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Abstract

In this thesis we analyze two papers, both by Dr.Stephen G. Hartke and Dr.Aparna W.

Higginson, on maximum [2] and minimum [3] degrees of a graph G under iterated line graph

operations. Let ∆k and δk denote the minimum and the maximum degrees, respectively,

of the kth iterated line graph Lk(G). It is shown that if G is not a path, then, there exist

integers A and B such that for all k > A, ∆k+1 = 2∆k− 2 and for all k > B, δk+1 = 2δk− 2.
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Chapter 1

Introduction

The line graph L(G) of a graph G is the graph having edges of G as its vertices, with

two vertices being adjacent if and only if the corresponding edges are adjacent in G. Please

note that all graphs in this discussion are simple. We restrict our discussion to connected

graphs. Refer to [4] for basic definitions of graph theory.

One of the most important resutls in line graphs has been by Beineke, who provides in [1], a

new characterization of line graphs in terms of nine excluded subgraphs, also unifying some

of the previous characterizations. We provide only the theorem here without the proof.

Figure 1.1

Theorem 1.1. A graph G is a line graph of some graph if and only if none of the nine

graphs in Figure 1.1 is an induced subgraph of G.
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The iterated line graph is defined recursively as Lk(G) = L(Lk−1(G)) where L0(G) = G.

Let ∆ and δ be the maximum and the minimum degree, respectively, of a graph G. We denote

the minimum degree of Lk(G) by δk and the maximum degree by ∆k. Hartke and Higgins

[2] show that if G is not a path, then, there exists an integer A, such that, ∆k+1 = 2∆k − 2

for all k > A. Using similar concepts, they show in [3] that there exists an integer B such

that δk+1 = 2δk − 2 for all k > B. Rather than focusing on the vertices of minimum and

maximum degrees, they observe the behavior of particular kinds of regular subgraphs, of

which, the vertices of maximum and minimum degrees form a special case. However, this

proves only the existence and the question of tight bounds of A and B is still open.

We now define some notation which will be used throughout the proofs. Neighborhood of a

vertex v, denoted by N(v), is defined as the set of all vertices adjacent to v. Then, if S is a

set of vertices of G, we use the following notation:-

1. N(S) =
⋃

v∈S N(v)

2. N [S] = N(S) ∪ S

2. N〈S〉 = N(S) \ S

We would first prove a result in Chapter 2 which was used in [2] and [3] without proof. Then,

the result for the maximum degree is proved in Chapter 3 and for the minimum degree is

proved in Chapter 4.
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Chapter 2

An elementary result

In this chapter we will prove that for most graphs, minimum degree is unbounded under

line graph iteration. Notice that, if G is not a path, then δk is defined for all k. As mentioned

in the introduction, all graphs under consideration are simple and we restrict out discussion

to connected graphs.

A leaf of a graph is a vertex of degree 1.

Lemma 2.1. If there exists an integer A such that δA > 2, then δk > 2 for all k > A.

Moreover, δk is a strictly increasing sequence for all k ≥ A, and hence lim
k→∞

δk =∞.

Proof: Clearly, the minimum possible value of δk+1 is 2δk − 2. Now,

δA > 2

2δA > δA + 2

2δA − 2 > δA.

But 2δA−2 is the minimum possible value of δA+1, hence, δA+1 > δA which implies δA+1 > 2.

Now, let δA+i > 2 for some i. Then, following similar set of equations, δA+i+1 > δA+i and

δA+i+1 > 2. It follows inductively that δk+1 > δk > 2 for all k > A and therefore δk is a

strictly increasing sequence. This also implies that the minimum degree is unbounded under

line graph operation.

Lemma 2.2. Let sk be the number of vertices of degree 1 in Lk(G). Then, {sk} is non-

increasing.

3



Proof: Every vertex of degree 1 in a graph L(G) corresponds to an edge in G which is inci-

dent with exactly one edge. So, a leaf in Lk(G) corresponds to one leaf in Lk−1(G). Also, a

leaf in G will give a single leaf under the line graph operation.

Lemma 2.3. Let G be a graph which is not a path or a cycle. If δ = 2 then lim
k→∞

δk =∞.

Proof: A vertex of degree 2 in L(G) will correspond to an edge in G which is incident with

exactly two edges. It can either be a leaf or an edge in a path or cycle as shown in the

e

e

Figure 2.1

Figure 2.1. But as δ = 2, G has no leaf. Hence, we only need to consider vertices of degree

2 in G.

Now, as G is not a path or a cycle, there exists at least one vertex, say v, of degree

greater than 2. Also, as δ = 2, G is not a K1,3. Let u be a vertex of degree 2 in G. As

G is connected, there is a path from u to v, say P0 = (u = y01, y
0
2, ..., y

0
n = v), as shown

in Figure 2.2. Now, P0 induces a path P1 = (y11, y
1
2, ..., y

1
n−1) in L(G) where dL(G)(y

1
j ) ≥ 2

for 1 ≤ j ≤ n − 2 and dL(G)(y
1
n−1) ≥ 3. Now, let Pi = (yi1, y

i
2, ..., y

i
n−i) with dLi(G)(y

i
j) ≥ 2

for 1 ≤ j ≤ n − i − 1 and dLi(G)(y
i
n−i) ≥ 3. Then Pi induces Pi+1 in Li+1(G) such that

Pi+1 = (yi+1
1 , yi2 + 1, ..., yi+1

n−i−1).

4



y0
1 = u

dG(y
0
1) = 2

dG(y
0
2) ≥ 2

dG(y
0
3) ≥ 2 dG(y

0
n−2) ≥ 2

y0
n = v

dL(G)(y
1
1) ≥ 2

dL(G)(y
1
2) ≥ 2

dL(G)(y
1
3) ≥ 2

dL(G)(y
1
n−2) ≥ 2

dL(G)(y
1
n−1) ≥ 3

dLi(G)(y
i
1) ≥ 2

dLi(G)(y
i
2) ≥ 2

dLi(G)(y
i
3) ≥ 2

dLi(G)(y
i
n−i−1) ≥ 2

dLi(G)(y
i
n−i) ≥ 3

dLi+1(G)(y
i+1
1 ) ≥ 2

dLi+1(G)(y
i+1
2 ) ≥ 2

dLi+1(G)(y
i+1
3 ) ≥ 2

dLi+1(G)(y
i+1
n−i−1) ≥ 3

dLn−2(G)(y
n−2
1 ) ≥ 2

dLn−2(G)(y
n−2
2 ) ≥ 3

dLn−1(G)(y
n−1
1 ) ≥ 3

dG(y
0
n) ≥ 3

dG(y
0
n−1) ≥ 2

Figure 2.2: Disappearing vertex of degree two

Now, for 1 ≤ j ≤ k − 2,

dLi(G)(y
i
2) ≥ 2

dLi(G)(y
i
2) + dLi(G)(y

i
1) ≥ 2 + 2

dLi(G)(y
i
2) + dLi(G)(y

i
1)− 2 ≥ 2 + 2− 2

dLi+1(G)(y
i+1
1 ) ≥ 2.
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and, for j = k − 1,

dLi(G)(y
i
k−1) ≥ 2

dLi(G)(y
i
k−1) + dLi(G)(y

i
k) ≥ 2 + 3

dLi(G)(y
i
k−1) + dLi(G)(y

i
k)− 2 ≥ 2 + 3− 2

dLi+1(G)(y
i+1
k−1) ≥ 3.

Also, |Pi+1| = |Pi| − 1. Applying inductively, Pn−1 = (yn−11 ) where dLn−1(G)(y
n−1
1 ) ≥ 3 as

shown in Figure 2.2, and we get that every vertex of degree 2 will definitely ’disappear’ after

n− 1 line graph iterations. Doing this for every vertex of degree 2, there exists an integer N

such that LN(G) has no vertex of degree 2, hence δN ≥ 3 and we are done from Lemma 2.1.

Lemma 2.4. If G is neither a path, cycle nor a K1,3, then the minimum degree is unbounded

under line graph iteration and moreover, there exists an integer A such that lim
k→∞

δk =∞ for

all k > A.

Proof: From Lemma 2.1 it is sufficient to show that for any graph G, as specified, there

exists an integer A such that δA > 2. As G is neither a path, cycle nor a K1,3, there exists

an edge, say e, such that, e = xz is incident with at least three edges.

Let δ(G) = 1. From Lemma 2.2, the number of leaves is a non-increasing sequence over line

graph iteration. Moreover, a leaf in L(G) corresponds to exactly one leaf in G. So it would

suffice to consider line graph operation on leaves of G and show that it disappears at some

iteration.

Let v be incident on a leaf of G such that dG(v) = 1. Then, as G is connected, there is a

path P0 = (v = y01, y
0
2, ..., y

0
n−1 = x, y0n = z) from v to the edge e such that dG(y0i ) ≥ 2 for

2 ≤ i ≤ n − 2, as shown in Figure 2.3. Now, P0 induces a path, say P1, in L(G) such that

P1 = (y11, y
1
2, ..., y

1
n−1) where y1j corresponds to the edge y0j y

0
j+1 ∈ E(G) for 2 ≤ j ≤ n− 1, as

shown in Figure 2.3. Now, as xz is incident with at least three edges, dG(y1n−1) ≥ 3. Also,

6



y0
1

= v

dG(y0
1
) = 1

dG(y0
2
) ≥ 2

dG(y0
3
) ≥ 2 dG(y0

n−2
) ≥ 2

y0
n−1

= x y0
n = z

e

dL(G)(y
1
1
) ≥ 1

dL(G)(y
1
2
) ≥ 2

dL(G)(y
1
3
) ≥ 2

dL(G)(y
1
n−2

) ≥ 2 y1
n−1

= xz

dL(G)(y
1
n−1

) ≥ 3

d
Li(G)

(yi
1
) ≥ 1

d
Li(G)

(yi
2
) ≥ 2

d
Li(G)

(yi
3
) ≥ 2

d
Li(G)

(yi
n−i−1

) ≥ 2

d
Li(G)

(yi
n−i

) ≥ 3

d
Li+1(G)

(y
i+1
1

) ≥ 1

d
Li+1(G)

(y
i+1
2

) ≥ 2

d
Li+1(G)

(y
i+1
3

) ≥ 2

d
Li+1(G)

(y
i+1
n−i−1

) ≥ 3

d
Ln−4(G)

(y
n−4
1

) ≥ 1

d
Ln−4(G)

(y
n−4
2

) ≥ 2

d
Ln−4(G)

(y
n−4
3

) ≥ 2

d
Ln−4(G)

(y
n−4
4

) ≥ 3

d
Ln−3(G)

(y
n−3
1

) ≥ 1

d
Ln−3(G)

(y
n−3
2

) ≥ 2

d
Ln−3(G)

(y
n−3
3

) ≥ 3

d
Ln−2(G)

(y
n−2
1

) ≥ 1

d
Ln−2(G)

(y
n−2
2

) ≥ 3

d
Ln−1(G)

(y
n−1
1

) ≥ 2

Figure 2.3: Disappearing leaf

dL(G)(y
1
1) ≥ 1, dL(G)(y

1
j ) ≥ 2 for 2 ≤ j ≤ n− 2 and dL(G)(y

1
n−1) ≥ 3, as shown in Figure 2.3.

Notice that |P1| = |P0| − 1.

Now, let Pi = (yi1, y
i
2, ..., y

i
n−i) in Li(G), such that, dLi(G)(y

i
1) ≥ 1, dLi(G)(y

i
j) ≥ 2 for 2 ≤ j ≤

n − i − 1 and dLi(G)(y
i
n−i) ≥ 3. Then Pi induces a path Pi+1 in Li+1(G) such that Pi+1 =

7



(yi+1
1 , yi+1

2 , ..., yi+1
n−i−1) where yi+1

j corresponds to the edge yijy
i
j+1 in Pi for 1 ≤ j ≤ n− i− 1

as shown in the Figure 2.3.

Now,

dLi(G)(y
i
2) ≥ 2

dLi(G)(y
i
2) + dLi(G)(y

i
1) ≥ 2 + 1

dLi(G)(y
i
2) + dLi(G)(y

i
1)− 2 ≥ 2 + 1− 2dLi+1(G)(y

i+1
1 ) ≥ 1.

Also, for 2 ≤ j ≤ k − 2,

dLi(G)(y
i
j) ≥ 2

dLi(G)(y
i
j) + dLi(G)(y

i
j+1) ≥ 2 + 2

dLi(G)(y
i
j) + dLi(G)(y

i
j+1)− 2 ≥ 2 + 2− 2

dLi+1(G)(y
i+1
j ) ≥ 2,

and, for j = k − 1,

dLi(G)(y
i
k−1) ≥ 2

dLi(G)(y
i
k−1) + dLi(G)(y

i
k) ≥ 2 + 3

dLi(G)(y
i
k−1) + dLi(G)(y

i
k)− 2 ≥ 2 + 3− 2

dLi+1(G)(y
i+1
k−1) ≥ 3.

So, dLi+1(G)(y
i+1
1 ) ≥ 1, dLi+1(G)(y

i+1
j ) ≥ 2 for 2 ≤ j ≤ k− 2 and dLi+1(G)(y

i+1
k−1) ≥ 3. Also,

|Pi+1| = |Pi| − 1, then, following inductively starting from P1 we get that Pn−1 = (yn−11 )

where dLn−1(G)(y
n−1
1 ) ≥ 2 as shown in the Figure 2.3. Hence, the number of vertices of degree

1 goes down by one.
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Let G have N vertices, say v1, v2, ..., vN , of degree 1. Then, for every vertex vj of degree 1

there exists an integer Ij such that there is no vertex of degree 1 in LIj(G) corresponding to

vj. Then, for the integer I = max{Ij | 1 ≤ j ≤ N}, there would be no vertex of degree 1

corresponding to any vj. As there is no other way to get degree 1 vertices under line graph

operation, LI(G) will have no vertices of degree 1. Also, as Lk(G) is connected for all k we

conclude that δI ≥ 2 and we are done from Lemma 2.1 and Lemma 2.3.

9



Chapter 3

Maximum degree growth in iterated line graphs

In this chapter it will be shown that for any graph G, which is not a path, there exists

an integer D such that ∆k+1 = 2∆k − 2 for all k > D, where ∆k is the maximum degree of

Lk(G).

If G is a path, then as G is a finite graph, there exists an integer I such that LI(G) is

undefined.

If G is a cycle, then for all k ∈ Z+, ∆k+1 = 2∆k − 2 = 2.

If G is a K1,3, then L(G) is a K3 and hence, for all k > 1, ∆k+1 = 2∆k − 2 = 2.

Now we have to prove the theorem for any graph G where it is not a path, a cycle or a K1,3.

Definition: A vertex v is a locally maximum vertex or a l.max. vertex if no vertex in the

neighborhood of v has degree greater than that of v.

Definition: The subgraph of G induced by its l.max. vertices is called the locally maximum

subgraph or l.max. subgraph of G and is denoted by LM(G).

Definition: A vertex v ∈ Lk(G) is generated by a vertex u ∈ G if there is a sequence of

vertices u = v0, v1, ..., vk = v such that vi+1 ∈ Li+1(G) corresponds to an edge incident at

vi ∈ Li(G). A subgraph J of Lk(G) is generated by a subgraph H of G if, for each vertex

v ∈ J , v is generated by a vertex in H.

Lemma 3.1. All vertices in the same component of LM(G) have the same degree in G.

Proof: Let v and u be two vertices in a component of LM(G). Then v and u are l.max.

vertices of the graph G. As v ∈ N(u), d(v) ≤ d(u) from definition. Similarly, as u ∈ N(v),

d(u) ≤ d(v). Hence, d(u) = d(v).

10



Lemma 3.2. The vertices of L(G) corresponding to edges of G incident with the same vertex,

say v, of G, form a clique in L(G). In particular, all the vertices of LM(L(G)) generated

by v are in the same component of LM(L(G)).

Proof: It follows from the definition of line graphs that the vertices of L(G), corresponding

to the edges of G that share a vertex, will be adjacent to each other.

Lemma 3.3. If w is a l.max. vertex of L(G), then w corresponds to an edge e in G such that

at least one end of e, say v, is l.max. in G and the other end of e, say u, has the maximum

degree among the neighbors of v in G.

Proof: Assume that neither v nor u is a l.max. vertex. Let dG(v) ≥ dG(u). Then, as v is

not a l.max. vertex, there exists a vertex y ∈ N(v) such that dG(y) > dG(v).

u

v

y

w vy

G L(G)

e

Figure 3.1

Now, the edge vy of G corresponds to a vertex vy of L(G), adjacent to w as shown in

the Figure 3.1. Also,

dG(v) ≥ dG(u).

But, as dG(y) > dG(v),

dG(v) + dG(y)− 2 > dG(u) + dG(v)− 2

dL(G)(vy) > dL(G)(w),

11



contradicting that w is a l.max. vertex of L(G).

Hence, no such y exists, implying that v is a l.max. vertex of G.

Now, let there exist a vertex z ∈ N(v) such that dG(z) > dG(u).

u

v

z

w vz

G L(G)

Figure 3.2

Then the edge vz of G corresponds to a vertex vz adjacent to w in L(G) as shown in

the Figure 3.2.

But,

dG(z) > dG(u)

dG(z) + dG(v)− 2 > dG(u) + dG(v)− 2

dL(G)(vz) > dL(G)(w),

contradicting that w is a l.max. vertex of L(G). Hence, no such z exists, implying that u

has the maximum degree in N(v).

Lemma 3.4. Let v be an isolated vertex of LM(G).

(a) If v has any neighbor of the same degree as that of v, then, v generates no l.max.

vertices of L(G).

12



(b) If all neighbors of v have degree less than that of v, and u is such a neighbor, then

the edge uv corresponds to a l.max. vertex of L(G) if and only if u has the maximum

degree among the neighbors of v and for all z ∈ N(u) \ {v}, dG(z) ≤ dG(v).

Proof:

u

v

w = vu uz

G L(G)

z

Figure 3.3

(a) As u is not a l.max. vertex of G, there exists a vertex z adjacent to u, such that,

dG(z) > dG(u) = dG(v). Then, u and z generate a vertex uz adjacent to w, generated

by v and u, as shown in Figure 3.3. Now, dL(G)(uz) = dG(u) + dG(z) − 2 > dG(u) +

dG(v) − 2 = dL(G)(w), therefore, the edge vu does not correspond to a l.max. vertex

of L(G), for any u with dG(u) = dG(v). Hence, by Lemma 3.3, v does not generate a

l.max. vertex of L(G).

(b) Let there exist a vertex z ∈ N(u) \ {v} such that dG(z) > dG(v). Then the edge

uz corresponds to a vertex uz in L(G) adjacent to a vertex w, which corresponds to

the edge uv in G, as shown in Figure 3.3. Now, dL(G)(uz) = dG(u) + dG(z) − 2 >

dG(u) + dG(v)− 2 = dL(G)(w), therefore, w will not be a l.max. vertex.

Now, let, for all z ∈ N(u) \ {v}, dG(z) ≤ dG(v). Then,

dG(u) + dG(z)− 2 ≤ dG(u) + dG(v)− 2,

dL(G)(uz) ≤ dL(G)(w),

13



where w corresponds to the edge uv of G. Therefore, the edge uv corresponds to a

l.max. vertex of L(G).

Moreover, if uz is a l.max. vertex, it would be adjacent to w implying that the number

of components will not increase.

Lemma 3.5. Let C be a component of LM(G) which is not a single vertex.

a) If v1 and v2 are adjacent vertices in C, then the vertex w ∈ L(G), corresponding to the

edge v1v2, is a l.max. vertex.

b) If u ∈ N〈C〉, then no edge joining u to a vertex in C corresponds to a l.max. vertex of

L(G).

Proof:

v2

v1

z

e

e
′ w

x

G

C

L(G)

Figure 3.4

a) Let e′ = v1v2 be an edge in C. Let w ∈ L(G) be the vertex corresponding to e′. Then,

any neighbor x of w will correspond to an edge e, in G, incident at either v1 or v2. Let

e be incident at v1 and some vertex z ∈ N(v1), as shown in the Figure 3.4. Then, as

v1 is a l.max. vertex,

dG(z) ≤ dG(v1)

dG(z) + dG(v2)− 2 ≤ dG(v1) + dG(v2)− 2
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From Lemma 3.1, dG(v1) = dG(v2),

dG(z) + dG(v1)− 2 ≤ dG(v1) + dG(v2)− 2

dL(G)(x) ≤ dL(G)(w),

hence, w is a l.max. vertex.

v2

v1

u

e

e
′

w

x

G

C

L(G)

z

y

Figure 3.5

b) As u ∈ N〈C〉, it is adjacent to a vertex, say v1, in C. As C is not a single vertex, there

exists a vertex v2 ∈ C adjacent to v1. Let w be the vertex in L(G) corresponding to the

edge v1v2 and let r be the common degree of vertices in C. Then, dL(G)(w) = 2r − 2.

Now, the edge uv1 corresponds to a vertex x adjacent to w in L(G), as shown in the

Figure 3.5. Also, dL(G)(x) = dG(u) + r − 2 and as v1 is a l.max. vertex, we get that

dG(u) ≤ r.

If dG(u) < r, then,

dG(u) + r − 2 < r + r − 2

dL(G)(x) < dL(G)(w),
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hence, x can not be a l.max. vertex.

If dG(u) = r then as u is not a l.max. vertex, there exists a vertex z ∈ N(u)\{v1} such

that dG(z) > dG(u). Then, the edge uz corresponds to a vertex y in L(G), adjacent to

x as shown in Figure 3.5. Now,

dG(z) > dG(u)

dG(z) + dG(u)− 2 > dG(u) + dG(u)− 2

dG(z) + dG(u)− 2 > dG(u) + r − 2

dL(G)(y) > dL(G)(x),

and hence, x can not be a l.max. vertex.

Corollary 3.1: It follows from Lemma 3.5 that L(C) is a component of LM(L(G)).

Corollary 3.2: If C is a single vertex, then from Lemma 3.4 it generates at most one

component of LM(L(G)). Otherwise, if C is not a single vertex, then every vertex of

C generates a l.max. vertex from Lemma 3.5(a). As the line graph operation preserves

connectivity, C will generate at most one component of LM(L(G)). Hence, in either case,

C generates at most one component.

Lemma 3.6. There exists an integer A such that for all k > A, every component of

LM(Lk(G)) generates exactly one component of LM(Lk+1(G)).

Proof: Let ck be the number of components of LM(Lk(G)). From Corollary 3.2, {ck} is a

non-increasing sequence. But as ck is a non-negative number for all k, there exists an integer

A, such that ck is constant for all k > A.

We now define new notation which would be followed in the rest of this chapter. Let CA+1

be a component of LM(LA+1(G)) where A is the integer from Lemma 3.6. Inductively, for

each k > A, let Ck+1 be the component of Lk+1(G) generated by Ck. Let rk be the common
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degree of vertices in Ck. We can further choose A to be sufficiently large so that δk > 2 for

all k > A from Lemma 2.1.

Lemma 3.7. Let u ∈ N〈CD〉 be adjacent to a vertex vD ∈ CD, where D is an integer greater

than A. Let y ∈ LD+1(G) correspond to the edge uv of LD(G), so y ∈ N [CD+1].

(a) If CD is not a single vertex, so y ∈ N〈CD+1〉, and,

rD+1 − dLD+1(G)(y) = rD − dLD(G)(u).

(b) In case CD is a single vertex, then,

rD+1 − dLD+1(G)(y) < rD − dLD(G)(u)

Proof:

u

vD

y

vD+1

CD CD+1

LD(G) LD+1(G)

Figure 3.6: When CD is not a single vertex

(a) From Lemma 3.5(a), if CD has an edge then it generates CD+1, as shown in Figure 3.6,

and rD+1 = 2rD − 2.

Also, dLD+1(G)(y) = dLD(G)(u) + rD − 2. So,

rD+1 − dLD+1(G)(y) = (2rD − 2)− (dLD(G)(u) + rD − 2)

rD+1 − dLD+1(G)(y) = rD − dLD(G)(u).
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u

vD

y

vD+1

CD CD+1

LD(G) LD+1(G)

x

Figure 3.7: When CD is a single vertex

(b) Suppose y ∈ N〈CD+1〉. Again, dLD+1(G)(y) = dLD(G)(u) + rD − 2. Let x be a vertex of

largest degree in N(vD) such that the edge xvD corresponds to a l.max. vertex vD+1

in CD+1 from Lemma 3.6. Such a vertex x exists from Lemma 3.3 and as CD+1 is

non-empty, we have,

rD+1 = dLD(G)(x) + rD − 2.

As CD is a single vertex, from Lemma 3.4(a), dLD(G)(x) < rD as CD generates CD+1

and hence,

dLD(G)(x) + rD − 2 < rD + rD − 2

rD+1 < 2rD − 2

rD+1 − dLD+1(G)(y) < (2rD − 2)− dLD+1(G)(y)

But, since dLD+1(G)(y) = dLD(G)(u) + rD − 2, we have,

rD+1 − dLD+1(G)(y) < (2rD − 2)− (dLD(G)(u) + rD − 2)

rD+1 − dLD+1(G)(y) < rD − dLD(G)(u)

Now, suppose y ∈ CD+1. Then rD+1 − dLD+1(G)(y) = 0. Also, as CD is a single

vertex, rD − dLD(G)(u) 6= 0 as otherwise CD will not generate a component. Hence,

rD+1 − dLD+1(G)(y) < rD − dLD(G)(u).

Lemma 3.8. If u ∈ N〈Ck〉 then u generates a vertex y ∈ N [Ck+1].
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Proof: As u ∈ N〈Ck〉, u is adjacent to a vertex v ∈ Ck. Let the edge uv correspond to the

vertex y ∈ Lk+1(G). If Ck has an edge, from Lemma 3.5(a) v generates a vertex in Ck+1.

Also, if Ck = {v}, as k > A, v generates every vertex in Ck+1. So, there exists a vertex

w ∈ Ck+1 generated by v. Now, the edges in Lk(G) corresponding to y and w, are incident

at the vertex v. Hence, y is adjacent to the vertex w in Lk+1(G), implying that, if y is a

l.max. vertex then y ∈ Ck+1 or else y ∈ N〈Ck+1〉.

Let N〈CB〉 = {u1, u2, . . . , un}. Then from Lemma 3.8, for every 1 ≤ j ≤ n, uj gener-

ates a vertex, say y1j , in N [CB+1].

Now, if yij is a vertex in N〈CB+i〉, then from Lemma 3.8, it generates a vertex, say yi+1
j ,

in N [CB+i+1]. Otherwise, if yij is a vertex in CB+i, then from Lemma 3.5(a), it generates

a vertex, say yi+1
j , in CB+i+1. It follows inductively that uj generates a sequence of ver-

tices (uj = y0j , y
1
j , y

2
j , y

3
j , ....) where yij ∈ N [CB+i] and, moreover, yij ∈ CB+i for all i > I if

yIj ∈ CB+I for some integer I.

Then we define a function f(uj, i) : N〈CB〉 → R by f(uj, i) = rB+i − dLB+i(G)(y
i
j) where

i ∈ Z+. Clearly f(uj, i) is non-negative and from Lemma 3.7 it is a non-increasing function

of i. Also, if CB+i is a single vertex and yij ∈ N〈CB+i〉, then, from Lemma 3.4(a), f(uj, i)

can not equal to zero because otherwise CB+i will not generate a component.

Theorem 3.1. Let G be a simple connected graph. Let CA be a component of LM(LA(G)).

Then, there are a finite number of integers k > A, such that Ck, generated by CA, is a single

vertex.

Proof: The proof is by contradiction. Let us assume that there are an infinite number of

integers k > A such that Ck is a single vertex. Then we prove the following series of lemmas.

Lemma 3.9. If u1 ∈ N〈CB〉 generates (y01, y
1
1, y

2
1, y

3
1, ....), then there exists an integer I such

that yI1 ∈ CB+I .
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Proof: We prove this by contradiction. Let yi1 ∈ N〈CB+i〉 for all i. The function f(u1, i) is

non-increasing and decreases when CB+i is a single vertex. As there are infinite number of

integers k > A such that Ck is a single vertex, there are infinite integers i such that CB+i is

a single vertex as B > A. Hence, from Lemma 3.7(b) there exists an integer D > B such

that f(u1, D −B) = 0.

Now, if CD is a single vertex, then as yi1 ∈ N〈CB+i〉 for all i, it follows that f(u1, D − B)

can not be zero and we have a contradiction. Otherwise, if CD has an edge, then let E be

the smallest integer greater than D such that CE is a single vertex. From Lemma 3.7(a),

f(u1, E −B) = f(u1, D −B) = 0, and we again have a contradiction.

Lemma 3.10. If u1 ∈ N〈CB〉 then there exists an integer D ≥ B such that u1 generates

yD−B1 ∈ N〈CD〉 where CD is a single vertex and dLD(G)(y
D−B
1 ) is maximum in N〈CD〉.

Proof: From Lemma 3.9 there exists an integer I such that u1 generates yI1 ∈ CB+I . Let I

be the smallest such integer. Hence, yI−11 ∈ N〈CB+I−1〉. From Lemma 3.5, if CB+I−1 has an

edge then yI−11 cannot generate a vertex in CB+I . Hence, CB+I−1 is a single vertex. Also,

from Lemma 3.3, dLB+I−1(G)(y
I−1
1 ) is maximum in N〈CB+I−1〉.

Lemma 3.11. If u1 ∈ N〈CB〉 where CB is not a single vertex, then, dLB(G)(u1) 6= rB.

Proof: Assume that dLB(G)(u1) = rB and hence, f(u1, 0) = 0. But as f(ui, j) is non-

negative and non-increasing, f(u1, j) = 0 for all j. But, from Lemma 3.10, there exists an

integer D ≥ B such that u1 generates yD−B1 ∈ N〈CD〉 where CD is a single vertex with

f(u1, D −B) = 0, which is a contradiction.

Corollary 3.3. From Lemma 3.4(a) and Lemma 3.11, if u ∈ N〈Ck〉 then dLk(G)(u1) 6= rk.

Lemma 3.12. Let CB = {vB} and u1, u2, ..., un be vertices of equal degree in N〈CB〉 such that

dLB(G)(ui) is maximum in N〈CB〉. Then, ui generates a vertex vi ∈ CB+1 for all 1 ≤ i ≤ n.

Moreover, u1, u2, ..., un generate l.max. vertices which induce a complete subgraph in CB+1.
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Proof: As CB generates CB+1, from Lemma 3.3 there exists an integer I ∈ [1, n] such that

uI generates a vertex vB+1 ∈ CB+1. Let there be some J 6= I such that uJ does not generate

any vertex in CB+1. Then, from Lemma 3.8, uJ generates a vertex, say u, in N〈CB+1〉. Now,

rB+1 = dLB+1(G)(vB+1) = dLB(G)(uI) + rB − 2 = dLB(G)(uJ) + rB − 2 = dLB+1(G)(u) which is

a contradiction from Corollary 3.3 and hence no such J exists.

So, all u1, u2, ..., un generate l.max. vertices, say v1, v2, ..., vn, in CB+1 such that vi corre-

sponds to the edge uivB in LB(G). As all the corresponding edges share the vertex vB, the

vertices v1, v2, ..., vn induce a complete subgraph.

Lemma 3.13. Let u1, u2 ∈ N〈CB〉 with dLB(G)(u1) = dLB(G)(u2). Furthermore, let u1 gener-

ate the sequence (u1 = y01, y
1
1, y

2
1, y

3
1, ....) and u2 generate the sequence (u2 = y02, y

1
2, y

2
2, y

3
2, ....).

Then, dLB+i(G)(y
i
1) = dLB+i(G)(y

i
2) for all i ∈ Z+ and either yi1, y

i
2 ∈ CB+i or yi1, y

i
2 ∈ N〈CB+i〉.

Proof: For i = 1,

dLB+1(G)(y
1
1) = dLB(G)(u1) + rB − 2

= dLB(G)(u2) + rB − 2

= dLB+1(G)(y
1
2).

If CB has an edge, then y11, y
1
2 ∈ N〈CB+1〉 from Lemma 3.5(b) as u1, u2 ∈ N〈CB〉, otherwise,

CB is a single vertex. If dLB(G)(u1) = dLB(G)(u2) is maximum in N〈CB〉, then y11, y
1
2 ∈ CB+1

from Lemma 3.12. On the other hand, if dLB(G)(u1) = dLB(G)(u2) is not maximum in N〈CB〉,

then y11, y
1
2 ∈ N〈CB+1〉.

Let, for i = n, dLB+n(G)(y
n
1 ) = dLB+n(G)(y

n
2 ) and either yn1 , y

n
2 ∈ CB+n or yn1 , y

n
2 ∈ N〈CB+n〉.

Now, if yn1 , y
n
2 ∈ CB+n then from Lemma 3.5(a), yn+1

1 , yn+1
2 ∈ CB+n+1 and dLB+n+1(G)(y

n+1
1 ) =

dLB+n+1(G)(y
n+1
2 ) = rB+n+1.

Otherwise yn1 , y
n
2 ∈ N〈CB+n〉. If CB+n has an edge, from Lemma 3.5(b) we get that
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yn+1
1 , yn+1

2 ∈ N〈CB+n+1〉. Then,

dLB+n+1(G)(y
n+1
1 ) = dLB+n(G)(y

n
1 ) + rB+n − 2

= dLB+n(G)(y
n
2 ) + rB+n − 2

= dLB+n+1(G)(y
n+1
2 ).

But, if yn1 , y
n
2 ∈ N〈CB+n〉 and CB+n is a single vertex, then, if dLB+n(G)(y

n
1 ) = dLB+n(G)(y

n
2 ) is

maximum in N〈CB+n〉, and then from Lemma 3.12, yn1 and yn2 generate yn+1
1 and yn+1

2 , re-

spectively, in CB+n+1. Else, if dLB+n(G)(y
n
1 ) = dLB+n(G)(y

n
2 ) is not maximum in N〈CB+n〉, then

from Lemma 3.3, yn+1
1 and yn+1

2 are in N〈CB+n+1〉 and dLB+n+1(G)(y
n+1
1 ) = dLB+n(G)(y

n
1 ) +

rB+n − 2 = dLB+n(G)(y
n
2 ) + rB+n − 2 = dLB+n+1(G)(y

n+1
2 ).

Lemma 3.14. If u1, u2, ..., un ∈ N〈CB〉 with dLB(G)(ui) = dLB(G)(uj), then there exists an

integer E > B such that u1, u2, ..., un generate vertices yE−B1 , yE−B2 , . . . , yE−Bn ∈ CE which

form a clique.

Proof: From Lemma 3.10 and Lemma 3.13, there exists an integer D ≥ B such that uj

generates yD−Bj ∈ N〈CD〉, 1 ≤ j ≤ n, where CD is a single vertex, say vD, and dLD(G)(y
D−B
j )

is maximum in N〈CD〉. Then, from Lemma 3.12, yD−Bj for 1 ≤ j ≤ n induce a complete

subgraph in CD+1.

Lemma 3.15. There exists an integer E > A such that CE−1 has exactly one edge.

Proof: Pick an integer B > A such that CB = {vB}. Such an integer exists from our

assumption that there are infinite integers k > A where Ck is a single vertex. Then, as
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δA > 2, we have, from Lemma 2.1,

δB > 2

−δB < −2

rB − δB + 1 < rB − 2 + 1

rB − δk + 1 < rB

Now, there are rB neighbors of vB with rB − δB + 1 possible unique degrees. Hence, by Pi-

geonhole principle, there exists at least two vertices u1, u2 ∈ N〈CB〉 such that dLB(G)(u1) =

dLB(G)(u2). Then from Lemma 3.14, u1, u2 will induce an edge in CD for some D > B. But,

as there are infinite integers such that Ck is a single vertex, there exists an integer E > D

such that CE is a single vertex. Let E be the smallest such integer. Then, CE−1 will have

exactly one edge and the lemma is proved.

Lemma 3.16. There exists an integer E such that CE = {vE} and there are three vertices

u1, u2, u3 ∈ N〈CE〉 with equal degree.

Proof: Let δ
′
k denote the minimum degree in N〈Ck〉. Then,

δ
′
k = δ

′
k−1 + rk−1 − 2.
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Now, pick an integer B such that CB has exactly one edge. Such an integer exists from

Lemma 3.15. Then, rB+1 = 2rB − 2 from Lemma 3.5(a). But,

δ
′
B > 2

δ
′
B + rB − 1 > 2 + rB − 1

rB − 1 > 2 + rB − 1− δ′B

rB − 1 > 2 + 2rB − 1− rB − δ
′
B + 2− 2

rB − 1 > (2rB − 2)− (rB + δ
′
B − 2) + 1

rB − 1 > rB+1 − δ
′
B+1 + 1

2rB − 2 > 2(rB+1 − δ
′
B+1 + 1)

rB+1 > 2(rB+1 − δ
′
B+1 + 1)

Now, rB+1 is the number of neighbors of vB+1 and as vB+1 is a l.max. vertex, we have that

(rB+1 − δ
′
B+1 + 1) is the number of possible unique values of degree of a neighbor of vB+1.

Also, because CB has exactly one edge, CB+1 = {vB+1}, and therefore, from Pigeonhole

principle, there exist at least three vertices of equal degree in N〈CB+1〉.

Continuing rest of the proof of Theorem 3.1:

Now, from Lemma 3.16 and Lemma 3.14, there exists an integer F > E such that CF

contains a K3. Hence, from Lemma 3.5(a), Ck contains K3 all k > F which contradicts that

there are infinite number of integers k > A such that Ck is a single vertex. Hence, there are

finite values of k > A where Ck is a single vertex and there exists an integer I, such that

CI+i, generated by Ck, has at least one edge, for all i.

So, from Theorem 3.1, for each component Cj
B of LM(LB(G)) where B > A, there exists

an integer Ij > B such that Cj
Ij+i generated by Cj

B has at least one edge for all i. Suppose

LM(LB(G)) has N components. Using this reasoning for all components Cj
B, 1 ≤ j ≤

N , there exists an integer D = max{Ij | 1 ≤ j ≤ N}, such that every component of

LM(LD+i(G)) has at least one edge for all i.
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Clearly, the vertices of maximum degree of any graph G are also l.max. vertices and hence

are components of LM(G). But every component of LM(LD+i) has edges for all i, hence,

every vertex of maximum degree is adjacent to at least one vertex of maximum degree, and

so, ∆k = 2∆k−1 − 2 for all k > D.
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Chapter 4

Minimum degree growth in iterated line graphs

In this chapter it will be shown that for any graph G, which is not a path, there exists

an integer D such that δk+1 = 2δk − 2 for all k > D, where δk is the minimum degree of

Lk(G).

Note that, most of the lemmas for this proof parallel the lemmas, proved in Chapter 3, with

the inequalities reversed. However, a different line of reasoning is used in the second half

of the proof to contradict a theorem similar to Theorem 3.1. If G is a path, then as G is a

finite graph, there exists an integer I such that LI(G) is undefined.

If G is a cycle, then for all k ∈ Z+, δk+1 = 2δk − 2 = 2.

If G is a K1,3, then L(G) is a K3 and hence, for all k > 1, δk+1 = 2δk − 2 = 2.

Now we have to prove the theorem for any graph G where it is not a path, a cycle or a K1,3.

Definition: A vertex v is a locally minimum vertex or a l.min. vertex if no vertex in the

neighborhood of v has degree smaller than that of v.

Definition: The subgraph of G induced by its l.min. vertices is called the locally minimum

subgraph or l.min. subgraph of G and is denoted by lm(G).

Lemma 4.1. All vertices in the same component of lm(G) have the same degree in G.

Proof: Let v and u be two vertices in a component of lm(G). Then v and u are l.min.

vertices of the graph G. As v ∈ N(u), d(v) ≥ d(u) from definition. Similarly, as u ∈ N(v),

d(u) ≥ d(v). Hence, d(u) = d(v).
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Lemma 4.2. If w is a l.min. vertex of L(G), then w corresponds to an edge e in G such that

at least one end of e, say v, is l.min. in G and the other end of e, say u, has the smallest

degree among the neighbors of v in G.

Proof: Assume that neither v nor u is a l.min. vertex. Let dG(v) ≤ dG(u). Then, as v is not

a l.min. vertex, there exists a vertex y ∈ N(v) such that dG(y) < dG(v).

u

v

y

w vy

G L(G)

e

Figure 4.1

Now, the edge vy of G corresponds to the vertex vy of L(G), adjacent to w, as shown

in the Figure 4.1. Also,

dG(v) ≤ dG(u).

But, as dG(y) < dG(v),

dG(v) + dG(y)− 2 < dG(u) + dG(v)− 2,

dL(G)(vy) < dL(G)(w),

contradicting that w is a l.min. vertex of L(G), hence, no such y exists, implying that v is

a l.min. vertex of G.

Now, let there exist a vertex z ∈ N(v) such that dG(z) < dG(u).

Then the edge vz of G corresponds to the vertex vz adjacent to w in L(G), as shown
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u

v

z

w vz

G L(G)

Figure 4.2

in the Figure 4.2.

But,

dG(z) < dG(u)

dG(z) + dG(v)− 2 < dG(u) + dG(v)− 2

dL(G)(vz) < dL(G)(w),

contradicting that w is a l.min. vertex of L(G). Hence, no such z exists, implying that u

has the minimum degree in N(v).

Lemma 4.3. Let v be an isolated vertex of LM(G).

(a) If v has any neighbor of the same degree as that of v, then, v generates no l.min.

vertices of L(G).

(b) If all neighbors of v have degree greater than that of v, and u is such a neighbor, then

the edge uv corresponds to a l.min. vertex of L(G) if and only if u has the minimum

degree among the neighbors of v, and for all z ∈ N(u) \ {v}, dG(z) ≥ dG(v).

Proof:

(a) Let u be a neighbor of v such that dG(u) = dG(v). As u is not a l.min. vertex of

G, there exists a vertex z adjacent to u, such that, dG(z) < dG(u) = dG(v). Then,
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u

v

w = vu uz

G L(G)

z

Figure 4.3

the edge uz of G corresponds to a vertex uz in L(G), adjacent to a vertex w, which

in turn corresponds to the edge uv of G, as shown in Figure 4.3. Now, dL(G)(uz) =

dG(u) + dG(z)− 2 < dG(u) + dG(v)− 2 = dL(G)(w).

So, the edge uv cannot correspond to a l.min. vertex of L(G) for any u with dG(u) =

dG(v). Hence, by Lemma 4.2, v does not generate a l.min. vertex in L(G).

(b) Let there exist a vertex z ∈ N(u) \ {v} such that dG(z) < dG(v). Then, the edge

uz corresponds to a vertex uz in L(G) which is adjacent to a vertex w, which in

turn corresponds to the edge vu of G, as shown in Figure 4.3. Now, dL(G)(uz) =

dG(u) + dG(z)− 2 < dG(u) + dG(v)− 2 = dL(G)(w).

Therefore, the edge uv will not correspond to a l.min. vertex of L(G). Now, let, for

all z ∈ N(u) \ {v}, dG(z) ≥ dG(v). Then,

dG(u) + dG(z)− 2 ≥ dG(u) + dG(v)− 2

dL(G)(uz) ≥ dL(G)(w),

where w corresponds to the edge vu. Therefore, w would be a l.min. vertex.

Moreover, if uz is a l.min. vertex, it would be adjacent to w implying that the number

of components will not increase.

Lemma 4.4. Let C be a component of lm(G) which is not a single vertex.

a) If v1 and v2 are adjacent vertices in C, then the vertex w ∈ L(G), corresponding to the

edge v1v2, is a l.min. vertex.
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b) If u ∈ N〈C〉, then no edge joining u to a vertex in C corresponds to a l.min. vertex of

L(G).

Proof:

v2

v1

z

e

e
′ w

x

G

C

L(G)

Figure 4.4

a) Let v1, v2 be two vertices of G such that e′ = v1v2 is an edge in C. Let w ∈ L(G) be

the vertex corresponding to e′. Then, any neighbor x of w will correspond to an edge

e, in G, incident at either v1 or v2. Let e be incident at v1 and some vertex z ∈ N(v1)

as shown in the Figure 4.4. Then, as v1 is a l.min. vertex,

dG(z) ≥ dG(v1),

dG(z) + dG(v2)− 2 ≥ dG(v1) + dG(v2)− 2.

From Lemma 4.1, dG(v1) = dG(v2),

dG(z) + dG(v1)− 2 ≥ dG(v1) + dG(v2)− 2,

dL(G)(x) ≥ dL(G)(w).

Hence, w is a l.min. vertex.
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v2

v1

u

e

e
′

w

x

G

C

L(G)

z

y

Figure 4.5

b) As u ∈ N〈C〉, it is adjacent to a vertex, say v1, in C. As C is not a single vertex, there

exists a vertex v2 ∈ C adjacent to v1. Let w be the vertex in L(G) corresponding to the

edge v1v2 and let r be the common degree of vertices in C. Then, dL(G)(w) = 2r − 2.

Now, the edge uv1 corresponds to a vertex x adjacent to w, as shown in Figure 4.5.

Also, dL(G)(x) = dG(u) + r − 2 and as v1 is a l.min. vertex, we get that dG(u) ≥ r.

If dG(u) > r, then,

dG(u) + r − 2 > r + r − 2,

dL(G)(x) > dL(G)(w),

and x can not be a l.min. vertex.

Otherwise, dG(u) = r. But as u is not a l.min. vertex, there exists a vertex z ∈

N(u) \ {v1} such that dG(z) < dG(u). Then, the edge uz of G corresponds to a vertex

y adjacent to x, as shown in Figure 4.5. Now,

dG(z) < dG(u),

dG(z) + dG(u)− 2 < dG(u) + dG(u)− 2,

dG(z) + dG(u)− 2 < dG(u) + r − 2,

dL(G)(y) < dL(G)(x),
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and hence, x can not be a l.min. vertex.

Corollary 4.1: It follows from Lemma 4.4 that L(C) is a component of lm(L(G)).

Corollary 4.2: If C is a single vertex, then from Lemma 4.3 it generates at most one

component of lm(L(G)). Otherwise, if C is not a single vertex, every vertex of C generates

a l.min. vertex from Lemma 4.4(a). As the line graph operation preserves connectivity, C

will generate at most one component of lm(L(G)). Hence, in either case, C generates at

most one component.

Lemma 4.5. There exists an integer A such that for all k > A, every component of

lm(Lk(G)) generates exactly one component of lm(Lk+1(G)).

Proof: Let ck be the number of components of lm(Lk(G)). From Corollary 4.2, {ck} is a

non-increasing sequence. But as ck is a non-negative number for every k, there exists an

integer A, such that ck is constant for all k > A.

We now define new notation which would be followed in the rest of this chapter. Let CA+1

be a component of lm(LA+1(G)) where A is the integer from Lemma 4.5. Inductively, for

each k > A, let Ck+1 be the component of Lk+1(G) generated by Ck. Let rk be the common

degree of vertices in Ck. We can further choose A to be sufficiently large so that δk > 2 for

all k > A, from Lemma 2.1.

Lemma 4.6. Let u ∈ N〈CD〉 be adjacent to a vertex v ∈ CD, where D is an integer greater

than A. Further, let y ∈ LD+1(G) correspond to the edge uv of LD(G), so y ∈ N [CD+1].

Then the following holds.

(a) If CD is not a single vertex, then

dLD+1(G)(y)− rD+1 = dLD(G)(u)− rD
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(b) Otherwise, if CD is a single vertex, then,

dLD+1(G)(y)− rD+1 < dLD(G)(u)− rD

Proof:

u

vD

y

vD+1

CD CD+1

LD(G) LD+1(G)

Figure 4.6: When CD is not a single vertex

(a) From Lemma 4.4(a), if CD has an edge then it generates CD+1, as shown in Figure 4.6,

and rD+1 = 2rD − 2.

Also, dLD+1(G)(y) = dLD(G)(u) + rD − 2. So,

dLD+1(G)(y)− rD+1 = (dLD(G)(u) + rD − 2)− (2rD − 2)

dLD+1(G)(y)− rD+1 = dLD(G)(u)− rD.

u

vD

y

vD+1

CD CD+1

LD(G) LD+1(G)

x

Figure 4.7: When CD is a single vertex

(b) Suppose y ∈ N〈CD+1〉. Again, dLD+1(G)(y) = dLD(G)(u) + rD − 2. Let x be a vertex of

smallest degree in N(vD) such that the edge xvD corresponds to a l.min. vertex, say
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vD+1, in CD+1 from Lemma 4.5. Such a vertex x exists from Lemma 4.2 and because

CD+1 is non-empty. Then,

rD+1 = dLD(G)(x) + rD − 2.

Since CD is a single vertex, hence from Lemma 4.3(a), dLD(G)(x) > rD as CD generates

CD+1. So,

dLD(G)(x) + rD − 2 > rD + rD − 2,

rD+1 > 2rD − 2,

rD+1 − dLD+1(G)(y) > (2rD − 2)− dLD+1(G)(y).

But, dLD+1(G)(y) = dLD(G)(u) + rD − 2, therefore,

rD+1 − dLD+1(G)(y) > (2rD − 2)− (dLD(G)(u) + rD − 2),

rD+1 − dLD+1(G)(y) > rD − dLD(G)(u),

dLD+1(G)(y)− rD+1 < dLD(G)(u)− rD.

Now, suppose y ∈ CD+1. Then dLD+1(G)(y) − rD+1 = 0. But as CD is a single vertex,

dLD(G)(u)−rD 6= 0, as otherwise CD will not generate a component. Hence dLD+1(G)(y)−

rD+1 < dLD(G)(u)− rD.

Lemma 4.7. If u ∈ N〈Ck〉 then u generates a vertex y ∈ N [Ck+1].

Proof: As u ∈ N〈Ck〉, u is adjacent to a vertex v ∈ Ck. Let the edge uv correspond to the

vertex y ∈ Lk+1(G). If Ck has an edge, from Lemma 4.4(a) v generates a vertex in Ck+1.

Also, if Ck = {v}, as k > A, v generates every vertex in Ck+1. Then, there exists a vertex

w ∈ Ck+1 generated by v. Now, the edges in Lk(G) corresponding to y and w, are incident

at the vertex v. Hence, y is adjacent to the vertex w in Lk+1(G), implying that, if y is a
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l.min. vertex then y ∈ Ck+1 or else y ∈ N〈Ck+1〉.

Let N〈CB〉 = {u1, u2, . . . , un}. Then, from Lemma 4.7, for every 1 ≤ j ≤ n, uj gener-

ates a vertex, say y1j , in N [CB+1].

Now, if yij is a vertex in N〈CB+i〉, then from Lemma 4.7, it generates a vertex, say yi+1
j

in N [CB+i+1]. Otherwise, if yij is a vertex in CB+i, then from Lemma 4.4(a), it generates

a vertex, say yi+1
j in CB+i+1. It follows inductively that uj generates a sequence of ver-

tices (uj = y0j , y
1
j , y

2
j , y

3
j , ....) where yij ∈ N [CB+i] and, moreover, yij ∈ CB+i for all i > I if

yIj ∈ CB+I for some integer I.

Then, we define a function f(uj, i) : N〈CB〉 → R by f(uj, i) = dLB+i(G)(y
i
j) − rB+i where

i ∈ Z+. Clearly f(uj, i) is non-negative and from Lemma 4.6 it is a non-increasing function

of i. Also, if CB+i is a single vertex and yij ∈ N〈CB+i〉, then, from Lemma 4.3(a), f(uj, i)

can not equal to zero as otherwise CB+i will not generate a component.

Theorem 4.1. Let G be a simple and connected graph. Let CA be a component of lm(LA(G)).

Then, there are a finite number of integers k > A, such that Ck, generated by CA, is a single

vertex.

Proof: The proof is by contradiction. Let us assume that there are infinite number of integers

k > A such that Ck is a single vertex. Then we prove the following series of lemmas.

Lemma 4.8. If u1 ∈ N〈CB〉 generates (y01, y
1
1, y

2
1, y

3
1, ....), then there exists an integer I such

that yI1 ∈ CB+I .

Proof: We prove this by contradiction. Let yi1 ∈ N〈CB+i〉 for all i. The function f(u1, i) is

non-increasing and decreases when CB+i is a single vertex. As there are infinite number of

integers k > A such that Ck is a single vertex, there are infinite integers i such that CB+i is

a single vertex as B > A. Hence, from Lemma 4.6(b) there exists an integer D > B such

that f(u1, D −B) = 0.

Now, if CD is a single vertex, then as yi1 ∈ N〈CB+i〉 for all i, f(u1, D − B) can not be
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zero and we have a contradiction. Otherwise, if CD has an edge, then let E be the smallest

integer greater than D such that CE is a single vertex. From Lemma 4.6(a), f(u1, E−B) =

f(u1, D −B) = 0, and we again have a contradiction.

Lemma 4.9. If u1 ∈ N〈CB〉 then there exists an integer D ≥ B such that u1 generates

yD−B1 ∈ N〈CD〉 where CD is a single vertex and dLD(G)(y
D−B
1 ) is minimum in N〈CD〉.

Proof: From Lemma 4.8 there exists an integer I such that u1 generates yI1 ∈ CB+I . Let I

be the smallest such integer. Then, yI−11 ∈ N〈CB+I−1〉. From Lemma 4.4, if CB+I−1 has an

edge then yI−11 cannot generate a vertex in CB+I . Hence, CB+I−1 is a single vertex. Also,

from Lemma 4.2, dLB+I−1(G)(y
I−1
1 ) is minimum in N〈CB+I−1〉.

Lemma 4.10. If u1 ∈ N〈CB〉 where CB is not a single vertex, then, dLB(G)(u1) 6= rB.

Proof: Assume that dLB(G)(u1) = rB and hence, f(u1, 0) = 0. But as f(ui, j) is non-

negative and non-increasing, f(u1, j) = 0 for all j. But, from Lemma 4.9, there exists an

integer D ≥ B such that u1 generates yD−B1 ∈ N〈CD〉 where CD is a single vertex with

f(u1, D −B) = 0, which is a contradiction.

Corollary 4.3. From Lemma 4.3(a) and Lemma 4.10, if u ∈ N〈Ck〉 then dLk(G)(u) 6= rk.

Lemma 4.11. Let CB = {vB} and u1, u2, ..., un be vertices of equal degree in N〈CB〉 such that

dLB(G)(ui) is minimum in N〈CB〉. Then, ui generates a vertex vi ∈ CB+1 for all 1 ≤ i ≤ n.

Moreover, u1, u2, ..., un generate l.min. vertices which induce a complete subgraph in CB+1.

Proof: As CB generates CB+1, from Lemma 4.2 there exists an integer I ∈ [1, n] such that

uI generates a vertex in CB+1. Let there be some J 6= I such that uJ does not generate

any vertex v ∈ CB+1. Then, from Lemma 4.7 it follows that uJ generates a vertex, say u,

in N〈CB+1〉. Now, rB+1 = dLB+1(G)(vB+1) = dLB(G)(uI) + rB − 2 = dLB(G)(uJ) + rB − 2 =

dLB+1(G)(u) which is a contradiction from Corollary 4.3 and hence no such J exists.

So, all u1, u2, ..., un generate l.min. vertices, say v1, v2, ..., vn, in CB+1 such that vi corresponds
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to the edge uivB in LB(G). As all the corresponding edges share the vertex vB, the vertices

v1, v2, ..., vn induce a complete subgraph.

Lemma 4.12. Let u1, u2 ∈ N〈CB〉 with dLB(G)(u1) = dLB(G)(u2). Let u1 generate the se-

quence (u1 = y01, y
1
1, y

2
1, y

3
1, ....) and u2 generate the sequence (u2 = y02, y

1
2, y

2
2, y

3
2, ....). Then,

dLB+i(G)(y
i
1) = dLB+i(G)(y

i
2) for all i ∈ Z+ and either yi1, y

i
2 ∈ CB+i or yi1, y

i
2 ∈ N〈CB+i〉.

Proof: For i = 1,

dLB+1(G)(y
1
1) = dLB(G)(u1) + rB − 2

= dLB(G)(u2) + rB − 2

= dLB+1(G)(y
1
2)

If CB has an edge, then y11, y
1
2 ∈ N〈CB+1〉 from Lemma 4.4(b) as u1, u2 ∈ N〈CB〉.

Otherwise, CB is a single vertex. If dLB(G)(u1) = dLB(G)(u2) is minimum in N〈CB〉, then

y11, y
1
2 ∈ CB+1 from Lemma 4.11. Else, if dLB(G)(u1) = dLB(G)(u2) is not minimum in N〈CB〉,

then y11, y
1
2 ∈ N〈CB+1〉.

Let, for i = n, dLB+n(G)(y
n
1 ) = dLB+n(G)(y

n
2 ) and either yn1 , y

n
2 ∈ CB+n or yn1 , y

n
2 ∈ N〈CB+n〉.

Now, if yn1 , y
n
2 ∈ CB+n then from Lemma 4.4(a), yn+1

1 , yn+1
2 ∈ CB+n+1 and dLB+n+1(G)(y

n+1
1 ) =

dLB+n+1(G)(y
n+1
2 ) = rB+n+1.

Otherwise yn1 , y
n
2 ∈ N〈CB+n〉. If CB+n has an edge, then, from Lemma 4.4(b), we have

yn+1
1 , yn+1

2 ∈ N〈CB+n+1〉. Then,

dLB+n+1(G)(y
n+1
1 ) = dLB+n(G)(y

n
1 ) + rB+n − 2

= dLB+n(G)(y
n
2 ) + rB+n − 2

= dLB+n+1(G)(y
n+1
2 ).

But, if yn1 , y
n
2 ∈ N〈CB+n〉 and CB+n is a single vertex, then, if dLB+n(G)(y

n
1 ) = dLB+n(G)(y

n
2 )

is minimum in N〈CB+n〉, from Lemma 4.11, yn1 and yn2 generate yn+1
1 and yn+1

2 , respectively,
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in CB+n+1. Else, if dLB+n(G)(y
n
1 ) = dLB+n(G)(y

n
2 ) is not minimum in N〈CB+n〉, then from

Lemma 4.2, yn+1
1 and yn+1

2 are in N〈CB+n+1〉 and dLB+n+1(G)(y
n+1
1 ) = dLB+n(G)(y

n
1 ) +

rB+n − 2 = dLB+n(G)(y
n
2 ) + rB+n − 2 = dLB+n+1(G)(y

n+1
2 ).

Lemma 4.13. If u1, u2, ..., un ∈ N〈CB〉 with dLB(G)(ui) = dLB(G)(uj), then there exists an

integer E > B such that u1, u2, ..., un generate vertices yE−B1 , yE−B2 , . . . , yE−Bn ∈ CE which

form a clique.

Proof: From Lemma 4.9 and Lemma 4.12, there exists an integer D ≥ B such that uj gen-

erates yD−Bj ∈ N〈CD〉, 1 ≤ j ≤ n, where CD is a single vertex, say vD, and dLD(G)(y
D−B
j )

is minimum in N〈CD〉. Then, from Lemma 4.2, yD−Bj for 1 ≤ j ≤ n, induce a complete

subgraph in CD+1.

Continuing rest of the proof of Theorem 4.1: Now, δA > 3. Hence, δk > 3 for all k > A.

Pick any integer B > A. Let vB ∈ CB and wB ∈ LB(G) be a vertex of maximum degree,

∆B. As G is connected, there exists a path PB = (wB = vB1 , v
B
2 , ..., v

B
n = vB) from wB to

wB = vB1

vB2

vB3

vB4 vBn−2

vBn−1

vB = vBn

LB(G)

CB

Figure 4.8: Path from wB to vB
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vB as shown in Figure 4.8. Now,

δB > 3

−δB < −3

∆B − δB < ∆B − 3

∆B − δB + 1 < ∆B − 2.

Degree of any neighbor of wB can be any of ∆B − δB + 1 possible values. But there are

wB = vB1

vB2

vB3

vB4 vBn−2

vBn−1

vB = vBn

LB(G)

CB

zB1

zB2

Figure 4.9: Path from wB to vB

∆B − 1 neighbors of wB apart from vB2 . From Pigeonhole principle, there exist at least

two vertices, say zB1 , z
B
2 ∈ N(wB) \ {vB2 } such that dLB(G)(z

B
1 ) = dLB(G)(z

B
2 ), as shown in

Figure 4.9.

Now, L(PB) will be a path in LB+1(G). Let the edge zB1 v
B
1 correspond to the vertex

zB+1
1 in LB+1(G). Let the edge zB2 v

B
1 correspond to the vertex zB+1

2 in LB+1(G). Let the

edge vBi v
B
i+1 correspond to the vertex vB+1

i in LB+1(G) for 1 ≤ i ≤ n− 2. From Lemma 4.7,

vBn−1 generates a vertex, say vB+1
n−1 , such that either vB+1

n−1 ∈ CB+1 or vB+1
n−1 ∈ N〈CB+1〉. When

vB+1
n−1 ∈ N〈CB+1〉, there exists a vertex vB+1

n ∈ CB+1 adjacent to vB+1
n−1 .
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wB = vB1

vB2 vBn−2

vBn−1

vB = vBn

LB(G)

CB

zB1

zB2

vB+1
1

vB+1
2 vB+1

n−2

vB+1
n−1

vB+1 = vB+1
n

LB+1(G)

CB+1

zB+1
1

zB+1
2

Figure 4.10: vB+1
n−1 ∈ N〈CB+1〉

wB = vB1

vB2 vBn−2

vBn−1

vB = vBn

LB(G)

CB

zB1

zB2

vB+1
1

vB+1
2 vB+1

n−3

vB+1
n−2

vB+1 = vB+1
n−1

LB+1(G)

CB+1

zB+1
1

zB+1
2

Figure 4.11: vB+1
n−1 ∈ CB+1

Define PB+1 = (vB+1
1 , vB+1

2 , ..., vB+1
n ) if vB+1

n−1 ∈ N〈CB+1〉, as shown in Figure 4.10.

Otherwise, define PB+1 = (vB+1
1 , vB+1

2 , ..., vB+1
n−1 ) if vB+1

n−1 ∈ CB+1, as shown in Figure 4.11.

Notice that dLB+1(G)(z
B+1
1 ) = dLB(G)(z

B
1 ) + dLB(G)(v

B
1 )− 2 = dLB(G)(z

B
2 ) + dLB(G)(v

B
1 )− 2 =

dLB+1(G)(z
B+1
2 ). Also, if vB+1

n−1 ∈ N〈CB+1〉, then |PB+1| = |PB|, and if vB+1
n−1 ∈ CB+1, then

|PB+1| = |PB| − 1.

From Lemma 4.8 there exists an integer In−1 such that vBn−1 generates v
B+In−1

n−1 ∈ CB+In−1 .

Let In−1 be the smallest such integer. Then PB+In−1 = (v
B+In−1

1 , v
B+In−1

2 , ..., v
B+In−1

n−1 ) and

|PB+In−1 | = |PB| − 1.

zB+I
1

vB+I
1

CB+I
zB+I
2

LB+I(G)

Figure 4.12
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Following inductively, there exists an integer I = In−1 + In−2 + ...+ I1 such that PB+I =

(vB+I
1 ) and dLB+I(G)(z

B+I
1 ) = dLB+I(G)(z

B+I
2 ) as shown in Figure 4.12. From Lemma 4.9 and

zD1

vD

CD
zD2

LD(G)

Figure 4.13

Lemma 4.12, there exists an integer D ≥ B + I such that zB+I
1 and zB+I

2 generate zD1 and

zD2 , respectively, in N〈CD〉, where CD = {vD} and dLD(G)(z
D
1 ) = dLD(G)(z

D
2 ) is minimum in

N〈CD〉, as shown in Figure 4.13.

zD1

vD

CD

zD2

LD(G)

zD1 vD

CD+1

zD2 vD

LD+1(G)

x

y

xvD

yvD

Figure 4.14

But, as δk > 3 for all k > A, there are at least two more neighbors of vD, say x

and y and let dLD(G)(x) ≤ dLD(G)(y). As CD is a single vertex, from Lemma 4.11 it fol-

lows that zD1 and zD2 generate zD1 vD and zD2 vD, respectively, in CD+1, which are adjacent

to each other, as is shown in Figure 4.14. In the next iteration, we get four vertices,
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zD1 vD

CD+1

zD2 vD

LD+1(G)

xvD

yvD

(xvD)(zD1 vD) zD1 zD2

CD+2

(xvD)(zD2 vD)

(yvD)(zD1 vD)

(yvD)(zD2 vD)

LD+2(G)

Figure 4.15

(xvD)(zD1 vD), (xvD)(zD2 vD), (yvD)(zD1 vD) and (yvD)(zD2 vD), as are shown in the Figure 4.15.

If dLD(x) = dLD(y), then, from Lemma 4.12, we have dLD+2(G)((xvD)(zD1 vD)) = dLD+2(G)((xvD)(zD2 vD)) =

dLD+2(G)((yvD)(zD1 vD)) = dLD+2(G)((yvD)(zD2 vD)). So, from Lemma 4.13, there exists an in-

teger F > E, such that, CF contains a K4.

Otherwise, let dLD(x) < dLD(y). From Lemma 4.9 and Lemma 4.12, there exists an

integer E > D + 2 such that CE is a single vertex, say vE, and, xvDz
D
1 vD and xvDz

D
2 vD

generate vertices, say x1 and x2, respectively, in N〈CE〉, such that they have the same degree

which is minimum in N〈CE〉. Let y1 and y2 be the vertices generated by (yvD)(zD1 vD) and

(yvD)(zD2 vD), respectively, in LE(G), as shown in the Figure 4.16. Notice that dLE(G)(y1) =

dLE(G)(y2).

Then, we have the line graph iterations as shown in Figure 4.17. Now,

dLE+1(G)(y1vE) = dLE(G)(y1) + dLE(G)(vE)

= dLE(G)(y2) + dLE(G)(vE)

= dLE+1(G)(y2vE).
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Also,

dLE+2(G)((y1vE)(x1vE)) = dLE+1(G)(y1vE) + dLE+1(G)(x1vE)− 2

= dLE+1(G)(y1vE) + rE+1 − 2,

dLE+2(G)((y1vE)(x2vE)) = dLE+1(G)(y1vE) + dLE+1(G)(x2vE)− 2

= dLE+1(G)(y1vE) + rE+1 − 2,

dLE+2(G)((y2vE)(x1vE)) = dLE+1(G)(y2vE) + dLE+1(G)(x1vE)− 2

= dLE+1(G)(y1vE) + rE+1 − 2,

and,

dLE+2(G)((y2vE)(x2vE)) = dLE+1(G)(y2vE) + dLE+1(G)(x2vE)− 2

= dLE+1(G)(y1vE) + rE+1 − 2.

(xvD)(zD1 vD) zD1 zD2

CD+2

(xvD)(zD2 vD)

(yvD)(zD1 vD)

(yvD)(zD2 vD)

LD+2(G)

x1 vE

CE

x2

y1
y2

LE(G)

Figure 4.16

So, there are four vertices of same degree in N〈CE+2〉. From Lemma 4.13, there exists

an integer F > E + 2 such that CF will contain a K4.

Returning to the proof of Theorem 4.1: Therefore, for a component Cj
B of lm(LB(G))

where B > A there exists an integer Ij > B such that Cj
Ij

generated by Cj
B has a K4 and
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hence, from Lemma 4.4(a), Cj
Ij+i contains K4 for all i, which is a contradiction to the as-

sumption that there are inifinite integers k > A such that Ck is a single vertex. Hence, there

exists an integer I such that CI+i has at least one edge for all i.

Suppose lm(LB(G)) has N components. Then, from Theorem 4.1, for every component

Cj
B, 1 ≤ j ≤ N , as there are finite number of integers k such that Ck is a single vertex, there

exists an integer Ij > B such that Cj
Ij+i, generated by Cj

B, has at least one edge for all i.

Hence, there exists D = max{Ij | 1 ≤ j ≤ N}, such that every component of lm(LD+i(G))

has at least one edge for all i.

Clearly, the vertices of minimum degree of any graph G are also l.min. vertices and, hence,

are components of lm(G). But every component of lm(LD+i(G)) has at least one edge for

all i. Hence, every vertex of minimum degree is adjacent to at least one vertex of minimum

degree, so, δk = 2δk−1 − 2 for all k > D.

x1

vE

CE

x2

LE(G)

x1vE

CE+1

x2vE

LE+1(G)

y1

y2

y1vE

y2vE

(y1vE)(x1vE)

CE+2

(y1vE)(x2vE)

LE+2(G)

(y2vE)(x1vE)

(y2vE)(x2vE)

(y1vE)(x1vE)

(x1vE)(x2vE)

CE+2

(y1vE)(x2vE)

LE+2(G)

(y2vE)(x1vE)

(y2vE)(x2vE)

Figure 4.17
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Chapter 5

A puzzle

Dr.Hoffman assigned me an interesting puzzle. If G is a connected graph and L(G) is

regular, then show that G is either regular or bipartite.

Proof: For any graph G, its line graph, L(G), is regular if and only if every edge of G is

incident with the same number of edges. Hence, for any two edges uv and wy,

d(u) + d(v)− 2 = d(w) + d(y)− 2,

d(u) + d(v) = d(w) + d(y)

Let uv be an edge of G and w be a vertex. As G is connected, then without loss of generality,

there exists a path P = (u, v, v1, v2, . . . , vn, w). Now, d(v1) + d(v) = d(v) + d(u) and hence

d(v1) = d(u). If d(vi) = d(u), then, d(vi+1) = d(v), otherwise, if d(vi) = d(v), then, d(vi+1) =

d(u). It follows from induction that for any vertex w of G, we have that, d(w) = d(u) or

d(w) = d(v). Moreover, for any edge wy, either d(w) = d(u) and d(y) = d(v) or the other

way round. Also, from induction, the degree of the vertices alternates along the path, hence,

if |P | is even, then, d(w) = d(u), otherwise, if |P | is odd then d(w) = d(v).

Now, if G has an odd cycle, say, P = (u, v1, v2, . . . , vn, u), then from above discussion d(u) =

d(v1). But as for any vertex w of G, d(w) = d(u) or d(w) = d(v1), therefore G is regular. It

follows that for any connected graph G with L(G) regular, either G is regular and, if it is

not regular, then it has no odd cycles, i.e., it is bipartite.
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