
Digital Phase Accumulation for Direct Digital Frequency Synthesis

by

Joseph Dominic Cali

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 5, 2013

Keywords: DDS, DDFS, DCDO, DAC, Phase Truncation Errors, CORDIC

Copyright 2013 by Joseph Dominic Cali

Approved by

Fa Dai, Chair, Professor of Electrical and Computer Engineering
Richard Jaeger, Ginn Distinguished Professor of Electrical and Computer Engineering

Robert Dean, Associate Professor of Electrical and Computer Engineering
Stanley Reeves, Professor of Electrical and Computer Engineering

Abstract

This work explores direct digital frequency synthesis (DDFS) theory and design and its

application in radar systems. Though there is nothing particularly novel about DDFS in

general, recent designs have been revolutionized with the advancements in CMOS processes

and SiGe BiCMOS integration from 2000 to the current day. Many of the performance

limitations highlighted in early literature, such as the area and power of the sinusoidal read-

only memory (ROM), no longer apply to designs in modern integrated circuit (IC) processes.

The digitally-controlled digital oscillator (DCDO) of the DDFS can now produce signals with

spectral purity far beyond the capabilities of the digital to analog converter (DAC). CMOS

miniaturization allows for high dynamic range sinusoids to be generated with CORDICs

instead of lossy compressed sine and cosine ROMs. Parallelization in the accumulator and

modulation paths eliminate the need for power hungry, current mode logic (CML) pipeline

accumulators. Noise shaping is better understood than at any point prior to this moment,

which allows us to mitigate quantization noise that arises from phase or amplitude truncation.

However, alarmingly few DDFS designs published in the past five years have taken note

of the radical shift in the design landscape. Of equal importance are the new challenges

that have arisen in small feature size geometries. In a way, this document is an attempt

to consolidate the state of the art in DDFS design and propose improvements from the

study. To this end, the dissertation is organized into two distinct sections, the DCDO and

the DAC. Digital phase accumulation and sinusoid generation are approached from number

theory and real analysis respectively. An exact computation of the spurs generated through

phase truncation is developed that results in closed form expressions for the DCDO spectrum.

Current switches and architectures for improved DAC performance is presented qualitatively.

ii

Acknowledgments

Journeying down the path of higher education can rarely be attributed to the will power

or foresight of the individual in pursuit. In recent years, I have appreciated the support of

the faculty and staff of Auburn University who have guided me through a challenging five

years of graduate school. In addition, I benefitted from the assistance of my fellow graduate

students with whom all my designs have interfaced in some manner. I acknowledge my major

advisor, Dr. Fa Dai for taking me on as a graduate student and funding eight integrated

circuit designs through my stint as a graduate student. I also must mention the members of

my committee Dr. Dean, Dr. Jaeger and Dr. Reeves for their specialized assistance through

many challenging design problems. I cannot fail to mention Dr. Niu, as his passionate and

skilled teaching of semiconductor physics from his deep knowledge of the subject has proven

helpful dozens of times on the job in my short time in the workforce.

There are countless teachers who from kindergarten through my undergraduate degree

at Louisiana State University (LSU) have devoted their energy and time to teaching me

and putting up with my relentless questions with regard to the “how’s” and the “why’s” of

this world. Without the prodding of my professors at LSU, I may have never considered

an advanced degree. Above these teachers stand the two greatest teachers in my life, my

mother and father, who have patiently raised me and provided emotional and financial

support throughout my academic journey. They sacrificed many conveniences for me to

attend a private school in preparation for college.

Lastly, I must thank my wife, Alison, for supporting me through the endless nights of

class work, the many weekends of research, my late night existential crises (now why am I

in graduate school again?), and tough medical challenges. She has certainly done more to

shape the outcome of this work than any other person in my life.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . viii

List of Tables . xiii

List of Theorems . xv

List of Abbreviations . xviii

1 Introduction to Phase Accumulators . 1

1.1 Explanation of Notation . 3

1.1.1 Number Theory Axioms and Notation 6

1.1.2 Binary Arithmetic . 8

1.2 Overview of Direct Digital Frequency Synthesis 13

1.3 Advantages of DDFS . 19

1.3.1 Digital Phase Modulation . 20

1.3.2 Digital Frequency Modulation . 22

1.3.3 Digital Amplitude Modulation . 23

1.3.4 Fine Frequency Resolution and Fast Switching 24

1.4 Summary of Contributions and Chapter Breakdown 24

2 Background of Phase Truncation Analysis . 26

2.1 Mehrgardt’s Analysis (1983) . 26

2.2 Nicholas’s Analysis (1985) . 31

2.3 Jenq’s Analysis (1988) . 36

2.3.1 Jenq’s Observation . 37

2.3.2 Jenq’s Results . 39

iv

2.4 Torosyan’s Analysis (2001) . 40

3 Phase Accumulator Sequences from Number Theory 43

3.1 Phase Accumulator Sequence . 44

3.2 Phase Accumulator Period . 48

3.3 Truncated Phase Sequences . 53

3.4 Relationships Between Sequences . 62

3.5 Comments on Mathematical Structure . 66

4 Spectrum of Truncated Phase Sequences . 68

4.1 Intuitive Understanding . 68

4.2 Characteristics of Truncated Phase Sequences 72

4.3 Spectrum in the Presence of Phase Truncation 79

4.4 Interpreting Results . 90

4.4.1 Ideal SCMF Example . 93

4.5 Numerical Verification of Theory . 96

4.6 SFDR and SNR in the Presence of Phase Truncation 96

4.6.1 SFDR . 98

4.6.2 Worst Case SFDR . 101

4.6.3 Spur Locations . 105

4.6.4 SNR . 105

4.7 Architecture Changes for Improved Spurious Response 106

4.7.1 Force Coprime FCWs . 106

4.7.2 Phase Accumulator with Prime Number of States 109

5 Parallelization of Phase Accumulator . 111

5.1 Pipelined Accumulator . 112

5.2 Parallel Accumulator . 113

5.2.1 Prior Art . 114

5.2.2 Derivation of LFM Enabled Architecture 117

v

5.2.3 Area and Power Growth Analysis . 119

5.2.4 Hardware Implementation . 121

5.3 Multiplexer Upconversion Analysis . 123

5.4 Behavioral HDL Synthesis . 126

5.4.1 Problems with Existing Techniques 126

5.4.2 A Simple Example . 127

5.4.3 EDA Scripts . 130

5.4.4 Optimization . 131

6 Radar Application . 132

6.1 Previous DDFS Designs . 132

6.1.1 Sine Wave Symmetry . 132

6.1.2 MTM DDFS . 134

6.1.3 BTM DDFS . 137

6.1.4 Output Response Analyzer . 145

6.2 Overview of Basic Radar Theory . 149

6.3 Overview of Stretch Processing . 150

6.3.1 Single Chip Radar . 153

6.4 CORDIC . 154

6.4.1 Basic Theory . 155

6.4.2 Conventional CORDIC . 168

6.4.3 Optimizing the CORDIC Algorithm for DDFS 170

6.4.4 Partial Dynamic Rotation CORDIC 173

6.5 Stretch Processing DDFS Architecture . 175

6.5.1 Inverse Sinc Filter . 176

6.5.2 Radar Controller . 177

6.6 Design of 12-bit CMOS DAC . 179

6.7 Measurements . 181

vi

7 Digital-To-Analog Converters (DAC) . 184

7.1 Basic Sampling Theory . 184

7.2 DAC Fundamentals . 188

7.3 DAC Performance Metrics . 196

7.3.1 Static DAC Performance . 196

7.3.2 INL . 197

7.3.3 DAC Models . 199

7.4 Dynamic DAC Performance . 204

7.5 DAC Architectures . 206

7.5.1 R-2R DACs . 206

7.5.2 Thermometer Coded and Segmented DACs 209

7.5.3 Return-to-Zero (RTZ) . 211

7.5.4 Translinear Output Buffers and Non-Linear DACs 211

7.6 Current Steering Cell Architectures . 218

8 Conclusions . 226

Bibliography . 228

vii

List of Figures

1.1 Basic DDFS Block Diagram . 2

1.2 Gate Logic for One’s Complement . 12

1.3 Phase Accumulator State Plots (Circle) . 14

1.4 BPSK Waveforms . 21

1.5 Simple Chirp Accumulator Diagram . 22

1.6 10ns Chirp Waveform . 23

2.1 Sawtooth Approximation . 28

2.2 Error Sequence Waveform Components . 33

3.1 Phase Accumulator State Plots . 46

4.1 Spectrums from Two Adjacent FCWs . 69

4.2 Simple Estimates for Worst Case SFDR due to Phase Truncation 71

4.3 Window Function from Example . 94

4.4 Window Function from Example . 95

4.5 Numerical Validation . 97

4.6 Numerical Validation . 101

viii

4.7 SFDR Function (Magnitude) . 102

4.8 Forcing Coprime FCWs . 107

4.9 Modification SFDR Improvement . 108

4.10 Forcing Coprime FCWs (Modification) . 109

4.11 Mersenne Prime (17) Spectrum . 110

5.1 Phase Accumulator with LFM . 111

5.2 Block Diagram of Pipeline Accumulator . 112

5.3 Block Diagram of Pipeline Accumulator with LFM 113

5.4 [1] Architecture . 115

5.5 FSM Chirp-Enabled DDFS with Parallel Processing Path 116

5.6 Finite State Machine for Parallel Processing Path 117

5.7 Proposed DDFS Using Novel Parallel Accumulator 118

5.8 Frequency and Phase Predictive Step . 121

5.9 Parallel Phase Accumulator using Predictive Step 122

5.10 4-to-1 Upconverting Multiplexer . 123

5.11 CML Multiplexer . 125

6.1 Quadrature, Quarter Sine Compression . 133

6.2 MTM DDFS Block Diagram . 134

ix

6.3 MTM Block Diagram . 137

6.4 MTM DDFS GDSII (130 µm BiCMOS) . 138

6.5 BTM DDFS Block Diagram . 138

6.6 Phase Accumulator State Plots . 141

6.7 BTM ROM Block Diagram . 142

6.8 BTM, CORIDC, ORA and DACs (130 µm BiCMOS) 144

6.9 Galois 18-Bit LFSR . 145

6.10 Phase Accumulator State Plots . 146

6.11 BTM Simulation Versus Prediction . 147

6.12 Two Tone Generation . 147

6.13 ORA Block Diagram . 148

6.14 Example of Stretch Processing Signals . 151

6.15 Radar-On-Chip Block Diagram . 153

6.16 Die Photograph of RoC . 154

6.17 CORDIC Vector Rotations . 157

6.18 CORDIC Coverage Requirement . 163

6.19 Conventional CORDIC Stage . 169

6.20 arctan Small Angle . 170

x

6.21 CORDIC Bit Resolution . 171

6.22 PDR CORDIC Architecture . 173

6.23 PDR CORDIC Stage . 174

6.24 Block Diagram for Radar DDFS . 175

6.25 Die Photograph of RoC (DDFS Zoomed) . 176

6.26 Inverse Sinc FIR Filter (Block Diagram) . 177

6.27 Block Diagram of 12-Bit CMOS DAC . 179

6.28 DAC Current Source Sizing . 180

6.29 Synchronization Circuit for 12-Bit CMOS DAC 180

6.30 Clock Tree for 12-Bit CMOS DAC . 181

6.31 Inverse Sinc Filter . 182

6.32 DDFS with Single Tone Output . 183

7.1 Rectangle Function Plots . 191

7.2 INL Curves for Thermometer-Coded DAC Models with Finite Output Impedance

Current Sources . 193

7.3 Graphical Explanation of Gain and Offset Errors 197

7.4 Graphical Explanation of INL and DNL . 198

7.5 Simple Single-Ended Binary-Weighted Model 200

7.6 Simple Single-Ended Thermometer Model . 200

xi

7.7 Single-Ended Single Bit Active . 201

7.8 INL Curves for Thermometer-Coded DAC Models with Finite Output Impedance

Current Sources . 202

7.9 Simple Differential Thermometer Model . 203

7.10 Glitch Versus Device Size (1 µm to 10 µm) . 206

7.11 R-2R with Binary Scaling (Emitter Network) 207

7.12 R-2R with Binary Attenuation (Collector Network) 208

7.13 Segmented R-2R Binary with Thermometer MSBs 210

7.14 Differential Pair . 213

7.15 Padé Sine Approximation . 218

7.16 Translinear Sine Implementations . 219

7.17 Differential Translinear Cosine Implementation (Ideal Current Sources) 220

7.18 Quadrature Translinear DDFS . 220

7.19 Simple Current Steering Cells . 221

7.20 Current Steering Cells with Cascoding . 223

7.21 Current Steering Cell with Cascode Output and Keep Alive 224

7.22 Current Steering Cell with Cascode, Keep Alive and RTZ 225

xii

List of Tables

1.1 Built-in Barker Codes . 21

2.1 Table of Truncated Phase States (4-bit) . 38

4.1 List of Mersenne Primes for Phase Accumulation 109

5.1 Comparison of Accumulators . 120

6.1 Table of Initial Values . 135

6.2 Example BTM Compression . 143

6.3 Summary of DDFS Designs . 174

6.4 DDFS Performance Summary . 181

7.1 Published RTZ DACs . 211

7.2 SFDR of NRTZ DACs . 212

xiii

List of Symbols

P Current State of Phase Accumulator . 4

A Current Amplitude Output of DCDO . 4

BP Number of Bits in Phase Accumulator . 5

BA Number of Bits of Amplitude Resolution in DCDO 5

NP Number of States in Phase Accumulator 6

ΛP Least Period of Phase Accumulator Sequence 6

F Frequency Control Word . 6

ΓP Reduced Frequency Control Word . 6

ω Discrete Time Continuous Angular Frequency 36

NE Number of Truncation Error States . 55

ΛE Least Period of Truncated Sequence . 58

NQ Number of unique states in the truncated phase word. 59

fT Unity gain Bandwidth Product . 112

δ (x) Dirac delta function . 185

∆T (t) Dirac comb function . 186

Ω Continuous Time Angular Frequency . 190

t Time . 190

f Ordinary Frequency . 190

VA Early Voltage of Transistor . 221

gm Transconductance of Bipolar Transistor 222

VT Thermal Voltage . 222

xiv

List of Theorems

1.1 Principle (Mathematical Induction) . 6

1.2 Principle (Well-Ordering Principle) . 6

1.1 Definition (Divides) . 7

1.2 Definition (Least Common Multiple) . 7

1.1 Theorem (Binary Number Representation) 8

1.1 Lemma (Dropping Modulo Operation in Sinusoids) 14

1.2 Lemma (Geometric Series) . 16

1.3 Lemma (When the Complex Exponential Equals 1) 18

2.1 Definition (Fourier Series of Real-Valued Function) 29

2.1 Theorem (Nicholas Number of Spurs) . 34

2.2 Theorem (Nicholas Spur Index) . 34

2.3 Theorem (Nicholas Spur Magnitude) . 35

2.4 Theorem (Nicholas Spur Phase) . 35

2.5 Theorem (Jenq’s Non-Uniform Sampling Theorem) 36

2.2 Definition (Parseval’s Relation) . 39

3.1 Theorem (The Division Algorithm) . 44

3.1 Definition (Congruence) . 45

3.2 Theorem (Phase Accumulator Sequence) . 46

3.2 Definition (Greatest Common Divisor) . 49

3.3 Definition (Relatively Prime) . 49

3.1 Lemma (GCD Divisibility) . 49

3.2 Lemma (Linear Modulo Normalization) . 50

xv

3.3 Theorem (Phase Accumulator Periodicity) 51

3.3 Lemma (Alternative Phase Accumulator Expression) 53

3.4 Lemma (Sum of Two Integers Modulo N) . 53

3.4 Definition (Truncation) . 55

3.4 Theorem (Truncated Phase Sequence) . 56

3.5 Lemma (Least Period of the Modulo of a Modulo Sequence) 57

3.5 Theorem (Periodicity of Phase Truncation Error Sequence) 58

3.6 Theorem (Periodicity of the Difference of Two Modulo Sequences) 59

3.7 Theorem (Truncated Phase Sequence Period) 61

3.6 Lemma (GCD and Linear Diophantine Equations) 62

3.8 Theorem (Multiplicative Inverse in Modulo Arithmetic) 63

3.9 Theorem (FCW Time Sequence Permutation Relationship) 64

3.5 Definition (Groups) . 66

4.1 Definition (Taylor Series) . 69

4.1 Theorem (Delta Phase Steps) . 72

4.2 Definition (Kronecker Delta Function) . 74

4.2 Theorem (Sub-Sequences of a Finite Sequence) 74

4.3 Theorem (Interchanging Summations for Finite Sequences) 75

4.4 Theorem (Adjacent Truncated Phase Elements) 76

4.5 Theorem (When Truncated Values Repeat) 78

4.1 Lemma (Special Sub-Sequence Arrangement for Periodic Sequences) 78

4.3 Definition (Discrete Fourier Transform) . 79

4.4 Definition (Inverse Discrete Fourier Transform) 80

4.6 Theorem (Spectrum of Truncated Phase Sequence) 80

4.7 Theorem (DCDO Spectrum with Phase Truncation and Arbitrary ROM) . . 85

4.8 Theorem (FCW Frequency Sequence Permutation Relationship) 86

4.9 Theorem (Number of Phase Accumulator Least Periods) 88

xvi

4.2 Lemma (DFT Periodicity) . 90

4.3 Lemma (Window Function Periodicity) . 91

4.4 Lemma (Period of Amplitude Spectrum with Phase Truncation) 92

6.1 Definition (Convergent Series (Real)) . 159

6.1 Theorem (Cauchy Convergence Criterion (Real)) 160

6.1 Lemma (Sequences for Convergent Series) 161

6.2 Theorem (CORDIC Convergence Theorem) 163

6.2 Definition (Conventional CORDIC Iteration) 167

7.1 Definition (Dirac Delta) . 185

7.1 Theorem (Nyquist-Shannon Sampling Theorem) 187

7.2 Definition (Convolution) . 188

7.2 Theorem (Fourier Convolution Theorem) . 188

xvii

List of Abbreviations

BIST Built-In Self-Test

BPSK Binary Phase Shift Keying

BTM Bipartite Table Method

CDMA Code Division Multiple Access

CML Current Mode Logic

CORDIC COordinate Rotation DIgital Computer

CS current steering

CW Continuous Wave

DAC Digital-to-Analog Converter

DDFS Direct Digital Frequency Synthesis

DEM Dynamic Element Matching

DFF D-Flip-Flop

DFT Discrete Fourier Transform

DNL Differential Non-Linearity

DSP Digital Signal Processing

Emitter Coupled Logic

ENOB Effective Number of Bits

xviii

FCW Frequency Control Word

FIR Finite Impulse Response

GCD Greatest Common Divisor

IDE Integrated Development Environment

INL Integral Non-Linearity

KCL Kirchoff Current Law

KVL Kirchoff Voltage Law

LFM Linear Frequency Modulation

LSB Least Significant Bit

MSB Most Significant Bit

MTM Multipartite Table Method

NRTZ Non-Return-to-Zero

ORA Output Response Analyzer

PLL Phase-Locked Loop

PM Phase Modulation

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RAM Random Access Memory

ROM Read-Only Memory

RTZ Return-to-Zero

xix

SCMF Sine or Cosine Mapping Function

SFDR Spurious Free Dynamic Range

SINAD Signal to Noise Ratio and Distortion

SNDR Signal to Noise and Distortion Ratio

SNR Signal to Noise Ratio

Source Coupled Logic

SPI Serial Peripheral Interface

SSM Static Mismatch Shaping

SSPA Switching Sequence Post Adjustment

THD Total Harmonic Distortion

TSPC True Single Phase Clock

WLAN Wireless Local Area Network

xx

Chapter 1

Introduction to Phase Accumulators

In this chapter, Direct Digital Frequency Synthesis (DDFS) is introduced as an impor-

tant component in modern 21st century communication systems, and its fundamental oper-

ating principles are presented. Wireless cellular communication techniques such as code divi-

sion multiple access (CDMA) and spread spectrum wireless local area networks (WLAN) [2]

require fast frequency switching, an attribute in which DDFS excels over conventional ana-

log frequency synthesis approaches. As integrated circuit processes advance, DDFS is also

emerging as a critical component in commercial radar systems, agile clock synthesizers [3]

and high speed testing equipment [4] opening up new opportunities in industries outside of

telecommunications, the automotive industry being one of the more exciting [5],[6].

In DDFS systems, the amplitude, frequency, and phase of synthesized waveforms can

be modulated digitally and nearly instantaneously, which depending upon the operating

frequency of the technology and the level of pipelining in the digital core could mean less

than a few nanoseconds. The lock time of a standard analog phase-locked loop (PLL) can

be on the order of several hundred microseconds as a result of the slow settling time of

the loop filter [7]. The ability to directly modulate the signal also allows for arbitrary, high-

bandwidth waveform synthesis varying from simple phase-shift keying used in low cost signal

data transmission systems to complex non-linear frequency sweeps used in radar systems [8].

One of the better published results of an arbitrary waveform generator is presented by Van

de Sande et al. [4] the year of this writing, indicating that research in the field remains active.

The DDFS operates not by digitally controlling an analog oscillator component but

by numerically computing a complex digital signal and directly converting it to a physical

electrical quantity through a digital-to-analog converter (DAC). The phase, frequency, and

1

Phase Accumulator

P
h
a
se

R
eg
is
te
r

∑ BP

F
BF BPT1

BP

Sine/Cosine
Mapping BA

CLK

DAC y(t)P A

Figure 1.1: Basic DDFS Block Diagram

amplitude of a DDFS system are themselves digital codes that can be modulated in the

digital domain through simple multiplication and addition operations. These operations,

excluding quantization, are completely linear and thus superior to the analog equivalent

operations that apply unwanted harmonic distortion and spurious mixing to the signal.

The earliest implementation of a circuit in an academic publication that resembles the

modern DDFS appears in 1971 by Joseph Tierney et al. [9]. Figure 1.1 shows the architecture

of the DDFS proposed in [9], exluding the quadrature sine and cosine outputs and the analog

reconstruction filter after the DAC, which is the basic architecture of modern DDFS devices.

The focus of this dissertation is explaining how to generate spectrally pure sinusoids with

such a device in an efficient manner by gathering published results for the various components

comprising the device and inserting mathematical explanations when necessary or helpful.

Care is taken in an attempt to place the analysis of DDFS systems on a clear mathematical

foundation and perhaps to illuminate some of the more difficult concepts such as the rise of

spurs through phase truncation.

For readers not familiar with the terminology, a spur is unwanted coherent spectral

energy, harmonically related to the intended synthesized signal or otherwise. This implies

that attaching a spectrum analyzer to the capture the waveform generated, one would see

a distinct tone that did not decrease in power when averaged over time, hence the use of

coherency in the definition. In the digital domain, one would find that increasing the length

2

of the Discrete Fourier Transform also had no influence over the magnitude or phase of the

unwanted tones.

The fundamental components of the DDFS are a clock receiver and distribution tree, an

overflowing accumulator, a sine and/or cosine mapping function (SCMF), one or more DACs,

and a reconstruction filter at the DAC(s) output. The overflowing accumulator is often called

the phase accumulator, as its cyclic overflowing is analogous to the phase of a sinusoid. The

accumulator is incremented by a value known as the frequency control word (FCW). The

reconstruction filter is not studied in detail, but several DAC clocking methodologies to

reduce the stringent requirements of the filter are presented during the DAC architecture

survey (Section 7.5).

The term SCMF is used instead of the more common read-only-memory (ROM) or

“lookup table” (LUT). The terminology is borrowed from Torosyan in his dissertation and

publications [10] and is general enough to encompass the wide range of techniques available

for sinusoidal phase to amplitude conversion. The name choice also separates the functional

behavior of the component from its realization on silicon. The cost of digital memory has

become so remarkably inexpensive both in area and power that some designs use random

access memory (RAM) as a opposed to a ROM to implement the SCMF function. Bipartite

and multipartite table methods , BTM [11] and MTM [12] respectively, and the COrdinate

Rotation DIgital Computer (CORDIC) [13] are implemented and studied in this work as

effective techniques for implementing the SCMF.

1.1 Explanation of Notation

The conventions used in this document are described in this section for reference. This

is particularly important in mixed-signal systems such as a DDFS, as many of the analyses

of the behavior of the device transition between discrete-time and continuous-time repre-

sentations of the signal. The same conceptual entity crosses several processing domains. In

order to clearly denote when a digital variable, or some non-digitized discrete time sequence,

3

is intended, an upper case English letter glyph is used. For instance, P represents the phase

state of the phase accumulator and A represents the amplitude output of the SCMF. An

immense effort was put into the writing attempting

• To provide consistency in notation. The author wants avoid incessant flipping between

this section and subsequent sections.

• To avoid collisions with important variables in literature. For instance, repeatedly using

a variable Q in a text about passive filters in a manner unrelated to the quality-factor

of an inductor or energy storage tank can be confusing.

The nth element in the sequence P is denoted with square brackets, P [n] being the state of

the phase accumulator at clock cycle n. Parentheses are used to denote continuous functions,

where y = x(t) is the value of the function x corresponding to the argument t. The phase

accumulator at time nTs is given as P (nTs), where TS is the period of the clock driving the

DDFS. Some mathematics texts [14] use a more general and formal notation to represent

the same function concept x : t 7→ y, where t ∈ ST and y ∈ SY and ST and SY are sets. The

notation x ∈ S means that the element x is contained in the set S.

There are some commonly used sets in mathematics that appear frequently in DDFS

analysis. Instead of repeatedly listing the elements that form the set, a list of all sets used

4

in this document are presented below (many used by [15] in his Modern Algebra text):

∅ = The empty set (i.e. that set containing no elements) (1.1)

B = The set containing only 0 and 1 (1.2)

P = The set of all positive integers, also known as the natural numbers (1.3)

P0 = The set of all positive integers including zero (1.4)

Z = The set of all integers (1.5)

Zn = The set: {x ∈ Z : 0 ≤ x < n} (1.6)

R = The set of all real numbers including ∞ and −∞ (1.7)

C = The set of all complex numbers (1.8)

Several small proofs will be derived in the text to lay a foundation for some of the fundamental

behavior of DDFS systems. Some readers may find this excessive, but the author believes

that the best explanations to the spurious behavior of phase truncation come from number

theory used in conjunction with real and complex analysis. While Torosyan felt it sufficient

to state in a single line that “this result follows from a fundamental result from number

theory” [16] citing a large text on number theory, this work attempts to pull the information

from various works on abstract algebra and number theory to supplement the material. If

completed to the level of detail intended by the author, purchasing a mathematics textbook

to understand a key statement in this work should not be necessary.

The digital signals of the DDFS have a finite word length representation. The number

of bits of resolution for a variable is denoted by a capital B with the variable name as the

subscript. Thus the number of bits in the phase accumulator is denoted BP and the number

of bits of amplitude resolution is denoted as BA. The number of unique states that can

be represented by the finite bit length word is denoted by a capital N with the variable

name as the subscript. Going back the phase accumulator as the example, a BP -bit phase

accumulator has NP = 2BP states.

5

The least period of sequences, of which discussions begin in Section 1.2, are denoted

using Λ. The length of the least period of the phase accumulator with NP states would be

ΛP . In later sections, it becomes clear that ΛP is a function of the frequency control word

driving the phase accumulator. The reduced frequency control word (Section 1.2) is denoted

with Γ. If the sequence is modulo NP with frequency control word F , then ΓP denotes the

reduced frequency control word (Equation 3.26).

The multiplicative inverse of a number or variable is denoted as the name of variable

with −1 in the superscript. In this work, the multiplicative inverses under analysis are

integer numbers a−1 that such 〈aa−1〉N = 1. This will be used quite frequently in Chapter 4

where the inverse of the reduced frequency control word is frequently used in computing

spectrum permutations.

1.1.1 Number Theory Axioms and Notation

In this section, several axioms and definitions that are used in proofs in Section 1.2 and

Chapter 3 are supplied. The principle of mathematical deduction is defined as follows [15]:

Principle 1.1 (Mathematical Induction). Suppose S is a subset of P such that the following

two properties hold:

1. 1 ∈ S.

2. For all k ∈ P, if k ∈ S, then k + 1 ∈ S.

then S = P.

Mathematical induction is the last of Peano’s five axioms for natural numbers [15], and

thus it is sufficient to treat it as an axiom in this work. The first step, showing that 1 ∈ S

is called the basis step of mathematical induction. The second step is called the induction

step. This will be used to show that any integer can be represented by a binary number.

Principle 1.2 (Well-Ordering Principle). Every nonempty set of non-negative integers has

a smallest element.

6

The mathematical constructs necessary to develop the well-ordering principle from the

axiom of choice are beyond the scope of this work. In some mathematical systems the well-

ordering principle is treated as an axiom itself, underlying the subtleties of a mathematical

principle that appears trivial at first glance. The presentation of the division algorithm

(Theorem 3.1) in Section 3.1 makes use of this principle. As a majority of the derivations

in the work make use of the division algorithm, the Well-Ordering Principle provides an

underpinning for the entire text.

Most of the arithmetic in hardware implementations is modulo arithmetic attributable

to the finiteness of the physical components. The notation m | b is read m divides b. This

notation appears in the explanation of the modulo behavior of the phase accumulator in

Chapter 3.

Definition 1.1 (Divides). An integer m divides an integer b, or symbolically m | b, if and

only if there exists an integer d such that md = b.

If no such integer d exists, then m does not divide b, or symbolically m - b. Many of the

proofs in Chapter 3 use this definition. Also in Chapter 4, it is shown that the analysis of the

spectrum of a digitally controlled digital oscillator (DCDO) can be dramatically simplified

whenever the number of error states divides the number of phase accumulator states. The

last definition necessary before starting the analysis is the least common multiple (LCM) of

two integers.

Definition 1.2 (Least Common Multiple). The least common multiple of two integers a and

b, symbolically denoted as LCM(a, b), is the smallest positive integer c such that a | c and

b | c.

The least common multiple of two integers a and b is unique, as two integers cannot both

be least from the well-ordering theorem (Principle 1.2). All other definitions and theorems

useful for understanding the behavior of a DDFS are presented or derived as necessary.

7

1.1.2 Binary Arithmetic

A majority of the digital signals are implemented in hardware as binary numbers. This

flows from the efficiency and robustness of which two state logic can be implemented in

electronic circuits [17]. The arithmetic operations on these digital signals are then binary

arithmetic operations. This text, unless explicitly noted in the section, assumes the value of

a digital signal represented by bits is unsigned. The binary number B = bN−1bN−2 · · · b0 in

its unsigned representation has the base-10 value given in Equation 1.9.

vB =
N−1∑
i=0

2ibi (1.9)

where bi takes either the value of 0 or 1 (i.e. bi ∈ B) and bi is called the ith bit. From

Equation 1.9, it is clear the maximum unsigned value of an N -bit word is obtained when

all bi = 1.

max{vB} =
N−1∑
i=0

2i = 1 + 2 + · · ·+ 2N−2 + 2N−1 = 2N − 1 (1.10)

The summation is evaluated using an analysis typical for geometric series (Lemma 1.2),

multiplying both sides by (r − 1), where r = 2 in this case and rearranging. The minimum

possible unsigned value for B is obtained by setting all bi = 0. Thus min{vB} = 0.

Theorem 1.1 (Binary Number Representation). Any non-negative integer can be repre-

sented by an unsigned binary number.

Proof. Now let us show that any x ∈ P0 can be represented by an unsigned binary number.

First we have already noted that x = 0 can be represented by Equation 1.9 by setting all

bi = 0. Now we need only show that x ∈ P can be represented by an unsigned binary

number. We will do so by using strong induction. Assume that S is a non-empty subset of

P. For the basis step, we note that for x = 1, then Equation 1.9 can be made to equal 1 by

8

setting bi = 0 for i > 0 and b0 = 1.

x =
∞∑
n=0

2ibi = 20b0 = 1, bi = 0, i > 0 (1.11)

Thus 1 ∈ S. Now we take the induction step. Assume that x ∈ S and every positive integer

from 1 to x can be represented by a binary number. We must now show that x+ 1 ∈ S. We

can do this by finding a binary representation of x+ 1, or equivalently, finding ci such that

x+ 1 =
∞∑
n=0

2ici (1.12)

Let us briefly consider some of the properties of x. By our induction step, we know that x

can be written as an unsigned binary number:

x =
∞∑
n=0

2ibi = 20b0 + 21b1 + · · ·

= 20b0 + 2
(
b1 + 21b2 + · · ·

)
(1.13)

Clearly, the second term is a multiple of 2 and is therefore an even number by definition. If

b0 = 1, then the first term evaluates to 1, and adding 1 to an even number yields an odd

number. So for x to be even b0 = 0 otherwise x is odd. Now let us tackle the case of x + 1

assuming x is even.

x+ 1 =
∞∑
n=0

2ici =
∞∑
n=0

2ibi + 1

20c0 + 21c1 + · · · =
(
20b0 + 21b1 + · · ·

)
+ 1 (1.14)

Since x is assumed even, b0 = 0. Applying this knowledge and rearranging we get

20c0 − 1 =
(
21b1 + 22b2 + · · ·

)
−
(
21c1 + 22c2 + · · ·

)
(1.15)

9

Setting c0 = 1 and setting bi = ci for i = {1, 2, · · · } sets both the left and right hand sides

of the equation to zero and the equality holds. Thus x+ 1 ∈ S whenever x is even. Now let

us consider the case when x is odd. If x is odd then x+ 1 is even.

Since x + 1 is even, 2|(x + 1) by definition and there exists a number d such that

2d = (x + 1), in this case d is a positive integer since x + 1 is an even positive integer. If

we can show that d can be written as an unsigned binary number then x+ 1 can be written

as an unsigned binary number. We can show this by proving that d ≤ x and thus by our

induction hypothesis, i.e. every positive integer from 1 to x can be represented by a binary

number, d ∈ S.

d ≤ x⇒ (x+ 1)
2 ≤ x⇒ (x+ 1) ≤ 2x (1.16)

Since the least integer in our set S is 1, it is clear that the previous inequality holds (if this

is not satisfactory, then apply induction to the inequality). Since d ∈ S, we can now find

the binary representation of x+ 1.

(x+ 1) = 2d
∞∑
n=0

2ici = 2
(∞∑
n=0

2ibi
)

(
20c0 + 21c1 + 22c2 + · · ·

)
=
(
21b0 + 22b1 + · · ·

)
(
21c1 + 22c2 + · · ·

)
=
(
21b0 + 22b1 + · · ·

)
(1.17)

Since x+ 1 is even, c0 = 0. It is clear from Equation 1.17 that setting ci = bi−1 for all i > 0

causes the equality to hold. Therefore x + 1 ∈ S whenever x is odd. Since the induction

step holds for all x + 1, the set S = P and we have shown that all positive integers can be

represented by an unsigned binary number.

10

In two’s complement representation, the value of B is

vB = −2N−1bN−1 +
N−2∑
i=0

2ibi. (1.18)

The minimum and maximum values of the two’s complement representation can be computed

similarly to the unsigned binary case. Using Equation 1.18, the maximum value is obtained

by setting bN−1 = 0 and bN−2 down to b0 to 1. The minimum value is obtained by setting

bN−1 = 1 and bN−2 down to b0 to 0.

max{vB} =
N−2∑
i=0

2i = 2N−1 − 1 (1.19)

min{vB} = −2N−1 (1.20)

The conversion of an unsigned full-scale binary number to the two’s complement number

system such that the zero from the unsigned representation maps to the lowest two’s com-

plement value and the maximum valued in unsigned representation maps to the maximum

two’s complement value involves only inverting the most significant bit (MSB) of the un-

signed number.

A technique used commonly in DDFS designs to approximate the negation of the value

of an integer is to take a one’s complement of the two’s complement binary representation

of the number. In one’s complement, all the bits of B are inverted. This operation is

popular because of its efficient hardware implementation, as only N XOR gates are required

for the inversion of an N -bit word. The architectures presented in Chapter 6 utilize this

technique in the sinusoidal compression algorithm. Figure 1.2 is a gate level block diagram

of a conditional one’s complement operation. The bit a inverts all the bi bits when asserted

high but does not affect the value of bi when asserted low.

One must carefully evaluate the approximation of negation using one’s complement in

the system. So consider the effect of one’s complement on a word B in a two’s complement

11

a

bn−1

bn−2

bn−3

b0

bn−1

bn−2

bn−3

b0

Figure 1.2: Gate Logic for One’s Complement

binary system. The resulting one’s complement value vB1 is given in Equation 1.21.

vB1 = −2N−1bN−1 +
N−2∑
i=0

2ibi (1.21)

where bi is the complement of bi, meaning that if bi = 0 then bi = 1 and if bi = 1 then

bi = 0. From this one can see that the one’s complement does not negate vB, which is to say

−vB 6= vB1.

vB1 + vB = −2N−1
(
bN−1 + bN−1

)
+

N−2∑
i=0

2i
(
bi + bi

)

= −2N−1 +
N−2∑
i=0

2i

= −1

since bi + bi = 1 using the definition previous supplied by the definition of a complement in

a binary number system. From the previous equation, we see that vB1 = −vB − 1.

12

1.2 Overview of Direct Digital Frequency Synthesis

The DDFS of Figure 1.1 operates by incrementing an accumulator at the clock frequency

fclk by the value F , where F ∈ ZNP
and ZNP

= {0, 1, 2, . . . , NP − 1} is the set of all integers

between 0 and NP − 1 inclusive. F is generally constrained between zero and the maximum

value of the phase accumulator, though there are exceptions to this rule when reducing area

overhead of the adder and control logic by a minuscule margin is critical [13]. F represents

the FCW and will be used as its symbol in mathematical notation. The accumulator has

a finite bit resolution BP and therefore the accumulator will overflow periodically as F is

continually added to the previous accumulator state. The rate of overflow of the phase

accumulator is thus dependent on F . F thereby controls the frequency of the synthesized

DDFS waveform, suggesting that both the phase accumulator and FCW are aptly named.

The periodic overflowing of the accumulator is a remarkably efficient technique for

implementing the periodic phase behavior of a sinusoid. The phase accumulator maps [0, NP)

to [0, 2π) when driving a lookup table that maps P ∈ [0, NP) to sin (2πP/NP). Referring

to Equation 1.10, NP = 2BP − 1 is the maximum integer value that can be stored in the

phase accumulator when treating the phase accumulator value as an unsigned integer. With

additional hardware, the number of phase states can be set to any positive integer less than

2BP − 1. One of the new achievements of this work is finding closed form equations for the

spectrum of a DCDO for any NP . The relationship between the current integer phase state

of the accumulator, P , and the analogous normalized phase value, θ, is then

θ[n] = 2π
NP

P [n] (1.22)

where θ is in radians. This maps the phase states uniformly across [0, 2π) in NP steps.

Figure 1.3a demonstrates the mapping between the phase states of a 3-bit accumulator and

the corresponding phase in radians. But this particular mapping need not be the case. The

phase accumulator could, in fact, map to any closed interval in R. This feature will prove

13

useful in implementing sinusoidal quarter-wave compression in Section 6.1.1. Figure 1.3b

shows a 3-bit phase accumulator with a 1/2 least significant bit (LSB) offset in which case

P ∈ [0, NP) maps to [π/8, 2π + π/8). Note that in both the figures, the phase step remains

000

001
010

011

100

101
110

111

π
4

(a) Phase Mapping Circle

000

001010

011

100

101 110

111

π
8

π
4

(b) Phase Mapping Circle (1/2 LSB Offset)

Figure 1.3: Phase Accumulator State Plots (Circle)

uniform. The adjustment in the mapping happens through the SCMF and will be discussed

in more detail in Chapter 6.

The SCMF of the DDFS takes the value of P (Equation 3.4) and maps it to the appro-

priate sine or cosine value A. Equation 1.23 shows the SCMF mapping for an untruncated

phase accumulator word to an ideal sine function.

A[n] = sin
(2π
NP

P [n]
)

(1.23)

= sin
(2π
NP

〈nF + P0〉NP

)
= sin

(2πF
NP

n+ 2π
NP

P0

)

The modulo NP arithmetic in the argument can be dropped since the period of the sinusoid

is 2π and implicitly executes the modulo operation. This can be demonstrated through the

following simple lemma.

14

Lemma 1.1 (Dropping Modulo Operation in Sinusoids). The modulo operator can be dropped

within the sine and cosine functions with argument 2πP [n]/NP , where P [n] is given by Equa-

tion 3.1. Equivalently,

sin
(2π
NP

〈nF + P0〉NP

)
= sin

(2π
NP

(nF + P0)
)

(1.24)

Proof. Using the definition of the modulo operation described in Section 3.1, for arbitrary

n ∈ Z and P0 ∈ Z there exists an integer d such that

〈nF + P0〉NP
= nF + P0 − dNP = r (1.25)

where 0 ≤ r < NP . Plugging nF + P0 − dNP for P [n] and applying the trigonometric

difference identity for sine yields:

sin
(2π
NP

(nF + P0 − dNP)
)

= sin
(2π
NP

(nF + P0)
)

cos
(2π
NP

(dNP)
)

(1.26)

− sin
(2π
NP

(dNP)
)

cos
(2π
NP

(nF + P0)
)

This can be further reduced by observing that

cos
(2π
NP

(dNP)
)

= cos (2πd) = 1 (1.27)

sin
(2π
NP

(dNP)
)

= sin (2πd) = 0 (1.28)

Finally, substituting Equation 1.27 and Equation 1.28 back into Equation 1.26,

sin
(2π
NP

(nF + P0 − dNP)
)

= sin
(2π
NP

(nF + P0)
)

(1.29)

15

The spectrum of such a sinusoid (Equation 1.23) can calculated by executing a discrete

Fourier transform over one period of the waveform, which is NP in this particular case. The

discrete Fourier transform is defined later in Section 4.3.

F {A} [k] =
NP−1∑
n=0

sin
(2πF
NP

n
)
e−j2πkn/NP , 0 ≤ k ≤ NP − 1

=
NP−1∑
n=0

1
2j
[
ej2πFn/NP − e−j2πFn/NP

]
e−j2πkn/N

=
NP−1∑
n=0

1
2j
[
ej2πn(F−k)/NP − e−j2πn(F+k)/NP

]
(1.30)

Euler’s formula, given in Equation 1.31, was applied to the sine function to simplify the

expression.

ejx = cos (x) + j sin (x) (1.31)

Euler’s formula can be used to write sine and cosine function as the sum of two complex ex-

ponentials as follows (to verify, substitute Equation 1.31 for each of the complex exponential

terms in the equations below):

sin (x) = 1
2j
[
ejx − e−jx

]
(1.32)

cos (x) = 1
2
[
ejx + e−jx

]
. (1.33)

Equation 1.30 is the difference of two geometric series. A technique for finding the closed

form solution of a geometric series is presented here.

Lemma 1.2 (Geometric Series). A summation series of the form

N−1∑
n=0

rn

16

is called a finite geometric series and can be written as the ratio of two numbers,

N−1∑
n=0

rn = 1− rN
1− r (1.34)

if r 6= 1.

Proof. Let r 6= 1. The problem is solved by expanding the summation

N−1∑
n=0

rn = 1 + r + r2 + · · ·+ rN

and multiplying both sides by 1 − r and using the distributive property of multiplication

over addition.

(1− r)
N−1∑
n=0

rn = (1− r)
(
1 + r + r2 + · · ·+ rN−1

)
=
(
1 + r + r2 + · · ·+ rN−1

)
−
(
r + r2 + r3 + · · ·+ rN

)
= 1− rN

Then dividing both sides of previous equation by 1− r, which can be done since r 6= 1, gives

N−1∑
n=0

rn = 1− rN
1− r (1.35)

and the proof is complete.

The summation of ej2πan/NP for a ∈ Z over one period is zero if NP - a. This can be

shown by directly computing the summation using Equation 1.34,

NP−1∑
n=0

ej2πan/NP =
NP−1∑
n=0

(
ej2πa/NP

)n
= 1− ej2πaNP /NP

1− ej2πa/NP

= 1− ej2πa
1− ej2πa/NP

= 1− 1
1− ej2πa/NP

= 0

17

The summation of a geometric series works because ej2πa/NP 6= 1 when NP - a.

Lemma 1.3 (When the Complex Exponential Equals 1).

ej2πa/NP = 1 (1.36)

if and only if NP | a.

Proof. The forward proof is simple, as NP | a means that there exists an integer d such that

dNP = a. Substituting this value for a in Equation 1.36 yields:

ej2πdNP /NP = ej2πd. (1.37)

Applying Euler’s formula (Equation 1.31) to Equation 1.37

ej2πd = cos (2πd) + j sin (2πd) = 1 + j0 = 1 (1.38)

Now one must show that if Equation 1.36 holds then NP | a. Applying Euler’s formula to

Equation 1.36 yields

ej2πa/NP = cos
(2πa
NP

)
+ j sin

(2πa
NP

)
= 1 (1.39)

The right hand side of Equation 1.39 only equals 1 when the cosine term equals 1 and the

sine term equals 0. Cosine only equals 1 when the argument is 2πn for n ∈ Z. Then

2πn = 2πa
NP

(1.40)

a = NPn (1.41)

Then NP | a. Plugging the solved value of a into the sine argument gives 0 and the equation

holds. Therefore, Equation 1.36 is true if and only if NP | a.

18

Finally, the value of the summation for when F − k = 0 must be computed

NP−1∑
n=0

1
2j e

j2πn(F−k)/NP = 1
2j

NP−1∑
n=0

ej2πn0/NP (1.42)

= 1
2j

NP−1∑
n=0

1 = NP

2j (1.43)

Gathering together results of the analysis gives the final DFT result.

F {A} [k] =



NP

2j k = F

−NP

2j k = −F

0 otherwise

(1.44)

The results of the DFT indicate that all the spectral energy generated by a DDFS assum-

ing no phase truncation and an ideal SCMF is located at a single frequency bin F , which

is precisely the FCW. This leads to what should perhaps be referred to as the fundamen-

tal equation for DDFS systems. Noting the relationship between the DFT and CTFT for

uniform sampling interval Tclk, an equation for the output frequency of the DDFS can be

formulated

f0 = F

NP

fclk (1.45)

where f0 is the frequency of the fundamental tone generated by the DDFS system.

1.3 Advantages of DDFS

As is the custom for Auburn University dissertations and publications concerning DDFS

devices, a brief explanation of the advantages of DDFS over traditional PLLs is supplied.

The benefits ultimately reduce to the benefits of operating on signals in the digital domain

over the analog domain:

• Straight-forward efficient implementation of complex modulation schemes.

19

• Direct manipulation of parameters that are often difficult to precisely control in the

analog equivalent circuit.

• Digital signals are not corrupted by noise as easily as their analog domain counterparts.

• Arithmetic operations are highly linear and tolerant to device mismatch.

In addition to these, several other benefits of DDFS already mentioned earlier in the

introduction are summarized.

• Very fast frequency switching, several orders of magnitude faster than that of a tradi-

tional PLL [7].

• Fine frequency resolution (see Equation 1.45).

• Broadband frequency synthesis, as the same device with a sufficiently fast input clock

can synthesize signals on the order of several Kilohertz to the order of several Gigahertz.

1.3.1 Digital Phase Modulation

Phase modulation (PM) is the process of adding, subtracting, multiplying or otherwise

affecting the output of the phase accumulator. The phase signal after phase modulation is

Pm[n] = P [n] +M [n] or Pm[n] = M [n]P [n] (1.46)

where P [n] is the phase accumulator, M [n] is the modulation sequence and Pm[n] is the

resulting modulated phase word. Typically this is used to efficiently generate various phase

shift keying techniques such as Binary Phase Shift Keying (BPSK) and Quadrature Phase

Shift Keying (QPSK). By controlling the phase of the synthesized waveform, information

can be encoded in the synthesized signal for transmission over noisy mediums. Figures 1.4a

and 1.4b show the transient waveforms of continuous wave (CW) signals modulated with

BPSK sequences. This is not to be confused with frequency modulation, which is discussed

next in Section 1.3.2.

20

-1

-0.5

0

0.5

1

0 10 20 30 40 50

A
m
pl
itu

de

Time

Coded Wave
Code Sequence

(a) BPSK for 1110010 Sequence

-1

-0.5

0

0.5

1

0 10 20 30 40 50

A
m
pl
itu

de

Time

Coded Wave
Code Sequence

(b) BPSK for 1010101 Sequence

Figure 1.4: BPSK Waveforms

In the radar architecture described in Chapter 6, Barker codes are hardwired into the

PM circuitry for testing. Table 1.1 shows the list of Barker codes [8] built into the DDFS.

These and other more complex codes were implemented in the radar system for “short-

range”, low-power pulse compression operating modes. The phase is flipped every k clock

Table 1.1: Built-in Barker Codes

Number Of Bits Code
3 110
5 11101
7 1110010
11 11100010010
13 1111100110101

cycles by 180 degrees if a binary “1” is encountered and is not flipped if a “0” is encountered.

The hardware implementation is as simple as toggling the MSB of the phase accumulator,

which only requires an XOR gate.

21

1.3.2 Digital Frequency Modulation

Linear frequency modulation (LFM), also known as chirp modulation, can be imple-

mented by adding a frequency accumulator before the phase accumulator. Figure 1.5 shows

a block diagram implementation of the modification that should be made to the accumulator

to allow for LFM. A full derivation of LFM is provided in Section 5.2.2, but in short, the

32

32

32

Frequency Accumulator

Phase Accumulator

P
h

a
se

R
e
g

is
te

r

Fr
e
q

u
e
n

cy
R

e
g

is
te

r

3232

Figure 1.5: Simple Chirp Accumulator Diagram

frequency of the DDFS increments by F0 every clock cycle. While not shown explicitly in

the figure, the frequency register is typically initialized to some start frequency and other

control circuitry watches the frequency register value to issue a stop command. The chirp

rate is controlled with the same precision and agility as the frequency of a traditional phase

accumulator. Figure 1.6 shows a 10 ns duration chirp waveform with frequency accelerating

from around 500 MHz to 5 GHz.

The chirp waveform is well suited for radar application requiring pulse compression. In

Chapter 6, LFM is implemented in a stretch processing pulse compression radar. Figure 6.14a

shows several conceptual chirp waveforms in the explanation of stretch processing. The fine

control of the chirp rate allows the radar system to dynamically tailor its output waveform

based on the distance of the target under investigation.

22

-1

-0.5

0

0.5

1

0 2 4 6 8 10

A
m
pl
itu

de

Time (ns)

Figure 1.6: 10ns Chirp Waveform

1.3.3 Digital Amplitude Modulation

By placing a multiplier at the output of the SCMF, the amplitude of the output can

be digitally modulated. This operation is important for implementing quadrature amplitude

modulation (QAM) schemes such as QAM16 and QAM64, which are commonly used in

digital communications systems such as fiber and cable internet [18]. The operation is

performed in the digital domain, so implementing higher order (such as QAM 256) or more

complex modulation schemes is feasible without much added overhead to the DDFS system,

though the DAC and filter requirements become increasingly difficult.

In more complex systems, a finite impulse response (FIR) filter can be added to the

output of the SCMF. This filter can be used to pre-distort the signal before driving the DAC

to compensate for the non-idealities of the following analog circuitry, or of the non-linearity

of the DAC itself. In Section 6.5.1, the design of an inverse sinc filter is shown that is applied

to the radar system of Chapter 6. The inverse sinc FIR compensates for the zero-order hold

operation of a traditional current steering DAC.

23

1.3.4 Fine Frequency Resolution and Fast Switching

One of the most cited benefits to DDFS designs is fine frequency tuning [7]. Equa-

tion 1.45 provides the frequency of a DDFS given an FCW F . Informally, the resolution of

a DDFS device is the difference in synthesized frequency between two adjacent FCWs. This

can be calculated by setting F = 1

f0 = F

NP

fclk = fclk
NP

(1.47)

A 32-bit phase accumulator is a value commonly found in commercial DDFS parts [19],[20].

For a 1 GHz clock frequency, this results in a frequency resolution of 109/232 ≈ 0.23 Hz. This

also implies that the LFM discussed in Section 1.3.2 is capable of generating remarkably

smooth chirp waveforms when given enough bits of resolution.

The DDFS can also rapidly switch between different output frequencies. This is of

critical importantance in spread spectrum applications, where the speed of the frequency

switching directly impacts the performance of the system. Using the DDFS as a local

oscillator allows one to quickly switch to a different band, as quickly as the analog filter

can respond to the changes. Combining the fine frequency resolution and fast frequency

switching makes for a versatile solution for demanding problems from a host of fields [19],

ranging from biomedical to military.

1.4 Summary of Contributions and Chapter Breakdown

This section summarizes the contributions of the author to the state of the art in the

analysis of phase truncation spurs and to DDFS design in general. In Chapter 3, a complete

approach for calculating the least period of the output sequence of a phase accumulator

with truncation is derived. This approach is completely general and does not depend on the

number of states in the phase accumulator to be a power of two. To the author’s knowledge,

there are no publications that perform this analysis. In Chapter 2, the most frequently cited

24

published analyses on phase truncation spurs are presented in chronological order. The

notation between the analysis is unified. Again, the author is not aware of any such analysis

available in published literature. By comparing the methodologies, it becomes clear what

can and what cannot be computed using each methodology and how strongly analyses are

dependent upon their predecessors’ research.

In Chapter 4, an exact and fully general analysis of phase truncation spurs is developed.

The technique generalizes and builds upon Torosyan’s work on phase truncation spurs and

is not subject to the same limitations. Furthermore, the approach on computing the closed

form expression for phase truncation spurs is completely quantitative and does not depend

on any approximations or intuition to arrive at the results. This is to say that the analysis is

a direct computation of the discrete Fourier transform on the output of a DCDO. Here it is

further shown how the spectrum of the quantized amplitude waveform is mostly independent

of the phase truncation spurs. Application of the theory is applied to the author’s previous

published design [21] with suggestions for improvements. In Chapter 5, a novel approach to

parallelizing a phase accumulator with frequency modulation is presented. It covers several

patents on the topic, as there is not much in the way of academic publications.

In Chapter 6, the DDFS designs at Auburn University and their application in a simple

single-chip radar system is explored [22]. The design attempted the challenging task of

co-locating a radar transmitter and receiver onto the same silicon substrate. A quadrature

DDFS generated the radar waveform and pulse compression sequence. Lastly, in Chapter 7, a

survey of literature highlights many of the problems in the DAC designs at Auburn University

and offers a suggestions for improving DAC designs based on observations made during the

survey. Some of the analysis and observations in the chapter have not been published to the

author’s knowledge.

25

Chapter 2

Background of Phase Truncation Analysis

In this chapter, an overview of the literature surrounding the analysis of the perfor-

mance of DDFS devices is presented. Despite widely cited publications by Nicholas [23],

Jenq [24] and Torosyan [10] on the analysis of phase truncation spurs in DDFS, papers are

still published (or submitted for publishing) with either old approximations of the spurious

behavior for which concise closed-form equations exist, or, worse yet, incorrect reasoning

related to the location, magnitude and optimization of such spurs.

Oftentimes early, widely cited papers continue to propagate while newer analyses go

unnoticed. Two authors, Jenq and Torosyan, through two separate mathematical techniques,

provide a closed-form solution to the spurs generated from phase truncation. Jenq’s analysis

can be elegantly used to compute the signal-to-noise ratio in the presence of phase truncation

but does not compute the location of the spurs. Torosyan goes a step further, presenting an

elegant algorithm for efficiently calculating all of the spurs that results from phase truncation

in the order of magnitude.

An attempt is also made in this chapter to unify several of the previous published

techniques by using a consistent notation between techniques. The publications on phase

truncation errors span nearly three decades and use various mathematical approaches for

deriving the spurious content. The techniques are presented chronologically from publication

date.

2.1 Mehrgardt’s Analysis (1983)

Mehrgardt [25] attempts to explain the non-intuitive spectral output of a signal gener-

ated from a finite length sinusoidal lookup table. The critical observation in the analysis is

26

that the phase word can be written as the sum of two sawtooth waveforms, the truncated

phase word and kept phase word.

θ̂[n] = θ[n]−∆θ[n] (2.1)

where θ̂[n] is the phase word after truncation, θ[n] is given by Equation 1.22 and ∆θ[n] is

the value of the bits truncated after mapping. The truncated phase word drives an NQ entry

sinusoidal lookup table with values

A[n] = sin
(

2π
NQ

n

)
, n ∈ {0, . . . , NQ − 1} (2.2)

where NQ = NP/NE as in Chapter 3. Note that no amplitude truncation is applied to

the table values, meaning the analysis uses an ideal SCMF. The spurious response will be

generated completely from phase truncation.

Mehrgardt decides to tackle the problem by considering an analogous system in the

continuous time domain. Consider the function below

S(t) = sin
(2π
NP

[NPft−NExsw(t)]
)

= sin
(

2πft− 2π
NQ

xsw(t)
)

(2.3)

where xsw(t) is a sawtooth waveform of amplitude 1 and frequency NQf where f = F
NP
fclk

is the desired frequency of the synthesized tone. NE is the number of error states and NP

is the number of phase states, as discussed in Chapter 3. The sawtooth waveform can be

represented mathematically as

xsw (t) = NQft− bNQftc (2.4)

27

where b·c is the real domain truncation operation that maps an real number r to the nearest

integer that has a value less than r. That this is a reasonable approximation for the behavior

of the phase accumulator can be shown without too much analysis. As an example, let Tclk =

10−9 s, F = 3, NP = 27 and NE = 25. Figure 2.1 is a plot of the phase accumulator values

along with the continuous time approximation of the phase from Equation 2.3. The phase

accumulator overflows approximately every TclkNP/F seconds or at a rate of F/ (TclkNP).

Notice the actual digital error values look like samples of the continuous time function used

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

Ph
as
e

Time (ns)

Full Phase
Truncated Error

Sawtooth Approx.

Figure 2.1: Sawtooth Approximation

in the analysis.

Applying the difference trigonometric identity for sine, Equation 2.3 can be rewritten

as

S(t) ≈ sin (2πft) cos
(

2π
NQ

xsw(t)
)
− cos (2πft) sin

(
2π
NQ

xsw(t)
)

(2.5)

Now in general, NE � NP making NQ large and therefore the small angle approximation

for sine and cosine can be applied on Equation 2.5.

S(t) ≈ sin (2πft)− cos (2πft)
[

2π
NQ

xsw(t)
]

(2.6)

28

Since xsw(t) is periodic, the Fourier series can be computed but it must be noted that

xsw(t) is not a Dirichlet sawtooth because it does not take the value of the mid-point at

discontinuities. Consequently,the Fourier series does not actually exist for xsw(t) as described

by Equation 2.4. This oversight is corrected in Nicholas’s analysis by adding a periodic pulse

train that forces the sawtooth to take the value of the midpoint at discontinuities. Regardless,

xsw(t) is almost a Dirichlet sawtooth and thus the Fourier series of the sawtooth is used to

represent it. First, the definition of the Fourier series is presented.

Definition 2.1 (Fourier Series of Real-Valued Function). The Fourier series of a real valued

function is defined as

Fs {f(x)} =
∞∑
n=0

[an cos (nx) + bn sin (nx)] (2.7)

where the coefficients of Equation 2.7 are computed using the inner product described below

an = 1
π

∫ π

−π
f (x) cos (nx) dx, n ≥ 0 (2.8)

bn = 1
π

∫ π

−π
f (x) sin (nx) dx, n ≥ 0 (2.9)

Without performing the full calculation, the Fourier series of a sawtooth waveform is

xsw(t) ≈
∞∑
k=1

(−1)k sin (2πkNQft)
πk

(2.10)

Equation 2.10 is an approximation because the constant component has been ignored, as

it does not contribute to the spurious response of the waveform. Substituting the Fourier

series of xsw(t) back into Equation 2.6, the derivation of the spectrum of the continuous time

analogy is complete. Note that the product to sum identity was used in the derivation.

S(t) ≈ sin (2πft)−
∞∑
k=1

(−1)k

NQk
[sin (2π (kNQ + 1) ft) + sin (2π (kNQ − 1) ft)] (2.11)

29

At this point, S(t) must be sampled to get back to the discrete time DCDO case.

Mehrgardt does this is stages, starting with sawtooth waveform. The sampling process is

executed by replacing f with its discrete value and substituting n/fclk for t. Applying the

sampling process to xsw(t) first, the following equation is derived.

xsw[n] =
∞∑
k=1

(−1)k
sin

(
2πkNQ

(
F
NP
fclk

) (
n
fclk

))
πk

(2.12)

=
∞∑
k=1

(−1)k sin (2πkFn/NE)
πk

(2.13)

Now F and NE can be reduced by removing common factors, using the modular arithmetic

of the previous chapter such that F/NE = ΓE/ΛE (Lemma 3.2). If following along using

Mehrgardt’s publication, one will notice the analysis in this work has diverged. In particular,

he makes the statement that the finite precision frequency can be written as 2πa/b where a

and b are not defined but exist and places the final results in these terms. In this analysis,

the introduction of the extra terms are not necessary because the meaning of the symbols

has been carefully tracked. Note that the sinusoid in the sawtooth equation is periodic in k

with ΛE. After several summations and trigonometric identities, which are left as an exercise

to the reader in the original publication from Mehrgardt and so will also be done so here, a

final result is achieved,

S[n] = sin
(

2π F

NP

n
)
− π

NQ

(N̂P−1)/2∑
m=1

αkm·{
sin

(
2π
(
m

N̂P

+ F

NP

)
n

)
+ sin

(
2π
(
m

N̂P

− F

NP

)
n

)}
(2.14)

where km is calculated through the following relation

km = 〈mk′〉N̂P
(2.15)

30

and where k′ is the solution for k in the linear congruence relation

〈
kN̂QF

〉
N̂P

= 1 (2.16)

Lastly, the coefficients are of the form

αk =


(−1)k

N̂P sin(πk/N̂P) for N̂P odd
(−1)k

N̂P tan(πk/N̂P) for N̂P even
(2.17)

The result is never related back to the FCW to characterize the behavior of the DCDO with

phase truncation or calculate the SFDR or SNR. The result here shows the relationship of

the FCW and spurs because of the changes made in symbolic notation in the derivation.

Only qualitative observations such as the number of spurs, the magnitude of spurs and that

such spurs should be expected are presented.

As a summary, this technique provides:

• the number of phase truncation spurs and

• the magnitude of the phase truncation spurs.

It misses some spurs because of its failure to use a Dirichlet sawtooth waveform in its analysis.

The author makes the observation of the discrepancy between his analysis and simulation in

the later paragraphs of his paper.

2.2 Nicholas’s Analysis (1985)

H. T. Nicholas provides [23] one of the most well-known analyses of phase truncation

spurs. The analysis provides equations for the location, phase and amplitude of the spurs

generated through phase truncation. The general idea is similar Mehrgardt’s analysis de-

scribed in Section 2.1, in that the phase error is thought of as a sawtooth waveform. Nicholas

takes a more formal mathematical approach and finds several clever trigonometric reduction

31

techniques to bring about a final result that is concise, accurate and efficient in implemen-

tation. The results are summarized by the following theorems which are presented without

proofs.

To summarize the steps taken by Nicholas:

1. Find the analogous continuous time representation of the phase and the truncation

error sequence. This takes the form of a pulse train

pe(t) = NE

ΛE

∞∑
k=1

ΛE

πk
sin

(
πk

ΛE

)
cos

(
2πk F

NE

t
)

+ 1
2 (2.18)

and a sawtooth that meets Dirichlet conditions

xsw(t) =
∞∑
k=1

NE

πk
sin

(
2πk F

NE

t
)

+ NE

2 (2.19)

Note that these waveforms are slightly different than those shown in the publication.

If plotting the waveforms exactly from the publication, one will not get the correct

error sequence. This is because Nicholas removed the DC term from both the pulse

train, which is mentioned in the publication, and the sawtooth waveform. However,

in the plots in the publication, the DC term is added back.

2. Sample the continuous time representation by the DDFS sample rate, which is per-

formed in the same manner described in Section 2.1:

pe[n] = NE

ΛE

∞∑
k=1

ΛE

πk
sin

(
πk

ΛE

)
cos

(
2πk F

NE

n
)

+ 1
2 (2.20)

and the Dirichlet sawtooth waveform

xsw[n] =
∞∑
k=1

NE

πk
sin

(
2πk F

NE

n
)

+ NE

2 (2.21)

32

The truncation error sequence can then be reconstructed by subtracting the pulse train

from the sawtooth waveform

ep[n] = xsw[n]− pe[n] (2.22)

Figure 2.2a shows the sawtooth waveform and pulse train waveform for NE = 64

and F = 3. Figure 2.2b shows the subtraction of the pulse train from the sawtooth

waveform, yielding the the very familiar phase truncation error sequence plotted in

Figure 2.1.

(a) Nicholas’ Sawtooth and Pulse Train

-20

0

20

40

60

80

0 20 40 60 80 100 120
n

Sawtooth
Pulse Train

(b) Nicholas’ Phase Error Sequence

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120
n

Figure 2.2: Error Sequence Waveform Components

3. Perform an spectacularly complex set of trigonometric manipulations found in mathe-

matics texts dedicated to the task, Nicholas arrives at his final error sequence equation

ep[n] = −NE

ΛE

ΛE/2∑
k=1

[
cot

(
πk

ΛE

)
sin

(
2πk F

NE

n
)
− cos

(
2πk F

NE

n
)]

(2.23)

4. Use number theory to relate the spurs in k to the frequency control word.

33

5. Plug the error sequence into the original sine expression and use the small angle approx-

imation. This is where Nicholas’ approach becomes an approximation to the spurious

behavior (albeit a very good one).

6. Perform an enormous amount of trigonometric manipulations and number to theory

to arrive at the final answer.

The results from Nicholas’ work are summarized in the following set of theorems. The

number of spurs due to phase truncation is provided in Theorem 2.1

Theorem 2.1 (Nicholas Number of Spurs). An accumulator with BP bits whose least BT bits

are truncated has (ΛE/2− 1) spurs. Or written in notation used previously in the document,

an accumulator with NP phase states and NE error states such that NE | NP has (ΛE/2− 1)

spurs.

The mapping from the κ (spur index) value to the frequency control word is provided

by Theorem 2.2.

Theorem 2.2 (Nicholas Spur Index). The spur index, κ, for the spur located at the DFT

frequency bin k is, if 2 | (k − ΛE/2)

κ =
〈
k − ΓE
2BP−BT

Γ(ΛE/2−1)
E

〉
ΛE

(2.24)

where ΓE is the reduced frequency control word for the error sequence (Lemma 3.3)

ΓE = F

GCD (F,NE) (2.25)

and NE = 2BT is the modulo number for the error sequence. If 2 | (−k − ΛE/2),

κ =
〈
−k − ΓE
2BP−BT

Γ(ΛE/2−1)
E

〉
ΛE

(2.26)

The magnitude of the spurs given a spur index is provided by Theorem 2.3.

34

Theorem 2.3 (Nicholas Spur Magnitude). The magnitude of the spur at spur index κ is

mκ = π2BT−BP

ΛE

cosec
(
κπ

ΛE

)
(2.27)

Theorem 2.4 (Nicholas Spur Phase). The phase of the spur at spur index κ is

φκ = − cot
(
κπ

ΛE

)
(2.28)

As mentioned in above, the analysis starts in a similar vein as Mehrgardt, but with one

critical difference in the specification of the error sawtooth waveform. Nicholas notes that

the Dirichlet conditions for the Fourier series of a function with discontinuities require that

the function take on the average value of the function at the point of discontinuity. He thus

adds a separate pulse train function to create a sawtooth error function that can be analyzed

by using the Fourier series. In Mehrgardt’s publication, he notes that there are extra terms

in the result that resulted from insufficiencies of the sawtooth approximation to the actual

error function behavior. Nicholas avoids those terms by creating a pair of continuous time

functions that have convergent Fourier Series.

To demonstrate the importance of this dissertation, outside of avoiding trigonometric

small-angle approximations, the final discrete time equation in Nicholas’ analysis is

A[n] = sin
(

2π F

NP

n
)
−

ΛE/2∑
k=1

(
π

ΛENQ

cosec
(
kπ

ΛE

))
·

(
ej2πGCD(F,NE)(ΓE−kΓENQ)n/NP + e−j2πGCD(F,NE)(ΓE−kΓENQ)n/NP

)
·

e−j cot(kπ/ΛE) (2.29)

Compare this equation with the closed form solution from this document in Chapter 4 under

Theorem 4.6. The small angle approximation prevents simplification to an elegant final form.

Lastly, the worst case spur magnitude is predicted by the following equation. This flows

from the observation that the spur magnitude is a strictly decreasing function of the spur

35

index. So selecting a spur index of 1 yields

mwc = 1
NQ

π
ΛE

sin
(
π

ΛE

) (2.30)

2.3 Jenq’s Analysis (1988)

Y. C. Jenq published a series of papers on analyzing the spectrum of non-uniformly

sampled signals [26, 24, 27, 28]. Re-deriving the analysis as it pertains to modern DCDO’s

is worthwhile, as the notation used in [24] is decidedly different than that commonly used in

DDFS literature. There is one critical difference between Jenq’s analysis and the following

derivation: Jenq uses a continuous time domain representation for the output of the DCDO.

Using the notation for a uniformly sampled discrete time signal, the analysis is more easily

accessible to one familiar with digital signal processing (DSP) without having to concern

one’s self with integrals and the Dirac delta function.

Before presenting the theorem, the discrete time Fourier transform (DTFT) is given in

Equation 2.31.

X (ω) =
∞∑

n=−∞
x [n] e−jωn (2.31)

The DTFT can be derived from the continuous time Fourier transform, or just Fourier trans-

form, described in Section 7.2. The DTFT is used to compute the spectrum of waveforms

discretized in the time domain, which is precisely the types of waveforms considered in this

work.

Theorem 2.5 (Jenq’s Non-Uniform Sampling Theorem). The DTFT of a signal formed by

non-uniformly sampling a waveform g(t) that is band-limited between
(
−1
2T ,

1
2T

)
in such a way

that the overall sampling process repeats with period M · T is given by

G (ω) = 1
MT

M−1∑
m=0

 ∞∑
k=−∞

G0

(
ω − k

(2π
MT

))
ej2πωktm/(MT)

 ejmωT (2.32)

36

where tm is the uniform sampling rate of a sub-sequence of the sampled g(t) by taking every

M th sample (it is uniform because the sampling process is periodic with MT), ω is the

angular frequency of the waveform in radians and Ga is the CTFT of g(t).

This theorem is not difficult to show. The reason that Jenq gets cited in DDFS literature

is an interesting observation made about the behavior of the truncated phase accumulator

output.

2.3.1 Jenq’s Observation

The key observation made by Jenq in his analysis (Section 2.3) is that in the presence

of phase truncation the phase code sent to the SCMF is not uniformly spaced. Effectively

this “looks like” a non-uniform sampling operation on the generated sinusoid. But the phase

accumulator is of finite length, so regardless of phase truncation, it is periodic and therefore

the truncated phase word is also periodic. In Section 1.2, the periodicity of the phase

accumulator given a frequency control word F is given in Equation 3.12.

Now consider a four bit phase accumulator incremented by F = 3 that is truncated to

three bits and fed into an ideal SCMF (i.e. assume there is no quantization in the amplitude

value stored in the SCMF). Thus in the example, the number of bits truncated from the

phase word is BT = 1, the number of bits in the phase accumulator is BP = 4 and the

number of kept bits after truncation is BPT = 3. Table 2.1 shows the state of the phase

accumulator, the truncated phase word, and the phase step between adjacent phase words.

Note that the leftmost column of the table matches the predicted untruncated phase

sequence of Theorem 3.2 and also the second column shows the predicted truncated phase

sequence of Theorem 3.4. While the proofs should be sufficient, working through an example

provides a helpful check on the result and some intuition into the behavior of the devices

modeled by the mathematical analysis. There are a few observations that can be made from

the sequence.

37

Table 2.1: Table of Truncated Phase States (4-bit)

Phase Accumulator Truncated Phase Truncated Phase Step
0000 (00) 000 (0) -
0011 (03) 001 (1) 1
0110 (06) 011 (3) 2
1001 (09) 100 (4) 1
1100 (12) 110 (6) 2
1111 (15) 111 (7) 1
0010 (02) 001 (1) 2
0101 (05) 010 (2) 1
1000 (08) 100 (4) 2
1011 (11) 101 (5) 1
1110 (14) 111 (7) 2
0001 (01) 000 (0) 1
0100 (04) 010 (2) 2
0111 (07) 011 (3) 1
1010 (10) 101 (5) 2
1101 (13) 110 (6) 1
0000 (00) 000 (0) 2

• As is the case in Figure 3.1b, the phase accumulator is periodic with NP = 24 = 16

clock cycles.

• The truncated phase sequence is also periodic with the phase accumulator. While

already stated, working through a simple example helps visualize the periodicity.

• The truncated phase step is not uniform. It varies between the values of 1 and 2.

An interesting feature follows from this analysis. Since the truncated phase sequence is

periodic, the delta phase cycle is also periodic and the periodicity of the delta phase cycle is

the same as the periodicity of the phase error sequence from truncation. From Lemma 3.5,

if 2BT |NP , which is does in our example, then

ΛE = 2BT

GCD(F, 2BT) = 2
GCD(1, 2) = 2 (2.33)

38

2.3.2 Jenq’s Results

Jenq does not deal with spur locations, magnitudes or phases in any of his publications.

Instead the non-uniform sampling theorem is applied and then Parseval’s relation is used to

find a noise power boundary. This allows for a completely general calculation of the signal to

noise ratio due to phase truncation spurs. He describes the problem in a manner differently

than any of the authors, by thinking of the phase accumulator value as an integer value plus

a coprime rational number. Variables W , L and M are introduced to describe the output of

the phase accumulator, where L and M are coprime.

d = W + L/M (2.34)

Looking at Equation 3.38 the expression can be rewritten in the notation used in this work.

M is periodicity of the error sequence (ΛE), as multiplying d by M yields an integer value.

L is the reduced FCW over M , that is to say L = ΓE. Applying the non-uniform sampling

theorem gives the an answer in the time domain.

G(ω) = 2π
TΛE

∞∑
k=−∞

ΛE−1∑
m=0

e−j2πrmf0/fclke−j2πkm/ΛE

 δ [ω − ω0 − k
(2π

ΛET

)]
(2.35)

The amplitude of the spurs only considered at this point. Sampled the waveform yields

A(k) = 1
ΛE

ΛE−1∑
m=0

e−j2π〈mΓE〉ΛE
/(ΛENQ)e−j2πmk/ΛE (2.36)

Definition 2.2 (Parseval’s Relation). Parseval’s relation for the sequence g[n] of length N

N−1∑
n=0
|g [n]|2 = 1

N

N−1∑
k=0
|G[k]|2 (2.37)

39

Applying Parseval’s relationship yields the final result for the signal to noise ratio

SNR = 10 log10

[
|A(k)|2

1− |A(k)|2

]
(2.38)

Several observations can be made about how the function increases and decreases with

various values of ΛE and ΓE. Using this information, the best and worst case signal to noise

ratio is computed. The worst case is calculated as

SNRwc = 10 log10


[
sin

(
π
NQ

) (
NQ

π

)]2
1−

[
sin

(
π
NQ

) (
NQ

π

)]2
 (2.39)

and the best case is derived as

SNRbc = 20 log10

[
cot

(
π

2NQ

)]
(2.40)

For the details of the derivation, consider reading Jenq’s series of non-uniform sampling

papers.

2.4 Torosyan’s Analysis (2001)

Although an excellent analysis of the location and magnitude of phase truncation spurs

existed at the time of his publications, Arthur Torosyan and Alan Willson of UCLA provided

an exact, clear and practical means for an analytical understanding of phase truncation

spurs [29, 10]. Instead of working from analogous, time domain functions such as Nicholas

and Mehrgardt, Torosyan approaches the problem using elementary number theory. The

critical observation is that any two FCWs that generate periodic phase sequences of the same

length, the resulting sequences can be related through a simple rearrangement and that the

frequency responses of sequences related in this manner are also simple rearrangements of

each other. The exact same observation is actually made by Nicholas in [23] but is not used

in his analysis.

40

The implication is enormous for DCDO analysis, as the DFT need only be run by number

of prime factors of NP times and all other frequency domain responses can be generated by

permuting the frequency response. Consider the case of a BP = 32 bit accumulator. If every

FCW should be tested, then the DFT would need to run NP = 232 = 4294967296 times on

sequences of at least half are periodic with NP . The current state of computer technology

simply cannot handle the computational requirements of such a task in a manageable amount

of time (i.e. if each DFT of such a sequence took one second, 4294967296 s is equal to

approximately 136 years). It is great news then that mathematicians have shown that such

computations are not required to fully characterize DCDOs.

Much of the work in Chapter 4 will be used in this analysis, so reading that chapter

before continuing may be helpful. The analysis begins by showing that FCWs of the same

period generate sequences that are simple permutations of each other (Theorem 3.9). Then

it will be shown that the frequency domain representation of such sequences are also simple

permutations of each other (Theorem 4.8). Then the DFT of the Γ = 1 case is computed

(Theorem 4.6 with Γ = 1). Since the all sequences can be generated as permutations of

Γ = 1, the analysis is complete. To summarize the results:

1. Only one frequency control word for each possible phase accumulator least period needs

to be considered. Let this FCW be chosen such that after reducing the word modulo

the number of phase accumulator states, the resulting number is 1 (i.e. Γ = 1).

2. All other frequency control words for given least period are permutations of the previ-

ously described FCW.

3. The DFT happens to commute with a set of vectors for a given least period and

therefore the frequency spectrums are also permutations. This leads to the “window

function” after simplifying the result.

41

4. An interesting simplification can be made when observing the reduced word 1, allowing

the grouping of repeating terms and resulting in a simple final expression for the phase

truncation spurs.

42

Chapter 3

Phase Accumulator Sequences from Number Theory

In this chapter, a complete analysis of the sequences generated by a phase accumulator

is developed from elementary number theory. The analysis begins by proving the well-known

untruncated phase accumulator state equation using basic modulo arithmetic (Section 3.1).

The number theoretic techniques may seem excessive at this point, but the motivation for

approaching the problem from a mathematical standpoint will eventually become apparent

in Chapter 4. Several concepts from number theory are presented to support the analysis

from the previous section and will be used in later proofs as the work progresses. After

determining the expected phase accumulator sequence, the periods of such sequences are

explored (Section 3.2). Several Greek letters are given special meaning, such as the reduced

FCW Γ and the least period length Λ.

The effects of truncation on the phase accumulator sequence are explored in Section 3.3.

The tools developed for deriving the period of an untruncated phase sequence are applied

to the truncation problem resulting in a general theory for the periodicity of both the trun-

cated phase sequence and the error sequence. Developing a pure mathematical framework

for analyzing the phase accumulator prevents common mistakes in calculating the periodic-

ity of DDFS waveforms. The relationship between both untruncated and truncated phase

sequences of different FCWs is established in Section 3.4. Lastly, some comments on abstract

algebraic structures that can be used to fully describe the operation of the phase accumulator

are presented in Section 3.5.

43

3.1 Phase Accumulator Sequence

The state of the phase accumulator at clock cycle n can be written as a function of the

FCW and the initial phase,

P [n] = 〈nF + P0〉NP
(3.1)

where P0 is the initial state of the phase accumulator, F is the FCW and 〈a〉m represents the

smallest non-negative integer remainder when dividing a by m (sometimes called the least

residue). This is commonly referred to as the modulo m operator on the integer a. The

modulo operation is clearly intimately related to integer division by definition. The division

algorithm for positive integers is stated below [30]:

Theorem 3.1 (The Division Algorithm). Given non-negative integers a and b, b 6= 0, there

exist unique integers q and r, with 0 ≤ r < b such that

a = bq + r (3.2)

Proof. Let a ∈ P0 and b ∈ P. Let S = {a− bn : n ∈ Z and a− nb ≥ 0}. That S is non-

empty can be shown by setting n = 0 since a ≥ 0 by selection. S has a least element by the

well-ordering principle (Principle 1.2). Let r = a− bq be least element of S where q ∈ P is a

selection of n that yields the least element of S. r ≥ 0 from the definition of S. That r < b

comes from the selection of the least element. If r ≥ b, then a− b(q + 1) ≥ 0 and would be

less that a − bq, meaning that the least element of S was not selected. So 0 ≤ r < b and

a = bq + r.

44

To show that q and r are unique, assume a = bq0 + r0, 0 ≤ r0 < b. Setting the equations

equal

bq + r = bq0 + r0

b (q − q0) = r0 − r (3.3)

Then b | (r0 − r) which implies that c0b = r0 − r, c0 ∈ Z. Since 0 ≤ r0 < b and 0 ≤ r < b, it

follows that −b < r0 − r < b. From the original selection b 6= 0, and the only integer choice

of c0 that produces a value between −b and b is 0. Therefore 0 = r0−r and r0 = r. Plugging

back into Equation 3.3, b(q − q0) = 0 and since b 6= 0, q = q0.

In summary, 〈a〉m returns the unique r of the previous stated division algorithm. More

formally, the 〈a〉m operator yields the smallest positive integer r such that a ≡ r (mod m),

or a congruent to r modulo b [30]. The latter expression forms a binary relationship on the

integers described by the definition below:

Definition 3.1 (Congruence). a is congruent to b modulo m (i.e. a ≡ b (mod m)) if and

only if m | (a− b)

In much of this work, the initial phase is assumed to be zero as the results from analysis

will follow without loss of generality. Any analysis dependent on the value of P0 will explicitly

allude to that requirement. Plotting Equation 3.1 for several clock cycles provides a clear

visual explanation of the behavior of the phase accumulator and FCW. Figure 3.1a shows

the progression of states versus clock cycle in a 4-bit phase accumulator with F = 1 and

Figure 3.1b shows the progression of states for F = 3. Looking back at the phase circle of

Figure 1.3a, one can visualize a higher FCW value “jumping over more circles” at each step

(speaking in terms of the graphic).

The author is unaware of any explanation given as to why Equation 3.1 fully describes

the phase state at clock cycle n. Clearly the phase accumulator has a finite number of states

(NP), so adding any F to P [n], regardless of its value, must map back to a value in the

45

0
2
4
6
8
10
12
14
16

0 2 4 6 8 10 12 14 16

Ph
as
e
St
at
e

Clock Cycle

(a) 4-Bit Phase Accumulator State (F = 1)

0
2
4
6
8
10
12
14
16

0 2 4 6 8 10 12 14 16

Ph
as
e
St
at
e

Clock Cycle

(b) 4-Bit Phase Accumulator State (F = 3)

Figure 3.1: Phase Accumulator State Plots

set ZNP
. Certainly the equation holds for Figure 3.1a and Figure 3.1b as well. But the

reason the equation should hold for all F and an accumulator of any BP is not trivially

apparent (at least to the author). All of the phase truncation analyses in literature make

use of Equation 3.1, which is not surprising since it describes the fundamental behavior of

the phase accumulator.

Theorem 3.2 (Phase Accumulator Sequence). The non-negative integer value of a phase

accumulator with NP states at clock cycle n with frequency control word F and initial phase

P0 is

P [n] = 〈nF + P0〉NP
(3.4)

Proof. Recall the proof that any non-negative integer can be represented by an unsigned

binary number (Section 1.1.2). From the description of the phase accumulator and FCW,

the repeated addition operation must also yield a non-negative number. So nF + P0 is a

non-negative number that can be represented by an unsigned binary number.

nF + P0 =
∞∑
n=0

2ibi (3.5)

46

But the phase accumulator has a finite number of bits BP , by the description of the accu-

mulation operation itself, the least BP bits are kept, so

nF + P0 =
∞∑

n=BP

2ibi +
BP−1∑
n=0

2ibi

=
(
2BP bBP

+ 2BP +1bBP +1 + · · ·
)

+
BP−1∑
n=0

2ibi

= 2BP

(
bBP

+ 21bBP +1 + · · ·
)

+
BP−1∑
n=0

2ibi (3.6)

Subtracting the second summation term from both sides of the previous equation,

(nF + P0)−
BP−1∑
n=0

2ibi = 2BP

(
bBP

+ 21bBP +1 + · · ·
)

(3.7)

It is clear that 2BP divides the expression above, and we can say from the previous description

of congruences that

(nF + P0) ≡
BP−1∑
n=0

2ibi

 (mod 2BP

)
(3.8)

Now to arrive at Equation 3.1, we must show that ∑BP−1
n=0 2ibi is the smallest non-negative

integer such that the congruence relationship above holds (additionally we should like to

show that it is unique). From the definition of the modulo operator, this is equivalent to

showing that the residue, r, when dividing nF + P0 by 2BP is equal to ∑BP−1
n=0 2ibi and that

r < 2BP .

nF + P0 = q
(
2BP

)
+ r (3.9)

47

Note that using Equation 3.6 immediately provides a potential r and q for the division

algorithm:

r =
BP−1∑
n=0

2ibi (3.10)

q = bBP
+ 21bBP +1 + · · · (3.11)

From Equation 1.10, we know that the maximum value of the r term is 2BP − 1, so r < 2BP .

When storing nF +P0 in the finite bit phase accumulator, all the bits greater than or equal

to BP are discarded, or equivalently bi = 0 for i ≥ BP and therefore q = 0. From the division

algorithm, we know that q and r must be unique. So r is the smallest non-negative integer

of nF + P0 divided by NP and thus r = 〈nF + P0〉NP
by definition.

Phase accumulators can also, with additional hardware, directly compute a number

modulo any integer value of NP . In fact, Jenq uses NP = 1000 in his DDFS analysis [24], a

number which neither Nicholas [23] or Torosyan [29] can accurately predict spurious phase

truncation behavior from.

3.2 Phase Accumulator Period

Looking carefully at Figure 3.1b, an interesting observation about the periodicity of a

phase accumulator is readily apparent. Though the phase accumulator overflows three times

when F = 3, it does not return to its original starting state until the 16th clock cycle. That

is to say, the phase accumulator sequence for both F = 1 and F = 3 is periodic with 16 clock

cycles. The question then arises as to when the exact same phase accumulator state will

repeat for an arbitrarily chosen FCW. Every explanation of the origin and nature of phase

truncation spurs uses this information in its formulation. Equation 3.12 is the periodicity of

the phase accumulator state.

ΛP ,
NP

GCD(F,NP) (3.12)

48

where GCD(a, b) is notation for the greatest common divisor (GCD) of a and b. ΛP is the

length of the sequence generated by Equation 3.1 before the phase state first repeats, or the

smallest positive integer ΛP such that P [n+ΛP] = P [n] for all n ∈ Z. The greatest common

divisor is formally defined below [15] and informally as the largest integer that divides both

a and b where both a and b cannot simultaneously be zero.

Definition 3.2 (Greatest Common Divisor). Given a, b ∈ Z, and both a and b not simulta-

neously zero, GCD(a, b) = d if and only if

1. d|a and d|b, and

2. If c ∈ Z and if c|a and c|b, then c|d.

One case, GCD(a, b) = 1, comes up frequently in developing the theory of linear con-

gruences, and so a name is given to two such integers.

Definition 3.3 (Relatively Prime). Two integers a and b are said to be relatively prime, or

coprime, if GCD(a, b) = 1.

Let us now consider the origin of Equation 3.12. The author, again, is not aware of any

derivation for this expression in the case of phase accumulators. We begin by introducing a

few theorems that flow from our earlier definitions.

Lemma 3.1 (GCD Divisibility). If GCD(a, b) = d, then

GCD
(
a

d
,
b

d

)
= 1 (3.13)

Proof. Let GCD(a, b) = d. Assume that

GCD
(
a

d
,
b

d

)
= k, k > 1. (3.14)

49

Then by Definition 3.2, k | a
d
and k | b

d
. By Definition 1.1, there exists c0, c1 ∈ Z such that

c0k = a

d
⇒ c0kd = a (3.15)

c1k = b

d
⇒ c1kd = b (3.16)

Clearly then kd | a and kd | b, but since k > 1, kd > d making it a common divisor larger

than d, which leads to a contradiction since d by choice is the greatest common divisor of

a and b. Assuming k < 1 and not equal to zero also leads to a contradiction in a similar

manner. Therefore k = 1.

Now we show another helpful theorem [30] that will prove useful in the derivation of the

phase accumulator least period.

Lemma 3.2 (Linear Modulo Normalization). If ac ≡ bc (mod m) and GCD(c,m) = d, then

a ≡ b
(
mod m

d

)
.

Proof. Let ac ≡ bc (mod m) and GCD(c,m) = d. From the definition of congruence given

above, m | (ac− bc)⇒ m | c(a− b). Since d divides c and m (from the definition of GCD),
m
d
| c
d

(a− b). Now from Lemma 3.1, we know that GCD
(
c
d
, m
d

)
= 1. Since m

d
- c
d
, m
d
| (a− b).

From Definition 3.1,

a ≡ b
(
mod m

d

)
(3.17)

Here we note that nothing in the theorem or proof prevents d = 1, so it immediately

follows that

ac ≡ bc (mod m)⇒ a ≡ b (mod m) (3.18)

if GCD(c,m) = 1.

As the DDFS is designed to generate spectrally pure signals, it is of critical importance to

determine the periods of the sequences generated by the DCDO. Unwanted periodic behavior

50

generates deterministic spurs and will become a major topic in the discussions of Chapter 4.

Now consider, yet again, the fundamental phase accumulator expression Equation 3.1. As

an example of the case when F = 1, the the sequence generated is

P = [0, 1, 2, . . . , NP − 1, 0, 1, 2, . . .] (3.19)

Clearly then the length of the period for F = 1 is NP . Now, in general, Equation 3.12 can

be shown to be true for arbitrary F and P0.

Theorem 3.3 (Phase Accumulator Periodicity). The least period of the sequence generated

by applying the FCW F to a phase accumulator with NP states without phase truncation is

ΛP ,
NP

GCD (F,NP) (3.20)

Proof. Recall that the state of the phase accumulator at clock cycle n is

P [n] = 〈Fn+ P0〉NP
(3.21)

If GCD(F,NP) = 1, then the period of the generated sequence is NP and this can be shown

by noting that for n = 0 that P [0] = P0 and finding k > 0 such that P [k] = P0. Equivalently,

P [k] = P [0] = 〈P0〉NP
, which means that

kF + P0 ≡ P0 (mod NP)⇒ NP | (kF + P0 − P0)⇒ NP | kF (3.22)

But NP - F since GCD(F,NP) = 1 and therefore NP | k and an integer d exists such that

dNP = k. The simplification was made using Lemma 3.4. Then we wish to find the smallest

51

positive integer d such dNP = k is true. Let d = 1, then k = NP .

P [NP] = 〈NPF + P0〉NP

=
〈
〈NPF 〉NP

+ 〈P0〉NP

〉
NP

= 〈P0〉NP
(3.23)

so d = 1 satisfies the equality and the period of the sequence for GCD(F,NP) = 1 is NP .

Now consider F such that GCD(F,NP) = d. We are again looking for k such that

[kF + P0] ≡ P0 (mod NP)⇒ nF ≡ 0 (mod NP) (3.24)

as P [0] = P0 still for this F . From Lemma 3.2 we know that

nF ≡ 0 (mod NP)⇒ n
F

d
≡ 0

(
mod NP

d

)
(3.25)

From Lemma 3.1, GCD
(
F
d
, NP

d

)
= 1 and from our previous analysis for the periodicity of

the sequence for relatively prime F and NP , it follows that the period is NP

d
. So we have

shown the origin of Equation 3.12 and proved it to be true for all F .

It is interesting to note that typically NP is a power of 2, so GCD(F,NP) will be a

power of 2 if F is not relatively prime to NP . Thus looking at the position of first “1” in

the bit string counting from the LSB of F gives the period of the sequence generated by

the phase accumulator. Consider an 4-bit accumulator as a simple example. If F = 6, then

the binary representation of F = 0110. Noting that the first 1 appears in the second bit

position, meaning that the largest power of 2 divisor of F is 21 and the period of the phase

accumulator is 24/21 = 23 = 8.

52

3.3 Truncated Phase Sequences

Applying Lemma 3.2 to Theorem 3.2, it is possible to write the phase accumulator

sequence Equation 3.4 in a “reduced” form. The reduced form is useful when deriving

techniques for minimizing the number of required computations for a DFT of a sequence.

Lemma 3.3 (Alternative Phase Accumulator Expression). The phase accumulator Equa-

tion 3.4 with NP states and FCW F can be written as:

P [n] = d 〈ΓPn〉ΛP
(3.26)

where d = GCD (F,NP), ΓP = F/d and ΛP is the least period of 〈Fn〉NP
and can be calculated

from Theorem 3.3.

Proof. Let d = GCD(F,NP) and 〈Fn〉NP
= r0. Then by Definition 3.2, d | F and d | NP and

there exist integers ΓP = F/d and ΛP = NP/d. By the definition of the modulo operator,

there exists c0 ∈ Z such that

〈Fn〉NP
= r0 ⇒ Fn− c0NP = r0 (3.27)

⇒ dΓPn− c0dΛP = r0 (3.28)

⇒ ΓPn− c0ΛP = r0

d
(3.29)

where 0 ≤ r0 < NP . Note that 0 ≤ r0
d
< NP

d
must also be true and therefore 〈ΓPn〉ΛP

= r0
d
.

Multiplying both sides by d yields d 〈ΓPn〉ΛP
= r0 = 〈Fn〉NP

.

The next theorem provides a method for manipulating the sum of multiple integers

modulo N . The technique is powerful at reducing the complexity of the summation in

modulo arithmetic. As will be demonstrated soon, the truncation operation can be written

concisely as the difference of two modulo sequences.

53

Lemma 3.4 (Sum of Two Integers Modulo N).

〈a+ b〉N = 〈〈a〉N + 〈b〉N〉N (3.30)

Proof. From the definition of the modulo operator, the left-hand side of Equation 3.30 can

be written as

r0 = 〈a+ b〉N = (a+ b)− c0N (3.31)

where 0 ≤ r0 < N and c0 ∈ Z. The right-hand side of Equation 3.30 can be written as

ra = 〈a〉N = a− c1N

rb = 〈b〉N = b− c2N

r1 = (a− c1N) + (b− c2N)− c3N

= (a+ b)− (c1 + c2 + c3)N (3.32)

where 0 ≤ r1 < N and c1, c2, c3 ∈ Z. From the division algorithm (Theorem 3.1), we know

that for integer (a+ b) and N there exists a unique q and r such that

(a+ b) = Nq + r, 0 ≤ r < N (3.33)

As already stated, 0 ≤ r0 < N and 0 ≤ r1 < N . Now from the previous equations, it is clear

that

(a+ b) = c0N + r0 (3.34)

(a+ b) = (c1 + c2 + c3)N + r1 (3.35)

54

By the definition of uniqueness through application of the division algorithm, c0 = c1+c2+c3

and r0 = r1. Therefore

〈a+ b〉N = 〈〈a〉N + 〈b〉N〉N (3.36)

and the proof is complete.

The size of the SCMF is exponentially related, in the case of a ROM, to the number of

bits of the phase accumulator used in addressing. The frequency resolution is dependent on

the number of bits in the phase accumulator (Section 1.3.4). This creates a design trade-

off decision point, where the area and speed of the ROM is juxtaposed with the frequency

resolution of the DDFS. For this reason, the phase word from the phase accumulator is

truncated so that a smaller address is required. The study of DDFS devices then requires

the study of truncated phase sequences. Theorem 3.4 provides a mathematical expression

for the truncated phase sequence. But first truncation should be clearly defined.

Definition 3.4 (Truncation). Truncation is defined as “ignoring” the least significant BT

digits of a number. The sequence generated by truncating the least BT -digits of an NP state

accumulator driven by FCW F is given by

Ptrunc[n] = 〈Fn〉NP
−
〈
〈Fn〉NP

〉
NE

(3.37)

where NE = rBT and r is the radix of the number system.

The truncated phase sequence is introduced as a definition in the general form above

instead of a derived theorem to allow for truncation in non-radix 2 number systems. The

purpose of truncation is to allow fewer digits to represent a number at the expense of some

amount of error, which is denoted truncation error. Theorem 3.4 shows the reduced sequence

generated through truncation in the phase accumulator. Intuitively for hardware engineers,

one can view phase truncation of the accumulator as shifting the least BT bits “right” (in

the direction of the LSB) while simultaneously shifting zeros in at the MSB position.

55

Theorem 3.4 (Truncated Phase Sequence). NE divides every element of the sequence gener-

ated by Equation 3.37, such that the truncated phase sequence can be written in a normalized

form,

PT [n] = 1
NE

[
〈Fn〉NP

−
〈
〈Fn〉NP

〉
NE

]
(3.38)

Proof. Consider the truncated sequence defined in Definition 3.4,

Ptrunc = 〈Fn〉NP
−
〈
〈Fn〉NP

〉
NE

(3.39)

From the definition of the modulo operator,

〈Fn〉NP
= Fn− c0NP (3.40)〈

〈Fn〉NP

〉
NE

= 〈Fn〉NP
− c1NE (3.41)

where c0, c1 ∈ Z for some fixed value of n (though such integer pairs exist for every value of

n). Substituting Equations 3.40 and 3.41 into Equation 3.39,

(Fn− c0NP)− [(Fn− c0NP)− c1NE] = c1NE (3.42)

Clearly NE|c1NE and Equation 3.38 holds.

Equation 3.43 shows the behavior in binary number systems, which better reflects hard-

ware implementations. Setting r = 2, the number of error states for BT digits (bits) of

truncation is NE = 2BT . Applying Theorem 3.4 with these values,

PT [n] = 1
2BT

[
〈Fn〉NP

−
〈
〈Fn〉NP

〉
2BT

]
(3.43)

A further simplification can be made when the number of accumulator states is a power of

two, which is the case when the carry-out of the accumulator is simply ignored on an overflow.

This type of phase accumulator is the focus of the analyses of Nicholas and Torosyan and

56

their results are in fact dependent on the special case. Assuming that NP = 2BP where BP

is the number of bits in the accumulator,

PT [n] = 1
2BT

[〈Fn〉2BP − 〈Fn〉2BT] (3.44)

The reduction is made through application of Lemma 3.5 on the 2BT | 2BP case. The theorem

immediately follows and will be used to derive the least period of the truncation error.

Lemma 3.5 (Least Period of the Modulo of a Modulo Sequence). The sequence

f [n] = 〈〈Fn〉N〉M (3.45)

has least period ΛN if M - N or period ΛM if M | N .

Proof. First consider M | N , then there exists an integer d such that dM = N (from

Definition 1.1). From the definition of the modulo operator,

〈Fn〉N ⇒ Fn− c0N = r0 (3.46)

where c0 ∈ Z and 0 ≤ r0 < 0. Applying the second modulo operation,

〈Fn− c0N〉M ⇒ Fn− c0N − c1M = r1 (3.47)

where c1 ∈ Z and 0 ≤ r1 < M . Rearranging the previous equation and substituting dM for

N ,

Fn = (c0d+ c1)M + r1 (3.48)

But 0 ≤ r1 < M , so from the definition of the modulo operation

Fn = (c0d+ c1)M + r1 ⇒ 〈Fn〉M (3.49)

57

The period of 〈Fn〉M can be calculated from Theorem 3.2,

ΛM = M

GCD(F,M) (3.50)

Thus we have shown the case for M | N . Now consider the case where M - N . From

Theorem 3.2, we know the period of the sequence 〈Fn〉N is ΛN , so the sequence 〈〈Fn〉N〉M
is also periodic with ΛN .

The previous result is important in the analysis of the least period of truncated phase

sequences. Lemma 3.5 can directly be used to calculate the least period of the truncation

error sequence, where truncation is defined in Definition 3.4.

Truncation generally happens on a bit boundary as the operation is free in hardware

(i.e. the bits are simply ignored). Therefore the general result of Theorem 3.5 can be made

more specific to the typical DCDO accumulator use case.

Theorem 3.5 (Periodicity of Phase Truncation Error Sequence). The truncated error se-

quence of an NP state phase accumulator driven by FCW F with NE states in the truncated

sequence has least periodicity

ΛE =


ΛP if NE - NP

NE

GCD(F,NE) if NE | NP

(3.51)

Proof. The error sequence of the phase accumulator is (Theorem 3.4)

PE[n] =
〈
〈Fn〉NP

〉
NE

(3.52)

Let NE - NP . Then applying Lemma 3.5, we know that PE[n] has least period ΛP . Now let

NE | NP , then again applying Lemma 3.5 PE[n] has least period

NE

GCD(F,NE) (3.53)

58

and the proof is complete.

As will be discussed in Chapter 4, in most real hardware implementations NE | NP .

Thus the variable NQ = NP

NE
is introduced and represents the number of unique values in the

truncated phase word. This value becomes the number of entries (address domain) of the

SCMF.

Now the least period of the difference between two modulo sequences will be derived.

Since the truncated error sequence was shown to be of this form in Theorem 3.4, the following

derivation can be directly used to compute the periodicity of the sequence.

Theorem 3.6 (Periodicity of the Difference of Two Modulo Sequences). The least period of

the sequence generated by

f [n] = 〈Fn〉N − 〈Fn〉M (3.54)

is the least common multiple of the least periods of the two sequences

f0[n] = 〈Fn〉N (3.55)

f1[n] = 〈Fn〉M (3.56)

Proof. Let L = LCM(ΛN ,ΛM), where

ΛN = N

GCD(F,N) (3.57)

ΛM = M

GCD(F,M) (3.58)

59

are the least periods of f0[n] and f1[n] from Theorem 3.3. From Lemma 3.3, the sequences

can be written as

f0[n] = GCD (F,N) 〈ΓNn〉ΛN
(3.59)

f1[n] = GCD (F,M) 〈ΓMn〉ΛM
(3.60)

where ΓN = F/GCD(F,N) and ΓM = F/GCD(F,M). First we check that L is a period for

f [n].

f [n+ L] = GCD (F,N) 〈ΓNn+ L〉ΛN
−GCD(F,M) 〈ΓM + L〉ΛM

(3.61)

Note that the multiplication of the GCD terms does not influence periodicity of the sequence.

From Definition 1.2, ΛN | L and ΛM | L. Therefore 〈L〉ΛN
= 0 and 〈L〉ΛM

= 0. Applying

Lemma 3.4 to the previous equation

f [n+ L] = GCD (F,N) 〈ΓNn〉ΛN
−GCD(F,M) 〈ΓMn〉ΛM

= f [n] (3.62)

Now we must show that L is the least period of f [n]. Assume that there is a positive integer

K < L such that

f [n+K] = f [n] (3.63)

Then

f [n+K] = f [n] (3.64)

〈Fn+K〉N − 〈Fn+K〉M = 〈Fn〉N − 〈Fn〉M (3.65)

〈〈Fn〉N + 〈K〉N〉N − 〈〈Fn〉M + 〈K〉M〉M = 〈Fn〉N − 〈Fn〉M (3.66)

60

which implies that

〈K〉N = 0 (3.67)

〈K〉M = 0 (3.68)

From the definition of the modulo operation, K = c0N = c1M for some c0, c1 ∈ P. So K

must be a multiple of both N and M that is less than L. But this is a contradiction, since

L is the least common multiple of ΛN and ΛM .

Theorem 3.7 (Truncated Phase Sequence Period). The length of the least period of the

truncated phase accumulator sequence (Equation 3.38) with NP phase states and NE error

states is

ΛP = NP

GCD (F,NP) (3.69)

Proof. The truncated phase sequence is given by Equation 3.38,

PT [n] = 1
NE

[
〈Fn〉NP

−
〈
〈Fn〉NP

〉
NE

]
(3.70)

From Theorem 3.6, the period of PT [n] is equal to the least common multiple of least period

of 〈Fn〉NP
and

〈
〈Fn〉NP

〉
NE

. From Theorem 3.3, the least period of 〈Fn〉NP
is

Λ1 = ΛP = NP

GCD(F,NP) (3.71)

From Theorem 3.5, the least period of

Λ2 =


ΛP if ΛE - ΛP

ΛE, if ΛE | ΛP

(3.72)

Now consider the least common multiple of Λ1 and Λ2 when ΛE - ΛP . Then Λ2 = ΛP and

LCM(Λ1,Λ2) = LCM(ΛP ,ΛP) = ΛP .

61

Now consider the other case where ΛE | ΛP which from Definition 1.1 there exists c0 ∈ Z

such that c0ΛE = ΛP . Then LCM(Λ1,Λ2) = LCM(ΛP ,ΛE) = LCM(c0ΛE,ΛE) = c0ΛE = ΛP .

Therefore ΛP is the least period of PT [n].

The periodicities for arbitrary phase accumulator sequence, truncated phase sequence,

and truncated error sequence have been derived along with the exact mathematical formula-

tions of the sequences themselves. The analysis will prove useful in re-deriving Nicholas’s [23],

Torosyan’s [29] and Jenq’s [24] phase truncation papers of Chapter 2 as well as the fully gen-

eral theorem presented in this work in Chapter 4.

3.4 Relationships Between Sequences

From Section 3.2, it is clear that different FCWs can have the same least period. Since

there are only a finite number of states that can be taken in modulo arithmetic, it would

intuitively seem that these sequences of the same period would be related in some manner.

This section aims to develop how these sequences are related. Before beginning, however, it

is helpful to show when a multiplicative inverse exists in a modulo number system.

Lemma 3.6 (GCD and Linear Diophantine Equations). If GCD (a, b) = d and a ∈ P0 and

b ∈ P, then there exist x, y ∈ Z such that ax + by = d. Equations of the form ax + by = c,

where only integer solutions are allowed are called linear Diophantine equations.

Proof. The popular approach for proving this lemma is applying Euclid’s GCD algorithm in

reverse until an x and y are found such that ax + by = GCD(a, b). Here a more compact

approach will be used. Let a ∈ P0 and b ∈ P. Let S = {ax+ by : x, y ∈ Z and ax+ by ≥ 0}.

That S is non-empty can be shown by choosing x and y equal to zero. S is well-ordered by

Principle 1.2. Select the smallest element of S, say d, and write it as ax0 + by0 = d. Now if

d = GCD(a, b), then the proof is complete.

Assume that d - a, then from the Theorem 3.1, a = dq + r, 0 < r < d (if r = 0 then d

would divide a) and therefore dq = a− r. Multiplying ax0 + by0 = d by q and substituting

62

for dq for a− r yields the following

q(ax0 + by0) = dq

q(ax0 + by0) = a− r

a− qax0 − by0 = r

a(1− qx0)− by0 = r

Letting x1 = (1 − qx0) and y1 = −y0, then ax1 + by1 = r and r ∈ S. But this leads to a

contradiction because r < d but d is the least element of S. So d | a. The same technique

can then be used to show that d | b.

Now to show that d is the greatest common divisor of a and b. By Definition 3.2, any

divisor of a and b must also divide d for this to be true. Let c be a common divisor of a and

b.

d = ax+ by

= c
(
a

c

)
x+ c

(
b

c

)
y

= c

(
a

c
x+ b

c
y

)

Clearly then c | d and GCD(a, b) = d.

This provides a powerful technique for working with equations involving the greatest

common divisor of two numbers.

Theorem 3.8 (Multiplicative Inverse in Modulo Arithmetic). A unique multiplicative in-

verse F−1 ∈ ZNP
exists such that

〈
F−1F

〉
NP

= 〈1〉NP
(3.73)

if and only if GCD (F,NP) = 1,

63

Proof. Let GCD (F,NP) = 1. From Lemma 3.6 there exist x, y ∈ Z such that Fx+NPy = 1.

Fx+NPy = 1 (3.74)

Fx− 1 = −NPy (3.75)

Then NP | (Fx− 1) and from Definition 3.1, Fx ≡ 1 (mod NP) and x is the multiplicative

inverse of F modulo NP . Now to show that it is unique, assume that x0, x1 ∈ ZNP
are

distinct solutions to the linear congruence relation Fx ≡ 1 (mod NP). Then

Fx0 ≡ 1 (mod NP)

Fx1 ≡ 1 (mod NP) (3.76)

Through the transitive property, Fx0 ≡ Fx1 (mod NP). Then NP | (Fx0 − Fx1) and

through the distributive property NP | F (x0 − x1). Since GCD(F,NP) = 1, NP - F and

therefore NP | (x0 − x1). Again from Definition 3.1, x0 ≡ x1 (mod NP). But both x0 and

x1 are less than NP by definition and x0 = x1. Therefore the multiplicative inverse is unique

by contradiction.

The relationship between the sequences of FCWs can now be derived as all the tools

necessary for the derivation have been developed.

Theorem 3.9 (FCW Time Sequence Permutation Relationship). The sequences generated

by two different FCWs F0 and F1 driving an accumulator with NP states are permutations

of each other if GCD(F0, NP) = GCD(F1, NP).

Proof. Let GCD(F0, NP) = GCD(F1, NP) = d. We wish to show that the following two

sequences

f0[n] = 〈F0n〉NP
(3.77)

f1[n] = 〈F1n〉NP
(3.78)

64

are permutations of each other, and more particularly that,

f0[k1n] = f1[n] and f1[k0n] = f0[n] (3.79)

for some k0, k1 ∈ ZNP
. First consider the case where d = 1 (i.e. F0 and F1 are relatively

prime to NP). Then from Theorem 3.8, there exist multiplicative inverses for F0 and F1 such

that F0F
−1
0 = 1 and F1F

−1
1 = 1. Then

f0[F−1
0 F1n] =

〈
F0F

−1
0 F1n

〉
NP

= 〈F1n〉NP
= f1[n] (3.80)

So k1 = F−1
0 F1 and k0 = F−1

1 F0 . Now consider the case where d 6= 1. Then from Lemma 3.2,

we get

f0[n]
d

=
[(
F0

d

)
n
] (

mod
(
NP

d

))
(3.81)

f1[n]
d

=
[(
F1

d

)
n
] (

mod
(
NP

d

))
(3.82)

But now GCD
(
F0
d
, NP

d

)
= GCD

(
F1
d
, NP

d

)
= 1 from Lemma 3.1 and multiplicative inverses

exist for both F0
d
and F1

d
from Theorem 3.8. Then the logic for when d = 1 readily applies and

k1 =
(
F0
d

)−1 (
F1
d

)
and k0 =

(
F1
d

)−1 (
F1
d

)
are the multipliers that generate the permutations.

Theorem 3.9 forms a cornerstone in the analysis of Chapter 4 and is the most important

observation of this chapter. A similar observation is made by Torosyan in [29] through citing

a number theory text. Here the relevant analysis from several texts have been collated to

arrive at the same observation.

65

3.5 Comments on Mathematical Structure

Lastly, we note that the equivalent mathematical structure for the phase accumulator is a

commutative ring with identity. The following paragraphs define and describe the properties

of rings. First, the definition of a group is presented [15]

Definition 3.5 (Groups). The set P with a binary operation + is called a group if

1. a+ (b+ c) = (a+ b) + c for a, b, c ∈ P , i.e. associativity holds.

2. There exists an element e ∈ P such that a+ e = e+ a = a for all a ∈ P . The element

e is called the identity for +.

3. For every a ∈ P , there exists an element b ∈ P such that a + b = b + a = e. The

element b is called the inverse of a with respect to +.

This can be further refined to a Abelian group in the phase accumulators case, as the

commutative property holds (a + b = b + a, whenever a, b ∈ P). A ring is a set R with two

binary operations + and · on R such that

• The + operation forms a commutative group on R, and

• The · operation forms a semigroup.

• For a, b, c ∈ R, then a · (b + c) = a · b + a · c and (a + b) · c = a · · · c + b · c, i.e. the ·

operation is distributive over +.

Note that the definition of the phase accumulator at state n makes use of multiplication (or

“·” in the definition of the the commutative ring). Notice that a multiplicative inverse need

not exist for an element α ∈ P .

The author believes that using more advanced properties of Abelian rings could be used

to arrive at a general solution more quickly than the detailed analysis used in this document.

However, the solution derived in this work is exact and with merit. It also makes use of more

66

elementary properties of number theory such that an undergraduate student in Computer

Engineering (or an engineering discipline that provides some discrete mathematics) could

fully follow.

67

Chapter 4

Spectrum of Truncated Phase Sequences

The spectrum of truncated phase sequences is now investigated. To visualize the peculiar

behavior of the spurs generated by phase truncation, consider Figure 4.1a and Figure 4.1b.

Figure 4.1a shows the output spectrum from a single period of a BP = 20 bit phase accu-

mulator, truncated to BQ = 12 bits and driven by FCW F = 28 · 500. Figure 4.1b shows

the output spectrum when F = (28 · 500) + 1. Though it has no effect on the analysis,

assume 1 GHz clock for the above example. This means that two tones approximately

1 GHz/220 ≈ 1 kHz apart produce radically different output spectrums. Figure 4.1a shows

only one spectral line at the intended synthesized frequency, while Figure 4.1b shows sev-

eral hundred spurious tones in addition to the main tone. The truncation error sequence is

(Theorem 3.4)

PE[n] =
〈
〈Fn〉NP

〉
NE

(4.1)

where NP = 2BP and BE = 2BP−BQ = 28. From Lemma 3.5, the period of the error sequence

is 28. In this chapter, it will be shown how this information can be used to predict the exact

location, magnitude and phase of each individual spur that result from phase truncation.

4.1 Intuitive Understanding

Early analysis of the magnitude of the spurs generated by phase truncation uses trigono-

metric approximations. The simplest argument is that the error from phase truncation (∆θ)

68

-120

-100

-80

-60

-40

-20

0

0 0.1 0.2 0.3 0.4 0.5

N
or
m
al
iz
ed

O
ut
pu

t
Po

w
er

(d
B
)

Normalized Frequency (1/fclk)

(a) BP = 20, F = 28 · 500, BQ = 12

-120

-100

-80

-60

-40

-20

0

0 0.1 0.2 0.3 0.4 0.5

N
or
m
al
iz
ed

O
ut
pu

t
Po

w
er

(d
B
)

Normalized Frequency (1/fclk)

(b) BP = 20, F = 28 · 500 + 1, BQ = 12

Figure 4.1: Spectrums from Two Adjacent FCWs

is relatively small with respect to the phase variable (θ). Equation 4.2 shows the approxi-

mation.

sin (θ + ∆θ) = sin (θ) cos (∆θ) + cos (θ) sin (∆θ) (4.2)

≈ sin (θ) + cos (θ) ∆θ, whenever ∆θ � 1 (4.3)

The technique applies a product-to-sum trigonometric identity followed by a small angle

approximation. The quality of the small angle approximation can be evaluated through

applying a Taylor series expansion on sine.

Definition 4.1 (Taylor Series). Let f(x) be an infinitely differentiable function. The Taylor

series of f(x) taken about a value a is defined by Equation 4.4.

f (x) ≈
n=∞∑
n=0

[
dn

dxn
(f (x))

]
(x− a)
n! (4.4)

69

The Maclaurin series expansion for sine, which is a special case of the Taylor series taken

about a = 0, yields:

sin (x) = x− x3

3! + x5

5! − · · · (4.5)

Note that for x � 1, the third order and fifth order terms become negligible. Equation 4.6

shows the small angle approximation for sine.

sin (x) ≈ x, x� 1 (4.6)

Ignoring the shape of the error ∆θ, i.e. assuming it constant, the approximation can be

used to roughly approximate an upper bound on the largest spur from the phase truncation

process. This is because keeping ∆θ constant at its maximum value concentrates all the

spurious energy into a single tone. In reality, ∆θ varies with time and thus the cosine term

is amplitude modulated by a “sawtooth wave-like” error function. This spreads the error

energy into multiple frequency bins, reducing the maximum power at the spurious frequency.

Consider a phase accumulator with BP -bits in which the bottom BT bits are truncated,

leaving a kept phase word of Q of BQ-bits. Remember that the phase accumulator values

are mapped uniformly from [0, 2π) in NP = 2BP steps.

max{∆θ} = 2πNBT

NP

= 2π 2BT

2BP
= 2π

2BP−BT
= 2π

2BQ
(4.7)

It is clear from the previous equation that the phase error decreases exponentially with BQ

(halved for each kept bit added). Note also that the magnitude of the error depends on

the relationship between number of bits truncated to the number of bits kept and not the

number truncated bits alone. The loose upper bound for the SFDR in decibels from phase

70

-160

-140

-120

-100

-80

-60

-40

-20

4 6 8 10 12 14A
bs
ol
ut
e
A
pp

ro
xm

at
io
n
Er

ro
r
(d
B
)

Kept Bits

(a) Small Angle Estimate

-100

-80

-60

-40

-20

0

4 6 8 10 12 14

W
or
st

C
as
e
SF

D
R

(d
B
)

Kept Bits

Approx. SFDR
Nicholas SFDR

This Work

(b) Worst Case SFDR due to Phase Truncation

Figure 4.2: Simple Estimates for Worst Case SFDR due to Phase Truncation

truncation using this approximation is

20 log10

(2π
2BQ

)
= 20 log10 (2π)− 20BQ log10 (2) ≈ 16− 6.02BQ (4.8)

However, an approximation has been made in the derivation itself, so the “upper bound” is

no upper bound in any formal sense of the phrase (or at least it has not been proven to be so

yet in this work). The error in the trigonometric approximation of Equation 4.2 is shown in

Figure 4.2a. Clearly for 10 bits or more, the approximation of Equation 4.2 to sine is greater

than 90 dB, which will be much larger than the SNR and SFDR of the systems discussed in

this work.

Figure 4.2b shows the actual worst case spur against the approximation using Nicholas’s

technique. Qualitatively it is clear that the estimate is a gross overestimate, approximately

10 dB, to the actual value of the worst case SFDR. But this is expected, as the phase error

is a sawtooth like function against time and thus the spurious energy is spread across many

bins.

There are several problems with relying on this analysis when designing a DDFS system.

71

1. The analysis provides no insight into the number of spurs generated by phase trunca-

tion.

2. The analysis provides no insight into the location of the phase truncation spurs.

3. The analysis provides no way to distinguish phase truncation spurs from quantized

amplitude spurs.

4.2 Characteristics of Truncated Phase Sequences

Since the delta phase cycle is periodic with ΛE, the difference between PT [n] and PT [n+

ΛE] should be the equal for all n ∈ Z and have the value F modulo N . An example

demonstrating this can be found in Section 2.3.1.

Theorem 4.1 (Delta Phase Steps). The truncated phase difference separated by ΛE steps is

equal to the reduced FCW for F

〈PT [n]− PT [n+ ΛE]〉NP
=
〈

F

GCD (F,NE)

〉
NP

(4.9)

if NE | NP or is zero otherwise. NP is the number of states in the phase accumulator and

NE is the number of states in the truncated error sequence.

Proof. Recall from Equation 3.38,

PT [n] = 1
NE

[
〈Fn〉NP

−
〈
〈Fn〉NP

〉
NE

]
(4.10)

PT [n+ ΛE] = 1
NE

[
〈Fn+ FΛE〉NP

−
〈
〈Fn+ FΛE〉NP

〉
NE

]
(4.11)

72

First consider the common case whereNE | NP . Then the previous equations reduce, through

application of Lemma 3.5, to

PT [n] = 1
NE

[
〈Fn〉NP

− 〈Fn〉NE

]
(4.12)

PT [n+ ΛE] = 1
NE

[
〈Fn+ FΛE〉NP

− 〈Fn+ FΛE〉NE

]
(4.13)

Next consider 〈FΛE〉NE
. If NE | FΛE then 〈FΛE〉NE

= 0 through the definition of the

modulo operator. Let d = GCD(F,NE). Then d | F and d | NE by Definition 3.2 and there

exist c0, c1 ∈ Z such that c0d = F and c1d = NE. ΛE = NE

d
from Equation 3.12. Then

FΛE = c0d
(
NE

d

)
= c0NE. Clearly then NE | FΛE by Definition 1.1. Now the result follows

through application of Lemma 3.4 that 〈Fn+ FΛE〉NE
= 〈Fn〉NE

.

PT [n]− PT [n+ ΛE] = 1
NE

[(
〈Fn〉NP

− 〈Fn〉NE

)
−
(
〈Fn+ FΛE〉NP

− 〈Fn〉NE

)]
(4.14)

= 1
NE

[
〈Fn〉NP

− 〈Fn+ FΛE〉NP

]
(4.15)

Applying the modulo operator to both sides of the last equation yields the final result

〈PT [n]− PT [n+ ΛE]〉NP
=
〈 1
NE

[
〈Fn〉NP

− 〈Fn+ FΛE〉NP

]〉
NP

=
〈 1
NE

〈Fn− Fn+ FΛE〉NP

〉
NP

=
〈 1
NE

〈FΛE〉NP

〉
NP

(4.16)

Using the knowledge that NE | FΛE and substituting for ΛE,

〈PT [n]− PT [n+ ΛE]〉NP
=
〈
FΛE

NE

〉
NP

=
〈

F

GCD(F,NE)

〉
NP

(4.17)

73

Now consider the other case where NE - NP , then ΛE = NP from Theorem 3.5. But

PT [n] is periodic with NP as well from Theorem 3.6. So PT [n] = PT [n + ΛE] and PT [n] −

PT [n+ ΛE] = 0.

The implication is that if NE | NP , then the sequence PT can be divided into ΛE

sub-sequences that sum together to provide the original truncated phase sequence. First,

it is important to show that any finite length sequence can be split into a sum of different

sub-sequences by utilizing the Kronecker delta function (Definition 4.2).

Definition 4.2 (Kronecker Delta Function). The Kronecker delta is defined as a function

on Z such that

δ[n] =


0, n 6= 0

1, n = 0
(4.18)

Theorem 4.2 (Sub-Sequences of a Finite Sequence). Any finite sequence f [n] with length

Λ such that Λ is a composite positive integer (i.e. Λ = aN) can be decomposed into the sum

of a sub-sequences.

f [n] =
a−1∑
q=0

N−1∑
r=0

δ [n− (Nq + r)] f [Nq + r], 0 ≤ n < Λ (4.19)

where δ[n] is the Kronecker Delta Function (Definition 4.2).

Proof. Let f [n] is a finite sequence of length Λ where Λ = aN is a composite positive integer.

It is clear that

f [n] =
Λ−1∑
m=0

δ[n−m]f [m] (4.20)

where δ[n] is the Kronecker delta function by the definition of the function. This operation

is sometimes called substitution and proves helpful in analysis. From the division algorithm,

for a given m and divisor N ,

m = Nq + r (4.21)

74

where 0 ≤ r < N and q and r are unique. This information can be used to compose an

equivalent double summation by substituting Nq + r for m,

f [n] =
a−1∑
q=0

N−1∑
r=0

δ [n− (Nq + r)] f [Nq + r] (4.22)

since Nq + r ∈ {0, 1, · · · ,Λ− 1}.

While not dealing with finite sequences explicitly in the analysis thus far, the behavior

of a periodic sequence can be understood by viewing a single period of the sequence. Under

certain cases where the period of the error sequence divides the full truncated phase sequence

period, Theorem 4.2 can be applied to develop an efficient algorithm for characterizing a

DCDO. Let ΛE | ΛP for a DCDO implementation, then the truncated phase sequence PT

can be reconstructed from the subsequences using Theorem 4.2.

PT [n] =
(ΛP /ΛE−1)∑

j=0

ΛE−1∑
m=0

δ[n− (ΛEj +m)]PT [n] (4.23)

=
(ΛP /ΛE−1)∑

j=0
δ[n− ΛEj]PT [n] + · · ·+

(ΛP /ΛE−1)∑
j=0

δ[n− (ΛEj + ΛE − 1)]PT [n] (4.24)

Before analyzing the spectrum of such sequences, the interchangeability of the summa-

tions of finite sequences is considered.

Theorem 4.3 (Interchanging Summations for Finite Sequences). Two finite summations

can be interchanged for arbitrary sequence f [n].

N∑
n=0

M∑
m=0

f [n,m] =
M∑
m=0

N∑
n=0

f [n,m] (4.25)

75

Proof. Since addition is commutative, f [i, j] can be arranged into any order and return the

same sum

N∑
n=0

M∑
m=0

f [n,m] = f [0, 0] + f [0, 1] + · · ·+ f [0,M] + f [1, 0] + · · ·+ f [N,M] (4.26)

= f [0, 0] + f [1, 0] + · · ·+ f [N, 0] + f [0, 1] + · · ·+ f [N,M] (4.27)

=
M∑
m=0

N∑
n=0

f [n,m] (4.28)

The results seems self-evident, but it is important to note that the order of infinite

summations can not be arbitrarily changed in every case. Thus pointing out that it can be

done so with finite sequences prevents any gaping holes in the analysis that follows. The

next step is to find the relationship between truncated phase output codes of the same value.

To begin, the case of a FCW of one is analyzed.

Theorem 4.4 (Adjacent Truncated Phase Elements). For F = 1,

PT [ΛEn] = PT [ΛEn+m] (4.29)

for all n ∈ Z and 0 ≤ m < ΛE if NE | NP .

Proof. Plugging in the left hand side of Equation 4.29 into Equation 3.38 (with NE | NP

simplification)

PT [ΛEn] = 1
NE

[
〈FΛEn〉NP

− 〈FΛEn〉NE

]
(4.30)

From the proof of Theorem 4.1, NE | FΛE, and therefore 〈FΛEn〉NE
= 0. Applying this

knowledge results in

PT [ΛEn] = 1
NE

[
〈FΛEn〉NP

]
(4.31)

76

Next plugging the right hand side of Equation 4.29 into Equation 3.38 yields

PT [ΛEn+m] = 1
NE

[
〈FΛEn+m〉NP

− 〈FΛEn+m〉NE

]
(4.32)

Applying Lemma 3.4 to 〈FΛEn+m〉NE
yields

〈FΛEn+m〉NE
=
〈
〈FΛEn〉NE

+ 〈m〉NE

〉
NE

(4.33)

=
〈
〈m〉NE

〉
NE

= m (4.34)

since m < ΛE ≤ NE. Now it only needs to be shown that

〈FΛEn+m〉NP
− 〈FΛEn〉NP

= m (4.35)

By the division algorithm (Theorem 3.1), FΛEn = NP q0+r0, where q0 ∈ Z and 0 ≤ r0 < NP .

Also from the division algorithm, FΛEn + m = NP q1 + r1 and 0 ≤ r1 < NP . Subtracting

the previous two equations from each other

FΛEn+m− FΛEn = NP q1 + r1 −NP q0 − r0 (4.36)

m = NP (q1 − q0) + (r1 − r0) (4.37)

Since m < ΛE ≤ NP and 0 ≤ r0, r1 < NP , it is clear that q1 − q0 = 0 and q0 = q1.

Consequently, m = r1 − r0. Plugging back into Equation 4.35,

〈NP q1 + r1〉NP
− 〈NP q0 + r0〉NP

= r1 − r0 = m (4.38)

77

From Theorem 3.9, it was noted that two frequency control words of the same period

are simple permutations of each other. This leads to an interesting relationship that takes

advantage of Theorem 4.4.

Theorem 4.5 (When Truncated Values Repeat). For any frequency control word F ,

PT [ΛEn] = PT
[
ΛEn+ Γ−1

P m
]

(4.39)

for all n ∈ Z and 0 ≤ m < ΛE where Γ−1
P is the multiplicative inverse of ΓP modulo ΛP and

NE | NP .

Proof. This is easily shown by expanding PT
[
ΛEn+ Γ−1

P m
]
.

PT
[
ΛEn+ Γ−1

P m
]

= 1
NE

[〈
FΛEn+ FΓ−1

P m
〉
NP

−
〈〈
FΛEn+ FΓ−1

P m
〉
NP

〉
NE

]
(4.40)

First consider the sequence
〈
FΓ−1

P m
〉
NP

. Applying Lemma 3.3, it is easily shown that〈
FΓ−1

P m
〉
NP

= d
〈
ΓPΓ−1

P m
〉

ΛP

where d = GCD(F,NP). But Γ−1
P is the multiplicative

inverse of ΓP modulo ΛP by definition, that the multiplicative inverse exists comes from

Theorem 3.8. Then
〈
FΓ−1

P m
〉
NP

= d 〈m〉ΛP
.

From the proof of Theorem 4.1, it was shown that NE | FΛE and therefore 〈FΛEn〉NE
=

0. Then Equation 4.40 becomes

PT
[
ΛEn+ Γ−1

P m
]

= d

NE

[
〈ΓPΛEn+m〉ΛP

− 〈m〉ΛE

]
(4.41)

Since 0 ≤ m < ΛE, the same logic in the proof of Theorem 4.4 immediately applies and

PT [ΛEn] = PT
[
ΛEn+ Γ−1

P m
]

(4.42)

78

Lemma 4.1 (Special Sub-Sequence Arrangement for Periodic Sequences). Any finite peri-

odic sequence f [n] with length Λ such that Λ is a composite positive integer (i.e. Λ = aN)

can be decomposed into the sum of sub-sequences

f [n] =
a−1∑
q=0

N−1∑
r=0

δ [n− 〈Nq + br〉Λ] f [〈Nq + br〉Λ] , n ∈ Z (4.43)

where b is coprime to Λ.

Proof. Let b ∈ Z be coprime to Λ, then GCD(b,Λ) = 1. Then 〈br〉Λ = 〈r〉Λ by Lemma 3.2.

The summation of Equation 4.43 then becomes

f [n] =
a−1∑
q=0

N−1∑
r=0

δ [n− 〈Nq + r〉Λ] f [〈Nq + r〉Λ] , n ∈ Z (4.44)

which is the same as that shown in Theorem 4.2, and thus by the proof of that same

theorem, f [n] can be written equivalently as the sum of sub-sequences of the form given in

Equation 4.43.

4.3 Spectrum in the Presence of Phase Truncation

Now we are ready to calculate the spectrum of a truncated phase sequence. All the

work from Chapter 3 and the previous section of this chapter provide the tools necessary to

compute the discrete Fourier transform (DFT) of an arbitrary DCDO with phase truncation.

For completeness, the DFT is defined below

Definition 4.3 (Discrete Fourier Transform). If x[n] is a discrete function that is periodic

with N , then the DFT is

X [k] =
N−1∑
n=0

x [n] e−j2πkn/N , 0 ≤ k ≤ N − 1 (4.45)

79

The DFT is typically used to describe the frequency content of the discrete waveform.

The DFT is a reversible transformation and thus the inverse DFT is also defined

Definition 4.4 (Inverse Discrete Fourier Transform).

X [k] = 1
N

N−1∑
k=0

X [k] ej2πkn/N (4.46)

Theorem 4.6 (Spectrum of Truncated Phase Sequence). The DFT of a truncated phase

sequence driving an ideal SCMF (i.e. no amplitude quantization) for when NE | NP is

ST [k] = RPV [k]
2j

(
δ
[
〈ΓP − k〉RP

]
− δ

[
〈ΓP + k〉RP

])
(4.47)

where RP , ΛP

ΛE
, δ[n] is the Kronecker delta function and

V [k] , 1− e−j2πkΛEΓ−1
P /ΛP

1− e−j2πkΓ−1
P /ΛP

(4.48)

when ΛP - k or V [k] = ΛE.

Proof. Let the period of the error sequence ΛE divide the period of the untruncated phase

sequence ΛP , then the truncated phase sequence has period ΛP (Theorem 3.6). Now apply

the reduced SCMF function to PT

AT [n] = sin
(

2π
NQ

PT [n]
)

(4.49)

AT [n] has the same periodicity of PT [n] (which is ΛP and calculated in Theorem 3.7), with

the same error sequence periodicity (calculated in Theorem 3.5), so from Lemma 4.1 it can

be written as the summation of sub-sequences as follows

AT [n] =

ΛP
ΛE
−1∑

l=0

ΛE−1∑
m=0

δ
[
n−

〈
ΛEl + Γ−1

P m
〉

ΛP

]
sin

(
2π
NQ

PT [n]
)

(4.50)

80

That Γ−1
P is coprime to ΛP is certainly not difficult to show using the knowledge that ΓP is

coprime to ΛP by definition. Now apply the ΛP -point DFT to AT [n] to compute the spectral

response

ST [k] =
ΛP−1∑
n=0

ΛP
ΛE
−1∑

l=0

ΛE−1∑
m=0

δ
[
n−

〈
ΛEl + Γ−1

P m
〉

ΛP

]
sin

(
2π
NQ

PT [n]
)
e−j2πkn/ΛP (4.51)

From Theorem 4.3, the summations can be interchanged and we will do so for better read-

ability. Interchanging the summation and applying the sifting property of the Kronecker

delta,

ST [k] =

ΛP
ΛE
−1∑

l=0

ΛE−1∑
m=0

ΛP−1∑
n=0

δ
[
n−

〈
ΛEl + Γ−1

P m
〉

ΛP

]
sin

(
2π
NQ

PT [n]
)
e−j2πkn/ΛP (4.52)

=
ΛE−1∑
m=0

ΛP
ΛE
−1∑

l=0
sin

(
2π
NQ

PT

[〈
ΛEl + Γ−1

P m
〉

ΛP

])
e
−j2πk〈ΛE l+Γ−1

P m〉ΛP
/ΛP (4.53)

Since 0 ≤ m < ΛE, Theorem 4.5 applies and PT [ΛEl + Γ−1
P m] = PT [ΛEl]. Furthermore,

e
−j2πk〈ΛE l+Γ−1

P m〉ΛP
/ΛP is periodic with ΛP and the modulo operator can be dropped. Apply-

ing both these observations yields

ST [k] =
ΛE−1∑
m=0

ΛP
ΛE
−1∑

l=0
sin

(
2π
NQ

PT [ΛEl]
)
e−j2πkΛE l/ΛP e−j2πkΓ−1

P m/ΛP (4.54)

=
ΛE−1∑
m=0

e−j2πkΓ−1
P m/ΛP


ΛP
ΛE
−1∑

l=0
sin

(
2π
NQ

PT [ΛEl]
)
e−j2πkΛE l/ΛP (4.55)

Notice the critical observation that the exponential m term can be factored out of the inner

summation. Applying the geometric series computation, Lemma 1.2, on the m summation

yields

ΛE−1∑
m=0

e−j2πkΓ−1
P m/ΛP = 1− e−j2πkΓ−1

P ΛE/ΛP

1− e−j2πkΓ−1
P /ΛP

(4.56)

81

Of course this is only for the case where ΛP - k, otherwise the summation evaluates to ΛE

as the exponential term evaluates to 1. Borrowing notation from Torosyan for consistency,

we define

V [k] , 1− e−j2πkΓ−1
P ΛE/ΛP

1− e−j2πkΓ−1
P /ΛP

(4.57)

Notice however that this expression is different than derived in Torosyan’s dissertation [31].

In particular, only the case for F = 1 is evaluated and the knowledge that the spectrum of

sequences of equal least periods are simple rearrangements of each other. Here a completely

general expression for any FCW has been calculated. Now from the proof of Theorem 4.4,

it was shown that when NE | NP , as it does in the currently considered case

PT [ΛEn] = 1
NE

〈FΛEn〉NP
(4.58)

With this knowledge, consider the sine component of Equation 4.55,

sin
(

2π
NQ

PT [ΛEl]
)

= sin
(2π
NP

〈FΛEl〉NP

)
(4.59)

= sin
(2π

ΛP

〈ΓPΛEl〉ΛP

)
(4.60)

= sin
(2π

ΛP

(ΓPΛEl)
)

(4.61)

Reducing the modulo sequence was possible through Lemma 3.3 and by noting that ΛP =

NP/GCD(F,NP). The modulo operation was dropped because the sine function naturally

performs the operation (Lemma 1.1). Then using Euler’s formula 1.31,

sin
(2π

ΛP

(ΓPΛEl)
)

= 1
2j
[
ej2πΓP ΛE l/ΛP − e−j2πΓP ΛE l/ΛP

]
(4.62)

Plugging back into Equation 4.55

ST [k] = V [k]
2j

ΛP
ΛE
−1∑

l=0

[
ej2πΓP ΛE l/ΛP − e−j2πΓP ΛE l/ΛP

]
e−j2πkΛE l/ΛP (4.63)

82

Consider now just the summation

ΛP
ΛE
−1∑

l=0

[
ej2πΓP ΛE l/ΛP − e−j2πΓP ΛE l/ΛP

]
e−j2πkΛE l/ΛP =

ΛP
ΛE
−1∑

l=0
ej2πΛE l(ΓP−k)/ΛP − e−j2πΛE l(ΓP +k)/ΛP

(4.64)

Now the exponential ej2πΛE l(ΓP−k)/ΛP and e−j2πΛE l(ΓP +k)/ΛP are periodic over k with ΛP/ΛE,

which can easily be shown by replacing k with k + ΛP/ΛE as shown below

ej2πΛE l(ΓP−k−(ΛP /ΛE))/ΛP = ej2πΛE l(ΓP−k)/ΛP e−j2πΛE l(ΛP /ΛE)/ΛP (4.65)

= ej2πΛE l(ΓP−k)/ΛP (4.66)

So when k = ΓP + aΛP

ΛE
, for a ∈ Z then the summation is equal to ΛP/ΛE otherwise the

summation is equal to zero. This was shown in Section 1.2 by applying Lemma 1.2 but is

shown here again as an example

ΛP
ΛE
−1∑

l=0
ej2πΛE l(ΓP−k)/ΛP = 1− ej2π(ΓP−k)

1− ej2πΛE(ΓP−k)/ΛP
(4.67)

By setting a = 1, it becomes clear that the summation is non-zero when k − ΓP | ΛP

ΛE
which

from the definition of the modulo operation k = ΓP (mod ΛP

ΛE
). Therefore

ΛP
ΛE
−1∑

l=0
ej2πΛE l(ΓP−k)/ΛP = δ

[
〈ΓP − k〉(ΛP /ΛE)

]
(4.68)

Likewise, the other exponential term, e−j2πΛE l(ΓP +k)/ΛP , is periodic over k with ΛP/ΛE,

and therefore when k = −ΓP + aΛP

ΛE
then the summation is equal to ΛP/ΛE otherwise the

summation is equal to zero. Using the analysis directly above, the final spectral response of

83

the truncated sequence is

ST [k] = ΛPV [k]
ΛE2j

(
δ
[
〈ΓP − k〉(ΛP /ΛE)

]
− δ

[
〈ΓP + k〉(ΛP /ΛE)

])
(4.69)

Letting RP = ΛP

ΛE
and defining

SE[k] = RP

2j
(
δ
[
〈ΓP − k〉RP

]
− δ

[
〈ΓP + k〉RP

])
(4.70)

Then the final equation can be written as

ST [k] = V [k]SE[k] (4.71)

Applying the logic of the previous proof to a cosine mapping function, as opposed to

sine, yields

CT [k] = V [k]CE[k] (4.72)

where V [k] is the same window function of Theorem 4.6 and CE[k] is

CE[k] = RP

2
(
δ
[
〈ΓP − k〉RP

]
+ δ

[
〈ΓP + k〉RP

])
(4.73)

For a quadrature system, where the output is represented as CST [k] = CT [k] + jST [k], the

truncated output spectrum simplifies even further without any loss of generality.

CST [k] = RPV [k]
2 δ

[
〈ΓP − k〉RP

]
(4.74)

An even more powerful generalization can be made at this point about the relationship

between phase truncation spurs and amplitude spurs from approximations and truncation.

84

This allows the analysis extend beyond single tone generation and be applied to arbitrary

waveform generators or single tone generation with lossy compression.

Theorem 4.7 (DCDO Spectrum with Phase Truncation and Arbitrary ROM). The spurious

response of an arbitrary ROM with an overflowing phase accumulator in the presence of

truncation is

SG[k] = V [k]M [k], k ∈ {0, 1, 2, . . . ,ΛP} (4.75)

where

M [k] = FRP
{A[ΓPn]} [k], (4.76)

V [k] is the windowing function from Theorem 4.6, FRP
{·} is the RP -point discrete Fourier

transform and A[ΓPn] is the ROM sequence generated by the reduced frequency control word

without phase truncation.

Proof. If one closely observes Equation 4.63, it is clear that the RP -point DFT of the ROM

values multiplied by the window function V [k] yields the complete spectrum. In the analysis

a sinusoid was used, but this certainly need not be the case. The ROM values repeat

because of the characteristics of the truncated phase sequence, not the SCMF and thus V [k]

is independent from the choice of ROM values. Thus making AT arbitrary, the contribution

of the output spectrum from the ROM is

M [k] , FRP
{AT [ΓPΛEn]} [k] =

RP−1∑
n=0

AT [ΓPΛEn]e−j2πkn/RP (4.77)

=
RP−1∑
n=0

A[ΓPn]e−j2πkn/RP (4.78)

= FRP
{A[ΓPn]} [k], (4.79)

Note that this is simply the discrete Fourier transform of the ROM without phase trunca-

tion. Finally, in its most general form, the output spectrum of a DCDO with an arbitrary

85

ROM is

SG[k] = V [k]M [k] (4.80)

where the subscript G is intended to represent “general.”

An interesting observation made by Torosyan in his dissertation is that the DFT com-

mutes with sequences “of the form” of those generated by the overflowing phase accumulator.

The proof is rather qualitative and “of the form” is never formally identified. Since the DFT

commutes, the spectrums of two FCWs with the same least period for a DCDO are linear

permutations of each other. This is not too surprising, since the time sequences in Theo-

rem 3.9 have already been shown to be linear permutations of each other. Using the general

closed form equation presented in Theorem 4.7, it is straightforward to prove the spectrums

of the FCWs are simple linear permutations of each other.

Theorem 4.8 (FCW Frequency Sequence Permutation Relationship). The frequency re-

sponse (DFT) of two different FCWs F0 and F1 driving an accumulator with NP states are

permutations of each other if GCD (F0, NP) = GCD (F1, NP).

Proof. Let GCD(F0, NP) = GCD(F1, NP) = d. Then from Theorem 4.7, the corresponding

frequency domain representations of a full period for F0 and F1 are

SG0[k] = V0[k]M0[k] (4.81)

SG1[k] = V1[k]M1[k] (4.82)

If a coefficient α exists such that V0[αk] = V1[k] and M0[αk] = M1[k], then SG0[αk] = SG1[k]

and the proof would be complete. Consider the respective window functions,

V0[k] = 1− e−j2πkΛEΓ−1
P 0/ΛP

1− e−j2πkΓ−1
P 0/ΛP

(4.83)

V1[k] = 1− e−j2πkΛEΓ−1
P 1/ΛP

1− e−j2πkΓ−1
P 1/ΛP

(4.84)

86

where ΓP0 and ΓP1 are multiplicative inverses modulo ΛP of F0 and F1 reduced as per

Lemma 3.3 respectively. Let α = Γ−1
P1ΓP0. Recall that the complex exponential operation

performs an equivalent modulo operation, then

V0[Γ−1
P1ΓP0k] = 1− e−j2πΓ−1

P 1ΓP 0kΛEΓ−1
P 0/ΛP

1− e−j2πkΓ−1
P 0/ΛP

(4.85)

= 1− e−j2πkΛEΓ−1
P 1/ΛP

1− e−j2πkΓ−1
P 0/ΛP

(4.86)

= V1[k] (4.87)

Clearly then an α has been found that satisfies the window function rearrangement. Now

consider M0[k] and M1[k].

M0[k] =
RP−1∑
n=0

AT0[ΛEn]e−j2πkn/RP (4.88)

M1[k] =
RP−1∑
n=0

AT1[ΛEn]e−j2πkn/RP (4.89)

Recall from Chapter 3 that AT0 and AT1 are

AT0[n] = A[PT0[n]] = A

[
d

NE

〈ΓP0ΛEn〉ΛP

]
(4.90)

AT1[n] = A[PT1[n]] = A

[
d

NE

〈ΓP1ΛEn〉ΛP

]
(4.91)

The simplification of the truncated phase sequence is shown in the proof of Theorem 4.6.

Now check to see if M0[αk] = M1[k] by plugging Equation 4.90 into Equation 4.88.

M0
[
Γ−1
P1ΓP0k

]
=

RP−1∑
n=0

A

[
d

NE

〈ΓP0ΛEn〉ΛP

]
e−j2πΓ−1

P 1ΓP 0kn/RP (4.92)

=
RP−1∑
j=0

A

[
d

NE

〈
ΓP0ΛEΓ−1

P0ΓP1j
〉

ΛP

]
e−j2πΓ−1

P 1ΓP 0kΓP 1Γ−1
P 0j/RP (4.93)

=
RP−1∑
j=0

A

[
d

NE

〈ΓP1ΛEj〉ΛP

]
e−j2πkj/RP = M1 [k] (4.94)

87

The change of variable in the summation from n to j by setting n = Γ−1
P0ΓP1j while keeping

the summation limits the same is not trivially apparent. It is permissible in this instance

because ΓP1 and Γ−1
P0 are both coprime to ΛP and A and the exponential are simply rear-

rangements of the original sequence as both are effectively modulo ΛP or RP = ΛP/ΛE (see

Theorem 3.9 for phase accumulator sequence permutation explanation). By multiplying by

a coprime number the least period of the sequence remains the same and all the values of A

and the exponential are summed, albeit in a different order.

The same operations can also be used to show that M1[Γ−1
P0ΓP1k] = M0[k].

Since the spectrums of FCWs with the same least period are permutations of each other,

it is important to determine the maximum possible number of least periods. It turns out that

in the case of the phase accumulator, it is equivalent to deriving how many possible greatest

common divisors are possible between NP and F . This observation follows observing that

the least period ΛP is computed from NP and F with ΛP = NP/ gcd(F,NP). Deriving the

number of greatest common divisors between an arbitrary number F and a fixed number

NP is equivalent to deriving the total number distinct factors that can be formed from the

prime factors of NP . That the integer NP has a unique prime factorization comes from the

Unique Factorization Theorem [30].

Theorem 4.9 (Number of Phase Accumulator Least Periods). Let the prime-power de-

composition of NP be pinn p
in−1
n−1 . . . p

i1
1 where pj is a prime factor of NP and ij is number of

occurrences of pj in NP . The number of possible least periods with F = 1, 2, . . . , NP − 1 is

then (in + 1)(in−1 + 1) . . . (i1 + 1)− 1.

Proof. Let the prime-power decomposition of NP be pinn p
in−1
n−1 . . . p

i1
1 . F will have some com-

bination of prime factors in common with NP , if not then F and NP are coprime. So first

we decide how many copies of pn are common between F and NP if F is allowed to equal

NP . The choices are 0, 1 up to in and thus there are in + 1 such choices. Next we decide

88

how many copies of pn−1, and so forth to p1. Thus there are

(in + 1)(in−1 + 1) . . . (i1 + 1) (4.95)

possible combinations. But F < NP so the combination GCD(F,NP) = NP is discarded,

hence the subtraction of one. Note that F = 0 and F = NP are the same case since

P [n+NP] = P [n]. The final equation for the number of meaningful least periods is then

(in + 1)(in−1 + 1) . . . (i1 + 1)− 1 (4.96)

As a quick sanity check, Torosyan and Nicholas claim that there are BP such combina-

tions for a BP -bit accumulator. In their analyses both NP and NE are fixed to powers of

two. Applying Theorem 4.9 with NP = 2BP , it is clear that p1 = 2 and i1 = BP and thus

there are BP + 1− 1 = BP . Thus the specific case chosen works correctly.

To summarize the critical observations made in this chapter:

1. A closed form equation for the spectrum of a DCDO with an arbitrary mapping func-

tion in the presence of phase truncation is developed in Theorem 4.6 and Theorem 4.7.

(a) The special case of sinusoids is explicitly solved.

(b) The spectrum of the ROM and the window function can be computed indepen-

dently and later used to quickly generate the exact expected spectrum.

2. The tones generated by amplitude mapping non-idealities are disjoint from the spurs

from phase truncation.

3. The spectrums of FCWs with the same least period of simple permutations of each

other which is shown in Theorem 4.8.

89

(a) This implies that a DCDO can be completely characterized by analyzing only

FCWs that correspond to distinct least periods, which is the number of prime

factors in NP .

4.4 Interpreting Results

To gain an intuition into the results from Theorem 4.6, the periodicity of the terms

of SG[k] is derived. This is accomplished by calculating the period of each multiplication

term of ST [k]. It has already been noted that the least period of AT [n] is ΛP in the proof of

Theorem 4.6, and thus an ΛP -point DFT is taken to prevent any spectral leakage or aliasing.

An N -point DFT is periodic with N , which is shown in the following lemma

Lemma 4.2 (DFT Periodicity). The N-point Discrete Fourier Transform is periodic with

N .

Proof. LetX[k] be the DFT of a sequence x[n] of lengthN . We wish to show thatX[k+N] =

X[k].

X[k +N] =
N−1∑
n=0

x[n]e−j2π(k+N)/N (4.97)

=
N−1∑
n=0

x[n]e−j2πk/Ne−j2πN/N (4.98)

=
N−1∑
n=0

x[n]e−j2πk/N = X[k] (4.99)

The exponential is simplified by applying Euler’s formula.

e−j2π = cos (−2π) + j sin (−2π) = 1 + 0j = 1 (4.100)

90

The first term of SG[k] under investigation is the window function V [k]. Recall again

that under analysis is the case for when NE | NP . The least period of V [k] is derived by

calculating a such that V [k + a] = V [k].

Lemma 4.3 (Window Function Periodicity). The window function V [k] has least period ΛP .

Proof. As stated already, we are search for the smallest a ∈ P such that both

V [k + a] = 1− e−j2π(k+a)Γ−1
P ΛE/ΛP

1− e−j2π(k+a)Γ−1
P /ΛP

(4.101)

= 1− e−j2πkΓ−1
P ΛE/ΛP e−j2πaΓ−1

P ΛE/ΛP

1− e−j2πkΓ−1
P /ΛP e−j2πaΓ−1

P /ΛP
(4.102)

Clearly if the newly added exponential terms equal one, then the equation holds. So we are

searching for a such that

e−j2πaΓ−1
P ΛE/ΛP = 1 (4.103)

e−j2πaΓ−1
P /ΛP = 1 (4.104)

The smallest such a that works for Equation 4.104 is a = ΛP because Γ−1
P is coprime with ΛP

(from the proof of Theorem 4.6). The smallest such a for Equation 4.103 is RP = ΛP/ΛE,

which is less than ΛP . If ΛP is a period of Equation 4.103, then the least period for the

window function has been found.

e−j2πΛP Γ−1
P ΛE/ΛP = e−j2πΓ−1

P ΛE = 1 (4.105)

Therefore a = ΛP is the least period of V [k].

The next term of SG[k] is the ROM spectrum M [k]. The following lemma derives the

typical least period of M [k]. It does not hold for cases where the ROM itself has a least

period less than the length of the ROM. The author knows of no cases where this would

91

occur in practice, as ROMs consume valuable chip real-estate and periodicity in the ROM

implies that the size can be trivially compressed.

Lemma 4.4 (Period of Amplitude Spectrum with Phase Truncation). The function M [k]

from Theorem 4.7 is periodic with RP = ΛP/ΛE.

Proof. From Theorem 4.7, M [k] is shown to be

M [k] = FRP
{AT [ΛEn]} [k] (4.106)

From Lemma 4.2, an RP -point DFT is periodic with RP . There may be a smaller period for

M [k] for different AT (e.g., consider a constant zero), but typically this is not the case.

How many periods of M [k] are in SG[k]? Since SG[k] has least period ΛP (from

Lemma 4.2) and M [k] has period RP = ΛP/ΛE, the answer is clearly ΛE. Practically,

this means that the spectrum of the ROM is repeated ΛE times across the spectrum while

being modulated by the window function.

It is clear then that the spurs from phase truncation are “aliases” of the desired spectrum

whose magnitude and phase are solely determined by the window function. Now we derive

the shape of the function V [k]. Firstly, the expression can be rewritten in such a way as to

clearly separate the magnitude of the window function from the phase.

V [k] = 1− e−j2πkΛEΓ−1
P 0/ΛP

1− e−j2πkΓ−1
P 0/ΛP

=
e−jπkΛEΓ−1

P 0/ΛP

e−jπkΓ−1
P 0/ΛP

 ejπkΛEΓ−1
P 0/ΛP − e−jπkΛEΓ−1

P 0/ΛP

ejπkΓ−1
P 0/ΛP − e−jπkΓ−1

P 0/ΛP

= e−jπk(ΛE−1)Γ−1
P 0/ΛP

sin
(
πkΛEΓ−1

P0/ΛP

)
sin

(
πkΓ−1

P0/ΛP

)
 (4.107)

The conversion from the sum of two complex exponentials to the sine function is an applica-

tion of Euler’s formula (Equation 1.31). Clearly then for a given k, the phase and amplitude

92

of the truncation spur can be immediately, directly computed.

|V [k]| =
sin

(
πkΛEΓ−1

P0/ΛP

)
sin

(
πkΓ−1

P0/ΛP

) (4.108)

Now another interesting observation can be made. The numerator of V [k] is periodic

with RP as shown in the proof of Lemma 4.3. This can also be trivially shown to be true

for the numerator of |V [k]|. Recall that M [k] is also periodic with RP . This implies the

magnitude of the ROM spectrum replicas within M [k] are identical after multiplying by the

numerator of the window function, which furthermore implies that the magnitude of the

spurs are completely determined by the denominator of the window function. To reiterate,

the magnitudes of the spurs from phase truncation are completely determined by analyzing

the properties of a single cosecant term.

1
sin

(
πkΓ−1

P /ΛP

) = csc
(
πkΓ−1

P

ΛP

)
(4.109)

4.4.1 Ideal SCMF Example

A visual explanation of the preceding will assist in understanding the conclusions. An

SCMF must be selected and the size of the phase accumulator must be selected. Let us

analyze a sine-only SCMF with no amplitude truncation. The spectrum, given by ST [k], of

a such setup was derived in Theorem 4.6. Next example values for the phase accumulator

must be selected in order to populate the data required for the plots. Let us choose ΓP = 1.

This is not an arbitrary choice, as it has some interesting properties that allows for the

direct computation of the N largest phase truncation spurs. Next we choose ΛE = 4 and

ΛP = 128, and these selections are arbitrary other than that ΛE | ΛP (a requirement in the

current analysis). ΛE is also chosen small to make the resulting plots more readable (recall

from the previous section that ΛE replicas of the ROM spectrum are present in SG[k]).

93

First the multiplicative inverse of ΓP modulo ΛP is computed. The selection of ΓP = 1

makes such a computation obvious, as 1 · 1 = 1 and thus Γ−1
P = 1. The magnitude of this

particular case is then found by plugging the selected values into Equation 4.108

V [k] = sin (πk/32)
sin (πk/128) , k = {0, 1, . . . , 127} (4.110)

As Torosyan in his dissertation, the numerator and denominator of the above window func-

tion are plotted independently. Figure 4.3a shows the magnitude of window function numer-

ator and Figure 4.3b shows the magnitude of the window function denominator. Note that

the numerator has ΛE = 4, which matches the theory from Section 4.4.

(a) Window Function Numerator

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4

M
ag
ni
tu
de

Normalized Frequency

(b) Window Function Denominator

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4

M
ag
ni
tu
de

Normalized Frequency

Figure 4.3: Window Function from Example

Now SE[k] (Equation 4.70) can also be computed given the selected values.

SE[k] = 16
j

(δ [〈1− k〉32]− δ [〈1 + k〉32]) (4.111)

Thus between k = {−64,−63, . . . , 63}, tones appears at k = {−64 + 1,−32 + 1, 1, 32 + 1}

and k = {−32 − 1,−1, 32 − 1, 64 − 1}. Figure 4.4a is a plot of SE[k]. If only considering

the the spectrum from 0 to fny/2, there are 4 unique tones, only 1 of which is the desired

94

ton and the others are spurs. This can be generalized to the ideal SCMF case, there are

ΛE − 1 spurs, which is to say that only one replica is desired, the others are spurs. From

the previous discussion, it was noted that the magnitude of the numerator of the window

function is periodic with the SE[k] and Figure 4.4b shows the multiplication of the two terms.

(a) SCMF Spectrum

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4

M
ag
ni
tu
de

Normalized Frequency

(b) Numerator Times SCMF Spectrum

0

0.05

0.1

0.15

0.2

-0.4 -0.2 0 0.2 0.4

M
ag
ni
tu
de

Normalized Frequency

Figure 4.4: Window Function from Example

Which of the replicas are spurs and which of these are the intended generated tone?

Consider the untruncated case to act as a guide to the discussion. In Section 1.2, no number

theory reductions are made in the analysis and a NP -point DFT is performed on the output

of the ideal SCMF. It was noted in the proof of Theorem 4.6 that the SCMF output is

actually periodic with ΛP , so a ΛP -point DFT should be sufficient to capture the data.

S[k] =
ΛP−1∑
n=0

sin
(2π
NP

〈Fn〉NP

)
e−j2πkn/ΛP (4.112)

=
ΛP−1∑
n=0

sin
(2π

ΛP

〈ΓPn〉ΛP

)
e−j2πkn/ΛP (4.113)

Applying Euler’s formula and computing the summation,

S[k] = 1
2j
[
δ
[
〈ΓP − k〉ΛP

]
− δ

[
〈ΓP + k〉ΛP

]]
(4.114)

95

This lead provides enough information to hypothesize that the fundamental tones for ST [k]

are located at k = ΓP and k = −ΓP are the fundamental tones. Back to the particular

problem under consideration, the desired tone is at k = −1, 1.

The two portions of information left to consider are the SFDR and SNR due to phase

truncation. This is addressed in Section 4.6. But in the next section, a more complex

example is provided with the full ST [k] spectrum computed.

4.5 Numerical Verification of Theory

This section provides several examples to demonstrate the developed phase truncation.

The theory can be fully verified without any measured results, since the analysis applies

to the digital portion of a DDFS. Here complete visibility into the behavior of the device

can be achieved through simulation. One important note is that long FFT computations

will start to show noticeable computational error. This results from the finite precision of

the floating point precision calculations. The direct computation from Theorem 4.6 requires

fewer operations, for a 32-bit accumulator over a billion fewer mathematical operations, and

results in a more precise answer.

Figure 4.5a shows the absolute error between the theory and full simulation of a 12-bit

accumulator with the least 4 bits truncated with frequency control word 7. The error is

presented in this manner because plotting the spectrums of simulation versus theory on the

same plot causes the results to be overlaid in such as way as to be indistinguishable (as

shown in Figure 4.5b).

4.6 SFDR and SNR in the Presence of Phase Truncation

In this section, the theory from Section 4.3 is used to understand the impact of trun-

cation on the system performance metrics such as spurious-free dynamic range (SFDR) and

signal to noise ratio (SNR) . When writing about “performance metrics”, care is taken to be

precise as to the meaning of the terminology. The SFDR is defined as the ratio of the power

96

(a) Error Between Theory and Simulation

0

2e-09

4e-09

6e-09

8e-09

1e-08

0 1000 2000 3000 4000

A
b
so
lu
te

E
rr
or

k

(b) Theory and Simulation Overlay

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000

S
p
ec
tr
u
m

(d
B
)

k

Sim.
Theory

Figure 4.5: Numerical Validation

of a single fundamental tone and the power of the largest spurious tone in the spectrum [32].

Equation 4.115 expresses the relationship in a mathematical form,

SFDR = Pfund

Pspur-max
(4.115)

where Pfund is the power of the single fundamental tone at the output port and Pspur-max is

the power of the largest spur measured at the output port. SFDR is regularly reported in

decibels,

SFDRdb = 10 log10

(
Pfund

Pspur-max

)
(4.116)

The SNR is defined as the ratio of the power of the fundamental tone to all non-harmonically

related spur and noise power. As with SFDR, SNR is most often reported in decibels.

SNR = 10 log10

(
Pfund∑

Pspur −
∑
Pharm

)
(4.117)

Of interest in the analysis is whether the phase truncation generates spurs harmonically

related to the fundamental tone. The total harmonic distortion (THD) is defined as the ratio

97

of the power of the single fundamental tone and the summed power all tones harmonically

related to the fundamental tone.

THD = 10 log10

(
Pfund∑∞
k=2 Pk

)
(4.118)

where Pk is power of the kth harmonic relative to the fundamental tome Pfund. Again, the

result is generally reported in decibels.

4.6.1 SFDR

In Section 4.4, it was noted that the denominator of the window function completely

determines the relationship between ROM spectrum replicas. In this section, the SFDR

of the ideal SCMF in the presence of phase truncation is derived. To begin the analysis,

consider Figure 4.3b from the example. Keep in mind that this term is in the denominator,

thus lower values corresponds to a larger tones. For the ΓP = 1 case, the magnitude of the

denominator of the window function monotonically increases with increasing k from zero to

ΛP/2− 1 and monotonically increases with decreasing k from zero to −ΛP/2.

This is always the case for ΓP = 1, regardless of the value of ΛP . This can be seen by

plugging Γ−1
P = 1 into the denominator of the window function (Equation 4.109).

1
sin

(
πk
ΛP

) = csc
(
πk

ΛP

)
(4.119)

Plugging in at the extreme values, sin(0) = 0 and |sin(π(−ΛP/2)/ΛP)| = sin(π/2) = 1 and

lastly |sin(π(ΛP/2)/ΛP)| = sin(π/2) = 1. Therefore the largest replicas for ΓP = 1 case

occur where the the denominator is least or the nearest tone to the right of k = 1 and to the

left of k = −1. Going back to the example, the worst case spur is located at

kspur = RP − 1 (4.120)

98

The next worst spur would occur at RP +1 then 2RP −1 and so forth such that the locations

of the spurs are

kspur ∈ {nRP − 1, nRP + 1} , n ∈ {0, 1, . . . ,ΛE/2} (4.121)

and the magnitudes of the spurs are arranged from largest to smallest with increasing value

of k and consequently increasing value of n. Recall that only the relationship of the denom-

inator matters, therefore the SFDR for the ΓP = 1 case can be written as the ratio of the

denominators of two window functions (writing them as the ratio of two window functions

would work as well, but the numerators cancel out anyway).

csc (πkfund/ΛP)
csc (πkspur/ΛP) = csc (π/ΛP)

csc (πRP/ΛP − π/ΛP) (4.122)

= sin (πRP/ΛP − π/ΛP)
sin (π/ΛP) (4.123)

Recalling that RP = ΛP/ΛE,

sin (π(ΛP/ΛE)/ΛP − π/ΛP)
sin (π/ΛP) = sin (π/ΛE − π/ΛP)

sin (π/ΛP) (4.124)

Using the argument difference trigonometric identity for sine, the equation reduces further

to

sin (π/ΛE) cos (π/ΛP)− cos (π/ΛE) sin (π/ΛP)
sin (π/ΛP) = sin (π/ΛE) cot (π/ΛP)− cos (π/ΛE)

(4.125)

It is now important to reiterate how the least periods are related to the number of

states in the phase accumulator and the FCW. Both ΛP and ΛE are functions of F , so

99

Equation 4.125 can be rewritten in terms of the original design parameters.

ΛP = NP

GCD(F,NP) (4.126)

ΛE = NE

GCD(F,NE) (4.127)

Substituting back into Equation 4.125

SFDR = sin
(
πGCD(F,NE)

NE

)
cot

(
πGCD(F,NP)

NP

)
− cos

(
πGCD(F,NE)

NE

)
(4.128)

An alternative expression could be created substituting back into Equation 4.124 as well

SFDR =
sin

(
πGCD(F,NE)

NE
− πGCD(F,NP)

NP

)
sin

(
πGCD(F,NP)

NP

) (4.129)

Recall that NE | NP in the current analysis which by definition implies there is an

integer c such that cNE = NP . But NQ = NP/NE has already been defined as the number of

address states in the SCMF. NE | NP for there to be any realizable optimization in hardware

due to truncation. So there is further simplification to the expression yet.

GCD(F,NP) = GCD(F,NQNE) = GCD(F,NE)GCD(ΓE, NQ) (4.130)

where ΓE = F/GCD(F,NE). Substituting this into Equation 4.129

SFDR =
sin

(
πGCD(F,NE)

[
1
NE
− GCD(ΓE ,NQ)

NP

])
sin

(
πGCD(F,NE)GCD(ΓE ,NQ)

NP

) (4.131)

If GCD(F,NE) = NE then there is no truncation and infinite SFDR. Therefore, for any

interesting SFDR value, the argument GCD(F,NE)/NE has a minimum value of 1/NE and

maximum possible value of 1/pl where pl is the least prime factor of NE. Without loss of

generality, the smallest prime integer is 2 and therefore the maximum possible value of the

100

term is 1/2. Now consider the argument GCD(ΓE, NQ)/NP , it has a minimum value of 1/NP

and a maximum possible value of (NQ/2)/NP = 1/2NE.

4.6.2 Worst Case SFDR

To gain an intuition for how the SFDR changes with NP , NE and F , the numerator and

denominator of Equation 4.131 are analyzed. First we fix GCD(ΓE, NQ) and see how the

numerator and denominator change with increasing GCD(F,NE). NE = 32 and NP = 4096

in the plotted figures. From the plot of the numerator in Figure 4.6a and the denominator

in Figure 4.6b, it appears both increase monotonically with increasing GCD(F,NE). Closely

inspecting the arguments in the numerator and denominator reveal this to be the case as

well, as the arguments increasing monotonically with increasing (recall that the maximum

value of GCD(ΓE, NQ)/NP = 1/(2NE) so 1/NE − 1/(2NE) is always a positive quantity).

Since sine monotonically increases from 0 to π and the limits of the arguments are computed

in the previous paragraph and shown to be within that interval, it is always the case that

both increase monotonically.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

N
um

er
at
or

(E
qu

at
io
n
4.
13
7)

GCD(F,NE)

GCD(GP,NQ) = 1
GCD(GP,NQ) = 2

(a) Numerator of SFDR Function

0

0.005

0.01

0.015

0.02

0.025

2 4 6 8 10 12 14 16

D
en
om

in
at
or

(E
qu

at
io
n
4.
13
7)

GCD(F,NE)

GCD(GP,NQ) = 1
GCD(GP,NQ) = 2

(b) Denominator of SFDR Function

Figure 4.6: Numerical Validation

101

Now it must be determined whether the Equation 4.131 decreases or increases with

increasing GCD(F,NE). Figure 4.7 certainly seems to indicate that the SFDR decreases

with increasing values of GCD(F,NE). There is another way to show prove this to be the

40

60

80

100

120

140

2 4 6 8 10 12 14 16

Eq
ua

tio
n
4.
13
7

GCD(F,NE)

GCD(GP,NQ) = 1
GCD(GP,NQ) = 2

Figure 4.7: SFDR Function (Magnitude)

case for arbitrary NE and NP . Instead of computing the derivative and dealing with difficult

trigonometry, several values of GCD(F,NE) can be computed. First let GCD(F,NE) = 1,

SFDR1 =
sin

(
π
(

1
NE
− GCD(ΓE ,NQ)

NP

))
sin

(
πGCD(ΓE ,NQ)

NP

) (4.132)

The next prime number after 1 is 2, so now GCD(F,NE) = 2 is evaluated

SFDR2 =
sin

(
2π
(

1
NE
− GCD(ΓE ,NQ)

NP

))
sin

(2πGCD(ΓE ,NQ)
NP

) (4.133)

Applying the double angle formula to the both the sine term in the numerator and denomi-

nator yields

SFDR2 =
2 sin

(
π
(

1
NE
− GCD(ΓE ,NQ)

NP

))
cos

(
π
(

1
NE
− GCD(ΓE ,NQ)

NP

))
2 sin

(
πGCD(ΓE ,NQ)

NP

)
cos

(
πGCD(ΓE ,NQ)

NP

) (4.134)

102

Note that the SFDR1 term appears as a multiplication term in SFDR2. And thus the previous

equation reduces to

SFDR2 = SFDR1

cos
(
π
(

1
NE
− GCD(ΓE ,NQ)

NP

))
cos

(
πGCD(ΓE ,NQ)

NP

)
 (4.135)

Recall that cosine monotonically decreases from zero to π/2. From the previous discussions, it

was noted that 2NE ≤ NP and typically NE � NP . For the smallest value of GCD(ΓE, NQ),

i.e. 1, the denominator clearly dominates since π/NP < π/(1/NE−1/NP) and thus SFDR2 <

SFDR1. For the largest possible value of GCD(ΓE, NQ), i.e. NQ/2, π/(2NE) = π/2NE, in

which case SFDR2 = SFDR1. Thus for every possible value of GCD(ΓE, NQ) except for one

case the SFDR decreases with increasing GCD(F,NE) and in that case, the SFDR is flat.

This means that for a given number of phase and error states, the worst case SFDR can

be directly calculated. It occurs for the largest possible GCD(F,NE) less than NE and the

largest possible GCD(ΓE, NQ) less than NQ. First set the largest possible GCD(F,NE) =

NE/pe, where pe is the least prime factor of NE. Substituting this expression into Equa-

tion 4.131

sin
(
π
(
NE

pe

) (
1
NE
− GCD(ΓE ,NQ)

NP

))
sin

(
π
(
NE

pe

) (GCD(ΓE ,NQ)
NP

)) =
sin

(
π
pe
− πGCD(ΓE ,NQ)

peNQ

)
sin

(
πGCD(ΓE ,NQ)

peNQ

) (4.136)

= sin
(
π

pe

)
cot

(
πGCD(ΓE, NQ)

peNQ

)
− cos

(
π

pe

)
(4.137)

Now the we simply insert the worst case value for GCD(ΓE, NQ) = NQ/cq to arrive at

the final value. Here cq ranges from NQ if ΓE and NQ are coprime to pq, the smallest prime

factor that is common to ΓE and NQ, if they are not coprime. Finally, this yields

SFDRwc = sin
(
π

pe

)
cot

(
π

pecq

)
− cos

(
π

pe

)
(4.138)

103

Note that Equation 4.138 is an exact expression for the worst possible SFDR due to phase

truncation spurs for all possible FCW combinations under the assumptions presented in this

section.

An expression was developed for the special case where NP and NE are powers of two in

Torosyan’s dissertation. If the analysis above is correct, then Equation 4.138 should reduce

to the following:

SFDRwc = cot
(

π

2NQ

)
. (4.139)

Which is a surprising result considering all the complicated analysis required to arrive here.

This is one of the few times where the final solution to the exact analysis provides a simpler

result than the solution arrived at by approximations. Let NP and NE be powers of two.

Then the smallest prime factor of NE is pe = 2. The largest value of GCD(ΓE, NQ) is 1. This

is because NQ is a power of two as well. But for truncation spurs to exist, GCD(F,NE) must

be less than NE (or else there is nothing to truncate, because the truncation error sequence

is always 0). sin(π/2) = 1 and cos(π/2) = 0, so the final result is indeed

sin
(
π

2

)
cot

(
π

2NQ

)
− cos

(
π

2

)
= cot

(
π

2NQ

)
(4.140)

An interesting observation can be made here that unites Jenq’s analysis of SNR with

the SFDR analysis in this section. Equation 2.40 is exactly the same as Equation 4.139,

which means the worst case SFDR is equal to the best case SNR. This is because all of the

harmonic energy is stored in a single spur at the worst case SFDR. The SNR for a spectrum

with a single spur is always equal to the SFDR for the same spectrum. Considering that the

two techniques arrived to the same conclusion through very different paths.

104

4.6.3 Spur Locations

Using Theorem 4.8, the spectrums of frequency words with the same least period are

simple linear permutations of each other and thus the SFDR does not change for a given

ΛP . Let ΓP1 be an arbitrary reduced FCW with same ΛP as the ΓP = 1 example. Applying

the permutations to spur locations, a closed form solution for the locations of spurs can be

derived,

kspurΓ−1
P1ΓP = kspurΓ−1

P1 (4.141)

=
{
nΓ−1

P1RP − 1, nΓ−1
P1RP + 1

}
, n ∈ {0, 1, . . . ,ΛE/2} (4.142)

where the magnitudes of the spurs are still sorted by increasing n, though no longer increasing

k. To find the order of spur magnitude, simply apply the frequency permutation to find its

location for the ΓP = 1 case.

Note that the number of spurs and spur locations is only for a pure sinusoidal case.

From Theorem 4.7, it is clear that the entire spectrum of the ROM is copied ΛE times over

the full spectrum. Thus if there are hundreds of amplitude quantization spurs or compression

spurs, then all of the quantization spurs are copied in the spectrum. Thus phase truncation

can result in thousands of spurs being introduced into the spectrum. This observation does

not fall out of previous DDFS analysis to the author’s knowledge.

4.6.4 SNR

The signal to noise ratio can also be computed from the closed form analysis of phase

accumulators. The first closed form analysis of this was performed by Jenq in his work and

is given in Chapter 2. To calculate the SNR using this technique, all the spurs must be

calculated directly. Since the spurs can be computed directly without computing the full

DFT, this calculation is not as resource intensive as it may seem. Also, the calculation need

only be calculated for the total number of possible least periods of the phase accumulator

105

(Theorem 4.9). Jenq’s technique only provides an upper bound and may not be used in the

case of a lossy sinusoidal compression technique. The full spectrum calculation in this work

actually uses the the values from the SCMF (Theorem 4.7).

4.7 Architecture Changes for Improved Spurious Response

From the observations in Section 4.3 and Section 4.6, simple modifications to phase

accumulator architecture can yield interesting results. The analysis has shown that small

changes to the FCW result in dramatically different output spectrums. The system can be

made agnostic to the FCW choice producing the same SFDR and SNR.

4.7.1 Force Coprime FCWs

One technique for improving the worst case SFDR of the DCDO in the presence of

phase truncation is to force an FCW that is coprime to the number of states (NP) in the

phase accumulator. This technique, though not described in such terms, is originally pro-

posed by Nicholas in [23]. The computational complexity of the technique is rather small,

as only a single bit needs to be added to the phase accumulator. This is accomplished by

inserting a toggle flip-flop to the carry-in of the first full-adder of the phase accumulator

adder. Conceptually, half of the available phase accumulator states are being discarded,

meaning that an unmodified phase accumulator that only accepted odd-valued FCWs would

produce the same results. The difference in Nicholas’ suggestion is that the hardware toggles

a 1 on the carry-in of LSB full-adder to make every FCW coprime (i.e. an efficient hard-

ware realization). Figure 4.8 shows a block diagram of the modification necessary for the

implementation.

The drawback of this implementation is that the SNR of the is degraded and spurs are

introduced in FCWs that do not experience phase truncation. Using Equation 4.137 and

106

D Q

Qclk

F
Cin

Reg.BP

BP

P

Figure 4.8: Forcing Coprime FCWs

Equation 4.139, the improvement to the worst case SFDR without the modification is

SFDRwc1 = cot
(

π

2NQ

)
= cot

(
πNE

2NP

)
(4.143)

The worst case SFDR with the modification is the SFDR of a coprime FCW driving a

conventional phase accumulator. Let GCD(F,NE) = 1 and GCD(F,NP) = 1, which is what

it means to force a coprime FCW. Using Equation 4.125 and noting that ΛP = NP and

ΛE = NE for this case,

SFDRwc2 = sin
(
π

NE

)
cot

(
π

NP

)
− cos

(
π

NE

)
(4.144)

Now it simply needs to be shown that this is an improvement over Equation 4.143. This can

be done by dividing SFDRwc2 by SFDRwc1, which yields

SFDRwc2

SFDRwc1
=

sin
(
π
NE

)
cot

(
π
NP

)
− cos

(
π
NE

)
cot

(
πNE

2NP

) (4.145)

= csc
(
π

NP

)
tan

(
πNE

2NP

)
sin

(
π

NE

− π

NP

)
(4.146)

107

Figure 4.9 numerically shows that SFDRwc2 is always better than SFDRwc1 by 1.88 dB, which

is the extreme case where NP−2 bits are truncated. In general the improvement of the worst

case SFDR is better than 3.9 dB but not by much. The expression asymptotically approaches

a value around 3.922 dB which prevents any further improvement with this methodology.

2

2.5

3

3.5

4

2 4 6 8 10 12 14

10
lo

g 1
0

(S
FD

R
w

c
2/
SF

D
R

w
c
1)

BT

NP = 8
NP = 9
NP = 10
NP = 11
NP = 12
NP = 13
NP = 14
NP = 15
NP = 16

Figure 4.9: Modification SFDR Improvement

The technique by Nicholas impacts the frequency output of the DDFS. It effectively

adds an extra bit to the accumulator but forces the FCW to 1.

f0 = F

NP

fclk + 1
2NP

fclk (4.147)

Another simple modification can be made to prevent spurs from being generated in

cases where phase truncation does not occur. This technique is novel to this work to the

author’s knowledge. Applying a logic “or” to each of the truncated bits detects the case of

GCD(F,NE) = NE, in which case no phase truncation spurs occur. Sending the indicator to

a logic “and” operation on the output of the toggle flip-flop addresses the issue. Figure 4.10

shows the necessary modification.

108

D Q

Qclk

F

Cin

Reg.BP

BP

P

BT

Figure 4.10: Forcing Coprime FCWs (Modification)

4.7.2 Phase Accumulator with Prime Number of States

Another technique for improving the worst case SFDR of the DCDO in the presence of

phase truncation is to make the number of states in the phase accumulator a prime number.

One special set of prime numbers that takes advantage of every state achievable by a BP bit

register minus one is a Mersenne Prime, which is a prime number of that form MP = 2p− 1.

Table 4.1 provides four Mersenne prime number that can be easily implemented without

losing many states. The implementation is also inexpensive (though not as efficient as the

forced coprime FCW technique in Section 4.7.1).

Table 4.1: List of Mersenne Primes for Phase Accumulation

p MP

13 8191
17 131071
19 524287
31 2147483647

This technique works because every FCW is coprime to a phase accumulator with a

prime number of states. The worst case SFDR for BP = 17 and BT = 5 is 68.325 dBc,

which is computed using Equation 4.124 and converting to decibels. Now consider the

109

improvement by forcing NP = 231 − 1. The major theorems from Chapter 4 cannot be

used because NE - NP , but fortunately, the number of least periods analysis does work.

This means that the SFDR needs to be calculated only once for all FCW (there is only

one possible least period since all the FCW are prime to a prime-valued accumulator). The

spectrum for NP = 217− 1 and F = 1441 is plotted in Figure 4.11 and the worst case SFDR

is found to be 72.12 dBc. This is an improvement of approximately 3.8 dB, so the same limit

that existed for modification in Section 4.7.1 exists here.

-120

-100

-80

-60

-40

-20

0

0 0.1 0.2 0.3 0.4 0.5

N
or
m
al
iz
ed

O
u
tp
u
t
P
ow

er
(d
B
)

Normalized Frequency

Figure 4.11: Mersenne Prime (17) Spectrum

This solution is not as elegant as forcing coprime FCWs because the spectrum is always

polluted with spurs despite the 3.8 dB improvement in SFDR. With the modification shown

in Figure 4.10, a direct 3.9 dB improvement is achieved when phase truncation spurs are

present otherwise the spectrum is clean when there is no phase truncation.

110

Chapter 5

Parallelization of Phase Accumulator

A core component of the DCDO is the overflowing accumulator, whose behavior has

been the target of the theory presented in the preceding chapters. The accumulator gener-

ates the periodic sequence analogous to the periodic phase of a sinusoid. The mathematics

surrounding the sequences generated by a phase accumulator has already been discussed in

Section 1.2 and Chapter 3. In this section, the hardware implementations of phase accu-

mulators are presented. Figure 5.1 provides a block diagram of an accumulator with LFM

capabilities.

Frequency Accumulator

BF

M
U
X

2
:1

BF Freq.
Reg.

BF

FSTEP

BF

FSTART

BF

SELF

Phase Accumulator

BP

M
U
X

2
:1

BP Phase
Reg.

BP

P

PSTART

BP

SELP

F

clk

Figure 5.1: Phase Accumulator with LFM

BF is the number of frequency control word bits, BP is the number of phase accumu-

lator bits, FSTART is the starting FCW when LFM is enabled, FSTEP is the linear frequency

increment, PSTART is the starting phase of the accumulator, fclk is the frequency at which

the accumulators are clocked, F is the value of the frequency register and P is the value of

the phase register. This matches the naming conventions used thus far in this document.

111

FCW0

FCW1

FCW2

FCW3

FCW4

D

D

D

D

D

∑

D

D

D

D

D

D

∑

D

D

D

D

D

D

∑

D

D

D

D

D

D

∑

D

D

D

D

D

D

∑

D

D

D

D

D

P0

P1

P2

P3

P4

Figure 5.2: Block Diagram of Pipeline Accumulator

5.1 Pipelined Accumulator

The most common accumulator architecture chosen to address the problem of achieving

high frequency operation is the pipeline accumulator [33],[34],[35],[36]. Figure 5.2 presents

a conventional pipeline phase accumulator for five bits of phase accumulation. “High fre-

quency” is a subjective term but implies operational frequencies relatively high with respect

to the unity-gain band-width product (fT) of target technology. At these frequencies static

rail-to-rail CMOS fails to operate correctly.

The term pipelining refers to inserting a synchronous delay to break large combinatorial

logic into smaller logical blocks with less propagation time. Each “D” in the figure represents

a D-Flip-Flop (DFF) and each capital Greek Σ character is a full adder. In many cases this

allows the overall clock rate of the system to increase dramatically over carry-save and carry

look-ahead architectures. In the most extreme incarnation, every bit of the accumulator is

pipelined, thus the longest delay between two system clocks is a full adder. Using current

mode logic (CML), also called emitter coupled logic (ECL) when bipolar transistors are

used or source coupled logic (SCL) when NFETs are used, extremely high frequencies can be

obtained. The change to CML is not without drawbacks, since the static power consumption

is nearly equivalent to the dynamic power consumption, an issue not present with rail-to-rail

CMOS logic. Figure 5.2 demonstrates the traditional implementation of a pipeline phase (or

frequency) accumulator using 5-bits.

112

A different architecture is necessary for obtaining LFM at multi-GHz clock speeds when

a pipelining architecture is chosen. Figure 5.3 is a novel pipeline architecture that merges the

backend DFFs of the frequency accumulator with the frontend DFFs of the phase accumu-

lator, thus saving a significant amount of area and power. Additional savings can be made

FCW0

FCW1

FCW2

FCW3

FCW4

D

D

D

D

D

∑

D

D

D

D

D

D

∑

D

D

D

∑

D

D

∑

D

D

D

D

∑

D

D

∑

D

D

D

D

∑

D

D

∑

D

D

D

D

∑

D

D

D

D

D

D

∑

D

D

D

D

D

P0

P1

P2

P3

P4

Figure 5.3: Block Diagram of Pipeline Accumulator with LFM

by removing the front registers entirely. Clearly this is possible since the FCW is generally

held for many clock cycles and thus there is no need to pipeline. Using this technique causes

undesirable phase jumps when changing FCWs. However, even with the power savings, the

accumulator still requires a large number of DFFs. This leads to a discussion on the benefits

of parallel accumulation.

5.2 Parallel Accumulator

A parallel accumulator is proposed to address the limitations encountered with the CML

full pipeline accumulator. The phase accumulator is an excellent candidate for paralleliza-

tion as the next phase state can be precisely predicted using a closed form equation (see

Section 5.2.2). With this knowledge, the next phase state can be computed at the same time

the current phase state is computed. The high speed circuitry is limited to the upconverting

multiplexer logic needed to interleave the parallel computed phase values. Crafting high

speed True Single Phase Clock (TSPC) logic in the upconverting multiplexer logic allows

113

static CMOS to carrying the data to 2-4 times a typical standard cell library in the target

technology [37].

5.2.1 Prior Art

Parallelizing digital accumulation to increase the throughput of a DDFS has been pro-

posed in a prior IEEE journal article [1] as well as prior patents [38][39][40]. In the first such

patent of its type from Hassun in 1984 [38], the technique places NP identical DCDO circuits

parallel to each other and then multiplexes the output into a single DAC. In the patent by

Goldberg [39], the entire calculation path from accumulator to ROM is duplicated NP times

and then multiplexed at NP times the core digital clock frequency. Thus there are NP accu-

mulators, NP ROMs, and NP phase and frequency modulation paths. The accumulators are

offset in such as way as to produce an output that when combined sequentially produces the

same output as a DDFS that operates at NP the clock frequency of the individual DDFS

units.

Another interesting approach by Tan [1] uses a single phase accumulator that accu-

mulates at a FCW four times (or more generally NP times) that of the desired FCW. An

additional set of multipliers and adders are used to predict the remaining phase values in

parallel. Figure 5.4 is a block diagram of the architecture proposed by Tan. The authors

of [1] claim frequency modulation support by externally varying the FCW but provide no

measured results. The author of this work believes that several limitations of the architec-

ture should be noted for the LFM case. Firstly, using an off-chip input for the frequency step

word (FSW) limits the speed at which the LFM operates to the speed at which the off-chip

circuitry can update the signal the digital core. This information often comes from a serial

peripheral interface (SPI). Furthermore, in Subsection 5.2.2, we will demonstrate that the

Tan architecture correctly supports LPM but only supports LFM at data rates lower than

the clock frequency even if the FSW can change at the clock rate.

114

Pmod

F

Quadrature
ROM 1 (12 Bit)

Quadrature
ROM 2 (12 Bit)

Quadrature
ROM 3 (12 Bit)

Quadrature
ROM 4 (12 Bit)

DAC (12 Bit)

DAC (12 Bit)

×3

×2

×1

×4

M
u
ltip

lex
er

4
:1

∑

∑

∑

∑

Phase Accumulator

P
h
as
e

R
eg
is
te
r

∑ 32

32

12

12

12

12

12

12

12

12

12

12

14

14

14

14

32

32

32

12

Figure 5.4: [1] Architecture

The architectures become more exciting, as well as complex, in more recent patents [40]

where a finite state machine is used to initialize NP LFM accumulators such that the output

produced can be interleaved to the correct result. Figure 5.5 shows eight parallel traditional

LFM components similar to the one shown in Figure 5.1. The wires controlling the initial-

ization of the frequency and phase states are not drawn to prevent an overly busy block

diagram.

The central observation of the patent is that if proper initial conditions are set for each

LFM core, then the multiplexed signal from several paths is equivalent to the a single high

speed LFM accumulator output. The mathematics involved in the derivation is similar to

that in Section 5.2.2, and thus the derivation will be postponed for a section. The required

initial values for each phase accumulator path is:

Pi[0] = PSTART + iFSTART + 1
2FSTEP

(
i2 − i

)
(5.1)

where Pi is the phase of the ith accumulator path. Figure 5.6 shows the state machine

from the patent that performs necessary computations to initialize each component. By

controlling its clocking, the LFM accumulators can be initialized before running. Once the

115

32

32

32

Frequency Accumulator

Phase Accumulator

P
h

a
se

R
e
g

is
te

r

Fr
e
q

u
e
n

cy
R

e
g

is
te

r

32

32

PEC LUT

Sine
ROM

DAC

32

32

32

Frequency Accumulator

Phase Accumulator

P
h

a
se

R
e
g

is
te

r

Fr
e
q

u
e
n

cy
R

e
g

is
te

r

32

32

Sine
ROM

M
U

X
 2

:1

M
U

X
 8

:16 more pairs of channels

32

32

32

Phase Accumulator

P
h

a
se

R
e
g

is
te

r

Fr
e
q

u
e
n

cy
R

e
g

is
te

r

32

32

Sine
ROM

32

32

32

Frequency Accumulator

Phase Accumulator

P
h

a
se

R
e
g

is
te

r

Fr
e
q

u
e
n

cy
R

e
g

is
te

r

32

32

Sine
ROM

M
U

X
 2

:1

32

32

Frequency Accumulator

Fr
e
q

u
e
n

cy
R

e
g

is
te

r

32

Figure 5.5: FSM Chirp-Enabled DDFS with Parallel Processing Path

relationship between the accumulators is correctly setup, the accumulators operate at the

core clock frequency.

The author has developed a different, more direct, approach to parallel phase accumu-

lation. Figure 5.7 shows a DDFS using the alternative architecture. Note that this is not

remarkably different at this level from any of the other parallel accumulator implementa-

tions. The portion of the design that improves upon its predecessors and achieves novelty is

the implementation of the parallel LFM phase accumulator itself.

116

M

M
U

X
 2

:1

S
ta

rt
P
h
a
se

CE

S
ta

rt
Fr

e
q
.

CEM
U

X
 2

:1

M
U

X
 2

:1 S
te

p
Fr

e
q
.

CE

÷2

M

M
U

X

Fr
e
q
.

S
te

p

CE

P
E
C

Fr
e
q
.

CEFinite
State
Machine

Figure 5.6: Finite State Machine for Parallel Processing Path

5.2.2 Derivation of LFM Enabled Architecture

As claimed in Section 5.2, phase accumulation is a deterministic process for which

simple closed form equations can be derived. Equation 5.2 expresses the state of the phase

accumulator at the nth clock cycle:

Pn = Pn−1 + F (5.2)

where F is the frequency control word (FCW), or linear phase step size, given to the accu-

mulator and Pn is the phase state at clock cycle n. Recursively evaluating Equation 5.2, we

can predict the future values of the phase state at m clock cycle advanced from n.

Pn+1 = Pn + F

Pn+2 = Pn+1 + F = Pn + 2F

Pn+m = Pn+m−1 + F = Pn +mF (5.3)

117

�✁✂✁✄✄☎✄ ✆✝✝✞✟✞✄✁✠✡✂

☛☞✠☎✌

✂☞✠

✌✍✁☞☎✎

✌✍✁☞☎✏

✌✍✁☞☎✑✒✓✎✔

✌✍✁☞☎✕

✌✍✁☞☎✖

✌✍✁☞☎✒

✝✄✗

✘✙✘✠✚✌✍✁☞☎

✘✙✘✠✚☛✂☎✛✞☎✙✝✜

�✍✁☞☎ ✒✡✢✞✄✁✠✘✡✙ ✆✂✂✁✜

✣✤

✣✥

✣✥

✣✥

✣✥

✦
✦
✦

✧
★
✩
✪
✫✬

✧
★
✩
✪
✫✬

✧
★
✩
✪
✫✬

✭
✮
✯
✰
✱
✲
✳✴

✵
✱
✶
✷✰
✸✱
✹

✭
✮
✯
✰
✱
✴

✵
✱
✶
✷✰
✸✱
✹

✭
✮
✯
✰
✱
✺

✵
✱
✶
✷✰
✸✱
✹

✦
✦
✦

✣✥

✣✥

✻✼✽✾

✿❀❁

❂❃❄

✻✼✽✾

✿❀❁

✻✼✽✾

✿❀❁

✦
✦
✦

✦
✦
✦

✧
★
✩
✪
✫✬

✧
★
✩
✪
✫✬

✧
★
✩
❅✧
❆❇
❈✫✬

✦
✦
✦

�❉❊❋●�✒

☛✂☎✛
❍
■
❏
❑
✺

✵
✱
✶
✷✰
✸✱
✹

❍
■
❏
❑
✲
✳▲

✵
✱
✶
✷✰
✸✱
✹

▼❊●◆❋✑✒❋✕✔

▼❊●◆❋✒

▼❊●◆❋✑✒❋✖✔

✣✤

✦
✦
✦

▼❊●◆

✣✤

✣✥

✣✥

✣✥

✣✤

✣✤

✣✤

✣✥

✣✥

✣✤

✣✤

✆✙✁✄✡❖

❊✍✘✂✌

Figure 5.7: Proposed DDFS Using Novel Parallel Accumulator

The previous closed form expression gives the Tan architecture in Figure 5.4 when setting

m = 4. Note however that F is assumed constant. This assumption must be relaxed to

accurately predict the phase under LFM conditions.

Equations 5.4 and 5.5 express the state of the phase variable at the nth clock cycle.

Fn = Fn−1 + F0 (5.4)

Pn = Pn−1 + Fn (5.5)

where F0 is the frequency step word (FSW), Fn is the FCW at clock cycle n and Pn is again

the phase state at clock cycle n. Evaluating the Equation 5.5 recursively, we can predict the

118

future values of the phase variable.

Pn+1 = Pn + Fn+1 = Pn + Fn + F0 (5.6)

Pn+2 = Pn+1 + Fn+2 = Pn + 2Fn + 3F0 (5.7)

Pn+3 = Pn+2 + Fn+3 = Pn + 3Fn + 6F0 (5.8)

Pn+m = Pn +mFn +
(
m2 +m

2

)
F0 (5.9)

Likewise the future value of the frequency variable can be computed as

Fn+1 = Fn + F0 (5.10)

Fn+2 = Fn+1 + F0 = Fn + 2F0 (5.11)

Fn+m = Fn+m−1 + F0 = Fn +mF0 (5.12)

Now we can now analyze the Tan architecture of Figure 5.4 assuming that F is not a

constant but instead changes over time (as required for LFM support). Note that there is

not frequency prediction for F but instead it can only change at the rate of the low speed

accumulator clock frequency. To achieve the correct phase value in the parallel computation,

Equation 5.13 must be observed.

Pn+m = Pn +
m∑
k=1

Fn+k (5.13)

Thus frequency modulation appears to have a zero order hold on signal and introduces

undesirable modulation on the synthesized output.

5.2.3 Area and Power Growth Analysis

Without much effort, the number of DFFs and full adders required to implement a

pipeline accumulator can be derived. Equation 5.14 expresses the number of full adders in

119

an accumulator with the architecture shown in Figure 5.2 as a function of the number of

bits in the accumulator, BP .

Nfa (BP) = BP (5.14)

The number of DFF cells for the same architecture can also be expressed as a function of

BP .

Nff (BP) = 2
[
B2
P +BP

2

]
+BP (5.15)

For a pipeline accumulator with on-chip LFM (Figure 5.3) the number of full adders is given

by Equation 5.16.

Nfa (BF , BP) = BP +BF (5.16)

Likewise, the number of DFF cell also becomes a function of BP and BF as shown in

Equation 5.17

Nff (BF , BP) = 2
[
B2
P +BP

2

]
+ 2BF +BP (5.17)

Note that both solutions grow quadratically with the number of bits in the phase accumu-

lator. Assuming a modest 3 mW per DFF, which is a reasonable assumption for an SiGe

HBT CML architecture operating at the desired clock frequency, the accumulator alone will

consume more than 3 W of power.

Table 5.1: Comparison of Accumulators

Process Architecture VDD fclk (GHz) Power Bits
[1] CMOS Parallel 5 V 0.8 N/A 32
[35] InP Full Pipeline N/A 9.2 N/A 8
[41] InP Ripple Carry N/A 13 2.13 W 8
[34] InP Full Pipeline 3.6 V 32 4.9 W 8
[36] BiCMOS Full Pipeline 3.3 V 6.2 0.825 W 9
[33] BiCMOS Full Pipeline 3.3 V 8.6 N/A 11
[42] BiCMOS Ripple Carry 3.3 V 5 N/A 24
This Work BiCMOS Parallel 1.2V 6.4 0.3 W 32

120

5.2.4 Hardware Implementation

The equations from Section 5.2.2 have been realized in HDL. The chip never made it out

for fabrication, but the simulations appear to work correctly. Figure 5.8 shows the frequency

and phase predictive steps. It may not be immediately apparent why this methodology is

an improvement over [40].

1. No finite state machine logic required. This reduces logical complexity in the imple-

mentation.

2. No initialization sequence required when changing the chirp rate. This reduces latency

between generating signals.

3. Extra frequency and phase modulation only needs to be inserted at the frequency

and phase accumulators. Instead of the 8 adders required in Figure 5.5, only a single

additional adder is required. The diagram in Figure 5.7 also indicates that using the

8 adders external to the parallel phase accumulator also works.

Figure 5.8: Frequency and Phase Predictive Step

121

The proposed architecture has an apparent drawback in that multiplications are re-

quired. These are constant multiplications, and thus can be implemented efficiently as shift

and add circuits. Any multiplication by a power of two is simply a bit shift to the left,

which means the operation is completely free. If the chirp rate does not need to change in

one fast clock cycle, and most likely it does not, then the multipliers can be computed at

a much slower rate (though this influences FSW switching latency). Figure 5.9 shows how

the signals from the predictive circuitry are fed into the phase accumulator portion of the

design.

32

Phase Accumulator

P
h
a
se

R
e
g
is

te
r

32

32

P
h
a
se

 M
R

e
g
is

te
r

P
h
a
se

 5
R

e
g
is

te
r

P
h
a
se

 4
R

e
g
is

te
r

P
h
a
se

 3
R

e
g
is

te
r

P
h
a
se

 2
R

e
g
is

te
r

. .
 .

Phase Step Prediction

ppxM

ppx4
ppx3
ppx2
ppx1

. .
 .

ppx(M-1)

. .
 .

P
h
a
se

 1
R

e
g
is

te
r

phase1

phaseM

phase5

phase4

phase3

phase2

clk
rst

fstep
32
32
32
32

32

32 32

32

32

32

32

init_frequency

in
it_

ph
as

e

Figure 5.9: Parallel Phase Accumulator using Predictive Step

122

5.3 Multiplexer Upconversion Analysis

The four-to-one multiplexer shown at the output of Figure 5.4 is a two stage synchronous

parallel to sequential data converter. Similar data multiplexing structures can be found in

commercial DACs [43]. This is because the state-of-the-art FPGAs from Xilinx (the Virtex

7 at the time of this writing) and similarly Altera cannot output a data stream at the data

rate of modern high-speed DACs. Figure 5.10 shows a symbolic diagram of the upconverting

multiplexer.

M
u
ltip

lex
er

2:1D3

D2

D

M
u
ltip

lex
er

2:1D1

D0

D
M
u
ltip

lex
er

2:1

DCLK1X

CLK2X

CLK4X

S

S

S

Zseq

Figure 5.10: 4-to-1 Upconverting Multiplexer

Consider an N parallel data paths of BA bits each. Let the clock at the lowest level

be fc0. Let the clock of the DAC be fcM . Generally, the clock rate doubles and bus width

halves at each upconverting multiplexer stage. Let fcml be frequency at which a technology

must switch from CMOS rail to rail logic cells to CML cells.

There are five unit cells in the design, ignoring the clock distribution tree, that are

required to construct the multiplexer tree.

• CMOS DFF for lower speed synchronization.

• CMOS Multiplexer for lower speed data multiplexing.

• CMOS to CML Converter for taking the CMOS to CML for higher speed operation.

• CML DFF for higher speed synchronization.

123

• CML Multiplexer for higher speed data multiplexing.

The CMOS standard cell libraries provided vendors, such as IBM or ARM, do not op-

erate at the maximum achievable operating frequency for CMOS rail-to-rail logic obtainable

in a given process. Custom CMOS design may be used to obtain an extra stage of upcon-

version before switching to CML. Since the bus width is halved at each stage, the number

of required stages can be calculated by

NS = log2 (N) (5.18)

where NS is the number of upconversion stages and N is the number of parallel data paths.

Using Figure 5.10, it clearly follows that the number of multiplexer cell is

Nmux =
NS−1∑
n=0

2nBA (5.19)

where Nmux is the number of multiplexer cells. Each multiplexer of Figure 5.10 is composed

of BA multiplexer cells. Similarly the number of DFFs is

Ndff =
NS−1∑
n=0

2nBA (5.20)

where Ndff is the number of DFFs required in the multiplexer tree. It may be possible to

eliminate some of the DFFs is algorithms to control the multiplexing and gating logic over

temperature and process variation are implement. But for the purposes of this analysis,

DFFs are assumed to capture the data at each new upconverted data rate. The frequency

at the nth stage is

fcn = 2nfc0 (5.21)

At the stage where fcn < fcml, the CMOS to CML converter must convert the signal

from a rail-to-rail operating voltage to CML voltage levels. Let this conversion happen at

stage SC . The conversion operation in some instances can be integrated into a hybrid CML

124

R1

Q1 Q2 Q3 Q4

R2

Q5 Q6

Q7

M1

R3

D0p D0m D1p D1m

SELp SELm

Vref

VCC

Figure 5.11: CML Multiplexer

multiplexer cell. Figure 5.11 shows a traditional CML multiplexer built from HBTs. The

CMOS used in the current source helps reduce the required voltage supply, giving the design

a 10 to 20 percent power savings.

Several publications report a threshold at which CM4L outpaces CMOS performance in

terms of power and operating frequency [7]. This should be independently investigated for

the target technology for proper optimization of the upconverting multiplexer tree. Some

analysis in literature is naive in that the static power draw of CML is not incorporated into

the power analysis. Low activity bits may benefit from CMOS rail-to-rail implementations

over CML at a given frequency if the dynamic power consumption is somewhat higher.

Furthermore, CML generally requires a higher supply rail and additional passive resistors

that can be large in comparison to the active devices.

125

5.4 Behavioral HDL Synthesis

One of the contributions of this thesis is an improved technique for dynamically gen-

erating synthesizable HDL code and the corresponding test structures required to verify

the synthesized result. These techniques flowed from previous work as a Computer Science

undergraduate student at Louisiana State University (LSU).

5.4.1 Problems with Existing Techniques

A common approach to realizing reconfigurable HDL designs is nesting hundreds of

printf or echo statements in programming language control structures [44]. This technique,

whose commonality flows from the obviousness of its implementation, is error prone and

inefficient in several ways. Firstly, the target language code is not properly highlighted

during design since it is nested between quotation marks and parentheses and preceded by

source language functions. The target language design tools are therefore not utilized during

the design of the module. In contrast, templating allows syntax highlighting to function

properly while designing the module because a majority of the template is written in the

target language. With printf the code is placed in strings and is likely highlighted as if

the code is for the source language. The difference here should not be understated. Proper

spacing, syntax highlighting and other integrated development environment (IDE) features

foster a more friendly, productive design environment.

Secondly, since every line of code is written in a printf statement, designers often forego

proper code comments. Should a new designer take over the work or an independent design

reviewer engaged, he will find a massive body of strings written in some source language

with little idea of what is actually happening. The original author might choose to write the

comments in the source language to address this issue, but the produced code may still not

have sufficient documentation. Since the template language is written in the target language,

comments flow as naturally as when coding entirely in that target language. In fact, the

126

comments themselves can take advantage of the templating system and produce dynamic

content based on template settings.

The last problem highlighted here is failure to properly separate design concerns. With

the printf approach, the target language code is written in the source language formatting

and oftentimes in the same file. There are many difficulties that arise from this scenario.

Version control becomes problematic, as any change to the structure of the target language

design create a modification to the source language program that generates the code. With

templating, the template and the code that generates the values used for the template are

tracked effectively and correctly as separate entities. Reusability also takes a significant

hit when using embedding the target language within the source language. While carefully

creating libraries of printf type statements can arguably accomplish reusability similar

to using a template, the reuability in the template solution is inherently accomplished.

Templates are themselves practically defined as reusable code objects.

5.4.2 A Simple Example

The following code creates a combinatorial block that implements the erfc function

assuming the input and output integers are normalized values between zero and one. The

setup uses Python with the numpy [45] package to provide array math functionality similar

to MATLAB and the Python mako [46] package provides the template engine. The first step

is to write a template for handling combinatorial cases in Verilog. Listing 5.1 shows the

template required for the example.

Listing 5.1: Combinatorial Logic Template (comb.v)
module ${name}(address , va lue) ;

/∗ Parameters ∗/
parameter integer BX = ${BX} ;
parameter integer BY = ${BY} ;

/∗ Declare input por t s ∗/
input wire [BX−1:0] address ;

127

/∗ Declare output por t s ∗/
output reg [BY−1:0] va lue ;

always@ (address) begin
case (address) :

% for i in range (l en (va lues)) :
${ address [i] } : va lue <= ${ va lue s [i] } ;
% endfor

endcase
end

endmodule

The template requires a variable that specifies the name of the module (name), one

that holds the number of bits in the x word (BX), one that holds the number of bits in

the y = erfc(x) word (BY), an array that holds the possible combinatorial logic addresses

(address) and an array that holds the erfc values (values). Anything with a dollar sign

($) preceding a word enclosed in curly brackets is evaluated to a string and replaced during

template evaluation. The ‘%’ starts a templating construct. In this instance a for loop is

used to populate the Verilog case statement by traversing through all the address and erfc

values. Note that any Verilog combinatorial lookup table can be generated by using the

comb.v template.
Next the logic for generating addresses and values is written in the source language.

The first part of Listing 5.2 shows the necessary code for calculating the erfc function in
Python. The second part of Listing 5.2 demonstrates how to evaluate the template and
generate the Verilog code.

Listing 5.2: Template Evaluation Using Python
Import modules
from mako . template import Template
from numpy import l i n space , f l o o r , array
from s c ipy . s p e c i a l import e r f c

Perform the e r f c c a l c u l a t i o n s
BX = 8
BY = 12
x = l i n s p a c e (0 , 1 , 2∗∗BX, endpoint=False)
y = e r f c (x)

Convert to i n t e g e r va l u e s

128

va lues = array (f l o o r (y ∗ 2∗∗BY − 1) ,
dtype=in t)

address = array (x ∗ 2∗∗BX, dtype=in t)

Evaluate the temp la te
name = ’CombErfc ’
print Template (f i l ename=’comb . v ’) . render (

name=’CombErfc ’ ,
BX=BX,
BY=BY,
address=address ,
va lue s=va lues

)
A fragment of the resulting output is provided in Listing 5.3. Obviously this particular
examples is easily realized using printf, though perhaps not quite as elegantly. However,
Section 6.5.1 shows the results of templating used to produce code for an inverse sinc FIR
filter.

Listing 5.3: Template Output
module CombErfc (address , va lue) ;

/∗ Parameters ∗/
parameter integer BX = 8 ;
parameter integer BY = 12 ;

/∗ Declare input por t s ∗/
input wire [BX−1:0] address ;

/∗ Declare output po r t s ∗/
output reg [BY−1:0] va lue ;

always@ (address) begin
case (address) :
0 : va lue <= 4095 ;
1 : va lue <= 4076 ;
2 : va lue <= 4058 ;
3 : va lue <= 4040 ;
4 : va lue <= 4022 ;
5 : va lue <= 4004 ;
6 : va lue <= 3986 ;

129

5.4.3 EDA Scripts

Successful implementations of complex System-on-Chip (SoC) designs require rigorous

design methodologies and tool flows. Oftentimes circumstances, whether cost driven or

foundry driven or feature drive, dictate that tools from different vendors be used at various

stages of the design process. As an example, the digital simulation and verification may be

done using Mentor Graphic’s Questa, the digital RTL synthesis may be done by Synopsys’

Design Compiler, analog design may be performed in Cadence’s Virtuoso tool suite and

Mentor’s Calibre might be used for physical verification. Even when using the same vendor

for the entire tool flow, integration between tools may be lacking.

Generally, the glue between stages of the design process are command scripts. These

might be written in Skill, TCL, Scheme or any number of other languages and they act

as bridges to prepare the export artefacts of one tool for insertion into the next. As an

example, the GDSII of digital marco generated by digital synthesis may need to be imported

into an custom analog integrated circuit suite for integration. Automating the bridging code

is important in reducing the risk of making mistakes by having a person manually edit these

files for each design entity that must pass through the flow. This also provides tractability

and reproducibility of results.
Listing 5.4 is an excerpt from a file required by Cadence’s ihdl command for importing

a Verilog netlist as a schematic.

Listing 5.4: ihdl Import Example
−− The ta r g e t l i b r a r y
dest_sch_lib := ${ libname}

−− Reference l i b r a r i e s (where to search to
−− r e s o l v e ex t e rna l r e f e r e n c e s)
r e f_ l i b_ l i s t := ${ r e f_ l i b_ l i s t }

−− Do not ove rwr i t e a module with the same
−− name
import_i f_ex i s t s := ${ import_overr ide }

−− Makes a symbol f o r the module

130

impor t_ce l l s := ${ impor t_ce l l s }

The template generation code can be in the same file that generated the HDL originally.

Instead of remembering hundreds of commands and language syntaxes, the instructions on

how to perform a task can be looked up one time and placed into a template. The only

required language experience then is the source language, which in this case is Python.

Another important feature to note is that the templating actually provides a layer of

abstraction. If a vendor changes the syntax of a command file, the only change necessary is a

new or modified template. The source language implementation for generating the bridging

command code does not change.

5.4.4 Optimization

Optimization is another area that text templating proves itself as a useful tool. Lan-

guages such Cadence’s spectre provide some degree of parametrization in designs. Verilog

also continues to improve its generation and parametrization constructs. In most cases how-

ever, the parameters in the language allow for minor changes in the structure of the design,

such as the width and length of a MOSFET. With templating, one could just as easily sweep

through different MOSFET models as the parameters of a single model. The versatility of

text templating allows for the introduction of interesting optimization algorithms, such as

mixed-integer optimization.

Yet another benefit of driving optimization through a general purpose programming

environment is the capability of adding new optimization algorithms. Some vendors hide

optimization features behind expensive licenses, and even then, the designer is limited to

the algorithms chosen by the vendor. With templating, one could use MATLAB’s optimiza-

tion toolbox to drive an optimization, making adjustments of design variables through text

templating.

131

Chapter 6

Radar Application

Although DDFS is used in a wide array of applications, one application that is par-

ticularly well suited for the technique is radar. Firstly, complex waveforms can be directly

generated in the digital domain. DDFS allows one to quickly respond to environmental

changes by adjusting the waveform to different frequencies. The DDFS is trivially phase

continuous and with some simple modifications can be made phase coherent. This chapter

demonstrates how DDFS was incorporated in designs at Auburn University for radar and

BIST applications.

6.1 Previous DDFS Designs

The original target application for a highly efficient DDFS architecture was an analog

built-in self-test (BIST) system, described in detail by Qin in his dissertation [13]. Briefly

summarized, the BIST circuit generated two sinusoidal test tones, summed them together

and sent the signal to a DAC. The analog signal is then mixed to the frequency of the

devices that requires self-healing and then allowed to propagate through an ADC receiver

path. A third, high fidelity DCDO is used to extract in-phase and quadrature phase at a

certain frequency from the samples of the ADC. The extracted information is then processed

through an algorithm to determine the magnitude and phase of the signal at that frequency.

This allows for the linearity measurements, spur searching and various other techniques.

6.1.1 Sine Wave Symmetry

All of the MTM, BTM and CORDIC SCMF analysis compyte only one quarter of the

sinusoid that is to be synthesized. Sinusoidal functions naturally have a convenient symmetry

132

In
te

rc
h

a
n

g
e

Phase to Amplitude Conversion

Cosine Mapping Function

Sine Mapping Function
14

Conditional
Negate

Conditional
Negate

12

MSB 1

MSB 2

MSB 2

MSB 3

MSB 1

Phase
Word

Figure 6.1: Quadrature, Quarter Sine Compression

that allows one to compress the size of the ROM in a lossless manner. Figure 6.1 shows the

logic necessary to implement quarter sine compression in the quadrature case. Many authors

use a 1’s complement technique to invert the phase, which is also used in Figure 6.1. The

1’s complement technique was dicussed in more detail in Section 1.1.2 and Figure 1.2.

Mathematically it is also easy to demonstrate the quarter wave symmetry using trigono-

metric identities. Equations 6.1 and 6.2 show how the amplitude of the sine and cosine are

related to the sign of the phase. These alone allow for a half-wave sinusoidal compression.

Adding Equations 6.3 and 6.4 to the mix allow the half-wave to be reduced by another factor

of two, yielding quarter-wave sinusoidal compression.

cos (θ) = cos (−θ) (6.1)

sin (θ) = − sin (−θ) (6.2)

cos
(
π

2 − θ
)

= sin (θ) (6.3)

sin
(
π

2 − θ
)

= cos (θ) (6.4)

133

6.1.2 MTM DDFS

The first DDFS design by the author at Auburn University was conceived as an exper-

iment to push Register Transfer Level (RTL) code through synthesis and place-and-route

using the Cadence digital tool flow. None of the students in the Auburn University Radio

Frequency research group had used digital synthesis tools at the time, but a flow needed to

be developed for upcoming designs of increasing complexity. A symmetric multipartite table

method (MTM) DDFS borrowing ROM values from [47] with corrections from the published

result was written in Verilog. Figure 6.2 shows the block level implementation of the MTM

DDFS. The design implemented dynamic element matching (DEM) at the output of the

SCMF to randomize mismatch errors in the thermometer coded portion of the DAC.

SPI
(3-Pin)

SCLK
SIN

Galois LFSR
(18 Bit)

Multipartite
Table (12 Bit)

T
ru
n
ca
te

T
ru
n
ca
te

DAC (12 Bit)

Phase Accumulator

P
h
a
se

R
eg
is
te
r

∑ 2424

FCW

24

∑24

Phase

15

3

15 12 12 VOUT

CLK

Figure 6.2: MTM DDFS Block Diagram

Table 6.1 shows the initial value table for the MTM DCDO. These values provide an ac-

curate starting point from which smaller offset tables are used to construct the remainder of

the sine. Both MTM and BTM are piece-wise linear approximations of transcendental func-

tions and thus both require accurate initial value tables. Typically the Table of Initial Values

(TIV) dominates the ROM size, as it stores the most amplitude resolution information.

Table 6.2a is one of the offset tables (TO) used in the MTM design and Table 6.2b

is the second offset table used in the MTM design. Arguably the clearest explanation of

multipartite table methods is supplied by [12]. To summarize, in the bipartite method

134

Table 6.1: Table of Initial Values

Addresses Values
0, 1, 2, 3 12, 37, 61, 86
4, 5, 6, 7 110, 134, 158, 182
8, 9, 10, 11 206, 230, 254, 278
12, 13, 14, 15 301, 324, 347, 370
16, 17, 18, 19 393, 415, 437, 459
20, 21, 22, 23 481, 502, 523, 544
24, 25, 26, 27 564, 584, 604, 623
28, 29, 30, 31 642, 660, 679, 696
32, 33, 34, 35 714, 730, 747, 763
36, 37, 38, 39 778, 793, 808, 822
40, 41, 42, 43 836, 849, 861, 873
44, 45, 46, 47 885, 896, 906, 916
48, 49, 50, 51 926, 934, 943, 950
52, 53, 54, 55 958, 964, 970, 975
56, 57, 58, 59 980, 984, 988, 991
60, 61, 62, 63 993, 995, 996, 997

(Section 6.1.3) the offset tables compute the line segments.

y = mix (6.5)

Here x can be decomposed into smaller n sub-components

x = β0x0 + β1x1 + β2x2 + · · ·+ βm−1xn−1 (6.6)

Plugging Equation 6.6 back into Equation 6.5

y = mi (β0x0 + β1x1 + β2x2 + · · ·+ βm−1xn−1) (6.7)

=
n−1∑
k=0

βkmixk (6.8)

If the βk values are chosen as powers of two, then the hardware multiplication operation for

βk is free. The size of xk determines the number of entries in the TO and is exponentially

135

related to the value of xk. This is clearly seen in the analysis of bipartite table in the

following section. MTM therefore exchanges smaller TO tables for more additions. If the

number of bits is sufficiently large, this translates into significant area improvement. The

other downside to the the MTM technique is that quantization occurs in each table, resulting

in a slight degradation in overall performance with respect to the BTM technique.

(a) Offset Table 1

Addresses Values
0, 1, 2, 3 3, 9, 3, 9
4, 5, 6, 7 3, 9, 3, 8
8, 9, 10, 11 3, 8, 2, 7
12, 13, 14, 15 2, 7, 2, 6
16, 17, 18, 19 2, 6, 2, 5
20, 21, 22, 23 2, 5, 1, 4
24, 25, 26, 27 1, 3, 2, 0
28, 29, 30, 31 0, 1, 0, 0

(b) Offset Table 2

Addresses Values
0, 1, 2, 3 0, 1, 1, 1
4, 5, 6, 7 2, 2, 2, 3
8, 9, 10, 11 0, 1, 1, 1
12, 13, 14, 15 2, 2, 2, 3
16, 17, 18, 19 0, 0, 1, 1
20, 21, 22, 23 1, 2, 2, 2
24, 25, 26, 27 0, 0, 1, 1
28, 29, 30, 31 1, 2, 2, 2
32, 33, 34, 35 0, 0, 1, 1
36, 37, 38, 39 1, 1, 2, 2
40, 41, 42, 43 0, 0, 0, 1
44, 45, 46, 47 1, 1, 1, 1
48, 49, 50, 51 0, 0, 0, 0
52, 53, 54, 55 0, 1, 1, 1
56, 57, 58, 59 0, 0, 0, 0
60, 61, 62, 63 0, 0, 0, 0

Figure 6.3 shows a block diagram of a two TO table MTM ROM. The diagram could

be extended to any number of offset tables with little imaginative effort. BQ are the bits of

the address words used in the line calculate. BTIV are the bits sent to the TIV table. BQ1

are the most significant q1 bits of BQ and BQ2 are the next most significant q2 bits (or the

remainder of the bits in the example). The only thing not shown explicitly in the diagram

is the bit shift operation performed on the word amplitude word of the first offset table,

ATO1. It should be multiplied by 2q2 , or bit shifted that amount. In the diagram is implied

as part of the “lookup” table operation.

The amount of compression of the MTM technique is difficult to quantify without im-

plementation. In particular the size of the adders can quickly begin to dominate the area

136

TIV
Table

TO1
Table

TO2
Table

Negate

Negate

∑
∑ A

PT
BP T BT IV BA

BABQ1

MSB
{

BQ1
}

MSB
{

BQ2
}

BQ

BQ2

BT O1

BT O2

BAT O1

BAT O2

BNL = MSBs{BT IV }

Figure 6.3: MTM Block Diagram

and power when the offset tables have a very small number of entries. Also, the extra

additions may also require pipelining, which would dramatically impact the effective com-

pression boost. The authors of [47] and [12] both showed better than 2X overall compression

improvement in the implementations over published symmetric BTM ROMs.

Figure 6.4 shows a portion of the GDSII submitted for fabrication. The design was

realized in a 0.130 µm BiCMOS process. The rectangular circuit on the left is the MTM

DCDO and the rectangular circuit on the right is a 12-bit DAC with DEM. In the design, the

DEM logic had a mistake that caused the design to operate poorly, 45 dBc SFDR Nyquist

with 1 GHz clock.

6.1.3 BTM DDFS

The second DDFS design, and the one used for the first realization of the ORA BIST

system, was a symmetric bipartite table method (BTM) DDFS [48]. The BTM technique is

first described with respect to DDFS designs in [11] with the first observation that taking

advantage of the line symmetry in hardware for additional area, speed and power savings

reported in [48]. The BTM is mathematically a piece-wise linear approximation technique

and hence can be applied in the approximation of any function. In this work, elementary

transcendental functions such as sine and cosine are the targeted functions. Figure 6.5 shows

the DDFS system that used the BTM ROM for sine.

137

MTM
DCDO DEM DAC

260 µm

214 µm 286 µm

468 µm

Figure 6.4: MTM DDFS GDSII (130 µm BiCMOS)

SPI
(3-Pin)

SCLK
SIN

Galois LFSR
(33 Bit)

Bipartite
Table (12 Bit)

T
ru
n
ca
te

T
ru
n
ca
te

DAC (12 Bit)

Phase Accumulator

P
h
as
e

R
eg
is
te
r

∑ 3232

FCW

32

∑32

Phase

15

3

15 12 12 VOUT

CLK

Figure 6.5: BTM DDFS Block Diagram

The compression methodology is most easily described through an example. Assume

that a quarter sine ROM with D = 8 address bits needs to be compressed. Then the number

of ROM entries is ND = 28 = 256. The blue dashed line in Figure 6.6a shows the ideal values

for the sine function plotted from 0 to π/2. For the moment, no amplitude quantization is

applied in the analysis. In a conventional piece-wise linear (PWL) approximation of the sine

function, the function is split into N lines. Equation 6.9 provides a PWL approximation of

138

the function y(x).

ŷ(x) =



m0x+ b0, a0 ≤ x < a1

m1x+ b1, a1 ≤ x < a2

· · ·

mN−1x+ bN−1 aN−1 ≤ x < aN

(6.9)

The values of mi and bi are generally chosen to either minimize mean of the square of the

error, which is commonly referred to as the mean squared error, between a line and the

function or to minimize the maximum error. mi is the slope of the approximating line and

bi is the y-intercept of the line. ai forms the starting and ending points of the domain of the

line segment. The mean squared error is generally minimized using a first order linear least

squares regression fit on the function over that interval. The mean squared error between

two continuous functions is given by Equation 6.10.

MSEc = 1
ai+1 − ai

∫ ai+1

ai

(ŷi(x)− yi(x))2 dx (6.10)

Since the DCDO is actually approximating a discrete number of points, one can minimize

the discrete mean squared error. This is performed trivially using a computer, as most math

software, including open source software such as Octave [49], provide a method for applying

a linear regression fit to data. The discrete mean squared error is shown in Equation 6.11.

MSEd = 1
n

ND/N−1∑
k=0

(ŷi(xk)− yi(xk))2 (6.11)

Let r = ND/N be the number of points in a line segment. For the quarter sine approximation,

xk = kπ
2ND

. For the first line between a0 and a1 the values of k range from 0 to r− 1. To find

139

ŷi, the following over-determined system of equations must be solved:

m0x0 + b0 = yi(x0)

m0x1 + b0 = yi(x1)

· · ·

m0xr−1 + b0 = yi(xr−1)

This can be written in matrix notation as



x0 1

x1 1

· · · · · ·

xr−1 1



m0

b0

 =



yi(x0)

yi(x1)

· · ·

yi(xr−1)


=⇒ X0

m0

b0

 = Y0 (6.12)

The linear least squares best solution to the problem is [50]

m0

b0

 =
(
XT

0 X0
)−1

XT
0 Y0 (6.13)

The bold characters are used to represent matrices, with the bold superscript “T” meaning

the transpose operation. Performing the matrix product yields

b0 =
∑r−1
k=0 yi(xk)

∑r−1
k=0 x

2
k −

∑r−1
k=0 xk

∑r−1
k=0 xkyi(xk)

r
∑r−1
k=0 x

2
k −

(∑r−1
k=0 xk

)2 (6.14)

m0 =
r
(∑r−1

k=0 xkyi(xk)
)
−∑r−1

k=0 xk
∑r−1
k=0 yi(xk)

r
∑r−1
k=0 x

2
k −

(∑r−1
k=0 xk

)2 (6.15)

The adjacent best fit line is calculated by changing the summations from 0 and r−1 to r and

2r− 1. This calculation is made for each of line segments in the approximation. To perform

this operation in MATLAB or Octave, use of the built-in polyfit command is sufficient.

140

The multicolored line in Figure 6.6a shows the piece-wise linear approximation super-

imposed upon the targeted sine function. Each line is represented with a slope and a offset.

The table of offset values is called the TO ROM in the same manner as the MTM table.

Multipliers are expensive to implement in hardware, so the multiplication linear offset values

are also stored in a ROM (the TO ROM).

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

A
m
pl
itu

de

Normalized X-Value

(a) PWL Sine

-0.01

-0.005

0

0.005

0.01

0 50 100 150 200 250 300

A
pp

ro
xm

at
io
n
Er

ro
r

ROM Address

(b) Approximation Error of BTM

Figure 6.6: Phase Accumulator State Plots

The conventional PWL implementation offers some compression over the ideal sine func-

tion. To develop concrete numbers for a comparison, assume 10-bits of amplitude resolution

in the ROM. An uncompressed quarter sine ROM would required 28 ·10 = 2560 bits to repre-

sent the implementation. Assume 4 lines are used to represent the function. The initial value

table has one entry for each line in this approximation. Thus there are 22 · 10 + 27 · 9 = 1192

(see Equation 6.16). This is only a modest amount of compression. The important obser-

vation of the BTM technique is that one line segment is oftentimes good enough for several

initial value points.

The number of bits required for the ROM is

2BT IV ·BA + 2BT O−1 ·BATO (6.16)

141

TIV
Table

TO
Table

Negate

∑
A

PT
BP T BT IV BA

BA

BQ1

MSB
{

BQ1
}

BQ1

BT O BAT O

BNL = MSBs{BT IV }

Figure 6.7: BTM ROM Block Diagram

BA is the amplitude resolution of the ROM, BTIV are the number of bits used to address

the TIV table, BTO are the number of bits used to address the TO table and BATO are the

number of amplitude resolution bits required by the TO table. The minus 1 in the exponent

of the number of TO entries comes from using line symmetry. Figure 6.7 shows a block

diagram of a symmetric BTM ROM. BQ1 = BPT −BTIV are the LSB of the phase word that

addresses the ROM. BNL are the number of different line approximations to in the offset

table. The BTM approximation improves with an increasing number of initial value points

and increasing number of line approximations.

The author is not aware of any direct closed form compression equations for the BTM

method. Most authors performs a computer optimization over the various segmentation

configurations to calculate the size. By observing Figure 6.6a it is clear that the widest

range of amplitude values that must be stored in the TO table is from the first line segment.

The range of the subsequent lines in the approximation is smaller (for a formal proof, observe

that cosine is the derivative of sine and follow where the line . The domain of the first line

segment is determined by the number of initial value points. For the quarter sine ROM,

this is equal to π
2NT IV

. Using small angle approximation, sin(x) ≈ x. Then maximum value

stores in the TO ROM is approximately π
2NT IV

. Using Figure 6.6a yet again, the maximum

value of the cyan curve stops roughly at 0.4. NTIV = 4 in that example so the expected

maximum value is π
8 approx0.39. It takes BA bits to represent the maximum amplitude of

142

Table 6.2: Example BTM Compression

BPT BTIV BNL Bits Size After Compression
8 2 2 1192 46.5%
8 3 2 592 23.1%
8 4 2 384 15.0%
8 5 2 416 16.3%
8 6 2 680 26.6%

the sine, so it takes

BATO =
⌈
log2

(
2BA

π

2NTIV

)⌉
(6.17)

bits of amplitude resolution to represent the offsets. Then an excellent estimate of the

number of bits required is easily developed:

2BT IV ·BA + 2BT O−1 ·
⌈
log2

(
2BA

π

2NTIV

)⌉
(6.18)

Note that all the variables are known at the outset of the computation, making it a direct

computation. Table 6.2 shows various compression ratios with different segmentation choices.

Figure 6.6b shows the approximation error of the BTM with BTIV = 4, BNL = 2

and BPT = 0. The jumps in error occur at the transition points between different line

approximations. Notice the error is less than 0.1%. Depending on the quality of the DAC

that follows, this error may not even show up in the output spectrum of the DDFS. Now let

us observe the effect of the approximation error on the output of the spectrum. Figure 6.8a

is an image of the GDSII file submitted for fabrication in a 130 µm BiCMOS process. The

large block of circuitry on the left contains the BTM, ORA, SPI, control logic and CORDIC,

which will discussed in more detail in Section 6.4. The two blocks to the right of the circuit

are DACs. The upper one is a 12-bit CMOS DAC discussed in more detail in Section 6.6

143

and the lower one is an experimental DEM DAC that was refined from the MTM DDFS

design in Section 6.1.2.

BTM,
CORDIC,
ORA

DAC
12-b

DAC
DEM

(a) Image of GDSII (b) Die Photo

Figure 6.8: BTM, CORIDC, ORA and DACs (130 µm BiCMOS)

One technique for reducing the spurious response that results from phase truncation is to

add a small random signal to the truncated portion of the phase word and sum the overflow

bit of that addition into the main phase word [51]. This technique is called additive dithering

and is effective at reducing spurs generated from both phase and amplitude truncation.

Figure 6.9 shows an example of a Galois linear feedback shift register (LFSR) . These allows

for power and area efficient means of generating random sequences that can be used in the

dithering process.

At this point, applying the theory from Chapter 4 would serve as an excellent verification

of the theory and example of its application. Let the BTM have 8-bits of quarter sine

address space. Thus the entire ROM, decompressed takes 10-bits of phase resolution. To

keep the spectrum a manageable yet sufficiently detailed for use in verification, assume an

accumulator of 12-bits (NP = 212 = 4096) and thus 2 bits are truncated and NE = 22 = 4.

144

0 1 1 0 1 0 1 0 0 0 1

0101000

Generating Polynomial: x18 + x11 + 1

11 1

18

To Add To
Truncated Word

Figure 6.9: Galois 18-Bit LFSR

Choose BNL = 2 and BTIV = 5 for the BTM decomposition. Lastly let F = 117 (chosen

completely arbitrarily other than to guarantee phase truncation).

Now apply Theorem 4.7. ΓP = 117, ΛP = 4096 and ΛE = 4. The spectrum of the

BTM without phase truncation driven by ΓPn should be copied ΛE times then multiplied by

the window function of Equation 4.48. Figure 6.10a shows the spectrum of BTM replicated

ΛE times. Figure 6.10b shows the window function plotted alongside the replicated BTM

spectrum. It is not that insightful since it plotted in magnitude (and thus 50 dB down is

not visually detectable).

Lastly, Figure 6.11 shows a plot of a Verilog simulation of the specified BTM against

the direct computation of the spectrum through theory. This highlights the statements

from Section 4.6.3 by providing an example. All of the BTM spurs are copied 4 times and

hundreds of spurs are spread as a result of phase truncation.

6.1.4 Output Response Analyzer

One of the first DDFS implementations by the author was for an Output Response

Analyzer (ORA) BIST circuit [21] [52]. Both the BTM and MTM designs described targetted

the BIST system. Figure 6.13 shows the basic architecture of an ORA unit. The BIST system

145

-80

-70

-60

-50

-40

-30

-20

-10

0

-0.4 -0.2 0 0.2 0.4

S
p
ec
tr
u
m

(d
B
)

Normalized Frequency

Copy 1
Copy 2
Copy 3
Copy 4

(a) BTM Spectrum Copy

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4

A
m
p
li
tu
d
e

Normalized Frequency

Window Function
ROM (No Ph. Trunc.)

(b) BTM Spectrum with Window Function

Figure 6.10: Phase Accumulator State Plots

is designed to measure the performance of an RF receiver. Two test tones are generated using

a DDFS that are then upconverted and sent into the receiver. Figure 6.12 shows the block

diagram of the two tone test pattern generation circuit. The DCDO used as the test pattern

generator is described in Chapter 6. The signal y is sampled by an ADC at the end of the

receiver chain. The cosine and sine terms are generated by a single quadrature DCDO. The

detailed derivations of ORA operation are discussed in [21], but, in summary, the system

effectively computes a single DFT bin that contains the spectral energy at frequency f . The

results of the derivation are shown in the following equations:

A(f) =
√
DC2

1 +DC2
2 (6.19)

φ(f) = − tan−1
(
DC2

DC1

)
(6.20)

In [21], the authors note that behavior of the ORA unit appear somewhat unpredictable

and highly dependent on when the ORA accumulation is stopped. The authors originally

view the “zero” crossing point of the phase accumulator as a period of the generated sinu-

soid. Later it was realized that the output “looked” best at an “integer multiple period” of

the phase accumulator sequence. Terms such as fake integer multiple period (FIMP) and

146

-80

-70

-60

-50

-40

-30

-20

-10

0

-0.4 -0.2 0 0.2 0.4

S
p
ec
tr
u
m

(d
B
)

Normalized Frequency

Verilog Sim
Theory

Figure 6.11: BTM Simulation Versus Prediction

NCO1

NCO2

∑FCW1

FCW2

32

32

12

12

ftt
12

Figure 6.12: Two Tone Generation

good integer multiple period (GIMP) were used in explaining the behavior in subsequent

publications.

Using the analysis from Chapter 3 and Chapter 4 a more formal description of the

behavior can be specified. Firstly, the FIMP is not an integer multiple period at all nor is

it related to the period of the digital waveform in any way. Thus the output at a FIMP

suffers from extreme spectral leakage by stopping the accumulation before a full period of

the fundamental waveform. The GIMP mentioned in the text is the least period of the phase

accumulator given a f requency control word F , or

GIMP = ΛP = NP

GCD(F,NP) (6.21)

As discussed in [21] and [13] it is important to reduce to the ORA measurement time.

Stopping on an least period provides an excellent measurement since the large power mixing

tone from the DCDO does not suffer from spectral leakage. But the implementation of the

147

Output Response Analyzer

sin (2nπfTclk)

cos (2nπfTclk) ACC1

ACC2

DC1

DC2

y (nTclk)

Figure 6.13: ORA Block Diagram

DCDO has a power-of-two NP number of phase states. This implies that the test length

increases by a factor of 2 for each frequency step. To address this issue a simple modification

can be made to the DCDO that allows it to change NP to an integer less than NP but still

satisfying NE | NP . This is equivalent to adding a programmable modulo operation to the

phase accumulator output.

This allows ΛP to be modified to the desired run length and no spectral leakage from

stopping the accumulation at a non-period. This obviously changes the frequency step

slightly. Let NP = 216 and NE = 24. Assume a 1 GHz clock frequency for the ORA and

corresponding DCDO. Say want to measure a 123 MHz tone location with the ORA. The

closest FCW corresponding to this tone is derived using Equation 1.45.

F = f0NP

fclk
= 8060.9 ≈ 8061 (6.22)

But note that 8061 is coprime to NP and thus ΛP = NP and 216 clock cycles are required for

a measurement without spectral leakage. First note that changing NP = 216− 24 allows one

to precisely hit 123 MHz with the ORA. But one could choose a smaller NP to reduce the

measurement time and still precisely land on the frequency. Let NP = 215 − 17 · 24. Then

F = 3997 and the measurement time has been reduced by a factor of 2 and still suffers no

148

spectral leakage. Thus the analysis from this work was used to develop a simple modification

that provides a significant amount of flexibility to the ORA BIST system.

6.2 Overview of Basic Radar Theory

The basic radar equation is generally presented in the first or second chapter of an un-

dergraduate radar textbook [8]. While the fundamental equation appears in various forms

depending which variables are chosen as function parameters for the power received, Equa-

tion 6.23 serves as a rough starting place for the discussion in this thesis.

Pr = PtGtAeσ

(4π)2R4 (6.23)

where Pr is the receiver power at the radar receiver, Pt is the transmitted power from the

radar transmitter, Ae is the receiving antenna aperture, σ is the radar cross section of the

target, Gt is the transmission antenna gain and R is the distance of the target from the

radar system. This assumes that the transmitting and receiving antenna are placed in close

enough proximity such that the distance that the signal travels from the radar to the target

and back to the radar after reflecting from the target are approximately equal (or that the

transmitting and receiving antenna are the same antenna). There are certainly cases when

this assumption will not hold true, but for this work this assumption is used.

By expanding the antenna aperature term, Equation 6.23 can be written in a form [8]

used in many standard textbooks.

Pr = PtGtGrλ
2σ

(4π)3R4
(6.24)

Radar operates by using the propagation speed of an electromagnetic wave and time as a

ruler for distance. A wave is radiated from the radar system and energy reflected from a

target is received by the radar. Taking into account this round trip of travel, the distance

149

of a target from the radar antenna is given by

R = cT

2 (6.25)

where T is the time between transmission and reception of the electromagnetic wave. Often-

times, ranges of interest are given and the equation is rearranged to calculate the necessary

time interval for travel.

When multiple target detection is required, the transmitted pulse width of the radar

must be reduced. The radar range resolution for traditional pulse radar is given by

ρ = cτ

2 = c

2B (6.26)

where τ is the pulse period and B is the signal bandwidth. Immediately an inherent trade-off

between transmitted energy and range resolution is apparent. By using pulse compression we

can increase the transmitted signal power while maintaining a high bandwidth. We discuss

this is a later section.

6.3 Overview of Stretch Processing

Equation 6.24 can be rearranged and solved for the distance R.

R = 4

√√√√PtGtGtλ2σ

(4π)3 Pr
(6.27)

Assuming the antenna and transmitted wavelength are fixed, to double the radar range, the

transmit power must be increased by a factor of 24 = 16. When this is combined with the

decreasing pulse width requirement for range resolution, the power requirements of a radar

will quickly become unmanageable for smaller systems. Pulse compression is used to address

the power, bandwidth and range issues.

150

Stretch processing is a pulse compression technique used in some pulse compression

radar systems [8]. It combines the power benefits of having a long pulse duration with the

range resolution of a high bandwidth signal. This effectively increases the range resolution

of the radar without raising the bandwidth requirements of the receiver. The technique

proves useful when a system needs a high range resolution but can only implement lower

frequency digital signal processing hardware. Figure 6.14a shows a simplified time domain

representation of stretch processing and Figure 6.14b shows the corresponding frequency

domain representation of the same signal.

(a) Stretch Processing (Time) (b) Stretch Processing (Frequency)

Figure 6.14: Example of Stretch Processing Signals

The technique works by transmitting a high bandwidth FM signal from the radar.

Generally the bandwidth of this signal exceeds the capabilities of the ADC in the radar

receiver chain. Upon receive, a higher bandwidth receiver chirp is mixed with the return

transmit signal. The bandwidth of the receiver chirp, often called the dechirp signal, is set by

the range interval (or range coverage) requirements of the radar. The following enumerated

list roughly presents the mathematics of the technique:

1. A chirp signal is generated by our transmitter and has a characteristic equation of the

form:

ytx(t) = A sin
[
2πf0t+ παt2

]
(6.28)

151

where f0 is the starting frequency of the waveform, α is the frequency slope and t is

the time.

2. The signal received from a target has the following characteristic equation:

yrx(t) = B sin
[
2π(f0 + fd)(t− tD) + πα(t− tD)2 + φ

]
(6.29)

where tD is the time delay from the electromagnetic wave propagation, fd is the Doppler

shift and φ is an unknown phase shift. tD contains the distance information.

3. The received signal has a reference chirp wave mixed with it.

yref (t) = C sin
[
2πfref (t− tref) + παref (t− tref)2

]
(6.30)

where αref is the frequency slope of the reference chirp and tref is the time that the

chirp reference is started. The multiplication of two sine waves gives

sin(x0) sin(x1) = 1
2 [cos(x0 − x1)− cos(x0 + x1)] (6.31)

4. The mixed signal, after low pass filtering is given by

yout = BC

2 cos
[
2π(f0 + fd − fref)(t− tD) + π(α− αref)(t− tD)2 (6.32)

+ 2παref (tref − tD)(t− tD) + φ] (6.33)

5. The final equation for the distance of the target (assuming α = αref , f0 = fref and

β = BC
2) becomes

yout = β cos [2π(fd + α(tref − tD))(t− tD)] (6.34)

152

Figure 6.15: Radar-On-Chip Block Diagram

Performing spectrum analysis yields a frequency pulse at

fstretch = fd + α(tref − tD) (6.35)

we know α and tref , so solving for tD and applying Equation 6.25 we get

R = c

2

(
fd
α
− tD

)
(6.36)

The range-Doppler coupling is inherent to stretch processing. The Doppler information

must be extracted using another method.

6.3.1 Single Chip Radar

A single chip radar solution was developed using the stretch processing technique. Figure

6.15 shows a simplified block diagram of the single chip radar solution. The design was

fabricated in a 130 nm BiCMOS process in 2011. The quadrature DDFS chirp generator

shown in the figure was implemented using a partial dynamic rotation CORDIC. The detailed

block diagram of the component is shown in Figure 6.24.

153

Figure 6.16 shows the die photograph of the RoC chip. The components from the block

diagram are labelled on the silicon. The DACs marked in the figure are described in Section

6.6. The DCDO (labelled NCO in the figure) is a PDR CORDIC described in Section 6.4.

Transmitter

PLL

Receiver

NCO DACs

ADC

Figure 6.16: Die Photograph of RoC

6.4 CORDIC

For ROMs to achieve compression, approximations must be introduced into the phase

to sine/cosine mapping function (SCMF). Another technique that has been widely used for

accurate elementary function generation, such as trigonometric functions, is the Cordinate

Rotation Digital Computer (CORDIC) algorithm. As the name implies, the CORDIC algo-

rithm works by performing iterative rotations to a vector. Most of the early research revolved

around digital computing and audio synthesis [53], but as CMOS processes have advanced

it has found a place in high speed frequency synthesis [21]. The algorithm is relevant to this

work, as a modified version of the CORDIC algorithm is sufficiently fast enough to be used

in high speed DDFS. First however, a brief history of the CORDIC algorithm, along with

the basic theory required to understand the algorithm, will be presented.

154

6.4.1 Basic Theory

The mathematical theory behind the CORDIC algorithm is quite old; however, the first

observation that the technique could compute trigonometric equations in digital computers

was made by Volder [53] in 1959. In his seminal paper, Volder notes that CORDIC can solve

equations of the following two forms:

Y ′ = K (Y cos (λ) +X sin (λ)) (6.37)

X ′ = K (X cos (λ)− Y sin (λ)) (6.38)

and

R = K
√
X2 + Y 2 (6.39)

θ = tan−1
(
Y

X

)
(6.40)

The two sets of equations also describe two conceptual modes of operation. These modes

are rotation mode and vectoring mode and correspond to the solutions of Equation 6.37

and Equation 6.39 respectively. The rotation mode calculates the vector coordinates given

a starting vector and an angle of rotation (i.e. it finds the x and y coordinates of a known

vector after rotation). Vectoring mode calculates the magnitude and angle of a vector given

the coordinates of the vector.

Both rotation mode and vectoring mode CORDICs are used in the implementation of

the BIST system described at the end of Chapter 4. The rotation mode CORDIC is used

to compute sine and cosine in a DDFS and consequently will be the focus of this section.

To understand how CORDIC works and how the partial dynamic rotation CORDIC of the

following sections is derived, it is helpful to derive the CORDIC algorithm itself.

In the conclusion of Volder’s paper, he notes that other algorithms that use the funda-

mental concept of CORDIC can be used to solve different computing problems. It should

155

come as no surprise then that the CORDIC algorithm as described by Volder would eventu-

ally be generalized in a mathematical sense. The generalized (i.e. “unified”) algorithm was

introduced by Walther [54] in 1971.

There are two methodologies for arriving at the CORDIC algorithm. Muller [55] uses

a non-restoring decomposition algorithm on the angle θ to derive the necessary recursive

sequence to perform CORDIC. The other approach, whose variant is used in the derivation of

the CORDIC recursive sequence in this chapter, is used by Walther [54]. Let vi = (xi, yi) be

a coordinate in the Cartesian coordinate system (R2). The bold characters in mathematical

notation are used to represent vectors and matrices. Let vi+1 be generated from vi using

the following relationship:

xi+1 = xi − δiyi (6.41)

yi+1 = yi + δixi (6.42)

where δi ∈ R. Figure 6.17a shows an example of the effect of applying Equations 6.41

and 6.42 with positive δi to arbitrarily chosen coordinates (xi, yi). Notice the transformation

equations can be equivalently thought of as adding a transformation vector vdi = (−δiyi, δixi)

to vi. Figure 6.17b shows the effect of a negative δi on the subsequent vector. Notice that

the magnitude of the vector in both figures is scaled and no longer sits on the unit circle.

To begin to understand the behavior of the iterative equations, consider how the mag-

nitude of vi+1 is related to vi.

|vi+1| =
√
x2
i+1 + y2

i+1

=
√

(xi − δiyi)2 + (yi + δixi)2

=
√

(x2
i − 2δixiyi + δ2

i y
2
i) + (y2

i + 2δixiyi + δ2
i y

2
i)

=
(√

1 + δ2
i

)√
x2
i + y2

i =
√

1 + δ2
i |vi| (6.43)

156

x

y

1
2

1

1
2

1

θi

θdi
θi+1

(xi, yi)

(xi+1, yi+1)

(a) Rotation with Positive δi

x

y

1
2

1

1
2

1

θi

θdi
θi+1

(xi+1, yi+1)
(xi, yi)

(−δiyi, δixi)

(b) Rotation with Negative δi

Figure 6.17: CORDIC Vector Rotations

Let v0 = (x0, y0) be the initial starting vector. Then the magnitude of the vector vn is

|vn| = |v0|
n−1∏
i=0

(√
1 + δ2

i

)
= |v0|Kn (6.44)

where Kn is used in traditional CORDIC literature, though often without the subscript, to

denote the product of magnitudes of iterative rotations [53] [54].

It is clear from Figure 6.17a and Figure 6.17b that a positive δi results in a positive θdi

(i.e. counter-clockwise rotation) and a negative δi results in a negative θdi (i.e. clockwise

rotation). The analysis that follows will show this mathematically. Calculate the relationship

between the angle of vi and vi+1. This is the sum of the angle of vi, denoted θi, and the

angle between the vectors vi+1 and vi, denoted θdi.

θi+1 = θi + θdi (6.45)

157

The following dot product relationship is used to calculate θdi:

cos (θdi) = vi+1 · vi
|vi+1| |vi|

(6.46)

= xi (xi − δiyi) + yi (yi + δixi)
(x2

i + y2
i)
√

1 + δ2
i

(6.47)

= 1√
1 + δ2

i

(6.48)

Now using the cosine to tangent trigonometric identity

cos (θdi) = ± 1√
1 + tan2 (θdi)

(6.49)

The plus or minus arises from the fact the cosine is a even function and tangent is an odd

function. In DDFS systems, only the first quadrant, where both tangent and cosine are

positive, is of interest. In this case only the positive solution is valid. The solution for θdi is

then found by taking the inverse tangent:

θdi = tan−1 (δi) = σi tan−1 (|δi|) (6.50)

where σi as the sign of δi. The inverse tangent function has odd symmetry, so for positive

δi, θdi is positive and for negative δi, θdi is negative. This is in full agreement with the

qualitative assesment from the previous figures. The σi is chosen to rotate the vector in the

correct direction. Then the angle of vn is

θn = θ0 +
n−1∑
i=0

σi tan−1 (|δi|) = θ0 + θsn (6.51)

where θsn is the sum of the delta angles. At this point, it is interesting derive the coordinates

after n such operations, xn and yn. Firstly xn is computed using the cosine sum of angles

158

identity and the geometric observations that cos (θ0) = x0 and sin (θ0) = y0.

xn = |vn| cos (θ0 + θsn)

= Kn |v0| [cos (θ0) cos (θsn)− sin (θ0) sin (θsn)]

= Kn |v0| [x0 cos (θsn)− y0 sin (θsn)] (6.52)

Likewise for yn, while not derived as explicitly

yn = Kn |v0| [x0 sin (θsn) + y0 cos (θsn)] (6.53)

Depending on the initial value v0 chosen, different functions can be generated. Since this

work concerns itself with the generation of sinusoids, it is paramount for correct operation.

Using Equation 6.52 and Equation 6.53, it is clear that setting x0 = 1 and y0 = 0 generates

both a sine and cosine output. Let x0 = 1 and y0 = 0, then |v0| = 1 and

xn = Kn cos (θsn) (6.54)

yn = Kn sin (θsn) . (6.55)

Then the recursive equations so far have yielded a means to compute sine and cosine

of θsn using only iterative multiplications and additions. δi has not been assigned a value,

but from Equation 6.51 it is clear that θsn is a function of δi. One wants the sum of θdi to

“converge” on a desired angle α. Let α be the angle for whose sine and cosine value we wish

to compute by this technique. A formal definition of convergence is required to proceed [14]:

Definition 6.1 (Convergent Series (Real)). Let {x1, x2, · · · } ∈ R be an infinite sequence of

numbers, then the series of this sequence of numbers is said to converge to X ∈ R if given

159

any ε > 0, ε ∈ R there exists an integer N > 0 such that

∣∣∣∣∣X −
n∑
i=1

xi

∣∣∣∣∣ < ε (6.56)

for all n > N .

Convergence is sometimes written as a single limit statement for conciseness:

X = lim
n→∞

n∑
i=1

xi. (6.57)

For the algorithm to be useful for computing sine and cosine, θsn must converge to any

arbitrary angle between 0 and π/2. Or more precisely, for any arbitrary α ∈ [0, π/2) and

ε > 0 there exists an integer N > 0 such that

∣∣∣∣∣α−
n∑
i=1

σi tan−1 (|δi|)
∣∣∣∣∣ < ε (6.58)

for some n > N . The properties of series that converge are set forth using the Cauchy

convergence criterion [14], which is

Theorem 6.1 (Cauchy Convergence Criterion (Real)). A series

∞∑
i=1

xi (6.59)

converges if and only if, given any ε > 0, ε ∈ R there exists an integer N such that

|xm+1 + · · ·+ xn| < ε (6.60)

for all n > m ≥ N .

Let us consider the sequences for which the series converges. This can be inferred from

the Cauchy convergence criterion or proved simply as below:

160

Lemma 6.1 (Sequences for Convergent Series). If the sum of {x1, x2, · · · } ∈ R converges,

then

lim
n→∞

xn = 0 (6.61)

Proof. Let X = limn→∞
∑n
i=1 xi. Note that X = limn→∞

∑n+1
i=1 xi also. Then

lim
n→∞

(
n+1∑
i=1

xi −
n∑
i=1

xi

)
= lim

n→∞
xn+1 = 0 (6.62)

since the limits of both series are the same.

Note that the converse of Lemma 6.1 does not guarantee convergence for the series but

Theorem 6.1 does. The harmonic series is a good example of series whose elements approach

zero toward infinity, but whose series diverges. From the previous lemma,

lim
n→∞

σn tan−1 (|δn|) = lim
n→∞

tan−1 (|δn|) = 0 (6.63)

The sign σn has no impact on the convergence of the sequence to zero. So δi must be chosen

such that the inverse tangent of its sequence has a limit of zero. There are several ways to

easily show this, but perhaps the easiest is to note the Taylor series expansion of inverse

tangent leads to a small angle approximation similar to that of sine (i.e. tan−1(x) ≈ x for

x� 1.

tan−1 (x) =
∞∑
n=0

(−1)n

2n+ 1
(
x2n+1

)
= x− x3

3 + x5

5 − · · · (6.64)

Note the higher order x terms rapidly become negligible for small x.

161

There are multiple tests that can be used to determine convergence in a series, one such

test is the ratio test [14]. If

lim
n→∞

∣∣∣∣∣tan−1 (δn+1)
tan−1 (δn)

∣∣∣∣∣ < 1 (6.65)

then the series converges absolutely. It has already been shown that it is required that

tan−1 (δi) approach zero for large values of i. Using the small angle approximation as n

tends towards infinity, Equation 6.65 can be rewritten as

lim
n→∞

∣∣∣∣∣δn+1

δn

∣∣∣∣∣ < 1 (6.66)

Now it need only be shown that the algorithm described in Definition 6.2 can converge

to any angle between some convergence limits θmax and θmin. This would complete the

description of an algorithm capable of simultaneously computing a scaled sine or cosine to

arbitrary precision given enough iterations. In order to cover the entire interval, a second

less obvious property must be met.

|δn| ≤
∞∑

i=n+1
|δi| (6.67)

For the series of δi to take any value on the interval, the size of the previous step must be

less than or equal to the sum of the remaining steps. This is more obvious when shown

graphically, as in Figure 6.18. Unless the sum of the remaining steps is equal or greater than

the size of the previous step, then there is a gap in the obtainable values from the algorithm.

A gap in δi would result in a gap in tan−1 (δi) and there would be unobtainable angles of

rotation.

The CORDIC algorithm works by keeping track of the angle of rotation at each iteration

to determine if the rotations have passed the desired target angle. In CORDIC literature,

the variable zi is used to denote the angle information at iteration i. One could start z0

162

δn Step

−
∞∑

i=n+1
δi

∞∑
i=n+1

δi

Unreachable

Figure 6.18: CORDIC Coverage Requirement

at zero and sum the θdi components and σi could be computed by subtracting α from the

current θi to determine the direction of rotation. A more efficient approach would be to start

z0 = α and subtract the θdi while checking the sign of the residual angle at each iteration.

This is how σi is selected. Define the iterative relationship:

zi+1 = zi − θdi = zi − σi tan−1 (|δi|) (6.68)

where σi = 1 if zi ≥ 0 or σi = −1 otherwise. At the nth iteration,

zn = z0 −
n−1∑
i=0

σi tan−1 (|δi|) = z0 − θsn (6.69)

If zn converges to zero at the limit for n as it approaches infinity, then θsn = z0 and from

Equations 6.54 and 6.55 one sees that the algorithm computes the sine and cosine of θsn.

Clearly then, proving that zn converges to zero from a given z0 = α is sufficient to prove

convergence for the CORDIC algorithm.

Theorem 6.2 (CORDIC Convergence Theorem). Let tan−1 (δ1) , tan−1 (δ2) , . . . be a se-

quence of real numbers whose series is convergent by the Cauchy convergence criterion for

163

series (Theorem 6.1). If

∣∣∣tan−1 (δn)
∣∣∣ ≤ ∞∑

k=n+1

∣∣∣tan−1 (δk)
∣∣∣ (6.70)

for any n ∈ P, then for any α ∈ R constrained by

−
∞∑
i=0

∣∣∣tan−1 (δi)
∣∣∣ ≤ α ≤

∞∑
i=0

∣∣∣tan−1 (δi)
∣∣∣ (6.71)

The CORDIC z recurrence relation when seeded with z0 = α converges, i.e.

lim
n→∞

zn = 0 (6.72)

where zn is defined by Equation 6.68.

Proof. Let α be chosen according to Equation 6.71. Let S be a non-empty subset of P0. Let

us show that

−
∞∑
k=n

∣∣∣tan−1 (δk)
∣∣∣ ≤ zn ≤

∞∑
k=n

∣∣∣tan−1 (δk)
∣∣∣ (6.73)

for all n by induction. Since the series

∞∑
i=1

tan−1 (δi) (6.74)

converges by the Cauchy criterion (Theorem 6.1), for any arbitrary ε > 0, ε ∈ R there exists

an integer N > 0 such that

∣∣∣tan−1 (δm+1) + · · ·+ tan−1 (δn)
∣∣∣ < ε (6.75)

164

for all n > m ≥ N . This implies

lim
n→∞

∞∑
k=n

∣∣∣tan−1 (δk)
∣∣∣ = 0 (6.76)

and thus showing Equation 6.73 to be true would prove convergence by making the upper

and lower limit of zn equal to zero. First let us check that 0 ∈ S by setting n = 0 and using

Equation 6.73.

−
∞∑
k=0

∣∣∣tan−1 (δk)
∣∣∣ ≤ z0 ≤

∞∑
k=0

∣∣∣tan−1 (δk)
∣∣∣ (6.77)

Since z0 = α and α has been chosen according to Equation 6.71, 0 ∈ S. Now we take the

induction step. Assume x ∈ S. It must be shown that x+ 1 ∈ S by showing that

−
∞∑

k=x+1

∣∣∣tan−1 (δk)
∣∣∣ ≤ zx+1 ≤

∞∑
k=x+1

∣∣∣tan−1 (δk)
∣∣∣ . (6.78)

zx+1 is computed as follows:

zx+1 = zx − σx tan−1 (|δx|) (6.79)

Since we have assumed x ∈ S,

−
∞∑
k=x

∣∣∣tan−1 (δk)
∣∣∣ ≤ zx ≤

∞∑
k=x

∣∣∣tan−1 (δk)
∣∣∣ (6.80)

There are two cases to examine, zx ≥ 0 for which σx = 1, δx ≥ 0 and zx < 0 for which

σx = −1, δx < 0 . Assume zx ≥ 0, then σx = 1 and

zx+1 = zx − tan−1 (δx) = zx −
∣∣∣tan−1 (δx)

∣∣∣ (6.81)

165

The upper bound is found by substituting the upper bound of Equation 6.80 into Equation

6.81 and adjusting the equality to an inequality.

zx+1 ≤
∞∑
k=x

∣∣∣tan−1 (δk)
∣∣∣− ∣∣∣tan−1 (δx)

∣∣∣ (6.82)

≤
∞∑

k=x+1

∣∣∣tan−1 (δk)
∣∣∣ (6.83)

The lower bound is found by substituting Equation 6.70 into Equation 6.81 and adjusting

the equality to an inequality.

zx+1 = zx −
∣∣∣tan−1 (δx)

∣∣∣⇒ zx+1 ≥ zx −
∞∑

k=x+1

∣∣∣tan−1 (δk)
∣∣∣ (6.84)

But zx is positive or zero, so

zx+1 ≥ −
∞∑

k=x+1

∣∣∣tan−1 (δk)
∣∣∣ (6.85)

and the zx+1 is bounded for the case zx ≥ 0. Now consider zx < 0, then σx = −1.

zx+1 = zx +
∣∣∣tan−1 (δx)

∣∣∣ (6.86)

The lower bound is computed by substituting the lower bound of Equation 6.80 into Equation

6.86

zx+1 ≥ −
∞∑
k=x

∣∣∣tan−1 (δk)
∣∣∣+ ∣∣∣tan−1 (δx)

∣∣∣ (6.87)

≥ −
∞∑

k=x+1

∣∣∣tan−1 (δk)
∣∣∣ (6.88)

The upper bound is computed by substituting Equation 6.70 into Equation 6.86

zx+1 = zx +
∣∣∣tan−1 (δx)

∣∣∣⇒ zx+1 ≤ zx +
∞∑

k=x+1

∣∣∣tan−1 (δk)
∣∣∣ (6.89)

166

But zx is negative, so

zx+1 ≤
∞∑

k=x+1

∣∣∣tan−1 (δk)
∣∣∣ (6.90)

Thus x+ 1 ∈ S and the proof is complete.

Note that this proof for the CORDIC algorithm is different from Walther’s proof (per-

haps a little more formal) [54]. As far is the author is aware, this is an original proof.

The conventional CORDIC algorithm has been fully derived at this point. Definition 6.2

summarizes the results of the analysis thus far.

Definition 6.2 (Conventional CORDIC Iteration). The conventional CORDIC iteration is

defined as

xi+1 = xi − σiδiyi (6.91)

yi+1 = yi + σiδixi (6.92)

zi+1 = zi − σi tan−1 (δi) . (6.93)

where σi = 1 if zi ≥ 0 or σi = −1 otherwise. Performing successive CORDIC iterations to

compute some desired value is called the CORDIC algorithm.

There are infinitely many such δi that can satisfy Equation 6.66 and Equation 6.67.

What is desired is an efficient hardware implementation of Equation 6.41 and Equation 6.42.

As has already been mentioned in the BTM and MTM sections, a multiplication or division

by 2 is merely a shift operation, which is remarkably efficient in hardware (no combinatorial

logic is required). Let |δi| = 2−i, a shift by i operation in hardware. Now let us calculate

whether this series converges using the ratio test.

lim
n→∞

∣∣∣∣∣2−(n+1)

2−n

∣∣∣∣∣ = lim
n→∞

1
2 = 1

2 < 1 (6.94)

167

Clearly, the series then converges. Now let us calculate the interval of convergence. The

maximum angle of rotation would be

θmax =
∞∑
i=0

tan−1
(
2−i

)
(6.95)

= tan−1 (1) + tan−1
(1

2

)
+ tan−1

(1
4

)
+ · · · (6.96)

= 1.7432865 . . . ≈ 0.55π (6.97)

The minimum obtainable rotation angle would be θmin = −θmax = −1.7432865 Since

quarter sine compression is typically used in a DDFS, the 0.55π is more than sufficient for

implementing the SCMF. From this point forward δi will assumed to be a power of 2.

6.4.2 Conventional CORDIC

Figure 6.19 shows the hardware implementation of the conventional CORDIC iteration.

Thus three full adders are required. Since zi is a two’s complement number, the sign detection

block is merely a check on the MSB of zi. The hard-wired shifts are “free” operations,

requiring no additional hardware. The multiplication by −1 can be implemented using the

one’s complement technique described in Figure 1.2. Overall this is rather low hardware

overhead for a technique that can compute a sinusoid to arbitrary precision.

One of the drawbacks of conventional CORDIC implementations is the scalar K from

the iterative rotations. As n tends towards infinity,

K∞ =
∞∏
i=0

(√
1 + 2−2i

)
= 1.64676 . . . (6.98)

But since Kn is a function of the number of iterations, the conventional CORDIC typically

has a fixed number of iterations. One brute force method to is to initalize x0 = 1/Kn and

thus the final computation results in cos (α) and sin (α). Other methods to correct for this

unwanted scaling, and when the scaling can be ignored, will be discussed later in this chapter.

168

∑

∑

∑

� i

� i

−1

−1

−1

1
0

1
0

1
0

Hard-Wired
Shift

Hard-Wired
Shift

Sign
Detection

xi

yi

zi

tan−1 (2−i)

Dx

Dy

Dz

Qx xi+1

Qy yi+1

Qz zi+1

Figure 6.19: Conventional CORDIC Stage

Note that the upper bound of the remaining phase error, assuming vectoring mode

operations with z0 = α, after n rotations is

∞∑
i=n+1

∣∣∣tan−1
(
2−i

)∣∣∣ (6.99)

The angle remaing phase error is bounded by the small angle approximation for arctangent.

Figure 6.20a shows the value of arctangent against each CORDIC iteration as well as the

small angle approximation of arctangent at each value. The better question is how the

quality of the small angle approximation changes with each iteration. Figure 6.20b shows this

information by taking the ratio of the magnitude of error of the small-angle approximation

for arctangent at a certain iteration and dividing it by the arctangent value of that iteration.

This will prove helpful in calculating upper error bounds on the phase and amplitude in the

CORDIC algorithm in the following section.

169

0

10

20

30

40

50

60

0 5 10 15 20

Ph
as
e
St
ep

(d
eg
re
es
)

Iteration

2−i

tan−1 (2−i
)

(a) arctan Versus Iteration

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0 5 10 15 20

(2−
i
−

ta
n−

1 (
2−

i)
) /ta

n−
1 (

2−
i)

Iteration

(b) Quality of Approximation

Figure 6.20: arctan Small Angle

6.4.3 Optimizing the CORDIC Algorithm for DDFS

The conventional CORDIC algorithm when started at zero phase and initialized such

that the scaling factor is normalized covers a phase range of −0.55π to 0.55π. Since DDFS

systems use quarter wave sinusoidal compression, this is over twice the required range for

convergence. We only wish to compute angles in the interval [0, π/2). This means that the

CORDIC algorithm always takes the same first step, since z0 = α is always greater than

or equal to zero. Figure 6.21a shows the upper bound of the “remaining phase error” at

iteration i (computed using Equation 6.99). Starting at iteration 0, θ0 = 0, the phase error

upper boundary is the entire π/2, or 90◦, range. After one iteration, the maximum phase

error is 54.9◦.

The question remains of how y0, x0 and z0 should be initialized for the optimization to

work correctly. Using Equation 6.52 and 6.53 is clear that x0 = cos (θ0) = cos (π/4) =
√

2/2

and y0 = sin (π/4) =
√

2/2. These values can be pre-computed and stored in the a ROM for

initialization. Using Equation 6.68, it is clear that z must be set to

z0 = α− π

4 (6.100)

170

10−4

10−3

10−2

10−1

100

101

102

0 5 10 15 20R
em

ai
ni
ng

Ph
as
e
Er

ro
r
(d
eg
re
es
)

0 5 10 15 20
0

5

10

15

20

Ph
as
e
R
es
ol
ut
io
n
(b
its

)

CORDIC Iteration

(a) Phase Error Versus Iteration

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0 5 10 15 20

K
Sc
al
in
g
Er

ro
r

0 5 10 15 20
-10

0

10

20

30

40

A
m
pl
itu

de
R
es
ol
ut
io
n
(b
its

)

Iteration

(b) K Versus Iteration

Figure 6.21: CORDIC Bit Resolution

A brute force approach would be to directly compute this number and use it as a seed for

the z-path of the CORDIC. Starting at θ0 = π/4 means that the CORDIC algorithm only

needs to cover the interval [−π/4, π/4] or [−0.25π, 0.25π]. Skipping the first CORDIC stage

(i.e. starting i = 1) converges over the interval [−0.305π, 0.305π] which is sufficient to cover

the required interval.

The optimization of starting the vector at an angle of π/4 and skipping the first CORDIC

iteration effectively eliminates one CORDIC iteration. The number of rotations can be

further reduced by extending this idea to a general purpose look-up table that initializes the

CORDIC algorithm to the mth iteration. The green line of Figure 6.21a shows the numbers

of bits of phase resolution obtained for a given upper bound of phase error. From Figure

6.20a and Figure 6.20b, along with Equation 6.64 for the small angle approximation, it shows

that each CORDIC iteration gain a single bit of phase accuracy. This can be directly related

to an amplitude error and consequently an effective number of bits. Let θr be the remaining

phase error. The sine difference formula, which has been used in nearly every chapter of this

171

document, yields

sin (α− θr) ≈ sin (α) + θr cos (α) for θr � 1 (6.101)

The error is then θr cos (α), but α ∈ [0, π/2) and therefore the error is bounded by the

maximum value of cosine over that interval, or cos(0) = 1. The maximum error is then θr,

which is precisely the remainin phase error. So the green line of Figure 6.21a also predicts the

number of bits of amplitude resolution provided by the CORDIC after i iterations without

error. Figure 6.22 shows how x0 and y0 are derived by sending the MSBs of the DDFS phase

word to a look-up table.

Assume that BLUT bits are used for the lookup table. Then the π/2 CORDIC search

range is reduced to:

θROT = π

2BLUT+1 (6.102)

If an offset is introduced into the LUT in the same manner as described in the π/4 opti-

mization offset discussion, an extra iteration can be reduced. Thus a six bit LUT with a

half-LSB offset elminates 7 CORDIC operations. That is to say, the first iteration would be

i = 8 using Figure 6.21a.

An interesting phenomenon happens with the scaling factor when initializing the CORDIC

algorithm. Figure 6.21b shows the scaling factor value of the ith iteration. The green line

shows the number of amplitude bits of resolution required at the output before the Kn scal-

ing factor to introduce an error above quantization. From Equation 6.44, it should come as

no surprise that the amplitude error decreases at a rapid rate, particularly with the 2−2i rate

of decrease in error per term.

172

6.4.4 Partial Dynamic Rotation CORDIC

The generalized PDR CORDIC architecture with support for conventional CORDIC

stages is shown in Figure 6.22. This component is used the radar DDFS system described in

this chapter. Consider a conventional CORDIC with θ0 = 0 and let α = 5◦. The first step

would be tan−1(20) = 45◦. This step far overshoots the desired angle of rotation. There is

enough information to avoid this overshoot because the starting angle is known, the desired

angle is known and the amount of rotation for a given 2−i is known. Keep in mind that α is

a binary word. Looking at the MSBs of word give an idea of how much rotation is required.

In this case, starting at iteration i = 3 yields tan−1 (2−3) = 7.125◦.

Coarse
sin/cos
LUT

Conv.
CORDIC
Stages

PDR
CORDIC
Stages

Q
ua

dr
at
ur
e

O
pe

ra
tio

n

Conv.
z-path

Optimized
z-path

PT
BPT

BLUT = MSBs (BQ)

BROT = LSBs (BQ)

BAL

BAL

As
BA

Ac
BA

zr

2 MSBs (BPT)

σ σ, α

BQ

Figure 6.22: PDR CORDIC Architecture

One of the major drawbacks of the PDR CORDIC is that Kn for a fixed number of

stages changes based on the requested angle α. It has already been shown in Figure 6.21b

that if the CORDIC is initalized before rotations begin, the impact of Kn on the magnitude

of the output is negligible. Figure 6.23 shows the block diagram for a PDR CORDIC rotation

stage.

The dynamic rotation selection (DRS) logic shown in Figure 6.23 becomes quite simple

if the CORDIC stages are seeded with enough resolution. Recall from the small angle

approximation in Figure 6.20a that tan−1(2−i) ≈ 2−i for large i. Then the check to find the

appropriate rotation angle is merely a check on the MSB position of the remaining phase

173

∑

∑

∑

� j

� j

−1

−1

−1

1
0

1
0

1
0

Barrel
Shifter

Barrel
Shifter

Sign
Detection

Dynamic
Rotation
SelectionD

R
S

tan−1 (2−j)
LUT

xi

yi

zi

Dx

Dy

Dz

Qx xi+1

Qy yi+1

Qz zi+1

j

αj

Figure 6.23: PDR CORDIC Stage

Design BA BP SINAD SFDR (W.C) Frequency Area
BTM 12 32 66 70 dBc 680 MHz 0.013 mm2

MTM 11 32 N/A 58 dBc 1.0 GHz 0.008 mm2

CORDIC (RoC) 12 32 64 66 dBc 1.1 GHz 0.011 mm2

CORDIC (ORA) 12 32 73 78 dBc 680 MHz 0.054 mm2

Table 6.3: Summary of DDFS Designs

(zi). This is because we are comparing a 2−i number, which is a value represented by a single

bit.

Table 6.3 summarizes the size of the various lookup tables implemented and fabricated.

In all cases, the SFDR and SNR of the DAC where several orders of magnitude worse than the

digital code word produced by the DCDO. Therefore the frequency is a measured operating

frequency, but the SINAD and SFDR are HDL simulated DCDO outputs.

174

6.5 Stretch Processing DDFS Architecture

One pulse compression technique for which a DDFS with LFM is well suited is stretch

processing [42]. In fixed chirp rate stretch processing, a high bandwidth linear chirp of chirp

rate (α) with a fixed time length (TTX) is transmitted into the environment. The transmit

period times the chirp rate yields the effective bandwidth of the transmitted chirp (βTX).

This bandwidth sets the range resolution (i.e. the radars ability to uniquely distinguish

closely spaced targets). A first order approximation of the range resolution (RRES) of a

stretch processing system is given in Equation 6.25.

During reception of the signal reflected from a target, a “destretch” signal of the same

chirp rate α as the transmitted signal, but with a longer time duration (TRX) and con-

sequently wider bandwidth, is used to demodulate the signal. The difference in the time

duration between the transmit and receive chirps sets the range interval of the radar. The

range interval is the “window” through which the radar can detect objects. It is the band-

width of the destretch signal (βRX), and not the transmitted pulse, that sets the system

bandwidth requirement for the DDFS.

Figure 6.24 shows the top level DDFS architecture used for the radar system. The

components of radar directly related to this dissertation are the DDFS and corresponding

control circuitry. Two DACs for in-phase and quadrature phase sinusoid generation are

implemented in the DDFS system.

Frequency
Accum.

F
BF Phase

Accum.
PT

BPT

Quadrature
PDR

CORDIC

AI

BA

Inverse
Sinc
Filter DACI

AQ

BA

Inverse
Sinc
Filter

DACQ

Galois
PRNG
(65’b)

BD
D

Phase
Modulator

BPM

Radar
Controller

F
S
T
A
R
T

F
S
T
E
P

P
S
T
A
R
T

P
P
A
U
S
E

C

C

Figure 6.24: Block Diagram for Radar DDFS

175

Figure 6.25: Die Photograph of RoC (DDFS Zoomed)

DCDO/SPI DACs

The additive dithering technique that was used in both the MTM DDFS and BTM

DDFS was also employed for the RoC DDFS. However, the phase truncation spurs rested

so far beneath the noise floor of the DAC, that no spurious improvement was detected.

Figure 6.25 is the die photo of the RoC chip zoomed around the DDFS. The DAC and

DCDO/SPI are labelled to help make sense of the silicon.

6.5.1 Inverse Sinc Filter

The high speed DAC implementation used in the DDFS inherently applies a zero order

hold (ZOH) operation on the output waveform. The ZOH transfer function is actually a sinc

function in the frequency domain and its reason for existence is described in Section 7.2. As

stated in Section 6.5, the DDFS generates a wide bandwidth “destretch” chirp signal that

performs the pulse compression step of the radar. It is important that the amplitude of the

generated chirp not fluctuate with frequency (and hence distort the radar measurement).

One solution [56] is to apply an inverse sinc operation using a finite impulse response (FIR)

filter to shape the waveform before sending it to the DAC.

In the DDFS, two FIR filters with 9-bit coefficient resolution, one for the I-path and

one for the Q-path, were implemented after the PDR CORDIC. Pipelining the FIR filter

was essential to allow it to reach 1 GHz operation. Figure 6.26 shows a block diagram of the

inverse sinc filter component as implemented, where c0 = −1, c1 = 4, c2 = −16, and c3 = 192

for nine bit coefficient resolution. Note that after each addition the results are stored in a

176

Z−1 Z−1 Z−1 Z−1 Z−1 Z−1 Z−1x

∑

Z−1

Z−1

c0

∑

Z−1

Z−1

c1

∑

Z−1

Z−1

c2

Z−1

Z−1

Z−1

c3

∑ ∑

Z−1 Z−1

∑

y

Figure 6.26: Inverse Sinc FIR Filter (Block Diagram)

pipeline register. The coefficients from Samueli’s work were verified to be optimal in a min-

max sense using a linear programming (LP) algorithm. An LP algorithm for finding optimal

coefficients was developed with Python programming. The coefficients where found to be in

full agreement with previously published work [56].

The measured results match the theory quite well (Figure 6.31a). To test the filters, a

90 MHz sweep with the clock frequency at 200 MHz was generated using the DDFS. Four

markers are placed equally across the waveform and the amplitude was measured. With the

inverse sinc filter deactivated, the measured values across the spectrum were -23.60 dBm,

-24.03 dBm, -24.87 dBm and -26.37 dBm. This roll off indicates that the DACs do indeed

exhibit ZOH behavior. Next, the same 90 MHz sweep with the clock frequency at 200 MHz

was generated with the inverse sinc filter active. The four markers now read -27.24 dBm,

-27.17 dBm, -27.09 dBm and -27.30 dBm. Here the gain variation is less than 0.21 dBm.

6.5.2 Radar Controller

The DDFS is tightly integrated with a digital radar controller. Several default modes of

operation are programmable for the DDFS depending on the radar operating environment.

The default mode is stretch processing mode for longer range target acquisition. A BPSK

177

mode is available for detecting objects close in to the radar with built-in Barker code mod-

ulation schemes. This mode is required because the RoC chip must operate in half-duplex

mode from a single antenna and thus a long chirp would prevent detection of close in targets.

There are also QPSK and general LPM modes for experimenting with different detection

techniques in the lab. Several device characterization and test modes for the DACs, filters

and DCDO were also implemented such as a single tone mode.

The basic operation of the radar transceiver in stretch processing mode and the algo-

rithm is described as follows:

1. Initialize common analog components such as the PLL and bandgaps.

2. Deactivate the analog receiver circuitry.

3. Activate the analog transmitter circuitry.

4. Load the transmitter frequency control words into the start frequency, stop frequency

and step frequency DDFS registers.

5. Clock the start frequency state into the frequency accumulator. Clock the start phase

state into the phase accumulator.

6. Run the DDFS until the transmitter stop frequency control word is reached.

7. Load the transmitter timer, store the old receiver wait time and start waiting.

8. While waiting, activate the analog receiver circuitry.

9. Deactivate the analog transmitter circuitry.

10. Load the receiver frequency control words into the start frequency, stop frequency and

step frequency DDFS registers.

11. Run the DDFS until the receiver stop frequency control word is reached.

12. Load the receiver timer, store the previous transmitter wait time, and start waiting.

178

13. Proceed to state (2).

The LPMmodes operate with a similar algorithm except all the LFM behavior is deactivated.

6.6 Design of 12-bit CMOS DAC

Two fully differential, current steering 12-bit, 1 GHz CMOS DACs convert the digital

output of the DCDO to a voltage. The DACs use a segmented architecture with 6-bits of

thermometer coding for the MSB and 6-bits of binary coding for the LSB. Figure 6.27 is

a block diagram of the DAC. The output of the DAC has 20 dB of digitally controlled,

programmable gain. The gain is programmed by modifying the values of current reference

and thus reducing the magnitude of the current through the current steering switches. This

reduces the DACs operating frequency, which is described in Section 7.5.1.

The DAC uses a triple-centroid switching scheme made popular in [57], that randomizes

spurs due to current cell mismatch. The clock tree is a balanced H-tree in an attempt to

minimize clock skew along the wire paths. A single base transistor size was chosen such that

Registers

Thermometer
Row Decoder

Thermometer
Col. Decoder

63-bit
Thermometer

Decoder
Latches and

Current Switch
Matrix

Current
Source
Matrix

Delay Stages

D[11:0]

D[11:9]

D[8:6]

D[5:0]

Tr[6:0]

Tc[6:0]

T[62:0]

B[5:0]

im

RL

ip

RL

Figure 6.27: Block Diagram of 12-Bit CMOS DAC

the variation exhibited through Monte Carlo simulations kept the DAC DNL within bounds.

Figure 6.28 demonstrates how the single unit transistor is used to build the current source

network. [ht] The thermometer coded current sources have a cascade transistor added to

increase the output impedance of the DAC. The DAC also implements custom high speed

latches that convert the single ended digital input to a differential signal. These latches aid

179

M = 16Vref

I64

Vcas

Ti

RL

T i

RL

M = {8, 4, 2, 1}Vref

B5,4,3,2 B5,4,3,2

I32,16,8,4

M = 1Vref

M = 1

B1 B1

I2

M = 1

M = 1

M = 1

M = 1

B0 B0

I1

VDD

Figure 6.28: DAC Current Source Sizing

D

CLK

VDD

GND

Figure 6.29: Synchronization Circuit for 12-Bit CMOS DAC

in synchronizing the the digital bits sent to the DAC from the synthesized digital component.

The synchronization reduces timing mismatch and consequently the improves the spurious

response of the DAC. The total area of the DAC, including the digital front-end, is 400 µm

× 500 µm. The SFDR of the DAC is approximately 55 dBc (better than 60 dBc at certain

frequencies) through about two thirds of the Nyquist frequency. The measured narrowband

noise, where narrowband is measured before the third harmonic of the fundamental tone, is

approximately 90 dBc.

The DAC high speed clock distribution tree makes use of an H-tree network as shown in

Figure 6.30. This technique is used to equalize the amount of static delay between current

steering cells on the clock distribution network. Any statis mismatch will directly translate

into deterministic spurs when a periodic varying signal drives the DAC.

180

CLK

Figure 6.30: Clock Tree for 12-Bit CMOS DAC

6.7 Measurements

The performance of DDFS is summarized in Table 6.4. From a previous implementation,

the research has shown that the digital component can run without errors up to 1.1 GHz.

However, due to process manufacturing issues with this particular run, the system could

only run at 650 MHz. Another version will be resubmitted without modification that should

allow it to reach the proper operating frequency. The static DNL and INL of DAC cannot

Table 6.4: DDFS Performance Summary

Parameter Value
fclk 650 MHz

SFDR (low) 55 dBc (at 1.26 MHz)
SFDR (mid) 60 dBc (at 88 MHz)

SNR (narrowband) 91 dBc
Power (Analog) 150 mW
Power (Digital) 700 mW

DAC Area 400 µm × 500 µm (2X)
Digital Area (inc. SPI/control logic) 400 µm × 800 µm

be measured as the inputs of the DAC are not accessible from the pad frame of the chip.

The SFDR however indicates that the DAC performs poorly in INL. This is likely due to the

programmable gain stage of the DAC, as the third order harmonic was strongly dependent

on the gain state.

181

Lastly, Figure 6.31a shows a 100 MHz chirp with the inverse sinc filter activated. The

attenuation at low frequencies is from the test setup, in which the output of the packaged

RoC chip is AC coupled to the spectrum analyzer. Figure 6.31b shows the waveform without

the inverse sinc filter activated. Because of the scale of the waveform it is difficult visually

determine the impact of the filter on the waveform. However, looking at the readings from

the markers, the impact of the inverse sinc filter is more easily understood. The output

spectrum when the inverse sinc filter is activated does not attenuate at higher frequencies.

The deviation between the waveforms becomes even more pronounced as the output of the

DAC approaches the Nyquist frequency.

(a) Chirp with Inverse Sinc On (b) Chrip with Inverse Sinc Off

Figure 6.31: Inverse Sinc Filter

Figure 6.32 shows the DDFS operating in single tone mode. The main tone is located

at 85.8 MHz and the largest spur is the fourth order harmonic of the main tone located

at 343.2 MHz and is 57 dB down. This tone is measured before the low pass filter. This

work briefly describes a fully functional DDFS for stretch processing radar applications.

The performance of the digital logic of the DDFS is competitive with other published DDFS

implementations given the feature size of the technology, almost certainly when frequency

resolution and features are considered.

182

Figure 6.32: DDFS with Single Tone Output

183

Chapter 7

Digital-To-Analog Converters (DAC)

As digital circuitry evolves to smaller geometry nodes that result in higher speeds, lower

power and smaller area, more functionality is relegated to the digital processing domain.

The transition from the discrete-time digital domain to the continuous-time analog domain

is performed by a Digital-to-Analog Converter (DAC). In modern designs, the performance

of the DAC dominates the performance of the DDFS [4], since small feature size CMOS

allows spectrally pure digital sinusoids to be generated with little overhead at sufficiently

high speeds. It is not uncommon to have a digital SFDR and SNR that are 10 to 20 dB

better than what can be achieved by a DAC in the same technology.

The term DAC is general and includes small devices that tune static circuit parameters

to massive RF DACs as those designed by Analog Devices [58] or e2v [43]. The DACs

discussed in this thesis are > 1 GSample/s current steering (CS) designs. The design issues

discussed include clock and data timing errors and frequency dependent non-linearities that

do not plague DC DACs. However, the discussion on current source mismatch, static INL,

static DNL and segmented architectures are relevant to DC CS DACs as well as high speed

CS DACs.

7.1 Basic Sampling Theory

The DDFS is a sampled-data system, and thus a brief explanation of the sampling

process is beneficial in understanding the behavior of the device. It will also benefit later

analysis in Section 7.2 in which different DAC switching schemes are discussed. An important

operator must be defined to aid in the discussion of sampling theory, namely, the Dirac

184

Delta “function.” Here the required mathematical theory to formalize the Dirac delta as a

distribution is ignored and a more axiomatic treatment is provided [59].

Definition 7.1 (Dirac Delta). The Dirac delta in a one-dimensional real space can be

defined as a heuristic function, symbollicaly denoted as δ(x), such that

δ (x) ,


+∞, x = 0

0, x 6= 0
(7.1)

and satisfies the identity given in Equation 7.2

∫ ∞
−∞

δ (x) dx = 1 (7.2)

Of course, the following “proofs” about the properties of the Dirac delta all leave some-

thing to be desired, as the definition of the Dirac delta used in this work cannot be considered

mathematically formal. However, if one assumes that the Dirac delta operates similar to a

function within an integral, then these “proofs” hold. Now consider the behavior of the

Dirac delta when used in an integral, as its usefulness in mathematically describing the

sample operation becomes important.

∫ ∞
−∞

x(t)δ(t)dt =
∫ ∞
−∞

x(0)δ(t)dt = x(0)
∫ ∞
−∞

δ(t)dt = x(0) (7.3)

Equation 7.3 holds assuming, of course, that x(t) is defined at zero. The integral of a function

multiplied by the Dirac delta takes on the value of the function at which the Dirac delta is

non-zero. Ideal sampling “captures” the value of a continuous function at an instant in time,

which certainly sounds similar to the mathematical operation of the Dirac delta.

If one wishes to acquire the value of x(t) once every T seconds, or sample the signal x(t)

with an interval of T , then a series of Dirac deltas equally spaced in time is needed. Let us

185

then define a “pulse train” of Dirac deltas as follows,

∆T (t) ,
∞∑

k=−∞
δ (t− kT) (7.4)

where T is the period of sampling and k is an integer. It is interesting to note that ∆T is

periodic with T . This can be shown as by proving that ∆T (t) = ∆T (t+ nT).

∆T (t+ nT) =
∞∑

k=−∞
δ (t+ nT − kT) (7.5)

=
∞∑

k=−∞
δ (t+ (n− k)T) = ∆T (t) (7.6)

The last step is possible because the summation limits tend to infinity. So shifting the

sequence a finite number of T in any direction results in the same funtion. Since ∆T (t) is

periodic with T , it can represented by its Fourier series. The real valued Fourier series was

described by Definition 2.1. Here the complex Fourier series is used to simplify notation.

∆T (t) =
∞∑

n=−∞

 1
T

∫ T/2

−T/2

∞∑
k=−∞

δ (t− kT) e−j2πnt/Tdt
 ej2πnt/T (7.7)

=
∞∑

n=−∞

(1
T
e0
)
ej2πnt/T

= 1
T

∞∑
n=−∞

ej2πnt/T (7.8)

The summation over k in Equation 7.7 was dropped because the Dirac delta is only zero for

k = 0 as t varies from −T/2 to T/2. Now the Fourier transform of ∆T (t) can be computed

in a straight-forward manner. This leads to one of the most interesting results in sampling

186

theory.

F {∆T (t)} =
∫ ∞
−∞

(
1
T

∞∑
n=−∞

ej2πnt/T
)
e−j2πftdt

= 1
T

∫ ∞
−∞

∞∑
n=−∞

e−j2πt(f−n/T)

= 1
T

∞∑
n=−∞

δ (f − n/T) (7.9)

So the Fourier transform of the Dirac comb function is another Dirac comb but in the

frequency domain. The spacing of the impulses is the sampling frequency (1/T) of the

original sampling operation.

One of the theorems related to sampling, fundamentally important to DAC design and

universally taught to electrical engineering students is the Nyquist-Shannon Sampling Theo-

rem. The first publication of this powerful theorem as it relates to the field of communication

is provided by Shannon in 1948 [60]. The Nyquist-Shannon sampling theorem as given by

Bernard Widrow [61] is described in Theorem 7.1.

Theorem 7.1 (Nyquist-Shannon Sampling Theorem). If the sampling radian frequency Ωs

is high enough so that

|X (jω)| = 0 for |ω| ≥ Ωs

2 (7.10)

where X(jω) is the CTFT of x(t) then the sampling condition is met, and x(t) is perfectly

recoverable from its samples.

In more common parlance, Theorem 7.10 states that a bandlimited signal x(t) can be

perfectly reconstructed from its samples if the sample rate is at least twice the bandwidth.

In the following section, the foundations of the Nyquist-Shannon sampling theorem will be

built.

187

7.2 DAC Fundamentals

As part of this work, we will briefly discuss the fundamentals of DAC behavior. A

DAC transforms a digital code word into a physical, electrical quantity. Typically this

electrical quantity is a voltage (i.e. low impedance output) or a current (i.e. high impedance

output). After the DAC generates the physical quantity, it is filtered by a low pass analog

reconstruction filter or something that approximates such a filter. This need not be the

case however, as output signals with frequencies higher than the first Nyquist zone can be

synthesized by applying a bandpass filter to DACs with certain types of responses.

The following analysis makes heavy use of convolution. So in keeping with the spirit of

this thesis, it is presented here along with one of its more important properties (Theorem

7.2) [59].

Definition 7.2 (Convolution). The convolution of f(t) and g(t), denoted (f ?g)(t), is defined

mathematically as

(f ? g)(t) =
∫ ∞
−∞

f (τ) g (t− τ) dτ (7.11)

Theorem 7.2 (Fourier Convolution Theorem). Let x(t) and y(t) be continuous function of

t, then

F {(x ? y) (t)} = F {x(t)} · F {y(t)} (7.12)

F {x(t) · y(t)} = F {x(t)} ? F {y(t)} (7.13)

This is generally referred to as the convolution theorem.

188

Proof. Let x(t) and y(t) be continuous functions whose Fourier transform exists. Then the

Fourier transform of the convolution of x(t) and y(t) is

F {(x ? y) (t)} =
∫ ∞
−∞

(x ? y) (t)e−jΩtdt

=
∫ ∞
−∞

(∫ ∞
−∞

x (τ) y (t− τ) dτ
)
e−jΩtdt (7.14)

The order of integral operations can be rearranged provided that Fubini’s theorem [62] is

satisfied by the double integral of Equation 7.14 to yield

F {(x ? y) (t)} =
∫ ∞
−∞

x (τ)
(∫ ∞
−∞

y (t− τ) e−jΩtdt
)
dτ (7.15)

Substituting r = t+ τ for t into Equation 7.15 and noting that dt = dr gives the final result

F {(x ? y) (t)} =
∫ ∞
−∞

x (τ)
(∫ ∞
−∞

y (r) e−jΩr+−jΩτdr
)
dτ

=
(∫ ∞
−∞

x (τ) e−jΩτdτ
)(∫ ∞

−∞
y (r) e−jΩrdr

)
= F {x(t)} · F {y(t)} (7.16)

The ideal DAC response is a series of weighted impulses [63]

yIDEAL(t) =
∞∑

n=−∞
αx [n] · δ (t− nT) + β (7.17)

where δ(t) is the Dirac delta function defined in Equation 7.1, α is the gain of the DAC (see

Section 7.3.1) and β is the offset of the DAC (also see Section 7.3.1). Here x[n] is understood

to be the value of the signal x at time nT and thus x(nT) = x[n]. As the DAC metrics

considered in this work are measures of the effects of non-linearity on the input signal, linear

terms α and β can be ignored by setting α = 1 and β = 0. Note that Equation 7.17 can

189

be derived from the multiplication of the Dirac comb of Equation 7.4 in Section 7.1 and

ignoring the DC offset β and linear gain.

x(t) ·∆T (t) = x(t)
∞∑

n=−∞
δ (t− nT)

=
∞∑

n=−∞
x(t)δ (t− nT) (7.18)

In communications, the spectrum of the generated signals is critical and as DACs are

the central actuators for such systems, it is also critical in the analysis of this chapter. Thus

the mathematical tool for computing spectrum of continuous functions is presented. The

continuous time Fourier transform (CTFT) is the given in Equation 7.19,

X (Ω) =
∫ ∞
−∞

x (t) e−jΩtdt (7.19)

X (f) =
∫ ∞
−∞

x (t) e−j2πftdt (7.20)

where x(t) is a complex-valued function of time, Ω ∈ R is the continuous-time angular

frequency andX (Ω) is the transformed signal and is generally complex. The second equation

describes the Fourier transform as a function of the ordinary frequency, f . The CTFT, as

with other variants of the Fourier transform, is invertible. The inverse (backwards) transform

is given by Equation 7.21.

x (t) = 1
2π

∫ ∞
−∞

X (Ω) ejΩtdΩ (7.21)

As an example, consider the following rectangle function (Equation 7.22, also known as

the normalized box car function. Figure 7.1a shows the time domain response of the the

rectangle function.

rect(x) =


0 |x| > 0.5

0.5 |x| = 0.5

1 |x| < 0.5

(7.22)

190

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

re
ct

(x
/
T

s
)

x

(a) Rectangle Function (Time)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

R
(2
π
f

)

Ordinary Frequency (Hz)

Ts = 1
Ts = 2
Ts = 4

(b) Rectangle Function (Spectrum)

Figure 7.1: Rectangle Function Plots

Since we will soon be discussing sampling, we will scale the rectangle function to a single

sample period Ts. We can then apply the continuous time Fourier Transform (7.19) on the

modified rectangle function.

R (Ω) =
∫ ∞
−∞

rect
(
t

Ts

)
e−jΩtdt

=
∫ 0.5Ts

−0.5Ts

1e−jΩtdt

= 1
−jΩ

(
e−jΩt

)∣∣∣0.5Ts

−0.5Ts

= 1
−jΩ

[
e−0.5jΩTs − e0.5jΩTs

]
(7.23)

191

Applying Euler’s formula (Equation 1.31) to Equation 7.23, the expression simplifies to a

scaled sinc function.

R (Ω) = 1
−jΩ

[
e−0.5jΩTs − e0.5jΩTs

]
= 1
−jΩ

[
cos

(
−Ts

Ω
2

)
+ j sin

(
−Ts

Ω
2

)
− cos

(
Ts

Ω
2

)
− j sin

(
Ts

Ω
2

)]

= 1
−jΩ

[
−2j sin

(
Ts

Ω
2

)]

=
sin

(
Ts

Ω
2

)
Ω
2

(7.24)

This analysis will become important in following paragraphs when the output spectrum of

various DACs are considered. The unnormalized sinc function is defined as

sinc (x) , sin (x)
x

(7.25)

and is both non-causal and infinite. Setting Ts = 1, it follows that R (Ω) = sinc (Ω/2).

Figure 7.1b shows the frequency response of the rectangular function for various Ts.

Now we compute the Fourier transform of the more complex yIDEAL(t) of Equation 7.17.

FCTFT {yIDEAL(t)} = F
{ ∞∑
n=−∞

x[n]δ (t− nT)
}

=
∫ ∞
−∞

∞∑
n=−∞

x[n]δ (t− nT) e−j2πftdt

=
∫ ∞
−∞

[x[0]δ(t) + x[1]δ(t− T) + x[2]δ(t− 2T) · · ·] e−j2πftdt

= x[0]e−j2πf + x[1]e−j2πfT + · · ·

=
∞∑

n=−∞
x[n]e−j2πfnT (7.26)

192

Notice that Equation 7.26, normalizing T = 1, is exactly the same as the DTFT shown in

Equation 2.31. Thus what was stated as sampling in the time domain in words now has a

mathematical representation.

The conventional CS DAC updates the data output with a new code word once every

sampling interval and holds the value until the DAC is updated again. This is sometimes

called a zero-order hold or a sample and hold. A DAC that implements such an hold is called

a non-return-to-zero (NRTZ) DAC. Figure 7.2a provides an example of the time domain

output of an NRTZ DAC. If the DAC returns to zero (RTZ) after waiting T0 seconds, then

the DAC is referred to an RTZ DAC. Figure 7.2b shows the output of an RTZ DAC with a

50% duty cycle, which is equivalent to setting T0 = Ts/2 in Equation 7.33.

-10

-5

0

5

10

0 2 4 6 8 10 12 14 16

D
A
C

O
ut
pu

t
(V

)

Time (ns)

(a) Non-Return-to-Zero DAC Output (4 Bits)

-10

-5

0

5

10

0 2 4 6 8 10 12 14 16

D
A
C

O
ut
pu

t
(V

)

Time (ns)

(b) Return-To-Zero DAC Output (4 Bits)

Figure 7.2: INL Curves for Thermometer-Coded DACModels with Finite Output Impedance
Current Sources

There are two methods for describing how the hold effect shapes the response of the

DAC. As noted by Doris et al. [64], the NRTZ DAC response can be formulated as the

convolution of the unit step response and a variation of the DAC response given in Equation

7.17,

yNRTZ(t) = u(t) ?
∞∑

n=−∞
(x[n]− x[n− 1]) δ (t− nT) (7.27)

193

where u(t) is the unit step response, also known as the Heaviside step function, and is defined

in Equation 7.28.

u(t) =


1, t ≥ 0

0, t < 0
(7.28)

An alternative representation noted by the author of this work is the convolution of a rectan-

gular function (Equation 7.22) of the width the sample period with the ideal DAC response

yNRTZ(t) = rect
(
t

Ts

)
?

∞∑
n=−∞

x(t)δ (t− nTs) (7.29)

Referring back to Theorem 7.2, convolution in the time domain is equivalent to mul-

tiplication in the frequency domain (Fourier transform domain). The Fourier transform of

rect(t) was calculated in Equation 7.24. The right-hand term is simply the ideal output

spectrum of an ideal DAC (or the DTFT of the sequence synthesized by the DAC).

FCTFT {yNRTZ(t)} = F
{
rect

(
t

Ts

)}
· F {yIDEAL(t)} (7.30)

=
sin

(
TsΩ

2

)
Ω
2

 · F {yIDEAL(t)} (7.31)

The output then has a weight sinc filtered output response. This attentuation was the reason

for the inverse sinc filter of radar DDFS, described in Section 6.5.1.

Likewise, an RTZ DAC output response can be formulated as the convolution of the

unit step and two time shifted Dirac delta functions [64]

yRTZ(t) = u(t) ?
∞∑

n=−∞
x[n] (δ (t− nT)− δ (t− T0 − nT)) (7.32)

194

or, again, as the convolution of a rectangular function of width T0 < Ts (typically Ts/2 in

literature).

FCTFT {yRTZ(t)} = F {rect(t/T0)} · F {yIDEAL(t)} (7.33)

=
sin

(
T0Ω

2

)
Ω
2

 · F {yIDEAL(t)} (7.34)

From Figure 7.1b, the shorter the pulse width, the less attenuation of the output spectrum

due to value holding. This means that the inverse sinc filter requirement can be removed or

the order of the filter reduced by changing the DAC output characteristic.

To quantify the effect, let T0 = Ts/2,

F {yRTZ(t)}
F {yNRTZ(t)} =

sin
(
T0

Ω
2

)
yIDEAL(t)

Ω
2

·
Ω
2

sin
(
Ts

Ω
2

)
yIDEAL(t)

=
sin

(
T0

Ω
2

)
sin

(
Ts

Ω
2

) (7.35)

Performing a Taylor series expansion (Definition 4.1) on the numerator and denominator

sin
(
T0

Ω
2

)
sin

(
Ts

Ω
2

) =
T0Ω

2 −
T 3

0 Ω3

8·3! + T 5
0 Ω5

32·5! − · · ·
TsΩ

2 −
T 3

s Ω3

8·3! + T 5
s Ω5

32·5! − · · ·
(7.36)

=
T0 − T 3

0 Ω2

4·3! + T 5
0 Ω4

16·5! − · · ·
Ts − T 3

s Ω2

4·3! + T 5
s Ω4

16·5! − · · ·
(7.37)

Now we substitue Ts = 2T0 into the previous equation and compute the final result.

F {yRTZ(t)}
F {yNRTZ(t)} =

T0 − T 3
0 Ω2

4·3! + T 5
0 Ω4

16·5! − · · ·
2T0 − 8T 3

0 Ω2

4·3! + 32T 5
0 Ω4

16·5! − · · ·
(7.38)

=
1− T 2

0 Ω2

4·3! + T 4
0 Ω4

16·5! − · · ·
2− 2T 2

0 Ω2

3! + 2T 4
0 Ω4

5! − · · ·
(7.39)

But T0 and Ts are generally much less than one, a 1 GHz DAC would has a 1 ns clock

period. Therefore the attenutation is approximately 1/2 when returning to zero. Note that

if T0 becomes sufficiently small higher Nyquist zones of the DAC can be used.

195

7.3 DAC Performance Metrics

DACs operate in a wide range of environments with an equally wide range of require-

ments. A control DAC for a microelectromechanical system (MEMS) may need only operate

at a few kilohertz sample frequency but may require a large output voltage and monotinicity

over process variation. A DAC for a high-speed communications link may only require a few

hundred millivolts of output swing but may have to operate up to several gigahertz. The

qualities of both these DACs can be described by their static and dynamic performance. The

remaining analysis of this chapter aims to aid designers in creating high performance DACs.

When writing about “high performance” devices, we want to be precise in the describing

the measure of that performance. For the purposes of this dissertation, the static measures of

concern are integral non-linearity, differential non-linearity, and static power consumption.

The dynamic measures of concern are spurious free dynamic range, signal to noise ratio,

sample frequency and total harmonic distortion. These performance metrics are influenced

by a wide variety of effects.

7.3.1 Static DAC Performance

Static errors are both the simplest DAC design errors to understand and the simplest to

correct. They therefore serve as an adequate starting place for DAC performance analysis.

It is entirely possible to degrade the overall performance of the DAC by failing to weight

individual DAC elements such that the contribution of static errors to the output are zero.

This can be particularly bad in high speed CS DAC designs, where device sizing is small and

device mismatch becomes significant. The two static performance number discussed in this

chapter are Integral non-linearity (INL) and Differential non-linearity (DNL). Both these

errors are direct causes for harmonic distortion in the DACs.

While not nearly as important in high-speed CS DACs as non-linear errors, two linear

errors are mentioned for completeness. Offset error is defined as the linear deviation of the

DAC output from the intended output applied to every DAC code. Figure 7.3a presents

196

Output (LSB)

Code

Offset
Error0

1
2
3
4
5
6
7

000
001
010
011
100
101
110
111

(a) Offset Error (3 Bits)

α1

α0

Output (LSB)

Code

Gain
Error

= α1 − α0
0
1
2
3
4
5
6
7

000
001
010
011
100
101
110
111

(b) Gain Error (3 Bits)

Figure 7.3: Graphical Explanation of Gain and Offset Errors

a graphical explanation of offset error in a DAC. Gain error is defined as the deviation in

the gain of the DAC versus the intended design target. Figure 7.3b provides a graphical

explanation for gain error. Note that neither gain or offset errors contribute to the spurious

performance of the DAC.

7.3.2 INL

Integral non-linearity (INL) is a measure of the deviation of the static transfer function

of the DAC from some ideal linear transfer function. The measure is generally normalized to

the LSB value of the DAC for reporting in publications. The two most widely used methods

for determining the ideal linear transfer characteristic are end-point to end-point and least-

squares linear (“best”) fit. Both of these techniques compensate for linear errors, typically

gain and offset error, as required by the IEEE definition for INL [65]. The following is the

official description of INL for an N -bit DAC.

INL[k] = Iout[k]− k · Ilsb
Ilsb

; Ilsb = Iout[2N − 1]
(2N − 1) (7.40)

197

where Iout[2N − 1] is the maximum output of the DAC (i.e. assumes that the DAC output

increases in magnitude with increasing k) and Ilsb is the LSB step of the DAC using the

end-point to end-point line approximation. For the equation of a line, we use:

y = mx+ b (7.41)

where m is the slope of the line and b is the y-intercept of the line. For the DAC, x is the

code word of the DAC, m is the LSB value of DAC used in our INL and DNL equations

and b is the offset error. Figure 7.4 provides a graphical explanation of INL using a 3-bit

DAC. The solid line is an end-point to end-point fitted line, the solid dots are the actual

DAC output values, the x-axis is the DAC code input. So the solid line from Equation 7.41

Figure 7.4: Graphical Explanation of INL and DNL

Output (LSB)

Code000
001
010
011
100
101
110
111

0
1
2
3
4
5
6
7

INL010

d111 = y111 − y110

DNL111 = d111 − LSB

can be rewritten in a discrete form as:

Iout[n] = IlsbA[n] + b (7.42)

where A[n] is the DAC input code word at the nth sample. This is in keeping with the output

code from the DCDO in previous chapters. The end-point to end-point method takes the

difference of the output of the DAC at the maximum and minimum output code words and

198

then adjusts out the offset error. The linear least squares fit, described in detail in Section

6.1.3, finds the line that minimizes the mean square error between itself and the actual DAC

output data points.

Several common sources of static INL, and DNL for that matter, in CS DACs have been

described in literature.

• Finite output impedance of the DAC current sources [66], [67].

• Mismatch in current sources due to local process variation, transistor and resistor

mismatch, etc. [68]

• Voltage and temperature dependent resistive load variation (particularly if a polycrys-

talline silicon resistor [69],[66] is used).

Static INL degrades the spectral purity of the generated signal. This can be demon-

strated by applying a sinusoid through the DAC transfer characteristic. This will be per-

formed in subsequent sections. In order to start quantifying the static error for current

steering DACs, static DAC models must be created.

7.3.3 DAC Models

Performing a first order analysis of a current steering DAC provides insight into a few

of the major error sources that arise from the basic architecture. Figure 7.5 shows a single-

ended, binary weighted current-mode DAC architecture with quite a few assumptions and

simplifications. There are no output frequency dependent impedances as no load or source

capacitance is considered, for the moment ignore CL is the diagram. The switches are ideal

and switch instantaneously. The on resistance of the current source, ro, is assumed to scale

linearly with the increasing current. We will see that even some of the simplest models of

the CS DAC have a non-linear transfer function and thus produce a spurious response when

driven with a periodically repeating input. In Figure 7.5, RL is the load resistance, Iu is the

LSB value of the current source, bi is the ith bit of the code word A that is fed to the DAC,

199

roIu

b0 b1

r0
22Iu

RL

VCC

CL

VCC

Vout

bn

ro
2n2nIu

Figure 7.5: Simple Single-Ended Binary-Weighted Model

b0 is the least significant bit (LSB) and bn, where m = BA − 1, is the most significant bit

(MSB). We note that this model can be transformed to an equivalent thermometer coded

DAC (Figure 7.6) and the transfer function analysis will remain the same. This is possible

since the current sources add in parallel and the resistances scale in the binary model. For

roIu

t0 t1

r0Iu

RL

VCC

CL

VCC

Vout

tn

roIu

Figure 7.6: Simple Single-Ended Thermometer Model

Figure 7.6, the number of switches closed at sample n is equal to the value of A[n] from

Equation 7.42. The total number of switches is NA = 2BA − 1, where BA is the number of

bits required to represent in the DAC input code. Using this model, we can calculate the

transfer function of the DAC model. When A[n] = 0, all of the bits, ti are zero. For this

exercise, a bit value of zero indicates an open switch. In that case, no current is drawn and

the output Vout = VCC .

200

Now consider the scenario when A[n] = 1. In this case, t0 = 1 and t2 = · · · = tn = 0. So

the circuit in Figure 7.6 reduces to Figure 7.7. This is effectively one output impedance in

Iu

RL

VCC

ro

Vout

Figure 7.7: Single-Ended Single Bit Active

parallel with the resistive load. Now we note that as the switches close, the resistors combine

in parallel. From circuit theory, the parallel combination of k resistors of the same value is

R/k.

Iout[k] = kIu + Vout[k]
ro/k

VCC − Vout[k]
RL

= kIu + kVout[k]
ro

Vout[k] = roVCC
ro + kRL

− kRLroIu
ro + kRL

(7.43)

Figure 7.8a shows the INL of Figure 7.6 using Equation 7.43 for values of BA = 10, RL =

50 Ω, r0 = 100 kΩ, Iu = 20µA and VCC = 2 V. Mathematically, the INL can be computed

from Equation 7.43 as

INLSE [k] = IuR
2
Lk (k −NA)

r0
(7.44)

This is equivalent to the single-ended INL derivation used by several authors and whose

derivation can be found in Razavi’s popular converter design book [66] Principles of Data

201

-120

-100

-80

-60

-40

-20

0

0 200 400 600 800 1000

IN
L
(L

SB
)

Code Word

(a) Single-Ended Thermometer-Coded INL

-10

-5

0

5

10

0 200 400 600 800 1000

IN
L
(L

SB
)

Code Word

(b) Differential Thermometer-Coded INL

Figure 7.8: INL Curves for Thermometer-Coded DACModels with Finite Output Impedance
Current Sources

Conversion System Design. The worst case INL using Equation 7.44 is:

INLSE,max = IuR
2
LN

2

4ro
(7.45)

Fortunately, the situation can be improved by using a differential DAC architecture.

Current steering designs inherently differential so a close look at the INL of the architecture

is important. Figure 7.9 shows a simple thermometer-coded DAC with a differential output.

In the architecture a switch closes the Voutp wire when the ti bit value is one and closes to

Voutm value when the ti bit value is zero.

Using Equation 7.43 for the single ended analysis independently,

Voutp[k] = roVCC
ro + kRL

− kRLroIu
ro + kRL

(7.46)

Voutm[k] = roVCC
ro + (NA − k)RL

− (NA − k)RLroIu
ro + (NA − k)RL

(7.47)

202

roIu

RL

VCC

RL

VCC

r0Iu

Voutm

Voutp

roIu

Figure 7.9: Simple Differential Thermometer Model

The output is taken as the difference between Voutp and Voutm. Therefore, after algebraic

manipulation, the output voltage is found to be:

Vout[k] = Voutp[k]− Voutm[k] (7.48)

= (NA − 2k) (roRLVCC + Iur
2
oRL)

(kNA − k2)R2
L + roNARL + r2

o

(7.49)

The INL can then be computed using Equation 7.48. Figure 7.8b shows the differential INL.

Notice the improvement is significant. As stated in the previous section, the effect of INL

on the output spectrum can be shown by driving a sinusoid through the transfer function.

Figure 7.10a shows the effect on the single-ended DAC INL and Figure 7.10b shows the effect

using the differential DAC INL. Note that the differential DAC has no even order harmonic

distortion, whereas the single-ended DAC suffers from a large second order spur. From this

analysis it is clear that DAC current source architectures should be chosen such that the

output impedance is large. Some publications refer to the INL/DNL degradation due to

changing output impedance from the DAC input code state as code dependent load variation

(CDLV) [70].

203

-100

-80

-60

-40

-20

0

0 0.1 0.2 0.3 0.4 0.5N
or
m
al
iz
ed

O
ut
pu

t
Sp

ec
tr
um

(d
B
)

Frequency (GHz)

(a) Single-Ended Thermometer-Coded Spectrum

-100

-80

-60

-40

-20

0

0 0.1 0.2 0.3 0.4 0.5N
or
m
al
iz
ed

O
ut
pu

t
Sp

ec
tr
um

(d
B
)

Frequency (GHz)

(b) Differential Thermometer-Coded Spectrum

7.4 Dynamic DAC Performance

One of the earliest papers dealing specifically identifying the causes of dynamic perfor-

mance degradation from Van den Bosch et al. [71] captures many of the dynamic problems.

1. The imperfect synchronization of the control signals of the current switches.

2. The digital signal feed-through via the Cgd of the switch transistors.

3. The voltage variation at the drain of the current source transistors.

4. The variation in the output impedance of the current sources.

In addition to these, one of the other major issues is inter-symbol interference. Each of these

will be briefly described before offering suggested solutions.

Non-linearities from the finite output impedance of CS DACs have been carefully ana-

lyzed by several authors. One of the better works discussing the problems arising from the

dynamic effects of a frequency dependent finite output impedance are provided by Lin et al.

[72]. Lin designed a 2.9 GS/s DAC in a 65 nm CMOS process with excellent linearity. Small

feature size CMOS generally does not provide a large output impedance at high frequencies,

204

when compared to the latest SiGe or InP bipolar devices and thus the design is remark-

ably interesting. If the ro from Section 7.3.3 is replaced by an complex impedance and the

CL of the load is not ignored, then the same non-linearities experienced with static output

impedance mismatches apply to the dynamic case. If the frequency of the synthesized tone is

large, then Zo and ZL become small and there is a significant degradation in the performance

of the DAC [71].

Mismatches from process variation, or out-right nominal static timing errors, in delay

of a signal path can cause harmonic distortion and spurs. The mismatch creates a glitch at

the output of the DAC from an off-timing transition. If the DAC is generating a periodic

signal, then this mismatch occurs in a periodic manner, generating a spur.

Intersymbol inteference (ISI) describes the phenomenon of a previous DAC code word

(symbol) affecting the output characteristics of the current DAC code word. Ideally, the

output of the DAC would only be dependent on the current code word. Three significant

ISI causes are as follows:

1. The data value of a current switch is dependent on previous states due to the switches

themselves not recovering to a memoryless state in a given amount of time.

2. Dependency of the connected bias circuitry on the DAC code word.

3. Dependency on the output voltage of the DAC on the switching.

An example of when (2) becomes an issue is when the current source transistors are

influenced by the switching be action of the current steering transistors. If the tail current

does not return to its nominal operating state before transitioning to the next state, then an

code dependent effect will be observed. This effect might be observed when operating near

the frequency limits of the technology (i.e. the current source is simply not “fast” enough)

or through an improperly designed current source (e.g. the switching pushes transistors into

saturation, which can take a significant amount of time to recover).

205

Figure 7.10 shows an output glitch dependent on the device size of the switches of the

current source. This is related to the charge feedthrough described in [64], but it is also

simply a function of not adjusting the driving cells of the current switches for scaling.

Figure 7.10: Glitch Versus Device Size (1 µm to 10 µm)

-0.4

-0.2

0

0.2

0.4

0.46 0.48 0.5 0.52 0.54

O
ut
pu

t
Vo

lta
ge

(V
)

Time (ns)

Now that the main static and dynamic sources of error have been presented, DAC and

current steering architectures will be presented that help mitigate these errors.

7.5 DAC Architectures

Current steering DACs can be divided into categories based on the architecture chosen

in the design. This section provides a brief overview of several important DAC architectures

that should be considered when designing a CS DAC. The two main types of DACs considered

for CS are binary-weighted DACs and thermometer-coded DACs. An BA-bit binary weighted

CS DAC consists of BA scaled current sources. The simplest such current steering design

scales the transistors through in DAC by a binary weight.

7.5.1 R-2R DACs

The classic R-2R DAC is generally presented in an operational amplifier configuration,

but an analog exists for CS architectures [73][74]. In [73], an R-2R ladder network is used in

206

the design of a 10-bit DAC in a bipolar process. The main motivation for the architecture

is to avoid the challenging issue of scaling resistors to achieve binary weighting. Figure

7.11 shows a differential version (as [73] drove the signal single-ended into an operation

amplifier) of the architecture. Note that the resistor network is formed at the emitters of

the current sources. Also observe that the emitter area of the devices must be scaled with

Figure 7.11: R-2R with Binary Scaling (Emitter Network)

Q0

RL

VCC

RL

VCC

R

R

2R

Q1

R

2R

Q2

R

2R

Q3

2R

QnVb

the binary weighting. So this architecture, while it relaxes the resistor sizing requirements,

still suffers from a difficult NPN device scaling problem as the number of bits in the design

grows large. This particularly a problem at high speeds, as the minimum size device must

have a sufficient amount of current to operate at the target frequency. The metric used as a

measure of the operating speed of the device at a specific current density is the unity-gain

bandwidth product. For an HBT or bipolar transistor, this is (to the first order) [75]:

fT = 1
2π

gm
Cπ + Cµ

(7.50)

207

where Cπ and Cµ, the Miller capacitance, can be found in the hybrid-π model of a bipolar

transistor. gm is the transconductance of the transistor and is linearly related to the current

through the device (Equation 7.82).

The authors [74] introduce an alternative R-2R. The language used to distinguish be-

tween the two types of R-2R circuits are binary attenuation (the architecture proposed by

the author) and binary scaling, the previously described R-2R architecture. The naming

convention is borrowed for this work. In the binary attenuation architecture, the devices

Figure 7.12: R-2R with Binary Attenuation (Collector Network)

Q0

RR

RERE

QBA−2

2R2R

RE

QBA−1

2R2R

Vb

RR

RL

RR

RL

VCC

need not be scaled to achieve current scaling at the output. The currents driven by the

sources are attenuated through a resistor network to achieve binary weighting. The R-2R

ladder is located at the output of the DAC, which are the collectors of the transistor current

cell switches, and divides the output current down as shown in Figure 7.12.

The advantages of the binary scaling architecture are:

• The architecture requires half the number of resistors when compared against the

binary attenuation architecture in a differential DAC setting. This is because the

R-2R division must occur for both outputs.

208

• Matching between resistors in the network result in common mode INL distortion in

a differential architecture.

• The current through the R-2R network is mostly constant and therefore does not suffer

from temperature changes based on DAC state. Modern high speed DAC designs rarely

mention this, as the temperature time constant is much, much less than the switching

speed of the DAC. The mismatch from device mismatch and timing will likely produce

error long before that generated by temperature gradients. We also note that small

feature sizes allow components to be placed in close proximity to each other, thus

allowing a more uniform heat distribution across the R-2R ladder network.

The benefits of a fewer number of resistors is lessened because the devices must be scaled

with increasing weight. The number and size of the devices can dominate the area of the

resulting DAC. The advantages of the binary attenuation architecture are:

• The devices do not need to be scaled with binary weighting. This is significant, as

larger or more devices result in higher parasitics which is of critical importance in high

speed designs.

• A simpler emitter generation that is more easily matched between current sources.

In small geometry designs, the metal routing can cause significant (where significant

depends on the resolution of the DAC) voltage drops.

• Scaling the current through an active current source decreases the output impedance.

Finite output impedance of current sources in major contributor to [72],[67],[76]. In

Section 7.3.3, the effects of finite output impedance was looked at more closely.

A pure R-2R DAC, regardless of the architecture chosen, is a binary-coded DAC.

7.5.2 Thermometer Coded and Segmented DACs

In binary-coded DACs, each control source is weighted by a factor of two, as discussed

in Section 7.5. The implementation of such a DAC is efficient in that only as many active

209

components as necessary are switched when a code word changes. However, binary DACs

are highly susceptible to mismatch errors. Binary DACs also suffer from non-monotinicity

in the presence of device mismatch. The jump typically happens on the bit boundary to the

next power of two bit, for instance from code 7 (3’b0111) to code 8 (3’b1000).

To address this issue, designers have introduced thermometer-coded DAC architectures

[77] [78] [79]. In fact, it would be more suprising to find a modern CS DAC architecture that

did not have thermometer coded DAC as part of the design. In these designs, the value of

the input code word A[n] determines the number of switches to close.

Ideally, a designer would like all the benefits of thermometer-coded and binary-coded

DACs simultaneously without suffering any of the drawbacks. One way to balance the area

and speed benefits of binary-coded DACs with thermometer-coded DACs is to segment the

design into portions. Figure 7.13 shows a generic segmented architectures using thermometer-

coded current switches for the MSBs and a binary attenutation R-2R ladder for the LSBs.

QB0

RR

RERE

QBM−2

2R2R

RE

QBM−1

2R2R

RE

QT0

RE

QTN−1

Vb0

RR

RL

RR

RL

VCC

Vb1

Therm. Binary

Figure 7.13: Segmented R-2R Binary with Thermometer MSBs

210

7.5.3 Return-to-Zero (RTZ)

A common technique used to mitigate the impact of ISI is and sometimes to reduce

in the impact of sinc roll-off at higher frequencies. The technique can also be used to take

signals from higher Nyquist zones. Figure 7.2a shows a NRTZ DAC output and Figure 7.2b

shows an RTZ DAC output with 50% duty cycle. Though the RTZ technique has been used

extensively in DAC design for a significant period of time, it surprisingly does not show up in

many academic DAC publications. Table 7.1 is a small collection of RTZ DACs in literature.

Table 7.1: Published RTZ DACs

Publication Year Frequncy (GHz) SFDR (dBc)
[80] 2005 1.6 70
[81] 2011 1.6 66
[4] 2012 7.2 80
[4] 2012 12 67

Compare these results to the NRTZ DAC listed in the Table 7.2 below. Outside of

several low frequency DACs (where one would not have issues with ISI), there is a clear

performance improvement over a majority of the NRTZ cases. The requirements for an

inverse sinc filter are also relaxed as has already been discussed. RTZ addresses ISI by

forcing the output of the DAC to a memoryless state (i.e. zero) before applying the next

code word. This can clearly be seen in Figure 7.2b. This prevents the DAC from transitioning

from a code dependent state, which is obviously have CDLV effects. RTZ also address the

charge feedthrough problem from data switching. This is because the data is allowed to

change while the output is at a zero state. This is illuminated further in Section 7.6.

7.5.4 Translinear Output Buffers and Non-Linear DACs

Though the issues of implementing a high speed phase accumulator has been addressed

in Chapter 5, oftentimes the one wishes to avoid the ROM compression circuitry or the

211

Source SFDR (Low) SFDR (Nyq.) Area (mm2) Power (mW) fs (MHz)
[82] 58 (9.6 MHz) N/A 5.000 730 1000
[83] 56 (3.9 MHz) N/A 1.800 150 125
[84] 49 (8.0 MHz) N/A 1.220 140 75
[78] 87 (2.0 MHz) 71 16.00 650 100
[85] 73 (8.0 MHz) 55 0.600 125 500
[86] 71 (1.0 MHz) 55 3.200 320 300
[57] 61 (5.0 MHz) <50 13.10 300 150
[87] 70 (100.0 MHz) 61.2 0.350 110 1000
[64] 78 62 1.130 216 500
[88] 75 63 30.60 6000 1200
[72] 74 52 0.310 188 2900
[89] 76 61 1.000 97 200
[90] 67 N/A 2.500 400 1400
[91] 95 (1 MHz) <59 0.440 82 320
[92] 71.68 (1 MHz) 43 0.800 25 250
[93] 64 (1 MHz) <40 1.000 20 100
[94] 82 72 11.83 180 100
[95] 98 (10 MHz) 74 1.950 400 400
[96] 60 (1 MHz) N/A 0.230 N/A 800
[79] 80.7 (1 MHz) 80.7 0.280 N/A 10
[97] 47.3 (30 MHz) 36.2 0.200 29 3000
[33] 50 (91.7 MHz) 45 4.200 4800 8600

Table 7.2: SFDR of NRTZ DACs

complex multiplexer tree. Directly generating the high speed phase with a pipeline phase

accumulator avoids the multiplexer tree entirely. The size and area requirements for ROMs

that operate at ultra-high frequencies proved prohibitive. This has lead to the creation of

non-linear DACs [98, 33]. In these DACs, the current sources are generally “sine-weighted”,

such that a linear ramp through the DACs bits generates a sinusoidal output.

An alternative technique is run the phase output through a linear DAC that then drives

a translinear device for sinusoidal generation. The idea of using a non-linear device to

transform a linear output to a sinusoid is not new in DDFS literature; however, a recent

DDFS by Yang et al. demonstrates remarkably good high speed performance at low powers

[99]. Before delving into the more recent implementation, a review of earlier literature assists

212

Figure 7.14: Differential Pair

VCC

RL

Q1

R

i

Q2

RL

VCC

IT IT

vip vim
+
VBE1

-
+

VBE2
-

vop vom

in the development. In 1976, Meyer et al. [100] used a differential pair as a triangle to sine

wave converter. Figure 7.14 shows the architecture used by Meyer for his triangle-to-sine

conversion analysis. The goal is to approximate a sinusoidal output at the terminals of the

differential pair given an triangular input using the physical properies a bipolar transistor,

i.e.

vod = vop − vom = a1 sin (a2vid) (7.51)

where vid represent the differential input voltage vip − vim where a1 and a2 are two linear

coefficients that do not affect the spectral purity of the generated signal. Observing Figure

7.14, becomes clear that the output can be written as a function of the current i through

the resistor R. Firstly, Ohm’s law is used to find the relationship of the collector current

through Q1 and Q2 to the output of the differential pair.

vop = VCC −RLIC1 (7.52)

vom = VCC −RLIC2 (7.53)

vod = RL (IC2 − IC1) (7.54)

213

where RL the resistive load and VCC is the supply voltage. The emitter current is related to

the collector current of the transistor through the relationship

IE = IC + IC
βF

= IC

(
βF

1 + βF

)
= αF IC (7.55)

where βF is the forward gain of a bipolar transistor and αF = βF/(1+βF) is commonly used

in microelectronics texts [101]. If βF is sufficiently high, as is the case in SiGe HBTs, then

IC ≈ IE as αF ≈ 1. In this particular analysis, αF is kept throughout the analysis, which

differentiates it from Meyer’s analysis. This analysis also applies a differential input voltage,

as opposed to driving the differential pair single-ended.

vod = 1
αF

(IE2 − IE1) (7.56)

Applying Kirchoff’s Current Law (KCL), it is clear that IE1− i−IT = 0 and IE2 + i−IT = 0.

Adding IT to both sides of the equality yields Equation 7.57.

IE1 = IT + i (7.57)

IE2 = IT − i (7.58)

Substituting Equation 7.57 into Equation 7.56,

vod = 1
αF

[(IT − i)− (IT + i)] = − 2
αF

i (7.59)

Thus the output of the differential pair is a linear function i. Consider Kirchoff’s Voltage

Law (KVL) about the base-emitter pairs for solving for i.

−vip + VBE1 + iR− VBE2 + vim = 0 (7.60)

vid = VBE1 + iR− VBE2 (7.61)

214

The base-emitter voltage can be written as a function of the collector current as shown in

Equation 7.62

VBE = VT ln
(
IC
IS

)
(7.62)

where IS is the transport saturation current of the Gummel-Poon model [75] and VT is the

thermal voltage defined in Equation 7.83. The equation assumes that the forward Early volt-

age, VA, of the device is infinite (i.e. the bipolar transistors have infinite output impedance,

which is certainly not a valid assumption for high output frequencies). Using this relation-

ship, the large signal transfer function of the differential pair can be derived. Substituing

Equation 7.62 into Equation 7.60 yields the following equation

vid = iR + VT

[
ln
(
IC1

IS

)
− ln

(
IC2

IS

)]
(7.63)

= iR + VT ln
(
IC1

IC2

)
(7.64)

where the subtraction (addition) property of logarithms is used, ln(a) − ln(b) = ln (a/b).

Substituting Equation 7.57 and Equation 7.55 into Equation 7.63

vid
VT

= iR

VT
+ ln

[(
IT + i

αF

)(
αF

IT − i

)]
(7.65)

= iR

VT
+ ln

(
IT + i

IT − i

)
(7.66)

Applying the Taylor series in the neighborhood of i = 0 yields the series

ln
(
IT + i

IT − i

)
= 2

[
i

IT
+ i3

3I3
T

+ i5

5I5
T

+ · · ·
]

(7.67)

= 2
∞∑
n=0

i2n+1

(2n+ 1)I2n+1
T

(7.68)

Now the desired transfer function of i as a function of vid is:

i = b1 sin (b2vid) (7.69)

215

where b1 and b2 are some constants. Thus applying the inverse sine operation to both sides

yields

b2vid = sin−1
(
i

b1

)
(7.70)

Applying the Taylor series expansion on the inverse sine function for i in the neighborhood

of i = 0 yields:

b2vid = i

b1
+ 1

6

(
i

b1

)3
+ 3

40

(
i

b1

)5
+ · · · (7.71)

Finding b1 and b2 in Equation 7.71 such that the error between it and Equation 7.65 is

minimized yields the final result

b1 = IT (7.72)

b2 = 1
VT

(
1

ITR/VT + 2

)
(7.73)

The resulting output is a triangle wave (or sine wave with large odd harmonic terms). But

one can outperform a single differential pair with a few more transistors.

Using the Padé approximant, one can generate a rational function of low degree poly-

nomials that approximates transcendental functions such as sine or cosine quite well [102].

Equation 7.74 defines the Padé polynomial approximation of a real function f .

f (x) ≈ f̂p (x) =
∑m
j=0 ajx

j

1 +∑n
k=1 bkx

k
(7.74)

216

where the first m+ n derivatives of the function f are equal to the approximation f̂p,

f(0) = f̂p(0) (7.75)

f ′(0) = f̂ ′p(0) (7.76)

f (m+n)(0) = f̂ (m+n)
p (0) (7.77)

Note that this approximation is closely related to the Maclaurin series of the function f and

in fact the Padé approximant often uses the Taylor series during its derivation.

Now consider the following approximations for sinusoidal function.

1. Using the Padé technique to approximate the sin function, we get

α sin (πx) ≈ x (1− x2)
1 + x2 (7.78)

2. Using the Padé technique to approximate the cosine function, we get

cos (πx) ≈ (1− 4x2) (2− x2)
2 + x2 (7.79)

Equations 7.78 and 7.79 are versions of the Padé approximation with coefficients rounded

to the nearest integer. Figure 7.15 is to help visualize the performance of the Padé approxi-

mation against a more commonly used function the Taylor series approximation. The Padé

approximant is interesting for sinusoidal approximation for the following two reasons:

• Division is more easily implemented in a translinear circuit than a high order polyno-

mial [102].

• A third order Padé approximant is roughly as complex to implement as a third order

Taylor Series approximant with translinear circuit [102].

217

Figure 7.15: Padé Sine Approximation

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

Normalized Phase

A
bs
ol
ut
e
Er

ro
r
(P

er
ce
nt
) Padé (3rd)

Taylor (3rd)
Taylor (5th)

Using the synthesis techniques described in [102], two translinear implementations of

the Padé approximations were realized. Figure 7.16a and Figure 7.17 show ideal translin-

ear cicuits for the sine and cosine approximations respectively. Figure 7.16b shows a full

transistor implementation of the translinear sine operation.

A novel quadrature DDFS architecture has been proposed to take advantage of the

translinear output buffers described thus far in this section. Figure 7.18 provides a block

diagram of the proposed DDFS. The design requires a current after the output of of the

DAC on the cosine path, since the transfer function of the Padé approximations have been

normalized. In practice, the output magnitude of the sine circuit of Figure 7.16a and the

cosine circuit of Figure 7.17 are different.

7.6 Current Steering Cell Architectures

One of the critical decisions for designing a current steering DAC is selecting an archi-

tecture for the current steering cells that comprise the DAC. The output impedance of the

DAC, ISI and sampling rate strongly depend on the performance of this single cell. In this

section, several current steering cell architectures are analyzed and the problems addressed,

218

1 + x

Q1

Q2

Q3

Q4

Q5 Q6

Q7Q8

1− x

2

2

+ -
α sin (πx)

(a) Ideal Current Sources

1 + x

Q3

Q5

Q7

Q9

Q1 Q2 Q4

1− x

Q6

Q8

Q10

IO− = 2− zIO+ = 2 + z

(b) Transistor Implementation

Figure 7.16: Translinear Sine Implementations

or raised, by each architecture are presented. The design decisions of this component center

on trade-offs between performance, complexity, area and power.

The most primitive cell for a differential current steering cell is a three transistor dif-

ferential pair. The current source transistor has no degeneration and there is no cascoding

at any level. Figure 7.19a shows a schematic for the simple current steering cell. QSW1 and

QSW2 are the current steering transistors, RL is the load resistor of the DAC and QCS is the

current source transistor. The current sourced by QCS is steered through QSW1 and QSW2

depending on which transistor is switched on. The value Vsp and Vsm are the differential

data driving signals with quick transistion times. The differential signals transistion in such

a way as to keep the time that both transistors are active relatively small in comparison to

the time the data is held.

The simple architecture has several advantages:

• Low power since the power supply voltage can be low.

• Small area since the current cell only requires three transistors to implement.

The drawbacks for this architecture are quite significant unfortunately.

1. The current source output impedance is low and susceptible data changes.

219

1− x

Q5

Q7 Q9 Q8Q10

Q1Q3 Q2 Q4 Q6

2 2 + x

+ α cos (πx) −

6 (1− x)

3

6 (1− x)

Figure 7.17: Differential Translinear Cosine Implementation (Ideal Current Sources)

FCW

Translinear
Sine

Translinear
Cosine

Scale
Current

Time
Delay

T
ru
n
ca
te

DAC (10 Bit)

Phase Accumulator

P
h
as
e

R
eg
is
te
r

∑ 2424

24

Figure 7.18: Quadrature Translinear DDFS

2. The voltage across the steering transistors is dependent on the output voltage of the

DAC.

3. Glitches that capacitively feed through the switching pair are data dependent.

The high speed data switching signal causes the tail current through QCS to change, since

QCS has a finite output impedance. At first glance, this may appear to be a common-mode

effect and therefore eliminated when looking at the output differentially. However, with

this configuration, this is not the case. When the glitch in the tail current occurs, it is

reflected disproportionately through the active transistor of the current steering pair. The

deactivated side is still in the process of activating and thus a majority of the tail current

220

QCSVb

QSW1

Vm

RL

VCC

QSW2

Vp

RL

VCC

Vsp Vsm

(a) Simple Current Steering Cell

QCS

RE

Vb

QSW1

Vm

RL

VLOAD

QSW2

Vp

RL

VLOAD

Vsp Vsm

(b) Simple Current Steering Cell with Degenera-
tion

Figure 7.19: Simple Current Steering Cells

fluctuation appears on a single side of the differential pair. This particular drawback is only

important when the glitch power becomes significant with respect to the output of the DAC.

For instance, if the DAC is clock slowly for a given process, the glitch will only appear for a

tiny fraction of the output code. Significance is also dictated by the required effective number

of bits (ENOB) for the DAC. For a DAC that operates near the limits of a technology, we

will argue that this is important.

While we are not concerned with the bias structure of the DAC at this point, large

fluctuations in the tail current of QCS will also propagate on the bias line Vb. If multiple

current cells are tied to the same bias node, then the current cells have a negative, code

dependent interaction. As rate of code changes are related to the signal being converted,

this produces a non-linear, output frequency dependent distortion. Improving the output

impedance of the current source mitigates this concern. As a reference, the small-signal

output impedance of the current source of QCS is approximately

ro ≈
VA
IC

(7.80)

221

where VA is the Early voltage of the transistor and IC the collector current. The size of the

glitch at the emitters of the switching resistors is dependent on this value.

A simple step that may be used to improve the finite output impedance of a the DAC

is adding a resistor to the emitter of QCS as shown in Figure 7.19b. This resistor is called

a degeneration resistor and improves the output impedance of the DAC. Equation 7.81

approximately

ro,dg = ro (1 + gmRE) (7.81)

where RE is the value of the degeneration resistor and gm is the transconductance of QCS.

The transconductance gm is:

gm = IC
VT

(7.82)

where IC is the collector bias current through the transistor and VT is the thermal voltage

and is defined as

VT = kT

q
(7.83)

where k ≈ 1.3896593 × 10−23 J/K is Boltzmann’s constant and q ≈ 1.602176565 × 10−19 C

is the elementary charge constant. At room temperature, Tr = 27◦ C, thermal voltage is

roughly VT ≈ 0.026 V. As IC = 1 mA is a reasonable value for biasing the current source

and RE = 200 Ω is a reasonable value for the degeneration resistor, the output impedance

of the current source is improved by ≈ 7.5 times.

The drawback, though small, is that the supply voltage of the DAC must be increased

to account for the voltage drop across the resistor. Resistors also require a non-negligible

amount of area. The output impedance can be improved further by adding a cascode tran-

sistor to the current source. Figure 7.20a introduces the cascode transistor QCA1. We first

consider adding the cascode without the degeneration transistor. In that case,

ro,ca = ro

(
1 + β0gmro

β0 + gmro

)
≈ β0ro, gmro � β0 (7.84)

222

where β0 is the current gain of QCA1. In SiGe HBT processes, the current gain can be on the

around 200 [103]. Using IC = 1 mA as the standard, this yields ro,ca ≈ 200ro. Adding the

degneration resistor only improves this situation further by replacing ro with Equation 7.81.

Using the same 200 Ω resistor and 1 mA collector current, this results in ro,ca,dg ≈ 1400ro.

QCS

QCA1

RE

Vb1

Vb2

QSW1

Vm

RL

VLOAD

QSW2

Vp

RL

VLOAD

Vsp Vsm

(a) Current Steering Cell with Cascode Current
Source

QCS

QCA1

RE

Vb1

Vb2

QSW1

QCA3 VCA

Vm

RL

VLOAD

QSW2

QCA2VCA

Vp

RL

VLOAD

Vsp Vsm

(b) Current Steering Cell with Cascode Output

Figure 7.20: Current Steering Cells with Cascoding

Another dramatic improvement to the current source architecture can be achieved by

adding a cascode transistor to the output of the switching transistors. Figure 7.20b provides

an example of such a configuration. This particular configuration allows the switching tran-

sistors to drive a low impedance output, the emitter of the cascode transistors QCA2 and

QCA3. As shown in some of the DAC architectures of Section 7.5, in particular thermometer

coded segments, can have the load of tens of transistors tied to the same node. This load

impedance slows the performance of the DAC switches dramatically, but by adding the cas-

code transistors, the impedance is isolated from the switching transistors. Furthermore, the

transistors QCA2 and QCA3 fix the voltage variation across the switches across all DAC code

223

choices to a few hundred millivolts. Otherwise the DAC output voltage is directly applied

across the terminals of the switching transistors.

A new problem arises though from adding the cascode at the top of the transistors

shown in Figure 7.20b. When the current is steered away from the cascode transistor, the

bias current through the non-active switch cut the current off the cascode. This causes a

delay from the switch to the output of the DAC, as the cascode must change from operating

in an inactive region to being fully biased. To address this shortcoming, adding keep-alive

transistors to the output cascode as shown in Figure 7.21 will keep those transistors from

shutting off completely. The drawback of course is higher output power. This trade-off is

very often worth the increased performance. Consider the performance of [72] or [4], which

show some of the best published DAC results to date.

Q1

Q2

RE

Vb1

Vb2

QSW1
QKL1

RKL

QCA1 VCA

Vm

RL

VLOAD

QSW2
QKL2

RKL

QCA2VCA

Vp

RL

VLOAD

Vsp Vsm
Vb3 Vb4

Figure 7.21: Current Steering Cell with Cascode Output and Keep Alive

All the techniques described thus far have done little to improve the non-linear glitching

from data switching or intersymbol interference. Both of these become considerable concerns

as the frequency of the process extends higher. As has already been discussed in Section

224

Q1

Q2

RE

Vb1

Vb2

QSW1

QRZ1QRZ2
QKL1

QKL3

RKL

QCA1 VCA

Vm

RL

VLOAD

QSW2

QRZ3QRZ4
QKL2

QKL4

RKL

QCA2VCA

Vp

RL

VLOAD

Vsp Vsm

Vclkm
VclkpVclkp

VDUMP

Figure 7.22: Current Steering Cell with Cascode, Keep Alive and RTZ

7.5.3, using an RTZ architecture addresses both problems. Figure 7.22 Combines all of the

techniques discussed thus far, including an RTZ switching quad. This RTZ pair happens to

incidentally further improve the isolation of the output from the data switches by acting as

an extra cascode stage to the data switches.

The author believes that constructing a DAC using segmented R-2R binary attenutation

architecture with the current switch shown in Figure 7.22 would dramatically improve the

dynamic performance of the DACs being designed at Auburn University. Many of the DACs

at Auburn, including the CMOS design discussed in Section 6.6, have dramatic decreases in

performance when synthesizing high frequency signal, where high is relative to the sampling

frequency of the DAC. The techniques described in this section provide a path to mitigate

dynamic degradation effects before even considering calibration.

225

Chapter 8

Conclusions

In this work, an exact derivation for the spurs generated by phase truncation error in

a phase accumulator were calculated using elementary number theory. The spectral theory

was developed from binary unsigned arithmetic to the final computations of the discrete

Fourier transform of the truncated phase sequence. The theory replaces the commonly cited

work by Nicholas [23] and the less commonly cited work from Torosyan [31]. The particular

derivation is well suited for teaching DDFS engineers both qualitatively and quantitatively

the origin of phase truncation spurs and would fit well in a textbook on the topic.

A novel parallel phase accumulator with linear frequency modulation was introduced

and its analysis on the size of the DCDO was presented. It was compared to other parallel

accumulators in patent literature that perform a similar operation. In processes CMOS and

BiCMOS processes with feature sizes less than or equal to 130 nm, the author argues that

every DDFS design should be parallelizing the phase accumulator. This approach removes

the need for non-linear DAC implementations entirely and allows designers to focus on the

components that are actually limiting the performance of DDFS systems (i.e. DACs).

Lastly the DDFS systems designed at Auburn University by the author are presented,

culminating in the quadrature DDFS used in the X-band radar-on-a-chip design that was

fabricated in a 130 nm BiCMOS process. A revision of the system correctly the errors

found during testing was developed to final GDSII form but the team at Auburn University

has since taken jobs making testing impractical. The design has not been submitted for

fabrication at the time of this writing.

There is a significant opportunity for future work derived from this thesis. Firstly, imple-

menting the modified accumulators described in Section 4.7.1 and Section 4.7.2 with low-cost

226

FPGA from Xilinx feeding a low-cost DAC demonstration board from Analog Devices would

allows for physical verification of the theory, since the theory was only numerically verified in

this work. Secondly, use of the theory to modify fully explain the spectral analysis behavior

of the output response analyzer and subsequently implementing a new variable state phase

accumulator would prove interesting. The new accumulator described could also be used

to develop a very fine frequency resolution DDFS. The math fully developing the list of all

acquirable frequencies also makes for exciting analysis. Either one of these tasks, if properly

built from the work described in this dissertation would be feasible for a master’s student

to perform. The first could even be accomplished by a senior project for an undergraduate

student if proper components were supplied.

An exact analysis of the spectrum of a partial dynamic rotation CORDIC would require

significant undertaking but could also lead insights into the devices behavior (and potentially

techniques to improve it). The author believes that the CORDIC output stages can actually

be used as an “error correction” stage at the output of a highly compressed ROM. To the

author’s knowledge, no one has ever taken a BTM or MTM LUT as the seed for a partial

dynamic rotation CORDIC.

Lastly, the theory developed in Chapter 4 should be used in the analysis of other systems

where truncation occurs, such as a fractional-N synthesizer. Some of the theory used in

calculating the original phase truncation sequences property may also be used in analyzing

the sequences generated by LFSR or ∆Σ modulators. Also, a more abstract, compact

analysis producing the same results as this work would also be instrumental in the field.

227

Bibliography

[1] L. K. Tan, E. Roth, G. Yee, and H. Samueli, “An 800-MHz quadrature digital syn-
thesizer with ECL-compatible output drivers in 0.8 µm CMOS,” IEEE Journal of
Solid-State Circuits, vol. 30, no. 12, pp. 1463 –1473, Dec. 1995.

[2] A. Yamagishi, M. Ishikawa, T. Tsukahara, and S. Date, “A 2-V, 2-GHz low-power
direct digital frequency synthesizer chip-set for wireless communication,” IEEE Journal
of Solid-State Circuits, vol. 33, pp. 210–217, 1998.

[3] B.-D. Yang, J.-H. Choi, S.-H. Han, L.-S. Kim, and H.-K. Yu, “An 800-MHz low-power
direct digital frequency synthesizer with an on-chip D/A converter,” IEEE Journal of
Solid-State Circuits, vol. 39, no. 5, pp. 761–774, 2004.

[4] F. Van de Sande, N. Lugil, F. Demarsin, Z. Hendrix, A. Andries, P. Brandt, W. An-
klam, J. S. Patterson, B. Miller, M. Rytting, M. Whaley, B. Jewett, J. Liu, J. Wegman,
and K. Poulton, “A 7.2 GSa/s, 14 Bit or 12 GSa/s, 12 Bit Signal Generator on a Chip
in a 165 GHz fT BiCMOS process,” IEEE Journal of Solid-State Circuits, vol. 47,
no. 4, pp. 1003–1012, 2012.

[5] T. Nagasaku, K. Kogo, H. Shinoda, H. Kondoh, Y. Muto, A. Yamamoto, and
T. Yoshikawa, “77GHz low-cost single-chip radar sensor for automotive ground speed
detection,” in Proc. IEEE Compound Semiconductor Integrated Circuits Symp. CSIC
’08, 2008, pp. 1–4.

[6] Y.-A. Li, M.-H. Hung, S.-J. Huang, and J. Lee, “A fully integrated 77GHz FMCW
radar system in 65nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. Digest
of Technical Papers (ISSCC), 2010, pp. 216–217.

[7] J. Rogers, C. Plett, and F. Dai, Integrated Circuit Design for High-Speed Frequency
Synthesis. Artech House, 2006.

[8] M. Skolnik, Radar Handbook, 3rd ed. McGraw Hill, 2008.

[9] J. Tierney, C. Rader, and B. Gold, “A digital frequency synthesizer,” IEEE Transac-
tions on Audio and Electroacoustics, vol. 19, no. 1, pp. 48–57, 1971.

[10] A. Torosyan and A. N. Willson, “Exact analysis of DDS spurs and SNR due to phase
truncation and arbitrary phase-to-amplitude errors,” in Proc. IEEE Int. Frequency
Control Symp. and Exposition, 2005.

228

[11] D. D. Sarma and D. W. Matula, “Faithful bipartite rom reciprocal tables,” in Proceed-
ings of the 12th Symposium on Computer Arithmetic, 1995, p. 17.

[12] F. de Dinechin and A. Tisserand, “Multipartite table methods,” IEEE Transactions
on Computers, vol. 54, no. 3, pp. 319–330, 2005.

[13] J. Qin, “Selective spectrum analysis and numerically controlled oscillator in mixed-
signal built-in self-test,” Ph.D. dissertation, Auburn University, December 2010.

[14] G. E. Shilov, Elementary Real and Complex Analysis. Dover Publications, Inc., 1973.

[15] R. F. Lax, Modern Algebra and Discrete Structures. Addison-Wesley Educational
Publishers Inc., 1991.

[16] A. Torosyan, “Direct digital frequency synthesizers: Complete analysis and design
guidelines,” Ph.D. dissertation, University of California, Los Angeles, 2003.

[17] J. F. Wakerly, Digital Design Principles and Practices, 3rd ed. Prentice Hall, 2001.

[18] J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication. Springer,
2003.

[19] A. Devices, “1 GSPS, 14-Bit, 3.3V CMOS direct digital synthesizer,” 2012.

[20] ——, “3.5 GSPS direct digital synthesizer with 12-bit DAC,” 2012.

[21] J. Qin, J. D. Cali, B. F. Dutton, G. J. Starr, F. F. Dai, and C. E. Stroud, “Selec-
tive Spectrum Analysis for Analog Measurements,” IEEE Transactions on Industrial
Electronics, vol. 58, no. 10, pp. 4960–4971, October 2011.

[22] J. Yu, F. Zhao, J. Cali, D. Ma, X. Geng, F. F. Dai, J. D. Irwin, and A. Aklian, “A
Single-Chip X-band Chirp Radar MMIC with Stretch Processing,” in CICC, 2012, pp.
1–4.

[23] H. T. Nicholas and H. Samueli, “An analysis of the output spectrum of direct digital
frequency synthesizers in the presence of phase-accumulator truncation,” in Proc. 41st
Annual Symp. Frequency Control. 1987, 1987, pp. 495–502.

[24] Y. C. Jenq, “Digital spectra of nonuniformly sampled signals. ii. Digital look-up tun-
able sinusoidal oscillators,” IEEE Transactions on Instrumentation and Measurement,
vol. 37, no. 3, pp. 358–362, 1988.

[25] S. Mehrgardt, “Noise spectra of digital sine-generators using the table-lookup method,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 31, no. 4, pp.
1037–1039, 1983.

[26] Y.-C. Jenq, “Digital spectra of nonuniformly sampled signals: fundamentals and high-
speed waveform digitizers,” IEEE Transactions on Instrumentation and Measurement,
vol. 37, no. 2, pp. 245–251, 1988.

229

[27] Y. C. Jenq, “Digital spectra of nonuniformly sampled signals: theories and
applications-measuring clock/aperture jitter of an A/D system,” IEEE Transactions
on Instrumentation and Measurement, vol. 39, no. 6, pp. 969–971, 1990.

[28] Y.-C. Jenq, “Digital spectra of nonuniformly sampled signals: a robust sampling time
offset estimation algorithm for ultra high-speed waveform digitizers using interleaving,”
IEEE Transactions on Instrumentation and Measurement, vol. 39, no. 1, pp. 71–75,
1990.

[29] A. Torosyan and J. Willson, A. N., “Analysis of the output spectrum for direct digital
frequency synthesizers in the presence of phase truncation and finite arithmetic preci-
sion,” in Proc. 2nd Int. Symp. Image and Signal Processing and Analysis ISPA 2001,
2001, pp. 458–463.

[30] U. Dudley, Elementary Number Theory. Dover Publications, Inc., 1978.

[31] A. Torosyan, D. Fu, and J. Willson, A. N., “A 300-MHz quadrature direct digital
synthesizer/mixer in 0.25-µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 38,
no. 6, pp. 875–887, 2003.

[32] K. Doris, A. van Roermund, and D. Leenaerts, Wide-Bandwidth High Dynamic Range
D/A Converters. Springer, 2010.

[33] X. Geng, F. Dai, J. Irwin, and R. Jaeger, “An 11-bit 8.6 GHz direct digital synthesizer
MMIC with 10-bit segmented sine-weighted DAC,” Solid-State Circuits, IEEE Journal
of, vol. 45, no. 2, pp. 300–313, feb 2010.

[34] S. Turner and D. Kotecki, “Direct Digital Synthesizer with Sine-Weighted DAC at 32-
GHz Clock Frequency in InP DHBT technology,” IEEE Journal of Solid-State Circuits,
vol. 41, no. 10, pp. 2284–2290, oct 2006.

[35] A. Gutierrez-Aitken, J. Matsui, E. Kaneshiro, B. Oyama, D. Sawdai, A. Oki, and
D. Streit, “Ultrahigh-speed direct digital synthesizer using inp dhbt technology,” IEEE
Journal of Solid-State Circuits, vol. 37, no. 9, pp. 1115 – 1119, sep 2002.

[36] X. Yu, F. F. Dai, J. David Irwin, and R. Jaeger, “A 9-bit Quadrature Direct Digital
Synthesizer Implemented in 0.18-µm SiGe BiCMOS Technology,” Microwave Theory
and Techniques, IEEE Transactions on, vol. 56, no. 5, pp. 1257–1266, may 2008.

[37] S. Pellerano, S. Levantino, C. Samori, and A. Lacaita, “A 13.5-mw 5-ghz frequency
synthesizer with dynamic-logic frequency divider,” Solid-State Circuits, IEEE Journal
of, vol. 39, no. 2, pp. 378–383, 2004.

[38] R. H. A. W. Kovalick, “Waveform synthesis using multiplexed parallel synthesizers,”
USA Patent 4,454,486, June, 1984.

[39] B.-G. Goldberg, “Digital frequency synthesizer having multiple processing paths,” USA
Patent 4,958,310, nov, 1990.

230

[40] P. A. D. B. L. Tise, “Multiplexed chirp waveform synthesizer,” USA Patent 6,614,813,
September, 2003.

[41] S. Turner and D. Kotecki, “Direct digital synthesizer with ROM-Less architecture at
13-GHz clock frequency in InP DHBT technology,” IEEE Microwave and Wireless
Components Letters, vol. 16, no. 5, pp. 296–298, may 2006.

[42] X. Geng, F. Dai, J. Irwin, and R. Jaeger, “24-bit 5.0 GHz direct digital synthesizer
RFIC with direct digital modulations in 0.13 µ m sige bicmos technology,” IEEE
Journal of Solid-State Circuits, vol. 45, no. 5, pp. 944–954, may 2010.

[43] e2v, “Low Power 12-bit 3 GSps DAC with 4/2:1 MUX,” October 2011.

[44] G. J. Starr, J. Qin, B. F. Dutton, C. E. Stroud, F. F. Dai, and V. P. Nelson, “Au-
tomated generation of built-in self-test and measurement circuitry for mixed-signal
circuits and systems,” in Proc. 24th IEEE Int. Symp. Defect and Fault Tolerance in
VLSI Systems DFT ’09, 2009, pp. 11–19.

[45] “Scientific computing tools for python - numpy,” Apr. 2012.

[46] “welcome to mako,” Apr. 2012. [Online]. Available: http://www.makotemplates.org/

[47] D. D. Caro, N. Petra, and A. G. M. Strollo, “Reducing lookup-table size in direct digital
frequency synthesizers using optimized multipartite table method,” IEEE Transaction
on Circuits and Systems, vol. 55, no. 7, pp. 2116–2127, Aug. 2008.

[48] M. J. Schulte and J. E. Stine, “Approximating Elementary Functions with Symmetric
Bipartite Tables,” IEEE Transactions on Computers, p. 842, 1999.

[49] J. W. Eaton, D. Bateman, and S. Hauberg, GNU Octave Manual Version 3. Network
Theory Limited, 2008.

[50] S. Axler, Linear Algebra Done Right, 2nd ed. Springer, 1997.

[51] R. M. Gray and J. Stockham, T. G., “Dithered quantizers,” IEEE Transactions on
Information Theory, vol. 39, no. 3, pp. 805–812, 1993.

[52] T. E. C. III, G. M. Flewelling, D. S. Jansen, J. D. Cali, D. A. Chan, J. Freedman,
M. Anthony, T. Dresser, F. Dai, and E. Gebarra, “Self-Healing in SiGe BiCMOS ICs for
Low-SWAP Electronic Warfare Receivers,” in 38th Annual GOMACTech Conference,
March 11-14 2013.

[53] J. E. Volder, “The cordic trigonometric computing technique,” IRE Transactions on
Electronic Computers, no. 3, pp. 330–334, 1959.

[54] J. S. Walther, “A Unified Algorithm for Elementary Functions,” in Proc. of Spring
Joint Computer Conf., 1971, pp. 379–385.

[55] J.-M. Muller, Elementary Functions: Algorithms and Implementation, 2nd ed.
Birkh auser, 2006.

231

http://www.makotemplates.org/

[56] H. Samueli, “The design of multiplierless fir filters for compensating d/a converter
frequency response distortion,” IEEE Transactions on Circuits and Systems, vol. 35,
no. 8, pp. 1064–1066, 1988.

[57] G. A. M. Van Der Plas, J. Vandenbussche, W. Sansen, M. S. J. Steyaert, and G. G. E.
Gielen, “A 14-bit intrinsic accuracy q2 random walk CMOS DAC,” IEEE Journal of
Solid-State Circuits, vol. 34, no. 12, pp. 1708–1718, 1999.

[58] A. Devices, “Ad9737a: RF Digital-to-Analog Converters,” 2012.

[59] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, 3rd ed. McGraw
Hill, 2006.

[60] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical
Journal, vol. 27, pp. 379–423, 1948.

[61] B. Widrow and I. Kollár, Quantization Noise. Cambridge University Press, 2008.

[62] V. I. Bogachev, Measure Theory: Volume 1. Springer, 2007.

[63] D. Duttweiler and D. Messerschmitt, “Analysis of Digitally Generated Sinusoids with
Application to A/D and D/A Converter Testing,” IEEE Transactions on Communi-
cations, vol. 26, no. 5, pp. 669–675, 1978.

[64] K. Doris, J. Briaire, D. Leenaerts, M. Vertreg, and A. van Roermund, “A 12b 500MS/s
DAC with > 70dB SFDR up to 120MHz in 0.18µm CMOS,” in Proc. Digest of Tech-
nical Papers Solid-State Circuits Conf. ISSCC. 2005 IEEE Int, 2005, pp. 116–588.

[65] IEEE Standard 746-1984: Performance Measurements of A/D and D/A Conversion
Techniques and Their Applications, IEEE Std., 1984.

[66] B. Razavi, Principles of Data Conversion System Design, J. B. Anderson, Ed. New
York: Wiley-IEEE Press, 1995.

[67] S. Luschas and H.-S. Lee, “Output impedance requirements for DACs,” in Proc. Int.
Symp. Circuits and Systems ISCAS ’03, vol. 1, 2003.

[68] G. I. Radulov, M. Heydenreich, R. W. van der Hofstad, J. A. Hegt, and A. H. M. van
Roermund, “Brownian-Bridge-Based Statistical Analysis of the DAC INL Caused by
Current Mismatch,” IEEE Transactions on Circuits and Systems—Part II: Express
Briefs, vol. 54, no. 2, pp. 146–150, 2007.

[69] N. C.-C. Lu, L. Gerzberg, C.-Y. Lu, and J. D. Meindl, “Modeling and optimization of
monolithic polycrystalline silicon resistors,” IEEE Transactions on Electron Devices,
vol. 28, no. 7, pp. 818–830, 1981.

[70] W.-H. Tseng, C.-W. Fan, and J.-T. Wu, “A 12-Bit 1.25-GS/s DAC in 90 nm CMOS
With > 70 db SFDR up to 500 MHz,” IEEE Journal of Solid-State Circuits, vol. 46,
pp. 2845–2856, 2011.

232

[71] A. Van den Bosch, M. Steyaert, and W. Sansen, “SFDR-bandwidth limitations for
high speed high resolution current steering CMOS D/A converters,” in Electronics,
Circuits and Systems, 1999. Proceedings of ICECS ’99. The 6th IEEE International
Conference on, vol. 3, 1999, pp. 1193–1196 vol.3.

[72] C.-H. Lin, F. M. I. van der Goes, J. R. Westra, J. Mulder, Y. Lin, E. Arslan, E. Ayranci,
X. Liu, and K. Bult, “A 12 bit 2.9 GS/s DAC with IM3 < −60 dBc beyond 1 GHz in
65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 3285–3293, 2009.

[73] D. J. Dooley, “A Complete Monolithic 10-b D/A Converter,” IEEE Journal of Solid-
State Circuits, vol. 8, no. 6, pp. 404–408, 1973.

[74] G. Kelson, H. H. Stellrecht, and D. S. Perloff, “A Monolithic 10-b Digital-to-Analog
Converter Using Ion Implantation,” IEEE Journal of Solid-State Circuits, vol. 8, no. 6,
pp. 396–403, 1973.

[75] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog
Integrated Circuits, 4th ed. John Wiley and Sons, Inc., 2001.

[76] Y. Tang, J. Briaire, K. Doris, R. van Veldhoven, P. C. W. van Beek, H. J. A. Hegt,
and A. H. M. van Roermund, “A 14 bit 200 MS/s DAC with SFDR > 78 dBc, IM3
< −83 dBc and NSD < −163 dBm/Hz Across the Whole Nyquist Band Enabled by
Dynamic-Mismatch Mapping,” IEEE Journal of Solid-State Circuits, vol. 46, no. 6,
pp. 1371–1381, 2011.

[77] A. Van Den Bosch, M. Borremans, M. Steyaert, and W. Sansen, “A 12 b 500 MSam-
ple/s current-steering CMOS D/A converter,” in Proc. Digest of Technical Papers
Solid-State Circuits Conf. ISSCC. 2001 IEEE Int, 2001, pp. 366–367.

[78] B. J. Tesch and J. C. Garcia, “A low glitch 14-b 100-MHz D/A converter,” IEEE
Journal of Solid-State Circuits, vol. 32, no. 9, pp. 1465–1469, 1997.

[79] D.-H. Lee, T.-H. Kuo, and K.-L. Wen, “Low-Cost 14-Bit Current-Steering DAC with
a Randomized Thermometer-Coding Method,” IEEE Transactions on Circuits and
Systems—Part II: Express Briefs, vol. 56, no. 2, pp. 137–141, 2009.

[80] M.-J. Choe, K.-H. Baek, and M. Teshome, “A 1.6-GS/s 12-bit return-to-zero GaAs RF
DAC for multiple Nyquist operation,” IEEE Journal of Solid-State Circuits, vol. 40,
pp. 2456–2468, 2005.

[81] W.-H. Tseng, J.-T. Wu, and Y.-C. Chu, “A CMOS 8-Bit 1.6-GS/s DAC with Digi-
tal Random Return-to-Zero,” IEEE Transactions on Circuits and Systems—Part II:
Express Briefs, vol. 58, 2011.

[82] P. Vorenkamp, J. Verdaasdonk, R. van de Plassche, and D. Scheffer, “A 1 GS/s, 10b
digital-to-analog converter,” in Proc. IEEE Int. Solid-State Circuits Conf. Digest of
Technical Papers. 41st ISSCC, 1994, pp. 52–53.

233

[83] S.-Y. Chin and C.-Y. Wu, “A 10-b 125-MHz CMOS digital-to-analog converter (DAC)
with threshold-voltage compensated current sources,” IEEE Journal of Solid-State
Circuits, vol. 29, no. 11, pp. 1374–1380, 1994.

[84] T.-Y. Wu, C.-T. Jih, J.-C. Chen, and C.-Y. Wu, “A low glitch 10-bit 75-MHz CMOS
video D/A converter,” IEEE Journal of Solid-State Circuits, vol. 30, no. 1, pp. 68–72,
1995.

[85] C.-H. Lin and K. Bult, “A 10-b, 500-MSample/s CMOS DAC in 0.6 mm2,” IEEE
Journal of Solid-State Circuits, vol. 33, no. 12, pp. 1948–1958, 1998.

[86] J. Bastos, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 12-bit Intrinsic
Accuracy High-speed CMOS DAC,” IEEE Journal of Solid-State Circuits, vol. 33, pp.
1959–1969, 1998.

[87] A. Van den Bosch, M. Borremans, M. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s
Nyquist current-steering CMOS D/A converter,” in Proc. CICC Custom Integrated
Circuits Conf the IEEE 2000, 2000, pp. 265–268.

[88] B. Jewett, J. Liu, and K. Poulton, “A 1.2GS/s 15b DAC for precision signal gener-
ation,” in Proc. Digest of Technical Papers Solid-State Circuits Conf. ISSCC. 2005
IEEE Int, 2005, pp. 110–587.

[89] Q. Huang, P. A. Francese, C. Martelli, and J. Nielsen, “A 200MS/s 14b 97mW DAC in
0.18µm CMOS,” in Proc. Digest of Technical Papers Solid-State Circuits Conf. ISSCC.
2004 IEEE Int, 2004, pp. 364–532.

[90] B. Schafferer and R. Adams, “A 3V CMOS 400mW 14b 1.4GS/s DAC for multi-carrier
applications,” in Proc. Digest of Technical Papers Solid-State Circuits Conf. ISSCC.
2004 IEEE Int, 2004, pp. 360–532.

[91] K. O’Sullivan, C. Gorman, M. Hennessy, and V. Callaghan, “A 12b 320 MSample/s
current-steering CMOS D/A converter in 0.44mm2,” in Proc. 29th European Solid-State
Circuits Conf. ESSCIRC ’03, 2003, pp. 89–92.

[92] J.-H. Chi, S.-H. Chu, and T.-H. Tsai, “A 1.8-v 12-bit 250-ms/s 25-mw self-calibrated
DAC,” in Proc. ESSCIRC, 2010, pp. 222–225.

[93] M. P. Tiilikainen, “A 14-bit 1.8-v 20-mw 1-mm2 CMOS DAC,” IEEE Journal of Solid-
State Circuits, vol. 36, no. 7, pp. 1144–1147, 2001.

[94] A. R. Bugeja and B.-S. Song, “A self-trimming 14-b 100-MS/s CMOS DAC,” IEEE
Journal of Solid-State Circuits, vol. 35, no. 12, pp. 1841–1852, 2000.

[95] W. Schofield, D. Mercer, and L. S. Onge, “A 16b 400MS/s DAC with −80dBc IMD to
300MHz and −160dBm/Hz noise power spectral density,” in Proc. Digest of Technical
Papers Solid-State Circuits Conf. ISSCC. 2003 IEEE Int, 2003, pp. 126–482.

234

[96] M. Borremans, A. Van den Bosch, M. Steynaert, and W. Sansen, “A low power, 10-
bit CMOS D/A converter for high speed applications,” in Proc. IEEE Conf Custom
Integrated Circuits, 2001, pp. 157–160.

[97] X. Wu, P. Palmers, and M. Steyaert, “A 130 nm CMOS 6-bit Full Nyquist 3 GS/s
DAC,” IEEE Journal of Solid-State Circuits, vol. 43, no. 11, pp. 2396–2403, 2008.

[98] Z. Zhou and G. S. La Rue, “A 12-bit Nonlinear DAC for Direct Digital Frequency Syn-
thesis,” IEEE Transactions on Circuits and Systems—Part I: Regular Papers, vol. 55,
no. 9, pp. 2459–2468, 2008.

[99] C.-Y. Yang, J.-H. Weng, and H.-Y. Chang, “A 5-GHz Direct Digital Frequency Syn-
thesizer Using an Analog-Sine-Mapping Technique in 0.35-µm SiGe BiCMOS,” IEEE
Journal of Solid-State Circuits, vol. 46, no. 9, pp. 2064–2072, 2011.

[100] R. G. Meyer, W. M. C. Sansen, and S. Peeters, “The Differential Pair as a Triangle-Sine
Wave Converter,” IEEE Journal of Solid-State Circuits, vol. 11, no. 3, pp. 418–420,
1976.

[101] R. C. Jaeger and T. N. Blalock, Microelectronic Circuit Design, 3rd ed. McGraw Hill
Science, Engineering and Math, 2007.

[102] E. Seevinck, Analysis and Synthesis of Translinear Integrated Circuits. Booksurge
Publishing, 1988.

[103] J. D. Cressler and G. Niu, Silicon-Germanium Heterojunction Bipolar Transistors.
Artech House, 2003.

235

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction to Phase Accumulators
	Explanation of Notation
	Number Theory Axioms and Notation
	Binary Arithmetic

	Overview of Direct Digital Frequency Synthesis
	Advantages of DDFS
	Digital Phase Modulation
	Digital Frequency Modulation
	Digital Amplitude Modulation
	Fine Frequency Resolution and Fast Switching

	Summary of Contributions and Chapter Breakdown

	Background of Phase Truncation Analysis
	Mehrgardt's Analysis (1983)
	Nicholas's Analysis (1985)
	Jenq's Analysis (1988)
	Jenq's Observation
	Jenq's Results

	Torosyan's Analysis (2001)

	Phase Accumulator Sequences from Number Theory
	Phase Accumulator Sequence
	Phase Accumulator Period
	Truncated Phase Sequences
	Relationships Between Sequences
	Comments on Mathematical Structure

	Spectrum of Truncated Phase Sequences
	Intuitive Understanding
	Characteristics of Truncated Phase Sequences
	Spectrum in the Presence of Phase Truncation
	Interpreting Results
	Ideal SCMF Example

	Numerical Verification of Theory
	SFDR and SNR in the Presence of Phase Truncation
	SFDR
	Worst Case SFDR
	Spur Locations
	SNR

	Architecture Changes for Improved Spurious Response
	Force Coprime FCWs
	Phase Accumulator with Prime Number of States

	Parallelization of Phase Accumulator
	Pipelined Accumulator
	Parallel Accumulator
	Prior Art
	Derivation of LFM Enabled Architecture
	Area and Power Growth Analysis
	Hardware Implementation

	Multiplexer Upconversion Analysis
	Behavioral HDL Synthesis
	Problems with Existing Techniques
	A Simple Example
	EDA Scripts
	Optimization

	Radar Application
	Previous DDFS Designs
	Sine Wave Symmetry
	MTM DDFS
	BTM DDFS
	Output Response Analyzer

	Overview of Basic Radar Theory
	Overview of Stretch Processing
	Single Chip Radar

	CORDIC
	Basic Theory
	Conventional CORDIC
	Optimizing the CORDIC Algorithm for DDFS
	Partial Dynamic Rotation CORDIC

	Stretch Processing DDFS Architecture
	Inverse Sinc Filter
	Radar Controller

	Design of 12-bit CMOS DAC
	Measurements

	Digital-To-Analog Converters (DAC)
	Basic Sampling Theory
	DAC Fundamentals
	DAC Performance Metrics
	Static DAC Performance
	INL
	DAC Models

	Dynamic DAC Performance
	DAC Architectures
	R-2R DACs
	Thermometer Coded and Segmented DACs
	Return-to-Zero (RTZ)
	Translinear Output Buffers and Non-Linear DACs

	Current Steering Cell Architectures

	Conclusions
	Bibliography

