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Abstract

A general format in which the mathematical structure of topological spaces, algebraic
structures, and graphs can be expressed is described. A generalization of the fundamental

homomorphism theorem and the isomorphism theorems of algebra is proved.
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Chapter 1

Definitions

Definition The statement that r is a relation means r is a set of ordered pairs. If S is a set
then 7(.S) denotes the set to which an element y belongs if and only if there is an element

x € S such that (z,y) € r.

Theorem 1.1. Suppose each of r and s is a relation, r C s, each of U and V is a set, and

UCV. Then r(U) C s(V).

Proof:
yer(U)
= Jz € U such that (z,y) € r
— x €V and (z,y) €s
=y cs(V)
So r(U) C s(V). L

Definition Suppose each of r and s is a relation. The composition of r and s is the relation
to which a pair (x, z) belongs if and only if there is an element y such that (x,y) € s and

(y,z) € r. Denote the composition of r and s by rs.

Theorem 1.2. Suppose each of r, s, and t is a relation. Then (rs)t = r(st).



Proof:

(a,d) € (rs)t
<= Jc such that (a,c) € rs and (¢, d) € t
<= Jb and a c such that (a,b) € r, (b,c) € s, and (¢,d) € ¢
<= Jb such that (a,b) € r and (b,d) € st

< (a,d) € r(st)

So (rs)t = r(st). O

Theorem 1.3. Suppose each of f, g, r, and s is a relation, f C g, andr Cs. Thenrf C sg.

Proof:
(z,2) erf
—> Jy such that (z,y) € f and (y,2) € r
= (z,y) €gand (y,2) € s
= (z,2) € sg
So rf C sg. []

Definition Suppose r is a relation. The inverse of r is the relation to which a pair (z,y)

belongs if and only if (y, ) is in 7. Denote the inverse of 7 by 7.

Theorem 1.4. Suppose r is a relation. Then (r~1)~! =r.



Proof:

So (r™H)~t=r. O

Theorem 1.5. Suppose each of r and s is a relation. Then (rs)~' = s~ 1r7%

Proof:
(z,2) € (rs)™
> (z,x) €TS8
<= Jy such that (y,z) € r and (z,y) € s
<= Jy such that (z,7) € r ' and (y,2) € 57"
= (v,2) € st
So (rs)~t =s71r L. O

Definition Suppose r is a relation. The statement that D is the domain of r means D is
the set to which an element = belongs if and only if x is the first element of a pair in r.

Denote the domain of r by dom(r).

Definition Suppose r is a relation. The statement that R is the image of r means R is
the set to which an element z belongs if and only if x is the second element of a pair in r.

Denote the image of r by im(r).

Theorem 1.6. Suppose r is a relation. Then im(r) = r(dom(r)).



Proof:

y € im(r)
< I(z,y) er
<= Jz € dom(r) such that (z,y) € r

<y € r(dom(r))

So im(r) = r(dom(r)). O

Theorem 1.7. Suppose each of r and s is a relation. Then im(rs) = r(im(s)).

Proof:
z € im(rs)
< J(z,2) €75
<= Jy such that (y,z) € r and I(z,y) € s
<= Jy € im(s) such that (y,z) € r
<= z € r(im(s))
So im(rs) = r(im(s)). O

Definition The statement that f s a function means f is a relation such that no two pairs

in f share the same first element. If (x,y) € f, then denote y by f(z).

Theorem 1.8. Suppose each of f and g is a function. Then fg is a function.



Proof:

(x,21) € fg and (z,29) € fg
— Jy; such that (z,y1) € g and (y1,21) € f
and Jy, such that (x,ys) € g and (ys, 22) € f
= 1y =y and (y1, 21) € f and (y1, 22) = (Y2, 22) € f (since g is a function)

= 21 = 25 (since f is a function)

So no two pairs of fg contain the first element. So fg is a function. O]
Definition The statement that f is an injection means f is a function and f~ is a function.
Theorem 1.9. Suppose each of f and g is an injection. Then fg is a injection.
Proof:
f is an injection and ¢ is an injection
— f is a function, ¢ is a function, f~' is a function, and ¢! is a function

— fgis a function and (fg) ™' = ¢ 'f ' is a function

=—> fg is an injection [

Definition The statement that f is a surjection with respect to Y means f is a function

with image Y.

Theorem 1.10. Suppose S is a set, and f is a surjection with respect to S, and g is a

surjection with respect to dom(f). Then fg is a surjection with respect to S.



Proof:

ze S
<= z € im(f)
<= Jy € dom(f) = im(g) such that (y,z) € f
<= Jz € dom(g) and Jy € dom(f) such that (z,y) € g and (y,z2) € f
<= Jz € dom(g) such that (z,z) € fg

< z €im(fg)

So S =1im(fg) and thus fg is a surjection with respect to S. O

Definition The statement that f is a bijection with respect to Y means f is an injection

and a surjection with respect to Y.

Definition The notation » : X — Y means r is a relation and X is the domain of r and
the image of r is a subset of Y, and henceforth if the terms surjection or bijection are used

to describe r they will be understood to be with respect to Y.
Definition Suppose A is a set. Denote by 14 the relation {(a,a) | a € A}.
Theorem 1.11. Suppose A is a set. Then 14 = 121.
Proof:
(av CL) € 1A
< (a,a) € 1,
So 14 =13" O

Definition Suppose A is a set and r is a relation. Denote by 7|4 the relation to which a

pair (z,y) belongs if and only if (z,y) € r and x € A.
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Theorem 1.12. Suppose A is a set and r is a relation. Then r = r|a if and only if

dom(r) C A.

Proof: Suppose r = r|4.

a € dom(r)
= Jb such that (a,b) € r
= 3b such that (a,b) € 7|4

=—ac A

So dom(r) C A.

Suppose dom(r) C A.

(a,b) €r
<= a € dom(r) C A and (a,b) € r

< (a,b) €7|a

Sor=r|a. O
Theorem 1.13. Suppose A is a set, and r is a relation. Then rls = 1r|4.

Proof:

(x,2) €rla
<= Jy such that (z,y) € 14 and (y,2) € r
<= Jy such that x € A, z =y, and (y,2) € r
< xe€Aand (z,2) €r

< (1,2) €7r|a



Sorla =r]|a. O

Definition Suppose A is a set and r is a relation. Denote by 7|* the relation to which a

pair (z,y) belongs if and only if (z,y) € r and y € A.

Theorem 1.14. Suppose A is a set and r is a relation. Then r = r|* if and only if

im(r) C A.

Proof: Suppose r = r|4.

a € im(r)
= Jb such that (b,a) € r
— 3b such that (b,a) € r|*

=—ac A

So im(r) C A.

Suppose im(r) C A.

(b,a) €r
<= a€im(r) C Aand (b,a) €r

= (b,a) € r|*

So r =14 O

Theorem 1.15. Suppose A is a set, and r is a relation. Then 1,7 = r|4.



Proof:

(x,2) € lar
<= Jy such that (z,y) € r and (y,2) € 1a
<= Jy such that (z,y) €r,y € A, and y = 2z
< (r,z) erand z € A

— (z,2)er[?

So 147 = 1|4 O

Theorem 1.16. Suppose each of A and B is a set, and f : A — B is a function. Then

14 C f7Yf, and 14 = f~Lf if and only if f is an injection.

Proof:
(a,a) € 14
—ac A
= (a, f(a)) € f and (f(a),a) €
= (a,0) € f7'f
Sols C f7f.

Suppose 14 = f71f.

(byay) € f~' and (b,ay) € f!
= (ay,b) € fand (b,ay) € f~*
— (a1,a2) € f7'f =14

:>a1:a2



So f~!is a function and thus f is an injection.

Suppose f is an injection.

(a1,a2) € [ f
— 3b such that (a;,b) € f and (b, ay) € f*
— (b,a1) € f~' and (b,ay) € 7!
= a; = ay (since f~! is a function)

— (al,ag) €1y

So f71f C 14, and thus 14 = f1f. O

Theorem 1.17. Suppose each of A and B is a set, and f : A — B is a function. Then

ff Y Clg, and ff~' =15 if and only if f is a surjection.

Proof: Suppose each of by and b, is in B.

(b, bo) € ff7
— Ja € A such that (by,a) € f~' and (a,by) € f
= (a,by) € f and (a,b) € f
= b; = by (since f is a function)

e (bl,bg) € 1B

So ff1C1p.

Suppose ff~! = 15.
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Suppose b € B.

(bab) clp= ffil
= Ja € A such that (b,a) € f~" and (a,b) € f

= a € A such that b= f(a) C im(f)

So f is a surjection.

Suppose f is a surjection.

Suppose (b,b) € 15 (so b € B). There is an a € A such that f(a) = b.

(a,b) € f and (b,a) € f*

= (b,b) € ff

So 1z C ff~!, and thus ff~! = 15.
Theorem 1.18. Suppose A is a set. Then 14 is a bijection with respect to A.
Proof:

1. 14 is an injection:

la=1alg=1,"14

So 14 is an injection.

2. 14 is a surjection with respect to A:

1a=1a4lg=1413"
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So A =1im(1,4) and thus 1,4 is a surjection with respect to A.

So 14 is a bijection with respect to A. O

Definition Suppose each of A and B is a set. Denote by A x B the relation to which an

ordered pair (a,b) belongs if and only if € A and b € B.

Definition Let I be a set. The statement that (A, R) is an [-structure means A is a set,
and R is a set of relations each of which is a subset of I x A. A is called the base set of

(A,R) and I is called the index set of (A, R).

Definition Suppose each of (A,R) and (B,S) is an [-structure. The statement that a

function o : A — B is preservative means for each r € R, ar € §.

Definition Suppose each of (A,R) and (B,S) is an [-structure. The statement that a
function a : A — B is saturating means for each s € S such that im(s) C im(«), there is an

r € R such that ar = s.

Definition Suppose each of (A,R) and (B,S) is an [-structure. The statement that a

function o : A — B is continuous means for each s € S, a~'s € R.

Definition Suppose each of (A,R) and (B,S) is an [-structure. The statement that a
function o : A — B is conservative means for each r € R, there is an s € § such that

im(s) C im(a) and a™ts = r.

Definition Suppose ¢ : A — B is a function and each of (A, R) and (B, S) is an [-structure.
The statement that ¢ is an I-structure homomorphism from (A,R) to (B,S) means ¢ is

preservative and saturating.

Definition Suppose ¢ : A — B is a function and each of (A, R) and (B, S) is an I-structure.
The statement that ¢ is an I-structure cohomomorphism from (A, R) to (B,S) means ¢ is

continuous and conservative.
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Definition Suppose ¢ : A — B is a function and each of (A,R) and (B,S) is an I-
structure. The statement that ¢ is an I-structure isomorphism from (A, R) to (B,S) means

© is a continuous, preservative bijection.

Definition The statement that an I-structure (A,R) and an [-structure (B,S) are iso-

morphic means there is an isomorphism ¢ : A — B from (A,R) to (B,S). In this case

(A,R) = (B,S) denotes “(A,R) and (B,S) are isomorphic”.

Lemma 1.19.1. Suppose each of (A, R) and (B,S) is an I-structure and ¢ : A — B is a

continuous function. Then ¢ is saturating.

Proof: Suppose s € S such that im(s) C im(¢p).

¢ is continuous, so ¢ 's € R.

So p7's € R and s = Lim(p)s = gy 's. So ¢ is saturating. O

Theorem 1.19. Suppose each of (A,R) and (B,S) is an I-structure and o : A — B is a
function. Then « is a bijective I-structure homomorphism if and only if a is an I-structure

1somorphism.

Proof: Suppose « is a bijective I-structure homomorphism.

« is bijective and preservative, so it remains only to show that « is continuous.

Suppose s € S. « is surjective, so im(s) € B = im(«). « is saturating, so there is an

r € R such that ar = s.

-1

als=a!

ar=1,r=reR

So « is continuous and is thus an isomorphism.

13



Suppose « is an I-structure isomorphism.

« is bijective and preservative. « is continuous, so by Lemma [1.19.1} « is saturating.

So « is a bijective homomorphism. O

Lemma 1.20.1. Suppose each of (A, R) and (B,S) is an I-structure and ¢ : A — B is a

conservative function. Then @ is preservative.

Proof: Suppose r € R.

¢ is conservative, so there is an s € S such that im(s) C im(p) and ¢ ~'s = .

So pr = ls = lLips=s€S.

So ¢ is preservative. O]

Theorem 1.20. Suppose each of (A,R) and (B,S) is an I-structure and o : A — B is a

cohomomorphism. Then o is a homomorphism.

Proof: « is conservative, so by Lemma [1.20.1] « is preservative.

« is continuous, so by Lemma [1.19.1] « is saturating.

« is both preservative and saturating, so « is a homomorphism. O

Theorem 1.21. Suppose each of (A, R) and (B,S) is an I-structure and o : A — B is a

function. Then « is a bijective cohomomorphism if and only if o is an isomorphism.

Proof: Suppose « is a bijective cohomomorphism.

14



« is bijective and continuous. « is conservative, so by Lemma [1.20.1} « is preservative.

So « is an isomorphism.

Suppose « is an isomorphism.

« is bijective and continuous, so it remains only to show that « is conservative.

Suppose r € R. « is preservative, so ar € S. im(ar) C im(«).

atar=14r=r

So « is conservative and is thus a bijective cohomomorphism. O]

Definition Suppose each of (A,R) and (B,S) is an [-structure. The statement that a
function ¢ : A — B is a structure monomorphism means ¢ is an injective [-structure

homomorphism.

Definition Suppose each of (4,R) and (B,S) is an [-structure. The statement that a
function ¢ : A — B is a structure epimorphism means ¢ is a surjective [-structure homo-

morphism.

Theorem 1.22. Suppose each of M = (A,R), N = (B,S), L = (C,T) is an I-structure,
a: A — B is an epimorphism from M to N, and 6 : B — C' is a homomorphism from N

to L. Then Ba is a homomorphism from M to L.
Proof: Suppose r € R. « is preservative, so ar € S. (8 is preservative, so far € T. So P«

is preservative.

Suppose t € T such that im(¢) C im(S«). [ is saturating, and im(¢) C im(Sa) C im(fB), so

15



there is an s € § such that s = t.

im(s) € B = im(«), so there is an 7 € R such that ar = s.

So r € R such that far = s =t. So [« is saturating.

Ba is both preservative and saturating, and is thus a homomorphism. O

Definition Suppose each of (A,R) and (B,S) is an [-structure. The statement that a
function ¢ : A — B is a structure comonomorphism means ¢ is an injective [-structure

cohomomorphism.

Definition Suppose each of (A,R) and (B,S) is an [-structure. The statement that a
function ¢ : A — B is a structure coepimorphism means ¢ is a surjective [-structure coho-

momorphism.

Theorem 1.23. Suppose each of M = (A,R), N = (B,S), L = (C,T) is an I-structure,
a: A — B is an coepimorphism from M to N, and 5 : B — C is a cohomomorphism from

N to L. Then Ba is a cohomomorphism from M to L.

Proof: Suppose t € T. [ is continuous, so 7't € S. « is continuous, so (Ba)~'t =

a~tB71t € R. So Ba is continuous.

Suppose r € R. « is conservative, so there is an s € S such that im(s) C im(a) and

a "S=T.

s € 8, so there is an ¢t € T such that im(¢) C im(8) and 87t = s.

So t € T such that (Ba)~'t = a7 7't = a~ls = r. So Ba is conservative.

16



Ba is both continuous and conservative, and is thus a cohomomorphism.
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Chapter 2

Equivalence Relations
Definition Suppose 7 is a relation. The statement that r is symmetric means r—* C r.

Lemma 2.1.1. Let r be a symmetric relation. Then r—1 = r.

Proof:

Sor Cr~!andsincer=tCr,rt=r, O

Definition Suppose r is a relation. The statement that r is transitive means rr C r.

Definition Suppose 7 is a relation. The statement that r is an equivalence relation means

r is symmetric and transitive.

Definition Suppose r is a relation. The statement that r is reflexive with respect to A

means 14 C r.

Lemma 2.1.2. Suppose r is an equivalence relation. Then r is reflexive with respect to

dom(r).

18



Proof:

(CL,CL) S 1dom(r)
<= a € dom(r)

<= Jb such that (a,b) € r

<= b such that (a,b) € 7 and (b,a) € r ' =7

< (a,a) € rr
S0 Lgom(ry € 17 C 7. O
Remark Suppose A is a set. Then 14 is an equivalence relation.
Lemma 2.1.3. Suppose r is a reflexive relation. Then for each a € dom(r), a € r({a}).

Proof: Suppose a € dom(r).

Laom(r) € 7, 80 a € {a} = laom(n({a}) € r({a}). O
Lemma 2.1.4. Suppose r is an equivalence relation. Then rr =r.

Proof:
r= ]-im(r)r = ]-dom(rfl)r = 1d0m(7”)r Crr

So r C rr. Then since rr Cr, rr =r. O

Definition Suppose A is a set. The statement that P is a partition of A means if P € P

then P C A, and if a € A then a belongs to exactly one element of P.

Theorem 2.1. Suppose r is an equivalence relation. Then r induces a partition P of dom(r)

by P ={r({a}) | a € dom(r)}, each member of which is nonempty.

19



Proof:

pPeP
= P =r({a}) for some a € dom(r)

= r({a}) =r~'({a}) € dom(r)

So each member of P is a subset of dom(r).

Suppose a € dom(r).

a € {a} = Laom(r({a}) € r({a})

So a belongs to one member of P.

Suppose b € dom(r) and a € r({b}). Then (b,a) € r and r = r~* so (a,b) € r.

per({a}) per({b})
= (a,p) €T — (b,p) €r
= (b,p) €rr — (a,p) €rr
= (b,p) € — (a,p) €T
— per({b}) — per({a})

So r({a}) = r({b}).

So a belongs to no more than one member of P.

So P is a partition.

20



If P € P, then P = r({a}) for some a € dom(r) so by Lemma a € r({a}) = P,

so P is nonempty.

So each member of P is nonempty. O

Theorem 2.2. Suppose A is a set and f is a function with domain A. Then f~'f is an

equivalence relation on A.
Proof:
L f1f is symmetric: (f71 )70 = f(f) = fo1f
2. f7Uf is transitive: fTUffTNf = [T i f = f7Nf
So f~'f is an equivalence relation. n

Definition Suppose A is a set and f is a function with domain A. Then denote by A/ f the
partition of A {f~*f({a}) | a € A}.

Theorem 2.3. Suppose A is a set and r is an equivalence relation with domain A. Suppose

P is the partition of A induced by r, and m : A — P is the function which assigns each

member of A to its part in P. Then r = 'x.

Proof:
(a1,az) €7
<= JP € P such that a; € P and ay, € P
<= 3P € P such that (a;, P) € 7 and (as, P) € 7
<= 3P € P such that (a;, P) € 7 and (P,a,) € 7
> (a1,a3) €77
Sor=m"lm. O

21



Definition Suppose f is a function with domain A. Denote by 7y : A — A/ f the function

such that for each a € A, m¢(a) is the part in A/f to which a belongs.

Theorem 2.4. Suppose A is a set, and f is a function with domain A. Then 7y is a

surjection with respect to A/ f.

Proof: Suppose P € A/f. P is nonempty, so there is an a € P, and by the definition of 7y,

ns(a) = P. So 7y is a surjection with respect to A/ f. O

Theorem 2.5. Suppose A is a set, and f is a function with domain A. Then for each a € A,

mr(a) = f~1f({a}).

Proof: For each a € A, m¢(a) is the part in A/f to which a belongs.

By Lemma [2.1.3] a belongs to f~'f({a}) € A/f, so m(a) = ' f({a}). O

Theorem 2.6. Suppose A is a set, and [ is a function with domain A. Then 7Tf_17Tf = f71f.

Proof:

(a1,as) € w;lwf
— 3P € A/f such that (a1, P) € 7y and (P, ay) € 7"
= (a1, P) € s and (aq, P) € 7
= [ ({fla)}) = Ff({an}) = 7p(a) = P =mp(az) = [ f({aa}) = 7 ({F(a2)})
= fla1) = Lim(n) f(ar) = [ 7" flar) = £ f(a2) = Lim(p) f(a2) = f(az)
= (a1, f(a1)) € f and (f(a1),a2) € f7

— (a1,a2) € ['f

22



So 7T]717Tf C f1f.

(a1,a2) € f7'f
= mp(a) = [ (f({a}) = f 1 (F({az})) = 7f(az)
= (a1, m¢(a1)) € 7 and (ag, f(ay)) € ¢
— (a1, 75(a1)) € 7y and (mf(a1), as) € 7,

= (a1,a3) € 7T;17Tf
So f71f C 7T;17Tf.
So 7rJ717Tf = f71f. O

Theorem 2.7. Suppose A is a set, and f is a function with domain A. Then A/my = A/ f.

Proof:

Alf = f({a}) |a € A} = {n'r;({a}) [a € A} = Ajn; O

Theorem 2.8. Suppose A is a set, and [ is a function with domain A. Then 7., = ;.

Proof: Suppose a € A.

mp(a) = f~ f({a}) = 7 'mp({a}) = 7r, (a)

Since this is true for each a € A, 7, = 7. O

Theorem 2.9. Suppose A is a set, and f is a function with domain A. Then if P € A/f
then P = ({P}) and m;(P) = {P}.
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Proof: Suppose P € A/f and a € P.

P=mp(a) = ff({a}) = m; mp({a}) = 7, (mp({a})) = 7 ({mp(a)}) = 7 ({P})

So P = ;' ({P}).

P =n;'({P})
= 7p(P) =ms(n; ({P})) = mpmy {({P}) = 1a/s({P}) = {P}
So 7;(P) = {P}. O

Theorem 2.10. Suppose A is a set, [ is a function with domain A, and each of a1 and as

is in A. Then the following are equivalent:
1. There is a P € A/f such that a; and ay belong to P.
2. my(ar) = my(a)
3. ay € W;l(ﬂ'f({al}))
4. (ay,a9) € 7r]?17rf
5. (ay,a9) € f7Lf
6. az € f71(f({ar}))
7. flar) = f(as)

Proof: 1 — 2:
Suppose there is a P € A/f such that a; and ay belong to P.

a; € Psoms(a;) =P and ay € P so m¢(ag) = P.
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So mp(ar) = P = ms(as). O

Suppose 7¢(ar) = ms(az).

14 C 7r]717rf

= {az} = 1a({a2}) C mp'ms({az}) = 7w ({mp(az)}) = 7 ({mp(ar)}) = 77 (my({an}))

— ay e (n({ar})) O

3 = 4:

Suppose a € 7' (m7({a1})) = 7 'mp({as}).

Then there is a pair (z,a2) € 7r}717rf such that = € {a,}. So x = ay and (a;,as) € 7r]717rf. O

Suppose (a1, ay) € 7r]717rf.

7Tf_17rf = f71f,s0 (ay,ay) € 7TJT17Tf = f71f. O

Suppose (ai,as) € f71f.
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Then a; € {a;} such that (aj,az) € f71f,s0 a2 € f f({ar}) = [~ f({ar})). O

Suppose az € f7(f({a1}))-

az € 7 (f({a1}))
— {as} C [ f({ar})
— {f(a2)} = f({a2}) C f(fT f{ar})) = FF f{ar}) = Limn f({ar}) = F{ar}) = {f(a1)}

— fla1) = flaz) O

7T — 1:

Suppose f(a1) = f(as).

Consider f~!f({a1}) € A/f.

By Lemma [2.1.3f

a1 € [ f({ar})
and az € f~' f({az}) = F ({f(a2)}) = F {fla)}) = T (f{ar})) = F f{ar})

So f7'f({a1}) € A/f such that a; and ay belong to f~!f({a;}). O
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Chapter 3

Structurizations
Remark In this chapter 1 is used set theoretically, i.e., 1 = {0}.

Definition Suppose (X, 1) is a topological space[2]. Then the structurization of (X, ) is

the 1-structure (X, 7), where 7 is {1 x S | S € 7}.

Example Consider the set R with the standard topology 7. Then the structurization of
(R, 7r) is (R,R), where R = {1 x S | S € 7p}. E.g., 1 x (=3,00) € R.

Theorem 3.1. Suppose each of (X, 7x) and (Y, 1y) is a topological space, and (X, 7x) is the
structurization of (X, 7x), and (Y, 7y) is the structurization of (Y,7y). Then a: X — Y s

preservative if and only if « is an open function with respect to (X, 7x) and (Y, 1y ).

Proof: Suppose a: X — Y is preservative.

Suppose S € 7x. 1 xS € 7x. Definer = 1xS. ar € 7y so ar = 1 x T for some T

inry. alS]=afr[l]] =ar[l] =T € 1v.

So « is an open function with respect to (X, 7x) and (Y, 7y).

Suppose « : X — Y is an open function.

Suppose r € 7x. Then r = 1 x S for some S in 7x. Since « is open, a[S| € 1y, so

ar =a(l xS)=1xalS] € 1y.

So « is preservative with respect to the 1-structures (X, 7x) and (Y, 7y). ]
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Theorem 3.2. Suppose each of (X, 7x) and (Y, 1y) is a topological space, and (X, 7x) is the
structurization of (X, 7x), and (Y, 7y) is the structurization of (Y,7y). Then o : X =Y 1is

continuous if and only if a is a continuous function with respect to (X, 7x) and (Y, 1y).

Proof: Suppose a: X — Y is (structurally) continuous.

Suppose T € 7y. Then 1 X T € 7y. Define s =1 x T. a™ts € 7x so a™H(T) = o ![s[1]] =

a~ts[l] € 7x.

So « is a (topologically) continuous function with respect to (X, 7x) and (Y, 7y).

Suppose «: X — Y is a (topologically) continuous function.

Suppose s € 7y. Then s = 1 x T for some T' € 1y. Since « is continuous, a~![T] € 7x, so

als=a ' (1xT)=1xa '[T] € 7x

So « is (structurally) continuous with respect to the 1-structures (X, 7x) and (Y,7y). O

Theorem 3.3. Suppose each of (X, 7x) and (Y, 7y) is a topological space, and the 1-structure
(X, Tx) is the structurization of (X, Tx), and the 1-structure (Y, Ty) is the structurization of
(Y,1y). Then (X,7x) and (Y, 7y) are homeomorphic if and only if (X,7x) and (Y, 7y) are

1somorphic.

Proof: Let ¢ : A — B be a function.

¢ is a homeomorphism
<= ¢ is bijective, open, and (topologically) continuous
<= ¢ is bijective, preservative, and (structurally) continuous (Thm [3.1, Thm [3.2)

<= ¢ is a l-structure isomorphism [J
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Lemma 3.4.1. Suppose J is a nonempty set, and for each j € J, r; is a relation, and ¢ is

a function. Then gp’l(ﬂjej ;) = ﬂjeJ(Sflrj)-

Proof:

(z,y) € o' ([ )

jeJ

<= Jz such that (z,y) € ¢ ! and (z,2) € ﬂ r;
jeJ

<= 3z such that (2,y) € ¢ ' and (z,2) € r; for each j € J

< (z,y) € ¢ 'r; for each j € J

> (z,y) € ﬂ(sﬂ_lrj)

jeJ
So Wﬁl(mjej i) = ﬂjeJ(sﬁflrj)- O

Lemma 3.4.2. Suppose J is a set, and for each j € J r; is a relation, and ¢ is a function.

Then o(Ujes i) = Ujes(ers)-

Proof:
(z,y) € o(| )
jeJ
<= Jz such that (z,y) € ¢ and (x,z) € U r;
jeJ

<= Jz such that (z,y) € ¢ and (z,2) € r; for some j € J

<= (x,y) € ¢r; for some j € J

= (z,9) € |J(ery)

jeJ

So SD(U]'GJ i) = UjeJ(‘PTj)- [
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Theorem 3.4. Suppose each of (A, R) and (B,S) is a 1-structure, ¢ : A — B is a co-
epimorphism, and (A, R) is the structurization of a topological space. Then (B,S) is the

structurization of a topological space.

Proof: ¢ is a cohomomorphism, so by Theorem © is a homomorphism.
1. @ € R, and g is preservative, so @ = o € S.

2. 1 x A€ R,sosuppose r =1 x A. ¢ is surjective, and ¢ is preservative, so 1 x B =

IxplA] =p(1 x A) =¢reS.

3. Suppose J is a set, and for each j € J, s; € S.

¢ is continuous, so for each j € J, p's; € R. (A, R) is the structurization of a

topological space, so UjeJ o ts; €R.

© is preservative and surjective, so by Lemma [3.4.2]

Usj = U(p(,p’lsj = ng(p’lsj €S

jedJ jeJ JjeJ

4. Suppose each of sy and s; is in S. ¢ is continuous, so each of p~!'sy and ¢~ ls
is in R. (A, R) is the structurization of a topological space, so by Lemma [3.4.1}

0 (soNsy) = (p~tsg) N(p~tsy) € R.

¢ is preservative and surjective, so so N sy = @ *(sgMNsy) €S.
So by the above, (B,S) is the structurization of a topological space.

Theorem 3.5. Suppose each of (A,R) and (B,S) is a I-structure, ¢ : A — B is a
comonomorphism, and (B,S) is the structurization of a topological space. Then (A, R)

15 the structurization of a topological space.
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Proof: Suppose (B,S) is the structurization of a topological space.
1. @ €8, and ¢ is continuous, so @ = p '@ € R.

2. 1 x B €S, sosuppose s =1 x B. @ is continuous, so 1 x A =1 x ¢ '[B] = ¢71(1 x
B)=¢pl'seR.

3. Suppose J is a set, and for each j € J, r; € R.

¢ is preservative, so for each j € J, ¢r; € S. (B,S) is the structurization of a

topological space, so UjGJ or; € S.

© is continuous and injective, so by Lemma |3.4.2]

Uri=eelJr)=¢(Jery) erR

jeJ jeJ jeJ

4. Suppose each of 7y and 7 is in R. ¢ is preservative, so each of ¢ry and ¢r; is in S.

(B,S) is the structurization of a topological space, so (¢rg) N (¢ry) € S.

¢ is continuous and injective, so by Lemma ro N1y = (e torg) N (p~tery) =

e ((¢ro) N (¢r1)) € R.

So by the above, (A, R) is the structurization of a topological space. n

Definition The statement that F is a type means F is a function with domain a set of

symbols and image a subset of the cardinal numbers[3].

Definition Let F be a type. The statement that A = (A, F) is an algebra of type F means
A is a set, F is a set of functions each having image a subset of A, and there is a bijection
g : dom(F) — F such that for each f € dom(F), dom(g(f)) = A7W). For each f € dom(F),
denote g(f) by f2.
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Definition Let A = (A, F') be an algebra of type F. Define I to be the set of symbols
U redom() ({pf} Uqu]_—(f){Qf}>. The structurization of (A, F') is the I-structure (A, R)
where R is the set of functions to which a function r belongs if and only if there is an f in
dom(F) and an element a in A7) such that the domain of r is {p;} U Userpiart and for

each element ¢ in F(f), r(q;) = a(q), and r(ps) = fA(a).

Example Suppose F = {(e,0),(7*,1),(-,2)} is the type associated with groups. e is the
symbol corresponding with the 0-ary function that for each group, picks out the identity el-
ement of the group, ~! is the symbol corresponding with the unary function that associates
each element of the group with its inverse, and - is the symbol corresponding with the binary

function of the group.
Consider the dihedral group Dg = {¢, 0,0?%, 7,70, T0%}.

Then the structurization of Dg is the I-structure (Dg, R), with I = {p,p_1,0_1,p.,0.,1.}
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and

}

{(pe. ©)},

{(p—b 6)7 (0—1’ 6)}7 {(p—lv 0)7 (0—17 02)}7 {(p—lv 02)7 (0—17 U)}a

{(p—l, 7_)7 (0—1, 7_)}7 {(p—l, TO_)» (0—17 TJ)}7 {(p—lv 7_0-2)7 (0—1’ 7_0-2)}7

{(p,),(0.,6), (1. )}, {(p.,0), (0.,0), (L, )}, {(p., 0*). (0., %), (1, ) },
{(p,7),(0.,7), (1. )}, {(p.. 70), (0., 70), (L, )} {(p., 707), (0., 707), (1, €) },

{(p.,0).(0.,), (L, 0)}, {(p..0%), (0, 0), (1, 0)},{(p., €), (0., %), (L., 0)},

{(p.,70),(0,7), (1, 0)}, {(p., 70%), (0., 70), (L., 0)}, {(p., 7). (0., 707), (L, )},

(P10, (0,6), (1,0}, {(p©), (0,0), (1,07}, {(p. 0), (0,07, (1, 0%)},

{(p70%), (0.7), (L, o))}, {(p 7). (0,70, (1, 0°)}, {(p,70), (0., 70, (1., 0)},

{(p.,7),(0.,€), (1. 7)}, {(p., 70%), (0.,0), (1, 7)} {(p., 70). (0., 0%), (1., 7)},
{(p, ), (0.,7), (1. 7)} {(p., 0%), (0., 70), (1, 7)} {(p., 0), (0., 70%), (1., 7)},

{(p.,70).(0.,0), (L, 7o)}, {(p.. 7). (0., 0), (1, 7o)}, {(p., 70*), (0., %), (L., 70)},

{(p,0).(0.,7), (L, 70)}, {(p. €). (0., 70), (L, 7o)}, {(p., 0*), (0., 70%), (L., 70)},

{(p.,70%).(0.,), (L, 70*)}, {(p., 70), (0., 0), (1, 7o)}, {(p., 7). (0., %), (1., 707)},
{(p.,0%),(0.,7), (L, 70*)},{(p.,0), (0., 70), (1, 7o)}, {(p., €), (0., 70?), (1., 707) }
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Theorem 3.6. Suppose each of A = (A, F) and B = (B, G) is an algebra of type F, and
(A, R) is the structurization of (A, F) and (B,S) is the structurization of (B,G). Then a

function o : A — B is an algebraic homomorphism if and only if it is a|J pcgom(r) ({pf} U quf(f){qf}> -

structure homomorphism.

Proof: Suppose ¢ is an algebraic homomorphism.

Suppose 7 € R. Then there is an f in dom(F) and an element a in A7) such that

the domain of 7 is {ps} U U,cxs){as} and for each element ¢ in F(f), r(¢;) = a(q), and
r(ps) = f*(a).

¢a is an element in B¥)| so there is an s € S such that the domain of s is {ps VU, erplart

and for each element ¢ in F(f), s(qr) = alq) = v(alq)) = ¢(r(qr)) = ¢r(qs), and
s(pr) = [B(pa) = p(f2(a)) = @(r(ps)) = ¢r(py).

So or = s € § and g is preservative.
Suppose s € S such that im(s) C im(¢p).

There is an f in dom(F) and an element b in B¥) such that the domain of s is {p;} U

Uger(piar}: and for each element ¢ in F(f), s(qr) = b(q), and s(py) = 1B(b).

Moreover, for each ¢ € F(f), since b(q) = s(qr) € im(s) C im(y), there is an a, € A

such that b(q) = ¢(ay).

Define a : F(f) — A such that for each ¢ € F(f), a(q) = a,. ais an element in A7) so there

is an r € R such that the domain of r is {ps} U,z {ar} and for each element ¢ in F(f),

qeF

r(qr) = alq), and r(py) = f*(a). Note for each ¢ € F(f), b(q) = ¢(aq) = ¢(alq)) = pa(q),
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so b = ga.

For each ¢ in F(f), s(qr) = b(q) = pa(q) = ¢(a(q)) = ¢(r(qr)) = ¢r(qy).
s(py) = [P (b) = fB(pa) = o(fA(a)) = ¢(r(ps)) = or(py).

So r is a relation in R such that ¢r = s, and ¢ is saturating.

Thus ¢ is an U rcqom(r) <{pf} U quf(f){qf})—structure homomorphism.

Suppose ¢ is an U teqom(r) <{pf} U qu]_-(f){qf}>—structure homomorphism.

Suppose f is in dom(F) and a is an element in A*(/).

Then there is an r € R such that such that the domain of r is {ps} U Uz {ar} and

for each element ¢ in F(f), r(qf) = a(q), and r(p;) = fA(a).

@ is an [-structure homomorphism, so pr € S.

Since ¢r is in S, and has domain {ps} U U,z {ar}, and for each ¢ € F(f), ¢r(qs) =
o(r(qr)) = ¢lalq)) = walq), f is the member of dom(F) and ga is the element in B\
such that or(ps) = fB(pa).

o(f2(a)) = o(r(ps)) = er(ps) = fB(va).

So ¢ is an algebraic homomorphism. O
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Theorem 3.7. Suppose each of A = (A, F) and B = (B, G) is an algebra of type F, and
(A, R) is the structurization of (A, F) and (B,S) is the structurization of (B,G). Then a

function o : A — B is an algebraic isomorphism if and only if it is an \J s gom(r) ({pf} U quf(f){qf}) -

structure isomorphism.

Proof: Suppose ¢ : A — B is a function.

@ is an algebraic isomorphism
<= (p is a bijective algebraic homomorphism
<= ¢ is a bijective structure homomorphism

<= @ is an [-structure isomorphism []

Remark Graph will hereafter be used to refer to graphs which may contain loops and

multiple edges[4].
Definition Let G be a graph. Define V(G) to be the vertex set of G.
Definition Let G be a graph. Define F(G) to be the edge set of G.

Definition Let G be a graph. The structurization of G is the N\{0}-structure (A4, R)
where R is the set of relations to which a relation f: N\{0} — V(G) belongs if and only
if f contains either one or two pairs each having the same first element n, and there are at
least n edges joining the vertices in f[{n}]. (If there is exactly one pair (n,v) in f, then the

n edges correspond to n loops at v).

Theorem 3.8. Suppose each of G and H is a graph. Suppose the N\{0}-structure (V(G),R)
is the structurization of G and the N\{0}-structure (V(H),S) is the structurization of H.
Then the graphs G and H are isomorphic if and only if (V(G),R) and (V(H),S) are iso-

morphic.
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Proof: Suppose G and H are isomorphic, and ¢ : V(G) — V(H) is a graph isomorphism.

© is a bijection.

Suppose r € R. Suppose r contains exactly one element (n,v). Then there are at least
n loops at vertex v in G, so there are at least n loops at vertex ¢(v) in H. Thus there is a
s € § such that s contains exactly one element (n,¢(v)), so s[{n}] = p[r[{n}]] = ¢r[{n}].

So s = r.

Suppose r contains exactly two elements (n,v) and (n,w). Then there are at least n edges
connecting vertices v and w in G, so there are at least n edges connecting vertices ¢(v) and

@(w) in H. Thus there is a s € S such that s contains exactly two elements (n, ¢(v)) and

(n, p(w)), so s[{n}] = plr{n}] = pri{n}]. So s = ¢r.

So in both cases there is a s in S such that s = ¢r, so ¢ is preservative.

Suppose s € S. Suppose s contains exactly one element (n,v). Then there are at least n loops
at vertex w in H, so there are at least n loops at vertex ¢ ~!(v) in G. Thus thereisar € R
such that r contains exactly one element (n, o~ (v)), so r[{n}] = o Ys[{n}]] = ¢ 's[{n}].

Sor=pls.

Suppose s contains exactly two elements (n,v) and (n,w). Then there are at least n edges

connecting vertices v and w in H, so there are at least n edges connecting vertices ¢ ~!(v) and

¢ '(w) in G. Thus there is a r € R such that r contains exactly two elements (n, ¢~ (v))

and (n, o~ (w)), so r{n}] = ¢~ [s[{n}]] = ¢7's[{n}]. Sor=¢7's.

So ¢ is continuous and thus ¢ is a N\{0}-structure isomorphism. ]
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Suppose (V(G),R) and (V(H),S) are isomorphic and o : V(G) — V(H) is a N\{0}-structure

isomorphism and hence a bijection.

Suppose n € N, and there are exactly n loops at vertex v in G. If n # 0 then there is
a relation r € R such that r = {(n,v)}, and {(n,a(v))} = ar € S, so there are at least n

loops in H at vertex a(v).

Suppose s = {(n+1,a(v))}. If s €S, then {(n+1,v)} = {(n+1,a (a(v)))} =a's € R,
and thus there are n 4 1 loops at v, contradicting the assumption that there are exactly n
loops at v in G. So s ¢ S, and thus there are not n + 1 loops at a(v). So there are exactly

n loops at a(v) in H.

Suppose n € N, and there are exactly n edges connecting vertices v and w in G. If n # 0 then
there is a relation € R such that r = {(n,v), (n,w)}, and {(n,a(v)), (n,a(w))} = ar € S,

so there are at least n edges in H connecting vertices a(v) and a(w).

Suppose s = {(n+ 1,a(v)), (n + 1,a(w))}. If s € S, then {(n 4+ 1,v),(n+ 1,w)} = {(n +
LaHa())),(n+1,a(a(w)))} = a s € R, and thus there are n + 1 edges connecting v
and w, contradicting the assumption that there are exactly n edges connecting v and w in
G. So s ¢ S, and thus there are not n + 1 edges connecting a(v) and a(w). So there are

exactly n edges connecting «(v) and o(w) in H.

So « is a graph isomorphism and G and H are isomorphic. O
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Chapter 4

Fundamental (Co)Homomorphism Theorems

Lemma 4.1.1. Suppose each of A, B, and C' is a set, a : A — B is a surjection, 3 : A — C

is a function, and o ta C B71B. Then Ba~! is a unique function with domain B such that

(Ba™Ha = B. Moreover, im(fa~") = im(3).

Proof:

(b,c1) € Bat and (b, ) € Ba
= Ja; € A such that (b,a;) € o' and (ay,¢;) € 8
and Jay € A such that (b,az) € ™' and (ay, c3) € 38
= (a1,b) € a and (b,az) € a™ ', ¢; = B(ay1), ez = Blay)
= (ay,a3) € 'a C BB, ¢ = Blar), ¢ = Blay)
= Jc € O such that (a1,c) € B and (c,az) € 7, ¢ = Blar), c2 = Blay)
= (a1,¢) € p and (ag,c) € B, ¢1 = B(ar), ¢ = Plag)

= c1 = fB(a1) = c = B(az) = ¢

So Ba~! is a function.
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Note 14 C a tav and 857! C 1c.

(Ba o= pBlaa) CHB'B) = (BB C 1cf =2
B =14 CAa"a) = (Ba N

So (Ba™H)a = 3.

Suppose v is a function with domain B such that ya = 3. « is a surjection, so aa™ = 13

yo=p

= 7 =19lp =qaa"' = fa”"

So Ba~! is the only function having domain B with the property that (Ba™1)a = 3.

im(Ba™!) = B(im(a™)) = f(dom(a)) = B(A) = im(p)

So im(Ba~!) = im(8). O

Corollary 4.1.1. Suppose each of A, B, and C is a set, a : A — B is a surjection,
B:A— Cis a function, and o ta C B713. Then 8 is a surjection if and only if Ba™! is a

surjection with respect to C'.

Proof: Suppose [ is a surjection.

By Lemma 4.1.1, 8o~ is a function.

C =im(8) = im(Ba™!), so Ba~! is a surjection with respect to C'.

1

Suppose Sa~ " is a surjection with respect to C.
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C = im(Ba™t) = im(B3), so 3 is a surjection. O

Corollary 4.1.2. Suppose each of A, B, and C is a set, a : A — B is a surjection,
B:A— C is a function, and a o C B71B. Then a ta = 718 if and only if Ba™! is an

mjection.

Proof: Suppose o la = 714.

(ﬁa‘l)_lﬁa_l =af 1 Bat =aataa = 1515 =15

So Ba~! is an injection.

1

Suppose Ba~! is an injection. Note Ba~ta = 8

BB =148""8Catap B =atap H(Bara) =a (Ba ) T Bata = a Ipa = a

So 8718 C a'a and thus o~ la = B715. O

Lemma 4.1.2. Suppose each of (A,R), (B,S), and (C,T) is an I-structure, o : A — B
is a saturating surjection, 3 : A — C is a preservative function, and o ‘o C B~13. Then

Ba~t is preservative.

Proof: Suppose s € S§. im(s) C B = im(«), so since « is saturating, there is an r € R
such that ar = s. [ is preservative, so fr € 7. By Lemma {4.1.1, Ba™la = B, so

Ba~ts = Batar = Br.

Thus fa~ts = Br € T. So Ba~! is preservative. O

Lemma 4.1.3. Suppose each of (A,R), (B,S), and (C,T) is an I-structure, o : A — B
is a preservative surjection,  : A — C is a saturating function, and o o C B713. Then

Ba~t is saturating.
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Proof: Suppose t € T and im(¢) C im(Ba~!) = im(3). B is saturating, so there is an r € R

such that gr =t. « is preservative, so ar € S.

By Lemma [4.1.1] Ba™la = 3, so (Ba™)(ar) = (Ba a)r = Br =t.

1

So ar is a relation in S such that (Ba™!)ar =t. So Ba™! is saturating. O

Theorem 4.1. Suppose each of (A, R), (B,S), and (C,T) is an I-structure, o : A — B is
an epimorphism, 3 : A — C is a homomorphism, and o o C B713. Then Ba™! is a unique

homomorphism with domain B such that Bata = 3.

Proof: By Lemma [4.1.1], Ba~! is a unique function with domain B such that Sa~la = 3.

« is a homomorphism and thus is saturating, and 8 is a homomorphism and thus is preser-

vative, so by Lemma |4.1.2] Sa~! is preservative.

« is a homomorphism and thus is preservative, and [ is a homomorphism and thus is

saturating, so by Lemma [4.1.3] fa~! is saturating.

Since Ba~! is both preservative and saturating, Sa~! is an I-structure homomorphism. [J

Lemma 4.2.1. Suppose each of (A,R), (B,S), and (C,T) is an I-structure, o : A — B
is a conservative surjection, 3 : A — C is a continuous function, and o ‘o C B713. Then

Ba~t is continuous.

Proof: Suppose t € T. [ is continuous, so, 7't € R. « is conservative, so there is an

s € S such that im(s) C im(a) and a~t's = 8~ 't. «a is surjective, so aa™ = 1p.

BaHH=apt=aals=1ps=s
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Thus (Ba™')"'t =s€ 8. So fa! is continuous. O

Lemma 4.2.2. Suppose each of (A,R), (B,S), and (C,T) is an I-structure, o : A — B
is a continuous surjection, 3 : A — C is a conservative function, and o ‘o C 8713. Then

Ba~! is conservative.

Proof: Suppose s € S. « is continuous, so a~'s € R. 3 is conservative, so there isat € T

such that im(¢) C im(83) and 7't = a~'s. « is surjective, so aa™ = 1p.

BaH) t=ap t=aals=1ps=3s

Thus (Ba™)7't = s, and ¢ is a relation in 7 such that im(¢) C im(8) = im(Ba~!) and

(Ba™!)"'t = 5. So Ba~! is conservative. O

Theorem 4.2. Suppose each of (A,R), (B,S), and (C,T) is an I-structure, o : A — B
is a coepimorphism, 8 : A — C is a cohomomorphism, and o o C B713. Then Ba™! is a

unique cohomomorphism with domain B such that Ba"ta = 5.

Proof: By Lemma [4.1.1], Ba~! is a unique function with domain B such that Sa~la = 3.

« is a cohomomorphism and thus is conservative, and [ is a cohomomorphism and thus

is continuous, so by Lemma 4.2.1] Sa~! is continuous.

« is a cohomomorphism and thus is continuous, and § is a cohomomorphism and thus

is conservative, so by Lemma [4.2.2, Ba~! is conservative.

Since Sa~! is both continuous and conservative, Ba~! is an I-structure cohomomorphism.

]

Lemma 4.3.1. Suppose each of o and 3 is a function. Then aa™' C BB~L if and only if

im(a) C im(f3).
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Proof: Suppose aa~! C 3371

im(a) = im(Ling) = im(aa™) Cim(B87") = im(Ling) = im(B)

Suppose im(«) C im(f).

aa_l - ]-im(a) C ]-nn(ﬁ) = BB_I O

Lemma 4.3.2. Suppose each of A, B, and C' is a set, a : B — A is a function, :C — A
is an injection, and aa~t C BB, Then B 1o is a unique function with image a subset of

C such that B(f~'a) = a. Moreover, dom(8~'a) = dom(«).

Proof:

(byc1) € Bl and (b,cy) € B
— Ja; € A such that (b,a;) € a and (a1,¢;) € f7F
and Ja, € A such that (b,ay) € a and (ag, ;) € B7°
—> a; = ay since « is a function
= (¢1,a1) € B and (¢9,a1) € B

= ] = ¢y since [ is an injection

So A7 la is a function.
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Note 371 C 14 and aa™ = L)

0 = Tim@a = (@™ C(B87Y)a = A(Ba)

So B(B7ta) = a.

Suppose 7 is a function with image a subset of C such that vy = «. Note since J is

an injection, S8 = 1¢.

fy =«

—==1lgy=p"18y=p""a
So 87« is the only function with image a subset of C' with the property that 3(87'a) = a.

b € dom(B ')
— Jc € C such that (b,c) € 3 'a
— Ja € A such that (b,a) € a and (a,c) € 57!

— b € dom(«)

So dom(B~*a) C dom(a).

b € dom(«)
= Ja € A such that (b,a) € a = 3(87'a)
= Jc € O such that (c,a) € B and (b,c) € B '

= b € dom(B'a)
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So dom(a) € dom(B~'e), and thus dom(S~'a) = dom(a). O

Corollary 4.3.1. Suppose each of A, B, and C' is a set, « : B — A is a function, 5 : C — A

is an injection, and o™t C BB7L. Then « is an injection if and only if B~ o is an injection.

Proof: Suppose « is an injection. im(a)) C im(f).

(B ra) B la=a 8 la=a inpga=ata =15

So B~ 'a is an injection.

Suppose 3~ 'a is an injection.

ala= ofllim(ﬁ)a =a '8 a= () B a =15

So « is an injection. O]

Corollary 4.3.2. Suppose each of A, B, and C is a set, o : B — A is a function, : C — A
is an injection, and aa™t C BB7L. Then aa™t = BB~ if and only if B~ a is a surjection

with respect to C.

Proof: Suppose aa™! = 3371

Bla(f o) =8 aa B =47188718=1clc = 1c

So A~ la is a surjection with respect to C.

Suppose 3~ 1a is a surjection with respect to C.

BB~ =B1leB T =887 (B a) T BT = BB aa BB = Ly e i) = aa”t O
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Lemma 4.3.3. Suppose each of (A,R), (B,S), and (C,T) is an I-structure, a« : B — A is
a preservative function, B : C — A is a saturating injection, and ca™r C B, Then B 1o

18 preservative.

Proof: Suppose s € S. « is preservative, so as € R. im(as) C im(«) C im(f), so since

is saturating, there is a t € T such that gt = as.

Thus B las = 718t =14t =t € T. So B~ is preservative. O

Lemma 4.3.4. Suppose each of (A, R), (B,S), and (C,T) is an I-structure, « : B — A is
a saturating function, B : C — A is a preservative injection, and ca™r C 37, Then B o

18 saturating.

Proof: Suppose ¢t € T such that im(t) C im(B8 'a). B is preservative, so t € R.
im(ft) = B(im(t)) C B(im(B'a)) = im(BB'a) C im(l4a) = im(«), so since « is sat-

urating, there is an s € § such that as = jt.

So s is a relation in S such that 87 las = 718t = 14t = t. So 7'« is saturating. O]

Theorem 4.3. Suppose each of (A,R), (B,S), and (C,T) is an I-structure, o : B — A
is a homomorphism, B : C — A is a monomorphism, and ca™ C BB~L. Then f~'a is a

unique homomorphism with image a subset of C such that 85 'a = a.

Proof: By Lemma 4.3.2, 87 'a is a unique function with image a subset of C' such that

BB o = a.

« is a homomorphism and thus is preservative, and [ is a homomorphism and thus is

saturating, so by Lemma [4.3.3, 371« is preservative.
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« is a homomorphism and thus is saturating, and g is a homomorphism and thus is preser-

vative, so by Lemma 4.3.4] 57!« is saturating.

Since 37 1av is both preservative and saturating, 5~ 'o is an I-structure homomorphism. [J

Lemma 4.4.1. Suppose each of (A,R), (B,S), and (C,T) is an I-structure, o : B — A
is a continuous function, B : C' — A is a conservative injection, and ao™ C BB, Then

Bl is continuous.

Proof: Suppose t € T. (3 is conservative, so there is an r € R such that im(r) C im(/) and

B~'r =t. o is continuous, so a”'r € S.

(B la) t=apt=a"1887r = a_llim(g)r =alr

Thus (87 'a) 't =a 'r € S. So 8 'a is continuous. O

Lemma 4.4.2. Suppose each of (A,R), (B,S), and (C,T) is an I-structure, o : B — A
is a conservative function, 5 : C'— A is a continuous injection, and im(«) C im(f5). Then

B~ Yo is conservative.

Proof: Suppose s € S. «a is conservative, so there is an r € R such that im(r) C im(«) C

im(f3) and s = a~!r. § is continuous, so 3~'r € T.

B ra) '8 r =o' r =a im@r=a"lr=s
Thus (87 'a)~!87r = s, and B7'r is a relation in T such that im(8~'r) = B~ (im(r)) C
B~ (im(a)) = im(B8ta) and (87 'a) 1B r = s. So B~ ta is conservative.

Theorem 4.4. Suppose each of (A, R), (B,S), and (C,T) is an I-structure, o : B — A is
a cohomomorphism, : C — A is a comonomorphism, and aa™ C BB~L. Then B~ a is a

unique cohomomorphism with image a subset of C' such that B3 'a = a.
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Proof: By Lemma 4.3.2) 8 'a is a unique function with image a subset of C' such that

B a = a.

« is a cohomomorphism and thus is continuous, and S is a cohomomorphism and thus

is conservative, so by Lemma [4.4.1, 37« is continuous.

a is a cohomomorphism and thus is conservative, and [ is a cohomomorphism and thus

is continuous, so by Lemma 4.4.2, 57!« is conservative.

Since S~ ! is both continuous and conservative, 37« is an I-structure cohomomorphism.

]
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Chapter 5

First Isomorphism Theorems

Definition Suppose M = (A, R) is an [-structure and B C A. The I-substructure of M
induced by B is the I-structure (B ,7’:’,) where R is the set of relations to which a relation
7 belongs if and only if # € R and im(#) € B. Denote the I-structure (B,R) by M|B.
The statement that (C,7) is an [-substructure of M means C C A and (C,7T) is the I-

substructure of M induced by C.

Definition Suppose M = (A, R) is an [-structure and ¢ is a function with domain A.
Suppose R is the set of relations to which a relation 7 belongs if and only if there is a

relation r € R such that 7 = m,r. Denote the I-structure (4/p, R) by M/¢.

Lemma 5.1.1. Suppose each of A and B is a set, and ¢ : A — B is a function. Then gmr;l

is a bijection with respect to im(¢p).

Proof: By Theorem T, is a surjection with respect to A/p, and by Theorem ,
T, 'm, C o, so by Lemma {4.1.1) o " is a function.

1

¢ is a surjection with respect to im(y), so by Corollary [4.1.1} pm, " is a surjection with

respect to im(¢p).

By Theorem oo = 7r;17@,, so by Corollary |4.1.2] ww;l is an injection.

1

Thus 7" is a function which is both an injection and a surjection with respect to im(yp),

s0 ot is a bijection with respect to im(y). O
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Lemma 5.1.2. Suppose each of M = (A, R) and (B,S) is an I-structure, and ¢ : A — B

is a function. Then m, is a I-structure epimorphism with respect to the I-structure M/ =

(A/e,R).
Proof:

1. m, is preservative: Suppose r € R, then 7, r € R by definition of M /.

2. , is saturating: Suppose 7 € R such that im(7) C im(m,), then by the definition of

M/ there is an r € R such that mr = r.
3. m, is a surjection: By Theorem [2.4]
So 7, is an epimorphism. O

Lemma 5.1.3. Suppose each of M = (A,R) and N = (B,S) is an I-structure, and ¢ :
A — B is a function. Then ¢ is an I-structure homomorphism from M to N if and only

if ¢ is an I-structure homomorphism from A to the I-substructure of M induced by im(yp),

(im(p),S).

Proof: Suppose ¢ is an [-structure homomorphism from M to N.

Suppose r € R. @ is preservative, so pr € S.

Suppose b € im(¢r). Then there is an ¢ € I such that (i,b) € @r. There is an a € A

such that ¢(a) = b and (i,a) € r. b= ¢(a) € im(p). So im(pr) C im(yp), and thus ¢r € S.

So ¢ is preservative between (A4, R) and (im(y),S).

Suppose § € S such that im(8) C im(p). ¢ is saturating and § € S, so there is an 7 € R

such that or = s.
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So ¢ is saturating between (4, R) and (im(yp), S).

¢ is both preservative and saturating between (A4, R) and (im(p), S), so ¢ is an I-structure

homomorphism between (A, R) and (im(y),S). O

Suppose ¢ is an [-structure homomorphism from A to the I-substructure of M induced

by im(¢p).

Suppose r € R. ¢ is preservative with respect to (im(p),S), so ¢r € S, so ¢r € S.

So ¢ is preservative between M and N.

Suppose s € S such that im(s) C im(p). Then s € S, and since ¢ is saturating with

respect to (im(y),S), there is an r € R such that or = s.

So ¢ is saturating between M and N.

@ is both preservative and saturating between M and N, so ¢ is an [-structure homo-

morphism between M and N. O]

Theorem 5.1. Suppose each of M = (A,R) and N = (B,S) is an I-structure and ¢ :

A — B is a function. Then ¢ is an I-structure homomorphism if and only if gmr;l s an

isomorphism from M /o to the I-substructure of N induced by im(yp).

Proof: Suppose ¢ is an [-structure homomorphism.

M/ = (A/p,R) where R is the set of relations to which a relation 7 belongs if and only if

there is a relation r € R such that m,r = 7.
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The I-substructure of N induced by im(p) is (im(p),S) where S is the set of relations

to which a relation § belongs if and only if § € S and im(8) C im(¢p).

By Lemma [5.1.2, 7, is an [-structure epimorphism, by Lemma ¢ is an [-structure
homomorphism between (A4, R) and (im(p),S), and by Lemma , m,'m, € o 'y, So by
Theorem , @m, " is a homomorphism.

By Lemma [5.1.1} om_" is a bijection, so by Theorem [1.19} ¢ " is an isomorphism.
So M /¢ is isomorphic to the I-substructure of N induced by im(y). O
Suppose ¢, !'is an isomorphism from M/ to the I-substructure of N induced by im(¢y).

By Lemma T, 1s an epimorphism, and by assumption, o7, l'is a homomorphism from
M/ to the I-substructure of N induced by im(y). So by Theorem m, (pm, M)y is a

homomorphism from M to the I-substructure of N induced by im(¢p).

By Lemma ¢ = (pm, )Ty, 50 ¢ is a homomorphism from M to the I-substructure of
N induced by im(¢), and thus by Lemma ¢ is a homomorphism from M to N. O

Corollary 5.1.1. Suppose each of M = (A, R) and (B,S) is a 1-structure, and ¢ : A — B
is a homomorphism. Then if each of (A, R) and (B, S) is the structurization of a topological

space, then (A/p, R) is the structurization of a topological space.
Proof:

1. 1x AJp € R:

93



(A, R) is the structurization of a topological space, so 1 x A € R.
7, is an epimorphism, so 1 x A/p =1 x m,[A] = 1,(1 x A) € R.

. JER:
(A, R) is the structurization of a topological space, so & € R.

T, is a homomorphism, so @ = 7,2 € R.

. Suppose J is a set and for each j € J, 7; € R, then there is an 7 € R such that
it = U {1
jeJ
For each j € J, there is an r; € R such that m,r; = 7;. Since (A4, R) is the structur-
ization of a topological space, there is an 7 € R such that r[1] = |J r;[1]. mr € R.
jeJ
P e m,r[l]
<= P e m,[r[1]]

< Pe Fw(U ri[1]) = U m,[r;[1]] by Lemma [3.4.2

jeJ jeJ

< P¢c U m,rj[1]
= PelJn

jeJ

So m,r € R such that w,r[1] = U 7;[1].
JjeJ

. Suppose each of 7 and 7 is in R, then there is an # € R such that 7[1] = 7[1] N7y [1]:

By the definition of R, there is an r;, € R and an ry € R such that Ter1 = 71

and w1y = 7.
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Since ¢ is a homomorphism, ¢r; € S and ¢ry € S, and since (B, S) is the structuriza-
tion of a topological space, there is an s € S such that s[1] = pri[1] N ere[l] C im(p).

So there is an 7 € R such that ¢r = s.

mor[1] = mo[r(1]] ={7y(a) [ a € r[1]}
={¢ " lel{a}]] | a € r[1]}
={my(a) [ a € ™ [p[r[1]]]}
={my(a) | a € o7 [s[{0}]}
={my(a) [ a € ™ [pr1[1] N or[1]]}
={my(a) | a € ™ [p[r[1]] N plro[1]]]}
={my(a) | a € ¢ o[ [1]]] N ¢~ [plra[1]]]}
={my(a) | a € ¢ e[ [1]]} N {mu(a) | a € 7" [lr2[1]]]}
={¢lel{a}]] | a € 1} n{o ' [el{a}] | a € ro[1]}
={m,(a) | a € i[1]} N {m,(a) | a € 1]}
=mo[r[1]] N me[ra[1]]
=m,r1[1] N myra[1]

=71 [1] N 7o[1]

So m,r € R such that m,r[1] = 7 [1] N 72[1].
So by the above properties, (A/p, R) is the structurization of a topological space. O]

Corollary 5.1.2. Suppose (G,x*) is a group with identity e, I = {pe,p—1,0_1, ps, O, L.},
M = (G,R) is the structurization of (G,x), and ¢ is a function with domain G. Then
M/ is the structurization of a group under the operation induced by * if and only if for all
(ay,a) € o™ o, (a7t ayt) € ¢ Y, and for all (a1, by), (ag, bs) in o le, (ay * ag, by * by) €
.
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Proof: Suppose for all (ai,as) € ¢ lp, (a7',a;") € ¢ Y, and for all (a;,b), (ag,bs) in

0 Yo, (ay * ag, by x by) € o~ Lop.

Suppose each of P = o lp({z}) and Q = o lp({y}) is in G/¢p.

PxQ={pxq|pe P and q € Q}. Consider the element of G/p, o p({z * y}).

gePxQ
= dp € P, g € Q such that g =pxgq
= Jp € v 'p({z}), ¢ € ¢ p({y}) such that g =pxgq
— Jp, ¢ such that (p,z) € ¢ ' and (¢,y) € ¢ ‘¢ and g =p*q
— Jp, ¢ such that (p*q,z%y) € p 'pand g =p*q

—geo 'o({zxy})

So P+ Q C o 'o({z *y}).

g€ lo({zxy})
= (g.zxy) €p 'pand (y 'y ) eply

1

= (gxy L a)=(gxy Laxe)=(gxy Lax(yxy ) =(gxy L(zxy)xy ) eplp

—gxy lep lp({z})=Pandy ey 'o({y}) =Q

— g=gxe=g*(y 'xy)=(gxy )xyePxQ

So o lp({r*xy}) C P*Q.

Thus o 'p({z}) * o 'o({y}) = P*Q = o 'o({z *x y}) € G/e.

So G/¢ is closed under the operation .
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Consider the element o 'p({e}).

By the above, if P = ¢~ tp({x}) € G/¢p, then:

Pxoto({e}) = o({z}) s o o({e}) = o p({z x e}) = o p({z}) = P

And

e lo({e}) * P=p o({e}) x o to({z}) = o p({e x x}) = o o({z}) = P

So o tp({e}) is an identity in G /¢ with respect to the operation .

Suppose P = ¢ tp({z}) € G/p. Consider o tp({z~'}).

Pxolo({z™}) = o({a}) o o({z™'}) = o lo({z x 27'}) = o o({e})

And

e lo({a )  P=ypo({z7 ) x o o({a}) = o Te({a T x a}) = o e({e})

So ¢ 'p({z~1}) is an inverse for P with respect to the identity ¢~ tp({e}).

Suppose each of P = o lo({z}), Q = o to({y}), and R = ¢ '¢({z}) are members of
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G/e.

(P*Q)* R= (¢ 'o({z}) * ¢ 'o({y}) x ¢ 'o({z}) = ¢ 'o({z * y}) x o ' 0({2})
—o lo({(zxy)x2}) = lo({z* (yx2)}) = ¢ lo({z}) * ¢ lo({y * 2})

=0~ o({z}) = (¢ e({y}) x ¢ o({2}) = P+ (Q * R)

So G/ is associative with respect to the operation .

So (G/¢,*) is a group. (Note that saying for all (a1, as) € o 'y, (a7, a;') € ¢ ¢, and
for all (ay,b1), (az,b2) in o L, (a1 * az, by * by) € 'y implies that ¢~ 'p({e}) is a normal

subgroup of G).

Now I intend to prove that M /¢ is the structurization of said group.

M/ = (G/p,R) where I = {p.,p_1,0_1,px, 04, 1.} and R = {mr | r € R}.

The strucuturization of (G/p,*) = (G/p,S) where S is the set of relations to which a
relation s belongs if and only if either s = {(p., o '¢(e))}, there is a P € G /¢ such that
s = {(p_1,P7"),(0_1, P)}, or there is a P and a Q each of which is in G/ such that

S = {(p*,P * Q); (O*7P)7 (1*7Q)}

Since R is the relation set for the structurization of a group, for each r € R either

r = {(pe,e)}, there is an x € G such that r = {(p_1,27'),(0_;,2)} , or there is an x

o8



and a y in G such that r = {(p., z * y), (0, ), (1, v)}.

teR
< 3 € R such that ¢ = 7r
= t = 7r where
r={(pe,e)}
or r = {(p_1,27"), (0_y,z)} for some z € G
or r = {(ps, % y), (0,,2), (L., )} for some z,y € G
=t ={(p,m(e))}
or t = {(p_1,m(z")), (01, 7(x))} for some z € G
or t = {(ps, 7(x %)), (0., 7(2)), (L., 7(y))} for some z,y € G
=t ={(pe, v "p({e})}
or t = {(p-1,¢ ' e({z7'})), (0-1, 9~ "p({}))} for some x € G
or t = {(ps, 0 o({z xy})). (05,0 0({z})), (L, ' 9({y}))} for some z,y € G
=t = {(pe, ¢ 0({e}))}
or t = {(p-1, (¢ "e({z}) ), (0-1,¢ ' ({z}))} for some z € G
or t = {(ps, " o({z}) * ¢ o({y})), (0, 0 0({2})), (L, ¢ 0({y}))} for some 2,y € G
= t={Pe v 'e({e})}
or t = {(p_1,P7"),(0_1, P)} for some P € G/
or t = {(ps, P * Q), (0., P), (1., Q)} for some P, Q € G/p

«~——=teS

So R =8, and thus M/ is the structurization of (G /¢, *).

Suppose M /¢ is the structurization of a group under the operation induced by .
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Consider ¢ 'p({e}). Suppose P € G /. There is an z € G such that P = ¢~ 'p(x).

e o) and z =exx € o lp({e}) x o lo({}) = ¢ lo({e}) x P e Gy
= ¢ 'o({e})x P=yp'o({z}) =P

= ¢ 'p({e}) is the identity element for M/

Suppose P € G/p. There is an x € G such that P = o~ 'o({z}). Consider o 'p({z71})

ccolp({e}) ande=azxat € pp({a}) x o p({xT1}) = Pxo lp({z71}) € Gy
— Pxo 'o({r7'}) = o p({e}) (elements of a partition intersect if and only if they are equal)

= P =y p({z7'})

Suppose each of P and Q is in G/p. There is an x and a y in G such that P = ¢ 1p({z})

and Q = ¢~ 'p({y}). Consider ™ p({z xy}).

zxyep 'p{rxy}) and zxy € o o({z}) x o lo({y}) = P*Q

— PxQ =9 'p{rxy})

Now the main result follows.

(a1,a2) € 7'
= ¢ o({a}) = ¢ p({a})
= (¢ e({a}) ™ = (¢ e({a2})
= ¢ (e = ¢ e({ar'})

= (7" a3") €97l
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(a1,b1) € ¢ ' and (az, ba) € p o
= ¢ 'o({a}) = ¢ o({b1}) and v p({az}) = o7 o({b2})
= ¢ o({a}) ¢ o({az}) = o o({b1}) * ¢ o ({b2})
= ¢ p({ar x az}) = ¢ o({bs * ba})

— (a1 * A9, bl * bg) S QO_IC,O

Thus for all (ay,az) € ¢, (a7t ay') € p~lo, and for all (ay,by), (az,by) in e, (a; *
a2,b1 * bg) € QO_IQO. ]

Definition Suppose M = (A, R) is an [-structure and B C A. The [-understructure of M
induced by B is the I-structure (B, R) where R is the set of relations to which a relation
7 belongs if and only if there is a relation r € R such that 7 = r N (I x B). Denote the
structure (B, R) by M||B. The statement that (C,7) is an I-understructure of M means

C C A and (C,T) is the I-understructure of M induced by C.

Definition Suppose M = (A,R) is an I-structure. Suppose R is the set of relations to

which a relation 7 belongs if and only if 7 C I x A/ and T, 17 € R. Denote the I-structure

(A/p,R) by M [Jep.

Lemma 5.2.1. Suppose each of M = (A, R) and (B, S) is an I-structure, and ¢ : A — B is

a cohomomorphism. Then m, is an I-structure coepimorphism with respect to the I-structure

M= (Ao, R).
Proof:

1. m, is continuous: Suppose 7 € R, then W;lf € R by definition of M J¢. So m, is

continuous.

2. Ty 1s conservative:
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Suppose r € R. ¢ is conservative, so there is an s € S such that im(s) C im(yp)

and p~'s = 7. So s = @r and 1 'm,r = @ or = 9 ls =1

Thus m,r € 7_3, im(wwr) C im(ma): and 77521(77@7“) =T

So m, is conservative.
3. m, is a surjection with respect to A/¢: By Theorem
So 7, is an coepimorphism with respect to M /. O

Lemma 5.2.2. Suppose each of M = (A,R) and N = (B,S) is an I-structure, and ¢ :
A — B is an I-structure cohomomorphism. Then o is a cohomomorphism from A to the

understructure of M induced by im(p), (im(p),S).

Proof: Suppose § € S. Then there is an s € S such that § = s N (I X im(g)). ¢ is continu-

ous, so ¢ 's € R. I intend to show that p=15 = ¢~ ls.

Suppose (i,a) € ¢~ '5. Then there is a b € im(p) such that p(a) = b and (i,b) € S.
5§ C s, 80 (i,b) € s, and thus (i,a) € ¢~ 's.
-1

So o718 C p7ls.

Suppose (i,a) € ¢~ 's. Then there is an b € B such that b = p(a) € im(yp) and (i,b) € s.

~

(¢,b) € I x im(¢p), so (i,b) € 8, and thus (i,a) € p'3.

So p~ts C pls.

Sop =g lseR.
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So ¢ is continuous between (4, R) and (im(yp),S).

Suppose r € R. ¢ is conservative, so there is an s € S such that im(s) C im(y) and
¢ 's = r. Since im(s) C im(p), s N (I x im(p)) = s, s0 s € S.

So s € S, im(s) C im(p), and ¢~ ls = 7.
So ¢ is conservative between (4, R) and (im(p),S).

¢ is both continuous and conservative between (4, R) and (im(g), S), so ¢ is an I-structure

cohomomorphism between (A, R) and (im(p),S). O

Theorem 5.2. Suppose each of M = (A, R) and N = (B, S) is an I-structure, and ¢ : A —

B is a cohomomorphism. Then M /| is isomorphic to the understructure of N induced by

im(p).

Proof: M)/ = (A/p,R) where R is the set of relations to which a relation 7 belongs if

and only if 7 C I x A/p and 77 € R.

The understructure of N induced by im(p) is (im(y),S) where S is the set of relations to

which a relation § belongs if and only if there is a relation s € S such that § = sN (I xim(p)).

By Lemma [5.2.1], 7, is an I-structure coepimorphism, by Lemma [5.2.2], ¢ is an I-structure

A~

cohomomorphism between (A, R) and (im(¢),S), and by Lemma , 7r;17np C ¢ ly. So by

Theorem 4.2, 7" is a cohomomorphism.
By Lemma [5.1.1} om ! is a bijection, so by Theorem [1.21} ¢r" is an isomorphism.

So M /¢ is isomorphic to the understructure of N induced by im(¢p). O
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Corollary 5.2.1. Suppose M = (A, R) is an I-structure and ¢ is a cohomomorphism be-

tween M and another structure. Then M [J is isomorphic to M/p.

Proof: By Theorem © is a homomorphism.

By Lemma [5.2.1] 7, is a coepimorphism between M and M /¢ and (by Lemma [5.1.2) an

epimorphism between M and M/p. Moreover, n 'm, C 7',
So by Theorem , Tem, " is a homomorphism between M [ and M/yp.

T, is a surjection, so 7r<p7T;1 = 14/,, which is a bijection. So by Theorem m Lajp is

an isomorphism.

So M Jlo = M/e. O
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Chapter 6

Second Isomorphism Theorem

Lemma 6.1.1. Suppose A is a set, B C A, o is a function with domain A, B = ¢~ 1p(B),
and P € B/p|g. Then PN B € B/y|p.

Proof: Suppose b € PN B.

Since P € B/y|p and b € P, P = (¢[p)"'((¢]z)({b})).

be Bsobe (plp) " ((vlp)({0})) € B/pls. So PN B C (¢l5)"'((¢ls)({0})) € B/¢ls.

Suppose b’ € (¢|s) " ((p|s)({b})). Then there is a ¢ such that (c,d') € (¢|p)~! and

(b,c) € ¢lp, so (V',c) € p|p, so (b,c) € ¢, (V,c) Epand ¥ € B C B.

(b,c) € p and b € B, so (b,c) € p|lg. (b,c) € ¢ and b/ € B, so (V,c) € p|g. So

b € (ols) " ((¢lp)({0})) = P

So¥ € PN B and PN B = (¢p|5) (o5 {b}) € B/¢ls. O

Lemma 6.1.2. Suppose A is a set, B C A, o is a function with domain A, B = ¢~ 1o(B).
Then the function v : B/¢|lgz — B/y|p such that for each P € B/¢|z, w(P)=PNB, is a

bijection.

Proof: Suppose each of P and Q is in B/p|g, and 9(P) = ¥(Q).

PAB=4¢(P)=4(Q)=QnB.
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Since each of PN B and QN B is in B/y|p, each is nonempty. So thereisab € PNB = QNB.

be PNBCPandbe @QNBCQ. Pand Q intersect, and B/yp| is a partition, so P = Q.

So 1 is an injection.

Suppose H € B/¢|g. H is nonempty, so there is a b € H and H = (¢|5) ' ((¢|s)({0})).

(b,(b)) € pand b€ B C B, s0 b € (¢lp) " ((¢lp)({b})) € B/¢lp.

Y((lp) " ((la)({03) = (lz) " ((#l5)({b}) N B.

be H = (olp)" ((¢ls)({b})) € Bandb € (o]z)~'((¢lz)({b})), so b € (¢l5)~" ((¢l5)({b})N
B =4((¢lz) " ((#l5)({0})))

Since B/¢|p is a partition, and p € H € B/p|g and b € ¥((0|5)  ((¢l5)({b}))) € B/¢|s,
it must be the case that H = ¥((¢|5) " ((¢|5)({0}))).

So (¢lz) "' ((¢lp)({b})) is an element of B/¢|p such that ¥((v|s) " ((¢]z)({b}))) = H.

So 1 is a surjection.

So v is a bijection. O

Theorem 6.1. Suppose M = (A, R) is an I-structure, B C A, ¢ is a function with domain
A, B=y¢ro(B), M|g/elg = (B/¢g,S), ¥ : B/o|g — B/¢|s is the function such that for
each P € B/y|g, w(P) = PN B, and N = (B/¢|g, T) where T is the set of relations to
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which a relation t belongs if and only if there is a relation s € S such that s = t. Then

Mlg/plp = N.
Proof:

1. 1 is preservative: By definition of N, if s € S, then ¢)s € T.

2. 1 is saturating: By definition of N, if ¢ € T, then there is a relation s € § such that
s =t.

3. 1 is a bijection: By Lemma [6.1.2] 1 is a bijection.

So by Theorem 1 18 an isomorphism.

So M|p/¢lp = N. O
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Chapter 7

Third Isomorphism Theorem

Definition Suppose A is a set, and each of a and f is a function with domain A such that

ata C f718. Then define /o : A/a — A/B such that if P € A/a, then 8/a(P) = mam, .

Lemma 7.1.1. Suppose M = (A, R) is an I-structure, and each of a and B is a homomor-
phism with domain A such that oo C B713. Then B/a is an epimorphism between M/«
and M/p.

Proof: By Lemma5.1.2] 7, is an epimorphism.

By Lemma [5.1.2] 74 is an epimorphism.
Suppose P € A/a.

Ty (P) = mpmy ! (Mo (P)) = mmy ' ma(P) = m5(P) = B~ (B(P)) = B/a(P)
So B/a = mpm,t.

So by Theorem [4.1| and Lemma {.1.1, 3/a = msm, ! is an epimorphism between M /a and
M/B. O

Lemma 7.1.2. Suppose A is a set, and each of o and [ is a function with domain A such

that o ' = 718, Then AJa = A/B and /o = 14/4.
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Proof:

Ala={a"(a({a})) | a € A} = {a""a({a}) | a € A}
={87'8({a}) [ a € A} = {57 (B({a})) | a € A} = A/B

So Afa = A/B.

Suppose P € A/a.

Bla(P) =1 (B(P)) = B7'B(P) =a " a(P) =a(a(P)) = P

So /o = 14/a. O

Lemma 7.1.3. Suppose each of A and B is a set, and each of a and  : A — B is a

function with domain A such that o o C 718 and 7 is a function with domain B. Then

ata C (vB) 1B,

Proof:

ala C BB =F"1pB C Iy B = (78) "B

So a™ta C (vB8)1vp. O

Lemma 7.1.4. Suppose A is a set, and each of P and Q is a partition, and v : P — Q
is a surjection such that for each P € P, P C v(P). Suppose m : A — P is the function
such that for each a € A, m(a) is the part in P to which a belongs, and ms : A — Q is the

function such that for each a € A, my(a) is the part in Q to which a belongs. Then my = .

Proof: Suppose a € A.

a € m(a) Cv(m(a)) =ym(a)
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So ym(a) is the part in Q to which a belongs. So ymi(a) = ma(a).

Since this is true for all a« € A, my = ;. O

Lemma 7.1.5. Suppose each of M = (A, R), N = (B,S), and L = (P, T) is an I-structure,
where P is a partition of A, and o : A — B is a homomorphism, and v : A/ — P is an
epimorphism between M /o and L such that for all P € A/a, P C v(P). Then there is a

homomorphism 3 from M such that o ‘o C 3718 and v = /.

Proof: Define §: A — P such that g = yn,.

Since « is a homomorphism, 7, is an epimorphism. < is a homomorphism. g = ~vm, is

the composition of a homomorphism with an epimorphism, so 3 is a homomorphism.

Suppose (a1,a2) € a~la. By Lemmal.6] o la = 7 !7,.

(a1,a0) € ta =7 'my = 7r;11,4/a7ra C 'y e = (yma) tyme = 8718

So a~la C B715.

Define 7 : A — P is the function such that for each a € A, 7w(a) is the part in P to

which a belongs.

By Lemmal7.1.4] g = vm, = .

By Theorem 2.8, 7 = mg.

So P =A/p.
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moin, =ala C IR = ngﬂﬁ.

So f/a = mam, ! is the unique homomorphism such that (rsm,!)m, = 75 = S.
Yo = B, 50 v = mgm ' = B/av.

So f3 is a homomorphism from M such that a~'a C 37! and v = 3/a. O

Theorem 7.1. Suppose M = (A, R) is an I-structure, and each of a and (3 is a homomor-
phism with domain A such that o *a C f713. Then M/a/ﬁ/& ~ M/p.

Proof: By Lemma f/a is an epimorphism between M/« and M /.

So by Theorem, M/a/ﬁ/a%M/ﬁ. O

71



Chapter 8

Correspondence Theorem

Definition Suppose A is a set, B is a subset of A, and ¢ is a function with domain A. The

statement that B is ¢ exact means B = ¢~ ¢(B).

Definition Suppose M = (A, R) is an [-structure, N = (B,S) is an [-substructure of M,

and ¢ is a function with domain A. The statement that N is ¢ ezact means B = ¢~ 1p(B).

Lemma 8.1.1. Suppose A is a set, f is a function with domain A, B C A such that
B = ["'f(B), and b€ B. Then f|5'fls({b}) = f~' f({0}).

Proof:

p € fl fla({b})
<= (b,p) € fl5' fls

<= p€eB=["f(B)and (bp) € ff

—peff{p}) O

Lemma 8.1.2. Suppose A is a set, [ is a function with domain A, B C A such that

B = f"'f(B), and b € B. Then my,(b) = ms(b).

Proof:

Tr15(0) = fl5 fls({b}) = [T F({b}) = m;(b) O

Lemma 8.1.3. Suppose A is a set, f is a function with domain A, B C A such that

B = f71f(B), r is a relation such that im(r) C B/(p|g). Then 71';&37" = 7r]717’.
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Proof:

: —1
(4,0) € myp 7

<= 3P such that (i, P) € r and (P,b) € 7T;|;

= (i, 0) € r

<= (i,ms(b)) €rand b€ B

<= 3P such that (i, P) € r and (P,b) € 7r]71 (so P € B/y|p)

< (i,b) € W]TIT

. |
So Tyl = Tp 7 O

Lemma 8.1.4. Suppose M = (A, R) is an I-structure, ¢ is a function with domain A,
and N = (B,R) is a ¢ exact I-substructure of M. Then N/(¢|p) = (B/(¢|s), T) is the
I-substructure of M /p = (A/p,S) induced by B/(¢|p).

Proof: Suppose P € B/(¢|g). Then P = |5 ¢|5({b}) for some b in B.
P =l els({b}) = ¢ 'p({b}) € A/

So B/(¢|s) € Afe.

Note T is the relation set to which a relation ¢ belongs if and only if there is an # € R

such that t = m 7.

Suppose (B/(¢|s),S) is the I-substructure of M/ induced by B/(¢|s). Note S is the
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relation set to which a relation § belongs if and only if § € S and im($) C B/pp.

keT
<= 3r € R (so im(r) C B) such that k = w1 = Tl
<= Jr € R such that 7,r = k and im(r) C B

<= Jr € R such that m,r = k and im(k) C B/(¢|s)

(= (k) = im(7g|;r) = 7y, (i0(r)) C 7y (B) = B/(#]5))

(<= :im(r) C im(7*

L mpr) = im(w

S'k) = m; (im(k) € 7, (m,(B)) = o~ 'o(B) = B)

® ®

<= ke S and im(k) C B/(¢|B)

—kcS

SoT =38, and N/(¢|5) = (B/(¢|s), T) = (B/(¢|p),S), the I-substructure of M/ induced

by B/(¢ls)- =

Theorem 8.1. Suppose M = (A, R) is an I-structure, and ¢ is a function with domain
A. Then there is a bijection between the set of ¢ exact [-substructures of M, and the set of

I-substructures of M /.

Proof: Suppose S is the set of ¢ exact I-substructures of M.

Suppose T is the set of I-substructures of M/¢p.

Define f : S — T such that for each N = (B, R) in S, f(N) = N/(¢|p).

By Lemma[8.1.4] f(N)eT.

1. f is an injection: Suppose each of Ny = (By,R1) and Ny = (By,R2) is in S, and
f(Ny) = f(Ny). Note each of N; and N, is ¢ exact, so By = ¢ 'p(B;) and By =
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¢ o(By).
(B1/(#lp,)s Ra) = Ni/(@lg) = f(N1) = f(No) = Na/(2l,) = (Ba/ (¢l ) Ra)
So Bi/(¢ls,) = B2/ (¢lB.).
To(B1) = T, (B1) = B1/(l5,) =B2/(¢lB,) = Ty|, (B2) = T (B2)
= Bi= ¢ 'o(B1) =, 'm,(B1) =n,'1,(Bs) = ¢~ p(Bs) = Be
Ri={r|reRand im(r) C B;} ={r|r € R and im(r) C By} = R»

So N1 = (Blle) = (BQ,RQ) = NQ.

So f is an injection.

. [ is a surjection: Suppose (P,T) is an [-substructure of M/p = (A/p,R) (namely
the [-substructure of M/p induced by P).

Then P C A/p = m,(A) so ;' (P) € n ' (m,(A)) = A.

Define B = n1(P).

©

Consider L = (B,S) where S is the relation set to which a relation s belongs if

and only if s € R and im(s) C B. So L is an [-substructure of M.

B=m,(P)=m,'mm, (P) =, mo(r, (P)) = ¢ o(m, (P)) = ¢~ 0(B)

® ® ® ® ®
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So L is ¢ exact.

SoLelsS.

B/(¢lp) = |5 (B) = 7,(B) = my(x, (P)) = P

By Lemma [8.1.4) L/(p|p) is the I-substructure of M/ induced by B/(¢|g) = P.

So f(L) = L/(¢ls) = (P, T).

So f is a surjection.

Thus f is a bijection. O

Definition Suppose M = (A, R) is an [-structure, N = (B,S) is an understructure of M,

and ¢ is a function with domain A. The statement that N is ¢ ezact means B = ¢~ 1p(B).

Lemma 8.2.1. Suppose each of A and B is a set, v is a relation, and B C dom(r). Then
r(Ax B)=Axr(B).

Proof:
(a,c) € r(A x B)
<= b such that (a,b) € A x B and (b,c) €r
<= a € A and 3b € B C dom(r) such that ¢ € r({b})
<= (a,c) € Ax r(B)
Sor(Ax B) = A x r(B). O

Lemma 8.2.2. Suppose r is a relation, I is a set such that dom(r) C I, ¢ is a function, and

B is a set such that B C dom(p) and B is ¢ exact. Then m,(rN(IxB)) = (m,r)N(7,(I x B)).
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Proof:

(i, P) € my(rn (I x B))

<= 3b such that (b, P) € 7, and (¢,b) € rN (I x B)

<= 3b such that (b, P) € 7, and (i,b) € r and (i,b) € [ x B

<= by, by such that (b1, P) € m,, (bo, P) € my, (i,b1) € ryand (i,b2) € [ x B
(<= b ey o({h}) Co'p(B) =B = (i,b)) € I x B)

<= (i, P) € myr and (i, P) € m,(I x B)

= (i,P) € (m,r) N (m,(I x B))

So m,(rN (I x B)) = (m,r) N (m,(I x B)). O

Lemma 8.2.3. Suppose each of f and g is a relation, I is a set such that dom(f) C I and
dom(g) C I, ¢ is a function such that im(f) C dom(y)/¢ and im(g) C dom(y)/, and B
is a set such that B C dom(y) and B is ¢ exact. Then f=gN (I x B/(¢|p)) if and only if
' f = (n;'g) N (I x B).

Proof: Suppose f=gN (I x B/(¢|B)).

m, f =m, (9N (I x B/(¢lg))) = (m,'9) N (w1 (I x mp1,(B))) = (7" 9) N (7w, (I x my(B)))

= (m'9) N (I x 7w my(B)) = (m; ) N (I x ¢~ '(B)) = (m,'9) N (I x B)
Som ' f = (m,'g) N (I x B). O
Suppose w'f = (7,'g) N (I x B).

f=mem f =mo((m,tg) N (I x B)) = (mpm,'g) N (mu(I x B)) = g N (I x my(B))

=gN (I x7y,(B))=gN{ xB/(¢l))
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So f=gn{IxB/(¢ls)) =

Lemma 8.2.4. Suppose M = (A, R) is an I-structure, ¢ is a cohomomorphism from M,
and N = (B,R) is a ¢ exact understructure of M. Then N |z = (B/(¢|p), T) is the
understructure of M [l = (A/p,S) induced by B/(p|B).

Proof: Suppose P € B/(¢|g). Then P = ¢|5'¢|p({b}) for some b in B.
P =ol5'els({b}) = ¢ 0 ({0}) € A/
So B/(¢ls) C Al

Note 7T is the relation set to which a relation ¢ belongs if and only if t C I x B/(¢|p)

and 7l teR.
vl

Suppose (B/(¢|p),S) is the understructure of M /¢ induced by B/(¢|s). Note S is the

relation set to which a relation s belongs if and only if there is an s € & such that

S sﬂ([xB/goB)

A

keS
<= Jds € S such that k =sN (I x B/(¢|B))
< 3s € S such that 7,'s N (I x B) = 7'k

P

<= 3r € Rsuch that r N (I x B) ="k
@W;IkeﬁandW;IkQIxB
@)W;‘;k eRand k C I x B/(¢|p)

— keT

SoS =T, and N/Jels = (B/(p|), T) = (B/((p|B),S’), the understructure of M //y induced
by B/(¢|B). =
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Example Suppose M = (A,R) is an [-structure, ¢ is a function with domain A, and
N = (B, R) is a ¢ exact understructure of M. Then N [l¢|p = (B/(p|5), T) is not necessarily
the understructure of M Jy = (A/p,S) induced by B/(¢|p).

Proof: Define the following:

M = ({ay, az,0}, {0}, {{(0,a1), (0,0)}})

B = {b}

¥ = {(alvx)v (an ZL’), (ba y)}

N = ({b},{0},{{(0,b)}}), a ¢ exact understructure of M

Then 7, = {(a1, {a1, az}), (az, {a1, az}), (b, {b})}
M)¢ = ({{a1, a2}, {b}}.{0}, @)

els ={(0,0)}

B/(¢ls) = {{b}}

N/ (els) = ({{b}}. {0}, {{(0, {6})}})
({{b}},{0}, @) is the understructure of M Jy induced by B/(p|p).

N//SO‘B 7& ({{b}},{()},@) o

Theorem 8.2. Suppose M = (A, R) is an I-structure, and p is a cohomomorphism from
M. Then there is a bijection between the set of ¢ exact understructures of M, and the set

of understructures of M J/.

Proof: Suppose S is the set of ¢ exact understructures of M.

Suppose T is the set of understructures of M /.

Define f : S — T such that for each N = (B,R) in S, f(N) = N/(¢|s).
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By Lemma 8.2.4) f(N) e T.
1. f is an injection: Suppose each of Ny = (B, R1) and Ny = (B2, Ry) is in S, and
f(N1) = f(N,). Note each of Ny and N, is ¢ exact, so By = ¢ 1p(B;) and By =

v o(B).
(B1/(¢lp,)s Ra) = NiJf(¢lp,) = f(N1) = f(N2) = No (¢l ) = (Bz/(¢],), Ro)
So Bi/(¢ls,) = B2/ (¢lB.).
To(B1) = T, (B1) = B1/(0l5,) =B2/(¢lp,) = Tp|, (B2) = T (B2)
= Bi=¢ '9(B1) =, 'm,(B1) =n,'1,(Bs) = ¢~ p(Bs) = Be
Ry = {f | 3r € R such that # =N (I x By)} = {# | Ir € R such that # =r N (I x By)} = R>

So N1 = (Blle) = (BQ,RQ) = NQ.

So f is an injection.

2. f is a surjection: Suppose (P,T) is an understructure of M o = (A/p,R) (namely,

the understructure of M /¢ induced by P).

Then P C A/p = m,(A) so ;' (P) € ' (m,(A)) = A.

Define B = n1(P).

%)

Consider L = (B,S) where S is the relation set to which a relation s belongs if

and only if there is an r € R such that s =N (I x B). So L is an understructure of
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B=m,(P)=m,'mm, (P) =, mo(r, (P)) = ¢~ o(m, (P)) = ¢~ 0(B)

P P ®

So L is ¢ exact.

SoLelsS.

B/(¢lp) = 7y, (B) = mp(B) = mo(n, (P)) =P

By Lemma [8.2.4] L/(p|p) is the understructure of M /¢ induced by B/(¢|g) = P.

So f(L) = LJ(¢ls) = (P, T).

So f is a surjection.

Thus f is a bijection.
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