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Abstract

In the present work we have proposed a robust multivariate functional principal com-

ponent analysis (RMFPCA) method, that is efficient in estimation and fast in computation,

to achieve dimension reduction of dataset and to develop tools for detection of functional

outliers. We intend to develop smooth principal functions as M-type smoothing spline esti-

mators by using penalized M-regression with a bounded loss function. The proposed method

is more efficient since it makes maximal use of the normally observed measurements by sep-

arately downweighing abnormally observed measurements in a single curve. Using natural

cubic splines formulation the computation of the proposed method becomes fast for func-

tional data. We have described accompanying diagnostic plots that can be used to detect

possible outliers. Simulations are conducted to investigate the effectiveness of the proposed

robust multivariate functional principal component analysis (PCA) based on MM estima-

tion, in which we compare our proposed methodology with classical multivariate functional

PCA.

The estimation of a functional coefficient in a regression setting where the response is a

scalar and explanatory variables are sampling points of a continuous process is considered.

Multivariate linear model is considered for several applications, for instance chemometrics

where some chemical variables have to be predicted by a digitized signal such as the Near

Infrared Reflectance (NIR) spectroscopic information. These methods do not really take into

account the functional nature of the data. Further it is typical to have outlying observations

in such datasets. Fitting functional parameter by using functional regression is vulnerable

to unusual data. Therefore from functional point of view a robust functional principal

component regression (RFPCR) is proposed for regressing scalar response on the space,

spanned by small number of eigenfunctions of the functional predictor. Before running a
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regression the outlying trajectories in this space are down weighted by using re-weighted

least squares approach. Several simulation results and the analysis of a real data set indicate

the robustness of the proposed method.
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Chapter 1

Introduction

Functional Data Analysis (FDA) or “data analysis with curves” is a popular subject in

statistics with a wide range of applications. FDA is an assemblage of different methods in

statistical analysis for analyzing curves or functional data. With advances in technologies

high volumes of complex data are generated. For example, in climatology many weather pa-

rameters have been recorded over decades, in the field of chemistry and physics chemometric

analysis is done for spectroscopy. Complexity and large size of databases mandate use of

new tools for analysis such as FDA [64, 47].

Functional data analysis helps to extract additional information from densely sampled

observations over a time or space. In standard statistical methodology the focus is on the

set of data vectors whereas, in FDA focus is on the type of data structure such as curves,

shapes, images, or set of functional observations.

In FDA, each observed curve is thought of as a single observation rather than a collection

of individual observations. A curve can be regarded as an infinite-dimensional vector, whose

dimensions may not be countable (Figure 1.1(a),(b)).

In a traditional statistical methodology, the usual data types are univariate and mul-

tivariate. A univariate dataset contains numbers as its observations; while a multivariate

dataset contains vectors as its observations. A number is one-dimensional while a vector is

multi-dimensional. Multivariate Data Analysis (MDA) is an extension of Univariate Data

Analysis and FDA is an extension of multivariate analysis, where the random vectors are of

infinite dimensions.

In number of situations functional data can be treated as multivariate data. However,

treating data directly as multivariate data may pose difficulty, such as when design points
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Figure 1.1: Example of (a)Functional Observation and (b)Functional dataset

are not equal in subjects. So, direct multivariate treatment may not be possible in this case.

This calls for the development of functional data analysis.

When each functional observation is sampled at a same set of design points, the func-

tional data we get may look like multivariate data. But functional data is in general different

from the multivariate data in the following aspects: 1. For a functional observation, the ob-

served data is sampled from an underlying smooth function, whereas in a multivariate dataset

for an observed vector there is no such structure. 2. The dimension of a functional observa-

tion is so large that it is regarded as a continuous function. This can be seen in Figure 1.1(a).

This dimension is often larger than the sample size. 3. The time points can be different

from one data point to another. All of these different aspects necessitate development of

functional data analysis [77].

There are three advantages in treating data in functional forms. First, by representing

data in functional form with small number of parameters reduces its size considerably. Sec-

ond, since FDA deals with continuous functions; information between observed points is not

lost. For finite sets of observations, FDA first estimates functions from the observed data,

and then discretizes the function at any suitable choice of time points for further analysis.

The free choice of analyzed points is attractive when observational points are different in
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each subject. Thirdly, it is very useful to have particularly interesting features in some time

interval to have more closely spaced points.

In functional data framework, the random variables are defined on the functional space.

To model the population of these random functions we think of a functional data observation

as a realization of a stochastic process, X(t), t ∈ T , where T is a bounded interval in ℜ.

Some mathematical concepts used for FDA are explained here. In FDA, we work with

a functional Hilbert space L2 (e.g., inner product space) which is determined by an inner

product ⟨x, y⟩ [45]. In a finite dimension with x = (x1, . . . , xn) and y = (y1, . . . , yn), the

Euclidean inner product is defined in the following way:

⟨x, y⟩ℜn = Σxiyi.

In a functional space where x = x(t) and y = y(t) are functions, the L2 inner product is

defined as:

⟨x, y⟩L2 =
∫
x(t)y(t)dt,

where x, y ∈ L2. For the convenience we drop the subscripts ⟨x, y⟩L2 and just use ⟨x, y⟩.

The statistical model underlying functional data, which is represented by curves, is a

stochastic process defined on a given infinite dimensional function space. While dealing with

functional data mostly univariate cases are considered i.e. X(t) ∈ ℜ, ∀ t = {t1, t2, . . . , tq} ∈

T, T ∈ [tmin, tmax], a path of X is represented by a single curve. The multidimensional case

or multivariate functional data, X = X(t), t = {t1, t2, . . . , tq} ∈ T, T ∈ [tmin, tmax] with

X(t) = (X1(t), . . . , Xp(t))
′ ∈ ℜp, p ≥ 2, is rarely considered in literature. In multivariate

functional data each observation is a finite dimension vector whose elements are functions

and X is represented by a set of p curves. The dependency between p curves provides the

structure of X.

Consider the functions as processes in continuous time defined over an interval, say T

∈ [tmin, tmax]. The ith replication of functional observation is denoted as xi(t) ∈ L2[T ],
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i = 1, . . . , n. In practice, it is impossible to observe the functional values in continuous time.

We usually obtain the data only on a finite and discrete grid t = {t1, t2, . . . , tq} ∈ T in the

following manner:

yi = xi(t) + ϵi, 1 ≤ i ≤ n,

where ϵi is a random error or noise with zero mean and variance function σ2
i (t). For simplicity,

we assume that all processes are observed at the same time points, which are equally spaced

on T and is denoted by t = {t1, t2, . . . , tq}, but in reality tj ∈ T can be different, i.e., tij

depending on i where 1 ≤ j ≤ ni, 1 ≤ i ≤ n and ni is number of time points for ith replication

of functional observation.

For any data analysis in the FDA framework first step is functional data smoothing.

It is done to convert raw discrete data points into smooth functions i.e., to convert data to

functional form. Smoothing method is used to minimize noise in raw data for calculations

and analysis. There are different types of smoothers that can be applied to functional

data. In this thesis we use smoothing based on basis-function method. By the use of basis

function discrete data is represented as a smooth function this is also known as functional

data smoothing. In the basis expansion method; the function xi can be represented as

a linear combination of first k known basis functions ϕK , K = 1, . . . , k, where k is large

enough, k < q. In this approach, a functional observation xi is expressed as:

xi(t) =
k∑

K=1

ciKϕK(t),

where ϕ is vector-valued function having components ϕ1, . . . , ϕkl . The C is n× k coefficient

matrix of the expansion, where C = [ciK ], 1 ≤ i ≤ n, 1 ≤ K ≤ k. The simultaneous

expansion of all n curves can be expressed in matrix notation as:

x = Cϕ,
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where x is a vector-valued function with xi, 1 ≤ i ≤ n, as its components. This approach is

preferred since it makes good approximation of the data with a relatively small number of

parameters. This may be considered to be a dimension reduction operation.

There are many basis functions possible. Fourier and B-spline bases are most frequently

used bases functions. Since no basis is universally good, choosing one is a complex issue.

However, there are guidelines for specific situations as each candidate function for the basis

has the unique characteristics; for example if the data are periodic then a Fourier basis is used

and for non-periodic data or data that have a lot of local features B-spline works better. The

selection of the basis function ϕK(t) is done by observing the data. Selecting proper order

of expression k (the number of basis functions) is important question in the basis expansion.

There are many ways to decide the number of basis functions like Cross-Validation (CV),

Generalized Cross Validation (GCV) or other similar criteria. In this thesis we use GCV

developed by Craven and Wahba [15], which is described in Section 4.2.

High dimensional data occurrence is natural in some practical applications such as stud-

ies involving image analysis and microarray datasets in genomic studies. In such applications

dimension q is greater than n, sample size. High dimensionality problem has two distinct

features: first the dimension q depends on the discretization order. This is not given in

advance and can be arbitrarily increased. Second, the data from the discretized functions

are likely to be highly correlated. Thus; they create difficulty in estimation of the covariance

matrices.

The notion behind dimension reduction methods is to transform original variables into

a few new variables so that new variables contain most of the information in the original

variables. Principal component analysis (PCA) has been widely used for dimension reduction

and visualization of multivariate and high-dimensional data. In recent decades, multivariate

PCA has been extended to functional PCA. FPCA is a useful tool for data reduction, which

is achieved by identifying main modes of variability of a given dataset.
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For the set of multivariate curves, one can be interested in optimal representation of

curves in a functional space of reduced dimension. Multivariate Functional Principal Com-

ponent Analysis (MFPCA) is a useful statistical technique for understanding the struc-

ture of multivariate functional data (MFD). They are effective dimension reduction tools

for MFD. Ramsay and Silverman [64] have given an example of bivariate functional data,

X(t) = (X1(t), X2(t))
′ ∈ ℜ2, as a model for gait data (knee and hip measures) used in the

context of multivariate functional principal component analysis (FPCA) as an extension of

the univariate case. Principal components obtained from MFPCA have the same interpreta-

tion as in the functional univariate case. MFPCA aims to explain the covariance structure

of data by means of small number of functional components. These functional components

are linear combinations of the original functional variables. This gives better interpretation

of the different sources of variation. Thus MFPCA for data reduction is useful tool for

analyzing high dimensional data.

Majority of statistical techniques used in multivariate and functional data analyses as-

sume that the dataset is free of outliers. However, outliers occur very frequently in functional

and multivariate functional data. Possible sources of outliers are errors in recording and mea-

surement, incorrect distribution assumption, unknown data structure, or novel phenomenon

[39]. Since traditional FPCA and multivariate FPCA are sensitive to outliers, presence of

outliers in a functional dataset makes the resulting principal function unreliable.

In the presence of outliers, dimension reduction via MFPCA would yield untrustworthy

results since MFPCA is also known to be sensitive to outliers. Although several robust

FPCA methods have been proposed for univariate functional data, to our knowledge, there

has been no study on the robustness of MFPCA. This necessitates to develop robust MFPCA

for multivariate FD.

The main contribution of our work is to construct a robust MFPCA method to achieve

dimension reduction of data and to develop tools for detection of functional outliers. This

research work is organized as follows. Chapter 2 reviews univariate functional PCA and
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multivariate functional PCA. Chapter 3 describes two robust dimension reduction methods

for univariate functional data. In Chapter 4 we explore the sensitivity of MFPCA to outliers

by using two different approaches of robust MFPCA and finally propose a functional outlier

detection procedure based on MM estimation. We describe accompanying diagnostic plots

that can be used to detect possible outliers. Simulations are conducted to investigate the

effectiveness of the proposed robust multivariate functional PCA based on MM estimation,

in which we compare our procedure with classical multivariate functional PCA. In Chapter 5,

we propose a robust technique for estimating the parameter function in a functional linear

model with scalar response by using robust functional principal component analysis. Finally,

conclusions and proposed future work conclude the dissertation in Chapter 6.
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Chapter 2

Functional Principal Component Analysis

2.1 Introduction

In various areas such as chemometrics, biometrics, engineering, genetics, and e-commerce

the data come from the observation of continuous phenomenons of time or space known as

functional data. Due to advancement of new techniques it is now possible to record large

number of variables simultaneously. The nature of this data in many applications is high

dimensional where the number of variables (q) is greater than the number of observations

(n) (n ≪ q). The focus of researchers is on analysis of such data due to the emergence of

statistical problems while applying various statistical tools for data analysis.

Principal component analysis (PCA) has been widely used for dimension reduction and

visualization of multivariate and high-dimensional data. In recent decades, multivariate PCA

has been extended to functional PCA.

Functional principal component analysis (FPCA) is a useful tool to reduce dimension

of functional data. The first step in a FDA is to represent the data in a lower dimensional

space in order to have better interpretation. This is done by performing FPCA to capture

the main modes of variability of the data by means of small number of components which

are linear combinations of original variables that allow for better interpretation of various

sources of variation.

A number of recent papers have investigated different versions and properties of func-

tional principal component analysis. Ramsay and Silverman [64] and Ferraty and Vieu [24]

described the general approach to reformulate PCA in terms of functions. Early work on

techniques for functional PCA includes that of Rice and Silverman [66] and Silverman [73]

and more recent research includes Cardot [8], James et al. [40] and Huang et al. [34]. Rice
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and Silverman [66] proposed a method based on projecting functional data onto finite di-

mensional basis and applying a classical multivariate analysis with a roughness penalty on

the weight functions to achieve smoothness. Silverman [73] considered estimators based on

penalizing the norm rather than the sample variance. Asymptotic properties were studied by

Dauxois et al. [17] but their approach may produce rough principal components. Boente and

Fraiman [7] provided smooth estimators by considering a kernel approach by regularizing the

trajectories. FPCA methods for sparsely sampled functional data or longitudinal data have

been developed, among others, by James et al. [40], Müller [58] and Yao et al. [76]. FPCA

was considered by Li and Chiou [49], to determine the number of clusters in the problem of

functional data clustering. More recent work on estimation of the principal components and

the covariance function includes Hall and Hosseini-Nasab [31], Hall et al. [32] and Yao and

Lee [75].

For the set of multivariate curves, a researcher may be interested in optimal representa-

tion of curves in a functional space of reduced dimension. Multivariate Functional Principal

Component Analysis (MFPCA) is a useful statistical technique for understanding the struc-

ture of multivariate functional data (MFD). MFPCA is an effective dimension reduction tool

for MFD. Ramsay and Silverman [64] have given an example of bivariate functional data,

X(t) = (X1(t), X2(t))
′ ∈ ℜ2, as a model for gait data (knee and hip measures) used in the

context of multivariate functional principal component analysis (FPCA) as an extension of

the univariate case. Principal components in MFPCA have the same interpretation as in

the functional univariate case. MFPCA aims to explain the covariance structure of data

by means of small number of functional components. These functional components are lin-

ear combinations of the original variables. This gives better interpretation of the different

sources of variation.

In literature, very limited work has been done on multivariate functional data. To deal

with multivariate functional data Ramsay and Silverman [64] proposed to concatenate the

observations of the functions on a fine grid of points into a single vector and then to perform

9



FPCA for the concatenated functions. The final results of the Ramsay and Silverman [64]

are scalar whereas, the method proposed by Berrendero et al. [3] summarizes the curves

with functions. Berrendero et al. [3] built functional principal components by carrying out

classical multivariate PCA for each value of the domain on which the functions are observed

and suggested the integrated variance as a suitable criterion. Kayano et al. [44] proposed

regularized functional principal component procedure based on Gaussian basis functions

for multivariate functional data. Jacques and Preda [42] considered MFPCA that take into

account the possible use of non orthonormal basis and use of different basis for each dimension

of the multivariate curves.

Section 2.2 describes classical principal component analysis in which the principal com-

ponents are linear combinations of the variables that represent the most significant modes of

variation in the data. The weights of these linear combinations are obtained by solving an

optimization problem that can be expressed in terms of the eigenvalues and eigenvectors of

the covariance matrix with constraints involving the Euclidean norm of the vector of weights.

The natural extension of classical PCA to functional data is to replace the Euclidean norm

by the L2-norm and the covariance matrix by the covariance function of the process gener-

ating the data are described in Section 2.3. This general approach is described by Ramsay

and Silverman [64] and Ferraty and Vieu [24]. In Section 2.4, MFPCA is described which is

an extension of the univariate FPCA.

2.2 Classical Principal Component Analysis (CPCA)

Principal Component Analysis (PCA) is a useful tool for data reduction, which is

achieved by identifying main modes of variability of a given dataset and is used for un-

derstanding the structure of a multivariate dataset.
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In multivariate data, the central notion is to find weight vectors γj ∈ ℜp for which a

linear combination of centered variables

zi =
p∑

j=1

γjxij = γ′xi i = 1, . . . , n (2.1)

that have maximal variance subject to constraints γ′mγr = I(m = r) for m < r, where

γ = [γ1, . . . , γp]
′ and xi = [xi1, . . . , xip]

′. The solution is obtained by the means of spectral

decomposition of the variance-covariance matrix [43, 63].

2.3 Univariate Functional Principal Component Analysis

When the dataset is in the form of a curve, the procedure for classical PCA can be

generalized to functional principal component analysis to obtain main modes of variability

for the curves. Instead of variable values xij, used in PCA, functional values xi(t) are used

in FPCA, so that the discrete index j in the multivariate context is replaced by continuous

index t. Unlike multivariate PCA, components in functional PCA are functions rather than

vectors. So summations over j are replaced by integrations over t.

Let {X(t), t ∈T} be a stochastic process where T is some index set which is a bounded

interval on ℜ. The principal component scores corresponding to weight γ is generalized to

an integral form,

zi =
∫
γj(t)xi(t)dt. (2.2)

The weight function γj(t) is obtained by solving

max
⟨γj, γm⟩=I(j=m), j≤m

n−1
∑

(
∫
γjxi)

2 (2.3)

or equivalent to solving the functional eigenequation

∫
ψ(s, t)γ(t)dt = λγ(s), γ ∈ L2, (2.4)
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where ψ(s, t) is the covariance function of the x(t). The sequence of eigenfunctions γi,

i = 1, 2, . . ., sorted with respect to the corresponding eigenvalues λ1 ≥ λ2 ≥ . . . solves the

FPCA problem 2.3. The eigenequation is the same general equation as in PCA, except here γ

is now an eigenfunction rather than an eigenvector. There is a major difference between the

multivariate and functional eigenanalysis. In multivariate case the eigenvalue-eigenfunction

pairs are p (number of variables) whereas, in functional case they are infinite (number of

functional values). In practice, the unknown covariance function ψ needs to be estimated

by the sample values xi(t), 1 ≤ i ≤ n, where for each i, xi(t) is observed on a discrete set of

points t = {t1, . . . , tq} for finite q.

FPCA problem can be represented in terms of basis function approach. In which, first

k bases functions in a basis {ϕ1, . . . , ϕk} are used, where k is large enough, so that these

functions will be able to describe most of the features of the data. The bases are selected

based on the nature of the data; for example if the data are smooth and periodic then a

Fourier basis might be ideal and for data that have a lot of local features then B-splines

might work better. We approximate each xi by:

x̂i(t) =
k∑

K=1

ciKϕK(t). (2.5)

We can express all n curves simultaneously by defining the vector-valued function x to have

components x1, x2, . . . , xn and the vector valued function ϕ to have components ϕ1, . . . , ϕk

as:

x = Cϕ, (2.6)

where the coefficient matrix C is n × k. In matrix terms, the variance-covariance function,

ψ(s, t), is:

ψ(s, t) = n−1ϕ(s)′C ′Cϕ(t). (2.7)
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Let W be a symmetric matrix of order k given as

W =
∫
ϕϕ′. (2.8)

Suppose that the weight function γ has the expansion

γ(s) =
∑

bKϕK(s) (2.9)

and in matrix notation, γ(s) = ϕ(s)′b. Using equations (2.6-2.9) the left hand side of eigen

equation in 2.4 becomes

∫
ψ(s, t)γ(t)dt =

∫
n−1ϕ(s)′C ′Cϕ(t)ϕ(t)′bdt

= ϕ(s)′n−1C ′CW ′b.

The eigenequation can be written as:

ϕ(s)′n−1C ′CWb = λϕ(s)′b. (2.10)

As this equation holds true for all s, it can be written in matrix form in the following manner:

n−1C ′CWb = λb. (2.11)

As ∥ γ ∥= 1 implies b′Wb = 1 and similarly, two functions γ1 and γ2 will be orthogonal if and

only if the corresponding vectors of coefficients satisfy b′1Wb2 = 0. We define u = W 1/2b to

get the required principal components by solving equivalent symmetric eigenvalue problem

n−1W 1/2C ′CW 1/2u = λu (2.12)
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and compute b = W−1/2u for each eigenvector. If the basis is orthonormal then W = I. The

functional PCA problem reduces to the standard multivariate PCA of the coefficient array

C.

2.4 Multivariate Functional Principal Component Analysis

Consider data represented by curves is a stochastic process with continuous time, X =

{X(t)}t∈[0,T ] with X(t) = (X1(t), . . . , Xp(t))
′ ∈ ℜp, p ≥ 2. Let x1, . . . , xn, with xi =

(xi1, . . . , xip), be the observation of the sample X1, . . . , Xn. The ith discrete data set ob-

served at tij for Xl is represented by (tij, xilj); j = 1, . . . , ni.

It is assumed that each discrete data {(tij, xilj); j = 1, . . . , ni} is generated from the

nonlinear regression model

yilj = xil(tij) + ϵilj, j = 1, . . . , ni, i = 1, . . . , n, l = 1, . . . , p,

where the errors ϵilj are independently normally distributed with mean 0 and variance σ2
il.

Each discrete data set (tij, xilj); j = 1, . . . , ni is converted to functional data by using a

smoothing method. The nonlinear functions xil(t) are assumed to be expressed as a linear

combinations of basis functions ϕlK(t) (K = 1, . . . , kl). The estimated nonlinear functions

for each i and l are given by

x̂il(t) =
kl∑

K=1

cilKϕ
l
K(t), t ∈ [tmin, tmax], (2.13)

and its matrix formulation is

xi(t) = Φc′i,

where ci = (ci11, . . . , ci1k1 , ci21, . . . , ci2k2 , . . . , cip1, . . . , cipkp , ) being the vector of the basis ex-

pansion coefficients, xi(t) = (xi1(t), . . . , xip(t)), i = 1, . . . , n and
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Φ(t) =



ϕ1
1(t) · · · ϕ1

k1
(t) 0 · · · 0

0 · · · 0 ϕ2
1(t) · · · ϕ2

k2
(t) 0 · · · 0

0 · · · 0 ϕp(t)1 · · · ϕp
kp
(t)


(p×k),

where k =
∑p

l=1 kl.

Let Q(t) = (X1(t), . . . , Xp(t))
′ ∈ ℜp, p ≥ 2 and C̃ be the n×∑kl

l=1 - matrix, whose rows

are the vectors ci.. Using these notations, we have

Q(t)(n×p) = C̃(n×
∑

kl)
Φ′(t)(

∑
kl×p).

Under the basis expansion assumption in (2.13), the covariance estimator ψ̂ of ψ, for all

s, t ∈ [tmin, tmax], is given by

ψ̂(s, t) =
1

n
(Q(s)− µ̂′(s))′(Q(t)− µ̂′(t)) =

1

n
Φ(s)C ′CΦ′(t), (2.14)

where Q(s) − µ̂′(s) means that Q(s) is mean centered, µ̂(s) = 1
n

∑n
i=1 xi(t) and C = (In −

1n(1/n, . . . , 1/n))C̃ where In and 1n are the identity n × n -matrix and the unit column

vector of size n, respectively.

It is assumed that the weight function γm can be expressed in terms of the same basis

functions as the functional data sets (xi1j, . . . , xipj),

γm(t) = Φ(t)b′m, m ≥ 1, (2.15)

with bm = (bm11, . . . , bm1k1 , bj21, . . . , bm2k2 , . . . , bmp1, . . . , bmpkp).

Let zi be an inner product for a p-dimensional weight function γ(t) = (γ1(t), . . . , γp(t))
′

(t ∈ T ) and ith p-dimensional functional data xi(t) = (xi1(t), . . . , xip(t))
′,

zi =< γ, xi >p=
p∑

l=1

< γl, xil >=
p∑

l=1

∫
T
γl(t)xil(t)dt, i = 1, . . . , n.
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The objective in principal component analysis of functional data is to estimate the

principal component (PC) curves by the p-dimensional weight function γ(t) that maximizes

the sample variance of the inner products subject to the orthonormal constrains. The sample

variance var(z) of {zi; i = 1, . . . , n} can be written as

var(z) = n−1
n∑

i=1

z2i = n−1
n∑

i=1

(
p∑

l=1

∫
T
γl(t)xil(t)dt)

2.

In analogy with the multivariate case, the functional PCA problem leads to the maximum

problem of the sample variance which is equivalent to solve the eigenvalue problem from the

functional eigenequation system

V γm = λmγm, (2.16)

where γ is a vector-function and the covariance operator V of X is an integral operator with

kernel ψ.

V γ =
∫ T

0
ψ(·, t)γ(t)dt,

and spectral analysis of V provides a countable set of positive eigenvalues λm, m ≥ 1,

associated with an orthonormal basis of eigenfunctions γm = (γm1 , . . . , γ
m
p ).

Using the estimation ψ̂ of ψ, the eigen problem in (2.16) becomes equivalent to

∫
T
ψ̂(s, t)γm(t)dt = λmγm(s). (2.17)

Using (2.14) and (2.15) in (2.17), this becomes

∫ T

0

1

n
Φ(s)C ′CΦ′(t)γm′(t)ds = λmΦ(s)bm′. (2.18)
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⇔ 1

n
Φ(s)C ′C

∫ T

0
Φ′(t)Φ(t)dtbm′ = λmΦ(s)bm′, (2.19)

where W =
∫ T
0 Φ′(t)Φ(t)dt is

∑p
l=1 kl×

∑p
l=1 kl is the symmetric block-diagonal matrix of the

inner products between the basis functions. Since (2.19) is true for all s, it can be written

as

1

n
C ′CWbm′ = λmbm′.

Let um = bmW 1/2, the multivariate functional principal component analysis is reduced to

the usual PCA of the matrix CW 1/2, then we obtain

1

n
W 1/2′C ′CW 1/2um′ = λmum′.

The coefficient bm, m ≥ 1, of the eigenfunctions γm are obtained by bm = (W 1/2′)−1um′ and

the principal components scores, zm =
∫ T
0

∑p
l=1(Ql(t)− µl(t))γ

m
l (t))dt, are given by

zm = CWbm′, m ≥ 1.

Let λ1 ≥ λ2, . . . be the eigenvalues of equation 2.4 and γ1, γ2, . . . be the orthonormal

eigenvectors corresponding to the eigenvalues λ1, λ2, . . . , respectively. First eigenfunctions

γ1(t) = (γ11(t), . . . , γ
1
p(t))

′ the p-dimensional weight function γ1(t) that maximizes sample

variance subject to ∥ γ1 ∥2p= 1. Second eigenfunctions γ2(t) = (γ21(t), . . . , γ
2
p(t))

′ the p-

dimensional weight function γ2(t) that maximizes sample variance subject to ∥ γ2 ∥2p= 1 and

< γ1, γ2 >= 0. The other eigenfunctions are computed likewise, m(≥ 3)th eigenfunctions

γm(t) = (γm1 (t), . . . , γmp (t))′ the p-dimensional weight function γm(t) that maximizes sample

variance subject to ∥ γm ∥2p= 1 and < γm, γr >=
∑p

l=1 < γml , γ
r
l >=

∑p
l=1

∫
T γ

m
l (t)γrl (t)dt = 0
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(r ≤ m). The mth PC score is defined by

zmi =< γm, xi >p=
p∑

l=1

< γml , xil >=
p∑

l=1

∫
T
γml (t)xil(t)dt, i = 1, . . . , n,

where m = 1, . . . ,M where M is the number of PCs for which the cumulative contribution

rate is over 90%. The first fewM PCs contain almost complete information about individual

variations. The p-dimensional mth PC curves γm(t) and PC scores {zmi =< γm, xi >p; i =

1, . . . , n} can then be obtained.

In practice, to deal with multivariate functional data Ramsay and Silverman [64] carried

out the calculation for functional PCA by replacing each function xil; l = 1, . . . , p with a

vector of values at a discrete grid of points. For each i these vectors are concatenated into

single long vector xi. The covariance matrix of xi is a discretized version of operator V as

defined in (2.16). PCA is performed on the vectors xi and the results of principal component

vectors corresponding to each variable are separated. The analysis is completed by applying

a suitable inverse transformation to each of these parts if necessary.

In this chapter, we examined univariate FPCA and MFPCA as a dimension reduction

tool for functional data (FD) and MFD. Although, FPCA and MFPCA solves dimensionality

problem, it fails to deal with data containing outliers since covariance function is sensitive

to outliers. In the next Chapters 3 and 4 robust methods are discussed to overcome this

problem.
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Chapter 3

Robust Univariate Functional Principal Component Analysis

3.1 Introduction

The notion behind dimension reduction methods is to transform original variables into

new few variables so that new variables contain most of the information of the original

variables. Functional principal component analysis (FPCA) is a useful tool to reduce the

dimension of the functional data.

In presence of outlying observations the classical FPCA is unreliable resulting in inac-

curate principal function estimates. Since it is based on the empirical covariance function.

Functional outlier can be defined in different ways. For instance, a shape functional out-

lier is a curve with a different pattern from the other curves, e.g. very irregular in a set of

smooth curves or increasing when the remaining ones are decreasing; a magnitude functional

outlier is a curve which is very distant from the mean. To deal with outlying observations

researchers have proposed many robust methods for functional PCA. Locantore et al. [50]

described a robust procedure to deal complex data sets of human eye images. Hyndman and

Ullah [38] applied robust projection pursuit approach to smoothed trajectories. Sawant et

al. [71] proposed a robust approach of principal components based on a robust eigenanalysis

of the coefficients of the observed data. All of these approaches reduce the functional prob-

lem to the multivariate by using the coefficients of a basis expansion. The smoothing step

may incur smoothing bias. However, this smoothing bias may not be ignorable unless the

number of trajectories are larger than the size of the grid (Zhang and Chen [78]). Hubert

et al. [35, 36, 37] proposed ROBPCA is based on the minimum covariance determinant

(MCD) estimator [67, 68] of multivariate location vector and scatter matrix. Billor et al. [5]

proposed BACONPCA is based on the estimator of the location vector and scatter matrix
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obtained from the basic subset which is found algorithmically by utilizing BACON approach

[4].

Gervini [26] considered a functional version of the estimators for spherical PCA. Al-

though the spherical PCA is resistant for any contamination model having elliptical prop-

erties, it is susceptible to other types of contamination (Boente and Fraiman [7], Maronna

[54]). Gervini [27] proposed robust functional principal component estimators for sparsely

and irregularly observed functional data based on model approach and basis expansion. It

uses multivariate t-distribution to downweigh outlying observations. This approach is found

to be attractive as it deals with sparsely observed data in the longitudinal studies. Since this

approach employs EM algorithm it is computationally demanding thus, limiting its usage

for typical functional data. For sparsely and irregularly observed functional data Gervini

[27] developed robust functional principal component estimators. Hyndman and Ullah [38]

considered robust estimators of the functional principal directions using a projection-pursuit

approach. Recently, Bali et al. [2] considered robust estimators of the functional principal

components by using a fully functional robust projection pursuit approach and derived their

consistency and qualitative robustness. Recently, Lee et al. [46] proposed M-type smoothing

spline estimators for principal functions. This method is efficient since it makes maximal use

of the normally observed measurements by separately downweighing abnormally observed

measurements in a single curve.

In this chapter, we review previous two approaches for outlier detection methods via

robust functional PCA for univariate functional data. The robust FPCA method is to obtain

functional principal components that are less influenced by outliers. Robust FPCA method

and outlier detection method proposed by Sawant et al. [71] and Lee et al. [46] are described

in Section 3.2 and Section 3.3, respectively.
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3.2 Robust Functional Principal Component Analysis Based on Multivariate

Approach

Outlier detection procedure in functional data using robust functional principal com-

ponent analysis is developed by Sawant et al. [71], which is based on multivariate principal

component analysis. Let xi(t) ∈ L2[T ], i = 1, . . . , n, be a function measured over a continu-

ous variable T ∈ [tmin, tmax]. These n curves are measured on a fine grid of q equally spaced

points t = {t1, t2, . . . , tq} ∈ T in the following manner:

yi = xi(t) + ϵi, 1 ≤ i ≤ n,

subject to random error ϵi with zero mean and constant variance function σ2
i (t).

The function xi is represented as a linear combination of the first k orthonormal basis

functions ϕK , K = 1, . . . , k, where k is large enough, k < q using basis expansion method

as:

xi(t) =
k∑

K=1

ciKϕK(t),

where ϕ is vector-valued function having components ϕ1, . . . , ϕk. The C is n x k coefficient

matrix of the expansion, where C = [ciK ], 1 ≤ i ≤ n, 1 ≤ K ≤ k.

The optimal number of basis functions, k, is obtained by GCV developed by Craven and

Wahba [15], is used and is given in Subsection 4.2.2. On observed functions the coefficients

ciK , for i = 1, . . . , n and K = 1, . . . , k are computed by using the least squares approach.

Due to orthonormal basis function the functional PCA problem reduces to the standard

multivariate PCA of the coefficient array C (see Section 2.3 and Ramsay and Silverman

[64]).

Robust PCA method such as ROBPCA [37] or BACONPCA [5] is applied on C and

orthogonal-score plot [37] is used for identification of outliers. After using robust PCA

method robust scores are obtained as Z = C × V, where Z is n × k1 matrix, C is n × k

matrix of the coefficients, V is k × k1 robust eigenvectors and k1 ≤ k. The optimal number
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of components k1 is the minimal value for which the cumulative percentage of total variance

is greater than or equal to 90%. Robust coefficients are obtained by transforming the data

back to ℜk as:Ĉ = Z × V T (Sawant et al. [71]).

3.3 Robust Functional Principal Component Analysis

Robust functional PCA developed by Lee et al. [46] based on M-estimation with rough-

ness penalty is discussed in this section. Consider a collection of n sample curves recorded

on a discrete grid of sampling points t1, . . . , tq, which are not equally spaced. Denote the

underlying function for the ith sample curve by xi(t), i = 1, . . . , n. All observations xij,

which is a measurement for subject i at time tj, are arranged into a single data matrix X.

The first SVD-layer gives the best rank-one approximation of x with respect to the

squared Frobenius norm, where ∥ . ∥2F indicates the squared Frobenius norm, which is the

sum of squared elements of the matrix. Instead of using SVD, principal components can

be achieved by the unregularized LS criterion for rank-one approximation as given in the

following optimization problem

minz,γ ∥ x− zγT ∥2F=
n∑

i=1

q∑
j=1

(xij − ziγj)2, (3.1)

where z = (z1, . . . , zn)
T and γ = (γ1, . . . , γq)

T and any rank one matrix of size n× q can be

written as zγT with γTγ = 1.

To promote two objectives, robustness and smoothness on principal components, cri-

teria (3.1) is modified and some regularization penalty and robust regression technique are

employed and the modified criterion for finding γ is given by

Q(γ) =
n∑

i=1

q∑
j=1

σ̂2
jρ(

xij − ziγ(tj)
σ̂j

) + Pλ(γ). (3.2)
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Here Pλ(γ) is a roughness penalty on γ and ρ(.) is a bounded loss function, such as biweight

function. The error, xij − ziγj, is the orthogonal distance between data point and projected

point and σ̂j is a preliminary scale estimate of errors and λ is a smoothing parameter.

The data matrix X is mean-centered by the functional 10% trimmed mean suggested by

Fraiman and Muniz [21]. For the robust estimation of γ and making the resulting estimator

of γ scale invariant the σ̂j should be estimated robustly, e.g. the normalized median absolute

deviation about the median.

The roughness penalty, Pλ(γ), is a flexible and effective way to enhance the smoothness

of principal function and is given by:

Pλ(γ) =
λ

2

∫
γ′′(t)

2
dt =

λ

2
γTΩγ,

where λ > 0 is a smoothing parameter controls the trade-off between residual error and local

variation. Here the robust cross validation for a choice of λ is used which is provided in

Subsection 4.3.1. By the property of γ to be a natural cubic spline (NCS), the q× q penalty

matrix Ω = QR−1QT consists of two banded matrices Qq×(q−2) and R(q−2)×(q−2), which help

solving the equation fast. The form of biweight function is:

ρ(x) =


1− {1− (x/k)2}3 if |x| ≤ k

1 if |x| > k,
(3.3)

where k is a tuning constant and the 95% efficiency is obtained with the tuning constant

k = 4.68 [55]. Let ψ(.) = ρ′ be the derivative of ρ. Differentiating the objective function in

equation (3.2) with respect to γ produces estimating equations as: S + λΩγ = 0, where S =

[S1, . . . , Sq]
T and Sj = −∑n

i=1 ψ(
xij−ziγj

σ̂j
)ziσ̂j). Define the weight function ωij = ψ(eij)/eij.

Then the estimating equations may be written as:

Z + λΩγ = 0, (3.4)
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where Z = [Z1, . . . , Zq]
T and Zj = −∑n

i=1 ωiqzi(xiq − ziγq). The weights ωij depend upon

the residuals, the residuals depend upon the estimated γ, and the estimated γ depends upon

the weights. So the weights ωij are updated by using the previous estimates. The robust

loss function downweighs large residuals by providing small weights for outliers and so severe

outliers has no impact on γ estimation. The weight ωij is applied to a single point xij rather

than to whole curve. Thus, unusual measurements partially observed inside a single curve

receive low weights and are controlled and only other points on the same curve properly

contribute to the estimation of principal functions. This enables to make use of maximal

information on all trajectories except for outlying measurements locally appearing on curves.

Let b = (
∑n

i ωi1zixi1, . . . ,
∑n

i ωiqzixiq)
T and M = diag(

∑n
i ωijz

2
i )j=1,...,q. By using Ω =

QR−1QT and solution obtained by solving the estimating equation (3.2) is:

b = (M + λQR−1QT )γ. (3.5)

Finding γ from the equation (3.5) will need O(q3) arithmetic operators due to q × q matrix

inversion. Solving the equation (3.5) for large q becomes a computation burden. Due to NCS

formulation of γ and by using banded matrix properties the equation (3.5) can be solved in

O(q) arithmetic operations.

Let υ = (υ2, . . . , υq−2)
T be a (q − 2) vector evaluated on time points t2, . . . , tq−1, where

υj = γ′′(tj). From Green and Silverman [29] a NCS with knots t1, . . . , tq satisfies:

QTγ = Rυ. (3.6)

Using the equation (3.6), equation (3.5) can be rearranged as:

Mγ = b− λQR−1QTγ = b− λQυ. (3.7)
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By pre-multiplying QTM−1 on the both sides and using (3.6) the equation (3.7) is rewritten

as:

(R + λQTM−1Q)υ = QTM−1b.

The matrix (R+λQTM−1Q) has bandwidth 5, it has a Cholesky decomposition of the form:

R + λQTM−1Q = LDLT , (3.8)

where D is a strictly positive diagonal matrix and L is a lower triangular band matrix.

Matrices D and L are calculated by Cholesky decomposition of B = R + λQTM−1Q. By

using the Cholesky decomposition υ is obtained without matrix inversion and then γ =

(γ1, . . . , γq)
T is computed elementwise using γj = {b− λQυ}j/Mj, as in (3.7), where {.}j is

the jth element of vector in argument andMj is the jth diagonal element ofM . Finding γ by

this algorithm is computationally faster than invoking the inversion to get γ = (M+λQ)−1b,

especially when q is large.

The next step is to normalize γ by γ ← γ/ ∥ γ ∥ and then estimate z = xγ, which is

the orthogonal projection of data matrix x onto the principal function γ. Two estimation

steps for γ and z are performed in an alternating fashion, starting with an initial value of

γ estimated from the existing robust multivariate PCA methods. In the estimation proce-

dure for robust principal function, the principal function γ and the associated PC scores z

are alternately estimated in iterative procedure as σj keeps updating. After obtaining γ and

z, the subsequent principal components are acquired from the rank-1 deflated matrix x−zγT .

Algorithm for Robust FPCA

Input: x∗n×q = (x∗ij) containing n curves observed at q time points.

Step 1: Compute the functional trimmed mean m(t).

Step 2: Set xn×q = (xij) with xij = x∗ij −m(tj).

Step 3: For k = 1, 2, . . . , K, run the following steps for a set of grid points of λ.
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1: Set an initial value for γ.

2: Update the PC score z = xγ.

3: Compute the necessary quantities: rij = xij − zjγj, M-scale estimate σ̂j, eij = rij/σ̂j, and

wij = ψ(eij)/eij.

4: Compute b = (
∑n

i ωi1zixi1, . . . ,
∑n

i ωiqzixiq)
T and M = diag(

∑n
i ωijz

2
i )j=1,...,q.

5: Compute υ and γ = (γj)j=1,...,p with γj = {b − λQυ}j/Mj. Then normalize it by

γ ← γ/∥γ∥.

6: Repeat 1–5 until the convergence is met. At the convergence, calculate CV (λ).

Step 4: Find z and γ corresponding to λ which achieves the minimum CV(λ) and set zk ← z

and γk ← γ. Replace x ← x − zγT and go back to the Step 3 with the deflated x. Repeat

the same procedure until the desired number, say K, of principal components are acquired.

Output: Robust PC functions, γ = (γ1, . . ., γK) and PC scores, z = (z1, . . ., zK).
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Chapter 4

Robust Multivariate Functional Principal Component Analysis

4.1 Introduction

For the set of multivariate curves, one may be interested in optimal representation of

curves in a functional space of reduced dimension. Multivariate Functional Principal Com-

ponent Analysis (MFPCA) is a useful statistical technique for understanding the structure of

multivariate functional data (MFD). They are effective dimension reduction tools for MFD.

Principal components from MFPCA have the same interpretation as in the functional uni-

variate case. MFPCA aims to explain the covariance structure of data by means of small

number of functional components. These functional components are linear combinations of

the original variables. This gives better interpretation of the different sources of variation.

Thus effectiveness of MFPCA in data reduction is useful in analysis of high dimensional

data.

In literature very limited work has been done on multivariate FPCA for multivariate

functional data. Ramsay and Silverman [64] and Berrendero et al. [3] have suggested princi-

pal component analysis for multivariate functional data. Kayano and Sadanori [44] proposed

regularized functional principal component procedure based on Gaussian basis functions for

multivariate functional data. Jacques and Preda [42] considered MFPCA that takes into ac-

count the possible use of non orthonormal basis and use of different basis for each dimension

of the multivariate curves.

In the presence of outliers, dimension reduction via MFPCA would yield untrustworthy

results since MFPCA is known to be sensitive to outliers. Although several robust FPCA

methods have been proposed for univariate functional data, to our knowledge, there has been

no study on the robustness of MFPCA for multivariate functional data. This necessitates
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to develop robust MFPCA for multivariate FD. The main contribution of our work is to

construct a robust MFPCA method to achieve dimension reduction of data and to develop

tools for detection of functional outliers.

In this chapter, we introduce two approaches for outlier detection methods via robust

functional PCA for multivariate functional data. The robust MFPCA method is to obtain

functional principal components that are less influenced by outliers. Section 4.2 describes

robust MFPCA method based on multivariate approach. In Section 4.3, we extend univariate

robust FPCA based on MM estimation to multivariate FD. Simulation study is conducted to

investigate the effectiveness of the both proposed robust multivariate functional PCA based

on multivariate and MM estimation in Sections 4.4.2 and 4.4.3, respectively.
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4.2 Proposed Method I: Robust Multivariate Functional Principal Component

Analysis Based on Multivariate Approach (RMFPCA1)

Suppose n independent discrete observations {tij, (xi1j, . . . , xipj); j = 1, . . . , q}, (i =

1, . . . , n), where each tij is finite and discrete for p variables X1, . . . , Xp.

Each discrete data set {(tij, xilj; j = 1, . . . , q)} is converted to functional data x̂il(t) by

using a smoothing method in following manner. The function xil can be represented as a

linear combination of the first kl basis functions ϕlK , K = 1, . . . , kl, where kl is large enough,

kl < q using basis expansion method as:

x̂il(t) =
kl∑

K=1

cilKϕ
l
K(t),

where ϕl is vector-valued function having components ϕl
1, . . . , ϕ

l
kl
. The Cl is n x kl coefficient

matrix of the expansion, where Cl = [cilK ], 1 ≤ i ≤ n, 1 ≤ l ≤ p 1 ≤ K ≤ kl. The

simultaneous expansion of all n curves can be expressed in matrix notation as

xi(t) = Φc′i,

where ci = (ci11, . . . , ci1k1 , ci21, . . . , ci2k2 , . . . , cip1, . . . , cipkp , ) being the vector of the basis ex-

pansion coefficients and

Φ(t) =



ϕ1
1(t) · · · ϕ1

k1
(t) 0 · · · 0

0 · · · 0 ϕ2
1(t) · · · ϕ2

k2
(t) 0 · · · 0

0 · · · 0 ϕp(t)1 · · · ϕp
kp
(t)


(p×k)

,

where k =
∑p

l=1 kl. To select optimal number of basis functions, kl, GCV developed

by Craven and Wahba [15], is used and is given in Subsection 4.2.2. On partially observed

functions the coefficients Cl = cilK are computed by using the least squares approach, for

i = 1, . . . , n, l = 1, . . . , p and K = 1, . . . , kl. For multivariate functional data Ramsay
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and Silverman [64] suggested to concatenate the coefficients in a suitable basis expansion

into a single long vector for each observation and then perform PCA on CW 1/2, where

Wk×k =
∫ T
0 Φ(t)′Φ(t)dt is the symmetric block-diagonal matrix of the inner products between

the basis functions and C = [C1C2 . . . Cp] (Section 2.4). C is a n × k, where k =
∑p

l=1 kl,

matrix obtained by concatenating coefficient matrix for each variable. Since we deal with

basis function that is orthonormal the multivariate functional PCA problem reduces to the

standard multivariate PCA of the coefficient matrix C. Therefore in our procedure instead

of dealing with classical PCA on CW 1/2 we apply robust PCA on CW 1/2.

Applying robust PCAmethod like ROBPCA [37] or BACONPCA [5] on C would provide

the equivalent information about the structure of the covariance function of functional data

x(t). Outliers in C will be equivalent to the outliers in functional data x(t). Therefore,

the diagnostic plots developed to detect outliers by using multivariate PCA method can

also be used to detect functional outliers. Orthogonal-score plot [37], which is a by-product

the robust PCA method is used for identification of outliers. By using ROBPCA [37] or

BACONPCA [5] we obtain robust scores z in the following manner:

z = C × γ ′
,

where z is n×k1 matrix, C is n×k matrix of the coefficients, γ is k×k1 robust eigenvectors

and k1 ≤ k. The selection criteria to choose the components k1 is based on the eigenvalues.

The predetermined threshold value is 90%. The optimal number of components k1 is the

minimal value for which the cumulative percentage of total variance is greater than or equal

to 90%.

4.2.1 Diagnostic Plot for Detection of Outliers

The diagnostic plot developed to detect outliers by using PCA method for multivariate

data can be used to detect functional outliers for multivariate functional data. Orthogonal
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score plot proposed by Hubert et al. [37] is used to distinguish between regular observations

and the outliers. This diagnostic plot is a scatter plot of the orthogonal distance Odi versus

the robust score distance Sdi. The score distance is defined as

Sdi =

√√√√ k∑
K=1

(zKi )2/λK , i = 1, . . . , n,

The orthogonal distance which measures the distance between an observation xi and its

projection in the k-dimensional PCA-subspace, Odi, is given by

Odi =∥ xi −m−
k∑

K=1

zKi γ
K ∥, i = 1, . . . , n,

where zKi is the ith score for Kth component and λK is the eigenvalue for Kth component

and m is the mean function and γK is the Kth eigenfunction.

If Sdi and Odi are both large, then the ith observation is far away from the homogeneous

observations (right corner of the plot) is identified as functional outliers. Observations having

large Sdi or Odi and well separated from the homogeneous observations are also identified

as a functional outliers.

Two cutoff lines as in Hubert et al. [37] are used to separate functional outliers from

the regular observations. Observations found in right top corner or observations separated

from regular observations are identified as outliers.

4.2.2 Selecting Number of Basis

Selecting optimal number of bases, kl, is important because if kl is too large it may

introduce small variation with large bias and if kl is too small then we may miss some

aspects of smooth function xl that we want to estimate. This will also introduce less bias

with large variance. To choose the appropriate number of basis functions a popular measure

in the smoothing methods known as generalized cross validation (GCV) developed by Craven
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and Wahba [15] is used. This criterion is defined as:

kl = argmin
j

(GCV (j)),

where

GCV (j) =
n× SSE
(n− j)2

, j = 3, . . . , q − 1,

SSE =
n∑

i=1

(xil − x̂il)2, x̂il =
kl∑

K=1

cilKϕ
l
K .

There is another technique, cross-validation (CV) based on minimizing mean squared

error (MSE). Minimizing CV can lead to under-smoothing the data by introducing large

variation. However, GCV has advantage over CV technique since it has less tendency to

undersmooth the data.

The choice of number of bases relies on x̂il. The coefficients Cl = [cilK ] are computed

by using least squares method and then x̂il are estimated. Since, least squares method is

sensitive to outliers, the choice of number of bases is also affected by outliers. Robust version

of this criteria for selecting number of bases can be obtained by estimating the coefficients

robustly.

4.3 Proposed Method II: Robust Multivariate Functional Principal Component

Analysis (RMFPCA2)

The data x = {x(t)}t∈[tmin,tmax] represented by a set of p curves with x(t) = (x1(t),

. . . , xp(t))
′ ∈ ℜp, p ≥ 2. Saporta [70] shows that for multivariate functional data the

Karhunen-Loeve expansion holds in following manner

x(t) = µ(t) +
∑
m≥1

zmγm, t ∈ [tmin, tmax],
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where µl = {µl(t) = E[xl(t)]}t∈[tmin,tmax] denotes the mean function of xl, l = 1, . . . , p and

µ = (µ1, . . . , µp)
′, denotes the mean function of x. The covariance operator ν of x

νγ =
∫
T
V (·, t)γ(t)dt,

is an integral operator with kernel V . For any s, t ∈ [tmin, tmax] = T, V (s, t) is a p×p matrix

with elements

V (s, t)[j, l] = Cov(xj(s), xl(t)), j, l = 1, . . . , p.

The spectral analysis of V provides a countable set of positive eigenvalues {λm}m≥1,

associated to an orthonormal basis of eigenfunctions γm = (γm1 , . . . , γ
m
p ) and are the solutions

of

V γm = λmγm,

with λ1 ≥ λ2 ≥ . . . are eigenvalues and
∫
T

∑p
l=1 γ

m
l (t)γm

′
l (t)dt = 1 if m = m′ and 0 otherwise.

The principal components zm of x are zero-mean random variables defined as the projections

of x on the eigenfunctions of V

zm =
∫
T
⟨x(t)− µ(t), γm(t)⟩ℜpdt =

∫
T

p∑
l=1

(xl(t)− µl(t))γ
m
l (t)dt.

For multivariate functional data, Ramsay and Silverman [64] suggested to concatenate

the observations of the functions on a fine grid of points into a single vector and then perform

PCA on these concatenated vector. In our procedure instead of dealing with coefficients we

extend robust FPCA described in Section 3.3 on x, where x = [x1x2 . . . xp], xl = xilj,

1 ≤ i ≤ n, 1 ≤ l ≤ p, 1 ≤ j ≤ q.
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For enhancing the smoothness of principal function the roughness penalty is introduced

and to achieve robust components robust regression technique is applied. The penalty term

can be written in a quadratic form as
∫
γ′′l (t)

2dt. The penalized sum of squares is given by:

PSS(γ) =
n∑

i=1

pq∑
j=1

s2jρ(
xij − ziγ(tj)

sj
) +

λ

2

∫
γ′′(t)

2
dt, (4.1)

where pq = p × q, z = (z1, . . . , zn)
T , γ = (γ1, . . . , γ(pq))

T with γTγ = 1 and λ > 0 is a

smoothing parameter controls the trade-off between residual error and local variation. In

this situation the robust cross validation for a choice of λ is used which is provided in

subsection 4.3.1.

For simplicity the data matrix x is mean-centered by the functional 10% trimmed mean

suggested by Fraiman and Muniz [21]. For the robust estimation of γ a robust scale parameter

sj is employed and is given as sj = MAR/0.6745 for all j, where MAR = medi(|rij −

medi′(ri′j)|) is the median absolute residual.

By the property of γ to be a NCS we have
∫
γ′′(t)2dt = γTΩγ, where the (pq) × (pq)

penalty matrix Ω = QR−1QT consists of two matrices Qpq×(pq−2) and R(pq−2)×(pq−2) with

bandwidth 5.

Compute γ by minimizing equation (4.1) (Lee et al. [46]). Details for calculation is

given in Section 3.3. After obtaining γ, the next step is to normalize it by γ ← γ/ ∥ γ ∥ and

then estimate z = xγ, which is the orthogonal projection of data matrix x onto the principal

function γ.

In the estimation procedure for robust principal function, the principal function γ and

the associated PC scores z are alternately estimated in iterative procedure where sj keeps

updating, starting with an initial value of γ, which can be estimated from the existing robust

multivariate PCA methods.

The second principal component and its scores are obtained by applying the same al-

ternating procedure to the rank-1 subtracted data matrix x1 = x − zγT . Similarly the
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other subsequent principal components can be obtained sequentially by removing the ef-

fect of preceding pairs. We continue the procedure until the desired number, say K, of

principal components is acquired where robust PC functions are γ = (γ1, . . . , γK) and the

corresponding PC scores are z = (z1, . . . , zK).
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4.3.1 Robust leave-out-one-column cross validation

In the implementation of estimating algorithm in Sections 3.3 and 4.3, tuning parameter

λ is obtained by the weighted leave-out-one-column cross validation (CV). This robust CV

method (Lee et al. [46]) is modification of the leave-out-one-column CV method proposed by

Huang et al. [34] under robust FPCA framework. CV based on row deletion involves actual

computation of a large number of leave-out-one-row estimates and takes much longer time

than the CV method based on column deletion. In robust CV method instead of deleting a

single curve an observation at time tj, the j
th column of x is removed for assessing prediction.

Let y = vec(x) = (xT1 , . . . , x
T
(pq))

T , where y is an n(pq)-sized vector, with xj, the j
th

column of x, which corresponds to observations at time tj, and γ̂
(−j) = (γ̂1(−j), . . . , γ̂(pq)(−j))T

be the solution of penalized sum of squares after removing xj.

Define the leave-out-one-column CV as

CV (λ) =
1

(pq)

(pq)∑
j=1

(zγ̂
(−j)
j − xj)TW (−j)

j (zγ̂
(−j)
j − xj), (4.2)

where W
(−j)
j = diag(w

(−j)
ij )i=1,...,n and w

(−j)
ij = ψ((ziγ̂

(−j)
j − xij)/sj)/((ziγ̂(−j)

j − xij)/sj).

W
(−j)
j is computed from overall fitting results and the CV criterion is simplified as

CV (λ) =
1

pq

pq∑
j=1

(zγ̂j − xj)TKj(zγ̂j − xj), (4.3)

where the symmetric matrix Kj is given as

Kj =W
(−j)
j +

Sjj

1− cjSjj

{aj(a(−j)
j )T + (a

(−j)
j )aTj }+

c
(−j)
j S2

jj

(1− cjSjj)2
aja

T
j ,

with Ajj being the jth diagonal element of A = (M + λΩ)−1, cj = zTWjz, aj = Wjz and

c
(−j)
j = zTW

(−j)
j z and a

(−j)
j = W

(−j)
j z. Formula (4.3) enables us to use overall fitting result

for the weighted CV without fitting (pq) times.
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4.4 Numerical Examples

In this chapter a real data and simulation study are given to demonstrate the perfor-

mance of the proposed method for multivariate FD.

4.4.1 Dataset

The aim of the analysis is to illustrate the performance of the RMFPCA1 on the weather

data, available in Chronological Scientific Tables 2005, which was used by Matsui and Konishi

[57].

The weather data observed at 79 stations in Japan is a monthly data, observed at 12

points averaged from 1971 to 2000. The dataset includes four variables: monthly observed

average temperatures, average atmospheric pressure, precipitation and average humidity.

The Figures 4.1(a)-(d) exhibit the sample curves for monthly observed average tempera-

tures, average atmospheric pressure, precipitation and average humidity, respectively. In

Figures 4.1(a)-(d), the group of curves shows presence of a few trajectories that are in some

way different from the rest.

We apply RMFPCA2 (robust method) to weather data as well as MFPCA (classical

method) for the comparison purpose. The robust multivariate PCA is used to find the

number of principal components which count 95% of total variability.

The first and second principal function estimates by MFPCA and RMFPCA2 for tem-

perature, pressure, precipitation and humidity are given in Figures 4.2-4.5, respectively.

Figures 4.2 and 4.3 the RMFPCA displays similar patterns but produces slightly different

estimates with those from MFPCA for temperature and pressure variable, respectively. Tem-

perature variable shows two outliers (78 and 79) (Figure 4.7 (a)). The first two principal

functions computed by classical method clearly shows effect of outliers (Figure 4.2(a) and

(b)). Figure 4.7 (b) shows pressure variable contains outlying observations (78 and 79). For

the pressure variable first and second principal function computed by MFPCA are affected

due to partial outliers at center. Ends of first and second principal function computed by

37



0 2 4 6 8 10 12
−10

−5

0

5

10

15

20

25

30

Month

(a) Temperature

0 2 4 6 8 10 12
1006

1008

1010

1012

1014

1016

1018

1020

1022

1024

Month

(b) Pressure

0 2 4 6 8 10 12
0

100

200

300

400

500

600

700

800

Month

(c) Precipitation

0 2 4 6 8 10 12
50

55

60

65

70

75

80

85

90

95

Month

(d) Humid

Figure 4.1: Weather Data.

MFPCA are also affected due to many observations having different shape at end points

(Figure 4.3).

The results from Figure 4.4 for precipitation variable and Figure 4.5 for humidity vari-

able show that principal function estimates by RMFPCA2 have departure from MFPCA

(Ramsay and Silverman [64]). This can be attributed to observations with different shapes

in the precipitation and humidity variable affecting major variabilities, explained by first and

second principal functions in MFPCA. Precipitation variable contains few outlying curves

(45, 47 and 48) (Figure 4.7 (c)). First principal function computed by MFPCA has large
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value at center when compared with first principal function RMFPCA2, which clearly shows

influence of outliers.

To detect the outliers for the four variables the resulting diagnostic plot is given by

classical and robust method (Figure 4.6).
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Figure 4.2: Temperature Variable.

The orthogonal score plot indicates that both MFPCA (Figure 4.6(a)) and RMFPCA2

(Figure 4.6(b)) methods detected three similar outliers(45, 47 and 48). MFPCA detected

additional one outlier (27) and RMFPCA2 detected two additional outliers (78 and 79).

But, outliers detected by classical method does not conform with outliers detected by ro-

bust method for four variables. The one additional outlier (27) detected by MFPCA has

shape almost same as regular observations and observation number 27 is not far from other

observations of data for all four variables. Figure 4.7(a)) shows observations 78 and 79 are

far from actual data for temperature variable. Observations 78 and 79 have different shape

than regular observations for pressure variable (Figure 4.7(b)). Abnormal curves, 78 and 79,

are identified by robust method but classical method fails to identify these outlier.
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Figure 4.3: Pressure Variable.

Humidity variable contains group of observations of different shapes which are shown

in Figure 4.8. For humidity variable there are no severe outliers.
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Figure 4.4: Precipitation Variable.
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Figure 4.5: Humid Variable.
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Figure 4.6: Outliers in Weather Data.
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Figure 4.7: Weather Data with outliers by robust method.
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Figure 4.8: Humid variable with observations with different shape.

43



4.4.2 Simulation for Robust Multivariate Functional Principal Component Anal-

ysis Based on Multivariate Approach (RMFPCA1)

In this section simulation study is given to check the optimality of the robust functional

PCA for outlier detection in multivariate functional data. The simulation setting given by

Fraiman and Muniz [21, 51], with few changes, is used here. For simulation we consider

multivariate functional data with two variables i.e. (p = 2), {(x1l, . . . , xnl); l = 1, . . . , p, }

obtained as realizations from a stochastic process X(·). This bivariate functional data has

continuous paths on [0, 1]. Curves are generated from different models. The following models

are considered for this simulation study.

Model 1 (no contamination): Xi(t) = g(t) + ei(t), 1 ≤ i ≤ n, where model error term

ei(t) is a stochastic Gaussian process with zero mean and covariance function ϑ(s, t) =

(1/2)(1/2)(0.9)|t−s| and (1) g(t)=4t, (2) g(t)=3-4t with t ∈ [0, 1].

Model 2 (asymmetric contamination): Yi(t) = Xi(t)+ ciE, 1 ≤ i ≤ n, where ci is 1 with

probability q and 0 with probability 1− q; E is the contamination size constant.

Model 3 (symmetric contamination): Yi(t) = Xi(t) + ciσiE, 1 ≤ i ≤ n, where ci and E

are defined as in model 2 and σi is a sequence of random variables independent of ci taking

values 1 and -1 with probability 1/2.

Model 4 (partially contaminated): Yi(t) = Xi(t) + ciσiE, if t ≥ Ti, 1 ≤ i ≤ n, and

Yi(t) = Xi(t), if t < Ti, where Ti is a random number generated from a uniform distribution

on [0, 1].

Model 5 (Peak contamination): Yi(t) = Xi(t) + ciσiE, if Ti ≤ t ≤ Ti + ℓ, 1 ≤ i ≤ n, and

Yi(t) = Xi(t), if t /∈ [Ti, Ti + ℓ], where ℓ = 2/30 and Ti is a random number from a uniform

distribution in [0, 1− ℓ].

Figure 4.9 exhibits curves simulated from these models. For each model, we generated

100 replications, with one setting each for low and high dimensional data. For low dimen-

sional data we consider n = 100, q = 12 setting and for high dimensional data we consider

setting with n = 50, q = 100. Noncontaminated bivariate functional data are obtained by
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generating X1 and X2 variables from model 1, (i.e. contamination % (cp)= 0 and E = 0).

Contaminated bivariate functional data are obtained by generating X1 and X2 variables each

from contaminated models (2, 3, 4 and 5), where we considered cp = 5, 10 and E = 10. The

number of basis used for functional curves simulated from these five models are obtained

from GCV method. We estimate coefficients, Cl, l = 1, 2, for both variables by using the

least squares method. MFPCA based on classical PCA (CPCA) and RMFPCA based on

ROBPCA (Section 4.2) are applied on the simulated functional data according to the five

models .

GCV method finds the same number of basis for contaminated and uncontaminated

data for symmetric and asymmetric models. For partial and peak contamination cases GCV

method finds different number of basis for contaminated and uncontaminated models. The

reason for this is the shape or pattern of the contaminated curves is different than the

uncontaminated data.

Two quantitative measures of the goodness of the methods are considered. The first

one is mean proportion of variability (MPV) :

MPV = 1/N
N∑
r=1

λ̂r1 + λ̂r2 + . . .+ λ̂rk
λ1 + λ2 + . . .+ λk + . . .+ λq

,

where N denotes the number of iterations, λj is the true jth eigenvalue of the covariance

function, λ̂rj is the estimated value of λj at the r
th replication. The λ̂rj is obtained by using

classical or robust multivariate techniques on concatenated coefficient matrix of contami-

nated or uncontaminated model. For each setting, the optimal value for the mean proportion

of explained variability is taken as 90% which corresponds to k = 2 (k is number of principal

components).

The second quantitative measure is the norm, that is, the square root of sum of squared

error of λ̂1 given by
√∑N

r=1(λ̂
(r)
1 − λ1)2, where λ1 is the largest true eigenvalue of the covari-

ance function and λ̂1 is the estimated largest eigenvalue of λ1 at the rth replication. The λ̂r1
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is obtained by using classical or robust multivariate techniques on concatenated coefficient

matrix of contaminated or uncontaminated model. The optimal value is zero or near zero.

Simulated data with no contamination is compared with simulated data with contam-

ination, which is introduced by models 2,3,4 and 5. From Table 4.1, it is clear that CPCA

provides the best mean proportion of explained variability when there is no contamination

in the data as expected. For the uncontaminated data robust methods also yield comparable

results. However, when contamination is introduced to the data (models 2-5) the eigenval-

ues obtained with CPCA are overestimated. Since estimated percentages of MPV are larger

than 100%. In ROBPCA we obtain MPV of 80% for low dimensional data without and with

contamination. For high dimensional data the mean percentage of explained variability is

similarly 80% for without and with contamination. The main reason behind this is the opti-

mal direction obtained by ROBPCA are robust to outliers. CPCA clearly fails and provides

the worst possible result because mean proportion of variability is above 100%. The simula-

tion results of mean proportion of variability for contaminated data versus uncontaminated

data under low and high dimensional settings for other comparisons yielded very similar

results observed in Table 4.1 and therefore they are not repeated here. As we increase the

contamination level (cp) by 15% ROBPCA gives MPV value larger than 100% for high and

low dimensional setting.

Simulation results for the norm with N = 100 iterations and cp = 5, 10, 15 percent

contamination level for comparison of contaminated versus uncontaminated are summarized

in Figure 4.10. For this comparison, we used one high and one low dimensional settings

with the value of E = 10. The ideal value of norm must be very small or near zero. We

conclude that the norm is near zero when there is no contamination for all methods. This

is an indication of ROBPCA being also effective methods for uncontaminated data. The

norm based on CPCA tends to increase as contamination level increases. For contaminated

data, norms corresponding to ROBPCA method yield minimum value which is near zero

for high and low dimensional settings. For contamination level cp=15% the norm value is
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Table 4.1: Simulation results of the MPV (mean proportion of explained variability) for no
contamination (both variables) (0%) and contaminated data (symmetric contamination for
both variables (5%, 10%, 15%)) for low and high dimensional cases.

Contamination
High dimension:n=50, p=100
CPCA ROBPCA

0% 0.837 0.786
5% 12.273 0.779
10% 19.360 0.718
15% 31.173 2.438

Contamination
Low dimension:n=100, p=12
CPCA ROBPCA

0% 0.876 0.823
5% 11.247 0.795
10% 21.118 0.742
15% 32.132 1.343

above 0 for ROBPCA for low and high dimensional setting. When contamination level is

increased above 10% the eigenvalues obtained by robust method are overestimated, resulting

large norm value. For other simulation settings under low and high dimensional data similar

results were observed as in Figure 4.10 therefore they are not reported here.

From the results of Figure 4.10 and Table 4.1 we can deduce that ROBPCA outperforms

the CPCA. But ROBPCA method does not yield satisfactory results when percentage of

outliers in data is above 10%.
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Figure 4.9: Curves generated from model 1 (cp=0%), model 2 (asymmetric contamination),
model 3 (symmetric contamination), model 4 (partial contamination) and model 5 (peak
contamination) with n=50, q=100, E=10 and cp=0.1.
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Figure 4.10: Boxplots of norm when there is no contamination (0%) for both variables and
symmetric contamination (5%,10%,15%) for both variables for CPCA(C) and ROBPCA(R).
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4.4.3 Simulation for Proposed Robust Multivariate Functional Principal Com-

ponent Analysis (RMFPCA2)

The proposed method is tested using simulated datasets under various scenarios. The

performance is compared with existing classical multivariate functional PCA method [64].

The simulation setting inspired by Kayano and Sadanori [44], with few changes, is used here.

For simulation we consider multivariate functional data {(x1l, . . . , xnl); l = 1, . . . , p; p = 3}

obtained as realizations from a stochastic process X(·). This multivariate functional data

has continuous paths on [0, 1]. Let xi = (xilj, xi2j, xi3j) ∈ ℜ3, i = 1, . . . , n, j = 1, . . . , q, be

data on a finite and discrete grid at tij for 3-variable X1, X2, X3.

Functional observations at the ordered time points tj ∈ (0, 1) with 10 principal compo-

nents are generated from the underlying multivariate functional model:

xilj = xil(tij) + ϵilj = ml(tij) +
10∑
k=1

uilkϕlk(tij) + ϵilj,

where the mean function m(t) is assumed to be the following functions: 1. m1(t) = 0.3t2 +

2t + 10, 2. m2(t) = −4.5 ∗ t2 − 2 ∗ t + 10, 3. m3(t) = cos(−3 ∗ t) ∗ sin(−3 ∗ pi ∗ t) and

ϕlk(t) =
√
2cos(kπt) is orthonormal principal functions. The errors ϵilj are assumed to be

generated from 0-mean Gaussian distributions of standard deviations 2 and 1 for k = 1, 2

and 0.05 for k = 3, . . . , 10. For this functional model, some noise is added to create such

cases where the conventional functional PCA suffers. Simulated curves are generated from

different models. Model 0 was generated without contamination and several other models

were generated with different types of contaminations.

Model 0 (No noise intervention): Model without outliers is used to test performance

of robust multivariate functional principal component analysis (MFPCA) under absence of

abnormal curves.
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Model 1 (Some curves with unusual PC scores): For this model PC scores for the second

principal function is contaminated. This can be done by multiplying uil2 by 10 for randomly

selected 10% curves.

Model 2 (Some curves with irregular noise intervention): The noise intervention is in-

troduced in randomly selected 10% curves. This is done by randomly selecting a time point t

from a uniform distribution (0, 1− 1
15
) and then adding c×M to all observed values evaluated

at [t, t+ 1
15
], where c takes value -1 or 1 with probability 1/2 and M is a random value from

N(15, 0.12).

Model 3 (All curves with irregular noise intervention): In this situation all curves are

subjected to the noise intervention such that it is difficult to identify the outliers when

compared with other curves. For all curves, a time point t is randomly selected from a

uniform distribution (0, 1− 1
15
) and then c×M term is added to all observed values evaluated

at [t, t+ 1
15
], where c takes value -1 or 1 with probability 1/2 and M is a random value from

N(15, 0.12).

Model 4 (Curves with large noise): Randomly selected 10% curves are replaced by

m(tj) + zij where zij has Normal distribution with mean 0 and variance 12.

Model 5(Some curves with partial contamination):In this scenario few curves are par-

tially contaminated. For 10% randomly selected curves, a time point t is randomly selected

from a uniform distribution Y on [0, 1]. If t ≥ Y, and then the term c ×M term is added,

where c and M are defined as in model 3.

Figures 4.11 and 4.12 and Figures 4.14 and 4.16 exhibit curves simulated from these

models. For each simulation set, we generated 100 replications, with one setting each for

low and high dimensional data and all methods were applied to the simulated data sets to

estimate the first 2 principal functions. Let X1(t), X2(t) and X3(t) denote the three variables

for multivariate functional curves. Three simulation settings are considered with different

types of contamination. The purpose of these different simulation settings is to assess the

robustness of the proposed algorithm under the different types of contamination. For low

51



dimensional data we consider n = 100, q = 20 setting and for high dimensional data we

consider setting with n = 50, q = 100 for three variables in all simulation settings. On x we

apply RMFPCA2 (Section 4.3) and MFPCA (Section 2.4) on the simulated 3-functional

variable data and find PC functions γ = (γ1, . . . , γK)(pq)×K . K = 2 are number of PCs for

which the cumulative percentage of total variance is over 95%.

Quantitative measure: To quantify and compare the performance of methods, the av-

erage of total mean squared errors (TMSE) between the first true principal function, ϕl1(t),

for lth variable and its estimate, γ1l (t) is used

p∑
l=1

∥ γ1l − ϕl1 ∥2=
p∑

l=1

∫
(γ1l (t)− ϕl1(t))

2dt.

Since multivariate functional data are observed on a finite grid of time points, a discrete

version of the TMSE is computed.

Average of 100 total mean squared errors for classical and robust methods are given

in Tables 4.2 and 4.3 for high and low dimensional data, respectively. Datasets from all

models are contaminated in some ways so that conventional methods will be affected by such

contamination. TMSE from Tables 4.2 and 4.3 indicates the RMFPCA2 (robust method)

remarkably outperforms the MFPCA (classical method) in all scenarios.

In simulation setting 1, X1(t) and X2(t) are generated from model without contamina-

tion (model 0) and X3(t) contains some contamination and this variable is obtained from

model 3 (Figure 4.12). First principal function of contaminated third variable is given in

Figure 4.13, which clearly shows that first principal function computed by classical method is

deteriorated from the true principal function. The principal function computed by classical

method clearly shows effect of irregular noise intervention. Figure 4.14 shows the simulation

setting 2, where X1(t) is generated from model 0, X2(t) and X3(t) contain contaminations

and are obtained by using model 1 and model 2 respectively. For the variable X2(t) the sec-

ond principal function is selected as the first principal function in the conventional method
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Table 4.2: Simulation results of the TMSE (total mean squared errors) of the estimated first
principal function for simulated datasets for high dimensional case.

High dimension:n=50, p=100

Variable Contamination MFPCA RMFPCA

0.9751 0.0766

1 Model 0

2 Model 0

3 Model 3

0.9587 0.0765
1 Model 0

2 Model 1

3 Model 2

0.9348 0.0733

1 Model 5

2 Model 4

3 Model 0

because its PC scores have large variance due to few outlying curves (Figure 4.15(a)). The

classical method is influenced by the outlying curves and so they have large PC2 scores which

leads to the estimation of the second principal function as the first principal function. X3(t)

is generated from model 2 where noise partly intervenes in the few outlying curves, principal

function estimates from classical method deteriorated while those from robust method found

principal function almost correctly (Figure 4.15(b)). For the simulation setting 3 model 5

and model 4 are used to contaminate X1(t) and X2(t), respectively (Figure 4.16). Third

variable contains no outliers and is generated by using model 0. Figure 4.17 shows the

first principal functions by both methods for contaminated variables. The shape of the first

principal function of X1(t) produced by classical method is affected due to partial outliers

(Figure 4.17(a)). And for X2(t) due to large noise the first principal function gave the dev-

astating results, while robust method resulted in the reasonably good estimates under such

severe condition (Figure 4.17(b)). Under all the scenarios of different contamination, robust

method found principal functions almost correctly.
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Table 4.3: Simulation results of the TMSE (total mean squared errors) of the estimated first
principal function for simulated datasets for low dimensional case.

Low dimension:n=100, p=20

Variable Contamination MFPCA RMFPCA

0.9988 0.0779

1 Model 0

2 Model 0

3 Model 3

0.8751 0.0767

1 Model 0

2 Model 1

3 Model 2

0.8880 0.0781

1 Model 5

2 Model 4

3 Model 0
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Figure 4.11: Curves generated from model 0 for X1(t), X2(t) and X3(t) with n=50, q=100.
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Figure 4.12: Simulation setting-1:Curves generated from model 0 for X1(t) and X2(t) and
from model 3 for X3(t) with n=50, q=100.
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Figure 4.13: First principal function for Simulation setting-1 for contaminated variables.
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Figure 4.14: Simulation setting-2:Curves generated from model 0,1,2 for X1(t), X2(t) and
X3(t), respectively with n=50, q=100.
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Figure 4.15: First principal function for Simulation setting-2 for contaminated variables.
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Figure 4.16: Simulation setting-3:Curves generated from model 5,4,0 for X1(t), X2(t) and
X3(t), respectively with n=50, q=100.
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Figure 4.17: First principal function for Simulation setting-3 for contaminated variables.
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Chapter 5

Robust Functional Linear Model

5.1 Introduction

The consequence of development in technology and computation has resulted in an

increase in the number of applications where observations are functions or images. These

observations which can be expressed by functional regression models are often times seen in

various fields such as climatology, chemometrics, linguistics (Ramsay and Silverman [64] and

Ferraty and Vieu [24]). Recently researchers have put more emphasis on functional linear

models in which the regressors and/or the response are of a functional nature and proposed

several methods for estimating the functional parameter [16, 18, 22, 23, 62].

The functional versions of the diagnostic measures based on Cook’s distance [13] is

introduced by Chiou and Müller [12] and Shen and Xu [72] for the models where the regressors

are real or curves and the responses are functional. Febrero et al. [23] reviewed estimation

based on the classical functional principal components method and then analyzed influence

in the functional linear model with scalar response. They have proposed three measures

of influence by generalizing the measures proposed for the standard regression model by

Cook [13] and Peña [61]. The functional regression framework developed by Müller and

Stadtüller [59] uses regularization based on the Karhunen-Loeve expansion which leads to

regression on functional principal components. In this method observations are projected on

a finite dimensional space spanned by eigenfunctions of the (empirical) covariance operator.

Ramsay and Dalzell [62] and Cardot et al. [10] proposed regularization through a penalized

least squares approach after expanding functional parameter in some basis (such as splines).

The generalized functional linear model is given by Cardot and Sarda [11].
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Functional regressors are infinite in nature. Problem with infinite dimensionality of the

regressor is that, it results into infinitely many sets of solutions or suffers from multicollinear-

ity. Traditional methods for functional regression are based on an L2 norm of the residuals

and are sensitive to outliers or influential observations, which has a serious effect on the

estimation and prediction of the functional linear model. Influential observations in a given

dataset can have a strong impact on analysis. If these outlying or influential observations

are removed from the data then this may substantially affect the statistical inference. An

alternative approach to classical methods is robust estimation which is not affected by the

presence of outliers.

Approach of Hastie and Mallows [33] is based on a smooth B-spline expansion for func-

tional parameter. Marx and Eilers [52] considered a smooth basis expansion procedure with

roughness penalty in a least squares criterion. For linear regression with a functional predic-

tor and scalar response, Cardot et al. [9] provided consistency results and discussed inference

for the regression function. Marx and Eilers [53] proposed overcoming the multicollinearity

problem by using B-spline expansion of functional parameter and adding a roughness penalty.

James [41] and Reiss and Ogden [65] considered regression model with functional covariates.

Functional principal component regression is developed by Cardot et al. [9] and Reiss and

Ogden [65] where scalar response is regressed on first few PC loadings of the functional re-

gressors. There is limited literature on robust functional regression. Robust estimator for

nonparametric models was considered by Crambes et al. [14]. Recently, Maronna and Yohai

[56] proposed robust functional regression for pre-smoothed curves and Gervini [28] proposed

functional robust regression for longitudinal data.

Our goal is to propose a robust version of the estimator for functional linear regression

with a functional predictor and scalar response. We assume that functional predictors contain

abnormal observations and scalar response is free of outliers. The outline of this chapter

is as follows. Section 5.2 provides the details of the proposed robust functional principal

component regression (RFPCR). Diagnostic plots used for principal component regression
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(PCR) are described and implemented to diagnose functional outliers in functional regression.

Real and simulated data sets are utilized to demonstrate the performance of the proposed

method in Section 5.3.
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5.2 Proposed Method: Robust Functional Principal Component Regression

(RFPCR)

The functional linear model with a scalar response is a regression model with the re-

gressor which is a random curve and the response which is real random variable defined

on the same probability space. We assume that (X, y) is a pair of random sample where

X = (X(t)), X ∈ L2(T ), t ∈ T = [tmin, tmax] ⊂ ℜ and y is a real random variable. For easy

computation we assume that both X and y are centered; i.e. E[X(t)] = 0, and E[y] = 0.

Assuming E(∥ X ∥2) <∞, the dependence between the scalar response y and the functional

random variable X is written as:

y = α + ⟨X, β⟩+ ϵ = α +
∫
T
X(t)β(t)dt+ ϵ, (5.1)

where ⟨., .⟩, denotes the L2(T ) inner product, β is a square integrable function defined on T

and errors, ϵ, is a real random variable with E[ϵ] = 0, E[X(t)ϵ] = 0 and finite variance equal

to σ2. In practice Xi(t) is observed discretely on a finite grid tij ∈ T ⊂ ℜ, i = 1, . . . , n, j =

1, . . . , q as a random sample of pairs (Xi(tij), yi), i = 1, . . . , n. We assume that functional

predictors contain abnormal observations and scalar response is free of outliers. Dimension

of Xi(t) is reduced by using a finite series expansion

Xi(t) =
Kx∑
j=1

cijψj(t), (5.2)

where ψj(t), j = 1, . . . , Kx are Kx basis functions and C = [cij] is n×Kx coefficient matrix

of the basis expansion (Chapter 1). Equation (5.2) can be written by approximating Xi(t)

in terms of eigenfunction expansion based on a truncated Karhunen-Loève decomposition

([1]) as

Xi(t) =
Kx∑
j=1

cijγj(t), (5.3)
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where the coefficient matrix, C = [cij], i = 1, . . . , n, j = 1, . . . , Kx, is the scores and γ is the

collection of the first Kx eigenfunctions of the covariance matrix V (s, t) = cov[Xi(s), Xi(t)]

(Müller and Stadtmuller [59], chapter 8 in [64]). In the proposed method, matrix of robust

eigenfunctions γ of size Kx × q is obtained by applying robust FPCA by Lee et al. [46]

(Section 3.3) on Xi(t). The optimal number of components Kx is the minimal number of

principal components needed to explain 99% of the total variation in the discretized versions

of the random functions Xi(t).

Estimation of β(t) is done by using a truncated power series spline basis ϕ(t) = {ϕ1(t),

. . . , ϕKb
(t)} such that

β(t) =
Kb∑
k=1

bkϕk(t) = ϕ(t)b, (5.4)

where b = {b1, . . . , bKb
}′. This approach imposes differentiability and allows simple control

of smoothness (Goldsmith et al. [30]). The constraint on choice of number of eigenfunctions

is Kx ≥ Kb, where Kb = min(Kx, 35) is taken large enough to prevent under smoothing

(Rupert [69]). Now the model (5.1) can be expressed as

α +
∫
T
Xi(t)β(t)dt = α +

∫
T
Cγ(t)ϕ(t)′bdt = α+ CJγϕb, (5.5)

where Kx ×Kb matrix Jγϕ is defined by

Jγϕ =
∫
γ(t)ϕ′(t)dt. (5.6)

Let ζ = (α, b1, . . . , bKb
)′ be (Kb + 1) vector and the coefficient matrix Q = [1 CJγϕ] be the

n× (Kb + 1) matrix. The matrix notation of model (5.5) is

ŷ(n×1) = Q(n×(Kb+1))ζ̂((Kb+1)×1), (5.7)
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The least squares estimate of the ζ̂ can be obtained by solving the equation (5.7). Since the

scores matrix, C, contains the information of outliers, this estimator is not resistant to out-

liers ([28]). To obtain robust ζ a mechanism to downweight outlying scores is implemented.

Weighted least squares method by Billor et al. [6] is used in a following manner

Obtain robust Mahalanobis distance of Qi, i = 1, . . . , n, as Di =
√
(
∑q

j=1Q
2
ij/λj) using

ROBPCA. Qi is i
th row of Q and λj are the eigenvalues of covariance matrix of Q. Initial

weights are obtained as w0
i = w∗(Di), where

w∗(ai) = min

(
1,

1

max(|ai|,mediani(|ai|))

)
. (5.8)

Low weights are assigned to the observations with large robust distances. Normalized dis-

tances, di, are calculated by

di =
D2

i∑n
i=1D

2
i

(5.9)

Algorithm

Input: Data matrix, Q, of size n× (Kb+1), n×1 response variable, y, initial weight vector,

w0 and normalized distance vector, d.

Output: Coefficent function, ζ̂, and the corresponding residual, r.

Step 0: Let W = w0 = diag{
√
w0

i }, i = 1, . . . , n.

Step 1: Obtain weighted Q and y by multiplying with W as Qw = WQ and yw =Wy.

Regress yw on Qw to obtain ζ̂ and fitted values ŷ.

Step 2:Calculate the residual vector, r = y− ŷ, Ri =
ri

madi(ri)
, where mad=median absolute

deviation and obtain new weights as

wi = (1− di)w∗ (Ri) . (5.10)

Redefine W = diag{√wi}, i = 1, . . . , n.

Step 3: Return to step 1 until the convergence of ζ̂.
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5.2.1 Diagnostic Plot for Detection of Outliers

Diagnostic plots used to detect outliers in principal component regression are used to

find functional outliers in functional principal component regression analysis. Orthogonal-

score plot (Section 4.2.1) and Residual-score plot proposed by Hubert et al. [37] are used to

distinguish regular observations from outliers. The Residual-score plot is a scatter plot of

the robust residual distance Rdi versus the robust score distance Sdi. The score distance is

defined as

Sdi =

√√√√ Kx∑
K=1

(zKi )2/λK , i = 1, . . . , n,

where zKi is the ith score for Kth component and λK is the eigenvalue for Kth component.

The scaled residuals Rdi, is given by

Rdi =

∣∣∣∣∣ ri
madi(ri)

∣∣∣∣∣ = |Ri|, i = 1, . . . , n,

where ri is the robust residual value. Two cutoff lines based on classical nonparametric

threshold are used to classify the observations. The cutoff value for horizontal line is tr(Rd)

and for vertical line is tr(Sd), which help to flag outliers from regular observations. The

classical nonparametric threshold [74] is given as

tr(a) = mediani(ai) + (2.5)madi(ai),

where a ≥ 0 is any vector with positive entries.

Residual-score plot classifies observations as homogeneous observations (lower left cor-

ner) and observations in upper right corner or far away from the homogeneous observations

(having large score or residual distances) are known to be functional outliers.
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5.3 Numerical Examples

In this section, benchmark data set and several simulation studies are used to explore

the performance of the proposed algorithm, RFPCR. The proposed method is compared

with, one of the existing classical functional regression method (Goldsmith et al. [30])

5.3.1 Simulation

Simulation configurations are conducted with two different beta functions. Both settings

aim to assess the robustness of the proposed algorithms under different error distributions.

A similar simulation setting described by Goldsmith et al. [30] is employed in this

section. Consider functional regressor model and a continuous outcome with the grid {tj =

(j/10) : j = 0, 1, . . . , 100} on the interval [0,10]. Scalar outcomes Yi and regressor functions

Xi(t) are generated from the following model

Simulation setting − 1 : Yi =
1

K

100∑
j=0

Xi(tj)β
1(tj) + ϵi, i = 1, . . . , n, (5.11)

Simulation setting − 2 : Yi =
1

K

100∑
j=0

Xi(tj)β
2(tj) + ϵi, i = 1, . . . , n, (5.12)

Xi(tj) = ωi1 + ωi2tj +
10∑
k=1

{
ϑik1sin

(
2πk

10
tj

)
+ ϑik2cos

(
2πk

10
tj

)}
, (5.13)

where ϵi ∼ N [0, σ2
ϵ ], ωi1 ∼ N [0, 25], ωi2 ∼ N [0, 0.04], and ϑik1 , ϑik2 ∼ N [0, 1/k2]. Figure 5.5

gives a boxplot of scalar response and Figure 5.1(a) displays a sample of 50 random functions

Xi(t).

The values that have been chosen for the different parameters for this simulation study

are the following: the observed outcomes Yi, are generated by considering σ2
ϵ ∈ {0.5, 1},
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two true coefficient functions βl(t), l = 1, 2 and functional regressor Xi(t) is generated

from no contamination model (Model 0) and then contaminated by using Model 1-3. The

choices of the true coefficient functions considered in simulations are β1(t) = sin(πt/5) and

β2(t) = (t/2.5)2. The observed outcomes Yi are assumed to be free of outliers.

Curves Xi(t) are generated from different models. Model 0 was generated without con-

tamination and several other models were generated with different types of contaminations.

Model 0 (no contamination): Equation 5.13

Model 1 (partially contaminated): Yi(t) = Xi(t) + ciσiE, if t ≥ Ti, 1 ≤ i ≤ n, and Yi(t) =

Xi(t), if t < Ti, where Ti is a random number generated from a uniform distribution on [0, 1],

E is a random value from N(15, 0.12) and ci is 1 with probability q and 0 with probability

1− q.

Model 2 (Peak contamination): Yi(t) = Xi(t) + ciσiE, if Ti ≤ t ≤ Ti + ℓ, 1 ≤ i ≤ n, and

Yi(t) = Xi(t), if t /∈ [Ti, Ti + ℓ], where ℓ = 2/30 and Ti is a random number from a uniform

distribution in [0, 1− ℓ].

Model 3 (asymmetric contamination): Yi(t) = Xi(t) + ciE, 1 ≤ i ≤ n, where ci is 1 with

probability q and 0 with probability 1− q; E is the contamination size constant.

For each combination of the parameter values σ2
ϵ , β

l(t) andXi(t), 100 datasets [Yi, Xi(tj) :

i = 1, . . . , n] are simulated for high dimension (n=50, q=101) and low dimension (n=200,

q=101) setting. Proposed approach RFPCR (Section 5.2) to estimate βl(t) is compared with

classical method proposed by Goldsmith et al. [30].

The average mean square error (AMSE) of β̂(t)l over the 100 samples is utilized as a

quantitative measure to access the performance of both the methods

AMSE(β̂(·)) = 1

100

∑
r=1

100

1
q

q∑
j=1

{
β̂l
r(tj)− βl(tj)

}2 , l = 1, 2,

where β̂l
r(t) is the estimated coefficient function of true beta function βl

r(t) from the rth

simulated data set.
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Table 5.1: Simulation results of the average MSE for each combination of the true coefficient
function and the measurement error variance for low dimensional case.

Low dimension:n=200, q=101

Beta function Contamination
σ2=0.5 σ2=1

PFR RFPCR PFR RFPCR
Model 0 0.00173 0.00176 0.00021 0.0012

β1 Model 1 0.4252 0.0014 0.2550 0.0969

Model 2 0.0106 0.0009 32.545 0.0030

Model 0 0.00006 0.0002 0.0035 0.0036

β2 Model 1 28.3246 0.0109 0.3224 0.0022

Model 3 0.4431 0.0349 0.4313 0.0038

Tables 5.1- 5.2 summarized to compare the AMSE for each set of the parameters for

classical method and robust method (RFPCR). When there is no contamination in func-

tional regressor, the performance of classical and robust method is similar for all possible

parameter combinations and for low and high dimension datasets. For contaminated func-

tional regressor in high and low dimension setting the proposed method has smaller AMSE

value than classical method for every parameter combination.

Figures 5.1- 5.4 displays the functional regressor in the left panel and respective esti-

mated beta functions by both the methods in right panel for σ2
ϵ = 0.5. For the smooth

β2 (Figures 5.2 and 5.4), the proposed method provides the closest estimates for low and

high dimensional setting. Proposed method performs slightly worse for β1 for low and high

dimensional data (Figures 5.1 and 5.3). When functional regressor is contaminated the

performance of classical method is relatively poor for low and high dimensional setting (Fig-

ures 5.1- 5.4). For σ2
ϵ = 1 yielded very similar results which are not reported here.
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Table 5.2: Simulation results of the average MSE for each combination of the true coefficient
function and the measurement error variance for high dimensional case.

High dimension:n=50, q=101

Beta function Contamination
σ2=0.5 σ2=1

PFR RFPCR PFR RFPCR
Model 0 0.0077 0.0082 0.0153 0.0158

β1 Model 1 0.0797 0.00910 31.0956 0.0043

Model 2 0.6843 0.0103 11.2888 0.0592

Model 0 0.0014 0.0007 0.0006 0.0041

β2 Model 1 32.0457 0.3218 94.3803 2.5476

Model 3 13.348 0.2741 20.6127 0.0074
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Figure 5.1: The left panel displays sample of random functions generated from simulation
setting 1 with n=50, q=101. The right panel displays estimated beta function for contami-
nated functional predictor in left panel.
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Figure 5.2: The left panel displays sample of random functions generated from simulation
setting 2 with n=50, q=101. The right panel displays estimated beta function for contami-
nated functional predictor in left panel.
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Figure 5.3: The left panel displays sample of random functions generated from simulation
setting 1 with n=200, q=101. The right panel displays estimated beta function for contam-
inated functional predictor in left panel.
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Figure 5.4: The left panel displays sample of random functions generated from simulation
setting 2 with n=200, q=101. The right panel displays estimated beta function for contam-
inated functional predictor in left panel.

76



40
0

50
0

60
0

70
0

80
0

Figure 5.5: Scalar response used in simulation setting-1 and 2 for high and low dimension.
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5.3.2 Data Sets

Preprocessed Biscuit-Dough Data

In this section, classical method (Goldsmith et al. [30]) and RFPCR (robust method)

are applied on the well-known chemometrics example from Osborne et al. [60]. Biscuit-dough

data set consists of 40 NIR spectra of biscuit dough and four response variables (percentages

of fat, sucrose, flour and water). The range of original spectra is of 1100nm to 2498nm in

steps of 2nm, i.e q = 700. Since the channels at the ends are known to be less reliable

only q = 601 (1200nm to 2400nm in steps of 2 nm) wavelengths are used. The aim of this

analysis is to predict percentage of water, based on the 40 biscuit dough samples with q =

601 wavelengths. Biscuit-dough (X-data) is displayed in Figure 5.10 (a), which consists of n

= 40 curves and each curve represents q = 601 wavelengths and from the figure it is clear

that the spectra have shifted due to unequal particle sizes. Therefore, the preprocessing

suggested by Marx and Eilers [53] is performed by differencing the columns of data matrix

to eliminate sudden shifts, Figure 5.6 (a), which results in a data set of NIR spectra in 600

dimension. Observation 23 is known to be an outlier in most analyses, so it is suggested

to exclude this observation. To show robustness of RFPCR, this analysis is used on the

data matrix with all 40 observations. Figure 5.7 shows a boxplot of the percentage of water

(y-data).

RFPCR (Section 5.2) is applied on the preprocessed data and robust diagnostic plots

are obtained (Figure 5.8). The orthogonal, score and residual distances are obtained. The

orthogonal-score diagnostic plot based on robust FPCA (Section 3.3) is displayed in Fig-

ure 5.8 (a). Observations 7, 20, 21, 23 and 24 are detected as outliers. Residual diagnostic

plot obtained from RFPCR indicates observations 7, 21 and 23 as outliers. Figure 5.6 (b)

shows preprocessed Biscuit-dough data with outliers. Figure 5.9 displays the estimated beta

functions for Biscuit-dough data by classical and robust method. There is a slight difference
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between the estimated beta functions by both the methods, which clearly shows that the

classical method is being affected by presence of outliers.
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Figure 5.6: (a)Sample curves (X-data) of the preprocessed Biscuit-dough data;(b)X-data
with outliers.
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Figure 5.7: Boxplot of the percentage of water.
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Figure 5.8: Diagnostic plots for the preprocessed Biscuit-dough data.
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Figure 5.9: The estimated beta functions for the preprocessed Biscuit-dough data from
classical and robust method .
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Original Biscuit-Dough Data

In this section original Biscuit-dough data (Figure 5.10 (a)) is used to demonstrate the

robustness of proposed method. The data set consists of n=40 biscuit dough samples with q

= 601 wavelengths. The original data has four response variables, but for this analysis only

one of them (the percentage of water) is used here (Figure 5.7). The results of analysis of

preprocessed Biscuit-dough data indicates that this dataset contains outliers (observations

7, 20, 21, 23 and 24). To assess the performance of the proposed method these outliers

are further contaminated by using Model-3 (Section 5.3). Figure 5.10 (b) shows original

Biscuit-dough data with outliers (7, 20, 21, 23 and 24) obtained after using Model-3.

Figure 5.12 displays the diagnostic plots obtained by robust FPCA (Section 3.3) and

RFPCR (Section 5.2). The orthogonal-score plot and residual-score plot indicate observa-

tions 7, 20, 21, 23 and 24 as outliers. Diagnostic plots based on robust methods detected

all outliers effectively showing that the proposed approach is resistant to outlying observa-

tions. Figure 5.11 displays the estimated beta functions for Biscuit-dough data by classical

and robust method. There is a difference between the estimated beta functions by both

the methods clearly indicating that the classical method is being affected by the presence of

outliers.
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Figure 5.10: (a)Sample curves (X-data) of the Biscuit-dough data;(b)X-data with outliers.
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Figure 5.11: The estimated beta functions for Biscuit-dough data by classical and robust
method.

0.65 0.70 0.75 0.80 0.85

0
5

10
15

RFPCA

SD

O
D

1

2
3

4

5
6

7

8

9

10

11
12

1314
15

16

17

18

19

20
21

22

23

24

25

26

27
28

29
3031

32

33
34

35
36

37

38
39 40

(a) Orthogonal-Score Plot

0.65 0.70 0.75 0.80 0.85

0
2

4
6

8
10

12

RFPCR

SD

R
es

id
ua

l

1 2

3

4

5

6

7

8

9 10

11
121314 15

16

17

18

19

20
21

22

23

24

2526
27

28

29
303132

33

34
35 36

37
38

39
40

(b) Residual-Score Plot

Figure 5.12: Diagnostic plots for the Biscuit-dough data.
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Chapter 6

Conclusions and Future Work

In this dissertation, different aspects of functional data analysis have been studied. In

this chapter, final conclusions on all results obtained throughout dissertation are summarized.

We also discuss some possibilities for future research.

In Chapter 1 and 2, the main concepts of FD, MFD and FPCA are introduced and

reviewed. Two procedures of FPCA, for univariate and multivariate functional data; are

described. To take into account the functional nature of the data, basis expansion is reviewed.

In Chapter 3, two existing robust techniques of FPCA for univariate functional data

are reviewed. First method reduces the functional object to the multivariate data by basis

expansion and then uses robust multivariate PCA techniques. In the second method robust

principal functions are estimated by the penalized robust regression with a smoothness induc-

ing penalty. Since abnormally observed measurements in a single curve are separately down

weighed, it makes maximal use of the information. Second method is fast in computation

even for long and dense functional data.

In Chapter 4, two robust MFPCA (RMFPCA1 and RMFPCA2) for dimension reduction

of multivariate functional data under presence of outlying trajectories are proposed. The

first method RMFPCA1 is a basis expansion approach that uses robust multivariate tech-

niques (ROBPCA) to find robust principal functions. The second method RMFPCA2 uses

Karhunen-Loeve expansion for multivariate functional data and estimates principal functions

by M-estimation with roughness penalty. Tuning parameter lambda is obtained from robust

leave-out-one-column cross validation. Instead of deleting a single curve it removes abnormal

observations at tj grid for assessing prediction of data. It is computationally efficient and

takes less time than the existing methods. Both the methods can also be used to detect
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functional outliers. An extensive simulation study is conducted and a real dataset is used

to asses the performance of the RMFPCA1 and RMFPCA2. From the simulation study

for RMFPCA1 based on different contamination configurations, and when contamination

is around 15%, we concluded that robust PCA based multivariate functional data analysis

yields better results than CPCA based multivariate functional data analysis. RMFPCA2

is tested using simulated data sets under various scenarios and real data set. The perfor-

mance is compared with existing classical MFPCA. Results show that the RMFPCA2 is

resistant towards many types of contamination, whilst their performance is also good for

uncontaminated data sets.

In Chapter 5, the effect of outliers on one of the existing functional regression method

is investigated and a new robust functional regression algorithm (RFPCR) for estimating

functional coefficient is proposed. The first step consists of regressing scalar outcome on

a space spanned by eigenfunctions of functional predictor. Then a robust iteratively re-

weighted least squares method, which gives low weights to outlying points, is proposed to

estimate the regression coefficient function. Initial weights as robust distances are obtained

from outlier detection methods, ROBPCA, to down-weight outlying points in predictor space.

Reweighted FPCR is performed iteratively to obtain robust coefficient function. It is shown

that the proposed method is very effective for uncontaminated data and it yields better

results when data contain outliers.

In this dissertation, we have shown promising results for RMFPCA1, RMFPCA2 and

RFPCR. There is, of course, more research to be done. We would like to extend RFPCR

to multivariate case and use RMFPCA1 and RMFPCA2 in different fields of applications

for instance fMRI, genomics, etc. Proposed robust techniques can be further explored in

a Sobolev space. Proposed RFPCR fails to estimate coefficient function with spikes there-

fore, further investigation is needed. Theoretical and robustness properties of the proposed

estimators also need to be studied.
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