
Structure Theory and a Generalization of the Isomorphism Theorems

by

Alan Bertl

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
August 3, 2013

Keywords: Structure, Universal Algebra, Topology, Graph Theory

Copyright 2013 by Alan Bertl

Approved by

Michel Smith, Professor of Mathematics
Randall Holmes, Professor of Mathematics
Dean Hoffman, Professor of Mathematics



Abstract

A general format in which the mathematical structure of topological spaces, algebraic

structures, and graphs can be expressed is described. A generalization of the fundamental

homomorphism theorem and the isomorphism theorems of algebra is proved.
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Chapter 1

Definitions

Definition The statement that r is a relation means r is a set of ordered pairs. If S is a set

then r(S) denotes the set to which an element y belongs if and only if there is an element

x ∈ S such that (x, y) ∈ r.

Theorem 1.1. Suppose each of r and s is a relation, r ⊆ s, each of U and V is a set, and

U ⊆ V . Then r(U) ⊆ s(V ).

Proof:

y ∈ r(U)

=⇒ ∃x ∈ U such that (x, y) ∈ r

=⇒ x ∈ V and (x, y) ∈ s

=⇒ y ∈ s(V )

So r(U) ⊆ s(V ).

Definition Suppose each of r and s is a relation. The composition of r and s is the relation

to which a pair (x, z) belongs if and only if there is an element y such that (x, y) ∈ s and

(y, z) ∈ r. Denote the composition of r and s by rs.

Theorem 1.2. Suppose each of r, s, and t is a relation. Then (rs)t = r(st).
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Proof:

(a, d) ∈ (rs)t

⇐⇒ ∃c such that (a, c) ∈ rs and (c, d) ∈ t

⇐⇒ ∃b and a c such that (a, b) ∈ r, (b, c) ∈ s, and (c, d) ∈ t

⇐⇒ ∃b such that (a, b) ∈ r and (b, d) ∈ st

⇐⇒ (a, d) ∈ r(st)

So (rs)t = r(st).

Theorem 1.3. Suppose each of f , g, r, and s is a relation, f ⊆ g, and r ⊆ s. Then rf ⊆ sg.

Proof:

(x, z) ∈ rf

=⇒ ∃y such that (x, y) ∈ f and (y, z) ∈ r

=⇒ (x, y) ∈ g and (y, z) ∈ s

=⇒ (x, z) ∈ sg

So rf ⊆ sg.

Definition Suppose r is a relation. The inverse of r is the relation to which a pair (x, y)

belongs if and only if (y, x) is in r. Denote the inverse of r by r−1.

Theorem 1.4. Suppose r is a relation. Then (r−1)−1 = r.
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Proof:

(x, y) ∈ (r−1)−1

⇐⇒ (y, x) ∈ r−1

⇐⇒ (x, y) ∈ r

So (r−1)−1 = r.

Theorem 1.5. Suppose each of r and s is a relation. Then (rs)−1 = s−1r−1.

Proof:

(x, z) ∈ (rs)−1

⇐⇒ (z, x) ∈ rs

⇐⇒ ∃y such that (y, x) ∈ r and (z, y) ∈ s

⇐⇒ ∃y such that (x, y) ∈ r−1 and (y, z) ∈ s−1

⇐⇒ (x, z) ∈ s−1r−1

So (rs)−1 = s−1r−1.

Definition Suppose r is a relation. The statement that D is the domain of r means D is

the set to which an element x belongs if and only if x is the first element of a pair in r.

Denote the domain of r by dom(r).

Definition Suppose r is a relation. The statement that R is the image of r means R is

the set to which an element x belongs if and only if x is the second element of a pair in r.

Denote the image of r by im(r).

Theorem 1.6. Suppose r is a relation. Then im(r) = r(dom(r)).
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Proof:

y ∈ im(r)

⇐⇒ ∃(x, y) ∈ r

⇐⇒ ∃x ∈ dom(r) such that (x, y) ∈ r

⇐⇒ y ∈ r(dom(r))

So im(r) = r(dom(r)).

Theorem 1.7. Suppose each of r and s is a relation. Then im(rs) = r(im(s)).

Proof:

z ∈ im(rs)

⇐⇒ ∃(x, z) ∈ rs

⇐⇒ ∃y such that (y, z) ∈ r and ∃(x, y) ∈ s

⇐⇒ ∃y ∈ im(s) such that (y, z) ∈ r

⇐⇒ z ∈ r(im(s))

So im(rs) = r(im(s)).

Definition The statement that f is a function means f is a relation such that no two pairs

in f share the same first element. If (x, y) ∈ f , then denote y by f(x).

Theorem 1.8. Suppose each of f and g is a function. Then fg is a function.
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Proof:

(x, z1) ∈ fg and (x, z2) ∈ fg

=⇒ ∃y1 such that (x, y1) ∈ g and (y1, z1) ∈ f

and ∃y2 such that (x, y2) ∈ g and (y2, z2) ∈ f

=⇒ y1 = y2 and (y1, z1) ∈ f and (y1, z2) = (y2, z2) ∈ f (since g is a function)

=⇒ z1 = z2 (since f is a function)

So no two pairs of fg contain the first element. So fg is a function.

Definition The statement that f is an injection means f is a function and f−1 is a function.

Theorem 1.9. Suppose each of f and g is an injection. Then fg is a injection.

Proof:

f is an injection and g is an injection

=⇒ f is a function, g is a function, f−1 is a function, and g−1 is a function

=⇒ fg is a function and (fg)−1 = g−1f−1 is a function

=⇒ fg is an injection

Definition The statement that f is a surjection with respect to Y means f is a function

with image Y .

Theorem 1.10. Suppose S is a set, and f is a surjection with respect to S, and g is a

surjection with respect to dom(f). Then fg is a surjection with respect to S.
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Proof:

z ∈ S

⇐⇒ z ∈ im(f)

⇐⇒ ∃y ∈ dom(f) = im(g) such that (y, z) ∈ f

⇐⇒ ∃x ∈ dom(g) and ∃y ∈ dom(f) such that (x, y) ∈ g and (y, z) ∈ f

⇐⇒ ∃x ∈ dom(g) such that (x, z) ∈ fg

⇐⇒ z ∈ im(fg)

So S = im(fg) and thus fg is a surjection with respect to S.

Definition The statement that f is a bijection with respect to Y means f is an injection

and a surjection with respect to Y .

Definition The notation r : X → Y means r is a relation and X is the domain of r and

the image of r is a subset of Y , and henceforth if the terms surjection or bijection are used

to describe r they will be understood to be with respect to Y .

Definition Suppose A is a set. Denote by 1A the relation {(a, a) | a ∈ A}.

Theorem 1.11. Suppose A is a set. Then 1A = 1−1
A .

Proof:

(a, a) ∈ 1A

⇐⇒ (a, a) ∈ 1−1
A

So 1A = 1−1
A .

Definition Suppose A is a set and r is a relation. Denote by r|A the relation to which a

pair (x, y) belongs if and only if (x, y) ∈ r and x ∈ A.
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Theorem 1.12. Suppose A is a set and r is a relation. Then r = r|A if and only if

dom(r) ⊆ A.

Proof: Suppose r = r|A.

a ∈ dom(r)

=⇒ ∃b such that (a, b) ∈ r

=⇒ ∃b such that (a, b) ∈ r|A

=⇒ a ∈ A

So dom(r) ⊆ A.

Suppose dom(r) ⊆ A.

(a, b) ∈ r

⇐⇒ a ∈ dom(r) ⊆ A and (a, b) ∈ r

⇐⇒ (a, b) ∈ r|A

So r = r|A.

Theorem 1.13. Suppose A is a set, and r is a relation. Then r1A = r|A.

Proof:

(x, z) ∈ r1A

⇐⇒ ∃y such that (x, y) ∈ 1A and (y, z) ∈ r

⇐⇒ ∃y such that x ∈ A, x = y, and (y, z) ∈ r

⇐⇒ x ∈ A and (x, z) ∈ r

⇐⇒ (x, z) ∈ r|A

7



So r1A = r|A.

Definition Suppose A is a set and r is a relation. Denote by r|A the relation to which a

pair (x, y) belongs if and only if (x, y) ∈ r and y ∈ A.

Theorem 1.14. Suppose A is a set and r is a relation. Then r = r|A if and only if

im(r) ⊆ A.

Proof: Suppose r = r|A.

a ∈ im(r)

=⇒ ∃b such that (b, a) ∈ r

=⇒ ∃b such that (b, a) ∈ r|A

=⇒ a ∈ A

So im(r) ⊆ A.

Suppose im(r) ⊆ A.

(b, a) ∈ r

⇐⇒ a ∈ im(r) ⊆ A and (b, a) ∈ r

⇐⇒ (b, a) ∈ r|A

So r = r|A.

Theorem 1.15. Suppose A is a set, and r is a relation. Then 1Ar = r|A.
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Proof:

(x, z) ∈ 1Ar

⇐⇒ ∃y such that (x, y) ∈ r and (y, z) ∈ 1A

⇐⇒ ∃y such that (x, y) ∈ r, y ∈ A, and y = z

⇐⇒ (x, z) ∈ r and z ∈ A

⇐⇒ (x, z) ∈ r|A

So 1Ar = r|A.

Theorem 1.16. Suppose each of A and B is a set, and f : A → B is a function. Then

1A ⊆ f−1f , and 1A = f−1f if and only if f is an injection.

Proof:

(a, a) ∈ 1A

=⇒ a ∈ A

=⇒ (a, f(a)) ∈ f and (f(a), a) ∈ f−1

=⇒ (a, a) ∈ f−1f

So 1A ⊆ f−1f .

Suppose 1A = f−1f .

(b, a1) ∈ f−1 and (b, a2) ∈ f−1

=⇒ (a1, b) ∈ f and (b, a2) ∈ f−1

=⇒ (a1, a2) ∈ f−1f = 1A

=⇒ a1 = a2
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So f−1 is a function and thus f is an injection.

Suppose f is an injection.

(a1, a2) ∈ f−1f

=⇒ ∃b such that (a1, b) ∈ f and (b, a2) ∈ f−1

=⇒ (b, a1) ∈ f−1 and (b, a2) ∈ f−1

=⇒ a1 = a2 (since f−1 is a function)

=⇒ (a1, a2) ∈ 1A

So f−1f ⊆ 1A, and thus 1A = f−1f .

Theorem 1.17. Suppose each of A and B is a set, and f : A → B is a function. Then

ff−1 ⊆ 1B, and ff−1 = 1B if and only if f is a surjection.

Proof: Suppose each of b1 and b2 is in B.

(b1, b2) ∈ ff−1

=⇒ ∃a ∈ A such that (b1, a) ∈ f−1 and (a, b2) ∈ f

=⇒ (a, b1) ∈ f and (a, b2) ∈ f

=⇒ b1 = b2 (since f is a function)

=⇒ (b1, b2) ∈ 1B

So ff−1 ⊆ 1B.

Suppose ff−1 = 1B.
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Suppose b ∈ B.

(b, b) ∈ 1B = ff−1

=⇒ ∃a ∈ A such that (b, a) ∈ f−1 and (a, b) ∈ f

=⇒ a ∈ A such that b = f(a) ⊆ im(f)

So f is a surjection.

Suppose f is a surjection.

Suppose (b, b) ∈ 1B (so b ∈ B). There is an a ∈ A such that f(a) = b.

(a, b) ∈ f and (b, a) ∈ f−1

=⇒ (b, b) ∈ ff−1

So 1B ⊆ ff−1, and thus ff−1 = 1B.

Theorem 1.18. Suppose A is a set. Then 1A is a bijection with respect to A.

Proof:

1. 1A is an injection:

1A = 1A1A = 1−1
A 1A

So 1A is an injection.

2. 1A is a surjection with respect to A:

1A = 1A1A = 1A1−1
A
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So A = im(1A) and thus 1A is a surjection with respect to A.

So 1A is a bijection with respect to A.

Definition Suppose each of A and B is a set. Denote by A × B the relation to which an

ordered pair (a, b) belongs if and only if a ∈ A and b ∈ B.

Definition Let I be a set. The statement that (A,R) is an I-structure means A is a set,

and R is a set of relations each of which is a subset of I × A. A is called the base set of

(A,R) and I is called the index set of (A,R).

Definition Suppose each of (A,R) and (B,S) is an I-structure. The statement that a

function α : A→ B is preservative means for each r ∈ R, αr ∈ S.

Definition Suppose each of (A,R) and (B,S) is an I-structure. The statement that a

function α : A→ B is saturating means for each s ∈ S such that im(s) ⊆ im(α), there is an

r ∈ R such that αr = s.

Definition Suppose each of (A,R) and (B,S) is an I-structure. The statement that a

function α : A→ B is continuous means for each s ∈ S, α−1s ∈ R.

Definition Suppose each of (A,R) and (B,S) is an I-structure. The statement that a

function α : A → B is conservative means for each r ∈ R, there is an s ∈ S such that

im(s) ⊆ im(α) and α−1s = r.

Definition Suppose ϕ : A→ B is a function and each of (A,R) and (B,S) is an I-structure.

The statement that ϕ is an I-structure homomorphism from (A,R) to (B,S) means ϕ is

preservative and saturating.

Definition Suppose ϕ : A→ B is a function and each of (A,R) and (B,S) is an I-structure.

The statement that ϕ is an I-structure cohomomorphism from (A,R) to (B,S) means ϕ is

continuous and conservative.
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Definition Suppose ϕ : A → B is a function and each of (A,R) and (B,S) is an I-

structure. The statement that ϕ is an I-structure isomorphism from (A,R) to (B,S) means

ϕ is a continuous, preservative bijection.

Definition The statement that an I-structure (A,R) and an I-structure (B,S) are iso-

morphic means there is an isomorphism ϕ : A → B from (A,R) to (B,S). In this case

(A,R) ∼= (B,S) denotes “(A,R) and (B,S) are isomorphic”.

Lemma 1.19.1. Suppose each of (A,R) and (B,S) is an I-structure and ϕ : A → B is a

continuous function. Then ϕ is saturating.

Proof: Suppose s ∈ S such that im(s) ⊆ im(ϕ).

ϕ is continuous, so ϕ−1s ∈ R.

So ϕ−1s ∈ R and s = 1im(ϕ)s = ϕϕ−1s. So ϕ is saturating.

Theorem 1.19. Suppose each of (A,R) and (B,S) is an I-structure and α : A → B is a

function. Then α is a bijective I-structure homomorphism if and only if α is an I-structure

isomorphism.

Proof: Suppose α is a bijective I-structure homomorphism.

α is bijective and preservative, so it remains only to show that α is continuous.

Suppose s ∈ S. α is surjective, so im(s) ⊆ B = im(α). α is saturating, so there is an

r ∈ R such that αr = s.

α−1s = α−1αr = 1Ar = r ∈ R

So α is continuous and is thus an isomorphism.

13



Suppose α is an I-structure isomorphism.

α is bijective and preservative. α is continuous, so by Lemma 1.19.1, α is saturating.

So α is a bijective homomorphism.

Lemma 1.20.1. Suppose each of (A,R) and (B,S) is an I-structure and ϕ : A → B is a

conservative function. Then ϕ is preservative.

Proof: Suppose r ∈ R.

ϕ is conservative, so there is an s ∈ S such that im(s) ⊆ im(ϕ) and ϕ−1s = r.

So ϕr = ϕϕ−1s = 1im(ϕ)s = s ∈ S.

So ϕ is preservative.

Theorem 1.20. Suppose each of (A,R) and (B,S) is an I-structure and α : A → B is a

cohomomorphism. Then α is a homomorphism.

Proof: α is conservative, so by Lemma 1.20.1, α is preservative.

α is continuous, so by Lemma 1.19.1, α is saturating.

α is both preservative and saturating, so α is a homomorphism.

Theorem 1.21. Suppose each of (A,R) and (B,S) is an I-structure and α : A → B is a

function. Then α is a bijective cohomomorphism if and only if α is an isomorphism.

Proof: Suppose α is a bijective cohomomorphism.
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α is bijective and continuous. α is conservative, so by Lemma 1.20.1, α is preservative.

So α is an isomorphism.

Suppose α is an isomorphism.

α is bijective and continuous, so it remains only to show that α is conservative.

Suppose r ∈ R. α is preservative, so αr ∈ S. im(αr) ⊆ im(α).

α−1αr = 1Ar = r

So α is conservative and is thus a bijective cohomomorphism.

Definition Suppose each of (A,R) and (B,S) is an I-structure. The statement that a

function ϕ : A → B is a structure monomorphism means ϕ is an injective I-structure

homomorphism.

Definition Suppose each of (A,R) and (B,S) is an I-structure. The statement that a

function ϕ : A → B is a structure epimorphism means ϕ is a surjective I-structure homo-

morphism.

Theorem 1.22. Suppose each of M = (A,R), N = (B,S), L = (C, T ) is an I-structure,

α : A → B is an epimorphism from M to N , and β : B → C is a homomorphism from N

to L. Then βα is a homomorphism from M to L.

Proof: Suppose r ∈ R. α is preservative, so αr ∈ S. β is preservative, so βαr ∈ T . So βα

is preservative.

Suppose t ∈ T such that im(t) ⊆ im(βα). β is saturating, and im(t) ⊆ im(βα) ⊆ im(β), so

15



there is an s ∈ S such that βs = t.

im(s) ⊆ B = im(α), so there is an r ∈ R such that αr = s.

So r ∈ R such that βαr = βs = t. So βα is saturating.

βα is both preservative and saturating, and is thus a homomorphism.

Definition Suppose each of (A,R) and (B,S) is an I-structure. The statement that a

function ϕ : A → B is a structure comonomorphism means ϕ is an injective I-structure

cohomomorphism.

Definition Suppose each of (A,R) and (B,S) is an I-structure. The statement that a

function ϕ : A → B is a structure coepimorphism means ϕ is a surjective I-structure coho-

momorphism.

Theorem 1.23. Suppose each of M = (A,R), N = (B,S), L = (C, T ) is an I-structure,

α : A→ B is an coepimorphism from M to N , and β : B → C is a cohomomorphism from

N to L. Then βα is a cohomomorphism from M to L.

Proof: Suppose t ∈ T . β is continuous, so β−1t ∈ S. α is continuous, so (βα)−1t =

α−1β−1t ∈ R. So βα is continuous.

Suppose r ∈ R. α is conservative, so there is an s ∈ S such that im(s) ⊆ im(α) and

α−1s = r.

s ∈ S, so there is an t ∈ T such that im(t) ⊆ im(β) and β−1t = s.

So t ∈ T such that (βα)−1t = α−1β−1t = α−1s = r. So βα is conservative.
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βα is both continuous and conservative, and is thus a cohomomorphism.
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Chapter 2

Equivalence Relations

Definition Suppose r is a relation. The statement that r is symmetric means r−1 ⊆ r.

Lemma 2.1.1. Let r be a symmetric relation. Then r−1 = r.

Proof:

(x, y) ∈ r

=⇒ (y, x) ∈ r−1 ⊆ r

=⇒ (x, y) ∈ r−1

So r ⊆ r−1 and since r−1 ⊆ r, r−1 = r.

Definition Suppose r is a relation. The statement that r is transitive means rr ⊆ r.

Definition Suppose r is a relation. The statement that r is an equivalence relation means

r is symmetric and transitive.

Definition Suppose r is a relation. The statement that r is reflexive with respect to A

means 1A ⊆ r.

Lemma 2.1.2. Suppose r is an equivalence relation. Then r is reflexive with respect to

dom(r).
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Proof:

(a, a) ∈ 1dom(r)

⇐⇒ a ∈ dom(r)

⇐⇒ ∃b such that (a, b) ∈ r

⇐⇒ ∃b such that (a, b) ∈ r and (b, a) ∈ r−1 = r

⇐⇒ (a, a) ∈ rr

So 1dom(r) ⊆ rr ⊆ r.

Remark Suppose A is a set. Then 1A is an equivalence relation.

Lemma 2.1.3. Suppose r is a reflexive relation. Then for each a ∈ dom(r), a ∈ r({a}).

Proof: Suppose a ∈ dom(r).

1dom(r) ⊆ r, so a ∈ {a} = 1dom(r)({a}) ⊆ r({a}).

Lemma 2.1.4. Suppose r is an equivalence relation. Then rr = r.

Proof:

r = 1im(r)r = 1dom(r−1)r = 1dom(r)r ⊆ rr

So r ⊆ rr. Then since rr ⊆ r, rr = r.

Definition Suppose A is a set. The statement that P is a partition of A means if P ∈ P

then P ⊆ A, and if a ∈ A then a belongs to exactly one element of P .

Theorem 2.1. Suppose r is an equivalence relation. Then r induces a partition P of dom(r)

by P = {r({a})
∣∣ a ∈ dom(r)}, each member of which is nonempty.
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Proof:

P ∈ P

=⇒ P = r({a}) for some a ∈ dom(r)

=⇒ r({a}) = r−1({a}) ⊆ dom(r)

So each member of P is a subset of dom(r).

Suppose a ∈ dom(r).

a ∈ {a} = 1dom(r)({a}) ⊆ r({a})

So a belongs to one member of P .

Suppose b ∈ dom(r) and a ∈ r({b}). Then (b, a) ∈ r and r = r−1 so (a, b) ∈ r.

p ∈ r({a}) p ∈ r({b})

=⇒ (a, p) ∈ r =⇒ (b, p) ∈ r

=⇒ (b, p) ∈ rr =⇒ (a, p) ∈ rr

=⇒ (b, p) ∈ r =⇒ (a, p) ∈ r

=⇒ p ∈ r({b}) =⇒ p ∈ r({a})

So r({a}) = r({b}).

So a belongs to no more than one member of P .

So P is a partition.
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If P ∈ P , then P = r({a}) for some a ∈ dom(r) so by Lemma 2.1.3, a ∈ r({a}) = P ,

so P is nonempty.

So each member of P is nonempty.

Theorem 2.2. Suppose A is a set and f is a function with domain A. Then f−1f is an

equivalence relation on A.

Proof:

1. f−1f is symmetric: (f−1f)−1 = f−1(f−1)−1 = f−1f

2. f−1f is transitive: f−1ff−1f = f−11im(f)f = f−1f

So f−1f is an equivalence relation.

Definition Suppose A is a set and f is a function with domain A. Then denote by A/f the

partition of A {f−1f({a})
∣∣ a ∈ A}.

Theorem 2.3. Suppose A is a set and r is an equivalence relation with domain A. Suppose

P is the partition of A induced by r, and π : A → P is the function which assigns each

member of A to its part in P. Then r = π−1π.

Proof:

(a1, a2) ∈ r

⇐⇒ ∃P ∈ P such that a1 ∈ P and a2 ∈ P

⇐⇒ ∃P ∈ P such that (a1, P ) ∈ π and (a2, P ) ∈ π

⇐⇒ ∃P ∈ P such that (a1, P ) ∈ π and (P, a2) ∈ π−1

⇐⇒ (a1, a2) ∈ π−1π

So r = π−1π.
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Definition Suppose f is a function with domain A. Denote by πf : A→ A/f the function

such that for each a ∈ A, πf (a) is the part in A/f to which a belongs.

Theorem 2.4. Suppose A is a set, and f is a function with domain A. Then πf is a

surjection with respect to A/f .

Proof: Suppose P ∈ A/f . P is nonempty, so there is an a ∈ P , and by the definition of πf ,

πf (a) = P . So πf is a surjection with respect to A/f .

Theorem 2.5. Suppose A is a set, and f is a function with domain A. Then for each a ∈ A,

πf (a) = f−1f({a}).

Proof: For each a ∈ A, πf (a) is the part in A/f to which a belongs.

By Lemma 2.1.3, a belongs to f−1f({a}) ∈ A/f , so πf (a) = f−1f({a}).

Theorem 2.6. Suppose A is a set, and f is a function with domain A. Then π−1
f πf = f−1f .

Proof:

(a1, a2) ∈ π−1
f πf

=⇒ ∃P ∈ A/f such that (a1, P ) ∈ πf and (P, a2) ∈ π−1
f

=⇒ (a1, P ) ∈ πf and (a2, P ) ∈ πf

=⇒ f−1({f(a1)}) = f−1f({a1}) = πf (a1) = P = πf (a2) = f−1f({a2}) = f−1({f(a2)})

=⇒ f(a1) = 1im(f)f(a1) = ff−1f(a1) = ff−1f(a2) = 1im(f)f(a2) = f(a2)

=⇒ (a1, f(a1)) ∈ f and (f(a1), a2) ∈ f−1

=⇒ (a1, a2) ∈ f−1f
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So π−1
f πf ⊆ f−1f .

(a1, a2) ∈ f−1f

=⇒ πf (a1) = f−1(f({a1})) = f−1(f({a2})) = πf (a2)

=⇒ (a1, πf (a1)) ∈ πf and (a2, πf (a1)) ∈ πf

=⇒ (a1, πf (a1)) ∈ πf and (πf (a1), a2) ∈ π−1
f

=⇒ (a1, a2) ∈ π−1
f πf

So f−1f ⊆ π−1
f πf .

So π−1
f πf = f−1f .

Theorem 2.7. Suppose A is a set, and f is a function with domain A. Then A/πf = A/f .

Proof:

A/f ={f−1f({a})
∣∣ a ∈ A} = {π−1

f πf ({a})
∣∣ a ∈ A} = A/πf

Theorem 2.8. Suppose A is a set, and f is a function with domain A. Then ππf = πf .

Proof: Suppose a ∈ A.

πf (a) = f−1f({a}) = π−1
f πf ({a}) = ππf (a)

Since this is true for each a ∈ A, ππf = πf .

Theorem 2.9. Suppose A is a set, and f is a function with domain A. Then if P ∈ A/f

then P = π−1
f ({P}) and πf (P ) = {P}.
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Proof: Suppose P ∈ A/f and a ∈ P .

P = πf (a) = f−1f({a}) = π−1
f πf ({a}) = π−1

f (πf ({a})) = π−1
f ({πf (a)}) = π−1

f ({P})

So P = π−1
f ({P}).

P =π−1
f ({P})

=⇒ πf (P ) =πf (π
−1
f ({P})) = πfπ

−1
f ({P}) = 1A/f ({P}) = {P}

So πf (P ) = {P}.

Theorem 2.10. Suppose A is a set, f is a function with domain A, and each of a1 and a2

is in A. Then the following are equivalent:

1. There is a P ∈ A/f such that a1 and a2 belong to P .

2. πf (a1) = πf (a2)

3. a2 ∈ π−1
f (πf ({a1}))

4. (a1, a2) ∈ π−1
f πf

5. (a1, a2) ∈ f−1f

6. a2 ∈ f−1(f({a1}))

7. f(a1) = f(a2)

Proof: 1 =⇒ 2:

Suppose there is a P ∈ A/f such that a1 and a2 belong to P .

a1 ∈ P so πf (a1) = P and a2 ∈ P so πf (a2) = P .
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So πf (a1) = P = πf (a2).

2 =⇒ 3:

Suppose πf (a1) = πf (a2).

1A ⊆ π−1
f πf

=⇒ {a2} = 1A({a2}) ⊆ π−1
f πf ({a2}) = π−1

f ({πf (a2)}) = π−1
f ({πf (a1)}) = π−1

f (πf ({a1}))

=⇒ a2 ∈ π−1
f (πf ({a1}))

3 =⇒ 4:

Suppose a2 ∈ π−1
f (πf ({a1})) = π−1

f πf ({a1}).

Then there is a pair (x, a2) ∈ π−1
f πf such that x ∈ {a1}. So x = a1 and (a1, a2) ∈ π−1

f πf .

4 =⇒ 5:

Suppose (a1, a2) ∈ π−1
f πf .

π−1
f πf = f−1f , so (a1, a2) ∈ π−1

f πf = f−1f .

5 =⇒ 6:

Suppose (a1, a2) ∈ f−1f .
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Then a1 ∈ {a1} such that (a1, a2) ∈ f−1f , so a2 ∈ f−1f({a1}) = f−1(f({a1})).

6 =⇒ 7:

Suppose a2 ∈ f−1(f({a1})).

a2 ∈ f−1(f({a1}))

=⇒ {a2} ⊆ f−1f({a1})

=⇒ {f(a2)} = f({a2}) ⊆ f(f−1f({a1})) = ff−1f({a1}) = 1im(f)f({a1}) = f({a1}) = {f(a1)}

=⇒ f(a1) = f(a2)

7 =⇒ 1:

Suppose f(a1) = f(a2).

Consider f−1f({a1}) ∈ A/f .

By Lemma 2.1.3:

a1 ∈ f−1f({a1})

and a2 ∈ f−1f({a2}) = f−1({f(a2)}) = f−1({f(a1)}) = f−1(f({a1})) = f−1f({a1})

So f−1f({a1}) ∈ A/f such that a1 and a2 belong to f−1f({a1}).
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Chapter 3

Structurizations

Remark In this chapter 1 is used set theoretically, i.e., 1 = {0}.

Definition Suppose (X, τ) is a topological space[2]. Then the structurization of (X, τ) is

the 1-structure (X, τ̇), where τ̇ is {1× S | S ∈ τ}.

Example Consider the set R with the standard topology τR. Then the structurization of

(R, τR) is (R,R), where R = {1× S
∣∣ S ∈ τR}. E.g., 1× (−3,∞) ∈ R.

Theorem 3.1. Suppose each of (X, τX) and (Y, τY ) is a topological space, and (X, τ̇X) is the

structurization of (X, τX), and (Y, τ̇Y ) is the structurization of (Y, τY ). Then α : X → Y is

preservative if and only if α is an open function with respect to (X, τX) and (Y, τY ).

Proof: Suppose α : X → Y is preservative.

Suppose S ∈ τX . 1 × S ∈ τ̇X . Define r = 1 × S. αr ∈ τ̇Y so αr = 1 × T for some T

in τY . α[S] = α[r[1]] = αr[1] = T ∈ τY .

So α is an open function with respect to (X, τX) and (Y, τY ).

Suppose α : X → Y is an open function.

Suppose r ∈ τ̇X . Then r = 1 × S for some S in τX . Since α is open, α[S] ∈ τY , so

αr = α(1× S) = 1× α[S] ∈ τ̇Y .

So α is preservative with respect to the 1-structures (X, τ̇X) and (Y, τ̇Y ).
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Theorem 3.2. Suppose each of (X, τX) and (Y, τY ) is a topological space, and (X, τ̇X) is the

structurization of (X, τX), and (Y, τ̇Y ) is the structurization of (Y, τY ). Then α : X → Y is

continuous if and only if α is a continuous function with respect to (X, τX) and (Y, τY ).

Proof: Suppose α : X → Y is (structurally) continuous.

Suppose T ∈ τY . Then 1 × T ∈ τ̇Y . Define s = 1 × T . α−1s ∈ τ̇X so α−1(T ) = α−1[s[1]] =

α−1s[1] ∈ τX .

So α is a (topologically) continuous function with respect to (X, τX) and (Y, τY ).

Suppose α : X → Y is a (topologically) continuous function.

Suppose s ∈ τ̇Y . Then s = 1 × T for some T ∈ τY . Since α is continuous, α−1[T ] ∈ τX , so

α−1s = α−1(1× T ) = 1× α−1[T ] ∈ τ̇X

So α is (structurally) continuous with respect to the 1-structures (X, τ̇X) and (Y, τ̇Y ).

Theorem 3.3. Suppose each of (X, τX) and (Y, τY ) is a topological space, and the 1-structure

(X, τ̇X) is the structurization of (X, τX), and the 1-structure (Y, τ̇Y ) is the structurization of

(Y, τY ). Then (X, τX) and (Y, τY ) are homeomorphic if and only if (X, τ̇X) and (Y, τ̇Y ) are

isomorphic.

Proof: Let ϕ : A→ B be a function.

ϕ is a homeomorphism

⇐⇒ ϕ is bijective, open, and (topologically) continuous

⇐⇒ ϕ is bijective, preservative, and (structurally) continuous (Thm 3.1, Thm 3.2)

⇐⇒ ϕ is a 1-structure isomorphism

28



Lemma 3.4.1. Suppose J is a nonempty set, and for each j ∈ J , rj is a relation, and ϕ is

a function. Then ϕ−1(
⋂
j∈J rj) =

⋂
j∈J(ϕ−1rj).

Proof:

(x, y) ∈ ϕ−1(
⋂
j∈J

rj)

⇐⇒ ∃z such that (z, y) ∈ ϕ−1 and (x, z) ∈
⋂
j∈J

rj

⇐⇒ ∃z such that (z, y) ∈ ϕ−1 and (x, z) ∈ rj for each j ∈ J

⇐⇒ (x, y) ∈ ϕ−1rj for each j ∈ J

⇐⇒ (x, y) ∈
⋂
j∈J

(ϕ−1rj)

So ϕ−1(
⋂
j∈J rj) =

⋂
j∈J(ϕ−1rj).

Lemma 3.4.2. Suppose J is a set, and for each j ∈ J rj is a relation, and ϕ is a function.

Then ϕ(
⋃
j∈J rj) =

⋃
j∈J(ϕrj).

Proof:

(x, y) ∈ ϕ(
⋃
j∈J

rj)

⇐⇒ ∃z such that (z, y) ∈ ϕ and (x, z) ∈
⋃
j∈J

rj

⇐⇒ ∃z such that (z, y) ∈ ϕ and (x, z) ∈ rj for some j ∈ J

⇐⇒ (x, y) ∈ ϕrj for some j ∈ J

⇐⇒ (x, y) ∈
⋃
j∈J

(ϕrj)

So ϕ(
⋃
j∈J rj) =

⋃
j∈J(ϕrj).
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Theorem 3.4. Suppose each of (A,R) and (B,S) is a 1-structure, ϕ : A → B is a co-

epimorphism, and (A,R) is the structurization of a topological space. Then (B,S) is the

structurization of a topological space.

Proof: ϕ is a cohomomorphism, so by Theorem 1.20, ϕ is a homomorphism.

1. ∅ ∈ R, and ϕ is preservative, so ∅ = ϕ∅ ∈ S.

2. 1 × A ∈ R, so suppose r = 1 × A. ϕ is surjective, and ϕ is preservative, so 1 × B =

1× ϕ[A] = ϕ(1× A) = ϕr ∈ S.

3. Suppose J is a set, and for each j ∈ J , sj ∈ S.

ϕ is continuous, so for each j ∈ J , ϕ−1sj ∈ R. (A,R) is the structurization of a

topological space, so
⋃
j∈J ϕ

−1sj ∈ R.

ϕ is preservative and surjective, so by Lemma 3.4.2,

⋃
j∈J

sj =
⋃
j∈J

ϕϕ−1sj = ϕ
⋃
j∈J

ϕ−1sj ∈ S

4. Suppose each of s0 and s1 is in S. ϕ is continuous, so each of ϕ−1s0 and ϕ−1s1

is in R. (A,R) is the structurization of a topological space, so by Lemma 3.4.1,

ϕ−1(s0 ∩ s1) = (ϕ−1s0) ∩ (ϕ−1s1) ∈ R.

ϕ is preservative and surjective, so s0 ∩ s1 = ϕϕ−1(s0 ∩ s1) ∈ S.

So by the above, (B,S) is the structurization of a topological space.

Theorem 3.5. Suppose each of (A,R) and (B,S) is a 1-structure, ϕ : A → B is a

comonomorphism, and (B,S) is the structurization of a topological space. Then (A,R)

is the structurization of a topological space.
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Proof: Suppose (B,S) is the structurization of a topological space.

1. ∅ ∈ S, and ϕ is continuous, so ∅ = ϕ−1∅ ∈ R.

2. 1× B ∈ S, so suppose s = 1× B. ϕ is continuous, so 1× A = 1× ϕ−1[B] = ϕ−1(1×

B) = ϕ−1s ∈ R.

3. Suppose J is a set, and for each j ∈ J , rj ∈ R.

ϕ is preservative, so for each j ∈ J , ϕrj ∈ S. (B,S) is the structurization of a

topological space, so
⋃
j∈J ϕrj ∈ S.

ϕ is continuous and injective, so by Lemma 3.4.2,

⋃
j∈J

rj = ϕ−1ϕ(
⋃
j∈J

rj) = ϕ−1(
⋃
j∈J

ϕrj) ∈ R

4. Suppose each of r0 and r1 is in R. ϕ is preservative, so each of ϕr0 and ϕr1 is in S.

(B,S) is the structurization of a topological space, so (ϕr0) ∩ (ϕr1) ∈ S.

ϕ is continuous and injective, so by Lemma 3.4.1, r0 ∩ r1 = (ϕ−1ϕr0) ∩ (ϕ−1ϕr1) =

ϕ−1((ϕr0) ∩ (ϕr1)) ∈ R.

So by the above, (A,R) is the structurization of a topological space.

Definition The statement that F is a type means F is a function with domain a set of

symbols and image a subset of the cardinal numbers[3].

Definition Let F be a type. The statement that A = (A,F ) is an algebra of type F means

A is a set, F is a set of functions each having image a subset of A, and there is a bijection

g : dom(F)→ F such that for each f ∈ dom(F), dom(g(f)) = AF(f). For each f ∈ dom(F),

denote g(f) by fA.
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Definition Let A = (A,F ) be an algebra of type F . Define I to be the set of symbols⋃
f∈dom(F)

(
{pf} ∪

⋃
q∈F(f){qf}

)
. The structurization of (A,F ) is the I-structure (A,R)

where R is the set of functions to which a function r belongs if and only if there is an f in

dom(F) and an element a in AF(f) such that the domain of r is {pf} ∪
⋃
q∈F(f){qf} and for

each element q in F(f), r(qf ) = a(q), and r(pf ) = fA(a).

Example Suppose F = {(e, 0), (−1, 1), (·, 2)} is the type associated with groups. e is the

symbol corresponding with the 0-ary function that for each group, picks out the identity el-

ement of the group, −1 is the symbol corresponding with the unary function that associates

each element of the group with its inverse, and · is the symbol corresponding with the binary

function of the group.

Consider the dihedral group D6 = {ε, σ, σ2, τ, τσ, τσ2}.

Then the structurization of D6 is the I-structure (D6,R), with I = {pe, p−1, 0−1, p·, 0·, 1·}
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and

R = {

{(pe, ε)},

{(p−1, ε), (0−1, ε)}, {(p−1, σ), (0−1, σ
2)}, {(p−1, σ

2), (0−1, σ)},

{(p−1, τ), (0−1, τ)}, {(p−1, τσ), (0−1, τσ)}, {(p−1, τσ
2), (0−1, τσ

2)},

{(p·, ε), (0·, ε), (1·, ε)}, {(p·, σ), (0·, σ), (1·, ε)}, {(p·, σ2), (0·, σ
2), (1·, ε)},

{(p·, τ), (0·, τ), (1·, ε)}, {(p·, τσ), (0·, τσ), (1·, ε)}, {(p·, τσ2), (0·, τσ
2), (1·, ε)},

{(p·, σ), (0·, ε), (1·, σ)}, {(p·, σ2), (0·, σ), (1·, σ)}, {(p·, ε), (0·, σ2), (1·, σ)},

{(p·, τσ), (0·, τ), (1·, σ)}, {(p·, τσ2), (0·, τσ), (1·, σ)}, {(p·, τ), (0·, τσ
2), (1·, σ)},

{(p·, σ2), (0·, ε), (1·, σ
2)}, {(p·, ε), (0·, σ), (1·, σ

2)}, {(p·, σ), (0·, σ
2), (1·, σ

2)},

{(p·, τσ2), (0·, τ), (1·, σ
2)}, {(p·, τ), (0·, τσ), (1·, σ

2)}, {(p·, τσ), (0·, τσ
2), (1·, σ

2)},

{(p·, τ), (0·, ε), (1·, τ)}, {(p·, τσ2), (0·, σ), (1·, τ)}, {(p·, τσ), (0·, σ
2), (1·, τ)},

{(p·, ε), (0·, τ), (1·, τ)}, {(p·, σ2), (0·, τσ), (1·, τ)}, {(p·, σ), (0·, τσ
2), (1·, τ)},

{(p·, τσ), (0·, ε), (1·, τσ)}, {(p·, τ), (0·, σ), (1·, τσ)}, {(p·, τσ2), (0·, σ
2), (1·, τσ)},

{(p·, σ), (0·, τ), (1·, τσ)}, {(p·, ε), (0·, τσ), (1·, τσ)}, {(p·, σ2), (0·, τσ
2), (1·, τσ)},

{(p·, τσ2), (0·, ε), (1·, τσ
2)}, {(p·, τσ), (0·, σ), (1·, τσ

2)}, {(p·, τ), (0·, σ
2), (1·, τσ

2)},

{(p·, σ2), (0·, τ), (1·, τσ
2)}, {(p·, σ), (0·, τσ), (1·, τσ

2)}, {(p·, ε), (0·, τσ2), (1·, τσ
2)}
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Theorem 3.6. Suppose each of A = (A,F ) and B = (B,G) is an algebra of type F , and

(A,R) is the structurization of (A,F ) and (B,S) is the structurization of (B,G). Then a

function ϕ : A→ B is an algebraic homomorphism if and only if it is a
⋃
f∈dom(F)

(
{pf} ∪

⋃
q∈F(f){qf}

)
-

structure homomorphism.

Proof: Suppose ϕ is an algebraic homomorphism.

Suppose r ∈ R. Then there is an f in dom(F) and an element a in AF(f) such that

the domain of r is {pf} ∪
⋃
q∈F(f){qf} and for each element q in F(f), r(qf ) = a(q), and

r(pf ) = fA(a).

ϕa is an element in BF(f), so there is an s ∈ S such that the domain of s is {pf}∪
⋃
q∈F(f){qf}

and for each element q in F(f), s(qf ) = ϕa(q) = ϕ(a(q)) = ϕ(r(qf )) = ϕr(qf ), and

s(pf ) = fB(ϕa) = ϕ(fA(a)) = ϕ(r(pf )) = ϕr(pf ).

So ϕr = s ∈ S and ϕ is preservative.

Suppose s ∈ S such that im(s) ⊆ im(ϕ).

There is an f in dom(F) and an element b in BF(f) such that the domain of s is {pf} ∪⋃
q∈F(f){qf}, and for each element q in F(f), s(qf ) = b(q), and s(pf ) = fB(b).

Moreover, for each q ∈ F(f), since b(q) = s(qf ) ∈ im(s) ⊆ im(ϕ), there is an aq ∈ A

such that b(q) = ϕ(aq).

Define a : F(f)→ A such that for each q ∈ F(f), a(q) = aq. a is an element in AF(f), so there

is an r ∈ R such that the domain of r is {pf}∪
⋃
q∈F(f){qf} and for each element q in F(f),

r(qf ) = a(q), and r(pf ) = fA(a). Note for each q ∈ F(f), b(q) = ϕ(aq) = ϕ(a(q)) = ϕa(q),

34



so b = ϕa.

For each q in F(f), s(qf ) = b(q) = ϕa(q) = ϕ(a(q)) = ϕ(r(qf )) = ϕr(qf ).

s(pf ) = fB(b) = fB(ϕa) = ϕ(fA(a)) = ϕ(r(pf )) = ϕr(pf ).

So r is a relation in R such that ϕr = s, and ϕ is saturating.

Thus ϕ is an
⋃
f∈dom(F)

(
{pf} ∪

⋃
q∈F(f){qf}

)
-structure homomorphism.

Suppose ϕ is an
⋃
f∈dom(F)

(
{pf} ∪

⋃
q∈F(f){qf}

)
-structure homomorphism.

Suppose f is in dom(F) and a is an element in AF(f).

Then there is an r ∈ R such that such that the domain of r is {pf} ∪
⋃
q∈F(f){qf} and

for each element q in F(f), r(qf ) = a(q), and r(pf ) = fA(a).

ϕ is an I-structure homomorphism, so ϕr ∈ S.

Since ϕr is in S, and has domain {pf} ∪
⋃
q∈F(f){qf}, and for each q ∈ F(f), ϕr(qf ) =

ϕ(r(qf )) = ϕ(a(q)) = ϕa(q), f is the member of dom(F) and ϕa is the element in BF(f)

such that ϕr(pf ) = fB(ϕa).

ϕ(fA(a)) = ϕ(r(pf )) = ϕr(pf ) = fB(ϕa).

So ϕ is an algebraic homomorphism.
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Theorem 3.7. Suppose each of A = (A,F ) and B = (B,G) is an algebra of type F , and

(A,R) is the structurization of (A,F ) and (B,S) is the structurization of (B,G). Then a

function ϕ : A→ B is an algebraic isomorphism if and only if it is an
⋃
f∈dom(F)

(
{pf} ∪

⋃
q∈F(f){qf}

)
-

structure isomorphism.

Proof: Suppose ϕ : A→ B is a function.

ϕ is an algebraic isomorphism

⇐⇒ ϕ is a bijective algebraic homomorphism

⇐⇒ ϕ is a bijective structure homomorphism

⇐⇒ ϕ is an I-structure isomorphism

Remark Graph will hereafter be used to refer to graphs which may contain loops and

multiple edges[4].

Definition Let G be a graph. Define V (G) to be the vertex set of G.

Definition Let G be a graph. Define E(G) to be the edge set of G.

Definition Let G be a graph. The structurization of G is the N\{0}-structure (A,R)

where R is the set of relations to which a relation f : N\{0} → V (G) belongs if and only

if f contains either one or two pairs each having the same first element n, and there are at

least n edges joining the vertices in f [{n}]. (If there is exactly one pair (n, v) in f , then the

n edges correspond to n loops at v).

Theorem 3.8. Suppose each of G and H is a graph. Suppose the N\{0}-structure (V (G),R)

is the structurization of G and the N\{0}-structure (V (H),S) is the structurization of H.

Then the graphs G and H are isomorphic if and only if (V (G),R) and (V (H),S) are iso-

morphic.
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Proof: Suppose G and H are isomorphic, and ϕ : V (G) → V (H) is a graph isomorphism.

ϕ is a bijection.

Suppose r ∈ R. Suppose r contains exactly one element (n, v). Then there are at least

n loops at vertex v in G, so there are at least n loops at vertex ϕ(v) in H. Thus there is a

s ∈ S such that s contains exactly one element (n, ϕ(v)), so s[{n}] = ϕ[r[{n}]] = ϕr[{n}].

So s = ϕr.

Suppose r contains exactly two elements (n, v) and (n,w). Then there are at least n edges

connecting vertices v and w in G, so there are at least n edges connecting vertices ϕ(v) and

ϕ(w) in H. Thus there is a s ∈ S such that s contains exactly two elements (n, ϕ(v)) and

(n, ϕ(w)), so s[{n}] = ϕ[r[{n}]] = ϕr[{n}]. So s = ϕr.

So in both cases there is a s in S such that s = ϕr, so ϕ is preservative.

Suppose s ∈ S. Suppose s contains exactly one element (n, v). Then there are at least n loops

at vertex w in H, so there are at least n loops at vertex ϕ−1(v) in G. Thus there is a r ∈ R

such that r contains exactly one element (n, ϕ−1(v)), so r[{n}] = ϕ−1[s[{n}]] = ϕ−1s[{n}].

So r = ϕ−1s.

Suppose s contains exactly two elements (n, v) and (n,w). Then there are at least n edges

connecting vertices v and w in H, so there are at least n edges connecting vertices ϕ−1(v) and

ϕ−1(w) in G. Thus there is a r ∈ R such that r contains exactly two elements (n, ϕ−1(v))

and (n, ϕ−1(w)), so r[{n}] = ϕ−1[s[{n}]] = ϕ−1s[{n}]. So r = ϕ−1s.

So ϕ is continuous and thus ϕ is a N\{0}-structure isomorphism.
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Suppose (V (G),R) and (V (H),S) are isomorphic and α : V (G)→ V (H) is a N\{0}-structure

isomorphism and hence a bijection.

Suppose n ∈ N, and there are exactly n loops at vertex v in G. If n 6= 0 then there is

a relation r ∈ R such that r = {(n, v)}, and {(n, α(v))} = αr ∈ S, so there are at least n

loops in H at vertex α(v).

Suppose s = {(n+ 1, α(v))}. If s ∈ S, then {(n+ 1, v)} = {(n+ 1, α−1(α(v)))} = α−1s ∈ R,

and thus there are n + 1 loops at v, contradicting the assumption that there are exactly n

loops at v in G. So s /∈ S, and thus there are not n + 1 loops at α(v). So there are exactly

n loops at α(v) in H.

Suppose n ∈ N, and there are exactly n edges connecting vertices v and w in G. If n 6= 0 then

there is a relation r ∈ R such that r = {(n, v), (n,w)}, and {(n, α(v)), (n, α(w))} = αr ∈ S,

so there are at least n edges in H connecting vertices α(v) and α(w).

Suppose s = {(n + 1, α(v)), (n + 1, α(w))}. If s ∈ S, then {(n + 1, v), (n + 1, w)} = {(n +

1, α−1(α(v))), (n+ 1, α−1(α(w)))} = α−1s ∈ R, and thus there are n+ 1 edges connecting v

and w, contradicting the assumption that there are exactly n edges connecting v and w in

G. So s /∈ S, and thus there are not n + 1 edges connecting α(v) and α(w). So there are

exactly n edges connecting α(v) and α(w) in H.

So α is a graph isomorphism and G and H are isomorphic.
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Chapter 4

Fundamental (Co)Homomorphism Theorems

Lemma 4.1.1. Suppose each of A, B, and C is a set, α : A→ B is a surjection, β : A→ C

is a function, and α−1α ⊆ β−1β. Then βα−1 is a unique function with domain B such that

(βα−1)α = β. Moreover, im(βα−1) = im(β).
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βα−1

//_____________ C

Proof:

(b, c1) ∈ βα−1 and (b, c2) ∈ βα−1

=⇒ ∃a1 ∈ A such that (b, a1) ∈ α−1 and (a1, c1) ∈ β

and ∃a2 ∈ A such that (b, a2) ∈ α−1 and (a2, c2) ∈ β

=⇒ (a1, b) ∈ α and (b, a2) ∈ α−1, c1 = β(a1), c2 = β(a2)

=⇒ (a1, a2) ∈ α−1α ⊆ β−1β, c1 = β(a1), c2 = β(a2)

=⇒ ∃c ∈ C such that (a1, c) ∈ β and (c, a2) ∈ β−1, c1 = β(a1), c2 = β(a2)

=⇒ (a1, c) ∈ β and (a2, c) ∈ β, c1 = β(a1), c2 = β(a2)

=⇒ c1 = β(a1) = c = β(a2) = c2

So βα−1 is a function.
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Note 1A ⊆ α−1α and ββ−1 ⊆ 1C .

(βα−1)α = β(α−1α) ⊆ β(β−1β) = (ββ−1)β ⊆ 1Cβ = β

β = β1A ⊆ β(α−1α) = (βα−1)α

So (βα−1)α = β.

Suppose γ is a function with domain B such that γα = β. α is a surjection, so αα−1 = 1B

γα = β

=⇒ γ = γ1B = γαα−1 = βα−1

So βα−1 is the only function having domain B with the property that (βα−1)α = β.

im(βα−1) = β(im(α−1)) = β(dom(α)) = β(A) = im(β)

So im(βα−1) = im(β).

Corollary 4.1.1. Suppose each of A, B, and C is a set, α : A → B is a surjection,

β : A→ C is a function, and α−1α ⊆ β−1β. Then β is a surjection if and only if βα−1 is a

surjection with respect to C.

Proof: Suppose β is a surjection.

By Lemma 4.1.1, βα−1 is a function.

C = im(β) = im(βα−1), so βα−1 is a surjection with respect to C.

Suppose βα−1 is a surjection with respect to C.
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C = im(βα−1) = im(β), so β is a surjection.

Corollary 4.1.2. Suppose each of A, B, and C is a set, α : A → B is a surjection,

β : A → C is a function, and α−1α ⊆ β−1β. Then α−1α = β−1β if and only if βα−1 is an

injection.

Proof: Suppose α−1α = β−1β.

(βα−1)−1βα−1 = αβ−1βα−1 = αα−1αα−1 = 1B1B = 1B

So βα−1 is an injection.

Suppose βα−1 is an injection. Note βα−1α = β

β−1β = 1Aβ
−1β ⊆ α−1αβ−1β = α−1αβ−1(βα−1α) = α−1(βα−1)−1βα−1α = α−11Bα = α−1α

So β−1β ⊆ α−1α and thus α−1α = β−1β.

Lemma 4.1.2. Suppose each of (A,R), (B,S), and (C, T ) is an I-structure, α : A → B

is a saturating surjection, β : A → C is a preservative function, and α−1α ⊆ β−1β. Then

βα−1 is preservative.

Proof: Suppose s ∈ S. im(s) ⊆ B = im(α), so since α is saturating, there is an r ∈ R

such that αr = s. β is preservative, so βr ∈ T . By Lemma 4.1.1, βα−1α = β, so

βα−1s = βα−1αr = βr.

Thus βα−1s = βr ∈ T . So βα−1 is preservative.

Lemma 4.1.3. Suppose each of (A,R), (B,S), and (C, T ) is an I-structure, α : A → B

is a preservative surjection, β : A → C is a saturating function, and α−1α ⊆ β−1β. Then

βα−1 is saturating.
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Proof: Suppose t ∈ T and im(t) ⊆ im(βα−1) = im(β). β is saturating, so there is an r ∈ R

such that βr = t. α is preservative, so αr ∈ S.

By Lemma 4.1.1, βα−1α = β, so (βα−1)(αr) = (βα−1α)r = βr = t.

So αr is a relation in S such that (βα−1)αr = t. So βα−1 is saturating.

Theorem 4.1. Suppose each of (A,R), (B,S), and (C, T ) is an I-structure, α : A→ B is

an epimorphism, β : A→ C is a homomorphism, and α−1α ⊆ β−1β. Then βα−1 is a unique

homomorphism with domain B such that βα−1α = β.

Proof: By Lemma 4.1.1, βα−1 is a unique function with domain B such that βα−1α = β.

α is a homomorphism and thus is saturating, and β is a homomorphism and thus is preser-

vative, so by Lemma 4.1.2, βα−1 is preservative.

α is a homomorphism and thus is preservative, and β is a homomorphism and thus is

saturating, so by Lemma 4.1.3, βα−1 is saturating.

Since βα−1 is both preservative and saturating, βα−1 is an I-structure homomorphism.

Lemma 4.2.1. Suppose each of (A,R), (B,S), and (C, T ) is an I-structure, α : A → B

is a conservative surjection, β : A → C is a continuous function, and α−1α ⊆ β−1β. Then

βα−1 is continuous.

Proof: Suppose t ∈ T . β is continuous, so, β−1t ∈ R. α is conservative, so there is an

s ∈ S such that im(s) ⊆ im(α) and α−1s = β−1t. α is surjective, so αα−1 = 1B.

(βα−1)−1t = αβ−1t = αα−1s = 1Bs = s
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Thus (βα−1)−1t = s ∈ S. So βα−1 is continuous.

Lemma 4.2.2. Suppose each of (A,R), (B,S), and (C, T ) is an I-structure, α : A → B

is a continuous surjection, β : A → C is a conservative function, and α−1α ⊆ β−1β. Then

βα−1 is conservative.

Proof: Suppose s ∈ S. α is continuous, so α−1s ∈ R. β is conservative, so there is a t ∈ T

such that im(t) ⊆ im(β) and β−1t = α−1s. α is surjective, so αα−1 = 1B.

(βα−1)−1t = αβ−1t = αα−1s = 1Bs = s

Thus (βα−1)−1t = s, and t is a relation in T such that im(t) ⊆ im(β) = im(βα−1) and

(βα−1)−1t = s. So βα−1 is conservative.

Theorem 4.2. Suppose each of (A,R), (B,S), and (C, T ) is an I-structure, α : A → B

is a coepimorphism, β : A → C is a cohomomorphism, and α−1α ⊆ β−1β. Then βα−1 is a

unique cohomomorphism with domain B such that βα−1α = β.

Proof: By Lemma 4.1.1, βα−1 is a unique function with domain B such that βα−1α = β.

α is a cohomomorphism and thus is conservative, and β is a cohomomorphism and thus

is continuous, so by Lemma 4.2.1, βα−1 is continuous.

α is a cohomomorphism and thus is continuous, and β is a cohomomorphism and thus

is conservative, so by Lemma 4.2.2, βα−1 is conservative.

Since βα−1 is both continuous and conservative, βα−1 is an I-structure cohomomorphism.

Lemma 4.3.1. Suppose each of α and β is a function. Then αα−1 ⊆ ββ−1 if and only if

im(α) ⊆ im(β).
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Proof: Suppose αα−1 ⊆ ββ−1.

im(α) = im(1im(α)) = im(αα−1) ⊆ im(ββ−1) = im(1im(β)) = im(β)

Suppose im(α) ⊆ im(β).

αα−1 = 1im(α) ⊆ 1im(β) = ββ−1

Lemma 4.3.2. Suppose each of A, B, and C is a set, α : B → A is a function, β : C → A

is an injection, and αα−1 ⊆ ββ−1. Then β−1α is a unique function with image a subset of

C such that β(β−1α) = α. Moreover, dom(β−1α) = dom(α).
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Proof:

(b, c1) ∈ β−1α and (b, c2) ∈ β−1α

=⇒ ∃a1 ∈ A such that (b, a1) ∈ α and (a1, c1) ∈ β−1

and ∃a2 ∈ A such that (b, a2) ∈ α and (a2, c2) ∈ β−1

=⇒ a1 = a2 since α is a function

=⇒ (c1, a1) ∈ β and (c2, a1) ∈ β

=⇒ c1 = c2 since β is an injection

So β−1α is a function.
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Note ββ−1 ⊆ 1A and αα−1 = 1im(α).

β(β−1α) = (ββ−1)α ⊆1Aα = α

α = 1im(α)α = (αα−1)α ⊆(ββ−1)α = β(β−1α)

So β(β−1α) = α.

Suppose γ is a function with image a subset of C such that βγ = α. Note since β is

an injection, β−1β = 1C .

βγ = α

=⇒ γ = 1Cγ = β−1βγ = β−1α

So β−1α is the only function with image a subset of C with the property that β(β−1α) = α.

b ∈ dom(β−1α)

=⇒ ∃c ∈ C such that (b, c) ∈ β−1α

=⇒ ∃a ∈ A such that (b, a) ∈ α and (a, c) ∈ β−1

=⇒ b ∈ dom(α)

So dom(β−1α) ⊆ dom(α).

b ∈ dom(α)

=⇒ ∃a ∈ A such that (b, a) ∈ α = β(β−1α)

=⇒ ∃c ∈ C such that (c, a) ∈ β and (b, c) ∈ β−1α

=⇒ b ∈ dom(β−1α)
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So dom(α) ⊆ dom(β−1α), and thus dom(β−1α) = dom(α).

Corollary 4.3.1. Suppose each of A, B, and C is a set, α : B → A is a function, β : C → A

is an injection, and αα−1 ⊆ ββ−1. Then α is an injection if and only if β−1α is an injection.

Proof: Suppose α is an injection. im(α) ⊆ im(β).

(β−1α)−1β−1α = α−1ββ−1α = α−11im(β)α = α−1α = 1B

So β−1α is an injection.

Suppose β−1α is an injection.

α−1α = α−11im(β)α = α−1ββ−1α = (β−1α)−1β−1α = 1B

So α is an injection.

Corollary 4.3.2. Suppose each of A, B, and C is a set, α : B → A is a function, β : C → A

is an injection, and αα−1 ⊆ ββ−1. Then αα−1 = ββ−1 if and only if β−1α is a surjection

with respect to C.

Proof: Suppose αα−1 = ββ−1.

β−1α(β−1α)−1 = β−1αα−1β = β−1ββ−1β = 1C1C = 1C

So β−1α is a surjection with respect to C.

Suppose β−1α is a surjection with respect to C.

ββ−1 = β1Cβ
−1 = ββ−1α(β−1α)−1β−1 = ββ−1αα−1ββ−1 = 1im(β)αα

−11im(β) = αα−1
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Lemma 4.3.3. Suppose each of (A,R), (B,S), and (C, T ) is an I-structure, α : B → A is

a preservative function, β : C → A is a saturating injection, and αα−1 ⊆ ββ−1. Then β−1α

is preservative.

Proof: Suppose s ∈ S. α is preservative, so αs ∈ R. im(αs) ⊆ im(α) ⊆ im(β), so since β

is saturating, there is a t ∈ T such that βt = αs.

Thus β−1αs = β−1βt = 1At = t ∈ T . So β−1α is preservative.

Lemma 4.3.4. Suppose each of (A,R), (B,S), and (C, T ) is an I-structure, α : B → A is

a saturating function, β : C → A is a preservative injection, and αα−1 ⊆ ββ−1. Then β−1α

is saturating.

Proof: Suppose t ∈ T such that im(t) ⊆ im(β−1α). β is preservative, so βt ∈ R.

im(βt) = β(im(t)) ⊆ β(im(β−1α)) = im(ββ−1α) ⊆ im(1Aα) = im(α), so since α is sat-

urating, there is an s ∈ S such that αs = βt.

So s is a relation in S such that β−1αs = β−1βt = 1At = t. So β−1α is saturating.

Theorem 4.3. Suppose each of (A,R), (B,S), and (C, T ) is an I-structure, α : B → A

is a homomorphism, β : C → A is a monomorphism, and αα−1 ⊆ ββ−1. Then β−1α is a

unique homomorphism with image a subset of C such that ββ−1α = α.

Proof: By Lemma 4.3.2, β−1α is a unique function with image a subset of C such that

ββ−1α = α.

α is a homomorphism and thus is preservative, and β is a homomorphism and thus is

saturating, so by Lemma 4.3.3, β−1α is preservative.
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α is a homomorphism and thus is saturating, and β is a homomorphism and thus is preser-

vative, so by Lemma 4.3.4, β−1α is saturating.

Since β−1α is both preservative and saturating, β−1α is an I-structure homomorphism.

Lemma 4.4.1. Suppose each of (A,R), (B,S), and (C, T ) is an I-structure, α : B → A

is a continuous function, β : C → A is a conservative injection, and αα−1 ⊆ ββ−1. Then

β−1α is continuous.

Proof: Suppose t ∈ T . β is conservative, so there is an r ∈ R such that im(r) ⊆ im(β) and

β−1r = t. α is continuous, so α−1r ∈ S.

(β−1α)−1t = α−1βt = α−1ββ−1r = α−11im(β)r = α−1r

Thus (β−1α)−1t = α−1r ∈ S. So β−1α is continuous.

Lemma 4.4.2. Suppose each of (A,R), (B,S), and (C, T ) is an I-structure, α : B → A

is a conservative function, β : C → A is a continuous injection, and im(α) ⊆ im(β). Then

β−1α is conservative.

Proof: Suppose s ∈ S. α is conservative, so there is an r ∈ R such that im(r) ⊆ im(α) ⊆

im(β) and s = α−1r. β is continuous, so β−1r ∈ T .

(β−1α)−1β−1r = α−1ββ−1r = α−11im(β)r = α−1r = s

Thus (β−1α)−1β−1r = s, and β−1r is a relation in T such that im(β−1r) = β−1(im(r)) ⊆

β−1(im(α)) = im(β−1α) and (β−1α)−1β−1r = s. So β−1α is conservative.

Theorem 4.4. Suppose each of (A,R), (B,S), and (C, T ) is an I-structure, α : B → A is

a cohomomorphism, β : C → A is a comonomorphism, and αα−1 ⊆ ββ−1. Then β−1α is a

unique cohomomorphism with image a subset of C such that ββ−1α = α.
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Proof: By Lemma 4.3.2, β−1α is a unique function with image a subset of C such that

ββ−1α = α.

α is a cohomomorphism and thus is continuous, and β is a cohomomorphism and thus

is conservative, so by Lemma 4.4.1, β−1α is continuous.

α is a cohomomorphism and thus is conservative, and β is a cohomomorphism and thus

is continuous, so by Lemma 4.4.2, β−1α is conservative.

Since β−1α is both continuous and conservative, β−1α is an I-structure cohomomorphism.
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Chapter 5

First Isomorphism Theorems

Definition Suppose M = (A,R) is an I-structure and B ⊆ A. The I-substructure of M

induced by B is the I-structure (B, R̂) where R̂ is the set of relations to which a relation

r̂ belongs if and only if r̂ ∈ R and im(r̂) ⊆ B. Denote the I-structure (B, R̂) by M |B.

The statement that (C, T ) is an I-substructure of M means C ⊆ A and (C, T ) is the I-

substructure of M induced by C.

Definition Suppose M = (A,R) is an I-structure and ϕ is a function with domain A.

Suppose R̄ is the set of relations to which a relation r̄ belongs if and only if there is a

relation r ∈ R such that r̄ = πϕr. Denote the I-structure (A/ϕ, R̄) by M/ϕ.

Lemma 5.1.1. Suppose each of A and B is a set, and ϕ : A→ B is a function. Then ϕπ−1
ϕ

is a bijection with respect to im(ϕ).

Proof: By Theorem 2.4, πϕ is a surjection with respect to A/ϕ, and by Theorem 2.6,

π−1
ϕ πϕ ⊆ ϕ−1ϕ, so by Lemma 4.1.1, ϕπ−1

ϕ is a function.

ϕ is a surjection with respect to im(ϕ), so by Corollary 4.1.1, ϕπ−1
ϕ is a surjection with

respect to im(ϕ).

By Theorem 2.6 ϕ−1ϕ = π−1
ϕ πϕ, so by Corollary 4.1.2, ϕπ−1

ϕ is an injection.

Thus ϕπ−1
ϕ is a function which is both an injection and a surjection with respect to im(ϕ),

so ϕπ−1
ϕ is a bijection with respect to im(ϕ).
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Lemma 5.1.2. Suppose each of M = (A,R) and (B,S) is an I-structure, and ϕ : A → B

is a function. Then πϕ is a I-structure epimorphism with respect to the I-structure M/ϕ =

(A/ϕ, R̄).

Proof:

1. πϕ is preservative: Suppose r ∈ R, then πϕr ∈ R̄ by definition of M/ϕ.

2. πϕ is saturating: Suppose r̄ ∈ R̄ such that im(r̄) ⊆ im(πϕ), then by the definition of

M/ϕ there is an r ∈ R such that πϕr = r̄.

3. πϕ is a surjection: By Theorem 2.4.

So πϕ is an epimorphism.

Lemma 5.1.3. Suppose each of M = (A,R) and N = (B,S) is an I-structure, and ϕ :

A → B is a function. Then ϕ is an I-structure homomorphism from M to N if and only

if ϕ is an I-structure homomorphism from A to the I-substructure of M induced by im(ϕ),

(im(ϕ), Ŝ).

Proof: Suppose ϕ is an I-structure homomorphism from M to N .

Suppose r ∈ R. ϕ is preservative, so ϕr ∈ S.

Suppose b ∈ im(ϕr). Then there is an i ∈ I such that (i, b) ∈ ϕr. There is an a ∈ A

such that ϕ(a) = b and (i, a) ∈ r. b = ϕ(a) ∈ im(ϕ). So im(ϕr) ⊆ im(ϕ), and thus ϕr ∈ Ŝ.

So ϕ is preservative between (A,R) and (im(ϕ), Ŝ).

Suppose ŝ ∈ Ŝ such that im(ŝ) ⊆ im(ϕ). ϕ is saturating and ŝ ∈ S, so there is an r ∈ R

such that ϕr = ŝ.
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So ϕ is saturating between (A,R) and (im(ϕ), Ŝ).

ϕ is both preservative and saturating between (A,R) and (im(ϕ), Ŝ), so ϕ is an I-structure

homomorphism between (A,R) and (im(ϕ), Ŝ).

Suppose ϕ is an I-structure homomorphism from A to the I-substructure of M induced

by im(ϕ).

Suppose r ∈ R. ϕ is preservative with respect to (im(ϕ), Ŝ), so ϕr ∈ Ŝ, so ϕr ∈ S.

So ϕ is preservative between M and N .

Suppose s ∈ S such that im(s) ⊆ im(ϕ). Then s ∈ Ŝ, and since ϕ is saturating with

respect to (im(ϕ), Ŝ), there is an r ∈ R such that ϕr = s.

So ϕ is saturating between M and N .

ϕ is both preservative and saturating between M and N , so ϕ is an I-structure homo-

morphism between M and N .

Theorem 5.1. Suppose each of M = (A,R) and N = (B,S) is an I-structure and ϕ :

A → B is a function. Then ϕ is an I-structure homomorphism if and only if ϕπ−1
ϕ is an

isomorphism from M/ϕ to the I-substructure of N induced by im(ϕ).

Proof: Suppose ϕ is an I-structure homomorphism.

M/ϕ = (A/ϕ, R̄) where R̄ is the set of relations to which a relation r̄ belongs if and only if

there is a relation r ∈ R such that πϕr = r̄.
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The I-substructure of N induced by im(ϕ) is (im(ϕ), Ŝ) where Ŝ is the set of relations

to which a relation ŝ belongs if and only if ŝ ∈ S and im(ŝ) ⊆ im(ϕ).

By Lemma 5.1.2, πϕ is an I-structure epimorphism, by Lemma 5.1.3, ϕ is an I-structure

homomorphism between (A,R) and (im(ϕ), Ŝ), and by Lemma 2.6, π−1
ϕ πϕ ⊆ ϕ−1ϕ. So by

Theorem 4.1, ϕπ−1
ϕ is a homomorphism.

By Lemma 5.1.1, ϕπ−1
ϕ is a bijection, so by Theorem 1.19, ϕπ−1

ϕ is an isomorphism.

So M/ϕ is isomorphic to the I-substructure of N induced by im(ϕ).

Suppose ϕπ−1
ϕ is an isomorphism from M/ϕ to the I-substructure of N induced by im(ϕ).

By Lemma 5.1.2 πϕ is an epimorphism, and by assumption, ϕπ−1
ϕ is a homomorphism from

M/ϕ to the I-substructure of N induced by im(ϕ). So by Theorem 1.22, (ϕπ−1
ϕ )πϕ is a

homomorphism from M to the I-substructure of N induced by im(ϕ).

By Lemma 4.1.1, ϕ = (ϕπ−1
ϕ )πϕ, so ϕ is a homomorphism from M to the I-substructure of

N induced by im(ϕ), and thus by Lemma 5.1.3, ϕ is a homomorphism from M to N .

Corollary 5.1.1. Suppose each of M = (A,R) and (B,S) is a 1-structure, and ϕ : A→ B

is a homomorphism. Then if each of (A,R) and (B,S) is the structurization of a topological

space, then (A/ϕ, R̄) is the structurization of a topological space.

Proof:

1. 1× A/ϕ ∈ R̄:
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(A,R) is the structurization of a topological space, so 1× A ∈ R.

πϕ is an epimorphism, so 1× A/ϕ = 1× πϕ[A] = πϕ(1× A) ∈ R̄.

2. ∅ ∈ R̄:

(A,R) is the structurization of a topological space, so ∅ ∈ R.

πϕ is a homomorphism, so ∅ = πϕ∅ ∈ R̄.

3. Suppose J is a set and for each j ∈ J , r̄j ∈ R̄, then there is an r̄ ∈ R̄ such that

r̄[1] =
⋃
j∈J

r̄j[1]:

For each j ∈ J , there is an rj ∈ R such that πϕrj = r̄j. Since (A,R) is the structur-

ization of a topological space, there is an r ∈ R such that r[1] =
⋃
j∈J

rj[1]. πϕr ∈ R̄.

P ∈ πϕr[1]

⇐⇒ P ∈ πϕ[r[1]]

⇐⇒ P ∈ πϕ(
⋃
j∈J

rj[1]) =
⋃
j∈J

πϕ[rj[1]] by Lemma 3.4.2

⇐⇒ P ∈
⋃
j∈J

πϕrj[1]

⇐⇒ P ∈
⋃
j∈J

r̄j[1]

So πϕr ∈ R̄ such that πϕr[1] =
⋃
j∈J

r̄j[1].

4. Suppose each of r̄1 and r̄2 is in R̄, then there is an r̄ ∈ R̄ such that r̄[1] = r̄1[1]∩ r̄2[1]:

By the definition of R̄, there is an r1 ∈ R and an r2 ∈ R such that πϕr1 = r̄1

and πϕr2 = r̄2.

54



Since ϕ is a homomorphism, ϕr1 ∈ S and ϕr2 ∈ S, and since (B,S) is the structuriza-

tion of a topological space, there is an s ∈ S such that s[1] = ϕr1[1] ∩ ϕr2[1] ⊆ im(ϕ).

So there is an r ∈ R such that ϕr = s.

πϕr[1] = πϕ[r[1]] ={πϕ(a)
∣∣ a ∈ r[1]}

={ϕ−1[ϕ[{a}]]
∣∣ a ∈ r[1]}

={πϕ(a)
∣∣ a ∈ ϕ−1[ϕ[r[1]]]}

={πϕ(a)
∣∣ a ∈ ϕ−1[s[{0}]]}

={πϕ(a)
∣∣ a ∈ ϕ−1[ϕr1[1] ∩ ϕr2[1]]}

={πϕ(a)
∣∣ a ∈ ϕ−1[ϕ[r1[1]] ∩ ϕ[r2[1]]]}

={πϕ(a)
∣∣ a ∈ ϕ−1[ϕ[r1[1]]] ∩ ϕ−1[ϕ[r2[1]]]}

={πϕ(a)
∣∣ a ∈ ϕ−1[ϕ[r1[1]]]} ∩ {πϕ(a)

∣∣ a ∈ ϕ−1[ϕ[r2[1]]]}

={ϕ−1[ϕ[{a}]]
∣∣ a ∈ r1[1]} ∩ {ϕ−1[ϕ[{a}]]

∣∣ a ∈ r2[1]}

={πϕ(a)
∣∣ a ∈ r1[1]} ∩ {πϕ(a)

∣∣ a ∈ r2[1]}

=πϕ[r1[1]] ∩ πϕ[r2[1]]

=πϕr1[1] ∩ πϕr2[1]

=r̄1[1] ∩ r̄2[1]

So πϕr ∈ R̄ such that πϕr[1] = r̄1[1] ∩ r̄2[1].

So by the above properties, (A/ϕ, R̄) is the structurization of a topological space.

Corollary 5.1.2. Suppose (G, ∗) is a group with identity e, I = {pe, p−1, 0−1, p∗, 0∗, 1∗},

M = (G,R) is the structurization of (G, ∗), and ϕ is a function with domain G. Then

M/ϕ is the structurization of a group under the operation induced by ∗ if and only if for all

(a1, a2) ∈ ϕ−1ϕ, (a−1
1 , a−1

2 ) ∈ ϕ−1ϕ, and for all (a1, b1), (a2, b2) in ϕ−1ϕ, (a1 ∗ a2, b1 ∗ b2) ∈

ϕ−1ϕ.
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Proof: Suppose for all (a1, a2) ∈ ϕ−1ϕ, (a−1
1 , a−1

2 ) ∈ ϕ−1ϕ, and for all (a1, b1), (a2, b2) in

ϕ−1ϕ, (a1 ∗ a2, b1 ∗ b2) ∈ ϕ−1ϕ.

Suppose each of P = ϕ−1ϕ({x}) and Q = ϕ−1ϕ({y}) is in G/ϕ.

P ∗Q = {p ∗ q | p ∈ P and q ∈ Q}. Consider the element of G/ϕ, ϕ−1ϕ({x ∗ y}).

g ∈ P ∗Q

=⇒ ∃p ∈ P, q ∈ Q such that g = p ∗ q

=⇒ ∃p ∈ ϕ−1ϕ({x}), q ∈ ϕ−1ϕ({y}) such that g = p ∗ q

=⇒ ∃p, q such that (p, x) ∈ ϕ−1ϕ and (q, y) ∈ ϕ−1ϕ and g = p ∗ q

=⇒ ∃p, q such that (p ∗ q, x ∗ y) ∈ ϕ−1ϕ and g = p ∗ q

=⇒ g ∈ ϕ−1ϕ({x ∗ y})

So P ∗Q ⊆ ϕ−1ϕ({x ∗ y}).

g ∈ ϕ−1ϕ({x ∗ y})

=⇒ (g, x ∗ y) ∈ ϕ−1ϕ and (y−1, y−1) ∈ ϕ−1ϕ

=⇒ (g ∗ y−1, x) = (g ∗ y−1, x ∗ e) = (g ∗ y−1, x ∗ (y ∗ y−1)) = (g ∗ y−1, (x ∗ y) ∗ y−1) ∈ ϕ−1ϕ

=⇒ g ∗ y−1 ∈ ϕ−1ϕ({x}) = P and y ∈ ϕ−1ϕ({y}) = Q

=⇒ g = g ∗ e = g ∗ (y−1 ∗ y) = (g ∗ y−1) ∗ y ∈ P ∗Q

So ϕ−1ϕ({x ∗ y}) ⊆ P ∗Q.

Thus ϕ−1ϕ({x}) ∗ ϕ−1ϕ({y}) = P ∗Q = ϕ−1ϕ({x ∗ y}) ∈ G/ϕ.

So G/ϕ is closed under the operation ∗.
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Consider the element ϕ−1ϕ({e}).

By the above, if P = ϕ−1ϕ({x}) ∈ G/ϕ, then:

P ∗ ϕ−1ϕ({e}) = ϕ−1ϕ({x}) ∗ ϕ−1ϕ({e}) = ϕ−1ϕ({x ∗ e}) = ϕ−1ϕ({x}) = P

And

ϕ−1ϕ({e}) ∗ P = ϕ−1ϕ({e}) ∗ ϕ−1ϕ({x}) = ϕ−1ϕ({e ∗ x}) = ϕ−1ϕ({x}) = P

So ϕ−1ϕ({e}) is an identity in G/ϕ with respect to the operation ∗.

Suppose P = ϕ−1ϕ({x}) ∈ G/ϕ. Consider ϕ−1ϕ({x−1}).

P ∗ ϕ−1ϕ({x−1}) = ϕ−1ϕ({x}) ∗ ϕ−1ϕ({x−1}) = ϕ−1ϕ({x ∗ x−1}) = ϕ−1ϕ({e})

And

ϕ−1ϕ({x−1}) ∗ P = ϕ−1ϕ({x−1}) ∗ ϕ−1ϕ({x}) = ϕ−1ϕ({x−1 ∗ x}) = ϕ−1ϕ({e})

So ϕ−1ϕ({x−1}) is an inverse for P with respect to the identity ϕ−1ϕ({e}).

Suppose each of P = ϕ−1ϕ({x}), Q = ϕ−1ϕ({y}), and R = ϕ−1ϕ({z}) are members of
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G/ϕ.

(P ∗Q) ∗R = (ϕ−1ϕ({x}) ∗ ϕ−1ϕ({y})) ∗ ϕ−1ϕ({z}) = ϕ−1ϕ({x ∗ y}) ∗ ϕ−1ϕ({z})

=ϕ−1ϕ({(x ∗ y) ∗ z}) = ϕ−1ϕ({x ∗ (y ∗ z)}) = ϕ−1ϕ({x}) ∗ ϕ−1ϕ({y ∗ z})

=ϕ−1ϕ({x}) ∗ (ϕ−1ϕ({y}) ∗ ϕ−1ϕ({z})) = P ∗ (Q ∗R)

So G/ϕ is associative with respect to the operation ∗.

So (G/ϕ, ∗) is a group. (Note that saying for all (a1, a2) ∈ ϕ−1ϕ, (a−1
1 , a−1

2 ) ∈ ϕ−1ϕ, and

for all (a1, b1), (a2, b2) in ϕ−1ϕ, (a1 ∗ a2, b1 ∗ b2) ∈ ϕ−1ϕ implies that ϕ−1ϕ({e}) is a normal

subgroup of G).

Now I intend to prove that M/ϕ is the structurization of said group.

M/ϕ = (G/ϕ, R̄) where I = {pe, p−1, 0−1, p∗, 0∗, 1∗} and R̄ = {πr | r ∈ R}.

The strucuturization of (G/ϕ, ∗) = (G/ϕ,S) where S is the set of relations to which a

relation s belongs if and only if either s = {(pe, ϕ−1ϕ(e))}, there is a P ∈ G/ϕ such that

s = {(p−1, P
−1), (0−1, P )}, or there is a P and a Q each of which is in G/ϕ such that

s = {(p∗, P ∗Q), (0∗, P ), (1∗, Q)}.

Since R is the relation set for the structurization of a group, for each r ∈ R either

r = {(pe, e)}, there is an x ∈ G such that r = {(p−1, x
−1), (0−1, x)} , or there is an x
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and a y in G such that r = {(p∗, x ∗ y), (0∗, x), (1∗, y)}.

t ∈ R̄

⇐⇒ ∃r ∈ R such that t = πr

⇐⇒ t = πr where

r = {(pe, e)}

or r = {(p−1, x
−1), (0−1, x)} for some x ∈ G

or r = {(p∗, x ∗ y), (0∗, x), (1∗, y)} for some x, y ∈ G

⇐⇒ t = {(pe, π(e))}

or t = {(p−1, π(x−1)), (0−1, π(x))} for some x ∈ G

or t = {(p∗, π(x ∗ y)), (0∗, π(x)), (1∗, π(y))} for some x, y ∈ G

⇐⇒ t = {(pe, ϕ−1ϕ({e}))}

or t = {(p−1, ϕ
−1ϕ({x−1})), (0−1, ϕ

−1ϕ({x}))} for some x ∈ G

or t = {(p∗, ϕ−1ϕ({x ∗ y})), (0∗, ϕ−1ϕ({x})), (1∗, ϕ−1ϕ({y}))} for some x, y ∈ G

⇐⇒ t = {(pe, ϕ−1ϕ({e}))}

or t = {(p−1, (ϕ
−1ϕ({x}))−1), (0−1, ϕ

−1ϕ({x}))} for some x ∈ G

or t = {(p∗, ϕ−1ϕ({x}) ∗ ϕ−1ϕ({y})), (0∗, ϕ−1ϕ({x})), (1∗, ϕ−1ϕ({y}))} for some x, y ∈ G

⇐⇒ t = {(pe, ϕ−1ϕ({e}))}

or t = {(p−1, P
−1), (0−1, P )} for some P ∈ G/ϕ

or t = {(p∗, P ∗Q), (0∗, P ), (1∗, Q)} for some P,Q ∈ G/ϕ

⇐⇒ t ∈ S

So R̄ = S, and thus M/ϕ is the structurization of (G/ϕ, ∗).

Suppose M/ϕ is the structurization of a group under the operation induced by ∗.
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Consider ϕ−1ϕ({e}). Suppose P ∈ G/ϕ. There is an x ∈ G such that P = ϕ−1ϕ(x).

x ∈ ϕ−1ϕ(x) and x = e ∗ x ∈ ϕ−1ϕ({e}) ∗ ϕ−1ϕ({x}) = ϕ−1ϕ({e}) ∗ P ∈ G/ϕ

=⇒ ϕ−1ϕ({e}) ∗ P = ϕ−1ϕ({x}) = P

=⇒ ϕ−1ϕ({e}) is the identity element for M/ϕ

Suppose P ∈ G/ϕ. There is an x ∈ G such that P = ϕ−1ϕ({x}). Consider ϕ−1ϕ({x−1})

e ∈ ϕ−1ϕ({e}) and e = x ∗ x−1 ∈ ϕ−1ϕ({x}) ∗ ϕ−1ϕ({x−1}) = P ∗ ϕ−1ϕ({x−1}) ∈ G/ϕ

=⇒ P ∗ ϕ−1ϕ({x−1}) = ϕ−1ϕ({e}) (elements of a partition intersect if and only if they are equal)

=⇒ P−1 = ϕ−1ϕ({x−1})

Suppose each of P and Q is in G/ϕ. There is an x and a y in G such that P = ϕ−1ϕ({x})

and Q = ϕ−1ϕ({y}). Consider ϕ−1ϕ({x ∗ y}).

x ∗ y ∈ ϕ−1ϕ({x ∗ y}) and x ∗ y ∈ ϕ−1ϕ({x}) ∗ ϕ−1ϕ({y}) = P ∗Q

=⇒ P ∗Q = ϕ−1ϕ({x ∗ y})

Now the main result follows.

(a1, a2) ∈ ϕ−1ϕ

⇐⇒ ϕ−1ϕ({a1}) = ϕ−1ϕ({a2})

⇐⇒ (ϕ−1ϕ({a1}))−1 = (ϕ−1ϕ({a2}))−1

⇐⇒ ϕ−1ϕ({a−1
1 }) = ϕ−1ϕ({a−1

2 })

⇐⇒ (a−1
1 , a−1

2 ) ∈ ϕ−1ϕ
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(a1, b1) ∈ ϕ−1ϕ and (a2, b2) ∈ ϕ−1ϕ

=⇒ ϕ−1ϕ({a1}) = ϕ−1ϕ({b1}) and ϕ−1ϕ({a2}) = ϕ−1ϕ({b2})

=⇒ ϕ−1ϕ({a1}) ∗ ϕ−1ϕ({a2}) = ϕ−1ϕ({b1}) ∗ ϕ−1ϕ({b2})

=⇒ ϕ−1ϕ({a1 ∗ a2}) = ϕ−1ϕ({b1 ∗ b2})

=⇒ (a1 ∗ a2, b1 ∗ b2) ∈ ϕ−1ϕ

Thus for all (a1, a2) ∈ ϕ−1ϕ, (a−1
1 , a−1

2 ) ∈ ϕ−1ϕ, and for all (a1, b1), (a2, b2) in ϕ−1ϕ, (a1 ∗

a2, b1 ∗ b2) ∈ ϕ−1ϕ.

Definition Suppose M = (A,R) is an I-structure and B ⊆ A. The I-understructure of M

induced by B is the I-structure (B, R̂) where R̂ is the set of relations to which a relation

r̂ belongs if and only if there is a relation r ∈ R such that r̂ = r ∩ (I × B). Denote the

structure (B, R̂) by M ||B. The statement that (C, T ) is an I-understructure of M means

C ⊆ A and (C, T ) is the I-understructure of M induced by C.

Definition Suppose M = (A,R) is an I-structure. Suppose R̄ is the set of relations to

which a relation r̄ belongs if and only if r̄ ⊆ I ×A/ϕ and π−1
ϕ r̄ ∈ R. Denote the I-structure

(A/ϕ, R̄) by M//ϕ.

Lemma 5.2.1. Suppose each of M = (A,R) and (B,S) is an I-structure, and ϕ : A→ B is

a cohomomorphism. Then πϕ is an I-structure coepimorphism with respect to the I-structure

M//ϕ = (A/ϕ, R̄).

Proof:

1. πϕ is continuous: Suppose r̄ ∈ R̄, then π−1
ϕ r̄ ∈ R by definition of M//ϕ. So πϕ is

continuous.

2. πϕ is conservative:
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Suppose r ∈ R. ϕ is conservative, so there is an s ∈ S such that im(s) ⊆ im(ϕ)

and ϕ−1s = r. So s = ϕr and π−1
ϕ πϕr = ϕ−1ϕr = ϕ−1s = r.

Thus πϕr ∈ R̄, im(πϕr) ⊆ im(πϕ), and π−1
ϕ (πϕr) = r.

So πϕ is conservative.

3. πϕ is a surjection with respect to A/ϕ: By Theorem 2.4.

So πϕ is an coepimorphism with respect to M//ϕ.

Lemma 5.2.2. Suppose each of M = (A,R) and N = (B,S) is an I-structure, and ϕ :

A → B is an I-structure cohomomorphism. Then ϕ is a cohomomorphism from A to the

understructure of M induced by im(ϕ), (im(ϕ), Ŝ).

Proof: Suppose ŝ ∈ Ŝ. Then there is an s ∈ S such that ŝ = s ∩ (I × im(ϕ)). ϕ is continu-

ous, so ϕ−1s ∈ R. I intend to show that ϕ−1ŝ = ϕ−1s.

Suppose (i, a) ∈ ϕ−1ŝ. Then there is a b ∈ im(ϕ) such that ϕ(a) = b and (i, b) ∈ ŝ.

ŝ ⊆ s, so (i, b) ∈ s, and thus (i, a) ∈ ϕ−1s.

So ϕ−1ŝ ⊆ ϕ−1s.

Suppose (i, a) ∈ ϕ−1s. Then there is an b ∈ B such that b = ϕ(a) ∈ im(ϕ) and (i, b) ∈ s.

(i, b) ∈ I × im(ϕ), so (i, b) ∈ ŝ, and thus (i, a) ∈ ϕ−1ŝ.

So ϕ−1s ⊆ ϕ−1ŝ.

So ϕ−1ŝ = ϕ−1s ∈ R.

62



So ϕ is continuous between (A,R) and (im(ϕ), Ŝ).

Suppose r ∈ R. ϕ is conservative, so there is an s ∈ S such that im(s) ⊆ im(ϕ) and

ϕ−1s = r. Since im(s) ⊆ im(ϕ), s ∩ (I × im(ϕ)) = s, so s ∈ Ŝ.

So s ∈ Ŝ, im(s) ⊆ im(ϕ), and ϕ−1s = r.

So ϕ is conservative between (A,R) and (im(ϕ), Ŝ).

ϕ is both continuous and conservative between (A,R) and (im(ϕ), Ŝ), so ϕ is an I-structure

cohomomorphism between (A,R) and (im(ϕ), Ŝ).

Theorem 5.2. Suppose each of M = (A,R) and N = (B,S) is an I-structure, and ϕ : A→

B is a cohomomorphism. Then M//ϕ is isomorphic to the understructure of N induced by

im(ϕ).

Proof: M//ϕ = (A/ϕ, R̄) where R̄ is the set of relations to which a relation r̄ belongs if

and only if r̄ ⊆ I × A/ϕ and π−1
ϕ r̄ ∈ R.

The understructure of N induced by im(ϕ) is (im(ϕ), Ŝ) where Ŝ is the set of relations to

which a relation ŝ belongs if and only if there is a relation s ∈ S such that ŝ = s∩(I×im(ϕ)).

By Lemma 5.2.1, πϕ is an I-structure coepimorphism, by Lemma 5.2.2, ϕ is an I-structure

cohomomorphism between (A,R) and (im(ϕ), Ŝ), and by Lemma 2.6, π−1
ϕ πϕ ⊆ ϕ−1ϕ. So by

Theorem 4.2, ϕπ−1
ϕ is a cohomomorphism.

By Lemma 5.1.1, ϕπ−1
ϕ is a bijection, so by Theorem 1.21, ϕπ−1

ϕ is an isomorphism.

So M//ϕ is isomorphic to the understructure of N induced by im(ϕ).
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Corollary 5.2.1. Suppose M = (A,R) is an I-structure and ϕ is a cohomomorphism be-

tween M and another structure. Then M//ϕ is isomorphic to M/ϕ.

Proof: By Theorem 1.20, ϕ is a homomorphism.

By Lemma 5.2.1, πϕ is a coepimorphism between M and M//ϕ and (by Lemma 5.1.2) an

epimorphism between M and M/ϕ. Moreover, π−1
ϕ πϕ ⊆ π−1

ϕ πϕ.

So by Theorem 4.1, πϕπ
−1
ϕ is a homomorphism between M//ϕ and M/ϕ.

πϕ is a surjection, so πϕπ
−1
ϕ = 1A/ϕ, which is a bijection. So by Theorem 1.19, 1A/ϕ is

an isomorphism.

So M//ϕ ∼= M/ϕ.
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Chapter 6

Second Isomorphism Theorem

Lemma 6.1.1. Suppose A is a set, B ⊆ A, ϕ is a function with domain A, B̄ = ϕ−1ϕ(B),

and P ∈ B̄/ϕ|B̄. Then P ∩B ∈ B/ϕ|B.

Proof: Suppose b ∈ P ∩B.

Since P ∈ B̄/ϕ|B̄ and b ∈ P , P = (ϕ|B̄)−1((ϕ|B̄)({b})).

b ∈ B so b ∈ (ϕ|B)−1((ϕ|B)({b})) ∈ B/ϕ|B. So P ∩B ⊆ (ϕ|B)−1((ϕ|B)({b})) ∈ B/ϕ|B.

Suppose b′ ∈ (ϕ|B)−1((ϕ|B)({b})). Then there is a c such that (c, b′) ∈ (ϕ|B)−1 and

(b, c) ∈ ϕ|B, so (b′, c) ∈ ϕ|B, so (b, c) ∈ ϕ, (b′, c) ∈ ϕ and b′ ∈ B ⊆ B̄.

(b, c) ∈ ϕ and b ∈ B̄, so (b, c) ∈ ϕ|B̄. (b′, c) ∈ ϕ and b′ ∈ B̄, so (b′, c) ∈ ϕ|B̄. So

b′ ∈ (ϕ|B̄)−1((ϕ|B̄)({b})) = P .

So b′ ∈ P ∩B and P ∩B = (ϕ|B)−1((ϕ|B)({b})) ∈ B/ϕ|B.

Lemma 6.1.2. Suppose A is a set, B ⊆ A, ϕ is a function with domain A, B̄ = ϕ−1ϕ(B).

Then the function ψ : B̄/ϕ|B̄ → B/ϕ|B such that for each P ∈ B̄/ϕ|B̄, ψ(P ) = P ∩ B, is a

bijection.

Proof: Suppose each of P and Q is in B̄/ϕ|B̄, and ψ(P ) = ψ(Q).

P ∩B = ψ(P ) = ψ(Q) = Q ∩B.
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Since each of P∩B and Q∩B is in B/ϕ|B, each is nonempty. So there is a b ∈ P∩B = Q∩B.

b ∈ P ∩B ⊆ P and b ∈ Q∩B ⊆ Q. P and Q intersect, and B̄/ϕ|B̄ is a partition, so P = Q.

So ψ is an injection.

Suppose H ∈ B/ϕ|B. H is nonempty, so there is a b ∈ H and H = (ϕ|B)−1((ϕ|B)({b})).

(b, ϕ(b)) ∈ ϕ and b ∈ B ⊆ B̄, so b ∈ (ϕ|B̄)−1((ϕ|B̄)({b})) ∈ B̄/ϕ|B̄.

ψ((ϕ|B̄)−1((ϕ|B̄)({b}))) = (ϕ|B̄)−1((ϕ|B̄)({b})) ∩B.

b ∈ H = (ϕ|B)−1((ϕ|B)({b})) ⊆ B and b ∈ (ϕ|B̄)−1((ϕ|B̄)({b})), so b ∈ (ϕ|B̄)−1((ϕ|B̄)({b}))∩

B = ψ((ϕ|B̄)−1((ϕ|B̄)({b})))

Since B/ϕ|B is a partition, and p ∈ H ∈ B/ϕ|B and b ∈ ψ((ϕ|B̄)−1((ϕ|B̄)({b}))) ∈ B/ϕ|B,

it must be the case that H = ψ((ϕ|B̄)−1((ϕ|B̄)({b}))).

So (ϕ|B̄)−1((ϕ|B̄)({b})) is an element of B̄/ϕ|B̄ such that ψ((ϕ|B̄)−1((ϕ|B̄)({b}))) = H.

So ψ is a surjection.

So ψ is a bijection.

Theorem 6.1. Suppose M = (A,R) is an I-structure, B ⊆ A, ϕ is a function with domain

A, B̄ = ϕ−1ϕ(B), M |B̄/ϕ|B̄ = (B̄/ϕB̄,S), ψ : B̄/ϕ|B̄ → B/ϕ|B is the function such that for

each P ∈ B̄/ϕ|B̄, ψ(P ) = P ∩ B, and N = (B/ϕ|B, T ) where T is the set of relations to
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which a relation t belongs if and only if there is a relation s ∈ S such that ψs = t. Then

M |B̄/ϕ|B̄ ∼= N .

Proof:

1. ψ is preservative: By definition of N , if s ∈ S, then ψs ∈ T .

2. ψ is saturating: By definition of N , if t ∈ T , then there is a relation s ∈ S such that

ψs = t.

3. ψ is a bijection: By Lemma 6.1.2, ψ is a bijection.

So by Theorem 1.19, ψ is an isomorphism.

So M |B̄/ϕ|B̄ ∼= N .
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Chapter 7

Third Isomorphism Theorem

Definition Suppose A is a set, and each of α and β is a function with domain A such that

α−1α ⊆ β−1β. Then define β/α : A/α→ A/β such that if P ∈ A/α, then β/α(P ) = πβπ
−1
α .

Lemma 7.1.1. Suppose M = (A,R) is an I-structure, and each of α and β is a homomor-

phism with domain A such that α−1α ⊆ β−1β. Then β/α is an epimorphism between M/α

and M/β.

Proof: By Lemma 5.1.2, πα is an epimorphism.

By Lemma 5.1.2, πβ is an epimorphism.

Suppose P ∈ A/α.

πβπ
−1
α (P ) = πβπ

−1
α (πα(P )) = πβπ

−1
α πα(P ) = πβ(P ) = β−1(β(P )) = β/α(P )

So β/α = πβπ
−1
α .

So by Theorem 4.1 and Lemma 4.1.1, β/α = πβπ
−1
α is an epimorphism between M/α and

M/β.

Lemma 7.1.2. Suppose A is a set, and each of α and β is a function with domain A such

that α−1α = β−1β. Then A/α = A/β and β/α = 1A/α.
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Proof:

A/α ={α−1(α({a}))
∣∣ a ∈ A} = {α−1α({a})

∣∣ a ∈ A}
={β−1β({a})

∣∣ a ∈ A} = {β−1(β({a}))
∣∣ a ∈ A} = A/β

So A/α = A/β.

Suppose P ∈ A/α.

β/α(P ) = β−1(β(P )) = β−1β(P ) = α−1α(P ) = α−1(α(P )) = P

So β/α = 1A/α.

Lemma 7.1.3. Suppose each of A and B is a set, and each of α and β : A → B is a

function with domain A such that α−1α ⊆ β−1β and γ is a function with domain B. Then

α−1α ⊆ (γβ)−1γβ.

Proof:

α−1α ⊆ β−1β = β−11Bβ ⊆ β−1γ−1γβ = (γβ)−1γβ

So α−1α ⊆ (γβ)−1γβ.

Lemma 7.1.4. Suppose A is a set, and each of P and Q is a partition, and γ : P → Q

is a surjection such that for each P ∈ P, P ⊆ γ(P ). Suppose π1 : A → P is the function

such that for each a ∈ A, π1(a) is the part in P to which a belongs, and π2 : A → Q is the

function such that for each a ∈ A, π2(a) is the part in Q to which a belongs. Then π2 = γπ1.

Proof: Suppose a ∈ A.

a ∈ π1(a) ⊆ γ(π1(a)) = γπ1(a)
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So γπ1(a) is the part in Q to which a belongs. So γπ1(a) = π2(a).

Since this is true for all a ∈ A, π2 = γπ1.

Lemma 7.1.5. Suppose each of M = (A,R), N = (B,S), and L = (P , T ) is an I-structure,

where P is a partition of A, and α : A → B is a homomorphism, and γ : A/α → P is an

epimorphism between M/α and L such that for all P ∈ A/α, P ⊆ γ(P ). Then there is a

homomorphism β from M such that α−1α ⊆ β−1β and γ = β/α.

Proof: Define β : A→ P such that β = γπα.

Since α is a homomorphism, πα is an epimorphism. γ is a homomorphism. β = γπα is

the composition of a homomorphism with an epimorphism, so β is a homomorphism.

Suppose (a1, a2) ∈ α−1α. By Lemma 2.6, α−1α = π−1
α πα.

(a1, a2) ∈ α−1α = π−1
α πα = π−1

α 1A/απα ⊆ π−1
α γ−1γπα = (γπα)−1γπα = β−1β

So α−1α ⊆ β−1β.

Define π : A → P is the function such that for each a ∈ A, π(a) is the part in P to

which a belongs.

By Lemma 7.1.4, β = γπα = π.

By Theorem 2.8, π = πβ.

So P = A/β.

70



π−1
α πα = α−1α ⊆ β−1β = π−1

β πβ.

So β/α = πβπ
−1
α is the unique homomorphism such that (πβπ

−1
α )πα = πβ = β.

γπα = β, so γ = πβπ
−1
α = β/α.

So β is a homomorphism from M such that α−1α ⊆ β−1β and γ = β/α.

Theorem 7.1. Suppose M = (A,R) is an I-structure, and each of α and β is a homomor-

phism with domain A such that α−1α ⊆ β−1β. Then M/α
/
β/α ∼= M/β.

Proof: By Lemma 7.1.1 β/α is an epimorphism between M/α and M/β.

So by Theorem 5.1, M/α
/
β/α ∼= M/β.
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Chapter 8

Correspondence Theorem

Definition Suppose A is a set, B is a subset of A, and ϕ is a function with domain A. The

statement that B is ϕ exact means B = ϕ−1ϕ(B).

Definition Suppose M = (A,R) is an I-structure, N = (B,S) is an I-substructure of M ,

and ϕ is a function with domain A. The statement that N is ϕ exact means B = ϕ−1ϕ(B).

Lemma 8.1.1. Suppose A is a set, f is a function with domain A, B ⊆ A such that

B = f−1f(B), and b ∈ B. Then f |−1
B f |B({b}) = f−1f({b}).

Proof:

p ∈ f |−1
B f |B({b})

⇐⇒ (b, p) ∈ f |−1
B f |B

⇐⇒ p ∈ B = f−1f(B) and (b, p) ∈ f−1f

⇐⇒ p ∈ f−1f({b})

Lemma 8.1.2. Suppose A is a set, f is a function with domain A, B ⊆ A such that

B = f−1f(B), and b ∈ B. Then πf |B(b) = πf (b).

Proof:

πf |B(b) = f |−1
B f |B({b}) = f−1f({b}) = πf (b)

Lemma 8.1.3. Suppose A is a set, f is a function with domain A, B ⊆ A such that

B = f−1f(B), r is a relation such that im(r) ⊆ B/(ϕ|B). Then π−1
f |Br = π−1

f r.
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Proof:

(i, b) ∈ π−1
f |Br

⇐⇒ ∃P such that (i, P ) ∈ r and (P, b) ∈ π−1
f |B

⇐⇒ (i, πf |B(b)) ∈ r

⇐⇒ (i, πf (b)) ∈ r and b ∈ B

⇐⇒ ∃P such that (i, P ) ∈ r and (P, b) ∈ π−1
f (so P ∈ B/ϕ|B)

⇐⇒ (i, b) ∈ π−1
f r

So π−1
f |Br = π−1

f r.

Lemma 8.1.4. Suppose M = (A,R) is an I-structure, ϕ is a function with domain A,

and N = (B, R̂) is a ϕ exact I-substructure of M . Then N/(ϕ|B) = (B/(ϕ|B), T ) is the

I-substructure of M/ϕ = (A/ϕ,S) induced by B/(ϕ|B).

Proof: Suppose P ∈ B/(ϕ|B). Then P = ϕ|−1
B ϕ|B({b}) for some b in B.

P = ϕ|−1
B ϕ|B({b}) = ϕ−1ϕ({b}) ∈ A/ϕ

So B/(ϕ|B) ⊆ A/ϕ.

Note T is the relation set to which a relation t belongs if and only if there is an r̂ ∈ R̂

such that t = πϕ|B r̂.

Suppose (B/(ϕ|B), Ŝ) is the I-substructure of M/ϕ induced by B/(ϕ|B). Note Ŝ is the
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relation set to which a relation ŝ belongs if and only if ŝ ∈ S and im(ŝ) ⊆ B/ϕB.

k ∈ T

⇐⇒ ∃r ∈ R̂ (so im(r) ⊆ B) such that k = πϕr = πϕ|Br

⇐⇒ ∃r ∈ R such that πϕr = k and im(r) ⊆ B

⇐⇒ ∃r ∈ R such that πϕr = k and im(k) ⊆ B/(ϕ|B)

( =⇒ : im(k) = im(πϕ|Br) = πϕ|B(im(r)) ⊆ πϕ|B(B) = B/(ϕ|B))

(⇐= : im(r) ⊆ im(π−1
ϕ πϕr) = im(π−1

ϕ k) = π−1
ϕ (im(k)) ⊆ π−1

ϕ (πϕ(B)) = ϕ−1ϕ(B) = B)

⇐⇒ k ∈ S and im(k) ⊆ B/(ϕ|B)

⇐⇒ k ∈ Ŝ

So T = Ŝ, and N/(ϕ|B) = (B/(ϕ|B), T ) = (B/(ϕ|B), Ŝ), the I-substructure of M/ϕ induced

by B/(ϕ|B).

Theorem 8.1. Suppose M = (A,R) is an I-structure, and ϕ is a function with domain

A. Then there is a bijection between the set of ϕ exact I-substructures of M , and the set of

I-substructures of M/ϕ.

Proof: Suppose S is the set of ϕ exact I-substructures of M .

Suppose T is the set of I-substructures of M/ϕ.

Define f : S → T such that for each N = (B, R̂) in S, f(N) = N/(ϕ|B).

By Lemma 8.1.4, f(N) ∈ T .

1. f is an injection: Suppose each of N1 = (B1,R1) and N2 = (B2,R2) is in S, and

f(N1) = f(N2). Note each of N1 and N2 is ϕ exact, so B1 = ϕ−1ϕ(B1) and B2 =
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ϕ−1ϕ(B2).

(B1/(ϕ|B1), R̂1) = N1/(ϕ|B1) = f(N1) = f(N2) = N2/(ϕ|B2) = (B2/(ϕ|B2), R̂2)

So B1/(ϕ|B1) = B2/(ϕ|B2).

πϕ(B1) = πϕ|B1
(B1) = B1/(ϕ|B1) =B2/(ϕ|B2) = πϕ|B2

(B2) = πϕ(B2)

=⇒ B1 = ϕ−1ϕ(B1) = π−1
ϕ πϕ(B1) =π−1

ϕ πϕ(B2) = ϕ−1ϕ(B2) = B2

R1 = {r
∣∣ r ∈ R and im(r) ⊆ B1} = {r

∣∣ r ∈ R and im(r) ⊆ B2} = R2

So N1 = (B1,R1) = (B2,R2) = N2.

So f is an injection.

2. f is a surjection: Suppose (P , T ) is an I-substructure of M/ϕ = (A/ϕ, R̄) (namely

the I-substructure of M/ϕ induced by P).

Then P ⊆ A/ϕ = πϕ(A) so π−1
ϕ (P) ⊆ π−1

ϕ (πϕ(A)) = A.

Define B = π−1
ϕ (P).

Consider L = (B,S) where S is the relation set to which a relation s belongs if

and only if s ∈ R and im(s) ⊆ B. So L is an I-substructure of M .

B = π−1
ϕ (P) = π−1

ϕ πϕπ
−1
ϕ (P) = π−1

ϕ πϕ(π−1
ϕ (P)) = ϕ−1ϕ(π−1

ϕ (P)) = ϕ−1ϕ(B)
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So L is ϕ exact.

So L ∈ S.

B/(ϕ|B) = πϕ|B(B) = πϕ(B) = πϕ(π−1
ϕ (P)) = P

By Lemma 8.1.4, L/(ϕ|B) is the I-substructure of M/ϕ induced by B/(ϕ|B) = P .

So f(L) = L/(ϕ|B) = (P , T ).

So f is a surjection.

Thus f is a bijection.

Definition Suppose M = (A,R) is an I-structure, N = (B,S) is an understructure of M ,

and ϕ is a function with domain A. The statement that N is ϕ exact means B = ϕ−1ϕ(B).

Lemma 8.2.1. Suppose each of A and B is a set, r is a relation, and B ⊆ dom(r). Then

r(A×B) = A× r(B).

Proof:

(a, c) ∈ r(A×B)

⇐⇒ ∃b such that (a, b) ∈ A×B and (b, c) ∈ r

⇐⇒ a ∈ A and ∃b ∈ B ⊆ dom(r) such that c ∈ r({b})

⇐⇒ (a, c) ∈ A× r(B)

So r(A×B) = A× r(B).

Lemma 8.2.2. Suppose r is a relation, I is a set such that dom(r) ⊆ I, ϕ is a function, and

B is a set such that B ⊆ dom(ϕ) and B is ϕ exact. Then πϕ(r∩(I×B)) = (πϕr)∩(πϕ(I×B)).
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Proof:

(i, P ) ∈ πϕ(r ∩ (I ×B))

⇐⇒ ∃b such that (b, P ) ∈ πϕ and (i, b) ∈ r ∩ (I ×B)

⇐⇒ ∃b such that (b, P ) ∈ πϕ and (i, b) ∈ r and (i, b) ∈ I ×B

⇐⇒ ∃b1, b2 such that (b1, P ) ∈ πϕ, (b2, P ) ∈ πϕ, (i, b1) ∈ r, and (i, b2) ∈ I ×B

(⇐= : b1 ∈ ϕ−1ϕ({b2}) ⊆ ϕ−1ϕ(B) = B =⇒ (i, b1) ∈ I ×B)

⇐⇒ (i, P ) ∈ πϕr and (i, P ) ∈ πϕ(I ×B)

⇐⇒ (i, P ) ∈ (πϕr) ∩ (πϕ(I ×B))

So πϕ(r ∩ (I ×B)) = (πϕr) ∩ (πϕ(I ×B)).

Lemma 8.2.3. Suppose each of f and g is a relation, I is a set such that dom(f) ⊆ I and

dom(g) ⊆ I, ϕ is a function such that im(f) ⊆ dom(ϕ)/ϕ and im(g) ⊆ dom(ϕ)/ϕ, and B

is a set such that B ⊆ dom(ϕ) and B is ϕ exact. Then f = g ∩ (I ×B/(ϕ|B)) if and only if

π−1
ϕ f = (π−1

ϕ g) ∩ (I ×B).

Proof: Suppose f = g ∩ (I ×B/(ϕ|B)).

π−1
ϕ f = π−1

ϕ (g ∩ (I ×B/(ϕ|B))) = (π−1
ϕ g) ∩ (π−1

ϕ (I × πϕ|B(B))) = (π−1
ϕ g) ∩ (π−1

ϕ (I × πϕ(B)))

= (π−1
ϕ g) ∩ (I × π−1

ϕ πϕ(B)) = (π−1
ϕ g) ∩ (I × ϕ−1ϕ(B)) = (π−1

ϕ g) ∩ (I ×B)

So π−1
ϕ f = (π−1

ϕ g) ∩ (I ×B).

Suppose π−1
ϕ f = (π−1

ϕ g) ∩ (I ×B).

f = πϕπ
−1
ϕ f = πϕ((π−1

ϕ g) ∩ (I ×B)) = (πϕπ
−1
ϕ g) ∩ (πϕ(I ×B)) = g ∩ (I × πϕ(B))

= g ∩ (I × πϕ|B(B)) = g ∩ (I ×B/(ϕ|B))
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So f = g ∩ (I ×B/(ϕ|B)).

Lemma 8.2.4. Suppose M = (A,R) is an I-structure, ϕ is a cohomomorphism from M ,

and N = (B, R̂) is a ϕ exact understructure of M . Then N//ϕ|B = (B/(ϕ|B), T ) is the

understructure of M//ϕ = (A/ϕ,S) induced by B/(ϕ|B).

Proof: Suppose P ∈ B/(ϕ|B). Then P = ϕ|−1
B ϕ|B({b}) for some b in B.

P = ϕ|−1
B ϕ|B({b}) = ϕ−1ϕ({b}) ∈ A/ϕ

So B/(ϕ|B) ⊆ A/ϕ.

Note T is the relation set to which a relation t belongs if and only if t ⊆ I × B/(ϕ|B)

and π−1
ϕ|B t ∈ R̂.

Suppose (B/(ϕ|B), Ŝ) is the understructure of M//ϕ induced by B/(ϕ|B). Note Ŝ is the

relation set to which a relation ŝ belongs if and only if there is an s ∈ S such that

ŝ = s ∩ (I ×B/ϕB).

k ∈ Ŝ

⇐⇒ ∃s ∈ S such that k = s ∩ (I ×B/(ϕ|B))

⇐⇒ ∃s ∈ S such that π−1
ϕ s ∩ (I ×B) = π−1

ϕ k

⇐⇒ ∃r ∈ R such that r ∩ (I ×B) = π−1
ϕ k

⇐⇒ π−1
ϕ k ∈ R̂ and π−1

ϕ k ⊆ I ×B

⇐⇒ π−1
ϕ|Bk ∈ R̂ and k ⊆ I ×B/(ϕ|B)

⇐⇒ k ∈ T

So Ŝ = T , and N//ϕ|B = (B/(ϕ|B), T ) = (B/(ϕ|B), Ŝ), the understructure of M//ϕ induced

by B/(ϕ|B).
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Example Suppose M = (A,R) is an I-structure, ϕ is a function with domain A, and

N = (B, R̂) is a ϕ exact understructure ofM . ThenN//ϕ|B = (B/(ϕ|B), T ) is not necessarily

the understructure of M//ϕ = (A/ϕ,S) induced by B/(ϕ|B).

Proof: Define the following:

M = ({a1, a2, b}, {0}, {{(0, a1), (0, b)}})

B = {b}

ϕ = {(a1, x), (a2, x), (b, y)}

N = ({b}, {0}, {{(0, b)}}), a ϕ exact understructure of M

Then πϕ = {(a1, {a1, a2}), (a2, {a1, a2}), (b, {b})}

M//ϕ = ({{a1, a2}, {b}}, {0},∅)

ϕ|B = {(0, b)}

B/(ϕ|B) = {{b}}

N//(ϕ|B) = ({{b}}, {0}, {{(0, {b})}})

({{b}}, {0},∅) is the understructure of M//ϕ induced by B/(ϕ|B).

N//ϕ|B 6= ({{b}}, {0},∅)

Theorem 8.2. Suppose M = (A,R) is an I-structure, and ϕ is a cohomomorphism from

M . Then there is a bijection between the set of ϕ exact understructures of M , and the set

of understructures of M//ϕ.

Proof: Suppose S is the set of ϕ exact understructures of M .

Suppose T is the set of understructures of M//ϕ.

Define f : S → T such that for each N = (B, R̂) in S, f(N) = N//(ϕ|B).
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By Lemma 8.2.4, f(N) ∈ T .

1. f is an injection: Suppose each of N1 = (B1,R1) and N2 = (B2,R2) is in S, and

f(N1) = f(N2). Note each of N1 and N2 is ϕ exact, so B1 = ϕ−1ϕ(B1) and B2 =

ϕ−1ϕ(B2).

(B1/(ϕ|B1), R̂1) = N1//(ϕ|B1) = f(N1) = f(N2) = N2//(ϕ|B2) = (B2/(ϕ|B2), R̂2)

So B1/(ϕ|B1) = B2/(ϕ|B2).

πϕ(B1) = πϕ|B1
(B1) = B1/(ϕ|B1) =B2/(ϕ|B2) = πϕ|B2

(B2) = πϕ(B2)

=⇒ B1 = ϕ−1ϕ(B1) = π−1
ϕ πϕ(B1) =π−1

ϕ πϕ(B2) = ϕ−1ϕ(B2) = B2

R1 = {r̂
∣∣ ∃r ∈ R such that r̂ = r ∩ (I ×B1)} = {r̂

∣∣ ∃r ∈ R such that r̂ = r ∩ (I ×B2)} = R2

So N1 = (B1,R1) = (B2,R2) = N2.

So f is an injection.

2. f is a surjection: Suppose (P , T ) is an understructure of M//ϕ = (A/ϕ, R̄) (namely,

the understructure of M//ϕ induced by P).

Then P ⊆ A/ϕ = πϕ(A) so π−1
ϕ (P) ⊆ π−1

ϕ (πϕ(A)) = A.

Define B = π−1
ϕ (P).

Consider L = (B,S) where S is the relation set to which a relation s belongs if

and only if there is an r ∈ R such that s = r ∩ (I × B). So L is an understructure of
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M .

B = π−1
ϕ (P) = π−1

ϕ πϕπ
−1
ϕ (P) = π−1

ϕ πϕ(π−1
ϕ (P)) = ϕ−1ϕ(π−1

ϕ (P)) = ϕ−1ϕ(B)

So L is ϕ exact.

So L ∈ S.

B/(ϕ|B) = πϕ|B(B) = πϕ(B) = πϕ(π−1
ϕ (P)) = P

By Lemma 8.2.4, L//(ϕ|B) is the understructure of M//ϕ induced by B/(ϕ|B) = P .

So f(L) = L//(ϕ|B) = (P , T ).

So f is a surjection.

Thus f is a bijection.
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