
Group Lasso for Functional Logistic Regression

by

Jessica Godwin

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
August 3, 2013

Keywords: functional data analysis, group lasso, functional logistic regression, fMRI

Copyright 2013 by Jessica Godwin

Approved by

Nedret Billor, Chair, Associate Professor of Mathematics and Statistics
Dmitry Glotov, Associate Professor of Mathematics and Statistics
Asheber Abebe, Associate Professor of Mathematics and Statistics

George Flowers, Dean of the Graduate School

Abstract

Functional datasets are comprised of data that have been sampled discretely over a

continuum, usually time. While the recorded data are discrete, it is assumed that there is a

smooth, underlying curve describing the observations. In this thesis an attempt is made to

develop a variable selection technique for the functional logistic regression model.

The functional logistic regression model is the functional analog of logistic regression.

In this model, the responses are binary and represent two separate classes; the predictors are

functional. Due to the nature of functional data, observations at neighboring time points

are correlated, leading to redundant information within each observation and each functional

predictor. In a dataset with many variables, it is necessary to be able to select a smaller

subset of informative variables. In this thesis, we attempt to remove the autocorrelation

between neighboring observations and perform variable selection. We do this by employing

a principal component analysis on binary data with multiple functional predictors. The

data are then subject to a variant of the group lasso, an L1 regularization method that

estimates the logistic model and selects variables simultaneously. We assess our method

with a simulation study and an application to a real dataset.

ii

Acknowledgments

I would like to thank my advisor, Dr. Nedret Billor. You have been an incredible mentor

to me. From the first semester you taught me, you have encouraged me in the direction of

research. Thank you to my friends and family for all of your support. To my parents,

my deepest gratitude for supporting me throughout my life and teaching me to work hard.

Cory, thank you for all the love, laughter and constant encouragement. Thank you to the

rest of my committee, Dr. Dmitry Glotov and Dr. Ash Abebe. Finally, thank you to Dr.

Gopikrishna Deshpande and his student, Yun Wang, for sharing your data with me. I could

not have done any of this without any of you. War eagle!

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vi

1 Introduction . 1

1.1 Basic Functional Data Analysis . 2

1.2 Basis Expansion of Functional Data . 4

2 Functional Principal Component Logistic Regression 7

2.1 Principal Component Analysis . 7

2.2 Functional Principal Component Analysis 7

2.3 The Functional Logistic Regression Model 9

2.4 Principal Component Functional Logistic Regression for Multiple Functional

Predictors . 10

3 Group Lasso for Functional Logistic Regression 13

3.1 Introduction . 13

3.2 Lasso . 13

3.3 Group Lasso . 14

3.4 Group Lasso for Functional Logistic Regression 15

4 Application . 18

4.1 Introduction . 18

4.2 Simulation Study . 18

4.3 fMRI Example . 20

4.4 Conclusion . 21

Bibliography . 23

iv

A Simulation of Preprocessed fMRI Data . 24

B Simulation Analysis Code for R . 27

v

List of Figures

1.1 Berkeley Growth Study . 3

3.1 Group Lasso Algorithm: Outline of the block coordinate gradient descent algo-

rithm used to perform grouped variable selection in the logistic regression model

[6]. 16

4.1 Simulation Results: The values reported are the means, followed by their stan-

dard deviations in parentheses. 20

4.2 fMRI Nine Dot Experiment: Subjects were asked to use four and five lines to

connect all nine dots in the figure above. 20

4.3 Voxel Mask of the Anterior Temporal Lobe: The right anterior temporal lobe is

in red, the left in blue. 21

vi

Chapter 1

Introduction

Functional data analysis (FDA) is a relatively new area within the discipline of statis-

tics. The first in depth text on the subject, Functional Data Analysis, was published by as

recently as 1997 [8]. Functional data are data that have been measured discretely over a

continuum, usually time. Instead of treating the many discrete measurements as individual

observations, one makes the assumption that these measurements represent a smooth, un-

derlying curve. This curve, then, is considered as one observation.

Much of this work was motivated by Functional Magnetic Resonance Imaging (fMRI),

a noninvasive imaging technique which allows an experimenter to take images of a subject’s

brain over time. These images are taken while the subject performs a task such as finger

tapping or correctly identifying images of human faces amidst a series of images containing

both human faces and objects. fMRI is currently being used to assess which areas of the

brain are activated while performing certain tasks. This is done by dividing the brain into

voxels, the three-dimensional analog of a pixel, and measuring brain activation. Depend-

ing on how one defines a voxel, a typical fMRI image has over 1,000,000 voxels. As fMRI

studies usually have a small number of subjects, this results in datasets that are incredibly

high-dimensional. High dimensionality is one of the biggest problems in statistical analysis

of fMRI data [10].

Initial statistical analysis of fMRI data was univariate in nature [3]. This is obviously

simplistic for data that take into account four dimensions: three spatial dimensions and one

temporal dimension. The second decade of fMRI research focused on multivariate data anal-

ysis. Considering the fact that, the capturing of images happens over time, the next logical

step in this progression is functional data analysis. In an fMRI session, images of a subject’s

1

brain are taken at discrete time points. However, one would expect the brain’s response to

a stimulus to be continuous in nature. This makes fMRI imaging data a great candidate for

functional data analysis. In 2005 Viviani et al. published a paper using functional principal

component analysis in fMRI. They showed the results to be much more interpretable than

multivariate PCA [12]. Since then more statistical analysis of fMRI data has been functional

in nature. There is a need to attack the problem of high dimensionality of brain imaging

data. There is also a need for the development of better classification methods [10]. One

of the best things about Functional Magnetic Resonance Imaging is its noninvasiveness. If

statistical classification methods are improved, it could aid the advancement of noninvasive

diagnostic techniques for mental illness or even degenerative diseases such as Alzheimer’s.

There is some research being done in this area, but there is room for more advancement [10].

1.1 Basic Functional Data Analysis

Consider sample curves of the form {xi(t), t ∈ T , i = 1, . . . , n}, where T is an interval

over which the observations were measured. The observations belong to the Hilbert space,

L2(T), of square-integrable functions with the inner product

〈f, g〉 =

∫
T

fgdt, ∀f, g ∈ L2(T). (1.1)

A vector xi = (xi1, . . . , xiN), represents the discrete measurements for the ith subject of

one variable, x, at N points in T . There are functional analogs of the traditional summary

statistics. The functional sample mean, x̄(t), is defined below:

x̄(t) = n−1
n∑
i=1

xi(t). (1.2)

The sample mean is computed point-wise at t ∈ T . Similarly, one can compute the covariance

between measurements at two time points s and t

2

Figure 1.1: Berkeley Growth Study
These are the curves describing the height in cm of girls followed in the Berkeley Growth
Study beginning in 1929. The circles mark the discrete height measurements over time.

cov(s, t) = (n− 1)−1
n∑
i=1

(xi(s)− x̄i(s))(xi(t)− x̄i(t)). (1.3)

When s = t, this is simply the variance of x computed at that time point. If we further

assume that the observations, xi(t), belong to an L2 space, we can define the inner product,

〈x, y〉 =

∫
x(t)y(t)dt. (1.4)

Once we consider the observations as smooth functions, a natural extension would be to

estimate the derivatives. In the case of the Human Growth Data in Figure 1.1, one might

want to estimate the velocity or acceleration of the growth for inference as well [8].

3

1.2 Basis Expansion of Functional Data

Let observations {xi(t), t ∈ T , i = 1, . . . , n} belong a subspace of L2 spanned by the

p-dimensional basis system of independent functions, {φ1, . . . , φp}. The assumed smooth

functional observation, or linear expansion, xi(t), can be expressed in terms of the sum

xi(t) =

p∑
k=1

akφk. (1.5)

Here, each ak is called a basis coefficient. When derivative estimation is required, one

must estimate it separately. Taking the derivate of the smooth function xi(t) does not often

give a good derivative estimate.

There are many different basis systems that can be used in a basis expansion. One of

the most common systems is the Fourier basis system. A Fourier basis is defined by a Fourier

series,

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), sin(3ωt), cos(3ωt),

Fourier bases are useful for data that are periodic, e.g. weather patterns [8]. Additionally,

derivative estimation is easier with a Fourier basis as the derivatives of sin(t) and cos(t) are

known and easy to compute.

For data that are not cyclical in nature, the most common choice is the B-spline basis

system. They are computationally efficient and are flexible enough to approximate most

non-periodic functions. Splines are defined over an interval T subdivided into subintervals

at points called knots. A basis system with L knots contains L+ 1 subintervals. Over each

subinterval, a polynomial functional of order m is defined. These functions are constrained

to be equal at the knots. The number of knots, L, and order of the splines, m, are two

important parameters defining a B-spline basis system. In this work, only B-spline bases

will be used.

After a basis system has been chosen, the basis coefficients must be estimated. One

method of basis coefficient estimation is that of least squares estimation. Denote the discrete

4

observations of a functional dataset yj, j = 1, . . . , N , where N is the number of time

points at which observations were taken. Assume independently and identically distributed

measurement errors, εj, with E[εj] = 0 and Var(εj) = σ2. Then,

yj = x(tj) + εj. (1.6)

Defining x(tj) in terms of (1.4), the sum of squared errors can be defined as

SSE(y|a) = ‖y −Φa‖2. (1.7)

Taking the first derivative, the least squares solution minimizing SSE(y|a)

â = (Φ′Φ)−1Φ′y. (1.8)

However, least squares smoothing is inappropriate if the error assumptions are not true. In

the case of functional data measured over time, observations at adjacent time points are

likely correlated, violating the standard error assumptions.

A more common method of spline smoothing is smoothing by roughness penalty. This

method is designed to estimate a curve that is rough enough to describe observed features

of the data, but suppresses high-frequency features of the data, including noise. To find the

coefficients of a smooth approximation of this type, the sum of squared errors is minimized

with the added constraint of a roughness penalty. Roughness of a function is described by

the curvature, or the squared second derivative. The quantity penalized is the integrated

squared second derivative,

PEN2(x) =

∫
[D2x(s)]2ds. (1.9)

The corresponding sum of squared errors to be minimized is as follows:

5

PENSSEλ(x|y) = [y − x(t)]′W[y − x(t)] + λPEN2(x), (1.10)

where W is the matrix of weights describing the covariance structure of the errors. The

smoothing parameter λ is chosen by the method of generalized cross validation developed

by Craven and Wahba [1]. This is done by choosing λ such that it minimizes the following

equation

GCV (λ) =
n× SSE

(n− df(λ))2
. (1.11)

Here df(λ) = trace(Sφ,λ), where

Sφ,λ = Φ(Φ′WΦ)−1ΦW (1.12)

is the hat matrix of the spline smoother.

Once you have smoothed functional observations, the statistical analysis can begin.

As with traditional statistics, the beginning of FDA focused on univariate statistics. Our

focus, however, is on a set of multiple functional predictors. In any functional data set with

multiple functional predictors, and especially in fMRI, dimensionality is an issue. It may

be important, for the sake of interpretation and computational expense, to select a smaller

subset of important variables from the dataset. In any dataset, classification is often of

interest. This particularly resonates within fMRI. Currently classification is used to explore

brain functionality. For example, in a certain study subjects are given one of two stimuli.

Does the brain behave differently in the presence of each stimulus to be able to predict which

stimulus a subject was presented with? If so, it would be important to identify which areas

of the brain are associated with this difference. As classification improves within the realm

of fMRI, it could contribute to diagnosis of brain degeneration or mental illness in clinical

settings. The rest of this thesis focuses on a method of dimension reduction and variable

selection in a dataset with multiple functional predictors and a binary response.

6

Chapter 2

Functional Principal Component Logistic Regression

2.1 Principal Component Analysis

Traditional principal component analysis (PCA) is a method of data reduction for mul-

tivariate datasets [4]. Consider a data matrix Xn×m, where n is the sample size and m is

the number of variables. Let E[X] = 0 and C = (X′X)−1 be the variance-covariance matrix.

PCA is performed on the covariance matrix or correlation matrix of X. It reduces dimension

by finding a linear combination of the variables that has the maximum variance; this linear

combination is the first principal component (PC). The next PC is found by finding a linear

combination of the variables that is independent of the first PC and has the next largest

variance. This goes on until min{N − 1,m} PCs have been found. This is equivalent to

solving the following equation:

Cf = λf . (2.1)

The solutions to this equation are the eigenvalues, λ, and eigenvectors, f , of the covariance

or correlation matrix. Dimension reduction occurs when a number of principal components,

s ≤ m, is chosen. Often this is done by examining the amount of cumulative variance

explained by each additional principal component.

2.2 Functional Principal Component Analysis

Consider a sample containing observations of one functional predictor. There is corre-

lation between observations at adjacent points in T . In a linear model framework, this leads

to the problem of high multicollinearity. Escabias et al. propose a method of functional

7

principal component analysis (fPCA) for the logistic regression model with one functional

predictor that alleviates this issue [6]. We will extend this method to a functional logistic

regression model with multiple functional predictors.

As outlined by Ramsay and Silverman, fPCA is merely a functional analog of the tradi-

tional multivariate principal component analysis [8]. Assume functional observations of one

variable xi(t) ∈ L2, where i = 1, . . . , n, with the usual functional sample mean, x̄(t), and

sample covariance function, Ĉ(s, t), s, t ∈ T . Without loss of generality, assume x̄(t)=0. The

functional principal components, ξj, are found by solving the following functional equivalent

of (2.1)

∫
T

Ĉ(s, t)f(s)ds = λf(t). (2.2)

The solutions to (2.2) are the eigenvalues, λ, and eigenfunctions, f(t), of the the covariance

matrix C. The number of eigenvalues is N − 1. The ith component of the jth principal

component, ξij, is expressed as

ξij =

∫
T

xi(t)fj(t)dt. (2.3)

The solution of (2.2) cannot always be computed.

When the n sample functions of a functional predictor belong to the space L2(T) spanned

by orthonormal bases {φ1, . . . , φp}, the functional PCs are equivalent to the multivariate PCs

of the matrix AΨ [2]. Here, A is the n× p matrix of coefficients of the basis expansions and

Ψ is a p× p matrix whose components are defined as

ψij =

∫
T

φiφjdt. (2.4)

8

2.3 The Functional Logistic Regression Model

Escabias et al. develop a principal component functional logistic regression model for

one functional variable [2]. We describe this method before extending it to the case with

multiple functional predictors. Consider observations {(yi, xi(t)), t ∈ T , i = 1, . . . , n},

where xi(t) is a functional predictor. Each xij(t) is the ith observation at the jth time point,

and each yi ∈ {0,1}. The conditional distribution of Yi | Xi(t) is Bernoulli(πi), with

πi = E[Yi | Xi(t)] =
exp{α +

∫
xi(t)β(t)dt}

1 + exp{α +
∫
xi(t)β(t)dt}

i = 1, . . . , n, (2.5)

where α ∈ R and β(t), the parameter, is a function. Making the logit transform, a generalized

model is formed [7]:

li = ln

(
πi

1− πi

)
= α +

∫
T

xi(t)β(t)dt i = 1, . . . , n. (2.6)

Under the assumption that β(t) belongs to the same L2 space spanned by {φ1, . . . , φp},

β(t) =

p∑
k=1

βkφk. (2.7)

The li’s can be expressed in terms of the AΨ matrix,

L = α1n×1 + AΨβ, (2.8)

where β is a p× 1 dimensional vector containing the coefficients βk for the basis expansion

of β(t). The basis coefficients βk can be estimated using a Newton-Raphson algorithm

maximizing the likelihood equation

Y ′(X − Π) = 0. (2.9)

9

In (2.9), Y = (y1, . . . , yn), Π = (π1, . . . , πn) and X=(1| AΨ) [6]. Once the coefficients are

estimated,

β̂(t) =

p∑
k=1

β̂kφk. (2.10)

The vector L in (2.9) can be reexpressed in terms of the principal components of AΨ:

L = α1n×1 + ΓV′β = Γγ, (2.11)

where Γ=(ξij) is the matrix of the p principal components and V, the eigenvectors. This

notation allows for estimation of the components of β,

β̂ = Vγ̂. (2.12)

Reduction of the effects of multicollinearity occurs when a number of PCs, s ≤ p, is chosen.

2.4 Principal Component Functional Logistic Regression for Multiple Func-

tional Predictors

The extension of PCA to the model with multiple functional predictors lies in the

definition of the inner product [4]. Let {(yi, xi
m(t)), t ∈ T , i = 1, . . . , n, m = 1, . . . , M}

∈ L2(T) spanned by {φ1, . . . , φp}, where each xi
m(t) is a functional predictor and each yi ∈

{0,1}. The inner product, then, of two functional PCs can be defined as follows:

〈ξi, ξj〉 =
M∑
m=1

∫
T

ξmi ξ
m
j dt. (2.13)

The functional logistic regression model with multiple predictors is still defined by (2.4).

The definition of πi, however, changes with the change in inner product:

10

πi = E[Yi | Xi(t)] =
exp{α +

∑M
m=1

∫
T
xmi (t)βm(t)dt}

1 + exp{α +
∑M

m=1

∫
T
xmi (t)βm(t)dt}

i = 1, . . . , n. (2.14)

Making the logit transform,

li = α +
M∑
m=1

∫
T

xmi (t)βm(t)dt i = 1, . . . , n. (2.15)

To perform the dimension reducing PCA, we redefine the design matrix AΨ. Here,

An×(Mp) =
[

A1 . . . AM

]
, (2.16)

and

Ψ(Mp)×(Mp) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ψ1 0

0 Ψ2 0 . . .

.

0 ΨM

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.17)

Each Am is an n × p matrix of basis coefficients. Ψ is a diagonal block matrix with each

Ψm having dimensions p× p. Now, β = (β′1,. . . ,β′M)′. Redefining (2.7),

L = α1n×1 + AΨβ = α1n×1 +
M∑
m=1

AmΨmβm. (2.18)

This definition depends on the assumption that each observation xmi (t) and the respective pa-

rameter function, βm(t), can be defined by the same set of basis functions {φm1 (t), . . . , φmp (t)}.

Below, we express L in terms of the principal components

L = α1n×1 +
M∑
m=1

ΓmVm′βm, (2.19)

11

where Γm = (ξmij)n×p are the principal components of the AΨm, and Vm is the matrix of

eigenvectors. The number of of PCs sm ≤ pm, to be chosen for each of the M should be

determined by cumulative variance. For simplicity, we chose the same number of PCs, s,

for each of the M predictors. After the dimension has been reduced on the within-variable

level, (2.12) becomes

πi(s) =
exp{α(s) +

∑M
m=1

∑s
j=1 ξ

m
ij(s)f

m
ij(s)β

m
j(s)}

1 + exp{α(s) +
∑M

m=1

∑s
j=1 ξ

m
ij(s)f

m
ij(s)β

m
j(s)}

i = 1, . . . , n. (2.20)

We can re-express (2.17) as

L = α(s)1n×1 +
M∑
m=1

Γm
(s)V

m′
(s)β

m
(s). (2.21)

The vectors βm can be estimated as in (2.9),

β̂m = Vmγ̂m. (2.22)

Although multicollinearity has been dealt with on a within variable basis, as M gets

large there could be multiple predictors providing similar information. In the case of fMRI

data, time series of adjacent voxels are expected to be similar. There is a need to reduce

dimension on the multiple variable level by selecting only those functional predictors which

are relevant to the response. This will alleviate another potential source of multicollinearity.

The following section of this thesis will focus on a method of simultaneous model estimation

and variable selection.

12

Chapter 3

Group Lasso for Functional Logistic Regression

3.1 Introduction

The principal component analysis allows for removal of redundant information on a

within predictor basis. As stated before, this is necessary due to the autocorrelation of

observations between time points. There is also a need to select only those predictors which

provide relevant information to the model.

There are many methods of variable selection used in linear models and generalized

linear models. Model selection techniques, such as stepwise and forward selection, cycle

algorithmically through subsets of variables until certain criteria are met. The variables

included in the various steps of the algorithm are determined by previously selected p-values.

These methods are inherently subjective, as it is up to the person analyzing the model to

choose the ”best” model based on a set of criteria. The criteria that determine the quality

of the model are also chosen by the analyst.

3.2 Lasso

A more objective method of variable selection, the lasso, was introduced by Tibshirani

in 1996. The lasso is a method that simultaneously performs model selection and parameter

estimation. It is an L1 regularization technique that performs this variable selection by

shrinking certain β coefficients to exactly 0, excluding those predictors from the model. The

other, non-zero, coefficients represent variables that are relevant to the model. This is done

by solving the least squares estimation subject to a constraint on the β coefficients. Assume

13

a standard regression model with independent observations {(yi, xi), i = 1, . . . , n}, where

xi=(xi1,. . . ,xip). The estimates of regression coefficients by the lasso method (α̂, β̂) are

(α̂, β̂) := arg min{
n∑
i=1

(yi − α−
p∑
j=1

βjxij)
2}, (3.1)

under
∑

j |βj| ≤ t, where t ≥ 0. Note that α is not penalized.

Tibshirani also applied the lasso to the logistic regression model [11]. Consider inde-

pendent observations {(yi,xi), i = 1, . . . , n} where yi ∈ {0, 1}. The variable selection and

model estimation are performed by maximizing the loglikelihood function,

l(β) =
n∑
i=1

yi(x
′
iβ)− ln(1 + exp{x′iβ}), (3.2)

under
∑

j |βj| ≤ t, where t ≥ 0. An iterated reweighted least squares algorithm is used to

compute β̂ under these conditions.

3.3 Group Lasso

Consider a linear model with multiple predictors, some of them categorical. A categor-

ical predictor with l levels will be represented in the model by l − 1 variables. The lasso

only has the ability to shrink individual regression coefficients to zero. In the case of the

categorical predictor, this has little interpretation. If the categorical predictor is not relevant

to the response, all l − 1 variables should be removed from the model.

Consider independent observations {(yi,xi), i = 1, . . . , n} where xi = (x′i1, . . . , x′iM)′.

Each xim represents a group of predictors. The linear regression model is defined as

Y = α +
M∑
m=1

xmβm + ε, (3.3)

where α ∈ R is the intercept, each βm is a vector whose components are the regression

coefficients for the mth group of predictors and Yn×1 is the vector of responses. Yuan and

14

Lin [14] developed a method of variable selection called the group lasso considers each of the

M groups of variables for inclusion or exclusion in the model. The coefficient estimates are

defined as

β̂ = arg min(‖Y −Xβ‖22 + λ
M∑
m=1

‖βm‖2), (3.4)

where λ is a tuning parameter and β = (α, β′1, . . . , β
′
M)′. The penalty is a mixture of L1 and

L2 regularization methods, the lasso and the ridge regression penalties.

3.4 Group Lasso for Functional Logistic Regression

Meier et al. [6] describe a method of group lasso for the multivariate logistic regression

model. Consider independent observations {(yi,xi), i = 1, . . . , n} where yi ∈ {0, 1} and xi

= (x′i1, . . . , x′iM)′. Each xmi represents a group of predictors. Group lasso is performed by

minimizing the following convex function:

Sλ(β) = −l(β) + λ
M∑
m=1

s(dfm)‖βm‖2, (3.5)

where dfm is the degrees of freedom of the mth group of predictors. The use of s(dfm) = df
1/2
m

is suggested [6]. The solution to this equation is the logistic group lasso estimator, β̂λ. It

is found using a block co-ordinate gradient descent minimization algorithm. The algorithm

uses a second-order Taylor series expansion,

Sλ(β̂
(t) + d) ≈ −{l(β̂(t)) + dT∇l(β̂(t)) +

1

2
dTH(t)d}+ λ

M∑
m=1

s(dfm)‖β̂(t)
m + dm‖2 = M

(t)
λ (d).

(3.6)

The algorithm begins by assuming an initial parameter vector, β(0). For each of the M groups

of variables, the algorithm finds d that minimizes Mλ(d). If this d is not identically 0, the

estimate of β is updated. The updated estimate β̂(t+1) is the previous estimate, β(t), plus

15

Figure 3.1: Group Lasso Algorithm: Outline of the block coordinate gradient descent algo-
rithm used to perform grouped variable selection in the logistic regression model [6].

a scalar times d. This algorithm proceeds for each group until some convergence criterion

is met. The choice of λ is dependent upon n and the degrees of freedom of each of the M

groups. In the multivariate model, group lasso performed on a dataset containing M groups

of discrete predictors. A number of groups of predictors less than M is selected. This version

of the group lasso is shown to be asymptotically consistent [6]. The minimization can be

done in R, using the package grplasso written by Meier et al [6].

We apply this group lasso method to the functional logistic regression model with mul-

tiple functional predictors. Recall observations {(yi, xi
m(t)), t ∈ T , i = 1, . . . , n, m = 1, . . . ,

M} ∈ LM2 (T) spanned by {φ1, . . . , φp}, where each xi
m(t) is a functional predictor and each

yi ∈ {0,1}. Consider the model in (2.19), after s principal components have been chosen.

The loglikelihood function, l(β), of the functional logistic regression model is

l(β) =
n∑
i=1

yi(α(s) +
M∑
m=1

∫
xmi (t)βm(s)(t)dt)− ln(1 + exp{α(s) +

M∑
m=1

∫
xmi (t)βm(s)(t)dt}). (3.7)

Using the definition l(β) in (3.7) we minimize the objective equation,

16

Sλ(β) = −l(β) + λ
M∑
m=1

s(dfm)‖βm‖2. (3.8)

In the case of our method of principal component logistic regression with multiple functional

predictors, the degrees of freedom in (3.3) is equivalent to the number of chosen PCs, s.

In the functional case, each of the M functional predictors is defined by a group of s

coefficients. When one entire group of coefficients is shrunk to 0, it excludes the correspond-

ing single functional predictor from the model. For any set of s coefficients that are not

equal to zero, the corresponding functional predictor is included in the model. In essence,

the group lasso performs single variable selection in the functional logistic regression model

with multiple functional predictors.

17

Chapter 4

Application

4.1 Introduction

In a Functional Magnetic Resonance Imaging experiment, an experimenter aims to

measure the amount of activation in each voxel of the brain. When a part of the brain is

active, there is increased bloodflow to the area. fMRI measures the change in blood flow

using the blood-oxygen-level-dependent (BOLD) contrast [3]. Assessing which parts of the

brain are active during an fMRI experiment allows researchers to determine which parts of

the brain respond to certain stimuli. There is a need for classification tools in the statistical

analysis of fMRI. Logistic regression could be used to distinguish between brains at rest and

those presented with stimuli. Another application would be to distinguish between subjects

receiving one of two particular stimuli. For example, an experimenter may play pieces of

music or speech to a subject [9]. Being able to classify which stimulus was presented allows

one to learn more about the way the brain works. Classification also has an application in

diagnosis of mental illness or degenerative disease.

4.2 Simulation Study

We assess our methodology using a simulation study. Using the R package neuRosim,

we were able to simulated preprocessed fMRI data. The package can be used to simulated

fMRI time series or complete 4D fMRI volumes. With neuRosim, one can define the onset

and duration of stimuli. One can specify the effect size of the stimuli, TR and times of

spatial and temporal noise [13].

18

We simulated preprocessed four dimensional fMRI data for an area of 4000 voxels con-

taining two non-overlapping regions of activation. We used neuRosim to create block designs

of a stimulus followed by rest. Design 1 presented an effect size that was larger in Region

1 than in Region 2. Design 2 created activation that was larger in Region 2 than in Region

1. Half of the observations in each simulation were simulated under Design 1, the other half

under Design 2. Our goal was to use the developed method of group lasso for functional

logistic regression with multiple functional predictors to classify the validation set into the

proper groups. We simulated 15 datasets each at two levels of signal-to-noise ratio (SNR),

0.75 and 3.87, and two levels of subject size, 30 and 50. An observation simulated under

Design 1 was given a y value of 1, otherwise yi = 0. Two-fold cross validation was then used

to form training and validation sets. All analysis was performed in R; the package grplasso

was used to perform the final variable selection [6]. Observations with π̂i >0.5 were classified

as yi=1, otherwise yi=0.

For each of the four sets, two-fold cross validation resulted in 30 models. We report the

number of voxels selected out of the initial 4000 voxels. We also report sensitivity, defined

as the ratio of true positives to true positives plus false negatives; false positive rate, the

ration of false positives to false positives plus true negatives; and the accuracy, defined as

the ratio of true positives plus true negatives to the number of observations in the validation

set. These findings can be seen in Figure 4.1. We did not report the number of principal

components selected in the table. In the cases where n = 50, the original number of basis

functions was 43. After PCA, 8, 9 or 10 principal components were selected every time. In

the cases where n = 30, 7 or 8 PCs were chosen. The method classifies well, even after use

of a small number of voxels. As expected, the cases with fewer subjects have lower sensi-

tivity and accuracy and a higher false positive rate. In the two simulations with lower SNR

classification appears to improve, which is surprising.

19

No. Voxels Selected Sensitivity False Positive Rate Accuracy
SNR = 3.87

n = 50 5.414(1.842) 0.935(0.096) 0.053(0.079) 0.936(0.060)
SNR = 0.75

n = 50 5.267(1.617) 0.953(0.099) 0.044(0.082) 0.949(0.670)
SNR = 3.87

n = 30 3.867(1.332) 0.825(0.188) 0.166(0.197) 0.840(0.158)
SNR = 0.75

n = 30 3.967(1.449) 0.874(0.153) 0.108(0.159) 0.871(0.106)

Figure 4.1: Simulation Results: The values reported are the means, followed by their stan-
dard deviations in parentheses.

• • •
• • •
• • •

Figure 4.2: fMRI Nine Dot Experiment: Subjects were asked to use four and five lines to
connect all nine dots in the figure above.

4.3 fMRI Example

To test this methodology on a real dataset, we used fMRI data collected by Auburn

University’s MRI Research Center. The data was collected from 6 subjects on a 7T MRI

scanner, and each scanning session lasted 1000s. The data were preprocessed by the experi-

menters using SPM8. Slice timing correction was made. Spatial realignment, normalization,

and smoothing were performed. And, finally, the data were detrended. The complete raw

data voxel-wise time series were then extracted using MarsBaR.

The experimental design was a block design with two conditions.In one condition, sub-

jects were asked to use four lines to connect all dots in Figure 4.2. In the other, subjects

were asked to use five lines to connect all dots in Figure 4.2. Conditions were presented in

a random sequence, and each condition was followed by a period of rest. All subjects were

able to connect the nine dots using five lines, but only one (Subject 5) was able to solve the

puzzle using four lines. Our aim was to use group lasso for functional logistic regression to

classify the six subjects as having solved the four line puzzle, y = 1, or as being unable to

20

Figure 4.3: Voxel Mask of the Anterior Temporal Lobe: The right anterior temporal lobe is
in red, the left in blue.

solve the puzzle, y = 0.

According to the experimenters, there were two important regions of interest (ROIs) in

this study. These regions are the left and right anterior temporal lobes (ATL) which can be

seen in Figure 4.3. They are associated with semantic memory, knowledge of objects and

facts. From the right ATL, 7560 voxel time series were extracted. From the left ATL, 6584

voxel time series were extracted. This led to a total of time series from 14144 voxels. To

perform PCA on the 14144 AΨ matrices of the spline smooths, the number of basis func-

tions, p, must be less than the number of subjects. We chose to use 5 basis functions. After

performing the principal component analysis, 3 PCs were chosen. From the 14144 voxels, the

group lasso procedure selected 11 voxels. From these 11 voxel time series, the classification

procedure correctly selected Subject 5 as having solved the puzzle.

4.4 Conclusion

We have developed a viable method of variable selection for functional logistic regression

by employing the group lasso in an interesting way. There are obvious limitations with small

sample sizes. Being limited to a number of spline basis functions that is less than the sample

size could lead to poor estimation of the functional observations. The method employed is

also computationally expensive for a large number of functional variables and subjects. Each

21

spline smooth procedure must be performed for all variables and subjects. Additionally, we

would like to explore the statistical properties of the estimators of the parameter functions.

The application in the field of Functional Magnetic Resonance Imaging is exciting. In future

studies on real data, it would be interesting to study the neurological significance of the

voxels selected by the group lasso.

22

Bibliography

[1] Craven, P., Wahba, G., 1979. Smoothing Noisy Data with Spline Functions. Numerische
Mathematik, 31, 377-403.

[2] Escabias, M., Aguilera, A. M., Valderrama, M. J., 2004. Principal component estimation
of functional logistic regression: discussion of two different approaches. Nonparametric
Statistics, 16(3-4), 365-384.

[3] Huettel, S.A., Song, A.W., McCarthy, G., 2009. Functional Magnetic Resonance Imag-
ing (2nd Edition). Sunderland, MA: Sinauer Associates.

[4] Joliffe, I. T., 2002. Principal Component Analysis, 2nd ed., Springer-Verlag, New York.

[5] Matsui, H., Konishi, S., 2011. Variable selection for functional regression models via the
L1. Computational Statistics and Data Analysis, 55:3304-3310.

[6] Meier, L., van de Geer, S., Bühlmann, P., 2008. The group lasso for logistic regression.
Journal of the Royal Statistical Society: Series B, 70(Part 1), 53-71.

[7] Müller, H., Stadtmüller, U., 2005. Generalized functional linear models. The Annals of
Statistics, 33(2), 774-805.

[8] Ramsay, J.O., Silverman, B.W., 2005. Functional Data Analysis, 2nd ed., Springer-
Verlag, New York.

[9] Ryali, S., Kaustubh, S., Abrams, D., Menon, V., 2010. Neuroimage, June 51(2), 752-764.

[10] Tian, T.S, 2010. Functional data analysis in brain imaging studies. Frontiers in Psy-
chology, 1(35), 1-11.

[11] Tibshirani, R., 1996. Regression Shrinkage and Selection via the Lasso. Journal of the
Royal Statistical Society B, 58(1), 267-288.

[12] Viviani, R., Grön, G., Spitzer, M., 2005. Functional Principal Component Analysis of
fMRI Data. Human Brain Mapping, 24, 109-129.

[13] Welvaert, M., Durnez, J., Moerkerke, B., Verdoolaege, G., Rosseel, Y., 2011. neuRosim:
An R Package for Generating fMRI Data. Journal of Statistical Software, 40(10).

[14] Yuan, M., Lin, Y., 2006. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society B, 68, 4967.

23

Appendix A

Simulation of Preprocessed fMRI Data

seed1 <- NULL

seed0 <- NULL

n1 <-

n2 <-

n <- n1 + n2

SNR <-

#Evaluate and store results for ith observation

for (i in 1:n1){

seedi<-sample(1:10000,1)

seed1[[i]] <- seedi

}

for (i in 1:n2){

seedi<-sample(1:10000,1)

seed0[[i]] <- seedi

}

library(neuRosim)

#Parameters

dimx <- 20

dimy <- 20

24

dimz <- 10

nscan <- 100

TR <- 2

total <- TR*nscan

os <- seq(1, total, 20)

dur <- 7

regions <- simprepSpatial(regions = 2, coord = list(c(2, 2, 2),

c(-2,-3,1)), radius = c(3,1), form = "sphere")

onset <- list(os,os)

duration <- list(dur, dur)

effect1 <- list(7, 15)

effect2 <- list(12, 8)

design1 <- simprepTemporal (regions = 2, onsets = list(os,os),

durations = duration, TR = TR, hrf = "double-gamma", effectsize =

effect1, totaltime=total)

design2 <- simprepTemporal (regions = 2, onsets = list(os,os),

durations = duration, TR = TR, hrf = "double-gamma", effectsize

effect2, totaltime=total)

#Subjects 1-25

25

data <- NULL

a <- NULL

for(i in 1:n1){

set.seed(seed1[i])

a <- simVOLfmri(design = design1, image = regions, base = 100,

dim= c(dimx,dimy,dimz),SNR = SNR, noise = "mixture", type =

"rician", rho.temp = c(0.142,0.108,0.084), rho.spat = 0.4, w=

c(0.05,0.1,0.01,0.09,0.05,0.7))

data[[i]] <- a

}

#Subjects 26-50

for(i in 1:n2){

set.seed(seed0[i])

a <- simVOLfmri(design = design2, image = regions, base = 100,

dim= c(dimx,dimy,dimz),SNR = SNR, noise = "mixture", type =

"rician", rho.temp = c(0.142,0.108,0.084), rho.spat = 0.4, w=

c(0.05,0.1,0.01,0.09,0.05,0.7))

data[[i+n1]] <- a

}

26

Appendix B

Simulation Analysis Code for R

#Sort data all subjects

vts<- NULL

vtsoutijk <- NULL

a <- NULL

for(m in 1:n){

for (i in 1:dimx){

for (j in 1:dimy){

for (k in 1:dimz){

vtsoutijk<- data[[m]][i,j,k,]

vtsoutijk <- t(vtsoutijk)

a <- cbind(a, vtsoutijk)

}

}

}

vts[[m]] <- a

a <- NULL

}

vtsALL <- NULL

for(i in 1:n){

27

vtsALL <- rbind(vtsALL,vts[[i]])

}

vtsV <- NULL

a <- NULL

for(i in 1:(dimx*dimy*dimz)){

a <-matrix(vtsALL[,(100*i-99):(100*i)], n, 100)

vtsV[[i]] <- a

}

vtsV <- t(vtsV)

#begin basis expansion

library(fda)

knots <- seq(0,200,10)

norder <- 4

nbasis <- length(knots) + norder - 2

T <- seq(2,200,2)

Trange = c(0,200)

lambda=1e6

#Create b-spline basis

bbasisV <- create.bspline.basis(Trange,nbasis,norder,knots)

28

curv.Lfd <- int2Lfd(2)

curv.fdParV <- fdPar(bbasisV, curv.Lfd,lambda)

#choose smoothing parameter

lambdas = 10^seq(-4,4,by=0.5)

mean.gcv = rep(0,length(lambdas))

#Initialize dataframes

SmoothV <- NULL

SmoothVfd <-NULL

A <- NULL

for(j in 1:(dimx*dimy*dimz)){

for(ilam in 1:length(lambdas)){

Set lambda

curv.fdParVi <- curv.fdParV

curv.fdParVi$lambda <- lambdas[ilam]

Smooth

Smoothi <- smooth.basis(T,t(vtsV[[j]]),curv.fdParVi)

Record average gcv

mean.gcv[ilam] <- mean(Smoothi$gcv)

}

#plot(lambdas,mean.gcv,type=’b’,log=’x’)

best = which.min(mean.gcv)

29

lambdabest = lambdas[best]

curv.fdParV$lambda = lambdabest

bj = smooth.basis(T,t(vtsV[[j]]),curv.fdParV)

SmoothV[[j]] <-bj

#Create A matrices

c <- SmoothV[[j]]$fd

SmoothVfd[[j]] <- c

d <- SmoothVfd[[j]]$coefs

d <- matrix(d,n,nbasis)

A[[j]] <- d

}

#Create PSI matrix

Psi1 <- inprod(bbasisV,bbasisV)

e<- NULL

APsi <- NULL

#multiply Am by Psim

for(i in 1:(dimx*dimy*dimz)){

e <- A[[i]]%*%Psi1

APsi[[i]] <- e

}

#Perform PCA in APsi matrices

30

APsiPCA <- NULL

for(i in 1:(dimx*dimy*dimz)){

h <- princomp(APsi[[i]], cor = TRUE, scores = TRUE)

APsiPCA[[i]] <- h

}

c<-NULL

d <- NULL

e<-NULL

#Calculate proportion of variance and choose number of PCs

PropVar <- NULL

for (j in 1:(dimx*dimy*dimz)){

for (i in 1:nbasis){

sdev <- APsiPCA[[j]]$sdev

c[i] <- (sdev[i])^2

c <- t(c)

}

for(i in 1:nbasis){

d[i] <- c[i]/sum(c)

}

e <- cumsum(d)

PropVar[[j]] <- e

}

NPCV <- NULL

NPC <- NULL

for(j in 1:(dimx*dimy*dimz)){

d <- NULL

31

for(i in 1:nbasis){

if(PropVar[[j]][i] < .91){

d[i] <- 1

}

else{ d[i] <- 0}

}

NPCV[[j]]<-d

NPC[j] <- sum(NPCV[[j]])

}

NPCV <- NULL

NPC <- NULL

for(j in 1:(dimx*dimy*dimz)){

d <- NULL

for(i in 1:nbasis){

if(PropVar[[j]][i] < .95){

d[i] <- 1

}

else{ d[i] <- 0}

}

NPCV[[j]]<-d

NPC[j] <- sum(NPCV[[j]])

}

#Select # PCs

min(NPC)

max(NPC)

32

numPC <-

#extract pCs

PC <- NULL

for(i in 1:(dimx*dimy*dimz)){

d <- APsiPCA[[i]]$scores[,1:numPC]

PC[[i]]<-d

}

#Create Y vector

Y <- c(rep(1,n1),rep(0,n2))

Y <- t(Y)

Y <- t(Y)

#Select training and validation sets

train <- sample(1:n,n1)

valid <- NULL

for(i in 1:n){

if (i %in% train){}

else{

valid <- rbind(valid,i)

}

}

PCtrain <- NULL

PCvalid <- NULL

x<- NULL

33

a <- NULL

#Training Design

for(j in 1:(dimx*dimy*dimz)){

a <- NULL

x <- NULL

for(i in 1:n1){

a <- PC[[j]][train[i],]

x<-rbind(x,a)

}

PCtrain[[j]]<-x

}

#Validation Design

for(j in 1:(dimx*dimy*dimz)){

a <- NULL

x <- NULL

for(i in 1:n1){

a <- PC[[j]][valid[i],]

x<-rbind(x,a)

}

PCvalid[[j]]<-x

}

#Training Y

Ytrain <- NULL

34

for(i in 1:n1){

Ytrain[i] <- Y[train[i]]

}

#Valid Y

Yvalid <- NULL

for(i in 1:n1){

Yvalid[i] <- Y[valid[i]]

}

#grplasso

library(grplasso)

library(calibrate)

Int <- ones(n1,1)

#Validaton Set as Validation

lasX<-NULL

lasX<-cbind(lasX,Int)

for(i in 1:(dimx*dimy*dimz)){

lasX <- cbind(lasX,PCtrain[[i]])

}

index <- NULL

index <- c(index,NA)

for(i in 1:(dimx*dimy*dimz)){

b <-rep(i,numPC)

index <- c(index,b)

35

}

lambdalas <- lambdamax(lasX, y=Ytrain, index=index, penscale = sqrt, model = LogReg()) * 0.5^(0:5)

lasfit <- grplasso(lasX, y=Ytrain, index= index, lambda = lambdalas, model= LogReg(), penscale=sqrt, control = grpl.control(update.hess = "lambda", trace=0))

Coefs <- lasfit$coefficients

dim(Coefs)

CoSUM <- NULL

for(i in 1:6){

CoSUM[i]<-sum(Coefs[2:(dimx*dimy*dimz*numPC + 1),i])

}

CoCo <- NULL

VarNUM <- NULL

for(j in 1:6){

g <- NULL

for(i in 1:(numPC*dimx*dimy*dimz + 1)){

if(Coefs[i,j] ==0){

g[i] <- 0}

else{g[i] <- 1}

}

CoCo[[j]]<-g

}

SumCoCo <- NULL

for(i in 1:6){

36

SumCoCo[i] <- sum(CoCo[[i]])

}

#View number of functional variables selected by grplasso

SumCoCo

#Find Lihat and Pihat and classify yhat

ModelCoef <- Coefs[,2]

Alpha <- ModelCoef[1]

Betastar <- ModelCoef[2:(numPC*dimx*dimy*dimz +1)]

Betastar <- t(Betastar)

Betastar <- t(Betastar)

M<-NULL

for(i in 1:(dimx*dimy*dimz)){

b <- PCvalid[[i]]%*%Betastar[(numPC*(i-1)+1):(numPC*i)]

M[[i]] <- b

}

APsiB <- 0*ones(n1,1)

for(i in 1:(dimx*dimy*dimz)){

APsiB <- APsiB + M[[i]]

}

#Find Lhat

Lhatvalid <- NULL

Lhatvalid = Alpha*ones(n1,1) + APsiB

37

#Pistar1

#find Pi(i)’s

Pstar <- NULL

YstarV <- NULL

for (i in 1:n1){

Pstar[[i]] <- (exp(Lhatvalid[i]))/(exp(Lhatvalid[i])+1)

if(Pstar[i]>0.5){

YstarV[[i]] <- 1

}

else{YstarV[[i]]<- 0}

}

#Training Set as Validation

lasX<-NULL

lasX<-cbind(lasX,Int)

for(i in 1:(dimx*dimy*dimz)){

lasX <- cbind(lasX,PCvalid[[i]])

}

index <- NULL

index <- c(index,NA)

for(i in 1:(dimx*dimy*dimz)){

b <-rep(i,numPC)

index <- c(index,b)

38

}

#Group Lasso

lambdalas <- lambdamax(lasX, y=Yvalid, index=index, penscale = sqrt, model = LogReg()) * 0.5^(0:5)

lasfit <- grplasso(lasX, y=Yvalid, index= index, lambda = lambdalas, model= LogReg(), penscale=sqrt, control = grpl.control(update.hess = "lambda", trace=0))

CoefsV <- lasfit$coefficients

dim(CoefsV)

CoSUM <- NULL

for(i in 1:6){

CoSUM[i]<-sum(CoefsV[2:(dimx*dimy*dimz*numPC + 1),i])

}

VCoCo <- NULL

VarNUM <- NULL

for(j in 1:6){

g <- NULL

for(i in 1:(numPC*dimx*dimy*dimz + 1)){

if(CoefsV[i,j] ==0){

g[i] <- 0}

else{g[i] <- 1}

}

VCoCo[[j]]<-g

}

39

SumVCoCo <- NULL

for(i in 1:6){

SumVCoCo[i] <- sum(VCoCo[[i]])

}

#View number of functional variables selected by grplasso

SumVCoCo

#Find Lihat and Pihat and classify yhat

ModelCoefV <- CoefsV[,2]

AlphaV <- ModelCoefV[1]

BetastarV <- ModelCoefV[2:(numPC*dimx*dimy*dimz +1)]

BetastarV <- t(BetastarV)

BetastarV <- t(BetastarV)

M<-NULL

for(i in 1:(dimx*dimy*dimz)){

b <- PCtrain[[i]]%*%BetastarV[(numPC*(i-1)+1):(numPC*i)]

M[[i]] <- b

}

APsiBV <- 0*ones(n1,1)

for(i in 1:(dimx*dimy*dimz)){

APsiBV <- APsiBV + M[[i]]

}

#Find Lhat

40

Lhattrain <- NULL

Lhattrain = AlphaV*ones(n1,1) + APsiBV

#Find Pi(i)’s

PstarT <- NULL

YstarT <- NULL

for (i in 1:n1){

PstarT[[i]] <- (exp(Lhattrain[i]))/(exp(Lhattrain[i])+1)

if(PstarT[i]>0.5){

YstarT[[i]] <- 1

}

else{YstarT[[i]]<- 0}

}

41

