
Secure File Assignment in Heterogeneous Distributed Systems

by

Yun Tian

A dissertation submitted to
the Graduate Faculty of

Auburn University
in partial fulfillment of the

requirements for the Degree of
Doctor of Philosophy

Auburn, Alabama
May 4, 2013

Keywords: Security, Performance, Heterogenous, Distributed Systems

Copyright 2013 by Yun Tian

Approved by

Xiao Qin, Associate Professor of Computer Science and Software Engineering
Drew Hamilton, Professor of Computer Science and Software Engineering

Cheryl Seals, Associate Professor of Computer Science and Software Engineering

Abstract

There is a growing demand for large-scale distributed storage systems to support re-

source sharing and fault tolerance. Although heterogeneity issues of distributed systems have

been widely investigated, little attention has yet been paid to security solutions designed for

distributed systems with heterogeneous vulnerabilities. This fact motivates us to investigate

the topic of secure file assignment in heterogeneous distributed systems.

Firstly we propose a secure fragment allocation scheme called S-FAS to improve security

of a distributed system where storage sites have a wide variety of vulnerabilities. In the S-FAS

approach, we integrate file fragmentation with the secret sharing technique in a distributed

storage system with heterogeneous properties in vulnerability. Storage sites in distributed

systems are categorized into a variety of different types of storage node based on vulnerability

characteristics. Given a file and a distributed system, S-FAS allocates fragments of the file to

as many different types of nodes as possible in the system. Data confidentiality is preserved

because fragments of a file are allocated to multiple storage nodes. We develop storage

assurance and dynamic assurance models to evaluate quality of security offered by S-FAS.

Analysis results show that fragment allocations made by S-FAS lead to enhanced security

because of the consideration of heterogeneous vulnerabilities in distributed storage systems.

In order to consider performance while providing higher quality of security for large

scale distributed systems with heterogeneous features, we develop a Secure Allocation Pro-

cessing (SAP) algorithm for the S-FAS scheme to improve the security level and consider its

performance using the heterogeneous features of a large distributed system. To improve the

security, the design of SAP is guided by the experimental results from S-FAS; to improve

performance, we not only consider the heterogeneity of the storage nodes and the whole

system, but also the heterogeneous features of the requests. The SAP allocation algorithm

ii

considers load balancing, delayed effects caused by the workload variance of many consecu-

tive requests, and the heterogeneous features (such as CPU speed and network bandwidth)

of the storage nodes in the system.

In order to use practical implementations to demonstrate the ideas on actual systems

with real-world applications, we developed a prototype using the multi-threading technique

and C language for the S-FAS scheme with the SAP algorithm to guide the file allocation.

The prototype is built in the distributed cluster environment with heterogeneous storage

nodes, in which the Network File System (NFS) and Linux are installed. We did some

experiments on system throughput and testing against real world traces. The evaluation

results show that the proposed solution can not only improve the security level, but also im-

prove the throughput and performance of the distributed storage systems with heterogeneous

vulnerabilities by using the multi-thread technique.

To further explore the security solution while considering system availability, we propose

a solution called Reef by integrating fragment replication into the proposed S-FAS and SAP

solution for distributed systems with heterogeneous features. The Reef scheme is extended

based on the S-FAS scheme. In the proposed Reef scheme we consider the system failure

mode caused by hardware diversity when categorizing the storage nodes into different groups.

The storage assurance model for Reef is developed to evaluate the security quality offered

by Reef when all fragments have the same replication degrees. Then we developed a secure

fragment replication allocation process algorithm called R-SAP illustrating how to use the

proposed Reef scheme. The evaluation results show that the proposed Reef scheme and

R-SAP algorithm can improve both availability and security for distributed storage systems

with heterogeneous vulnerabilities.

iii

Acknowledgments

I would like to acknowledge and thank the many people whom, without their support,

this work would not have been possible.

First of all, I would like to express my deep and sincere gratitude to my advisor, Dr.

Xiao Qin. Without his wide knowledge, detailed and constructive guidance, generous support

and warm encouragement, I would not have completed my PhD study and this dissertation

research would have never been possible. His passionate attitude towards research and

wonderful personality will have a remarkable influence on my entire career.

I warmly thank Dr. Drew Hamilton and Dr. Cheryl Seals for their valuable advice on

my dissertation. The extensive discussions and their insightful comments have significantly

helped in improving the quality of this dissertation. I also wish to express my warm and

sincere thanks to Dr. Shiwen Mao for serving as the outside reader and proofreading my

dissertation.

I have been working in a great research group. I would like to thank the group members:

Xiaojun Ruan, Jiong Xie, Zhiyang Ding, Shu Yin, Yixian Yang, Jianguo lu, James Majors,

Ji Zhang, Xunfei Jiang, Sanjay Kulkarni, Ajit Chavan, and Tausif Muzaffar who have helped

me a lot in my research and study. Working with them is beneficial and pleasant.

I also owe much gratitude to Dr. Daniela Marghitu, Dr. Kai Chang, and Dr. David

Umphress for shaping my graduate student career for the better. I would also like to ac-

knowledge the efferts of Ms. Michelle Wheeles, Ms. Jo Ann Lauraitis, and Ms. Carol

Lovvorn in helping me keep my school and immigration paper work in order.

Furthermore, I have received warm friendship, generous help and patient mentoring

from some other students also from the Department of Computer Science and Software

iv

Engineering. I would like to specially thank Qing Yang, Chengjun Wang, Shaoen Wu and

Haiquan Chen for their help during my study life at Auburn.

I owe my loving thanks to my husband Yuyun Zhan for his sincere understanding,

considerate caring, always support and unconditional love. It would have been impossible

for me to complete this dissertation without his encouragement and support.

Last but not least, I am infinitely grateful to my mother, Ailian Wei and my father,

Shouzhi Tian. They provided me with unconditional love, advice, and support. My par-

ents have presented me with admirable role models of diligence, wisdom and perseverance.

Despite our long distance relationship, my sisters, brothers and all the relatives in our big

family overwhelmed me with more love and support throughout my years in college and

graduate school than what I could have ever deserved. Especially thanks go to my sister

for her unwavering support, mentoring and encouragement. She always has more reasons to

appreciate life than to complain no matter whatever happens.

v

Table of Contents

Abstract . ii

Acknowledgments . iv

List of Figures . x

List of Tables . xv

1 Introduction . 1

1.1 Problem Statement . 1

1.1.1 Security of Distributed Systems . 2

1.1.2 Heterogeneity Trends . 4

1.1.3 Heterogeneous Vulnerabilities . 5

1.1.4 Another Two Design Goals: High Performance and Availability . . . 6

1.2 Research Scope . 7

1.3 Objectives . 10

1.4 Dissertation Organization . 11

2 Literature Review . 15

2.1 Security Techniques for Distributed Systems 15

2.2 Fragmentation Techniques . 16

2.3 Secret Sharing . 16

2.4 Load Balancing to Improve System Performance 17

2.5 Replication Scheme for High Performance and Availability 18

2.6 Observations . 19

2.7 Comparison of Our Work with Existing Solutions 19

3 Secure Fragment Allocation Scheme S-FAS . 20

3.1 System and Threat Model . 22

vi

3.1.1 System Model . 22

3.1.2 Threat Model . 25

3.2 S-FAS: A Secure Fragment Allocation Scheme 26

3.2.1 Heterogeneity in the Vulnerability of Data Storage 26

3.2.2 A Motivational Example . 26

3.2.3 Design of the S-FAS Scheme . 28

3.3 Static and Dynamic Assurance Models . 31

3.3.1 Static Storage Assurance Model . 31

3.3.2 Dynamic Assurance Model. 33

3.4 Evaluation of System Assurance . 34

3.4.1 Impact of Heterogeneity on Storage Assurance 35

3.4.2 Impact of System Size on Storage Assurance 36

3.4.3 Impact of Size of Server Groups on Storage Assurance 37

3.4.4 Impact of Number n of File Fragments on Storage Assurance 38

3.4.5 Impact of Threshold m on Storage Assurance 39

3.4.6 Impact of PL on Dynamic Assurance 39

3.4.7 Impact of q on Dynamic Assurance 42

3.5 Chapter Summary . 42

4 Secure Allocation Processing (SAP) Algorithm for S-FAS 44

4.1 Motivation for the Secure Allocation Processing (SAP) Algorithm 44

4.2 Factors Affecting Performance and Security 46

4.3 SAP Allocation Algorithm . 49

4.4 An Allocation Example for SAP . 53

4.5 Chapter Summary . 54

5 S-FAS Prototype . 57

5.1 Prototype Design . 57

5.1.1 Architecture and Modules . 60

vii

5.1.2 Data Flow . 65

5.2 Experimental Evaluation on System Throughput 66

5.2.1 Evaluation Methodology . 66

5.2.2 Experiment Results . 67

5.3 Read and Write Performance . 71

5.4 Chapter Summary . 76

6 Reef-A Replication Solution to Improve Availability 77

6.1 Improve Availability in S-FAS Solution . 78

6.1.1 Availability in Distributed System . 78

6.1.2 Make Heterogeneity valuable to Availability 79

6.2 System Model and Architecture . 80

6.2.1 Replication Scheme for Heterogeneous Distributed Systems 81

6.2.2 A Motivation Example . 83

6.3 Reef: A Fragment Replication Scheme for S-FAS 87

6.3.1 Design Goal of Reef . 87

6.3.2 Design of the Reef Scheme . 89

6.4 Static Assurance Model for Reef . 92

6.5 Evaluation of System Assurance . 95

6.5.1 Impact of Replication Degree on Storage Assurance 95

6.5.2 Impact of System Size on Storage Assurance 96

6.5.3 Impact of Number n of File Fragments on Storage Assurance 97

6.6 R-SAP: The Allocation Algorithm for Reef 99

6.6.1 Factors Affecting Security, Availability and Performance 100

6.6.2 The Design of R-SAP . 100

6.7 Chapter Summary . 104

7 Future Research Plan . 105

viii

7.1 Task1: Dynamic Replica Reallocation in Heterogeneous Distributed Systems

Based on Reef Scheme . 106

7.2 Task2: Considering Energy as a System Resource to Design Optimal Dynamic

Replica Reallocation Adaptive Schemes . 106

7.3 Task3: Resource Scheduling and Management Considering Heterogeneity Na-

ture in Cloud Computing . 107

8 Conclusion . 108

8.1 Dissertation Summary . 108

8.1.1 S-FAS: A Secure Fragment Allocation Scheme 108

8.1.2 SAP: An Secure Fragment Allocation Process Module 109

8.1.3 A Prototype: The Implementation of S-FAS scheme and SAP Algorithm109

8.1.4 Reef: An Replication Scheme to Improve Availability 109

8.2 Contributions . 110

Bibliography . 112

ix

List of Figures

1.1 The Architecture of The Core Work . 12

3.1 A distributed storage system is comprised of a set of cluster storage subsystems.

Multiple fragments of a file can be stored either in storage nodes within a single

cluster storage subsystem or in nodes across multiple cluster storage subsystems.

See Fig. 3.2 for details on a cluster storage subsystem. 22

3.2 A cluster storage subsystem consists of a number of storage nodes and a gate-

way. Storage nodes are divided into different server-type groups, each of which

represents a level of security vulnerability. 23

3.3 A distributed storage system contains 16 storage nodes, which are divided into

4 server-type groups (or server groups for short), i.e., T1, T2, T3, and T4. Servers

in each group have the same level of security vulnerability. 27

3.4 Possible insecure file fragment allocation decision made using a hashing function

(see Eq. 11 in [82]): Server set 1 handles fragment fa, server set 2 handles

fragment fb, and server set 3 handles fragment fc. Server set 1 contains storage

nodes r1, r4, r7, r10, r13, and r16; server set 2 contains storage nodes r2, r5,

r8, r11, and r14; and server set 3 contains storage nodes r3, r6, r9, r12, and r15.

It is possible that fragments fa, fb, and fc may be allocated to storage nodes

that belong to the same server-type group. For example, the three fragments are

respectively stored on nodes r4, r8, and r12, which share the same vulnerability in

server group T4. Rather than three attacks, one successful attack against server

group T4 allows unauthorized users to access the three fragments of file F 29

x

3.5 Heterogeneous system and homogeneous system using secret sharing scheme. In

all the four test cases, N is set to 60. K is set to 1, 4, 5, and 6, respectively.

When K is 1, there is only one server group in the system. 35

3.6 The impact of the system size N on storage assurance. 36

3.7 The impact of server-group size on data storage assurance. The server-group

size means the number of storage nodes in a server-type group. Note that the

storage nodes within a server group share the same level of vulnerability. The

server-group size varies from 12 to 18 with an increment of 1. 37

3.8 The impact of the number n of fragments of a file on storage assurance. The

number n of fragments increases from 11 to 20. The parameters k and N are set

to 3 and 75, respectively. 38

3.9 Impact of PL - the probability that a fragment might be intercepted by an attacker

during the fragment’s transmission through an insecure link. PL is varied from 0

to 8 ∗ 10−3 by increments of 1 ∗ 10−3. Threshold m is varied from 7 to 10 40

3.10 Impact of q - the number q of fragments transmitted to and from a storage cluster.

q is chosen from 0 to 6 with an increment of 1. Threshold m is set from 7 to 10) 41

4.1 The SAP fragment Partition and Sorting Step. The chosen secret sharing scheme

(m, n) is employed. 50

4.2 The SAP Data Flow. 51

4.3 Allocation Load Sample . 53

4.4 Alocation Result . 55

xi

5.1 System architecture.The storage server manages metadata. The storage nodes

are logically grouped into different server types. Client nodes can directly access

storage servers through the network connection. 58

5.2 The Prototype design.The upper part of this figure represents the disks of a

storage server where the storage node configuration file, file configuration file,

and fragment configuration file are stored. The middle part is the memory part

of the storage server node, where the key allocating module parts such as the

SAP algorithm, multi-thread writing, and the three active link lists are stored.

The three active lists records the most updated information for storage nodes,

stored files and fragments in the system. The lower layer in the figure represent

the client nodes in the system. 59

5.3 The architecture of the system.The storage server manages metadata (e.g., con-

figuration files for server nodes, stored files and fragments. The Storage node also

runs the NFS).The storage nodes are logically grouped into different server types

(server nodes of the same server type share the similar vulnerabilities.) Client

nodes can directly access storage servers through the network interconnect. . . . 61

5.4 The allocating module. The allocating module runs on the storage server node

and directly communicate with the client nodes. The upper part of this figure

represents the disks of the storage node where the server configuration file, file

configuration file and the fragment configuration file are stored. The middle part

is the memory part of the storage server node, where the key allocating module

parts such as the SAP algorithm, multi-thread writing and the three active link

lists are stored. The three active lists records the most updated information for

server, stored file and fragments in the system. The lower layer in the figure

represent the client nodes in the system. 62

xii

5.5 The reads and writes/tracing module.The reads and writes/tracing module runs

at the storage server node. The SAP reading and/or writing part deal with the

requests from clients or trace records. 64

5.6 Impact of file size on system throughput. 68

5.7 Impact of fragment number on system throughput. 68

5.8 File Size Impact on Throughput of Systems Including Different Number of Stor-

age Nodes . 69

5.9 File Size and Number of Storage Nodes Impact on System Throughput(1). . . . 70

5.10 File Size and Number of Storage Nodes Impact on System Throughput(2) . . . 71

5.11 File Size Impact on Read-Only Trace Processing Time. 72

5.12 File Size Impact on Write-Only Trace Processing Time. 73

5.13 File Size Impact on read and Write Trace Processing Time. 74

5.14 Fragment Number Impact on Read-Only Trace Processing Time. 74

5.15 Fragment Number Impact on Write-Only Trace Processing Time. 75

5.16 Fragment Number Impact on Read and Write Trace Processing Time. 75

6.1 A distributed storage system 2 contains 25 storage nodes, which are categorized

into 5 server-type groups (or server groups for short), i.e., T1, T2, T3, T4, and T5.

Servers in each group have the same level of security vulnerability. 85

6.2 Possible insecure file fragment allocation . 86

6.3 Replication Degree Impact on Assurance . 96

xiii

6.4 System Size Impact on Assurance . 98

6.5 Number of Fragments Impact on Assurance . 99

6.6 Creating a Three-dimension Decreasing Ordered Replica List 102

6.7 Data Flow of the R-SAP Algorithm . 103

xiv

List of Tables

3.1 Notation used in the system and models. 24

4.1 Notation used in the SAP Algorithm. 47

4.2 Features of Example Files . 54

4.3 Features of a Heterogeneous Storage System Example 54

4.4 Allocation Result by the SAP Algorithm . 56

6.1 Notation used in the system and models. 81

6.2 Notation used in the SAP Algorithm. 101

xv

Chapter 1

Introduction

With the wide use and development of distributed computing, parallel computing and

cloud computing, the security issues for such applications have emerged as primary and even

bottlenecks for systems dealing with large amount of sensitive data. With the increasing

of the storage node number in distributed storage systems, the heterogeneous feature is

becoming more common. There are a lot of solutions exist to solve the security problems

based on different aspects of the systems. Although heterogeneity issues of distributed

systems have been widely investigated, little attention has yet been paid to security solutions

designed for distributed storage systems with heterogeneous vulnerabilities. Based on the

heterogeneous trend of distributed systems, we believe that there are methods to make

use of heterogeneity of such systems to improve system security while considering system

performance and availability. The objective of this dissertation work is to investigate how

to use heterogeneity among distributed storage nodes to improve system security and at the

same time to improve system performance and availability. This chapter first presents the

problem statement in Section 1.1. In Section 1.2, we describe the scope of this research.

Section 1.3 highlights the main objectives of this dissertation, and Section 1.4 outlines the

dissertation organization.

1.1 Problem Statement

In this section, we start with an overview of the security problem and techniques of

distributed systems. In Section 1.1.2, we describe the heterogeneity trend of larger and

scalable distributed storage systems. Section 1.1.3 specifically discusses the heterogeneous

1

vulnerabilities of distributed systems. Then, we present our another two design goals (except

security) of performance and availability in distributed storage systems in Section 1.1.4.

1.1.1 Security of Distributed Systems

Distributed systems which provide information sharing and large scale data storage,

have enormous impact on our society. The security demand for such distributed systems is

becoming increasingly important. The consequences of the failures of the distributed systems

can have high cost, from financial resources loss to even human lives loss. Modern large scale

distributed systems services must provide guarantees for protecting services against malicious

threats [99]. However, distributed systems are more vulnerable to threats than centralized

systems, since it is difficult to control processing activities of the distributed systems and

information can be accessed over networks [142].

A variety of factors have impact on distributed system security including network topol-

ogy, storage nodes, data placement, distributed system physical security environment, dis-

tributed system management structure, and interactions between different security mecha-

nisms [88]. Except the popular and traditional security techniques like authentication [135]

and access control [107] [86], many security approaches have been developed to improve se-

curity level of distributed systems corresponding to the above mentioned influential factors

on security. Some of the security techniques are based on the system architecture level.

For example, Benson, G. and Appelbe, W. et al. proposed a hierarchical model for dis-

tributed system security [18]; Naqvi, S. and Riguidel, M. developed a security architecture

for heterogeneous distributed computing systems [87]; Soshi, M. and Maekawa, M. proposed

a security architecture for open distributed systems [120]. Some security techniques are de-

veloped by building secure system models. For example, Noeparast, E.B. and Banirostam,

T. proposed a cognitive model of immune system for increasing security in distributed sys-

tems [90]; Ching Lin and Varadharajan, V. developed a hybrid trust model for enhancing

2

security in distributed systems [73]; Varadharajan, V. and Black, S. proposed amultilevel

security model for a distributed object-oriented system [130].

Intrusion detection is a security technique to improve system security by identification of

unauthorized use, or intrusion attempt in computer network environment [113] [113] [146] [3] [103].

Intrusion detection is one of the most common security measures that enterprises use to

protect themselves from malware, worms and all other types of cyber attacks. Voko-

rokos, L. and Chovanec, M. et al. proposed a technique of security distributed intrusion

detection system based on multisensor fusion [132]. Their approach is based on behav-

ior prediction of attacker and legitimate user of computer network and they suggests use

of customized DIDS (distributed intrusion detection systems), which combines distributed

monitoring using external sensors and centralized data analysis for more accurately iden-

tification of security events. Many intrusion detection methods are based on different

agents [28] [57] [26] [152] [136] [111] [75] [58]. A variety of other intrusion detection techniques

have been proposed [83] [83] [49] [110] [104] [123].

Intrusion detection is not enough in many cases. It must have some idea of the attack

signature before it can defend against it in order for an intrusion detection system (IDS)

to be effective. Networks remain especially vulnerable to new forms of attacks, since it is

impossible to have a signature for an attack that hasn’t been seen yet. In addition, there are

120K malware incidents identified per day by these tools, with 5 - 20 new malware strains

missed every day. With all these new threats, not to mention the highly targeted Advanced

Persistent Threats, IDS is simply incapable of protecting the distributed system enough.

Fault tolerance is another important and common technique to improve distributed

system security and availability. It is the property that enables a distributed system to

continue operating properly in the event of the failure of (or one or more faults within) some

of its components [143] [51] [126] [105]. A variety of techniques providing fault tolerance for

distributed systems have been proposed [150] [147] [40] [77] [14] [55] [65]. Replication is one

of the methods to provide fault tolerance [31] [114] [119] [50].

3

Although these techniques are able to provide a certain level of security for distributed

systems, the conventional security techniques lack the ability to express heterogeneity in

security services [142]. With the increasing of size and scalability modern large distributed

systems, heterogeneity is a more and more obvious trend.

1.1.2 Heterogeneity Trends

A distributed computing system is a collection of independent computers linked by a

computer network that appear to the users of the system as a single coherent system [2].

Cluster computing is a type of distributed computing. A computer cluster consists of a set

of loosely connected or tightly connected computers that work together so that in many

respects they can be viewed as a single system [1]. Currently distributed cluster computing

is becoming more popular in a lot of application fields both in academic and industry such

as bioinformatics, weather forecasting, social networks and other web-based applications.

One of the advantages for distributed computing systems is that they can easily grow in-

crementally by adding more machines to the systems as requirements on processing power

grow. The large data and high demand drive the sizes of distributed systems to increase

very quickly and to become more scalable and heterogeneous.

When the sizes of distributed cluster computing systems grow, the heterogeneous fea-

tures [4] also grow such as available bandwidth, processor speed, disk capacity, security,

failure rate, and pattern of failures among the storage nodes and network condition. On

the other hand heterogeneous features of the different applications that run on such systems

are increasing at the same time. The data for different applications may have different size,

access rate, and different quality of security and performance requirements.

4

1.1.3 Heterogeneous Vulnerabilities

Heterogeneous distributed systems have been applied to security sensitive applications,

such as banking systems and digital government, which require new approaches to secu-

rity [142]. Heterogeneity issues of distributed systems have been widely investigated [19] [84] [15]

[85] [41]. There are a lot of factors that affect distributed system security both in hardware

and software [89]. The traditional security techniques for distributed systems include ac-

cess control, security threat detection, authentication, authorization, and fault tolerance et

al..There is an increasing demand to develop large-scale distributed storage systems support-

ing data-intensive services that provide resource sharing and fault tolerance. The confiden-

tiality of security-sensitive files must be preserved in modern distributed storage systems,

because distributed systems are exposed to an increasing number of attacks from malicious

users [101].

Although there exist many security techniques and mechanisms (for example, [81] and

[148]), it is quite challenging to secure data stored in distributed systems. In general, security

mechanisms need to be built for each component in a distributed system, then a secure way

of integrating all the components in the system must be implemented. It is critical and

important to maintain the confidentiality of files stored in a distributed storage system when

malicious programs and users compromise some storage nodes in the system.

The file fragmentation technique is often used in many distributed and parallel systems

to improve availability and performance. Several file fragmentation schemes have been pro-

posed to achieve high assurance and availability in a large distributed system [82][137]. In

real-world distributed systems, the fragmentation technique is usually combined with replica-

tion to achieve better performance at the cost of increased security risk to data stored in the

systems. A practical distributed system normally contains multiple heterogeneous servers

providing services with various vulnerabilities. Unfortunately, the existing fragmentation

algorithms do not take the heterogeneity issues into account.

5

In addition to cryptographic systems, secret sharing is an approach to providing data

confidentiality by distributing a file among a group of n storage nodes, to each of which a

fragment of the file is allocated. The file can be reconstructed only when a sufficient number

(e.g., more than k) of the fragments are available to legitimate users. Attackers are unable

to reconstruct a file using the compromised fragments, if a group of servers are compromised

and fewer than k fragments are disclosed.

In a large-scale distributed system, different storage sites have a variety of ways to

protect data. The same security policy may be implemented in various mechanisms. Data

encryption schemes may vary; even with the same encryption scheme, key lengths may vary

across the distributed system. The above mentioned factors can contribute to different

vulnerabilities among storage sites. Although security mechanisms deployed in multiple

storage sites can be implemented in a homogeneous way, different vulnerabilities may exist

due to heterogeneities in computational units.

There are a bunch of work and research have been done on distributed system secu-

rity [64] [52] [60] [67] [16] [102]. However little attention has been paid to security solutions

designed for distributed storage systems by making use of the heterogeneous vulnerabilities.

This problem motivates us to focus on heterogeneity issues concerning security mechanisms

of distributed storage systems.

1.1.4 Another Two Design Goals: High Performance and Availability

The design goals of distributed systems include high security, performance, availability,

and the like. Many solutions have been proposed to achieve these goals in distributed sys-

tems. In the previous section, we summarized the current security techniques for distributed

systems. In this part, we introduce the past and current research on high performance and

availability in distributed systems.

6

A handful studies has been done to improve performance for various types of distributed

systems to support different applications [125] [43] [23] [133] [76] [23] [140]. The heteroge-

neous features of distributed systems have been well investigated to improve performance.

For example, Jiong et al. proposed a solution to improve MapReduce performance through

data placement in heterogeneous Hadoop clusters. [140] Reliability and availability are

another two very important requirements for high quality service of distributed systems.

There are a wide range of approaches to improving system reliability [33] [21] and availabil-

ity [92] [13] [7] [53]. Data replication techniques are very popular solutions in distributed

systems to improve system availability. Many studies have been carried out to investigate

data replication techniques and their applications [29] [78] [153] [100] [106] [20]. In data repli-

cation scheme there is a very important parameter called replication degree which indicates

the number of replicated copies for each piece of data. The appropriate value of replica-

tion degree is very important from the availability’s perspective. If too many replica copies

are created in distributed system, the security risk is increased due to increased chances of

being be attacked by hackers. On the other hand, increasing replica numbers significantly

consume distributed system resources including storage space, power and maintenance cost.

A few studies have focused on determining the best replication degree for distributed sys-

tems [154] [94] [96].

A lot of work has been done to improve security, performance, or availability of high-

quality online services. Unfortunately, there is very little work that has been done to improve

security by making use of heterogeneity of distributed systems through file assignment.

1.2 Research Scope

To address the above mentioned limitations, we propose a file fragmentation and al-

location approach to improving assurance, scalability and performance of a heterogeneous

distributed system.

7

We start to address security heterogeneity issues by dividing storage servers into different

server-type groups. Each server type represents a level of security vulnerability. In a server-

type group, storage servers with the same vulnerability share the same weakness that allows

attackers to reduce the servers’ information assurance. Although it may be difficult to classify

all servers in a system into a large number of groups, a practical way of identifying server

types is to organize these with similar vulnerabilities into one group. If one or more fragments

of a file have been compromised, it is still very hard for a malicious user to reconstruct the file

from the compromised fragments. Our solution is different from those previously explored,

because our approach utilizes heterogeneous features regarding vulnerabilities among servers.

To evaluate our method for fragment allocations, we develop static and dynamic assur-

ance models to quantify the assurance of a heterogeneous distributed storage system handling

data fragments. Experimental results show that increasing heterogeneity levels can improve

file assurance in a distributed storage system.

We investigate the possible parameters that influence both the system performance and

the proposed S-FAS scheme. There are three aspects in a distributed storage system that

influence its security and performance, workload, storage nodes and network interconnects.

There are different elements of each aspect of the system. We extracted the possible key

elements of each aspect by analyzing of the proposed S-FAS scheme.

Based on the both performance and security analysis, we developed a secure allocating

processing (SAP) algorithm for the S-FAS scheme to both improve the security level and

consider system performance by using the heterogeneous feature of large distributed systems.

The SAP allocation algorithm considers load balancing, delays caused by the workload vari-

ance of many consecutive requests, and the heterogeneous nature of storage nodes in a

system.

In order to use practical implementations to demonstrate the ideas on actual systems

with real-world applications, we developed a prototype using the multi-threading technique

and C language for the S-FAS scheme with the SAP algorithm to guide the file allocation.

8

The prototype is built in the distributed cluster environment with heterogeneous storage

nodes, in which the Network File System (NFS) and Linux are installed. We did some

experiments on system throughput and testing against real world traces. The evaluation

results show that the proposed solution can not only improve the security level, but also im-

prove the throughput and performance of the distributed storage systems with heterogeneous

vulnerabilities by using the multi-thread technique.

To further explore the security solution while considering system availability, we pro-

pose Reef, which extends S-FAS by incorporating replicas of file fragments. Reef is designed

to improve the distributed storage system security and availability by integrating the frag-

mentation technique, secret sharing, and fragment replication. Reef considers heterogeneity

features of distributed storage systems during the replica placement phase. The Reef scheme

is an extension of the S-FAS scheme. The system model for Reef is similar to that of S-FAS

except that Reef address the system failures mode and aims to improve system reliability

in addition to security. We build a static assurance model to quantitatively evaluate the

system assurance for the Reef scheme. We also developed a replica allocation process algo-

rithm called R-SAP to demonstrate how does the proposed Reef scheme work. In the Reef

design, we addressed the distributed system security, performance, as well as availability.

To evaluate the assurance provided by Reef, we studied the impacts caused by replication

degree, system size, and the number of fragments.

In this dissertation study, we only focus on the static replica placement solution. Dy-

namic replica reallocation schemes are essential to achieve high performance and availability

of distributed systems, especially for internet based applications and services. In a dynamic

wide-area environment, client access patterns, network conditions, and service characteristics

are constantly changing. We plan to study and propose a dynamic replica reallocation ap-

proach for heterogeneous distributed system by extending Reef to address the heterogeneous

vulnerabilities in the large scale distributed systems.

9

1.3 Objectives

The following are five main objectives that we plan to realize with this study:

1. We aim to address the heterogeneous vulnerability issue by categorizing storage nodes

of a distributed system into different server-type groups based on their vulnerabilities.

Each server-type group - representing a level of vulnerability - will contain storage nodes

with the same security vulnerability. We will propose a secure fragmentation allocation

scheme called S-FAS to improve security of a distributed system where storage nodes

have a wide variety of vulnerabilities.

2. We plan to develop the storage assurance and dynamic assurance models to quan-

tify information assurance and to evaluate the proposed S-FAS scheme. We will find

principles to improve assurance levels of heterogeneous distributed storage systems.

The principles will be general guidelines to help designers achieve a secure fragment

allocation solution for distributed systems.

3. We plan to develop a secure allocating processing (SAP) algorithm to improve security

and system performance by considering the heterogeneous feature of a large distributed

system.

4. In order to conduct the performance analysis for the S-FAS scheme and SAP allocat-

ing algorithm, we will develop a prototype for the S-FAS scheme and SAP algorithm.

We will also implement the prototype and conduct some experiments on the through-

put of the proposed scheme and algorithm. We will do some experiments on system

throughput and testing against real world traces.

5. Last, to further explore the security solution while considering system availability, we

will propose Reef, which extends S-FAS by incorporating replicas of file fragments.

Reef is aimed to improve the distributed storage system security and availability by

integrating the fragment replication technique, secret sharing, fragment replication.

10

Reef will consider heterogeneity features of distributed storage systems during the

replica placement phase. The Reef scheme will be an extension of the S-FAS scheme.

The system model for Reef should be similar to that of S-FAS except that Reef address

the system failures mode and is aimed to improve system reliability in addition to

security. We plan to build a static assurance model to quantitatively evaluate the

system assurance for the Reef scheme. We will also develop a replica allocation process

algorithm called R-SAP to demonstrate how does the proposed Reef scheme work. In

the Reef design, we plan to address the distributed system security, performance, as

well as availability. To evaluate the assurance provided by Reef, we will study the

impacts caused by replication degree, system size, and the number of fragments.

The architecture of the core work of this dissertation is outlined in Fig. 1.1. Our original

motivation and objective for this research are security techniques for distributed heteroge-

neous systems. Performance and availability are another two very important desired pros-

perities in distributed systems. Security, performance and availability prosperities usually

conflict with each others. We discover that by making use of the heterogeneous features in

distributed systems we can improve not only security, but also performance and availability,

so we further address the performance and availability issues based on our proposed security

solution.

1.4 Dissertation Organization

This dissertation is organized in the following manner:

Chapter 2 reviews related work and presents the comparison of our work with existing

solutions.

Chapter 3 describes S-FAS - a secure fragmentation allocation scheme by make use

of the heterogeneous feature among storage nodes in distributed systems. In the S-FAS

approach, we integrate file fragmentation with the secret sharing technique in a distributed

storage system with heterogeneous vulnerabilities. Storage sites in a distributed systems are

11

Figure 1.1: The Architecture of The Core Work

12

classified into a variety of different server types based on vulnerability characteristics. Given

a file and a distributed system, S-FAS allocates fragments of the file to as many different

types of nodes as possible in the system. Data confidentiality is preserved because fragments

of a file are allocated to multiple storage nodes. Storage and dynamic assurance models are

developed to evaluate the quality of security offered by S-FAS. Analysis results show that

fragment allocations made by S-FAS lead to enhanced security because of the consideration

of heterogeneous vulnerabilities in distributed storage systems.

Chapter 4 presents a Secure Allocation Processing (SAP) algorithm for the S-FAS

scheme to improve the security level and consider its performance using the heterogeneous

features of a large distributed system. To improve the security, the design of SAP is guided by

the experimental results from S-FAS; to improve performance, we not only consider the het-

erogeneity of the storage nodes and the whole system, but also the heterogeneous features of

the requests. The SAP allocation algorithm considers load balancing, delayed effects caused

by the workload variance of many consecutive requests, and the heterogeneous features (such

as CPU speed and network bandwidth) of the storage nodes in the system.

Chapter 5 presents a prototype using the multi-threading technique and C language for

the S-FAS scheme with the SAP algorithm to guide the file allocation. The prototype is

built in the distributed cluster environment with heterogeneous storage nodes, in which the

Network File System (NFS) and Linux are installed. Some experiments on system through-

put and testing against real world traces are presented. The evaluation results show that the

proposed solution can not only improve the security level, but also improve the throughput

and performance of the distributed storage systems with heterogeneous vulnerabilities by

using the multi-thread technique.

Chapter 6 proposed a solution called Reef to improve the distributed storage system

security and availability by integrating the fragmentation technique, secret sharing, and

fragment replication. Reef considers heterogeneity features of distributed storage systems

during the replica placement phase. The Reef scheme is an extension of the S-FAS scheme.

13

The system model for Reef is similar to that of S-FAS except that Reef address the system

failures mode and aims to improve system reliability in addition to security. We build a static

assurance model to quantitatively evaluate the system assurance for the Reef scheme. We

also developed a replica allocation process algorithm called R-SAP to demonstrate how does

the proposed Reef scheme work. In the Reef design, we addressed the distributed system

security, performance, as well as availability. To evaluate the assurance provided by Reef, we

studied the impacts caused by replication degree, system size, and the number of fragments.

Chapter 7 presents the future work directions based on the ideas contained in the dis-

sertation.

Chapter 8 summarizes the main contributions of this dissertation.

14

Chapter 2

Literature Review

In this chapter, we summarize the previous literatures that are most relevant to the

research in terms of security, performance, and availability in distributed cluster computing

systems. Section 2.1 introduces related work on security solutions in distributed systems;

Section 2.2 presents the related work on fragmentation techniques in distributed storage

systems; Section 2.3 introduces the secret sharing security solution; Section 2.4 presents the

related work on load balancing for high performance distributed cluster storage systems;

Section 2.5 presents the related work on replication scheme to improve performance and

availability for distributed systems. Section 2.6 presents our observations from the existing

solutions. Section 2.7 presents the comparison of our work with the existing solutions.

2.1 Security Techniques for Distributed Systems

Much research has been performed to improve security of distributed and high-performance

computing systems such as Grids. For example, Pourzandi et al. proposed a structured se-

curity approach that incorporates both distributed authentication and distributed access

control mechanisms [101].

Intrusion detection techniques have been widely used to provide basic assurance of

security in distributed systems. However, most intrusion detection techniques are inadequate

to protect data stored in distributed systems [63]. One of the most effective approaches to

improving information assurance in distributed systems is intrusion tolerance [35] [122] [137].

To enhance security assurance, researchers have developed a range of intrusion-tolerant tools

and mechanisms. The fragmentation technique summarized below is one of the intrusion

tolerance methods that can be used in combination with intrusion detection techniques.

15

2.2 Fragmentation Techniques

A fragmentation technique partitions a security sensitive file into multiple fragments that

are distributed across different storage servers in a distributed system. A lot of fragmentation

schemes have been proven to be valuable tools for improving the security of data stored in

distributed systems (see [66]). Many fragmentation approaches aim to improve availability

and performance of distributed systems by applying data replication methods. For example,

Dabek et al. developed a wide-area cooperative storage system in which a fragmentation

scheme was implemented to improve availability and to facilitate load balancing [32].

Although combining a fragmentation and replication scheme can enhance performance

and availability, data replications may increase security risks due to an increasing number of

file fragments handled by distributed storage servers. A file is more likely to be compromised

when more replications of the file are stored in distributed storage servers.

Existing file fragmentation technologies are inadequate in addressing the issue of het-

erogeneous vulnerabilities in large-scale distributed systems. Our preliminary results show

that security can be improved in a distributed storage system when a fragmentation scheme

incorporates the heterogeneous-vulnerability feature with our S-FAS scheme.

2.3 Secret Sharing

Secret sharing–independently invented by Shamir and Blakley–is a method of distribut-

ing a secret among a group of participants, each of which is allocated a share of the secret.

The secret can be successfully reconstructed only when a sufficient number of shares are

collected and combined [98][112].

Shamir proposed the (k, n) secret sharing scheme that divides data D into n pieces in

such a way that D can be easily reconstructed from any k pieces. If fewer than k pieces are

disclosed, no one can reconstruct D from the revealed pieces.

16

The secret sharing scheme has been extended and employed in different application do-

mains [116]. For example, Bigrigg et al. proposed an architecture called PASIS for secure

storage systems. The PASIS architecture integrates the secret sharing scheme with informa-

tion dispersal to improve security, integrity and availability [138][149]. In a storage system

with PASIS, even if an attacker compromises a limited (i.e., fewer than the threshold) sub-

sets of storage nodes, the confidentiality of data stored in the system is still preserved. The

aforementioned secret-sharing solutions designed for distributed storage systems ignore the

issue of heterogeneous vulnerabilities. This fact motivates us to extend the secret sharing

scheme by considering heterogeneity of vulnerabilities in the context of distributed storage

systems.

2.4 Load Balancing to Improve System Performance

We can classify existing load balancing approaches into different categories such as

static and dynamic or homogenous and heterogeneous. The focus of homogeneous load

balancing schemes is to improve the performance of homogeneous parallel and distributed

systems. On the other hand, heterogeneous load balancing approaches attempt to boost

the performance of heterogeneous clusters, which comprise a variety of nodes with different

performance characteristics in computing power, memory capacity, and disk speed. A static

load balancing scheme for Computational Fluid Dynamics simulations on a network of het-

erogeneous workstations has been studied by Chronopoulos et al [27]. Their load-balancing

algorithm takes both the CPU speed and memory capacity of workstations into account. To

dynamically balance computational loads in a heterogeneous cluster environment, Cap and

Strumpen explored heterogeneous task partitioning and load balancing. Xiao et al [139].

have investigated an approach that considers both system heterogeneity and effective usage

of memory resources, thereby minimizing both CPU idle time and the number of page faults

in heterogeneous systems.

17

2.5 Replication Scheme for High Performance and Availability

Data replication is a fundamental technique to increase data availability, reliability and

robustness in distributed systems. A number of factors including replication degree, replica

placement and maintenance strategies have impact on the effect of data replication. There is

a lot of work have been done studying the impact from replication degree [72], replica place-

ment [45] [9] [115] [131], and replication maintenance [155]strategies and overhead [145] [46].

However, data replication brings the issue of data consistency and many strategies have been

proposed to solve the data consistency issue caused by data replication [6] [8] [5] [144] [12].

High performance is always highly demand in distributed systems. Many factors influ-

ence performance of a distributed system including quality of hardware, software, network

connectivity, data management and scheduling strategies, and etc.. High performance has

been investigated from various aspects [25] [24] [109] [118]. Data replication is one of the

approaches that not only improve availability, but also improve performance of a distributed

system. Many techniques have been developed to boost the performance of distributed

systems where data replication is applied [91] [34] [38] [151].

Availability is usually measured as a factor of the reliability of a distributed systems.

Availability is one of the desired properties [62] and different approaches have been pro-

posed to improve availability in distributed systems [54] [36] [42] [10] [128] [95]. Except data

replication technique, sophisticated management, load balancing and recovery techniques

are needed to achieve high availability amidst an abundance of failure sources that include

software, hardware, network connectivity, and power issues [44]. Data placement and repli-

cation strategies are among the top list of multiple design choices while data replication is

chosen to improve availability of a distributed system [44]. A variety of research has been

done to study efficient data placement [97] and replication strategies [127] [61].

Data replication can improve availability, but it brings the issue of data consistency. A

lot of work have been done to study the tradeoff between availability and data consistency.

However, there is very little work has been done to study the tradeoff between availability

18

and security while replication scheme is used. The more replicas of a file or fragment are

stored, the bigger the risk is that the file or fragment is compromised by hackers. In this

dissertation, we will address the tradeoff issue between availability and security due to data

replication in heterogeneous distributed systems.

2.6 Observations

We observe that vulnerabilities of storage nodes in a distributed system are more het-

erogeneous due to the following four main reasons. First, storage nodes have different ways

to protect data. Second, a security policy can be implemented in a variety of mechanisms.

Third, the key length of an encryption scheme may vary across multiple storage nodes.

Fourth, heterogeneities exist in computational units of storage sites. There is very little

work has been done to boost security by making use of heterogeneous features in distributed

systems. We believe that future security mechanisms for distributed systems must be aware

of vulnerability heterogeneities.

With the previously mentioned limitations of existing techniques designed for distributed

systems, we propose our investigation results and solution for distributed systems with het-

erogeneous systems in this dissertation.

2.7 Comparison of Our Work with Existing Solutions

Our proposed security schemes, assurance evaluation models, secure file allocation algo-

rithms and prototype in this dissertation are different from existing solutions, because our

approach aim to incorporate the heterogeneous vulnerabilities of distributed systems into

file fragment allocation and secret sharing. Our solution captures heterogeneous features of

the nodes regarding vulnerabilities to improve security. At the same time, our techniques

also consider to boost performance and availability of distributed systems.

19

Chapter 3

Secure Fragment Allocation Scheme S-FAS

In previous two chapters we present the introduction of this dissertation and the related

work. In this Chapter we introduce our first work of a fragment allocation scheme called

S-FAS in to improve security of a distributed system where storage sites have a wide variety

of vulnerabilities.

Distributed storage systems are becoming ubiquitous because of the large amount of

data required for search engines, multimedia websites, and data-intensive high-performance

computing [39] [48]. These distributed storage systems typically are at high risk and inef-

ficient concerning the high confidential and performance requirements of the storage data.

Security is one of the key qualities that most customers care about. Without a certain level of

security a storage system is useless for a lot of applications of high confidential requirements.

With more and more personal, commercial, governmental and scientific data needing to be

stored in distributed systems, it is important to enhance the security level of distributed

storage systems.

A handful of traditional or novel techniques developed to improve security in storage

systems include authentication, authorization, fragmentation techniques, secret sharing, era-

sure coding. These security techniques can significantly enhance the assurance level of the

distributed system.

With the increasing of the storage node number in distributed storage systems, the

heterogeneity feature is becoming more common.Vulnerabilities of storage nodes in a dis-

tributed system are heterogeneous in nature due to the following four main reasons. First,

storage nodes have different ways to protect data. Second, a security policy can be imple-

mented in a variety of mechanisms. Third, the key length of an encryption scheme may

20

vary across multiple storage nodes. Fourth, heterogeneities exist in computational units of

storage sites. We believe that future security mechanisms for distributed systems must be

aware of vulnerability heterogeneities. Although heterogeneity issues of distributed systems

have been widely investigated, little attention has yet been paid to security solutions de-

signed for distributed storage systems with heterogeneous vulnerabilities. Since the existing

security techniques developed for distributed systems are inadequate for distributed systems

with heterogeneity in vulnerabilities, the focus of this study is heterogeneous vulnerabilities

in largescale distributed storage systems.

The goal of our research is to develop a Secure Fragment Allocation Scheme (S-FAS) to

fully make use of the feature of heterogeneous vulnerabilities among large scale distributed

storage systems where storage sites have a widevariety of vulnerabilities. In the S-FAS

approach, we integrate file fragmentation with the secret sharing technique in a distributed

storage system with heterogeneous vulnerabilities. Storage sites in a distributed systems are

classified into a variety of different server types based on vulnerability characteristics. Given

a file and a distributed system, S-FAS allocates fragments of the file to as many different

types of nodes as possible in the system. Data confidentiality is preserved because fragments

of a file are allocated to multiple storage nodes.

We develop storage assurance and dynamic assurance models to evaluate the quality of

security offered by S-FAS. Analysis results show that fragment allocations made by S-FAS

lead to enhanced security because of the consideration of heterogeneous vulnerabilities in

distributed storage systems.

The rest of the chapter is organized as follows: We discuss in Section 3.1 the system

and threat model. Section 3.2 describes the design of the S-FAS Scheme. In Section 3.3

we presents the static and dynamic assurance models for S-FAS.Then, Section 3.4 shows

assurance evaluation results of S-FAS. Finally, Section 6.7concludes the chapter and presents

our future research directions.

21

Cluster Storage
1

Cluster
Storage 3

Cluster
Storage

2

Cluster
Storage

4
Cluster
Storage

5

Figure 3.1: A distributed storage system is comprised of a set of cluster storage subsystems.
Multiple fragments of a file can be stored either in storage nodes within a single cluster
storage subsystem or in nodes across multiple cluster storage subsystems. See Fig. 3.2 for
details on a cluster storage subsystem.

3.1 System and Threat Model

We firstly outline the system and threat models that capture main characteristics of

distributed storage systems. The system model is used as a basis to design the S-FAS

fragmentation allocation scheme, whereas the threat model helps us identify vulnerabilities

and certain potential attacks in distributed storage systems.

3.1.1 System Model

The S-FAS fragmentation allocation scheme was designed for a distributed storage sys-

tem (see Fig. 3.1) where each storage site is a cluster storage subsystem. Different cluster

storage subsystems may be connected within some subnetworks to form a larger scale dis-

tributed storage sysytem.

22

Master node or
Gateway of the
cluster storage

Figure 3.2: A cluster storage subsystem consists of a number of storage nodes and a gateway.
Storage nodes are divided into different server-type groups, each of which represents a level
of security vulnerability.

Fig. 3.2 depicts a cluster storage subsystem, which consists of a number of storage nodes

and a gateway. Considering heterogeneous vulnerability in large-scale storage systems, we

divide storage nodes into different server-type groups, each of which represents a level of

security vulnerability .

Before presenting details on the system model, let us summarize all notations used

throughout this chapter in Table 3.1.

In this study, we consider a distributed storage system containing L cluster storage

subsystems, i.e., R1, R2, ..., RL. Cluster storage subsystems Ri consists of Hi storage nodes,

i.e., Ri = {ri1, ri2, ..., riHi
}. All the storage nodes connected in cluster Ri have heterogeneous

vulnerabilities.

Since all the nodes, including a master node, are fully connected in a cluster storage

subsystem, we model the topology of a cluster storage system as a general graph. Cluster

23

Table 3.1: Notation used in the system and models.
Notations Meaning
N Number of server nodes in the system
U The whole system considered
L Number of subsystems in the whole system
Hi Number of server nodes in the subsystem i
F A file stored in the system
Fi Fragment i of file F
Tj Server type j in the system
K The total number of server types
Sj The size of a certain server type in a cluster
m Threshold for the secret sharing scheme
n The total number of fragments for each file

in the secret sharing scheme
Ri Cluster storage subsystem
rij Node j in subsystem i
X The event that a set of storage nodes is

chosen to be attacked
Y The event that if X occurs, at least m fragments

can be compromised using the same attack method.
Z The event of a successful attack to a certain

fragment of a file
V The event file F is compromised under one attack method
PN The successful probability of an attack on a node
Pf The successful probability to compromise

a fragment in a compromised node
P (X) The probability of event X occurring
P (Y) The probability of event Y occurring
P (Z) The probability of event Z occurring
P (V) The probability of event V occurring
α An allocation mapping of file F
SA(α) The storage assurance of an allocation mapping α of file F
DA(α) The dynamic assurance of an allocation mapping α of file F
q Number of fragments needed to reconstruct a file

transmitted from outside of the subsystem
g Number of fragments compromised out of the q fragments

transmitted from outside of the subsystem
PL The probability that a fragment is

intercepted during its transmission
PD The probability that a file F is intercepted

because of the compromised transmitted fragments

24

storage subsystem Ri has a gateway, which hides the cluster’s internal architecture from

users by forwarding file requests to storage nodes.

Data in cluster storage subsystem Ri can be accessed through its master node. When

a read request is submitted to cluster Ri, the master node is responsible for reconstructing

file fragments and returning the file to users. When a write request of a file is issued, the

master node updates all the fragments of the file.

Legitimate users access cluster storage subsystems through master nodes; malicious

users may bypass the master nodes to access storage nodes without being authorized. See

Section 3.1.2 below for details on the threat model.

3.1.2 Threat Model

It is not reasonable to assume that if a malicious user breaks into a storage node,

fragments of a file stored on the node are thereby compromised. Normally, a malicious user

needs two steps to compromise fragments of a file stored on a server. First, the malicious

user must successfully attack the server. Second, fragments are retrieved by the malicious

user.

Let PN be the probability that a storage server is successfully attacked; let Pf be the

probability that authorized users retrieve fragments stored on the server, provided that the

server has been compromised. We define event Z as a successful attack on a fragment (i.e.,

unauthorized disclosure of the fragment). Since the above two consecutive attack steps

are independently, the probability that event Z occurs is a product of probability PN and

probability Pf . Thus, the probability that a fragment is disclosed to an unauthorized attacker

can be expressed as:

P (Z) = PN ∗ Pf . (3.1)

In a dynamic allocation environment, a malicious user can use a compromised node

to collect other needed fragments of the file when the fragments are passing through the

compromised node.

25

If encryption keys are disclosed to attackers, unauthorized interceptions of encrypted

files stored on the attacked node may occur. Given two storage nodes with different vulner-

abilities, successful attacks of the nodes are not correlated. This statement is true for many

potential threats, because compromising one storage node does not necessarily lead to the

successful attack of the second one.

3.2 S-FAS: A Secure Fragment Allocation Scheme

In this section, we first outline the motivation for addressing the heterogeneity issues

in the vulnerability of distributed storage systems. Next, we describe a security problem

addressed in this study. Last, we present a secure fragment allocation scheme called S-FAS

for distributed storage systems.

3.2.1 Heterogeneity in the Vulnerability of Data Storage

Since the existing security techniques developed for distributed systems are inadequate

for distributed systems with heterogeneity in vulnerabilities, the focus of this study is hetero-

geneous vulnerabilities in large-scale distributed storage systems. Vulnerabilities of storage

nodes in a distributed system are heterogeneous in nature due to the following four main rea-

sons. First, storage nodes have different ways to protect data. Second, a security policy can

be implemented in a variety of mechanisms. Third, the key length of an encryption scheme

may vary across multiple storage nodes. Fourth, heterogeneities exist in computational units

of storage sites. We believe that future security mechanisms for distributed systems must

be aware of vulnerability heterogeneities.

3.2.2 A Motivational Example

If the above heterogeneous vulnerability features are not incorporated into fragment

allocation schemes for distributed storage systems, a seemingly secure fragment allocation

26

:Server Group 11T
1 95 13

:Server Group 33T

:Server Group 44T

:Server Group 2
2T

2 14106

3 11 157

4 16128

Figure 3.3: A distributed storage system contains 16 storage nodes, which are divided into 4
server-type groups (or server groups for short), i.e., T1, T2, T3, and T4. Servers in each group
have the same level of security vulnerability.

decision can lead to a breach of data confidentiality. The following motivational example

illustrates a security problem caused by ignoring vulnerability heterogeneities.

Let us consider a file F with three partitioned fragments: fa, fb, and fc, and a distributed

storage system (see Fig. 3.3) that contains 16 storage nodes divided into 4 server-type groups

(or server groups for short), i.e., T1, T2, T3, and T4. Storage nodes in each server group offer

similar services with the same level of vulnerability. In this example, server group T1 consists

of nodes r1, r5, r9, r13, i.e., T1 = {r1, r5, r9, r13}. Similarly, we define the other three server

groups as: T2 = {r2, r6, r10, r14}, T3 = {r3, r7, r11, r15}, and T4 = {r4, r8, r12, r16}.
Fig. 3.4 shows that it is possible to make insecure fragment allocation decisions that

do not take vulnerability heterogeneity into account. The decision made using a hashing

function (see Eq. 11 in [82]) randomly allocates the three fragments of file F to three

different nodes, each of which belongs to one of the three server sets illustrated in Fig. 3.4.

For example, the three fragments fa, fb, and fc are stored on nodes r1, r6, and r8, respectively.

27

This fragment allocation happens to be a good solution, because r1, r6, and r8 have different

vulnerabilities as the three nodes belong to different server groups (i.e., T1, T2, and T4). A

malicious user must launch three successful attacks (one for each server group) in order to

compromise all three fragments.

The above fragment allocation scheme fails to address the threat described in previous

described Threat Model. This is because an attacker can first retrieve one fragment of F

by compromising a single node, then the attacker simply waits for the other two fragments

to be passed through the compromised node. To solve this security problem, Zanin et al.

developed a static algorithm to decide whether a particular storage node is authorized to

handle a file fragment of F [149]. Zanin’s algorithm can generate an insecure fragment

allocation because heterogeneous vulnerabilities are not considered. For example, the three

fragments are respectively stored on nodes r4, r8, and r12, which share the same vulnerability

in server group T4 (see Fig. 3.4). Rather than three attacks, one successful attack against

server group T4 allows unauthorized users to access the three fragments of file F . Two

other insecure fragment allocations are: (1) allocating fa, fb, fc to nodes r1, r5, and r9,

respectively; and (2) allocating fa, fb, fc to nodes r7, r11 and r15, respectively. These three

fragment allocation decisions are unacceptable, because the fragments are assigned to a group

of storage nodes with the same vulnerability, meaning that an attacker who comprised one

node within a group can easily compromise the other nodes in the group. The attacker can

reconstruct F from fa, fb, and fc stored on the comprised server group.

3.2.3 Design of the S-FAS Scheme

To solve the above security problem, we have to incorporate vulnerability heterogeneities

into fragment allocation schemes. Specifically, we design a simple yet efficient approach to

allocating fragments of a file to storage nodes with various vulnerabilities. Since allocating

fragments of a file into different storage clusters can degrade performance, our S-FAS scheme

attempts to allocate fragments to storage nodes within a cluster. If the number of nodes

28

Server Set1 That Handles Fragment

Server Set2 That Handles Fragment

Server Set3 That Handles Fragment

1 1374 1610

af

bf

5 118 142

cf

93 15126

Figure 3.4: Possible insecure file fragment allocation decision made using a hashing function
(see Eq. 11 in [82]): Server set 1 handles fragment fa, server set 2 handles fragment fb,
and server set 3 handles fragment fc. Server set 1 contains storage nodes r1, r4, r7, r10,
r13, and r16; server set 2 contains storage nodes r2, r5, r8, r11, and r14; and server set 3
contains storage nodes r3, r6, r9, r12, and r15. It is possible that fragments fa, fb, and fc
may be allocated to storage nodes that belong to the same server-type group. For example,
the three fragments are respectively stored on nodes r4, r8, and r12, which share the same
vulnerability in server group T4. Rather than three attacks, one successful attack against
server group T4 allows unauthorized users to access the three fragments of file F .

29

with different vulnerabilities cannot meet the aforementioned criterion, file fragments must

be allocated across multiple clusters. To improve the assurance of a distributed storage

system while maintaining high I/O performance, each cluster storage subsystem has to be

built with high vulnerability heterogeneity. This causes the fragments of a file to be less

likely distributed across multiple storage clusters.

Because of the following two reasons, the S-FAS scheme can significantly improve data

security when fragments are stored in a large-scale distributed storage system. First, S-

FAS integrates the fragmentation technique with secret sharing. Second, S-FAS addresses

the issue of heterogeneous vulnerabilities when file fragments are allocated to a distributed

storage system.

The S-FAS scheme makes fragment allocation decisions by following the four policies

below:

• Policy 1: All the storage nodes in a distributed storage system are classified into multi-

ple server-type groups (server group for short) based upon their various vulnerabilities.

Each server group consists of storage nodes with the same vulnerability level.

• Policy 2: To improve security of a distributed storage system, S-FAS allocates frag-

ments of a file to storage nodes belonging to as many different server groups as possible.

In doing so, it is impossible to compromise the file’s fragments using a single successful

attack method.

• Policy 3: The fragments of a file are trying to be allocated to nodes with a wide range

of vulnerability levels all within a single cluster storage subsystem. The goal of this

policy is to improve performance of the storage system by making the fragments less

likely to be distributed across multiple clusters.

• Policy 4: The (m,n) secret sharing scheme is integrated with the S-FAS allocation

mechanism.

30

If a file’s fragment-allocation decisions are guided by the above four policies, successful

attacks against less than m server groups have little chance to gain unauthorized accesses of

files stored in a distributed system. In other words, if the number of compromised fragments

of a file is less than m, attackers are unable to reconstruct the file from the fragments that

are accessed by the unauthorized attackers. The S-FAS scheme can improve information

assurance of files stored in a distributed storage system without enhancing confidentiality

services deployed in cluster storage subsystems of the distributed system, because S-FAS is

orthogonal to security mechanisms that provide confidentiality for each server group in a dis-

tributed storage system. Thus, S-FAS can be seamlessly integrated with any confidentiality

service employed in distributed storage systems in order to offer enhanced security services.

3.3 Static and Dynamic Assurance Models

We developed assurance models to quantitatively evaluate the security of a heteroge-

neous distributed storage system in which S-FAS handles fragment allocations.

3.3.1 Static Storage Assurance Model

For encrypted files, their encryption keys are partitioned and allocated using the same

strategy that handle file fragments. Once a storage node in set U is compromised, file

fragments and encryption key fragments stored on the node are both breached. If a malicious

user wants to crack a file, at least m nodes within U must be successfully attacked.

We first investigate the probability that a file is compromised using one attack method.

Let X be the event that a set of storage nodes is chosen to be attacked. Let Y be the event

that if X occurs, at least m fragments can be compromised using the same attack method.

As we already defined, event Z represents a successful attack to a certain fragment of a file.

Applying the multiplication principle, we calculate the probability that V - an event that

31

file F is compromised under one attack - occurs as:

P(V) =

k∑
j=1

P(X)P(Y)P(Z) (3.2)

where P (X), P (Y) and P (Z) are probabilities that events X, Y and Z occur when the

total number of different server-type groups (server group for short) is K. The probability

P (V) is proportional to probability P (Z), which largely depends on the quality of security

mechanisms deployed in the storage system, as well as the attacking skills of hackers.

Note that when k equals 1, there is no vulnerability difference among storage nodes.

Supposing that all the fragments of a file can be compromised using one successful attack

method, the probability that Y occurs becomes 1. Then, we can express P (V) as:

P(V) =

k∑
j=1

P(X)P(Z) (3.3)

Let Sj be the number of storage nodes in server type Tj set and N be the total number

of nodes in a distributed system. The probability that nodes in set Tj are randomly attacked

can be derived as P(X) =
Sj
N
.

Probability P (Y) in Eq. 3.2 can be calculated as follows:

P (Y) =

n∑
i=m

C i
Sj
Cn−i

N−Sj

Cn
N

, (j = 2, . . .K) (3.4)

where Cn
N is the total number of possibilities of allocating fragments of a file, and the product

of C i
Sj

and Cn−i
N−Sj

is the number of possibilities that a file is compromised using a successful

attack method which means at least m (It may be m+ 1, m+ 2, ..., n) fragments of the file

are compromised.

To simplify the model, one may assume that security mechanisms and attacking skills

have no significant impacts on information assurance of the entire distributed storage system.

This assumption is reasonable because of two factors. First, S-FAS is independent of security

32

mechanisms that provide confidentiality for server groups in a distributed storage system.

Second, if empirical studies can provide values for probability P (Z), the probability P (V)

can be derived from P (Z) and the model (see Eq. 3.4) that calculates P (Y). Since the study

of the distribution of P (Z) is not within the range of this work, in this paper the impact of

probability P (Z) on P (V) is ignored by setting the value of P (Z) to 1.

Now we can derive Eq. 3.2 from Eq. 3.4 as below:

P(V) =
K∑
j=1

(
Sj

N
P(Z)

n∑
i=m

Ci
Sj
Cn−i

N−Sj

Cn
N

)
(3.5)

The confidentiality of file F is assured if F is not compromised. Thus, we can derive

the assurance SA(α) of the storage system from Eq. 3.5 as:

SA (α) = 1− P (V)

= 1−
K∑
j=1

(
Sj
N
P(Z)

n∑
i=m

Ci
Sj
Cn−i

N−Sj

Cn
N

) (3.6)

3.3.2 Dynamic Assurance Model.

During read and write operations, some fragments of a file may be transmitted among

different storage clusters or subnetworks. We assume that data transmissions within a cluster

are secure, while connections among clusters and subnetworks may be insecure. Let PL be

the probability that a fragment is intercepted during its transmission on an insecure link. We

consider a common case in which some fragments of file F are allocated outside a cluster. The

probability PD that a fragment of F is intercepted during its transmission can be expressed

as:

PD = μ1μ2PL + μ3 [1− PL] PL (3.7)

where μ1 = 1 indicates that connections among storage clusters are insecure and μ1 = 0

means the connections are secure. μ2 = 1 indicates that fragments are transferred among

33

different clusters, otherwise μ2 = 0. Similarly, μ3 = 1 means that fragments are transmit-

ted across different subnetworks. When μ1, μ2, and μ3 equal to 0, there is no fragment

transmission risk. If q fragments need to be collected outside a cluster processing read/write

operations, then probability Pq(g) that g out of q fragments are intercepted can be expressed

as:

Pq (g) = Cg
qPD

g(1− PD)
q−g (3.8)

Now we model the dynamic assurance of an allocation mapping α of file F . For simplic-

ity, let us focus on a time period during which there is only one attempt to attack storage

nodes where F is stored. During this time period, we assume that only one read or write

operation is issued to access F . There are two cases where file F can be compromised. First,

a malicious user can reconstruct F from m compromised fragments using the same attack

method. Second, although less than m fragments are compromised, other g fragments are

intercepted during their transmissions. Hence, we can derive the dynamic assurance DA(α)

from the storage risk (see Eq. 3.5) and the transmission risk (see Eq. 3.8), as shown here:

DA(α) = 1−(
P (V) +

(
q∑

g=(m−i)

Pq(g)

)
K∑
j=1

(
Sj

N
×

m−1∑
i=0

Ci
Sj

Cn−i
N−Sj

Cn
N

)) (3.9)

3.4 Evaluation of System Assurance

The assurance models described in Section 3.3 indicate that system assurance is affected

by the number K of storage types, the number N of storage nodes in the system, and the

number Sj of nodes in the jth storage type. In addition, threshold m and the number n of

fragments in a file also have an impact on system assurance. Now, we quantitatively evaluate

the impacts of these factors on the information assurance of distributed storage systems. We

first obtain a comprehensive evaluation of S-FAS in terms of data storage assurance and

34

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

threshold m

st
or

ag
e

as
su

ra
nc

e

The impact of the number of server types K on security assurance

N=60, K=1
N=60, K=4
N=60, K=5
N=60, K=6

Figure 3.5: Heterogeneous system and homogeneous system using secret sharing scheme. In
all the four test cases, N is set to 60. K is set to 1, 4, 5, and 6, respectively. When K is 1,
there is only one server group in the system.

dynamic assurance of S-FAS. We compare our approach with a traditional fragment alloca-

tion scheme that does not consider vulnerability heterogeneities. We evaluated a distributed

storage system with the threshold value m. The default number n of fragments of a file is

set to 12 and Sj=
N
K

for all j from 1 to K.

3.4.1 Impact of Heterogeneity on Storage Assurance

If all storage nodes in the evaluated distributed system are identical in terms of vul-

nerability, the probability that fragments of a file can be compromised using one successful

attack method is 1. Fig. 3.5 shows the impact of the number K of storage types on system

assurance. Results plotted in Fig. 3.5 suggest that for a distributed system with homoge-

neous vulnerability, threshold m has no impact on system assurance. When it comes to a

35

45 50 55 60 65 70

0.4

0.5

0.6

0.7

0.8

0.9

1

the size of the system N

st
or

ag
e

as
su

ra
nc

e

The impact of the size of the system N on storage assurance

k=3, n=12, m=4
k=3, n=12, m=5
k=3, n=12, m=6
k=3, n=12, m=7
k=3, n=12, m=8

Figure 3.6: The impact of the system size N on storage assurance.

distributed system with heterogeneous vulnerabilities, the system assurance increases signif-

icantly with the increasing values of K and threshold m (see Fig. 3.5). Such a trend implies

that a high heterogeneity level of vulnerability gives rise to high confidentiality assurance.

3.4.2 Impact of System Size on Storage Assurance

To quantify the impact of system size N on data assurance of a file stored in the

system, we gradually increase system size from 45 to 70 by increments of 5. We keep k at

3 and also vary m from 4 to 8. Fig. 3.6 reveals that the storage assurance of the system is

not very sensitive to the system size, indicating that storage assurance largely depends on

the vulnerability heterogeneity level rather than system size. Thus, large-scale distributed

storage systems with low levels of vulnerability heterogeneities may not have higher assurance

than small-scale distributed systems. These results suggest that one way to improve system

assurance is to increase vulnerability heterogeneity while increasing the scale of a distributed

36

12 13 14 15 16 17 18

0.4

0.5

0.6

0.7

0.8

0.9

1

number of each server type−assume each type has the same number of servers

st
or

ag
e

as
su

ra
nc

e

The impact of the size of each type Sj on assurance.

k=3, n=12, m=4
k=3, n=12, m=5
k=3, n=12, m=6
k=3, n=12, m=7

Figure 3.7: The impact of server-group size on data storage assurance. The server-group
size means the number of storage nodes in a server-type group. Note that the storage nodes
within a server group share the same level of vulnerability. The server-group size varies from
12 to 18 with an increment of 1.

storage system. A high heterogeneity level in vulnerability helps in increasing threshold m,

making it harder for attackers to compromise multiple server groups and reconstruct files.

3.4.3 Impact of Size of Server Groups on Storage Assurance

Fig. 3.7 illustrates the impact of server-group size on data storage assurance. Note that

the server-group size is the number of storage nodes in a server-type group, in which all the

storage nodes share the same level of vulnerability. We vary the server-group size from 12

to 18 with an increment of 1. We observe from Fig. 3.7 that when threshold m is small (e.g,

m = 4), the assurance of systems with large server-group sizes is slightly higher than that of

systems with small server-group sizes. Interestingly, the opposite is true when the threshold

m is large (e.g, m > 4). Given a fixed number of storage nodes in a distributed storage

37

11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

the number of fragments n of a file in the used scheme

st
or

ag
e

as
su

ra
nc

e

Storage Assurance of System with Different Scheme number n

k=3, N=75, m=4
k=3, N=75, m=5
k=3, N=75, m=6
k=3, N=75, m=7

Figure 3.8: The impact of the number n of fragments of a file on storage assurance. The
number n of fragments increases from 11 to 20. The parameters k and N are set to 3 and
75, respectively.

system, increasing the server-group size can decrease the number of server groups, which in

turn tends to reduce vulnerability heterogeneity. The results shown in Fig. 3.7 match the

results in the previous experiments in which a low level of vulnerability heterogeneity (or

larger server-group sizes) results in degraded storage assurance.

3.4.4 Impact of Number n of File Fragments on Storage Assurance

Fig. 3.8 illustrates the impact of the number n of fragments of a file on storage assurance.

In this experiment, we increase the number n of fragments from 11 to 20 and measured data

storage assurance using our model. The parameters k and N are set to 3 and 75, respectively.

We also vary threshold m from 4 to 7. Results depicted in Fig. 3.8 confirm that the system

assurance is reduced with the increasing value of fragment number n. The results indicate

that a large number of file fragments leads to low data storage assurance of the file. This

38

assurance trend is reasonable because more fragments are likely to be allocated to storage

nodes with the same vulnerability. If one storage node is compromised by an attacker,

fragments stored on nodes with the same vulnerability can also be collected by the attacker,

who is more likely to be able to reconstruct the file from the disclosed fragments.

In addition, Fig. 3.8 shows that increasing the value of threshold m can improve storage

assurance. This pattern is consistent with the results obtained in the previous experiments.

3.4.5 Impact of Threshold m on Storage Assurance

Figs. 3.5-3.8 clearly show the impact of thresholdm on storage assurance of a distributed

system. More specifically, regardless of other system parameters, the storage assurance

always goes up with the increasing threshold value m. The results indicate that the more

fragments an attacker needs in order to reconstruct a file, the higher data storage assurance

can be preserved for the file in distributed storage systems. These results suggest that to

improve data storage assurance of a file, one needs to partition the file and allocate fragments

in such a way that an attacker must compromise more server groups (the best case is m server

groups) in order to reconstruct the file.

3.4.6 Impact of PL on Dynamic Assurance

Now we are in a position to evaluate dynamic assurance of distributed storage systems.

The three parameters μ1, μ2, and μ3 in Eq. 3.7 have an important impact on dynamic assur-

ance because these parameters indicate whether there is risk during fragment transmissions.

Please refer to Sections 6.5.1 to 3.4.5 for details on the impacts of a set of parameters on

data storage assurance.

PL - the probability that a fragment might be intercepted by an attacker during the

fragment’s transmission through an insecure link - has a noticeable impact on dynamic

assurance of a distributed storage system provided that threshold m is small (e.g., smaller

than 9). Fig. 3.9 shows the dynamic assurance of a distributed system when PL is varied

39

0 1 2 3 4 5 6 7 8

x 10−3

0.99

0.992

0.994

0.996

0.998

1

1.002

PL−−probability of a fragment is intercepted in network

dy
na

m
ic

 a
ss

ur
an

ce

Dynamic Assurance with Different Network Security Level

N=72, k=4, Sj=18, n=12, q=4, m=7
N=72, k=4, Sj=18, n=12, q=4, m=8
N=72, k=4, Sj=18, n=12, q=4, m=9
N=72, k=4, Sj=18, n=12, q=4, m=10

Figure 3.9: Impact of PL - the probability that a fragment might be intercepted by an
attacker during the fragment’s transmission through an insecure link. PL is varied from 0 to
8 ∗ 10−3 by increments of 1 ∗ 10−3. Threshold m is varied from 7 to 10

40

0 1 2 3 4 5 6
0.99

0.992

0.994

0.996

0.998

1

1.002

q−−the number of fragments transmitted across different storage clusters to serve a request

dy
na

m
ic

 a
ss

ur
an

ce

The Impact of q on Dynamic Assurance

N=72, k=4, Sj=18, n=12, Pl=0.004, m=7
N=72, k=4, Sj=18, n=12, Pl=0.004, m=8
N=72, k=4, Sj=18, n=12, Pl=0.004, m=9
N=72, k=4, Sj=18, n=12, Pl=0.004, m=10

Figure 3.10: Impact of q - the number q of fragments transmitted to and from a storage
cluster. q is chosen from 0 to 6 with an increment of 1. Threshold m is set from 7 to 10)

from 0 to 8∗10−3 by increments of 1∗10−3. We also vary threshold m (i.e., m is varied from

7 to 10) to evaluate the sensitivity of dynamic assurance on parameter PL under different

threshold m.

Fig. 3.9 demonstratively confirms that when threshold m is equal to or smaller than 8,

a large value of PL results in low dynamic assurance of the system. The results are expected

since a high value of PL means that the transmitted fragments are likely to be intercepted

by an attacker. Once the attacker has collected enough fragments of a security-sensitive file,

the file could be reconstructed. When threshold m is larger than 8, the dynamic assurance

is not noticeably sensitive to the probability PL that a fragment is compromised during its

network transfer.

41

3.4.7 Impact of q on Dynamic Assurance

Like parameter PL, the number q of fragments transmitted to and from a storage cluster

also has an impact on the dynamic assurance of a distributed storage system. Intuitively,

Fig. 3.10 shows that when the number of fragments of a file that must be transmitted

through insecure links is increasing, the dynamic assurance of the file drops. Interestingly,

when threshold m is larger than 8, the dynamic assurance becomes very insensitive to the

number q of fragments. This observation suggests that when the threshold is small, the

S-FAS fragment allocation scheme must pay particular attention to lower the value of q in

order to maintain a high dynamic assurance level.

In addition, we observe from Fig. 3.10 that dynamic assurance is always lower than the

corresponding storage assurance (where q=0 in Fig. 3.10). This trend is always true because

in a dynamic environment, file fragments have to be transmitted through insecure network

links where malicious users may intercept the fragments in order to reconstruct files.

3.5 Chapter Summary

It is critical to maintain the confidentiality of files stored in a distributed storage system,

even when some storage nodes in the system are compromised by attackers. In recognizing

that storage nodes in a distributed system have heterogeneous vulnerabilities, we investigated

a secure fragment allocation scheme by incorporating secret sharing and heterogeneous vul-

nerability to improve security of distributed storage systems.

We addressed the security heterogeneity issue by categorizing storage servers into differ-

ent server-type groups (or server group for short), each of which represents a level of security

vulnerability. With heterogeneous vulnerabilities in place, we developed a fragment alloca-

tion scheme called S-FAS to improve security of a heterogeneous distributed system. S-FAS

allocates fragments of a file in such a way that even if attackers compromised a number of

server groups but fewer than k fragments are disclosed, the file cannot be reconstructed from

the compromised fragments.

42

To evaluate the S-FAS scheme, we built the static and dynamic assurance models in

order to quantify the assurance of a heterogeneous distributed storage system processing

file fragments. We developed a SAP file allocation algorithm based on the analysis of the

assurance model as well as the proposed S-FAS scheme. In order to measure the performance

of the S-FAS scheme and the algorithm, we built a prototype in a real-world distributed

storage system.

We demonstrated how S-FAS incorporates the vulnerability heterogeneity feature into

file fragment allocation for distributed storage systems. Experimental results show that

increasing heterogeneity levels can improve file assurance in a distributed storage system.

The experimental results of our prototype implementation offer us inspiration on how to use

S-FAS to efficiently improve security and performance in distributed storage systems with

heterogeneous vulnerabilities.

There are three future research directions of this study. First, we will make an effort

to improve the performance of the SFAS fragment allocation scheme in a heterogeneous

distributed system. Second, we will integrate the data replication technique with S-FAS

to enhance reliability and performance of the fragment allocation scheme for distributed

systems. Third, we will implement a distributed storage system prototype where S-FAS is

deployed. In this prototype, we will evaluate performance of S-FAS in a real-world system.

43

Chapter 4

Secure Allocation Processing (SAP) Algorithm for S-FAS

In previous chapter we present a fragment allocation scheme called S-FAS to improve

security of a distributed system where storage sites have a wide variety of vulnerabilities.

However the S-FAS scheme mainly focus on security considerations, the heterogeneous fea-

tures can also be leveraged to improve performance.

In this Chapter we develop a secure allocating processing (SAP) algorithm for the S-FAS

scheme to improve the security level and consider its performance using the heterogeneous

feature of a large distributed system. The SAP allocation algorithm considers load balanc-

ing, delayed effects caused by the workload variance of many consecutive requests, and the

heterogeneous feature of the storage nodes in the system.

The rest of the chapter is organized as follows: We discuss in Section 4.1 the motivation

to develop the SAP algorithm. Section 4.2 describes the factors that affect performance and

security in distributed systems. Section 4.3 describes a static allocation algorithm integrated

with the S-FAS scheme. In Section 4.4, a sample allocating process is illustrated. Section

5.4 summarizes this chapter and outlines some future work directions.

4.1 Motivation for the Secure Allocation Processing (SAP) Algorithm

There are tradeoffs among desired features(e.g., security and performance) of distributed

storage systems. Most existing solutions improve the security of the systems at the cost

of system performance. However, both high security and performance are among the top

client desired features in many widely deployed data centers operated by Google, Amazon

and Yahoo, etc.. The exploration and development of solutions that can improve not only

system security, but also system performance is in high demand.

44

In our previous research [124] we proposed a scheme, S-FAS, to address security het-

erogeneity issues by dividing storage servers into different server groups. We focus on the

development of a file fragmentation and allocation approach to improving the assurance and

scalability of a heterogeneous distributed system. If one or more fragments of a file have been

compromised, it is still very hard for a malicious user to reconstruct the file from the compro-

mised fragments. Our solution is different from previous approaches, because ours captures

heterogeneous features regarding to vulnerabilities among servers. In a server group, storage

servers with the same vulnerability share the same weakness allowing attackers to reduce

the servers’ information assurance. Although it may be impractical to classify all servers in

a system into a large number of groups, a reasonable way of identifying server types is to

organize servers with similar vulnerabilities into one group. We built static and dynamic

assurance models to evaluate the security level of our S-FAS scheme. Analysis results show

that the system assurance level can be improved by the S-FAS scheme compared with the

traditional methods without the consideration of heterogeneous features.

The time cost to reconstruct a file from its fragments is obviously greater than that of the

non-fragmentation storage method; and performance degradation becomes inevitable [129].

In this research we investigate impact of secure fragmentation scheme on system performance.

Similar research work on file assignment can be found in the literature [71] [30]. These studies

showed that not only the queuing cost, and file heat of the file (represents the product of file

access rate and the access service time) [30] [108], but also the variance of service time can

influence the performance of homogeneous systems where each site has the same performance

characteristics. In our investigated heterogeneous distributed systems, the variance in service

time caused by heterogeneous servers with different performance characteristics has a large

influence on the overall system performance.

We investigate the possible parameters that influence both the system performance and

the proposed S-FAS scheme. There are three aspects to a distributed storage system that

influence its security and performance, workload, storage nodes and network interconnects.

45

There are different elements of each aspect of the system. We extracted the possible key

elements of each aspect by analyzing of the proposed S-FAS scheme.

Based on the both performance and security analysis, we developed a secure allocat-

ing processing (SAP) algorithm for the S-FAS scheme to both improve the security level

and consider system performance by using the heterogeneous feature of large distributed

systems. The SAP allocation algorithm considers load balancing, delays caused by the

workload variance of many consecutive requests, and the heterogeneous nature of storage

nodes in a system. We developed a prototype of S-FAS using the multi-threading technique

to implement the SAP algorithm to guide file allocations. The experiment results show

that the proposed security solution can not only improve security, but also improve the

throughput of a distributed storage system with heterogeneous vulnerabilities by virtue of

the multi-threading.

In this study, we made the following contributions:

• First, we develop a secure allocating processing (SAP) algorithm to improve security

and system performance by considering the heterogeneous feature of a large distributed

system.

• Second, in order to conduct the performance analysis for the S-FAS scheme and SAP

allocating algorithm, we developed a prototype for our S-FAS scheme.

• Third, we implemented the prototype and conducted some experiments on the through-

put of the proposed scheme and algorithm.

• Fourth, we evaluated our solution by implementing some real world traces.

4.2 Factors Affecting Performance and Security

There are three main sources affecting the processing delay of a request from a client:

workload, storage nodes, and network interconnects.

46

Before presenting details on the SAP algorithm, let us summarize all notations used

throughout this section in Table 4.1.

Table 4.1: Notation used in the SAP Algorithm.
Notations Meaning
S the size of file F
u server type in the system
Si the size of server type i in a cluster
|F | the total number of files
|Fi| the total number of fragments in file |Fi|
Fij the jth fragment of the ith file
Burdenij the work load that the jth fragment of the

ith file brings to the node where it is stored
DataSizeij the jth fragment size of the ith file
bN Bandwidth of the connected

network of the Nth node
λij the access rate of the jth fragment

of ith file
Nuv the vth node of server type u

u,v= 0,1...
Iij Decreasing sorted list of fragments

to be allocated (Fragments of
the same file are consecutive
and belong to the same row)

TLoad (Nuv) total available load of node Nuv

CLoad (Nuv) current load of node Nuv

RLoad (Nuv) N number of element vector
recording the total available
storage capacity for all nodes

CurrentN[u] the current available node in the
uth type of servers

LoadBNuv the most load that shoud be
assigned to node Nuv

Concerning the workload, the service time, Si, for each file Fi, and the access rate of

this file, Ai, are the two main characteristics that affect the performance on the file. These

two characteristics are usually combined in a joint metric called ”heat” to evaluate the active

rate of a file [68]. The service time is directly influenced by file size and two parameters-m

and n-in the threshold (m, n). Since we consider the performance of heterogeneous systems,

47

service time Si for file Fi is not fixed, because different allocation nodes are chosen to store

the fragments of the file.

In order to fully benefit from the performance capabilities of a homogeneous distributed

or parallel system, one has to insure that the load must be uniformly distributed among

all storage nodes. Otherwise, some disks may become performance bottleneck, severely

increasing the response time of requests, and reducing the overall system throughput [68].

As such reducing the time cost on network and slave nodes may be achieved by minimizing

the utilization of each node and by minimizing the variance of service times among all the

nodes. Most of the current published work on this topic concentrated on minimizing the

nodes utilization by balancing load across all disks while ignoring the minimization of the

variance of service time in the context of heterogeneous distributed systems. When fragments

of a wide variety of sizes are intermixed on each node, small fragment requests are likely to

wait for large fragment requests accesses that were queued ahead of the smaller ones. This is

inefficient, especially when the load is heavy and the queuing delays dominate the response

time. Thus, in addition to load balancing, the performance of a distributed system can be

improved by reducing the variance of service times among fragment storage nodes. System

network interconnects also affect performance of heterogeneous distributed systems. Thus,

our file fragment allocation algorithm has to take the network delays into account.

Experimental results described in section show that diversity of a system with heteroge-

neous features can possibly increase the system security. To make use of the heterogeneous

nature of vulnerabilities in storage nodes, the SAP algorithm should allocate the fragments

of a file to as many types of storage nodes as possible to improve the system security.

While considering the impact of different bandwidths of networks, we define the coeffi-

cient wN (See weight in Eq. 4.1). Equation 4.1 is used to determine load to be distributed to

the Nth node concerning the network speed variance of different storage node. This equation

helps to guarantee that storage nodes connected by fast networks handle more I/O loads.

48

wN =
bN∑N
i=1 bN

(4.1)

Based on workload analysis, we use burden(see Eq. 6.7 below) to evaluate the workload

that a fragment brings to the storage node that stores the fragment.

Workloadij = λij ∗DataSizeij (4.2)

In order to balance the loads imposed on different nodes in the system, we distribute

the workload expressed by Eq. 6.8 where a number of fragments of multiple files are stored

in node N.

Workload N = wN ∗
i=d∑
i=1

j=|Fi|∑
j=1

λij ∗DataSizeij (4.3)

4.3 SAP Allocation Algorithm

We developed a static allocation algorithm integrated with the S-FAS scheme. we focus

on the static algorithm rather than its dynamic counterpart, because we plan to consider

the movement of data in our future work.

Initially, all nodes within the same server type are listed in a decreasing order of pro-

cessing speed under a certain workload. All files are sorted in list I in a descending order

of fragment sizes. Then, the nodes are allocated to the file fragments in order to optimize

both performance and security. Fig. 4.2) shows the data flow of the SAP algorithm. The

algorithm includes the partitioning and sorting part(see Fig. 4.1), and fragment allocation

steps(see Algorithm 1).

49

Inputs

Output

Divide each file into n fragments for all the |F| files

Compute the burden for all fragments

Sort fragments in decreasing order based on their
burdens (Fragments of the same file are consecutive

and belong to the same row)

Decreasing sorted two-dimension list Iij of
fragments based on their burdens of the input files

1. |F| number of files
2. Secret sharing scheme (m, n)

Figure 4.1: The SAP fragment Partition and Sorting Step. The chosen secret sharing scheme
(m, n) is employed.

50

Start

Decreasing Sorted Two-
Dimension Fragment List

Server Configuration
File

SAP-
Check for the

Available Server for
Fragment

Distribute to the Chosen Server

Yes
 No

Break
 No

Is This the Last
Fragment in List ?

 Yes

End

ijI

ijI

ijI

ijI

Figure 4.2: The SAP Data Flow.

51

Algorithm 1 SAP Allocating Process Step:
Input:
Iij
CLoad (Nuv)
TLoad (Nuv)

Step1. Sort all nodes in a two-dimension list in decreasing order based on their vulnera-
bility type and processing speed.

Step2. Allocate each fragment in list I to servers
i=1
for u = 0 and u < K do
CurrentN[u] = 0

end for
u = 0
v = CurrentN[u]
CurrentN [u] = u
use the equations for wN and NBurdenij to calculate LoadB Nij

for i = 1 and i < |F | do
//Allocate all fragments of file i
for j = 1 and j < |Fi| do
if CLoad (Nuv) ≥ LoadBNuv then
CurrentN [u] + +

end if
CLoad (Nuv)= CLoad (Nuv)+Burdenij

u++
v = CurrentN[u]
if u = K then
u = 0

end if
end for

end for

Output:
The updated fragment list for multi-thread fragment writing

52

1 2

3 4

1 2

3 4

1 2

3 4

Figure 4.3: Allocation Load Sample

4.4 An Allocation Example for SAP

Let us use an example to demonstrate the process of assigning storage nodes to file

fragments. There are three files and each file has four fragments to be allocated(see Fig. 4.3).

The data size, fragment size, access rate, and file heat are listed in Table 4.2. Here we assume

the size unit of fragment or file is megabyte(MB). The access rate is measured by how many

times’ requests to a file per second. Heat is defined as in [68] to evaluate the active rate

of a file. Here we assume the heat value of the hottest file in a system to be 100, and the

heat values of other files are comparably set to values from 0 to 100. Because our analysis

is independent of the unit of each item as previously described, we do not list the units in

Tables 4.2, 4.3 and 4.4.

We assume that there are three server types, each of which contains three servers. The

network bandwidth of each server is listed in the second column in Table 4.3. According the

53

Table 4.2: Features of Example Files

Aspects of the File F1 F2 F3
FileSize 80 60 40
Fragment Size 20 15 10
AccessRate 3 6 5
Heat 60 90 50

Equations 4.1, 6.7 and 6.8, we can calculate each node’s upper bound of affordable burden

(see the third column in Table 4.3) for these files to be allocated.

Table 4.3: Features of a Heterogeneous Storage System Example

Nodes Bandwidths Weight BurdenAfford–Upbound
N11 1 40
N12 2 80
N13 3 120
N21 4 160
N22 1 40
N23 2 80
N31 3 120
N32 3 120
N33 1 40

Fig. 4.4 shows the allocation results made by the SAP algorithm described in Fig. 4.1

and Algorithm 1.

Table 4.4 summarizes the allocated burden and the overloaded load imposed on each

node in the system. The negative and positive symbols mean that final allocated burdens

exceed or below expected bounds. The nodes that afford a little bit of more load for these

bunches of files, it may be assigned less amount of load while allocating other bunches of

files. The allocation result deviation will be neutralized during the whole system’s working

process.

4.5 Chapter Summary

It is critical to maintain the confidentiality of files stored in a distributed storage system

without significantly degrading performance. We developed a SAP file allocation algorithm

54

1 1

2

1

3

2 4 2

33

4

4

11N 12N 13N

21N 22N 23N

31N 32N 33N

Type 1

Type 2

Type 3

Figure 4.4: Alocation Result

based on the analysis of the assurance model and the proposed S-FAS scheme proposed

in our previous research. In order to evaluate the performance of the S-FAS scheme and

the algorithm we built a prototype. We implemented the prototype using C programming

language and conducted some experiments on the throughput of the proposed scheme and

algorithm. At last we evaluated our solution by implementing some real world traces.

There are a few future research directions of this study. First, we will integrate a data

replication technique to be integrated with S-FAS to enhance reliability and performance of

the fragment allocation scheme for distributed systems. Second, we will develop a dynamic

file allocation algorithm for a distributed system where data replicas are achieved and main-

tained. Third, we will make an effort to extend the SAP algorithm to address security issues

into a cloud storage system. Last but not least, we will continue to upgrade our prototype

for future scalability testing.

55

Table 4.4: Allocation Result by the SAP Algorithm

Nodes BurdenAllocated BurdenOverBound
N11 60 20
N12 90 -10
N13 140 -20
N21 150 +10
N22 60 +20
N23 50 +30
N31 90 +30
N32 110 +10
N33 50 -10

56

Chapter 5

S-FAS Prototype

In previous chapter we present a secure allocating processing (SAP) algorithm for the

S-FAS scheme to improve the security level and consider its performance using the hetero-

geneous feature of a large distributed system.

In order to use practical implementations to demonstrate the ideas on actual systems

with real-world applications, we developed a prototype using the multi-threading technique

and C language for the S-FAS scheme with the SAP algorithm to guide the file allocation.

The prototype is built in the distributed cluster environment with heterogeneous storage

nodes, in which the Network File System (NFS) and Linux are installed. We did some

experiments on system throughput and testing against real world traces. The evaluation

results show that the proposed solution can not only improve the security level, but also im-

prove the throughput and performance of the distributed storage systems with heterogeneous

vulnerabilities by using the multi-thread technique.

The rest of the chapter is organized as follows: We present in Section 5.1 the detailed

design of the prototype. Section 5.2 describes the evaluation of the prototype on system

throughput in distributed systems. In Section 5.3 we introduce the performance evaluation

by testing against real world traces. Section 5.4 concludes this chapter and presents our

future research directions.

5.1 Prototype Design

Fig. 5.3 illustrates system architecture of a heterogeneous distributed system, where

nodes are classified into three main groups - computing nodes (clients), storage nodes, and

a storage server. The storage server is responsible for allocating file fragments using our

57

Storage Server Client

Server Type K
Storage Nodes

Server Type1
Storage Nodes

Network Interconnect

...

Client

Figure 5.1: System architecture.The storage server manages metadata. The storage nodes
are logically grouped into different server types. Client nodes can directly access storage
servers through the network connection.

SAP algorithm, managing metadata, and dealing with incoming file requests(e.g., reads or

writes) from clients. The storage nodes are divided into several groups; nodes in each group

share similar heterogeneous vulnerability. The client nodes can directly access storage servers

through the network interconnections.

Fig. 5.4 shows the modules implemented in the prototype, which is comprised of the

following components.

• The first part is a set of configuration files for servers, files, and all fragments of all file

fragments stored in storage nodes.

• The second component is the active lists for servers (see the data structure of the

example server node, which forms the above server list) , files, and all fragments in the

memory of storage node.

58

ServerList FileList

FragmentList
SAP Algorithm

Multi-Thread Writing

6

7

1 2 3 4

8

10

9

11

12

5

Storage Server
Memory

Server
Configuratio

n FIle

File
Configuration

FIle

Fragment
Configuration

FIle

Disk Disk Disk

Server Type K
Storage Nodes

Server Type1
Storage Nodes

Network Interconnect

Storage Server
Disks

...

Figure 5.2: The Prototype design.The upper part of this figure represents the disks of a
storage server where the storage node configuration file, file configuration file, and fragment
configuration file are stored. The middle part is the memory part of the storage server node,
where the key allocating module parts such as the SAP algorithm, multi-thread writing,
and the three active link lists are stored. The three active lists records the most updated
information for storage nodes, stored files and fragments in the system. The lower layer in
the figure represent the client nodes in the system.

59

• The third part is the SAP algorithm and multiple threads located in the storage server.

• The last component is composed of distributed storage nodes which are used to store

file fragments.

The prototype runs on the storage server node and directly communicates with the

client nodes. The upper layer in Fig. 5.4 represents the disks of the storage node, where the

server configuration file, the file configuration file, and the fragment configuration file are

stored. The middle layer is residing in the main memory part of the server node where the

key allocation modules such as the SAP algorithm, multiple writing threads, and the three

active link lists are stored. The three active lists record the most recent information of the

server, stored files and fragments in the system. The bottom layer in the figure represents

the client nodes in the system.

5.1.1 Architecture and Modules

This prototype was designed to improve the performance using the S-FAS scheme and

SAP algorithm applied in distributed storage system.

Architecture

Fig. 5.3 illustrates the architecture of Security Improved Distributed Storage System

(SIDSS) , where nodes are divided into three main groups - compute nodes (clients), storage

nodes, and a storage server. The storage server is responsible for handling file allocating using

our SAP algorithm, managing the metadata and dealing with the incoming file requests for

data reads or writes from the clients. The storage nodes are divided into a few groups based

on their heterogeneous vulnerability features. Client nodes can directly access storage servers

through the network interconnect.

60

Storage Server Client

Server Type K
Storage Nodes

Server Type1
Storage Nodes

Network Interconnect

...

Client

Figure 5.3: The architecture of the system.The storage server manages metadata (e.g., con-
figuration files for server nodes, stored files and fragments. The Storage node also runs the
NFS).The storage nodes are logically grouped into different server types (server nodes of the
same server type share the similar vulnerabilities.) Client nodes can directly access storage
servers through the network interconnect.

61

ServerList FileList

FragmentList
SAP Algorithm

Multi-Thread Writing

6

7

1 2 3 4

8

10

9

11

12

5

Storage Server
Memory

Server
Configuratio

n FIle

File
Configuration

FIle

Fragment
Configuration

FIle

Disk Disk Disk

Server Type K
Storage Nodes

Server Type1
Storage Nodes

Network Interconnect

Storage Server
Disks

...

Figure 5.4: The allocating module. The allocating module runs on the storage server node
and directly communicate with the client nodes. The upper part of this figure represents the
disks of the storage node where the server configuration file, file configuration file and the
fragment configuration file are stored. The middle part is the memory part of the storage
server node, where the key allocating module parts such as the SAP algorithm, multi-thread
writing and the three active link lists are stored. The three active lists records the most
updated information for server, stored file and fragments in the system. The lower layer in
the figure represent the client nodes in the system.

62

Allocating Module

Fig. 5.4 illustrates the architecture of the file allocating module, which is comprised of

the following four parts.

• The first part is the configuration files for servers, files and all fragments of all files on

the disk of storage server.

• The second part is the active lists for servers(see the data structure of the example

server node which forms the server list above) , files and all fragments in the memory

of storage node.

• The third part is the SAP algorithm and multi-thread writing part, which is also active

in the memory of the storage server.

• Distributed storage nodes: the storage node where the fragments of files is finally

stored.

Reads and Writes Processing Module

Fig. 5.5 illustrates the architecture of the reads and writes or trace processing module,

which is mainly comprised of the following four parts.

• The first part is the configuration files for servers, files and all fragments of all files on

the disk of storage server.

• The second part is the active list of all fragments in the distributed system.

• The third part is the SAPreading and SAPwriting part, which is also active in the

memory of the storage server. Distributed storage nodes: the storage node where the

fragments of files are finally stored

63

... Server Type K
Storage Nodes

Server Type1
Storage Nodes

Network Interconnect

Fragment
Configuration FIle Storage Server

Disks

SAP_Reading SAP_Writing

2

Data

Storage Server
Memory

3 4Data

7

6 51

Figure 5.5: The reads and writes/tracing module.The reads and writes/tracing module runs
at the storage server node. The SAP reading and/or writing part deal with the requests
from clients or trace records.

64

5.1.2 Data Flow

Before we describe the data flow for our prototype we would like to give some assumption

that may help understand this project better. The main object of this project is to evaluate

the performance of our proposed S-FAS security improving scheme. The allocating means

we need to put some new data into the system and store there. The read processing happens

when the client assume the data they request is already stored in the system. We consider

the write operation here in our current prototype only as update.

For the reads/writes processing, when clients request an operation on a file that is not

exist in the system, a reminder telling that the file is not exist yet will return to clients. In

future work, we may consider adding the function of dealing with files that are not exist in

the system for write operation.

Allocating Module Data Flow

The allocating module works at the condition we need to put more files(data) into the

system. This module mainly runs at the storage server node. After the storage server node

receives an allocating for new storage request, there are the following few steps to be carried

out to fullfill the new storage request.

• Step A(includes marked item 1, 2, 3, 4 in the Fig. 5.4). The allocating module

initializes the server list according the configuration file information on the disk of the

storage node, and file list according the allocating request from the client;

• Step B(includes marked item 5, 6, 7, 8, 9, 10 in the Fig. 5.4). . Then the allocating

module runs the SAP allocating algorithm to get the arrangement plan of the new

data, at the same time the fragment list and fragment configuration file are updated.

• Step C(includes marked item 11, 12 in the Fig. 5.4). Then the multi-thread writ-

ing function is run to write the fragmented new data to the arranged storage server

according the arrange information in the fragment list.

65

Reads and writes Processing Module Data Flow

The reads and writes/tracing module runs at the storage server node. The SAP reading

and/or writing part deal with the requests from clients or trace records. Firstly this module

identify whether the request is read or write. Then it will check the active fragmentation

list to locate the position this operation need to visit. Then it will finish the operation of

read or write following the request.

For a normal read operation, this module needs 5 steps to finish the read task:

• Step A(includes marked item 1 in the Fig. 5.4). The SAP reading get the metadata of

the request data(it may be a whole file or some part of a file) from the fragment list.

• Step B(includes marked item 2 in the Fig. 5.4). The SAP reading then creates multi-

threads to read the fragments of the requested data into the storage server.

• Step C(includes marked item 2 in the Fig. 5.4). Then the SAP-Reading merges the

fragments following the original order to get the requested data reconstructed and

ready to reply to the client.

• Step D(includes marked item 3 in the Fig. 5.4). The last step for a read operation is

just like the non-fragmented traditional read operation–send the requested data back

to the client.

The SAP-writing deals with the write operation similarly with the normal write opera-

tion except the extra work that need to do because of the fragmentation of the files.

5.2 Experimental Evaluation on System Throughput

5.2.1 Evaluation Methodology

To evaluate the performance of our SAP algorithm, we implement a prototype (see

Section VI) and analyze the performance of the prototype. We pay attention to two system

66

parameters, namely, data size and the number of fragments for each file. We conducted an

experiment to test the file allocation process by varying workload conditions and fragment

number in the prototype.

• File size: In our experiments, the test file size varied from 950MB(996147200 bytes) to

2300MB(2411724800 bytes). The details can be found in the corresponding figures(file

size unit: byte, throughput: byte/millisecond).

• Fragment number of a file: We varied the fragment number from 3 to 15. All the upper

bounds are smaller than 16, because there are 16 storage nodes in our testbed. The

prototype performs better when each storage node stores at most one fragment from

each file.

• Number of Storage Nodes Effect on Performance: In order to analyze the number

of storage nodes effect on performance for different sizes of data, we evaluate our

prototype by experiments with scalable data sizes and storage numbers.

5.2.2 Experiment Results

Fig. 5.6 shows the impact of file size on system throughput measured in Byte/Sec. From

Fig. 5.6 we observe that compared with the traditional scheme, our approach significantly

improves the throughput. The performance improvement is attributed to the multi-threading

method used to handle multiple fragments of a file in prototype. The results show evidence

that multiple threading is an efficient way of implementing the SAP algorithm. A second

observation drawn from Fig. 6 is that increasing file size can reduce the system throughput.

This trend is observed for the two tested schemes. The results obtained from this exper-

iment indicate that file partitioning and multiple threading can significantly improve the

performance of a heterogeneous distributed system.

Fig. 5.7 shows the impact of the fragment number on the throughput. From Fig. 5.7

we can see that the throughput increases when the number of fragments goes up. A large

67

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

x 10
9

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

4

T
hr

ou
gh

pu
t

File Size

File Size Impact on System Throughput

FragNum=9
Non−frag

Figure 5.6: Impact of file size on system throughput.

2 4 6 8 10 12 14 16
7500

8000

8500

9000

9500

10000

10500

11000

11500

T
hr

ou
gh

pu
t

Fragment Number

Fragment Number Impact on System Throughput

Figure 5.7: Impact of fragment number on system throughput.

68

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
5

10

15

20

25

30

Th
ro

ug
hp

ut
(M

B
/S

ec
on

d)

File Sizes (MB)

Throughputs of different Storage Nodes

3 nodes
6 nodes
9 nodes
12 nodes
15 nodes

Figure 5.8: File Size Impact on Throughput of Systems Including Different Number of
Storage Nodes

number of fragments in a file can improve the read and write performance of the system

with respect of the file, because many storage nodes can access fragments in parallel. With

multiple threads in place, multiple storage nodes are able to provide a high aggregated

bandwidth.

Figs. 5.6 and 5.7 illustrate that file fragmentation and multiple threading are two

key techniques to improve performance of the SAP file allocation algorithm designed for

heterogeneous distributed systems.

Fig. 5.8 shows that system throughput decreases with increasing of file size. For different

sizes of distributed storage systems, the performance decrement coming from the increasing

of file size on system throughput are different, indicating that an optimal system size can be

determined for certain file sizes.

69

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3
x 105

A
llo

ca
tin

g
Ti

m
e(

m
ill

is
ec

on
d)

Number of Storage Nodes

500~1300BM file Allocated On Different Number of Storage Nodes

500MB
700MB
950MB
1100MB
1300MB

Figure 5.9: File Size and Number of Storage Nodes Impact on System Throughput(1).

70

2 4 6 8 10 12 14 16
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 105

A
llo

ca
tin

g
Ti

m
e(

m
ill

is
ec

on
d)

Number of Storage Nodes

1500~2300BM file Allocated On Different Number of Storage Nodes

1500MB
1700MB
1900MB
2100MB
2300MB

Figure 5.10: File Size and Number of Storage Nodes Impact on System Throughput(2)

Fig. 5.9 and Fig. 5.10 reveal the impact of file size and number of storage nodes on

system throughput. We observe that when the data size is small, the system throughput

increases with the increasing of system size and the number of storage nodes in the system.

When the data size reaches to a certain level, the storage assurance decreases with the

increasing value of the system size. One of the potential reasons might be the overhead of

data partitioning.

5.3 Read and Write Performance

To evaluate system performance of S-FAS and SAP, we replay a few real-world traces,

which include parallel web-server, parallel scientific database for remote-sensing data, and

data mining.

71

4 5 6 7 8 9 10 11 12 13

x 10
8

0

200

400

600

800

1000

1200

T
ra

ce
 P

ro
ce

ss
in

g
T

im
e

File Size

File Size Impact on Read−Only Trace Processing Time

 Non−Frag Read
FragNum=9, Read Regular
FragNum=9, Read Open First

Figure 5.11: File Size Impact on Read-Only Trace Processing Time.

We evaluate three scenarios: the read only, write only, and the read-write cases using

the Cholesky trace representing I/O intensive applications. We measure the time used for

each I/O operation in the trace and assess trace-replay time presented in the y-axis.

The following six tests can be grouped into two sets: the first three tests have different

file size, and the last three tests are focused on fragment number.

From Fig. 5.11 shows that the S-FAS scheme spends more time to process the read-only

applications, due to the extra time cost introduced by fragment reconstruction. However,

SAP significantly improves the performance using the read-open-first strategy. In the read-

open-first strategy, regardless of a partial file access or entire file access, all the fragments of

the file on the server storage node are accessed to speed up future reads.

For write-only applications, Fig. 5.12 indicates that the S-FAS scheme maintains the

same performance as the traditional method. This is because the extra time cost for fragment

72

4 5 6 7 8 9 10 11 12 13

x 10
8

400

600

800

1000

1200

1400

1600

T
ra

ce
 P

ro
ce

ss
in

g
T

im
e

File Size

File Size Impact on Write−Only Trace Processing Time

Non−Frag Write
FragNum=9, Write Regular
FragNum=9, Write Open First

Figure 5.12: File Size Impact on Write-Only Trace Processing Time.

is very little when it comes to writes. Thus, S-FAS benefits write-only applications by their

security level without significantly degrading performance.

The last three tests are focused on the impact of fragment number on the S-FAS per-

formance. we compare the results between the regular read-write method and the open-first

method for the read-only, write-only, and read-write applications.

We vary the fragment number from 3 to 15 while keeping the file size unchanged in the

three tests. Fig. 5.14 shows that with the increasing of fragment number, the time spent

to process the request for the same file size remains a constant. This is mainly because

the requested data size in the trace is small compared with the entire size file. Most of the

requested data size is even smaller than a fragment of the files. In most cases to serve a

request, there is no need to access multiple file fragments. In our future study, we will inves-

tigate a way to improve system performance when multiple file fragments are concurrently

accessed.

73

4 5 6 7 8 9 10 11 12 13

x 10
8

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
ra

ce
 P

ro
ce

ss
in

g
T

im
e

File Size

File Size Impact on read & Write Trace Processing Time

Non−Frag R & W
FragNum=9, R & W Regular
FragNum=9, R & W Open First

Figure 5.13: File Size Impact on read and Write Trace Processing Time.

2 4 6 8 10 12 14 16
400

500

600

700

800

900

1000

1100

T
ra

ce
 P

ro
ce

ss
in

g
T

im
e

Fragment Number

Fragment Number Impact on Read−Only Trace Processing Time

Read Rregular
Read Open First

Figure 5.14: Fragment Number Impact on Read-Only Trace Processing Time.

74

2 4 6 8 10 12 14 16
300

400

500

600

700

800

900

1000

1100

1200

T
ra

ce
 P

ro
ce

ss
in

g
T

im
e

Fragment Number

Fragment Number Impact on Write−Only Trace Processing Time

Write Regular
Write Open First

Figure 5.15: Fragment Number Impact on Write-Only Trace Processing Time.

2 4 6 8 10 12 14 16
800

1000

1200

1400

1600

1800

2000

2200

T
ra

ce
 P

ro
ce

ss
in

g
T

im
e

Fragment Number

Fragment Number Impact on Read & Write Trace Processing Time

R & W Rregular
R & W Open First

Figure 5.16: Fragment Number Impact on Read and Write Trace Processing Time.

75

5.4 Chapter Summary

It is critical to maintain the confidentiality of files stored in a distributed storage sys-

tem without significantly degrading performance. We developed the SAP file allocation

algorithm, the performance of which is evaluated by an assurance model. We also proposed

the S-FAS scheme, whose prototype was implemented using C programming language. In

addition, we conducted experiments to measure the throughput of the proposed scheme and

algorithm. Finally, we replay a few real world traces on our prototype to evaluate system

performance.

76

Chapter 6

Reef-A Replication Solution to Improve Availability

In the previous Chapters, we proposed the S-FAS scheme and SAP allocation solution,

which can improve distributed storage systems’ security and performance. In this Chapter

let us illustrate a technique called Reef to improve the availability, security, and performance

of distributed systems by integrating fragment replication into our S-FAS and SAP solution.

Recall that S-FAS does not maintain replica fragment. Replication of persistent data is

crucial to achieving high availability in storage systems. Reliability can be improved through

multiple redundant sites, which makes well-designed cloud computing suitable for business

continuity and disaster recovery. Replication degree is important for system performance

and resource efficiency. In this chapter we describe a way of integrating replication with

S-FAS that addresses heterogeneity issue of distributed systems.

If a distributed system only stores one copy for each fragment, it will be very vulnerable

especially in a risky network environment. Redundancy is a common method to improve

system availability; however, increasing the number of replicas for each file/fragment makes

the file/fragment more likely to be compromised. Evidence shows that heterogeneous features

can be well used to improve storage security. The goal of this part of our dissertation is

to find a solution to improve both availability and security for distributed systems with

heterogeneous features.

The Reef scheme is an extension of the S-FAS scheme. The system model of Reef is sim-

ilar to that of S-FAS, except that Reef considers system failures caused by hardware diversity

when categorizing storage nodes into different groups in the storage node deployment phase.

The static storage assurance model described in this chapter aims to provide the analysis of

the Reef scheme. Some useful principles to help improve system assurance are draw from the

77

analysis of the Reef scheme. The evaluation and analysis results provide the guidance for

the design of a secure allocation process algorithm called R-SAP for a scheme that integrates

fragment replication. The design logic of R-SAP is very close to the design logic of SAP

except that the R-SAP needs to consider one further step of distributing different replicas

of each file’s fragments.

The rest of the chapter is organized as follows: We discuss in Section 6.1 the importance

of availability for distributed systems and how to make heterogeneity valuable to availability.

Section 6.2 describes the system model for the replication scheme and a motivation example

for the design of the Reef Scheme. In Section 6.3 we introduce the desired prosperities and

design of Reef. In Section 6.4, we propose Reef’s static assurance model. Section 6.5 shows

the evaluation and analysis results by varying important parameters in the Reef scheme and

provides hints on how to apply the proposed Reef scheme efficiently. Then, in Section 6.6 we

present a Replication Secure Allocation Process algorithm called R-SAP for Reef. Finally,

Section 6.7concludes the chapter and presents our future research directions.

6.1 Improve Availability in S-FAS Solution

In this section, we present the importance of availability in distributed systems and the

current high availability solutions for distributed systems. Like tradeoff between security and

performance (see Chapter 3), tradeoff also must be made between security and availability

for high availability techniques for distributed systems. We illustrate how to make use of

heterogeneous features in distributed systems to make good tradeoff between security and

availability.

6.1.1 Availability in Distributed System

Availability is a storage system property that is both highly desired and yet minimally

implemented. When some storage nodes in a distributed storage system are down, the entire

system might grind to a halt [141] [93]. Downtime is clearly very expensive; for example,

78

in the on-line business world, millions of dollars per hour are lost when systems become

unavailable. Replication techniques are commonly employed to enhance the availability of

data-intensive services [69]. There are static and dynamic data placement strategies to build

data replication services [17] [70] [59] [74].

Replication degree indicates the number of replicas maintained for each file/fragment in

a replication mechanism. Files may have different access rates; the locations of their guests

may very different [96]. If there are too many replicas existing in a distributed storage

system, the storage space will be wasted [94]. The storage servers need extra time to search

the corresponding replicas of a file. Thus storage system availability is increased at the cost

of degraded system performance. To achieve a better availability and system performance,

different files should have different replication degrees. There are also some scenarios exist

that most of the files have similar access rates and their users’ geographic locations are

similar. In such cases, there is no need to vary the replication degree of the stored files.

6.1.2 Make Heterogeneity valuable to Availability

In Chapter 3 we already discussed that with the increasing number of the storage node

in distributed storage systems, the heterogeneity level tend to increase. Recall that our pro-

posed S-FAS scheme and SAP allocation algorithm make use of the heterogeneous feature to

improve security and performance. The risk of a file to be hacked or accessed by unauthorized

users is increasing when the replication degree goes up. We address the issue of whether it is

possible to improve availability and security by making use of heterogeneous features among

storage nodes in distributed systems? Hardware failure is one of the factors that influence

availability. Heterogeneous prosperities in hardware lead to various hardware failure rates,

which further affect availability. When a replication mechanism is used to improve availabil-

ity, one has to distribute the replicas to the storage nodes that give rise to high availability,

system performance, and security. Intuitively, the availability can be improved if the replicas

of a file or fragment are distributed to storage nodes with diverse hardware configurations.

79

The security risk of different replicas also have impact on availability. Our proposed S-FAS

scheme categorize storage nodes into different groups based on their various vulnerabilities.

The storage security is improved by distributing the fragments of a file into various storage

groups. With one set of successful attack techniques to a certain storage group, a hacker

might compromise all the replicas stored on the compromised nodes. The file is still safe as

long as the number of unique replica is less than the secret sharing threshold. Ideally the

replicas of a fragment should be distributed to the same storage group or few storage groups.

In order to further investigate the above basic idea aiming to improve availability and

security for distributed heterogeneous systems, we describe our design, model, evaluation,

and an allocation algorithm in the rest of this chapter.

6.2 System Model and Architecture

The system model in this chapter is the same as that for S-FAS (see in chapter 3, 3.1.1);

the system architecture is the same as that of SAP described in Figure 5.1. As we present

in previous section, the availability is improved if the replicas of the same file or fragment

are distributed to storage nodes with diverse hardware configurations. In the Reef system

model, when we logically categorize storage nodes into different groups depending on the

diversity of hardware and vulnerability. Nodes sharing the similar security vulnerabilities

are placed into one group; within one group, choose the nodes that have diverse hardware.

Thus, to consider security, we firstly apply the same strategy as that in S-FAS and distribute

replicas of multiple fragments into different storage groups. Then, we place the replicas of

the same fragment into storage nodes within one storage group where nodes are sharing

similar security vulnerabilities and have diverse hardware. The availability can be improved,

because it is very rare that all of the storage nodes with different hardware fail at the same

time.

Before we describe the Reef design, we summarize all notation used in this chapter in

Table 6.1.

80

Table 6.1: Notation used in the system and models.
Notations Meaning
N Number of server nodes in the system
U The whole system considered
L Number of subsystems in the whole system
Hi Number of server nodes in the subsystem i
F A file stored in the system
Fi Fragment i of file F
Fix The xth replica of fragment i of file F
t The number of replicas for each fragment of file F
tx The number of replicas for the xth fragment of file F
Tj Server type j in the system
K The total number of server types
Sj The size of a certain server type in a cluster
m Threshold for the secret sharing scheme
n The total number of fragments for each file

in the secret sharing scheme
Ri Cluster storage subsystem
rij Node j in subsystem i
X The event that a set of storage nodes is

chosen to be attacked
Y The event that if X occurs, at least m different fragments’ replicas

can be compromised using the same attack method.
CM(Y) The total combinatorial number of Y event.
CM(n ∗ t) The total combinatorial number of different distribution of

allocating the n ∗ t replicas into the system which has N nodes.
Z The event of a successful attack to a certain

fragment of a file
V The event file F is compromised under one attack method
PN The successful probability of an attack on a node
Pf The successful probability to compromise

a fragment in a compromised node
P (X) The probability of event X occurring
P (Y) The rate of CM(Y) dividing CM(n ∗ t)
P (Z) The probability of event Z occurring
P (V) The probability of event V occurring
α An allocation mapping of file F
SA(α) The storage assurance of an allocation mapping α of file F

6.2.1 Replication Scheme for Heterogeneous Distributed Systems

Replication scheme is commonly employed to enhance the availability of distributed

systems. A large number of stories have been carried out to investigate the relationship

81

between availability and a number of factors including replication degree, replica placement,

and replication maintenance overhead. In this project we focus on studying the replication

degree and replica placement impact. We aim to find a solution to improve availability and

security for heterogeneous distributed systems.

In this part of the study we consider two cases, where the replicas of file fragments are

duplicated. We provide the analysis of the first case when each file fragment has the same

number of replicas.

• Case 1: Each file fragment has the same number t of replicas.

• Case 2: File fragments have various number (i.e., t1, t2, ..., tx) copies of replicas.

The appropriate replica placements are of growing importance to improve availability

and efficiency. Appropriate replicas can be used to balance resource consumption for the

underlying infrastructure. Both static and dynamic replica placement strategies have been

investigated in the past [121] [79] and dynamic placement of replicas.

Many factors (e.g., system components, system topology, application types, clients’

distribution and access patterns) have impacts on the efficiency of replica placements [47] [80].

We mainly study the impact on availability and security caused by heterogeneous components

of the distributed systems including storage nodes, networks, and application types and

access rates.

The heterogeneity of storage nodes includes hardware, software and applied security

strategies. Different storage hardware have different lifetimes, potential weaknesses, and ca-

pabilities; hence the heterogeneity of hardware has impact on system failures and availability.

Considering the security and protection strategies, we discuss a few reasons that may cause

different vulnerabilities of the storage nodes. First, storage nodes have different ways to pro-

tect data. Second, a security policy can be implemented in a variety of mechanisms. Third,

the key length of an encryption scheme may vary across multiple storage nodes. Fourth,

heterogeneities exist in computational units of storage sites. We believe that future security

82

mechanisms for distributed systems must be aware of heterogeneous vulnerabilities. The

main object for this study is to improve system security and availability in a heterogeneous

distributed system, so we pay attention to the heterogeneity factors affecting security and

availability.

6.2.2 A Motivation Example

Recall that the security of the stored files can be improved by making use of the het-

erogeneous strategies for security on different storage nodes. In this study we analyze how a

fragment replication scheme may increase storage risk by using random or hashing method

replica placement in distributed heterogeneous systems. The following motivation example

lays out the foundation for us to develop the secure fragment replication scheme.

We consider a heterogeneous distributed storage system (see Fig. 6.1) that contains 25

storage nodes categorized into 5 server-type groups (or server groups for short), i.e., T1,

T2, T3, T4, and T5. Storage nodes in each server group offer similar services with the same

set of vulnerabilities. In this example, server group T1 consists of nodes r1, r6, r11, r16, r21,

i.e., T1 = {r1, r6, r11, r16, r21}. Similarly, we define the other four server groups as: T2 =

{r2, r7, r12, r17, r22}, T3 = {r3, r8, r13, r18, r23}, T4 = {r4, r9, r14, r19, r24}, and T5 = {r5, r10, r15, r20, r25}.
We assume that a file F is divided into three fragments and each fragment has two copies

(i.e., fa1, fa2, fb1, fb2, fc1, fc2). Fig. 6.2 shows the replica placement decisions that do not

take heterogeneous vulnerabilities into account. The decision made using a hashing function

(see Eq. 11 in [82]) randomly allocates the six fragments of file F to six different nodes, each

of which belongs to one of the six server sets illustrated in Fig. 6.2. For example, the six

fragment replicas fa1, fa2, fb1, fb2, fc1 and fc2 are stored on nodes r2, r7, r4, r9, r18, and r23,

respectively. Here r2 and r7 belong to storage node group 2; r4 and r9 belong to storage node

group 4; and r18 and r23 belong to storage node group 3. This replica placement happens

to be a good decision, because the replicas of a certain fragment are distributed to the

storage nodes within the same storage node group. At the same time, different fragments’

83

replicas are distributed to different storage node groups which have various vulnerabilities.

A malicious user must launch three successful attacks (one for each server group) in order

to compromise all the three fragments.

On the other hand, let us consider a case where the six fragment replicas fa1, fa2, fb1, fb2,

fc1 and fc2 are stored on nodes r19, r14, r9, r4, r5, and r24 respectively. Once a malicious user

successfully launch server group 4, the replicas fa1, fa2, fb1, fb2, and fc2 can be compromised

and thus the file F is accessible by the hacker. This is because r19, r14, r9, r4, and r24 belong

to the same storage node group 4.

Except diverse security vulnerabilities, storage nodes with different hardware configura-

tions have different limitations, lifetimes, and environmental challenge tolerance. Distribut-

ing the replicas of a fragment into heterogeneous storage nodes tends to increase availability,

because this approach reduces the possibility that the heterogeneous nodes collapse at the

same time due to some environmental causes.

Fig. 6.2 shows the possible insecure file fragment allocation decision made by a hashing

function(see Eq. 11 in [12]). In this placement decisions, replica fa1 could be distributed

into Server set 1, replica fa2 could be distributed into Server set 2, Replica fb1 could be

distributed into Server set 3, Replica fb2 could be distributed into Server set 4, Replica fc1

could be distributed into Server set 5, Replica fc2 could be distributed into Server set 6.

Server set 1 contains storage nodes r1, r6, r11, r16, and r21; server set 2 consists storage

nodes r2, r7, r12, r17, and r22; and server set 3 contains storage nodes r3, r8, r13, r18, and r23;

server set 4 is compromised of storage nodes r4, r9, r14, r19, and r24; server set 5 contains

storage nodes r5, r10, r15, r20, and r25. It may occurred that at least three different replicas

of the six fragment replicas fa1, fa2, fb1, fb2, fc1 and fc2 are allocated to storage nodes that

belong to the same server-type group. For example, fa1, fa2, fb1, fb2, fc1 and fc2 are stored on

nodes r19, r14, r9, r4, r5, and r24 respectively. Nodes r19, r14, r9, r4, and r24 are the member

of server group 4. If a malicious user successfully attacks server group 4, replicas fa1, fa2,

fb1, fb2, and fc2 will be compromised, making the file F is reconstructed by the hacker. In

84

Server Group 5

5 10 15 20 25

1T : Server Group 1

1 6 11 16 21

: Server Group 2

2 7 12 17 22

: Server Group 3

3 8 13 18 23

: Server Group 4

4 9 14 19 24

2T

3T

4T

55 1515 2020 2525

5T

Figure 6.1: A distributed storage system 2 contains 25 storage nodes, which are categorized
into 5 server-type groups (or server groups for short), i.e., T1, T2, T3, T4, and T5. Servers in
each group have the same level of security vulnerability.

85

Server Set 6 That Handles Fragment

Server Set 3 That Handles Fragment

3 15

Server Set 1 That Handles Fragment 1af

1

Server Set 2 That Handles Fragment
2af

2 8 2014

Server Set 4 That Handles Fragment
2bf

4 10 16

25

11

 Server Set 5 That Handles Fragment
1cf

5 11 23

2cf

6 12 18 24

55

7

9

13

17

19

1bf

21

22

Figure 6.2: Possible insecure file fragment allocation

86

such a case, one successful attack against server group T4 will break the confidentiality of

file F .

In this example, the system availability is improved at the cost of system security.

Increasing the number of fragment replicas leads to high risk of having the fragment com-

promised by hackers. Both security and availability are among the top desired prosperities

of the distributed system service, so fragment assignment schemes that consider both avail-

ability and security are of great demand. In the rest of this chapter we propose a fragment

assignment solution that improves both security and availability. Our solution is designed

for heterogeneous distributed systems. Our solution is not applicable for the distributed

systems where heterogeneity is not a feature.

6.3 Reef: A Fragment Replication Scheme for S-FAS

In this section, we first outline the desired properties in our solution including security,

availability and performance. Next, we describe the corresponding policies applied in the

design of our solution to improve system security, availability, and performance.

6.3.1 Design Goal of Reef

The design goal of Reef is to improve security, availability, and performance through

file fragment assignments in heterogeneous distributed systems. In Chapter 3 we show that

system security can be improved by our S-FAS scheme. Chapter 4 and 5 demonstrate

that the S-FAS and SAP solution can improve both system security and performance. The

file assignment techniques proposed in the previous chapters largely rely on heterogeneous

features of large-scale distributed systems running modern applications on them. In the Reef

scheme, we address three desired properties including security, availability, and performance.

Based on the above analysis, we summarize the design objectives of Reef below:

• Security: Our motivation example indicates that the replication scheme decreases

system security. This is because the risk that a file is compromised increases due

87

to the increased number of replicas stored in risky distributed systems. In many

circumstances, the risk that the storage nodes are successfully attacked is out of control.

Thus, our Reef aims at boosting security even under conditions that some of the storage

nodes are compromised.

One way to improve security is to release as little information as possible through

compromised storage nodes. In a fragment replication scheme, an ideal file assignment

is to store all replicas of a fragment into one group of storage nodes. Different groups

of storage nodes take charge of the replica storage for different fragments. Thus,

with one set of successful attacks to any storage group, only one fragment of a file is

compromised, meaning that hackers are unable to construct the file.

• Availability:

To improve availability of a distributed storage system, we incorporate the fragment

replication in Reef. Each fragment has a few duplicated replicas. The replication degree

(a.k.a., number of replicas for each fragments) may be different among fragments,

because fragments may have different access rates [117] [134].

To improve availability, the Reef scheme attempts to make the hardware as diverse

as possible within a server group. Since the scheme make an effort to distribute the

replicas of a fragment to one server group, the replicas of the fragment are assigned

to heterogeneous storage nodes in the group. Thus, Reef can increase availability by

decreasing the possibility that the homogeneous storage nodes fail at the same time.

• Performance:

A handful of studies focused on the performance improvement of data replication strate-

gies [56] [37] [11] [22]. Our storage node group categorization is a logical classification

in a distributed system. The storage nodes within the same group might physically

belong to different subsystems. When fragments located in different subsystems are

transferred through network, it is risky and takes more time than the case that all

88

needed fragments are stored in one subsystem. Thus considering system performance,

firstly all replicas should be distributed to the storage nodes that are close to the clients;

secondly the replicas of a file should be distributed to less subsystems to reduce the

risk of network transferring and time cost.

6.3.2 Design of the Reef Scheme

The design object for Reef is a simple yet efficient approach to distributing replicas of

fragments for a file into storage nodes with various vulnerabilities and at same time to keep

the file more secure, with higher availability and performance.

The storage node deployment of a distributed system directly and fundamentally in-

fluences the system prosperities including performance, security, availability and scalability

etc. To improve the assurance of a distributed storage system while maintaining high I/O

performance, each cluster storage subsystem has to be built with high heterogeneity in vul-

nerability. This provides the possibility that the fragments of a file are less likely distributed

across multiple storage subclusters.

Based on the study results of our proposed security solution of S-FAS for non-replication

scheme: fragmentation is one of the techniques that improve storage security; secret sharing

is also an efficient technique to improve storage security; the special fragment distribution

strategies is another key method for security improvement for the S-FAS scheme. The

difference between non-replication and replication schemes is that there are multiple replicas

for every fragment of a file. In addition to the above mentioned security techniques for

non-replication scheme, we distribute the multiple replicas of each fragment of a file during

the replica distribution phase. We illustrate our security solution for replica distributions in

policies 3 to 6 in the Reef scheme.

The strategies to improve performance for non-replication scheme and replication scheme

are very similar from the following perspectives: distributing replicas or fragments into the

storage nodes that are close to clients; reducing replicas or fragments transferring across

89

different subsystems; and distributing replicas or fragments to storage nodes with high CPU

process speed and reliability.

One goal in our design is to reduce the replica or fragment transfer time across different

subsystems for the replication scheme. There are different approaches for the non-replication

and replication schemes. For our non-replication scheme (see the proposed solution in S-

FAF), we attempt to allocate fragments of a file to storage nodes within a subcluster. If

the number of nodes with different vulnerabilities cannot meet the aforementioned criterion,

some fragments of the file must be allocated across multiple clusters. To illustrate the useful

high performance strategy for the replication scheme, We define a file’s complete-replica

set, which includes at least one replica copy for every fragment of the file. In order to

reduce replica transferring, Reef distributes at least one complete replica set of a file to a

subsystem that close to clients. Otherwise, at least one fragment replica must be transferred

between two subsystems when users issue any read or write requests for the stored files in

the distributed systems.

The replication scheme is integrated into a distributed system to improve system avail-

ability. Each file is divided to multiple fragments and each fragment has multiple replicas.

Disasters, unexpected downtime, and normal system maintenance can make some of storage

nodes out of service. Increasing the number of replicas stored in a distributed system can

improve the system availability.

The Reef scheme makes storage node deployment for distributed systems and replica

placement decisions by following the seven policies in the four categories below:

Storage Node Deployment (The policies in this category can be ignored, if Reef is

used in exist heterogeneous distributed systems. Reef can be fully used by following some

policies below during the storage node deployment phase.).

• Policy 1: All the storage nodes in a distributed storage system are classified into multi-

ple server-type groups (server group for short) based upon their various vulnerabilities.

Each server group consists of storage nodes with the same set of vulnerabilities. We

90

place servers with diversified hardware configurations into one server group to make

the hardware as diverse as possible to improve the availability while the downtime is

caused by hardware.

Availability

• Policy 2: The replication scheme is integrated with the fragment assignment module

to improve system availability. Every file is divided to multiple fragments and each of

which has multiple replicas.

Security

• Policy 3(Please ignore this policy if policy 1 is implemented): All the storage nodes

in a distributed storage system are classified into multiple server-type groups (server

group for short) based upon their various vulnerabilities. Each server group consists

of storage nodes with the same set of vulnerabilities.

• Policy 4: To improve security of a distributed storage system, S-FAS allocates frag-

ments of a file to storage nodes, which are members of many different server groups.

• Policy 5: The replicas of a fragment are assigned to the same group of storage nodes.

The goal of this policy is to improve the storage assurance of a file by making it less

likely happen to compromise enough unique fragments of a file through one set of

successful attack techniques for a certain group of storage nodes.

• Policy 6: The (m,n) secret sharing scheme is incorporated into the S-FAS allocation

mechanism.

Performance

• Policy 7: In order to reduce replica transfer overhead, Reef assigns at least one complete

replica set of a file to a subsystem that is close to clients.

91

If the allocation decisions for the fragment replicas of a file are guided by the above

seven policies, successful attacks against less than m server groups have little chance to gain

unauthorized accesses of files stored in a distributed system. In other words, if the number

of compromised unique replicas of a file’s fragments is less than m, attackers are unable

to reconstruct the file from the replicas fragments accessible to hackers. The Reef scheme

can improve information assurance of files stored in a distributed storage system without

enhancing confidentiality services deployed in distributed storage systems, because Reef is

orthogonal to security mechanisms offering confidentiality for each server group in distributed

storage systems. Thus, Reef can be seamlessly integrated with any confidentiality service

employed in distributed storage systems in order to offer enhanced security services. At

the same time, the integrated fragment replication scheme, the corresponding deployment of

storage nodes, and the distribution of replicas help to improve availability, fault tolerance,

performance, as well as scalability .

6.4 Static Assurance Model for Reef

In this section, we developed a static assurance model to quantitatively evaluate the

security of a heterogeneous distributed storage system, in which Reef handles fragment

allocations. To simplify the model, we develop the static storage assurance model for the

case where all fragments share the same number t of replicas.

The modeling approaches to building the static assurance models for Reef and S-FAS

are the same. The models include multiplication principle, probability theory, and combi-

natorics. We analyze the steps in the entire process of an successful attack to a distributed

system. Here we use the multiplication principle to describe the attacking process. To de-

scribe the success rate of each step within the attacking process, we apply the probability

theory and combinatorics to evaluate the process.

As we describe in Table 6.1, most of the definitions we used in Reef are exactly the

same as the definitions in S-FAS (Please refer to Chapter 3 for details). Nevertheless, the

92

definition of Y and P (Y) in Reef is different from those used in S-FAS. In the Reef model, Y

means the event that if X occurs, at least m different fragments’ replicas(fragments in S-FAS

) can be compromised using the same attack method. Specifically in the storage assurance

model for Reef, we define P (Y) as the ratio of the combinatorial number of Y event to

the combinatorial number of distributing the n ∗ t replicas to the N nodes in a distributed

system.

Since attackers might apply a similar approach to compromise both non-replica-based

and replica-based distributed storage system, the calculation of P (V) in the Reef model is

the same as that in S-FAS in Chapter 3 (Please refer to Eq. 3.2 and Eq. 3.3). The definitions

and calculations, of P (X) and P (Z) in the static assurance model for Reef are also the same

as those presented in S-FAS in Chapter 3.

The main difference between the S-FAS model and the Reef model is that each file frag-

ment has multiple replicas in Reef. The placement of multiple replicas for all the fragments

of a file is a more complicated than the placement of all the fragments of a file. Recall that

Y is the event that if X occurs, at least m different fragments’ replicas can be compromised

using the same attack method. The number of compromised replicas ranges from m to

n ∗ t(in S-FAS, it ranges from m to n), because every fragment has t replica copies. The

compromised fragments may have different (e.g., 1, ..., t) copies of replicas that are stored

in the compromised nodes. In the following part, we derive probability P (Y).

To calculate the combinatorial number of event Y , we consider a special case W , where

if one picks y replicas from the x fragments’ replicas, the y pieces are the replicas of the x

different fragments.

We denote T (x, y) as the combinatorial number of case W . In the chosen jth storage

server group that includes Sj storage nodes, if event Y occurs, the number of nodes storing

replicas of file F may range from m to Sj (m <= Sj), because there might be a portion of

nodes in the jth group storing replicas of file F .

93

Now we can draw the combinatorial number (CM(Y)) of Y from the above expression

as below:

CM(Y) =

Sj∑
y=m

[T (m, y) + T (m+ 1, y) + T (m+ 2, y) + ...+ T (n, y)] (6.1)

When t >= y, we have the following further reasoning and expression of T (x, y) (we do not

give the general formula when t < y and it is not that hard to calculate T (x, y) if we have

the concrete values for all the related parameters).

T (1, y) = Cy
t

T (2, y) = Cy
2t − C1

2 ∗ T (1, y) = C2
2 ∗ Cy

2t − C1
2 ∗ Cy

t

T (3, y) = Cy
3t − C2

3 ∗ T (2, y)− C1
3 ∗ T y

1

= C3
3 ∗ Cy

3t − C2
3 ∗ Cy

2t + C1
3 ∗ Cy

t

...

T (x, y) = Cx
x ∗ Cy

xt − Cx−1
x ∗ Cy

(x−1)t + ...

=

x−1∑
i=0

(−1)i ∗ Cx−i
x ∗ Cy

(x−i)t

(6.2)

The combinatorial number CM(n ∗ t) of distributing the n ∗ t replicas of file F to the

N nodes in a distributed system can be expressed as:

CM(n ∗ t) = Ct
N ∗ Ct

N−t ∗ Ct
N−2t ∗ ... ∗ Ct

N−(n−1)t
(6.3)

Based on the definition of P (Y)–the rate of the combinatorial number of event Y dividing

the combinatorial number of distributing the n ∗ t replicas to the N nodes, we can derive

P (Y) from both CM(Y) and CM(n ∗ t) as:

94

P (Y) =
CM(Y)

CM(n ∗ t)

=

Sj∑
y=m

[T (m, y) + T (m+ 1, y) + T (m+ 2, y) + ... + T (n, y)]

Ct
N ∗ Ct

N−t ∗ Ct
N−2t ∗ Ct

N−3t ∗ ... ∗ Ct
N−(n−1)t

(6.4)

Recall that P (V) is the probability that file F is compromised under a successful attack.

Now we can derive P (V) from Eq. 6.4 as below:

P (V) =

K∑
j=1

{Sj

N
∗ P (Z) ∗

Sj∑
y=m

[T (m, y) + T (m+ 1, y) + ... + T (n, y)]

Ct
N ∗ Ct

N−t ∗ Ct
N−2t ∗ ... ∗ Ct

N−(n−1)t

} (6.5)

The confidentiality of file F is assured if file F is unable to be reconstructed by an

attacker. Given a fragment assignment decision α, we can derive the storage assurance

SA(α) for file F stored in a distributed storage system as:

SA(α) = 1− P (V)

= 1−
K∑
j=1

{Sj

N
∗ P (Z) ∗

Sj∑
y=m

[T (m, y) + T (m+ 1, y) + ... + T (n, y)]

Ct
N ∗ Ct

N−t ∗ Ct
N−2t ∗ ... ∗ Ct

N−(n−1)t

}
(6.6)

6.5 Evaluation of System Assurance

In addition to the influential factors (i.e., K, N , n and m) in the S-FAS scheme, replica-

tion degree t affects the assurance model for the Reef scheme described in Section 6.4. The

rest of this sub-section presents our quantitative evaluation on the impacts of these factors

on the information assurance of distributed storage systems.

6.5.1 Impact of Replication Degree on Storage Assurance

The first affecting factor we considered is the replication degree t of the scheme. Ob-

viously, increasing the number of replicas improves the availability of a distributed system.

With more replicas stored across multiple nodes in the system, the system provides good

95

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m=1:4

st
at

ic
 a

ss
ur

an
ce

Replication Degree Impact on Assurance N=50, K=5, n=5

N=50, t=1
N=50, t=2
N=50, t=4

Figure 6.3: Replication Degree Impact on Assurance

I/O throughput. Fig. 6.3 shows the impacts of replication degree on the static assurance of

a distributed storage system.

In this experiment, the secret-sharing threshold is increased from 1 to 4. We evaluate

the static assurance of a 50-node distributed system, where there are five difference server

types. The number of replicas is set to 1, 2, and 4 respectively. Fig. 6.3 confirms that

with the increasing value of the replication degree, the assurance of the distributed system

is decreased. This observation suggests that we should consider limiting the boundary of

replication degree to control the storage assurance at an acceptable level.

6.5.2 Impact of System Size on Storage Assurance

System size or the number of storage nodes (N) in a distributed system is one of the

very important parameters for the system. We further study the system size impact on

storage assurance. In the second experiment, we keep the number of replicas to 2. The value

96

of N is set to 30, 40, and 50. The other parameters are kept the same as those in the first

experiment. Fig. 6.4 presents the preliminary results of the impact of system size in the Reef

replication scheme.

Fig. 6.4 shows that the storage assurance increases with the increasing of system size.

This result indicates that for our proposed Reef scheme, even the diversity level represented

by the K is kept unchanged, the storage assurance can be enhanced by increasing the storage

nodes within the set of same storage types.

This security trend of the duplicated scheme is significantly different from that of the

non-replicas-based scheme in S-FAS, where increasing the system size has no impact on the

storage assurance if the diversity level (K) is a constant. This observation demonstrates that

Reef is very useful for large-scale distributed systems, where replicas are deployed to improve

reliability. We can increase the storage assurance by adding extra nodes to a distributed

system even if the diversity level of the system does not increase.

Interestingly, when the secret-sharing threshold is set to 4, the static assurance of the

distributed system becomes less sensitive to the system size. We conclude that when the

secret-sharing threshold is very low, static assurance can be improved by increasing the

number of nodes in the system.

6.5.3 Impact of Number n of File Fragments on Storage Assurance

The number of fragments for each file in our integrated secret sharing scheme is another

very important parameters affecting storage assurance. Now we study the impact of the

fragment number n on storage assurance.

In the design of the experiment, the number n of fragments is increased from 5 to 7.

The parameters k and N are set to 5 and 50, respectively. We also vary threshold m from

1 to 4.

Fig. 6.5 shows that the system assurance is reduced with the increasing value of fragment

number n. The trend of the Reef scheme is the same as the trend of S-FAS. This is because

97

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m=1:4

st
at

ic
 a

ss
ur

an
ce

System Size Impact on Assurance t=2, K=5, n=5

N=30, t=2
N=40, t=2
N=50, t=2

Figure 6.4: System Size Impact on Assurance

98

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m=1:4

st
at

ic
 a

ss
ur

an
ce

Number(n) of File Fragments Impact on Storage Assurance t=2, K=5, N=50

n=5, t=2
n=6, t=2
n=7, t=2

Figure 6.5: Number of Fragments Impact on Assurance

with the increasing of fragment number n, the possibility that more fragments of a file are

allocated to storage nodes of the same group is increased. Compared to S-FAS, Reef is more

sensitive to the number n of file fragment. The reason is that each replica of a fragment in

Reef has the same level of influence on storage assurance as a single fragment in the S-FAS

scheme.

Thus, we can reach a conclusion that increasing the number of fragments for files stored

in a distributed system reduces the static assurance of the system.

6.6 R-SAP: The Allocation Algorithm for Reef

In this section, we present a replication allocation process algorithm called R-SAP de-

signed for the Reef scheme. We first describe the design goals related to system security,

availability, and performance. Next, we propose the R-SAP algorithm.

99

6.6.1 Factors Affecting Security, Availability and Performance

Three design goals of a distributed storage systems are system security, availability and

performance. System parameters that have significant performance impacts include: storage

nodes and their hardware, software, process speed, storage capability, security vulnerability

and connected network, intranet and internet connection quality. In addition to system

parameters, other affecting factors are workload and data stored in distributed systems and

its data features such as data size, access rate, fragment number, replication degree and the

locations of the replicas. Table 6.2 lists all notations used throughout this section in the

R-SAP algorithm.

All the related definitions (such as wN , please refer to Eq. 4.1), analysis of the impacts

on performance from the above factors in R-SAP are the same as those in SAP(Please refer

to Section 4.2 in Chapter 4 for the details).

Since Reef incorporates replicas, we extend SAP’s workload model to capture the work-

load conditions in the Reef case. We use Workload(see Eq. 6.7 below) to evaluate the

workload that a replica of fragment impose to the storage node serving the fragment.

Workloadihx = λihx ∗DataSizeihx (6.7)

To address the load balancing issue, the R-SAP algorithm evenly distributes the load

expressed by Eq. 6.8 across to multiple nodes (1, ..., N).

Workload N = wN ∗
d∑

i=1

|Fi|∑
h=1

t∑
x=1

λihx ∗DataSizeihx (6.8)

6.6.2 The Design of R-SAP

In this section we describe the design of R-SAP that is integrated with the Reef scheme.

We focus on the static algorithm rather than its dynamic counterpart, because we plan to

extend R-SAP to address the dynamic data placement issue in our future study.

100

Table 6.2: Notation used in the SAP Algorithm.
Notations Meaning
S the size of file F
u server type in the system
Si the size of server type i in a cluster
|F | the total number of files
|Fi| the total number of fragments in file |Fi|
F ihx the xth replica of the hth fragment of the ith file
Workloadihx the work load that the x replica of the hth fragment of the

ith file brings to the node where it is stored
DataSizeihx the xth replica of the jth fragment size of the ith file
bN Bandwidth of the connected

network of the Nth node
λihx the access rate of the xth replica of jth fragment

of ith file
Nuv the v th node of server type u

u,v= 0,1...
Iihx Decreasing sorted list of fragments

to be allocated (Fragments of
the same file are consecutive
and belong to the same row)

TLoad (Nuv) total available load of node Nuv

CLoad (Nuv) current load of node Nuv

RLoad (Nuv) N number of element vector
recording the total available
storage capacity for all nodes

CurrentN[u] the current available node in the
uth type of servers

LoadBNuv the most load that shoud be
assigned to node Nuv

R-SAP consists of two steps: sorting the replicas in a decreasing order in a three-

dimensional list Iijx based on the workload of the replicas(Fig. 6.6)); and dispatching all the

replicas in the list Iijx to distributed nodes (Fig. 6.7).

The detailed steps of R-SAP are outlined in Algorithm 2.

101

|F| number of files
Secret sharing scheme

(m, n)

Start

Decreasing Sorted Three-
Dimension Replica List ih xI

(1) Partition Each File into n fragments;
(2) Replicate the Fragments (Based on Replication Degree);
(3) Compute the Workload for All Replicas;
(4) Sort Replicas of All Fragments in Decreasing Order

Figure 6.6: Creating a Three-dimension Decreasing Ordered Replica List

Algorithm 2 Replication Secure Allocation Process(R-SAP):

Input:
Iihx
Storage Nodes in a Two-dimension List
for i = 1 and i < |F | do
//Allocate all File i
for h = 1 and h < |Fi| do
//Allocate all Fragment h of File i;
//Try to Distribute Fragment into Diverse Server Groups.
for x = 1 and x < t do
//Allocate all Replica x of Fragment h for File i;
//Try to Distribute Replicas of a Fragment into the Same or Less Server Groups.

end for
end for

end for
Output:
The Updated Replica List for Multi-thread Replica Writing

102

Start

Decreasing Sorted Three -
Dimension Replica List

Server Configuration
File

Reef-
Check for the

Available Server for
Replica

Distribute Replica to
the Chosen Server

Yes
 No

Break
 No

Is This the Last
Replica in List ?

 Yes

End

ihxI

ihxI

ihxI

ihxI

Figure 6.7: Data Flow of the R-SAP Algorithm

103

6.7 Chapter Summary

It is critical to maintain a high availability of files stored in a distributed storage system,

even when some storage nodes in the system are out of service.

In this Chapter we proposed a solution called Reef to improve the distributed storage

system security and availability by integrating the fragment replication technique, secret

sharing, fragment replication. Reef considers heterogeneity features of distributed storage

systems during the replica placement phase. The Reef scheme is an extension of the S-FAS

scheme. The system model for Reef is similar to that of S-FAS except that Reef address

the system failures mode and aims to improve system reliability in addition to security.

We build a static assurance model to quantitatively evaluate the system assurance for the

Reef scheme. We also developed a replica allocation process algorithm called R-SAP to

demonstrate how does the proposed Reef scheme work. In the Reef design, we addressed the

distributed system security, performance, as well as availability. To evaluate the assurance

provided by Reef, we studied the impacts caused by replication degree, system size, and the

number of fragments.

In this dissertation study, we only focus on the static replica placement solution. Dy-

namic replica reallocation schemes are essential to achieve high performance and availability

of distributed systems, especially for internet based applications and services. In a dynamic

wide-area environment, client access patterns, network conditions, and service characteristics

are constantly changing. We plan to study and propose a dynamic replica reallocation ap-

proach for heterogeneous distributed system by extending Reef to address the heterogeneous

vulnerabilities in the large scale distributed systems.

104

Chapter 7

Future Research Plan

In the previous research, we addressed the heterogeneous vulnerability issue by dividing

storage nodes of a distributed system into different server-type groups based on their vul-

nerabilities. Each server-type group - representing a level of vulnerability - contains storage

nodes with the same security vulnerability. We proposed a secure fragmentation allocation

scheme called S-FAS to improve security of a distributed system where storage nodes have

a wide variety of vulnerabilities.

To quantify information assurance and to evaluate the proposed S-FAS scheme we de-

veloped storage assurance and dynamic assurance models. We discovered some principles

to improve assurance levels of heterogeneous distributed storage systems. The principles

are general guidelines to help designers achieve a secure fragment allocation solution for

distributed systems.

In order to consider the system performance for S-FAS applied system, we developed a

secure allocating processing (SAP) algorithm to improve security and system performance

by considering the heterogeneous feature of a large distributed system.

In order to conduct the performance analysis for the S-FAS scheme and SAP allocating

algorithm, we developed a prototype for our S-FAS scheme. We implemented the prototype

and conducted some experiments on the throughput of the proposed scheme and algorithm.

To further study the influential factors on different desired metrics in distributed sys-

tems using the S-FAS scheme and SAP allocation algorithm, we have done experiments and

analysis against different popular and important real world traces. All the experiment and

analyzing results have provided guidance to upgrade the current S-FAS scheme with higher

performance and availability using fragment replication and energy efficiency strategies for

105

different kinds of applications in our future work. Based on the work we have done, we split

our future research work into the following tasks.

7.1 Task1: Dynamic Replica Reallocation in Heterogeneous Distributed Sys-

tems Based on Reef Scheme

Currently the design of Reef is static replica placement solution. Dynamic replica reallo-

cation is essential for high performance and availability, especially for internet based applica-

tions and services, because of constantly changing client access patterns, network conditions,

and service characteristics in the wide-area environment. There is already some research work

done on replication and dynamic reallocation without considering the heterogeneity of the

nodes in distributed systems. Heterogeneous systems have their own characteristics such as

non-uniform/correlated machine failures, so that schemes designed for distributed systems

with high diversity should be different from the homogeneous systems. I plan to study and

propose a dynamic replica reallocation protocol for heterogeneous distributed system based

on S-FAS.

7.2 Task2: Considering Energy as a System Resource to Design Optimal Dy-

namic Replica Reallocation Adaptive Schemes

As the size and computing power of large server clusters continue to increase, the energy

consumption and heat emission of those systems are becoming very important concerns. In

a different yet related front, embedded or mobile devices powered by batteries heavily rely

on energy conservation to provide meaningful services. For those systems, computing cy-

cles and network/disk bandwidth, traditionally considered as system resources, are more

like expenses. They all consume the fundamental system resource: energy. This calls for

studies on issues like energy-aware load distribution. It also opens the door for power and

energy differentiation in addition to the traditional service differentiation. Service accesses

are to be differentiated based on both their service quality specifications and their respective

106

energy consumptions. Different applications have their own most desirable service qualities

at different energy costs. I will tune the fragment replica combined S-FAS scheme to dif-

ferent applications to achieve the optimal energy efficiency under different service quality

requirements.

7.3 Task3: Resource Scheduling and Management Considering Heterogeneity

Nature in Cloud Computing

As a new emerged and fast developing application of distributed computing, cloud

computing is the delivery of computing as a service rather than a product, whereby shared

resources, software, and information are provided to computers and other devices as a utility

over a network. In such complex and rich resource distributed systems, heterogeneity is

more obvious and common than the traditional applications. Adaptive resource scheduling

is required to efficiently utilize vast system resources in response to dynamically changing

user requests. Resource scheduling and management will be an interesting and important

research area in order to design optimal architectures for different applications in cloud

computing. I plan to explore solutions not only considering heterogeneity nature in cloud,

but also the service patterns for applications and different customer requirements.

107

Chapter 8

Conclusion

This chapter concludes this dissertation by summarizing our main work and contribu-

tions.

8.1 Dissertation Summary

In this dissertation study, we have investigated techniques to improve security, per-

formance, and availability of heterogeneous distributed storage systems by focusing on the

heterogeneous vulnerabilities among storage nodes.

8.1.1 S-FAS: A Secure Fragment Allocation Scheme

In the first part of this study, we proposed S-FAS, which is a Secure Fragment Allocation

Scheme. We built the static and dynamic assurance models to evaluate the S-FAS scheme.

To analysis results show that fragment allocations made by S-FAS lead to enhanced security

thanks to the consideration of heterogeneous vulnerabilities in distributed storage systems.

The S-FAS scheme makes fragment allocation decisions by following the four policies

below:

• Policy 1: All the storage nodes in a distributed storage system are classified into multi-

ple server-type groups (server group for short) based upon their various vulnerabilities.

Each server group consists of storage nodes with the same vulnerability level.

• Policy 2: To improve security of a distributed storage system, S-FAS allocates frag-

ments of a file to storage nodes belonging to as many different server groups as possible.

108

In doing so, it is impossible to compromise the file’s fragments using a single successful

attack method.

• Policy 3: The fragments of a file are allocated to nodes with a wide range of vulner-

ability levels all within a single cluster storage subsystem. The goal of this policy is

to improve system performance by making the fragments less likely to be distributed

across multiple clusters.

• Policy 4: The (m,n) secret sharing scheme is integrated with the S-FAS allocation

mechanism.

8.1.2 SAP: An Secure Fragment Allocation Process Module

We investigated a Secure Allocation Process (SAP) module to improve security and

performance using the heterogeneous features of a distributed system. SAP considers load

balancing, delayed effects caused by the workload variance of many consecutive requests,

and the heterogeneities of the storage nodes in a distributed system.

8.1.3 A Prototype: The Implementation of S-FAS scheme and SAP Algorithm

We developed a prototype using the multi-threading technique for the S-FAS scheme

with the SAP module to guide file fragment allocations. We conducted some experiments

to evaluate SAP’s performance. The results show that our solution can not only improve

security, but also enhance the I/O throughput of heterogeneous distributed storage systems.

We also replayed real traces on our prototype to evaluate SAP’s performance impacts on

data-intensive applications.

8.1.4 Reef: An Replication Scheme to Improve Availability

It is critical to maintain a high availability of files stored in a distributed storage system,

even when some storage nodes in the system are out of service.

109

In this Chapter we proposed a solution called Reef to improve the distributed storage

system security and availability by integrating the fragment replication technique, secret

sharing, fragment replication. Reef considers heterogeneity features of distributed storage

systems during the replica placement phase. The Reef scheme is an extension of the S-FAS

scheme. The system model for Reef is similar to that of S-FAS except that Reef address

the system failures mode and aims to improve system reliability in addition to security.

We build a static assurance model to quantitatively evaluate the system assurance for the

Reef scheme. We also developed a replica allocation process algorithm called R-SAP to

demonstrate how does the proposed Reef scheme work. In the Reef design, we addressed the

distributed system security, performance, as well as availability. To evaluate the assurance

provided by Reef, we studied the impacts caused by replication degree, system size, and the

number of fragments.

In this dissertation study, we only focus on the static replica placement solution. Dy-

namic replica reallocation schemes are essential to achieve high performance and availability

of distributed systems, especially for internet based applications and services. In a dynamic

wide-area environment, client access patterns, network conditions, and service characteristics

are constantly changing. We plan to study and propose a dynamic replica reallocation ap-

proach for heterogeneous distributed system by extending Reef to address the heterogeneous

vulnerabilities in the large scale distributed systems.

8.2 Contributions

In this dissertation study we made five main contributions. We aim to achieve security,

performance, and availability in heterogeneous distributed storage systems.

1. We addressed the heterogeneous vulnerability issue by dividing storage nodes of a

distributed system into different server-type groups based on their vulnerabilities. Each

server-type group - representing a level of vulnerability - contains storage nodes with

the same security vulnerability. We proposed a secure fragmentation allocation scheme

110

called S-FAS to improve security of a distributed system where storage nodes have a

wide variety of vulnerabilities.

2. We developed storage assurance and dynamic assurance models to quantify information

assurance and to evaluate the proposed S-FAS scheme. We discovered principles to

improve assurance levels of heterogeneous distributed storage systems. The principles

are general guidelines to help designers achieve a secure fragment allocation solution

for distributed systems.

3. We developed a secure allocating processing module or SAP to improve security and

system performance by considering the heterogeneous features of distributed systems.

4. In order to conduct the performance analysis for the S-FAS scheme and SAP allocating

algorithm, we developed a prototype for our S-FAS scheme. We implemented the

prototype and conducted some experiments on the throughput of the proposed scheme

and algorithm.

5. To improve the distributed storage system availability, we proposed the Reef scheme by

integrating fragment replicas into our S-FAS and SAP for heterogeneous distributed

systems. We developed a secure fragment allocation process module – R-SAP – to

demonstrate the effectiveness of the proposed Reef scheme. The evaluation results

show that the proposed Reef scheme and R-SAP can improve both availability and

security of heterogeneous distributed systems.

111

Bibliography

[1] Computer clusters.

[2] Distributed computing systems.

[3] F. Abdoli and M. Kahani. Ontology-based distributed intrusion detection system. In
Computer Conference, 2009. CSICC 2009. 14th International CSI, pages 65–70, 2009.

[4] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos Kara-
manolis. Sinfonia: a new paradigm for building scalable distributed systems. SIGOPS
Oper. Syst. Rev., 41(6):159–174, October 2007.

[5] A. Ahmed, A. Abdullah, and P. D D Dominic. A multi-agent based replication strat-
egy for improving availability and maintaining consistency of data in large scale mobile
traffic control environments. In High Capacity Optical Networks and Enabling Tech-
nologies, 2008. HONET 2008. International Symposium on, pages 163–168, 2008.

[6] A. Ahmed, P. D D Dominic, and H. Ibrahim. A binary hybrid replication strategy
for improving availability and maintaining consistency of data in large scale mobile
environments. In Information Technology, 2008. ITSim 2008. International Symposium
on, volume 3, pages 1–9, 2008.

[7] G. Ahrens, A. Chandra, M. Kanthanathan, and D.P. Cox. Evaluating hacmp/6000: a
clustering solution for high availability distributed systems. In Fault-Tolerant Parallel
and Distributed Systems, 1994., Proceedings of IEEE Workshop on, pages 2–9, 1994.

[8] R. Al-Ekram and R. Holt. Multi-consistency data replication. In Parallel and Dis-
tributed Systems (ICPADS), 2010 IEEE 16th International Conference on, pages 568–
577, 2010.

[9] B.A. Alqaralleh, Chen Wang, Bing Bing Zhou, and A.Y. Zomaya. Effects of replica
placement algorithms on performance of structured overlay networks. In Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pages 1–8,
2007.

[10] H. Alustwani, J.M. Bahi, and A. Mostefaoui. Improving data availability in p2p stream-
ing systems using distributed virtual cache. In Multimedia, 2008. ISM 2008. Tenth
IEEE International Symposium on, pages 384–389, 2008.

[11] L.R. Anikode and Bin Tang. Integrating scheduling and replication in data grids
with performance guarantee. In Global Telecommunications Conference (GLOBECOM
2011), 2011 IEEE, pages 1–6, 2011.

112

[12] J.E. Armendariz-Inigo, J.R. Juarez-Rodriguez, H. Decker, and F.D. Munoz-Escoi. Try-
ing to cater for replication consistency and integrity of highly available data. In
Database and Expert Systems Applications, 2006. DEXA ’06. 17th International Work-
shop on, pages 553–557, 2006.

[13] Henri E. Bal, M. Frans Kaashoek, Andrew S. Tanenbaum, and Jack Jansen. Replica-
tion techniques for speeding up parallel applications on distributed systems. Concur-
rency: Practice and Experience, 4(5):337–355, 1992.

[14] S. Balaji, L. Jenkins, L. M. Patnaik, and P. S. Goel. Workload redistribution for
fault-tolerance in a hard real-time distributed computing system. In Fault-Tolerant
Computing, 1989. FTCS-19. Digest of Papers., Nineteenth International Symposium
on, pages 366–373, 1989.

[15] Peter C. Bates. Debugging heterogeneous distributed systems using event-based models
of behavior. ACM Trans. Comput. Syst., 13(1):1–31, February 1995.

[16] Adam Beguelin, Erik Seligman, and Peter Stephan. Application level fault tolerance
in heterogeneous networks of workstations. Journal of Parallel and Distributed Com-
puting, 43(2):147 – 155, 1997.

[17] William H. Bell, David G. Cameron, Luigi Capozza, A. Paul Millar, Kurt Stockinger,
and Floriano Zini. Simulation of dynamic grid replication strategies in optorsim. In
Proceedings of the Third International Workshop on Grid Computing, GRID ’02, pages
46–57, London, UK, UK, 2002. Springer-Verlag.

[18] G. Benson, W. Appelbe, and I. Akyildiz. The hierarchical model of distributed system
security. In Security and Privacy, 1989. Proceedings., 1989 IEEE Symposium on, pages
194–203, 1989.

[19] Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau L Blni, Muthucumaru Ma-
heswaran, Albert I Reuther, James P Robertson, Mitchell D Theys, Bin Yao, Debra
Hensgen, and Richard F Freund. A comparison of eleven static heuristics for map-
ping a class of independent tasks onto heterogeneous distributed computing systems.
Journal of Parallel and Distributed Computing, 61(6):810 – 837, 2001.

[20] G. Cabri, A. Corradi, and F. Zambonelli. Experience of adaptive replication in dis-
tributed file systems. In EUROMICRO 96. Beyond 2000: Hardware and Software
Design Strategies., Proceedings of the 22nd EUROMICRO Conference, pages 459–466,
1996.

[21] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225–267, March 1996.

[22] Ruay-Shiung Chang, Jih-Sheng Chang, and Shin-Yi Lin. Job scheduling and data
replication on data grids. Future Gener. Comput. Syst., 23(7):846–860, August 2007.

[23] D.R. Cheriton and C.L. Williamson. Vmtp as the transport layer for high-performance
distributed systems. Communications Magazine, IEEE, 27(6):37–44, 1989.

113

[24] D.R. Cheriton and C.L. Williamson. Vmtp as the transport layer for high-performance
distributed systems. Communications Magazine, IEEE, 27(6):37–44, 1989.

[25] J.C.Y. Chou, Tai-Yi Huang, and Kuang-Li Huang. Scallop: a scalable and load-
balanced peer-to-peer lookup protocol for high-performance distributed systems. In
Cluster Computing and the Grid, 2004. CCGrid 2004. IEEE International Symposium
on, pages 19–26, 2004.

[26] M. Chovanec, L. Vokorkos, and J. Perhac. Security architecture based on multilayer
distributed intrusion detection system. In Applied Computational Intelligence and
Informatics, 2009. SACI ’09. 5th International Symposium on, pages 301–306, 2009.

[27] A.T. Chronopoulos and D. Grosu. Static load balancing for cfd simulations on a
network of workstations. In Network Computing and Applications, 2001. NCA 2001.
IEEE International Symposium on, pages 364 –367, 2001.

[28] Xie Chuiyi, Zhang Yizhi, Bai Yuan, Luo Shuoshan, and Xu Qin. A distributed intrusion
detection system against flooding denial of services attacks. In Advanced Communi-
cation Technology (ICACT), 2011 13th International Conference on, pages 878–881,
2011.

[29] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil Sit, Hakim Weatherspoon,
M. Frans Kaashoek, John Kubiatowicz, and Robert Morris. Efficient replica mainte-
nance for distributed storage systems. In Proceedings of the 3rd conference on Net-
worked Systems Design and Implementation Volume 3, NSDI 06, pages 4–4, Berkeley,
CA, USA, 2006. USENIX Association.

[30] George Copeland, William Alexander, Ellen Boughter, and Tom Keller. Data place-
ment in bubba. SIGMOD Rec., 17(3):99–108, 1988.

[31] A. Costan, C. Dobre, F. Pop, C. Leordeanu, and V. Cristea. A fault tolerance ap-
proach for distributed systems using monitoring based replication. In Intelligent Com-
puter Communication and Processing (ICCP), 2010 IEEE International Conference
on, pages 451–458, 2010.

[32] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative
storage with cfs. In SOSP ’01: Proceedings of the eighteenth ACM symposium on
Operating systems principles, pages 202–215, New York, NY, USA, 2001. ACM.

[33] Y.S Dai, M Xie, K.L Poh, and G.Q Liu. A study of service reliability and availability
for distributed systems. Reliability Engineering and System Safety, 79(1):103 – 112,
2003.

[34] Nhan Nguyen Dang, Soonwook Hwang, and Sang Boem Lim. Improvement of data
grid’s performance by combining job scheduling with dynamic replication strategy. In
Grid and Cooperative Computing, 2007. GCC 2007. Sixth International Conference
on, pages 513–520, 2007.

114

[35] Y. Deswarte, L. Blain, and J.-C. Fabre. Intrusion tolerance in distributed comput-
ing systems. In Research in Security and Privacy, 1991. Proceedings., 1991 IEEE
Computer Society Symposium on, pages 110 –121, May 1991.

[36] J.R. Douceur and R.P. Wattenhofer. Optimizing file availability in a secure serverless
distributed file system. In Reliable Distributed Systems, 2001. Proceedings. 20th IEEE
Symposium on, pages 4–13, 2001.

[37] A. Elghirani, R. Subrata, and A.Y. Zomaya. Intelligent scheduling and replication in
datagrids: a synergistic approach. In Cluster Computing and the Grid, 2007. CCGRID
2007. Seventh IEEE International Symposium on, pages 179–182, 2007.

[38] A. Elghirani, R. Subrata, A.Y. Zomaya, and A. Al Mazari. Performance enhance-
ment through hybrid replication and genetic algorithm co-scheduling in data grids. In
Computer Systems and Applications, 2008. AICCSA 2008. IEEE/ACS International
Conference on, pages 436–443, 2008.

[39] Hyeonsang Eom and J.K. Hollingsworth. Speed vs. accuracy in simulation for i/o-
intensive applications. In Parallel and Distributed Processing Symposium, 2000. IPDPS
2000. Proceedings. 14th International, pages 315 –322, 2000.

[40] H.M.A. Fahmy and A.A. El-Hefnawy. Fault-tolerance-based computation of global
functions in asynchronous distributed systems. In Electronics, Circuits and Systems,
2001. ICECS 2001. The 8th IEEE International Conference on, volume 2, pages 789–
793 vol.2, 2001.

[41] Joseph R. Falcone. A programmable interface language for heterogeneous distributed
systems. ACM Trans. Comput. Syst., 5(4):330–351, October 1987.

[42] Fei fei Li, Xiang zhan Yu, and GangWu. Design and implementation of high availability
distributed system based on multi-level heartbeat protocol. In Control, Automation
and Systems Engineering, 2009. CASE 2009. IITA International Conference on, pages
83–87, 2009.

[43] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke. A
directory service for configuring high-performance distributed computations. In High
Performance Distributed Computing, 1997. Proceedings. The Sixth IEEE International
Symposium on, pages 365–375, 1997.

[44] Daniel Ford, Franois Labelle, Florentina I. Popovici, Murray Stokely, Van anh Truong,
Luiz Barroso, Carrie Grimes, Sean Quinlan, and Google Inc. Availability in globally
distributed storage systems.

[45] Wei Fu, Nong Xiao, and Xicheng Lu. A quantitative survey on qos-aware replica
placement. In Grid and Cooperative Computing, 2008. GCC ’08. Seventh International
Conference on, pages 281–286, 2008.

115

[46] Xiong Fu, Ruchuan Wang, Yang Wang, and Song Deng. A replica placement algorithm
in mobile grid environments. In Embedded Software and Systems, 2009. ICESS ’09.
International Conference on, pages 601–606, 2009.

[47] Lei Gao, M. Dahlin, A. Nayate, Jiandan Zheng, and Arun lyengar. Improving availabil-
ity and performance with application-specific data replication. Knowledge and Data
Engineering, IEEE Transactions on, 17(1):106–120, 2005.

[48] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.
2003.

[49] A. Grzech. Optimization of two-level topological structure of distributed intrusion
detection system. In Systems Engineering, 2008. ICSENG ’08. 19th International
Conference on, pages 337–342, 2008.

[50] B. Hamid, A. Radermacher, P. Vanuxeem, A. Lanusse, and S. Gerard. A fault-tolerance
framework for distributed component systems. In Software Engineering and Advanced
Applications, 2008. SEAA ’08. 34th Euromicro Conference, pages 84–91, 2008.

[51] J.W. Hanna and J.D. Johannes. A reliable distributed system using dual level fault
tolerance. In Southeastcon ’92, Proceedings., IEEE, pages 610–613 vol.2, 1992.

[52] C. Hannon and J.R. Rinewalt. Addressing security issues in geographically distributed
systems. In Computer Science, 2003. ENC 2003. Proceedings of the Fourth Mexican
International Conference on, pages 182–189, 2003.

[53] S. Hariri and H. Mutlu. Hierarchical modeling of availability in distributed systems.
Software Engineering, IEEE Transactions on, 21(1):50–56, 1995.

[54] S. Hariri and H.B. Mutlu. A hierarchical modeling of availability in distributed systems.
In Distributed Computing Systems, 1991., 11th International Conference on, pages
190–197, 1991.

[55] D. Herz and A.M. Deplanche. Fault-tolerance operators for distributed real-time con-
trol systems. In Distributed Computing Systems, 1990. Proceedings., Second IEEE
Workshop on Future Trends of, pages 113–119, 1990.

[56] Hui-I Hsiao and D.J. DeWitt. A performance study of three high availability data repli-
cation strategies. In Parallel and Distributed Information Systems, 1991., Proceedings
of the First International Conference on, pages 18–28, 1991.

[57] Weijian Huang, Yan An, and Wei Du. A multi-agent-based distributed intrusion de-
tection system. In Advanced Computer Theory and Engineering (ICACTE), 2010 3rd
International Conference on, volume 3, pages V3–141–V3–143, 2010.

[58] Weijian Huang, Yan An, and Wei Du. A multi-agent-based distributed intrusion de-
tection system. In Advanced Computer Theory and Engineering (ICACTE), 2010 3rd
International Conference on, volume 3, pages V3–141–V3–143, 2010.

116

[59] Yixiu Huang, Prasad Sistla, and Ouri Wolfson. Data replication for mobile computers.
In Proceedings of the 1994 ACM SIGMOD international conference on Management
of data, SIGMOD ’94, pages 13–24, New York, NY, USA, 1994. ACM.

[60] Pankaj Jalote. Fault tolerance in distributed systems. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1994.

[61] B. Javadi, D. Kondo, J.-M. Vincent, and D.P. Anderson. Discovering statistical models
of availability in large distributed systems: An empirical study of seti@home. Parallel
and Distributed Systems, IEEE Transactions on, 22(11):1896–1903, 2011.

[62] A. Kermarrec, E.L. Merrer, G. Straub, and A. Van Kempen. Availability-based meth-
ods for distributed storage systems. In Reliable Distributed Systems (SRDS), 2012
IEEE 31st Symposium on, pages 151–160, 2012.

[63] D. L. Kewley and J. F. Bouchard. Darpa information assurance program dynamic
defense experiment summary. IEEE Trans. on Systems, Man and Cybernetics, Part
A: Systems and Humans, 31(4):331 –336, Jul 2001.

[64] Vishal Kher and Yongdae Kim. Securing distributed storage: challenges, techniques,
and systems. In Proceedings of the 2005 ACM workshop on Storage security and sur-
vivability, StorageSS ’05, pages 9–25, New York, NY, USA, 2005. ACM.

[65] K.H. Kim. Designing fault tolerance capabilities into real-time distributed computer
systems. In Distributed Computing Systems in the 1990s, 1988. Proceedings., Workshop
on the Future Trends of, pages 318–328, 1988.

[66] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: an
architecture for global-scale persistent storage. SIGPLAN Not., 35:190–201, November
2000.

[67] J. G. Kuhl and S. M. Reddy. Distributed fault-tolerance for large multiprocessor
systems. In Proceedings of the 7th annual symposium on Computer Architecture, ISCA
’80, pages 23–30, New York, NY, USA, 1980. ACM.

[68] James F. Kurose and Rahul Simha. A microeconomic approach to optimal resource
allocation in distributed computer systems. IEEE Trans. Comput., 38(5):705–717,
1989.

[69] H. Lamehamedi, Z. Shentu, B. Szymanski, and E. Deelman. Simulation of dynamic
data replication strategies in data grids. In Parallel and Distributed Processing Sym-
posium, 2003. Proceedings. International, pages 10 pp.–, 2003.

[70] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman. Data replication strategies
in grid environments. In Algorithms and Architectures for Parallel Processing, 2002.
Proceedings. Fifth International Conference on, pages 378–383, 2002.

117

[71] Lin-Wen Lee, Peter Scheuermann, and Radek Vingralek. File assignment in parallel i/o
systems with minimal variance of service time. IEEE Trans. Comput., 49(2):127–140,
2000.

[72] Wei Li, Shanping Li, and Xingen Wang. Load balance optimization with replication
degree customization. In Cloud Computing and Intelligence Systems (CCIS), 2011
IEEE International Conference on, pages 170–174, 2011.

[73] Ching Lin and V. Varadharajan. A hybrid trust model for enhancing security in
distributed systems. In Availability, Reliability and Security, 2007. ARES 2007. The
Second International Conference on, pages 35–42, 2007.

[74] Yi Lin, Bettina Kemme, Marta Patiño Mart́ınez, and Ricardo Jiménez-Peris. Middle-
ware based data replication providing snapshot isolation. In Proceedings of the 2005
ACM SIGMOD international conference on Management of data, SIGMOD ’05, pages
419–430, New York, NY, USA, 2005. ACM.

[75] Jianxiao Liu and Li Lijuan. A distributed intrusion detection system based on agents.
In Computational Intelligence and Industrial Application, 2008. PACIIA ’08. Pacific-
Asia Workshop on, volume 1, pages 553–557, 2008.

[76] Miron Livny and Myron Melman. Load balancing in homogeneous broadcast dis-
tributed systems. SIGMETRICS Perform. Eval. Rev., 11(1):47–55, April 1982.

[77] O.G. Loques and J. Kramer. Flexible fault tolerance for distributed computer systems.
Computers and Digital Techniques, IEE Proceedings E, 133(6):319–332, 1986.

[78] T. Loukopoulos and I. Ahmad. Static and adaptive data replication algorithms for fast
information access in large distributed systems. In Distributed Computing Systems,
2000. Proceedings. 20th International Conference on, pages 385–392, 2000.

[79] Thanasis Loukopoulos and Ishfaq Ahmad. Static and adaptive distributed data repli-
cation using genetic algorithms. Journal of Parallel and Distributed Computing,
64(11):1270 – 1285, 2004.

[80] Najme Mansouri and GholamHosein Dastghaibyfard. Job scheduling and dynamic data
replication in data grid environment. The Journal of Supercomputing, 64(1):204–225,
2013.

[81] H. Mantel. On the composition of secure systems. In 2002 IEEE Symposium on
Security and Privacy., 2002.

[82] A. Mei, L. V. Mancini, and S. Jajodia. Secure dynamic fragment and replica alloca-
tion in large-scale distributed file systems. IEEE Trans. on Parallel and Distributed
Systems, 14(9):885 – 896, Sept. 2003.

[83] Zhou Mingqiang, Huang Hui, and Wang Qian. A graph-based clustering algorithm
for anomaly intrusion detection. In Computer Science Education (ICCSE), 2012 7th
International Conference on, pages 1311–1314, 2012.

118

[84] Naftaly H. Minsky and Victoria Ungureanu. Law-governed interaction: a coordination
and control mechanism for heterogeneous distributed systems. ACM Trans. Softw.
Eng. Methodol., 9(3):273–305, July 2000.

[85] Ravi Mirchandaney, Don Towsley, and John A. Stankovic. Adaptive load sharing in
heterogeneous distributed systems. Journal of Parallel and Distributed Computing,
9(4):331 – 346, 1990.

[86] G. H M B Motta and S.S. Furuie. A contextual role-based access control authorization
model for electronic patient record. Information Technology in Biomedicine, IEEE
Transactions on, 7(3):202–207, 2003.

[87] S. Naqvi and M. Riguidel. Security architecture for heterogeneous distributed comput-
ing systems. In Security Technology, 2004. 38th Annual 2004 International Carnahan
Conference on, pages 34–41, 2004.

[88] D.M. Nessett. Factors affecting distributed system security. Software Engineering,
IEEE Transactions on, SE-13(2):233–248, 1987.

[89] D.M. Nessett. Factors affecting distributed system security. Software Engineering,
IEEE Transactions on, SE-13(2):233–248, 1987.

[90] E.B. Noeparast and T. Banirostam. A cognitive model of immune system for increasing
security in distributed systems. In Computer Modelling and Simulation (UKSim), 2012
UKSim 14th International Conference on, pages 181–186, 2012.

[91] D.T. Nukarapu, Bin Tang, Liqiang Wang, and Shiyong Lu. Data replication in data
intensive scientific applications with performance guarantee. Parallel and Distributed
Systems, IEEE Transactions on, 22(8):1299–1306, 2011.

[92] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy
method to support highly-available distributed systems. In Proceedings of the seventh
annual ACM Symposium on Principles of distributed computing, PODC ’88, pages
8–17, New York, NY, USA, 1988. ACM.

[93] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy
method to support highly-available distributed systems. In Proceedings of the seventh
annual ACM Symposium on Principles of distributed computing, PODC ’88, pages
8–17, New York, NY, USA, 1988. ACM.

[94] Salvatore Orlando and Raffaele Perego. Exploiting partial replication in unbalanced
parallel loop scheduling on multicomputer. Microprocessing and Microprogramming,
41(89):645 – 658, 1996. ¡ce:title¿Parallel Systems Engineering¡/ce:title¿.

[95] J. Osrael, L. Froihofer, and K.M. Goeschka. A system architecture for enhanced avail-
ability of tightly coupled distributed systems. In Availability, Reliability and Security,
2006. ARES 2006. The First International Conference on, pages 8 pp.–, 2006.

119

[96] Prasanna Padmanabhan, Le Gruenwald, Anita Vallur, and Mohammed Atiquzzaman.
A survey of data replication techniques for mobile ad hoc network databases. The
VLDB Journal, 17(5):1143–1164, August 2008.

[97] Seong-Jin Park and Doo-Kwon Baik. A data allocation considering data availability in
distributed database systems. In Parallel and Distributed Systems, 1997. Proceedings.,
1997 International Conference on, pages 708–713, 1997.

[98] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Proceedings of the 11th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’91, pages 129–140, London, UK, 1992. Springer-
Verlag.

[99] F. Pop, A. Arcalianu, C. Dobre, and V. Cristea. Enhanced security for monitoring
services in large scale distributed systems. In Intelligent Computer Communication
and Processing (ICCP), 2011 IEEE International Conference on, pages 549–556, 2011.

[100] Gerald J. Popek, R.S. Guy, Jr. Page, T.W., and J.S. Heidemann. Replication in
ficus distributed file systems. In Management of Replicated Data, 1990. Proceedings.,
Workshop on the, pages 5–10, 1990.

[101] M. Pourzandi, D. Gordon, W. Yurcik, and G. A. Koenig. Clusters and security:
distributed security for distributed systems. In Cluster Computing and the Grid, 2005.
CCGrid 2005. IEEE International Symposium on, volume 1, pages 96 – 104 Vol. 1,
May 2005.

[102] D.K. Pradhan and S.M. Reddy. A fault-tolerant communication architecture for dis-
tributed systems. Computers, IEEE Transactions on, C-31(9):863–870, 1982.

[103] Xia Qing. The structure design of a new distributed intrusion detection system. In
Computer Engineering and Technology (ICCET), 2010 2nd International Conference
on, volume 7, pages V7–100–V7–103, 2010.

[104] Xiaohong Qu, Zhijie Liu, and Xiaoyao Xie. Research on distributed intrusion detection
system based on protocol analysis. In Anti-counterfeiting, Security, and Identification
in Communication, 2009. ASID 2009. 3rd International Conference on, pages 421–424,
2009.

[105] M. Saito, T. Yokoyama, and M. Shimada. Lazy fault tolerance-a method for depend-
able distributed systems. In Object-Oriented Real-Time Dependable Systems, 1994.
Proceedings of WORDS 94., First Workshop on, pages 124–131, 1994.

[106] Harjinder S. Sandhu and Songnian Zhou. Cluster-based file replication in large-scale
distributed systems. SIGMETRICS Perform. Eval. Rev., 20(1):91–102, June 1992.

[107] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control
models. Computer, 29(2):38–47, 1996.

120

[108] Peter Scheuermann, Gerhard Weikum, and Peter Zabback. Data partitioning and load
balancing in parallel disk systems. The VLDB Journal, 7(1):48–66, 1998.

[109] Robert R. Seban. A high performance critical section protocol for distributed systems.
In Aerospace Applications Conference, 1994. Proceedings., 1994 IEEE, pages 1–17,
1994.

[110] J. Sen. A robust and fault-tolerant distributed intrusion detection system. In Parallel
Distributed and Grid Computing (PDGC), 2010 1st International Conference on, pages
123–128, 2010.

[111] J. Sen, I. Sengupta, and P.R. Chowdhury. An architecture of a distributed intrusion
detection system using cooperating agents. In Computing Informatics, 2006. ICOCI
’06. International Conference on, pages 1–6, 2006.

[112] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[113] Chao Shen and Shengjun Xue. Design and implementation of distributed collaborative
intrusion detection system model. In Fuzzy Systems and Knowledge Discovery (FSKD),
2010 Seventh International Conference on, volume 3, pages 1224–1228, 2010.

[114] E. Shokri, H. Hecht, P. Crane, J. Dussdault, and K.H. Kim. An approach for adap-
tive fault-tolerance in object-oriented open distributed systems. In Object-Oriented
Real-Time Dependable Systems, 1997. Proceedings., Third International Workshop on,
pages 298–305, 1997.

[115] M. Shorfuzzaman, P. Graham, and R. Eskicioglu. Distributed placement of replicas in
hierarchical data grids with user and system qos constraints. In P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC), 2011 International Conference on, pages
177–186, 2011.

[116] G. J. Simmons. How to (really) share a secret. In CRYPTO ’88: Proceedings of
the 8th Annual International Cryptology Conference on Advances in Cryptology, pages
390–448, London, UK, 1990. Springer-Verlag.

[117] Swaminathan Sivasubramanian, Gustavo Alonso, Guillaume Pierre, and Maarten van
Steen. Globedb: autonomic data replication for web applications. In Proceedings of
the 14th international conference on World Wide Web, WWW ’05, pages 33–42, New
York, NY, USA, 2005. ACM.

[118] D.L. Smarkusky, R.A. Ammar, and H.A. Sholl. A framework for designing
performance-oriented distributed systems. In Computers and Communications, 2001.
Proceedings. Sixth IEEE Symposium on, pages 92–98, 2001.

[119] S.H. Son, Fengjie Zhang, and Ji-Hoon Kang. Replication control for fault-tolerance
in distributed real-time database systems. In Aerospace Conference, 1998 IEEE, vol-
ume 4, pages 73–81 vol.4, 1998.

121

[120] M. Soshi and M. Maekawa. The saga security system: a security architecture for open
distributed systems. In Distributed Computing Systems, 1997., Proceedings of the Sixth
IEEE Computer Society Workshop on Future Trends of, pages 53–58, 1997.

[121] Ming Tang, Bu sung Lee, Xueyan Tang, and Chai kiat Yeo. The impact of data
replication on job scheduling performance. In in the Data Grid, Future Generation
Computer Systems, pages 254–268, 2006.

[122] B. M. Thuraisingham and J. A. Maurer. Information survivability for evolvable and
adaptable real-time command and control systems. Knowledge and Data Engineering,
IEEE Transactions on, 11(1):228 –238, 1999.

[123] Li Tian. Design and implementation of a distributed intelligent network intrusion
detection system. In Electrical and Control Engineering (ICECE), 2010 International
Conference on, pages 683–686, 2010.

[124] Y. Tian, M. I. Alghamdi, Y. Shu, J. Xie, J. Zhang, M.-K. Qiu, Y.-M. Yang, and X. Qin.
Secure fragment allocation in a distributed storage system with heterogeneous vulner-
abilities. In Proceedings of the 2011 IEEE International Conference on Networking,
Architecture, and Storage, NAS ’11. IEEE Computer Society, 2011.

[125] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, and D. Gunter. The net-
logger methodology for high performance distributed systems performance analysis.
In High Performance Distributed Computing, 1998. Proceedings. The Seventh Interna-
tional Symposium on, pages 260–267, 1998.

[126] R. Tirtea, G. Deconinck, and R. Belmans. Fault tolerance adaptation requirements vs.
quality-of-service, realtime and security in dynamic distributed systems. In Reliability
and Maintainability Symposium, 2006. RAMS ’06. Annual, pages 296–303, 2006.

[127] P. Triantafillou and D.J. Taylor. Velos: a new approach for efficiently achieving high
availability in partitioned distributed systems. Knowledge and Data Engineering, IEEE
Transactions on, 8(2):305–321, 1996.

[128] C. Trinitis, M. Walter, and M. Leberecht. Balanced high availability in layered dis-
tributed computing systems. In Database and Expert Systems Applications, 2003.
Proceedings. 14th International Workshop on, pages 713–717, 2003.

[129] Manghui Tu, Peng Li, I-Ling Yen, Bhavani Thuraisingham, and Latifur Khan. Secure
data objects replication in data grid. IEEE Transactions on Dependable and Secure
Computing, 7:50–64, 2010.

[130] V. Varadharajan and S. Black. A multilevel security model for a distributed object-
oriented system. In Computer Security Applications Conference, 1990., Proceedings of
the Sixth Annual, pages 68–78, 1990.

[131] V. Venkatesan, I. Iliadis, Xiao-Yu Hu, R. Haas, and C. Fragouli. Effect of replica
placement on the reliability of large-scale data storage systems. In Modeling, Analysis

122

Simulation of Computer and Telecommunication Systems (MASCOTS), 2010 IEEE
International Symposium on, pages 79–88, 2010.

[132] L. Vokorokos, M. Chovanec, O. Latka, and A. Kleinova. Security of distributed intru-
sion detection system based on multisensor fusion. In Applied Machine Intelligence and
Informatics, 2008. SAMI 2008. 6th International Symposium on, pages 19–24, 2008.

[133] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. Ceph: a scalable, high-performance distributed file system. In Proceedings
of the 7th symposium on Operating systems design and implementation, OSDI ’06,
pages 307–320, Berkeley, CA, USA, 2006. USENIX Association.

[134] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. An adaptive data replication algo-
rithm. ACM Trans. Database Syst., 22(2):255–314, June 1997.

[135] T. Y C Woo and S.S. Lam. Authentication for distributed systems. Computer,
25(1):39–52, 1992.

[136] Jun Wu, Chong-Jun Wang, Jun Wang, and Shi-Fu Chen. Dynamic hierarchical dis-
tributed intrusion detection system based on multi-agent system. In Web Intelligence
and Intelligent Agent Technology Workshops, 2006. WI-IAT 2006 Workshops. 2006
IEEE/WIC/ACM International Conference on, pages 89–93, 2006.

[137] T. Wu, M. Malkin, and D. Boneh. Building intrusion tolerant applications. In
SSYM’99: Proceedings of the 8th conference on USENIX Security Symposium, pages
7–7, Berkeley, CA, USA, 1999. USENIX Association.

[138] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliccote, and P. K. Khosla.
Survivable information storage systems. Computer, 33(8):61 –68, Aug 2000.

[139] Li Xiao, Sonqing Chen, and Xiaodong Zhang. Dynamic cluster resource allocations for
jobs with known and unknown memory demands. IEEE Trans. Parallel Distrib. Syst.,
13:223–240, March 2002.

[140] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, J. Majors, A. Man-
zanares, and Xiao Qin. Improving mapreduce performance through data placement
in heterogeneous hadoop clusters. In Parallel Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages 1–9, 2010.

[141] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, J. Majors, A. Man-
zanares, and Xiao Qin. Improving mapreduce performance through data placement
in heterogeneous hadoop clusters. In Parallel Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages 1–9, 2010.

[142] Tao Xie and Xiao Qin. A security-oriented task scheduler for heterogeneous distributed
systems. In Proc. 13th Annual IEEE Intl Conf. High Performance Computing, Lecture
Notes in Computer Science (LNCS 4297), ISSN 0302-9743, pages 35–46, 2006.

123

[143] Naixue Xiong, Yan Yang, Ming Cao, Jing He, and Lei Shu. A survey on fault-tolerance
in distributed network systems. In Computational Science and Engineering, 2009. CSE
’09. International Conference on, volume 2, pages 1065–1070, 2009.

[144] Chao-Tung Yang, Chun-Pin Fu, Chien-Jung Huang, and Ching-Hsien Hsu. Frcs: A
file replication and consistency service in data grids. In Multimedia and Ubiquitous
Engineering, 2008. MUE 2008. International Conference on, pages 444–447, 2008.

[145] Chao-Tung Yang, Chien-Jung Huang, and Ting-Chih Hsiao. A data grid file replication
maintenance strategy using bayesian networks. In Intelligent Systems Design and
Applications, 2008. ISDA ’08. Eighth International Conference on, volume 1, pages
456–461, 2008.

[146] Yun Yang and Jia Mi. Design and implementation of distributed intrusion detection
system based on honeypot. In Computer Engineering and Technology (ICCET), 2010
2nd International Conference on, volume 6, pages V6–260–V6–263, 2010.

[147] Chihsiang Yeh. The robust middleware approach for transparent and systematic fault
tolerance in parallel and distributed systems. In Parallel Processing, 2003. Proceedings.
2003 International Conference on, pages 61–68, 2003.

[148] W. Yurcik, G. A. Koenig, X. Meng, and J. Greenseid. Cluster security as a unique
problem with emergent properties: Issues and techniques. In 5th LCI International
Conference on Linux Clusters: The HPC Revolution 2004, pages 18–20, 2004.

[149] G. Zanin, A. Mei, and L. V. Mancini. Towards a secure dynamic allocation of files in
large scale distributed file systems. In HOT-P2P ’04: Proceedings of the 2004 Interna-
tional Workshop on Hot Topics in Peer-to-Peer Systems, pages 102–107, Washington,
DC, USA, 2004. IEEE Computer Society.

[150] Kailong Zhang, Ke Liang, Xingshe Zhou, Kaibo Wang, Xiao Wu, and Zhiyi Yang. A
similar resource auto-discovery based adaptive fault-tolerance method for embedded
distributed system. In Parallel Processing Workshops, 2007. ICPPW 2007. Interna-
tional Conference on, pages 21–21, 2007.

[151] Wuqing Zhao, Xianbin Xu, Zhuowei Wang, Yuping Zhang, and Shuibing He. Im-
prove the performance of data grids by value-based replication strategy. In Semantics
Knowledge and Grid (SKG), 2010 Sixth International Conference on, pages 313–316,
2010.

[152] Lin Zhao-wen, Ren Xing-tian, and Ma Yan. Agent-based distributed cooperative in-
trusion detection system. In Communications and Networking in China, 2007. CHI-
NACOM ’07. Second International Conference on, pages 17–22, 2007.

[153] L. Zheng, S. Chong, A.C. Myers, and S. Zdancewic. Using replication and partitioning
to build secure distributed systems. In Security and Privacy, 2003. Proceedings. 2003
Symposium on, pages 236–250, 2003.

124

[154] Ming Zhong, Kai Shen, and Joel Seiferas. Replication degree customization for high
availability. SIGOPS Oper. Syst. Rev., 42(4):55–68, April 2008.

[155] Jing Zhou, Yijie Wang, and Sikun Li. Data dependence-based optimistic data consis-
tency maintenance method. In Computer and Information Technology, 2006. CIT ’06.
The Sixth IEEE International Conference on, pages 120–120, 2006.

125

