
Analysis and finite element approximation for nonlinear problems in
poroelasticity and bioconvection

by

Song Chen

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 5, 2013

Keywords: Nemytskii operator, poroelasticity, bioconvection, Rothe’s method

Copyright 2013 by Song Chen

Approved by

Yanzhao Cao, Chair, Professor of Mathematics and Statistics
A. J. Meir, Co-chair, Professor of Mathematics and Statistics

Wenxian Shen, Professor of Mathematics and Statistics
Georg Hetzer, Professor of Mathematics and Statistics



Abstract

This dissertation is concerned with nonlinear systems of partial differential equation

with solution dependent physical coefficients satisfying the Nemytskii assumption. Such

equations arise from two important application fields: poroelasticity and bioconvection.

First, we consider a quasi-static poroelasticity model with dilatation dependent hy-

draulic conductivity and an implicit time derivative. We derive the existence and unique-

ness of solutions using the modified Rothe’s method, Brouwer’s fixed point Theorem and the

Sobolev embedding Theorem. Next we construct a finite element approximation with linear

elements and establish the optimal error estimate. We then conduct numerical examples to

verify the convergence and simulate the diffusion in a fluid saturated sponge.

Second, we study the bioconvection model, a coupled Navier-Stokes type equation, with

concentration dependent viscosity. We combine the theory of the Navier-Stokes equation

and the modified Rothe’s method to establish existence and uniqueness of solutions of both

steady and time dependent bioconvection. After that we perform finite element analysis with

Taylor-Hood elements and prove the convergence theorem. Finally numerical examples are

constructed using lab data to verify the convergence of the numerical scheme and simulate

the convection pattern formed by micro-organisms inside a culture fluid.
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Chapter 1

Introduction

This dissertation is devoted to the study of the well posedness and numerical approxi-

mations of systems of partial differential equation (PDE) with solution dependent physical

parameters arising from two application fields: poroelasticity and bioconvection.

In mathematical modeling, we usually consider a linear system under certain ideal ho-

mogeneous assumptions about the physical parameters. In practice, however, the physical

parameters are generally inhomogeneous and related to the solution of the system of PDE.

A generic PDE with solution dependent physical coefficient can be written as

L
(
x, t, u(t, x), λ(t, x, u)

)
= f , x ∈ Ω , t > 0 , (1.1)

where Ω is the physical domain, t refers to time, L denotes a general differential operator

and λ(t, x, u) is the physical parameter depending on the solution u. When L is a linear

differential operator, (1.1) is often reduced to a quasi-linear PDE. Theoretical analysis of

this problem concerning the well posedness and regularity of solutions can be found in [1],

[2], and [3]. Finite element approximations of some simple quasi-linear elliptic PDEs and

parabolic PDEs (1.1) are presented in [4], [5] and [6].

In this dissertation, we consider two mathematical models taking the form of coupled

PDEs with solution dependent coefficients. The first model arises in poroelasitcity with di-

latation dependent hydraulic conductivity and the second model is about bioconvections with

concentration dependent viscosity. Though the physical backgrounds of the two problems

are quite different, we will use similar approaches to study the well posedness and numerical

approximations of the two underlying PDE systems. For instance we will use the modified
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Rothe’s method to study the existence of weak solutions of both of the two evolution PDE

systems. We will use the fact that the physical parameters in both of the two models give

rise to Nemiskii operators to derive the well-posedness results under minimum regularity

assumptions on the input data.

1.1 Poroelasticity with dilatation dependent hydraulic conductivity

Motivation. We are surrounded by porous elastic solid materials: natural (e.g., rocks,

soils, shale, living tissue, the brain, the heart) and man-made (e.g., cement, concrete, filters,

foams, ceramics, gels, clays). Porous material has a solid matrix structure with small pores

inside which contain air or fluid. Because of their ubiquity and unique properties, porous

materials are of great interest to natural scientists and engineers ([7, 8, 9, 10] ). Porous media

finds applications in diverse areas include reservoir engineering [11], biomechanics [12, 13, 14]

and environmental engineering [15, 16, 11].

Mathematical model. Poromechanics is a branch of physics and specifically contin-

uum mechanics and acoustics that studies the behaviour of fluid-saturated porous media.

The particular mathematical model we are interested in describes the swelling and shrinking

of an elastic deforming porous medium coupled with the fluid.

Due to the elastic nature of the porous medium, the study of fluid saturated porous

media is called poroelasticity. Terzaghi [17] first derived a one dimensional model in soil

mechanics to involve the influence of the fluid inside a solid body. The model was later

extended to three dimension by Rendulik [18]. A mathematical formulation is derived in

Biot’s work [19] and studies in his other work between 1955 and 1962 [20, 21, 22, 23, 24],

which are later considered to be the foundation of modern poroelasticity theory.
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The following equations are the essence of Biot’s poroelasticity theory [19] (details of

the theory can be found in [25]) in which the coupled constitutive equations takes the form


∂

∂t
(momentum) + stress = external force ,

∂

∂t
(fluid content) + flux = external fluid source .

(1.2)

Next we convert (1.2) into a coupled system of partial differential equations for the fluid

pressure and the displacement of the poroelastic medium. To this end, we denote the pressure

by p and the displacement by u. According to Hooke’s law in 3-D the effective stress caused

by the deformation of the solid matrix is given by

τe = 2µε+ λtr(ε)I . (1.3)

Here ε =
1

2
(∇u + ∇uT ) is the strain, tr(ε) is the trace of ε, I is the identity matrix, and

λ, µ are the Lamé constants, corresponding to the dilatation and shear modulus respectively,

given by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
,

where the Young’s modulus E captures the elastic stiffness in the direction of a load and the

Poisson’s ratio ν describes the stretch (compression) in the direction perpendicular to the

load. By introducing λ and µ, the effective stress is written in a symmetric form. To include

the effect of the fluid pressure inside the porous body, we introduce the addition stress due

to the pore pressure pp:

pp = αp , (1.4)

where the Biot-Willis constant α [23] satisfies α = 1−K/Ks with K being the bulk modulus

of the porous matrix and Ks is the bulk modulus of the solid material. In most situations

α ≈ 1, corresponding to an incompressible solid matrix. In a certain models of secondary
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consolidation in clays, we also add an additional term

τs = λ∗
∂

∂t
∇ · u , (1.5)

where λ∗ is the coefficient of the secondary consolidation [26]. Together, the total stress is

given by

τ = τe + pp + τs . (1.6)

In the second equation of (1.2), the fluid content is given by

η := ηf + ηd = c0p+ α∇ · u . (1.7)

Here ηf = c0p measures the fluid content that can be forced into the medium by pressure

increments within constant volume with the constant c0 ≥ 0 combining the porosity and the

compressibility, and ηd = α∇·u denotes the fluid content due to the change of the pores size,

i.e., the dilatation of the void volume, which is proportional to ∇ · u, the total dilatation of

the body. If α = 1, the solid matrix is incompressible. Thus the total dilatation is the same

as the dilatation of the pores. According to Darcy’s law,

q = −κ∇p (1.8)

represents the linear relationship between fluid flux and the pressure drop, where the hy-

draulic conductivity κ > 0 measures the permeability and the viscosity of the fluid. Now

letting the function f denote the volume-distributed external force, g the fluid source density,

and ρ the density of the medium, we substitute (1.3), (1.4), (1.5), (1.6), (1.7) and (1.8) into

(1.2) and apply divergence theorem to obtain the fully dynamic system


ρ
∂2

∂t2
u− λ∗∇(

∂

∂t
∇ · u)− (λ+ µ)∇(∇ · u)− µ∆u + α∇p = f ,

∂

∂t
(c0p+ α∇ · u)−∇ · (κ∇p) = g ,

(1.9)
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subject to initial and boundary conditions. The first equation is a hyperbolic linear elasticity

equation for the displacement of the poroelastic medium while the second equation is an

implicit parabolic equation for the fluid’s pressure.

In general, complicated boundary conditions must be considered. In particular, the

boundary may have to be partitioned into disjoint, regular open set, on which various bound-

ary conditions are imposed. For example, we may partition the boundary Γ as Γ = Γ̄c ∪ Γ̄t

with Γc ∩ Γt = ∅. We say Γc is the clamped boundary on which the Dirichlet condition

u|Γc = ub is given, and Γt is the traction boundary on which the normal stress σ|Γt ·n = s is

prescribed. For the pressure, we may partition Γ as Γ = Γ̄d ∪ Γ̄f with Γd ∩ Γf = ∅. We say

Γd is the drained boundary on which the Dirichlet condition p|Γd
= pb is given, and Γf is the

flux boundary on which the fluid flux (κ(∇ · u)∇p)|Γf
· n = r is prescribed. On Γt ∩ Γf , we

have the balance of force and flux at the same time. To handle this, we introduce β to be

the surface fraction of the sealed portion of Γt ∩ Γf . Then 1− β corresponds to the exposed

portion. Next we define the characteristic function

χtf =

 1 , x ∈ Γt ∩ Γf ,

0 , otherwise .

On the sealed part, the pore pressure contributes to the total force. Thus

[
(λ+ µ)∇ · uI + µ∇u

]
· n− βαp · nχtf = s on Γt ,

On the exposed part, the changing rate of the fluid content caused by the dilatation must

be included in the balance of flux. As a result we have

− ∂

∂t

(
(1− β)αu · n

)
χtf + κ∇p · n = r on Γf .

Quasi-static poroelasticity. In this dissertation we restrict our considerations to the linear

quasi-static flow in a saturated deformable poroelastic medium, i.e., we neglect the effects
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of ρ
∂2

∂t2
u and the secondary consolidation (1.5). Then the system takes the form


−(λ+ µ)∇(∇ · u)− µ∆u + α∇p = f ,

∂

∂t
(c0p+ α∇ · u)−∇ · (κ∇p) = g .

(1.10)

In this case, we focus on a quasi-static problem with a coupling of an elliptic equation and

a parabolic equation.

In a homogeneous and isotropic medium, where the permeability and the viscosity are

constants, κ is also a constant. In this case, the well posedness and regularity of system

(1.10) was studied in [25] as an application of the semi-group theory to linear degenerate

evolution equations in Hilbert spaces. Galerkin and discontinuous Galerkin approximations

for this linear system can be found in [27] and [28].

In this dissertation, we consider the case when the hydraulic conductivity κ depends on

the dilatation ∇ ·u, i.e., κ = κ(∇ ·u). A typical example for dilatation dependent hydraulic

conductivity can be found in [29], which is used in calculating the pressure drop of a fluid

flowing through a packed bed of solids. Difficulties in studying (1.10) arise from

1. Nonlinearity of the system due to the dependence of κ on ∇ · u.

2. Implicit evolution in the second equation of (1.10) due to the term ∂
∂t

(α∇ · u).

A proof of the existence and uniqueness of a solution of similar type of equations using

Rothe’s method can be found in Chapter 5 of [1] under the assumption that κ : R → R is

continuous and satisfies

0 < κ∗ ≤ κ(x) ≤ κ∗ ∀x ∈ R , (1.11)

for some constants κ∗, κ
∗. In general, the uniqueness of the solution usually requires Lip-

schitz continuity condition of κ and additional coefficient assumptions. The finite element

approximations of similar problems can be found in Chapter 8.7 of [4] and in Chapter 13 of

[5]. However, none of these studies involves implicit evolution equations.
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Linear implicit evolution equations have been studies in [30], [31], and [2] using the semi-

group theory. The quasi-static poroelasticity model with constant hydraulic conductivity was

studies in [25], also using the semi-group theory on Hilbert spaces. Formally, note that the

first equation in (1.10) is of second order for displacement u and first order for pressure p.

Therefore c0p and α∇ · u should have the same regularity.

1.2 Bioconvection

Motivation. Bio-convection occurs due to on average upwardly swimming micro-

organisms which are slightly denser than water. The micro-organisms swim upward to meet

the sunlight. When the micro-organisms on the surface become too dense, they sink under

the effect of gravity. Repeating this process, a convection pattern is formed.

Mathematical model. A fluid dynamical model treating the micro-organisms as col-

lections of particles was derived by M. Levandowsky, W. S. Hunter and E. A. Spiegel [32]

and independently by Y. Moribe [33]. We describe the model as follows. Let Ω ⊂ R3 be a

bounded domain with boundary ∂Ω. At point x ∈ Ω, let u(x) = {uj(x)}3
j=1 and p(x) denote

the velocity and pressure of the culture fluid while c(x) refers to the concentration of the

micro-organism. Note that we use the volume concentration

c = nv0 ,

where n is the number of organisms per unit volume and v0 is the volume of an individual

organism. Let ρ0 be the density of the micro-organism and ρm be the density of the culture

fluid. Then the density of the suspension is the sum

ρ = ρ0c+ ρm(1− c) = ρm(1 + γc) , (1.12)

where γ = ρ0/ρm − 1. Assume that the organisms affect the fluid dynamics only through

their influence on its density and that the suspension is nearly incompressible. Then the
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fluid satisfies the Navier-Stokes equation


ρm

(∂u

∂t
+ (u · ∇)u

)
−∇ · (ν∇u) +∇p = −gρi3 + f ,

∇ · u = 0 .

(1.13)

Here ν is the kinematic viscosity of the culture fluid, g is the acceleration of gravity, f is

the volume-distributed external force, and i3 = (0, 0, 1) is the vertical unit vector. For the

concentration c, mass conservation gives

D

Dt
c+∇ · q = 0 . (1.14)

Here
D

Dt
=

∂

∂t
+ u · ∇ is the material derivative and q is the flux of micro-organisms which

is given by

q = −θ∇c+ Uci3 , (1.15)

where θ and U are the diffusion rate and mean upward swimming velocity of the micro-

organism, respectively.

Combining (1.12), (1.13), (1.14), and (1.15), we derive the fully dynamic system, in Ω


ρm

(∂u

∂t
+ (u · ∇)u

)
−∇ · (ν(c)∇u) +∇p = −gρm(1 + γc)i3 + f ,

∇ · u = 0 ,

∂c

∂t
− θ∆c+ u · ∇c+ U

∂c

∂x3

= 0 .

(1.16)

We assume the following boundary conditions for u and c, on Ω


u = 0 ,

θ
∂c

∂n
− Ucn3 = 0 .

(1.17)

The second equation of (1.17) refers to a zero flux condition on the boundary and n =

(n1, n2, n3) is the outward pointing unit normal vector on ∂Ω. We further assume the fixed
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total mass for the micro-organisms, i.e.,

1

|Ω|

∫
Ω

c(x)dx = α , (1.18)

for some constant α. This means that no micro-organisms are allowed to leave or enter the

container. Finally the complete system describing the motion of micro-organisms takes the

form, in Ω



ρm

(∂u

∂t
+ (u · ∇)u

)
−∇ · (ν(c)∇u) +∇p = −gρm(1 + γc)i3 + f ,

∇ · u = 0 ,

∂c

∂t
− θ∆c+ u · ∇c+ U

∂c

∂x3

= 0 ,

u = 0 , θ
∂c

∂n
− Ucn3 = 0 , on ∂Ω

1

|Ω|

∫
Ω

c(x)dx = α .

(1.19)

Note that the bioconvection model (1.19) is a special case of a more general equation

describing the diffusion of an admixture in a region [34].

In an ideal Newtonian fluid, the viscosity ν is a constant. In this case, the existence

of the solution as well as the positivity of the concentration are proved in [35] where the

author considered both the stationary and evolutionary cases. The evolutionary case of

system (1.16) with constant viscosity ν is studied numerically in [36]. The numerical study

of slightly different bioconvection models can be found in [37], [38], [39], [40] and [41].

In practice, the viscosity is related to the concentration of the solute. Albert Einstein

first showed in his Ph.D thesis [42] that

ν

ν0

= 1 + ξc (1.20)
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where ν is the viscosity of the suspension, ν0 is the viscosity of the pure solution, c is

the volume fraction of the particle spheres and ξ is a proportionality coefficient chosen

(experimentally) to be 2.5. Equation (1.20) is valid only for low concentration cases 0 < c <

10%. Therefore the result was later extended to add the c2 term by Batchelor [43] for larger

concentration (c ≥ 10%). When the concentration is much higher, the relative viscosity ν
ν0

varies as an exponential function of the concentration c ([44], [45] and [46]).

A recent work [47] showed the existence and uniqueness of a periodic solution of (1.19)

under the assumption that ν(·) is a C1 function and that for some positive constants ν∗ and

ν∗

ν∗ < ν(x) < ν∗ ∀x ∈ R and sup
x∈R

ν ′(x) <∞ .

In this dissertation, we relax the above condition to assume that ν : R → R is continuous

and

0 < ν∗ ≤ ν(x) ≤ ν∗ ∀x ∈ R , (1.21)

for some constants ν∗ and ν∗.

1.3 Plan of dissertation

In the rest of Chapter 1 we introduce notations and assumptions that will be used

throughout the thesis. In chapter 2 the existence of a weak solution of (1.10) with homo-

geneous boundary conditions will be proved using the modified Rothe’s approach ([48], [49]

and [1]) and analysis of implicit evolutionary equations [25] based on existing results for

the steady poroelasticity [50]. The uniqueness will also be proved under certain regularity

assumptions on the exact solution. A fully discrete finite element approximation using linear

elements and backward Euler scheme will be studied and an optimal priori error estimate

will be proved using approximation theory and functional analysis ([5], Chapter 13). Nu-

merical experiment will be constructed to demonstrate the efficiency and the accuracy of

the numerical method. Then a numerical experiment with dilatation dependent hydraulic
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conductivity κ(∇ · u) will be used to simulate a fluid saturated sponge. In chapter 3 and

4, the existence and uniqueness of a solution of (1.19) will be proved for both steady and

the fully dynamic case using the modified Rothe’s method combined with the theory of the

Navier-Stokes equations [51, 52]. A complete finite element method will be constructed us-

ing Taylor-Hood elements [53] and a convergence theorem will be proved for both steady

and evolutionary cases. The error estimate will be established for the steady bioconvection

using theories in [52, 54, 55]. Numerical examples will be constructed to illustrate the con-

vergence rate and several practical simulations will be studied for the steady bioconvection

flow. We conclude this dissertation in Chapter 5 with remarks and a plan for the future work.

1.4 Notations and Assumptions

Throughout the paper, we consider system (1.10) and (1.19) on an open bounded region

Ω in R2 or R3 with a smooth boundary Γ and on a time interval I = (0, T ]. We denote by

C∞0 (Ω) the space of infinitely differentiable functions with compact support in Ω and by

L2(Ω) the space of square integrable functions on Ω. Let W k,p(Ω) be the Sobolev space

consisting of functions in Lp(Ω) with each of their partial derivatives through order k also

in Lp(Ω). Specifically, Hk(Ω) denotes the Hilbert space W k,2(Ω). The space H1
0 (Ω) is the

closure of C∞0 (Ω) in the H1(Ω) norm. As usual, H−1(Ω) and (H1(Ω))∗ denote the dual

of H1
0 (Ω) and H1(Ω), respectively. Let Hk(Ω) =

(
Hk(Ω)

)d
, H1

0(Ω) =
(
H1

0 (Ω)
)d

, and

L2(Ω) =
(
L2(Ω)

)d
, d = 2, 3, with ‖ · ‖k and ‖ · ‖ denoting the respective norms of the two

spaces. Let H1/2(Γ) and H1/2(Γ) denote the trace space of H1(Ω) and H1(Ω) while H−1/2(Γ)

is the dual space of H1/2(Γ). We shall use (·, ·) to denote both the L2 and L2 inner product

and denote by 〈·, ·〉 the duality pairing. The Poincaré inequality implies that there exists a

constant Cp such that

‖w‖1 ≤ Cp‖∇w‖ , ∀w ∈ H1
0(Ω) or H1

0 (Ω) . (1.22)
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Throughout the paper, we will use C as a generic constant whose value may vary from

one occurence to the next.
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Chapter 2

Poroelasticity

2.1 Steady poroelasticity

We first introduce some existing results for steady poroelasticty which is described by

the system (1.10) without the time derivative
∂

∂t
(c0p+ α∇ · u), that is


−(λ+ µ)∇(∇ · u)− µ∆u + α∇p = f ,

−∇ ·
(
κ(∇ · u)∇p

)
= g ,

(2.1)

with boundary conditions

u|Γ = ub ,

and

−∇ ·
(
κ(∇ · u)∇p

)
|Γ · n = r .

We assume that the body force f ∈ H−1(Ω), the fluid source g ∈ (H1(Ω))∗, ub ∈ H1/2(Γ), and

that r ∈ H−1/2(Ω). Furthermore we assume that the data satisfies the following compatibility

condition

〈r, 1〉Γ = 〈g, 1〉Ω .

We denote by Q the quotient space H1(Ω)/R and define the bilinear forms


e(u,v) : =

(
(λ+ µ)(∇ · u),∇ · v

)
+ (µ∇u,∇v) ∀u,v ∈ H1(Ω) ,

b(p,v) : =

∫
Ω

p∇ · v ∀p ∈ Q , v ∈ H1(Ω) .
(2.2)
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Multiply the first equation and second equation in (2.1) by test functions v ∈ H1
0(Ω) and

q ∈ Q respectively, the weak formulation of (2.1) takes the form

Definition 2.1. Given f ∈ H−1(Ω), g ∈ (H1(Ω))∗, ub ∈ H1/2(Γ), and r ∈ H−1/2(Ω), find

(u, p) ∈ H1(Ω)×Q with u|Γ = ub such that


e(u,v)− b(p,v) = 〈f ,v〉Ω ∀v ∈ H1

0(Ω) ,(
κ(∇ · u)∇p,∇q

)
= 〈g, q〉Ω + 〈l, q〉Γ ∀q ∈ Q .

(2.3)

Assumption (1.11) assures that κ(∇ · u(x)) is a so called Nemytskii operator whose

definition and properties are stated in the following Lemma.

Lemma 2.2 ([56]). Assume that a function f : Ω × Rm → R satisfies the Carathéodory

conditions:

(i) f(x, u) is a continuous function of u for almost all x ∈ Ω;

(ii) f(x, u) is a measurable function of x for all u ∈ Rm. Furthermore for some constant

C and g ∈ Lq(Ω)

|f(x, u)| ≤ C|u|p−1 + g(x) x ∈ Ω, u ∈ Rm

where 1 < q <∞ and 1
p

+ 1
q

= 1. Then the Nemytskii operator F (u) : Ω→ R defined by

F (u)(x) = f(x, u(x))

is a bounded and continuous map from Lp(Ω;Rm) into Lq(Ω;R).

The existence of a weak solution of (2.3) is given in the following Theorem.

Theorem 2.3 (Y. Cao, S. Chen and A. J. Meir). Given f ∈ H−1(Ω), g ∈ (H1(Ω))∗,

ub ∈ H1/2(Γ), and r ∈ H−1/2(Ω), System (2.3) admits at least one weak solution satisfying

u|Γ = ub.

Remark 2.4. The uniqueness of (2.3) can be obtained under additional coefficient assump-

tions and regularity assumptions if we assume that κ is Lipschitz continuous (see [50]).
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Finite element approximation. We construct the Galerkin finite element approx-

imation fort he weak solution (u, p) of (2.3) on a convex polygonal, or polyhedral domain

Ω. Let τh be a family of quasi-uniform triangulations τh satisfying max
τ∈τh

diam τ ≤ h. Then

we define the finite dimensional subspace Qh ⊂ Q and Vh ⊂ H1
0(Ω) with the following

approximation properties

lim
h→0

inf
vh∈Vh

‖v − vh‖1 = 0 ∀v ∈ H1
0(Ω) ,

and

lim
h→0

inf
qh∈Qh

‖q − qh‖1 = 0 ∀q ∈ Q .

The numerical scheme is to seek (uh, ph) ∈ Vh ×Qh such that


e(uh,vh)− b(ph,vh) = 〈f ,vh〉Ω ∀vh ∈ Vh ,(
κ(∇ · uh)∇ph,∇qh

)
= 〈g, qh〉Ω + 〈l, qh〉Γ ∀qh ∈ Qh .

(2.4)

Following an argument similar to the proof of Theorem 2.3, we can show that the solution

(uh, ph) of (2.4) exists and the convergence (uh, ph) to the exact solution (u, p) of (2.3) is

established in what follows.

Theorem 2.5 (Y. Cao, S. Chen and A. J. Meir). Assume that the weak solution (u, p) ∈

H1(Ω)×Q of (2.3) is unique. In addition, assume that p ∈ W 1,∞(Ω). Then

lim
h→0

(‖u− uh‖1 + ‖p− ph‖1) = 0 .
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2.2 Existence and uniqueness of a weak solution of quasi-static poroelasticity

We consider the quasi-static poroelasticity (1.10). For brevity, we assume that both u

and p satisfy homogeneous boundary conditions. Also for brevity, we set α = 1 (correspond-

ing to an incompressible solid matrix). For α 6= 1, one may convert it to the α = 1 case by

rescaling the problem. We also assume that the external force f = 0. The nonzero case can

be handled through a simple transformation (see [25]).

The weak formulation. By definition (2.2), the weak formulation of system (1.10) is

given in the following definition

Definition 2.6. Given g in L2(I;L2(Ω)) and l in L2(Ω), a pair (u, p) in H1
0(Ω)×H1

0 (Ω) is

said to be a weak solution of system (1.10) if it satisfies for all t ∈ I


e(u,v) = −(∇p,v) ∀v ∈ H1

0(Ω) ,

〈 ∂
∂t

(c0p+∇ · u), q〉+
(
κ(∇ · u)∇p,∇q

)
= (g, q) ∀q ∈ H1

0 (Ω) ,

c0p(·, 0) +∇ · u(·, 0) = l .

(2.5)

It is easy to verify that the bilinear form e(·, ·) satisfied the hypothesis of Lax-Milgram

Theorem. Thus for a fixed t ∈ I and p(·, t) in L2(Ω), the first equation of (2.5) can be solved

for u. Define the operator B : L2(Ω)→ L2(Ω) such that for p ∈ L2(Ω), Bp = ∇ · u where u

satisfies 
e(u,v) = −(∇p,v) ∀v ∈ H1

0(Ω) ,

u = 0 on ∂Ω .

The following Lemma can be found in [25].

Lemma 2.7. The operator B : L2(Ω)→ L2(Ω) defined above is linear, continuous, monotone

and self-adjoint with Ker(B) = Ker(∇) and Rg(B) = Ker(∇)⊥.
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Remark 2.8. Due to the assumption that the boundary is smooth, B is also continuous from

H1
0 (Ω) into itself. Therefore there exist constants CB0andCB1 > 0 such that

‖Bq‖ ≤ CB0‖q‖ ∀q ∈ L2(Ω) ,

‖Bq‖1 ≤ CB1‖q‖1 ∀q ∈ H1
0 (Ω) .

(2.6)

Moreover, from Lemma 2.7 and the homogeneous boundary condition, Ker(B) = Ker(∇) =

{0}. As a result, the mapping B : L2(Ω) → L2(Ω) is one to one thus B is a continuous

bijection from L2(Ω) into itself. According to the bounded inverse Theorem, B and c0 + B

have bounded inverses.

Substituting ∇·u = Bp in the second equation of (2.5), we obtain the decoupled initial

value problem for p.


〈 ∂
∂t

(c0 +B)p, q〉+
(
κ(Bp)∇p,∇q

)
= (g, q) ∀q ∈ H1

0 (Ω) ,

(c0 +B)p(·, 0) = l .

(2.7)

To prove the existence of a weak solution, we use the modified Rothe’s method to

construct a convergent sequence of approximate solutions of (2.7) using the backward Euler

approximation of the time derivative in (2.7). Let k = T/n for some positive integer n.

Partition I uniformly with time step k and denote nodal points by ti = tni = ik, for i =

1, 2, . . . , n. Let p0
n ∈ L2(Ω) be such that (c0 +B)p0

n = l and define


gin := 1/k

∫ ti

ti−1

g(t)dt ,

δ(c0 +B)pin := (c0 +B)(pin − pi−1
n )/k , i = 1, . . . , n .

(2.8)

We apply the following scheme inductively to obtain a sequence pin, i = 1, · · · , n.

(
δ(c0 +B)pin, q

)
+
(
κ(Bpin)∇pin,∇q

)
= (gin, q) ∀q ∈ H1

0 (Ω) . (2.9)
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Multiplying the above equation by k, we have

(
(c0 +B)pin, q

)
+ k
(
κ(Bpin)∇pin,∇q

)
= k(gin, q) +

(
(c0 +B)pi−1

n , q
)
∀q ∈ H1

0 (Ω) . (2.10)

To prove the existence of a solution of (2.10), we need the following direct corollary of

Brouwer’s fixed point Theorem.

Lemma 2.9. Let H be a finite-dimensional Hilbert space with scalar product (·, ·) and the

corresponding norm | · |. Let Φ be a continuous mapping from H to H and assume that there

exists µ > 0 such that:

(Φ(u), u) ≥ 0 , ∀u ∈ H with |u| = µ .

Then there exists an elment u ∈ H such that:

Φ(u) = 0 , with |u| ≤ µ .

The following Lemma shows that (2.10) is well posed.

Lemma 2.10. Given pi−1
n in L2(Ω), and gin ∈ L2(Ω), equation (2.10) has a weak solution

pin in H1
0 (Ω), i = 1, · · · , n.

Proof. For notational simplicity, we write ḡ = kgin + (c0 + B)pi−1
n and p̄ = pin. Given ḡ in

L2(Ω), we show that there exists a p̄ in H1
0 (Ω) such that

(
(c0 +B)p̄, q

)
+ k
(
κ(Bp̄)∇p̄,∇q

)
= (ḡ, q) ∀q ∈ H1

0 (Ω) . (2.11)

For this purpose we let {qi}∞i=1 be an orthonormal basis of H1
0 (Ω). Denote by Vm the finite

dimensional space spanned by {q1, q2, . . . , qm} and define the mapping Φm : Vm → Vm by

(Φmq, w) =
(

(c0 +B)q, w
)

+ k
(
κ(Bq)∇q,∇w

)
− (ḡ, w) ∀w ∈ Vm .
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From (1.11), (1.22), and the monotonicity of B,

(Φmq, q) =
(

(c0 +B)q, q
)

+ k
(
κ(Bq)∇q,∇q

)
− (ḡ, q)

≥ c0‖q‖2 + (Bq, q) + kk∗‖∇q‖2 − ‖ḡ‖‖q‖

≥ (kk∗‖q‖1/C
2
p − ‖ḡ‖)‖q‖1 .

Thus (Φmq, q) ≥ 0, for all q with ‖q‖1 = C2
p‖ḡ‖/(kk∗). Because Vm is finite dimensional

and Φ defined above is continuous, from Lemma 2.9, there exists p̄m in Vm, such that

‖p̄m‖1 ≤ C2
p‖ḡ‖/(kk∗) and p̄m satisfies Φmp̄m = 0, i.e.

(
(c0 +B)p̄m, q

)
+ k
(
κ(Bp̄m)∇p̄m,∇q

)
= (ḡ, q) , ∀q ∈ Vj , j ≤ m. (2.12)

Since

‖p̄m‖1 ≤ C2
p‖ḡ‖/(kk∗) , (2.13)

i.e., {p̄m}∞m=1 is a uniformly bounded sequence in H1
0 (Ω), there exsits a subsequence of

{p̄m}∞m=1, still denoted by {p̄m}∞m=1, and a function p̄ ∈ H1
0 (Ω) such that

p̄m ⇀ p̄ in H1
0 (Ω) . (2.14)

Due to the compact embedding of H1
0 (Ω) into L2(Ω),

p̄m → p̄ in L2(Ω) . (2.15)

We now show that the weak limit p̄ is a solution of (3.9). Choose a test function

q ∈ W 1,∞(Ω) ∩H1
0 (Ω) . (2.16)
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Using (2.6), (2.15), (2.16), and applying the Cauchy-Schwarz inequality we have

∣∣∣((c0 +B)p̄m, q
)
−
(

(c0 +B)p̄, q
)∣∣∣

≤ ‖(c0 +B)(p̄m − p̄)‖‖q‖

≤ (c0 + CB0)‖q‖‖p̄m − p̄‖ → 0 as m→∞ .

The boundedness of B, the Nemytskii property of κ and the fact p̄m → p̄ imply that

κ(Bp̄m)→ κ(Bp̄) in L2(Ω) as m→∞ . (2.17)

From (1.11), (2.13), (2.14), (2.15), (2.16) and (2.17)

∣∣∣(κ(Bp̄)∇p̄,∇q
)
−
(
κ(Bp̄m)∇p̄m,∇q

)∣∣∣
≤
∣∣∣(κ(Bp̄)∇(p̄− p̄m),∇q

)∣∣∣+
∣∣∣((κ(Bp̄)− κ(Bp̄m)

)
∇p̄m,∇q

)∣∣∣
≤ k∗

∣∣∣(∇(p̄− p̄m),∇q
)∣∣∣+ ‖κ(Bp̄)− κ(Bp̄m)‖‖∇p̄m‖

→ 0 m→∞ .

Because W 1,∞(Ω) is dense in H1
0 (Ω), for all q in H1

0 (Ω) we have that

lim
m→∞

(
(c0 +B)p̄m, q

)
+
(
κ(Bp̄m)∇p̄m,∇q

)
=
(

(c0 +B)p̄, q
)

+
(
κ(Bp̄)∇p̄,∇q

)
.

Combining with (2.12), we obtain

(
(c0 +B)p̄, q

)
+
(
κ(Bp̄)∇p̄,∇q

)
= (ḡ, q) ∀q ∈ Vj . (2.18)

Since finite linear combinations of {qj}∞j=1 are dense in H1
0 (Ω), we conclude that p̄ is a solutin

of (3.9).
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Lemma 2.11 (Discrete energy estimate). There exists a constant C independent of n such

that

k
n∑
i=1

‖pin‖2
1 ≤ C .

Proof. Writing (2.9) with the test function q = pin, multiplying by k and summing from i = 2

to any n0 ≤ n, we obtain

n0∑
i=2

(
(c0 +B)(pin − pi−1

n ), pin

)
+ k

n0∑
i=2

(
κ(Bpin)∇pin,∇pin

)
= k

n0∑
i=2

(gin, p
i
n) . (2.19)

Using summation by parts and the fact that B is self-adjoint, we have that

n0∑
i=2

(
(c0 +B)(pin − pi−1

n ), pin

)
=

1

2

n0∑
i=2

[(
(c0 +B)(pin − pi−1

n ), pin + pi−1
n

)
+
(

(c0 +B)(pin − pi−1
n ), pin − pi−1

n

)]
=

1

2

n0∑
i=2

[(
(c0 +B)pin, p

i
n

)
−
(

(c0 +B)pi−1
n , pi−1

n

)
+
(

(c0 +B)(pin − pi−1
n ), pin − pi−1

n

)]
=

1

2

n0∑
i=2

(
(c0 +B)(pin − pi−1

n ), pin − pi−1
n

)
+

1

2

(
(c0 +B)pn0

n , p
n0
n

)
− 1

2

(
(c0 +B)p1

n, p
1
n

)
.

It follows from (1.11) and (2.19) that

1

2

n0∑
i=2

(
(c0 +B)(pin − pi−1

n ), pin − pi−1
n

)
+

1

2

(
(c0 +B)pn0

n , p
n0
n

)
+ k

n0∑
i=2

k∗‖∇pin‖2

≤ k

n0∑
i=2

(gin, p
i
n) +

1

2

(
(c0 +B)p1

n, p
1
n

)
,

(2.20)

and the monotonicity of B leads to

k

n0∑
i=2

k∗‖∇pin‖2 ≤ k

n0∑
i=2

(gin, p
i
n) +

1

2

(
(c0 +B)p1

n, p
1
n

)
. (2.21)
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To estimate the second term on the right hand side of the above inequality, we write (2.9)

with i = 1, multiply by k and set the test function q = p1
n to obtain

(
(c0 +B)p1

n, p
1
n

)
+ kk∗‖∇p1

n‖2

≤
(

(c0 +B)p1
n, p

1
n

)
+ k
(
κ(Bp1

n)∇p1
n,∇p1

n

)
=k(g1

n, p
1
n) + (l, p1

n) .

The monotonicity of B, Young’s inequality, and inequality (2.21) yield

k

n0∑
i=1

‖∇pin‖2 ≤ Ck

n0∑
i=1

(gin, p
i
n) + (l, p1

n)

≤ k

n0∑
i=1

(C(ε)‖gin‖2 + ε‖pin‖2) + C(ε)‖l‖2 ,

(2.22)

where C(ε) is a constant depending on ε. Choosing a sufficiently small ε > 0 such that

εC2
p < 1 where Cp is given by (1.22) and noticing that for some constant C independent of

n

k

n0∑
i=1

‖gin‖2 ≤ C
n∑
i=1

∫ ti

ti−1

‖g(t)‖2dt = C‖g‖2
L2(I;L2(Ω)) , (2.23)

we obtain that for any n0 ≤ n

k

n0∑
i=1

‖pin‖2
1 ≤

C

1− εC2
p

‖g‖L2(I;L2(Ω)) .

Lemma 2.12 (see [1], p. 327). For ϕ in C∞(I), define two piecewise constant functions ϕn

and ϕ̃n such that

 ϕn(t) = ϕ(ti) , t ∈ (ti−1, ti] ,

ϕ̃n(t) =
(
ϕ(ti+1)− ϕ(ti)

)
/k , t ∈ (ti−1, ti] ,
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for i = 1, 2, . . . , n, with


ϕn(0) = ϕ(t1) ,

ϕ̃n(0) = ϕ̃(t1) , ϕ̃n(tn+1) = ϕ̃(tn) .

Then

‖ϕn − ϕ‖L2(I) ≤ C(ϕ)k , ‖ϕ̃n − ϕ′‖L2(I) ≤ C(ϕ)k1/2

where the constant C(ϕ) depends on ϕ only.

Lemma 2.13 (Aubin-Lions, see [57]). Let X0, X,X1 be three Banach spaces with X0 ⊂ X ⊂

X1. Suppose that X0 is compactly embedded in X and X is continuously embedded in X1.

Furthermore assume that X0 andd X2 are reflexive spaces. Let 1 < p <∞ and 1 < q <∞.

Define

W = {u ∈ Lp([0, T ];X0); u′ ∈ Lq([0, T ];X1} .

Then the embedding of W into Lp([0, T ];X) is compact.

Remark 2.14. Specifically, let X0 = H1
0 (Ω), X = L2(Ω), X1 = H−1(Ω) the dual space of

H1
0 (Ω) and p = q = 2. Then

W = {u ∈ L2(I;H1
0 (Ω)); u′ ∈ Lq(I;H−1(Ω))}

↪→ L2(I;L2(Ω)) compactly .

(2.24)

Armed with the above Lemmas, we are now ready to show the existence of a solution

of equation (2.7).

Theorem 2.15. Given l in L2(Ω) and g in L2(I;L2(Ω)), equation (2.7) has at least one

solution p in L2(I;H1
0 (Ω)).

Proof. For each positive integer n, define the piecewise constant function Pn ∈ L2(I;H1
0 (Ω))

as

Pn(t) = pin , t ∈ (ti−1, ti] , (2.25)
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for i = 1, 2, . . . , n with Pn(0) = p1
n. From Lemma 2.11

‖Pn‖2
L2(I;H1

0 (Ω)) = k
n∑
i=1

‖pin‖2
1 ≤ C . (2.26)

Hence there exists a weak limit of the sequence {Pn}∞n=1 which is the candidate solution

of (2.7). However, the derivative of Pn is zero for a.e. t. To approximate the weak time

derivative we define P̃n ∈ L2(I;H1
0 (Ω)) as

P̃n(t) = pi−1
n + (t− ti−1)(pin − pi−1

n )/k , t ∈ (ti−1, ti] , i = 1, 2, . . . , n . (2.27)

Obviously P̃n is piecewise linear in t. Moreover, the time derivative of P̃n is a piecewise

constant in t satisfying

P̃ ′n = δpin = (pin − pi−1
n )/k , t ∈ (ti−1, ti] , i = 1, 2, . . . , n . (2.28)

It is easy to verify that both {Pn}∞n=1 and {P̃n}∞n=1 satisfy the same energy estimate and

have the same weak and strong limit. Therefore ‖P̃n(t)‖L2(I;H1
0 (Ω)) is also uniformly bounded.

Due to the boundedness of B on H1
0 (Ω), there exists a constant C such that

‖(c0 +B)P̃n(t)‖L2(I;H1
0 (Ω)) ≤ C . (2.29)

Meanwhile, it follows from (1.11), (2.9) and the Cauchy-Schwarz inequality that

∣∣∣((c0 +B)δpin, q
)∣∣∣ = |(gin, q)− (κ(Bpin)∇pin,∇q)| ≤ (‖gin‖+ k∗‖pin‖1)‖q‖1 ∀q ∈ H1

0 (Ω) .

Hence

‖(c0 +B)δpin‖−1 ≤ ‖gin‖+ k∗‖pin‖1 .
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It follows from Lemma 2.11 and (2.23) that

‖(c0 +B)P̃ ′n‖2
L2(I;H−1(Ω)) = k

n∑
i=1

‖(c0 +B)δpin‖2
−1

≤ k

n∑
i=1

‖gin‖2 + k

n∑
i=1

k∗‖pin‖2
1

≤ C .

(2.30)

Thus we can find a subsequence of {(c0 + B)P̃n}∞n=1, still denoted as {(c0 + B)P̃n}∞n=1, and

a function r in L2(I;H1
0 (Ω)) with r′ in L2(I;H−1(Ω)) ([58], p. 356) such that


(c0 +B)P̃n ⇀ r in L2(I;H1

0 (Ω)) ,

(c0 +B)P̃ ′n ⇀ r′ in L2(I;H−1(Ω)) .

From the embedding (2.24)

(c0 +B)P̃n → r in L2(I;L2(Ω)) .

Due to the relationship between the piecewise constant Pn and the piecewise linear functions

P̃n we have that

(c0 +B)Pn → r in L2(I;L2(Ω)) . (2.31)

Since c0+B is invertible on L2(Ω) (see Remark 2.8), there exists a p in L2(I;L2(Ω)) satisfying

(c0 +B)p = q, such that

Pn → p = (c0 +B)−1r in L2(I;L2(Ω)) . (2.32)

Recall that {Pn}∞n=1 is bounded in L2(I;H1
0 (Ω)) (see (2.26)). Hence there exists p̄ in

L2(I;H1
0 (Ω)) such that

Pn ⇀ p̄ in L2(I;H1
0 (Ω)). (2.33)
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Then p = p̄ because the weak limit is unique.

Next we prove that p satisfies (2.7). Define

gn(t) = gin , t ∈ (ti−1, ti] , i = 1, 2, . . . , n .

Proceeding as in Lemma 2.12, we obtain that

‖gn − g‖L2(I;L2(Ω)) → 0 , as n→∞ . (2.34)

Let q̄ be a test function of the form q̄ = qϕ satisfying

q ∈ W 1,∞(Ω) ∩H1
0 (Ω) and ϕ(t) ∈ C∞0 (I) . (2.35)

It follows from summation by parts that

n∑
i=1

(
(c0+B)(pin − pi−1

n ), q
)
ϕ(ti)

=
(

(c0 +B)pnn, q
)
ϕ(tn)−

(
(c0 +B)p0

n, q
)
ϕ(t1)

+ k
n−1∑
i=1

(
(c0 +B)pin, q

)(
ϕ(ti+1)− ϕ(ti)

)
/k .
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Multiplying (2.9) with kϕ(ti), summing up from i = 1 to n, and using the summation above,

we obtain

(
(c0 +B)pnn, q

)
ϕ(T )−

(
(c0 +B)p0

n, q
)
ϕ(t1)

+
n−1∑
i=1

(
(c0 +B)pin, q

)(
ϕ(ti+1)− ϕ(ti)

)
+ k

n∑
i=1

(
κ(Bpin)∇pin,∇q

)
ϕ(ti)

=k
n∑
i=1

(gin, q)ϕ(ti) .

Recall that ϕ(T ) = 0. The above equation takes the form

−(l,q)ϕ(k)−
∫ T

0

(
(c0 +B)Pn, q

)
ϕ̃n dt

+

∫ T

0

(
κ(BPn)∇Pn,∇q

)
ϕn dt

=

∫ T

0

(gn, q)ϕn .

(2.36)

Letting n→∞ in (2.36) and using the continuity of ϕ(t), we have that

−(l, q)ϕ(k)→ −(l, q)ϕ(0) = 0 . (2.37)

Notice that

∫ T

0

(
(c0 +B)Pn, q

)
ϕ̃n dt =

∫ T

0

(
(c0 +B)Pn, q

)
(ϕ̃n − ϕ′) dt

+

∫ T

0

(
(c0 +B)Pn, q

)
ϕ′ dt .
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It follows from Lemma 2.12, (2.6), and (2.26) that

∣∣∣ ∫ T

0

(
(c0 +B)Pn, q

)
(ϕ̃n − ϕ′) dt

∣∣∣
≤ ‖q‖

∫ T

0

‖(c0 +B)Pn‖|ϕ̃n − ϕ′| dt

≤ C‖q‖‖Pn‖L2(I;L2(Ω))‖ϕ̃n − ϕ′‖L2(I) → 0 as n→∞ .

Since qϕ′ ∈ L2(I;H1
0 (Ω)), the above and (2.33) yields that

∫ T

0

(
(c0 +B)Pn, q

)
ϕ′ dt

→
∫ T

0

(
(c0 +B)p, q

)
ϕ′ dt

= −
∫ T

0

(
(c0 +B)p′, q

)
ϕ dt .

Hence

∫ T

0

(
(c0 +B)Pn, q

)
ϕ̃n dt→ −

∫ T

0

(
(c0 +B)p′, q

)
ϕ dt , as n→∞ . (2.38)

Next we prove the convergence of the third term

∫ T

0

(
κ(BPn)∇Pn,∇q

)
ϕn dt on the left

hand side of (2.36) to

∫ T

0

(
κ(Bp)∇p,∇q

)
ϕ dt. Write

∫ T

0

(
κ(BPn)∇Pn,∇q

)
ϕn dt−

∫ T

0

(
κ(Bp)∇p,∇q

)
ϕ dt

=

∫ T

0

(
κ(BPn)∇Pn,∇

)
(ϕn − ϕ) dt

+

∫ T

0

(
κ(Bp)∇(Pn − p),∇q

)
ϕ dt

+

∫ T

0

((
κ(BPn)− κ(Bp)

)
∇Pn,∇q

)
ϕ dt .

:= I + II + III
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Using (1.11), Lemma 2.12, (2.26) and (4.11), we have that

I =
∣∣∣ ∫ T

0

(
κ(BPn)∇Pn,∇q

)(
ϕn(t)− ϕ(t)

)
dt
∣∣∣

≤ k∗‖∇q‖1‖Pn‖L2(I;H1
0 (Ω))‖ϕn(t)− ϕ(t)‖L2(I) → 0, as n→∞.

The test function ∇qϕ belongs to L2(I;L2(Ω)). Therefore the weak convergence of Pn to p

in L2(I;L2(Ω) and (1.11) imply that

II =

∫ T

0

(
κ(Bp)∇(Pn − p),∇q

)
ϕ(t) dt→ 0, as n→∞.

For III, we first use (1.11) and (2.32) to deduce that

κ(BPn)→ κ(Bp) in L2(I;L2(Ω)) .

Thus

III =
∣∣∣ ∫ T

0

((
κ(BPn)− κ(Bp)

)
∇Pn,∇q

)
ϕ(t) dt

∣∣∣
≤ C

∫ T

0

‖κ(BPn)− κ(Bp)‖‖∇Pn‖dt

≤ C‖κ(BPn)− κ(Bp)‖L2(I;L2(Ω))‖Pn‖L2(I;H1
0 (Ω))

→ 0 as n→∞ .

Combining the above estimates we obtain

∫ T

0

(
κ(BPn)∇Pn,∇q

)
ϕn dt→

∫ T

0

(
κ(Bp)∇p,∇q

)
ϕ dt , as n→∞. (2.39)

From a similar argument, it is straightforward to show that

∫ T

0

(gn, q)ϕn dt =

∫ T

0

(g, q)ϕn(t) dt→
∫ T

0

(g, q)ϕ(t) dt . (2.40)
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Combing (2.37), (2.38), (2.39) and (2.40), we conclude that for any test function q̄ of the

form qϕ(t) satisfying (2.35),

−
∫ T

0

(
(c0 +B)p′, q̄

)
dt+

∫ T

0

(
κ(Bp)∇p,∇q̄

)
dt =

∫ T

0

(g, q̄) dt . (2.41)

The test functions q̄ defined in (2.35) is dense in L2(I;H1
0 (Ω)). Therefore (2.41) holds for

all the test function q in L2(I;H1
0 (Ω)), i.e., p satisfies (2.7) for a.e. t ∈ I.

Finally we consider the initial condition. The facts

(c0 +B)p ∈ L2(I;H1
0 (Ω)) and (c0 +B)p′ ∈ L2(I;H−1(Ω))

imply that (c0 +B)p belongs to C(I;L2(Ω)), the space of all continuous functions that value

in L2(Ω) (see [58], p. 288). Hence the initial condition (c0 +B)p(·, 0) = l should be given in

L2(Ω).

In the next Theorem we give some conditions that guarantee the uniqueness of solutions

of equation (2.7).

Theorem 2.16. Assume

(H1) κ is Lipschitz continuous with Lipschitz constant kl, i.e.,

|κ(x)− κ(y)| < kl|x− y| , ∀x , y ∈ R ;

(H2) ∇p ∈ L∞(Ω) and there exists a constant C such that ‖∇p‖∞ ≤ C;

(H3) c0k∗/(C
2
pk
∗CB1) > 1.

Then the solution p of equation (2.7) is unique.
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Proof. Suppose p1, p2 both satisfy (2.7), i.e.,

〈 ∂
∂t

(c0 +B)p1, q〉+
(
κ(Bp1)∇p1,∇q

)
= (g, q) , ∀q ∈ H1

0 (Ω) ,

〈 ∂
∂t

(c0 +B)p2, q〉+
(
κ(Bp2)∇p2,∇q

)
= (g, q) , ∀q ∈ H1

0 (Ω) .

Taking the substraction and set q = (c0 +B)(p1 − p2) we have

〈(c0 +B)(p1 − p2)′, (c0 +B)(p1 − p2)〉

+
(
κ(Bp1)∇p1 − κ(Bp2)∇p2,∇(c0 +B)(p1 − p2)

)
=〈(c0 +B)(p1 − p2)′, (c0 +B)(p1 − p2)〉

+
((
κ(Bp1)− κ(Bp2)

)
∇p1,∇(c0 +B)(p1 − p2)

)
+
(
κ(Bp2)∇(p1 − p2),∇c0(p1 − p2)

)
+
(
κ(Bp2)∇(p1 − p2),∇B(p1 − p2)

)
= 0 .

(2.42)

Recall

〈(c0 +B)(p1 − p2)′, (c0 +B)(p1 − p2)〉 =
1

2

d

dt
‖(c0 +B)(p1 − p2)‖2 . (2.43)

Then (H1), (H2), (2.6), and Young’s inequality yields that

|((κ(Bp1)− κ(Bp2))∇p1,∇(c0 +B)(p1 − p2))|

≤ ε‖(κ(Bp1)− κ(Bp2)‖2 + C(ε)‖(c0 +B)(p1 − p2)‖2
1

≤ ε‖p1 − p2‖2 + C(ε)‖p1 − p2‖2
1 .

(2.44)

It follows from (1.11), (1.22) and (2.6) that

(
κ(Bp2)∇(p1 − p2),∇c0(p1 − p2)

)
≥ (c0k∗/C

2
p)‖p1 − p2‖2

1
(2.45)

31



and

|(κ(Bp2)∇(p1 − p2),∇B(p1 − p2))| ≤ k∗CB1‖p1 − p2‖2
1 . (2.46)

(2.43), (2.44), (2.45), (2.46), and (2.43) yield

1

2

d

dt
‖(c0 +B)(p1 − p2)‖2 − C(ε)‖p1 − p2‖2

+ (c0k∗/C
2
p − k∗CB1 − ε)‖p1 − p2‖2

1

≤ 0 .

(2.47)

Hypothesis (H3) allows us to choose small ε > 0 such that c0k∗/C
2
p − k∗CB1 − ε > 0. The

boundedness of the inverse of B and (2.47) give that

1

2

d

dt
‖(c0 +B)(p1 − p2)‖2 ≤ C‖p1 − p2‖2 ≤ C‖(c0 +B)(p1 − p2)‖2 .

It follows from the Gronwall’s inequality that (c0 + B)(p1 − p2) = 0. Therefore p1 = p2

because c0 +B has a bounded inverse.

Remark 2.17. After obtaining a solution p of equation (2.7), we can solve the first equation

of (2.5) for u with p substituted to the right hand side. According to the inverse estimate

of the elliptic equation

‖u(t)‖1 ≤ C‖p(t)‖ , ∀t ∈ I ,

u belongs to L2(I; H1
0(Ω)) and the pair (u, p) is the solution of system (2.5). Furthermore,

the linear dependence of u on p guarantees the uniqueness of u as long as p is unique.
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2.3 Numerical approximation with the finite element method

In this section, we consider the numerical approximation to the solutions of (2.7). In

particular we will derive error estimates for a fully discretized numerical scheme using back-

ward Euler method for the temporal discretization and finite element method on the spatial

dimension. Throughout this section, we assume that the weak solution (u, p) of (1.10) is

unique, i.e., we assume that hypothesis (H1), (H2) and (H3) are satisfied.

We start by constructing the finite element spaces as follows. Let τh be a family of

quasi-uniform triangulations (see [5], p. 2-3) of a convex polygonal, or polyhedral, domain

Ω satisfying max
τ∈τh

diam τ ≤ h (where τ is a geometrical element, e.g., a triangle, or a tetra-

hedron). Let Qh be the space consisting of continuous functions on Ω which are linear on

each triangle, or tetrahedron, and vanish on ∂Ω. Let {Pj}Nh
j=1 be the set of all the interior

vertices of the triangulation. Assume that Φp
j is the pyramid function which value 1 at Pj

and vanishes at all the other vertices. It is easy to see that {Φp
j}
Nh
j=1 forms a basis of Qh. Let

Vh = (Qh)
d, d = 2, 3. Then {(Φp

j , 0), (0,Φp
j)}

Nh
j=1 ( {(Φp

j , 0, 0), (0,Φp
j , 0), (0, 0,Φp

j)}
Nh
j=1 ) forms

a basis of Vh for d=2 or d=3, respectively.

As in the previous section, we denote the time stepsize by k, that is, k = T
N

, for

some positive integer N , and tn = nk, n = 0 · · · , N . Let uh ∈ Vh and ph ∈ Qh be

the approximation solution of (2.5). We write P n = ph(tn) and Un = uh(tn) to be the

approximation of u, p at tn. Define ∂̄P n := (P n − P n−1)/k, n = 1 · · · , N . The fully

discretized finite element approximation with backward Euler method is to find Un ∈ Vh,

P n ∈ Qh, for n = 1, · · · , N , such that


e(Un,v) = −(∇P n,v) , ∀v ∈ Vh ,

(c0∂̄P
n, q) + ∂̄(∇ ·Un, q) +

(
κ(∇ ·Un)∇P n,∇q

)
=
(
g(tn), q

)
, ∀q ∈ Qh .

(2.48)
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Here we set c0P
0 +∇ · U0 = l0, where l0 is the approximation to l in Qh.

Remark 2.18. We can prove the existence of a weak solution of (2.48) following an argument

similar to the one used for the continuous problem.

Next we consider the error estimates of the approximate solutions given by (2.48). We

need the Ritz-Galerkin type projections of the steady state problem corresponding to (2.5).

Given r ∈ H1
0 (Ω), define the projeciton Rhr of r onto Qh by

(
κ(∇ · u)∇(r −Rhr),∇q

)
=
(
κ(Bp)∇(r −Rhr),∇q

)
= 0 , ∀q ∈ Qh . (2.49)

We first introduce the following Lemmas which can be found in [27] and [5].

Lemma 2.19 ([27], Lemma 3.4.2). Let B be a continuous linear operator on a Banach space

X and let f : [0, T ]→ X be continuously differentiable with respect to t. Then

B
∂f

∂t
=

∂

∂t
Bf .

Lemma 2.20 ([5], p. 3). Let Qh be given as above. Define the interpolation operator

Ih : H2(Ω)∩H1
0 (Ω)→ Qh such that for any q ∈ H2(Ω)∩H1

0 (Ω). Then we have the estimate

‖q − Ihq‖+ h‖∇(q − Ihq)‖ ≤ Ch2‖q‖2 .

Lemma 2.21 ([5], Lemma 13.1). Assume that q ∈ H2(Ω) ∩H1
0 (Ω). Then

‖∇(q −Rhq)‖ ≤ C1h‖q‖2 ,

and

‖q −Rhq‖ ≤ C2h
2‖q‖2 ,
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where C1 and C2 depend on u and p.

To estimate the error between between pn and P n, we define

ρn := pn −Rhp
n , θn := Rhp

n − P n . (2.50)

With these we can write the difference between pn and P n as

pn − P n = ρn + θn . (2.51)

Lemma 2.22. Assume that κ is differentiable, p ∈ C1(I;H2(Ω)∩H1
0 (Ω)) and u ∈ C1(I;W 1,∞(Ω)).

Then

‖ρ(t)‖+ h‖∇ρ(t)‖ ≤ C(u, p)h2 , t ∈ (0, T ] ,

and

‖ρt(t)‖+ h‖∇ρt(t)‖ ≤ C(u, p, pt)h
2 , t ∈ (0, T ] .

Proof. The first estimate follows directly from Lemma 2.21. Differentiating (2.49) with

respect to t and setting r = p we obtain

(
κ(Bp)∇ρt,∇q

)
+
((
κ(Bp)

)
t
∇ρ,∇q

)
= 0 , ∀q ∈ Qh . (2.52)

Hypothesis (H1) guarantees that κ′ is uniformly bounded. Thus

(
κ(Bp)

)
t

=
(
κ(∇ · u)

)
t

= κ′(∇ · u)(∇ · u)t
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is also uniformly bounded due to the assumptions on the regularity of u. It follows from

(1.11), (2.49), (H1), and (2.52) that

k∗‖∇ρt‖2 ≤
(
κ(Bp)∇ρt,∇ρt

)
=
(
κ(Bp)∇ρt,∇(pt − q)

)
+
(
κ(Bp)∇ρt,∇(q −Rhpt)

)
=
(
κ(Bp)∇ρt,∇(pt − q)

)
−
((
κ(Bp)

)
t
∇ρ,∇(q −Rhpt)

)
≤ C(‖∇ρt‖‖∇(pt − q)‖+ C‖∇ρ‖‖∇(q −Rhpt)‖) .

Taking w = Ihpt, applying Lemma 2.20 and Young’s inequality twice we obtain

k∗‖∇ρt‖2 ≤ Ch‖pt‖2‖∇ρt‖+ C‖∇ρ‖
(
‖∇(Ihpt − pt)‖+ ‖∇(pt −Rhpt)‖

)
≤ Ch‖pt‖2‖∇ρt‖+ Ch‖∇ρ‖‖pt‖2 + ‖∇ρ‖‖∇ρt‖

≤ ε‖∇ρt‖2 + h2C(ε)‖pt‖2
2 + Ch2‖pt‖2

2 + ε‖∇ρt‖2 + C(ε)‖∇ρ‖2 .

Recall the first estimate that ‖∇ρ‖ ≤ Ch2. Choose ε > 0 such that ε < k∗. Then

‖∇ρt‖2 ≤ C(h2‖pt‖2
2 + ‖∇ρ‖2) ≤ Ch2 .

Next we estimate ‖ρt‖ using a standard duality argument. For ϕ ∈ L2(Ω), let ψ ∈ H1
0 (Ω)

be the solution of

−∇ ·
(
κ(Bp)∇ψ

)
= −κ(Bp)∆ψ −∇κ(Bp) · ∇ψ = ϕ .

The existence of ϕ is guaranteed by the Lax-Milgram Lemma. Furthermore there exists a

constant C such that

‖ψ‖2 ≤ C‖ϕ‖.
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Using integration by parts and (2.52) we have that for any q ∈ Qh

(ρt, ϕ) =
(
κ(Bp)∇ρt,∇ψ

)
=
(
κ(Bp)∇ρt,∇(ψ − q)

)
+
(
κ(Bp)∇ρt,∇q

)
=
(
κ(Bp)∇ρt,∇(ψ − q)

)
−
(

(κ(Bp))t∇ρ,∇q
)

=
(
κ(Bp)∇ρt,∇(ψ − q)

)
+
((
κ(Bp)

)
t
∇ρ,∇(ψ − q)

)
−
(
∇ρ,

(
κ(Bp)

)
t
∇ψ
)
.

Integration by parts yields

−
(
∇ρ,

(
κ(Bp)

)
t
∇ψ
)

=
(
ρ,
(
κ(Bp)

)
t
∆ψ
)

+
(
ρ,∇ ·

(
(κ(Bp))t

)
∇ψ
)
.

Recall that both κ(Bp) and
(
κ(Bp)

)
t

are uniformly bounded. Choosing w = Ihψ and using

the previous estimates, we obtain

|(ρt, ϕ)| ≤ C
(
‖∇ρt|‖∇(ψ − Ihψ‖+ ‖∇ρ‖‖∇(ψ − Ihψ)‖+ ‖ρ‖‖∆ψ‖

)
≤ C

(
‖∇ρt‖h‖ψ‖2 + ‖∇ρ‖h‖ψ‖2 + ‖ρ‖‖∆ψ‖

)
≤ C(p)h2‖ψ‖2 ≤ C(p)h2‖ϕ‖ .

The statement above holds for any ϕ ∈ L2(Ω). Therefore ‖ρt(t)‖ ≤ Ch2.

Lemma 2.23. ‖∇Rhp(t)‖L∞(Ω) ≤ C(p) for any p(t) ∈ H2(Ω) ∩H1
0 (Ω), ∀t ∈ [0, T ].

Proof. For q ∈ H2(Ω) ∩ H1
0 (Ω), we have the inverse estimate(since ∇Rhp(t) is constant on

teach triangle)

‖∇q‖L∞(Ω) ≤ Ch−1‖∇q‖ , for q ∈ Qh ,
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which implies that

‖∇(Rhp− Ihp)‖L∞(Ω) ≤ Ch−1‖∇(Rhp− Ihp)‖

≤ Ch−1
(
‖∇(Rhp− p)‖+ ‖∇(p− Ihp)‖

)
≤ Ch−1

(
C(p)h+ Ch‖p‖2

)
≤ C(p) .

Using the fact that ‖∇Ihp‖L∞(Ω) ≤ C‖∇p‖L∞(Ω) we obtain

‖∇Rhp‖L∞(Ω) ≤ ‖∇(Rhp− Ihp)‖L∞(Ω) + ‖∇Ihp‖L∞(Ω) ≤ C(p) .

Writing un = u(tn), pn = p(tn) and pnt = pt(tn), we are now ready to derive the error

estimates for the finite element approximation (2.48).

Theorem 2.24. Assume

1. The hypothesis of Theorem 2.16 holds;

2. κ is differentiable;

3. p ∈ C2(I;H2(Ω) ∩H1
0 (Ω)) and u ∈ C1(I,W 1,∞(Ω)).

Then there exists k0 > 0 such that for k ≤ k0 , there exists constants C1 and C2 depending

on u, p, pt, ptt, and l, such that

‖u(tn)−Un‖+ ‖pn − P n‖ ≤ C1‖l0 − l‖+ C2(h2 + k) .

Proof. We first estimate ‖p(tn) − P n‖. In light of (2.51) and Lemma 2.22, it suffices to

estimate θn defined in (2.50).
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From (2.49)

(
κ(Bpn)∇pn − κ(BP n)∇P n,∇q

)
=
(
κ(Bpn)∇Rhp

n,∇q
)
−
(
κ(BP n)∇Rhpn,∇q

)
+
(
κ(BP n)∇Rhp

n,∇q
)
−
(
κ(BP n)∇P n,∇q

)
, ∀q ∈ Qh.

Substracting (2.48) from the continuous equation (2.9) and using the above equation we have

that

0 =
(

(c0 +B)(pnt − ∂̄P n), q
)

+
(
κ(Bpn)∇pn − κ(BP n)∇P n, q

)
=
(

(c0 +B)(pnt − ∂̄pn), q
)

+
(

(c0 +B)∂̄ρn, q
)

+
(

(c0 +B)∂̄θn, q
)

+
((
κ(Bpn)− κ(BP n)

)
∇Rhp

n,∇q
)

+
(
κ(BP n)∇θn,∇q

)
.

Letting q = θn in the above equation we obtain

(
(c0 +B)∂̄θn, θn

)
+
(
κ(BP n)∇θn,∇θn

)
=
(

(c0 +B)(pnt − ∂̄pn), θn
)

+
(

(c0 +B)∂̄ρn, θn
)

+
((
κ(Bpn)− κ(BP n)

)
∇Rhp

n,∇θn
)
.

(2.53)

The fact that B is self-adjoint and monotone leads to

(
(c0 +B)∂̄θn, θn

)
=

1

2

[(
(c0 +B)∂̄θn, θn − θn−1

)
+
(

(c0 +B)∂̄θn, θn + θn−1
)]

=
k

2

(
(c0 +B)∂̄θn, ∂̄θn

)
+

1

2

[(
(c0 +B)θn, θn

)
−
(

(c0 +B)θn−1, θn−1
)]

≥ 1

2
∂̄
(

(c0 +B)θn, θn
)
.
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It follows from (1.11), (2.53), (H1), Remark 2.8, Lemma 2.23, and Young’s inequality that

1

2
∂̄
(

(c0 +B)θn, θn
)

+ k∗‖∇θn‖2

≤ C(ε)‖(c0 +B)(pnt − ∂̄pn)‖2 + ε‖θn‖2

+ C(ε)‖(c0 +B)∂̄ρn‖2 + ε‖θn‖2

+ C(ε)‖κ(BP n)− κ(Bpn)‖2 + ε‖∇θn‖2

≤ C(ε)‖pnt − ∂̄pn‖2 + C(ε)‖∂̄ρn‖2

+ C(ε)‖P n − pn‖2 + (2C2
p + 1)ε‖∇θ‖2 ,

(2.54)

where Cp is given by (1.22). Choose ε > 0 such that (2Cp + 1)ε ≤ k∗. Then

1

2
∂̄
(

(c0 +B)θn, θn
)
≤ C

(
‖pnt − ∂̄pn‖2 + ‖∂̄ρn‖2 + ‖P n − pn‖2

)
.

Multiplying the above inequality by k, we have that

(
(c0 +B)θn, θn

)
−
(

(c0 +B)θn−1, θn−1
)

≤ Ck
(
‖pnt − ∂̄pn‖2 + ‖∂̄ρn‖2 + ‖P n − pn‖2

)
≤ Ck

(
‖pnt − ∂̄pn‖2 + ‖∂̄ρn‖2 + ‖ρn‖2 + ‖θn‖2 + (Bθn, θn)

)
≤ Ck

(
‖pnt − ∂̄pn‖2 + ‖∂̄ρn‖2 + ‖ρn‖2

)
+ Ck

(
(c0 +B)θn, θn

)
.

Equivalently ([5], p. 238)

(1− Ck)
(

(c0 +B)θn, θn
)
≤
(

(c0 +B)θn−1, θn−1
)

+ CkRn ,

where the remainder Rn is given by

Rn = ‖pnt − ∂̄pn‖2 + ‖∂̄ρn‖2 + ‖ρn‖2 .
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For sufficiently small k, the above equation is equivalent to

(
(c0 +B)θn, θn

)
≤ (1 + Ck)

(
(c0 +B)θn−1, θn−1

)
+ CkRn.

Inductively for n ≥ 2 we have that

(
(c0 +B)θn, θn

)
≤ (1 + Ck)n−1

(
(c0 +B)θ1, θ1

)
+ Ck

n∑
j=2

(1 + Ck)n−jRj

≤ C
(

(c0 +B)θ1, θ1
)

+ Ck

n∑
j=2

Rj .

(2.55)

It follows from Lemma 2.22 that

‖ρj‖ ≤ Ch2 (2.56)

and

‖∂̄ρj‖ =
1

k
‖
∫ tj

tj−1

ρt(s) ds‖ ≤ Ch2 . (2.57)

From (H3)

‖pjt − ∂̄pj‖ =
1

k
‖kpjt − p(tj) + p(tj−1)‖

=
1

k
‖
∫ tj

tj−1

(s− tj−1)ptt ds‖

≤ k

∫ tn

0

‖ptt‖ ds ≤ Ck .

(2.58)

Combining (2.56), (2.57), and (2.58), we obatin

Rj ≤ C(h2 + k)2 , 2 ≤ j ≤ n. (2.59)
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For n = 1, denote ρ(l) = l −Rhl, (c0 +B)θ0 = θ(l) = Rhl − l0 Then (2.54) yields

1

k

(
(c0+B)θ1 − θ(l), θ1

)
+ C1‖∇θ1‖2

≤ C2

(
‖(c0 +B)(p1

t − ∂̄p1)‖2 + ‖(c0 +B)∂̄ρ1‖2 + ‖κ(BP 1)− κ(Bp1)‖2
)
.

Applying the Young’s inequality we have

(
(c0+B)θ1, θ1

)
+ C1‖∇θ1‖2

≤ C2k
(
‖(c0 +B)(p1

t − ∂̄p1)‖2 + ‖(c0 +B)∂̄ρ1‖2

+ ‖P 1 − p1‖2
)

+ (θ(l), θ1) .

≤ C2

(
‖(c0 +B)(p1

t − ∂̄p1)‖2 + ‖(c0 +B)∂̄ρ1‖2

+ ‖θ1‖2 + ‖ρ1‖2
)

+ C(ε)‖θ(l)‖2 + ε‖θ1‖2 .

Choose sufficiently small ε > 0 such that ε < C1. Then the above inequality leads to

(1− Ck)
(

(c0 +B)θ1, θ1
)

≤ C
(
‖θ(l)‖2 + ‖(c0 +B)(p1

t − ∂̄p1)‖2 + ‖(c0 +B)∂̄ρ1‖2 + ‖ρ1‖2
) (2.60)

Proceeding as in (2.56), (2.57), (2.58), using Lemma 2.22, we have

‖ρ1‖ ≤ Ch2 .

As a consequence of the boundedness of B and Lemma 2.22

‖∂̄(c0 +B)ρ1‖ =
1

k
‖
∫ t1

0

(c0 +B)ρt(s) ds‖ ≤ Ch2
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and

‖(c0+B)(p1
t − ∂̄p1)‖

=
1

k
‖k(c0 +B)p1

t − (c0 +B)p(k) + (c0 +B)p(0)‖

=
1

k
‖
∫ t1

0

s(c0 +B)ptt ds‖

≤ k

∫ t1

0

‖(c0 +B)ptt‖ ds = Ck .

Thus

((c0 +B)θ1, θ1) ≤ C‖θ(l)‖2 + C(h2 + k) . (2.61)

It follows from Lemma 2.22 that

‖θ(l)‖ ≤ ‖l0 − l‖+ ‖ρ(l)‖ ≤ ‖l − l0‖+ Ch2 .

Hence (2.59) and (2.61) yield

‖θn‖ ≤ C‖l − l0‖+ C(h2 + k) .

Hence

‖pn − P n‖ ≤ C‖l − l0‖+ C(h2 + k) .

To obtain the estimate for u(tn)−Un, we define the projection Rh : H1
0(Ω)→ Vh by

e(u−Rhu,v) = 0 , ∀v ∈ Vh , u ∈ H1
0(Ω). (2.62)

We split the error un −Un as

un −Un = un −Rhu
n + Rhu

n −Un = ρnu + θnu ,
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where ρnu = un −Rhu
n and θnu = Rhu

n −Un. Similarly to Lemma 2.22, it is easy to verify

that the projection error ρu satisfies

‖ρu‖ ≤ C(u)h2 .

Substracting the first equation in (2.48) from (2.5), using (2.62), we have that

e(θnu,v) = a
((

Un − un
)
,v
)

= −
(
∇(P n − pn),v

)
, ∀v ∈ Vh .

With v = θu(tn) in the above equation, Young’s inequality and the inverse estimate of elliptic

equation yield

‖θnu‖1 ≤ ‖pn − P n‖ ≤ C‖l − l0‖+ C(h2 + k)

from which the assertion in Theorem follows.

2.4 Numerical example

We first test the convergence rate in two dimension for brevity. Let Ω = [−1, 1]× [−1, 1],

I = [0, 1]. We choose Kozeny-Carmen-type ([59], [60], [61]) hydraulic conductivity κ, which

is defined by

κ(s) =


k0

η
φ3(s)

(1−φ(s))2 ,
φ0

φ0−1
< s∗ < s < s∗ < 1 ,

k∗ , s ≤ s∗,

k∗ , s∗ ≤ s .

(2.63)

Here

φ(s) = φ0 + (1− φ0)s

and

k∗ =
k0

µ

(φ0 + (1− φ0)s∗)
3

(1− s∗)2(1− φ0)2
, k∗ =

k0

µ

(φ0 + (1− φ0)s∗)3

(1− s∗)2(1− φ0)2
,

where k0, η, φ0, s∗, and s∗ are given constants.
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Table 2.1: The converge rate for a fixed time step in the L2(I;L2(Ω)) norm

h ‖p− ph‖ ‖u− uh‖ conv. rate p conv. rate u
1/4 0.1023 0.0295
1/8 0.0554 0.0072 0.88 2.03
1/16 0.0145 0.0018 1.93 2.00
1/32 0.0037 4.61e-4 1.97 1.97
1/64 9.20e-4 1.16e-4 2.01 1.99
1/128 2.30e-4 2.89e-5 2.00 2.00

It is easy to see that the continuous function κ given by (2.63) satisfies (1.11) and (H1).

We set λ = µ = c0 = α = 1 in system (1.10) and κ0 = η = 1, φ0 = 0.5, s∗ = −0.75, s∗ = 0.75

in our numerical experiment. Also we choose the forcing term f , g in (1.10) and the initial

value l in (2.5) such that (u, p) defined by

u = e−t(sin(πx) sin(πy), sin(πx) sin(πy))T

and

p = t sin(πx) sin(πy)

is the exact solution of (1.10). Notice that the solution (u, p) defined above is analytic.

Therefore (H2) is satisfied.

For each time step, we solve the nonlinear problem using the Picard iteration. We set

the tolerance of this iteration to be 10−10 .

To verify the convergence rate in spatial dimension, we let the time step k be a fixed

value k = 10−4. Table 2.1 and Table 2.2 list the errors and rates of convergence in spatial

dimension. Figure 2.1 plots the errors in both L2(I;L2(Ω)) norm and L2(I;H1(Ω)) norm.

Both the tables and the figure verify the second order convergence rate for the finite element

approximation. Moreover, the H1 norms of u and p both have first order convergence, which

is natural for linear finite elements with pyramid basis.
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Table 2.2: The converge rate for a fixed time step in the L2(I;H1
0 (Ω)) norm

h ‖p− ph‖1 ‖u− uh‖1 conv. rate p conv. rate u
1/4 0.7685 0.3061
1/8 0.5556 0.1646 0.47 0.90
1/16 0.2767 0.0838 1.01 0.97
1/32 0.1385 0.0421 1.00 0.99
1/64 0.0693 0.0211 1.00 1.00
1/128 0.0346 0.0105 1.00 1.00

Table 2.3: The converge rate for time step k = h2 in the L2(I;L2(Ω)) norm

h k ‖p− ph‖ ‖u− uh‖ conv. rate p conv. rate u
1/4 1/16 0.0980 0.0290
1/8 1/64 0.0519 0.0070 0.92 2.05
1/16 1/256 0.0135 0.0018 1.94 1.96
1/32 1/1024 0.0034 4.52e-4 1.99 1.99

Table 2.4: The converge rate for time step k = h2 in the L2(I;H1(Ω)) norm

h k ‖p− ph‖1 ‖u− uh‖1 conv. rate p conv. rate u
1/4 1/16 0.7530 0.2041
1/8 1/64 0.5347 0.1629 0.49 0.33
1/16 1/256 0.2662 0.0829 1.07 0.97
1/32 1/1024 0.1332 0.0416 1.00 0.99

Figure 2.1: The plot of errors for a fixed time step
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Figure 2.2: The plot of errors for time step k = h2

−3.5 −3 −2.5 −2 −1.5 −1
−8

−7

−6

−5

−4

−3

−2

−1

0

ln(h)

ln
(e

rr
or

)

convergence rate

p
L

2
(L

2
)

u
L

2
(L

2
)

p
L

2
(H

1
)

u
L

2
(H

1
)

To see the convergence rate with respect to the time step k, we set k = h2. The errors

are presented in table 2.3, table 2.4 and figure 2.2, from which we know that when k is small,

the convergence rate with respect to k is the same as h2.

We next show some simulation of a real life example. Our intention is to show the effect

of a nonlinear hydraulic conductivity κ thus we choose a model in three dimensions and

we only consider the numerical approximation of the steady system to save computations.

Suppose we have a 2×2×2 inches cube sponge on Ω = [−1, 1]× [−1, 1]× [−1, 1]. We assume

that there is no external force of fluid resources, i.e., f = 0 and g = 0. We assume zero

boundary conditions of both u and p except that p = 1 on x = −1 (the left surface) and

p = 0 on x = 1 (the right surface). In this case, there is a pressure drop from the left surface

to the right surface. If κ is a constant, we expect a linear pressure with constant pressure

drop. As a result, we have uniform flux pointing to the right, parallel to the x axis.

Case 1. We want to show the improvements of simulation when we introduce the

nonlinear hydraulic conductivity κ in (2.63). The flux and hydraulic conductivity are then

given in figure 2.3. From the graph we can see that the flux is not uniform due to the

nonlinear κ and the value of κ varies from 0.3 to 0.8 at different part of the elastic body.

The highest κ occurs close to the left surface since the pore structure has been pushed to

the right by the high pressure. As a result, the size of the pores become bigger which leads

47



Figure 2.3: Case 1
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to a higher κ. The lower κ near the right surface where most of solid matrix stays is due to

the small size of the pores.

Case 2. We apply a displacement of compression in the middle of the front and back

surface, that is

u =


(0, 0.1, 0) , y = −1 ,−0.25 ≤ x, z ≤ 0.25 ,

(0,−0.1, 0) , y = 1 ,−0.25 ≤ x, z ≤ 0.25 ,

0 , otherwise ,

and we assume the same boundary condition of p as in case 1. The flux and κ are shown

in figure 2.4. We observe two facts. First, we have a very low hydraulic conductivity in

the middle and the flux are avoiding where we pressed the body. Only very small flux can

pass through the middle and this effect becomes weaker as the flux are away from the front

surface into the heart of the object. In real life case, this is because the pores close to the

front and back surface become small when we press the sponge. Another fact is that the

highest flow occurs right around where we pressed the sponge. This is because of the elastic

nature of the sponge that the water originally kept in the pores near the middle of the front

and back surface was forced to come out due to pressing.
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Figure 2.4: Case 2
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Figure 2.5: Case 3
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Case 3 We observe another case similar to case 2. We squeeze the lower half of the

sponge, that is

u =


(0, 0.1, 0) , y = −1 ,−1 ≤ z ≤ 0 ,

(0,−0.1, 0) , y = 1 ,−1 ≤ z ≤ 0 ,

0 , otherwise .

The result is shown in figure 2.5. Again, we observe a low hydraulic conductivity in the

lower half of the sponge and a high hydraulic conductivity around where we squeeze it.
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2.5 Conclusion

We studied the mathematical model of flows through elastic porous media. The PDE

system under consideration is comprised of the linear elasticity equation for the deforma-

tion of the matrix and an implicit parabolic equation for the fluid pressure with hydraulic

conductivity dependent on the displacement. We showed the existence of a weak solution

under minimum regularity assumption on the input data and its uniqueness under stronger

conditions. We then focused our attention on the finite element approximations of the weak

solution and derived rigorous error estimates. We used our model to simulate the distribu-

tion of flux and hydraulic conductivity inside a sponge. In the simulation we showed that

the nonlinear hydraulic conductivity κ defined in (2.63) captures the distribution of the hy-

draulic conductivity at different part of the elastic body, which cannot be obtained by the

linear system with a constant hydraulic conductivity assumption. The difference is signifi-

cant and has a huge effect on the flow through the porous media. We established a better

approximation to simulate the flow through a porous media, which matches the common

sense.
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Chapter 3

Steady bioconvection

3.1 Existence and uniqueness of a weak solution

The weak formulation. we consider a steady case of system (1.19). Choose the

pressure space L2
0(Ω) = L2(Ω)/R to be the quotient subspace of L2(Ω), the subspace of

functions which are orthogonal to constants. It is easy to see that ([62], p. 23)

L2
0(Ω) = {p ∈ L2(Ω);

∫
Ω

p dx = 0} .

Define the following bilinear and trilinear forms



a(c, r) = (∇c,∇r) ∀c, r ∈ H1(Ω) ,

B2(u,v,w) =

∫
Ω

u · ∇v w dx ∀u,v,w ∈ H1
0(Ω) ,

B3(u, c, r) =

∫
Ω

u · ∇c rdx, ∀u ∈ H1
0(Ω), c, r ∈ H1(Ω) ,

b(q,v) = −(q,∇ · v) ∀q ∈ L2
0(Ω) , v ∈ H1

0(Ω)

(3.1)

and set

H̃ = H1(Ω) ∩ L2
0(Ω) = {c ∈ H1(Ω) :

∫
Ω

c dx = 0} .

Condition (1.18) is equivalent to requiring c− α
|Ω| ∈ H̃. For brevity, we write α = α

|Ω| and

we assume ρm = 1, otherwise we rescale the problem. Also for brevity, define an auxiliary

concentration cα = c − α and fα = f − gρmγαi3. Multiplying the equations of (1.19) by
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test functions and integrating by parts we obtain the following weak formulation for system

(1.19) (without confussion, we write c = cα and f = fα).

Definition 3.1. Given f in L2(Ω), a triple (u, p, c) ∈ H1
0(Ω) × L2

0(Ω) × H̃ is said to be a

weak solution of the steady bioconvection if it satisfies



(
ν(c+ α)∇u,∇v

)
+B2(u,u,v) + b(p,v)

= −
(
g(1 + γc)i3,v

)
+ (f ,v) ∀v ∈ H1

0(Ω) ,

b(q,u) = 0 ∀q ∈ L2
0(Ω) ,

θa(c, r) +B3(u, c, r)− U(c,
∂r

∂x3

) = Uα(
∂r

∂x3

, 1) ∀r ∈ H̃ .

(3.2)

We adopt the theory for solving Navier-Stokes type equations (see Chapter 4 of [62] and

Chapter 2-3 of [52]). Define

V = {u ∈ H1
0(Ω) : ∇ · u = 0 in Ω} .

Then to solve system (3.2), it suffices to solve the following auxiliary problem ([62]).

Find a pair (u, c) ∈ V × H̃ such that


(
ν(c+ α)∇u,∇v

)
+B2(u,u,v) = −

(
g(1 + γc)i3 + f ,v

)
∀v ∈ V ,

θa(c, r) +B3(u, c, r)− U(c,
∂r

∂x3

) = Uα(
∂r

∂x3

, 1) ∀r ∈ H̃ .
(3.3)

Remark 3.2. Obviously, if (u, c, p) is a solution of system (3.2), then (u, c) must be a solution

of (3.3). The converse is also true since the bilinear form b(·, ·) defined above satiesfies the

inf-sup condition (see [62], p. 113), i.e., for some β > 0

sup
v∈H1

0(Ω)

(q,∇ · v)

‖v‖1

≥ β‖q‖ ∀q ∈ L2
0(Ω) .
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Existence. To prove the existence of a weak solution of (3.3), we construct a sequence

of approximate weak solutions using the Galerkin method. This will also be helpful in our

later discussion and analysis of the finite element method. The following inequalities can be

found in [32]: 
‖v‖1 ≤ CΩ‖∇v‖ ∀v ∈ H1

0(Ω) ,

‖r‖1 ≤ CΩ‖∇r‖ ∀r ∈ H̃ ,

(3.4)

for some constant CΩ independent of v and r. The first inequality is Poincaré’s inequality

while the second is due to the fact that
∫

Ω
rdx = 0. We can obviously use the same constant

CΩ in both inequalities. From Lemma 2.2, it is straightforward that ν(x) satisfying (1.21) is

a Nemytskii operator.

Next we study the properties of the trilinear forms B2 and B3.

Lemma 3.3. The trilinear form B2(·, ·, ·) and B3(·, ·, ·) are continuous on H1(Ω).

Proof. From Holder’s inequality and the Sobolev imbedding theorem in three dimensions we

have

B2(u,v,w) ≤ C‖u‖L4(Ω)‖∇v‖L2(Ω)‖w‖L4(Ω) ≤ CB2‖u‖1‖v‖1‖w‖1 . (3.5)

Similarly

B(u, c, r) ≤ CB3‖u‖1‖c‖1‖r‖1 . (3.6)

Lemma 3.4. Assume that v,w ∈ H1
0(Ω), c, r ∈ H̃, and u ∈ V, then


B2(u,v,w) +B2(u,w,v) = 0 ,

B3(u, c, r) +B3(u, r, c) = 0 ,

(3.7)

and

B2(u,v,v) = 0 , B3(u, r, r) = 0 . (3.8)

53



Proof. Notice that properties (3.7) and (3.8) are equivalent. Thus it suffices to prove (3.8).

According to Green’s formula, if u ∈ V

B2(u,v,v) =
1

2

3∑
i,j=1

∫
Ω

uj
∂(v2

i )

∂xj
= −1

2

3∑
i=1

∫
Ω

∇ · u v2
i dx = 0

and

B3(u, r, r) =
1

2

3∑
j=1

∫
Ω

uj
∂(r2)

∂xj
= −1

2

∫
Ω

∇ · u r2 dx = 0 .

Since V and H̃ are both separable Hilbert spaces, there exist sequences {vj}∞j=1 and

{rj}∞j=1 such that {vj}∞j=1 and {rj}∞j=1 are orthonormal bases of V and H̃, respectively. Let

Vm and Hm be the spaces spanned by {v1,v2, . . . ,vm} and {r1, r2, . . . , rm} respectively. We

seek (um, cm) ∈ Vm ×Hm such that


(
ν(cm + α)∇um,∇v

)
+B2(um,um,v) = −

(
(g + γcm)i3,v

)
+ (f ,v) ∀v ∈ Vm ,

θa(cm, r) +B3(um, cm, r)− U(cm,
∂r

∂x3

) = Uα(
∂r

∂x3

, 1) ∀r ∈ Hm .
(3.9)

Proceeding as in Lemma 2.10, using properties (3.5) and (3.6), we can prove the existence of

a weak solution of (3.9) for any integar m > 0 either by a direct corollary of Brouwer fixed

point theorem or using Riesz’ theorem.

Next we show that {um}∞m=1 and {cm}∞m=1 are uniformly bounded in V and H̃ respec-

tively.

Lemma 3.5. Assume that

θ

C2
Ω

> U . (3.10)

Then there exists a constant C independent of m such that

‖cm‖1 + ‖um‖1 < C.
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Proof. Let v = um, r = cm in (3.9). Equation (3.8) implies that


(
ν(cm + α)∇um,∇um

)
= −

(
(g + γcm)i3,u

m
)

+ (f ,um) ,

θa(cm, cm)− U(cm,
∂cm

∂x3

) = Uα(
∂cm

∂x3

, 1) .

Thus it follows from (1.21) and Young’s inequality that

ν∗‖∇um‖2 ≤
(
ν(cm + α)∇um,∇um

)
≤ | −

(
(g + γcm)i3,u

m
)

+ (f ,um)|

≤
(
γ‖cm‖+ ‖f − gi3‖

)
‖um‖

(3.11)

and

θ‖∇cm‖2 ≤ θa(cm, cm)

≤
∣∣∣U(cm,

∂cm

∂x3

) + Uα(
∂cm

∂x3

, 1)
∣∣∣

≤ U‖cm‖2
1 + Uα|Ω|

1
2‖cm‖1 .

(3.12)

Using the above inequality, (3.4), and assumption (3.10) we obtain

‖cm‖1 ≤
(
θ

C2
Ω

− U
)−1

Uα|Ω|
1
2 . (3.13)

Substituting (3.13) into (3.11) gives

‖um‖1 ≤
C2

Ω

ν∗

(
(
θ

C2
Ω

− U)−1γUα|Ω|
1
2 ) + ‖f − gi3‖

)
.

We are now ready to show the existence of a solution of (3.3).

Theorem 3.6. Assume that (1.21) and (3.10) hold, and f ∈ L2(Ω), then system (3.3) has

a weak solution.
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Proof. Consider sequences of solutions {um}∞m=1 and {cm}∞m=1 defined by (3.9). According

to Lemma 3.5, both sequences are bounded therefore there exist u ∈ V and c ∈ H̃ (via

subsequences if necessary) such that

um ⇀ u in V and cm ⇀ c in H̃ as m→∞ . (3.14)

Then the Sobolev embedding theorem implies that

um → u in L2(Ω) and cm → c in L2(Ω) as m→∞ . (3.15)

We now show that the weak limit (u, c) is a solution of (3.3). Let v and r be test functions

such that

v ∈ V ∩ (C∞0 (Ω))3 , r ∈ C∞(Ω) ∩ H̃ . (3.16)

First notice that

(
ν(c+ α)∇u,∇v

)
−
(
ν(cm + α)∇um,∇v

)
=
(
ν(c+ α)∇(u− um),∇v

)
+
((
ν(c+ α)− ν(cm + α)

)
∇um,∇v

)
:= I + II .

From (1.21) and (3.14) it follows that

|I| ≤ ν∗|(∇(um − u),∇v)| → 0 as m→∞ .

The limits (3.15) and the fact that ν is a Nemytskii operator imply that

ν(cm + α)→ ν(c+ α) in L2(Ω) as m→∞ . (3.17)

56



Hence from (3.16), Lemma 3.5, and Holder’s inequality

|II| ≤ C‖ν(cm + α)− ν(c+ α)‖‖um‖1 → 0 as m→∞ .

Combing the above estimates we obtain

(
ν(cm + α)∇um,∇v

)
→
(
ν(c+ α)∇u,∇v

)
as m→∞ . (3.18)

Next using Green’s formula

B2(um,um,v) =
3∑

i,j=1

∫
Ω

umj (
∂umi
∂xj

vi) dx = −
3∑

i,j=1

∫
Ω

umi umj (
∂vi
∂xj

) dx .

By assumption (3.16), ∂v
∂xj

is uniformly bounded. The fact um → u in L2(Ω) implies that

umi umj → uiuj in L1(Ω) as m→∞. Therefore

lim
m→∞

B2(um,um,v) = −
3∑

i,j=1

∫
Ω

uiuj(
∂vi
∂xj

) dx = −B2(u,v,u) = B2(u,u,v) .

Following the same argument, we have

B2(um,um,v)→ B2(u,u,v) , B3(um, cm, r)→ B3(u, c, r) as m→∞ . (3.19)

It follows from the weak convergence of {cm}∞n=1 to c that



(
g(1 + γcm)i3,v

)
→
(
g(1 + γc)i3,v

)
as m→∞ ,

θa(cm, r)→ θa(c, r) as m→∞ ,

U(cm,
∂r

∂x3

)→ U(c,
∂r

∂x3

) as m→∞ .

(3.20)

Because the test functions v, r defined in (3.16) are dense in V and H̃ respectively, conclu-

sions (3.18), (3.19), and (3.20) hold for ∀v ∈ V and ∀r ∈ H̃. Letting m → ∞ in (3.9) and
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using the above results we obtain


(
ν(c+ α)∇u,∇v

)
+B2(u,u,v) = −

(
(g + γc)i3,v

)
+ (f ,v) ∀v ∈ Vm ,

θa(c, r) +B3(u, c, r)− U(c,
∂r

∂x3

) = Uα(
∂r

∂x3

, 1) ∀r ∈ Hm .

Since the basis {vj}∞j=1 and {rj}∞j=1 are dense in V and H̃, we conclude that (u, c) is a

solution of (3.3).

Uniqueness. First notice that the bilinear form b(·, ·) satisfies the inf-sup condition

(see Remark 3.2). Therefore for each solution (u, c) ∈ V× H̃ of system (3.3), there exists a

unique p ∈ L2
0(Ω) satisfying system (3.2) (see [62], p. 113). To prove the uniqueness of the

solution of (3.2), it suffices to prove that system (3.3) has a unique solution.

Following the proof of Lemma 3.5 we can obtain a priori estimates for u and c.

‖u‖1 ≤ C3 and ‖c‖1 ≤ C4 . (3.21)

where

C3 =
C2

Ω

ν∗
(γC4 + ‖f − gi3‖) , C4 =

Uα|Ω| 12
θ
C2

Ω
− U

.

Theorem 3.7. Assume that

(H4) The hypothesis of Theorem 3.6 holds;

(H5) The viscosity ν(·) is Lipschitz continuous, i.e., there exists a constant νL > 0 such that

|ν(x1)− ν(x2)| ≤ νL|x1 − x2| ∀x1, x2 ∈ R ;

(H6) There exists a constant C0 such that ‖∇u‖∞ ≤ C0;
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(H7) The following inequality

ν∗
C2

Ω

−

(
CB3C4

θ
C2

Ω
− U

(νLC0 + gγ) + CB2C3

)
> 0

holds.

Then the solution (u, c) of system (3.3) is unique.

Proof. Let (u, c) and (ū, c̄) be two different solutions of (3.3). Substituting both solutions

into (3.3) with v = u− ū and r = c− c̄, taking the the difference of the two equations, we

have

(
ν(c+ α)∇u,∇(u− ū)

)
−
(
ν(c̄+ α)∇ū,∇(u− ū)

)
+B2(u,u,u− ū)−B2(ū, ū,u− ū)

=− gγ
(

(c− c̄)i3,u− ū
) (3.22)

and

θa(c− c̄, c− c̄) +B3(u, c, c− c̄)−B3(ū, c̄, c− c̄)− U(c− c̄, ∂(c− c̄)
∂x3

) = 0 . (3.23)

The skew symmetry (3.8) leads to the identity


B2(u,u,u− ū)−B2(ū, ū,u− ū) = B2(u− ū,u,u− ū) ,

B3(u, c, c− c̄)−B3(ū, c̄, c− c̄) = B3(u− ū, c, c− c̄) .
(3.24)

Thus it follows from (3.6), (3.4), (3.21), (3.23), and (3.24) that

θ

C2
Ω

‖c− c̄‖2
1 ≤ |B3(u− ū, c, c− c̄)|+ U(c− c̄, ∂(c− c̄)

∂x3

)

≤ CB3C4|‖c− c̄‖1‖u− ū‖1 + U‖c− c̄‖2
1 .
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Then from (3.10)

‖c− c̄‖1 ≤
CB3C4

θ
C2

Ω
− U
‖u− ū‖1 . (3.25)

Substituting the above estimate into (3.22) and combining (1.21), (3.4), (3.5), (3.21), (H6)

and (3.24), we obatin

ν∗
C2

Ω

‖u− ū‖2
1 ≤

(
ν(c+ α)∇(u− ū),∇(u− ū)

)
≤
∣∣∣((ν(c+ α)− ν(c̄+ α)

)
∇ū
)
,∇(u− ū)

)∣∣∣+ |B2(u− ū,u,u− ū)|+ gγ
∣∣((c− c̄)i3,u− ū

)∣∣
≤ νLC0‖c− c̄‖1‖u− ū‖1 + CB2‖u− ū‖2

1‖u‖1 + gγ‖c− c̄‖1‖u− ū‖1

≤

(
CB3C4

θ
C2

Ω
− U

(νLC0 + gγ) + CB2C3

)
‖u− ū‖2

1 .

From assumption (H7) we conclude that

‖u− ū‖1 = ‖c− c̄‖1 = 0 .

Remark 3.8. In practice, it is necessary to verify condition (3.10) and (H6). Since the micro-

organism is slightly denser than water, γ = ρ0/ρm − 1 is small. Therefore to fulfill (3.10)

and (H6), ν∗ and θ must be sufficiently large while U and CΩ are sufficiently small. In other

words, the model is valid for a suspension containing culture fluid with large viscosity, large

diffusion rate, slowly upswimming micro-organisms in a relatively small container.

3.2 Numerical approximation using the finite element method

In this section, we construct and analyze a finite element method for approximating

weak solutions of (3.2). Throughout this section, we assume that the hypotheses of Theorem

3.7 hold.
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Let τh be a regular triangulation of Ω and Xh, Mh, and Sh be finite element subspaces

of H1
0(Ω), L2

0(Ω), and H̃, respectively. Assume that the following discrete inf-sup condition

holds.

sup
v∈Xh

b(v, q)

‖v‖Xh

≥ β‖q‖Mh
∀q ∈Mh , (3.26)

where β > 0 is a fixed constant. Furthermore we assume that Xh, Mh, and Sh satisfy the

following approximation properties.

inf
vh∈Xh

‖v − vh‖1 ≤ Chs‖v‖s+1 ∀v ∈ Hs+1(Ω) , 0 < s ≤ k , (3.27)

inf
qh∈Mh

‖q − qh‖ ≤ Chs‖q‖s ∀q ∈ Hs(Ω) , 0 < s ≤ k , (3.28)

inf
th∈Sh

‖t− th‖1 ≤ Chs‖t‖s+1 ∀t ∈ Hs+1(Ω) , 0 < s ≤ k , (3.29)

for k = 2, 3. For the construction of these spaces, see [63, 62, 52]. Next we define the discrete

divergence free space

Vh = {v ∈ Xh : (∇ · v, qh) = 0 ∀qh ∈Mh} .

Notice that in general, Vh is not a subspace of V. Thus in general the identity (3.8) does

not hold. To obtain a skew symmetry similar to (3.8) on Vh, we define auxiliary forms B̂2

and B̂3 by 
B̂2(u,v,w) =

1

2
B2(u,v,w)− 1

2
B2(u,w,v) ,

B̂3(u, c, r) =
1

2
B3(u, c, r)− 1

2
B3(u, r, c) .

It is easy to verify that

B̂2(u,v,w) = B2(u,w,v) ∀u ∈ V , ∀v,w ∈ H1
0(Ω) ,

B̂3(u, c, r) = B3(u, c, r) ∀u ∈ V , ∀c, r ∈ H̃ .

(3.30)
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In addition, we have the identity

B̂2(u,v,v) = 0 , B̂3(u, c, c) = 0 ∀u,v ∈ H1
0(Ω) , ∀c ∈ H̃ , (3.31)

and the tricontinuous property


B̂2(u,v,w) ≤ CB2‖u‖1‖v‖1‖w‖1 ∀u,v,w ∈ H1

0(Ω) ,

B̂3(u, c, r) ≤ CB3‖u‖1‖c‖1‖r‖1 ∀u ∈ H1
0(Ω) , ∀c, r ∈ H̃ ,

(3.32)

where CB2 and CB3 are the same as in (3.5) and (3.6).

We define the finite element approximation of (3.3) as follows.

Definition 3.9. Find (uh, ph, ch) ∈ Xh ×Mh × Sh, such that



(
ν(ch + α)∇uh,∇v

)
+ B̂2(uh,uh,v)− (ph,∇ · v)

= −
(
g(1 + γch

)
i3,v) + (f ,v) ∀v ∈ Xh ,

(∇ · uh, qh) = 0 ∀qh ∈Mh ,

θa(ch, r) + B̂3(uh, ch, r)− U(ch,
∂r

∂x3

) = Uα(
∂r

∂x3

, 1) ∀r ∈ Sh .

(3.33)

Analogous to the continuous case, we first solve an auxiliary discrete system.

Find (uh, ch) ∈ Vh × Sh such that



(
ν(ch + α)∇uh,∇v

)
+ B̂2(uh,uh,v)

= −
(
g(1 + γch)i3,v

)
+ (f ,v), ∀v ∈ Vh ,

θa(ch, r) + B̂3(uh, ch, r)− U(ch,
∂r

∂x3

) = Uα(
∂r

∂x3

, 1) , ∀r ∈ Sh .

(3.34)

The skew symmetry (3.31) and inequality (3.32) guarantee the existence of a weak solution

of (3.34) by using anargument similar to the one used in the continuous case. A solution
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(uh, ph, ch) of (3.33) can be completed by solving (see [62], p. 59, Theorem I.4.1)

(ph,∇ · v) =
(
ν(ch + α)∇uh,∇v

)
+ B̂2(uh,u

n
h,v)

+
(
g(1 + γch)i2,v)− (fn,v) ∀v ∈ Xh .

(3.35)

The right hand side defines a functional on Xh which vanishes on Vh. Due to (4.55) and the

property of Lagrange multipliers, equation (4.66) is always solvable and the solution ph ∈Mh

is unique in the quotient space Mh/Nh where

Nh = {qh ∈ Sh : (qh,∇ · v) = 0 , ∀v ∈ Xh} .

Following the same approach as in Lemma 3.5, we can show that ‖uh‖1 and ‖ch‖1 are

uniformly bounded, i.e., there exist constants C3 and C4 independent of h such that

‖uh‖1 ≤ C3 , ‖ch‖1 ≤ C4. (3.36)

To carry out the error estimate, we introduce the Ritz Galerkin projections rh : H1
0(Ω)→

Vh, sh : H̃ → Sh , and the L2 projection πh : L2
0(Ω) → Mh. In this way we split the errors

into two parts 
u− uh = u− rhu + rhu− uh := ρhu + θhu ,

p− ph = p− πhp+ πhp− ph := ρhp + θhp ,

c− ch = c− shc+ shc− ch := ρhc + θhc .

(3.37)

From the approximation properties (3.27) – (3.29) we known that


‖rhu‖1 ≤ C(u) , ‖ρhu‖1 ≤ Chs‖v‖s+1 , u ∈ Hs+1(Ω) , 0 < s ≤ k ,

‖shc‖1 ≤ C(c) , ‖ρhc‖1 ≤ Chs‖c‖s+1 , c ∈ Hs+1(Ω) , 0 < s ≤ k ,

‖πhp‖ ≤ C(p) , ‖ρhp‖ ≤ Chs‖p‖s , p ∈ Hs(Ω) , 0 < s ≤ k .

(3.38)
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Theorem 3.10. Assume that the hypotheses of Theorem 3.6 and Theorem 3.7 hold. Then

for u ∈ Hs+1(Ω), p ∈ Hs(Ω), and c ∈ Hs+1(Ω), there exists a constant C independent of h

such that

‖u− uh‖1 + ‖c− ch‖1 + ‖p− ph‖ ≤ Chs , 0 < s ≤ k . (3.39)

Proof. Due to (3.38), it suffices to estimate θhu, θhp , and θhc . Subtracting (3.33) from (3.2)

with v = θhu, r = θhc and using (3.30) we have that

(
ν(c+ α)∇u,∇θhu

)
−
(
ν(ch + α)∇uh,∇θhu

)
+ B̂2(u,u, θhu)− B̂2(uh,uh, θ

h
u)

+ b(p− ph, θhu)

=− gγ
(

(c− ch)i3, θhu
)

(3.40)

and

θa(c− ch, θhc ) + B̂3(u, c, θhc )− B̂3(uh, ch, θ
h
c )− U(c− ch,

∂θhc
∂x3

) = 0 . (3.41)

It follows from (1.21), (3.31), and (3.32) that

θ

C2
Ω

‖θhc ‖2
1 ≤ θa(θhc , θ

h
c )

=− θa(ρhc , θ
h
c )− B̂3(θhu, ch, θ

h
c )− B̂3(rhu, ρ

h
c , θ

h
c )

− B̂3(ρhu, c, θ
h
c ) + U(θhc ,

∂θhc
∂x3

) + U(ρhc ,
∂θhc
∂x3

)

≤ θ‖θhc ‖1‖ρhc‖1 + U‖θhc ‖2
1 + U‖ρhc‖1‖θhc ‖1

+ CB3‖θhc ‖1

(
‖θhu‖1‖ch‖1 + ‖rhu‖1‖ρhc‖1 + ‖ρhu‖1‖c‖1

)
.
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Due to assumption (3.10), moving the term U‖θhc ‖2
1 to the left and dividing by ‖θhc ‖1, we

have from (3.21) and (3.36) that

‖θhc ‖1 ≤
1

θ
C2

Ω
− U

(
(θ + U + CB3‖rhu‖1)‖ρhc‖1 + CB3C4(‖θhu‖1 + ‖ρhu‖1)

)
. (3.42)

Notice that θhu ∈ Vh and θhp ∈Mh. The definition of Vh implies that b(θhp , θ
h
u) = 0. Therefore

b(p− ph, θhu) = b(ρhp , θ
h
u) .

Then according to (1.21), (H5), (H6), (3.21), (3.32), and (3.36), equation (3.40) yields

ν∗
C2

Ω

‖θhu‖2
1 ≤

(
ν(ch + α)∇θhu,∇θhu

)
=
(
ν(ch + α)∇ρhu,∇θhu

)
+
((
ν(ch + α)− ν(c+ α)

)
∇u,∇θhu

)
− B̂2(θhu,uh, θ

h
u)−B2(rhu, ρ

h
u, θ

h
u)− B̂2(ρhu,u, θ

h
u)

+ b(ρhp , θ
h
u) + gγ

(
(c− ch)i3, θhu

)
≤ ν∗‖ρhu‖1‖θhu‖1 + (νLC0 + gγ)‖ch − c‖1‖θhu‖1

+ CB2‖θhu‖1

(
C3‖θhu‖1 + ‖rhu‖1‖ρhu‖1 + C3‖ρhu‖1

)
+ ‖ρhp‖‖θhu‖1 .

(3.43)

From (3.42)

‖ch − c‖1 ≤ ‖ρhc‖1 + ‖θhc ‖1

≤ ‖ρhc‖1 +
1

θ
C2

Ω
− U

(
(θ + U + CB3‖rhu‖1)‖ρhc‖1 + CB3C4(‖θhu‖1 + ‖ρhu‖1)

)
.
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Dividing (3.43) by ‖θhu‖1 we obtain

(
ν∗
C2

Ω

− CB2C3 − (νLC0 + gγ)
CB3C4

θ
C2

Ω
− U

)‖θhu‖1

≤
(
ν∗ + CB2‖rhu‖1 + CB2C3 +

CB3C4(νLC0 + gγ)
θ
C2

Ω
− U

)
‖ρhu‖1

+ (νLC0 + gγ)

(
1 +

θ + U + CB3‖rhu‖1

θ
C2

Ω
− U

)
‖ρhc‖1 + ‖ρhp‖ .

From assumption (H7) and (3.38)

‖θhu‖1 ≤ C
(
‖ρhu‖1 + ‖ρhc‖1 + ‖ρhp‖

)
, (3.44)

and from (3.42) and (3.38)

‖θhc ‖1 ≤ C
(
‖ρhu‖1 + ‖ρhc‖1 + ‖ρhp‖

)
. (3.45)

Combining (4.67), (3.44) and (3.45) we have that

‖u− uh‖1 + ‖c− ch‖1 ≤ C
(
‖ρhu‖1 + ‖ρhc‖1 + ‖ρhp‖

)
. (3.46)

It remains to estimate ‖p− ph‖. Subtracting (3.33) from (3.2) gives

−b(v, θhp ) =
(
ν(c+ α)∇u,∇v

)
−
(
ν(ch + α)∇uh,∇v

)
+ B̂2(u,u,v)− B̂2(uh,uh,v) + b(ρhp ,v) + gγ

(
(c− ch)i3,v

)
.
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From (3.26), (3.32), (3.21), (3.36), and (3.46) it follows that

‖θhp‖ ≤
1

β
sup
v∈Xh

1

‖v‖1

(
(ν(ch + α)∇(u− uh),∇v

)
+
((
ν(c+ α)− ν(ch + α)

)
∇u,∇v

)
+ B̂2(u− uh,u,v) + B̂2(uh,u− uh,v)

+ b(ρhp ,v) + gγ
(
(c− ch)i3,v

))
≤ 1

β
sup
v∈Xh

1

‖v‖1

(
(ν∗ + 2CB2C3)‖u− uh‖1‖v‖1

+ (νLC0 + γ)‖c− ch‖1‖v‖1 + ‖ρhp‖‖v‖1

)
≤ C

(
‖u− uh‖1 + ‖c− ch‖1 + ‖ρhp‖

)
.

Combing the above estimate with (3.44) and (3.45), we obtain

‖p− ph‖1 ≤ C
(
‖ρhu‖1 + ‖ρhc‖1 + ‖ρhp‖

)
. (3.47)

Then the estimate of the pressure error follows from (3.38).

3.3 Numerical experiments

In this section we describe five numerical experiments that were conducted. The first

one uses artificial data to verify the error estimates while the other four use data obtained

from lab experiments. We used Taylor-Hood finite element spaces ([53]) for Vh and Mh,

and continuous piecewise quadratic function spaces for Sh. In particular, the theoretical

convergence rate is given by

‖ρhu‖ = O(hm) , ‖ρhu‖1 = O(hm−1) , ‖ρhp‖ = O(hm−1) , ‖ρhc‖ = O(hm) ,
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Table 3.1: Convergence rate

h ‖p− ph‖ ‖u− uh‖ ‖c− ch‖ ‖p− ph‖1 ‖u− uh‖1 ‖c− ch‖1

1/2 0.2520 0.0078 0.0049 0.9846 0.0854 0.0460
1/4 0.0323 0.0010 6.8E-04 0.3847 0.0207 0.0118
1/8 0.0055 1.31E-04 8.88E-05 0.1786 0.0050 0.030
1/16 0.0011 1.65E-05 1.13E-05 0.0877 0.0012 7.45E-04
1/32 2.28E-04 2.07E-06 1.42E-06 0.0436 3.09E-04 1.86E-04
1/64 4.90E-05 2.60E-07 1.80E-07 0.0216 7.68E-05 4.7E-05

conv. rate 2.22 2.99 2.97 1.02 2.01 2.00

where

u ∈ Hm(Ω) ∩H1
0(Ω) , p ∈ Hm−1(Ω) ∩ L2

0(Ω) , c ∈ Hm(Ω) ∩ L2
0(Ω) , m = 2, 3 .

In the numerical experiment we used the following parameters

γ = 0.1 , U = 0.1 , θ = 1 ,

and

ν(x) = sin2 x+ 1, x ∈ R .

The forcing term f was chosen so that the exact solution is


u = (sinπx sin πy, sin πx sin πy)T ,

p = sinπx sinπy ,

c = sinπx sinπy .

The numerical errors for different mesh sizes are listed in Table 3.1. The convergence

rates listed in the table are consistent with our theoretical result.

Example 2. In this example we consider a 10 cm × 10 cm container filled with microor-

ganisms in a suspension under zero external force, i.e., f ≡ 0. For computational simplicity,
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we study the domain in two dimensional horizontal – vertical plan . The parameters of the

model, obtained from lab experiments (see [36]) are given in Table 3.2.

Table 3.2: Parameter values

ν0 g γ θ U

cm2/sec m/sec2 cm2/sec cm/sec

0.01 9.81 0.1 0.0025 0.01

Define

ν(c) =



ν0 , c < 0 ,

ν0(1 + 2.5 c+ 5.3 c2) , 0 < c < 10% ,

ν0 exp(
2.5 c

1− 1.4 c
) , 10% < c < 60% ,

ν0 exp(9.375) , c > 60% .

(3.48)

Here ν0 is the viscosity of the culture fluid. The viscosity (3.48) combines the work of Batche-

lor [43] for low concentration and Mooney [44] for high concentration. Note that exp( 2.5 c
1−1.4 c

)

is bounded below by ν∗ = ν0 but tends to infinity when the maximum concentration ϕm = 1
1.4

is reached since the suspension behaves as a solid. In this case no movement of neighboring

particles are allowed. Therefore we set the upper bound ν∗ = ν0 exp(9.375) so that the

viscosity defined in (3.48) satisfies property (1.21).

We first chose α = 1%. The velocity and concentration are given in Figure 3.1. We can

see that a bioconvection pattern can not be formed and the concentration has a homogeneous

horizontal distribution. This is because the right hand side of the first equation in (1.16) is

almost equal to −g. As a result, u ≈ 0 while p is almost linear with ∇p ≈ −g and ∂c
∂x
≈ 0

because of the nearly zero velocity u. In this case, the micro-organisms do not move and

the concentration stays linear in the vertical direction with zero horizontal gradient. From

observed experiments, for a shallow container with low concentration of micro-organisms, the

micro-organisms will stay at the surface of the suspension due to the upswimming. Actually,

the effect of gravity is due to high density of the micro-organisms but the micro-organisms

are almost isolated thus gravity can be neglected. In fact, bioconvection only occurs for
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Figure 3.1: Concentration and velocity field for α = 1%

sufficiently deep container. The higher the concentration is, the shallower the container can

be. We conclude that a %1 concentration is not enough to form a bioconvection pattern in

a 10 cm deep container.

Example 3. In this example, we assign the same parameter as in Example 2 except

that α = 20%. Figure 3.2 shows the concentration distribution and the velocity filed using

streamlines. Here the color denotes the magnitude of the velocity. The figure shows that

a bioconvection pattern can be formed for sufficiently large concentration. Our simulation

result is consistent with the results obtained in [36]. From the figure we can see that two

convections, separated from the center, flow steadily in opposite directions. The highest

velocity occurs in the center, where the concentration is low, due to the upswimming under

small effect of gravity. Another high speed motion is observed on the left and right hand

sides of the container, which is caused mostly by gravity due to high concentration in the

upper left and right corners. Only a few micro-organisms remains at the bottom while most

of the micro-organisms stay close to the surface.

Example 4. In this example, α = 20% and constant viscosity ν(c) ≡ 0.01. The result

is shown in Figure 3.3. From the graph, we can see that both example 3 and example 4

capture the motion of the bioconvection but the concentration distribution and velocity field

are slightly different. The velocity in the nonlinear case are slower and smoother due to a

relatively higher viscosity. The difference is more notable in regions where the concentration

is high. Example 3 reflects higher concentrated micro-organisms at the top corners since more
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Figure 3.2: Concentration and velocity field for α = 20%

Figure 3.3: Concentration and velocity field for α = 20% with constant viscosity

micro-organisms are washed up by the drag force and stay there due to the high viscosity.

One can see that the involvement of a nonhomogeneous viscosity improves the accuracy of

the simulation.

Example 5. In the last numerical experiment, all data are the same as in Example 3

except that α = 30%. The velocity field and concentration distribution are given in figure 3.4.

As the concentration increases, the effect of the gravity becomes more significant. However,

once the pattern is formed, the distribution of the concentration stays the same.
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Figure 3.4: Concentration and velocity field for α = 30%
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Chapter 4

Time dependent bioconvection

4.1 Existence and uniqueness of a solution

The weak formulation. In this chapter, we consider system (1.19) in a two dimen-

sional domain Ω. Similarly to the steady bioconvection case we choose L2
0(Ω) as the functional

space for the pressure. Using the same auxiliary concentration c = cα, force f = fα and the

same bilinear and trilinear forms defined in (3.1), we define the weak solution of system

(1.19) as follows.

Definition 4.1. Given f in L2(I; L2(Ω)), u0 ∈ L2(Ω), c0 ∈ L2(Ω), a triple (u, p, c) ∈

L2(I; H1
0(Ω))× L2(I;L2

0(Ω))× L2(I; H̃) is said to be a weak solution of system (1.19) if for

any t ∈ (0, T ]



〈u′,v〉+
(
ν(c+ α)∇u,∇v

)
+B2(u,u,v) + b(p,v)

= −
(
g(1 + γc

)
i2,v) + (f ,v) ∀v ∈ H1

0(Ω) ,

b(q,u) = 0 ∀q ∈ L2
0(Ω) ,

〈c′, r〉+ θa(c, r) +B3(u, c, r)− U(c,
∂r

∂x2

) = 0 ∀r ∈ H̃ ,

u(0) = u0 , c(0) = c0 .

(4.1)

Analogous to the steady state case, to solve system (4.1), it suffices to solve the following

associated problem.
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Given f in L2(I; L2(Ω)), u0 ∈ L2(Ω), and c0 ∈ L2(Ω), find a pair (u, c) ∈ L2(I; V) ×

L2(I; H̃) such that for any t ∈ (0, T ],


〈u′,v〉+

(
ν(c+ α)∇u,∇v

)
+B2(u,u,v) = −

(
g(1 + γc)i2,v

)
+ (f ,v) ∀v ∈ V ,

(c′, r) + θa(c, r) +B3(u, c, r)− U(c,
∂r

∂x2

) = Uα(
∂r

∂x2

, 1) ∀r ∈ H̃ ,

u(0) = u0 , c(0) = c0 − α .
(4.2)

Remark 4.2. Similarly to the steady case, if (u, c) is a solution of system (4.2), then (u, p, c),

the solution of (4.1), can be recovered because the bilinear form b(·, ·) defined above satiesfies

the inf-sup condition (3.2), i.e., for some β > 0

sup
v∈H1

0(Ω)

(q,∇ · v)

‖v‖1

≥ β‖q‖ , ∀q ∈ L2
0(Ω) .

For more details see [62], p. 59, Theorem I.4.1.

Existence. To establish the existence of a weak solution, we use the same modified

Rothe’s method developed in chapter 2 to construct a convergent sequence of approximate

solutions of (4.2) using the backward Euler approximation of the time derivative u′ and c′.

To this end we let k = T/n for some positive integer n, partition I uniformly with time step

k, and denote nodal points ti = tni = ik, for i = 1, 2, . . . , n. Let u0
n = u0 and c0

n = c0 and

define 

f in := 1/k

∫ ti

ti−1

f(t) dt ,

δuin := (uin − ui−1
n )/k ,

δcin := (cin − ci−1
n )/k .

For each integer n > 0, we apply the following scheme inductively to find uin ∈ V and

cin ∈ H̃, the approximations of the solution u and c at ti, i = 1, 2, . . . , n respectively, with
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u0
n = u0 and c0

n = c0.


(δuin,v) +

(
ν(cin + α)∇uin,∇v

)
+B2(uin,u

i
n,v)

= −
(
g(1 + γcin)i2,v

)
+ (f in,v) ∀v ∈ V ,

(δcin, r) + θa(cin, r) +B3(uin, c
i
n, r)− U(cin,

∂r

∂x2

) = Uα(
∂r

∂x2

, 1) ∀r ∈ H̃ .

(4.3)

Multiplying both sides of (4.3) by k, we obtain the following scheme.

Given ui−1
n ∈ V, ci−1

n ∈ H̃, seek (uin, c
i
n) ∈ V × H̃ such that



(uin,v) + k
(
ν(cin + α)∇uin,∇v

)
+ kB2(uin,u

i
n,v)

= −k
(
g(1 + γcin)i2,v

)
+ (kf in + ui−1

n ,v) ∀v ∈ V ,

(cin, r) + kθa(cin, r) + kB3(uin, c
i
n, r)− kU(cin,

∂r

∂x2

)

= kUα(
∂r

∂x2

, 1) + (ci−1
n , r) ∀r ∈ H̃ .

(4.4)

Using (3.5), (3.6), (3.7), and (3.8), we establish the existence of a weak solution of (4.4)

as follows.

Lemma 4.3. Given ui−1
n ∈ V, ci−1

n ∈ H̃, assume that

θ

C2
Ω

> U . (4.5)

Then system (4.4) has a weak solution (uin, c
i
n) ∈ V × H̃.

Proof. Analogous to the proof of Theorem 3.6, since V and H̃ are both separable, there

exist {vj}∞j=1 and {rj}∞j=1 orthonormal bases of V and H̃ respectively. Let Vm, Hm be finite

subspaces of V, H̃ spanned by {v1,v2, . . . ,vm} and {r1, r2, . . . , rm}. We consider the finite

dimensional approximations of u and c in Vm and Hm, i.e., we seek um ∈ Vm, cm ∈ Hm
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such that 

(um,v) + k
(
ν(cm + α)∇um,∇v

)
+ kB2(um,um,v)

= −k
(
g(1 + γcm)i2,v

)
+ (kf in + ui−1

n ,v) ∀v ∈ Vm ,

(cm, r) + kθa(cm, r) + kB3(um, cm, r)− kU(cm,
∂r

∂x2

)

= kUα(
∂r

∂x2

, 1) + (ci−1
n , r) ∀r ∈ Hm .

(4.6)

For any integar m > 0, the existence of a solution (um, cm) of (4.6) is guaranteed by Lemma

2.9. To show that {um}∞m=1 and {cm}∞m=1 are bounded sequence in Vm and Hm respectively,

we take v = um and r = cm in (4.6), and use (1.21) and (3.8) to find

‖um‖2 +
kν∗
C2

Ω

‖um‖2
1 ≤(um,um) + k

(
ν(cm + α)∇um,∇um

)
≤
∣∣∣− k(g(1 + γcm)i2,u

m
)

+ (kf in + ui−1
n ,um)

∣∣∣
≤ε‖um‖2 + C(ε)‖cm‖2 + C(ε)‖kf in + ui−1

n − kgi2‖2

(4.7)

and

‖cm‖2 +
kθ

C2
Ω

‖cm‖2
1 ≤(cm, cm) + kθa(cm, cm)

=
∣∣∣kU(cm,

∂cm

∂x2

) + kUα(
∂cm

∂x2

, 1) + (ci−1
n , cm)

∣∣∣
≤kU‖cm‖2

1 + ε‖cm‖2
1 + C(ε)(1 + ‖ci−1

n ‖2) .

By assumption (4.5), we may choose a sufficiently small ε > 0 such that ε <
kθ

c2
Ω

− kU . Then

the above inequality gives

‖cm‖1 ≤ C . (4.8)

Furthermore substituting (4.8) into (4.7) and choosing 0 < ε < 1 we have that

‖um‖1 ≤ C .
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This means that the sequences {um}∞m=1 and {cm}∞m=1 are bounded in V and H̃ respectively.

Therefore there exist uin ∈ V and cin ∈ H̃ such that

um ⇀ uin in V and cm ⇀ cin in H̃ as m→∞ . (4.9)

Due to Sobolev embedding theorem, this yields

um → uin in L2(Ω) and cm → cin in L2(Ω) as m→∞ . (4.10)

Next we show that the weak limit (u, c) is a solution of (4.4). Choose test functions

v ∈ V ∩ (C∞0 (Ω))3 , r ∈ C∞(Ω) ∩ H̃ . (4.11)

Similarly to the strategy used in the proof of Theorem 3.6, we let m tend zero and use the

weak and strong convergence of {um}∞n=1 and {cm}∞n=1 to conclude that



(
ν(cm + α)∇um,∇v

)
→
(
ν(c+ α)∇uin,∇v

)
as m→∞ ,

B2(um,um,v)→ B2(uin,u
i
n,v) , B3(um, cm, r)→ B3(uin, c

i
n, r) as m→∞ ,

(um,v)→ (uin,v) , (cm, r)→ (cin, r) as m→∞ ,

(g(1 + γcm)i2,v)→ (g(1 + γcin)i2,v) , θa(cm, r)→ θa(cin, r) as m→∞ ,

U(cm,
∂r

∂x2

)→ U(cin,
∂r

∂x2

) as m→∞ .

Since v and r defined in (4.11) are dense in V and H̃, the limits uin and cin satisfy (4.6), i.e.,



(uin,v) + k
(
ν(cin + α)∇uin,∇v

)
+ kB2(uin,u

i
n,v)

= −k
(
g(1 + γcin)i2,v

)
+ (kf in + ui−1

n ,v) ∀v ∈ Vm ,

(cin, r) + kθa(cin, r) + kB3(uin, c
i
n, r)− kU(cin,

∂r

∂x2

)

= kUα(
∂r

∂x2

, 1) + (ci−1
n , r) ∀r ∈ Hm .

(4.12)
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Because such test functions v and r are dense in V and H̃, the above system holds for all

v ∈ V and r ∈ H̃. This means that (uin, c
i
n), is a solution of (4.4).

By the modified Rothe’s method, we now construct a sequence to approximate the

solution of (4.2). To this end, for each positive integer n, we define two piecewise constant

functions

Un(t) = uin , Cn(t) = cin , t ∈ (ti−1, ti) , i = 1, 2, . . . , n , (4.13)

with Un(0) = u0 and Cn(0) = c0. Notice that piecewise constant function does not have

derivative in L2(I;L2(Ω)). Therefore to approximate the time derivative in (3.3), we define

the following two piecewise linear functions

Ũn(t) = uin + (t− ti−1)(uin − ui−1
n )/k ,

C̃n(t) = cin + (t− ti−1)(cin − ci−1
n )/k ,

t ∈ (ti−1, ti] , i = 1, 2, . . . , n ,

(4.14)

with Ũn(0) = u0 and C̃n(0) = c0. The following estimate is true for any integer n > 0.

Lemma 4.4. Assume (4.5) is satisfied, then for any positive integer n0 ≤ n, we have the

estimate

‖un0
n ‖+ ‖cn0

n ‖+ k

n0∑
i=1

(‖uin‖2
1 + ‖cin‖2

1 + ‖δuin‖2
V′ + ‖cin‖2

H̃′
) ≤ C , (4.15)

where C is a constant independent of n and n0.

Proof. Taking v = uin and r = cin in (4.4), we deduce from (3.8) that


(δuin,u

i
n) +

(
ν(cin + α)∇uin,∇uin

)
= −

(
g
(
1 + γcin)i2,u

i
n

)
+ (f in,u

i
n) ,

(δcin, c
i
n) + θa(cin, c

i
n)− U(cin,

∂cin
∂x2

) =
Uα

|Ω|
(
∂cin
∂x2

, 1) .
(4.16)
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Notice the identities
(uin − ui−1

n ,uin) = 1/2(‖uin − ui−1
n ‖2 + ‖uin‖2 − ‖ui−1

n ‖2) ,

(cin − ci−1
n , cin) = 1/2(‖cin − ci−1

n ‖2 + ‖cin‖2 − ‖ci−1
n ‖2) .

(4.17)

Similarly to the way of obtaining (2.20), we multiply (4.16) and sum from i = 1 to n0.

Applying (1.21) and Young’s inequality we find that

1

2

n0∑
i=1

‖uin − ui−1
n ‖2 +

1

2
‖un0

n ‖2 +
kν∗
C2

Ω

n0∑
i=1

‖uin‖2
1

≤k
n0∑
i=1

∣∣∣− (g(1 + γcin)i2,u
i
n

)
+ (f in,u

i
n)
∣∣∣+

1

2
‖u0

n‖2

≤k
n0∑
i=1

(
ε‖uin‖2 + C(ε)

(
‖f in‖2 + ‖cin‖2 + 1

))
+

1

2
‖u0

n‖2

(4.18)

and

1

2

n0∑
i=1

‖cin − ci−1
n ‖2 +

1

2
‖cn0
n ‖2 +

kθ

C2
Ω

n0∑
i=1

‖cin‖2
1

≤k
n0∑
i=1

|U(cin,
∂cin
∂x2

) + Uα(
∂cin
∂x2

, 1)|+ 1

2
‖c0
n‖2

≤k
n0∑
i=1

(
U‖cin‖2

1 + ε‖cin‖2 + C(ε)
)

+
1

2
‖c0
n‖2 .

(4.19)

By (4.5), we may choose ε > 0 to be sufficiently small such that ε <
kθ

C2
Ω

− kU . Then (4.19)

gives

‖cn0
n ‖2 + k

n0∑
i=1

‖cin‖2
1 ≤ C . (4.20)

In addition we have

‖f in‖2 ≤ 1/k2

(∫ ti

ti−1

f(t) dt

)
≤ 1/k

∫ ti

ti−1

‖f(t)‖2 dt .
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Hence

k

n0∑
i=1

‖f in‖2 ≤
n0∑
i=1

∫ ti

ti−1

‖f(t)‖2 dt ≤ ‖f‖L2(I;L2(Ω)) . (4.21)

Substituting (4.20) and (4.21) into (4.18) we conclude that

‖un0
n ‖2 + k

n0∑
i=1

‖uin‖2
1 ≤ Ck

n0∑
i=1

(
‖cin‖2

1 + ‖f in‖2 + 1
)

+
1

2
‖u0

n‖2 ≤ C . (4.22)

To obtain an estimate for δuin and δcin, we first recall the following estimate ([52], p. 292,

Lemma 3.3 and Lemma 3.4)

‖r‖L4(Ω) ≤ 2
1
4‖r‖

1
2‖∇r‖

1
2 , ∀r ∈ H1(Ω) . (4.23)

Applying Holder’s inequality to (3.7) we find

|B3(u,c, r)| = |B3(u, r, c)| ≤ ‖u‖L4(Ω)‖∇r‖‖c‖L4(Ω)

≤

(
2∑
i=1

‖ui‖2
L4(Ω)

) 1
2

‖c‖L4(Ω)‖r‖1

≤ C

(
2∑
i=1

‖ui‖‖∇ui‖

) 1
2

‖c‖
1
2‖∇c‖

1
2‖r‖1

≤ C(‖u‖‖u‖1‖c‖‖c‖1)
1
2‖r‖1 ∀u ∈ V , ∀c, r ∈ H1(Ω) .

(4.24)

Similarly

|B2(u,v,w)| ≤ C(‖u‖‖u‖1‖v‖‖v‖1)
1
2‖w‖1 ∀u ∈ V , ∀v,w ∈ H1

0(Ω) . (4.25)

Recall, from (4.22), that ‖uin‖ and ‖cin‖ are uniformly bounded with respect to i. Combining

(4.20), (4.22), (1.21), and (4.25), we apply Cauchy-Schwarz inequality to deduce from (4.3)
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that

(δuin,v) = −
(
ν(cin + α)∇uin,∇v

)
−B2(uin,u

i
n,v)−

(
g(1 + γcin)i2,v

)
+ (f in,v)

≤ ν∗‖uin‖1‖v‖1 + C‖uin‖‖uin‖1‖v‖1 + C‖cin‖1‖v‖1 + ‖f in − gi2‖‖v‖1 ,

≤ C
(
‖uin‖1 + ‖cin‖1 + ‖f in − gi2‖

)
‖v‖1 ∀v ∈ H1

0(Ω)

(4.26)

and

(δcin,r) = −θa(cin, r)−B(uin, c
i
n, r) + U(cin,

∂r

∂x2

) +
Uα

|Ω|
(
∂r

∂x2

, 1)

≤ C‖cin‖1‖r‖1 + C(‖uin‖‖uin‖1‖cin‖‖cin‖1)
1
2‖r‖1 + C‖cin‖1‖r‖1 + C‖r‖1

≤ C
(
‖cin‖1 + ‖uin‖1 + 1

)
‖r‖1 ∀r ∈ H̃ .

(4.27)

Consequently 
‖δuin‖V′ ≤ C

(
‖cin‖1 + ‖uin‖1 + ‖f in‖

)
,

‖δcin‖H̃′ ≤ C
(
‖cin‖1 + ‖uin‖1 + 1

)
.

Using (4.20), (4.22), and (4.21)

k

n0∑
i=1

(
‖δuin‖2

V′ + ‖δcin‖2
H̃′

)
≤ C .

In view of Lemma 4.4 there exists a constant C such that

‖Un‖2
L2(I;V) + ‖Cn‖2

L2(I;H̃)
= k

n∑
i=1

(‖uin‖2
1 + ‖cin‖2

1) ≤ C . (4.28)

Thus there exist u ∈ V, c ∈ H̃ such that

Un ⇀ u in L2(I; V) and Cn ⇀ c in L2(I; H̃) . (4.29)
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It is straight forward to verify that the piecewise constant function defined in (4.13) share

the same weak and strong limits with the piecewise linear function in (4.14). As a result

Ũn ⇀ u in L2(I; H1
0(Ω)) and C̃n ⇀ c in L2(I; H̃) .

Moreover Lemma 4.4 implies that

‖Ũ′n‖2
L2(I;V′) + ‖C̃ ′n‖2

L2(I;H̃′
= k

n∑
i=1

(‖δuin‖2
V + ‖δcin‖2

H̃′
) ≤ C .

Hence there exist ū ∈ L2(I; V′) and c̄ ∈ L2(I; H̃ ′) such that

Ũ′n ⇀ ū in L2(I; V′) and C̃ ′n ⇀ c in L2(I; H̃ ′) . (4.30)

It is easy to verify that ([58], p. 356)

ū = u′ and c̄ = c′ . (4.31)

Then in view of Lemma 2.24, we set X0 = V, X = L2(Ω) ∩ V, and X1 = V′ to use the

compact embedding

{u ∈ L2(I; V); u′ ∈ Lq(I; V′)} ↪→ L2(I; L2(Ω) ∩V) ,

and we set X0 = H̃, X = L2
0(Ω), and X1 = H̃ ′ to obtain that

{c ∈ L2(I; H̃); u′ ∈ Lq(I; H̃ ′)} ↪→ L2(I;L2
0(Ω)) .

Consequently

Ũn → u in L2(I; L2(Ω)) and C̃n → c in L2(I;L2(Ω)) .
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Thus

Un → u in L2(I; L2(Ω)) and Cn → c in L2(I;L2(Ω)) . (4.32)

Armed with the above Lemmas and Lemma 2.12, we are now ready to show that (u, c)

is a solution of (4.2) with weak derivative u′, c′ as defined in (4.30) and (4.31) .

Theorem 4.5 (Existence). Suppose (4.5) is satisfied. Given f ∈ L2(I; L2(Ω)), u0 ∈ L2(Ω),

and c0 ∈ L2(Ω), system (4.2) has a weak solution (u, c) ∈ L2(I; V) × L2(I; H̃) with u′ ∈

L2(I; V′) and c′ ∈ L2(I; H̃ ′).

Proof. Define

fn(t) = f in , t ∈ (ti−1, ti] , i = 1, 2, . . . , n .

Proceeding as in Lemma 2.12, we have

‖fn − f‖L2(I;L2(Ω)) → 0 as n→∞ . (4.33)

Construct the test functions of the form ṽ = vϕ and r̃ = rϕ with

v ∈ (C∞0 (Ω))3 ∩V , r ∈ C∞0 (Ω) ∩ H̃ , and ϕ(t) ∈ C∞0 (I) . (4.34)

We have the following identities

n∑
i=1

(uin − ui−1
n ,v)ϕ(ti)

= (unn,v)ϕ(tn)− (u0
n,v)ϕ(t1)− k

n−1∑
i=1

(uin,v)
(
ϕ(ti+1)− ϕ(ti)

)
/k
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and

n∑
i=1

(cin − ci−1
n , r)ϕ(ti)

= (cnn, r)ϕ(tn)− (c0
n, r)ϕ(t1)− k

n−1∑
i=1

(cin, r)
(
ϕ(ti+1)− ϕ(ti)

)
/k .

Multiplying (4.3) with kϕ(ti) and summing from i = 1 to n, we obtain

(unn,v)ϕ(T )− (u0
n,v)ϕ(t1)− k

n−1∑
i=1

(uin,v)
(
ϕ(ti+1)− ϕ(ti)

)
/k

+ k

n∑
i=1

(
ν(cin + α)∇uin),∇v

)
ϕ(ti) +B2(uin,u

i
n,v)ϕ(ti)

=k
n∑
i=1

(
−
(
g(1 + cin)i2,v

)
+ (f in,v)

)
ϕ(ti)

and

(cnn,r)ϕ(T )− (c0
n, r)ϕ(t1)− k

n−1∑
i=1

(cin, r)
(
ϕ(ti+1)− ϕ(ti)

)
/k

+ k
n∑
i=1

(
θa(cin, r) + kB3(uin, c

i
n, r)− U(cin,

∂r

∂x2

)

)
ϕ(ti)

=k
n∑
i=1

Uα

|Ω|
(
∂r

∂x2

, 1)ϕ(ti) .
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From the definition of Un, Cn, Ũn, and C̃n the above equations yield



−(u0,v)ϕ(k)−
∫ T

0

(Un,v)ϕ̃n dt

+

∫ T

0

(
ν(Cn + α)∇Un,∇v

)
ϕn dt+

∫ T

0

B2(Un,Un,v)ϕn dt

=−
∫ T

0

(g(1 + Cn)i2,v)ϕn dt+

∫ T

0

(fn,v)ϕn dt ,

−(c0,r)ϕ(k) +

∫ T

0

(Cn, r)ϕ̃n dt

+

∫ T

0

θa(Cn, r)ϕn dt+

∫ T

0

B3(Un, Cn, r)ϕn dt

−
∫ T

0

U(Cn,
∂r

∂x2

)ϕn dt =

∫ T

0

Uα

|Ω|
(
∂r

∂x2

, 1)ϕn dt .

(4.35)

The continuity of ϕ implies (notice that ϕ(0) = 0) that

(u0,v)ϕ(k)→ 0 , and (c0,v)ϕ(k)→ 0 as n→∞ . (4.36)

From Lemma 2.12, (4.28), and Holder’s inequality it follows that

∣∣∣ ∫ T

0

(Un,v)(ϕ̃n − ϕ′) dt
∣∣∣ ≤ ‖v‖‖Un‖L2(I;L2(Ω))‖ϕ̃n − ϕ′‖L2(I) → 0 as n→∞

and

∣∣∣ ∫ T

0

(Cn, r)(ϕ̃n − ϕ′) dt
∣∣∣ ≤ ‖r‖‖Cn‖L2(I;L2(Ω))‖ϕ̃n − ϕ′‖L2(I) → 0 as n→∞ .
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Together with (4.29) we have



∫ T

0

(Un,v)ϕ̃n dt =

∫ T

0

(Un,v)(ϕ̃n − ϕ′) dt+

∫ T

0

(Un,v)ϕ′ dt

→
∫ T

0

(u,v)ϕ′ dt ,∫ T

0

(Cn, r)ϕ̃n dt =

∫ T

0

(Cn, r)(ϕ̃n − ϕ′) dt+

∫ T

0

(Cn, r)ϕ
′ dt

→
∫ T

0

(c, r)ϕ′ dt

(4.37)

as n →∞. Next the Nemytskii property (1.21) leads to

ν(Cn + α)→ ν(c+ α) in L2(I;L2(Ω)) as n→∞ .

Thus (1.21), (4.29), (4.28), Lemma 2.12, and Holder’s inequality yield

∣∣∣ ∫ T

0

(
ν(Cn + α)∇Un,∇v

)
ϕn dt−

∫ T

0

(
ν(C + α)∇u,∇v

)
ϕn dt

∣∣∣
=
∣∣∣ ∫ T

0

(
ν(Cn + α)∇Un,∇v

)
(ϕn − ϕ) dt

+

∫ T

0

(
ν(C + α)(∇Un −∇u),∇v)

)
ϕ dt

+

∫ T

0

((
ν(Cn + α)− ν(C + α)

)
∇Un,∇v

)
ϕ dt

∣∣∣
≤ ν∗‖v‖1‖Un‖L2(I;V)‖ϕn − ϕ‖L2(I)

+ ν∗
∣∣∣ ∫ T

0

(∇Un −∇u,∇v)ϕ dt
∣∣∣

+ ‖v‖1‖ν(Cn + α)− ν(C + α)‖L2(I;L2(Ω))‖Un‖L2(I;V)

→ 0 , as n→∞ .

(4.38)
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Combing (4.28), Lemma 2.12, and Holder’s inequality we let n tend ∞ to find



∣∣∣ ∫ T

0

(
g(1 + Cn)i2,v

)
(ϕn − ϕ) dt

∣∣∣ ≤ (‖v‖1‖Cn‖L2(I;L2(Ω)) + C
)
‖ϕn − ϕ‖L2(I) → 0 ,∣∣∣ ∫ T

0

θa(Cn, r)(ϕn − ϕ) dt
∣∣∣ ≤ θ‖r‖1‖Cn‖L2(I;V)‖ϕn − ϕ‖L2(I) → 0 ,∣∣∣ ∫ T

0

U(Cn,
∂r

∂x2

)(ϕn − ϕ) dt
∣∣∣ ≤ U‖r‖1‖Cn‖L2(I;L2(Ω))‖ϕn − ϕ‖L2(I) → 0 ,∣∣∣ ∫ T

0

Uα

|Ω|
(
∂r

∂x2

, 1)(ϕn − ϕ) dt
∣∣∣ ≤ C‖r‖1‖ϕn − ϕ‖L2(I) → 0 .

Hence by (4.29) we conclude that as n→∞



∫ T

0

(
g(1 + Cn)i2,v

)
ϕn dt =

∫ T

0

(
g(1 + Cn)i2,v

)
(ϕn − ϕ) dt

+

∫ T

0

(
g(1 + Cn)i2,v

)
ϕ dt

→
∫ T

0

(
g(1 + C)i2,v

)
ϕ dt ,∫ T

0

θa(Cn, r)ϕn dt =

∫ T

0

θa(Cn, r)(ϕn − ϕ) dt+

∫ T

0

θa(Cn, r)ϕ dt

→
∫ T

0

θa(C, r)ϕ dt ,∫ T

0

U(Cn,
∂r

∂x2

)ϕn dt =

∫ T

0

U(Cn,
∂r

∂x2

)(ϕn − ϕ) dt+

∫ T

0

U(Cn,
∂r

∂x2

)ϕ dt

→
∫ T

0

U(C,
∂r

∂x2

)ϕ dt ,∫ T

0

Uα

|Ω|
(
∂r

∂x2

, 1)ϕn dt→
∫ T

0

Uα

|Ω|
(
∂r

∂x2

, 1)ϕ dt .

(4.39)
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Note that

∫ T

0

(fn,v)ϕn dt =
n∑
i=1

∫ ti

ti−1

(
1/k

∫ ti

ti−1

f(τ)dτ,v
)
ϕ(ti) dt

=
n∑
i=1

(∫ ti

ti−1

f(τ)dτ,v

)
ϕ(ti)

=
n∑
i=1

(∫ ti

ti−1

f(τ),v

)
ϕn(τ) dτ

=

∫ T

0

(
f(t),v

)
ϕn(t) dt .

Together with (4.33) and Lemma 2.12

∣∣∣ ∫ T

0

(fn,v)ϕn dt−
∫ T

0

(f ,v)ϕ dt
∣∣∣

≤
∣∣∣ ∫ T

0

(f ,v)(ϕn − ϕ) dt
∣∣∣

≤‖v‖1‖f‖L2(I;L2(Ω))‖ϕn − ϕ‖L2(I) → 0 as n→∞ .

(4.40)

Next we show that

∫ T

0

(B2(Un,Un,v)ϕn dt→
∫ T

0

B2(u,u,v)ϕ dt as n→∞ . (4.41)

Write

(∫ T

0

(B2(Un,Un,v)ϕn dt−
∫ T

0

B2(u,u,v)ϕ dt

)
=

∫ T

0

B2(Un,Un,v)(ϕn − ϕ) dt+

∫ T

0

(
B2(Un,Un,v)−B2(u,u,v)

)
ϕ dt .
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By (4.25), Lemma 2.12, Lemma 4.4, and the uniform boundedness of ‖uin‖ we have that

|
∫ T

0

(B2(Un,Un,v)(ϕn − ϕ) dt|

≤C|
∫ T

0

‖Un‖‖Un‖1‖v‖1(ϕn − ϕ) dt|

≤C‖v‖1‖Un‖L2(I;V)‖ϕn − ϕ‖L2(I) → 0 as n→∞ .

By (3.7),(4.32), and (4.34), we use integration by parts to find that as n→∞

∫ T

0

B2(Un,Un,v)ϕ dt =−
∫ T

0

B2(Un,v,Un)ϕ dt

=
2∑

i,j=1

∫ T

0

∫
Ω

(Un)i(
∂vj
∂xi

)(Un)j dx ϕ dt

→
2∑

i,j=1

∫ T

0

∫
Ω

ui(
∂vj
∂xi

)uj dx ϕ dt

=−
∫ T

0

B2(u,v,u)ϕ dt

=

∫ T

0

B2(u,u,v)ϕ dt ,

from which (4.41) follows. Analogously, (4.24), Lemma (4.4), and Holder’s inequality yield

|
∫ T

0

B3(Un, Cn, r)(ϕn − ϕ) dt|

≤ C

∫ T

0

‖Un‖‖Un‖1‖Cn‖‖Cn‖1)
1
2 )‖v‖1|ϕn − ϕ| dt

≤ C

∫ T

0

(‖Un‖1 + ‖Cn‖1)‖v‖1|ϕn − ϕ| dt

≤ C‖v‖1

(
‖Un‖L2(I;V ) + ‖Cn‖L2(I;H̃)

)
‖ϕn − ϕ‖L2(I) → 0 as n→∞

and ∫ T

0

B3(Un,Un,v)ϕ dt→
∫ T

0

B3(u,u,v)ϕ dt .
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Together the above estimates give

∫ T

0

B(Un, Cn, r)ϕn dt→
∫ T

0

B(u, c, r)ϕ dt , as n→∞ . (4.42)

Combing (4.36), (4.37), (4.38), (4.39), (4.40), (4.41), and (4.42), we deduce from system

(4.35) that



−
∫ T

0

(u, ṽ′)dt+

∫ T

0

(
ν(c+ α)∇u,∇ṽ

)
dt+

∫ T

0

B2(u,u, ṽ) dt

= −
∫ T

0

(
g(1 + γc)i2, ṽ) dt+

∫ T

0

(f , ṽ) dt ,

−
∫ T

0

(c, r̃′) dt+

∫ T

0

θa(c, r̃) dt+

∫ T

0

B3(u, c, r̃) dt−
∫ T

0

U(c,
∂r̃

∂x2

) dt

=

∫ T

0

Uα

|Ω|
(
∂r̃

∂x2

, 1) dt ,

(4.43)

for any ṽ and r̃ of the form in (4.11). Because such ṽ and r̃ are dense in L2(I; V) and

L2(I; H̃) respectively, system (4.43) holds for all ṽ ∈ L2(I; V) and r̃ ∈ L2(I; H̃). Hence

(u, c) ∈ V×H̃ satisfies (4.2) in sense of distribution. Since the weak derivative u′ ∈ L2(I; V′)

and c′ ∈ L2(I; H̃ ′) both exist, the pointwise version (4.2) is true for a.e.t ∈ I, i.e., (u, c) is

the solution of (4.2).

Uniqueness. Analogous to the steady case, the bilinear form b(·, ·) satisfies the inf-

sup condition (3.2). Thus for each solution (u, c) of system (4.2), there exists a unique

p ∈ L2(I;L2
0(Ω)) satisfying system (4.1) (see [62], p. 59, Theorem I.4.1). As a result, to

prove the uniqueness of solution to system (4.1), it suffices to prove that system (4.2) has a

unique solution (u, c).

Theorem 4.6. Suppose

(H8) The hypotheses of Theorem 4.5 hold;
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(H9) The viscosity ν(·) is Lipschitz continuous, i.e., there exists νL > 0 such that

|ν(x1)− ν(x2)| ≤ νL|x1 − x2| ∀x1, x2 ∈ R ;

(H10) There exists a constant C0 such that

‖∇u)‖∞ ≤ C0 ∀t ∈ I .

Then the solution (u, c) of system (4.2) is unique.

Proof. Let (u1, c2) and (u2, c2) be two different solutions of (4.2). Substituting (u, c) with

(u1, c1) and (u2, c2) in (4.2) we have



〈u′1,v〉+
(
ν(c1 + α)∇u1,∇v

)
+B2(u1,u1,v)

= −
(
g(1 + γc1)i2,v

)
+ (f ,v) ∀v ∈ V ,

(c′1, r) + θa(c1, r) +B3(u1, c1, r)− U(c1,
∂r

∂x2

) = Uα(
∂r

∂x2

, 1) ∀r ∈ H̃ ,

u1(0) = u0 , c1(0) = c0 − α

(4.44)

and



〈u′2,v〉+
(
ν(c2 + α)∇u2,∇v

)
+B2(u2,u2,v)

= −
(
g(1 + γc2)i2,v

)
+ (f ,v) ∀v ∈ V ,

(c′2, r) + θa(c2, r) +B3(u2, c2, r)− U(c2,
∂r

∂x2

) = Uα(
∂r

∂x2

, 1) ∀r ∈ H̃ ,

u2(0) = u0 , c2(0) = c0 − α .

(4.45)
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Subtracting (4.45) from (4.44) with v = u1 − u2 and r = c1 − c2, we find that

〈(u1 − u2)′,u1 − u2〉+
(
ν(c1 + α)∇u1 − ν(c2 + α)∇u2,∇(u1 − u2)

)
+B2(u1,u1,u1 − u2)−B2(u2,u2,u1 − u2)

=− gγ
(

(c1 − c2)i2,u1 − u2

) (4.46)

and

〈(c1 − c2)′, c1 − c2〉+θa(c1 − c2, c1 − c2)

+B3(u1, c1, c1 − c2)−B3(u2, c2, c1 − c2)

− U
(
c1 − c2,

∂(c1 − c2)

∂x2

)
= 0 .

(4.47)

From (3.8)


B2(u1,u1,u1 − u2)−B2(u2,u2,u1 − u2) = B2(u1 − u2,u2,u1 − u2) ,

B3(u1, c1, c1 − c2)−B3(u2, c2, c1 − c2) = B3(u1 − u2, c2, c1 − c2) .

Using (3.4) and(4.24), we apply Young’s inequality to deduce from (4.47) that

1

2

d

dt
‖c1 − c2‖2 +

θ

C2
Ω

‖c1 − c2‖2
1

≤ 〈(c1 − c2)′, c1 − c2〉+ θa(c1 − c2, c1 − c2)

≤ |B3(u1 − u2, c2, c1 − c2)|+ U‖c1 − c2‖‖c1 − c2‖1

≤ C
(
‖u1 − u2‖‖u1 − u2‖1‖c2‖‖c2‖1

) 1
2‖c1 − c2‖1 + U‖c1 − c2‖2

1

≤ (ε+ U)‖c1 − c2‖2
1 + C(ε)

(
‖u1 − u2‖‖u1 − u2‖1‖c2‖‖c2‖1

)
.

(4.48)
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We rewrite (4.46) in the following form

〈(u1 − u2)′,u1 − u2〉+
((
ν(c1 + α)− ν(c2 + α)

)
∇u1,∇(u1 − u2)

)
+
(
ν(c2 + α)∇(u1 − u2),∇(u1 − u2)

)
+B2(u1 − u2,u2,u1 − u2)

=− gγ
(

(c1 − c2)i3,u1 − u2

)
.

Then using (1.21), (3.4), (4.25), (H9), and Young’s inequality yield that

1

2

d

dt
‖u1 − u2‖2 +

ν∗
C2

Ω

‖u1 − u2‖2
1

≤〈(u1 − u2)′,u1 − u2〉+
(
ν(c2 + α)∇(u1 − u2),∇(u1 − u2)

)
≤
∣∣∣((ν(c1 + α)− ν(c2 + α)

)
∇u1,∇(u1 − u2)

)
+B2(u1 − u2,u2,u1 − u2) + gγ

(
(c1 − c2)i3,u1 − u2

)∣∣∣
≤ C0νL‖c1 − c2‖‖u1 − u2‖1 + ‖u1 − u2‖‖c1 − c2‖

+ C
(
‖u1 − u2‖‖u1 − u2‖1‖u2‖‖u2‖1

) 1
2‖u1 − u2‖1

≤ε‖u1 − u2‖2
1 + C(ε)

(
‖u1 − u2‖‖u1 − u2‖1‖u2‖‖u2‖1 + ‖c1 − c2‖2

)
.

(4.49)

Hypothesis (4.5) implies that we may choose a sufficiently small ε > 0 such that

ε < min{ ν∗
C2

Ω

,
θ

C2
Ω

− U} .
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Taking the sum of (4.48) and (4.49) and applying Young’s inequality we find that

d

dt
‖u1 − u2‖2 + ‖u1 − u2‖2

1 +
d

dt
‖c1 − c2‖2 + ‖c1 − c2‖2

1

≤ C
(
‖u1 − u2‖‖u1 − u2‖1‖c2‖‖c2‖1

+ ‖u1 − u2‖‖u1 − u2‖1‖u2‖‖u2‖1

+ ‖c1 − c2‖2
)

≤ ε‖u1 − u2‖2
1

(
‖c2‖2 + ‖u2‖2

)
+ C(ε)‖u1 − u2‖2

(
‖c2‖2

1 + ‖u2‖2
1

)
+ C‖c1 − c2‖2 .

Proceeding as in Lemma 4.4, we can show that ‖u2‖ and ‖c2‖ are uniformly bounded with

respect to t. Hence choosing ε > 0 such that

ε <
1

max{‖c2‖2 , ‖u2‖2}
,

we obtain that

d

dt
‖u1 − u2‖2 +

d

dt
‖c1 − c2‖2

≤C‖u1 − u2‖2
(
‖c2‖2

1 + ‖u2‖2
1

)
+ C‖c1 − c2‖2 .

Using Gronwall’s inequality we conclude that for any t ∈ I (recall that both ‖u2‖2
1 and ‖c2‖2

1

are integrable on I)

‖u1 − u2‖2(t)+‖c1 − c2‖2(t)

≤‖u1 − u2‖2(0) exp(

∫ t

0

(
‖u2‖2

1 + ‖c2‖2
1

)
ds

+ C‖c1 − c2‖2(0) .
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Thus

‖u1 − u2‖ = ‖c1 − c2‖ = 0 , a.e.t ∈ I . (4.50)

Remark 4.7. Comparing Theorem 4.6 with Theorem 3.7, we can see condition (H7) is not

needed to prove the uniqueness of the solution, i.e., the uniqueness of solution of time

dependent bioconvection can be obtained under weaker conditions than in the steady case.

This is general for partial differential equations with solution dependent coefficient. We also

note that we restrict the equation to a two dimensional model.

4.2 Numerical approximation

In this section, we consider the semi-discrete finite element approximation to solutions

of (4.1). Throughout this section, we assume that the weak solution (u, p, c) of (3.2) exists

and is unique.

We use the same finite element spaces as for the steady bioconvection. Let τh be a

family of quasi-uniform triangulations of the convex polygonal domain Ω satisfying

max
τ∈τh

diam τ ≤ h ,

where h refers to the mesh size. Let Xh, Mh, and Sh be the corresponding finite dimensional

subspaces of H1
0(Ω), L2

0(Ω), and H̃, respectively, that satisfy the following approximation

properties

inf
vh∈Xh

‖v − vh‖1 ≤ Chs‖v‖s+1 ∀v ∈ Hs+1(Ω) , 0 < s ≤ k , (4.51)

inf
qh∈Mh

‖q − qh‖ ≤ Chs‖q‖s ∀q ∈ Hs(Ω) , 0 < s ≤ k , (4.52)

inf
th∈Sh

‖t− th‖1 ≤ Chs‖t‖s+1 ∀t ∈ Hs+1(Ω) , 0 < s ≤ k , (4.53)
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for k = 2, 3. For the construction of these spaces, see [63, 62, 52]. Let Uh and Ch be the

approximation of the initial conditions u0 and c0 in Xh and Sh respectively. The semi-discrete

finite dimensional approximation of (4.1) is defined as follows.

Given Uh ∈ Xh, Ch ∈ Sh, find (uh, ph, ch) ∈ Xh ×Mh × Sh such that for any t ∈ I



〈u′h,v〉+
(
ν(ch + α)∇uh,∇v

)
+B2(uh,uh,v) + b(ph,v)

= −
(
g(1 + γch

)
i2,v) + (f ,v) ∀v ∈ Xh ,

b(q,uh) = 0 ∀q ∈Mh ,

〈c′h, r〉+ θa(ch, r) +B3(uh, ch, r)− U(ch,
∂r

∂x2

) = 0 ∀r ∈ Sh ,

uh(0) = Uh , ch(0) = Ch .

(4.54)

As for the steady biocovnection, we assume that these finite spaces have explicit bases and

that a discrete version of the inf-sup condition (3.26) is satisfied, i.e., for some β > 0,

sup
v∈Xh

b(v, q)

‖v‖Xh

≥ β‖q‖Mh
∀q ∈Mh . (4.55)

For the construction of these spaces, see [63, 62, 52]. Define the discrete divergence free

space

Vh = {v ∈ Xh : (∇ · v, qh) = 0 , ∀qh ∈Mh}

and the auxiliary forms B̂2 and B̂3


B̂2(u,v,w) =

1

2
B2(u,v,w)− 1

2
B2(u,w,v) ,

B̂3(u, c, r) =
1

2
B3(u, c, r)− 1

2
B3(u, r, c) .

We recall the following properties

B̂2(u,v,w) = B2(u,w,v) ∀v,w ∈ H1
0(Ω) ,

B̂3(u, c, r) = B3(u, c, r) ∀u ∈ V , ∀c, r ∈ H̃ ,

(4.56)
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and the identities

B̂2(u,v,v) = 0 , B̂3(u, c, c) = 0 ∀u,v ∈ H1
0(Ω) , ∀c ∈ H̃ , (4.57)

and the tricontinuous properties


B̂2(u,v,w) ≤ CB2‖u‖1‖v‖1‖w‖1 ∀u,v,w ∈ H1

0(Ω) ,

B̂3(u, c, r) ≤ CB3‖u‖1‖c‖1‖r‖1 ∀u ∈ H1
0(Ω) , ∀c, r ∈ H1(Ω) .

(4.58)

It is straight forward to verify that the discrete versions of estimates (4.25) and (4.24) hold,

that is,

|B3(u,c, r)| ≤ C(‖u‖‖u‖1‖c‖‖c‖1)
1
2‖r‖1 ∀u ∈ V , ∀c, r ∈ H1(Ω) , (4.59)

and

|B2(u,v,w)| ≤ C(‖u‖‖u‖1‖v‖‖v‖1)
1
2‖w‖1 ∀u ∈ V , v ,w ∈ H1

0(Ω) . (4.60)

We first consider the discrete version of (4.2).

Find a pair (uh, ch) such that for ∀t ∈ I,


(u′h,v) +

(
ν(ch + α)∇uh,∇v

)
+ B̂2(uh,uh,v)

= −(g(1 + γch)i2,v) + (f ,v) ∀v ∈ Vh ,

(c′h, r) + θa(ch, r) + B̂3(uh, ch, r)− U(ch,
∂r

∂x2

) = Uα(
∂r

∂x2

, 1) ∀r ∈ Sh .

(4.61)

The existence of the above scheme is guaranteed by general ordinary differential equation

theory. Taking v = uh and r = ch in (4.61), using (1.21), (1.22), and (3.31), and applying
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Young’s inequality we obtain

1

2

d

dt
‖uh‖2 +

ν∗
C2

Ω

‖uh‖2
1

≤ (u′h,uh) +
(
ν(ch + α)∇uh,∇uh

)
≤ | −

(
g(1 + γch)i2,uh

)
+ (f ,uh)| ≤ ε‖uh‖2

1 + C
(
‖f − gi2‖2 + ‖ch‖2

) (4.62)

and

1

2

d

dt
‖ch‖2 +

θ

C2
Ω

‖ch‖2
1 ≤ (c′h, ch) + θa(ch, ch)

≤ |U(ch,
∂ch
∂x2

) + Uα(
∂ch
∂x2

, 1)|

≤ (ε+ U)‖ch‖2
1 + C .

(4.63)

By (4.5) we can choose small ε > 0 such that ε <
θ

C2
Ω

− U . Then (4.63) gives

d

dt
‖ch‖2 + ‖ch‖2

1 ≤ C .

Thus (4.62) yields

d

dt
‖uh‖2 + ‖uh‖2

1 ≤ ‖f − gi2‖2 + ‖ch‖2 ≤ C .

Integrating (4.62) and (4.63) with respect to t and taking the sum, we obtain the estimate

‖uh‖2 + ‖ch‖2 +

∫ t

0

(
‖uh‖2

1 + ‖ch‖2
1

)
dτ ≤ C ∀t ∈ I . (4.64)

Following the same argument, we establish a similar estimate for the exact solution (u, c),

that is

‖u‖2 + ‖c‖2 +

∫ t

0

(
‖u‖2

1 + ‖c‖2
1

)
ds ≤ C ∀t ∈ I . (4.65)
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After (uh, ch) are computed, we compute ph ∈Mh by solving

(ph,∇ · v) =(u′h,v) +
(
ν(ch + α)∇uh,∇v

)
+B2(uh,uh,v)

+
(
g(1 + γch)i2,v

)
− (f ,v) ∀v ∈ Xh .

(4.66)

As in the steady case, by the property of Lagrange multiplier and (4.55), the above equation

is always solvable and the solution ph ∈Mh is unique in the quotient space Mh/Nh where

Nh = {qh ∈Mh : (qh,∇ · v) = 0 ∀v ∈ Xh} .

In this way, the pressure ph depends continuously on the discrete solution uh.

To obtain the error estimates, we use the Ritz Galerkin projections ([62], p. 132-139)

rh : H1
0(Ω)→ Vh, sh : H̃ → Sh , and the L2 projection πh : L2

0(Ω)→ Mh to split the errors

into two parts: 
u− uh = u− rhu + rhu− uh := ρhu + θhu ,

p− ph = p− πhp+ πhp− ph := ρhp + θhp ,

c− ch = c− shc+ shc− ch := ρhc + θhc .

(4.67)

The convergence of the projection error is guaranteed by (4.51), that is

‖ρhu‖1 → 0 , ‖ρhp‖1 → 0 , ‖ρhc‖1 → 0 as h→ 0 . (4.68)

We also have the following estimate for the projection

‖rhu‖1 ≤ C(‖u‖1) , ‖shc‖1 ≤ C(‖c‖1) , ‖πhp‖ ≤ C(‖p‖1) . (4.69)

Then the main convergence theorem of the numerical approximation is stated as follows.

Theorem 4.8. Assume that

(H11) The assumptions of Theorem 4.6 hold;
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(H12) u ∈ C1(I; H1
0(Ω)) ∩V and c ∈ C1(I;H1

0 (Ω)) ∩ H̃ (see [52], p. 211).

Then the solution (uh, ch) converges to the exact solution (u, c), i.e.,

‖u− uh‖+ ‖c− ch‖ → 0 as h→ 0 .

Proof. In light of (4.68), it suffices to estimate θhu, θhp and θhc . Subtracting (4.1) from (4.54)

with v = θhu, r = θc we have that

(u′h − u′, θhu)+
(
ν(ch + α)∇uh,∇θhu

)
−
(
ν(c+ α)∇u,∇θhu

)
+ B̂2(uh,uh, θ

h
u)− B̂2(u,u, θhu)

+ b(p− ph, θhu)

=− gγ
(

(ch − c))i2, θhu
)

(4.70)

and

(c′h − c′, θhc ) + θa(ch − c, θhc ) + B̂3(uh, ch, θ
h
c )− B̂3(u, c, θhc )− U(ch − c,

∂θhc
∂x2

) = 0 . (4.71)

Notice that θhu ∈ Vh and θhp ∈Mh. Therefore the definition of Vh implies that b(θhp , θ
h
u) = 0,

i.e.,

b(p− ph, θhu) = b(ρhp , θ
h
u) .

The following identities are guaranteed by (4.57) .

B̂2(uh,uh, θ
h
u)− B̂2(u,u, θhu) = B̂2(θhu,uh, θ

h
u) + B̂2(rhu, ρ

h
u, θ

h
u) + B̂2(ρhu,u, θ

h
u)

and

B̂3(uh, ch, θ
h
c )− B̂3(u, c, θhc ) = B̂3(θhu, ch, θ

h
c ) + B̂3(rhu, ρ

h
c , θ

h
c ) + B̂3(ρhu, c, θ

h
c ) .
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Then combing (1.21), (3.4), (4.60), (4.59), (4.64), (4.65), and (H12), we apply Young’s

inequality to deduce from (4.70) and (4.71) that

1

2

d

dt
‖θhu‖2 +

ν∗
C2

Ω

‖θhu‖2
1

≤((θhu)′, θhu) +
(
ν(ch + α)∇θhu,∇θhu

)
≤ |((ρhu)′, θhu) +

(
ν(c+ α)∇ρhu,∇θhu

)
+
((
ν(ch + α)− ν(c+ α)

)
∇u,∇θhu

)
+ B̂2(θhu,uh, θ

h
u) + B̂2(rhu, ρ

h
u, θ

h
u) + B̂2(ρhu,u, θ

h
u)

+ b(ρhp , θ
h
u) + gγ

(
(ch − c)i2, θhu

)
|

≤ ‖(ρhu)′‖‖θhu‖+ ν∗‖θhu‖1‖ρhu‖1 + C0νL‖c− ch‖‖θhu‖1

+ ‖ρhp‖‖θhu‖1 + gγ‖ch − c‖‖θhu‖

+ C‖θu‖1

(
(‖θhu‖‖θhu‖1‖uh‖‖uh‖1)

1
2 + ‖rhu‖1‖ρhu‖1 + ‖ρhu‖1‖u‖1

)
≤ ε‖θu‖2

1 + C(‖u‖1, ε)
(
‖(ρhu)′‖2 + ‖ρhu‖2

1 + ‖θu‖‖θu‖1‖uh‖‖uh‖1

+ ‖ρhp‖2 + ‖θhc ‖2 + ‖ρhc‖2
)

(4.72)

and

1

2

d

dt
‖θhc ‖2 +

θ

C2
Ω

‖θhc ‖2
1

≤((θhc )′, θhc ) + θa(θhc , θ
h
c )

≤
∣∣∣((ρhc )′, θhc ) + θa(ρhc , θ

h
c ) + U(ch − c,

∂θhc
∂x2

)

+ B̂3(θhu, ch, θ
h
c ) + B̂3(rhu, ρ

h
c , θ

h
c ) + B̂3(ρhu, c, θ

h
c )
∣∣∣

≤ ‖(ρhc )′‖‖θhc ‖+ θ‖θhc ‖1‖ρhc‖1 + U‖ch − c‖‖θhc ‖1

+ C‖θhc ‖1

(
(‖θhu‖‖θhu‖1‖ch‖‖ch‖1)

1
2 + ‖rhu‖1‖ρhc‖1 + ‖ρhu‖1‖c‖1

)
≤ ε‖θhc ‖2

1 + C(u, c)
(
‖(ρhc )′‖2 + ‖ρhc‖2

1 + ‖ρhu‖2
1

+ ‖θhu‖‖θhu‖1‖ch‖‖ch‖1 + ‖ρhc‖2 + ‖θhc ‖2
)
.

(4.73)
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Taking the sum of (4.72) and (4.73), applying Young’s inequality again we obtain

d

dt
‖θhu‖2 + ‖θhu‖2

1 +
d

dt
‖θhc ‖2 + ‖θhc ‖2

1

≤ ε(‖θhu‖2
1 + ‖θhc ‖2

1)

+ C
(
‖(ρhu)′‖2 + ‖(ρhc )′‖2 + ‖ρhu‖2

1 + ‖ρhc‖2
1 + ‖ρhc‖2 + ‖θhc ‖2 + ‖ρhp‖2

+ ‖θhu‖‖θhu‖1‖uh‖‖uh‖1 + ‖θhu‖‖θhu‖1‖ch‖‖ch‖1

)
≤ ε
(

1 + ‖ch‖2 + ‖uh‖2
)
‖θhu‖2

1 + ε‖θhc ‖2
1

+ C
(
‖(ρhu)′‖2 + ‖(ρhc )′‖2 + ‖ρhu‖2

1 + ‖ρhc‖2
1

+ ‖ρhp‖2 + ‖ρhc‖2 + ‖θc‖2 +
(
‖uh‖2

1 + ‖ch‖2
1

)
‖θhu‖2

)
.

(4.74)

Proceeding as in Lemma 4.4, we can prove the uniform boundedness of ‖uh‖ and ‖ch‖ with

respect to h. Choose ε > 0 such that

ε < min{ 1

1 + ‖uh‖2 + ‖ch‖2
, 1} .

Then (4.74) leads to

d

dt

(
‖θu‖2 + ‖θc‖2

)
≤C
(
‖(ρhu)′‖2 + ‖(ρhc )′‖2 + ‖ρhu‖2

1 + ‖ρhc‖2
1 + ‖ρhc‖2 + ‖ρhp‖2

)
+ C

(
1 + ‖uh‖2

1 + ‖ch‖2
1

)(
‖θu‖2 + ‖θc‖2

)
.

Integrating with respect to s from 0 to t gives

‖θhu‖2 + ‖θhc ‖2 ≤‖θhu‖2(0) + ‖θhc ‖2(0)

+ C

∫ t

0

(
‖(ρhu)′‖2 + ‖(ρhc )′‖2 + ‖ρhu‖2

1 + ‖ρhc‖2
1 + ‖ρhc‖2 + ‖ρhp‖2

)
ds

+ C

∫ t

0

(
1 + ‖uh‖2

1 + ‖ch‖2
1

)(
‖θhu‖2 + ‖θhc ‖2

)
ds .
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Applying Gronwall’s inequality we have

‖θhu‖2 + ‖θhc ‖2 ≤
(
‖θhu‖2(0) + ‖θhc ‖2(0)

)
exp

(
C

∫ t

0

(1 + ‖uh‖2
1 + ‖ch‖2

1) ds
)

+ C

∫ t

0

(
‖(ρhu)′‖2 + ‖(ρhc )′‖2 + ‖ρhu‖2

1 + ‖ρhc‖2
1 + ‖ρhc‖2 + ‖ρhp‖2

)
ds

≤ C
(
‖Uh − u0‖2 + ‖Ch − c0‖2

)
+

∫ t

0

(
‖ρ′u‖2 + ‖ρ′c‖2 + ‖ρu‖2

1 + ‖ρc‖2
1 + ‖ρc‖2 + ‖ρhp‖2

)
ds) ,

(4.75)

since ‖uh‖2
1 and ‖ch‖2

1 are integrable on I according to a similar argument as in Lemma

4.4.

Remark 4.9. The proof of the convergence of pressure ph remains open.

4.3 Numerical experiments

In this section we describe a numerical experiment in two dimensions to verify the

convergence of numerical scheme (4.54). In this experiment, the parameters used were as in

Section 3.3. Construct the Taylor-Hood element and assign the parameters as

γ = 0.1 , U = 0.1 , θ = 1 , α = 10% ,

and

ν(x) = sin2 x+ 1 , x ∈ R .

The forcing term f was chosen so that the exact solution is


u =
√
t(sinπx sin πy, sin πx sin πy)T ,

p =
√
t sin πx sin πy ,

c =
√
t sin πx sin πy .
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Table 4.1: Convergence rate in L2(I;L2(Ω))

h ‖u− uh‖ ‖p− ph‖ ‖c− ch‖
1/2 0.0067 0.2386 0.0128
1/4 7.72e-04 0.0531 0.0014
1/8 8.84e-05 0.0128 1.75e-04
1/16 1.16e-05 0.0030 2.20e-05
1/32 1.51e-06 7.23e-04 3.06e-06

conv. rate 2.94 2.05 2.85

Table 4.2: Convergence rate in L2(I;H1(Ω))

h ‖u− uh‖1 ‖p− ph‖1 ‖c− ch‖1

1/2 0.1065 0.5044 0.0415
1/4 0.0264 0.2298 0.0103
1/8 0.0066 0.1070 0.0027
1/16 0.0016 0.0474 6.85e-04
1/32 0.0004 0.0233 1.71e-04

conv. rate 2.00 1.02 2.00

Since our focus is on the convergence of the numerical solution with respect to the mesh size

h, we used the time step k = 10−5. The numerical errors for different mesh sizes are shown in

table 4.1 and 4.2, from which we can see that the error tends zero as h become smaller just as

stated in Theorem 4.8. Furthermore the numerical method achieves the optimal convergence

order although we did not prove it.

4.4 Conclusion

In chapter 3 and 4, we studied the mathematical model of bioconvection caused by

average upswimming micro-organisms. The PDE system consists of a Navier-Stokes type

equation for the velocity and pressure coupled with a parabolic equation for the concentra-

tion. The viscosity is assumed to be dependent on the concentration. We established the

existence and uniqueness of a weak solution of both steady and evolutionary bioconvection.

We then constructed finite element approximation of the weak solutions and proved the
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convergence of the numerical approximation to the exact solution. We used our numerical

method to simulate the velocity and concentration distribution inside a small container. The

uniqueness result and the convergence theorem for the evolutionary case are only valid in

the two dimensional case. The convergence of the discrete pressure remains open for the

time dependent bioconvection.
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Chapter 5

Conclusion and future work

Conclusion. We studied two systems of partial differential equations with coefficients

that depend on the solution. The first, a quasi-static poroelasticity is a system comprised

of the equation of linear elasticity and and a nonlinear diffusion equation, and the second,

a Navier-Stokes type system, both systems were studied using the modified Rothe’s method

to handle the solution dependent coefficients. We established the existence and uniqueness

of solutions, and conducted numerical experiments approximating weak solutions of both

systems using the finite element method . Numerical simulations were constructed to show

the accuracy of the models.

Future work. Many equations remain unresolved and various extensions to the present

work are possible.

1. More efficient numerical methods may be considered, including finite volume method

and discontinuous Galerkin methods.

2. The equation of quasi-static poroelasticty can be considered subject to general bound-

ary conditions. Introducing general boundary condition may change the null space of oper-

ator B defined in chapter 2. The energy estimate may need to be modified.

3. We may consider the fully dynamic model (1.9) with secondary consolidation, that

is, with the two terms ρ
∂2

∂t2
u and λ∗∇

d

dt
(∇ · u). Both cases result in coupled systems of

hyperbolic and parabolic equations.

4. Many poroelasticity problems have multi-scale features. For instance, we consider a

rock with small pores. On the macro-scale we consider a deformation equation of the rock

while on the micro-scale we solve a diffusion equation inside the pores. In Biot’s model

the two equations are coupled through the Biot-Willis constant α. However, in view of
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multi-scale finite element method, the two equations can be coupled through mathematical

homogenization by constructing multi-scale finite elements. More work and details can be

found in [64].

5. System (1.19) can be extended to equations that model the convection caused by the

admixture in the atmosphere and ocean which is important in the study of earth ecology

and which involves large scale computation and multi-species creatures [34].
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