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      ABSTRACT??.. 
The focus of this dissertation is on the development of in silico approaches for 
the logical and systematic solution of chemical product design problems. The 
application of multivariate characterization, modeling, and design is 
accomplished by utilizing interdisciplinary methods and tools that extend 
through multivariate statistics, applied mathematics and computer science. 
Methodologies and techniques such as spectroscopy-based group contribution 
methods, chemometric/chemoinformatic techniques, reverse problem 
formulation, and property clustering techniques are integrated within 
computer-aided molecular/mixture design (CAMD) algorithms to design 
chemical products in a computationally efficient manner that provides 
optimum performance in terms of customer requirements. Property-based 
design techniques and multivariate data-driven modeling and optimization 
strategies are presented in this dissertation covering two specific areas of 
chemical product design: mixture and molecular design. 
In mixture design, the property integration framework is combined with 
multivariate statistical techniques and applied in a reverse problem 
formulation on chemical product design problems by systematic and 
insightful use of past data describing the properties of the raw materials, 
their blend ratios, and the process conditions during the production of a 
range of product grades to achieve new and improved products. Projection 
methods, like principal component analysis (PCA) and partial least squares 
(PLS) are applied to identify the underlying relationships necessary for 
simultaneous optimization of all three variables. The method is illustrated 
using a polymer blending problem. 
 
iii 
In molecular design, multivariate characterization techniques like 
infrared (IR) spectroscopy are utilized to generate numerical descriptors of 
molecular architecture in terms of IR frequency of a set of representative 
samples. Models based on quantitative structure-property relations (QSPR) 
are used to elucidate structure-property relationships. Applying principal 
component analysis, high dimensional and highly correlated molecular 
descriptor variables are transformed into low dimensional and statistically 
independent latent variables. These latent variables are then used to 
calibrate latent property models. Finally, the reverse design of molecules is 
accomplished by exhaustively searching for molecular structures with target 
properties, from the combinatorial building blocks. A characterization-based 
group contribution method is utilized to estimate the properties of the 
formulated chemical products. The concepts and the solution methodologies 
are demonstrated using two proof-of-concept examples: biodiesel additive 
formulation and ionic liquid design.  
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CHAPTER 1  
INTRODUCTION 
1.1 Chemical Product Design 
Chemical product design is a response to major changes in the chemical 
industry which have occurred in recent decades. Traditionally, the chemical 
industry has focused on process design involving the manufacture of bulk 
commodity chemicals with an objective primarily being efficient production to 
reduce costs in order to be competitive. Such chemicals are produced in 
dedicated equipment and at very large scale such as ethylene, ammonia, and 
sulfuric acid. The market success of such products depends on the cost of 
making them. However, in recent decades, specialty, higher value-added, 
smaller volume chemical products such as pharmaceuticals, electronics, and 
pigments have become increasingly important. The success for such products 
depends on their discovery and their time to market. In the production of 
specialty chemicals, the key is improvement in performance rather than 
minimization of cost.  
Unlike conventional process systems engineering (PSE) approaches that 
were focused on the synthesis, design, optimization and control of chemical 
processes which are based on a priori knowledge on the products, in chemical 
product design, the identity of the final product is not known. Instead, the 
basic idea of its behavior is known and the problem is to find the most 
appropriate chemical(s) that will exhibit and/or cause the desired behavior 
[1]. Several common desirable behaviors are: biodegradability, lower toxicity, 
environmental benignity, and less hazard. Since customer needs and 
customer attributes are the most important sources of product requirements, 
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product design should address these needs by translating them into the final 
commercial products. Rapidly developing new products required by customers 
with minimum cost is an increasingly important problem. According to 
Cussler and Moggridge [2], chemical product design is a procedure consisting 
of four stages: 
1. Needs: Identification of customer needs and the translation of these 
needs into product specifications. 
2. Ideas: Generate ideas that satisfy this need. 
3. Selection: Screen and select the best idea for manufacture. 
4. Manufacture: Decide what the product should look like and how it 
should be manufactured.  
 
The 2
nd
 and 3
rd
 stages together represent Molecular Design and 
Mixture/Blend Design problems. The 1
st
 and the 4
th
 stages may be considered 
problem formulation and process design stages respectively. Figure 1.1 is a 
schematic representation of the stages involved in chemical product design 
and problems that are addressed in each stage [1].  
 
 
Figure 1.1:   Stages involved in chemical product design. 
Process-Product Design
Pre-Design
?define needs 
and goals?
Process Design
?manufacture and 
test products?
Molecular Design Mixture Design
Product Design
?generate and select alternatives?
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The molecular and mixture/blend design problems can be solved 
independent of the process design problem or as an integrated product-
process design problem. In product design, we describe which product to 
make; in process design, we explore how we will make it. Chemical product 
design is the larger topic, and includes the process design in the final step.  
Product design is now considered as an emerging paradigm in the field 
of chemical engineering [1, 2, 3] because it requires a different set of tools 
and skill sets from other problems traditionally encountered in the field. 
Design of environmentally benign solvents and alternative media for 
extraction and purification are new challenges within product design. 
Examples of chemically formulated products include performance chemicals, 
paints, cosmetics, pharmaceuticals, proteins, semi-conductors, foods, fuel 
mixtures, and many more (Figure 1.2). 
 
Figure 1.2:   Chemically formulated products. 
The search for potentially new molecules that possess one or more 
desired properties using traditional experimental approaches costs time and 
resources. This awareness has generated momentum to find alternative ways 
of numerical characterization of chemicals. Ertl [4] estimated that the 
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chemical space could be 10
20 
- 10
24
 compounds whereas the current size of the 
CAS Registry is 2 x 10
7
 compounds. There are abundantly more chemical 
compounds waiting to be prepared and characterized. Here, the application of 
computational tools can facilitate the investigation of chemical product 
formulations prior to experimentation and simulation of their manufacturing 
processes, giving the flexibility to handle changing design constraints early in 
the development process. In silico research and practice can alleviate 
problems arising from diverse customer demands and shorter life time of 
specialty chemical products. When appropriate property models are available 
to describe and predict the target product properties, computer aided 
methodologies can be utilized to solve the design problems, and are 
considered computer aided molecular/mixture design (CAMD) problems [1]. 
Chemical product design that utilizes systematic approaches to integrate the 
developed chemistry with manufacturing constraints is considered a new 
chemical engineering paradigm [3, 5].  
1.2 Challenges and motivations 
Unlike the design of commodity chemicals, which have a known molecular 
architecture and limited raw material options from which to build an 
optimum process configuration, the design of specialty chemical products 
does not have defined molecular architectures or raw material sources.  
Developing techniques to discover and optimize the molecular architecture 
that delivers desired attributes is the focus of research in the process systems 
engineering (PSE) community. In addition, it is important to develop a 
systematic methodology to produce chemicals that possess both the consumer 
specified attributes and environmentally acceptable characteristics. 
CAMD facilitates the application of computer algorithms to solve the 
mathematical formulations of chemical product design. For computational 
searching, the desired property must be calculated from a model describing 
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the structure-property relationship. Based on the type of the property model, 
the resulting CAMD problem can be a linear program (LP) or a nonlinear 
program (NLP). Various CAMD-based techniques have been proposed and 
can be classified as (a) mathematical optimization techniques [6, 7, 8], (b) 
stochastic optimization techniques [9], and (c) exhaustive enumeration 
(generate and test) [1, 10].  
Traditionally, molecular and/or mixture/blend design (chemical product 
design) procedures suffer from two major challenges: the ability to solve large 
scale optimization problems, and the ability to predict the physical and 
chemical properties of a given molecule [11]. Computational methods aimed 
at finding new molecular structures that possess desired product properties 
follow the experimental approach of generate-and-test. These approaches 
involve the minimization or maximization of an objective function with many 
linear and non-linear constraint equations. They are commonly referred to as 
a Mixed-Integer Non-Linear Programs (MINLP) [1]. The generic 
mathematical programming formulation of integrated process-product 
synthesis/design problems can be presented as [1]: 
 
( ){ }max       Objective function
T
obj
F Cy f x= +
 (1.1) 
s.t.  
( )
1
0                               Process design specificationshx=
 
(1.2) 
( )
2
0                              Process model equationshx=
 
(1.3) 
( )
3
, 0                           CAMD specificationsh xy=
 
(1.4) 
( )
11 1
                       Process design constraintsl gx u??
 
(1.5) 
( )
22 2
,                   CAMD constraintsl g xy u??
 
(1.6) 
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33
                   Logical constraintsl By Cx u?+?
 
(1.7) 
 
In the above equations, x represents continuous variables (such as 
temperature, flowrate and mixture compositions, etc.) and y represents 
binary integer variables (such as the existence or absence of certain process 
units, raw materials, or molecular groups). Many variations of the above 
mathematical formulation exist for solving different chemical product design 
problems. An in-depth review of the problem formulations has been 
presented by Gani [1]. The presence of non-linear constraints means that the 
solution to the MINLP may only be considered a local optimum and not 
necessarily a global optimum and as such may not be able to generate a 
complete set of candidate molecules. This leads to sub-optimal design and 
inefficient iterative solution approach.  
Although mathematical programming and hybrid methods provide the 
framework to transform solution techniques into computer-aided methods 
and tools to determine the optimal design, they are computationally intensive 
if the problem is not well-defined or is highly nonlinear. The major non-
linearity of the problem is introduced by the property descriptors which 
either need to be supplied (measured or retrieved from database) and/or 
predicted through appropriate models. In addition, when considering 
interfacing product and process design, most algorithms face a bottleneck 
when it comes to using property models suitable for both product design and 
process design [1]. If multiple models with restricted application ranges are 
included for the same property, the algorithm may suffer from discontinuities 
in the solution trajectory, which may make it more complicated to achieve 
solution convergence [1]. Overall, purely mathematical optimization-based 
approaches are computationally intensive and require very detailed models 
for all considered unit operations, thus it is desirable to reduce the search 
space prior to invoking the optimization solver.  
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Almost all CAMD methods have used group contribution-based property 
prediction methods to evaluate the generated compound with respect to a 
specified set of desired properties [12, 13, 14]. Group contribution methods 
(GCM) are simple, have acceptable accuracy for many properties and are 
predictive in nature. However, GCM do not exist for all necessary properties, 
and reliability of predictions is often questionable for large, complex 
molecules. There are many property parameters or consumer attributes for 
which group contribution (GC) data is not available, for example, attributes 
such as paper softness are difficult to define in terms of properties and 
molecular architecture.  
In order to characterize the properties of observations, one measures 
variables.  In chemical and engineering practice, it is often assumed that our 
systems are driven by inherent, latent variables. Changes in intrinsic 
molecular properties cannot easily be measured directly. However, 
macroscopic properties, which are manifestations of the intrinsic properties, 
can be predicted through the use of relevant molecular descriptors. Such 
descriptors can be related to chemical (reactivity, pH, enthalpy of formation, 
lipophilicity, etc.), physical (boiling point, viscosity, density, etc.), and 
structural (electron distribution, van der Waals interactions, hydrogen bonds, 
etc.) properties of molecules. Discrete change of a substituent in one part of a 
molecule or polymer does not just affect one isolated property, but several of 
the above properties. Therefore, the chemical behavior of a molecule is 
governed by these intrinsic, latent molecular properties [15]. Thus, it is 
important to capture the intrinsic properties using relevant molecular 
descriptor variables. 
Chemical structures can be numerically encoded by molecular 
descriptors. Thousands of molecular descriptors have been reported in the 
literature, ranging from simple topological to more complicated topographical 
properties of molecules. They cover features from constitution to geometry 
and electronic properties [16, 17]. Relating chemical structures to physical 
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and chemical properties is not a new endeavor. However, to deal with the 
enormous amount of data generated, it becomes crucial to develop and utilize 
features selection algorithms, along with data visualization, interpretation, 
and mining techniques to progress in computer-aided molecular design.  
Molecular descriptor variables can be of spectral origin (e.g. IR, NIR, 
NMR, UV, X-ray, etc.); chromatographic origin (e.g. HPLC, GC, TLC, etc.) or 
they may be measurements from sensors in a process (e.g. temperatures, 
flows, pressure, etc.). When variables are highly correlated or are highly 
redundant, they are said to be collinear. 
As the chemical engineering discipline moves from data poor to data 
rich, the research in process systems engineering (PSE) shifts the focus from 
simulation and complex experimentation toward data-driven techniques to 
acquire the needed translation of product attributes into common physical-
chemical properties [18]. With data-driven means gaining popularity as being 
powerful and inexpensive, computer usage is being increasingly exploited for 
scientific investigation. Also, the application of chemometrics and 
chemoinformatics is gaining a great deal of recognition and application in 
order to address problems in chemistry, chemical engineering, biochemistry, 
biology, and medicine [16]. According to Wold [19], chemometrics is the 
science of extracting chemically relevant information by data-driven means 
and deriving the respective multivariate statistical models and descriptors. 
Chemometrics is therefore a process. Chemoinformatics is a subfield of 
chemometrics which involves the transformation of data into information and 
information into knowledge to facilitate decision making [18, 16].  
Combination of chemometrics and chemoinformatics can lead to target-
focused two-and three-dimensional structures from molecular composition. 
The algorithm and informatics methods can be applicable and transferable to 
a wide range of chemical and biological systems, regardless of whether the 
starting point is DNA or a chemical element distribution as illustrated in 
Figure 1.3 [19].   
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Figure 1.3:   Hierarchy of chemical and biological informatics. 
 
Chemometrics can be applied to solve both descriptive and predictive 
problems involved with such data [19]. In descriptive applications, properties 
of chemical systems are modeled with the intent of learning the underlying 
relationships and structure of the system. In predictive applications, 
properties of chemical systems are modeled with intent of predicting new 
property values or behaviors of interest. Chemoinformatics can be utilized to 
analyze a large volume of data generated from molecular modeling, chemical 
information, and computational chemistry techniques [16]. 
Moreover, when a good theoretical process model is not available or 
before new experiments are conducted, historical process data is often 
available in industry that encompasses a wide spectrum of operating 
conditions and product grades. Such multi-block data involving the properties 
of the pure materials, their blend ratios, and the process conditions, could 
provide an opportunity to enhance the performance of the final product in 
blending operations for coatings, food, cosmetics, pharmaceuticals and fuels  
[20]. The data-driven modeling approach is apt for processes and phenomena 
where cause-and-effect cannot be simply approached from first-principles. 
For example, a real-life industrial process system often involves complex, 
nonlinear, incomplete, and uncertain data.  
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In chemical product (molecular or mixture) design, the identity of the 
final product is unknown, however, the general behavior or characteristics of 
the product (goal) is known. Since the properties of the component or mixture 
of components dictate whether or not the design is useful, the basis for 
solution approaches in this area should be based on the properties 
themselves. The recognition of property-based design came about as a direct 
result of the following observations: 
? Many processes are driven by properties not components. 
? Performance objectives are often described in terms of measurable 
physical-chemical properties. 
? Often objectives cannot be described by composition alone. 
? Molecular/mixture design is based on properties. 
? Insights are often hidden by not integrating properties directly. 
 
The discussion presented here provided the motivation that guided the 
research, and as a result the methods and tools developed must accomplish 
the following: 
? Integrate process and product design problems via a methodology within 
the property integration paradigm. 
? The approach needs to be systematic and capable of setting up the 
design performance requirements or ?targets? a priori, i.e. a targeting 
approach.  
? Utilize a data-driven approach combined with multivariate statistical 
techniques to solve both descriptive and predictive problems. 
? Apply multivariate characterization, modeling, and design. 
? Incorporate the concepts of reverse problem formulation and property 
clusters to aid in the decomposition of the design problem. 
? The technique should take advantage of the benefits of visualization 
tools in the formulation of the problem and as part of its solution 
algorithms.  
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1.3 Scope and Objectives 
General background information on traditional frameworks for solving 
computer-aided molecular/mixture design (CAMD) problems is presented in 
this work. Techniques such as group contribution, reverse problem 
formulation, property clustering, and multivariate statistics are presented 
within CAMD to formulate and solve chemical product design problems. 
These methods form the basis for the property-based design techniques 
presented in this dissertation.  
Primarily, the effort of this dissertation is on the formulation of chemical 
products through the application of multivariate characterization, modeling, 
and design. Property-based molecular and mixture design algorithm within 
the general property clustering framework utilizing chemometric techniques 
and group contribution methods in a reverse problem formulation are 
presented. Data-based modeling and optimization strategies will be 
presented in this dissertation covering two specific areas of chemical product 
design: 
1. Mixture/Blend design: For mixture products, a systematic and 
insightful use of past data describing the properties of the raw 
materials, their blend ratios, and the process conditions during the 
production of a range of product grades is investigated to explore their 
effects on the final product properties and to achieve new and improved 
products. 
2. Molecular design: For molecular products, chemically feasible, 
structured molecules are exhaustively enumerated from a set of 
appropriate descriptors (represented by fragments or building blocks) to 
identify compounds exhibiting certain desirable or specified behavior.  
 
The present work is limited to systems that can be characterized by 
three properties, however, algebraic and optimization-based approaches are 
available to extend the application range to include more properties [21]. 
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1.4 Significance of the Research 
A significant result of the developed methodology is that for problems that 
can be adequately described by just three properties, the process and 
molecular design problems are solved visually and simultaneously on a 
ternary diagram, irrespective of how many substructural molecular 
fragments are included in the search space. The primary benefits gained 
through the developed methodology are as follows: 
? utilization of interdisciplinary methods and tools that extend through 
multivariate statistics, applied mathematics, computational expertise, 
and experimentation across all scales, 
? formulation and solution of chemical design problem on property basis,  
? bridging domains via property models facilitate nested and nonlinear 
routines to be reduced to a single sub-problem in cluster space. 
? identification of design targets without performing detailed calculations, 
? visualization and solution of problem in lower dimensional space, which 
provide valuable information by elucidating hidden relationships in data 
and multivariate understanding of complex processes and phenomena, 
? multivariate projection-based regression retains better memory of the 
structure of the training set data to predict molecules with similar 
properties and structures,  
? reverse design approach using the descriptors of group contribution type 
combined with chemoinformatics enables exhaustive search of the 
structures corresponding the target physical properties, and 
? explicitly tracking and integrating properties in a systematic manner 
relieve, the iterative nature, multiple component combinatorial 
explosion, and difficulty of formulating and solving the mixed integer 
non-linear programs (MINLP) of conventional design techniques. 
 
The aim is to allow us to see the big picture first, and the details later.  
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1.5 Organization 
Chapter 2 introduces the general theoretical background on the methods and 
tools that the research in this dissertation is based on. Section 2.2 introduces 
the property-based approach that facilitates the flow of information from the 
process level to the molecular level, and vice versa. Section 2.3 highlights 
property estimation methods based on combinatorial techniques such as the 
group contribution method. Different characterization (e.g. IR spectroscopy) 
based group contribution methods are presented in Section 2.4. The 
characterization-based groups serve as the descriptive application of 
chemometric techniques that describe the molecular architecture of a 
chemical product. Section 2.5 discusses the limitation of using general 
regression models that is often encountered when the number of descriptor 
variables is larger than the number of samples and when the variables 
exhibit linear relationships with each other. The predictive application of 
chemometric techniques is presented using statistical multivariate 
techniques like PCA and PLS to model the properties of chemical systems in 
Section 2.6.  
 Chapter 3 presents the developed methodology for solution of mixture 
design problems utilizing the tools presented in Chapter 2. The multi-block 
data structures (L- and T-shaped) available in blending operations are 
presented in Section 3.3. Combining multiple blocks using appropriate 
mixing rules and matrix algebra to help simplify the analysis and design by 
not having to differentiate between mixture and process variables and not 
having to assume independence of the factors when multivariate analysis 
techniques are used is discussed in Section 3.4. Section 3.5 presents a case 
study to illustrate the method and concept using the development of thermo-
plastic as a case study. The example incorporates all three degrees of freedom 
available in blending operation. 
Chapter 4 presents the developed molecular design framework based on 
a characterization-based group contribution method. The advantages of 
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biodiesel, a short overview on its production, chemical profiles of different 
feedstocks and their effects on product quality are present in Section 4.1. 
Technical difficulties with biodiesel that have impaired its use and 
commercialization are presented in Section 4.3. Additive design is presented 
as an alternative approach to solve the technical difficulties with biodiesel in 
Section 4.4. Section 4.5 discusses the methodology for additive design that 
combines the framework and the tools presented in Chapter 2. In this 
Section, the types of training set additive molecules, their property 
estimation methods, IR-based characterization of their molecular 
architecture, multivariate statistical analysis of IR data for descriptive 
application, latent variable property model development for predictive 
application, evaluation of target properties for additive design, and design of 
additive molecules that meet the target property specifications are discussed.  
Chapter 5 introduces the use of density functional theory (DFT) based 
simulation techniques to generate the IR spectra as molecular descriptors 
with which to develop predictive property models. This step relieves the 
dependency on measured or database values for the required IR data used in 
the methodology presented in Chapter 4. The interdisciplinary and novel 
framework proposed will be demonstrated using a case study focused on the 
reverse design of ionic liquids with tailored properties. The methods in this 
Chapter will integrate the framework and tools presented in Chapter 2 and 
Chapter 4 with an additional ability to generate spectroscopic data from 
quantum chemical calculations. 
Chapter 6 introduces future works that can be extended from the 
methodologies and tools developed in this dissertation. Section 6.1 introduces 
potential improvement or extension areas in the characterization, modeling, 
and design methodologies presented in this dissertation. Section 6.2 
incorporates the design of inherently benign chemical process routes using 
process route descriptors related to environment, health, and safety factors.   
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CHAPTER 2  
THEORY AND METHODOLOGY 
 
 
In this chapter, theoretical background on current methods used in chemical 
product design along with tools that will be employed in this dissertation 
research will be defined and discussed.  
2.1 Process-Product Design 
The molecular and mixture/blend design problems can be solved independent 
of the process design problem or as an integrated product-process design 
problem as shown in Figure 2.1. In general, the objective in the design or 
optimization of process is to find a balance between satisfying process unit 
requirements/constraints and the use of appropriate raw materials in order 
to maximize profit or to minimize cost. Traditionally, process design and 
molecular/mixture design have been treated as two separate problems, with 
little or no feedback between the two approaches as represented by Figure 2.1 
[22]. The raw materials could be searched from a material database or can be 
obtained from molecular design. Since process and molecular/product design 
are decoupled, molecular design can be performed based on qualitative 
process knowledge and/or experience. This can lead to sub-optimal designs 
and an inefficient iterative solution approach. 
However, the decoupling of the process and the molecular design 
problems can be addressed by systematically solving a series of reverse 
problems [22, 24]. This is accomplished by a property-based approach which 
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facilitates the flow of information from the process level to the molecular 
level, and vice versa.  
 
Figure 2.1:   Conventional solution approach for process and molecular 
design problems. 
2.2 Property-Based Process and Product Design  
In molecular or mixture design, the identity of the final product is unknown, 
however, the general behavior or characteristics of the product (goal) are 
known. The objective is to find the most appropriate chemical, or mixture of 
chemicals, that will satisfy these goals. Since the properties of the component 
or mixture of components dictate whether or not the design is useful, the 
basis for solution approaches in this area should be based on the properties 
themselves. Similarly, in process design, since properties (or functionalities) 
form the basis of performance of many process units (e.g., vapor pressure in 
condensers; specific gravity in decantation; relative volatility in distillation; 
Henry?s coefficient in absorption; density and head in pumps; density, 
pressure ratio, and heat capacity ratio in compressor; etc.), it would be very 
insightful to develop procedures based on key properties instead of key 
components [22]. 
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However, unlike component-based chemo-centric approaches where 
chemical components are conserved and mixing of components is linear; in a 
property-based approach, properties are not conserved entities and mixing of 
properties is not necessarily linear. To overcome these limitations, Shelley 
and El-Halwagi et al. [23] introduced the property clustering framework that 
uses conserved quantities called clusters. It was later applied to process and 
product design by Eden et al. [22]. To bridge the gap between the process 
design and the molecular design problems, Eljack et al. [24] extended the 
property integration framework by combining the property clustering 
technique and Group Contribution Methods (GCM). Qin et al. [21] introduced 
an algebraic approach using property clusters to relieve the limitation in the 
use of more than three properties. These contributions enabled simultaneous 
consideration of process performance requirements and molecular property 
constraints in the cluster domain and solution of the design problem in this 
reduced domain. The following sections discuss the property integration 
framework based on reverse problem formulation and property clustering 
techniques.  
2.2.1 Reverse Problem Formulation 
The reverse problem formulation technique decomposes a process-product 
design problem into two reverse problems linked by property 
targets/constraints [22, 24]. This enables a two-step approach, where the 
property targets that satisfy the process performance/constraints are 
identified in the first step and then the molecules that match the targets are 
identified in the second step. This gives the ability to identify optimum 
solutions to process and product design problems more easily than solving the 
conventional forward problems, which are iterative in nature [22, 24, 25, 27].  
Figure 2.2 is a schematic representation of the reverse problem 
formulation concept. The first reverse problem is the reverse of a simulation 
problem, where the process model is solved in terms of the constitutive/design 
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variables instead of the process variables, thus providing the design targets. 
The second reverse problem solves the constitutive equations (property 
models) to identity candidate components by matching the design targets. 
 
 
Figure 2.2:   Product and process design problem using reverse problem 
formulation methodology. 
 
Prediction of macroscopic properties from molecular information is 
nontrivial and is by no means extensive. In most methods, the computed 
information at smaller length scales is passed to models at a larger length 
scale. This is achieved by coarse-graining (removing degrees of freedom) and 
information passing between low- and high-scales [26]. Pathway I in Figure 1 
represents the dependency of overall higher scale performance on the lower 
scale phenomena. This path (approach) necessitates coupling of 
mathematically different models and phenomena across two or more scales. 
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This results in a greater coupling in design of products at multiple scales, 
thereby increasing problem complexity, and combinatorial explosion in the 
number of models and parameters [12]. 
 
 
Figure 2.3:   A multi-scale product design framework showing (I) 
traditional approach and (II) RPF approach linking each of the scales via a 
common property domain. 
 
The use of reverse problem formulation (RPF) helps circumvent the 
challenge posed by coupling of scales by bridging them through a property 
domain (pathway II in Figure 2.3) [27]. RPF uses the duality of linear 
programming to reformulate the design problem as a series of reverse 
problems solved in the property domain. This way, an immense 
computational cost associated with the hierarchical nesting across multiple-
scales is relieved leading to a much more efficient solution achieved through 
reduction in the need for enumeration [27]. 
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2.2.2 Property Clustering Technique 
Property clustering is a property-based visualization tool for mapping the 
design problem from the non-conserved property domain into the conserved 
(component-less) cluster domain [23]. The property clustering technique 
utilizes property operators, which are functional relationships describing the 
attributes and physical-chemical properties. The clusters map property 
relationships into a lower dimensional domain, thus allowing for 
visualization and insights into the problem. Details can be found in Eden et 
al. [22]. Only highlights will be presented in this dissertation.  
 
2.2.2.1   Property Operator Functions 
The clustering approach utilizes property operators, ?, which are functions of 
the original raw physical properties. In Eq. (2.1), the property is described by 
a general linear mixing rule: 
( ) ( )
1
??
=
= ?
?
n
jj i jj
Mix i
i
y xy
 
(2.1) 
where, ?
?
 = the fractional contribution of component i 
 
?
?
 
= the j
th
 property 
 
Although the property operator equation must have linear mixing rules, 
the property operator itself may be nonlinear. For example, if the property 
operator describes density, then to meet the linear criteria imposed by Eq. 
(2.1) we would use specific volume as the property operator, ignoring any 
interaction effects from mixing, as shown in Eq. (2.2) and (2.3). The operator 
expressions will invariably be different for molecular fragments and process 
streams, however, as they both represent the same property, they can be 
visualized on a common cluster domain in a similar fashion.  
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Since the properties may have various functional forms and units, the 
operators are normalized into a dimensionless form by dividing by an 
arbitrary reference operator and then summarized to yield an Augmented 
Property Index (AUP) as:  
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A cluster is then defined by dividing the non-dimensionalized property by the 
AUP, as: 
1
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(2.5) 
 
Since the clusters are tailored to maintain the two fundamental rules for 
intra- and inter- stream conservation, additive rules, e.g. lever-arm rules, are 
needed to ensure that the mixture property cluster of two streams with 
different individual property clusters can be easily determined. The mixture 
cluster, Eq. (2.6), and mixture AUP, Eq. (2.7), values can be calculated 
through the linear mixing rules as follows: 
,
1
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The relative cluster arm, ?
?
, which represents the fractional 
contributions of the streams, can be calculated using Cartesian coordinates 
as well as estimated visually from the relative lengths of the lever arms as 
shown in Figure 2.5. Visually, intra-stream conservation means that once two 
clusters are known, the third one is automatically determined. In order to use 
common tools like Microsoft Excel? that do not support ternary plot 
representation, the ternary coordinate is converted to Cartesian coordinates.  
 
Figure 2.4:   Representation of intra- and inter-stream conservation of 
clusters in ternary diagram.  
 
2.2.2.2   Ternary to Cartesian Coordinates 
The coordinate transformations from ternary to Cartesian for an equilateral 
triangle can be accomplished using the Pythagorian theorem in terms of 
ternary coordinates defined as cluster values and dimensionless property 
operators are as follows: 
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Furthermore, the relative arms can be calculated accordingly as: 
22
,2 , ,2 ,
1
,2 ,1 ,2 ,1
( )( )
( )( )
CC CC mix CC CC mix
CC CC CC CC
X X YY
X X YY
?
? +?
=
? +?
 
(2.10) 
22
,1 , ,1 ,
2
,2 ,1 ,2 ,1
( )( )
( )( )
CC CC mix CC CC mix
CC CC CC CC
X X YY
X X YY
?
? +?
=
? +?
 
(2.11) 
 
In cluster space, points are used to represent discrete property values while 
feasibility regions are used to represent a range of accepted property values 
(Figure 2.5). 
 
2.2.2.3   Feasibility Region Boundaries 
For problems that can be adequately described by just three properties, the 
desired process performance range or product property requirement range 
can be visualized within the boundary of the true feasibility region defined by 
six unique points, Eq. (2.12), characterized by values of dimensionless 
operators. The feasibility region narrows down the search space and 
guarantees that no feasible points will exist outside it. The feasibility region 
boundary analysis helps identify and describe the expression for the 
feasibility region a priori and requires no enumeration of an infinite number 
of feasible points possible within its boundaries [22, 23]. In Figure 2.5, the 
feasibility region is shown in dashed lines, to form a hexagon in a ternary 
cluster diagram.  
 
 
 
24 
( ) ( ) ( )
( ) ( ) ( )
min min max min max max min max min
123 123 123
max max min max min max max min min
123 123 123
,, ,, ,,
,, ,, ,,
    
     
??? ??? ???
??? ??? ???
 
(2.12) 
 
 
Figure 2.5:   Representation of feasibility reason with source-sink mapping 
using clusters in ternary diagram. The clustering points are converted 
from ternary to Cartesian coordinate.  
 
Visualization of the problem allows for easy identification of optimum 
strategies for the combination of molecular groups, while the unique feature 
of linear mixing rules allow for the use of simple lever arm analysis to solve 
the problem in reduced cluster space. This way, the design problem can be 
solved by identifying the product properties corresponding to the desired 
process performance. The property clustering methods for solving mixture 
and molecular design problems form the basis for the methods developed in 
this dissertation.   
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physical-chemical properties and/or biological activities. Experimental 
measurements of properties of interest for products such as drugs, ionic 
liquids, additives, etc. are scarce and limited. With respect to the synthesis, 
characterization, and applications of such chemical products, it is essential to 
estimate properties through theoretical or empirical means.  
2.3 Prediction of Properties 
As process-product design may involve both process and molecular design, 
separate property models may be required. Property models can range from 
easy to use data-dependent regressed models whose application range is 
small, to computationally complex models like ab initio (quantum-chemical)  
calculation, which can be applied to any chemical system. In the middle are 
the most common methods that balance full empiricism with basic chemical 
theory to adapt the rigorous equations that describe molecular architecture in 
a form suitable for design. A comprehensive overview of a wide range of 
property estimation methods can be found in Poling et al. [28]. Constantinou 
and Gani [12] classified property estimation methods as shown in Figure 2.6.  
 
 
Figure 2.6:   Classification of property estimation methods. 
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Regardless of the type of property model used, it is essential that they 
are easy-to-use, accurate, reliable, and computationally efficient throughout 
the entire design domain. Group contribution (GC) and topological indices 
(TI) are two such techniques that utilize quantitative structure 
property/activity relationships (QSPR/QSAR) that have been developed using 
empirical relationships between molecular architecture and physical-
chemical properties found in large databases [11, 29, 30].  
A QSPR model finds the relationship between structural features 
(constitutional, topological, geometrical, etc.) and physical, mechanical, or 
chemical properties of materials. In drug design, the QSAR model finds the 
underlying relationship between molecular descriptors with 
pharmacokinetic/pharmacodynamics, and ADMET (Absorption, Distribution, 
Metabolism, Elimination and Toxicity) properties [16, 31, 32]. Since QSPR 
models provide information on features affecting the compounds? 
physicochemical properties, they can be used for screening and further 
optimization. Thus, development of robust QSPR model can facilitate 
conserving resources and accelerating the process of development of new and 
enhanced products.  
 
 
Figure 2.7:   QSAR model development steps. 
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Figure 2.7 presents QSPR model development steps. Several machine 
learning methods such as artificial neural network (ANN), Bayesian 
statistics, support vector machines (SVM), genetic algorithm (GA), partial 
least-squares analysis (PLS), and multiple linear regression analysis (MLR) 
have been used in literature to perform QSPR modeling [31].  
However, in order for a developed model to be relevant to the target 
product properties, the training set must contain optimum molecules 
covering balanced variation (high diversity) of the features spanning the 
chemical/property space believed to be important for interaction with the 
physical, chemical, or biological target [30]. The diversity of the chemical 
features can be achieved by using statistical experimental design such as 
factorial design and D-optimal design. The coverage can be achieved by 
employing quadratic or cubic models instead of linear model design [30, 33]. 
However, the requirement of high diversity and full coverage often leads to 
redundancy.  Since a set of structural descriptors is never complete, some 
redundancy could be allowed at this level. The use of projection methods 
(discussed later in Section 2.6) will circumvent the problem of redundancy in 
the descriptor data.  
2.3.1 Group Contribution Method  
Most property estimation methods are based on the group contribution 
method (GCM), where appropriate descriptors or predefined fragments 
(group, bond, or atom, etc.) representing a molecule are identified and the 
properties of the molecule are estimated by summing all the contributions 
from each fragment that make up the molecule [12, 14, 22, 24, 25, 34]. The 
GCM is a powerful product/molecular design tool, which allows prediction of 
the physical properties of molecules from structural information alone. An 
additive, three level, group contribution property estimation model, which 
estimates the property of a compound as a linear combination of the 
appropriate descriptor contributions, is as follows: 
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(2.13) 
where, C
i
  = the contribution from first-order group i 
 
N
i
  = the number of occurrence of first-order group i 
 D
j
  = the contribution from second-order group j 
 M
j
  = the number of occurrence of second-order group j 
 E
k
  = the contribution from third-order group k 
 O
k
  = the number of occurrence of third-order group k 
 
First order groups contain basic information and can be combined 
linearly since they assume no interaction between groups. Second order 
groups can be estimated from first order groups and correct for the 
interactions between first order groups. Third order groups can be derived in 
a similar manner and help to correct for poly-functional compounds with 
more than four carbon atoms in the main chain.  
However, any application of group contribution relies on the availability 
of atom type, molecular group type, or type of chemical bonding present to 
describe the structure as well as tables giving the property contributions of 
each group. There are many properties which cannot be estimated by GCM. 
For instance, cetane number is an important performance indicator for 
biodiesel, but GCM parameters are not available to describe this property. 
Furthermore, not all possible atomic arrangements and structures can be 
represented in GCM. Hence, there is a need for an efficient methodology for 
the design of structured molecules. One such approach to structured product 
design is combining decomposition techniques with multivariate methods 
[35, 36, 37].  
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This approach first utilizes multivariate characterization techniques 
such as infrared (IR) and near infrared (NIR) spectroscopy to describe a set of 
representative samples, and then uses decomposition techniques such as 
principal component analysis (PCA) and partial least squares onto latent 
surfaces (PLS) to find the underlying latent variable models that describe the 
molecule's properties. The factors are called ?latent? because they cannot be 
observed directly, but can be characterized indirectly. The orthogonal nature 
of these models allows for group-based interpretations and property 
predictions which can be utilized to design new molecules not found in the 
original set of molecules.  The structure and identity of candidate molecules 
can then be identified by combining or "mixing" substructural molecular 
fragments until the resulting properties match the targets [24]. 
 
2.4 Characterization Techniques 
Characterization is a class of tools associated with the determination of not 
only chemical constituents or molecular structure, but also of larger 
structural characteristics describing the orientation and alignment of these 
molecules by exploiting the fact that molecules absorb specific frequencies 
that are characteristic of their structure. Some common characterization 
techniques include nuclear magnetic resonance (NMR), x-ray diffraction 
(XRD), and infrared spectroscopy (IR). Characterization techniques are often 
applied to a training set of molecules used to explore a set of property 
attributes. Solvason [27] proposed a general guide for managing the 
complexity of the information through a systematic method for determining 
which specific information on molecular architecture will be necessary to 
build appropriate models for a specific application as shown in Figure 2.8.  
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Figure 2.8:   An overview of the interconnectivity of characterization 
techniques, molecular architecture, and physical properties and attributes 
of chemical and material products.  
 
Spectroscopy will be the primary characterization technique explored in 
this dissertation. Spectroscopy such as infrared (IR) and near-infrared (NIR) 
provide specific information on the presence of functional groups, information 
on the orbital configurations of the electrons, and details of the carbon-
hydrogen structure of the chemical products. The added structural 
information available from this characterization can also be used to 
distinguish some orientation specific information in various isomer 
geometries. More on spectroscopy can be found elsewhere [38]. Appendix B 
gives an overview on IR spectroscopy. 
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Figure 2.9:   IR spectra of butylated hydroxytoluene molecule. 
 
Figure 2.9 is an IR spectrum of a butylated hydroxytoluene molecule 
[39] and its molecular structure showing 1
st
 and 2
nd
 order GC groups. IR 
spectra of such molecules contain large quantities of descriptor data involving 
information on molecular architecture. In addition, there is a high probability 
that many of the descriptor variables will be correlated, i.e., that some 
variables will be linear functions of other variables [40]. Managing such 
complexity of information to design chemical products and to build 
appropriate models for a specific application will require a systematic method 
for capturing important features of the molecular architecture. Therefore 
multivariate statistical techniques can be used to decompose large quantities 
of information about the system in the initial training set. More detailed 
discussion on multivariate techniques will be presented in Section 2.6. 
2.4.1 Spectroscopy 
Many substances in solution follow Beer-Lambert?s law, showing a linear 
relationship between concentration and absorbance. Beer?s law relates the 
absorption of light to the properties of the material through which the light is 
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]
A
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traveling. The absorbance of a single wavelength due to the presence of a 
single component can be written as [41]: 
A KC= ?
 
(2.14) 
where, A = the absorbance at that wavelength 
 K = the absorbance coefficient for that wavelength and component 
 C  = the concentration of the component 
This concept can be applied to any system where we can measure a 
quantity, A, that is proportional to some property, C, of the sample. The 
generalization of the above equation for multiple components, multiple 
wavelengths and multiple samples gives:  
1
n
ws wc cs
c
A KC
=
= ?
?
 
(2.15) 
where, Aw = the absorbance at the w
th
 wavelength in the s
th
 sample 
 Kwc = the absorbance coefficient for the w
th
 wavelength and for the c
th
 
component 
 C
c
  = the concentration of the c
th
 component in the s
th
 sample  
 n = the total number of components 
 
In expanded form Eq. (2.15) takes the form: 
1 11 1 12 2 1
2 21 1 22 2 2
3 21 1 32 2 3
21 1 2 2
...
...
...
...
s c cs
s c cs
s c cs
ws w wc cs
A KC KC KC
A KC KC KC
A KC KC KC
A KC K C K C
= ?+ ?+ + ?
= ?+ ?+ + ?
= ?+ ?+ + ?
= ?+ ?+ + ?
? ? ???
 
(2.16) 
It is clear from Eq. (2.16) that the absorbance at a given wavelength, w, 
is simply the sum of the absorbances at that wavelength from each of the 
components present. Since matrix notation can easily generalize the above 
Eq. (2.16), a single matrix equation is: 
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A KC= ?
 
(2.17) 
Note: The notations used here are limited to this section only. New notations 
will be introduced in following sections that will be used throughout the 
remainder of the dissertation. Boldfaced unsubscripted letters are used to 
refer to vectors and matrices.  
In spectroscopy, it is clear that the spectrum of a sample is the sum of 
the spectra of the constituents multiplied by their concentrations in the 
sample. If the concentrations are t and the spectra p, we get the latent 
variable model 
11 2 2
...
TT T T
cc
X t p t p t p T P noise=?+?+?=?+  (Beer-Lambert?s law). 
In many applications this interpretation with the data explained by a 
number of ?factors? (components) makes sense [41]. Chemometric modeling 
methodologies can be investigated and employed as a means to derive 
mathematical relationships between spectroscopic measurements and 
measured product properties. Kramer [41] suggests that the power and 
limitations of chemometric techniques that should be realized while solving 
data-driven problems are as follows: 
 
We can use these chemometric techniques to: 
? remove as much noise as possible from the data. 
? extract as much information as possible from the data. 
? use the information to learn how to make accurate predictions about 
unknown samples. 
 
In order for this to work, two essential conditions must be met: 
? the data must have information content. 
? the information in the data must have some relationship with the 
property(s) which we are trying to predict.  
 
Because consumer attributes are difficult to quantify physically, the 
relationship between them and the underlying fundamental physical-
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chemical properties and/or the molecular architecture will most likely involve 
empirical relationships. Empirical models describe the underlying 
phenomena?s relationship to a set of experimental data using regression 
analysis.  
2.5 General Regression Models  
Traditionally, the modeling of the predicted response, Y, by means of a 
descriptor variable, X, is done using multi-linear regression (MLR), which 
works well as long as the X-variables are fairly few and fairly uncorrelated, 
i.e., X has full rank (rank is a number expressing the true underlying 
dimensionality of a matrix). Often, the relationship between X and Y 
variables can be approximated using a linear model and can be represented 
mathematically as: 
YX?E
ML MK KL ML? ?? ?
= ?+
 
 
(2.18) 
where, M = the number rows of sample readings or observations 
 L = the number columns of measured response properties 
 K = the number columns of descriptor variables (like components) 
 
?  
= the regression coefficients or sensitivities matrix 
 E = the error or residual matrix 
 
Three cases can be distinguished as described by Geladi and Kowalski [42] in 
Eq. (2.18) to determine ?: 
1. ? > ?: There is no unique solution for ?
 
as infinite numbers of solutions 
exist, unless one deletes predictor variables.  
2. ? = ?: There is one unique solution provided that X has full rank. 
0EYX?= ??= 
3. ? < ?: There is no exact solution for ?, however, a solution can be 
achieved by minimizing the residual in the following equation: 
EYX?=?? 
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The ordinary least-square (OLS) method is the most popular method to 
find the regression coefficients by maximizing the model sum of squares and 
minimizing the residual sum of squares. Using least-square, ? can be 
estimated by: 
( )
1
?
? XX XY
TT
?
= ? ??
 
 
(2.19) 
where, the superscript T symbolizes the transpose of a matrix. 
When the number of X-variables is large compared to the number of 
observations, for example in spectroscopy (?. ?.? > ?), it can lead to a 
singular (?
?
?) matrix whose inverse does not exist. This is because the 
number of unknown variables is greater than the number of equations, 
leading to an underdetermined equation system which has an infinite 
number of solutions for ?. This is the most frequent problem in MLR. One can 
exclude variables ? > ? that are not significant; however, it is not a 
guaranteed solution [42].  
In addition, where a situation like mixture design is considered, the X-
variables could be component proportions, ?
?
, in the mixture that are not 
mutually independent (?.?.? ?
?
= 1
?
?=1
, where ?
?
? 0 ? i = 1,2, ? ,?). This 
situation is referred to as X being rank deficient, collinearity, zero 
determinant, singularity, and ill-conditioned. In such a situation, the 
inversion of (?
?
?) matrix may not exist leading to the estimation of ? using 
OLS with large variances. Here, a statistical multivariate method provides 
the right tool to extract systematic variables and remove collinearity in the 
data set as described in Section 2.6. 
In molecular products, an important objective is to find a chemical 
product that exhibits certain desirable or specified behavior. Assuming the 
model in Eq. (2.18), and the parameter estimates 
?
?,
 
a new x-variable can be 
predicted from a desired y-variable such that  
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( ) ( )
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des new
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(2.20) 
The model inversion of Eq. (2.20) gives 
( ) ( ) ( )
1
11
?? ?
?? ?
T TT T
K L LK KL LK
new des
xy
?
? ? ?? ?
= ??
 
 
(2.21) 
where, 
( )
1
?? ?
?? ?
TT
?
?  is the generalized inverse or pseudo-inverse of  
?
?  
Eq. (2.20) does not contain any information about the covariance 
structure within the manipulated X variables. Consequently, the solution 
given by Eq. (2.21) will not respect those previous structural relationships 
when solving for the new conditions ?
???
?
. Therefore, the standard regression 
model (Eq. (2.20)) and its inversion (Eq. (2.21)) possess serious limitations in 
solving similar problems. Multivariate projection methods like PCA and PLS 
become indispensable tools in dealing with such difficulties and can be used 
for exploration, calibration, and classification of multivariate data.  
2.6 Latent Variable Models 
The most effective tools in multivariate data analysis are Principal 
Component Analysis (PCA) and Partial Least Square (PLS). PCA and PLS 
are decomposition techniques that compress a large quantity of data and 
extract the information by projecting them into a low-dimensional subspace 
that summarizes all the important information for analysis [43, 44, 45]. 
Then, further design work can be conducted in the reduced subspace. 
If the data used is high dimensional and noisy, and the number of 
samples are small while developing a calibration model, there is the danger 
of over-fitting. In such cases, PCA (which can capture a dominant part of data 
variance) is more appropriate to reduce the data dimensionality and then 
train a regression model with the reduced latent variables. Principal 
component analysis is presented in this section as a variable reduction tool 
including important aspects such as pretreatment of data, validation, and 
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outlier detection that must be considered. Prior to PCA, data often needs to 
be pre-treated, in order to transform the data into a form suitable for 
analysis. 
 
Data Pre-processing: Pre-processing of data can make the difference 
between a useful model and no model at all. Pre-treating data is often 
employed to transform data into a form suitable for analysis. It is general 
practice to mean-center and scale the property variables prior to analysis [42, 
46]. Variables often have substantially different numerical ranges. A variable 
with a large range has a large variance, whereas a variable with a small 
range has a small variance. Since PCA is a maximum variance projection 
method, it follows that a variable with a large variance is more likely to be 
expressed in the modeling than a low-variance variable [15].  
In particular, the property descriptor data matrix ?
???
, consisting of M 
observations described by K descriptors, is mean-centered and unit variance 
scaled (UV) (also known as auto-scaled) across the M properties. 
 
? Mean centering: The mean for each variable (each column) is 
calculated based on the entire sample and subtracted from each 
measurement (elements of matrix ?
???
).  
,
1
1
        where, 
M
ij ij j j i j
j
x xx x x
M
=
=?=
?
 
 
(2.22) 
 
? Scaling: Variance scaling of the data to unity across the K descriptor 
properties can be accomplished by standardizing variables. For each 
measurement, this is done by dividing mean centered data by the 
standard deviation (?
?
). 
( )
2
2
,
1
1
        where, 
1
M
ij j
ij j i j j
j
j
xx
x s xx
sM
=
?
= = ?
?
?
 
 
(2.23) 
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Auto-scaling puts all variables on equal footing; i.e., all variables have 
the same chance of entering the model and of taking part in the model. PCA 
performed on auto-scaled data is referred to as a correlation PCA. 
 
 
Figure 2.10: Unit variance scaled and mean-centered variables.  
 
Figure 2.10 is a simple geometrical understanding of UV-scaling and 
mean-centering of variables [15]. In this representation, each bar corresponds 
to one variable and the short horizontal line inside each bar represents the 
mean value.  The length of a bar (vector) is equal to its standard deviation 
(square root of variance). After UV-scaling, we get a shrinking of ?long? 
variables and a stretching of ?short? variables. By putting all variables on a 
comparable footing, no variable is allowed to dominate over another because 
of its length. Prior to any pre-processing, the variables have different 
variance and mean values. After UV-scaling, the ?length? of each variable is 
identical; however, mean values still remain different. After mean-centering, 
mean values are zero (i.e., the centroid of the whole data set is zero). This 
improves the interpretability of the model developed.  
However, it must be noted that in some cases, it is not necessarily 
advantageous to use auto-scaling, and some other choice might be more 
appropriate. Also, the X- and Y-variables can be scaled differently because 
the regression coefficients absorb the differences in scaling.  
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2.6.1 Principal Component Analysis (PCA) 
Principal component analysis is a factor analysis method that is widely used 
in identification of systematic patterns in data and provides visualization of 
multivariate data by using as few variables as possible. It linearly maps 
multi-dimensional data onto lower dimensions with minimum loss of 
information [44]. The goals of PCA are to: 
 
? extract the most important information from the data table, 
? compress the size of the data set by keeping only this important 
information, 
? simplify the description of the data set, and 
? capture and analyze the structure of the variables.  
 
In order to achieve these goals, PCA transforms a set of correlated 
variables into a new set of uncorrelated ones, known as principal components 
(PCs) such that  
 
? the first PC is the linear combination of the standardized original 
variables that have the greatest possible variance, 
? each subsequent PC is the linear combination of the standardized 
original variables that have the greatest possible variance, is orthogonal 
and has zero correlation with all previously defined PCs.  
 
The orthogonality constraint imposed by the mathematics of PCA 
ensures that each variance-based axis is independent.  PCs are arranged in 
order of decreasing eigenvalues. First PC is the most informative. Figure 2.11 
shows the dimensionality reduction of original data to a low dimensional 
subspace using PCA which is much easier to visualize and analyze. 
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Figure 2.11: Projection of higher dimensional data onto a lower 
dimensional subspace. 
 
Note: In the following discussion, matrices are denoted by capital bold 
characters (X, Y), column vectors by small italic characters (t), and row 
vectors by transpose vector (?
?
). 
Using PCA, a structural descriptor data set of molecular architecture 
information or a process condition matrix (?
???
), representing M 
observations of K variables, can be decomposed to  
11 2 2
1
.......X
         
         TP
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(2.24) 
where, T = the score matrix with mutually orthonormal columns 
 P = the loading matrix with mutually orthonormal columns 
 
Principal components (PCs) are new lines that best approximate the 
data in the least squares sense and passes through the average point [15]. 
When two PCs are derived they, together, define a plane as seen in Figure 
2.11). The score matrix (T) represents the projections of the data onto this 
Data Projections
Data Center
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Initial Data
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line in order to get a coordinate value along the PC-line. The new coordinate 
value is known as a score (?
?
). The loadings define the orientation of the PC 
plane with respect to the original X-variable. The loading matrix (L) contains 
the coefficients in the linear combination of the original variable defining the 
principal components (PCs).  
PCA-based soft models are both linear and additive. The loadings 
unravel the magnitude (large or small correlation) and the manner (positive 
or negative correlation) in which the measured variables contribute to the 
scores. Together the scores and loadings describe the principal components of 
the data set.  
Normally, the first three A (? ? ?) PCs capture most of the variance in 
the data (80-90% of total variance [46]). By retaining only the first A PC?s the 
X matrix can be approximated by: 
 
11 2 2
1
?
.......X
         
         TP
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A
T
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= ?
= ?
?
 
(2.25) 
 
In order to characterize the properties of the observations one measures 
variables. Observations are comprised of two parts: signal and noise. Signal 
describes the property or effect of interest, and noise is everything else. Using 
methods based on variance such as PCA, multivariate data can be separated 
into signal and noise. Using Eq. (2.25), matrix X can be reconstructed as  
?
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1
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(2.26) 
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Here,  1 ???
?
 represents the variable average which originates from the 
pre-treatment step. This way, the data matrix ?
???
, containing K highly 
correlated variables, is transformed into the score matrix ?
???
, containing 
only A (where, ? ? ?) mutually independent latent variables, which are 
linear combinations of the original K variables, have better properties 
(orthogonality) and also span the multidimensional space of ?
???
. The 
residual matrix (E) comprises the distances of the original variables to their 
projection onto the principal components.  
Figure 2.12 graphically represents how scores and loadings form the T
.
P 
(structure) part of the PC model equation represented by Eq. (2.24).  
 
Figure 2.12: PCA decomposition of  X matrix. 
Here vectors are designated as column vectors and the corresponding 
transposed vectors are designated as row vectors. The dashed lines in the 
matrix indicate the mean centering and scaling direction. 
 
2.6.1.1   Number of Principal Components 
Before calibration of a model from PCs, it is important to determine the 
number of components necessary to extract the most relevant information 
from a data matrix. The errors calculated for the calibration set decrease 
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continuously as the number of components increase. Two methods [47] to 
help choose the number of components are to:  
 
? plot the eigenvalues according to their size (the so called scree plot). 
The plot provides a visual aid for deciding at what point in this graph 
(often called an elbow) including additional components no longer 
increases the amount of variance accounted for by a nontrivial amount 
(slope of the graph goes from steep to flat). Keep only the components 
before the elbow. For example, the scree plot represented in Figure 
2.13 suggests that using three PCs is appropriate.  
? keep only the components whose eigenvalue is larger than the average 
eigenvalue. For correlation PCA, this means to keep only the 
eigenvalues larger than 1.  
 
 
Figure 2.13: Scree plot of the correlation matrix.  
 
One must be aware of the fact that unwanted variability in the data set, 
such as random noise, may also be taken into account by a model constructed 
with too many PCs. The model is said to be over-fitted, showing excellent 
results for evaluating samples belonging to the calibration set but failing on 
prediction of an external validation set.  
0
1
2
3
4
5
0 2 4 6 8 10 12 14
E
i
g
en
v
al
ue
Number of Components
Three components
 
 
 
44 
2.6.1.2   Scores Plot 
The scores plot shows correlations between observations, measurements or 
responses. Basically, it helps answer questions like:  
? are observations related to each other?  
Responses close to each other have similar properties, whereas those 
far from each other are dissimilar with respect to descriptor variable 
profile (Figure 2.14 (a)).  
? are there any groups or trends? 
In Figure 2.14 (a), data represented by different symbols (circle, 
triangle and square) represent a group of responses with similarity in 
descriptor properties. 
2.6.1.3   Loading Plot 
The loadings plot shows correlations between variables. It helps answer 
questions like:  
? how the descriptor variables are correlated?  
Descriptor variables contributing similar information are grouped 
together, that is, they are correlated.  For instance, in Figure 2.14 (b), 
variables 15 and 28 are correlated.  
? which variables are influential? 
If the variables are in the same quadrant, they are positively 
correlated, whereas variables in opposite quadrants (opposite side of 
plot origin) are negatively (inversely) correlated. For instance in Figure 
2.14 (b), when the value of one variable in upper-right hand corner (say 
variable 13) increases or decreases, the value of the other variable (say 
variable 16) has a tendency to change in the same way. Moreover, as 
the distance of a variable from the plot origin increases, the stronger is 
the impact of this variable on the model. This suggests that the 
variables 6, 13, 16, 44, 2, and 5 (from Figure 2.14 (b)) separate the 
three response groups (in Figure 2.14 (a)). 
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Figure 2.14: Principal component analysis: Score plot (a, left) of t1/t2 and 
loading plot (b, right) of p1/p2. The ellipse represents the Hotelling T
2
 with 
95% confidence in score plot.  
Figure 2.14 depicts score and loading plots obtained from PCA. 
Comparing the loadings plot to the scores plot helps one understand how the 
variables relate to the observations. 
 
2.6.1.4   Outlier Removal 
Real data is rarely homogeneous (outlier-free) and therefore most statistical 
methods require removal of outliers prior to the calibration of a model. 
Outlying samples may have a huge influence on the calibration of a model 
and may decrease its predictive ability. Outlier identification is based on 
distance from data centroids. Hotelling?s ?
2
 can be used to detect outliers 
inside the model space [48]. Hotelling?s ?
2
 
is a multivariate generalization of 
the univariate student?s t-test, and provides a check for observations obeying 
to multivariate normality. When this statistic is used in conjunction with a 
score plot, Hotelling?s ?
2
 
defines a 95% or 99% tolerance region. In Figure 
2.14 (a), one observation can be considered to be an outlier as it may not 
belong to the majority of the sample population and reveals a mistake in the 
property value obtained.   
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2.6.2 Principal Component Regression (PCR) 
After applying PCA to the ?
???
 block for variable reduction, regression can 
be used to predict a particular quantitative characteristic (like attributes) as 
a function of score vectors. The multi-linear regression (MLR) relationship 
between the principal component scores ?
???
 
and the attribute properties 
?
???
 can be developed using a PCR model as: 
( )
1
??
, where,Y T B          B TT TY
M L M A AL
?
? ??
= ? = ? ??
 
 
(2.27) 
Unlike, in OLS where the columns of Y are regressed onto the large and 
highly correlated columns of X, in PCR the columns of Y are regressed onto 
the reduced and mutually independent latent variables T.  
 
For any desired (1 ? ?) vector of Y-variable, (?
?
)
???
, one can compute a 
(1 ? ?) vector of new latent variable scores as  
( ) ( ) ( )
1
11
?? ?
BB B
T TT T
A L LA AL LA
new new
ty
?
? ? ?? ?
= ??
 
 
(2.28) 
and then predict the (1 ? ?) vector of new X-variables as  
( ) ( )
11
TT
K A AK
new new
x tp
? ??
= ?
 
 
(2.29) 
 
Notice that Eq. (2.27) has the same structure as Eq. (2.18), however, instead 
of finding K variables to estimate (?
?
)
???
, now only ? (where,? ? ?) latent 
variables has to be found to  estimate (?
?
)
???
 thereby achieving reduction in 
dimension of the equation system involved. Also, since Eq. (2.25) preserves 
the covariance structure of X, the new X-variable found will be consistent 
with the past ones. More details can be found in [49]. 
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2.6.3 Partial Least Squares (PLS) 
PLS is a regression extension of principal component analysis (PCA). It 
generalizes and combines features from PCA and multiple linear regressions 
(MLR). Besides, relating two data matrices, X and Y, PLS also models the 
common structure between them thereby, giving richer results than the 
traditional multiple regression approach. PLS regression modeling has been 
described extensively in the open literature and can be found in Erikson et al. 
[15], Gabrielsson et al. [35], Geladi and Kowalski [42], among others. While 
this approach ensures the best possible correlation between the two data sets, 
it does not guarantee to best describe the X and Y data individually.  
Figure 2.15 shows a PLS model being generated between the descriptor 
data matrix X, which could be molecular descriptors or property descriptors, 
and response data matrix Y, which could be attribute or property 
information. The method fits two ?PCA-like? models at the same time, one for 
X and one for Y. However, the projections differ from those obtained with 
PCA on both blocks separately. The outer relation for X and Y block are: 
1X TP E
TT
MK MA AK MK
x
? ?? ?
=?+ ? +
 
(2.30) 
1
TT
ML MA AL ML
y
? ?? ?
=?+ ? +Y UVF
 
(2.31) 
 
Figure 2.15: PLS regression on descriptive (X) and response (Y) variables. 
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The projections of X and Y are then connected through the inner relation 
U TG
MA MA MA???
= +
 
(2.32) 
where, G is a residual and the regression coefficient is one.  
 
The score plot in Figure 2.15 shows a linear relationship between 
predictors and the responses, however, non-linearities may exist. The PLS 
score plot u/t shows linear correlation structure between the predictors and 
the responses. The dash-dot line is the projection if PCA was performed on X 
and Y individually. In PLS, besides loadings P and V, there are additional 
loadings called weights ?
?
 which express the correlation between U and X 
and are used to calculate T such that 
T XW
MA MK KA
?
? ??
=
 
(2.33) 
The prediction of Y can be obtained from the PLS model as: 
( )
??
TT
ML MA AL MK KA AL MK KL
?
? ?? ? ?? ? ?
=?= ? ? = ?Y TV X WV X B
 
(2.34) 
 
PCR and PLS can be considered standard calibration techniques for 
several spectroscopic techniques, among many. The main advantage of these 
techniques is to avoid collinearity problems thus allowing one to work with a 
number of variables that is greater than the number of samples. A 
comparison between these two techniques reveals similar results in terms of 
prediction ability in multivariate calibration, with no significant difference 
being reported when both employ the optimized number of principal 
components (PCs) [50]. PCR yields lower accuracy (degree of closeness of a 
measured value to the actual value) but higher precision (degree of closeness 
of the measured values to each other) than PLS. The basis of the model 
development in this dissertation will be based on PCR, however, PLS will be 
used for few qualitative applications.  
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2.6.4 Model Validation 
It is important to validate the predictive ability of the developed model in 
addition to having a good fit. Validation can be distinguished between two 
types: 
 
? Internal validation: where the calibration data is also used as 
validation data. This method is applicable when a proper validation 
sample is not available, or is not used. Often the calibration sample is 
separated into a learning set (for calibration) and a testing set (for 
validation) [15, 51]. A popular internal validation technique is the leave-
one-out cross-validation technique in which one sample is used for 
validation and the remaining samples are used for calibration (one-at-a-
time method). This is repeated for each sample. Predicted residual sum 
of squares (PRESS) is computed as: 
    
( )
2
1
?
K
ii
i
PRESS y y
=
= ?
?
 
 
(2.35) 
The number of components giving a minimum PRESS is the right 
number for the model that gives optimal prediction. The root mean 
square error of cross-validation is, 
    
=
PRESS
RMSECV
K
 
 
(2.36) 
The smaller the PRESS the better the quality of the estimation for a 
developed model. Details can be found in Montgomery et al. [51]. 
 
? External validation: is based on a new or independent set of 
validation data to evaluate the predictive ability of the previously 
developed model from the training data set. The external validation 
errors are often presented as the root mean square error of prediction 
(RMSEP), which is calculated as: 
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( )
1
22
1
?
K
ii
i
yy
RMSEP
K
=
??
?
??
=
??
?
 
 
(2.37) 
Including more latent variable terms in the final model will always 
increase the goodness of fit, ?
2
, regardless of whether the additional variable 
is statistically significant or not. However, a large value of ?
2
 does not 
necessarily imply that the regression model is a good one. Because ?
2
 always 
increases as we add terms to the model, adjusted ?
2
  statistics must also be 
considered. The ?
adj
2
 is particularly useful in the selection stage of model 
building.  
( )
2 22
1
1 1               where, 1
1
?
??
=?? =?
??
?
??
adj
total
K SS
R RR
A SS
 
 
(2.38) 
where, SS is the residual sum of square.  
Unlike ?
2
, the ?
adj
2
 increases only if the necessary terms improve the 
model more than could be expected by chance. Therefore, when ?
2
 and  ?
adj
2
 
differ dramatically, there is a good chance that non-significant terms have 
been included in the model [51]. The ?
adj
2
 can be negative, and will always be 
less than or equal to ?
2
.  
 An individual principal component (PC) generated by PCA or PLS is 
considered significant if its cross-validated Q
2
 value is greater than zero. Q
2
 
is calculated according to 
2
1= ?
total
PRESS
Q
SS
 
 
(2.39) 
The overall significance of each PCA or PLS model is evaluated in terms of 
Q
2
(cum) as [15]: 
2
( )1
??
??
= ??
????
??
??
PRESS
Q cum
SS
 
 
(2.40) 
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2.7 Principal Properties in Cluster Space 
In order to solve a design problem in a single domain, all the physico-
chemical attribute properties of interest have to be converted to principal 
properties by using the regression coefficients from the calibration model 
[27]. 
( )
( )
1
11
1
?? ?
,    if  
where,
???
,    if  
?
?? ?
??
? ?? ?
?
???
?
?>
?
=?=
?
?
?<
?
BB B
T Y B                 B
BBB  
TT
LA AL LA
M A ML LA LA
TT
LA AL LA
LA
LA 
(2.41) 
?
?1
 is a generalized inverse or pseudo-inverse of a matrix  
?
B  [52]. 
In order to utilize the latent variables (LVs) in the property clustering 
algorithm, it is important that the LV structures follow a linear mixing rule. 
This can be achieved by standardizing the data structure to obtain a new 
matrix, ?
???
. Rearranging the data decomposition represented by Eq. (2.25), 
we get:  
? ??
= ?T X P   
MA MK KA
 
(2.42) 
If the loadings ?
???
 are thought of as the pure values of the principal 
components, then scores ?
???
 serves as the predicted mixture properties 
represented by ?
???
 in Eq. (2.1). Here, the mixture fractions of the 
multivariate descriptor data ?
???
 must sum to one across descriptor 
variables K. To achieve this form, the latent variable structure is 
standardized by dividing ?
???
 and ?
???
 in Eq. (2.42) by the sum total of the 
property descriptors of each experimental run ?
???
 such that:  
? ??
= ?Q UP
MA MK KA
 
(2.43) 
Where, ?
???
= ?
???
/?
?
, ?
???
= ?
???
/?
?
, and =
?
H
Mi
i
Sx.  
 
A powerful chemical product design framework is achieved, by 
integrating latent variable methods within property cluster domain and by 
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formulating two reverse problems. The first reverse problem identifies 
product quality/performance requirements and second identifies mixing 
conditions (involving selection of materials, blend ratios, or process operation 
conditions) when considering mixture design, and substructural molecular 
building blocks when considering molecular design. The following chapters 
will demonstrate the mixture and molecular design solution framework 
developed by combining methods and tools presented in this chapter.  
2.8 Computer-Aided Design using QSPR and cGCM 
This section describes how the tools and techniques presented in this chapter 
are combined within the computer-aided approach to facilitate investigation 
of chemical product formulations prior to experimentation and simulation. 
When appropriate property models are available to describe and predict the 
target product properties, computer-aided molecular design methodologies 
are utilized to solve the design problems systematically and efficiently. The 
computer-aided molecular design problems require: (1) prediction of 
properties from molecular structure (solution to forward problem) and (2) 
identification of optimized molecular structures that meet given a set of 
property values (solution to reverse problem) [1, 9, 11, 24- 27, 53]. Figure 2.16  
shows the two required solutions of CAMD. 
 
 
Figure 2.16: Forward and reverse problems in computer-aided molecular 
design. 
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2.8.1 Solution to Reverse Problem 
The molecular design problem presented in this dissertation follows a reverse 
problem of property prediction from molecular structures. In this approach, it 
is required to enumerate structured molecules from a given set of 
representative molecular building blocks or fragments corresponding to 
target physical-chemical properties estimated by property models. First, the 
values of the target properties of desired molecule needed for a specific 
application are determined a priori. Lower and upper bounds on each 
property, ?
?
, of molecule, i, are obtained either from process design problem 
(see Section 2.2.1) or from product property requirements/constraints.   
min max
??
j ij j
y yy
 
(2.44) 
Mapping the design problem formulation from property to cluster space 
(described in Section 2.2.2) enables visualization of a problem and its solution 
when three properties are concerned. The normalized property operator of 
molecule i using corresponding reference values give: 
min max
? ?? ??
j ij j
 
(2.45) 
where  ?
?
 is defined by Eq. (2.4). 
Second, brute-force search or exhaustive searches are performed using 
numerous permutations or combination of atoms and molecular groups, to 
systematically enumerate all possible molecular structures, and mixtures of 
molecules, that satisfy specifications in terms of the normalized target 
property operator values in Eq. (2.45). The maximum number of similar 
groups ?
?
?
 are predefined to limit the size of a generated molecule. The 
possible number ?
?
?
 of similar molecular fragments/groups of type g that can 
be included in the design can be estimated by taking the minimum of the 
nearest integer value of ??
?
???
?
?
? ? and ?
?
?
.  
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max
**
min :
???
=
??
?
??
j
gg
j
nN
 
(2.46) 
where  ?
?
???
 is the target maximum latent property value of property ?.  
It must be noted that exhaustive generate-and-test algorithms are 
adequate to solve problems with small size. For problems with slightly larger 
search space, reduction in the search space (reducing the set of candidate 
solutions to a manageable size) using problem-specific heuristics can make 
the algorithm more efficient [54, 55]. However, for large scale molecular 
design problems, stochastic or evolutionary search algorithms such as genetic 
algorithm (GA), are preferred [9].   
2.8.2 Solution to Forward Problem 
In order to achieve predictive property models, quantitative structure-
property relations (QSPR) are utilized where the training set molecular 
descriptors are generated in terms of infrared (IR) frequencies. Since 
molecular descriptors are obtained through characterization techniques 
based on IR spectroscopy (described in Section 2.4.1), the group based 
property estimation method is termed characterization-based group 
contribution method (cGCM) [27]. Since the combination of molecular groups 
can be done in an infinite number of ways, the search space and the size 
range of enumerated molecules can be reduced by constraining the number of 
occurrence of similar and dissimilar types of groups within minimum and 
maximum limit. 
**
0 ??
gg
nN
 
 
(2.47) 
2 ??
gg
nN  
(2.48) 
Note that a minimum number of two dissimilar groups, ?
?
, must be selected 
to form a structurally feasible molecule.  
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When order of selection does not matter and repetition of similar groups 
is allowed, the total number of possible candidate molecules that can be 
generated by selecting ?
?
 groups from a set of ?
?
 groups is given by: 
( )
( )
total
22
1!
Candidate
! 1!
= =
+?
= =
?
??
gg
g
g
gg
NN
ggN
n
nn
gg
Nn
C
nN
  (2.49) 
As the number of groups gets high, the problem of combinatorial 
explosion arises. In order to reduce the combinatorial problem, atoms and 
several first order groups (except some terminal groups like CH
3
) are 
clustered into meta-groups. In group-based property estimation methods, 
these meta-groups are treated as first order groups. Such groups capture 
inter- and intra-atomic and group interactions. The property operators of 
molecules using first order meta-groups-based cGCM are estimated as: 
1
g
N
Mix
j g jg
g
n
=
? = ??
?
 
 
(2.50) 
where, ?
?
???
 = the mixture property operator values of property  ? 
 
?
?
 
= the number of  occurrences of dissimilar molecular fragment ? 
 
?
?
 = the maximum number of possible appearance of dissimilar 
fragments (user defined), and 
 
?
?
 = the property contribution of the appeared group in the 
formulated molecule. 
 
When the predicted property values using Eq. (2.50) of enumerated 
molecules from the combinatorial building blocks satisfy the property 
constraints in Eq. (2.45), the set of molecules are considered and selected as a 
candidate solution. Then the enumerated candidate molecules are screened 
for structural constraints to ensure that a stable and connected molecule was 
formed. One such structural constraint is to check the number of unused 
bonds in a generated molecule, i.e. the free bond number (FBN) [24]. 
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11
2 12
gg
NN
g g g Rings
FBN n FBN n N
= =
? ?? ?
= ? ?? ? ??
? ?? ?
? ?? ?
??
 
(2.51) 
where, ???
?
 = the unique free bond number associated with group g 
 ?
????
 = the number of rings in the formulation. 
 
For an electronically complete molecular formulation the free bond 
number must be equal to zero. A FBN of zero indicates that the electron 
valency shells of all atoms in the molecule have been satisfied, which, in most 
cases, indicates one of the minimum energy connectivity configurations of the 
atoms in the molecule.  
Finally the feasible solution can be verified through more rigorous 
experimentation and/or computational studies based on molecular dynamics 
and quantum chemical calculations. The methodology presented in this 
dissertation provides a computationally efficient screening procedure to 
narrow down potential compounds with desired attributes from a large 
chemical space. Figure 2.17 is a schematic diagram that summarizes the 
steps involved with variable transformation, latent variable model 
calibration, and property integration to solve the computer-aided reverse 
design of chemical products in reduced space.  
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Figure 2.17: An overview on the methodology of multivariate 
characterization, modeling, and design. 
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CHAPTER 3  
MIXTURE DESIGN 
3.1 Introduction 
Mixing/blending processes play an important role in today?s manufacturing of 
value-added chemical products such as commodity chemicals, food, cosmetics, 
oil and pharmaceuticals. The product formulation design problem in 
industrial research and development is one such area where the analysis of 
mixture data could be utilized more effectively. 
Mathematical models are commonly used to characterize a system, 
which is to be controlled or optimized by a set of variables, to study the 
effects of various factors and to make predictions about behavior. Generally, 
models can be classified into mechanism-driven models and data-driven 
models. Traditionally, the chemical engineering discipline has focused on 
mechanistic models that describe underlying phenomena with a system of 
differential and algebraic equations (DAEs). However, real-life industrial 
process systems, which are often complex and nonlinear with incomplete 
and/or uncertain data, cannot be adequately described by such models [18].  
Data-driven models offer an alternative solution as we move from 
limited data, which used to be obtained through time-consuming experiments 
and simulations, to massive amounts of data that can be generated from 
analytical instruments, images, spectra, etc.  (i.e. ?data poor? to a ?data rich? 
paradigm shift due to rapid instrumentalization of science and technology). 
This has been the trend in recent decades [18, 19, 35, 27, 41, 56, 57]. 
Industrial reality also suggests that a good theoretical process model is 
often not available. Before new experiments are conducted, historical process 
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data that encompass a wide spectrum of operating conditions and existing 
product grades can be utilized to achieve new and improved products (20). 
Today, tremendous amounts of diverse data are readily available from 
extensive monitoring of equipment, processes, and products at all scales (18). 
However, managing such abundance of complex data to build appropriate 
models for a specific application and exploring their effects on the final 
product properties remain major challenges.  
3.2 Traditional Approach 
In classical non-mixture designs such as factorial and response surface 
designs, all the factors are orthogonal or independent. This means that it is 
possible to freely choose the level of a factor regardless of the other factors? 
levels [58]. In general, the model parameters can be used to judge the effects 
of the mixture components. For example, consider a mixture experiment in 
which three components ?
1
, ?
2
, and ?
3
, were blended to form a product with 
response variable ?. If 
1 2 3 12 13 23
? 11.7 9.4 16.4 19.0 11.4 9.6y x x x xx xx xx= ++ + + ?  can 
adequately represent the response, it can be concluded that component 3 has 
the largest contribution to the highest response value because the coefficients 
are in the order ?
?
1
> ?
?
2
> ?
?
3
. Furthermore, since ?
?
12
 and ?
?
13
 are positive, 
presence of components 1 and 2 or components 1 or 3 enhances the response. 
This is an example of synergistic blending effects. Components 2 and 3 have 
antagonistic blending effects because ?
?
23
 is negative and the presence of both 
components works against the response of interest. 
However, this freedom does not exist for mixture designs, because each 
component in a mixture is dependent upon the settings of the other 
component settings. In mixture design, the factors are interdependent and 
the effects of the factors on the responses are not separable. For example, for 
a mixture containing N components, if the proportions of the first N-1 
components are defined, the proportion of the N
th
 component cannot be freely 
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chosen. If x
i
 is the percentage content of component i, the sum of all the 
mixture components is given by the fundamental mixture constraint 
relationship 
12
1
1.0
N
iN
i
xxx x
=
= + +???+ =
?  
(3.1) 
0 1.0        1, 2, ..., 
i
x iN? ? ?=
 
(3.2) 
Analyzing mixture data with multiple regressions necessitates a special 
model form to eliminate the mixture constraint (Eq. (3.1)). The Scheffe 
canonical models [59] and Cox polynomial models [60] are the two most 
commonly used to analyze mixture data with multiple regressions. Scheffe 
introduced canonical models of various orders by eliminating some terms 
from the complete polynomial model. Cornell [58] provides multiple standard 
references to regression, modeling and analysis of mixture data. A short 
review on Scheffe and Cox models is also included in Appendix B.  
In most practical applications, mixture data can be noisy and highly 
collinear because of process or operational constraints (20). Although the 
Scheffe canonical models and the Cox polynomial models (a reparameterized 
and constrained version of the Scheffe model) eliminated the true collinearity, 
and enabled the use of multiple regressions for the estimation, the problem of 
near collinearities with mixture data remains. Design of experiments (DOE) 
with response surface methods is usually used to determine the optimum 
combination of chemical constituents that give a desired response using a 
minimum number of experimental runs [35]. While such a design approach is 
adequate for most experimental designs, it suffers from combinatorial 
explosion and visualization difficulties when dealing with multi-component 
mixtures [22,61]. Solvason et al. [61] presented a solution to the above 
problems by integrating the property clustering framework with existing 
mixture design techniques.  
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In addition, traditional mixture models are usually employed to 
investigate the relationships between the blend ratio matrix (R) and the final 
blend product property matrix (Y) only (Eq. (3.3)), given that the properties of 
the pure raw materials (X) and the process conditions used to manufacture 
them (Z) are already chosen. The preceding topics represent this situation. 
However, for the development of new products that meet target properties 
with minimum experiments and minimum total material cost, it is important 
to simultaneously take into account all three degrees of freedom (X, R, and Z) 
available in blending operations [57].  
In general, mixture design approaches tend to treat the three problems 
as separate steps. A set of raw materials is selected usually based on the 
experimenters? best guess, and then a set of blending experiments with 
certain constant process conditions are run to see if the target properties can 
be achieved. If the results are not acceptable, another set of raw materials 
and/or process conditions are selected and the process repeated. Figure 3.1 
depicts the traditional mixture design approach which may lead to many 
blending experiments, a very inadequate investigation of the large number of 
raw materials, and a very long development time.  
 
Figure 3.1:   Traditional approaches in mixture design. 
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Statistical multivariate models such as principal component analysis 
(PCA), partial least squares (PLS), and neural networks (NN) provide 
powerful tools to extract systematic variables and remove both of the above 
collinearities in the data set, thus allowing one to work with a number of 
variables that is greater than the number of samples [15, 49, 56, 57].  
Kettaneh-Wold [56] proposed the use of a partial least square (PLS) 
model for mixture data, and showed how it effectively deals with both the 
above collinearity problems, and can simultaneously incorporate process 
conditions. Recently, Muteki et al. [57, 62] added the relationship between 
the raw material properties and final blend properties that allows 
investigation of the effect of raw material properties on the final mixture 
product properties. However, it is important that the raw material properties 
selected are sufficiently correlated with the final blend product properties. 
The multivariate statistical methods presented in this chapter are based on 
Muteki?s development on mixture-property models combined with the 
property clustering technique and reverse problem formulation. The 
nomenclatures are kept consistent from that in Muteki?s papers for less 
confusion. In this chapter we shall call the X-variables factors or predictors 
and the Y-variables qualities or responses.  
3.3 Multi-Block Data Structure 
The data structure generally available on raw material property data and 
blending data in mixture design is shown in Figure 3.2 [57]. The raw 
material properties matrix, ?
???
, consists of N available raw materials with 
K number of properties. The blend ratio matrix, ?
???
, consists of M number 
of blends of N materials used in the formulation of the blends such that 
? ?
?
= 1.0
?
?=1
, where ?
?
? 0 ? i = 1,2, ? , ?.
 
The process conditions matrix, ?
???
, 
consists of J process conditions. The final response or property matrix, ?
???
, 
consists of L properties measured on the final product. It must be noted that 
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there is no common dimension over the entire data matrix. However, ?
?
 has 
an indirect relationship to Y through R as it has one dimension in common 
with R but no dimension in common with Y. It is referred to as L-or T-shaped 
data structure [57].  
 
Figure 3.2:   Data structure for three manipulative variable matrixes and a 
quality/response variable matrix. 
 
3.4 Multi-Block Regression Models  
Traditional mixture models such as the Scheffe and the Cox models [58], 
have commonly been used to model the relationship between R and Y as: 
()YRf ?= +
 (3.3) 
 
Muteki et al. [57] used ideal mixing rules for combining the raw material 
properties matrix (X) and the blend ratios matrix (R) in order to relate all (Z, 
R, ?
?
) to the Y matrix with a common dimension M. 
,
( , ) where,Y XZ        X R X
mix mix M K M N N K
f ?
? ??
=+=?
 
(3.4) 
?
???
 is the mixture-raw material mixture-property matrix. Muteki [57] 
demonstrated that the mixture-property models account for the similarities 
among the raw material properties and their effect on the blends. This can 
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successfully capture more inherent latent relationships between the mixture 
properties (?
???
= ???) and the final product properties Y than those which 
exist simply between the ratios (R) and final blend properties (Y). When a 
property model does not follow linear mixing, then the model can be moved 
from its non-linear domain to a linear domain by a suitable transformation of 
the model formulation [34]. If the process operating conditions (Z) change 
between blending experiments, then the effect of these changes are easily 
accounted for by incorporating Z into the PLS models: 
[ ] ( )
( , ) where, 
  
Y X Z       X X Z RXZ
mix all mix all mix
f ?=+==???
??
 
(3.5) 
?
??? ???
 is a matrix combining ?
???
 and Z in parallel. The above data 
combination can be better understood graphically in Figure 3.3. (The dotted 
lines in each block indicate the mean centering and scaling direction.) 
 
 
Figure 3.3:   Data structure for combined manipulative variable matrixes 
and a quality/response variable matrix.  
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This simplifies the analysis and design by not having to differentiate 
between mixture and process variables and not having to assume 
independence of the factors when multivariate analysis techniques are used 
[56]. The multi-block PCR (Section 2.6.2) or PLS (Section 2.6.3) model can be 
used to obtain the relationship in Eq. (3.5).  PLS regression is performed by 
projecting the ?
??? ???
 
data and Y data onto a lower dimensional subspace: 
*
,
1
where,
A
TT
mix all M H i i M H M A A H M H mix all
i
tp
? ? ?? ?
=
= ?+ = ? + = ?
?  
X E T P E         T X W
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The prediction of Y can be obtained from the PLS model as: 
,,
??
TT
M L M A A L mix all M H H A A L mix all M H H L? ?? ? ?? ? ?
=?= ? ?? ?
  
Y TVX WVX B
 
(3.8) 
The prediction of Y can be obtained from the PCR model as: 
??
M L M A AL? ??
= ?Y TB
 
(3.9) 
 
This way, the data matrix ?
??? ???,???
, containing ? (= ? + ?) highly 
correlated manipulated (or predictive) variables is transformed into the score 
matrix, ?
???
, containing only A (where,? < ?) independent latent variables, 
which are linear combinations of the original manipulated variables. The 
weights of this linear combination are captured in the loading matrices, 
?
???
?
, ?
???
 and ?
???
. If new raw material properties, (?
?
)
???
, have to be 
predicted from the desired product quality specifications, (?
?
)
???
, then the 
inversion of the latent variable model gives: 
1
,1 ,1
?
??()BB B P
T T T TT
new K des K L A A K
xy
?
? ? ??
= ??? ?
 
(3.10) 
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3.5 Proof of Concept Example ? Starch Blending 
The development of thermo-plastics from the mixing of starches, lactic acids 
and additives using latent variables in cluster space is presented as a case 
study to illustrate the method and concept described in this chapter. Data for 
the polymer blend problem was obtained from Muteki [63] and involves study 
of the influence of raw material properties (?
?
), blend ratios (R) and process 
conditions (Z) on the product property matrix Y. This work employs 
multivariate data analysis techniques and the mixture-property model 
introduced by Muteki et al. (2006) then formulates and solves the mixture 
design problem in the cluster space. 
3.5.1 Structure of starch blending data 
The raw material data matrix (X) consists of 5 properties (Amylose content 
and 4 properties related to molecular weight distribution) on 3 starches. The 
blend matrix (R) consists of different blend ratios of 3 starches and 3 other 
materials (1 polylactic acid and 2 additives) in each blend of 28 mixtures. The 
process condition matrix (Z) consists of the molding temperature as the 
process variable. The final product property matrix (Y) consists of 4 polymer 
properties (tensile strength (TS), tensile modulus (TM), elongation at break 
(EB) and density (Rho)) for 28 mixture blends.  
Figure 3.4 represents a more complex extension of the data structure for 
the X and R matrices shown in Figure 3.2. The raw material property data 
matrices result in a staircase type of the data structure and are not 
overlapped with each other because their raw material properties contain 
measurements on different variables due to the different classes of materials. 
These blend ratio matrices were designed by a D-optimal design, and 
therefore the conditioning is relatively good. In this case, only one class of 
raw materials has the property data information (?
??????
?
), and the property 
data matrix (?
??????
?
) of the other materials (PLA and additives) is not 
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available [63]. The data structure of the X matrix for this problem of the 
mixture-property model using ideal mixing rule becomes ?
??? ???
=
[(???
???
)?] = [(?
??????
??
??????
)?
?????
?]. It is also known that many polymer 
properties, such as the average molecular weight approximately follow ideal 
mixing rules [64]. 
 
Figure 3.4:   Data structure of X and R matrix for two classes of raw 
materials and their blend ratios.  
Table 3.1 and Table 3.2 contain the data for the raw material properties 
and Table 3.3 contains mixture conditions and product properties [63].  
 
Table 3.1:     Starch material property data matrix.   
Raw Material Property Data, ?
??????
 
Starch 
I.D. 
Amylose 
content, 
Average molecular weights (?10
-3
 g/mol) 
 
wt% Mn Mw Mz 
Mw/Mn 
(PDI) 
Starch1 70 41 214.5 463.7 5.23 
Starch2 23 62.3 531.4 821.2 8.53 
Starch3 0 90.1 722.2 1040 8.02 
X
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Table 3.2:     Blending ratio and process condition data matrix.  
 
Material Blend Ratio 
Process 
Condition 
Mixture R
starch
 R
other
 Z 
I.D. Starch 
1 
Starch 
2 
Starch 
3 
PLA Additive 
1 
Additive 
2 
Molding 
temperature 
1 
0.50 0.00 0.00 0.00 0.50 0.00 150 
2 
0.41 0.00 0.00 0.18 0.41 0.00 150 
3 
0.41 0.00 0.00 0.18 0.41 0.00 170 
4 
0.33 0.00 0.00 0.33 0.33 0.00 150 
5 
0.33 0.00 0.00 0.33 0.33 0.00 170 
6 
0.23 0.00 0.00 0.54 0.23 0.00 150 
7 
0.23 0.00 0.00 0.54 0.23 0.00 160 
8 
0.23 0.00 0.00 0.54 0.23 0.00 170 
9 
0.39 0.00 0.00 0.17 0.39 0.05 150 
10 
0.32 0.00 0.00 0.32 0.32 0.05 150 
11 
0.22 0.00 0.00 0.51 0.22 0.05 150 
12 
0.16 0.00 0.00 0.63 0.16 0.05 150 
13 
0.36 0.00 0.00 0.36 0.24 0.05 150 
14 
0.36 0.00 0.00 0.36 0.24 0.05 170 
15 
0.38 0.00 0.00 0.38 0.19 0.05 150 
16 
0.38 0.00 0.00 0.38 0.19 0.05 170 
17 
0.36 0.00 0.00 0.36 0.18 0.09 150 
18 
0.36 0.00 0.00 0.36 0.18 0.09 170 
19 
0.00 0.52 0.00 0.22 0.26 0.00 150 
20 
0.00 0.52 0.00 0.22 0.26 0.00 170 
21 
0.00 0.40 0.00 0.40 0.20 0.00 150 
22 
0.00 0.40 0.00 0.40 0.20 0.00 170 
23 
0.00 0.26 0.00 0.61 0.13 0.00 150 
24 
0.00 0.26 0.00 0.61 0.13 0.00 170 
25 
0.40 0.00 0.00 0.40 0.20 0.00 150 
26 
0.40 0.00 0.00 0.40 0.20 0.00 170 
27 
0.00 0.00 0.40 0.40 0.20 0.00 150 
28 
0.00 0.00 0.40 0.40 0.20 0.00 170 
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Table 3.3:     Mixture product quality data matrix.  
 Product Quality, Y 
Mixture 
I.D. 
Tensile 
strength 
Mpa 
Tensile  
modulus 
 Mpa 
Elongation 
at break 
% 
Density 
  
g/cm
3
 
1 
0.888 18.59 10.1 1.367 
2 
3.72 162.3 10.1 1.341 
3 
3.25 166.1 7.6 1.332 
4 
9.7 629.1 6.59 1.311 
5 
7.55 489.1 4.02 1.316 
6 
22.8 1522 7.59 1.296 
7 
23.8 1469 8.00 1.298 
8 
20.0 1430 4.21 1.294 
9 
3.03 134.5 11.00 1.345 
10 
8.73 568.9 7.3 1.315 
11 
17.6 1327 20.1 1.296 
12 
22.4 1700 19.4 1.295 
13 
14.8 1067 3.46 1.344 
14 
11.5 692.3 4.15 1.327 
15 
16.8 1740 2.17 1.346 
16 
16.8 1386 1.61 1.336 
17 
12.9 1149 2.20 1.339 
18 
16.2 1291 1.90 1.331 
19 
5.08 250.6 13.0 1.391 
20 
5.09 198.9 15.5 1.377 
21 
15.1 926.2 6.22 1.367 
22 
10.4 721.7 3.02 1.347 
23 
24.5 1557 5.30 1.324 
24 
19.2 1496 1.99 1.312 
25 
13.85 937.5 3.32 1.353 
26 
11.84 854.8 2.06 1.342 
27 
13.79 784.8 7.03 1.363 
28 
14.45 968 3.17 1.367 
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3.5.2 Data analysis 
The data was first mean centered and unit variance scaled as described in 
Section 2.6. Data analysis was performed using the JMP? 9.0 statistical 
software package by SAS [65].  PCA was used as the projection method to 
analyse multivariate data and examine the overall data structure. Figure 3.5 
is an outlier analysis based on Hotelling?s ?
2
. The data contains no outliers.  
 
 
Figure 3.5:   Distribution plot, outlier box plot and normal quantile plot. 
 
Figure 3.6 is a scree plot of eigenvalues vs. number of principal 
components (PCs) combined with a pareto plot. The pareto plot shows each 
eigenvalue as a percentage of the total eigenvalue. Eigenvalues sum to the 
number of variables when the principal component analysis is done on the 
correlation matrix. Cumulative percent shows the cumulative percent of 
variation represented by the eigenvalues. The scree plot is useful for 
visualizing the dimensionality of the data space. In this example, the scree 
plot suggests that using three PCs is adequate as any additional PC did not 
substantially increase the amount of variance accounted for. The first three 
principal components (i. e.? = 3) that are guaranteed to be orthogonal, 
captured 86.82% of the total variance of ?
??? ???
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data. The score variables generated by PCA are optimal summaries of the 
original variables. Table 3.4 and Table 3.5 contain the score and the loading 
values, respectively, for X- and Y- blocks.  
 
 
Figure 3.6:   Scree plot and pareto plot for PCA on X-variables. 
Figure 3.7 and Figure 3.8 present loading plots combined with score 
plots for the PCA on X-variables. There are 28 mixture observations involved 
in this problem. Since a three dimensional plot is the highest possible 
dimensional plot that can be constructed, only three variables can be studied 
at a time. Therefore, the relationship between all 28 observations is hidden in 
a highly dimensional space. The score plot projects high dimensional 
variables onto low dimensional variables thereby facilitating the analysis of 
all 28 observations simultaneously on a two dimensional plot (see Section 
2.6.1.2). The loading plot shows the relationships among the 7 variables. The 
variables that are most influential for the model are found on the periphery 
whereas the less influential variables are encountered around the origin of 
the loading plot (see Section 2.6.1.3). Since the score and the loading are 
complementary and superimposable, a biplot can be created that combines 
both plots (Figure 3.7 and Figure 3.8).  
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Figure 3.7:   Combined PCA score and loading plots (Biplot) on first and 
second components for X-block. 
 
 
Figure 3.8:   Combined PCA score and loading plots (Biplot) on first and 
second components for Y-block.  
? Mixtures
? Mixture variables 
? Mixtures
? Product variables 
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It is clear from Figure 3.7 that the variables PDI, Mn, Mz and Mw are 
positively correlated, i.e. when one increase or decreases, the other has a 
tendency to change in the same direction. On the other hand, the variable 
molding temperature is negatively or inversely correlated to amylose% i.e. 
increase in one will have inverse effect on the other, and vice versa. 
Similarly, Figure 3.8 shows a loading plot combined with a score plot for the 
PCA on Y-variables (which explained 86.79% of the variance of the final 
product properties). In this loading plot all product property variables, except 
the tensile strength and the tensile modulus, have the trade-off relationship 
among them.   
Figure 3.9 shows the regression coefficients for the final product 
properties and how the starch properties, PLA and additives are correlated. 
For instance: high additive1, low molding temperature and low amylose 
content leads to high elongation.  High lactic acid and low additive1 leads to 
high tensile- strength and modulus. The observations are well known to most 
experienced polymer chemists [64]. The results obtained here are consistent 
with Muteki?s results [63]. Since only three properties can be represented in 
the ternary cluster diagram and tensile strength and modulus are affected 
similarly by the mixture factors, only one of them will be used together with 
elongation and density as three targeted product properties.  However, in 
situations where more than three properties have to be considered, an 
algebraic approach may be used [24, 21].  
 
 
Figure 3.9:   PLS model coefficients for blend property matrix Y using four 
latent factors.  
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Table 3.4:     PCA score values for X- and Y-blocks. 
X score value Y score value 
t
1
 t
2
 t
3
 t
1
 t
2
 
0.252 4.221 -0.155 -2.814 0.288 
-0.426 2.466 -0.204 -1.928 0.625 
-0.279 2.257 1.655 -1.743 0.299 
-1.022 0.948 -0.248 -0.215 0.330 
-0.874 0.740 1.611 -0.597 -0.179 
-1.784 -1.043 -0.302 2.264 0.566 
-1.711 -1.148 0.628 2.248 0.618 
-1.637 -1.252 1.557 2.023 0.002 
-0.922 2.265 -0.817 -2.117 0.737 
-1.459 0.858 -0.854 -0.463 0.413 
-2.204 -1.049 -0.909 1.237 2.864 
-2.657 -2.219 -0.942 2.147 2.688 
-1.217 0.342 -0.952 0.259 -0.770 
-1.070 0.133 0.908 -0.196 -0.346 
-1.093 0.018 -1.011 1.222 -1.133 
-0.946 -0.191 0.848 1.002 -1.043 
-1.507 -0.072 -1.494 0.301 -0.936 
-1.359 -0.280 0.365 0.918 -0.905 
4.256 0.867 -1.106 -2.659 0.435 
4.403 0.658 0.753 -2.535 1.090 
2.462 -0.608 -0.949 -0.355 -0.572 
2.609 -0.816 0.910 -0.588 -0.832 
0.369 -2.330 -0.767 2.025 -0.247 
0.516 -2.539 1.093 1.765 -0.659 
-0.602 0.111 -0.408 -0.134 -0.900 
-0.455 -0.098 1.451 -0.188 -0.958 
4.105 -1.016 -1.259 -0.590 -0.347 
4.252 -1.224 0.601 -0.287 -1.128 
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Table 3.5:     PCA loading values for X- and Y-blocks. 
X loading value 
Y loading value 
p
1
 p
2
 p
3
 p
1
 p
2
 
-0.276 0.469 0.097 0.616 -0.012 
0.460 0.066 -0.069 -0.132 0.924 
0.468 -0.052 -0.078 -0.474 -0.374 
0.468 0.036 -0.067     
0.447 0.118 -0.043     
-0.122 -0.623 0.008     
-0.029 0.599 0.095     
-0.231 -0.013 -0.359     
0.072 -0.102 0.914     
 
3.5.3 Model development 
Latent variable models were developed using three latent variables (?
?
, 
obtained from PCA) to predict three product properties: tensile strength (TS), 
elongation at break (EB) and density (Rho).  The general form of the equation 
is: 
3 33 3
2
0
11
?
i i ij i j ii i
i i j ji i
y t tt t?? ? ?
= <> =
=++ +
? ?? ?
 
(3.11) 
Since addition of parameters result in the risk of overfitting, it is 
important to select the optimum number of parameters during model 
selection. Bayesian Information Criterion (BIC) introduces a penalty term for 
the number of parameters chosen in the model. BIC can be expressed as: 
2log ln( )BIC likelihood B M=?+
 
(3.12) 
where, B  = the number of parameters, including intercept and error terms 
in the model 
 M = the number of observations in the data set. 
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Minimization of BIC was used as a criterion during the model selection 
process in the statistical package JMP 9.0 and the detailed expressions for 
the property models are as follows: 
2
0 1 1 2 2 3 3 13 1 3 33 3
TS t t t t t t?? ? ? ? ?= + + + + ?+
 
(3.13) 
22
0 1 1 2 2 3 3 12 1 2 23 2 3 11 1 22 2
EB t t t t t t t t t?? ? ? ? ? ? ?= + + + + ?+ ?+ +
 
(3.14) 
22
0 1 1 2 2 3 3 12 1 2 11 1 22 2
Rho t t t t t t t?? ? ? ? ? ?= + + + + ?+ +
 
(3.15) 
The estimated regression coefficients for the respective property models 
are listed in Table 3.6. Figure 3.10 shows a plot with actual versus predicted 
properties.   
 
Table 3.6:     The regression coefficients for the expressions in Eqs. (3.13) 
through Eqs. (3.15). 
Regression 
coefficients 
TS  
(MPa) 
EB  
(%) 
Rho 
(g/cm
3
) 
0
?  14.59 2.534 1.345 
1
?  -1.119 -1.328 0.0146 
2
?  -3.938 0.4816 0.0073 
3
?  -0.1558 -0.7965 -0.0068 
12
?  - 0.7488 0.0016 
23
?  - 0.6859 - 
13
?  
-0.4749 - - 
11
?  - 0.7361 -0.0018 
22
?  - 0.5084 -0.0013 
33
?  
-1.59 - - 
?
2
 0.917 0.698 0.852 
?
adj
2
 0.898 0.593 0.810 
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Figure 3.10: Predicted vs. actual product properties using PCR model. 
 
3.5.4 Design of desired products in score space 
It is desirable to cover a wide range of product properties with a minimum 
number of products in order to minimize the manufacturing costs, inventories 
and material cost. Figure 3.11 is a product properties score plot (same as 
Figure 3.8) where the desired product properties can be independently 
selected such that a set of product grades spans the desired property space 
[63]. Here five target products are selected in the score space to provide a 
wide range of final product properties. Table 3.7 shows the score values from 
the selected points in Figure 3.11. Using the score and the loading values 
from the PCA on Y (Table 3.5), the properties for the desired products 
(tabulated in Table 3.8) can be calculated as  
2
,
1
? 1
=
??
=?+ ? ?
??
??
?
T
des h des a a h
a
y x t ps
 
(3.16) 
where, 1 ???  = the variable average 
 ? = the standard deviation originated from the pre-processing step. 
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Figure 3.11: Visualization of target product properties in score space. 
 
Table 3.7:     Score values for desired products in Figure 3.11.  
Products t
1
 t
2
 
D1 0.0 0.0 
D2 2.0 0.0 
D3 1.0 2.0 
D4 -2.0 1.0 
D5 0.0 -1.0 
 
 
Table 3.8:     Desired product properties for desired products in Figure 3.11.  
Products 
TS  
(MPa) 
EB  
(%) 
Rho 
(g/cm
3
) 
D1 13.06 6.861 1.335 
D2 21.32 5.510 1.309 
D3 17.03 15.64 1.302 
D4 4.725 12.94 1.350 
D5 13.14 2.136 1.345 
? : Existing Products Grades
? : Desired Product Properties
D4
D1
D3
D2
D5
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From the five desired products, product D2 (from Table 3.8) was selected 
as a target product (?) in score space. The mixture conditions (i.e., the raw 
materials, their blend ratios, and process condition) that give the desired 
product properties of the target product can be estimated by minimizing the 
sum of square differences between the target and predicted properties. The 
results are listed in Table 3.9. Using this information, a new blend product 
can be synthesized. 
 
Table 3.9:     Required mixture conditions to achieve target product 
properties.  
Target R
starch
 R
other
 Z 
 
Starch  
1 
Starch 
2 
Starch  
3 
PLA 
Add  
1 
Add  
2 
Temp 
o
C 
D2 0.171 0.132 0.053 0.404 0.223 0.016 159.5 
 
Muteki used a mixed integer non-linear programming (MINLP) 
algorithm to find raw materials that were not part of previous product 
grades. The results can be found in [63]. Such optimization is outside of the 
scope of this study.  
 
3.5.5 Design of desired products in cluster space 
The ternary cluster space provides an excellent platform for simultaneous 
visualization and solution of mixture design problems. Figure 3.12 is a 
ternary cluster plot with a feasibility region for blend product properties that 
incorporates all the existing product grades and all five desired product 
properties identified from Figure 3.11 and Table 3.8. The method to convert 
score values to cluster values is discussed in Section 2.7. The mixture 
feasibility region in cluster space ensures that the products within its 
boundary are physically feasible, consistent with past operating strategies 
and expected to yield the desired product qualities.  
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Figure 3.12: Visualization of starch blending formulation in cluster space. 
 
Analogous to the use of the score plot to identify a product whose 
properties span the desired property space, cluster space can achieve similar 
objectives. Cartesian coordinate points for D2 cluster are (0.634, 0.540). Since 
property clusters are tailored to maintain the fundamental rules for intra- 
and inter- stream conservation, the mixing operation can be optimized using 
lever-arm analysis. For instance, if two polymer product grades are 
compatible, i.e. miscible, they can be mixed together to get a polymer with 
properties somewhere between those of the two polymers mixed. In latent 
property cluster space, one can rapidly screen out inherently infeasible 
combinations of candidate constituents visually. The reduced search space 
can then be explored for the feasibility of formulating binary, ternary and 
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multi-component mixtures to achieve optimum products based on lever-arm 
analysis without extensive enumeration.  
For example, the target product (D2) synthesized in Table 3.9 can also 
be formulated by mixing existing blends 24 and 25 with blend 6 (denoted as 
24-25-6 in Table 3.10). In Figure 12, M1 represents a mixture of existing 
blend products 24 and 25 in a proportion 0.640 and 0.360 respectively. When 
M1 is mixed with blend 6 in a proportion 0.207 and 0.793 respectively, 
product target (D2) with property targets (listed in Table 3.8) can be 
achieved. A simple visual analysis of Figure 3.13 suggests that the binary 
mixture of existing blend products is inherently infeasible to achieve the 
target product.  
 
 
Figure 3.13: Visualization of starch blending formulation in cluster spac 
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Rho
EB
TS
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
6
25
24
Target
M1
Mixture Design 
Feasibility Region
?: Possible Mixture of Blends
? : Desired Product Properties
? : Target Product Properties
?: Existing Blend Products
?
6
?
M1
 
 
 
82 
Table 3.10:   Candidate ternary mixtures and fractional contributions of the 
constituents.  
S.N. Mixture (A-B-C) Feasible A B C 
1 8-2-6 Yes 15% 5% 80% 
2 8-3-6 No 12% 6% 82% 
3 8-4-6 No 10% 10% 80% 
4 8-5-6 No 6% 11% 83% 
5 8-9-6 Yes 16% 5% 79% 
6 8-10-6 No 11% 8% 81% 
7 8-13-6 Yes 15% 8% 77% 
8 8-15-6 Yes 14% 13% 73% 
9 8-16-6 No 1% 21% 78% 
10 8-18-6 No 1% 20% 79% 
11 8-22-6 No 12% 7% 81% 
12 8-25-6 Yes 16% 7% 77% 
13 8-26-6 No 9% 9% 82% 
14 24-2-6 Yes 12% 6% 82% 
15 24-3-6 No 10% 7% 83% 
16 24-4-6 No 8% 10% 82% 
17 24-5-6 No 5% 12% 83% 
18 24-9-6 Yes 14% 6% 80% 
19 24-10-6 No 9% 9% 82% 
20 24-13-6 Yes 12% 10% 78% 
21 24-15-6 No 12% 14% 74% 
22 24-16-6 No 1% 23% 76% 
23 24-18-6 No 1% 21% 78% 
24 24-22-6 No 10% 8% 82% 
25 24-25-6 Yes 13% 8% 79% 
26 24-26-6 No 7% 10% 83% 
 
However, a total of 26 candidate ternary mixtures were identified. In 
order to validate the feasibility of the designed formulation, the AUP values 
of the formulated mixtures and the target must match along with matching 
the cluster targets. After performing this analysis, only 9 out of 26 identified 
 
 
 
83 
candidate ternary mixtures matched the cluster target and AUP value of the 
target product and the results are summarized in Table 3.10. The 17 
infeasible mixtures, although, matched the cluster targets but had AUP 
values higher than ?1% of the target value (1.802). Therefore, the 
discrepancy was assumed to be higher than the accuracy that can be expected 
by graphical lever-arm analysis.  
3.6 Conclusion 
This research effort has focused on the formulation and solution of product 
design problems by systematic and insightful use of past data. Properties of 
the raw materials, their blend ratios, and the process conditions are used to 
predict and enhance the performance of a target product. Using the duality of 
linear programming to solve the design problem in the lower dimensional 
property domain, instead of high dimensional component space, significantly 
reduced the computational complexity of the problem. Moreover, the ternary 
diagram provides a quick targeting tool that aides in the evaluation, analysis, 
and screening of alternatives. The approach differs from conventional 
techniques because it is non-iterative, avoids the combinatorial explosion 
when multiple components are involved, and avoids the difficulty of 
formulating and solving the mixed integer non-linear programming involved 
in many mixture design problems. Such a practice in industry results in 
fewer trials and experiments to run, thereby saving resources, capital and 
most importantly the product development time. 
However, the method and example presented above is limited to 
selecting, i.e. identifying candidates from a database of known raw materials.  
The raw materials used, are selected from a list of pre-defined candidate 
components, therefore limiting the performance to those components. The 
problem here is that these decisions are made ahead of design and are 
usually based on qualitative (or at best quantitative) process knowledge 
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and/or experience and thus possibly yield a sub-optimal design. In order to 
guarantee global optimality, all possible compounds must be considered. 
Chapter 4 will present a biodiesel additive design problem to demonstrate 
molecular design concepts.  
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CHAPTER 4  
DESIGN OF BIODIESEL ADDITIVES 
4.1 Introduction 
High prices and environmental impact related to fossil-based raw materials 
are the driving force for sustainable development concepts and their use in 
industry. This will also have implications for the design of chemical products 
and their production routes. Biofuels, mainly ethanol used in gasoline 
engines and fatty acid alkyl esters (biodiesel) as well as their blends with 
petro-diesel used in diesel engines, are some of the few alternatives that have 
not required significant new infrastructure or change on the part of 
consumers or auto manufacturers. As a result, these biofuels are the most 
widely deployed substitute for conventional fossil fuels in transportation 
today. In the U.S., biofuels can currently be blended up to 10% (ethanol) and 
20% (biodiesel) in every gallon of fossil fuel. Among these alternatives, 
biodiesel has become a fast growing market and is expected to outpace 
gasoline demand [66, 67, 68].  
Some advantages of biodiesel, compared to petro-diesel, include: 
 
? renewability and domestic origin, 
? biodegradability and sustainable, 
? higher flash point, 
? reduction of most regulated exhaust emissions due to lack of sulfur, 
? miscibility in all ratios with petro-diesel,  
? compatibility with the existing fuel distribution infrastructure, and 
? inherent lubricity.  
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Any type of feedstock that contains free fatty acids and/or triglycerides 
such as vegetable oil, waste oil, animal fat, and waste grease can be 
converted into biodiesel. The American Society for Testing and Materials 
(ASTM) defines biodiesel as a fuel comprised exclusively of monoalkyl esters 
of long-chain fatty acids derived from vegetable oils or animal fats, 
designated B100 (100% pure biodiesel), meeting the requirements of ASTM 
designation D6751 [69].  
Biodiesel is a very good example of chemical product design. A high 
viscosity and high melting point make its use directly as a fuel in common 
engines difficult. The conversion of triglycerides into methyl or ethyl esters 
through the transesterification (also called alcoholysis) process reduces the 
molecular weight to one-third that of the triglyceride, reduces the viscosity by 
a factor of about eight and marginally increases the volatility [70]. 
Transesterification is an ester conversion process that splits up the 
triglyceride (TG); that is, it takes the glycerol (GL) of the TG and replaces it 
with alkyl radical of the alcohol used [71]. In Figure 4.1, R
1
, R
2
, and R
3
 
represent long chain fatty acid radicals of the mixed TG used whereas R' 
represents an alkyl radical of the alcohol used. Some common fatty acids, 
which exist in the triglyceride molecule are shown in Table 4.1. 
 
Figure 4.1:   Overall stoichiometric transesterification reaction scheme. 
Glycerol is the main byproduct in biodiesel production; almost 13% of 
glycerol comes from biodiesel production. Therefore, a valuable use of glycerol 
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is a very important success factor for this technology. Product design 
principles have to be applied to search for profitable applications that also 
fulfill the requirements of the sustainability principles [72].  
Table 4.1:     Chemical structures of common fatty acids. 
 Fatty Acid   CXX:Y Chemical Structure   
 Myristic acid  (C14:0)   CH
3
-(CH
2
)
12
-COOH   
 Palmitic acid  (C16:0)   CH
3
-(CH
2
)
14
-COOH   
 Stearic acid  (C18:0)   CH
3
-(CH
2
)
16
-COOH   
 Oleic acid  (C18:1)   CH
3
-(CH
2
)
7
-CH=CH-(CH
2
)
7
-COOH   
 Linoleic acid  (C18:2)   CH
3
-(CH
2
)
4
-CH=CH-CH
2
-CH=CH-(CH
2
)
7
-COOH   
 Linolenic acid  (C18:3)   CH
3
-CH
2
-CH=CH-CH
2
-CH=CH-CH
2
-CH=CH-(CH
2
)
7
-COOH   
 Arachidic acid  (C20:0)   CH
3
-(CH
2
)
18
-COOH   
 Behenic acid  (C22:0)   CH
3
-(CH
2
)
20
-COOH   
 Erucic acid  (C22:1)   CH
3
-(CH
2
)
7
-CH=CH-(CH
2
)
11
-COOH   
 
If methanol is used, the biodiesel produced is fatty acid methyl ester 
(FAME). For example, the structure of stearic acid methyl ester can be 
obtained by replacing the H atom in the COOH- group with a CH
3
 group as 
shown in Figure 4.2.   
 
O
CH
3
O
 
Figure 4.2:   Stearic acid methyl ester. 
 
Figure 4.3 shows a typical triglyceride structure of soybean oil that is 
made up of mixed fatty acid fragments and a glycerol fragment.  
The physical and chemical fuel properties of biodiesel basically depend 
on the fatty acids distribution of the triglyceride used in the production. Fatty 
acids vary in their carbon chain length and in the number of double bonds 
(unsaturation level), and are represented by C XX:Y where ?XX? is the number 
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of carbon atoms and ?Y? is the number of double bonds. The fatty acid 
distributions of some feedstock commonly used in biodiesel production are 
shown in Table 4.2 [73].  
 
 
Figure 4.3:   A typical triglyceride molecule with different fatty acid chains 
of soybean oil. 
Since the fatty acid profile varies with different feedstock, the final 
quality of the biodiesel varies depending upon the parent feedstock used. A 
feedstock dependent fuel property is one of the technical difficulties 
associated with biodiesel that have limited its wide usability.  
Table 4.2:     Fatty acid profiles of some common biodiesel feedstock 
 Fatty acids (wt %) 
Feedstock  C14:0  C16:0 C16:1  C18:0    C18:1    C18:2    C18:3   
 Sunflower    ?    6.08    ?    3.26    16.93    73.73    ?   
 Rapeseed    ?    3.49    ?    0.85    64.40    22.30    8.23   
 Soybean    ?    10.58    ?    4.76    22.52    52.34    8.19   
 Soybean soapstock    ?    17.20    ?    4.4    15.7    55.6    7.10   
 Used frying oil    ?    12.00    ?    ?    53.00    33.00    1.00   
 Tallow    3?6    24?32    ?    20?25    37?43    2?3    ?   
 Lard    1?2    28?30    ?    12?18    4?50    7?13    ?   
 Yellow grease    2.43    23.24    3.79    12.96    44.32    6.97    0.67   
 Brown grease    1.66    22.83    3.13    12.54    42.36    12.09    0.82   
O
C O CH
2
O
C
O CH
O
C
O CH
2
Glycerol
fragment
CH
3
-(CH
2
)
7
-CH=CH-(CH
2
)
7
-COOH 
CH
3
-(CH
2
)
4
-CH=CH-CH
2
-CH=CH-(CH
2
)
7
-COOH 
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Linoleic acid (C18:2)
Linolenic acid (C18:3)
CH
3
-CH
2
-CH=CH-CH
2
-CH=CH-CH
2
-CH=CH-(CH
2
)
7
-COOH 
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Transesterification does not alter the fatty acid composition of the 
feedstocks and this composition plays an important role in some critical 
parameters of biodiesel. The vegetable oils are mainly characterized by 
certain fuel related properties. Some of them are tabulated in Table 4.3 [74]. 
Table 4.3:     Fuel properties of biodiesel fuels and diesel  
 Vegetable   
 oil   
Kinematic 
viscosity at 38
o
C 
Cetane 
No. 
Heating 
Value 
Cloud 
Point 
Pour 
Point 
Flash 
Point Density 
Carbon  
residue 
 
(mm
2
/s) (
o
C) (MJ/kg) (
o
C) (
o
C) (
o
C) (kg/l) (wt.%) 
 Sunflower    34.4    36.7    39.6    7.2   -15.0 274   0.916 0.27 
 Rapeseed    37.3    37.5    39.7   -3.9 -31.7 246   0.912 0.30 
 Soybean    33.1   38.1    39.6   -3.9 -12.2 254   0.914 0.25 
 Peanut    40.0    34.6    39.8    12.8   -6.7 271   0.903 0.24 
 Palm    39.6    42.0    ?    31.0    ?   267   0.918 0.23 
 Cottonseed    33.7    33.7    39.5    1.7   -15.0 234   0.915 0.24 
 Corn    35.1   37.5    39.5   -1.1 -40.0 277   0.909 0.24 
 Diesel   2.0-4.5  51.0    43.8    ? 18  -25 55   
0.820-
0.860 
 ?   
4.2 Structure Property Relationships 
Chain length and number, position and configuration of double bonds account 
for the variation in physical properties of fatty acids. Saturated chains are 
highly flexible but the fully extended conformation is the most stable because 
of the lack of steric interference. The tetrahedral bond angle on carbon 
results in a molecular geometry for saturated fatty acids that is relatively 
linear (see Figure 4.2). This molecular structure allows a close arrangement 
of the fatty acid molecules with strong intermolecular interactions.  
On the other hand, the introduction of double bonds with predominantly 
cis-configuration in the hydrocarbon chain in unsaturated fatty acids results 
in bends of about 30 degrees in the molecular geometry (see Figure 4.4). The 
molecules do not arrange very closely due to chain branching. It allows more 
flexibility and weaker van der Waals force between the molecules.  
 
 
 
90 
O
CH
3
O
 
Figure 4.4:   Oleic acid methyl ester. 
4.3 Technical Difficulties with Biodiesel Use  
Although, biodiesel, because of its biological origin, has many advantages 
compared to its petroleum counterparts, it also has several technical 
problems that have persisted to the present and have impaired its use and 
commercialization. Three major limitations are [71]: 
? Oxidative stability: Biodiesel undergoes oxidative degradation 
over time, mainly influenced by temperature and oxygen 
availability/exposure. Residual products of biodiesel such as insoluble 
gums, organic acids, and aldehydes formed from the degradation may 
cause engine deposits and injection problems. Biodiesel is essentially 
non-aromatic. Petroleum diesel contains essentially no olefinic bonds, 
while biodiesel can contain a significant number of these reactive, 
unsaturated sites that provide pathways for oxidation instability. 
? Low-temperature Operability: Biodiesel contains wax molecules, 
which are dissolved in the fuel at higher temperatures. As the fuel 
temperature drops, the wax molecules begin to crystallize. At lower 
temperature, the larger crystals fuse together and form agglomerations 
that eventually prevent pouring of the fuel and plugging of filters.  
? Feedstock dependent fuel property: The fatty acid profile of 
biodiesel is identical to that of the parent oil or fat. Therefore, 
feedstock origin will impact the final quality of the biodiesel product. 
To produce fuel grade biodiesel, the characteristics of the feedstock are 
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very important during the initial research and production stage (fuel 
properties of diesel and biodiesel fuels from various sources are given 
in Table 4.3.)  
Moreover, simultaneous solution of these problems has proven difficult 
as improvements in one area tend to impair another. Due to the inverse 
relationship between oxidative stability and low-temperature operability, the 
design of an optimal fuel for all environments can be a rather difficult task. 
Structural factors that improve oxidative stability adversely influence low-
temperature operability and vice versa. Figure 4.5 is a graphical 
representation of the effects of the biodiesel feedstock profile on the biodiesel 
properties published by the National Renewable Energy Laboratory in 2007.  
 
Figure 4.5:   Compositions of fats and oils and their effects on the fuel 
properties. 
To ensure a uniform quality of biodiesel produced from vegetable oils or 
animal fats, the final products must meet stringent international and 
regional quality requirements such as ASTM D 6751 [69] in the U.S. and EN 
14214 [75] in Europe. These standards identify the parameters the pure 
biodiesel (B100) must meet before being used as a pure fuel or being blended 
with petroleum-based diesel fuel. Table 4.4 provides the specifications for 
biodiesel and diesel.  
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Table 4.4:     Specifications for biodiesel and diesel 
 Specification   
EN  
14214:2008 
ASTM  
D 6751:2009 
EN  
590:1999 
 Applies to   Units FAME
a
  FAAE
b
 Diesel  
 Kinematic Viscosity  mm?/s, @ 
40?C 
3.5-5.0 1.9-6.0 2.0-4.5 
 Cetane number   - 51 minimum  47 minimum  51 minimum  
 Cloud point  ?C  - report   - 
 CFPP ?C Location and time 
specific 
- Location and 
time specific 
 Oxidation stability hr, @110?C 6 minimum 3 minimum N/A (25 g/m
3
) 
a
 refers to fatty acid alkyl esters 
b
 refers to fatty acid methyl esters 
 
The listed specifications in biodiesel standards are directly influenced by 
the fatty acid profile of the biodiesel fuel which is directly influenced by the 
fatty acid profile of parent oil used (see Table 4.1 and Table 4.2).  
 
 
Figure 4.6:   Approaches to improving biodiesel fuel properties. 
Several pathways are possible for improving the fuel-related properties 
of biodiesel. Figure 4.6 presents an overview of the various approaches (A to 
E) that have been explored [76, 77].  
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4.4 Fuel Additives  
Fuel additives, such as antioxidants, cetane enhancers, or cold-flow 
improvers have become a common and indispensable tool not only to decrease 
the drawbacks described above but also to produce specified products that 
meet international and regional standards, allowing fuels trading to take 
place. However, an additive solution to one problem often aggravates another 
problem. In addition, the questions of additive compatibility, required 
addition levels, the effect on other properties, and whether these additives 
function as designed for biodiesel fuels with differing fatty acid profiles still 
remain challenges that require further investigation [78].   
Therefore, it is desired to molecularly design biodiesel additives to 
account for the unintended effect on other fuel properties in the neat and the 
blend fuel in order to achieve the performance properties of the petroleum-
based fuel. In this way, biofuels can be formulated that are adaptable to a 
range or blend of feedstocks and the desirable fuel characteristics like 
oxidative stability and wide operating temperature range. Moreover, such a 
sustainable biofuel must also meet the specifications required by the 
transportation and the aviation industry. 
4.5 Additive Design 
Fuel characterization data obtained with near infrared spectroscopy (see 
Section 2.4) is combined with property clustering techniques (see Section 
2.2.2) in a reverse problem formulation (see Section 2.2.1) to design additive 
molecules which, when mixed with off-spec biodiesel, produce biodiesel that 
meets the desired fuel specifications. The characterization data consists of a 
multitude of property values (such as cetane number, melting point, and 
kinematic viscosity) specified by the aviation industry to ensure adequate 
performance. To facilitate an efficient design we propose consolidating these 
various properties into a latent property domain using principal component 
 
 
 
94 
analysis (PCA) and principal component regression (PCR) techniques (see 
Section 2.6.1 and 2.6.2). Characterization-based molecular design using 
group contribution parameters are then used to build novel additives that 
match the fuel specifications in the latent property space. Sustainability may 
be controlled by environmental and ecological constraints on the design of the 
additives. The additives found can then be used to offset the impact of the 
feedstock residuals on the biofuel blend properties.  
4.5.1 Types of Additives 
Different additives that are commercially available to improve diesel fuel 
performance are selected as the training set molecules [79, 80]. Antioxidant 
additives can help slow the degradation process and improve fuel stability. 
Cold flow enhancers can improve the cold-flow properties to solve the low 
temperature operability problem. Cetane improvers can help improve ignition 
properties thereby reducing NOx emission. Table 4.5 shows some of the 
available additives used as training set in this formulation study.  
 
 
Figure 4.7.   Target specifications for bio-diesel and its blend in terms of 
cetane number, melting point, and kinematic viscosity. 
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Since cetane number, cold flow, kinematic viscosity, and oxidation 
stability are critical properties for the operation of a fuel in a diesel engine, 
Knothe [78] proposed a three-dimensional plot of the cetane number, melting 
point, and kinematic viscosity to describe the optimum properties to meet the 
ASTM D6751 fuel requirements. Figure 4.7 visually represents this required 
biodiesel property space by the shaded rectangular box [78].  
4.5.2 Additive Property Estimation 
Since many additives are proprietary products, their physical-chemical 
properties are not readily available and therefore experimental data such as 
melting point temperature, viscosity and cetane number are difficult to find. 
Therefore, for the commercially available additive compounds, these 
properties are estimated using structural information alone. The estimated 
values are later used as the measured values for property model calibration. 
However, the property values used in the calibration would normally be 
measured in an industrial setup.  
Melting temperature: The normal melting point temperature (?
?
, K) values 
were estimated using a group contribution expression [34]: 
1 23
exp
m
i mi j m j k m k
ij
mo
T
NT M T OT
t
??
=++
??
??
?? ?
 
(4.1) 
where,  ?
?
, ?
?
 and ?
?
 are the number of first-, second-, and third-order groups 
of types i, j and k, respectively.  
 
Viscosity: The dynamic viscosity (?, mPa.s) values at 300 K were estimated 
using the GC
+
 method. GC
+
 combines the group contribution (GC) method 
and the atom-connectivity indices (CI) method [81].  
( )
1 23
ln( )
ii j j k k
ij k
N M OF? ? ? ??
?
=+ ++
?? ?
CI TermsGC Terms
????????????????
 
(4.2) 
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where, ?(?
?
) is a function of viscosity for all missing GC groups/fragments.  
( )
1
()
K
k
k
k
F nF d??
?
=
= +
?
 
(4.3) 
where, ?(?)
?
 = a function of the viscosity contribution for a missing GC 
group/fragment ?, 
 K = the number of missing groups/fragments, 
 n = the number of times a missing group/fragment appears in the 
molecule, and  
 d = a constant [81]. 
 
( ) ( )
01
() 2
ii
i
F aA b c
??
? ??=++
?
 
(4.4) 
where, ?
?
 = the occurrences of the i
th 
atom in the molecular structure, 
 ?
?
 = the contribution of atom i, and 
 b & c = adjustable parameters. 
 
The zero-order (atomic) connectivity index (
0?
? ) and the first-order (bond) 
connectivity index (
1?
? ) are defined by [82] 
01
11
                         where, 
LM
k
ij
k
ii
? ? ??
?
? ? ? ??
??= =
?? ??
?? ??= = =
?? ??
??
 
(4.5) 
where, L = the number of atoms in the hydrogen suppressed graph, 
 M = the number of bonds in the graph, and 
 ?
?
 = the bond indices defined by atomic indices  ?
?
 (the values can 
be found in [81]). 
 
The kinematic viscosity can be converted into dynamic viscosity through the 
density.  
Cetane number: The correlation used for estimation of the cetane number of 
additives is from Lapuerta et al. [83]  
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( )
22
21.157 7.965 1.785 0.235 0.099
db db c c
CN N N N N=?+? + ?
 
(4.6) 
where, ?
??
 = the number of double bonds and 
 ?
?
 = the number of carbon atoms in the molecule. 
 
Table 4.5 tabulates the estimated properties for different type of additives.  
 
Table 4.5:     Commercially available diesel additives and their estimated 
properties. 
Type Compound exp(T
m
/T
mo
) ln(?) CN 
Ox
ida
t
iv
e
 s
t
a
b
il
it
y
 
impr
o
v
e
r
s
 
Butylated 
hydroxytoluene 
(BHT) 10.11 0.465 76.04 
t-butylhydroquinone (TBHQ) 
13.26 0.465 48.59 
Isopropyl alcohol (IPA) 
4.114 0.465 1.847 
Pyrogallol (PY) 
18.791 0.465 14.79 
Methyl tert-butyl ether (MTBE) 
3.484 0.465 16.19 
C
old
 f
low
 
impr
o
v
e
r
s
 
Polymethyl 
Methacrylate 
(PMMA) 
3.035 -1.062 15.19 
Ethylene glycol methyl 
ether acrylate 
(EGMEA) 
4.299 -0.517 7.289 
C
et
a
n
e n
u
m
b
er
 
impr
o
v
e
r
s
 
Di-tert-butyl peroxide (DTBP) 3.138 -3.376 36.23 
Methyl Oleate (MO) 
7.002 2.177 44.47 
Ethylene glycol (EG) 
6.497 3.154 -5.623 
Oleic acid (OA) 
12.47 3.134 31.82 
Stearic acid (SA) 
11.84 3.924 62.24 
4.5.3 Characterization of the Additive Molecules 
Infrared (IR) spectroscopy-based characterization was used to determine the 
chemical constituents or molecular structures of the additive training set that 
describe the orientation and alignment of these molecules. Using the NIST 
Webbook [39], the complete IR spectral region (4,000-400) cm
-1 
for twelve 
additives including antioxidants, cetane enhancers, and cold-flow improvers 
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were obtained. Ideally, both IR and NIR data would be available for the 
training set to provide better predictions, but unfortunately the availability of 
NIR data for the components of interest is severely limited.  
 
Figure 4.8:   Infrared spectra of diesel additive molecules. 
Figure 4.8 is IR spectra of the diesel additive molecules tabulated in 
Table 4.5 that serve as the descriptors of their molecular architecture. The IR 
spectra were translated to discrete variables by a process of digitization. In 
this process, each spectrum is fragmented into small equal fragments (2 cm
-1 
resolution) along the wavelength axis resulting with 1801 frequencies 
(descriptor variables).  
4.5.4 Additive IR Data Analysis 
The principal component scores were used to describe the variation in the 
multivariate characterization data with a minimum of variables to elucidate 
the underlying structure of the data. Principal components (PCs) captured 
the most variation possible in the smallest number of dimensions and 
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consolidate multiple property effects into single, underlying latent variables 
which are devoid of collinearity. The first three principal components 
captured 69.53% of the total variance of the standardized IR data (Figure 
4.9).  
 
Figure 4.9:   Scree plot for PCA on additive IR data. 
 
 
Figure 4.10: PCA score plots on first third PCs for additive IR data. 
? : Oxidative Stability Improver
? : Cold Flow Improver
? : Cetane Number Improver
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Figure 4.10 is a score plot that maps the three different additives types 
involved in the training set. Additives that are close to each other should 
have similar properties, whereas those far from each other should be 
dissimilar with respect to the three properties of interest. It is clear from the 
picture that cold flow additives (?) are together in all the plots. However, 
oxidative stability (?) and cetane improvers (?) are scattered. This may 
suggest that an additive that improves oxidative stability also improves 
cetane and vice versa. This information is supported by the trend depicted in 
Figure 4.5.  
4.5.5 Latent Variable Model Development 
As each score vector ti is a linear combination of the initial predictor variables 
X (the IR data), nonlinear regression models that describe response variables 
Y (the fuel properties) subjected to the X values are obtained. First, the PCA 
for variable reduction and second, multiple regression for calibration model 
development could be considered as a nonlinear PCR (NPCR). Nonlinear 
Principal Component Regression resulted in second order regression models 
for melting point (Eq. (4.7)) and kinematic viscosity (Eq. (4.8)), whereas, a 
third order regression model was developed for cetane number (Eq. (4.9)). The 
generalized forms of these latent variable property models are as follows: 
 
3 33
0
1
exp
m
i i ij i j
i i jjimo
T
t tt
T
?? ?
= <>
??
??
??
=++
? ??
 
(4.7) 
3 33
0
1
ln( )
i i ij i j
i i j ji
t tt?? ? ?
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= = ><>
=+ ++
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(4.9) 
The left hand sides (LHS) of the above models are forced to have a 
particular form such that the respective properties follow linear additive 
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rules as described by the general group contribution model equation (Eq. 
(2.13)). Table 4.6 tabulates the regression coefficients for the latent variable 
models represented by Eq. (4.7) through Eq. (4.9). Figure 4.11 is a plot 
comparing the actual versus the model predicted properties.  
 
Table 4.6:     Model coefficients using PCR.  
Properties ??? (?
?
?
??
)?   ??(? )    CN 
0
?  8.1702 0.8132 65.89 
1
?  0.0793 -0.0005 -0.2833 
2
?  -0.1758 -0.0545 -0.0195 
3
?  -0.0401 0.0021 -1.3906 
12
?  0.0048 0.0033      - 
13
?  0.0063 -0.0024 - 
23
?  0.0144 -0.0015 - 
11
?  - - -0.0491 
22
?  - - 0.3826 
33
?  - - -0.0632 
123
?  - - 0.0038 
?
2
 0.816 0.764 0.790 
?
adj
2
 0.595 0.480 0.422 
 
 
 
Figure 4.11: Predicted vs. actual product properties using PCR model. 
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4.5.6 Translating Physical properties to Latent Properties 
The purpose of this case study is to identify candidate additives which, when 
mixed with a crude (off-spec) biodiesel, produce a fuel that meets the required 
fuel specifications presented in Table 4.7. Table 4.7 has much more stringent 
property constraint criteria than the one defined in Figure 4.7. Here, 
kinematic viscosity of 6.0mm
2
/s at 40
o
C is the maximum limit in ASTM 
D6751 (Table 4.4). 
 
Table 4.7:     Biodiesel target properties. 
 Fuel Property 
 T
m
 [C] 
? [mm
2
/s] 
@ 40
o
C 
CN 
Lower Limit -60 4.51 47 
Upper Limit -20 6.00 65 
 
In order to ensure that the target property space is properly explored, a 
feasibility region on the ternary diagram was evaluated. The identity of the 
exact shape of the feasibility region without extensive enumeration was 
evaluated by the six unique points described by Eq. (2.12). The three physical 
properties (?
?
) were converted to latent properties (?
?
) by solving Eq. (4.7), 
(4.8) and Eq. (4.9) simultaneously. The score variables are then standardized 
(?
?
) using Eq, (2.43). The results are tabulated in Table 4.8. The feasibility 
region was mapped from the three-dimensional volume to a two-dimensional 
area utilizing the property clustering technique described in section 2.2.2. 
Figure 4.12 shows the biodiesel target feasibility region described by Table 
4.8. 
The minimum and maximum latent properties that correspond to 
physical properties in Table 4.7 are in Table 4.9. 
 
 
 
 
 
103 
Table 4.8:     Physical and latent properties describing feasibility 
region. 
Feasibility 
Region 
Points 
Physical Property 
Latent Property 
   Score Standardized Score 
T
m
  
[K] 
? 
[mm
2
/s] CN t
1
 t
2
 t
3
 q
1
 q
2
 q
3
 
min,min,max 213 4.5 65 81 -21 -33 0.180 -0.048 -0.073 
min,max,max 213 6.0 65 80 -21 -34 0.184 -0.049 -0.078 
min,max,min 213 6.0 47 80 -20 -32 0.177 -0.043 -0.070 
max,max,min 253 6.0 47 74 -19 -31 0.183 -0.048 -0.078 
max,min,min 253 4.5 47 75 -20 -30 0.178 -0.046 -0.071 
max,min,max 253 4.5 65 75 -21 -33 0.186 -0.052 -0.081 
 
 
Table 4.9:     Biodiesel target latent properties. 
 Latent Property 
 
q
1
 q
2
 q
3
 
Lower Limit 0.174 -0.054 -0.088 
Upper Limit 0.191 -0.043 -0.065 
Reference value 0.06 -0.02 -0.05 
 
The properties of a crude biodiesel feedstock were selected such that it 
does not meet the fuel specification target properties defined in Table 4.9. 
The standardized latent property values are tabulated in Table 4.10. The 
crude biodiesel along with the petro-diesel property values are mapped onto 
the cluster space as shown in Figure 4.12. 
 
Table 4.10:   Crude biodiesel properties. 
 Latent Property 
q
1
 q
2
 q
3
 
Crude biodiesel 0.142 -0.0480 -0.0820 
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Figure 4.12: Target feasibility region and crude biodiesel in cluster space. 
 
4.5.7 Evaluation of Desired Additive Feasibility Region  
An infinite number of possible additives may exist that could be mixed with 
crude biodiesel. However, it is difficult to narrow down the feasible additive 
candidates such that the final mixture products meet the target biodiesel 
properties. Since the property cluster formulation enables linear mixing and 
lever arm analysis of the latent properties, it is straightforward to identify 
the feasibility region for the additives. The region bounded by the black 
dashed lines (shaded area) in Figure 4.13 represents the entire latent 
property search space for the potential additive molecules. The corresponding 
latent property ranges are presented in Table 4.11. The additive feasibility 
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region will serve as the property target region in the molecular design 
algorithm. 
  
Table 4.11:   Biodiesel additive latent property feasibility region. 
 Latent Property 
 
q
1
 q
2
 q
3
 
Lower Limit 0.519 -0.076 -0.138 
Upper Limit 0.174 0.000 0.000 
 
 
 
Figure 4.13: Desired additive design feasibility region in cluster space. 
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4.5.8 Enumeration of Desired Additive Molecules  
The characterization-based group contribution method (cGCM) developed by 
Solvason [27] was used to take advantage of the additional molecular 
architecture information provided by characterization data. Characterization-
based molecular groups/fragments are linearly combined to formulate a 
molecule. The property of the formulated molecule is determined by the 
individual contributions of each molecular group that make up the molecule. 
Twenty-three molecular groups were selected from the additive training set. 
Some of the groups are the fundamental building blocks present in every 
additive molecule and represent first order contributions, while the rest are 
larger groups and represents higher level of contributions. These selected 
molecular groups are considered to be a set of basic groups which represent 
the chemical make-up of the training set and are listed in Table 4.12 .  
The infrared (IR) descriptor data [X-matrix] for the molecular fragments 
was compiled from Socrates [84] and is listed in Appendix B, Table B.2. The 
latent property contributions of each group are evaluated using the loading 
matrix (P
T
) obtained from the PCA of the training set data such that: 
MA MK KA? ??
= ?T XP
 
(4.10) 
 
The standardized score values (?
?
) are calculated as described previously 
(Eq. (2.43)) and the results are tabulated in Table 4.12. Visual Basic for 
Application (VBA) codes are used to enumerate all potential molecules from 
the characterization-based groups in Table 4.12 that satisfied the target 
property constraints described in Table 4.11. Using the group-based property 
model, molecular groups or fragments are added together analogous to inter-
stream conservation. A maximum number of similar groups, ?
?
= 2, was 
selected such that progressive combinations of similar groups are added until 
the maximum is reached.  
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Table 4.12:   Molecular groups and their latent property contributions.  
S.N. Molecular Group 
Latent Property 
q
1
 q
2
 q
3
 
1 
Methine Group, -CH- - 
0.04 0.459 0.005 
2 
Methylene Group, -CH
2
- 
-0.05 -0.12 0.003 
3 
Methyl Group, -CH
3
 
-0.04 0.156 -0.025 
4 
Tetramethyl Group, -C(CH
3
)
3
 
0.025 0.359 0.061 
5 Aliphatic Methoxy Group, -O-CH
3
 
-0.03 -0.66 0.061 
6 
Vinyl Group, -CH=CH
2
 
0.125 -0.43 0.106 
7 
Vinylidene Group, CH
2
=C- - 
-0.04 0.339 0.002 
8 cis-Vinylene Group, -CH=CH- 
-0.18 -0.17 0.084 
9 trans-Vinylene Group, -CH=CH- 
-0.17 -0.18 0.091 
10 Hydroxyl Group, -OH 
-0.02 -0.37 -0.229 
11 Primary Alcohol Group, -CH
2
OH 
0.093 -0.21 -0.086 
12 Secondary Alcohol Group, - -CHOH 
0.09 0.275 -0.056 
13 Alilphatic Ether Group, -O- 0.15 -0.27 0.072 
14 Alkyl Peroxide Group, -O-O- 0.211 -0.34 0.134 
15 Saturated Aliphatic Ester Group, -CO-O- 0.247 0.328 0.155 
16 Saturated Aliphatic Methyl Ester Group, -CO-O-CH
3
 0.184 0.404 0.172 
17 Saturated Aliphatic Ethyl Ester Group, -CO-O-CH
2
CH
3
 0.162 0.5 0.139 
18 Acrylate Ester Group, CH2=CH-CO-O- 0.13 0.179 0.14 
19 Methacrylate Ester Group, CH2=C(CH
3
)-CO-O- 0.111 0.547 0.105 
20 o-Alkyl Phenol Group (With H-bonding) 0.006 0.455 -0.042 
21 p-Alkyl Phenol Group (With H-bonding) 0.007 0.42 -0.042 
22 Monosubstituted Benzenes -0.1 -0.27 0.081 
23 1,2,4- Trisubstituted Benzene 0.055 -0.42 0.069 
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The enumerated candidate molecules were then screened for structural 
constraints, such as free bond number (FBN), to ensure that a stable, 
connected molecule was formed. The candidate molecular structures that 
were identified to fall within the feasibility region for the additive properties 
in Figure 4.14 and satisfy all the constraints, are presented in Table 4.13. 
The list of potential molecules is mapped onto the cluster space and is shown 
in Figure 4.14. 
 
 
Figure 4.14: Cluster diagram for biodiesel blending problem. 
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Table 4.13:   Results from characterization-based molecular design. 
I.D. Candidate Molecules 
T
m
 [K] ? [mm
2
/s]     CN 
CM1 
CH
2
O
O CH
3
CH
2
 
(Isopropenyl acrylate) 
203 0.400 3.63 
CM2 
CH
2
O
O
CH
3
OH
 
(Hydroxyethyl acrylate) 
261 1.04 3.04 
CM3 
CH
3
O
O
CH
3
 
(Ethyl acetate) 
172 0.72 2.92 
CM4 
CH
3
OH
 
(4-methyl phenol) 
306 9.68 7.07 
 
In addition, solubility parameters can be used as a simple method to 
predict and calculate the dissolving power of the above candidate additive 
molecules in biodiesel as a further screening criterion. As a general rule, two 
substances with close solubility parameters (?) should be mutually soluble 
[85]. In the thermodynamics of solution, the Hansen solubility parameters 
related to dispersion force (?
?
), polar interaction (?
?
), and hydrogen bond 
interaction (?
?
) have been conveniently used to estimate the solubility or 
miscibility between two compounds. These parameters can be estimated from 
additive group contributions [85]: 
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2
dp h
pi
di hiii i
mm m
F
FE
VV V
?? ?= = =
?
??
                        
 
(4.11) 
where ?
??
, ?
??
, and ?
??
 are contributions from group i for calculating 
dispersion, polar, and hydrogen component solubilities respectively using 
Hoftyzer and Van Krevelen method [85]. The molar volume (?
?
) of a molecule 
was estimated by group contribution methods [34]. The total Hansen 
solubility parameter (equivalent to Hildebrand solubility parameter) can be 
expressed as: 
222
d ph
? ???= ++
 
(4.12) 
 
Table 4.14:   Additive solubility in FAME at 25
o
C.  
I.D. 
?
d 
MPa
1/2
 
?
p 
MPa
1/2
 
?
h 
MPa
1/2
 
?
 
MPa
1/2
 
V
m 
cm
3
/mol 
Feasible 
CM1 13.75 3.59 7.16 15.91 136.68 Yes 
CM2 12.44 5.12 14.05 19.45 107.35 No 
CM3 10.97 3.59 7.16 13.58 97.80 Yes 
CM4 19.55 4.77 13.78 24.39 105.37 No 
FAME 15.7 1.46 4.57 16.43 335.36 - 
 
Table 4.14 tabulates the solubility parameters and molar volumes of the 
additives and a common fatty acid methyl ester (FAME). Since linoleic acid 
(C18:2) represents a major constituent in the fatty acid profile (Table 4.2), it 
is used to check the solubility of the candidate additive molecules in methyl 
ester (biodiesel). Additives with lower a solubility parameter than FAME 
were considered miscible in most proportions with FAME (? ? 16 MPa
1/2
). 
Based on this criterion, the candidates CM1 and CM3 satisfied the screening 
criteria and were considered feasible solutions. 
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From Table 4.14 it can be inferred that among the Hansen parameters, 
the high dispersion parameter values (?
?
) have the major attractive factor for 
FAME and the additive molecules involved in the process of solubilization. 
These interactions arise from induced dipoles and their strength is related to 
the polarizabilities of the molecules (dipole moment of FAME, CM1, and CM3 
molecules are primarily from the dipole moment of the carbonyl group). The 
polar parameter (?
?
) and the hydrogen bonding parameter (?
?
) of FAME, 
CM1, and CM3 are comparatively low.  
 
 
Figure 4.15: Spatial representation of candidate additive molecules 
according to B3LYP/6311++G(3df,3dp) calculations: (a) isopropenyl acrylate 
(CM1), and (b) ethyl acetate (CM3).  
 
Furthermore, density functional theory (DFT) calculations were 
performed for the CM1 and CM3 additive molecules to optimize their 
geometry. Using the B3LYP method with the 6311++G(3df,3dp) basis set the 
lowest energy conformer for each molecule is presented in Figure 4.15. The 
estimated dipolar moments of CM1, CM3 and FAME are 1.54, 2.11 and 4.51 
respectively. This is in agreement with the polar parameters obtained with 
Hansen?s theory (Table 4.14). The difference between dipole moments 
(|?
????
??
????????
|) is at a minimum for CM1, which corresponds to the better 
affinity between CM1 and FAME and to the highest solubility limits of this 
additive. Consequently, we can conclude that both the polarity and spatial 
0
o
-67
o
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configurations of feasible additive molecules are involved in the process of 
solubilization.  
4.6 Conclusion 
Unlike in group contribution methods (GCM), where parameters of the 
contribution are obtained by fitting the group contribution model to 
experimental data for a set of chemical compounds, characterization-based 
group contribution method (cGCM) will account for the chemical information 
thus extending the predictive capabilities of this method. Additionally, 
insights into the molecular structures of the candidates and candidate 
mixtures were obtained by incorporating the dipole moment (an important 
descriptor of a molecule) indirectly through the use of IR as a descriptor of 
molecules. 
It should be noted that the limited amount of data and supporting 
characterization information available in the training set (and thus the 
molecular fragments available for molecular design) impacts the chemical 
stability/feasibility of the molecules that are generated in this step. 
Additional training set data can improve the quality of the predictions and 
thus increase the application range but would not require a different 
optimization methodology.  
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CHAPTER 5  
REVERSE DESIGN OF IONIC LIQUIDS 
5.1 Introduction 
Design of environmentally benign solvents and alternative media for 
extraction and purification are new challenges within chemical product 
design. One class of novel compounds being studied for such application is 
ionic liquids (ILs) [11, 86, 87, 88]. They have become the subject of an 
increasing number of investigations due to their unique properties such as 
high polarity, stability at high temperature, flame resistance, and negligible 
vapor pressure. Ionic liquids that have tailored structures with an array of 
unique functional properties can have important applications in areas such 
as CO
2
 capture and sequestration, sulfur removal from fuels, energy storage, 
biomass pre-treatment, and chemical separations. Through variation of both 
cation and anion, particular ionic liquids with tunable physical properties can 
be tailored. For example, the miscibility of ionic liquids with water or organic 
solvents can be varied with alkyl chain lengths on the cation and the type of 
anion present.  
It is estimated that over 10
14
 unique cation/anion combinations are 
possible for use as room temperature ionic liquids, the majority of which have 
never been synthesized [87]. Thus, it is essential to develop a logical and 
systematic approach of selectively choosing a given ionic pair that matches a 
set of desired physico-chemical property targets. However, the traditional 
experimental trial-and-error approach of searching through this large 
molecular space is unrealistic as it is both time and labor intensive. An 
 
 
 
114 
example of possible combinations of cation, anion, and the alkyl chain of the 
side chain attached in the cation is represented graphically in Figure 5.1. 
 
 
Figure 5.1:   Selection of anions, cations, and side chains attached in 
cations for a task specific ionic liquid application.  
 
Computer-assisted approaches towards the automated design of 
chemically formulated products with desired physical, chemical and biological 
properties hold immediate potential. In such methods, predicting the 
properties of ILs would be necessary for molecular design of such compounds. 
The advantage of the newly developed characterization-based group 
contribution technique [27] has previously been demonstrated to predict 
physical-chemical properties and design of biodiesel additive molecules 
(Section 4.5.3) [53]. By exploiting the fact that molecules absorb specific 
frequencies that are characteristic of their structure, vibrational spectroscopy 
is used to elucidate chemical constituents, and the orientation and alignment 
of molecules. For example, infrared (IR) spectroscopy-based characterization 
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contains large quantities of descriptor data involving information on 
molecular architecture at atomic-, nano-, and micro-scales to describe 
physical properties and attributes of chemical products. Some common 
characterizations used to quantify molecular architectures at other length 
scales include nuclear magnetic resonance (NMR) and x-ray diffraction (XRD) 
(See Section 2.4 for more detail). In addition, the characterization-based 
group contribution method (cGCM) utilizes the latent property parameters 
based on characterization data instead of conventional regression-based 
property parameters which often exhibit poor attribute-property 
relationships [27]. 
The choice of an appropriate spectra training set is vital to building the 
latent variable structure since the training set defines the molecular 
architecture building blocks that can be used in the cGCM. In order for the 
method to be independent of the availability of experimental spectroscopic 
data, in this Chapter we investigated the use of density functional theory 
(DFT) based simulation techniques to generate the required IR spectra as 
molecular descriptors to develop predictive property models that can be used 
for the reverse design of ionic liquids.  
5.2 Density Functional Theory 
A set of ionic liquids with three properties were compiled from IUPAC Ionic 
Liquid database (ILThermo) [89] and listed in Table B.3. For each of these 
ionic liquid, the ion-paired structures were drawn into the Accelrys Draw 4.0 
program to develop an initial 2-dimensional MDL Molfile. This information 
was then imported into Avogadro (v1.0.3) [90] to develop an initial geometry 
utilizing a molecular mechanics (MM) force-field for energy minimization. 
The MM force-field chosen for this task was MMFF94, also known as the 
Merck Molecular Force-Field. MMFF94 has been parameterized for a wide 
range of organic chemistry calculations and several charged molecules have 
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been included as well, most notably imidazolium cations [91]. For IL?s with 
phosphate containing anions, the unified force-field (UFF) was utilized to 
generate starting point geometries because the MMFF94 force-field is not 
suited to handle these types of molecules.  
With this starting point geometry, the final molecular geometry 
optimization was performed using the quantum chemical Gaussian 09 
program [92] executed through a supercomputing cluster run by the Alabama 
Supercomputing Authority. As a molecular model to simulate the pure ionic 
liquid, ion-paired structures combining the cations and anions were 
optimized as a whole. The DFT method B3-LYP utilizing the 6-311G(2d,p) 
basis set in the ideal gas phase was used for molecular geometry optimization 
of all ion-paired structures in Table B.3. The method and basis set were 
chosen because similar computational level (B3-LYP/6-311+G(2d,p)) has 
previously been demonstrated to have the lowest root-mean-square error 
(when compared to Hartee-Fock (HF) method utilizing similar basis sets) for 
simulated fundamental molecular vibrations [93]. Figure 5.2 shows the 
optimized structure of the stable gas phase (local potential energy minimum) 
1-ethyl-3-methyl imidazolium hexafluorophosphate [emIm]PF
6 
 ionic liquid 
conformer
. 
 
 
Figure 5.2:   Geometry optimized molecular structure of [emIm]PF6 at the 
B3LYP/6-311G(2d,p) computational level. 
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Vibrational frequency calculations were performed for each ion-paired 
structure to confirm the presence of an energy minimum. This is confirmed as 
the resulting frequencies were all positive values (no imaginary frequencies) 
[93]. Negative values appearing in this data would reveal the presence of a 
transition state geometry since the vibrational modes are derived from a 
square root of the force constants from the Hessian matrix (Eq. B.6).  
In general, the values of harmonic vibrational frequencies determined by 
ab initio computational methods are larger than the experimental 
frequencies because the methods neglect anharmonicity effects, incompletely 
incorporate electron correlations and uses finite basis sets [94]. The 
vibrational spectra calculated using DFT (which incorporates electronic 
correlation) requires a correlation factor of 0.965 at the B3-LYP/6-311G(2d,p) 
level [95]. The base set is a mathematical function to approximate the 
electronic wave function. Figure 5.3 (a) shows the high correlation (R
2
 of 
0.998) of the IR frequency calculated to the available experimental data [93] 
for [emIm]PF
6
. Figure 5.3 (b) shows the resulting simulated vibrational 
spectra using Gaussview software.  
 
 
Figure 5.3:   (a) Calculated vs. experimental IR frequencies and (b) infrared 
spectrum at 2cm
-1
 resolution of [emIm]PF6 at the B3-LYP/6-311G(2d,p) 
computational level. 
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Table 5.1 contains the theoretical and experimental vibrations along 
with vibrational assignments for [emIm]PF
6.  
 
Table 5.1:     B3LYP/6-311+G(2d,p) vibrational assignments (cm
-1
) of 
[emIm]PF6. 
  Frequency (cm
-1
) 
Assignment Calculated Experimental 
Cat-An tors  21 - 
Cat-An bend  39 - 
Cat-An bend  56 - 
Cat-An bend  62 - 
Cat-An bend, CH
2
(N) bend  99 - 
at-An bend, CH
2
(N) bend  106 - 
CH
3
(N) twist  127 - 
CH
3
(N) twist  162 - 
CH
2
(N) bend  186 - 
terminal CH
3
 twist  210 - 
CH
3
(N) bend  218 - 
PF
6
 scissors  284 - 
PF
6
 scissors  287 - 
PF
6
 scissors  295 - 
CCH bend, CH
3
(N) bend  296 - 
CCH bend, CH
3
(N) bend  326 - 
CCH bend, CH
3
(N) bend  389 - 
PF
6
 scissors  434 - 
PF
6
 scissors  439 - 
PF
6
 scissors  440 - 
FPF sym str  447 - 
FPF sym str  472 - 
FPF sym bend  527 - 
FPF sym bend  528 - 
FPF sym bend  531 559 
ring ip sym bend  569 559 
ring op asym bend  570 625 
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  Frequency (cm
-1
) 
Assignment Calculated Experimental 
ring op asym bend  593 649 
FPF sym str, ring op bend  695 - 
ring ip bend, CH
3
(N) bend, CH
2
(N) bend  710 - 
ring HCCH sym bend  749 741 
CCH bend  812 - 
ring HCCH asym bend  826 836 
FPF asym str, ring HCCH asym bend  875 838 
FPF asym str, ring NC(H)N bend, CCH bend  900 847 
FPF asym str  905 - 
ring NC(H)N bend  907 - 
CC str  960 - 
ring ip sym str  981 - 
ring sym str, CH
3
(N) str, CH
2
(N) str  1012 1033 
CC str, ring ip sym str  1063 1087 
ring HCCH sym bend, ring ip sym str  1082 - 
ring HCCH sym bend, ring ip sym str  1138 - 
CC str  1159 1114 
CH
3
(N) HCH bend  1173 - 
ring sym str, CH
3
(N) str, CH
2
(N) str  1200 1172 
ring ip asym str, CC bend  1216 - 
ring ip asym str, CH
3
(N) str  1267 - 
ring ip sym str, CH
2
(N) str  1298 1340 
ring ip sym str, CH
2
(N) str, CH
3
(N) str  1328 - 
ring ip asym str, CH
2
(N) bend  1382 1387 
CC str  1429 - 
ring ip asym str  1447 - 
ring ip asym str, CH
3
(N) str  1468 1432 
CCH HCH sym bend, CH
3
(N)HCH sym bend  1505 - 
CCH HCH asym bend, CH
3
(N)HCH sym bend  1513 1468 
CH
3
(N) asym bend  1522 - 
CC HCH bend  1533 - 
CH
3
(N) HCH sym bend  1538 - 
ring ip sym str, CH
3
(N) str, CH
2
(N) str  1547 1575 
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  Frequency (cm
-1
) 
Assignment Calculated Experimental 
ring ip asym str, CH
3
(N) str, CH
2
(N) str  1591 1575 
terminal CH
3
HCH sym str  3059 2878 
CH
3
(N) HCH sym str  3065 - 
CH
2
 HCH sym str  3076 - 
terminal CH
3
HCH asym str  3102 2952 
CH
2
 HCH asym str  3109 - 
CH
3
(N) HCH asym str  3137 - 
CC HCH asym str 3145 - 
CH
3
(N)HCH asym str  3157 3115 
ring NC(H)NCH str  3176 3134 
ring HCCH asym str  3300 3168 
ring HCCH sym str, ring NC(H)NCH str  3316 3179 
 
5.3 Data Analysis and Model Development 
IR data of 22 training set IL molecules generated using DFT contained 701 
descriptor variables at 2 cm
-1
 resolution for (3500-0) cm
-1
 frequency range. 
Using PCA, the first three principal components captured about 60% of the 
total variance. The score values are listed in Table 5.2. The loading values 
are not presented as they constitute a matrix of [701x3]. Using PCR, the 
latent variable property models (Figure 5.4) were developed. The generalized 
expressions are shown in Eq. 5, 6, and 7 for dynamic viscosity, density, and 
melting temperature, respectively. Table 5.3 contains the respective model 
coefficients. Note that the log, inverse, and exponent transformations of the 
calibrated QSPR models were made to ensure linear mixing of the property 
operators of these properties.  
33
2
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Table 5.2:     PCA score values for X- and Y-blocks. 
X score value 
t
1
 t
2
 t
3
 
-3.102 -1.676 2.218 
37.75 -0.137 6.502 
25.57 -1.434 5.686 
-21.98 -10.25 7.347 
-10.86 -1.346 -11.18 
-0.315 -1.392 3.867 
-0.923 1.408 -8.155 
28.34 1.497 3.089 
6.778 0.023 -7.867 
-0.438 -0.708 1.950 
18.46 9.313 -5.078 
-6.854 -1.547 -7.027 
-6.392 0.682 -11.33 
-5.741 -0.417 -6.179 
18.04 -1.227 4.456 
-16.84 -11.40 8.355 
-13.73 -3.260 2.640 
-23.92 -5.838 9.794 
-36.60 -1.853 7.743 
-8.058 0.288 -10.72 
-25.84 29.45 10.24 
14.50 -1.365 3.655 
-4.452 -0.656 -2.259 
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Figure 5.4:   Predicted vs. actual IL properties using PCR model. 
 
Table 5.3:     Model coefficients using PCR.  
Properties ??(?)     
? ??  
??? (?
?
?
??
)?  
0
?  -1.273 8.13e
-4
 6.778 
1
?  -0.0736 -6.03e
-7
 -0.0311 
2
?  0.315 -3.25e
-6
 0.0152 
3
?  0.175 1.05e
-5
 -0.0206 
13
?  - - -0.0137 
23
?  - - 0.0293 
11
?  - -1.14e
-7
 0.0035 
22
?  -0.0162              -  -0.0168 
?
2
 0.609 0.643 0.541 
?
adj
2
 0.517 0.559 0.312 
 
The poor accuracy of predictions for the properties of interest could be 
related to the quality of the experimental data used for calibrating the 
property models. Moreover, the gas phase nature of IR simulation has 
difficulties to take into account the structural features of ionic liquids in 
liquid state (electrostatic, van der Waals interactions, hydrogen bonds, etc.). 
In addition, accounting for the impact of variation in the structure of ions 
(size, symmetry, conformational flexibility, etc.) on properties is always 
challenging [31].  For example, melting point (?
?
) of ILs decreases with 
increase in the length of alkyl substituents due to reduction of electrostatic 
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interactions between ions. However, this trend is not always true. With the 
length of alkyl group increasing, van der Waals attraction between bulk alkyl 
radicals favors an increase in (?
?
). Experimental observations have shown 
oscillation of the melting point of ILs with the size of alkyl groups [96]. In 
addition, characterization of ionic liquids using the vibrational spectroscopy 
techniques like IR works better on molecules with covalent bonds. Although, 
ionic liquids have some degree of covalent bonding, the ionic character 
dominates the covalent character.   
5.4 Reverse Design of Ionic Liquids using QSPR and cGCM 
Identification of ionic liquids that possess task specific properties through 
time consuming experiments and simulations of individual alternative 
molecules is virtually impossible. However, there are relatively small 
numbers of distinct building-blocks/functional-groups/fragments that can 
theoretically be combined to generate a wide variation of possible molecules. 
In order to capture the group contribution and interaction variability in the 
22 training ILs (listed in Table B.3), a total of fifteen groups are selected. 
Table 5.5, Table 5.6, and Table 5.7 contain seven anion, six cation, and two 
alkyl chain cation substituents, respectively. These selected molecular groups 
are considered to be a set of basic groups which represent the chemical make-
up of the training set.  
Anion groups are considered as a whole molecule without any possible 
attachment position. Cation groups consist of imidazolium, pyridinium, and 
alkyaminium bases with a maximum of four possible alkyl group 
attachments.  Two alkyl groups are selected as possible alkyl chains attached 
to cation groups as these were the only groups present in the training set. All 
these groups are considered first order in the group contribution-based 
property estimation of the formulated ionic liquid molecule. Since most of the 
groups cover a significant proportion of a potential IL molecule, they 
 
 
 
124 
incorporate most of the interactions between the groups. Moreover, the use of 
projection methods for property model calibration also capture the most 
common features and underlying latent relationships resulting from group-
group, ion-ion, and ion-group interactions among the ionic pairs in the 
training set molecules. The loadings (P) from PCA preserve the covariance 
structure which can be applied to reverse design of ionic liquid molecules that 
are consistent with structural attributes in the training set molecules.  
The infrared frequency data for the anion, cation, and alkyl groups are 
generated using B3-LYP/6-311G(2d,p) computational level and by following 
the procedure outlined in Section 5.2. These IR descriptors values are then 
transformed to score values using ? = ???. Finally, the three latent 
properties are obtained by normalizing the score values to follow linear 
mixing in terms of property operators (see Section 2.7 for detail). The latent 
property values which are the contributions of each group to the three 
properties of interest (?, ?, and  ?
?
) are tabulated in Table 5.5, Table 5.6, and 
Table 5.7.  
As a proof-of-concept example, an ionic liquid is to be designed as an 
alternative benign solvent that should replace a molecular solvent with 
environmental and health hazard properties. Table 5.4 presents the target 
property ranges in terms of viscosity, density, and normal melting 
temperature for a certain task-specific application. The corresponding latent 
property values were obtained following the steps outlined in Section 2.6.2. 
 
Table 5.4:     Target ionic liquid properties.  
 Physical Properties Latent Properties 
 
?
  
[Pa.s] 
? 
[kg/m
3
] 
T
m
  
[K] 
q
1
 q
2
 q
3
 
Lower Limit 1.0 1200 230 0.0004 -0.0077 -0.0346 
Upper Limit 1.1 1300 300 0.0671 0.4807 0.0248 
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Table 5.5:     Anion groups and their latent property contributions.  
 
Latent Property 
Anion Groups 
q
1
 q
2
 q
3
 
O
-
SO
CH
3
O
O
 
Methylsulfate 
0.43 2.45 -0.08 
P
-
F
F
F
F
F
F
 
Hexafluorophosphate 
0.15 -1.91 -0.14 
B
-
F
FF
F
 
Tetrafluoroborate 
0.14 -2.92 0.74 
NN
N
-
 
Dicyanamide 
0.27 7.70 -0.71 
N
-
S S
O
O O
O
F
F
F
F
F
F
 
Bis(trifluromethylsulfonly)-amide 
0.11 3.51 1.40 
S O
-
O
O
F
F
F
 
Triflate 
-0.06 -2.67 0.70 
S
O
O
-
O
O
CH
3
 
Octylsulfate 
-0.04 -5.17 -0.90 
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Table 5.6:     Cation groups and their latent property contributions.  
 
 
Latent Property 
Cation Groups Valency 
q
1
 q
2
 q
3
 
N
+ CH
3
N
R
 
methyl imidazolium 
1 
-0.06 0.73 0.16 
N N
+ RCH
3
 
methyl imidazolium (+) 
1 
-0.20 -0.27 0.00 
N N
+ CH
3
R
CH
3
 
2,3 dimethyl imidazolium 
1 
0.55 0.12 0.37 
N
+ R
 
Pyridinium 
1 
-0.43 0.33 -0.16 
N
+
R
CH
3
CH
3
CH
3
 
Triethy alkyaminium 
1 
0.91 0.99 0.67 
N
+
R
R
1
R
2
R
3
 
Trialkyl alkyaminium 
4 
0.23 -0.90 -0.04 
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Table 5.7:     Alkyl chain attached to cation groups and their latent property 
contributions.  
 
 
Latent Property 
Alkyl Groups 
Valency 
q
1
 q
2
 q
3
 
CH
3
 
Methyl 
1 
-3.08 0.08 -0.37 
 ?CH
2
 ? 
 Methylene 
2 
4.08 0.92 1.37 
 
The reverse design of potential IL molecules is accomplished by 
exhaustively generating combinatorial structures from the given molecular 
fragments until the resulting properties match the target property values in 
Table 5.4. In exhaustive searches, selection from among numerous 
permutations of anion, cation, and alkyl chain attached to cation groups is 
performed. First, an anion is selected, and the properties of interest are 
evaluated by using a group-based property estimation method, changing the 
cations and the length of side alkyl chain attached to the cation. For every 
cation; CH
3
 groups, equal to the free bond number (FBN) of the cation, are 
added as a cap at the free end of the cation. Finally, varying numbers of CH
2
 
groups are added until the sum of property values of all the groups fall within 
the target property range. In this case study, a maximum of fifteen CH
2
 
groups are allowed to occur in a generated ionic liquid pair. Figure 5.5 depicts 
a scenario for the reverse design of ILs. The molecular property is estimated 
based on the first order group contribution method:  
15
1
j gg
g
n
=
? = ??
?
 
(5.4) 
where ?
?
 is the normalized latent property operator of property ? (which 
includes 3 properties), ?
?
 is the similar number of group appearances, and ?
?
 
is the normalized latent property contribution of the appeared group.  
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Figure 5.5:   Scenario of reverse design of ILs. 
 
A heuristic and exhaustive search algorithm in the Python programming 
language was written to automate the generate-and-test procedure to 
enumerate all possible IL molecules by selecting collections of groups, 
estimating their physical properties, and checking these against the target 
values.  A total of 10,638 possible candidate were generated. Only 26 of these 
enumerated IL molecules satisfied the target property specifications in latent 
space (Table 5.4) and the free bond number (FBN) structural constraint. The 
structures whose FBN  equals to zero ensure feasible, stable, and connected 
Target Properties
Viscosity, Density, Melting 
Point Temperature etc.
Generation of IL Structures from Combinatorial Building Blocks
Alkyl chain 
R
1
?
4
BF
6
?
PF
33
?
CF SO
27
?
Al Cl
3
?
NO
4
?
AlCl
2
?
Tf N
halide
NN
+
R
1
R
2
S
+
R
1
R
2
R
3
N
+
R
2
R
2
Cation
R
2
+
Anion
-
Select appropriate 
IL molecular building blocks
Exhaustive search by computer
Structured IL Molecules
Meet target property values,
Electronically complete
3
CH
2
CH
OH
22
CH CH=CH
23
CH OCH
3
CH O
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molecules are formed (see Section 2.8.2). Out of 26 of these molecules, 23 
solutions were not present in the training data set (Table B.3). Table B.4 
contains 23 unique solutions in latent or principal property space. When 
these 23 IL molecules were mapped from principal property space to physical 
property space, only 13 IL molecules satisfied the target physical properties 
(Table 5.4). It must be noted that all 23 solutions are feasible; however, only 
13 are feasible in both the spaces. The loss of 10 molecules when properties of 
the IL molecules were transformed from the latent space to physical space 
could be contributed to the uncertainties associated with the property models.  
 
 
Figure 5.6:   Enumerated and validated candidate IL molecules. 
 
Table 5.8 lists the final candidate IL molecules for which predicted 
properties matches the target properties and are structurally feasible. The ID 
numbers and candidate molecule names are the same as in Table B.4. These 
molecules could further be subjected to experimental and/or more detailed 
computational simulation tests. The enumeration and selection after 
validation of IL molecules is schematically presented in Figure 5.6. 
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Table 5.8:     Thirteen candidate ionic liquid molecules that match target 
properties in property space.  
ID Candidate Molecule Physical Properties 
  
?
 
[Pa.s] ? [kg/m
3
] T
m
 [K] 
3 [e
3
pNH
4
]mSO
4
 1.00 1248 267 
4 [meIm]PF
6
 1.00 1226 290 
7 [meIm]BF
4
 1.00 1261 270 
8 [e2,3m
2
Im]BF
4
 1.00 1261 266 
9 [ePy]BF
4
 1.00 1291 260 
11 [e
3
bNH
4
]BF
4
 1.00 1247 267 
12 [e
3
pNH
4
]dCN 1.00 1259 261 
14 [e2,3m
2
Im]Tf
2
N 1.00 1247 267 
17 [e
3
bNH
4
]Tf
2
N 1.00 1233 247 
18 [meIm]CF
3
SO
3
 1.00 1263 266 
21 [e
3
bNH
4
]CF
3
SO
3
 1.00 1221 277 
22 [ePy]oSO
4
 1.10 1203 252 
23 [e
3
pNH
4
]oSO
4
 1.00 1255 262 
 
5.5 Conclusion 
Ionic liquids (ILs) as green solvents can be used in separation processes, 
chemical synthesis, catalysis and electrochemistry, successfully replacing the 
conventional volatile, flammable and toxic organic solvents. Within the 
computer-aided molecular design (CAMD) framework, a characterization 
based method was combined with chemometric techniques towards the 
design of IL structures corresponding to particular physical properties. 
Infrared spectra (IR) generated from density functional theory (DFT) 
simulations were used as molecular descriptors for capturing information on 
molecular architecture, and for calibration of latent variable property models 
to design ILs in a logical and systematic methodology. The use of DFT 
eliminates the dependency on the availability of experimental IR data, 
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thereby extending the capabilities of a design method based on such 
characterization techniques.  
In addition, the design of ILs using the characterization-based group 
contribution method (cGCM) further demonstrated the advantages of using it 
compared to the conventional GCM for predicting properties. For new class of 
chemical compounds such as ILs, tabulated group contribution values for 
many molecular groups are not available in the literature. Here, cGCM 
expands the application range of general GCM to predict properties of the 
enumerated IL molecules from the combination of IL molecular fragments by 
using the molecular information captured from characterization technique 
based on infrared spectroscopy data.  
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CHAPTER 6  
FUTURE WORK 
6.1 Methodology Improvements 
The chemical product formulation methodology presented in this dissertation 
utilizes multivariate data analytics in three areas: (1) characterization, (2) 
modeling, and (3) design. Each of these aspects in product design plays an 
important role at their respective levels. The contribution of this work has 
been in the development of a generalized methodology that integrates all of 
the above tools and techniques to design new and improved materials with 
tailored properties. The applications are presented in the form of case studies 
involving the design of biofuel additives, thermoplastic formulation, and ionic 
liquid. Several of the tools and the techniques combined in this work may not 
be an ideal choice; however, the general problem formulation as well as the 
solution approach can be extended to other problems in chemical engineering.  
In the future, some of the areas of improvement can be seen in each of 
the multivariate analytics. Figure 6.1 presents schematics of the potential 
tools and techniques in the characterization, modeling, and design.  
6.1.1 Multi-Dimensional Characterization 
In silico molecular design approaches presented in the foregoing chapters can 
take advantage of an increasing amount of techniques available to 
characterize molecular architectures. Recently, the advancement of high 
performance computers and robust theories, such as quantum chemistry, 
information theory, graph theory, etc., are accelerating a paradigm shift in 
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the molecular modeling. Today, thousands of molecular descriptors that 
capture and transform the information encoded in the molecular structure 
are effortlessly generated using readily available algorithms and software. 
Each molecular descriptor takes into account a small part of the whole 
chemical information contained within a real molecule. It is important to 
consider the whole environment of the compound as a potential source of 
information to investigate its interplay with physicochemical properties and 
biological activities. QSPR/QSAR modeling is an integral part of in silico 
molecular/drug design approaches. 
 
 
Figure 6.1:   Improvements in the process of multivariate characterization, 
modeling, and design. 
 
Since knowledge gained from chemical data alone is inadequate for 
success in drug discovery, it is important to closely combine or merge 
chemoinformatics and bioinformatics in the future works. Among many 
computer programs, DRAGON
TM
 computer software can generate more than 
1,600 molecular descriptors, covering topological, molecular, and 3D 
Multivariate
Characterization Modeling Design
? Descriptors including:
0D, 1D, 2D, 3D.... 
? Computer programs: 
ADMET Predictor, 
POLLY, DRAGON
? Multi-way analysis:
Parafac, Tucker....
? Clustering:
NN, SVM, K-mean, 
Decision Trees, LDA...
? Stochastic optimization:     
GA, SA, Tabu search..
Mutation
Selection
Initial Molecule/Group
Final Molecule
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properties of molecules [97]. E-DRAGON applet is an electronic version of 
DRAGON and is freely available at www.vcclab.org/edragon/.  Likewise, 
ADMET Predictor
TM
 is a powerful software that can estimate a number of 
properties associated with physicochemical and biological properties of drug-
like chemicals and their molecular structures [98]. The addition of 
descriptors with diverse chemical features and wider molecular space 
coverage would make the presented methodology more flexible and robust, 
but would not require a new problem formulation and solution framework.  
In addition, since spectroscopic methods are fast and non-invasive, their 
use has grown considerably in recent decades in both research and industries 
such as food, petrochemical and pharmaceutics production. To establish more 
chemical features of samples, two distinct analytical methods can also be 
combined. For example, chromatography can be applied first to separate the 
components, while infrared spectroscopy can be applied later to identify 
them. When two distinct methods are combined, in so-called hyphenated 
methods, the resulting data is multivariate and multi-way. Likewise, 
fluorescence excitation-emission matrix (EEM) spectroscopy is a flexible, 
rapid, and portable organic matter characterization tool. In order to use these 
characterization techniques, however, two-way data decomposition 
techniques such as principal component analysis (PCA) and partial least 
square (PLS), used in this dissertation, cannot be applied without further 
extension.   
6.1.2 Multi-Way Modeling 
Decomposition of multi-way data arrays can be accomplished by using 
parallel factor analysis (PARAFAC), which is an extension of the two-way 
PCA to three-way systems. Unlike the bi-linear PCA model, the tri-linear 
PARAFRAC model factors do not have rotational freedom, and thus the 
solution is essentially unique [99, 100]. Figure 6.2 (a) and Figure 6.2 (b) show 
a schematic of two-way data and three-way tensor decomposition, 
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respectively. While PCA has a score and loading matrix (Figure 6.2 (a)), 
PARAFAC has a score matrix and two loading matrices (Figure 6.2 (b)) for 
three-way systems. 
 
 
Figure 6.2:   The decomposition of X-block by (a) PCA and (b) PARAFAC. 
 
Another important area where PARAFAC becomes instrumental is in 
the batch-wise manufacturing processes that are common in chemical, 
pharmaceutical, and semi-conductor industries. Batch processes give rise to 
three-dimensional matrices as shown in Figure 6.2 (b). The mixture 
formulation problem presented in Chapter 3 involves a two-way data 
structure. The PARAFAC decomposition of a three-way tensor ? is 
represented by Eq. (6.1). 
`
,, , , , ,,
1
            1,...., ;  1,..., ;  1,...,
=
= ??+ = = =
?
A
i jk ia ja ka i jk
a
x a b c e i Ij Jk K 
(6.1) 
For batch processes, Eq. (6.1) contains I batches, J time points, and K 
variables. For fluorescence EEM, Eq. (6.1) contains I samples with J emission 
wavelength and K excitation wavelengths. Analogous to PCR regression, 
= +
a
2
a
1
b
1
b
2
c
1
c
2
(b)
EEM Fluorescence
t
2
t
1
= +
p
1
p
2
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PARAFAC can be combined with MLR to obtain a multi-way regression 
model: decompose ? using PARAFAC and regress ? on the PARAFAC scores 
?` as presented in Sections 2.6.2 and 2.6.3. 
In the other hand, when linear approximations (such as PCA or 
PARAFAC) are not valid, neural networks (NNs), which use a series of 
weights (?
?
) and hidden neurons to detect complex and non-linear 
relationships between inputs and outputs, can be utilized [101]. Figure 6.3 is 
a schematic for an artificial neural network. NNs are non-linear statistical 
data modeling tools suitable for high-dimensional and non-linear data such 
as the data generated from EEM fluorescence spectroscopy. They are an 
adaptive system that changes its structure based on external or internal 
information that flows through the network. They are useful when predictive 
accuracy is the most important objective. 
 
 
Figure 6.3:   Structure of an artificial neural network. 
 
6.1.3 Stochastic Search and Optimization 
The deterministic solver is used in the molecular design problems presented 
in this dissertation, involving the design of biodiesel additives and ionic 
liquids. The developed methodology shifted the product design paradigm from 
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guess-and-test to generate-and-test approach. Molecules with desired 
properties are generated using dynamic programming that searches through 
molecular space defined by a set of combinatorial building blocks. The 
combinatorial explosion is minimized by using meta-groups (see Section 
2.8.2). In group-based property estimation methods, these meta-groups are 
treated as first order groups. The problem formulation using a deterministic 
approach is able to handle the presented design problem because the 
molecular search space is small. However, when the molecular search space 
becomes combinatorially large and nonlinear, stochastic optimization 
algorithms like evolutionary algorithm [9], simulated annealing (SA), tabu 
search [11], and artificial neural networks (ANN) are more appropriate and 
effective computer algorithms. 
Genetic algorithms (GAs) are stochastic evolutionary searches that use 
an analogy to chromosome encoding and Darwinian model of natural 
selection and evolution [9].  GAs are useful for combinatorial problems 
dealing with highly complex and a highly dimensional search space. Unlike 
traditional search methods that move in the objective area deterministically 
(point-by-point forward movement), GAs move probabilistically (parallel 
movement) in the optimal direction.   In GAs, by stochastically favoring the 
mating of a more fit population of molecules, the most promising areas of the 
search space are explored at the expense of low performance regions [9].  
6.1.4 Managing and Handling Uncertainty 
Uncertainty accumulates through multiple steps in variable transformation 
and can make the variance of the final response undesirably large. The 
identification, quantification, and communication of model prediction 
uncertainties are important steps in determining the usefulness of any 
model. Uncertainty analysis techniques such as uncertainty propagation 
(forward and inverse) need to be incorporated into model calibration and 
design methodologies. By developing new design methods that are capable of 
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dealing with uncertainty in multi-scale models of materials and its 
propagation through subsequent design and analysis, the application range 
increases and design becomes robust to uncertainties in the design process. 
Importance of model uncertainty becomes greater as the extrapolation 
becomes farther from the historical or training data set.  
6.2 Design of Inherently Benign Chemical Process Routes  
Traditionally, process design was guided by two major facets, technical and 
economic decision criteria. However, the incorporation of two further 
dimensions of sustainability, the ecological and the social aspects, 
simultaneously into the early process design stages has become necessary in 
recent years [102]. Figure 6.4 depicts different aspects involved in early 
process design. Opportunities for identification and development of 
inherently safer process alternatives for solvents, reaction paths, catalysts, 
etc., are most abundant during the early design stage. An inherently safer 
process avoids or reduces hazards instead of controlling them [103, 104].  
 
 
Figure 6.4:   Aspects of early process design. 
Analogous to the molecular architecture descriptors used in molecular 
design work, various process route descriptors related to environment, 
health, and safety factors such as toxicity, reactivity, flammability, heat of 
Economic
Sustainability
Ecological
Technical
Process Design 
Aspects
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Life-cycle
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reaction, temperature, process yield, properties of chemicals involved, etc., 
can be explored and used to design inherently safer synthesis pathways. 
Here, the primary objective is to minimize the amount of raw material usage, 
energy usage, waste generation, and the hazard to both life and environment.  
Many index-based approaches exist to compare and rank routes based 
on environment, health, and safety (EHS) hazards and life cycle assessment 
(LCA) impacts, however, they generally suffer from scaling and multivariate 
related issues. The recently proposed statistical analysis based Inherent 
Benign-ness Indicator (IBI) framework by Srinivasan and Nhan [103] 
alleviates the above shortcomings. They considered principal components 
(PCs) as statistically independent factors of the routes instead of traditional 
empirical weighting schemes. The scores and loadings on the first two PCs 
make up the IBI and help characterize the inherent benign-ness of a process. 
The larger the IBI value, the less benign the route is. 
The work in this dissertation can be easily extended to use this PCA-
based IBI methodology to not only investigate the most inherently safer 
process route among different routes examined, but also to identify the 
similarities and differences in the EHS footprints of the available routes. 
This information and insight can be used to determine modifications needed 
to improve a route?s benign-ness through molecular/mixture design. Reverse 
problem formulation could be applied as an integration procedure where the 
process unit performance that minimizes the IBI could be identified in the 
first step and then the molecule/mixtures that match the targets process 
performance would be identified in the second step.  
The computer-aided molecular/mixture design (CAMD) framework 
combined with the property clustering technique would then be employed to 
generate products that meet the design constraints. If successful, the method 
could provide a new generation of greener chemical substitutes (e.g. solvents, 
catalyst, lubricants, heat transfer fluids, refrigerants, surfactants, etc.) that 
result in lower safety, health and environmental impacts. The algorithm will 
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be computationally efficient as it will be based on the targeting approach 
mentioned before in this dissertation. Moreover, simultaneously integrating 
inherent safety principles (using safer materials and operating conditions, 
minimizing inventory, etc.) into process and product design, from conception 
to completion, could lead to a more sustainable process. 
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APPENDIX A   
MIXTURE MODELS 
The Scheffe canonical models and Cox polynomial models are the two most 
commonly used models to analyze mixture data with multiple regressions. 
A.1  Scheffe Mixture Model 
 Scheffe
1
 introduced canonical models of various orders by eliminating some 
terms from the complete polynomial model. More details can be found in 
Cornell
2
. The first- and second- order point estimate forms of the Scheffe 
models are represented by Eqs (A.2) and (A.3) respectively. 
1
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(A.3) 
By removing the constant term, the primary collinearity introduced by 
Eq. (3.1) is eliminated; however, it makes it impossible to center these 
models, which leads to ill-conditioning of the ?
?
? matrix and poor estimates 
of the coefficients
3
. Moreover, the Scheffe model is difficult to interpret when 
the objective of the data analysis is determination of the component effects on 
  
1   Scheffe, H. (1963). Simplex-centroid design for experiments with mixtures. J. R. Stat. Soc. 
B., 25 (2), 235-263.   
2   Cornell, J. (1990), Experiments with mixtures, 2nd Ed., Wiley, New York. 
3   Kettaneh-Wold, N. (1992). Analysis of mixture data with partial least squares. 
Chemometrics and Intelligent Laboratory Systems, 14(1-3), 57-69. 
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the response. Moreover, secondary collinearity from additional constraints 
such as upper and lower limits on components, results in poor estimates of 
the regression coefficients. 
A.1  Cox Mixture Model 
Cox
3
, recognizing the difficulties with the Scheffe mixture model, derived new 
mixture models with respect to a specified reference point in the 
experimental region. They are regular polynomials with constraints involving 
the reference mixture. The first and second order polynomial forms are 
represented by Eqs (A.4) and (A.5).  
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In terms of change in constituent i, 
i
? , Eqs (A.4) and (A.5) can be rewritten 
as: 
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(A.7) 
where, y(s) is the expected response at the standard reference mixture. 
 
The Cox coefficients represent the change in the response as one moves 
away from the standard reference mixture, and hence is meaningful in most 
applications. However, for multiple regressions, the Cox model encounters 
estimation difficulties as additional constraints are involved.  
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In most practical cases, (except when X is generated according to an 
experimental design), however, the X-variables are not statistically 
independent. This situation is referred to as X being rank deficient. Although 
the Scheffe canonical models and the Cox polynomial models (a 
reparameterized and constrained version of the Scheffe model) eliminated the 
true collinearity, and enabled the use of multiple regressions for the 
estimation, the problem of near collinearities with mixture data remains. 
Design of experiments (DOE) with response surface methods are usually used 
to determine the optimum combination of chemical constituents that give a 
desired response using a minimum number of experimental runs. While such 
a design approach is adequate for most experimental designs, it suffers from 
combinatorial explosion and visualization difficulties when dealing with 
multi-component mixtures
4
. Solvason et al.
5
 presented a solution to these 
problems by integrating the property clustering framework with existing 
mixture design techniques.  
 
  
4   Eden, M. R. (2003). Property-Based Process and Product Synthesis and Design. CAPEC, 
Department of Chemical Engineering, Technical University of Denmark. Ph.D Thesis. 
5   Solvason, C. C., Chemmangattuvalappil, N. G., Eljack, F. T., & Eden, M. R. (2009). 
Efficient Visual Mixture Design of Experiments using Property Clustering Techniques. 
Industrial & Engineering Chemistry Research, 48(4), 2245-2256. 
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APPENDIX B   
SPECTRAL INTERPRETATION 
The vibrational spectrum of a molecule is considered to be a unique physical 
property and is a characteristic of the molecule. Any spectrum originates 
from radiation energy transferred to mechanical energy associated with the 
motion of atoms held together by chemical bonds in a molecule. The first 
principles approach, which is based on the fact that structural features of the 
molecule, whether they are the backbone of the molecule or the functional 
groups attached to the molecule, produce characteristic and reproducible 
absorptions in the spectrum
6
. This information can indicate whether there is 
a backbone to the structure and, if so, whether the backbone consists of linear 
or branched chains. Next it is possible to determine if there is unsaturation 
and/or aromatic rings in the structure. Finally, it is possible to deduce 
whether specific functional groups are present. If detected, one is also able to 
determine the local orientation of the group and its local environment and/or 
location in the structure
7
. 
  
6   Salzer, R. (2008). Practical Guide to Interpretive Near-Infrared Spectroscopy. By Jerry 
Workman, Jr. and Lois Weyer. Angewandte Chemie International Edition,47(25), 4628-
4629. 
7   Pasquini, C. (2003). Review Near Infrared Spectroscopy?: Fundamentals , Practical 
Aspects and Analytical. Applications. Spectroscopy, 14(2), 198-219. 
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B.1  Infrared Spectroscopy 
The fundamental absorption frequencies (also known as group frequencies) 
are the key to unlocking the structure?spectral relationships of the 
associated molecular vibrations. An infrared spectrum is formed as a 
consequence of the absorption of electromagnetic radiation at frequencies 
that correlate to the vibration of specific sets of chemical bonds from within a 
molecule. Figure B.6.5
8
 shows the IR region of the electromagnetic spectrum. 
The distribution of energy possessed by a molecule at any given moment can 
be defined as the sum of the contributing energy terms: 
total electronic vibrational rotational trnaslational
EE E E E=+++
 
(B.1) 
 
 
Figure B.6.5:  IR regions of the electromagnetic spectrum. 
  
8   Raffael, K. D. (2002). Infrared Spectroscopy: The Theory. Journal of Molecular 
Spectroscopy, 214(1), 21-27 
Visible
Infrared
Microwave
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B.2  Molecular Vibrational Spectroscopy 
There are two types of molecular vibrations, stretching and bending. A 
molecule consisting of n-atoms has 3n degrees of freedom, corresponding to 
the Cartesian coordinates of each atom in the molecule. In a nonlinear 
molecule, 3 of these degrees are rotational and 3 are translational and the 
remaining corresponds to fundamental vibrations; in a linear molecule, 2 
degrees are rotational and 3 are translational. This is because in a linear 
molecule, all of the atoms lie on a single straight line and hence rotation 
about the bond axis is not possible. The net number of vibrational degrees of 
freedom for a given molecule can be determined from Eq. (B.2):  
   3 6 (nonlinear)
                                         3 5 (linear)
Number of normal mode n
n
= ?
= ?
 
(B.2) 
For example, water, which is nonlinear, has three fundamental 
vibrations as shown in Figure B.6.6
8
.  
 
Figure B.6.6:  Stretching and bending vibrational modes for H2O. 
If we calculate the number of modes for a simple hydrocarbon, such as 
methane (nonlinear, tetrahedral structure), a value of nine is obtained. This 
would imply that nine sets of absorption frequencies would be observed in the 
spectrum of methane gas. In practice, infrared spectra do not normally 
display separate absorption signals for each of the 3n-6 fundamental 
vibrational modes of a molecule. The number of observed absorptions may be 
Symmetrical stretching asymmetrical stretching Scissoring (bending)
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increased by additive and subtractive interactions leading to combination 
tones and overtones of the fundamental vibrations, in much the same way 
that sound vibrations from a musical instrument interact. Furthermore, the 
number of observed absorptions may be decreased by molecular symmetry, 
spectrometer limitations, and spectroscopic selection rules.  
One selection rule that influences the intensity of infrared absorptions is 
that a change in dipole moment of the molecule should occur for a vibration 
to absorb infrared energy. Absorption bands associated with C=O bond 
stretching are usually very strong because a large change in the dipole takes 
place in that mode. The reason for the smaller than expected number is that 
several of the vibrations are redundant or degenerate, that is, the same 
amount of energy is required for these vibrations. Some general trends are as 
follows: 
? Stretching frequencies are higher than corresponding bending 
frequencies. (It is easier to bend a bond than to stretch or compress it.) 
? Bonds to hydrogen have higher stretching frequencies than those to 
heavier atoms. 
? Triple bonds have higher stretching frequencies than corresponding 
double bonds, which in turn have higher frequencies than single bonds. 
(Except for bonds to hydrogen). 
 
The stretching and bending vibrations for the important organic group, 
?CH
2
, are illustrated in Figure B.6.7
9
. (The 3n?6 rule does not apply since 
the ?CH
2
 group represents only a portion of a molecule.) Note that bending 
vibrations occur at lower frequencies than the corresponding stretching 
vibrations.  
  
9   Socrates, G. (2001). Infrared and Raman characteristic group frequencies: tables and 
charts. (G. Socrates. Ed.) Journal of Raman Spectroscopy (Vol. 35. p. 347). Wiley. 
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The fundamental requirement for infrared activity, leading to 
absorption of infrared radiation, is that there must be a net change in dipole 
moment during the vibration for the molecule or the functional group under 
study. Another important form of vibrational spectroscopy is Raman 
spectroscopy, which is complementary to infrared spectroscopy. The selection 
rules for Raman spectroscopy are different to those for infrared spectroscopy, 
and in this case a net change in bond polarizability must be observed for a 
transition to be Raman active.  
 
 
Figure B.6.7:  Stretching and bending vibrational modes for a CH2 goup. 
 
Both the stretching and bending vibrations of a molecule as illustrated 
in the above figures can be predicted mathematically, at least to a useful 
approximation using the following mathematical description of stretching 
vibrations.  
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B.2.1  Stretching Vibration 
The stretching frequency of a bond can be approximated by Hooke?s 
Law. In this approximation, the fundamental frequency of vibration of two 
atoms and the connecting covalent bond are treated as a simple harmonic 
oscillator composed of 2 masses (atoms) joined by a spring and can be 
expressed by: 
1
2
?
?
??
=
 
(B.3) 
Where ?  is the vibrational frequency  
 ?  is the force constant of the spring, and 
 ?  is the reduced mass.  
 
 
Figure B.6.8:  Ball and spring model for atoms and bonds respectively. 
 
Using vibrations and wave equations of quantum mechanics, the 
potential energy can be written as: 
1
()
2
En h?= +
 
(B.4) 
where, h is the Plank?s constant, 6.6 x 10
-34
 J/s,  
            n is the vibrational quantum number (0, 1, 2, 3, . . . ) 
 
At the ground state ( 0? = ) 
0
12Eh?= . Following the selection rule, when 
a molecule absorbs energy, there is a promotion to the first excited state
1
32Eh?= . These correspond to bands called overtones in an IR spectrum. 
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They are of lower intensity than the fundamental vibration bands. The 
difference in energy levels between the vibrational quantum states exactly 
matches the radiation energy expressed as:  
31
22 2
h
E h hh
?
???
??
??
?= ? = =
??
??
 
(B.5) 
Since, cc? ??= = , and Eq. (B.3) for a diatomic molecule becomes 
( )
12
12
11 1 2
1
               where, 
2
mm
mm
c mm m m
?
??
?
+
?
= =
+
 
(B.6) 
where, c is the speed of light, 3 x 10
8
m/s.  
?  is the wavenumber, inverse of the wavelength, ? . 
 
For example, using Hooke?s law approximation, C-H bond stretching 
vibrations can be estimated as:  
 
 
The actual range for C?H absorptions is 2850?3000 cm
?1
. The region of 
an IR spectrum where bond stretching vibrations is seen depends primarily 
on whether the bonds are single, double, or triple or bonds to hydrogen. The 
following table shows where absorption by single, double, and triple bonds 
are observed in an IR spectrum. 
 
 
m
C
12gm
6.023 10
23
?
:= m
H
1gm
6.023 10
23
?
:=
?
1
2? c?
? m
C
m
H
+
( )
?
m
C
m
H
?
:=
? 3032 cm
1?
=
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Table B.1:    IR spectrum absorption for different bond types.  
Bond type Force constant 
dyne/cm 
Bond IR absorption range 
cm
-1
 
Single 5 x 10
5
 C-C, C-O, C-N 800-1300 
Double 10 x 10
5
 C=C, C=O, C=N, N=O 1500-1900 
Triple  15 x 10
5
 C?C, C?N 2000-2300 
Hydrogen   C-H, N-H, O-H 2700-3800 
 
The general regions of the infrared spectrum in which various kinds of 
vibrational bands are observed are outlined in the Figure B.6.9. 
 
Figure B.6.9:  Vibrational bands in infrared spectrum.  
 
B.3  Near Infrared Spectroscopy 
 Absorption bands in the near infrared region (NIR) (12820 - 4000 cm
-1
) are 
weak because they arise from vibrational overtones and combination 
bands. Combination bands occur when two molecular vibrations are excited 
simultaneously. The intensity of overtone bands reduces by one order of 
overtone for each successive overtone when a molecule is excited from the 
ground vibrational state to a higher vibrational state. When the vibrational 
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quantum number v is greater than or equal to 2 then an overtone absorption 
results. The first overtone results from 0? =  to 2? =  (52 12 2h hh? ???=). 
The second overtone occurs when 0? =  transitions to 3? =  
( )
72 12 3? ???=h hh. Transitions arising from the near-IR absorption are 
weak, hence they are referred to as forbidden transitions but these 
transitions are relevant when nondestructive measurements are required 
such as a solid sample. 
B.4  Characterizing IR Spectroscopy 
Since relative intensities are primarily functions of the atom specific dipole 
changes caused by the vibration of the corresponding bonds, it follows that 
their size and shape are indicators of molecular architecture. The IR 
absorbance frequencies and magnitudes of the functional groups spectrums 
are listed in following tables and were compiled from Socrates
9
. 
 
Table B.2:    IR absorbance frequencies and magnitudes of functional 
groups.  
Methine Groups, -CH- - 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
Bending (?) 1360 1320 1340 w 90 
Stretching (?) 2890 2880 2885 w 90 
 
Methylene Groups, -CH2- 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
Scissoring Bend (?
s
) 1480 1440 1460 m 50 
Symmetrical Stretching (?
s
) 2870 2840 2855 m 50 
Asymmetrical Stretching (?
a
) 2940 2915 2928 m-s 30 
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Methyl Groups, -CH3 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
Sym Bend (?
s
) 1390 1370 1380 m-s 30 
Asym. Bend. (?
a
) 1465 1440 1453 m 50 
Symmetrical Stretching (?
s
) 2885 2865 2875 m 50 
Asymmetrical Stretching (?
a
) 2975 2950 2963 m-s 30 
 
Tetramethyl Groups, -C(CH3)3 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
C-C Skeletal Bend (?
s
) 930 925 928 m 50 
C-C Skeletal Bend (?
s
) 1010 990 1000 m-w 70 
C-C Skeletal Bend (?
s
) 1225 1165 1195 m 50 
C-C Skeletal Bend (?
s
) 1255 1245 1250 m 50 
C-CH
3
 Sym. Bend. (?
s
) 1395 1350 1373 m-s 30 
C-CH
3
 Sym. Bend. (?
s
) 1420 1375 1398 m 50 
C-CH
3
 Asym. Bend. (?
a
) 1475 1435 1455 m 50 
C-H
 
Sym. Stretching (?
s
) 2885 2865 2875 m 50 
C-H
 
Asym. Stretching (?
a
) 2975 2950 2963 m-s 30 
 
Aliphatic Methoxy Groups, -O-CH3 (Special Methyl) 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
 
% 
Transmi
ttance 
 
High Low Average 
C-O Def. Bend. (?
d
) 580 340 460 m-w 70 
CH
3
/CO Rocking Bend (?
d
) 1190 1100 1145 m-w 70 
CH
3
 Rock Bend (?
d
) 1235 1155 1195 m-w 70 
CH
3
 Sym Bend (?
s
) 1460 1420 1440 M 50 
CH
3
 Asym. Bend. (?
a
) 1475 1435 1455 m 50 
CH
3
 Asym. Bend. (?
a
) 1485 1445 1465 m 50 
C-H
3
 Sym. Str. (?
s
) 2880 2815 2848 m 50 
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C-H
3
 Asym. Str. (?
a
) 2985 2920 2953 m 50 
C-H Asym. Str. (?
a
) 3030 2950 2990 m 50 
 
Vinyl Group, -CH=CH2 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
C=C Tors. Bend (?
T
) 485 410 448 m-s 30 
C=C Eth. Twist. Bend. (?
t
) 600 380 490 m-s 30 
C=C Eth. Twist. Bend. (?
t
) 720 410 565 w 90 
C-H
2
 OoP Rock. Bend. (?
r
) 980 810 895 s 10 
C-H OoP Bending. (?
r
) 1010 940 975 s 10 
C-H IP Def. Bend. (?
d
) 1180 1010 1095 m-w 70 
C-H
2
 Def. Bend. (?
d
) 1330 1240 1285 m 50 
C-H
2
 Sci. Bend. (?
s
) 1440 1360 1400 m 50 
C=C Stretching (?) 1645 1640 1643 m-w 70 
C-H
2
 1
st
 Overtone Bend (2?) 1840 1820 1830 v 90 
C-H 1
st
 Overtone Bend (2?) 1990 1970 1980 v 90 
C-H
2
 Sym. Stretch (?
 s
) 3070 2930 3000 M 50 
C-H Stretch (?) 3110 2980 3045 M 50 
C-H
2
 Asym. Stretch (?
 a
) 3150 3000 3075 M 50 
 
 
Vinylidene Group, CH2=C- - 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
C=C Skeletal Stretch (?) 470 435 453 m-w 70 
C=C Skeletal Stretch (?) 560 530 545 s 10 
C=C Eth. Twist. Bend. (?
t
) 715 680 698 w 90 
C-H
2
 OoP Rock. Bend. (?
r
) 895 885 890 s 10 
C-H
2
 IP Def. Bend. (?
d
) 1320 1290 1305 w 90 
C-H
2
 Sci. Def Bend. (?
s
) 1420 1405 1413 w 90 
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C=C Stretching (?) 1675 1625 1650 m-w 70 
C-H
2
 1
st
 Overtone Bend (2?) 1800 1750 1775 w 90 
C-H
2
 Sym. Stretch (?
 s
) 2985 2970 2978 m-w 70 
C-H
2
 Asym. Stretch (?
 a
) 3095 3075 3085 m-w 70 
 
cis-Vinylene Group, -CH=CH- 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
C-H Tors. Bend (?
T
) 490 320 405 m-s 30 
C=C Skeletal Bend (?
T
) 500 460 480 s 10 
-C=CH Def. Bend. (?
d
) 590 440 515 m-s 30 
C=C Eth. Twist. Bend. (?
t
) 630 570 600 s 10 
C-H Wag. Bend. (?
w
) 790 650 720 m-s 30 
C-H Wag. Bend. (?
w
) 1000 850 925 m-w 70 
C-H Def. Bend. (?
d
) 1295 1185 1240 w 90 
C-H Def. Bend. (?
d
) 1425 1355 1390 w 90 
C=C Stretching (?) 1665 1630 1648 m 50 
C-H Stretch (?) 3040 2980 3010 m 50 
C-H Stretch (?) 3090 3010 3050 m 50 
 
trans-Vinylene Group, -CH=CH- 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
C-H Tors. Bend (?
T
) 490 320 405 m-s 30 
C=C Skeletal Bend (?
T
) 500 480 490 s 10 
-C=CH Def. Bend. (?
d
) 590 440 515 m-s 30 
C=C Eth. Twist. Bend. (?
t
) 580 515 548 m-s 30 
C-H Wag. Bend. (?
w
) 850 750 800 m-w 70 
C-H Wag. Bend. (?
w
) 1000 910 955 v 90 
C-H Def. Bend. (?
d
) 1305 1260 1282.5 v 90 
C-H Def. Bend. (?
d
) 1340 1355 1347.5 v 90 
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C=C Stretching (?) 1680 1665 1673 m-w 70 
C-H Stretch (?) 3050 3000 3025 m 50 
C-H Stretch (?) 3065 3015 3040 m 50 
 
 
Hydroxyl Group, -OH (with intermolecular H-bonding) 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
Bending (?) 710 570 640 m 50 
Stretching (?) 3550 3230 3390 m-s 30 
 
 
 
Primary Alcohol Group, -CH2OH (with intermolecular H-bonding) 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
C-O Def. Bend (?
d
) 555 395 475 m-w 70 
C-O IP. Def. Bend (?
d
) 500 440 470 w 90 
O-H OoP. Def. Bending (?
d
) 710 570 640 m-w 70 
C-CO Stretch (?) 900 800 850 m 50 
C-H
2
 Twist Bend (?
t
) 960 800 880 m-w 70 
C-C-O Stretch (?) 1090 1000 1045 S 10 
C-H
2
  Twist. Bending (?
t
) 1300 1280 1290 m-w 70 
C-H
2
 Wag Bend (?
w
) 1390 1280 1335 m-w 70 
O-H Def. Bend (?
d
) 1440 1260 1350 m-s 30 
C-H
2 
Def Bend (?
d
) 1480 1410 1445 m-w 70 
C-H
2
 Sym. Stretch (?
 s
) 2935 2840 2888 m-w 70 
C-H
2
 Asym. Stretch (?
a
) 2990 2900 2945 m-w 70 
O-H Stretching (?) 3550 3230 3390 m-s 30 
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Secondary Alcohol Group, - -CHOH (with intermolecular H-bonding) 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
C-O OoP. Def. Bend (?
d
) 390 330 360 m-w 70 
C-O IP. Def. Bend (?
d
) 500 440 470 w 90 
O-H OoP. Def. Bending (?
d
) 660 600 630 m-w 70 
C-CO Stretch (?) 900 800 850 m 50 
C-O Stretch (?) 1150 1075 1113 m-w 70 
C-H  Def. Bending (?
d
) 1350 1290 1320 s 10 
C-H Wag Bend (?
w
) 1400 1330 1365 s 10 
O-H + C-H
2
 Coup. Bend. (?
c
) 1430 1370 1400 m-w 70 
O-H Def. Bend (?
d
) 1440 1260 1350 m-w 70 
C-H Stretching (?) 2890 2880 2885 m-s 30 
O-H Stretching (?) 3550 3230 3390 m-w 70 
 
 
Aliphatic Ether Group, -O- 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
C-O-C def vib (?
d
) 440 420 430 w 90 
Sym C-O-C str (?
 s
) 1140 820 980 w 90 
Asym C-O-C Str (?
 a
) 1150 1060 1105 s 10 
Rocking vib 1200 1185 1193 m-w 70 
Wagging vib 1400 1360 1380 m 50 
Asym and Sym -CH
3
 def. vib 1470 1435 1453 m 50 
CH
2
 def vib 1475 1445 1460 m 50 
Sym CH
2
 str 2880 2835 2858 m 50 
Sym. -CH
3
 Str 2900 2840 2870 m 50 
Asym CH
2
 str 2955 2920 2938 m 50 
Asym. -CH
3
 Str 2995 2955 2975 m 50 
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Alkyl Peroxide Group, -O-O- 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
O-O Stretch (?) 900 800 850 w 90 
C-O Stretch (?) 1150 1030 1090 m-s 30 
 
 
Saturated Aliphatic Ester Group, -CO-O- 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
C-O-C Sym. Stretch (?
 s
) 1160 1050 1105 s 10 
C-O-C Asym. Stretch (?
 a
) 1275 1185 1230 s 10 
C=O Stretch (?) 1750 1725 1738 s 10 
C=O 1
st
 Overtone (2?
 s
) 3460 3440 3450 w 90 
 
 
Saturated Aliphatic Methyl Ester Group, -CO-O-CH3 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
Unlisted 450 430 440 m-s 30 
CO-O Rocking Bend (?
r
) 530 340 435 w 90 
C-C-O Sym. Stretch (?
 s
) 1160 1050 1105 s 10 
C-O Stretch (?) 1175 1155 1165 s 10 
C-C-O Asym. Stretch (?
 a
) 1275 1185 1230 s 10 
O-CH
3
 Stretch (?) 1315 1195 1255 s 10 
Unlisted 1370 1350 1360 w 90 
CH
3
 Sym. Def. Bend (?
d
) 1460 1420 1440 m-s 30 
CH
3
 Asym. Def. Bend (?
d
) 1465 1420 1443 m-s 30 
CH
3
 Asym. Def. Bend (?
d
) 1485 1435 1460 m 50 
C=O Stretch (?) 1750 1725 1738 s 10 
CH
3
 Sym. Stretch (?) 3000 2860 2930 m 50 
 
 
168 
CH
3
 Asym. Stretch (?) 3030 2950 2990 m-w 70 
CH
3
 Asym. Stretch (?) 3050 2980 3015 m-w 70 
C=O 1
st
 Overtone (2?
 s
) 3460 3440 3450 w 90 
 
 
Saturated Aliphatic Ethyl Ester Group, -CO-O-CH2CH3 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
C-O-C Def Bend (?
d
) 370 250 310 m-w 70 
C-O-C Def Bend (?
d
) 395 305 350 m-w 70 
CO-O Rocking Bend (?
r
) 485 365 425 m-w 70 
CO OoP Rocking Bend (?
r
) 700 550 625 w 90 
CH
2
 Rocking Bend (?
r
) 825 775 800 w 90 
C-C str (?) 940 850 895 w 90 
CH
3
 Rock. Bend (?
r
) 1150 1080 1115 w 90 
C-C-O Sym. Stretch (?
 s
) 1160 1050 1105 s 10 
CH
3
 Rock. Bend (?
r
) 1195 1135 1165 w 90 
C-C-O Asym. Stretch (?
 a
) 1275 1185 1230 s 10 
CH
2
 Twist. Bend (?
T
) 1340 1325 1333 m-w 70 
CH
2
 Wag. Bend (?
w
) 1385 1335 1360 m-w 70 
CH
3
 Sym. Def. Bend (?) 1390 1360 1375 m-s 30 
CH
3
 Asym. Def. Bend (?) 1480 1435 1458 m 50 
OCH
2
 Def. Bend. (?) 1490 1460 1475 m-w 70 
C=O Stretch (?) 1750 1725 1738 s 10 
CH
3
 Stretch (?) 2920 2860 2890 w 90 
CH
3
 Sym. Stretch (?
 s
) 2930 2890 2910 w 90 
CH
3
 Asym. Stretch (?
 a
) 2995 2930 2963 m 50 
C=O 1
st
 Overtone (2?
 s
) 3460 3440 3450 w 90 
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Acrylate Ester Group, CH2=CH-CO-O- 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
C=C Tors. Bend (?
T
) 485 410 448 m-s 30 
CO-O Rocking Bend (?
r
) 485 365 425 m-w 70 
C=C Eth. Twist. Bend. (?
t
) 600 380 490 m-s 30 
C-O-C Def Bend (?) 675 660 668 m 50 
CO OoP Rocking Bend (?
r
) 700 550 625 w 90 
=CH2 Twist Bend (?
t
) 810 800 805 m-s 30 
CH
2
 Rocking Bend (?
r
) 825 775 800 w 90 
C-C str (?) 940 850 895 w 90 
=CH2 Wag. Bend (?
w
) 970 960 965 s 10 
C-H Def. Wag (?
w
) 990 980 985 m 50 
C-H OoP Bending. (?
r
) 1010 940 975 s 10 
C-C Skel. Bend (?) 1070 1065 1068 m 50 
CH
3
 Rock. Bend (?
r
) 1150 1080 1115 w 90 
C-C-O Sym. Stretch (?
 s
) 1160 1050 1105 s 10 
C-H IP Def. Bend. (?
d
) 1180 1010 1095 m-w 70 
Unlisted 1200 1195 1198 s 10 
C-C-O Asym. Stretch (?
 a
) 1275 1185 1230 s 10 
=CH Rock. Bend (?
r
) 1290 1270 1280 m 50 
Unlisted 1290 1280 1285 s 10 
=CH2 Def Bend (?) 1420 1400 1410 m 50 
C-H
2
 Sci. Bend. (?
 s
) 1440 1360 1400 m 50 
C=C Stretch (?) 1635 1615 1625 m 50 
C=C Stretch (?) 1650 1630 1640 m-s 30 
C=O Stretch (?) 1725 1710 1718 s 10 
C-H
2
 1
st
 Overtone Bend (2?) 1840 1820 1830 w 90 
C-H 1
st
 Overtone Bend (2?) 1990 1970 1980 w 90 
C-H
2
 Sym. Stretch (?
 s
) 3070 2930 3000 m 50 
C-H Stretch (?) 3110 2980 3045 m 50 
C-H
2
 Asym. Stretch (?
 a
) 3150 3000 3075 m 50 
C=O 1
st
 Overtone (2?
s
) 3460 3440 3450 w 90 
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Methacrylate Ester Group, CH2=C(CH3)-CO-O- 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
C=C Skeletal Stretch (?) 470 435 453 m-w 70 
C=C Skeletal Stretch (?) 560 530 545 s 10 
C-O-C Def Bend (?) 660 645 653 m 50 
C=C Eth. Twist. Bend. (?
 t
) 715 680 698 w 90 
C-C Skel Bend (?) 825 805 815 m-s 30 
C-H
2
 OoP Rock. Bend. (?
 r
) 895 885 890 s 10 
 =CH2 Wag. Bend (?
w
) 950 935 942.5 s 10 
C-C Skel. Bend (?) 1010 990 1000 m 50 
C-C Skel. Bend (?) 1020 1000 1010 m 50 
C-O-C Sym. Stretch (?
 s
) 1160 1150 1155 s 10 
C-O-C Asym. Stretch (?
 a
) 1275 1185 1230 s 10 
Unlisted 1310 1290 1300 s 10 
C-H
2
 IP Def. Bend. (?
 d
) 1320 1290 1305 w 90 
 =CH Rock. Bend (?
r
) 1335 1315 1325 m 50 
CH
3
 Sym Bend (?
 s
) 1390 1370 1380 m-s 30 
 =CH2 Def Bend (?) 1420 1400 1410 m 50 
CH
3
 Asym. Bend. (?
 a
) 1465 1440 1453 m 50 
C=C Stretch (?) 1650 1630 1640 m 50 
C=O Stretch (?) 1725 1710 1718 s 10 
C-H
2
 1
st
 Overtone Bend (2?) 1800 1750 1775 w 90 
CH
3
 Sym. Stretching (?
 s
) 2885 2865 2875 m 50 
C-H
2
 Sym. Stretch (?
 s
) 2985 2970 2978 m-w 70 
CH
3
 Asym. Stretching (?
 a
) 2975 2950 2963 m-s 30 
C-H
2
 Asym. Stretch (?
 a
) 3095 3075 3085 m-w 70 
C=O 1
st
 Overtone (2?
 s
) 3460 3440 3450 w 90 
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o-Alkyl Phenol Group (With H-bonding) 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
C-OH IP Bending (?) 450 375 413 w 90 
O-H OoP. Def. Bending (?
d
) 720 600 660 s 10 
C-O Stretch (?) 1260 1180 1220 s 10 
O-H IP Bending (?) 1410 1310 1360 s 10 
COH bending vib 1330 1310 1320 m 50 
O-H Stretching (?) 3250 3000 3125 m 50 
CO Str 1255 1240 1248 s 10 
OH def and CO str vib 1175 1160 1168 s 10 
OH def and CO str vib 760 740 750 m 50 
OR substituted 3595 3470 3533 m 50 
 
 
 
p-Alkyl Phenol Group (With H-bonding) 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
C-OH IP Bending (?) 450 375 413 w 90 
O-H OoP. Def. Bending (?
 d
) 720 600 660 s 10 
C-O Stretch (?) 1260 1180 1220 s 10 
O-H IP Bending (?) 1410 1310 1360 s 10 
O-H Stretching (?) 3250 3000 3125 m 50 
CO Str 1260 1245 1253 s 10 
OH def and CO str vib 1175 1165 1170 s 10 
OH def and CO str vib 835 815 825 m 50 
OR substituted 3595 3470 3533 m 50 
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Monosubstituted Benzenes 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
Ring OoP def vib 560 415 488 m-s 30 
Ring IP def vib 630 605 618 m-w 70 
 =C-H Ring OoP def vib 710 670 690 s 10 
 =C-H OoP def vib 820 720 770 s 10 
 =C-H OoP def vib 900 860 880 m-w 70 
 =C-H IP def vib 1010 990 1000 w 90 
 =C-H IP def vib 1040 1000 1020 m-w 70 
 =C-H IP def vib 1085 1050 1068 m 50 
 =C-H IP def vib 1175 1130 1153 w 90 
 =C-H IP def vib 1195 1165 1180 m-w 70 
 =C-H IP def vib 1250 1230 1240 w 90 
 -C=C- Str Vib 1625 1590 1608 v 90 
 =C-H Str. Vib 3105 3000 3053 m 50 
 
1,2,4- Trisubstituted Benzene 
Band Wavelength Region [cm
-1
] 
Relative 
Intensity 
  
% 
Transmi
ttance 
  High  Low Average 
Ring OoP def vib 475 425 450 m-s 30 
 =C-H OoP def vib (2H) 740 690 715 m-w 70 
 =C-H OoP def vib (2H) 780 760 770 s 10 
 =C-H OoP def vib (2H) 860 840 850 m-s 30 
 =C-H OoP def vib (1H) 940 885 913 m-s 30 
 =C-H IP def vib 1040 1020 1030 m-w 70 
 =C-H IP def vib 1160 1140 1150 m-w 70 
 =C-H IP def vib 1220 1200 1210 w 90 
 -C=C- Str Vib 1625 1590 1608 v 90 
 =C-H Str. Vib 3105 3000 3053 m 50 
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Table B.3:    Abbreviations, names and structures of investigated ionic liquid training set. 
ID Abbreviation 
Structure & Name Properties 
 
 
Cation Anion ? @ 
293K 
Pa.s 
? @ 
298K 
Kg/m
3
 
T
m 
 
K 
1 [bmIm]mSO
4
 
N
+ CH
3
NCH
3
 
O
-
SO
CH
3
O
O
 
0.2890 1212 269.1 
  1-butyl-3-methyl imidazolium Methyl sulfate 
   
2 [emIm]PF
6
 
N N
+ CH
3
CH
3
 
P
-
F
F
F
F
F
F
 
0.0234 1422 307.1 
  1-ethyl-3-methyl imidazolium Hexafluorophosphate 
   
3 [emIm]BF
4
 
N N
+ CH
3
CH
3
 
B
-
F
FF
F
 
0.0665 1248 247.1 
  1-ethyl-3-methyl imidazolium Tetrafluoroborate 
   
4 [bmIm]dCN 
N
+ CH
3
NCH
3
 
NN
N
-
 
0.0332 1058 267.1 
  
1-butyl-3-methyl imidazolium Dicyanamide 
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ID Abbreviation 
Structure & Name Properties 
 
 
Cation Anion ? @ 
293K 
Pa.s 
? @ 
298K 
Kg/m
3
 
T
m 
 
K 
5 [1,2m
2
pIm]Tf
2
N 
N
+
N
CH
3
CH
3
CH
3
 
N
-
S S
O
O
O
O
F
F
F
F
F
F
 
0.0901 1457 288.1 
  1,2-dimethyl-3-propyl imidazolium Bis(trifluromethylsulfonly)-amide 
   
6 [b2,3m
2
Im]BF
4
 
CH
3
N
CH
3
N
+CH
3
 
B
-
F
FF
F
 
0.4558 1094 310.1 
  1-butyl-2,3-dimethyl imidazolium Tetrafluoroborate 
   
7 [bm
3
NH
4
]Tf
2
N 
N
+
CH
3
CH
3
CH
3
CH
3
 
N
-
S S
O
O
O
O
F
F
F
F
F
F
 
0.1407 1397 289.1 
  butyl-trimethyl-ammonium Bis(trifluromethylsulfonly)-amide 
   
8 [bmIm]PF
6
 
N
+ CH
3
NCH
3
 
 
P
-
F
F
F
F
F
F
 
0.4500 1360 283.1 
  1-butyl-3-methyl imidazolium Hexafluorophosphate 
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ID Abbreviation 
Structure & Name Properties 
 
 
Cation Anion ? @ 
293K 
Pa.s 
? @ 
298K 
Kg/m
3
 
T
m 
 
K 
9 [bPy]Tf
2
N 
N
+
CH
3
 
N
-
S S
O
O
O
O
F
F
F
F
F
F
 
0.0756 1454 299.1 
  1-butylpyridinium Bis(trifluromethylsulfonly)-amide 
   
10 [bPy]BF
4
 
N
+
CH
3
 
B
-
F
FF
F
 
0.2231 1203 279.8 
  1-butylpyridinium Tetrafluoroborate 
   
11 [bmIm]CF
3
SO
3
 
N
+ CH
3
NCH
3
 
S O
-
O
O
F
F
F
 
0.0990 1384 262.2 
  1-butyl-3-methyl imidazolium Triflate 
   
12 [1,3m
2
Im]Tf
2
N 
N
CH
3
N
+ CH
3
 
N
-
S S
O
O
O
O
F
F
F
F
F
F
 
0.0475 1570 299.1 
  1,3-dimethyl imidazolium Bis(trifluromethylsulfonly)-amide 
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ID Abbreviation 
Structure & Name Properties 
 
 
Cation Anion ? @ 
293K 
Pa.s 
? @ 
298K 
Kg/m
3
 
T
m 
 
K 
13 [m
2
Im]Tf
2
N 
N
+ CH
3
N
CH
3
 
N
-
S S
O
O
O
O
F
F
F
F
F
F
 
0.0260 1519 240.1 
  1-ethyl-3-methyl imidazolium Bis(trifluromethylsulfonly)-amide 
   
14 [e
3
oNH
4
]Tf
2
N 
N
+
CH
3
CH
3
CH
3
CH
3
 
N
-
S S
O
O
O
O
F
F
F
F
F
F
 
0.1810 1270 287.1 
  N,N,N-triethyl-1-octanaminium Bis(trifluromethylsulfonly)-amide 
   
15 [pmIm]PF
6
 
N
+ CH
3
NCH
3
 
B
-
F
FF
F
 
0.1030 1240 256.1 
  1-propyl-3-methyl imidazolium Tetrafluoroborate 
   
16 [emIm]dCN 
N N
+ CH
3
CH
3
 
NN
N
-
 
0.0169 1106 255 
  1-ethyl-3-methyl imidazolium Dicyanamide 
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ID Abbreviation 
Structure & Name Properties 
 
 
Cation Anion ? @ 
293K 
Pa.s 
? @ 
298K 
Kg/m
3
 
T
m 
 
K 
17 [emIm]mSO
4
 
N N
+ CH
3
CH
3
 
O
-
SO
CH
3
O
O
 
0.0785 1234 236.3 
  1-ethyl-3-methyl imidazolium Methylsulfate 
   
18 [emIm]Cl 
N N
+ CH
3
CH
3
 
Cl
-
 
1.583 1186 358.1 
  1-ethyl-3-methyl imidazolium Chloride 
   
19 [bmIm]Cl 
N
+ CH
3
NCH
3
 
Cl
-
 
40.89 1080 340.1 
  1-butyl-3-methyl imidazolium Chloride 
   
20 [hmIm]Tf
2
N 
N
CH
3
N
+CH
3
 
N
-
S S
O
O O
O
F
F
F
F
F
F
 
0.0780 1370 266 
  1-hexyl-3-methylimidazolium Bis(trifluromethylsulfonly)-amide 
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ID Abbreviation 
Structure & Name Properties 
 
 
Cation Anion ? @ 
293K 
Pa.s 
? @ 
298K 
Kg/m
3
 
T
m 
 
K 
21 [m
2
Im]mSO
4
 
CH
3
N
+
CH
3
N
 
O
-
SO
CH
3
O
O
 
0.0928 1328 308.9 
  1,3-dimethyl imidazolium Methylsulfate 
   
22 [emIm]CF
3
SO
3
 
N N
+ CH
3
CH
3
 
S O
-
O
O
F
F
F
 
0.0500 1384 262.2 
  1-ethyl-3-methyl imidazolium Triflate 
   
23 [bmIm]oSO
4
 
N
+ CH
3
NCH
3
 
S
O
O
-
O
O
CH
3
 
0.8745 1060 307.6 
  1-butyl-3-methyl imidazolium Octylsulfate    
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Table B.4:    Candidate ionic liquid solutions enumerated from exhaustive search in latent property space. 
 
Abbreviation 
Structure & Name Latent Properties 
 
 Cation Anion q1 q2 q3 
1 [meIm]mSO
4
 
N
+
N
CH
3
CH
3
 
O
-
SO
CH
3
O
O
 
0.0185 0.0045 -0.0293 
  1-methyl-3-ethyl imidazolium Methyl sulfate 
   
2 [ePy]mSO
4
 
N
+
CH
3
 
O
-
SO
CH
3
O
O
 
0.0216 -0.0039 -0.0140 
  1-ethylpyridinium Methyl sulfate 
   
3 [e
3
pNH
4
]mSO
4
 
N
+
CH
3
CH
3
CH
3
CH
3
 
O
-
SO
CH
3
O
O
 
0.0457 0.0292 0.0147 
  N,N,N- triethyl propanaminium Methyl sulfate 
   
4 [meIm]PF
6
 
N
+
N
CH
3
CH
3
 
P
-
F
F
F
F
F
F
 
0.0113 0.0193 -0.0314 
  
1-methyl-3-ethyl imidazolium 
Hexafluorophosphate 
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Abbreviation 
Structure & Name Latent Properties 
 
 Cation Anion q1 q2 q3 
5 [ePy]PF
6
 
N
+
CH
3
 
P
-
F
F
F
F
F
F
 
0.0144 0.0109 -0.0160 
  
1-ethylpyridinium 
Hexafluorophosphate 
   
6 [e
3
eNH
4
]PF
6
 
N
+
CH
3
CH
3
CH
3
CH
3
 
P
-
F
F
F
F
F
F
 
0.0384 0.0440 0.0126 
  N,N,N- triethyl propanaminium Hexafluorophosphate 
   
7 [meIm]BF
4
 
N
+
N
CH
3
CH
3
 
B
-
F
FF
F
 
0.0111 0.0231 0.0012 
  1-methyl-3-ethyl imidazolium Tetrafluoroborate 
   
8 [e2,3m
2
Im]BF
4
 
CH
3
N
CH
3
N
+CH
3
 
B
-
F
FF
F
 
0.0050 0.0185 -0.0162 
  
1-ethyl-2,3-dimethyl imidazolium 
Tetrafluoroborate 
   
9 [ePy]BF
4
 
N
+
CH
3
 
B
-
F
FF
F
 
0.0142 0.0148 0.0165 
  
1-ethylpyridinium 
Tetrafluoroborate 
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Abbreviation 
Structure & Name Latent Properties 
 
 Cation Anion q1 q2 q3 
10 [e
3
eNH
4
]BF
4
 
N
+
CH
3
CH
3
CH
3
CH
3
 
B
-
F
FF
F
 
0.0028 0.0128 -0.0302 
  
N,N,N- triethyl ethanaminium 
Tetrafluoroborate 
   
11 [e
3
bNH
4
]BF
4
 
N
+
CH
3
CH
3
CH
3
CH
3
 
B
-
F
FF
F
 
0.0290 0.0557 -0.0135 
  
N,N,N- triethyl butanaminium 
Tetrafluoroborate 
   
12 [e
3
pNH
4
]dCN  
N
+
CH
3
CH
3
CH
3
CH
3
 
 
NN
N
-
 
0.0427 0.0068 -0.0130 
  
N,N,N- triethyl propanaminium 
Dicyanamide 
   
13 [meIm]Tf
2
N 
N
+
N
CH
3
CH
3
 
N
-
S S
O
O
O
O
F
F
F
F
F
F
 
0.0091 0.0069 -0.0002 
  1-methyl-3-ethyl imidazolium Bis(trifluromethylsulfonly)-amide 
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Abbreviation 
Structure & Name Latent Properties 
 
 Cation Anion q1 q2 q3 
14 [e2,3m
2
Im]Tf
2
N 
CH
3
N
CH
3
N
+CH
3
 
N
-
S S
O
O
O
O
F
F
F
F
F
F
 
0.0030 0.0022 -0.0176 
  
1-ethyl-2,3-dimethyl imidazolium 
Bis(trifluromethylsulfonly)-amide 
   
15 [ePy]Tf
2
N 
N
+
CH
3
 
N
-
S S
O
O
O
O
F
F
F
F
F
F
 
0.0121 -0.0015 0.0151 
  
1-ethylpyridinium 
Bis(trifluromethylsulfonly)-amide 
   
16 [e
3
eNH
4
]Tf
2
N 
N
+
CH
3
CH
3
CH
3
CH
3
 
N
-
S S
O
O
O
O
F
F
F
F
F
F
 
0.0008 -0.0035 -0.0316 
  
N,N,N- triethyl ethanaminium 
Bis(trifluromethylsulfonly)-amide 
   
17 [e
3
bNH
4
]Tf
2
N 
N
+
CH
3
CH
3
CH
3
CH
3
 
N
-
S S
O
O
O
O
F
F
F
F
F
F
 
0.0270 0.0394 -0.0149 
  
N,N,N- triethyl butanaminium 
Bis(trifluromethylsulfonly)-amide 
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Abbreviation 
Structure & Name Latent Properties 
 
 Cation Anion q1 q2 q3 
18 [meIm]CF
3
SO
3
 
N
+
N
CH
3
CH
3
 
S O
-
O
O
F
F
F
 
0.0069 0.0182 -0.0118 
  
1-methyl-3-ethyl imidazolium 
Triflate 
   
19 [e2,3m
2
Im]CF
3
SO
3
 
CH
3
N
CH
3
N
+CH
3
 
S O
-
O
O
F
F
F
 
0.0008 0.0135 -0.0292 
  
1-ethyl-2,3-dimethyl imidazolium 
Triflate 
   
20 [ePy]CF
3
SO
3
 
N
+
CH
3
 
S O
-
O
O
F
F
F
 
0.0099 0.0098 0.0035 
  
1-ethylpyridinium 
Triflate 
   
21 [e
3
bNH
4
]CF
3
SO
3
 
N
+
CH
3
CH
3
CH
3
CH
3
 
S O
-
O
O
F
F
F
 
0.0248 0.0507 -0.0265 
  
N,N,N- triethyl butanaminium 
Triflate 
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Abbreviation 
Structure & Name Latent Properties 
 
 Cation Anion q1 q2 q3 
22 [ePy]oSO
4
 
N
+
CH
3
 
S
O
O
-
O
O
CH
3
 
0.0103 0.0116 -0.0241 
  
1-ethylpyridinium 
Octylsulfate 
   
23 [e
3
pNH
4
]oSO
4
 
N
+
CH
3
CH
3
CH
3
CH
3
 
S
O
O
-
O
O
CH
3
 
0.0344 0.0446 0.0046 
  N,N,N- triethyl propanaminium Octylsulfate    
 

