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Abstract

In this thesis we analyze two papers, both by Dr.Stephen G. Hartke and Dr.Aparna W.
Higginson, on maximum [2] and minimum [3] degrees of a graph G under iterated line graph
operations. Let A, and 0 denote the minimum and the maximum degrees, respectively,
of the k" iterated line graph L*(G). It is shown that if G is not a path, then, there exist

integers A and B such that for all £ > A, Apy; = 2A, —2 and for all k > B, 01 = 20, — 2.
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Chapter 1

Introduction

The line graph L(G) of a graph G is the graph having edges of G as its vertices, with
two vertices being adjacent if and only if the corresponding edges are adjacent in GG. Please
note that all graphs in this discussion are simple. We restrict our discussion to connected
graphs. Refer to [4] for basic definitions of graph theory.

One of the most important resutls in line graphs has been by Beineke, who provides in [1], a
new characterization of line graphs in terms of nine excluded subgraphs, also unifying some

of the previous characterizations. We provide only the theorem here without the proof.

e
<

B <

K
L

Figure 1.1

Theorem 1.1. A graph G is a line graph of some graph if and only if none of the nine

graphs in Figure 1.1 is an induced subgraph of G.



The iterated line graph is defined recursively as L*(G) = L(L*1(G)) where L°(G) = G.
Let A and  be the maximum and the minimum degree, respectively, of a graph G. We denote
the minimum degree of L¥(G) by J; and the maximum degree by A;. Hartke and Higgins
[2] show that if G is not a path, then, there exists an integer A, such that, Agi 1 = 24, — 2
for all k& > A. Using similar concepts, they show in [3] that there exists an integer B such
that g1 = 20, — 2 for all £ > B. Rather than focusing on the vertices of minimum and
maximum degrees, they observe the behavior of particular kinds of regular subgraphs, of
which, the vertices of maximum and minimum degrees form a special case. However, this
proves only the existence and the question of tight bounds of A and B is still open.
We now define some notation which will be used throughout the proofs. Neighborhood of a
vertex v, denoted by N(v), is defined as the set of all vertices adjacent to v. Then, if S is a

set of vertices of GG, we use the following notation:-

1. N(S) =, s N(v)

vES

We would first prove a result in Chapter 2 which was used in [2] and [3] without proof. Then,
the result for the maximum degree is proved in Chapter 3 and for the minimum degree is

proved in Chapter 4.



Chapter 2

An elementary result

In this chapter we will prove that for most graphs, minimum degree is unbounded under
line graph iteration. Notice that, if G is not a path, then ¢y is defined for all k. As mentioned
in the introduction, all graphs under consideration are simple and we restrict out discussion
to connected graphs.

A leaf of a graph is a vertex of degree 1.

Lemma 2.1. If there exists an integer A such that 4 > 2, then 6, > 2 for all k > A.

Moreover, 6 is a strictly increasing sequence for all k > A, and hence klim O = Q.
— 00

Proof: Clearly, the minimum possible value of d, is 20, — 2. Now,

(5A>2
204 > 04+ 2

25A_2>5A'

But 204 — 2 is the minimum possible value of 4,1, hence, d 4.1 > 94 which implies 64,1 > 2.
Now, let d4,; > 2 for some ¢. Then, following similar set of equations, 64,11 > d44; and
Oaviv1 > 2. It follows inductively that dxi1 > 0 > 2 for all £ > A and therefore ¢ is a
strictly increasing sequence. This also implies that the minimum degree is unbounded under

line graph operation. [

Lemma 2.2. Let s, be the number of vertices of degree 1 in LF(G). Then, {sy} is non-

INCTeasing.



Proof: Every vertex of degree 1 in a graph L(G) corresponds to an edge in G which is inci-
dent with exactly one edge. So, a leaf in L¥(G) corresponds to one leaf in L*~1(G). Also, a

leaf in G will give a single leaf under the line graph operation. O]

Lemma 2.3. Let G be a graph which is not a path or a cycle. If 6 = 2 then klim Op = Q.
— 00

Proof: A vertex of degree 2 in L(G) will correspond to an edge in G which is incident with

exactly two edges. It can either be a leaf or an edge in a path or cycle as shown in the

—< — <[

e

Figure 2.1

Figure 2.1. But as 6 = 2, G has no leaf. Hence, we only need to consider vertices of degree
2in G.

Now, as (G is not a path or a cycle, there exists at least one vertex, say v, of degree
greater than 2. Also, as 6 = 2, GG is not a K;3. Let u be a vertex of degree 2 in G. As
G is connected, there is a path from u to v, say Py = (u = 3¥,99,...,4° = v), as shown
in Figure 2.2. Now, F, induces a path P = (y1,¥3,...,yp_) in L(G) where dpq)(y;) > 2
for 1 <j <n—2and dye(y,_,) > 3. Now, let P, = (yi, 95, ..., yh ;) with dpsc(y}) > 2
for 1 < j <n—i—1and dpig)(y,_;) > 3. Then P, induces Py in L'*'(G) such that

piJrl = (yi+1ay; + 17 7y£L+—11—1>



dr(c)(y3) > 2 diey(Yn—1) >3

i) (y3) = ;
i) (v2) 2 2 driay(Yn—i—1) > 2

° ° o - ° ° A
dri(e)(y1) = 2 dria)(ys) > 2 driey(Yn—i) >3

drivi)(ys™) > 2

[ Y @ .
drivie)(yr ) =2 drivia)(ys™) > 2

drivia)(yati_) >3
. @

dpn-2(6)(y5 %) >3
o———O
dpn-206)(y7 %) > 2

[ )
dpn-1(6)(y7 ") >3

Figure 2.2: Disappearing vertex of degree two

Now, for 1 < j <k — 2,

dric(yh) > 2
Ay (vs) + driey (yh) > 2+ 2
drice)(¥5) + driey(y) —2>2+2 -2

e (yi™) > 2.



and, for j =k — 1,

dric) (Y1) = 2
di) (Y1) + dria) (yi) >2+3
dU(G)(ylicﬂ) + dLl'(G)(Q]i) —2>2+3-2

dpivia(yi) > 3.

Also, |Pi41| = |P| — 1. Applying inductively, P,_1 = (y"™") where dpn-1(q)(y7") > 3 as
shown in Figure 2.2, and we get that every vertex of degree 2 will definitely 'disappear’ after
n — 1 line graph iterations. Doing this for every vertex of degree 2, there exists an integer N
such that L (@) has no vertex of degree 2, hence dy > 3 and we are done from Lemma 2.1.

]

Lemma 2.4. If G is neither a path, cycle nor a K, 3, then the minimum degree is unbounded

under line graph iteration and moreover, there exists an integer A such that klim O = oo for
—00

all k > A.

Proof: From Lemma 2.1 it is sufficient to show that for any graph G, as specified, there
exists an integer A such that d4 > 2. As G is neither a path, cycle nor a K 3, there exists
an edge, say e, such that, e = xz is incident with at least three edges.

Let 6(G) = 1. From Lemma 2.2, the number of leaves is a non-increasing sequence over line
graph iteration. Moreover, a leaf in L(G) corresponds to exactly one leaf in G. So it would
suffice to consider line graph operation on leaves of G and show that it disappears at some
iteration.

Let v be incident on a leaf of G such that dg(v) = 1. Then, as G is connected, there is a
path Py = (v = 92,48, ...,90 | = 2,9 = 2) from v to the edge e such that dg(y)) > 2 for
2 <i<n—2, as shown in Figure 2.3. Now, P, induces a path, say P;, in L(G) such that
Py = (y1,Y3, ..., yn_1) Where yj corresponds to the edge 3547, , € E(G) for 2<j <n—1, as

shown in Figure 2.3. Now, as xz is incident with at least three edges, dg(y._;) > 3. Also,

6



y? = dg(yd) > 2 v == y) =2
o @ @ .. L L L
dg () =1 dg(yd) > 2 dg(? ) >2 €
dr(q)(v3) > 2 dp Wl ) > 2 vl =
e @ @ <o L L
dr(e)vp) 2 1 dr ey (wd) > 2 dr ek ) >3

dLi(G)(yé) > 2

dLi(G)(yi) >1

dLZ(G)(y.',Z‘)) > 2
dLi+1(G)(y;+1) > 2

dL'L'+1 () (y7i-+1) >1

X i+1
dL’LJ'_l(G)(yn—i—l) >3

dLi+1(G)(y;+l) > 2

d . _ n=dy > 9 e
=4y )2 dyn—ag) W] >3
@ L L ®
n—4 n—
dyn—a(qy ™ H 21 dpn—a.gWs )22

dpn-3.gWs 0) 22

@ @  J

n—3 n—
dyn-3(qy %) 21 dyn-3.GWs 0) 23
dLn—Q(G)(y;_z) >3
o—0
dLn—Z(G)(yT72) >1

n—1

dLn_l(G)(yl ) > 2

Figure 2.3: Disappearing leaf
drey(yt) > 1, dye)(y;) > 2 for 2 < j <n —2and dy)(y,_1) > 3, as shown in Figure 2.3.
Notice that |Py| = |Py| — 1.

Now, let P; = (4}, 45, .- ¥,—;) in L*(G), such that, dric)(yi) > 1,dpie(y}) > 2 for 2 < j <

n—i—1and dpi)(y,_;) > 3. Then P; induces a path Py in L't'(G) such that Py,



(yith wst, oyt )) where y”rl corresponds to the edge y;.y;.H inPforl<j<n—i—1

as shown in the Figure 2.3.

Now,

drie)(ys) > 2
driey(yh) + driey(y)) > 2+ 1

i (Ys) + drie (Y1) —2 > 2+ 1 = 2dpin e (yi) >,

Also, for 2 < j <k —2,

drice)(y;) > 2
A () + driey(Yj1) = 2+ 2
driey(}) + driey (Y1) —2>2+2 -2

dLi+1 )(y;—H) > 2’
and, for j =k — 1,

dric (yk 1) >2
drie)(Yror) + dricey(yp) > 2+3
dria (yk 1) +sz(G)(yk) —2>24+3-2

A (Yty) = 3.

So, dL”l(G)(yi—H) > 1, dLi+1(G)(y§+1) >2for2<j<k-—2and dLi+1(G (yk 1) > 3. Also,
|Piy1| = | P — 1, then, following inductively starting from P, we get that P, ; = (y7 ')
where dp»—1 () (y?~') > 2 as shown in the Figure 2.3. Hence, the number of vertices of degree

1 goes down by one.



Let G have N vertices, say vy, v, ..., vy, of degree 1. Then, for every vertex v; of degree 1
there exists an integer I; such that there is no vertex of degree 1 in L% (@) corresponding to
vj. Then, for the integer I = maz{l; | 1 < j < N}, there would be no vertex of degree 1
corresponding to any v;. As there is no other way to get degree 1 vertices under line graph
operation, L!(G) will have no vertices of degree 1. Also, as L*(G) is connected for all k we

conclude that 6; > 2 and we are done from Lemma 2.1 and Lemma 2.3. O



Chapter 3

Maximum degree growth in iterated line graphs

In this chapter it will be shown that for any graph G, which is not a path, there exists
an integer D such that Ag.1 = 2A, — 2 for all £ > D, where Ay is the maximum degree of
LK(@).

If G is a path, then as G is a finite graph, there exists an integer I such that L!(G) is
undefined.

If G is a cycle, then for all k € Z1, Apyq =20, — 2= 2.

If Gis a K3, then L(G) is a K3 and hence, for all k > 1, Ay =24, —2=2.

Now we have to prove the theorem for any graph G where it is not a path, a cycle or a Kj 3.
Definition: A vertex v is a locally mazimum vertex or a l.maz. verter if no vertex in the
neighborhood of v has degree greater than that of v.

Definition: The subgraph of G induced by its l.max. vertices is called the locally mazimum
subgraph or l.mazx. subgraph of G and is denoted by LM (G).

Definition: A vertex v € L¥(G) is generated by a vertex u € G if there is a sequence of
vertices u = vg, vy, ...,V = v such that v, € L”l(G) corresponds to an edge incident at
v; € LI{(G). A subgraph J of L*(G) is generated by a subgraph H of G if, for each vertex

v € J, v is generated by a vertex in H.

Lemma 3.1. All vertices in the same component of LM (G) have the same degree in G.

Proof: Let v and w be two vertices in a component of LM (G). Then v and u are l.max.
vertices of the graph G. As v € N(u), d(v) < d(u) from definition. Similarly, as u € N(v),

d(u) < d(v). Hence, d(u) = d(v). O

10



Lemma 3.2. The vertices of L(G) corresponding to edges of G incident with the same verter,
say v, of G, form a clique in L(G). In particular, all the vertices of LM (L(G)) generated

by v are in the same component of LM (L(G)).

Proof: It follows from the definition of line graphs that the vertices of L(G), corresponding

to the edges of G that share a vertex, will be adjacent to each other. O]

Lemma 3.3. Ifw is a l.maz. vertex of L(G), then w corresponds to an edge e in G such that
at least one end of e, say v, is l.maz. in G and the other end of e, say u, has the mazimum

degree among the neighbors of v in G.

Proof: Assume that neither v nor u is a l.max. vertex. Let dg(v) > dg(u). Then, as v is

not a l.max. vertex, there exists a vertex y € N(v) such that dg(y) > dg(v).

vy

Figure 3.1

Now, the edge vy of G corresponds to a vertex vy of L(G), adjacent to w as shown in
the Figure 3.1. Also,
dg(’l)> Z dg<u>

BUtJ as dG<y) > dG<U>7

dg(v) +dg(y) —2 > dg(u) + dg(v) — 2

dre)(vy) > dpg)(w),

11



contradicting that w is a L.max. vertex of L(G).
Hence, no such y exists, implying that v is a L. max. vertex of G.

Now, let there exist a vertex z € N(v) such that dg(z) > dg(u).

G : L(G)

—

vz

Figure 3.2

Then the edge vz of G corresponds to a vertex vz adjacent to w in L(G) as shown in

the Figure 3.2.

But,

dG(Z) > dg(u)
dg(z) + dg(v) —2> dg(u) + dg(v) -2

dL(G) (UZ) > dL(G) (w),

contradicting that w is a l.max. vertex of L(G). Hence, no such z exists, implying that u
has the maximum degree in N (v). O

Lemma 3.4. Let v be an isolated vertex of LM (G).

(a) If v has any neighbor of the same degree as that of v, then, v generates no l.maz.

vertices of L(G).

12



(b) If all neighbors of v have degree less than that of v, and u is such a neighbor, then
the edge uv corresponds to a l.maz. vertex of L(G) if and only if u has the mazximum

degree among the neighbors of v and for all z € N(u) \ {v}, da(z) < dg(v).

Proof:

(a) As u is not a lL.Lmax. vertex of G, there exists a vertex z adjacent to u, such that,
dg(z) > dg(u) = dg(v). Then, u and z generate a vertex uz adjacent to w, generated
by v and u, as shown in Figure 3.3. Now, dp)(uz) = dg(u) + da(z) — 2 > dg(u) +
da(v) — 2 = die)(w), therefore, the edge vu does not correspond to a l.max. vertex
of L(G), for any u with dg(u) = dg(v). Hence, by Lemma 3.3, v does not generate a

lL.max. vertex of L(G).

(b) Let there exist a vertex z € N(u) \ {v} such that dg(z) > dg(v). Then the edge
uz corresponds to a vertex uz in L(G) adjacent to a vertex w, which corresponds to
the edge uv in G, as shown in Figure 3.3. Now, dp)(uz) = dg(u) + da(z) — 2 >
da(u) + dg(v) — 2 = dpe)(w), therefore, w will not be a lL.max. vertex.

Now, let, for all z € N(u) \ {v}, dg(z) < dg(v). Then,

dg(u) + dg(Z) -2 S dg(u) + dg(l)) - 2,

dra)(uz) < dpe)(w),

13



where w corresponds to the edge uv of G. Therefore, the edge uv corresponds to a
lL.max. vertex of L(G).
Moreover, if uz is a l.max. vertex, it would be adjacent to w implying that the number

of components will not increase. O]
Lemma 3.5. Let C' be a component of LM (G) which is not a single vertex.

a) If vy and vy are adjacent vertices in C, then the vertex w € L(G), corresponding to the

edge v1vo, 1S a l.max. vertex.

b) If u € N{(C), then no edge joining u to a vertex in C corresponds to a l.max. vertex of

L(G).

Proof:

Figure 3.4

a) Let e/ = vyvy be an edge in C. Let w € L(G) be the vertex corresponding to €’. Then,
any neighbor x of w will correspond to an edge e, in GG, incident at either v; or vy. Let
e be incident at v; and some vertex z € N(v;), as shown in the Figure 3.4. Then, as

v1 is a l.max. vertex,

da(2) < dg(v1)

dg(Z) + dg(UQ) —2 S dg(vl) + dg(UQ) -2

14



From Lemma 3.1, dg(v1) = dg(ve),

dg<2) + dg(Ul) -2 < dg(’l)l) + dg(UQ) -2

drc)(7) < dpe)(w),

hence, w is a l.max. vertex.

Figure 3.5

b) Asu € N(C), it is adjacent to a vertex, say vy, in C'. As C'is not a single vertex, there
exists a vertex v € C' adjacent to vy. Let w be the vertex in L(G) corresponding to the
edge v1v; and let r be the common degree of vertices in C. Then, dpq)(w) = 2r — 2.
Now, the edge uv; corresponds to a vertex x adjacent to w in L(G), as shown in the
Figure 3.5. Also, drc)(z) = da(u) +7 — 2 and as v; is a L max. vertex, we get that
dg(u) <.

If dg(u) < r, then,

de(u)+r—2<r+r—2

dre) () < dpey(w),

15



hence, x can not be a l.max. vertex.
If dg(u) = r then as w is not a Lmax. vertex, there exists a vertex z € N(u)\ {v;} such
that dg(z) > dg(u). Then, the edge uz corresponds to a vertex y in L(G), adjacent to

x as shown in Figure 3.5. Now,

d(;(z) > dg<u)
dg(2> + dg(u) —2> dg<u) + dg(u) -2
dg(2> + dg(u) —2> dg<u) +r—2

dre)(y) > die)(z),

and hence, x can not be a l.max. vertex. O

Corollary 3.1: It follows from Lemma 3.5 that L(C') is a component of LM (L(G)).

Corollary 3.2: If C is a single vertex, then from Lemma 3.4 it generates at most one
component of LM (L(G)). Otherwise, if C' is not a single vertex, then every vertex of
C' generates a l.max. vertex from Lemma 3.5(a). As the line graph operation preserves
connectivity, C' will generate at most one component of LM (L(G)). Hence, in either case,

C generates at most one component.

Lemma 3.6. There exists an integer A such that for all k > A, every component of

LM(L*(G)) generates exactly one component of LM (L*(@)).

Proof: Let ¢; be the number of components of LM (L*(G)). From Corollary 3.2, {c;} is a
non-increasing sequence. But as ¢ is a non-negative number for all k, there exists an integer

A, such that ¢ is constant for all k& > A. O

We now define new notation which would be followed in the rest of this chapter. Let Cs4
be a component of LM (LA*1(G)) where A is the integer from Lemma 3.6. Inductively, for

each k > A, let Cy,1 be the component of L**1(G) generated by Cy. Let 7, be the common

16



degree of vertices in C. We can further choose A to be sufficiently large so that o, > 2 for

all £ > A from Lemma 2.1.

Lemma 3.7. Let u € N(Cp) be adjacent to a vertex vp € Cp, where D is an integer greater

than A. Let y € LPTY(G) correspond to the edge uwv of LP(G), soy € N[Cpi4].

(a) If Cp is not a single vertez, soy € N(Cp1), and,

Tpy1 — dppya) (y)=rp— dpp () (u).
(b) In case Cp is a single vertez, then,

rp+1 — dpo+e)(y) < rp — dpo(g)(u)

Proof:

LD+1(G)

Figure 3.6: When C}p is not a single vertex

(a) From Lemma 3.5(a), if Cp has an edge then it generates Cp, 1, as shown in Figure 3.6,
and rpy1 = 2rp — 2.

Also, dpp+1(¢y(y) = dpo ey (u) +rp — 2. So,

Tp+1 — Aoy (y) = (2rp — 2) — (dpo(ey(u) +rp — 2)

D41 — dLD-H(G) (y) =7Tp — dLD(G) (u)

17



LP+Y(G)

’ Cpi1

Figure 3.7: When C} is a single vertex

(b) Suppose y € N(Cpy1). Again, dpp+1(q)(y) = dpo(ey(u) +rp — 2. Let x be a vertex of
largest degree in N(vp) such that the edge xvp corresponds to a L.max. vertex vp,;
in Cpyy from Lemma 3.6. Such a vertex x exists from Lemma 3.3 and as Cpyq is
non-empty, we have,

'D+1 = dLD(G)([L') +7rp— 2.

As Cp is a single vertex, from Lemma 3.4(a), dppe)(v) < rp as Cp generates Cpq

and hence,

dLD(G)(ZL‘)+TD—2<T‘D—|—T‘D—2
’I“D_|_1<2’I"D—2

D41 — dLD+1(G) (y) < (2rp —2) — dLD“(G) ()

But, since dyp+1(¢y(y) = dpog)(u) +rp — 2, we have,

Tp+1 — Aoy (y) < (2rp —2) — (dpo(gy(u) +7p — 2)

TDi1 — drp+i(a) (y) <rp— dro ) (u)

Now, suppose y € Cpy1. Then rpy1 — dppii(y) = 0. Also, as Cp is a single

vertex, rp — dpp(g)(u) # 0 as otherwise Cp will not generate a component. Hence,

Tp1 — Aoy (y) < rp — dpo e (u). u

Lemma 3.8. Ifu € N(Cy) then u generates a vertex y € N|[Cyi1].

18



Proof: As u € N(Cy), u is adjacent to a vertex v € Cy. Let the edge uv correspond to the
vertex y € L*1(G). If C) has an edge, from Lemma 3.5(a) v generates a vertex in Cpyi.
Also, if C, = {v}, as k > A, v generates every vertex in Cy, 1. So, there exists a vertex
w € Oy generated by v. Now, the edges in L¥(G) corresponding to y and w, are incident
at the vertex v. Hence, y is adjacent to the vertex w in L**}(G), implying that, if y is a

l.max. vertex then y € Cyyq or else y € N(Cly1). O

Let N(Cg) = {u1,us,...,u,}. Then from Lemma 3.8, for every 1 < j < n, u; gener-
ates a vertex, say y;, in N[Cp1].

Now, if y; is a vertex in N(Cpgy;), then from Lemma 3.8, it generates a vertex, say y;-“,
in N[Cpyi1]. Otherwise, if y} is a vertex in Cpyy, then from Lemma 3.5(a), it generates
i+1

a vertex, say vy

i, in Cpyiyr. It follows inductively that u; generates a sequence of ver-

tices (u; = y?,yjl-,yf-,y?, ....) where yj- € N|[Cp;] and, moreover, y; € Cpy; for all ¢ > T if
yJI € Cp, s for some integer [.

Then we define a function f(uj;,i) : N(Cg) — R by f(u;,i) = rpyi — dpsriq)(y;) where
i € Z*. Clearly f(uj,1) is non-negative and from Lemma 3.7 it is a non-increasing function
of i. Also, if Cg,; is a single vertex and y§ € N(Cgy), then, from Lemma 3.4(a), f(u;,1)

can not equal to zero because otherwise C'z.; will not generate a component.

Theorem 3.1. Let G be a simple connected graph. Let C4 be a component of LM (LA(G)).
Then, there are a finite number of integers k > A, such that Cy, generated by Cy, is a single

vertex.

Proof: The proof is by contradiction. Let us assume that there are an infinite number of

integers k > A such that C}, is a single vertex. Then we prove the following series of lemmas.

Lemma 3.9. Ifu; € N{(Cp) generates (y?,yi,y2,v3, ....), then there exists an integer I such

that yI € Cp.1.
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Proof: We prove this by contradiction. Let y¢ € N{(Cp.;) for all i. The function f(uy,1) is
non-increasing and decreases when Cg,; is a single vertex. As there are infinite number of
integers k > A such that C} is a single vertex, there are infinite integers ¢ such that Cpy; is
a single vertex as B > A. Hence, from Lemma 3.7(b) there exists an integer D > B such
that f(ui, D — B) = 0.

Now, if Cp is a single vertex, then as yi € N(Cpy;) for all 4, it follows that f(u;, D — B)
can not be zero and we have a contradiction. Otherwise, if C'p has an edge, then let E be
the smallest integer greater than D such that Cg is a single vertex. From Lemma 3.7(a),

f(ui, E— B) = f(u1, D — B) =0, and we again have a contradiction. O

Lemma 3.10. If u;y € N(Cpg) then there exists an integer D > B such that uy, generates

yi' " € N(Cp) where Cp is a single vertez and dpo(gy(yy ") is mazimum in N(Cp).

Proof: From Lemma 3.9 there exists an integer I such that u; generates y! € Cp,;. Let I
be the smallest such integer. Hence, y{_l € N(Cpyr-1). From Lemma 3.5, if Cgy;_1 has an
edge then y!~! cannot generate a vertex in Cp,;. Hence, Cp,;_; is a single vertex. Also,

from Lemma 3.3, dys+1-1(g)(y] ") is maximum in N(Cpy-1). O

Lemma 3.11. If u; € N(Cp) where Cp is not a single vertex, then, dpsq)(u1) # 5.

Proof: Assume that dps(u1) = rp and hence, f(u;,0) = 0. But as f(u;j) is non-
negative and non-increasing, f(uy,j) = 0 for all j. But, from Lemma 3.10, there exists an
integer D > B such that u; generates y”~? € N(Cp) where Cp is a single vertex with

f(u1, D — B) =0, which is a contradiction. O

Corollary 3.3. From Lemma 3.4(a) and Lemma 3.11, if u € N(Cj) then dprg)(u1) # 7.

Lemma 3.12. Let Cp = {vp} and uy, ua, ..., u, be vertices of equal degree in N{(Cg) such that
dps(cy(u;) is mazimum in N(Cp). Then, u; generates a vertez v; € Cpyy for all 1 <i < n.

Moreover, uy,us, ..., u, generate l.max. vertices which induce a complete subgraph in Cg,q.
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Proof: As Cp generates Cp. 1, from Lemma 3.3 there exists an integer I € [1,n] such that
uy generates a vertex vgy1; € Cpyq. Let there be some J # [ such that u; does not generate
any vertex in Cgyq. Then, from Lemma 3.8, u; generates a vertex, say u, in N(Cp,1). Now,
rpr1 = dpsiie) (V1) = dpsg)(ur) +rp — 2 = dpse)(us) + g — 2 = dpsi1g)(u) which is
a contradiction from Corollary 3.3 and hence no such J exists.

So, all uy,us, ..., u, generate l.max. vertices, say vi,vs,...,v,, in Cgyq such that v; corre-
sponds to the edge u;vp in LP(G). As all the corresponding edges share the vertex vg, the

vertices vy, vs, ..., v, induce a complete subgraph. O

Lemma 3.13. Let uy,us € N(Cp) with dps(gy(u1) = dps(gy(uz). Furthermore, let uy gener-
ate the sequence (uy = Y9, yi,y3,y3,....) and uy generate the sequence (us = Y9, ya, Y, Y3, ....).

Then, dpevic)(y}) = dps+ie(y3) for alli € Z and either yi, ys € Cpyi oryi, yh € N{(Cpy).

Proof: For i =1,

drsc)(y1) = dpsey(w) +rp — 2
= dLB(G) (UQ) +rg — 2

= dpsrii)(%2).

If Cp has an edge, then yi,y; € N(Cp,1) from Lemma 3.5(b) as uy, us € N{(Cp), otherwise,
Cp is a single vertex. If dpsg)(u1) = dps(g)(uz) is maximum in N(Cp), then yi,y3 € Cpiq
from Lemma 3.12. On the other hand, if dy5()(u1) = dps(g)(u2) is not maximum in N(Cg),
then y1,y; € N(Cp1).

Let, for i = n, dpsin(g)(y7') = drsen(g)(y3) and either yi', y5 € Cpin or 41, 45 € N(Cpin).

Now, if 47", y5 € Cpyy, then from Lemma 3.5(a), yi ™, y5™" € Cpipy1 and dpsins gy (yf ™) =

dLB+"+1(G) (?JSH) = T'B+n+1-

Otherwise yi',y3 € N{(Cpypn). If Cpy, has an edge, from Lemma 3.5(b) we get that
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y?Jrl,y;erl S N<CB+n+1>. Then,

dLB+n+1(G) (y?Jrl) = dLB+n(G) (y?) + "'Byin — 2

= dsing)(Yy) + TByn — 2

= dpsinive (y3 ™).

But, if yi', y5 € N(Cp4n) and Cp., is a single vertex, then, if dysn(q) (Y1) = dpsene)(y3) is
maximum in N(Cp,,), and then from Lemma 3.12, y* and 33 generate """ and y5 ™', re-
spectively, in Cpyni1. Else, if dpsinc) (Y1) = dpsin(e)(y3) is not maximum in N(Cp4,), then
from Lemma 3.3, y7" and y5" are in N(Cpiny1) and dpsiniigy(yi™") = dpsenc)(y}) +

TBin — 2 = dsinc)(Y5) + TByn — 2 = dLB+n+1(G)(y§+1). -

Lemma 3.14. If uy, uy, ..., un, € N{(Cp) with dps(u;) = dps(e)(u;), then there exists an
integer E > B such that uy,us, ..., u, generate vertices y 2 y¥=5 ... ,yE=B € Cp which

form a clique.

Proof: From Lemma 3.10 and Lemma 3.13, there exists an integer D > B such that u;
generates y]D_B € N(Cp), 1 < j <n, where Cp is a single vertex, say vp, and dpp ¢ (yJD_B)
is maximum in N(Cp). Then, from Lemma 3.12, y]D_B for 1 < 7 < n induce a complete

subgraph in Cp.;. O

Lemma 3.15. There exists an integer E > A such that Cg_1 has exactly one edge.

Proof: Pick an integer B > A such that Cg = {vp}. Such an integer exists from our

assumption that there are infinite integers k > A where C} is a single vertex. Then, as
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04 > 2, we have, from Lemma 2.1,

5B>2
—5B<—2
rg—ogp+1l<rg—2+1

TB—(5k+1<TB

Now, there are rg neighbors of vg with rg — dg + 1 possible unique degrees. Hence, by Pi-
geonhole principle, there exists at least two vertices u;,us € N(Cp) such that dpsg(u1) =
dLB(G) (ug). Then from Lemma 3.14, uy, us will induce an edge in Cp for some D > B. But,
as there are infinite integers such that C} is a single vertex, there exists an integer £ > D
such that Cg is a single vertex. Let E be the smallest such integer. Then, C'z_; will have

exactly one edge and the lemma is proved. O]

Lemma 3.16. There exists an integer E such that Cp = {vg} and there are three vertices

uy, us, ug € N(Cg) with equal degree.
Proof: Let 8, denote the minimum degree in N{C}). Then,

/

0, =0, 4 +7Tr1—2.
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Now, pick an integer B such that Cp has exactly one edge. Such an integer exists from

Lemma 3.15. Then, rpy1 = 2rg — 2 from Lemma 3.5(a). But,

g > 2
Sp+rg—1>24rg—1
rg—1>2+7rg—1—10dp
rp—1>2425—1—15—0g5+2—2
rg—1>2rp—2) — (rp+05—2)+1
rB—1>rB+1—539+1+1
2rp —2>2(rpy1 — Opyq + 1)

rB41 > 2(Tpy1 — 5/B+1 +1)

Now, rgy; is the number of neighbors of vg,; and as v,y is a l.Lmax. vertex, we have that
(rpi1 — Op +1 + 1) is the number of possible unique values of degree of a neighbor of vp.
Also, because Cp has exactly one edge, Cgy1 = {vpy1}, and therefore, from Pigeonhole
principle, there exist at least three vertices of equal degree in N(Cp.1). O
Continuing rest of the proof of Theorem 3.1:
Now, from Lemma 3.16 and Lemma 3.14, there exists an integer F' > F such that Cpg
contains a K3. Hence, from Lemma 3.5(a), Cj contains K3 all k > F which contradicts that
there are infinite number of integers & > A such that C}, is a single vertex. Hence, there are
finite values of k > A where C} is a single vertex and there exists an integer I, such that
Cryi, generated by Cy, has at least one edge, for all 7. n
So, from Theorem 3.1, for each component C’é of LM(Lp(G)) where B > A, there exists
an integer I; > B such that C’}j 4 generated by Cfg has at least one edge for all . Suppose
LM(LB(G)) has N components. Using this reasoning for all components Cg, 1 <5<
N, there exists an integer D = max{l; | 1 < j < N}, such that every component of

LM (LP*(@)) has at least one edge for all i.

24



Clearly, the vertices of maximum degree of any graph G are also l.max. vertices and hence
are components of LM (G). But every component of LM (LP*+%) has edges for all 4, hence,
every vertex of maximum degree is adjacent to at least one vertex of maximum degree, and

so, Ap =2A,_1 — 2 for all £ > D.
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Chapter 4

Minimum degree growth in iterated line graphs

In this chapter it will be shown that for any graph G, which is not a path, there exists
an integer D such that dp.1 = 26, — 2 for all k£ > D, where J;, is the minimum degree of
LK(@).

Note that, most of the lemmas for this proof parallel the lemmas, proved in Chapter 3, with
the inequalities reversed. However, a different line of reasoning is used in the second half
of the proof to contradict a theorem similar to Theorem 3.1. If GG is a path, then as G is a
finite graph, there exists an integer I such that L!(G) is undefined.

If G is a cycle, then for all k € Z*, 041 = 20, — 2 = 2.

If Gis a K, 3, then L(G) is a K3 and hence, for all k > 1, §p 11 = 20, — 2 = 2.

Now we have to prove the theorem for any graph G where it is not a path, a cycle or a Kj 3.
Definition: A vertex v is a locally minimum vertex or a l.min. verter if no vertex in the
neighborhood of v has degree smaller than that of v.

Definition: The subgraph of G induced by its l.min. vertices is called the locally minimum

subgraph or l.min. subgraph of G and is denoted by Im(G).

Lemma 4.1. All vertices in the same component of Im(G) have the same degree in G.

Proof: Let v and u be two vertices in a component of {m(G). Then v and w are lL.min.
vertices of the graph G. As v € N(u), d(v) > d(u) from definition. Similarly, as u € N(v),
d(u) > d(v). Hence, d(u) = d(v). O
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Lemma 4.2. [fw is a .min. vertex of L(G), then w corresponds to an edge e in G such that
at least one end of e, say v, is l.min. in G and the other end of e, say u, has the smallest

degree among the neighbors of v in G.

Proof: Assume that neither v nor u is a L min. vertex. Let dg(v) < dg(w). Then, as v is not

a L.min. vertex, there exists a vertex y € N(v) such that dg(y) < dg(v).

vy

Figure 4.1

Now, the edge vy of G corresponds to the vertex vy of L(G), adjacent to w, as shown
in the Figure 4.1. Also,
dg(v) < d(;(u)

But, as d¢(y) < dg(v),

dg<U) + dg(y) —2< dg(u) + dg(v> -2,

dre)(vy) < dpe)(w),

contradicting that w is a L.min. vertex of L(G), hence, no such y exists, implying that v is
a l.min. vertex of G.

Now, let there exist a vertex z € N(v) such that dg(z) < dg(u).

Then the edge vz of G corresponds to the vertex vz adjacent to w in L(G), as shown
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vz

Figure 4.2

in the Figure 4.2.

But,

dg(Z) < d(;(u)
dg(z) + d(;(v) —2< dg<u) + dg(?]) -2

dL(G) (UZ) < dL(G) (w),

contradicting that w is a L.min. vertex of L(G). Hence, no such z exists, implying that u

has the minimum degree in N (v). O
Lemma 4.3. Let v be an isolated vertex of LM(G).

(a) If v has any neighbor of the same degree as that of v, then, v generates no l.min.

vertices of L(G).

(b) If all neighbors of v have degree greater than that of v, and u is such a neighbor, then
the edge uv corresponds to a l.min. vertex of L(G) if and only if u has the minimum

degree among the neighbors of v, and for all z € N(u) \ {v}, da(z) > da(v).

Proof:

(a) Let u be a neighbor of v such that dg(u) = dg(v). As w is not a L.min. vertex of

G, there exists a vertex z adjacent to u, such that, dg(z) < dg(u) = dg(v). Then,
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Figure 4.3

the edge uz of G corresponds to a vertex uz in L(G), adjacent to a vertex w, which
in turn corresponds to the edge uv of G, as shown in Figure 4.3. Now, dpq)(uz) =
da(u) +dg(2) — 2 < dg(u) + de(v) — 2 = die)(w).

So, the edge uv cannot correspond to a l.min. vertex of L(G) for any u with dg(u) =

dc(v). Hence, by Lemma 4.2, v does not generate a lL.min. vertex in L(G).

(b) Let there exist a vertex z € N(u) \ {v} such that dg(z) < dg(v). Then, the edge
uz corresponds to a vertex uz in L(G) which is adjacent to a vertex w, which in
turn corresponds to the edge vu of G, as shown in Figure 4.3. Now, dp(uz) =
da(u) +da(2) — 2 < dg(u) + de(v) — 2 = die)(w).

Therefore, the edge uwv will not correspond to a L.min. vertex of L(G). Now, let, for

all z € N(u) \ {v}, dg(z) > dg(v). Then,

de(u) + de(2) — 2 > de(u) + da(v) — 2

dre(uz) > dye(w),

where w corresponds to the edge vu. Therefore, w would be a l.min. vertex.
Moreover, if uz is a L.min. vertex, it would be adjacent to w implying that the number

of components will not increase. ]
Lemma 4.4. Let C be a component of Im(G) which is not a single verte.

a) If vy and vy are adjacent vertices in C, then the vertex w € L(G), corresponding to the

edge v1vo, 1S a l.min. vertex.
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b) If u € N{(C), then no edge joining u to a vertex in C' corresponds to a l.min. vertex of

L(G).

Proof:

Figure 4.4

a) Let vy, vs be two vertices of G such that ¢’ = vyvy is an edge in C. Let w € L(G) be
the vertex corresponding to €’. Then, any neighbor z of w will correspond to an edge
e, in G, incident at either v; or vy. Let e be incident at v; and some vertex z € N (v;)

as shown in the Figure 4.4. Then, as v; is a l.min. vertex,

From Lemma 4.1, dg(v1) = dg(vs),

da(z) +da(v1) — 2 > dg(v1) + dg(v2) — 2,

drc)(z) > dre(w).

Hence, w is a l.min. vertex.

30



Figure 4.5

b) Asu € N(C), it is adjacent to a vertex, say vy, in C. As C'is not a single vertex, there

exists a vertex vy € C' adjacent to vy. Let w be the vertex in L(G) corresponding to the
edge v1v, and let r be the common degree of vertices in C. Then, dpg)(w) = 2r — 2.
Now, the edge uwv; corresponds to a vertex x adjacent to w, as shown in Figure 4.5.
Also, dpcy(x) = dg(u) +r — 2 and as vy is a L.min. vertex, we get that dg(u) > r.

If dg(u) > r, then,

de(u)+r—2>r+4r—2,

dra)(z) > dpey(w),

and z can not be a l.min. vertex.
Otherwise, dg(u) = r. But as w is not a L.min. vertex, there exists a vertex z €
N(u)\ {v1} such that dg(z) < dg(u). Then, the edge uz of G corresponds to a vertex

y adjacent to x, as shown in Figure 4.5. Now,

de(z) < da(u),
dG(Z) + dg(u) —-2< dg(u) + dg<u) -2,
dg<2) + dg(u) —2< dg(u) +r—2,

dre)(y) < dpe)(z),
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and hence, x can not be a l.min. vertex. O

Corollary 4.1: It follows from Lemma 4.4 that L(C) is a component of im(L(G)).

Corollary 4.2: If C' is a single vertex, then from Lemma 4.3 it generates at most one
component of Im(L(G)). Otherwise, if C' is not a single vertex, every vertex of C' generates
a lL.min. vertex from Lemma 4.4(a). As the line graph operation preserves connectivity, C'
will generate at most one component of Im(L(G)). Hence, in either case, C' generates at

most one component.

Lemma 4.5. There exists an integer A such that for all k > A, every component of

Im(L*(Q)) generates exactly one component of Im(L*(G)).

Proof: Let ¢ be the number of components of Im(L¥(G)). From Corollary 4.2, {c;} is a
non-increasing sequence. But as ¢ is a non-negative number for every k, there exists an

integer A, such that ¢ is constant for all £ > A. O

We now define new notation which would be followed in the rest of this chapter. Let Cs4
be a component of Im(LAT1(G)) where A is the integer from Lemma 4.5. Inductively, for
each k > A, let Cy,; be the component of L*1(G) generated by Cy. Let r;, be the common
degree of vertices in C. We can further choose A to be sufficiently large so that §; > 2 for

all £ > A, from Lemma 2.1.

Lemma 4.6. Let u € N(Cp) be adjacent to a vertex v € Cp, where D is an integer greater
than A. Further, let y € LP*Y(G) correspond to the edge uv of LP(G), so y € N[Cp1].

Then the following holds.

(a) If Cp is not a single vertez, then

dpp+1)(y) — o1 = dppey(u) —rp
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(b) Otherwise, if Cp is a single vertez, then,
dro+i(a) (y) —rps1 < dro() (u) —7p

Proof:

LD(G) LD+1(G)

Figure 4.6: When Cp is not a single vertex

- ..

Cp

(a) From Lemma 4.4(a), if C'p has an edge then it generates Cp, 1, as shown in Figure 4.6,
and rpy1 = 2rp — 2.

Also, dpp+1)(y) = dpo(g)(uw) +rp — 2. So,

dpo+1()(y) — o1 = (dpo()(w) +rp —2) — (2rp — 2)

dLD+1(G) (y) —rpy1 = dLD(G)<u> —TD.

LP+Y(G)

’ Cpi1

Figure 4.7: When C} is a single vertex

(b) Suppose y € N(Cp41). Again, dpp+1(q)(y) = dpo(ey(u) +rp — 2. Let o be a vertex of

smallest degree in N(vp) such that the edge zvp corresponds to a lL.min. vertex, say
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Upi1, in Cpyq from Lemma 4.5. Such a vertex z exists from Lemma 4.2 and because

Cp41 is non-empty. Then,

'D+1 = dLD(G)([E) +7rp — 2.

Since Cp is a single vertex, hence from Lemma 4.3(a), dp ) (7) > rp as Cp generates

Cp41- So,

dpp)(z) +rp—2>1p+1p 2,
D41 > 2rp — 2,

rp+1 — dpp+iey(y) > (2rp — 2) — dppg) (y)-

But, dpp+1g)(y) = dpoe)(uw) +rp — 2, therefore,

rp+1 — dppagy(y) > (2rp —2) — (dpp(gy(u) +rp — 2),
rp1 — dpo+iy(y) > rp — dpo(e)(u),

dLD+1(G)<y) —Tpy1 < dLD(G)(U) —Tp.

Now, suppose y € Cpy1. Then dpoiey(y) — rpy1 = 0. But as Cp is a single vertex,
dpp)(u)—rp # 0, as otherwise Cp will not generate a component. Hence dyp+1()(y)—

rp41 < dpo(ey(u) —7p. []

Lemma 4.7. If u € N(Cy) then u generates a vertex y € N|[Cyi1].

Proof: As u € N(Cy), u is adjacent to a vertex v € Cy. Let the edge uv correspond to the

vertex y € LFTY(G). If Cy has an edge, from Lemma 4.4(a) v generates a vertex in Ciy;.

Also, if C = {v}, as k > A, v generates every vertex in Cy,1. Then, there exists a vertex

w € Oy generated by v. Now, the edges in L¥(G) corresponding to y and w, are incident

at the vertex v. Hence, y is adjacent to the vertex w in L*(G), implying that, if y is a
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L.min. vertex then y € Cyyq or else y € N(Cl1). ]

Let N(Cg) = {w,ug,...,u,}. Then, from Lemma 4.7, for every 1 < j < n, u; gener-
ates a vertex, say y;, in N[Cpy1].

Now, if yjz is a vertex in N(Cpy;), then from Lemma 4.7, it generates a vertex, say yé“
in N[Cpyit1]. Otherwise, if y} is a vertex in Cpyy, then from Lemma 4.4(a), it generates
i+1

a vertex, say v

7 in Cpyita1. It follows inductively that u; generates a sequence of ver-

tices (u; = ¥J,v;,v5,v5,....) where y% € N[Cpy,] and, moreover, y; € Cpy; for all i > T if
y]I € Cp. s for some integer I.

Then, we define a function f(uj,7) : N(Cp) — R by f(u;,1) = dps+iq)(y:) — rp+i where
i € Z*. Clearly f(uj,1) is non-negative and from Lemma 4.6 it is a non-increasing function
of 7. Also, if Czy; is a single vertex and y§ € N(Cp4i), then, from Lemma 4.3(a), f(u;,17)

can not equal to zero as otherwise C'p,; will not generate a component.

Theorem 4.1. Let G be a simple and connected graph. Let Ca be a component of Im(LA(G)).
Then, there are a finite number of integers k > A, such that Cy,, generated by Cy, is a single

vertex.

Proof: The proof is by contradiction. Let us assume that there are infinite number of integers

k > A such that C} is a single vertex. Then we prove the following series of lemmas.

Lemma 4.8. If u; € N{(Cg) generates (y?,yi,y2,v3,....), then there exists an integer I such

that yi € Cp,1.

Proof: We prove this by contradiction. Let yi € N(Cp.;) for all i. The function f(uq,1) is
non-increasing and decreases when Cg,; is a single vertex. As there are infinite number of
integers k > A such that C} is a single vertex, there are infinite integers 7 such that Cpy; is
a single vertex as B > A. Hence, from Lemma 4.6(b) there exists an integer D > B such
that f(u;, D — B) = 0.

Now, if Cp is a single vertex, then as y; € N(Cpgy;) for all i, f(u;, D — B) can not be

35



zero and we have a contradiction. Otherwise, if C'p has an edge, then let E' be the smallest
integer greater than D such that Cg is a single vertex. From Lemma 4.6(a), f(ui, E — B) =

f(u1, D — B) =0, and we again have a contradiction. ]

Lemma 4.9. If uy € N(Cpg) then there exists an integer D > B such thal u; generates

D-B
n

yt' P € N(Cp) where Cp is a single vertezr and dppc)( ) is minimum in N{Cp).

Proof: From Lemma 4.8 there exists an integer I such that u; generates y € Cpy;. Let I
be the smallest such integer. Then, yi ' € N(Cpy_1). From Lemma 4.4, if Cp4;_; has an
edge then y] ! cannot generate a vertex in Cp,;. Hence, Cp s 1 is a single vertex. Also,

from Lemma 4.2, dys+1-1(gy(y1 ") is minimum in N(Cp/_1). O
Lemma 4.10. If u; € N(Cp) where Cp is not a single vertex, then, dpsq)(u1) # 7.

Proof: Assume that dysg)(u1) = rp and hence, f(u1,0) = 0. But as f(u;,j) is non-
negative and non-increasing, f(uq,7) = 0 for all j. But, from Lemma 4.9, there exists an
integer D > B such that u; generates y”~ % € N (Cp) where Cp is a single vertex with

f(u1, D — B) =0, which is a contradiction. O

Corollary 4.3. From Lemma 4.3(a) and Lemma 4.10, if u € N(C}) then dprg)(u) # %

Lemma 4.11. Let Cp = {vp} and uy, ua, ..., u, be vertices of equal degree in N{(Cg) such that
dps(cy(u;) is minimum in N(Cp). Then, u; generates a verter v; € Cpyy for all 1 <i <n.

Moreover, uy,us, ..., u, generate l.min. vertices which induce a complete subgraph in Cpg,q.

Proof: As Cp generates Cp.1, from Lemma 4.2 there exists an integer I € [1,n] such that
uy generates a vertex in Cpgy;. Let there be some J # [ such that u; does not generate
any vertex v € Cgy1. Then, from Lemma 4.7 it follows that u; generates a vertex, say wu,
in N(Cpy1). Now, rpy1 = dpsie)(vps1) = dpsey(ur) + 18 — 2 = dpsg)(uy) +1 —2 =
dps+1(c)(u) which is a contradiction from Corollary 4.3 and hence no such J exists.

So, all uy, us, ..., u, generate L.min. vertices, say vy, v, ..., v,, in Cgyq such that v; corresponds
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to the edge u;vp in LP(G). As all the corresponding edges share the vertex vp, the vertices

V1, U, ..., U, induce a complete subgraph. O

Lemma 4.12. Let uy,uy € N(Cp) with dpscy(u1) = dps)(u2). Let uy generate the se-
quence (uy =YY, yi,y3,y3,....) and uy generate the sequence (us = Y5, ys, Y3, ys,....). Then,

dreviey(yy) = dps+ie(yy) for alli € ZF and either i,y € Cpii or yi,ys € N(Cpii).

Proof: Fori =1,

drsrc)(y1) = dpsey(w) +rp — 2
= dLB(G) (UQ) +rp— 2

= dpsri) ()

If Cp has an edge, then yi,ys € N(Cp.1) from Lemma 4.4(b) as uy,us € N{(Cp).
Otherwise, Cp is a single vertex. If dpsg)(w1) = dps(e)(uz) is minimum in N(Cp), then
Y1, Y3 € Cpsr from Lemma 4.11. Else, if dps(g)(u1) = dpsg)(u2) is not minimum in N(Cp),
then y1, 45 € N(Cp11).

Let, for i = n, dpsn(q)(yf) = drsine (y5) and either yi', y3 € Cpiy or Y7, y5 € N(Chin).
Now, if y7', 45 € Cpy then from Lemma 4.4(a), ¢, y5 ™" € Cpynr and dpsrniig)(yit) =
dps+n+1(q) (y5*) = TBint1-

Otherwise 47, y5 € N{(Cpin). If Cpyy, has an edge, then, from Lemma 4.4(b), we have

Yt st € N(Cpyni). Then,

dpsniie)(YiHh) = dpseney) (YY) + TBan — 2

= dpsine)(Yy) + TBrn — 2

= dpsinive (y3 ™).

But, if 47,5 € N(Cpyn) and Cpy, is a single vertex, then, if dpsiney(y7) = drsin)(¥5)

is minimum in N{(Cp.,), from Lemma 4.11, y7 and y§ generate 37! and y5 ™', respectively,
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in Cpiny1. Else, if dpsin)(yf) = dpsinie(y3) is not minimum in N(Cpy,), then from

n+1 1

Lemma 4.2, y{*' and y5*" are in N(Cpiny1) and  dpsiniey (i) = dpsene)(yl) +

TBin — 2= dLB+"(G)<y£L) +rpin —2= dLB+n+1(G) (y§+1). u

Lemma 4.13. If uy, us, ..., un, € N(Cg) with dps)(u;) = dpse)(u;), then there exists an
integer ' > B such that uy,us, ..., u, generate vertices yf’B,yf’B, .., yE=B e Cg which

form a clique.

Proof: From Lemma 4.9 and Lemma 4.12, there exists an integer D > B such that u; gen-
erates y]D_B € N(Cp), 1 < j < n, where Cp is a single vertex, say vp, and dppq) (yJD_B)
D-B

is minimum in N(Cp). Then, from Lemma 4.2, y;

; for 1 < 7 < n, induce a complete

subgraph in C'p. O

Continuing rest of the proof of Theorem 4.1: Now, 64 > 3. Hence, d, > 3 for all & > A.

Pick any integer B > A. Let vp € Cp and wp € LP(G) be a vertex of maximum degree,

Ap. As G is connected, there exists a path Pg = (wp = vP 08, ..., 08 = vp) from wg to

Figure 4.8: Path from wg to vg
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vp as shown in Figure 4.8. Now,

5B>3
—5B<—3
AB—53<AB—3

AB—5B+1<AB—2.

Degree of any neighbor of wg can be any of Ag — dg + 1 possible values. But there are

LP(G)
wp = le U:?
2y
B
%2 v8 vy

Figure 4.9: Path from wpg to vp

Ap — 1 neighbors of wp apart from v2. From Pigeonhole principle, there exist at least
two vertices, say z{, 25 € N(wp) \ {v§'} such that dpzg () = dps()(22), as shown in
Figure 4.9.

Now, L(Pp) will be a path in LB*Y(G). Let the edge 28vP correspond to the vertex
2Pt in LBPHY(@G). Let the edge 28vP correspond to the vertex 25t in LET1(G). Let the

edge vPv2 | correspond to the vertex v”*! in LEH(G) for 1 <i <n — 2. From Lemma 4.7,

B

vB | generates a vertex, say v2*!, such that either v”*!' € Cpyy or v21! € N(Cp,;). When

B+1

vPr € N(Cpyy), there exists a vertex v+ € Cpyy adjacent to v2 !
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LEHY(G)

Figure 4.10: v27} € N(Cp,1)

n

Figure 4.11: vl € Cpyy

Define Ppii = (vP o2+ 0B+ if 0Bt € N(Cp,1), as shown in Figure 4.10.

g ooy Upy n

Otherwise, define Pp ; = (vPt 0P T 0Bt if BTl € Cp,yy, as shown in Figure 4.11.

Notice that dpe+i(q) (20 ') = dps)(282) + dpoey(vP) — 2 = dpsg)(2F) + dps@)(vf) — 2 =
Ao (251, Also, if v € N(Cpya), then |Pgyq| = |Pgl, and if 074! € Cpyq, then

|Ppa1| = [Ppl = 1.

From Lemma 4.8 there exists an integer I,,_; such that v? | generates vffll "t e Cpir, -
Let 1,1 be the smallest such integer. Then Pg ;. , = (vP ™" o0 0Py and

|PB+I7L71’ = |PB’ - 1

LB+I (G)
LB
A
2t Cpyr
Figure 4.12
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Following inductively, there exists an integer I = I,,_1+ I,,_o+ ...+ I; such that Pg.; =

B+I)

(vP ™) and dp ey (20 7)) = dps+1()(25 ") as shown in Figure 4.12.  From Lemma 4.9 and

LP(G)
2P
Zé) CD
Figure 4.13

Lemma 4.12, there exists an integer D > B + I such that 277 and 2P generate 2 and

23, respectively, in N(Cp), where Cp = {vp} and dpp(g)(2) = dpp()(22) is minimum in

N(Cp), as shown in Figure 4.13.

LP(G)

Cp

Y Yvp
Figure 4.14

But, as 6 > 3 for all £ > A, there are at least two more neighbors of vp, say =
and y and let dypy(7) < dppe)(y). As Cp is a single vertex, from Lemma 4.11 it fol-
lows that zP and 2P generate 2Pvp and 22vp, respectively, in Cpq, which are adjacent

to each other, as is shown in Figure 4.14. In the next iteration, we get four vertices,
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Figure 4.15

(zvp)(zPvp), (zvp)(22vp), (yvp)(2Pvp) and (yup)(22vp), as are shown in the Figure 4.15.
If dpo(2) = dpo(y), then, from Lemma 4.12, we have dpo+2(c)((xvp) (21 vp)) = dpp+2)((zvp) (24 vp)) =
drov2(c)((yvp) (2P vp)) = dpov2c) ((yvp)(25’vp)). So, from Lemma 4.13, there exists an in-

teger ' > E, such that, Cr contains a Kj.

Otherwise, let dyp(x) < dro(y). From Lemma 4.9 and Lemma 4.12, there exists an
integer £ > D + 2 such that Cg is a single vertex, say vg, and, valevD and CL’UDZ2DUD
generate vertices, say 1 and o, respectively, in N(Cg), such that they have the same degree
which is minimum in N{Cg). Let y; and y» be the vertices generated by (yvp)(zPvp) and

(yvp)(25vp), respectively, in L¥(G), as shown in the Figure 4.16. Notice that dpe(q)(y1) =

drec)(y2)-

Then, we have the line graph iterations as shown in Figure 4.17. Now,

dre+i(G)(y1ve) = dreg) () + dree) (V)
= dpe)(y2) + dre)(vE)

= dpe+1(6) (Y20E).
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Also,

drev2 ey ((y1ve)(21vE)) = dpevie) (y1ve) + dpe e (T1vE) — 2
= dpe(q)(Y1vE) + TE41 — 2,

drev2 e ((y1ve) (22vE)) = dpevi)(y1vE) + dpei e (T20E) — 2
= dpeq)(Y1vE) + TE41 — 2,

drev2 e ((y2vE) (21VE)) = dpevig)(Y2ve) + dpev e (T10E) — 2

= dLE+1(G)(y1UE) + TE+1 — 27

and,

dLE+2(G)((y2’UE)(£L'2UE)) = dLE+1(G) (yQ?JE) + dLEJrl(G) (I‘QUE) -2

= dLE+1(G)(y1UE) +rEps1 — 2.

L*(G)
T
T2
OD+2 Cp
Y1
Y2
Figure 4.16

So, there are four vertices of same degree in N(Cg o). From Lemma 4.13, there exists

an integer F' > E + 2 such that Cr will contain a Kj.

Returning to the proof of Theorem 4.1: Therefore, for a component C% of Im(Lp(G))

where B > A there exists an integer I; > B such that C}j generated by C’é has a K, and
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hence, from Lemma 4.4(a), C}j i

contains K, for all ¢, which is a contradiction to the as-
sumption that there are inifinite integers k& > A such that C} is a single vertex. Hence, there

exists an integer I such that Cj,; has at least one edge for all 7. [

Suppose Im(Lg(G)) has N components. Then, from Theorem 4.1, for every component
C{;, 1 < j < N, as there are finite number of integers k£ such that C}, is a single vertex, there

exists an integer I; > B such that C}j generated by C’]jg, has at least one edge for all i.

i)
Hence, there exists D = maz{l’ | 1 < j < N}, such that every component of Im(LP*(G))
has at least one edge for all i.

Clearly, the vertices of minimum degree of any graph G are also l.min. vertices and, hence,
are components of im(G). But every component of Im(LPT(G)) has at least one edge for

all 7. Hence, every vertex of minimum degree is adjacent to at least one vertex of minimum

degree, so, 0p = 20,1 — 2 for all &k > D.

LE(G) LE+2 (G)
T (y1ve)(z1vE)
(y1vE)(220E)
T2
. Cet1 (y2vE)(z1vE)
Y2 Y2Up . (y2vE) (22vE)

Figure 4.17
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Chapter 5

A puzzle

Dr.Hoffman assigned me an interesting puzzle. If G is a connected graph and L(G) is
regular, then show that G is either regular or bipartite.
Proof: For any graph G, its line graph, L(G), is regular if and only if every edge of G is

incident with the same number of edges. Hence, for any two edges uv and wy,

d(u) +dv) —2 =d(w) + d(y) — 2,

d(u) +d(v) = d(w) + d(y)

Let uv be an edge of G and w be a vertex. As G is connected, then without loss of generality,
there exists a path P = (u, v, v1,vs,...,v,,w). Now, d(vy) + d(v) = d(v) + d(u) and hence
d(vi) = d(u). If d(v;) = d(u), then, d(viy1) = d(v), otherwise, if d(v;) = d(v), then, d(v;y1) =
d(u). It follows from induction that for any vertex w of G, we have that, d(w) = d(u) or
d(w) = d(v). Moreover, for any edge wy, either d(w) = d(u) and d(y) = d(v) or the other
way round. Also, from induction, the degree of the vertices alternates along the path, hence,
if |P| is even, then, d(w) = d(u), otherwise, if |P| is odd then d(w) = d(v).

Now, if G has an odd cycle, say, P = (u, vy, v, ..., U,,u), then from above discussion d(u) =
d(v1). But as for any vertex w of G, d(w) = d(u) or d(w) = d(vy), therefore G is regular. It
follows that for any connected graph G with L(G) regular, either G is regular and, if it is

not regular, then it has no odd cycles, i.e., it is bipartite. O
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