2 GB 143GB
Dell 1 core 1GB 143GB

Table 5.1: Node Information in Cluster

5.1.2 Software

All nodes in Hadoop cluster were running on Linux Ubuntu 10.04 operating system.

For Hadoop, we used the stable version of 1.0.3 across all nodes in the cluster. To support

Hadoop 1.0.3, java version of 1.6 was installed on all nodes. The nodes had password free

access between them for starting the tasks and exchange of intermediate data. The nodes

were also installed with the sensors, hddtemp to measure the CPU temperature and Disk

temperature.

5.1.3 Cluster size and Data set

To evaluate the performance our schedulers, we change the cluster size and data set

sizes. Several experiments are conducted with cluster size of 5, 10 and 14. The data sets

are varied as well at sizes of 80GB, 60GB and 40GB respectively. All nodes had default

map/reduce slot settings, block size and input split size. The replication factor was set to 3

in all experiments.

5.1.4 Benchmarks

The schedulers were evaluated using standard Hadoop Benchmarks. The benchmarks

were diligently chosen upon the criteria of CPU utilization and Disk utilization. The bench-

marks used for testing are:

• WordCount

• Distributed Grep

• PI

48

The first 2 application benchmarks are used for evaluating both CPU temperature and

HDD temperature performance mutually. The last one is only a CPU intensive benchmark.

5.2 Results

5.2.1 Temperature Reduction

The temperature were set at different threshold values for different cluster sizes. Because

CPU and Disk have different threshold for temperature, we have different values for the CPU

and Disk as shown in the table 5.2. So, instead of checking the performance of different supply

temperatures, we keep the supply temperature constant and evaluate at different threshold

values.

CPU Disk
32 27
35 28
38 29
41 30
44 31
47 32

33

Table 5.2: Temperature Threshold for CPU and Disk

5.2.2 Static scheduler

In case of static scheduler, initially we run the experiment without the thermal module

in the FIFO scheduler, to obtain the CPU and Disk utilization in a profile file. The stored

profile file will serve as reference for our static scheduler for scheduling the jobs of same

kind in future. The experiments with different threshold temeperatures, cluster sizes and

application benchmarks are executed and analysed in this section.

14 Nodes, 80GB, Word count, Grep

Experiment setup included running the default Hadoop FIFO scheduler and our static

scheduler for a data size of 80GB in the HDFS on a 14 node cluster. The graphs in figure5.1

49

Figure 5.1: The CPU and Disk utilization

show the CPU and Disk utilization and jobs submitted to every hot node that exceeded the

threshold utilization of 50% for both CPU and Disk.

The CPU and disk temperature control achieved by the static scheduler for 14 nodes,

80GB is shown in figure below.

Figure 5.2: Avg. CPU temperature of 14
nodes in WordCount for Static scheduler vs
FIFO scheduler

Figure 5.3: Avg. HDD temperature of 14
nodes in WordCount for Static scheduler vs
FIFO scheduler

Discussion

As shown in figure 5.1, initially when Hadoop job was run with FIFO scheduler without

thermal module in it, to store the utilization information of Disk and CPU in profile file.

Using that profiled information, we obtain the utilization graph for CPU and Disk, which are

50

Figure 5.4: Avg. CPU temperature of
14 nodes in Grep for Static scheduler vs
FIFO scheduler

Figure 5.5: Avg. HDD temperature of
14 nodes in Grep for Static scheduler vs
FIFO scheduler

represented by first 2 bars in the figure 5.1 and the rest are at different threshold temperature

of CPU according using our static scheduler.

From the figure, we can see that nodes that were most utilized in FIFO scheduler are

underutilized in static scheduler. The nodes hpx03 and hpx06 in a cluster, had high disk

utilization for a job and for the same job, nodes jedi04 and hpx08 had high CPU utilization.

Our static scheduler learned from the profiled information that the nodes with high utilization

created or could create a hot-spot. Using the knowledge of utilization patterns, our static

scheduler gave jobs only if the nodes were cool at the time when tasks were assigned. When

the jobs are assigned to only cool nodes, the Disk and CPU utilization in hot node drops in

static scheduler as compared with FIFO scheduler. An exception to this case is seen in Disk

utilization at T38 and T44, where the temperature was below temperature threshold for the

nodes with high utilization at the time of task assignment.

By reducing the utilization, static scheduler gave the CPU and Disk intensive tasks to

CPU and Disk powerful machines only, which prevented from creating a hot-spot and achieve

temperature reduction by running at relatively low utilization. As shown in figure 5.4, in

static scheduler we were able to achieve best to ∼2◦C reduction in average CPU temperature

for CPU threshold temperature of 32(T32) and the average cluster temperature gradually

increases as we increase the threshold temperature. Similarly, for the Disk temperature, we

51

were able to achieve a temperature drop of ∼2.5◦C, which again gradually increases with

higher threshold temperatures.

The grep application did not show as much improvement as Word count, as the utiliza-

tion for CPU remained below the threshold value of 50%. When the utilization is below the

threshold, the static scheduler is same as FIFO scheduler. However, for the Disk, there was

a slight disk temperature drop of for ∼0.65◦C lowest disk temperature threshold. In other

words, grep application was not as CPU intensive or disk intensive as WordCount and hence

our static scheduler categorizes all job as ”easy jobs” as mentioned in chapter 4.

5 Nodes, 40GB, Word count and Grep

Experiment setup included running the default Hadoop FIFO scheduler and our dynamic

scheduler for a data size of 40GB in the HDFS on a 5 node cluster.

Figure 5.6: Avg. CPU temperature of 5
nodes in WordCount for Static scheduler
vs FIFO scheduler

Figure 5.7: Avg. HDD temperature of 5
nodes in WordCount for Static scheduler
vs FIFO scheduler

Discussion

In WordCount, the average CPU temperature across cluster showed similar behavior to

14 node WordCount as shown in 5.6. The maximum temperature difference of ∼4.7◦C was

again for lowest CPU threshold and FIFO scheduler. Again, as the threshold increased, the

static scheduler showed same behavior as FIFO scheduler. Similarly, for Disk the maximum

temperature difference of ∼1.2◦C was observed for lowest disk threshold. As shown in figures

52

Figure 5.8: Avg. CPU temperature of
5 nodes in Grep for Static scheduler vs
FIFO scheduler

Figure 5.9: Avg. HDD temperature of
5 nodes in Grep for Static scheduler vs
FIFO scheduler

5.8 and reffig:5statdugrep, the Grep job showed no improvements in 5 node cluster as well

because the utilization for the disk and CPU remained below the threshold value.

5.2.3 Dynamic scheduler

Unlike static scheduler, in Dynamic Scheduler the utilization and temperature informa-

tion for the Disk and CPU are given at the run-time. The scheduler tries schedule the job

when the nodes are cool and maintains the average temperature across cluster by scheduling

the jobs on coolest nodes leaving the hot nodes idle.

14 Nodes, 80GB for WordCount, Grep adn Pi application

Experiment setup included running the default Hadoop FIFO scheduler and our dynamic

scheduler for a data size of 80GB in the HDFS on a 14 node cluster. The graphs show the

average CPU and HDD temperature of the cluster and standard deviation of HDD nad CPU

temperatures by running a Hadoop jobs of Word count, Grep and Pi on a data size of 80GB.

Discussion

As shown in the figure 5.10, the job was run first on a default Hadoop scheduler, followed

by the dynamic scheduler runs at different CPU temperature. The maximum temperature

saving of ∼5◦C was obtained at lowest CPU temperature threshold and average CPU cluster

temperature increases as the threshold increases, but the time taken to run the job decreases.

53

Figure 5.10: Avg. CPU temperature
for 14 nodes in WordCount for Dynamic
scheduler vs FIFO scheduler

Figure 5.11: StdDev. of average CPU
temperature of 14 nodes, in WordCount
for Dynamic scheduler vs FIFO scheduler

Figure 5.12: Avg. HDD temperature
for 14 nodes in WordCount for Dynamic
scheduler vs FIFO scheduler

Figure 5.13: StdDev. of average HDD
temperature of 14 nodes, in WordCount
for Dynamic scheduler vs FIFO scheduler

At lower CPU threshold, not many nodes are available to execute the job and with that the

time for execution increases. The average CPU temperatures are close to t ∼38◦C thresholds

after T32, because most nodes had CPU temperatures at same value and our scheduler tries

to maintain the temperatures at same value. When all the nodes in cluster are around

average temperature, the tasks are switched too frequently compared to the Hadoop FIFO

scheduler.

Similarly, the Hard Disk temperature in Figure 5.12 showed least temperature at the

lowest threshold(T28) and maximum temperature for the original FIFO scheduler. Again,

54

Figure 5.14: Avg. CPU temperature for
14 nodes in Grep for Dynamic scheduler
vs FIFO scheduler

Figure 5.15: StdDev. of average CPU
temperature of 14 nodes, in Grep for Dy-
namic scheduler vs FIFO scheduler

Figure 5.16: Avg. HDD temperature for
14 nodes in Grep for Dynamic scheduler
vs FIFO scheduler

Figure 5.17: StdDev. of average HDD
temperature of 14 nodes, in Grep for Dy-
namic scheduler vs FIFO scheduler

like the CPU temperature, HDD temperature increases with the increase in the threshold

disk temperature. The maximum saving of ∼1.4◦C was obtained with threshold value of

T28, and least of ∼0.43◦C at threshold value of T32. The time taken to finish the job was

26% more than default FIFO scheduler at T28 and drops to 4.2% at T32.

To measure the uniformity of CPU temperature in cluster, we measure the standard

deviation of average CPU temperature for our dynamic scheduler at different thresholds

and compare results with FIFO scheduler. In figure 5.11 and 5.11, the standard deviation

of the FIFO scheduler is the highest. In contrast, the dynamic scheduler manages to keep

the standard deviation of CPU and Disk temperature around the same value or lesser than

55

Figure 5.18: Avg. CPU temperature for
5 nodes in PI for Dynamic scheduler vs
FIFO scheduler

Figure 5.19: StdDev. of average CPU
temperature of 5 nodes, in Pi for Dynamic
scheduler vs FIFO scheduler

the FIFO scheduler, which shows that our dynamic scheduler keeps the CPU temperature

uniform across the cluster by a margin of 18.5% and 23% for HDD temperature in worst

cases.

In Grep application, although the temperature increased for both CPU and Disk in case

of FIFO scheduler, the temperature remained uniform across the cluster because the Grep

job was not computation intensive or disk intensive. From Figure 5.14 and 5.15, we can

infer that using dynamic scheduler gives a maximum temperature saving of 2.8◦C for almost

all CPU temperature thresholds. However, for HDD (5.16 and 5.17), the HDD temperature

increased with increase in temperature threshold for HDD or Disk. Using dynamic scheduler

for disk intensive task in Grep application would reduce the temperature by 1◦C-0.3◦C.

Pi job computes value of PI, and is primarily a CPU intensive job unlike WordCount

and Grep, which are also disk intensive job. In fact, pi job does not actually need any data

in HDFS to work on. So in our results, we just consider the changes in CPU temperature

and standard deviation of CPU temperature. The figure 5.29 shows temperature reduction

of around 3◦C-2◦C for all thresold values of CPU temeprature. The standard deviation of

CPU temperature in figure 5.19, at various threshold shows improvement of 20%.

10 Nodes, 60GB, for Word count and Grep

56

Experiment setup included running the default Hadoop FIFO scheduler and our dynamic

scheduler for a data size of 60GB in the HDFS on a 10 node cluster. The graphs show the

average CPU and HDD temperature of the cluster and standard deviation of HDD and CPU

temperatures by running a Hadoop jobs of Word count, Pi and Grep on a data size of 60GB.

Figure 5.20: Avg. CPU temperature
for 10 nodes in WordCount for Dynamic
scheduler vs FIFO scheduler

Figure 5.21: StdDev. of average CPU
temperature of 14 nodes, in WordCount
for Dynamic scheduler vs FIFO scheduler

Figure 5.22: Avg. HDD temperature
for 10 nodes in WordCount for Dynamic
scheduler vs FIFO scheduler

Figure 5.23: StdDev. of average HDD
temperature of 14 nodes, in WordCount
for Dynamic scheduler vs FIFO scheduler

Discussion

As shown in the figure 5.20 unlike 14 node cluster, temperature saving of just ∼3.5◦C

was obtained at lowest CPU temperature threshold and the CPU temperature increased as

threshold temperature increased. Similarly, in WordCount disk intensive application, using

57

Figure 5.24: Avg. CPU temperature for
10 nodes in Grep for Dynamic scheduler
vs FIFO scheduler

Figure 5.25: StdDev. of average CPU
temperature of 10 nodes, in Grep for Dy-
namic scheduler vs FIFO scheduler

Figure 5.26: Avg. HDD temperature for
10 nodes in Grep for Dynamic scheduler
vs FIFO scheduler

Figure 5.27: StdDev. of average HDD
temperature of 10 nodes, in Grep for Dy-
namic scheduler vs FIFO scheduler

dynamic scheduler reduces the HDD temperature (5.22) by 1◦-0.5◦C. As shown in figures 5.21

and 5.23, the dynamic scheduler manages to keep the CPU and Disk temperature uniform

across the cluster by a margin of 20% and 44% respectively at the lowest temperature

threshold values.

Similarly for Grep, unlike 14 node cluster, average temperature saving of ∼5◦C was

obtained at lowest CPU temperature threshold and temperature saving is ∼3◦C for the rest

of threshold values(5.24). It means that in a smaller cluster, the temperature saving drops

as the threshold increases, as the scheduler has less chances to schedule jobs on cooler nodes,

and it rather tries to keep temperature uniform. Similarly, in Grep disk intensive application,

58

Figure 5.28: Avg. CPU temperature for
10 nodes in Pi for Dynamic scheduler vs
FIFO scheduler

Figure 5.29: Avg. CPU temperature for
5 nodes in Pi for Dynamic scheduler vs
FIFO scheduler

using dynamic scheduler reduces the HDD temperature by 0.8◦C at lowest threshold(5.26).

From figures 5.25 and 5.27, we can infer that the dynamic scheduler manages to keep the

CPU and Disk temperature uniform across the cluster by a margin of 25% each for almost

all temperature threshold values.

For Pi, the temeprature difference remained almost the same as Pi on 14 node cluster,

but the temperature at higher threshold temperature increases the temperature.

5 Nodes, 40GB, for WordCount and Grep

Experiment setup included running the default Hadoop FIFO scheduler and our dynamic

scheduler for a data size of 40GB in the HDFS on a 5 node cluster. The graphs show the

average CPU and HDD temperature of the cluster and standard deviation of HDD and CPU

temperatures by running a Hadoop jobs of WordCount, Pi and Grep on a data size of 40GB.

Discussion

When the cluster size was further reduced to 5 nodes (Figures 5.30, 5.31, 5.32, 5.33.

5.29), our dynamic scheduler executed for a longer time without significant impact on the

average temperature of the cluster for both Disk and CPU, WordCount, Pi and Grep jobs.

The dynamic scheduler tries to schedule the jobs on cooler nodes, but when there are fewer

nodes in cluster, not every node is available for task scheduling. Even if these nodes were

available, these small number of cool nodes offset the tasks of hot nodes by increasing the

59

Figure 5.30: Avg. CPU temperature for 5
nodes in WordCount for Dynamic sched-
uler vs FIFO scheduler

Figure 5.31: Avg. HDD temperature for 5
nodes in WordCount for Dynamic sched-
uler vs FIFO scheduler

Figure 5.32: Avg. CPU temperature for
5 nodes in Grep for Dynamic scheduler vs
FIFO scheduler

Figure 5.33: Avg. HDD temperature for
5 nodes in Grep for Dynamic scheduler vs
FIFO scheduler

time take to execute a job with minimal temperature saving. It is worth observing that static

scheduler was faster the dynamic scheduler and fared better in reducing the temperature for

the same configuration, which means that static scheduler depends on the job type and

utilization thresholds more than cluster size and dynamic scheduler depends more on cluster

size.

Scalability

Our dynamic scheduler is scalable, the performance improves when the cluster size is

high and drops for small clusters. Table 5.3 shows time taken and temperature saved to

execute the job with node to data ratio is maintained for different cluster sizes at lowest

60

threshold for disk and CPU. The time taken to execute job and temperature saving is not

linear as expected. The larger cluster shows better thermal management and performance

compared to smaller one.

#nodes CPU Disk Time
14 6.2 3.5 1.3s
10 3.4 1 1.7s
5 1 0.3 2.1s

Table 5.3: Scalability comparison at different cluster size

5.3 Overall Performance

To measure the power consumed for computation and cooling and measure saving ob-

tained in cooling costs, we measured the inlet and outlet temperatures for original FIFO

scheduler, static scheduler and dynamic scheduler. The Figure 5.34 and 5.35 shows the dif-

ference in the inlet and outlet temperature for static and dynamic scheduler, and the table

5.4 shows total power consumed, power consumed for computation and power consumed for

cooling. In table 5.4 the D and C represents the disk and CPU threshold respectively. For

example, D27 represents the disk threshold of 27 and C32 represents CPU threshold of 32.

The sensors were used to measure the inlet and outlet temperature and from figure 5.34 and

5.35 it is clear that both static and dynamic scheduler reduces the difference between node’s

outlet and inlet temperatures. The temperature reduction means that Tsup does not have

to be reduced, which increases the cooling power and cost. The power of computation and

AC are calculated from the formulas in Chapter 3. The values of air density, heat of air and

flow rate of air are picked from [27].

From the table 5.4 , the total power savings are calculated as shown in table 5.5.

Use of static and dynamic scheduler can save lot of power both on computation and

cooling fronts. The average CPU and Disk utilization across the cluster was around 50%-

60%. Since with the utilization increases the computation power and cooling power, any

further increase in either of utilization will save more power and cooling costs. Although

61

Scheduler Computation
Power(PC)

Cooling Power
(PAC)

Total
Power(P)

Original 2592.231 877.981 3470.212
dynamic D27 and C32 2198.244 753.795 2952.039
dynamic D29 and C38 2224.899 761.259 2986.159
dynamic D31 and C43 2272.578 777.047 3049.625
dynamic D33 and C45 2318.228 786.788 3105.016
dynamic D35 and C47 2338.321 795.242 3133.564
static D29 and C38 2164.083 740.050 2924.133
static D31 and C43 2226.992 750.105 2976.098
static D33 and C45 2280.925 777.455 3058.381
static D35 and C47 2306.779 772.607 3079.386

Table 5.4: Power consumption in KW for scheduler

Scheduler Total Power saving(in %)
dynamic D27 and C32 14.932%
dynamic D29 and C38 13.949%
dynamic D31 and C43 12.120%
dynamic D33 and C45 10.5%
dynamic D35 and C47 9.7%

static D29 and C38 15.7%
static D31 and C43 14.23%
static D33 and C45 11.86%
static D35 and C47 11.26%

Table 5.5: Power saving for scheduler

62

Figure 5.34: Outlet-Inlet temperatures
for Static scheduler

Figure 5.35: Outlet-Inlet temperatures
for Dynamic scheduler

our schedulers save power, it comes at the cost of performance and execution time. It is a

trade off to use which threshold values keeping execution time in mind. In fact, increase

execution time does not increase the computation power as some nodes which are hot are

idle and idle nodes consume less power compared to nodes running on high utilization. The

execution time increased 20%-70% for static scheduler and 56%-9% for dynamic scheduler

for lowest-highest threshold values. Ideally, all real time scheduling of high priority tasks

should have highest threshold as job execution time is critical in that scenario and offline

data processing, web analysis, low priority jobs which do not have strict time constraints

should be executed in our scheduler with low threshold values for temperature.

63

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In chapter 1 we saw how unstructured data is booming in the digital world and how

Cloud Computing is being adopted by corporate world to analyze, manage and store the data.

The we outlined how a distributed framework like Hadoop with MapReduce programming

model is widely being used by many organizations in their Data centers to analyze big

data. We then outlined the need for thermal management in data centers and described how

cooling cost in data centers is increasing and becoming unaffordable. The need of thermal

management in data centers is aggravated by the absence of thermal management module

in Hadoop.

In chapter 2, we discussed about Hadoop architecture and how it works with it’s two

main components, MapReduce and HDFS. We understood that Hadoop’s master-slave-client

architecture and the purposes of 2 masters and slaves. We learned about HDFS- the filesys-

tem of Hadoop used to store the data set of size peta bytes or tera bytes in form of small

uniform sized blocks. The blocks are replicated to improve reliability and job localization.

We also learned how MapReduce processing model then processes the data in the HDFS as

¡key,value¿ pair. The synchronization of map and reduce tasks and exchange of data were

explained in this chapter.

In chapter 3, we discussed thermal model of data center in detail. The chapter explained

about the power consumed for computation, cooling and various temperature that is related

to the thermal model of data centers. In chapter 3, we further explained existing solutions

that were proposed to reduce the cooling costs and manage heat in data center effectively.

64

These solutions included efficiently scheduling tasks based on thermal model in data center

and hence reduce or minimize the heat dissipated by the nodes.

In chapter 4, we proposed our solutions to manage heat and reduce cooling costs in data

center. We proposed 2 schedulers, a static scheduler which learns from the previous job runs

to schedule the tasks on cool nodes based on utilization reports and temperature stored in

profile file. The second scheduler is a dynamic scheduler which schedules the job based on

current utilization and temperature of disk and CPU. We implemented both the scheduler

on top of Hadoop’s default FIFO scheduler and developed a thermal model using the design

of our scheduler.

Finally in chapter 5, we evaluated the performance of our schedulers against Hadoop’s

FIFO scheduler by testing our scheduling algorithms against benchmarks like WordCount,

Pi and Grep. The temperature of CPU and Disk were observed at various threshold tem-

peratures of Disk and CPU and cluster sizes. We showed that our scheduler works better

with large cluster sizes and works better with hot spots and also schedules job based on

utilization pattern. In a cluster with same temperature across all nodes, the performance of

the dynamic scheduler remained same as the FIFO scheduler. We successfully showed that

the outlet temperature is reduced by using our scheduler and the computation power, cooling

power and total power are reduced by 1̃5% even for a moderate disk and CPU utilization.

6.2 Future Work

There are several lines of research arising from the work presented in this thesis. Some

of interesting future researches include:

• Integrate dynamic and static scheduler: Both our schedulers work on different prin-

ciples, one schedules the job on prior knowledge and another schedules the job based

on current utilization. Integrating both these schedulers could use prior job knowledge

and current conditions to schedule the job efficiently in data center cluster.

65

• Implement Re-circulation Matrix: We did not consider re-circulation effect in our

thesis. But, there are schedulers which schedules the job with intention of minimizing

Heat re-circulation. Our scheduler’s design is flexible, it can take threshold values

for each node in cluster implemented as matrix and schedule the job. Considering

re-circulation matrix in our scheduler can achieve better thermal balance.

• Implement thermal module on Fair and Capacity scheduler: The thermal module is

implemented currently on FIFO scheduler which has single queue to maintain tasks.

The scheduler developed by Facebook and Yahoo, have multiple queues and parallel

scheduling capabilities. Implementing thermal module on top of these schedulers might

be interesting both on thermal management and performance fronts.

66

Bibliography

[1] C.B. Bash, C.D. Patel, and R.K. Sharma. Dynamic thermal management of air cooled
data centers. In Thermal and Thermomechanical Phenomena in Electronics Systems,
2006. ITHERM ’06. The Tenth Intersociety Conference on, pages 8 pp. –452, 30 2006-
june 2 2006.

[2] AbdlmonemH. Beitelmal and ChandrakantD. Patel. Thermo-fluids provisioning of a
high performance high density data center. Distributed and Parallel Databases, 21:227–
238, 2007.

[3] P.E. Christian L. Belady. In the data center, power and cooling costs more than
the it equipment it supports. http://www.electronics-cooling.com/2007/02/in-

the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-

supports/, 2007. [Online; created February 2007].

[4] Gartner Inc. D. W. Cearley. Cloud Computing: Key Initiative Overview. http://www.
gartner.com/it/initiatives/pdf/KeyInitiativeOverviewCloudComputing.pdf,
2010. [Online; accessed December 2012].

[5] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. The cost of a
cloud: research problems in data center networks. SIGCOMM Comput. Commun. Rev.,
39(1):68–73, December 2008.

[6] GreenGrid. Power Usage Efficiency. www.thegreengrid.org, 2011. [Online; created
December 2011].

[7] Apache Hadoop. Hadoop Distributed File Systems (HDFS). http://hadoop.apache.

org/docs/r0.17.1/hdfs_design.html, 2012. [Online; accessed December 2012].

[8] Brad Hedlund. Understanding Hadoop Clusters and the Network. www-01.ibm.com/

software/data/infosphere/hadoop/. [Online; created December 2012].

[9] IBM. IBM Cloud Deinition. http://www.ibm.com/cloud-computing/us/en/what-

is-cloud-computing.html, 2012. [Online; accessed December 2012].

[10] IBM. IBM Hadoop. http://www.ibm.com/cloud-computing/us/en/what-is-cloud-
computing.html, 2012. [Online; accessed December 2012].

[11] IDC. IDC Press Release. http://www.idc.com/getdoc.jsp?containerId=

prUS23177411#.UMYoe-TAfTB, 2011. [Online; created December 2011].

67

[12] Gartner Inc. Gartner Reveals Top Predictions for IT Organizations and Users for 2012
and Beyond. http://www.gartner.com/it/page.jsp?id=1862714, 2011. [Online; cre-
ated December 2011].

[13] Xunfei Jiang. Thermal Modeling and Data Placement for Storage Systems. Modeling
of Storage systems, December 2012.

[14] Santosh Kulkarni. ”Incast-free TCP for Data Center Networks”. PhD thesis, Auburn
University, 2012.

[15] National Information Technology Laboratory. Final Version of NIST Cloud Comput-
ing Definition Published. http://www.nist.gov/itl/csd/cloud-102511.cfm, 2011.
[Online; created October 25, 2011].

[16] David Linthicum. Cloud computing’s role in the evolving data center.
http://www.infoworld.com/d/cloud-computing/cloud-computings-role-in-

the-evolving-data-center-452, 2010. [Online; created September 16, 2010].

[17] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making scheduling” cool”:
temperature-aware workload placement in data centers. In Proceedings of the annual
conference on USENIX Annual Technical Conference, pages 5–5, 2005.

[18] Justin Moore, Jeff Chase, Parthasarathy Ranganathan, and Ratnesh Sharma. Making
scheduling ”cool”: temperature-aware workload placement in data centers. In Proceed-
ings of the annual conference on USENIX Annual Technical Conference, ATEC ’05,
pages 5–5, Berkeley, CA, USA, 2005. USENIX Association.

[19] C.D. Patel, R. Sharma, C.E. Bash, and A. Beitelmal. Thermal considerations in cool-
ing large scale high compute density data centers. In Thermal and Thermomechanical
Phenomena in Electronic Systems, 2002. ITHERM 2002. The Eighth Intersociety Con-
ference on, pages 767 – 776, 2002.

[20] Chris Preimesberger. MapR Integrates Hadoop Distro With Google Compute
Engine. http://www.eweek.com/c/a/Cloud-Computing/MapR-Integrates-Hadoop-

Distro-with-Google-Compute-Engine-645801/, 2012. [Online; created July 6, 2012].

[21] Bing Shi and A. Srivastava. Thermal and power-aware task scheduling for hadoop based
storage centric datacenters. In Green Computing Conference, 2010 International, pages
73 –83, aug. 2010.

[22] Carnegie Mellon Software Engineering Institute. How Is Cloud Computing
Used? http://www.sei.cmu.edu/sos/research/cloudcomputing/clouduse.cfm?

location=quaternary-nav&source=591735. [Online; accessed, December 2012].

[23] Jaigak Song. Introducing a Simple PaaS Built on Hadoop YARN. http://cloud.

dzone.com/articles/introducing-simple-paas-built, 2012. [Online; created July
31, 2012].

68

[24] Q. Tang, S. Gupta, and G. Varsamopoulos. Thermal-aware task scheduling for data
centers through minimizing heat recirculation. In Cluster Computing, 2007 IEEE In-
ternational Conference on, pages 129 –138, sept. 2007.

[25] Qinghui Tang, Sandeep K. S. Gupta, and Georgios Varsamopoulos. Thermal-aware task
scheduling for data centers through minimizing heat recirculation. In Proceedings of the
2007 IEEE International Conference on Cluster Computing, CLUSTER ’07, pages 129–
138, Washington, DC, USA, 2007. IEEE Computer Society.

[26] Qinghui Tang, Sandeep Kumar S. Gupta, and Georgios Varsamopoulos. Energy-efficient
thermal-aware task scheduling for homogeneous high-performance computing data cen-
ters: A cyber-physical approach. IEEE Trans. Parallel Distrib. Syst., 19(11):1458–1472,
November 2008.

[27] Qinghui Tang, S.K.S. Gupta, D. Stanzione, and P. Cayton. Thermal-aware task schedul-
ing to minimize energy usage of blade server based datacenters. In Dependable, Auto-
nomic and Secure Computing, 2nd IEEE International Symposium on, pages 195 –202,
29 2006-oct. 1 2006.

[28] Lizhe Wang, Jie Tao, Rajiv Ranjan, Holger Marten, Achim Streit, Jingying Chen,
and Dan Chen. G-hadoop: Mapreduce across distributed data centers for data-
intensive computing. Future Generation Computer Systems, 29(3):739 – 750, 2013.
¡ce:title¿Special Section: Recent Developments in High Performance Computing and
Security¡/ce:title¿.

[29] Lizhe Wang, Gregor von Laszewski, Jai Dayal, Xi He, Andrew J. Younge, and
Thomas R. Furlani. Towards thermal aware workload scheduling in a data center.
In Proceedings of the 2009 10th International Symposium on Pervasive Systems, Algo-
rithms, and Networks, ISPAN ’09, pages 116–122, Washington, DC, USA, 2009. IEEE
Computer Society.

[30] Yahoo! Hadoop Introduction. http://developer.yahoo.com/hadoop/tutorial/

module1.html, 2012. [Online; accessed December 2012].

[31] Yahoo! Hadoop MapReduce. http://developer.yahoo.com/hadoop/tutorial/

module4.html#dataflow, 2012. [Online; accessed December 2012].

[32] Yahoo! Hadoop MapReduce Basics. http://developer.yahoo.com/hadoop/

tutorial/module4.html#basics, 2012. [Online; accessed December 2012].

[33] M. Yong, N. Garegrat, and S. Mohan. Towards a resource aware scheduler in hadoop.
In Proc. ICWS, pages 102–109, 2009.

69

Appendices

70

