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Abstract

The main focus of this dissertation is on the existence of an orthogonal basis consisting
of standard symmetrized tensors (o-basis for short) of a symmetry class of tensors associated
with a Brauer character of a finite group. Most of the work is done for the dihedral group and
some results are given for the symmetric group. The existence of an o-basis of a symmetry
class of tensors associated with an (ordinary) character of a finite group have been studied
by several authors. My study was motivated by the work done on the existence of such a
basis of a symmetry class of tensors associated with an (ordinary) irreducible character of a
dihedral group.

In Chapter 1 we introduce the basic definitions in character theory. In this a Brauer
characters, character of a projective indecomposable module (PI) and a block of a finite
group will be introduced. Also in this chapter a generalised orthogonality relation of blocks
of a finite group is established. In chapter 2 we introduce the symmetrizer and related
notions. Some general results associated with Brauer characters of a finite group will also
be given in this chapter. Chapter 3 consists of the results associated with Brauer characters,
PIs and blocks of a dihedral group. Finally Chapter 4 lists some result associated with the

Brauer characters of the symmetric group.
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Chapter 1

Character Theory

1.1 Group representations and Group Algebra

Let GG be a finite group and V' be a finite dimensional vector space over the field of
complex numbers C. By GL(V) we denote the group of invertible linear transformations
from V to itself. A representation of G is a group homomorphism p : G — GL(V). The
degree of the representation is the dimension of V.

Denote by CG the vector space over C with the basis G. CG is a ring with the multi-

plication defined by,

O~ aa)Y_Bb) = > aupyab.

acd beG a,beG

A C-algebra is aring A that is also a vector space over C such that a(ab) = (aa)b = a(ab)
for all « € C and a,b € A. Note that CG is a C-algebra and is called the group algebra of
G over C. CG has an identity given by le # 0, where e is the identity of G. Define a map
from C to CG by a +— al, where 1 # 0 is the identity of CG. This is a well defined ring
monomorphism, hence C is viewed as a subring of CG.

Let V' be a finite dimensional vector space over C and let p : G — GL(V') be a repre-
sentation of G. Then V can be viewed as a (left) CG module by defining av = p(a)(v) for
a € G, v €V and extending linearly to CG.

On the other hand, let V' be a CG module. Then V' is a vector space over C by viewing
C as a subring of CG. When we say that V' is a CG module, we always assume that V is
finite dimensional when viewed as a vector space over C in this way. Define a map p from G
to GL(V) by p(a)(v) = av for a € G, v € V. Then p is a well defined group homomorphism

and hence a representation of G called the representation afforded by V.



An srreducible representation of G is a representation afforded by a simple CG module.

1.2 Character

Let V be a CG module and let p be the representation of G afforded by V. Let o € G,
so that p(o) € GL(V).
Let M, be the matrix representation of p(c) corresponding to a fixed basis of V. The trace
of p(o) is given by tr(p(c)) = tr(My.)). Note that the value of tr(p(c)) does not depend on
the choice of the basis since similar matrices have the same trace.

The (ordinary) character of G afforded by p or V is the function 7 : G — C defined by

n(o) =tr(p(o)) for o € G. We say n(e) the degree of n where e is the identity element of G.

Theorem 1.1 ([11, Lemma 2.15, page 20]). Let n be a character of G. Let 0 € G and let

m be the order of 0. Then

i) n(o) is a sum of mth roots of unity,

i) n(o) =nlc™").

Two representations p and p of the same degree n are said to be similar if there exists
an invertible matrix P of size n x n such that M, = P‘lMQ(U)P for all o € G. It is easy
to observe that the following result holds using the property that tr(AB) = tr(BA) for all

square matrices A, B.

Theorem 1.2 ([11, Lemma 2.3, page 14]).
i) Similar representations of G afford equal characters.
ii) Characters are constant on the conjugacy classes of G.

A class function is a function on G that is constant on conjugacy classes. The theorem states

that the characters of G are class functions.



A character of GG is called an irreducible character of G if it is afforded by an irreducible
representation of G (or, equivalently, a simple module of CG). Representations of G afforded
by isomorphic CG-modules are similar. There is a one-to-one correspondence between iso-
morphism classes of CG-modules and similarity classes of representations of G (see [11, page
10]). Therefore in light of the theorem above the number of different irreducible characters
of a group G is the same as the number of isomorphism classes of simple CG-modules.

Let Irr(G) denote the set of irreducible characters of G. Maschke’s theorem stated below
provides a way to reduce the study of characters of G to the study of irreducible characters

of G.

Theorem 1.3 (Maschke). Let K be a field. If charK 1 |G|, then every KG-module is a

direct sum of simple KG-modules.

Since char C = 0, Maschke’s theorem holds for the field C. Now let V and V' be
two CG-modules and let p and p’ be the representations they afford respectively. Let 6
be the representation afforded by the direct sum V @ V’. Then for any ¢ € G the matrix
representation of 0(o) relative to an ordered basis formed by taking an ordered basis for V
and appending an ordered basis for V"’ is given by a block diagonal matrix with blocks the

matrix representations of p(c) and p'(o) as given by

( ) MO(O') ()
1M¢9 o) —
0 Mp/(a)

Then the character afforded by the CG-module V @ V' is n + 1/, since tr My(,) = tr M,(») +
tr My (o).

Because of the above results we see that to study the characters of G it is enough to look
at the irreducible characters of G. Once all the irreducible characters of G are known the

other characters of G are known as well since they are simply sums of irreducible characters.



One gets the number of irreducible characters of G' from the number of conjugacy classes of

the group G as stated below.

Theorem 1.4 ([11, Corollary 2.7, page 16]). Let G be a group. The number of irreducible

characters of G equals the number of conjugacy classes of G.

1.3 Brauer character

The Brauer characters are the main focus of this entire thesis. These characters are also
known as modular characters. The modular representation theory was founded by Richard
Brauer in the 1930’s. We begin by setting basic definitions.

Let R be the ring of algebraic integers in C. Fix a prime p, and let M be a maximal
ideal of R such that pR C M. Set K = R/M. Then K is a field. Considering the
natural homomorphism 7 : R — K we have p — 0, so K has characteristic p. The natural

homomorphism is going from characteristic 0 to characteristic p.

Theorem 1.5 ([11, Lemma 15.1, page 263]). Let U = {\ € C | ™ =1 for some integer m

with pt m} and let R, K be as above. Then
i) UCR,
i) the natural homomorphism maps U isomorphically onto K \ {0},
ii1) K is algebraically closed and algebraic over its prime field.

An element of G is called a p-regular element if its order is not divisible by p. Denote
by G the set of all p-regular elements of G.

Let V be a KG-module of finite dimension n and let p be the representation of G
afforded by V. Let 0 € G and let ky,. ...k, € K \ {0} be the eigenvalues of p(c). Then

by the theorem above there exist unique \q,...,\, € U such that \; — &; via the natural



homomorphism. Define a function ¢ : G—>C by

o(0) = Z)\ (1.1)

Then ¢ is called the Brauer character of G afforded by p.

1

Let 0 € G and suppose £ € K is an eigenvalue of p(o). Then x~' is an eigenvalue of

p(o™1) since

-1 1

plo v =plo)r " ploJv =k ple)v = k™.

Also if m1(A\) = & (A € U), then 1 = 7(A\) = 7(A\)7(A) = k7(\), so 7(\) = k=1, Therefore
W = p(071). If ¢ is a Brauer character of G, then @, the complex conjugate of ¢ is also
a Brauer character [11]. A Brauer character corresponding to a simple K G-module is called
an irreducible Brauer character of the group G. We denote the set of irreducible Brauer
characters of G' by IBr(G). The irreducible Brauer characters are linearly independent over
C [11, Theorem 15.5, page 265].

Brauer characters are constant on conjugacy classes. The number of irreducible Brauer

characters is equal to the number of conjugacy classes of G' containing p-regular elements of

G as stated by the following theorem.

Theorem 1.6 ([14, Corollary 3, page 150]). The number of classes of simple KG-modules

1s equal to the number of p-regular conjugacy classes of G.

Let x denote the restriction of an ordinary character y of G to the set G of p-regular
elements of G. The following result is a well known relationship between the ordinary

characters and the Brauer characters of a group.

Theorem 1.7 ([11, Theorem 15.6, page 265|). Let x be an ordinary character of G. Then

X 1S a Brauer character of G.



The character xy uniquely determines the Brauer character y. We note here that if p
does not divide the order of the group G, then G = G and the Brauer characters of G
coincide with the ordinary characters G.

The set of complex valued class functions on G form a vector space over C

Theorem 1.8 (R. Brauer). The irreducible Brauer characters of a group G form a basis of

the vector space of complex valued class functions on G.

1.4 PlIs

We are also interested in the characters associated with projective indecomposable mod-
ules of RG. Note that RG is of finite dimension so satisfies the A.C.C. and D.C.C. Then by [2,
Theorem 14.2, page 81] RG can be written as a direct sum of indecomposable RG-modules.
A summand of this direct sum is a principle indecomposable module (a PIM) of RG. Sim-
ilarly KG can be expressed as a direct sum of principle indecomposable K G-modules. As
direct summands of free modules, PIMs of RG and KG are projective. [5, Theorem 1.13.7,

page 44| states that there is a one to one correspondence between the isomorphism classes

of PIMs of RG and those of K.

Theorem 1.9 ([2, Theorem 54.11, page 372]). Let P be a PIM of KG. Then P has a unique
mazimal submodule Np. Two PIMs P and @ are isomorphic if and only if the irreducible

modules P/Np and QQ/Ng are isomorphic.

Theorem 1.10 ([2, Corollary 54.14, page 374]). There is a one-to-one correspondence be-
tween the isomorphism classes of PIMs and the isomorphism classes of irreducible KG-

modules.

The character afforded by a PIM P of RG (PI for short) is the character afforded by
C@p P . By the theorem above we have that there is a one to one correspondence between

the irreducible Brauer characters of G' and the Pls of G. We will denote by ®, the PI



corresponding to ¢ € IBr(G). A PI ® is a complex valued function defined on G with the
property that ®(c) =0 for o € G\ G [5, Corollary IV.2.5, page 144].

1.5 Relationships

Let n € Irr(G) and let 7 be the restriction of  to G. Recall by Theorem 1.7 7 is a

Brauer character of GG, so

D= Y dyp (1.2)

¢€IBr(G)
for some uniquely determined nonnegative integers d,,. The integers d,, (n € Irr(G), ¢ €
IBr(G)) are called the decomposition numbers of G for the prime p. The matrix of size
| Irr(G)| x | IBr(G)| with the d,,’s as entries is called the decomposition matriz of G.

Let ¢ € IBr(G). By [14, page 151] we have the following relationships

p= Y dyn, (1.3)

nelrr(G)
o, = Z Cyts
YEIBr(G)
where the coefficients ¢y, are the entries of the matrix C' = DD”, with D’ the transpose of

D. The matrix C is called the Cartan matriz.

1.6 Block

Let e be a centrally primitive idempotent of the group algebra CG. The block B = B,
corresponding to e is the category of CG-modules V' such that eV = V. A CG-module V is
said to belong to B if it is an object of B, that is, if eV = V. By [5, Theorem 7.8, page 23]
a finitely generated indecomposable CG-module V' belongs to a unique block. If V' belongs

to B, then every submodule and homomorphic image of V' belongs to the same block B.



A character or a Brauer character of GG is said to belong to a block B if the associated
module belongs to B. If n € Irr(G) belongs to the block B, then ¢ € IBr(G) belongs to B if
the decomposition number d,, is nonzero. Further each irreducible character and irreducible
Brauer character belongs to a unique block. Two irreducible characters 1 and ¢ are in a
same block B of G if there is ¢ € IBr(G) such that d,, and dg4, are both nonzero. In this
case the block is the unique block that contains the Brauer character ¢ [11].

If v is a character or a Brauer character, we write ¢ € B to mean that 1) belongs to the
block B. More generally, if S is a set of characters or Brauer characters, we write v € BN S
to mean that v belongs to the block B and ¢ € S.

Let B be a block of G. The Osima idempotent of CG corresponding to B is given by

1
sp = Z Sn:@ Z Zn (1.4)

neBNIrr(G) n€BNIrr(G) oc€G

Theorem 1.11 ([11, Theorem 15.30, page 277]). For blocks B and B' of G, we have
SBSpr = 5BB’5B~

The following theorem holds due to the Equations 1.2 and 1.3.

Theorem 1.12 (Osima).

=i S e

»EBNIBr(G) oG

= |_C1;| Z Zq)@(e)go(afl)a.

©EBNIB(G) gt



1.7 Orthogonality

Let Fun(G, C) denote the set of all functions from G to C. Fun(G, C) is a vector space

over C. For f,g € Fun(G, C) set,

1 _
(1.9 =1 > flo)g(o).

oeG

(+,+) is an inner product on Fun(G, C). By definition the characters of G are in Fun(G, C).
Now we will state some known orthogonality relations of characters of G. For n a character
of G and ¢ € G, we have n(c) = n(c~') by Theorem 1.1. It is a known fact that Irr(G)
forms a basis for the set of class functions from G to C. It is indeed an orthonormal basis

due to the following result.

Theorem 1.13 ([11, Corollary 2.14, page 20]). Let n,n’ € Irr(G). Then

Z 77 57777' .

UEG

Theorem 1.14 (Generalized Orthogonality Relation). Let n,n' € Irr(G). For any 7 € G

For complex-valued functions f and g on G define

(f.9) > flo
|G|
oeG
Theorem 1.15 ([5, Lemma 3.3, page 145]). For ¢, ¢ € IBr(G), we have

_1 o
507¢ ’G| Z(I) 5‘#‘15

oe@



We establish an orthogonality relation associated with Osima idempotents of blocks of
a group GG which we call the generalized orthogonality relation of blocks. Below we discuss

the formulation of this new result.

Theorem 1.16. For i € G,
Y Y 2 @p@e(@s0 ) = dpmlGl D @) @y(p).
oce@ v€BNIBr(G) ¢ B'NIBr(G) peBNIBr(G)

Proof. By using Theorem 1.12 we have

smop = | G|2Z > @w(e )oY Y ) y(r)T

oce@ p€BNIBr(G T€G ¢peB'NIBr(G)

|G|2ZZ Z Z ®¢<€)¢(J)¢(e)¢)¢(7—)07

oce@@ TEG peBNIBr(G) ¢€B/NIBr(G

“GELY X% <I>¢<e>so<a>¢<e>q>¢<aﬂﬂ>u

HEG se peBNIBr(G) ¢p€B'NIBr(G)

and

1
Oppse =) 533'@ D> ple)@u(wp.

neG p€eBNIBr(G)

Now, by Theorem 1.11, sgsp: = dgpr, so by comparing the coefficients on both sides for a

fixed p € G we get,

SO Y au@p@e@so ) =Gl > w(e)@y(n).

oe@ p€BNIBr(G) ¢€B'NIBr(G) p€BNIBr(G)

10



Chapter 2

Symmetrized Tensors

In this chapter we will state some basic definitions and results of different symmetrizers

corresponding to characters discussed in Chapter 1.

2.1 Background

For fixed positive integers n, m set

Fn,m: {7: (717727”'7’}%) ez" ‘ 1 Sryl Sm}

Let G be a subgroup of the symmetric group S,,. Define a right action on I',,,, by G as

follows. For 0 € G and vy € T, ,,,

V0 = (Yo(e)s - - > Von))- (2.1)

Consider the relation for v,0 € T',, ,,, given by v ~ 6 if there is an element ¢ € GG such that
vo = 0. This is an equivalence relation on I, ,,,. We fix a set A of representatives of the
equivalence classes of I',, ,,, with respect to ~.

Let V be a complex inner product space of dimension m with orthonormal basis
{e1,€9,...,en}. V" =V RV ®---®@V (n factors) is the nth tensor power of V. For
v € Tpm let e, = ey ®ey ®--- ®e,,. The inner product induced on V" is given by
(ey,e9) = [1i—,(ey,,€q,) where (-,-) is the inner product of V. Under this inner product
{e; | v € T} is an orthonormal basis for V. V®" is a CG-module with the action

oey = €451 for 0 € G extended linearly to CG.

11



2.2 Symmetrizers associated with ordinary and Brauer characters of G

In the following discussion * stands for either an irreducible ordinary character or an
irreducible Brauer character of G. Denote by S a subset of G where S = G when * € IBr(G)
and S = G when * € Irr(G).

The symmetrizer corresponding to * is defined by,

c€eS

The theorems in this section pertaining to * € Irr(G) are well known. On the other

hand, we generalize some well-known results for % € Irr(G) to handle the case of * € IBr(G).
Theorem 2.1. The elements s, for n € Irr(G) are orthogonal idempotents.

Proof. Let n,x € Irr(G). Then by Theorem 1.14 we get,

SnSx = ‘GP ZZ” = |G]2 ZZ”

ceG TEG neG oceG
n(e)n(e) x—~ G| n(e)
=0 > n(u)p =90 > ()= G-
X |G|2 = ’17(6) ( ) nx |G| pere ( ) nx<n

]

The symmetry class of tensors V, corresponding to * is the image of V" under the

symmetrizer s,:

V, = s, V%",

Corollary 2.2. Ifn, x € Irr(G) and n # X, then the vector spaces V,, and V,, are orthogonal.

Proof. 1If s,v = s,w for some v,w € V" then

Sy = Sp(8y0) = sp(s,w) = 0.

12



Let v € I'ym. The standard symmetrized tensor e corresponding to 7 is the image of

e, € V¥ under s,:

el = 8.6y = % % x(0)oe, = % ; *(0)€yp-1. (2.2)

By o0-basis of a subspace W of V®" we mean an orthogonal basis of W that consists of
standard symmetrized tensors. An interesting question to ask is “For which W does there
exist an o-basis?” In 1991 Wang and Gong gave an example in [16] of such an o-basis for a
symmetry class of tensors V, with y € Irr(G) when G is the dihedral group of order eight.
Ever since there have been papers [1, 3, 4, 7, 8, 10, 15] answering the question when such an
o-basis exists. All these papers however address the problem in the ordinary character case.

This dissertation is devoted to answering the question of when an o-basis exists for a
symmetry class of tensors symmetrized by a Brauer symmetrizer for particular choices of G.

Let V, = (64, | 0 € G) and let V' = s.(V,). Observe that V¥ = (e, | 0 € G). V' is
called the orbital subspace corresponding to . Using the orbital subspaces we can write the

symmetry class of tensors as an orthogonal direct sum.

Theorem 2.3 ([9, Theorem 1.1]). We have

Vi= ZV,Y* (orthogonal direct sum).

vyEA

In particular, Vi has an o-basis if and only if V' has an o-basis for each v € A.

Proof. Let 8 € I'y . Then 8 = ~o for some v € A and o € G, so that e = e7, € V. This
shows that V, is contained in (and hence equals) the indicated sum.

The sets £, = {e,, |0 € G}, v € A, are pairwise disjoint subsets of the orthogonal set
{eg| B € Thym} and are therefore pairwise orthogonal. For each v € A the subspace V* is

contained in the span of E,, so the indicated sum is an orthogonal direct sum.

13



Assume that V, has an o-basis B. By the first paragraph, B is the union of the sets
B,=BNVy, v €A, and these sets are pairwise disjoint by the second paragraph, so B, is
an o-basis for V¥ for each v € A.

Finally, if V¥ has an o-basis for each v € A, then the union of these bases is an o-basis

for V.. O
For v € 'y, let G, = {0 € G | yo = ~} the stabilizer subgroup of v in G.

Theorem 2.4. For v €T, ,,, and a fired 0 € G, we have

) =LY o)

RES Teou=15NG,

Proof. Let v € I'y,,, and o € S be fixed. Now by using the Equation 2.2 we get,

(€e:€3) |S|2 ZZ #(p) (€101, €4p1)

nES peSs

HES pES
op~lpeG,

- TS‘Z Z Z *(p) * (T o).

HES Teou~15NG,

Corollary 2.5. Fory €'y, n € Irr(G), and a fized o € G

(e, e) = % S o).

peGHo

Proof. From the above Theorem 2.4 we get

(€€

yo v |G|2

X X ) = T S S i)

neG TeG,

14



Then by using the generalized orthogonality relation (Theorem 1.14) we get

e)? Gn(t—o e 1 e
R I DI UBL D S}

TEG, TEG pEGHo
[l

For n € Trr(G) and for v € A Freese gives the dimension of the orbital subspace V7 in

[6]:

dim V7 = nie) 3" (o). (2.3)

|G'7| 0'€ny
2.2.1 Symmetrizers associated with Pls

Let ¢ € IBr(G) and put ® = @,

The symmetrizer associated with ® is defined by

_ ple)
S0 =7 > @(0)o. (2.4)

oeG

Note that s € CG. For a PI & of G the symmetry class of tensors is defined by
Vo = soV®". For v € T, ,,, the standard symmetrized tensor is defined by e$ = sgpe, and the
orbital subspace is defined by V.* = (e, | ¢ € G). With a similar argument as in Theorem

2.3 we have

Vo = ZWEAV:I) (orthogonal direct sum). (2.5)

Theorem 2.6. Foro € G and vy €Ty,

(e, e®) = STS‘)Q SN a0 tan)d(r).

15



Proof.

neG teG
p(e)?
- G2 Z Z ®(1)2(7)
TeG  peG
ourteG,

2.2.2 Symmetrizers associated with blocks

Let B be a block of G. The symmetrizer corresponding to B is the Osima idempotent
sp of B (Equation 1.4). The symmetry class of tensors is defined by Vp = sgV®". For
v € 'y, the standard symmetrized tensor is defined by ef = spe, and the orbital subspace

is defined by V.P = (el | 0 € G).

Lemma 2.7. Fory el ,,

neBNIrr(G)

Proof. By Equation 1.4 we get,

673 = sp(ey) = Z sy(ey) = Z el.

neBNIrr(G) neBNIrr(G)

Theorem 2.8.

Vi = ZVVB (orthogonal direct sum).

YEA

16



Proof. The argument in the proof is similar to that of the proof of Theorem 2.3, and we

omit the details. O

Theorem 2.9. For~v e A

dim VB Z Z 90(6)‘1%(‘771)

€ BNIBr(G)

n(e)n(e™).

eG., n€BNIr(G)

Proof. Since sp is an idempotent we have rank (sp) = tr (sp). Then by Equation 1.4 we get,

dimVVB = rank(sg) =tr(sg) =tr |Z Z n(e)n(a‘l)a

o€G neBNIrr(G

= Z > alemie (o).

UEG neBNIrr(G)
Note here that it makes sense to write tr (o) by viewing o as a linear transformation on V®".
In [6, Equation 13] Freese shows that |_c1;| > vecn(e)n(oMtr (o) = ‘C(f)| > vec, n(c™1). So we

get,

v = Y féjzn :G—Z S e,

neBNIrr(G) ocGy O’EG—Y neBNIrr(G)

Now by Equations 1.2 and 1.3 we get, for any o € G,

Yo oaeme™ =) Y. w@dync™) = Y ple)Py(oc7h)

neBNIrr(G) p€BNIBr(G) ne BNIrr(G) p€eBNIBr(G)
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So it gives

dim V5 z R OL GRS R S S EL W
€Gy

€ BNIBr(G) |G o€, pEBNIBI(G)

Z > nleme).
eG,

neBNIrr(G)

Theorem 2.10. Foro € G,

e = T X el 26)

neoG~y e BNIBr(G)

Proof. Recall that V,, and V, are orthogonal for n, x € Irr(G) with n # x by Corollary 2.2.

Then using Lemma 2.7 and Corollary 2.5 we get

(e el)y = (> e, Y )= > (. eN)ipn= > (€l

neBNIrr(G) XEBNIrr(G) n,x€BNIrr(G) neBNIrr(G)
n(e) n(e)
> —|zn<w= DRI SR
nEBﬁIrr (G) neGyo neBﬂIrr(G) peoGy
= Z > n(e)n( Z > 90(6)%(#)-
HEO’G—Y neBNrr(G ,UEO'G—Y peBNIBr(G

]

The following is a useful lemma which we call the translation principle of the orthogo-

nality of symmetrized tensors.

Lemma 2.11. If the standard symmetrized tensors e and e . are orthogonal, then ewé

and e s are orthogonal for every 6 € G.

18



Proof. By Theorem 2.10 we get, for each § € G,

(2g.¢Bs) = ﬁ >y #A2,(0)

o€7'§(16) LG~ e BNIBr (G

_ é D so<e><1>@<a>=<e57/,e57>:o-

oe7'T=1Gy ¢€BNIBr(G)
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Chapter 3

Dihedral group

In this chapter we focus on the existence of an o-basis of a symmetry class of tensors
associated with a Brauer character, a Pl and an Osima idempotent of a block of the dihedral
group.

For an integer n(> 3), the dihedral group of degree n is the subgroup D, of the sym-

metric group S,, generated by the elements

1 2 ... n—1 n 1 2 ... n—1 n

2 3 ... n 1 1 n ... 3 2
That is D, = {r¥,sr* |0 < k <n —1} and |D,| = 2n.

D,, with n even has 4 degree one irreducible characters. Let 11,19, 3,14 denote these
characters. D,, with n odd has only 2 degree one irreducible characters; we denote them
with 1q,1. For all n the degree two irreducible characters of D,, are given by x; where
1 < h < 3. For each integer k we get xn(rF) = wh* + W= = 2 cos Q’Lﬂ where w" =1 [14,

page 37]. The character table for D, is given by

T’k S’I“k
W 1 1
s 1 ~1

s (—1)* (—1)* (n even)
Py (—1)* (—=1)*1  (n even)

Xn | 2cos(ZEhk) 0 1<h<3

n

20



We observe from the table that if n a character of degree one or degree two of D,,, then for

o € D, we have

n(o) =n(e™). (3.1)

Let G = D,. For a fixed prime p write n = p? with p t {. The set G of p-regular

elements of G is given by,

e {rov" srh | 0<a<0,0<k<n}, p#2
{r*" |0 <a <}, p=2.

The set of p-regular conjugacy classes of G is,

{ree® ="} 0 <a < /2, {sr?*]0 <k <n/2}, {sr?*|0<k<n/2}, l even, p # 2,
[}, 0 <a < (- 1)/2, {sr*[0 < k< n), Codd, p#2

{ror® pm"} 0 <a< /2, p=2.

So the number of p-regular conjugacy classes is

5—1—3, if £ even, p # 2;
e={ Elio iffodd, p#£2; (3:2)

-1 e
N + 1, if D= 2.
3.1 Brauer characters of D,

Our effort in this section is to find conditions for the existence of an o-basis for the
symmetry class of tensors corresponding to a Brauer character of the dihedral group G = D,,.
We begin by listing the distinct irreducible Brauer characters of G.

Recall for an ordinary character 7 of G the restriction of  to G is denoted by /. By 1.7

7 is a Brauer character of G.
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For each 1 < h < %, the Brauer character xj, is of degree 2. The next lemma gives

conditions for when two Brauer characters of degree two are the same.

Lemma 3.1. For 1 <i,j <%, X; = X; if and only if either i +j =0 mod £ ori—j5 =0
mod /.

Proof. Since any degree two character of G is zero on sr* for all k it is enough to check
when two characters are the same on the elements r*?* € G. Suppose X; = X;. Then for any

0 < a < ¢ we have,

dmapti _,  mapty o mapl(ig) | mapli—j)

0= v;(r*?") — v, (r**") = 2 cos — 2cos
So %ﬁﬂ) = k7 or %(i_j) = kn for some integer k. This gives w =k or w =k, so

the result follows since ¢ 1 a.
Conversely suppose either i + 7 = 0 mod £ or ¢ — j = 0 mod ¢. With out loss of

generality we may assume ¢ + j = kf for some integer k. Then

rap(i+4)  wap'i—j) . waptk(_ mwapi(i— j)
sin = 4sin sin
n n n n

map?(i —j) _
- .

)A(i(Tapq) — )%j(?"apq) = 4sin

= 4 sin wak sin

So Xi = X, as desired. O

Some of the restricted degree two characters are not irreducible as given by the following

lemma.

Lemma 3.2. For all n we have Xy = 1&1 + ¢A2 for1 <k< %q. When n is even with p # 2

we also have )2§+M =3+ for 0 <k < pqz_l'

Proof. For 0 <a </

2mklap?
n

)= 2= b1 (r") + da(r™") = (1 + 1) ("),

)A(M(Tapq> =9 COS(
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and for 0 <b<n

~ ~

Le(s1?) = 0 = ¢y (577) + ahy(s1?) = (1&1 + 2/;2)(571’).

So we have Y., = 2/;1 + 152.
Now assume n is even and p # 2. Then it makes sense to consider the characters of G
given by )2§+M. Now for 0 < a < ¢, we have

2ml(1 4 2k)ap?
2n

) = 2cos (7T(1 + 2k)a>,

)Z§+ke(rapq) = 2cos (

SO X%+ke(rapq) equals 2 if a is even and —2 if @ is 0odd, and also we have that b (r®") 1, (")

equals 2 if a is even and —2 if a is odd. For 0 < k < n we have )Zg%é(sr’“) =0 =

Q/;g(STk) + Qz;4(3rk). So we get )A(%Hd = 13 + 1)y as desired. O]
Let
4, if £ even, p # 2;
e=19 2 iflodd, p+#£2 (3.3)
1, ifp=2.

For each 1 < j <€, the Brauer character gpjl- = wAj is of degree 1.

Theorem 3.3. Let G = D,,. The complete list of distinct irreducible Brauer characters of
G is

ol =1y, for1<j<e l=x;forl1<i<i.

Proof. For each 1 < j < ¢, the Brauer character ﬁj is of degree one and hence is irreducible.
We see the distinctness of these characters by observing the character values for sr* in the
character table above. So we have e distinct irreducible Brauer character of degree one of G.

To see the distinctness of the degree two Brauer characters in the given list observe that
for any ¢, 7 such that 1 <i < j < é we have j —i < land i+ j < ¥, sotj—1i,i+ j which

gives that x; # X; by Lemma 3.1. Now to show that they are irreducible assume that ¢7 is
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not irreducible for some 1 <7 < % Then ¢? is a sum of two irreducible Brauer characters of
degree one. So we write ¢ = ¢} + ;. Now r¥" € G and @2(r¥") = @ (") 4+ @ (r??") = 2.
Now since 1 < i < £ we have 0 < 2% = 47 # = 2m. So p?(r¥") = 2cos L £ 2.
This gives a contradiction. Therefore ¢? is irreducible. The number of irreducible Brauer

characters of G equals the number of p-regular conjugacy classes of G by Theorem 1.6. Using

Equation 3.3 we see that the number of all characters in the given list is
l {—2 {—2
5—1—3, if £ even, p # 2; T+2, if £ even, p # 2; T—i—lifp:Z.

This is same as the number of p-regular conjugacy classes as given by Equation 3.2, so the

indicated set is a complete set of irreducible Brauer characters of G. n

Assume p # 2. For 1 < i < /2, put

11
A= {ikl+ikl—i|1<k<?

}

and note that |A;| = p9.
Lemma 3.4. Let 1 <i < (/2. We have Xo = Xi = @7 for all a € A;.
Proof. Let 1 <1 < £/2. No proof is needed when a = i. Suppose a = kl + i or a = kl —i.

Then a —i =kl or a+ i = kf. So by Lemma 3.1 we get X, = X; = ¢7. n

3.2 Plsof D,

_ 1 @2 - 1,2 .
Let G = D,,. Let ®;, ®; be the PIs corresponding to ¢;, ¢; € IBr(G) where j = 1,2,3,4

and 1 <i < £. Let n € Irr(G). By Equation 1.2 we have

77: Z dmpgp,

p€IBr(G)

where d,, are uniquely defined nonnegative integers.
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In the following tables we give the values of the decomposition matrix entries d,., cor-
responding to n € Irr(G) and ¢ € IBr(G).

For odd n we get

n o | dyy
Vi ;| 1 (j=1,2)
Xee | @b | 1 (1<k<ER j=1,2)

Xa | P2] 1 (aEAi,1§i<§)

and for even n we get

n| e | den

Vi || 1 (j=1,2,3,4)

Xee |p| 1 (I<k<EH j=1,2)
X£ike SO} 1 (Oﬁkﬁ’%—l,j::—;,@

Xa | 97| 1 (aEAi,1§i<§)

Theorem 3.5. Let G = D,,. Then the complete list of Pls of G is

pi-1
2

OF =i+ > Xne forj=1,2,
k=1

pi-1_4

p)
q)]l = %’ + Z X%Jrké fO’l"j = 3,4,
k=0

¢
O = Xa for1<i<s.

a€A;

Proof. The proof follows from the tables above and the Equation 1.3.
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3.3 Blocks of D,

Let G = D,,. The relationships of characters belonging to a block of G can be understood
by means of the decomposition numbers of G for a considered prime p. Recall that both
n,¢ € Irr(G) belong to the block containing ¢ € IBr(G) if both decomposition numbers
dy, and dg, are nonzero. Also recall that each n € Irr(G) belongs to a unique block. Now
by observing the tables above one notes the consistence of characters in blocks of G as
given below. For the blocks we give the notation By, where a gives the lowest degree of
the irreducible Brauer characters it contains and b gives the lowest index of the degree a

irreducible characters it contains.

® i, 1, Xre in a block B} where j =1,2 and 1 <k < Pq;_

— 1.

° 9031',%7)(%%5 in a block Bi where j = 3,4 and 0 < k < -1

e for 1 <i <% ¢? x,inablock B? where a € A;.

3.4 Block idempotent symmetrization

In this section we will establish necessary and sufficient conditions for the existence of
an o-basis of the symmetry class of tensors Vg corresponding to an Osima idempotent sg of
a block B of G = D,,. We will consider the two cases namely le the block containing degree
one irreducible characters of G' and B? the block consisting only of degree two irreducible
characters of GG separately when finding the o-basis.

First we state a specialized formula for the inner product given in Theorem 2.10.

Corollary 3.6. Let G = D,, and let B be a block of G. Then

)= XX el

u€oGyNCr e BNIBr(G)
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Proof. Fix 0 < k < n—1. We observe from the character table for G that 1, (sr¥) 41, (sr*) =

0 and 3(sr*) + 14 (sr*) = 0. Therefore by using Theorem 3.5 we get,

Y. ()@ (sr) = pi(e)@i(sr) + (e)By(sr)

pEBINIBr(G)

= @[)l(srk) + @Z)g(srk) + 2 Z )(M(srk) =0

and

Y. wlO)@u(sr") = p3(e)@y(sr*) + pi(e)Py(sr")
pE€BINIBr(G)

pi-1
2
_ k k ky _
= th3(sr") + Pa(sr”) + 2 ];1 Xt pe(s7) = 0.
Also for fixed 7 with 1 <14 < g we have

S (0@ (sr) = POPsr™) = 3e) 3 xalsrt

pEB2NIBr(G) acA;

Now write B for B, B, or B?. By Theorem 2.10 we have

N - DYDY @<e>%<u>:‘g| )R SRR G N)

ne€oG~y peBNIBr(G pETGANCr e BNIBr(G)

]

Lemma 3.7. Let G = D,,. Let B be a block of G. Fix v € A. Let G, N C, = (r*) with k|n

and let t be the largest such that p'|k.

i) If H = {ro ra, .. r%-1} is a list of coset representatives of (r?') in C,, then {ef T €
H} is an orthogonal set. In particular {ef|r € H'} is an orthogonal set where H' =

{1,7, ... "1}
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it) If G,y C Cy, then {el el |7 € H'} is an orthogonal set.

iii) If e and €5, are orthogonal for some p € G N C,, then {eP |7 € H'} is an

VT vrp

orthogonal set.

) If G, C C,, and if eB and eB are orthogonal for some p € Gn C,, then

(& (&

{GB B B
YT TyTP? TYST? ’ySTp

|7 € H'} is an orthogonal set.

Proof. i) Take r% r% € H. Then r%(r*) # r% (") and p' { a, — a,. Now we will
show that there are no regular elements in the set re=r=%G, N C,. Take ro=-awtmk ¢
réer~%G,, N C, for some integer m = 0,...,7 — 1. Assume a, — a, + mk = m'p?. Then
a; — a, = m'p? —mk, implying p* | a, — a, which is a contradiction. Therefore by Corollary

3.6 we get (eB eB) = 0. Now for any r*,r¥ € H' with z # y, we have p' { x — y, so

yrozr— 4y ’Y

r*,r¥ are distinct coset representatives of <7"pt> in C,,. Therefore this is a special case of the
argument above so {eZ |7 € H'} is an orthogonal set.

ii) By part i) we know that (eZ,el) = 0 for 7, u € H'. To show that the set {ef el |7 €

H'} is orthogonal it remains to show that (ef ,el) = 0 and (ef el ) = 0 for 7,1 €
H'. First for (el ell,) we have, (ell ,el) = (el 1,ef) = 0 by Corollary 3.6 since

snflG,y N C,, =0 when G, C C,,. Now for the other case

(6557'7 e'?su) = (eﬁwsu? 65) = (e'{?’r*lp,? 65) = (65#7.—1,65) = (eB eB ) = 07
by part i) and this completes the proof.

iii) Suppose (e, eB) = 0 for some p € G N C,. To show that {e? |7 € H'} is an

v WP YT 77p
orthogonal set we only need to show that (ef el ) = 0 and (e, eZ) = 0 since part i)

takes care of the case for two elements of the form e " where 7 € H'. It is easily seen by the

translation principle (Lemma 2.11) and part i) above that (ef_ el ) = (e, el)) = 0.
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B

— — R (63
. wr> We have 7 = % ;= r¥ and p = r*" for some integers x, v,

Now consider (e

and o with 0 < z,y < p'. Then

(efu,/ﬂ 65,7_> = (65ryrapq’ 657’1) = (65,’,(1?‘14’1!*17 65)

Now to show that (e = 0 it is enough by Corollary 3.6 to show that ror"*v—2G,

Cyupr €y )

has no p-regular elements. Assume to the contrary. Then for some integer m, we have
prktaptty=r ¢ per’ty=rG N G implying PR tertty=e — pmp? for some integer m/. But
this implies mk + ap? + y — x — m/p? = jn for some integer j, which is equivalent to
y—x =m/p?!—mk— ap?+ jn implying p' | y —z. This is a contradiction since 0 < z,y < p'.

iv) Suppose (eZ, e )=0. To show {el. el el el |t e H'} is an orthogonal set, we

only need to show that (e € epps € ) =0, (el €rors wp) =0, (e 7STp,ewp) =0, (el €ors fs“p) =0

and (efl,,el ) = 0 since all other combinations of elements in the set are shown to be

orthogonal in the three previous parts. Note that we have (efsup, efT) = (efwm . 7) Now

since G, € C,, we see that supr~'G, N C, = 0 whence (e . e”) =0 by Corollary 3.6.

The argument for the cases (eZ,,e?, ) and (e}

€srpy efw) is the same. Next due to part iii)

(6587’ evBsup) - (evBST(sup)*l’ 65) - (efsmup’ 65) - (ewBTflup’ 65) - (evBupT*“ 65) - <€'€up7 657)
=0.

Finally by part ii) we get (eZ, el ) = (eZ,., el ) = 0 and it completes the proof. O

Now we look at the block B} of G.

Lemma 3.8. Fizy e A. We have G, NC,, = (r*) with a | n. Let t be the largest such that
p'la. Then

2pt, if G, C Cy;

dim VP = f G

pt,  otherwise.
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Proof. First observe that for any 0 < o < /¢,

2rklap?
- =

Xke(r°?") = 2 cos

Write ¢ = ¢j. Then by Theorem 2.9, Theorem 3.5 and the fact that ¢;(a) + 42(0) = 0 for
all o ¢ C,, and 1(0) + a(0) = 2 for all o € C,, we get

pql

TY Y one =1 Y (he)ne +2Zm )

o€G.y p€BINIBr(G) T sebynCy

dim V,YBl =

A 2p?7 n 2 n
a_ = = p'.
<2—|—(p 1)2>|G7an| Golap Gl a”

1
|G

1
Now if G, C C,, then |G| = 2, in which case we get dim VPl = 2p! and otherwise G| =22
which gives dim V21 = pt. 0

Let n be even and consider the block Bl of G containing the characters 13 and 1.

Lemma 3.9. Let G = D,, with n even and fit v € A. We have G, N C,, = (r*) with a | n.

Let t be the largest such that p‘|la. Then

0, ifa s odd;
dim VVBé =19 20, if G, CC,, ais even;

P, if G, L Cy, ais even.

Proof. By Theorem 2.9, Theorem 3.5 and the fact that ¢3(0) +4(c) =0 for all o & C,, we

get,
VA= 3 3 w0n0) = g 3 (i) ) +2 3 )
aeG7 ©€eBINIBr(G) eG, k=1

91
2

“E] L (8w £23 xpad).

ocG,NCy, k=
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Suppose that a is odd. Let a = a/p' for some odd integer a’. Then C;’7 nc, = {reaqut |0 <

e < £ —1}. Note that & is even.

21 (% + kl)eap™
n

_ 1
X§+kz(r6“”q ") = 2cos = 2cos 27T(§ + k)ea' = 2 cos med/,

which is equal to 2 or —2 depending upon whether € is even or odd. Also %(W“Pq_t) =

Y4 (r?"") equals 1 or —1 according as € is even or odd respectively. So the sum t)5(r<?* ") 4
) pi-1 - o |

Ga(rer) 4230, 2 Xt e(r@""") on the right side of the formula for dim VyBé above equals

2p? if € is even and —2p? if € is odd. Therefore in the case a is odd we get

1 ( [
dim VB4 — (2 149 q—) _0.
Y G\ P g T T oy

. . q
Now suppose a is even. Then any p-regular element in (r®) can be expressed as r*#* for

some integer . We have

2m (£ + k()2ept

n

1
X§+M(r2€pq) = 2cos = 2cos 27r(§ + k)2e = 2,

in which case the proof is similar to the proof of Lemma 3.8 above. So we get dim V) = 2p'

if G, is contained in C), and dim VB§ = p' if G, is not contained in C,,. O

Theorem 3.10. Let G = D,,. Write B = Bi. The symmetry class of tensors Vg has an

0-basis.

Proof. By Theorem 2.8 we have
Ve =3 VP
veA
so it suffices to show that VVB has an o-basis for each v € A. Let v € A. By Lemma 3.8 if
G, € Cy, then dim V. = p'. Therefore by part i) of Lemma 3.7 the set {e” |7 € H'} is an
orthogonal basis. If G, C C,,, then dimV.® = 2p’ and in this case {eZ, el |7 € H'} is an

orthogonal basis by part ii) of Lemma 3.7. O
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Theorem 3.11. Let G = D,, with n even. Write B = Bi. The symmetry class of tensors

Vs has an o-basis.

Proof. Due to Theorem 2.8 it suffices to show that VVB has an o-basis for each v € A. Let
v € A. We have G, N C,, = (r*) for some integer a. If a is odd, then by Lemma 3.9
dim V" = 0, so V.” has an o-basis. Suppose a is even. Then dim V" = p" if G, & C,, so
by part i) of Lemma 3.7 the set {el |7 € H'} is an orthogonal basis and dim V.” = 2p" if

G, C Cy, 50 {el el |7 € H'} is an orthogonal basis by part ii) of Lemma 3.7. O

Now we will bring our attention to the blocks consisting only of degree two characters
of G. For each 1 < i < £ the block B? contains ¢? € IBr(G) and this is the only irreducible
Brauer character of GG it contains. Below is a statement for conditions when the dimension

2
of the orbital subspace VVB" corresponding to a v € A is not zero.

Theorem 3.12. Fiz v € I'),,,,. Then for 1 < i < % we have dim VAYBZ'2 # 0 if and only if
G,NC, C (), where n' = P TEXIR
Proof. Suppose G, NC,, Z (r"). We have G-, N C, = (r*) with bjn, so 7* ¢ (). Fix i with

1< < é Then for o € G we have by Theorem 3.5 and Lemma 3.4

®}(0) = Y Xa(0) = [Ailxi(0) = p'xil0). (3.4)

a€A;

Now by Theorem 2.9

dim VWB’L'2 = ! Z 02 (e)®? (o) = wi_(e) Z pixi(o) = M Z xi(o)

G G G
G praen G o€y G o€GyNCh
n_q |
pq%?(@) X j q%Z(e) ] ibj —ibj
N ZXi(”b) ~ G Z(W Y wm™),
Y =0 vy =0

where w™ is an th root of unity. Now Zf:_ol (W + w™®7) £ 0 if w? = 1. But if w® = 1,

then there is an integer m such that ib = mn, so i"b = mn’ where i" = . Now since

7
ged(n)
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ged(n’,1") = 1 we get n’|b which is a contradiction. Therefore Zj%:}l (W + w7 = ( and
hence dim Vf? = 0.

Conversely suppose CAT’V NC, C {(r"). Note that for any integer ¢ we have

/ 2micn’
xi(r") = 2 cos T 9cos2mi’e = 2,
n
. . . B? 2 (e)
and in this case dim V3™ = J5~ Yoecne, Pxi(o) # 0. O

Theorem 3.13. Let G = D,,. Fizi with1 <i<£i. Let G,NC, = (r*) with k | n and let t

be the largest integer such that p* | k. If év NC, C (™), then

) 4pt, if G, C C,
dim V3 = f G

2pt.  otherwise.

Proof. Let 0 € G, NC, C (™). Then o = r** for some integer ¢ and

2mien’ .
= 2cos2mi’c = 2.

Xi(o) = Xi(rml) = 2cos "

Therefore by Theorem 2.9 and Equation 3.4

dim VWBi2 = |G17| Z go?(e)cbf(a) = (’Oi—((i) Z pixi(o) = IM Z Xi(o)

e G
N G oeCy G o€GyNCh
2p 4p? | - 4p? n 4 n ,
= — 2=——|G,NC,| = = —p".
|G7| Z |G7| ! |G7| api~t |G7| a

ocG,NCy

Now if G, C C,, then |G,| = =, so dimWB? = 4p', and if G, € C,, then |G,| = 2, so
dim VWB"'Q = 2p'. O

Theorem 3.14. Let G = D,, and assume dimV > 2. For fized i with 1 < i < g write

B = B?. The space Vg has an o-basis if and only if ¢’ =0 mod 4, where (! = gcd;géi)'
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Proof. Suppose Vg has an o-basis. Then by Theorem 2.8 it follows that VVB has an o-basis
for each v € A. Let v = (1,2,2,...,2). Then G, = {1, s}, so G, NC,, = (r"). Now since ¢
is the largest such that p¢|n, by Theorem 3.13 dim V. = 2p?. The space V.” has an o-basis,
that is, an orthogonal basis of the form E = {ef |7, € G,1 <z < 2p?}. Consider the
subgroup J = (r*")G,, of G. The index of J in G is p?, so by the pigeonhole principle there
is at least one right coset of J containing 7, and 7, for some 1 < z,y < 2p? with z # y.

-1

Then we have 7,7, 1 e J, so TeT, = 7™ 3 for some integer m and 3 € G.. Therefore

7T, Gy = 1" BG, = ™' G = {r™" sr~"?"}. Then by Corollary 3.6 and Equation 3.4

0= (et X A = Eldarem) - By

Gl 4
0€ETyTy GNChp

So we get 0 = x;(r™") = 2cos I = cos 2™ which gives 2 = (2k + 1)Z for some
integer k. Let ¢/ = o d( . Then
49 2k + 1)¢
gt = —dim__CEEDE oy

ged(,i)  ged(l, 1)

So ¢’ is divisible by 4.
Conversely suppose ¢ =0 mod 4. Fix v € A such that dim VWB # (0. Then by Theorem

3.12 we have G, N C,, C (™) where n' = Let G, N C, = (r*) where a | n. Note

gcd?n,i)'
that @ = a/n’ for some integer a’. We will first show that there exists 7 € C,, such that

(el ell) = 0. Let 7 = 1’7" where 0 = E Z. Note here that the set of p-regular elements of

vt G, NC, is the same as vt G7 N C,, since for some 7 € Cn, T € Cn if and only if u € Cn.

Then by Corollary 3.6

o) = X AORO=52 T ®0

G
] oertr?G,NCy, oerdr? G, NC,y,

6p‘1+La — Z 5pq+ba
(3 (7" |G| p X’L

D\:

34



Note that since 4 | ¢/, the number i’ = gcd—(“) is odd. Therefore using " = m) and 0 =
we get
G(rEY = 2cos 27mi(0p? + wa'n’) — 9cos <2m" ged(4,1)0 N 2mi" ged(n, i)ea'n’ )
n 14 n
ﬂ_,L'l v/
= 2cos (— + 27ri"La’> = 2cos — = 0,

2 2

SO (efr(;pq, e) = 0. Let t be the largest such that p’ | a. Then by Theorem 3.13, we have

dim VP = 2p* if G, € C,,, in which case {eZ} |7 € H'} is an o-basis by Lemma 3.7 part

T ’YTP

iii), and dim V." = 4p’ if G, C C,,, in which case {el el el el |t € H'} is an o-basis

by Lemma 3.7 part iv). O

3.5 Irreducible symmetrization

In this section we will give necessary and sufficient conditions for the existence of an
o-basis of the symmetry class of tensors corresponding to an irreducible Brauer character of
D,,. We will also show the existence of an orthogonal basis for the Brauer symmetry class
of tensors that consists of ordinary standard symmetrized tensors in the case of degree two
irreducible Brauer characters of D,,.

Let G = D,,. Recall that ¢? € IBr(G) for 1 <i < £ is of degree two and x;, Xji—i, Xji+i €
Irr(G) for 1 < j < 5‘% are of degree two. Recall also that ®? denotes the PI corresponding

to ? and that ®? denotes the restriction of ®? to G.

Lemma 3.15. For each 1 <1i < % we have

Proof. By using Theorem 3.5 we write

=D Xa= D 0 = A} = pig?

ac€A; a€A;
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Lemma 3.16. For each 1 <i < é,

Proof. By the definition of a symmetrizer s, = ¢|?(§|e) > vec ¢i(0)o. Now by the Lemma 3.15

above
2 1. 2 1 _,

2 (I). _(I). ’
Sg2 = |G| i(0)o = |G|U€G i(o)o

where the second equality holds because ®? vanishes off of G. Now by Theorem 3.5 we get

Gl N Xale
" = i 2 2 pq|G|Z S i & e

o€G acA; JEG’ acA; oeG
G
- p’q Ié | 2 S

a€A;

which completes the proof. O]

Lemma 3.17. For each 1 <i< g we have

Ve = ZVM (orthogonal direct sum).

acA;

Proof. Let v € V. Then s2(v) € V2. Let g = |C"'G‘| By using Theorem 3.16 we get

v) = Z Sa (90),

a€A;

SO V%z - Zae A, V.. Now to show the other inclusion, note that for some arbitrary v, € V",

. . . l . N
D aea; Sxa(Va) isin 30 oy Vi, Therefore there exists an element 3, 4. sy, (5v0) in V" such
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that

sta Vg —gZSXa(ZSXa va>—s 2<sta va>€V2

a€A; a€A; a€A; a€A;

SO D gea, Vo C© V2 as desired. In the above computation we have used the Lemma 3.16
and the fact that the symmetrizers corresponding to ordinary irreducible characters are
orthogonal projections (Theorem 2.1). Since ordinary symmetrized spaces are orthogonal by

Corollary 2.2 we have the result. O]

Recall that for x € Irr(G) a standard decomposable symmetrized tensor corresponding

to x is given by eX where v € I';, ..

Theorem 3.18. For 1 < i < &

3» V2 has an orthogonal basis consisting of decomposable

tensors of the form eX, x € Irr(G), if and only if ¢ =0 mod 4, where (' = gcd(e -

Proof. Suppose V.2 has an orthogonal basis of the stated form. Then in particular V,, has an
orthogonal basis due to Lemma 3.17. Therefore by [10, Theorem 3.1] we get n =0 mod 4iy
where iy is the power of 2 such that = is odd. This means that i, is a factor of £ and further

ng(Z ) — gcd( ) is odd. Then since ¢/ = , for some integer m we get

gcd(

q qp . .
4m — 2 — p_g — p g ng(€72) — pqzlng(‘&Z)

12 19 i2 19 7

so 4 | ¢ as desired.
Conversely suppose ¢ = 0 mod 4. Let ¢, be the largest factor of ¢ that is expressed
it is the case that 4 |

as a power of 2. Now since 4 | ¢/ = which gives

gcd(ﬂ 1) ged( E Ji2)?

ged(la, ia) = ia, so 4iy | 5 and hence 4iy | £. So we have n = 0 mod 44y and therefore V,,
has an o-basis by [10, Theorem 3.1]. Now, since 4is | £, we have { = adiy for some integer a,
so for a fixed k where 1 < k < p we have

ki +1= k(a4@2) + Zéig/ = Z2(l€@4 + ig/),
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where iy = = is odd. Then if (k¢ £ 1)y is the largest factor of k¢ £ i as a power of 2, then
(kl £1i)y =iy, so n =0 mod 4(kl £ i)s. Therefore V,

ees; has an orthogonal basis by [10

Theorem 3.1]. This means V,, has an o-basis for each a € A; and hence by Lemma 3.17 we

get the result. O
Recall for a character * of G, V.* = (e, | 0 € G).

Lemma 3.19. Forl <i< g and v € I'y

Vf? = ZVVX“ (orthogonal direct sum).

a€A;

(€]

Proof. Fix 1 <i < £ and v € T,,,,,. Take sg2(w) € Vf? for some w € V,. Let g = i

2

Then by Lemma 3.16,

(w) =g Z Sya (W) = Z Sxa(gw),

aGAi aeAi

2
and this gives the inclusion V& C Y e A, Vo¥e. For the other inclusion consider arbitrary

w, € V, and set

V= Z Sy (Wa) € Z Vxe.

(IEAi aeAi

Note that v is also in V/;, so %v € V,. Then

1 .
U—gzsxa _Sap?( U)EV’Y%a

a€A;

so we have

acA; an C V’Y "
Since orbital subspaces are orthogonal by Theorem 2.3 we have an orthogonal direct

sum as desired. N
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For v € T, recall that G, is the stabilizer subgroup of v and A, =

>_sec, M(0) # 0}. Using Theorem 2.3 and Equation 2.3 we have
Vp=D V=2 V)
vEA ye&,
For1<1i< % put A; = UaeAiZXa

Theorem 3.20. Forl1l <i< g we have

Ve = ZVV?'

YEA;

Proof. By using Lemma 3.17 and Equation 3.5 we get,

Ver = ZV“ B Z Z Ve = Z vaxa - ZVVW

a€A; a€A; 'YEZxa YEA; acA; YEA;

where the last equality is due to Lemma 3.19.

Lemma 3.21. For each 1 <i < %, v €Lyn, and o € G, we have

2
Pi E Xa X
(6737 e’Y - g 673, e'ya ’

a€A;

where g = |G|/(p"|G)).

Proof. Fix 1 <1i < %, v €1ln, and 0 € G. By Lemma 3.16 we get,

ey’ —8267—95 SyaCy = gg ex,

a€A; acA;

SO

2 2
w; eI 2 2 : X E Xa) — 2 E Xa  oX
(6787671) =9 ( 67;7 6 a =49 e’yg'ae-ya .

acA; a€A; a€A;
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Lemma 3.22. For a fixed integer a consider the list of numbers of the form kl + a where
k=0,...,p7—1. Then for any integer 0 < 6 < q, there are exactly p?° numbers in the list

that are divisible by p°.

Proof. Let 0 < 6 < q. We first show that for any list of p? numbers of the form k¢ + a where
k=0,...,p° — 1 there is exactly one number in the list divisible by p°. We will show that
the remainders when divided by p° of the numbers k¢4 a where k = 0, ..., p° —1 are distinct.

Let 0 < ky < ko < p® — 1 and write k10 + a = Q1p° + Ry and kol 4+ a = Qop° + R, with
Qi, R; € Z. Assume Ry = Ry. Then Q1 < Q7 since if ()1 > ()2, then ky > ky. Now we have

kil +a—Qip’ = kol +a— Qop’ = (Q2 — Ql)p(S = (ko — k1)L

This is a contradiction since p° { (ko — k1)f. So all the remainders of the numbers in the list
when divided by p° are distinct and hence are 0,1, ...,p° — 1. Therefore there is exactly one
number of the form k¢ + a where k = 0,...,p° — 1 that is divisible by p°.

Now we consider the list of p¢ numbers of the form k¢ + a where k =0,...,p? — 1 and
a is any integer. By the above result we have that there is exactly one number in the list of
the first p° numbers that is divisible by p°. Say p° | k¢ + a where 0 < k' < p° — 1. Then
to be divisible by p’, a number in the list {k¢ + alk = 0,...,p? — 1} must have the form
(K" + bp®) + a where b = 0, ..., p? %1, Therefore there are exactly p?~° numbers in the list
divisible by p°. O]

Theorem 3.23. Fix i where 1 < i < g There are exactly p?=° elements of the set A; that

are divisible by p°.

Proof. For a = kl —i € A; where 1 < k < 7‘% note that p° | k¢ — i if and only if
p° | pil — (k¢ — i) = (p? — k)¢ + i. Then by writing i = 0f + i we see that the number
of elements of A; that are divisible by p’ is the same as the number of integers k¢ + 1,

0 < k < p? — 1, that are divisible by p°, which number is p?~° by Lemma 3.22. O
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Letnfl—gcd—foraeA

Lemma 3.24. Fiz a € A;. Then n!, = p?=° (', where 6, is the largest such that p’ | a.

Proof. Let 8, with 0 < d, < ¢, be the largest such that p’ | a. Observe that §, is also the

largest such that p = since p 1 ged (¢, 7). Then ged(p?', —%—) = gcd(gcd 7 wd@s) =

(E 1) ? ged(€,i) ged(£,0)

tp’ for some integer t with p { t. Now since t | p?¢’ we get t | £'. If a = i we get

a _ i - . : _ . a _ klti :
A = D = i’;sot | 7. On the other hand, if a = kf+i we get AT = ot = k' L4’

and since t | k¢’ £ ¢ and t | ¢/ we get t | i'. Then since ged(¢',7") = 1 it should be that ¢t =1

and this gives ged(pl', gch(Le 2)) = p%. Now

pil pil pil

ged(pila)  ged(,0) - ged(pil, =) ged((0) - p?

Q ~

= p? 0y,

Recall for n € Irr(G), A, = {y € A | > vec, N(o) # 0},

Lemma 3.25. Let 1 < h < 3. We have vy € th if and only iof G is of the form H or HT
where H < (r™) and T = (s)

Proof. Suppose v € A,,. In [10] it is shown that if v € A,,, then G, is of the form H or
HT, where H < {(r™) and T = (t) with t? = 1 and t ¢ C,,. So the desired result follows since
s & C,, and s* = 1. To prove the other direction suppose G., is of the form H or HT. First
assume G, is of the form H. We have G, = (r™") for some integer m such that mn}, | n.

Then for any ™" € G., with € € Z we have

! ! !
emnh) hemn;, + wfhemnh.

Xn(r =w
: " __ h ! n
Now since h" = a5y and nj, = =y we get,
Xh<7aemn;1) _ wh"emn + wfh”emn -9
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50 > e, Xn(o) # 0, and hence v € Ay,

Now suppose G is of the form HT, so that G, = {rem"h ST

some m. For each e we have x;(sr™") = 0. So > vec, Xn(o) = Zaeran Xh(a), which is

the same as the sum in the case of G, = H and hence is nonzero. So v € A,, . O

Theorem 3.26. Let 1 < i < £. The space V> has an o-basis if and only if either dimV = 1
2 ¥i

or ¢’ =0 mod 4, where ¢! = m.

Proof. Put ¢ = 7. First suppose V,, has an o-basis and assume dimV # 1. Now by
Theorem 3.20 the space V¥ has an o-basis for all v € A; = (J, 4, A, Let y=(1,2,...,2).
Then G, = {1,s}. So for all a € A;, v € A, since y,(e) = 2 and x,(s) = 0 and hence
v € Ai. By Equation 2.3 we have dim V. X* = 2 for each a € A;. Then by Lemma 3.19 we
have dim V7 = 2p?, so V¥ has a nonempty o-basis B. We may assume B contains eZ.

By Lemma 3.21 and Corollary 2.5,

(e,.65) = Y (eXg, e = Xﬂ Z Xa(p) >3 )

a€A; a€EA; peG~o pEGwaﬂCn acA;

First note that (e%, e£) # 0 because with o = s we get G,0NC,, = {1, s}sNC,, = {1} whence

the above sum is not zero. Now we will show that (e? -y e?) = 0or (e C— ef) = 0 for some

1 <m < /—1. Assume to the contrary, that is for all 1 < m < ¢—1, we have (e’ Je—y e?) # 0

and (e? e?) # 0. Then for 0 < x < p?—1 we have [{e£, | o € 7*(r?")} N B| < 1, because

’}/ST""pq I 'y

for e €7 o gt €165, | 0 € 7" (r?")} with 1 <my <my <€ —1 we get

,yrz,rmlpq7 ,Y,,,zer
¥ P — ® ®
(G’YTITmQPq ) e,y,,,zrmlpq) - (evr(mzfml)pq ) 6’)/) # 0.

So [{e£, | o € C,} N B| < p?. Now by our observation (eZ_, ef) # 0 and by our assumption

we get {ef, | o € s(r”")}NB = 0. For 1 <z < p?—1 we have |{e£, | 0 € sr*(r*")} N B| < 1.
So {ef, | o € G\ C,} N B| < p?. Therefore we get dim V¥ < 2p?, which contradicts with

the observation above. So (e? 7 mpt ef) =0or (e C— e£) =0 for some 1 <m < £ — 1.
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Note that since G, = {1,s} we have G,r™" N C, = {r™"} and G,sr™" N C, =
{r™"}. Recall since ™" is p-regular we have xperi (™) = xi(r™"), 50 3 ca, Xa(r™") =

phx(r™"). So for o € {r™" sr™" | 1 <m < {— 1} we have

0= (e5,,¢5) = yc| Do 2ol = D0 Xl = )

pEGHoNCh acA; a€A;

2mmpie
= 2p?cos Gy

Therefore, %%pqi = (2c+ 1) for some integer c, so

dim - (2c+ 1)1
ged(¢,i)  ged(4,4)

4i'm = = (2c+ 1)

So ¢’ is divisible by 4.
Conversely suppose that dim V' = 1. Then following the same argument in [9, Theorem

2.2], V,, = (e£) with v = (1,...,1), so V,, has o-basis {e£} or () accordingly as dimV,, is 1 or

Now suppose £/ = 0 mod 4. To show that there is an o-basis for V,,, it is enough by
Theorem 3.20 to show that there is an o-basis for V¢ for each v € A;. Fix v € A;. Then there
is a € A; such that v € A, and by Lemma 3.25, G, is of the form H or HT where H < (r")
and T = (s). Now let @ € A; be such that (r") is the smallest for which H < (r"a). Let J,
be the largest such that p° | . Then by Lemma 3.24 we have n,, = p?=%¢'.

We claim that if p% | a for some a € Aj;, then 7 € ZXQ. Fix a € A; and let 9, be
the largest such that p’ | a. Then if p’ | a it follows that p’ < p, so n/, = p?%f <
pi~% (" = n.. Therefore H < (r"a) < (r"a). Then it follows from Lemma 3.25 that, v € A,
as claimed.

Also we claim that v € A, only when p% | a. To see this assume there is a € A; such

that v € A,,, but p’ { a. Note that H < (r"=) by Lemma 3.25. Letting &, be the largest
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such that p’ | a we get pPs < p, so nl, = pi=% ¢ < pi=% ¢ = pn! This gives (r"e) < (r"a)
which is a contradiction since (r"a) is the smallest subgroup to contain H. Therefore the

claim holds and then by Lemma 3.19 we can write

Vf _ Zvvxa — ZaeA an

a€A; b |a

By Lemma 3.22 there are p?—% summands in the direct sum above. In the proof of [10,
Theorem 3.1] it is shown that for x € Irr(G) of degree two, dim VX = 4 if G, = H and
dim VX =2 if G, = HT. Then we have dim V¥ = 4pa—0% if G,=H and dmV? = 2pi—da if
G, = HT.

Suppose G., = H. Write G., = (r™"a) for some integer m with mn/ | n. Now we will
show that {e?,,e? |0 € X} where X = {TZTE/ |0 < @ <2p?% — 1} is an orthogonal basis for

V¥. To show this we will compare all possible combinations of elements for orthogonality.

Let 0,7 € X. Consider the elements ¥, and e? . Then since G sto ' NC, =0 we have

2
(e’fsﬂ e’fa) = (efsfrg'—17 dj) =T~ Z Z Xa(p)

| 'Yl pEGsTa—INCy, a€A;

¥ 14 [%2) _ 2 @ © © [
For elements ef,. and e, we see that (¥, ,e%,,) = (7 . ,€%) = (e, %), so it is enough

to check the orthogonality of elements of the form €7 . In this case it is sufficient to check

that (e? ,e?) = 0 for each 0 € X with ¢ # 1. Fix 0 = r e X with o # 1. Then

Yoo Ty

G,oNnC, = {pemmnatir |0<e

mnf

(€£,,¢%) = S D vl = |Z > Xl )

pEGvaﬂCn acA; e=0 acA;
—1 no 1
i 5 ,
empq dSap 4 “ ) § E X (r%(élempq’&@—i-:c))
G ¢ '
e=0 a€cA; | 'Y| e=0 a€A;
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We observe here that for any r* € C,

q_
2

p

Z Xa(r') = xi(r") +

P

41

2
Z XkZ—i(rt)
k=1

1
Xke+i(7"t) +

aeAi k=1
q_
B pi-1
_ t t t
= xi(r') + E Xre+i(17) + § Xpat—(ke+i) ()
-1 _pd+1
k k=P 5
a_
P . 1 pl—1
ti —ti t(ki+i —t(kl+i t(pl—(kl+i —t(p9l—(kl+i
=W+ w Z+§ (w(+l)_|_w (+l))+ § (w(p ( +Z))+w (» (‘H)))
k=1 k:Pq;ﬂ
p?—1
_ (wt(kf—&—z) _i_w—t(ld—l—z))'
k=0
. / 5
So with ¢t = £ (demp?=% + ) we get,
9 mzf, _lpq,1
/ /
(ef.,e?) = —— § (w%@empq—ém)(mi) + w—%uempq*mx)(km))
Yooy
|G e=0 k=0
|
2 mné / pi-1 ’
— <w%(4empq_5a+:p)i w%(4empq_‘sﬁ+x)k€
| 7| e=0 k=0
/ pq_l !
+w7%(4empq_‘sﬁ+x)i wf%(4empq_‘sﬁ+x)kf>
k=0
2 mnﬁ—l_l , qul ,
— E <w%(46mpq’5@+x)i (w%(4empq’6ﬁ+:c)€)k’
|G- e=0 k=0
! pqil !
+w—%(4empﬂa+x)z' (w—%(%mpq*‘;ﬁﬂ)f)k)
k=0

In order to proceed, we need the fact that if j is a positive integer and p € C is a jth

root of unity with p # 1, then

j—1

-1
> =t o
k=0 P
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Note that w%(ﬂ‘gmpq%“z)é is a p?th root of unity for all e. If for some fixed € the expression
£ (4emp?™0 + ) is not a multiple of p?, then we have St (wi%(‘kmpq_aa”)e)k = 0 by the
preceding observation.

On the other hand if a fixed € is such that %(4empq_5a + x) is a multiple of p?, then
since p { £ it should be that 4emp?=% + x = zp? for some integer z.. Then for such e, on

the right hand side of the above equation we get,

a_ a_
I 8z A . 7 —d8g 7 55 A l o —5a
wz(4empq a4x)i E (wz(llempq a—l—x)f)k + w—z(45mpq a+4x)i (w—z(élempq a—i—:L’)Z)k
k=0 k=0
/ pqil ! ! pqil / / /
_ w%zepqi Z w%zepqﬁk + w—%zepqi Z w—%zepqﬁk _ pq<w%25pqi + w—%zepqi)
k=0 k=0

e, 0, q: . . . ,
= pq(wZZquZ/ + oJ_Zzﬁpqll) = pq(w%%’/ + w_%zézl) = pqw_%'z“l (w%zfz, +1)

= plw™ T ((—1)*" +1).

is odd because when 4 | ¢ = ngLE“) we have 4 | ¢/ =

lo
ged(l2,i2)”

Now clearly i/ = gc+@w’)
so iy = ged(ly,is) = ged(l, i), that is, the largest powers of 2 dividing ¢ and ged((, 1),
respectively, are equal. Here we claim that z. is also an odd number. Observe that x =
2p? — 4emp?% = pi% (z p% — 4em), but since x is an integer such that 0 < z < 2p?=% — 1
we get z.p% — 4em = 1, so zp’ = 4em + 1 and therefore z, is odd as claimed. Then the
last expression of the above equation plw™ 4" ((—1)* 4-1) = 0 and this gives us the desired
result that (e£,,e?) = 0.

Now suppose G, = HT. Write H = (r™"a) with m an integer satisfying mn/ | n. In
this case we will show that {e? |0 € X} where X = {0 = TZTZ,]() <z < 2pi% — 1} is an
orthogonal basis for V.*. Let o € X not be the identity element. It is sufficient to check that
(e%,,e2) = 0. We have HTo N C,, = Ho N C,, so the computation is the same as in the case

of G, = H, whence we have shown the desired result.
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We will state the result for the existence of an o-basis in the case of a degree one

irreducible Brauer character as it appears in [9].

Theorem 3.27 ([9, Theorem 2.2]). Let 0 < j < ¢, and put ¢ = zﬂj. The space V, has an

o-basis if and only if at least one of the following holds:
i) dimV =1,
ii) p =2,
ii1) m is not divisible by p.
3.6 Projective symmetrization

In this section we will discuss the existence of an o-basis associated with a Pl of G = D,,.

To prevent the redundancy of some computations to follow we introduce some notation below.

2, if n is odd;
E =
4, if n is even.
{ke|1<k<EAY j=1,2
T, = (3.6)

{§+k(|0<k<PAR—-1}, j=34

Then using Theorem 3.5 we can write

O =1+ xi, for1<j<e, (3.7)
tETj
OF = x; + i(XkZ—H + Xwe—i), forl1<i< é (3.8)
3 P Y — 2
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First considering the Pls corresponding to degree one Brauer characters and using the

Equation 2.4 the symmetrizer is given by

1
HO) 1
ser = 222 3" 0l (0)o,
" ’G| oceG (

Proposition 3.28. Fix j with 1 < j <e. Then

1
Sol = Sy; T 5 > s

teT;

Proof. By Equations 2.4 and 3.7 we get

o = ﬂé,) " @!(o)o = ﬁG(‘) S Wy(0) + Y wlo))o

oeq oceG teT;
1 1
= =Y ¥i(0)o+ Y =xi(0)o
‘G’ O'EG tETj |G|
_gle) xile)
=@ ij(a)a + 2G| xi(o)o
ceG tETj
1
= S¢j + 5 Z SXt‘
tETj

O

Recall that A is a set of representatives of the orbits of I', ,,, under the action given in

Equation 2.1. Then for 1 < j < e by Equation 2.5 we have

Var = S 127,

RISTAN

Theorem 3.29. Fiz j with 1 < j <e and fir v € A. Then

1
®;

v, = vaj —i-ZV,YXt (orthogonal direct sum)

tETj
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1
Proof. Let 8%1,(11) € V;Dj . Then it is clear from Proposition 3.28 above that sq (v) € Vi
> ter, VX' To show the other inclusion consider sy, (w) + 37, cp. Sy, (we) € /ACHE > rer; Vi
Note that sy, (w) + > er, sy, (2we) € V. Then

sy, (W) + Z S (We) = sy, (w Z Sy (2wr) = sy, (w Z Z Sy Sxe (201)

tET; teT teT

(o + ; > ) (o + ZW“’“)

B (Sw]- * % 2 SXb) (8% (w)+ th(zwt))
) teT;

= 51 (Swj (w) + Z Sxt(2wt)> S V;D]l'?

teT;

where we have used that s,s, = d,ys, for all x,¢ € Irr(G). This shows that V;bj =
ij + ZteTj VXxt. The orthogonality follows from the argument in the proof of Theorem
2.3. O

Fix j with 1 < j <e and v €I, ,,,. We have by Theorem 2.6

ol <I>1
(670, ey’

@5(7).

TEG acG,
Below we state as a corollary a useful form of this inner product.

Corollary 3.30.

(e;b;,eq,l 2|G| Z <2¢ja a +th0' a)—2|G| Z (%a ') + @) (0 ))

Gy teTy acGy
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Proof. Using Equation 3.7, Theorem 1.13 and Theorem 1.14 we get,

o @] 90}@)2 10 =1 Nal/i—\
(670'767 )I WZ Z CI)J-(O' OéT)(I)j(T)

T€G acG,
— Soljlc(T,TQ)Q ; a; <@ij(a_1a7) + teZT Xt(a—laT)> (W + UEZT Xu—(T)>
- ﬁc;) 2 503 (5o~ am)us (77) +te§;fxt<o—1ar>xt<7—1>)
90]1(6)2 Z (Z V(e ar)y,(r +ZZ xelotar) (T ))
acGy TEG teTy reG
Jl'<€)2 |G| |G\
-G 2 (oot + 2 fhio ),

Now since @j(e) = vj(e) =1 and x;(e) = 2 for each t € T we get,

(efi,e?;l 2’G|Z<2¢ja a —|—th0 a)—2’G|Z<wja ') + @i (o~ a))

a€Gy teT) a€Gy

O

Theorem 3.31. Fori=1,2,3,4 the space V@} has an o-basis if and only if at least one of
the following holds.

i) dimV =1,
i) p=2,

ii1) n is not divisible by p.

1

Proof. If dim V' =1, then Vg1 = (e$j>, where v = (1,1,...,1), so Va1 has o-basis {ef}} or ()
according as dim VQ; is 1 or 0.

Assume p = 2. Then @} is an ordinary irreducible character of the group G' = (rr")y <
(. Then using Freese’s result for the dimension of an orbital subspace [6], dim V«;bjl is at

most one and hence has an o-basis. So Vg1 has an o-basis by Equation 2.5.
J
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Assume n is not divisible by p. Then G = G and hence <I>j1 = 1);. Since v; is of degree
one, each orbital subspace has dimension at most one and hence V.:I)Jl_ has an o-basis by the
same argument as in the above paragraph.

Now assume that none of the three conditions stated in the theorem holds. Let v =

1
(1,2,...,2). whichisin I, ,, since dim V' > 2. We show that (efg;, ef

7) # 0 for every o € G.
Note that G, = {1, s}.

First let 0 € G\ G. Since p # 2 we have o € C,. Using Corollary 3.30 we get,
ol Pl _ _
2|Gl(ergr ey”) = (v + @) (07") + (45 + @5)(07"s) = (o) + 2¢(s0) # 0.

Now let ¢ € G. Then o € {rov* sr® | 0 < a < (,0<b<n}. Assume o = r®" for some

0 <a< ¥ Wehave
2mjlkp?
- =

Xke(0) = ng(rkpq) = 2cos 2,

and
2#(% + kl)re’

n

_ ap?y __ _ a9 _ (_1)\a
X%Jrke(a) = X%+M(r ) = 2cos = 2cosmap? = (—1)*2.

We also note that for a fixed j we have that ¢;(r?") and x;(r*?") (¢ € T;) are all positive or all
negative at the same time for a given a. Recall by Equation 3.1 we have v;(r=") = 1, (r®")

and Xt(r*apq) = Xt(rapq). So

1 1

2AGI (e, 1) = (5 + D) + (5 + DI ("s)

= 205(") + 205(sr) + D xa(r™) # 0

tET]‘

o1



using that p # 2 and that n is divisible by p so that 7} is nonempty. Now assume o = sr?

for some 0 < b < n. By Corollary 3.30 we get

(05 +@)(s1") + (1 + @) (sr"s)

ol Pl

— i (W + @ (1) + (0 + N = (5, €57).

q>1 q)l 1 q>1
Now we get (eya,e4”) # 0 since (e,7n,€y") # 0 by the two previous cases. By Equation

2.3 we have dim VX" = ngl) > vec, Xi(0) = 2 for each t € Tj. As observed earlier, T is

ol
nonempty, so dim V, 7 > 1. So we conclude that Vq;.; does not have an o-basis and the proof

is complete. O
Now we will consider the PIs corresponding to degree two Brauer characters of G = D,,.

Corollary 3.32. For1<i<£

_ PG

= —— 7 S,2-
G|

S@ZZ

Proof. Let 1 <1i < é By Equation 2.4 and Lemma 3.15,

2 2 e
_ ile) 2 _ wile) 29 pq% pq| |
Sp2 = el E O (0)o = el E O (o) E Gl S2-

oeG ceC eG

Recall that Vg2 = s¢§(V®") and V2 = s, (ven),

Theorem 3.33. Forl1l <i< % we have

Proof. Take S(DZZ(UJ) € Vg2. Then using Corollary 3.32 we get

pI|G pI|G
S¢2(w) |’G||S (w):8%2< |’G||M)EV¢$7

(3
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which shows the inclusion Vg2 C V2. Then take s (u) € V2. Again using Corollary 3.32

we see that
G| |G|
Sp2(u) = ———sg2(u) = Sg2(——u) € Ve,
©i pq|G‘ [ 7 pqu’ 7
which gives the other inclusion. So we get Vo2 = Vie. O]

Theorem 3.34. Fix i where 1 <1< % and let v €Iy, . Then

02 PG| o
Proof. By Corollary 3.32 we get that,
27 _ _ G _ PGl
ey’ = Sg2(ey) = ] Sg2(ey) = Gl ert.

[]

Lemma 3.35. Fiz i with 1 <1 <

Nl

Then V2 has an o-basis if and only if V2 has an

0-basis.

Proof. We observe that,

o2 w2 pUG| g2 pUG| w2 PUGla, 2 o
(6’}/ y €1 ):( |G| e’fv |G| ef):<W)2( ’f ,€~f)

2 2

So (€57, er') = 0 if and only if (eff?,ef’z) = 0. O
Theorem 3.36. Fix i with 1 < 1 < g. Then Vg2 has an o-basis if and only if either
dimV =1 or ¢ is divisible by 4, where ¢! = ¢/ ged (¢, 7).

Proof. The result follows from Lemma 3.35 and Theorem 3.26. O]

Theorem 3.37. Fiz i with 1 < 1 < é Then Vg2 has an orthogonal basis consisting of

decomposable tensors of the form eX if and only if ' =0 mod 4. Where ¢’ = gc+&“)'

Proof. The result follows from Theorem 3.33 and Theorem 3.18. m
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Chapter 4

Symmetric group

In this chapter we will discuss some results associated with Brauer characters of a
symmetric group.

For some positive integer n, the symmetric group S,, of degree n is the group of permu-
tations of the set {1,2,...,n} with the binary operation defined by function composition.

The number of elements of S, is n!. A permutation o of S,, is given by

1 2 n
g =
oe) o(2) o(n)
or
g = (illy---7i1r1)(i21a---7i2r2)"'(i517---7i5rs),

where 1 <igp <N, igp = ieq implies a = c and b = d, and 0 (iq) = tapr1) (b < 7a), 0(lar,) =
1q1- The latter is in a factored form, where the factors are disjoint cycles. The length of a
cycle is the number of numbers that appear in the cycle. The lengths of the cycles rq, ..., rq
of o, when arranged in non-increasing order is called the cycle type of o. Two permutations
are conjugate in S, if and only if they have the same cycle type ([13, Theorem 2.4, page
292]). In particular, the number of conjugacy classes of S, is equal to the number of different
cycle types of the elements of .S,,. So the number of irreducible characters of .5,, is the same
as the number of different cycle types of the elements of .S,,.

The order of a cycle equals the length of the cycle. Let ¢ be a permutation with the

cycle type (71,72, ...,7). Then it can easily be observed that the order of o equals the least

o4



common multiple of the numbers ry, 7, ..., 7. In light of this a p-regular element of .5, is a
permutation with cycle type consisting of numbers not divisible by p.

In the following study we will just consider the principal Braur character of G = 5,,,
which is the character ¢ given by 1(¢) = 1 for each 0 € G. As the Brauer character afforded

by the trivial KG-module 9 is irreducible.

Theorem 4.1. Let G = S, with n > 3. Assume that dimV > 2 and p # 2. Then
(e%,eﬁ) # 0 for all o € G, where v = (1,...,1,2). In particular, if dim Vj’ > 1, then V,

does not have an o-basis.

Proof. Let v = (1,...,1,2). We can assume 7y to be the representative of the orbit containing
it, so v € A. Observe that G, = {o € S, |o(n) =n} = 5,_1.

By Theorem 2.4, for any o € G we have

(e, eb) Z > pwe(rton™) Y()w(p)

pelG reou—1GNG., peG pEpo—1G,NG

Z‘W 'a, nal.

MGG

" IGP

So (e,,e¥) = 0 only when o~ 'G, NG = () for some 1 € G. We will show that for all 0 € G

there is some p € G such that po G, N G # 0, which implies that (e2,,e¥) # 0.

We claim here that the cyclic group H = ((1,2,...,n)) is a set of right coset represen-
tatives of G, in G. For hy, hy € H with h; # hy we have hihy'(n) # n, so Gyhy # Gy hs.
Also |G : G| = n = |H|. Now since G,H = G we have {€!,|o € G} = {e$h|h € H}. Soitis
enough to show (e’ S ) #0forall h€ H. Let h € H. If h = e, then letting = e € G we
get ph~'G, N G = G, N G, and this latter set contains the transposition (1,2), since n > 3
and p # 2, so it is nonempty as desired. Now assume that h # e. Then h(n) # n and there is
1 < m < n—1such that h(m) = n. Now let u = (m, n) and observe that we get uh~'(n) = n,
so uh™' € S, = G,. Therefore, u € G, since p # 2, and puh™'G, NG = G, NG # 0 as

desired.
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If dim va > 1, then V,Yw does not have an o-basis, so by Theorem 2.3 the space V;;, does

not have an o-basis. [
The following example is a case, where we do not have an o-basis for V.

Example 4.2. Let G = S3. Assume dimV > 2 and p = 3. Let v be the principal Brauer
character of G and let v = (1,1,2). Then dim Vf > 1.

Proof. Note since p = 3 we have G = {1, (a,b), (a,c), (b,c)}. Write el = 67(11112). Then for
o = (a,b,c) € G we get ¥, = e?’ml). Now by Equation 2.2 we get
" 1
€h12) = 1(26(112) + e + eqa),
" 1
€211) = 1(26(211) + eqiz) + eqa)-
By inspection we see that eq(plu) and eén) are linearly independent, so dim Vj’ > 1. O]

The alternating group G = A,, is the subgroup of S, consisting of all the even per-
mutations of S,. Let ¢ be the irreducible Brauer character of G with (o) = 1 for all

oed.

Theorem 4.3. Let G = A,. Assume that dimV > 2, n(> 3) is odd, and p # 2. Then
(el ,e¥) # 0 for all o € G, where vy = (1,...,1,2). In particular, if dim Vj’ > 1, then Vy

Yoy

does not have an o-basis.

Proof. Let v = (1,...,1,2). We can assume ~ to be the representative of the orbit containing
it, so v € A. Observe that G, = {¢ € A,|o(n) = n} = A,_4. Since n is odd H =
((1,2,...,n)) C G. Following the same argument as in the proof of Theorem 4.1 we can
show that H is a set of right coset representatives of G, in G. The argument to show

(e%,,e¥) # 0 for all o € G is the same as in the proof of Theorem 4.1. O
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4.1 Special case S,

The symmetric group G = S, of degree 4 is the group of permutations of a set {a, b, ¢, d}.

Let p = 2. Then there are two, 2-regular conjugacy classes and
G = {1, (abe), (acb), (abd), (adb), (acd), (adc), (bed), (bde)}.

The Brauer character table of G in this case is (see [12, page 431])

©2 2 —1

Theorem 4.4. Assume that dimV > 1. The space V,,, does not have an o-basis for i €

{1,2}.

Proof. Fix i € {1,2} and put ¢ = ;. To show V,, does not have an o-basis it is enough by
Theorem 2.3 to show that V¥ does not have an o-basis for some v € A.

Let v = (1,1,1,2). Then G, = {1, (ab), (ac), (bc), (abc), (acb)}.

Let H = {1, (ab)(cd), (ac)(bd), (ad)(bc)} and observe that G = G,H. So {e?, | o €

G} ={ef, | 0 € H}. We will compute the value of (e£,,e?) using the formula

e(u)e(p™) (4.1)

( ®
Yo’ 'Y
pe@ pepo—1G,NG
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(see proof of Theorem 4.1). The following table lists the products uo=!, with u € G and

o€ H.
o\ i 1 (abc) (acb) (abd) (adb) (acd) (adc) (bed) (bdc)
1 1 (abc) (acb) (abd) (adb) (acd) (adc) (bed) (bde)
(ab)(cd) | (ab)(ed) (acd) (bed) (ade) (bde) (abe) (abd) (achb) (adb)
(ac)(bd) | (ac)(bd) (bdc) (abd) (acb) (acd) (adb) (bed) (adc) (abe)
(ad)(be) | (ad)(be) (adb) (adc) (bed) (abe) (bde) (ach) (abd) (acd)

Now we will look at the part Zueé Zpewfleé o(p)p(p~!) on the right side of the Equation
4.1. Note from the table above that po~! is even for all x and o. Now since G does not

! with the elements of the form () in

contain odd cycles we can neglect the products of po~
G, when considering uo'G, N G.

When p =1, for all cases of 0 # 1 we get:

po ()= () =()() and  po () = ()()( )= () (two times).

From the table we see if u = (- - -), then for each 0 € H we have yo=" = (- --). The

1

table below lists the products po~" (columns) of the form (- --) with the even permutations

in G, (rows).

(abc) (ach)  (abd) (adb) (acd) (adc) (bed) (bdc)

1 | (abc) (acb)  (abd) (adb) (acd) (adc) (bed) (bde)
(abe) | (ach) 1 (ad)(bc)  (bed) (abd)  (ab)(cd) (ac)(bd)  (adc)
(acbh) 1 (abc)  (acd)  (ac)(bd) (ad)(bc)  (bdc) (adb)  (ab)(cd)

o8



Assume that ¢ = ;. Since p(f) = 1 for all § € G and po—'G, NG # 0 we get (e£,,e?) # 0

yo oy

for all o € H. Now write e = 6(6112)- Then ef(ad) = 6202111)- Now by Equation 2.2 we get

1
6201112) = §(3€(1112) + 2e(2111) + 2€(1211) + 26(1121))7

1
Géln) = 5(36(2111) + 2e(1112) + 2ei211) + 2€(1121))-

By inspection we note that 6?1112) and 6@111) are linearly independent, so dim V¥ > 2. So
we conclude that V¥ does not have an o-basis and hence V,, does not have an o-basis.
Now assume that ¢ = @,. Then to evaluate (e£,,ef) for each o # 1 in H we observe

from the computations above in the cases of p =1 = () and p of the form (- --) that
S wwele ) =4(() () +160(()e(¢-).
peG pEpo—1G,NG

So by the Brauer character table given above and Equation 4.1 we get

(€2, %) = %(4(2)(—1) F16(-1)(=1)) #0.

Now note that by Equation 2.2 we get

I’ 2
€a112) = —(—26(2111) - 2€(1211) - 26(1121))7

[\ iNe]

6?2111) = 5(—26(1112) - 26(1211) - 26(1121))-

By inspection 6201112) and e‘&m) are linearly independent implying dim V¢ > 2. So we

conclude that Vf has no o-basis and therefore V,, does not have an o-basis. O
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