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THESIS ABSTRACT

ON-LINE ESTIMATION OF IMPLEMENT DYNAMICS FOR ADAPTVE
STEERING CONTROL OF FARM TRACTORS

Evan Robert Gartley

Master of Science, December 16, 2005
(B.M.E., Auburn University, 2003)

135 Typed Pages

Directed by David M. Bevly

An adaptive control technique for the control dlaam tractor during low levels
of excitation and at low velocities is presentd®esults of a set of system identification
experiments are compared to previous tractor moddéiscascaded controller is then
designed for the feedback of steer angle, yaw eatd,lateral position baed on the new
tractor model. An on-line analysis of the datassd to determine if enough excitation is
available for adaptation. A cascaded Kalman Fikegoresented to estimate the slope of
the DC gain of the steer angle to yaw rate trarfsiection, Mpc, with respect to velocity.
An estimator also provides faster updates of pwsitiFrom the on-line estimate Wi,
the controller gains are scheduled based on a t&le of predetermined values that

were calculated from system identification tests.



The sensitivity of the controller to model simpi#tions, incorrect velocities, and
Mpc estimate errors are investigated. The accuracyhef estimatedMpc due to
neglected dynamics and the rate of convergendeoisrs A simulation is used to show
the errors that can be induced in the positiomregtr by the GPS delay. The yaw rate
estimator is designed for fixed point math usings@uare root covariance filter.
Experimental and simulation results are providedctvlshow the validity of thépc
estimate. Finally, experimental results which shbet the accuracy changes little as a

result of hitch loading and velocity are preseraed discussed.
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CHAPTER 1
INTRODUCTION
1.1 Motivation

Farm tractor models vary widely due to the manyfigomations possible and the
different ground conditions encountered. The adl®@r must give an adequate response
to a system in which towed or hitched implementsarf/ing sizes can be used at a wide
range of depths. By automating tracking operatiaosts such as row overlaps can be
reduced. Also, less trained operators can be us#wbwy a reduction in accuracy and
tractor operations can be performed during lowbvisy.

Due to the various implement loadings that are iptessa controller designed for a
time-invariant vehicle model has the potential tthexr have a poor response or go
unstable. Therefore, it is desired to have arotiat that can compensate for the change
in dynamics. It is also desired to not add momsses to the tractor and as such only
sensors that can be found on tractors that cuyrdrdle an option for a controlled
response were used. Complicating the problem, etbsiajectories consist of straight line
segments, which lead to low levels of excitatioNlso, the implement depth is not set
until the straight line trajectory begins. Therefdfits from when the tractor is lining up

for the controlled run are not applicable for tleatcoller design.



The algorithms designed must also be able to openata low cost microcontroller.
The microcontroller that is considered for thise@sh is only capable of fixed point

math.

1.2 Background

A number of companies currently produce tractantid systems for tracking
straight lines, such as John Deere and Beeline nidohies, which use GPS for
navigation. Work at Stanford developed simpletbaeodels and control algorithms
that produced sub inch accuracy of a tractors iposiising carrier-phase differential
GPS [O’Conner, 1996]. Further research allowed tloe tracking of additional
trajectories [Bell, 1999]. Additionally, combindsave been controlled with GPS
[Cordesses, 1999].

Before the use of GPS as a navigation system, gtanpision was used for the
control of tractors [Reid, 1987]. Research intenoling the navigation of GPS and vision
has shown improvements in position accuracy [Zhd8§9]. A comparison of the
blending of GPS with a magnetometer against usimy GPS has also been shown
[Benson, 1998].

System identifications of tractor dynamics betwstger angle and yaw rate have
been conducted for input frequencies up to onezhfat controller design [Bevly, 2001,
Stombaugh, 1998]. Additionally a model of a tractioe has been developed which
accounts for faulty circularity through the modé#imn of a Pacejka Similarity Method

tire model and has been verified with measuredd@ata [Bohler, 1999].



Numerous tire-soil interaction models exist [Sa&ti, 2002]. However, they are
currently not used for the design of controllers fbe lateral dynamics of tractors.
Tractor models used for the design of tractor aletrs have included kinematic models
[O’Conner, 1997]. Kinematic models have also bedae to model the dynamics
between an object being towed and a vehicle [SaestR9I5; Hingwe, 2000]. These
kinematic models for the angle between the impldnagnl tractor have been used to
control the position of the implement [Bevly, 2001 ontrollers have also been designed
for tractors modeled using a first order lag ankigycle model [O’'Conner, 1997]. A
bicycle model with tire relaxations has been useddntrol a tractor at high velocities
[Bevly, 2001].

Online adaptation of a tractor model has beensiyated using an Extended
Kalman Filter / LMS algorithm [Rekow, 2001]. Thatork identified the parameters
defined in [O’Conner, 1997]. An adaptive controlleas also been designed for a
tractor’'s steering servo to account for a changiagd band and dynamics [Wu, 2001].
Additionally, the slope of the DC gain with respéztvelocity of the steer angle to yaw
rate transfer function has been previously estichai®eng with a steering bias [Bell,

1999].

1.3 Outline of Thesis

In Chapter 2, system identification of the stegiservo is performed and a model
is presented which accounts for its nonlinearitids.review of previous yaw dynamic
models for tractors is also covered. The resuftopen loop system identification
experiments of a tractor with and without an impéetnare given. The similarities and

3



differences between the previously used modelstiamapen loop system identification
fits are discussed. It is justified that the slagethe DC gain with respect to velocity
(Mpc) of the steer angle to yaw rate transfer functian be estimated rather than the DC
gain. Finally, the model of the tractor used fag thesign of the controllers in this thesis
is given.

In Chapter 3, the design of the controllers fa #teering servo, yaw rate, and
lateral position are detailed. The method of deteing the controller gains using the
estimation of the paramet®pc is discussed. The sensitivity of the controllerghe
model simplifications in Chapter 2, incorrect velms, and an incorredipc estimation
are shown.

Chapter 4 develops a method for estimating the yai® andMpc for the
adaptation of the controller. A method of deteimgnwhen there exists sufficient
excitation to estimat®Ipc is given. The rate of convergence upon initetledmination
of when to adapt is shown. The effect of the eetgld dynamics on the estimation is
displayed and a method of correcting for some e§¢herrors is discussed. The rate of
the convergence of the estimated parameter dueetfotgetting factor in the estimator is
shown. The design of the position estimator fmvpting faster updates of position is
also detailed. The output equations for the estmahich account for the GPS delay are
justified through the use of a simulation. Alsppeoximations are given for the errors
that are induced from not including the GPS detathe estimator, which are validated in
simulation.

In Chapter 5, the design of the trajectories tate used for the tractor controller
in this thesis are discussed. Experimental reshitsving the accuracy of the estimation

4



algorithms is given. It is shown that the trackirggponse using the estimation and

adaptive control methods developed in this thesieat vary significantly.

The estimator for the yaw rate ahthc estimation is designed using fixed point

calculations in Chapter 6. A comparison of estormtusing fixed and floating point

math are displayed for both experimental and sitrariadata. Finally, in Chapter 7, the

conclusions and future work are given.

1.4 Contributions

A summary of the contributions provided in thisdiseare listed below.

A model for a John Deere 8420 tractor was developsthg system
identifications experiments

A controller was designed which compensated fongka in velocity and hitch
loading. Analysis showed that not accounting fbarges in the velocity and
hitch loading could cause the tractor controllebéounstable.

An estimator was designed to estimate the effecthef hitch loading on the
tractors dynamics. The accuracy and the amounina for convergence was
provided.

A position estimator was designed which accountedhe delay in the receipt of
the GPS message.

A fixed point estimator was developed for estimgitmtch loading through the
parameteMpc, in order to allow implementation of the algoritbon low cost

microcontrollers.



CHAPTER 2
MODELING AND SYSTEM IDENTIFICATION

2.1 Introduction

In this chapter the modeling of the hydraulic steg servo and the tractors yaw
rate dynamics will be discussed. While a numberdibferent models have been
presented for the yaw rate dynamics of a traceaw, iave provided justifications of their
designs through the use of system identificati@hneues, instead relying on controlled
responses to determine which model gives the lessits. A review of past models as
well as their similarities to system identificateorof a John Deere 8420 tractor is
presented. While the past models do not adequdésigribe the yaw rate dynamics that
of the 8420 tractor, it is shown that one of thedels shows promise in describing the
DC gain of the steer angle to yaw rate transfection. The DC gain equation of this
model will be used as part of the justification éoly estimating the slope of the DC gain
(Mpc). This will also be justified with the use ofstgm identification results. Finally,
the model that is used in the design of the coeir®l which is based on the system

identification results, is presented.

2.2 Steering Servo Dynamics
Based on earlier research [Bell, 1999], the stgesarvo dynamics were assumed

to be a nonlinear system described using an impastormation and a transfer function



which included an integrator. An integrator is @&sary since the steering servo is
hydraulic with an input of flow rate and an outmitsteer angle. To identify the input
transformation, constant inputs were commandetddractor resulting in the steer angle

moving at a constant rate as shown below in Figute
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Figure 2.1: Steady state steering rate versus cowmhingut.

The steer angle measurement was differentiated aviténter difference equation
to obtain the steer angle rate, slew rate, fordewange of inputs in order to produce the
data in Figure 2.1. The input transformation whent modeled with a dead-band,

saturations, and nonlinear equations with the walyigen in Table 2.1, whene is the



value provided to the tractor. The fitted modedliso compared to the identified values

in Figure 2.1.
Table 2.1: Steering servo input transformation
Steady State Slew Raté{.) Input Commandu))
dpc =—036 u<598
Spe = —1.29%-6u? +0.003241 - 1.835 598< u <866
dpc =0 866< u <1055
dpe =1.85%-6u” - 0.0031141+1.213 1055< u <1325
dpe = 036 u>1325

To obtain the transfer function of the steeringysga chirp input was given to the
tractor while accounting for the input transforrmatiwhich is detailed in Chapter 3. The
output was then differentiated with a center défeze equation and an empirical transfer
function estimate (ETFE) [Ljung, 1999] was formdegure 2.2, which resembles a
system which has two poles. A Box-Jenkins mod@lnl, 1999] was used to fit the

system identification data.
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Figure 2.2: ETFE of steering servo dynamics fropuirto slew rate.

The Box-Jenkins model was then combined with thegiator to produce the
discrete transfer function describing the steesagyo dynamics (Equation (2.1)) at 100

hertz.

_ 0.0063552519202254 2.1)
2°® - 2.63184659815072° + 2.3304358728497z — 0.6985892736991 '

9
u

2.3 Previous Tractor Yaw Dynamic Models

The schematic displayed in Figure 2.3 is a commehicle dynamics model

known as the bicycle model [Wong, 1978], that hasrbaugmented with the addition of



a hitch force and moment caused by an implemehe use of a towed implement would
have no moment, while a hitched implement wouldehavforce and moment. The
bicycle model lumps the inner and outer tires argkther and assumes that there is no
weight transfer. The bicycle model also relatesftirces at the tires to the velocities of
the tire, through slip angles. The additional éotbat has been added for the implement

will also be modeled as being a function of thp algle at the hitch.

h C

v
m

Figure 2.3: Bicycle model augmented with a hitcitéoand moment.

As can be seen in Figure 2.3, the force on thet flios, rear tire, and hitch are
defined ad, F;, andF;, respectively. The distance from the center oVigyao the front

tire and rear tire are defined asndb, and the distance from the rear tire to the higch
10



c. The front, rear, and hitch slip angles are defiasas, o, andaoy respectively. Also
depicted in the figure are the longitudinal velpdW,), lateral velocity ¥y), yaw rate (),
and steer angled). The heading angles is the angle between the North directid\) (
and the tractors longitudinal direction. The s&lg (5) is the angle between the
longitudinal and lateral velocities. The coursglany), the angle provided by GPS, is
the heading anglesj plus the side slipf). The dynamics of the bicycle model in a state

space representation are shown below.

_ 2(Cah +Car +Caf ) 2((b+C)Cah +me _acaf )_V 2Caf
V, | mV, mV, v, dom s oo
¢ || 2b+c)c,, +bC,, —aC,,) _2((b+c)2Cah +b%C,, +a2caf) r| | 2aG,;, (2.2)
|V, IV, I,

The front, rear, and hitch cornering stiffnesses G¥, C,r, andC,, respectively. The
cornering stiffnesses represent the resistanaerming and are a factor in computing the
forces from the slip angles. The mass of the arastm and the mass moment of inertia
about the vertical axis is.

The bicycle model has two poles which decrease andWidth as velocity
increases. Additionally, the bandwidth of the lsieymodel goes to infinity as velocity
goes to zero. However, it will be shown that tlodep of the system identification model
do not go to infinity as velocity decreases. Thane this is not a good model for low
velocities. Another model that has been used assuthat the lateral velocity is
negligible which causes the bicycle model to cai&to a first order model. These
models also have too few poles to describe what wlatsined through system

identification tests shown in the next section.islbelieved, however, that the bicycle

11



model can provide an adequate description of hosvDIC gain changes with hitch

loading [Pearson, 2005]. The DC gain equatiorterbicycle model is shown below.

T C, [(a+b+c)Cah +(a+b)(:0,,}\/X -
8, (G, G, +¢C,C, Ha+b+d'G, G, + Qifb+dC, +bG, -aG M )

This equation can be condensed to Equation (2.4grewK,, the understeer
[Gillespie, 1992] component, is typically much sleathanKj.

=V 2.4
5 K1+K2VX2 ()

K> being much smaller causes the steady state mesaijp between steer angle and rate to
be linear at low velocities with an intercept of@and begin curving at higher velocities.
As will be seen from experimental data, the velog#inge of interest does indeed
produce linear fits. Therefore, the tekmcan be neglected in the estimation scheme.

A bicycle model with tire relaxations for a tracteithout an implement has been
used to improve the bicycle model for low veloa@tipDwen, 1982]. The relaxation
length causes a lag in the production of the stigla generating the tire force. The
addition of the tire relaxation lengths to the leileymodel adds two poles to the system
and maintains the same DC gain equation. In EgougR.5), the bicycle model with
front and rear tire relaxation lengthg é&ndo;) is presented with the hitch modeled as a

cornering stiffness.

12
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This model has four poles and two zeros, with thmidant poles no longer going to
infinity as velocity decreases. The addition déxation lengths has been used to control
farm tractors at high velocities [Bevly, 2001]. tlmat research it was assumed that the
four poles and two zeros from the model were ofilambandwidth. Therefore the
resulting frequency response contained only onenae® peak.

There are relatively few system identificationsfafm tractors in the literature
and none were found which provided more then omtz lué excitation. Therefore, no
previous work could be compared to the system ifiestions for the dynamics found

above one hertz.

2.4 8420 Tractor Yaw Dynamics

For the system identification of the tractor, chimputs were used on a road with
no implement and in a field with a four shank rippethree different depths. In Figure
2.4, a comparison of the ETFE and Box Jenkinsshsws that the transfer function from
steer angle to yaw rate had four poles and threxsze

The location of the four poles is clearly seen iy two resonant peaks in Figure

2.4. The three zeros are found between the tvgoddgtoles, and one of the zeros is non-
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minimum phase which is why the second resonant gea& high and the phase goes to

-270 degrees.

N
o
T

ETFE
Box Jenkins Fif

o
T

Magnitude (dB)

|
N
o

[
OI

Phase (deg)

ETFE
Box Jenkins Fif

10°

10" 10°

Frequency (rad/sec)

Figure 2.4: Comparison of ETFE and Box Jenkins. Fits

From the comparison of an ETFE and Box Jenkinof#xperimental data the

tractor was found to have four poles and three zenhich means that the model in

Equation (2.5) is not even adequate for descrithiegsystem.

It may be possible that the poles and zeros obtbgcle model with relaxation

lengths are not lumped into the first resonancé&igtire 2.4 and there is only a slight

adjustment needed to this model to add a zero witimajorly changing the DC

characteristics of the model.
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tractor, system identification fits provide adeguatformation, without fitting them to a
known model.
In Figure 2.5, a comparison of the DC gain of ithentified transfer functions

shows that the DC gain is linear through the véilesiof interest.

0.8_ T T T % ]
% No Implement
Ripper at 4" Depth
0.7+ Ripper at 8" Depth x O]
*  Ripper at 12" Depth 5
0.6r % .
x o)
8 0.5r - i
X x *
0.4r 1
© *
*
X
0.3r Q * i
*
X
0.2 1 1 1 1
0.5 1 1.5 2 2.5

Velocity (m/s)

Figure 2.5: Experimental fits of DC gain.

Table 2.2 provides fits of the DC gains identifiadich produced intercepts that
were close to zero. This provides further evideiheg the understeer of the tractor does
not affect the linearity of the DC gain in the wates of interest. Therefore the
estimator introduced in Chapter 4 can simply edtnthe slope of the DC gain to
characterize the tractors steady state handlinignen-
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Table 2.2: DC Gain Linear Fits

DC Gain = Slope*Velocity

Baseline 4" depth 8” depth 12" depth

Slope 0.334 0.284 0.258 0.227

DC Gain = Slope*Velocity + Intercept

Baseline 4” depth 8"depth 12” depth
Slope 0.329 0.298 0.259 0.231
Intercept 0.00800 0.0222 0.00153 0.0061€

As seen in Figure 2.6, the dominant poles of tretesy, did not contain as clear
of trends as the DC gain. Linear fits for the naltérequency with no implement appear
to decrease slightly with velocity while, with tmgper they appear to increase with
velocity. However, with the ripper the fits aretras clean. For this reason, the natural
frequency was chosen to be constant at each degérdiess of velocity since this is a

good approximation for the tractor with no implermen
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Figure 2.6: Experimental fits of the dominant polés= baseline tractog = 4 shank

ripper at 4” depth{ = 4 shank ripper at 8” depth,= 4 shank ripper at 12" depth)

With an implement the dominant poles have conshlgranore damping;

however, it was not clear how the damping changgaden hitch loadings. Therefore,

for the design of the controller, the damping whesen as a linear fit for no implement

and a separate linear fit with an implement thag i@ same for all depths.

The remainder of the poles and zeros are displayEdyures 2.7-2.9. Due to the

noise in the fits with an implement it is not cless to how the natural frequency and

damping changes with implement depth. However rabttese vary only slightly from

what is obtained with no implement. Since thedeaswill have a lesser effect on the

17



design of the controller, as they are at higheunaghtfrequencies, they were modeled as

the same as with no implement in the design ottrroller.

A b B b
A O1 OO N
T T T
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o i
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Damping Ratio
o
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&
o
O
O
O

X

0.08 : '
0.5 1 1.5 2 2.5
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Figure 2.7: Experimental fits of the secondary pol& = baseline tractog = 4 shank

ripper at 4” depth{ = 4 shank ripper at 8” depth,= 4 shank ripper at 12" depth)
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Figure 2.8: Experimental fits of the imaginary zerg = baseline tractog = 4 shank

ripper at 4” depth{ = 4 shank ripper at 8” depth,= 4 shank ripper at 12" depth)

19



Time Constant
|
(o]

_10 % i

T
*
1

-11

0.5 1 1.5 2 2.5
Velocity (m/s)

Figure 2.9: Experimental fits of the right half péazero time constantx € baseline
tractor,o0 = 4 shank ripper at 4” depth,= 4 shank ripper at 8” depth,= 4 shank ripper

at 12" depth)

A summary of values used to model the tractorgaven in Table 2.3. These
values describe the continuous poles that were umsélde design of the controllers in

Chapter 3.
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Table 2.3: Tractor Model Parameters

No Ripper at 4” Ripper at 8" | Ripper at
Implement Depth Depth 12" Depth

Mbc 0.335 0.285 0.258 0.227
Dominant pole

9 11 13 15
frequency
Dominant pole 0.064\% 0.1719\
damping +0.10496 +0.1396 ”
Secondary pole 0.46858\
frequency 42.17 g
Secondary pole 0.013764V,
damping +0.078253 g
Imaginary zero 1.1276\
frequency 14.784 >
Imaginary zero -0.065439V,
damping +0.86505 >
Non-minimum 1.532\,°
phase zero time -7.5414\ >
constant -1.1705

2.5 Summary and Conclusions
A model of the steering servo was found which wsesnput transformation, to

account for its nonlinearities, and a transfer fiomc It was shown that previous tractor

21



models were inadequate in describing the tracted us this research. Therefore a model
based on system identification fits was develop#idvas found that the DC gain from

steer angle to yaw rate could simply be determthesligh the use of the slope of the DC
gain. Finally, a table of the tractor model partare was presented for use in the

controller design.
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CHAPTER 3
CASCADED CONTROLLER DESIGN AND ANALYSIS
3.1 Introduction

This chapter discusses the design of the cascamdtbliers using the dynamics
identified in Chapter 2. Also, the sensitivity tfe closed loop systems to the model
simplifications in Chapter 2 are discussed alonip wie effects the incorrect velocity and
Mpc estimate in the design of the controller.

A block diagram of the cascaded controllers [FremkR002] is displayed in
Figure 3.1, wher&:1(z), Geo(z), andGs(z) are the controllers for the steering servo, yaw
rate, and lateral positionGpi(z), Gp2(z), andGps(z) are the open loop dynamics of the
steering servo, yaw rate, and lateral positione Values being fed back to the controllers

are the steer angle, yaw rate, and lateral position

O+ Gelz) Foo Gel2) T Ga(@) H G2 [ G2 [ Gesl@)
|

Figure 3.1: Block diagram of the controller system
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3.2 Steering Servo Controller

The input to the tractor is the flow rate of theestng servo, which as discussed in
Chapter 2 has been modeled as a third order systéminput nonlinearities. To
compensate for these nonlinearities, a transfoonatif the controller output has been
used as shown in the block diagram in Figure 3 Bis transformation is generated by
taking the inverse of the mapping of the stead{esséeering rate versus the command

input shown previously in Figure 2.1.

Lookup
Table Nonlinearities

X > Gc1(2) L / . / G1(2) d

Figure 3.2: Block diagram of steering servo system

The equations for the inverse mapping of the gtgeservo nonlinearities are

given in Table 3.1. The inverse mapping effectivishearizes the system such that

classical design techniques can be used for thgrde&the steering servo controller.
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Table 3.1: Inverse mapping of steady state steeategversus command value

Input to plant Range ofl for function
u=>598 a <-0.36
u=518.7M°+920.21+864.4 ad>=-0.36 &0 <0
u = -887.91°+1045( +1059 Uad>=0&U0<0.36
u=1325 a >=0.36

Since the input frequency to the tractor is at B&tzhand the identified transfer
function for the steering servo given previously Equation (2.1) is at 100 hertz, a
discrete conversion [Franklin, 1998] was done legdo Equation (3.1).

_ b,z+b,
u(z) zZ+az’+a,z+a,

(3.1)

The discrete conversion adds a zero to the trafgfietion that is located close to minus
one inside of the discrete unit circle.

A constant proportional control law was used fa #teering servo control loop.
This results in a closed loop with three polese @kcision on modeling the controller as
a proportional gain was made because the steeyimgnuics already was an integrator in
the plant and it reduced the number of poles indésign of the yaw rate and position
controllers. Equation (3.2) gives the polynomiafishe closed loop denominator used in

the controller design.

B(z)=(z+e )2 + f,z+ f,) (3.2)
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The first order polynomial contains the pole thah e placed by the controller. The
second order polynomial contains the poles thatndrbe placed because the controller
only allows the placement of one variable.

The system of equations that must be solved tweptae desired pole is shown in

Equation (3.3), whers, is the proportional controller gain.

0 -1 0 |s, e-a
b, -e -1|f|= -& (3.3)
b, 0 -e|f

Also, solving for this equation allows for the sétpoles that have not been placed to be
checked to make sure that they don't interfere whih desired closed loop dominant

pole. The closed loop system in Equation (3.4 tten then be used in to the design of

the yaw rate and position controllers.

o) _ 5 (b.2+b,) s
5des(z) 23 +a122 +a22+a3 +So(b22+b3) .

3.3 Yaw Rate Controller

A set of yaw rate controllers were designed faheaf the yaw rate models given
previously in Table 2.3, as a function of velocifyourth order curve fits of each set were
then found so that upon the estimationMyc it could be determined what controller
values to use through interpolation. In orderesign the individual points for the fit, the
damping and natural frequency of the poles andszerere calculated from Table 2.3
based on the velocity for each valueMyfc. This led to a transfer function that when
converted to 50 Hz led to Equation (3.5) which dol¢ used to calculate the controller

values for that velocity anélpc.
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_ bZz*+Db,z° +b,z+D,
dz) z'+az+a,z?+a,z+3a,

(3.5)

The transfer function from steer angle to yaw r@gquation (3.5)) was then
multiplied by the closed loop steering servo (Emquma{3.4)) producing the open loop

yaw rate system, shown below in Equation (3.6).

r(z) _ so(b,2+by) o Bz +b,z° +bz+b,
Su?) Z+az’+az+a +sbz+h,) ' +az’+7,2" +az+a

N ~ ~ A R 3.6
_ b,z* +b,z® +b,z* +b,z+bh, (3.6)

2’ +a42°+4,2°+4,2' +4,2° +4,2° +4,z2+4,

The yaw rate controller was chosen to be a lagrothet [Ogata, 1998] consisting

of a pole and no zero as shown below.

R (3.7)

This was primarily done to mitigate the effect betsecond resonant peak that was
identified in Figure 2.3. It was also done in artle prevent a non-minimum phase zero
being placed during the design process, which na@ccur when designing for larger
values ofMpc. This would have caused complications in the gfesif the position
controller.

Since the controller has two design variables, [tduation of two closed-loop
poles can be selected. Equation (3.8) shows tszdlloop denominator, which contains
the second order polynomial of the poles that cansbklected and the sixth order

polynomial of the remaining closed loop poles.

B(z) = (22 +élz+é2)(zG +§,2° + f,20 + £,22 + 226, + zf + fﬁ) (3.8)
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By calculating the denominator from Equations (36d (3.7) and setting that
equal to Equation (3.8), leads to the set of eqnatin Equation (3.9) to be solved for to

obtain the controller values.

1 0 -1 0 0 0 0 OT7"h] [&-3

4 0 -& -1 0 0 0 015/ |&-3a

a4, 0 -8 -& -1 0 0 o0 |f -4,

G b0 76 -6~ 0 0T} -a, (3.9)
a b, O 0 - -¢ -1 0 |f, —a

a b, 0 0 0 -8 -& -1|f, -4,

a b, 0 0 0 0 -8& -&|f. -4,

a, bb 0 0 0 0 o0 -&]|f| | o |

Solving for Equation (3.9) can also determine i af the remaining poles would cause
the system to be unstable.

The controller values were calculated for varioefouities for each of the yaw
rate models in Table 2.3. The trends in the cdietrvalues could then be seen as a
function of hitch loading. Figures 3.3 and 3.4wHww the controller values varied for

the various yaw rate models.
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Figure 3.3:5, versus velocity for each yaw model

As seen in Figure 3.3 the variation due to thelemgnt simply shifts the curve
down. However, in Figure 3.4 there is a more $igant difference in the trend of the
curves. Also, there is a less of a percentagerdifice between the curves in Figure 3.4
than there is in Figure 3.3.

As stated previously, fourth order fits were ugadof the curves. Since each of
these curves has a knowdpc value related to it, the controller gains coulérthbe
calculated through interpolation using an estimagdde ofMpc. In Table 3.2, the curve

fits used for the interpolations are listed acaagdio the yaw rate controller variable.
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Table 3.2: Yaw rate controller values (variablg,V* +g,V° +g,V> + 9.V +g,)

Values for§,

Mbc 9o G 9, 95 9,
0.355 0.016544 -0.12928 0.39308 -0.5924 0.453
0.285 0.020274 -0.15792 0.47963 -0.715¢§ 0.532
0.258 0.02307 -0.17972 0.54481 -0.8116 0.608
0.227 0.02681 -0.20882 0.63224 -0.9410 0.707

30

84

52

11

93



Values forf,

Moc do g, J, ds g,

0.355 0.00069355 -0.0054523 0.017887 -0.021717 0939

0.285 0.0010538| -0.006687p 0.021571 -0.019729 08.90

0.258 0.00093468  -0.006382 0.020994 -0.020493 €839

0.227 0.00088336 -0.0063049 0.020818 -0.021387 940638

3.4 Closed Loop Yaw Rate Sensitivity

To examine the how the accuracy of gc estimate (developed in Chapter 4)
will effect the phase and gain margins of the yate rcontroller, a frequency domain
analysis using the system identification models tired previously described controller
adaptation was conducted. The valuedpt were assumed to be known exactly and
within ten percent of the actual value.

Figure 3.5 shows the results of the bodes thaé wbktained with no implement.
In the figure, the closed loop poles are at 4 radigh is before the first resonant peak
that can be seen in the magnitude graph. Redatllitthhis resonant peak crossed 0 dB
then the system is unstable. Fortunately, it deme as velocity increases, ensuring the

system is stable with increasing velocity.
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Figure 3.5: Sensitivity of yaw rate closed loop fiorimplement

The cause of the resonant peak can be seen neamydin the root locus of the
closed loop system. Figure 3.6 demonstrates ftetthe dominant poles there are a set
of poles which have little damping. Recall thag §aw controller selected could only
specify the location of two poles. Therefore thadditional poles are not constrained to

a specified location.
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Figure 3.6: Root locus of closed loop yaw rate.

Figure 3.7 shows the closed loop bode for thedrawgith an implement at all of
the depths. Note that the resonant peak withrtipgeiment is not nearly as pronounced
as in Figure 3.5. It looks like it could exist arcouple of lines, but these are believed to
be bad fits, since that Box-Jenkins fit did not chathe ETFE well. The DC portion of
the bode also looks thicker then that of the fregyeresponse without an implement.
This is most likely due to the fact that the fite detter for the system identification tests

without an implement.

33



Magnitude (dB)
|
a
(@)

-100

Phase (deg)
A
o
==

~600F
~800F
10" 10° 10" 10°

Frequency (rad/sec)

Figure 3.7: Sensitivity of yaw rate closed loophnain implement

For all of the cases tested varyiMpc the controller was found to be stable.
Table 3.3 shows the maximum, minimum, mean, anadsta deviation of gain margin
for the various hitch loadings. As seen in thelegalthe mean gain margin appears
increase as the implement hitch loading increaselis is most likely caused by the
unconstrained set of closed loop poles near teersonant peak increasing in damping
ratio as the hitch loading is increased. Note #iathe cases investigated had infinite

phase margin.
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Table 3.3: Gain margin (dB) for yaw rate

Maximum Minimum Mean c
No Implement 8.65 3.77 6.67 1.52
Ripper 4” Depth 14.09 8.93 11.63 1.40
Ripper 8" Depth 15.60 7.80 11.18 1.90
Ripper 12" Depth 15.00 8.89 12.44 1.51

Figure 3.8 shows that for a low valueMfc used in the design of the control law
design would cause the closed loop yaw rate toniséable. Additionally, values &fipc

significantly greater than the actual value in doatroller design can lead to degraded

performance.
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Figure 3.8: Sensitivity with no implement to toavid/pc.

Additionally, if the controller does not account fihe changes in velocity it can
cause the yaw rate controller to be unstable. rEi§® shows the results of the controller
being designed for 2 mph for all of the system idieation models without an
implement. Note that the magnitude crosses O d& #here has been -180 degrees of
phase change for a number of models, indicatingtligaclosed loop system is unstable.

This instability was also seen using the systemtifieation models with an implement.
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Figure 3.9: Sensitivity with no implement with 2 mpontrol gains.

When the controller was designed for a constamtoii of 5 mph the closed loop
systems were stable for all hitch loadings idesdifas seen in Figure 3.10. However the
performance of the controller was highly degradetes the system was at a lower

bandwidth.
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Figure 3.10: Sensitivity with no implement with Jpmcontrol gains.

3.5 Lateral Position Controller
The transfer function for lateral position used thre controller design was
obtained from Equations (3.10) and (3.11).
y =V, sin(v) (3.10)
v=r+pf (3.11)
In Equation (3.10), the lateral velocity is defiresithe total velocity times the sine of the
course angle (which is taken with respect to therdd longitudinal direction). Equation

(3.11) shows that the course angle is the intedrgdev rate plus side slip.
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Neglecting the vehicle sideslip and linearizing atba small course angle, the
Laplace transform of Equations (3.10) and (3.11n & combined to produce the

approximation shown below for lateral position.

Vv
y=—Lr (3.12)
S

By discretizing the above equation, the followirigcgete transfer function between yaw

rate and lateral position is obtained.

_ _bz+b,
r(z) 22-2z+z

(3.13)

The above transfer function can then be combinéd the closed loop yaw rate transfer

function, forming the open loop transfer function fateral position shown below.

y(z) _ b,z® +b,z* +b,z° +b,z2> + b,z + Dy,

rdes(z) 2°+az°+a,2’+3,2' +3,2° +3,2> +3,2' +a, 2 +a,2* +a,z+7q,,

(3.14)

A simple lead control law with on zero and oneepahs used for the lateral error

controller as seen below.

r.des(z) - AS‘OZ + %
e(z) z+h

(3.15)
Since there are three parameters in the contralieze poles of the closed loop
system could be selected. Equation (3.16) shoegtilynomials of the selected poles

and the polynomial for the remaining poles of thesed loop transfer function

denominator.

B2)=(+822 +82+8 |2+ T, + T8+ T, 0 + T, + .22 + T, 2 + T,2+ 1) (3.16)
The controller values can then solved for usingdtign (3.17), which uses the values

from Equations (3.14-3.16).
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1. 0 0 -1 0 O O O 0 0 o7 fr] [&-3]
a 0 0 -8 -1 0 0 O O O 0|5/ |&-3a
i 0 0 -§ -&8 -1 0 O O o0 o0 |5 |g-7,
i 0 0 -8 -§ -§ -1 0 0 0 O0]|f -3,
i b 0 0 -8 -§ -§ -1 0 0 O |f, -3
% b, bb 0 0 -§ -§ -& -1 0 o0 |f|=| -3 (3.17)
ae lE;7 66 0 0 0 _és _% _q -1 0 F4 _57
a, 98 13_7 0 0 0 0 -& -§ -§ -1 is — 8,
a, 99 Es 0 0 0 0 0 -& -& -§ is S
a by 99 0 0 0 0 0 0 -& -§ 17 —ay
4 0 b, 0O 0 0O 0 0 0 0 -&|f] | 0 |

Once the controller gains were determined for wexigelocities for each of the
yaw rate models, the trends in the controller valag a function of hitch loading could
be studied. Figures 3.11 and 3.12 show how th&alter values varied gains vary with

velocity and implement loading.
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Figure 3.11: Controller values for various velastiand hitch loadings.

Like the yaw rate controller, fourth order fits wemade for the controller gain
curves shown in Figure 3.11 and 3.12. Each ofettmsves has a knowMpc value
related to it, the controller gains could againchiulated through interpolation using an
estimated value d¥ipc. In Table 3.4, the curve fits used for the intdagions are listed

according to the position controller variable.
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Figure 3.12: Controller values for various velagstiand hitch loadings.

Table 3.4: Yaw rate controller values (variablg,V* +g,vV° +g,V> + 9.V +g,)

Values fors,

Moc 9o 9 9, 95 9,
0.355 8.0185 -58.726 161.18 -200.3 106.8
0.285 12.479 -89.378 242.36 -295.36 156.0
0.258 12.108 -88.024 240.09 -294.62 155.1
0.227 11.843 -86.358 235.71 -289.88 152.1
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Values fors,
Moc 9o 9, 9, 9s 9,
0.355 -7.9577 58.281 -159.95 198.77 -106
0.285 -12.382 88.687 -240.48 293.07 -154.8
0.258 -12.014 87.34 -238.22 292.32 -153.94
0.227 -11.75 85.684 -233.87 287.6 -151.09
Values forr;
Mbc 9 9, 9, 95 9,
0.355 0.011359 -0.080389 0.22571 -0.27599 -0.7263
0.285 0.028812 -0.17191 0.4395 -0.48022 -0.61013
0.258 0.019994 -0.13449 0.3703 -0.43411 -0.62486
0.227 0.017956 -0.12553 0.34986 -0.41878 -0.63368

3.6 Closed Loop Lateral Position Sensitivity

To examine the how the accuracy of Mgc estimate effects the phase and gain

margins of the position loop, a bode analysis usitggsystem identification models and

the previously described controller adaptation again conducted. The valuesMbc

were again assumed to be known exactly and wittim gercent of the actual value.

Figure 3.13 shows the results of the bode plas\lere obtained with. Note that

in the figure the closed loop poles are at 1 rad/s.
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Figure 3.13: Sensitivity of lateral position clodedp for no implement

Figure 3.14 shows the results of the bode analygisthe varyingMpc when an

implement is used. Unlike the results from the yate analysis, the changeMpc has

very little change on the closed loop frequencyoese (with or without an implement).
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Figure 3.14: Sensitivity of lateral position clodedp with an implement

The gain margins for Figure 3.13 and 3.14 are shiowTable 3.5. Like the yaw

rate controller, the gain margin for the positiantoller increases with hitch loading

(which improves the stability of the controller).
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Table 3.5: Gain margin (dB) for lateral position

Maximum

Minimum

Mean c
No Implement 3.504 2.383 2.989 0.283
Ripper 4” Depth 3.654 1.434 2.469 0.638
Ripper 8" Depth 5.382 0.673 3.019 1.109
Ripper 12" Depth 5.158 2.563 3.745 0.726

The phase margins for Figure 3.13 and 3.14 are showable 3.6, which also

shows that the phase margin increases with hitthihg.

Table 3.6: Phase margin (deg) for lateral position

Maximum Minimum Mean c
No Implement 30.963 20.332 26.221 3.436
Ripper 4” Depth 30.053 12.926 21.423 5.235
Ripper 8" Depth 38.202 7.421 26.594 7.693
Ripper 12" Depth 42.268 28.401 34.874 4.710

3.7 Summary and Conclusion

The controller for the steering servo using adfammation for the nonlinearities
was designed. The yaw rate and position contslare also designed using the system
identification models from Chapter 2. Informatiovas also provided on how the

controller gains would be adapted through the egton of Mpc. The method involves

interpolating the control gain curve fits for varfovalues oMpc. The sensitivity of the
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closed loop system was investigated for the vabfeSlpc within plus and minus ten
percent. It was also shown that the controllerddcbecome unstable if designed with a
velocity that was less than the actual value orafaalue ofMpc that was less than the
actual value oMpc. Additionally, when the controllers were desigmath too high of a

velocity or too large of a value Mpc, they had a degraded performance.
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CHAPTER 4
STATE AND PARAMETER ESTIMATION

4.1 Introduction

This chapter describes the design of the estimeded to identify the slope of the
DC gain with respect to longitudinal velocityl{c) of the steer angle to yaw rate transfer
function. The errors associated with neglectinguadyics in the yaw rate transfer
function will be examined and an improvement in éisémator design is given. The rate
of convergence of the estimator due to the fonggttactor onMpc is also investigated.
A description of the position estimator is detailadd a justification of its output

equations is produced.

4.2 Extended Kalman Filter
The Extended Kalman Filter [Stengal, 1994; Brystf75; Maybeck, 1979b;
Gelb, 1992] is a first order Taylor series expansid the Kalman Filter for nonlinear
systems. The state and measurement equationsawe 1 Equations (4.1) and (4.2).
x = f(x,u,w,t) (4.1)
y= h(x,u,v,t) (4.2)
The values passed to the state function are tha@ooie estimate of the states,
inputs, disturbances, and time. The values pags#ite measurement function include

the current estimate of the states, inputs, meamme noise, and time. The
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nonlinearities for the yaw rate estimator occunfra state being multiplied by the input.
In the linearization, the second order partial vhives in the Taylor series expansion
and higher are zero. Hence the estimator is rMpbgptimal because an Extended Kalman
Filter is being used. The estimator is sub-optibecause an approximated system is
being used. The position estimator contains statess the sine and cosine of another
state. This results in higher order partial dames in its Taylor series expansion which
are non-zero. Therefore, a sub-optimal estimasocaused by the use of an Extended
Kalman Filter. However, a state times the sineasine of another state is not a large
nonlinearity for an estimator and an Extended Kalnkalter will provide a decent
estimate, especially since it is updated at 10@&zhehn iterated Extended Kalman Filter
[Gelb, 1992] could also provide the same improventleat a faster update gives. The
position estimator is sub-optimal do to the appr@ation necessary for the use of an
Extended Kalman Filter and an approximated systeimgoused. Neglecting the higher
order terms of a system that is modeled perfectlses the estimate to be biased and the
estimate of the covariance to be smaller then dneect value. The covariance being less
than the actual value can lead to filter divergenttowever, this can be corrected by
designing the estimator with extra process noise.

Second order Taylor expansion Kalman Filters [Makhel979b] such as the
Truncated Second Order Filter and the Gaussian nSe€rder Filter use Hessian
matrices for bias correction and improvement ofdbeariance propagations. However,
these estimators are much more computationallyngéine then the Extended Kalman

Filter. Most of the added computation is in the@ar@ance propagations, and not in the
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bias correction terms. The bias correction tenmosfthese estimators can easily be used
in an Extended Kalman Filter [Maybeck, 1979b].

Other Kalman Filters that would provide a betterpragimation include
statistically linearized filters such as the UngednKalman Filter [Wan, 2000; Haykin,
2001]. The Unscented Kalman Filter provides adtlorder approximation for Gaussian
noise systems and second order approximations lifatlger noise systems. It takes
fewer computations than the second order Taylaesditers. This estimator does not
require that the states or measurements have zatiee. Additionally, the Unscented
Kalman Filter can be extremely helpful in debuggatiger estimators because it doesn’t
require derivative information.

The Extended Kalman Filter was chosen since theniajof the errors in the
estimator are caused by model approximation andogathe format of the estimator.
Also, the Extended Kalman Filter was chosen so thatyaw rate estimator could be
implemented in fixed point as discussed in Chaptdor which a simple estimator was
desired.

In the Extended Kalman Filter, the Jacobian madridefined in Equations (4.3-

4.5) are linearized with the state estimates frioentime update.

_of (x,u,w,t)

H = SR n s (4.3)
_of (x,u,w,t)

G = SR (4.4)
_ah(x,u,v,t)
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The covariance matrices for the Extended Kalmaterfdre given in Equations
(4.6) and (4.7), wher® is semi-definite an® is positive definite.
Q=E[ww] (4.6)
R=E[v,V] (4.7)
The Kalman Filter gainK) is computed with Equation (4.8), whelteis typically an

identity matrix.
K =PHT(HPHT +URU")” (4.8)
Sequential processing is frequently used so thit arnscalar value is inverted. The

Kalman Filter gain is then used for updating thatestestimates with the current

measurements as shown below.
X = X + K(yk - h(xklk_l,uk ,O,t)) (4.9)
As a result of the measurement update the covariaecreases by Equation (4.10),
wherel is the identity matrix.
P = (1 =KH )Ry (4.10)
Equations (4.8-4.10) are typically referred totlas measurement update since
they only need to occur if a measurement is redeivequations (4.11) and (4.12) are
typically referred to as the time update since thpagate the estimates to the next time
step.
Sgr = T (X Ues O1) (4.11)
Py = FP + PuF T +GQG (4.12)

The time update for an Extended Kalman Filter adreebe in discrete time or in

continuous time. Equations (4.11) and (4.12) shimevcontinuous state and covariance
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propagations, which is how they are used for th&tiom estimator. Note that the time
update can be performed before a measurementeiveec

The covariance propagation in the time update2jdiricreases the uncertainty in
the states. The Jacobian matrices in Equation2)4ate linearizied with the state
propagations from Equation (4.11) and the two dquoatare ideally integrated together
so that the most accurate Jacobian matrices aledaé used.

The yaw rate estimator used in Section 4.3 hassarete time update, and
Equation (4.12) is replaced with Equation (4.13).

Pycr = FsPaFy' +Qq (4.13)

Additionally, a discrete state equation replacesdtign (4.11).

The Extended Kalman Filter reduces to the KalmaberFif the state and
measurement equations are linear. Furthermorésxtended Kalman Filter reduces to a
Recursive Least Squares estimator [Stengel, 19%hei system is linear, discrete and

Equations (4.14) and (4.15) are used for the tipdate.
X1 =0 (4.14)
Pk = B (4.15)
The Extended Kalman Filter can reduces to a Reaidseast Squares [Astrom, 1989]

with a forgetting factor by using Equations (4.1&)d (4.13) using the following

equation, and settingy to an identity matrix.

_(1_
Qq —[; jpk—l (4.16)
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4.3 Design of Yaw Rate Dual Estimator

A dual estimator simultaneously estimates cleatestand model parameters. A
clean estimate of yaw rate is needed for the posigistimator. An estimate Mpc is
needed to adapt the steering controller. The &qtmtions used for the design of the

Extended Kalman Filter are shown in Equation (4.17)

] [ Moo (Vi +w, )+ w,)
X= rbias = rbias + Wrb‘aS (417)
M DC M pc T Wy b

The states in the discrete estimator are yaw yaie, rate bias, antflpc. Note
that the yaw rate depends on the current measutesheteer angle. Therefore, the time
update can not be calculated before a measuresesteived. The velocity used in the
estimator is from GPS which is available at 5 Wdthough GPS provides velocity in the
direction of course, a small angle approximatidoves GPS velocity to be used for the
longitudinal velocity.

The Jacobian of the state equations with respeittet states (4.18) shows that the

rate at whichiMpc converges will depend on the velocity and therstegle.

0

1 0 (4.18)
0

The measurement in the Kalman filter is the yawe @tro which includes the yaw rate
plus its bias, which is reflected in the Jacobifithe measurement equation with respect

to the states shown below.

H=[1 1 0 (4.19)
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However, the yaw rate gyro bias will only be estedawhenMpc can be
estimated, otherwise the bias would be corrupteth wtcale factor errors. Therefore,
Equation (4.20) will be used when there is todeligxcitation.

H=[1 0 0 (4.20)
The bias could be estimated under low excitationabgmenting the estimator with a
heading state and using the approximation thatseoangle equals heading angle at low
levels of excitation [Bevly, 2001]. However, in &jter 6 the estimator is designed in
fixed point where only a limited number of states ®e estimated.

Since a discrete covariance time update is ubeddiscrete process noise matrix

was approximated using Equation (4.21).

gz 0 0 0 [M,Vv, 00
MDCVX IVIDC6 O O 2
0. -6.06"=| 0 5 1 0 gz 0 0 [M,d 0O 401
d 7 TdTd T 0 g2 0 0 10 (4.21)
0 0 01 0 0 0 o2 0 01
M

DC

In Equation (4.21), the process noise on the ydes state was computed to be a

function of the DC gain times the yaw rate distut®a covarianced,) plus the noise
covariance for the velocityd, ) timesMpc and the steer angle measurement. The sensor

noise on the steer angle measurement was considegtidible. The yaw rate bias and

Moc were both modeled as random walks with covariarzes and g,, , which will

determine how fast the estimates will react to gearin the states after the estimator has

settled. The measurement noise for the estimaasrsimply found with Equation (4.22).

R=|[o?] (4.22)
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Even though there is a clear relationship betwlernyaw rate and steer angle, it
can not be estimated continuously, because té®e déiitcitation will cause the estimate to
fit disturbances. A method of determining how mesttitation exists in the system is
therefore needed. Auto-correlation matrices ofyway sizes can be used to determine
how many parameters can be estimated [Astrom, 199%je largest auto-correlation
matrix that is of full rank corresponds to the ardé excitation there is in the system.
The order of excitation then corresponds to how ynparameters can be estimated.
Since only one parameter is desired to be estimattds thesis, only a one by one auto-
correlation matrix would have to be of full rankhnh is always of full rank if it is non
zero. It is possible to determine when there isugh excitation by evaluating larger
auto-correlation matrices. However, sensor noiag make it appear as if there is more
excitation than actually exists. Therefore, thegniade of a windowed auto-correlation
was used to determine the degree of excitatiohamsystem. This indicates that there is
a current trend in the steer angle, as opposedittgée large measurement, which makes
it likely that Mpc can be estimated for some period of time. Witk thethod there is a
possibility that the window analysis may determitere is enough excitation for
adaptation for the period defined by the time ie thindow, even though current
excitation is quite low. However, the rate of cergence decreases, as seen in Equation
(4.18), as the magnitude of the steer angle deeseabherefore, little convergence would
occur towards an incorrect value in this case. ifaén goal of the determination of
when to adapt is to prevent a prolonged estimatioing low levels of excitation.

Figure 4.1 shows the value of the auto-correlatibthe steer angle over a one
second window for an experimental test. When ¥isie is large enough that a fixed
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relationship can be seen between the steer andlgam rate, it is determined that it is
safe to adapt the system. A threshold value id @siethis determination which should
depend on the maximum expected disturbance indhergte and the amount of sensor
noise on the steer angle. As can be seen fronrd-#§d, a reliable time to adapt usually
occurs at the beginning of the controlled run wtiencontroller makes a step input to the
tracked line. The analysis also allows for anriowpd estimate if the tracking degrades

as is also shown Figure 4.1 (at time = 60 seconds).
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Figure 4.1: Windowed auto-correlation of steer angl

When there is adequate excitation to accuratelynate Mpc, the covariance

associated wittMpc is reset 0.0025 in order to inject uncertaintyitite system and
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allow the estimate to converge quickly. When ther®o little excitation in the system,
the Kalman gain associated withyc is over-ridden with zero and the noise covariance
for Mpc and the yaw rate bias is set to zero. This iserigally equivalent to changing

(4.18) to (4.23) and changing (4.21) to (4.24), rehig,  is the estimated covariance of

MD(;.
0 0 0
F,=|0 1 0 (4.23)
001
02 0 00 0 [MyV, 0 0
MyV, M,cd 0 0 V6| O o2 00 0 [M,d 0O
Q=| O 0O 10 0|0 0 00 O 0 1 0| (4.24)
0 0O 01 0JO 0 00 O 0 01
0 0 00R,_ | VJd 0 0

Figure 4.2 shows the resultsMpc being estimated in a simulation with a steady-
state input. The estimator was told to start esiimy Mpc at time = 200 seconds and
stop at time = 400 seconds. The actual valldf was also decreased by ten percent at
time = 300 seconds without the covariance beingtre®\s seen, the estimate Mbc
almost immediately reaches the correct value dubdaovariance being reinitialized at
time = 200 seconds. The estimate takes longeooerge to the new value at time =
300 seconds because only the forgetting factoausiog the estimate to move. This rate
of convergence is investigated more in Section 4.System identification tests found
that the disturbances were best described as sewotird order transfer functions.
However, the process disturbances are modeled i mgise in the estimator. In order

for all of the process disturbances to propagateutth the estimator, the value of the
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disturbance covariances() would have to be large. Unfortunately, this wbresult in

the MDC estimate taking a long time to convergéeréfore, the disturbance covariance
is kept small to allow for faster convergence & ttost of filtering out some of the
process disturbances. Because the disturbances fikered, adaptively changing the

noise covariance fdvlpc was not investigated.
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Figure 4.2: Estimate d¥lpc and yaw rate.

The nominal noise values used in the design ofetktended Kalman Filter are

listed in Table 4.1.
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Table 4.1 Discrete noise values used for the yagvdaal estimator

Parameter Value Units Frequency
g, 0.05 meters/second 5 Hz
O 8.73x10" radians 100 Hz

N 1x10" radians/second 100 Hz
Ty, 1x10* 1/meters 100 Hz
g, 5.23x10° radians/second 100 Hz

4.4 Sensitivity of Estimation to Neglected Dynamics

To examine how the accuracy of the estimate isctgtl by neglecting the poles
and zeros in the yaw rate transfer function, a Etan was designed to see what kind of
errors this would cause. The transfer functiordusesimulate the disturbance free plant
and the disturbances (shown in Equations (4.25) (4t2b), respectively) were taken

from a Box Jenkins fit of experimental data at Zmapth no implement.

r_ - 0.288557z° +0.814621Z - 0.7650032 0.239394 (4.25)
0 z*-3.718368° +5.343205° - 3.522835 +0.89942; '

These transfer functions represented a worse ecaseario, because they
contained the largest magnitude and phase chargyetloe low frequencies found from

system identification tests.

M _ 2> +2.00218921.002191 (4.26)
e z?-1.880024 +0.94449 '

The standard deviation of the noise generatinglitteirbances was also obtained

from the Box Jenkins fit, and is displayed belowhathe units of radians.
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o, =0.00013869622 (4.27)

Sine waves at a number of different frequenciesanglitudes were tested as inputs to
determine the resulting mean and standard devatbthe estimates after the estimator
had settled. The simulation assumed that therealveeys enough excitation to estimate
Mpc and was run long enough to determine a clear tretite data.

Figure 4.3 shows the actual value Mpc with the average value of tHdpc
versus frequency with input amplitudes of 5, 10d 4% degrees. Also shown in the
figure is the magnitude of the gain in Equation?®}.divided by velocity, which is
labeled as (Bode Magnitude)/V. Recall tNgjc is the magnitude of the DC gain divided
by velocity and is therefore represented as a aahstalue. The magnitude of gain in
Equation (4.25) divided by velocity correspondsthe value ofMpc that should be
estimated if there is no phase change. As careée, she estimated values are close to
the bode curve at less than 1 rad/sec but estin@ates than it at higher frequencies.
The estimates became worse at higher frequendietiould be noted that the tractor
dynamics rarely operate in these high frequencheswill be shown later in this section,

these errors can be reduced using a more accuoatel m the estimator.

60



0.45

— — - Amplitude =5 deg.
0.44r | — — Amplitude = 10 deg
Amplitude = 15 deg ,
i /
0.43F | s Actual MD c y
Bode Magnitude)/\ 4
0.42- ( gnitude) e
/
o 0.41F by
[a)] /!
= d
0.4+ %
//
0.39r e
0.38" 7
- v
037_ ///./
0.36 1 1 1 1 1 J
0.5 1 1.5 2 2.5 3

Frequency (rad/s)

Figure 4.3: MeaMpc versus input frequency using the inputdf Asin(wt).

Figure 4.4 contains the clean yaw rate, the stegle times the DC gain of
Equation (4.25), and the estimated yaw rate forrad3s simulation with a steer angle
input of 5 degrees. As seen in the figure, thége exists a phase difference in addition
to the magnitude difference. However the magniteder is the main source of error
shown in Figure 4.3. This is because the diffeeeimcthe phase between the actual
system and estimator model is minimal (compareitheadifferences in magnitude) as is

shown later in Figure 4.10.
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Figure 4.4: Magnitude and phase difference betwenrate and steer angle times DC

gain for J = 5sin(3t) (degrees).

Figure 4.5 shows the estimatbthc for the simulated run shown in Figure 4.4.

As seen in the figure, the estimate contains sofmée 3 rad/s sine wave due to the

forgetting factor placed on the estimate.
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Figure 4.5: Estimate d¥lpc with an input ofd = 5sin(3t) (degrees).

In Figure 4.6 shows the standard deviation ofestematedVipc for each velocity
and input amplitude, which should contain the sat@ndard deviation regardless of
frequency. The Jacobian of the state equations mespect to the states (4.18) shows
that the estimate will be less uncertain when tiput is larger. However, this is not
reflected in Figure 4.6. This may because dudéedfact that at higher amplitudes more

of the sine wave is incorporated into its estimate.
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Figure 4.6: Standard deviation of estimategtMersus input frequency.

The Kalman Filter provides an estimate of the ciavees of the states. The
square root of the covariance once the estimaterdeaverged for thépc state is
contained in Table 4.2 for an input amplitude afdl/s. Note that the values in Figure
4.6 are greater than the values in Table 4.2, Isecaas mentioned previously the

forgetting factor causes some of the sine wavestmtorporated into the estimate.
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Table 4.2: Square root of covarianceMyc provided by the estimator

Sine Wave Amplitude Standard Deviation
5 degrees 3.11x10
10 degrees 2.18x10
15 degrees 1.77xT0

Using the bode magnitudes from the system ideatifin tests divided by
velocity for the upper bounds on tiMpc estimate, Figure 4.7 shows that with no
implement the errors decrease as velocity increaSege the value should be the same

as at zero frequency. Similarly Figure 4.8 shohat the error decreases with hitch

loading.

0.45+

Bounds

Velocity (m/s) 0 0 Frequency (rad/s)

Figure 4.7: Bode magnitudes divided by velocityriorimplement.
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Figure 4.8: Bode magnitudes divided by velocityvarious hitch loadings at 3 mph.

The estimation oMpc can be improved through the use of the dominalaspaof
the system. Equation (4.28) shows the transfectfom that was used in an improved
estimator.

1 _ (1-1.962266+0.970604M .V,
o  2°-1.962266 +0.97060:

(4.28)

This requires that an additional intermediate statde added to the estimator, which is

shown in Equation (4.29).
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r 1.962266F 17

(2| 7| _|-0.970604r (1-1.96226+ 0.970604M . (v, +w, )(0 +w;) (4.29)
rbias r'bias + Wr bias .
M DC M DC + WM DC

The Jacobian of the measurement equations wittecesp the states then changes to
Equation (4.30) when the bias can be estimated.

H=[1 0 1 0 (4.30)
The computation of the discrete covariance masiperformed with Equation (4.31)

using the same approximation as in Equation (4a2tl)using the same value@{.

(1-1.96226+0.970604M .V, (1-1.96226+0.970604M .0 O O

_ 0 0 00
G, = 0 0 L ol 43D

0 0 01

The simulation was then run again with the newnedbr. As seen in Figure 4.9
the difference between the estimated gain and thee Bnagnitude at 3 rad/sec is now
half that of what was obtained using the previosthreator. The (Bode Magnitude)/V

value shown in the figure was obtained through Eqong4.32).

= v (4.32)

Magsys—est _ Ivla'gFuII Model MagSecontDrder Model M
V V DC

This corrects the Bode magnitude from Equation5§f@r the magnitude improvement
obtained from using the second order model in #tgnator. As can be seen in Figure
4.9, the estimates are now closer to the Bode rhatg)i which implies that the phase

errors are having less of an effect then what \wasva in Figure 4.3.
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Figure 4.9: MeaiMpc versus input frequency for second order model.

Figure 4.10 shows the frequency response of thalated system and the second
order system in the estimator for the frequenceedun the simulation. As seen in the
figure, the dominant poles do not account for &lthe magnitude and phase change in
the simulated system. This is most likely causgdhe set of zeros after the dominant
poles having little damping themselves. Therefarenay be possible to design an
improved estimator by adding more dynamics or bysgmy by modifying the identified
dominant poles to have less damping such that tgnitudes of the actual model and

estimator model match more closely.
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Figure 4.10: Frequency response of the actual isyatel second order estimator

model.

Figure 4.11 shows the standard deviation of theuksitions with the improved
estimator. Note that the estimates now have theesstandard deviations regardless of

the frequency and that the effects of the estinraterporating the sine wave have been

reduced.
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Figure 4.11: Standard deviationMf for improved estimator.

4.5 Rate of Convergence

A simulation was conducted using steady statet;yp examine how long it
takes for the estimator to converge on the corvatie without using the covariance
resetting, such that only the forgetting factor sealithe convergence. No noise was
added to the simulated measurements passed tetihea®r, but the assumed that the
nominal noise characteristics. This produces #meesresults as a monte carlo simulation
since the measurement noise is zero mean. Figaé shows the results from three
different offsets, for which it can be seen thaytlall converge at the same amount of

time. This is understandable because the Exte@dédan Filter effectively acts as a
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closed loop controller of the estimates and thee/alf Mpc is effectively making a step

input to the correct value.
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Figure 4.12: Convergence from different offsets.

50

While the amount of time to converge is independéithe offset, it is dependant

on V,d according to Equation (4.18). Therefore, the $atmon was conducted again for

variousVyd with different noise values used fMoc (o, ). The time to converge to

within 99.9 % of the correct value was recorded.s ghown in Figure 4.13pc

converges faster for larger valuesaf__ and wherV,d is larger.
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Figure 4.13: Time to converge within 99.9 % of doerect value.

The square root of the estimated covarianceshirstmulations in Figure 4.13
was also recorded and is shown in Figure 4.14cait be seen that the estimates get
nosier as the noise value bfyc is increased. It can also be seen in Figure tha#the
estimator noise placed on thg ¢ state can be increased, allowing for faster cayersse

of the estimate, whel,J increases without sacrificing accuracy of Wgc estimate.

However, recall that in Section 4.3 it was foundttthhe actual accuracy of the estimate is

likely much larger than the predicted accuracy showFigure 4.14.
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Figure 4.14: Estimated standard deviationMg.

4.5 Design of Position Estimator

The states in the position estimator are northt, ead course. The input to the
position estimator is the filtered yaw rate frone yaw rate estimator. Unlike the yaw
rate estimator which uses GPS velocity to approtenangitudinal velocity, the position
estimator needs the velocity in the direction o ttourse angle. Therefore, GPS
provides the correct measurement of velocity fag @stimator. The calculation of north
and east involves a coordinate transformation ftbenbody fixed frame to the global
frame, as can shown in Equation (4.31), which dostdéhe continuous state equations for
the estimator.
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N| [(v, +w, )codv)
x=| E|=](V, +w, )sin(v) (4.31)
Vv r+w

Since there is no velocity perpendicular to tharse direction, there is only one
term in the north and east derivatives. Note yiaat rate plus the derivative of side slip
is the derivative of coursev(=r + ). However, it will be shown that the course
measurement provided by GPS is clean enough to easape for neglecting the
derivative of sideslip in the estimator.

The Jacobian of the state equations with respebietatates is shown in Equation

(4.32).
0 0 -V,sin(v)
F=/0 0 V,codv) (4.32)
00 0

Since the errors in the state equations includem@emise on the velocity and uncertainty
in the yaw rate estimate passed to the positioomagir, the Jacobian of the state
equations with respect to the disturbance conttims columns as shown in Equation

(4.33).

codv) 0
G=|sinlv) 0 (4.33)
0 1

The first column is associated with the velocignsor noise and the second column is

associated with the uncertainty in the yaw ratemege.

74



The continuous process noise covariance matrixvshon Equation (4.34)

contains the covariance of the sensor noise fowvéhecity measurements, ) and the

covariance of the yaw rate that has been passetuitfre yaw rate estimatofy, ).

o7 0
Q=4 P (4.34)

It should be noted that the yaw rate estimator ides/ a discrete covariance for its
filtered yaw rate which must be converted to camims before being used in Equation
(4.34). However, no coordinate transformationhe yaw rate covariance is necessary
since roll and pitch angles have been assumed nedlegible.

The GPS messages have significantly more compunttitree than the inertial
measurements. However, if this computational ded&nown, it can be accounted for in
the output equation of the estimator. In ordeshtitain the amount of delay in the GPS
output, an RTD GPS receiver with a pulse per se¢BR&) output, a one hundred
kilohertz clock (synchronized to the GPS PPS), malcounters were used. Knowing
that the pulse per second of the RTD GPS recentlze Starfire measurement are
syncronized, the one hundred kilohertz clock amditbp counters were used to
determine the lag between when the GPS measur@oemtred and when the serial
message arrived at the computer. Figure 4.15 shmevesults of one experimental test.

The mean value of the delay in the figure is 0.03&3onds. It should be noted
that some of the noise is most likely to be from thessage passing between the serial
driver and the logging program, which can generadyslow. A more accurate way of

getting this lag would be to monitor the serialtigointerrupt line.
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Figure 4.15: Delay in GPS messages

The lag in the receipt of the GPS messages can libeaccounted for in the
measurement update of the estimator. Equatiorb)4sBows that a simple Eulers
approximation can be used along with the estimaftéise states to propagate the current

estimates back to when the measurement shoulddsmrereceived.

Nmeas N _Vv COS(V)TIag +VN
Y =| Epeas | =| E-V, sin(v)T,, +Ve (4.35)
% v—-rT,, +Vv

meas lag v

Section 4.6 will provide further evidence that tb@mpensation is needed. In Equation

(4.35)Tiag is the time that has elapsed between when theureraents should have been
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received by the estimator and when they are us#teiestimator. While the time update
of the position estimator is conducted at 100 hehe measurement update only occurs
when a GPS measurement is available, which ishattz.

In the Jacobian of the measurement equationsreghect to the states, Equation

(4.36), it can be seen that a correction of theasmangle is provided directly from the

position measurements because of the delay.
1 0 V,sinV)T,

H=[0 1 -V,codv)T,
00 1

(4.36)

The Jacobian of the measurement equations withecedp the measurement
noises shown in Equation (4.37) is no longer amtite matrix, since there is now a

direct contribution from the input of the estimatoithe output.

100 O
U=|0 10 O (4.37)
001 -T,

The discrete covariance of yaw rate from the yai® estimator is then needed to

be included in the measurement noise covariancexnséiown in Equation (4.38).

G2 0 0 0
re| 0 % 00 (4.38)
0 0 o2 0 '
0 0 0 B,

In the equationg, and og. are the noises on the position states, whose seam
dominated by its bias. However, since the estimdt@sn’t have a way to remove this

bias, the estimator uses a noise value in ordgiteéo some of the bias. The valug, is
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the standard deviation of the course angle measmewhich is a function of velocity

and R, __ is the covariance passed from the yaw rate estimat

In Figure 4.16 a comparison of the measured andcha®&d course shows that
despite the derivative of sideslig#] being neglected in the position estimator, theSGP

course measurement is accurate enough to provrdections.
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3.85——————
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Figure 4.16: Comparison of measured and estimatecse from experimental test.

The discrete noise values used in the Extendedh&alFilter for the position
estimator are listed in Table 4.3. These valuesthed continuous counterparts were

used in Equations (4.34) and (4.38).
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Table 4.3: Discrete noise values used for the joosédstimator

Parameter Value Units Frequency
g, 0.05 meters/second 5 Hz
gy 0.02 meters 5 Hz
O 0.02 meters S Hz
g, 005 radians 5 Hz
\Y
4.6 Effects of GPS Delay

To test the effects of the GPS delay on the mwsiéistimator, the simulation in
Section 4.4 was again used. The input used wasiaasdal steer angle with a 5 degree
amplitude at 2 mph, driving in open loop, in theedtion of north. Three simulations
were run to compare the effect of the GPS delaye first simulation had no GPS delay,
the second simulation had a 0.08 second delay matikompensation in the estimator,
and the third simulation had a 0.08 second delaictwiwvas compensated for in the
estimator. The estimators used the nominal seasdrinput noise specifications, but
noiseless values were provided to the estimatorth&ba clearer picture of the errors
could be obtained. Additionally, no side slip wasluded in the simulation and hence
course reduced to heading.

Figure 4.17 shows the result for the error in tloeth position estimate for the
three simulations. Without compensating for thiagi¢he vehicle estimate is behind the
true location. However for this work, longitudinatcuracy is not a degrading factor.

Some of the cosine wave can also be seen in thempensated system, which is due to
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the lateral effects from the tractor not always dieg north. The estimates for the

compensated system are slightly ahead of the tos#tign, likely due to integration

errors.
0.01 . . :
0
-0.01} il
~ —0.02} .
E
S -0.03 | No Delay .
mm Compensating For Delay
£ —0.04r Not Compensating For Delay
2
-0.05- .
-0.06r .
-0.07- il
-0.08 : : :
0 50 100 150 200
Time (s)

Figure 4.17: North error

From Equation (4.35) it can be seen that the longial error of the vehicle can
be approximated with Equation (4.39).
Congitudial = ~Vx lag (4.39)
For the simulation, the value computed from (4.38s -0.0704 meters, which
corresponds well with what is seen in Figure 4.JHquation (4.40) approximates the

longitudinal error with respect to the desired patherey,, is the difference between
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the heading of the desired path and the tractadihgaduring the GPS delay, amy,, is

the angle between the desired path and the congie. a

QOngitudiral to path = _b/x Coiwerr ) _Vy Sin( err )] Tlag = _Vv COiverr )Tlag (440)

Note that the above equation is an approximatianesthe sensor noise covariances in
the estimator will provide some filtering and thesen interaction of errors.

Figure 4.18 shows that the error in the east jposifrom the uncompensated
system can produce errors that would affect thectdra lateral error tracking
performance. If the measurement delay is not coisgted, the GPS measurement of the
tractor could be to the left of the desired patremwithe tractor is actually to the right of
the desired path. This would cause the contrdalemove the tractor in the wrong
direction leading to instability. The error shownFigure 4.18 is due to the effect of the
longitudinal error entering into the East errorsatall heading angles which affects the
lateral error of the tractor since it is not alwdnesading parallel to the line it is tracking.
Equation (4.41) provides an estimate of the lateradr in the estimator due to the GPS

measurement delay.

elateral to path = _b/x Sin( err ) +Vy Coiwerr )] Tlag = _V¢J Sir](Verr )Tlag (441)

For the simulation in Figure 4.18, the maximum eabf ¢, was 0.115 radians which

err
resulted in a maximum lateral error of 0.008 meteFhis corresponds very well to the
predicted lateral error of 0.00808 using Equatibd ).

The lateral errors induced from this measuremeahty can also be important if
the tractor is oscillating on the verge of instiilsince it could cause the tractor to go

unstable. Recall that measurement latency can deled as a loss of phase in the
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system which reduces the phase margin [FrankliB2R0The compensated system still

contains some of the cosine wave but its errorsraueh more manageable.
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Figure 4.18: East error
Figure 4.19 shows that the heading error prodecess that appear similar to
that of the error in the lateral direction from tixehicle. Equation (4.42) approximates
the heading estimation error due to the measurelatsmicy.

e =-rT,

course

lag (4.42)

For the simulation in Figure 4.19 the maximum hegderror using Equation (4.42) is

0.00225 radians which corresponded well with ttseilte in Figure 4.19.
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Figure 4.19: Heading Error

The covariance estimates of the estimators witlsR& measurement delay and
with the delay compensation are shown in Figur®.4&s can be seen, the uncertainty in
the compensated system is only slightly higher théahout the delay. Additionally, no
lag can be seen in the covariance estimates betteetwo simulations. The north
estimate is also cleaner then east estimate. igbhiscause the uncertainty in course does
not enter into the position state in the directadircourse (as seen in Equation (4.32)),

which is mostly in the direction of north in thismslation.
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Figure 4.20: Comparison of covariances for an egtmwith no GPS measurement

delay and an estimator that compensates for ttag del
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4.7 Summary and Conclusions

Details on the design of an estimator to estinia¢eyaw rate, yaw rate bias, and
Mpc were given in this chapter. A method was giveat thetermined when to estimate
the yaw rate bias andpc so that disturbances did not dominant the estonatf Mpc.

It was shown that with the covariance resetting, ¢istimate oMpc would converge
quickly. A solution to estimating the bias duritmyv levels of excitation was also
explained and the effect of the neglected dynamicthe estimation was displayed.

It was shown that most of the errors occurred bszanf magnitude errors
between the estimator model and actual system angdhase errors. It was also shown
that the covariance estimate for the estiméigd was lower than the actually accuracy
of the estimatedlpc. The errors in the estimate M caused by the magnitude errors
were found to decrease as the velocity and hiteldifg were increased. A method of
compensating the adaptation for these errors waadfdy approximating the pole
locations. The rate of convergenceMyc due to the forgetting factor was found to be
independent of its offset and was instead simplyration of the longitudinal velocity
times the steer angle. It was shown tMac would converge faster with higher
amplitudes of excitation and with a larger forgejtifactor on the estimated state.
However, increasing the forgetting factor resulted noisier estimate dflpc.

The design of the position estimator for providfiagter updates of position was
also detailed. This estimator was designed to emsgte for the delay in the receipt of a
GPS message since it was shown that the effedti®fldag could cause large position

errors. Equations were provided that approximgtecerrors induced by the GPS lag.
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CHAPTER 5
EXPERIMENTAL IMPLEMENTATION

5.1 Introduction

The results of experimental tests using the cdet®hnd estimators discussed in
previous chapters are given in this chapter. AJobkere 8420 tractor was used for the
experimental tests. A Bosch gyroscope was usemhdasure yaw rate and a linear
potentiometer was used to measure the steer andgBmth measurements were
synchronized to GPS measurements using a GPS patseecond (PPS). The GPS
measurements were provided by a Starfire GPS rexceivhe delay in the GPS messages
was obtained using a ten kilohertz clock synchredito the one hertz clock (PPS) as

discussed in Chapter 4.

5.2 Trajectory Design

In this thesis all tractor trajectories consiststhight line segments. Figure 5.1
displays a desired path in a North-East coordiegséem. The desired path is defined by
a reference poiniN\eer,Erer) and a reference headingd). The point K,E) is the location
of the tractor. NgesEged iSs the desired point on the path which is defilgda line
perpendicular to the path that goes to the pdiE) The tractor position can then be
described as a longitudinal distance from the esfee point and a lateral distance from

the path.
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Figure 5.1: Tracking a straight line.

Using the coordinate transformation given in Egurat5.1) the longitudinal and

lateral distances can be found from the North-Eastdinate system.

X| cos(w,ef) sin(z//,ef) N =N,

[Y} B |:_Sin(¢/ref) Cos(wref )}[ E-E. } 61

It was shown in Chapter 4 that higher frequencias cause the estimator to

estimate the incorrect value Mpc. Thus, it can be an advantageous to prevent the
tractor from executing a step input by redrawing gath when the lateral distance is
large and conducting a steady-state turn to thie. pAdditionally, if the tractor is at too
large of an offset it will approach the desiredhpgerpendicular to it, creating an

unsatisfactory response. Therefore, the desiréd isaredefined using a circular path,

which is tangential to the desired straight lingjectory, when the tractor is a large
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distance away from the desired line. A descriptbthe circular path is shown in Figure

5.2.

IRl

(N,E)
F(NesEed
N desEd
(NreEEref) yI Z¢ * e
P > —>|

X d

Figure 5.2: Curved trajectory to the straight line.

The valuez is the distance between the circular path andstreeght line path.
When it is determined that the offset from the &bistraight line path is too large, the
circular path is formed by setting the current ralteoffset as shown in the equation

below.
Xinit = Y (5.2)
The distancel that is desired for when the straight line patt #re curved path

converge is then computed as a function of thélriffset using Equation (5.3), whdre

is a value larger or equal to one.
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Aiie = Mg (5:3)
As will be seen in the next few equatidnsets the rate to which the tractor will (limited
by the tractor dynamics) approach the line trajgctdn this workl was chosen to be 4.

The radius can then be calculated by solving feriippotenuse of a triangle that

takes into account the initial offsets as showmwel
R? = (d, )* + (radius—x,,, )’ (5.4)
Substituting Equation (5.3) into Equation (5.4)ulesin Equation (5.5), where the sign

of R contains the information corresponding to whiaesof the straight line the circular

path is on.

12 +1

radius:Tx (5.5)

init

Solving for Equation (5.4) with the current offs@tstead of the initial offsets, the
distance between the circular and straight pathewhe tractor is moving can be solved

as shown below.

x = radius- sigr(radiush/radius® - d? (5.6)

The lateral distance to the circular path can therfound using Equation (5.6) and the

distancey.

5.3 Results

To first validate the ability of the algorithms poovide correct estimates bfpc.
Experimental test were conducted. For these exygsts, the tractor was commanded to
track a straight line from an initial offset. Thstimator used an initial value bfpc set

to 0.25. Figure 5.3 shows the results of two teJise on-line experimentally estimated
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Mpc values have less than a five percent error fragrtrilie value identified in Chapter 2

(MDC = 0334)

032 ’ \ ~ 7 N Lo B

0.3 ’ 7

o 0.28F :
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0.22 |
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Figure 5.3: Estimation d¥lpc during experimental tests.

Tests were also conducted to determine how thedlerror was affected by

changes in velocity. Figure 5.4 shows that therédterror increases only slightly with

increased velocity.
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Figure 5.4: Lateral error versus velocity
The tracking performance of the controller withaatimplement is displayed in

Figure 5.5, where five experimental results arenshoAs seen in the figure, the tracking

performance appears to remain fairly constant &oheof the tests.
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Figure 5.5: Lateral error without an implement.

In Figure 5.6 the tracking performance of the oaligr with a four shank ripper

at a twelve inch depth is shown for five experina¢riests. As shown in the above

figure, the lateral tracking accuracy degradessiygvith the implement.
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Figure 5.6: Lateral error with a four shank rippéa twelve inch depth.

The corresponding mean and standard deviatiomefekperimental tests with
and without an implement are shown in Table 5.1s c&n be seen in the table, the
standard deviations of the controlled runs withiraplement are larger than without an
implement. This is most likely due to the fact tthhe implement induces larger
disturbances into the system. However, the faat tihe experimental control accuracy
with and without an implement is fairly consistesttows that the adaptive control
algorithm, based on on-line estimationM#c, provides an effective means to handling

the tractor dynamic variations.
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Table 5.1: Statistics of lateral error at a const@hocity

No Implement Ripper at 12" depth
Run Mean (m) o (m) Mean (m) o (M)
1 0.00491 0.0191 0.00496 0.0187
2 0.00639 0.0120 -0.0105 0.0167
3 0.0109 0.0156 -0.00747 0.0221
4 0.00454 0.0167 -0.00646 0.0228
5 0.00453 0.0205 -0.0118 0.0210
Average 0.00625 0.0168 -0.0252 0.0202

5.4 Summary and Conclusions

This chapter has detailed the experimental imple¢atem of the estimation and
control algorithms developed in this thesis. Tiagettories used for the tractor controller
were discussed. Experimental results showing tleaeracy of the estimation algorithms
were then provided. Experimental tests demonstriiat the tracking response changed
little with velocity. The average standard dewas while varying velocities was found
to be 0.016 m. It was also shown that the standardation of the lateral position
changed little with hitch loading with a standardvidtion of 0.0168 m without an

implement and 0.0202 m with a 4 shank ripper & adg&pth while driving at 2 mph.
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CHAPTER 6

FIXED POINT IMPLEMENTATION OF YAW RATE ESTIMATOR
6.1 Introduction

Implementation of a Kalman filter is difficult ia fixed point microprocessor.
The propagation of the covariance presents theesarchallenge, since it can be poorly
conditioned if small machine precision is used. widwer, filters that propagate the
square root of the covariance are more easily neaidg, because they propagate a
matrix that has the square root of the conditiomber of what the Kalman filter
requires. Examples of square root Kalman filtardude the square root covariance filter
and square root information filter [Anderson, 19B8rman, 1977; Maybeck 1979a].

In this chapter, a square root covariance filtdRCE) will be used to show that
the Kalman filter from Chapter 4 can be implementesthg fixed point math. The
estimator provides an estimate of the slope ofCxtBegain with respect to velocity of the

transfer function between steer angle and yaw(Mig).

6.2 Square Root Covariance Filter
The square root covariance filter is derived fribra Kalman filter equations. It
uses orthogonal matricek, andT,, shown in Equations (6.2) and (6.3) to solve fmper

triangular matrices.
Xik-1 = f(xk—l’uk—l) (6.1)
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{S:'k'l} :T{ S TT} (6.2)
0 Q"7TL

The process of splitting the matrix into an orthogloand upper triangular matrix is
known as QR decomposition and the most popular adsthised for square root Kalman
filters are the householder [Golub, 1989] and medifGram-Schmidt methods. The
householder method is used in this work. Equat{@nk) and (6.2) consist of the time
update of the estimator. Note that the state tipeate is the same as in the Kalman

filter.

Equations (6.3-6.5) show the measurement updaigtiegs for the estimator.

{(R+HTPH) 'ZT}:T{ RV2T 0 } 63

0 ST StaH" St
K=K([R+HTPH) " (6.4)
X = X t K(Z_ HXklk—l) (6.5)

The QR factorization displayed in Equation (6 &urns terms that are used for both the
covariance square root and the Kalman gain. Tk sheasurement update shown in
(6.5) is the same as the Kalman filter state mesmsent update. In Equation (6.4) it is
evident that a matrix inverse is needed if themmase then one measurement. However,
sequential processing is used in square root diltereliminate the need for a matrix
inversion.
When compared with the Kalman filter the squaret rmovariance filter takes

more computation time [Bierman, 1977; Kaminski, 197This is due to the fact that the
SRCF needs more multiplications, additions, divisio as well as square root

calculations.
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6.3 Fixed Point Math
For the fixed point implementation, additions audbtractions were performed as
normal. Multiplications were performed using Eqoat(6.6), where >> is the right shift
operator andN is the number of bits to shift.
ab>> N (6.6)
Divisions were carried out using Equation (6.7)eveh<< is the left shift operator.
(a<<N)/b (6.7)
An overflow would result if the answer to the edoms was larger then'2 since
variables were defined as 16 bit signed integers.
The householder method was used on Equation (&8xnaexample of the
accuracy of the fixed point implementation of thgoaithm.

345 156 543 15

-435 261 623 89

A=l 210 45 96 112 (6.8)

-19 61 75 412

The householder method reduces Equation (6.8) A®#QR, by doing a column wise
reduction.
Equation (6.9) shows the result of the decompmsivhen floating point is used.

6072026 -96.4271 -1254095 -320321

0 2994332 816926 1762676

R=
0 0 1213396 -3524878 (6.9)

0 0 0 1846349

Performing the decomposition in fixed point resuftserrors build upon one another as

each column is reduced as shown in Equation (6.10).
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605 -92 -126 -30

-12 295 801 182

R='4 -3 130 -333 (6.10)

-2 0 0 214

This implies that the first state will have the ihascurate covariance estimate.

6.4 Estimator Model

Since the first state will have the most accucateariance estimate, the slope of
the DC gain fpc) was made the first state. The yaw rate statledrestimator was set to
be scaled biN = 9bits from the units of degrees/second. Meaningtti@yaw rate state
would be yaw rate in degrees/second tim&s Phe measured yaw rate, velocity, and

steer angle were also scaled by 9 bitésc was scaled bW bits plus N, = 4bits or

2(N*Noc) - The bias was scaled bybits plusN,... = 4bits or 2"*™=) Mpc and the bias

bias
were scaled by extra bits in order to reduce thar ém those states caused by the fact that
MDC and the bias were smaller in magnitude therytwve rate state.

Equation (6.11) shows the state time update empugtwhere the states dviyc,
yaw rate, and the yaw rate bias.

M DCk = M DCk-1
e = [(M ek > Npc )‘/k > N]a—k >>N (6.11)

Mbiask = Mbiask-1
The Mpc andryiss values are simply the previously computed valu€se Mpc state has
to be shifted down in the yaw rate computation eifichas a larger scaling in the
estimator. The order of the shifts can be changsdipng as it does not increase the risk

of overflow.
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Equations (6.12-6.14) display the Jacobian matrigeed in the square root

covariance filter.

1<<N 0 0
F=|Vd>>(N+Ny,) 0 0O (6.12)
0 0 1<<N
H=[0 1<<N 1<<(N-Ny,,)] (6.13)
1<<N 0 0
L= O 1<<N 0 (6.14)
0 0 1<<N

Note that inF, the term related to the partial of the yaw raih wespect tdVipc is shifted
down due to the extra scaling on the parameterditiahally in H, the partial derivative
with respect to the bias is shifted up less dubeaextra scaling on the bias.

Equations (6.15) and (6.16) contain the squareé obahe noise covariances,

which are displayed as a function of the extraisgadn the states.

4<<Nype 0 0
QY% = 0 154 0 (6.15)
0 O 6 << Nbias
RY? =[64] (6.16)

The noise values had to be larger than the nomiadaks given in Chapter 4. This was
done do to the fact that even though the covariamme not converge to zero, the Kalman

gain can become zero if the covariance is too small
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The initial covariance square root is shown in Eiqua(6.17).

00 0
S={0 0 0 (6.17)
0 0 460<<N

bias
The initial value for the yaw rate covariance i$ ®ezero, since the estimator will be
initialized with the most recent yaw rate measun@mée heMpc covariance square root
initial value is also set to zero because adaptatidl not be performed until there is
adequate excitation.

To determine when to estimate the parameter, kEqu46.18) was calculated

recursively, whereN , = @vas chosen to prevent an overflow.
status= Y~ _ (62, >>N,) (6.18)

The equation is simply an estimate of the covagasfche steer angle over a short period
of time. This period was chosen to be one secbadwenty hertz resolution.

The value of status was arbitrarily chosen to 201 therefore, ifstatus<1920
then it was determined that there was insufficexditation to estimat®ipc. Therefore
in order to prevent the parameter from being edamahe first element of the Kalman
gain was set to zerak((00)=0). Once there was adequate excitation to estilvigte
and Mpc was not previously being estimated, then the camae forMpc was reset

toS(00) = 25<< N, in order to inject some uncertainty into thatest

6.5 Comparison between Fixed Point and Floating Point | mplementation
To test the performance of the fixed point estimagaperimental data was used

during a straight line tracking test with an inlitedfset. A floating point estimator was
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also used for comparison. Note that for paritycomparison, the nise values used in
Equations (615-6.16) were used in both estimatbigures 6.1-6.4 show the comparison
between the results using the fixed point versoetithg point estimators. Note that in the
following figures the scaled fixed point vales hde®zn rescaled back to more traditional
values. It can be seen in Figure 6.1 that therse &®ugh excitation to estimate the
parameter at the beginning of the experiment. Wheryaw rate moved to switch signs
and was around zero, it was determined that thexe mot enough excitation and the
estimation ofMpc was stopped. Once the yaw rate completed changg, the
windowed analysis determined that there was adegesaditation to continue estimating

Mpc.

35 T T T T T T T
—— Window Value
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= N N w
ol o o1 (@)
T T T T
I I I 1
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o
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0 Il Il 1
0 5 10 15 20 25 30 35 40

Time (s)

Figure 6.1: Windowed analysis of experimental datdetermine when to adapt.
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The estimate oMpc using the fixed point estimator initially oversheahe
estimate form the floating point estimator as seeRigure 6.2. Unfortunately thepc
estimate does not recover from the initial overshiaring the second opportunity for

estimation.

0.35r i
O
[a)
=
0.3 i
0.25r i
— Floating Point
— — - Fixed Point
0.2 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Time (s)

Figure 6.2: Comparison of the estimation of thgslof the dc gain equation with

respect to velocity for fixed and floating poining experimental data

Also, Figure 6.3 shows that there exists a sligfierence in the estimated yaw
gyro bias from the two estimators. This resultsaaismall difference in the yaw rate
estimate seen in Figure 6.4. The differences e dhktimation ofMpc can likely be

attributed to the differences in the estimate efyhw rate bias. Note thathfpc had not
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been made the first state, errors in the compurtatiche covariance could have caused
the Kalman gain to go to zero even while the winddwanalysis showed there was
enough excitation. This would cause the estimatmrturn off, possibly before it

converged to the correct value.
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Figure 6.3: Comparison of the estimation of the yate bias in fixed and floating

point using experimental data
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Figure 6.4: Comparison of the estimation of yawve iatfixed and floating point using

experimental data

In order to test the repeatability of the estonand whether the estimator was
estimating the correct values, simulated data izt generated using a sine wave steer
angle input and a second order disturbance motleé results are given in Figures 6.5-
6.8. As seen in the figures, the estimates foffike®l and floating point estimators both
approach the correct value every time the parangetstimated.

Recall that the process noise values in Equatobb] were set higher than the

actual noise values in order to prevent the Kalg@n from going to zero. This causes
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the bias to incorporate a scale factor error effieotn the sine wave) due tpc having

not completely converged.

In Figure 6.7, it can be seen that the covariaesetting did not allow for the

convergence on the correct value the first timdrigd to estimate the parameter.

However, resetting the covariance twice allowedMae estimate to approach the correct

value. Again this was due to the process noisaegabeing set higher than the actual

values. Although, it took longer to converge witle larger noise covariances, tkgc

estimate did converge to the correct value. Asvshim Figure 6.8, there were multiple

opportunities where sufficient excitation existed¥pc to be estimated.
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Figure 6.5: Comparison of the estimation of yave iiatfixed and floating point for

simulated data
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Figure 6.6: Comparison of the estimation of the yate bias in fixed and floating

point using simulated data
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Figure 6.7: Comparison of the estimation of the yate dc gain slope with respect to

velocity in fixed and floating point for simulateldta
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Figure 6.8: Windowed analysis of experimental datdetermine when to adapt.

6.6 Summary and Conclusions

A square root covariance filter was used to imgetthe yaw rate estimator
using fixed point math. The methods for the nunsroperations were shown as well as
the fact that the first state would have the mastueate covariance estimate. The
modifications of the Kalman filter matrixes wersalgiven, where the noise covariances
had to be made larger than necessary to preveitainean gain from going to zero even
when the covariance was not zero. The algorithrs Wiien compared using both a

floating point estimator and fixed point estimatath experimental data. Finally, it was

108



shown with simulated data that even with the ineeelanoise values in the fixed point

estimator that the correct values could be convkeoge
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CHAPTER 7
CONCLUSION
7.1 Summary

In Chapter 2, system identification of the stegréervo found that the steering
servo could be modeled using a nonlinear inputsfamation plus a transfer function
with an integrator. A review of previous yaw dynammodels for tractors found that
they did not match the dynamics of the 8420 tratentified in this thesis using system
identification tests. From the system identifioatitests of the steer angle to yaw rate
transfer function it was found that the system $thdwe modeled as a fourth order model
with a non-minimum phase zero. It was found thatDC gain of the steer angle to yaw
rate transfer function was linear and that only shape of the DC gain with respect to
velocity varied with velocity and implement loading model of the tractor with various
hitch loadings was identified for use in the colérodesign.

Chapter 3 detailed the design of the cascaded allang for the steering servo,
yaw rate, and position of the tractor. The metbbdletermining the controller gains
using parameter estimation was discussed. Thétisépf the controller to the model
simplifications was given and it was shown that stability margins of the controller
improve with increasing hitch loading and velocityhe sensitivity of the controller to
the incorrect velocity was shown. It was found tha system could be unstable if

designed for too low of a velocity and could haveumdesirably slow response when
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designed for too high of a velocity. Similarlywhas found that an estimate Mbc that
was too low could lead to instability and too highan estimate could lead to a slow
response.

In Chapter 4, the design of an estimator to eséntlae yaw rate, yaw rate bias,
andMpc was detailed. It was shown that a windowed aotoetation could be used to
determine when to estimaMpc so that disturbances do not dominant the estimé#te.
was shown that with the covariance resetting, thémate of Mpc would converge
quickly. The effect of the neglected dynamics lom éstimation was displayed and it was
concluded that most of the errors occurred becafismagnitude errors between the
estimator model and the true dynamics and not pbases. It was also shown that the
covariance estimate for the estimaldg: was lower than it actually should be, making it
unreliable the accuracy of the estimate. The srcaused by neglecting dynamics were
found to decrease as the velocity and hitch loadugge increased. A method of
compensating the adaptation for these magnituaesewas found by approximating the
pole locations of the tractor. Even while augnmagtihe estimator with the dominant
poles, the estimation still contained some errdrowever, this could be corrected by
decreasing the damping ratio of the dominant polesdding more dynamics to the
estimator model. The rate of convergenc#lgf due to the forgetting factor was found
to be independent of its offset and was instealyira function of the longitudinal
velocity times the steer angle. It was shown Ma¢ would converge faster with higher
amplitudes of excitation and with a larger forgadtifactor onMpc. However, théMipc
estimate was shown to less accuracy as the fargdtctor was increased. The design of
the position estimator for providing higher updatégosition was also detailed. This
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estimator was designed to compensate for the delthe receipt of a GPS message. It
was shown that not accounting for this latency doohuse large position errors.
Analytical equations were developed that approxaéuiahe errors induced by the GPS
lag.

Chapter 5 described the design of the trajectarsesl to control the tractor in this
thesis. Experimental results showing the repelittalmf the estimation were given.
Experimental tests showed that the tracking respamanged little with velocity and
hitch loading, validating the adaptive control @stimation algorithms in this thesis.

In Chapter 6, the estimator for the yaw rate, yate bias, an#lpoc was designed
for fixed point implementation using a square roovariance filter. A summary of the
fixed point math used was given. An example usir@QR decomposition with fixed and
floating point operations using the householderhmetwas conducted. It was shown
that the first state would have the most accurat@gance estimate. The scaling of the
different states was detailed including differendemm the estimator developed in
Chapter 4. A comparison of estimators designedguiked and floating point math was

displayed for both experimental and simulation data

7.2 Recommendation for Future Work

An accurate parameter based or analytical modeltadictor needs to developed.
Based on this model a more accurate controllerdcbaldesigned, since approximations
had to be made to the dynamics with the use ofrgaleiment. Controllers could also be
designed for specific types of implements, with tise of user inputted information on
the implement. With the use of a user specifiedl@hathe estimate d¥lpc could more
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accurately take into account higher dynamics. Titet $tep would be the design of a
model that matches the dynamics without an implérmsgice from system identification
tests they appear to be similar. This may inclimestigating the effect of tire faulty
circularity and suspension dynamics. Then, modébarious types of implements that
take into account the hitch dynamics need to beldeed.

Recording the performance of the tractor could lemdnproved performance.
With the use of a user profile for each impleméhg statistics of the use of that
implement versus time and location could be storAdiecord of the performance over
time for each recorded implement could allow foglsl variations in the controller to test
for improved performance. While a record of theetor position could reveal differences
in the terrain for which different control strategicould be evaluated over time for that

location.
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APPENDIX A

EXPERIMENTAL SETUP

A John Deere 8420 tractor with an independentfiiakt suspension was used for
experimental tests, which is shown in Figure AThe tractor was interfaced to with the

use of a Controller Area Network (CAN).

Figure A.1: John Deere 8420 Tractor
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The algorithm computations were calculated withule of a Versalogic Bobcat
PC/104 CPU shown in Figure A.2. The analog senssed were recorded with the use
of a Versalogic PC/104 data acquisition board shmw¥igure A.3. The PC/104

components were stored inside of a PC/104 caseV@nsalogic shown in Figure A.4.

* Viksiloan: SESESSEE

Figure A.2: Versalogic PC/104 CPU Figure A.3: Versalogic PC/104 data

[Versalogic, 2005a] acquisition board [Versalogic, 2005b]

Figure A.4: Versalogic VL-ENCL-4 Ruggedized Enclos{Versalogic, 2005c]
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The Bosch IMU shown in Figure A.5 was used to abiaértial measurements.
The linear potentiometer shown in Figure A.6 wasdu®r measurements of steer angle.

GPS messages were obtain with the use of the I®t&RS receiver shown in Figure A.7.

Figure A.5: Bosch IMU Figure A.6: Steer angle senso

Figure A.7: Starfire GPS reciever
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