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Abstract

The main focus of this dissertation is on the existence of an orthogonal basis consisting

of standard symmetrized tensors (o-basis for short) of a symmetry class of tensors associated

with a Brauer character of a finite group. Most of the work is done for the dihedral group and

some results are given for the symmetric group. The existence of an o-basis of a symmetry

class of tensors associated with an (ordinary) character of a finite group have been studied

by several authors. My study was motivated by the work done on the existence of such a

basis of a symmetry class of tensors associated with an (ordinary) irreducible character of a

dihedral group.

In Chapter 1 we introduce the basic definitions in character theory. In this a Brauer

characters, character of a projective indecomposable module (PI) and a block of a finite

group will be introduced. Also in this chapter a generalised orthogonality relation of blocks

of a finite group is established. In chapter 2 we introduce the symmetrizer and related

notions. Some general results associated with Brauer characters of a finite group will also

be given in this chapter. Chapter 3 consists of the results associated with Brauer characters,

PIs and blocks of a dihedral group. Finally Chapter 4 lists some result associated with the

Brauer characters of the symmetric group.
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Chapter 1

Character Theory

1.1 Group representations and Group Algebra

Let G be a finite group and V be a finite dimensional vector space over the field of

complex numbers C. By GL(V ) we denote the group of invertible linear transformations

from V to itself. A representation of G is a group homomorphism ρ : G → GL(V ). The

degree of the representation is the dimension of V .

Denote by CG the vector space over C with the basis G. CG is a ring with the multi-

plication defined by,

(
∑
a∈G

αaa)(
∑
b∈G

βbb) =
∑
a,b∈G

αaβbab.

A C-algebra is a ring A that is also a vector space over C such that α(ab) = (αa)b = a(αb)

for all α ∈ C and a, b ∈ A. Note that CG is a C-algebra and is called the group algebra of

G over C. CG has an identity given by 1e 6= 0, where e is the identity of G. Define a map

from C to CG by α 7→ α1, where 1 6= 0 is the identity of CG. This is a well defined ring

monomorphism, hence C is viewed as a subring of CG.

Let V be a finite dimensional vector space over C and let ρ : G → GL(V ) be a repre-

sentation of G. Then V can be viewed as a (left) CG module by defining av = ρ(a)(v) for

a ∈ G, v ∈ V and extending linearly to CG.

On the other hand, let V be a CG module. Then V is a vector space over C by viewing

C as a subring of CG. When we say that V is a CG module, we always assume that V is

finite dimensional when viewed as a vector space over C in this way. Define a map ρ from G

to GL(V ) by ρ(a)(v) = av for a ∈ G, v ∈ V . Then ρ is a well defined group homomorphism

and hence a representation of G called the representation afforded by V .
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An irreducible representation of G is a representation afforded by a simple CG module.

1.2 Character

Let V be a CG module and let ρ be the representation of G afforded by V . Let σ ∈ G,

so that ρ(σ) ∈ GL(V ).

Let Mρ(σ) be the matrix representation of ρ(σ) corresponding to a fixed basis of V . The trace

of ρ(σ) is given by tr(ρ(σ)) = tr(Mρ(σ)). Note that the value of tr(ρ(σ)) does not depend on

the choice of the basis since similar matrices have the same trace.

The (ordinary) character of G afforded by ρ or V is the function η : G→ C defined by

η(σ) = tr(ρ(σ)) for σ ∈ G. We say η(e) the degree of η where e is the identity element of G.

Theorem 1.1 ([11, Lemma 2.15, page 20]). Let η be a character of G. Let σ ∈ G and let

m be the order of σ. Then

i) η(σ) is a sum of mth roots of unity,

ii) η(σ) = η(σ−1).

Two representations ρ and % of the same degree n are said to be similar if there exists

an invertible matrix P of size n× n such that Mρ(σ) = P−1M%(σ)P for all σ ∈ G. It is easy

to observe that the following result holds using the property that tr(AB) = tr(BA) for all

square matrices A,B.

Theorem 1.2 ([11, Lemma 2.3, page 14]).

i) Similar representations of G afford equal characters.

ii) Characters are constant on the conjugacy classes of G.

A class function is a function on G that is constant on conjugacy classes. The theorem states

that the characters of G are class functions.
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A character of G is called an irreducible character of G if it is afforded by an irreducible

representation of G (or, equivalently, a simple module of CG). Representations of G afforded

by isomorphic CG-modules are similar. There is a one-to-one correspondence between iso-

morphism classes of CG-modules and similarity classes of representations of G (see [11, page

10]). Therefore in light of the theorem above the number of different irreducible characters

of a group G is the same as the number of isomorphism classes of simple CG-modules.

Let Irr(G) denote the set of irreducible characters of G. Maschke’s theorem stated below

provides a way to reduce the study of characters of G to the study of irreducible characters

of G.

Theorem 1.3 (Maschke). Let K be a field. If charK - |G|, then every KG-module is a

direct sum of simple KG-modules.

Since char C = 0, Maschke’s theorem holds for the field C. Now let V and V ′ be

two CG-modules and let ρ and ρ′ be the representations they afford respectively. Let θ

be the representation afforded by the direct sum V ⊕ V ′. Then for any σ ∈ G the matrix

representation of θ(σ) relative to an ordered basis formed by taking an ordered basis for V

and appending an ordered basis for V ′ is given by a block diagonal matrix with blocks the

matrix representations of ρ(σ) and ρ′(σ) as given by

Mθ(σ) =

 Mρ(σ) 0

0 Mρ′(σ)

 .

Then the character afforded by the CG-module V ⊕ V ′ is η + η′, since trMθ(σ) = trMρ(σ) +

trMρ′(σ).

Because of the above results we see that to study the characters of G it is enough to look

at the irreducible characters of G. Once all the irreducible characters of G are known the

other characters of G are known as well since they are simply sums of irreducible characters.
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One gets the number of irreducible characters of G from the number of conjugacy classes of

the group G as stated below.

Theorem 1.4 ([11, Corollary 2.7, page 16]). Let G be a group. The number of irreducible

characters of G equals the number of conjugacy classes of G.

1.3 Brauer character

The Brauer characters are the main focus of this entire thesis. These characters are also

known as modular characters. The modular representation theory was founded by Richard

Brauer in the 1930’s. We begin by setting basic definitions.

Let R be the ring of algebraic integers in C. Fix a prime p, and let M be a maximal

ideal of R such that pR ⊆ M . Set K = R/M . Then K is a field. Considering the

natural homomorphism π : R → K we have p 7→ 0, so K has characteristic p. The natural

homomorphism is going from characteristic 0 to characteristic p.

Theorem 1.5 ([11, Lemma 15.1, page 263]). Let U = {λ ∈ C | λm = 1 for some integer m

with p - m} and let R,K be as above. Then

i) U ⊆ R,

ii) the natural homomorphism maps U isomorphically onto K \ {0},

iii) K is algebraically closed and algebraic over its prime field.

An element of G is called a p-regular element if its order is not divisible by p. Denote

by Ĝ the set of all p-regular elements of G.

Let V be a KG-module of finite dimension n and let ρ be the representation of G

afforded by V . Let σ ∈ Ĝ and let κ1, . . . , κn ∈ K \ {0} be the eigenvalues of ρ(σ). Then

by the theorem above there exist unique λ1, . . . , λn ∈ U such that λi 7→ κi via the natural
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homomorphism. Define a function ϕ : Ĝ→ C by

ϕ(σ) =
n∑
i=1

λi. (1.1)

Then ϕ is called the Brauer character of G afforded by ρ.

Let σ ∈ Ĝ and suppose κ ∈ K is an eigenvalue of ρ(σ). Then κ−1 is an eigenvalue of

ρ(σ−1) since

ρ(σ−1)v = ρ(σ−1)κ−1ρ(σ)v = κ−1ρ(e)v = κ−1v.

Also if π(λ) = κ (λ ∈ U), then 1 = π(λλ̄) = π(λ)π(λ̄) = κπ(λ̄), so π(λ̄) = κ−1. Therefore

ϕ(σ) = ϕ(σ−1). If ϕ is a Brauer character of G, then ϕ̄, the complex conjugate of ϕ is also

a Brauer character [11]. A Brauer character corresponding to a simple KG-module is called

an irreducible Brauer character of the group G. We denote the set of irreducible Brauer

characters of G by IBr(G). The irreducible Brauer characters are linearly independent over

C [11, Theorem 15.5, page 265].

Brauer characters are constant on conjugacy classes. The number of irreducible Brauer

characters is equal to the number of conjugacy classes of G containing p-regular elements of

G as stated by the following theorem.

Theorem 1.6 ([14, Corollary 3, page 150]). The number of classes of simple KG-modules

is equal to the number of p-regular conjugacy classes of G.

Let χ̂ denote the restriction of an ordinary character χ of G to the set Ĝ of p-regular

elements of G. The following result is a well known relationship between the ordinary

characters and the Brauer characters of a group.

Theorem 1.7 ([11, Theorem 15.6, page 265]). Let χ be an ordinary character of G. Then

χ̂ is a Brauer character of G.
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The character χ uniquely determines the Brauer character χ̂. We note here that if p

does not divide the order of the group G, then Ĝ = G and the Brauer characters of G

coincide with the ordinary characters G.

The set of complex valued class functions on Ĝ form a vector space over C

Theorem 1.8 (R. Brauer). The irreducible Brauer characters of a group G form a basis of

the vector space of complex valued class functions on Ĝ.

1.4 PIs

We are also interested in the characters associated with projective indecomposable mod-

ules of RG. Note that RG is of finite dimension so satisfies the A.C.C. and D.C.C. Then by [2,

Theorem 14.2, page 81] RG can be written as a direct sum of indecomposable RG-modules.

A summand of this direct sum is a principle indecomposable module (a PIM) of RG. Sim-

ilarly KG can be expressed as a direct sum of principle indecomposable KG-modules. As

direct summands of free modules, PIMs of RG and KG are projective. [5, Theorem I.13.7,

page 44] states that there is a one to one correspondence between the isomorphism classes

of PIMs of RG and those of KG.

Theorem 1.9 ([2, Theorem 54.11, page 372]). Let P be a PIM of KG. Then P has a unique

maximal submodule NP . Two PIMs P and Q are isomorphic if and only if the irreducible

modules P/NP and Q/NQ are isomorphic.

Theorem 1.10 ([2, Corollary 54.14, page 374]). There is a one-to-one correspondence be-

tween the isomorphism classes of PIMs and the isomorphism classes of irreducible KG-

modules.

The character afforded by a PIM P of RG (PI for short) is the character afforded by

C
⊗

R P . By the theorem above we have that there is a one to one correspondence between

the irreducible Brauer characters of G and the PIs of G. We will denote by Φϕ the PI

6



corresponding to ϕ ∈ IBr(G). A PI Φ is a complex valued function defined on G with the

property that Φ(σ) = 0 for σ ∈ G \ Ĝ [5, Corollary IV.2.5, page 144].

1.5 Relationships

Let η ∈ Irr(G) and let η̂ be the restriction of η to Ĝ. Recall by Theorem 1.7 η̂ is a

Brauer character of G, so

η̂ =
∑

ϕ∈IBr(G)

dηϕϕ (1.2)

for some uniquely determined nonnegative integers dηϕ. The integers dηϕ (η ∈ Irr(G), ϕ ∈

IBr(G)) are called the decomposition numbers of G for the prime p. The matrix of size

| Irr(G)| × | IBr(G)| with the dηϕ’s as entries is called the decomposition matrix of G.

Let ϕ ∈ IBr(G). By [14, page 151] we have the following relationships

Φϕ =
∑

η∈Irr(G)

dηϕη, (1.3)

Φϕ =
∑

ψ∈IBr(G)

cψϕψ,

where the coefficients cψϕ are the entries of the matrix C = DDT , with DT the transpose of

D. The matrix C is called the Cartan matrix.

1.6 Block

Let e be a centrally primitive idempotent of the group algebra CG. The block B = Be

corresponding to e is the category of CG-modules V such that eV = V . A CG-module V is

said to belong to B if it is an object of B, that is, if eV = V . By [5, Theorem 7.8, page 23]

a finitely generated indecomposable CG-module V belongs to a unique block. If V belongs

to B, then every submodule and homomorphic image of V belongs to the same block B.
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A character or a Brauer character of G is said to belong to a block B if the associated

module belongs to B. If η ∈ Irr(G) belongs to the block B, then ϕ ∈ IBr(G) belongs to B if

the decomposition number dηϕ is nonzero. Further each irreducible character and irreducible

Brauer character belongs to a unique block. Two irreducible characters η and φ are in a

same block B of G if there is ϕ ∈ IBr(G) such that dηϕ and dφϕ are both nonzero. In this

case the block is the unique block that contains the Brauer character ϕ [11].

If ψ is a character or a Brauer character, we write ψ ∈ B to mean that ψ belongs to the

block B. More generally, if S is a set of characters or Brauer characters, we write ψ ∈ B ∩S

to mean that ψ belongs to the block B and ψ ∈ S.

Let B be a block of G. The Osima idempotent of CG corresponding to B is given by

sB =
∑

η∈B∩Irr(G)

sη =
1

|G|
∑

η∈B∩Irr(G)

∑
σ∈G

η(e)η(σ−1)σ. (1.4)

Theorem 1.11 ([11, Theorem 15.30, page 277]). For blocks B and B′ of G, we have

sBsB′ = δBB′sB.

The following theorem holds due to the Equations 1.2 and 1.3.

Theorem 1.12 (Osima).

sB =
1

|G|
∑

ϕ∈B∩IBr(G)

∑
σ∈G

ϕ(e)Φϕ(σ−1)σ

=
1

|G|
∑

ϕ∈B∩IBr(G)

∑
σ∈Ĝ

Φϕ(e)ϕ(σ−1)σ.
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1.7 Orthogonality

Let Fun(G,C) denote the set of all functions from G to C. Fun(G,C) is a vector space

over C. For f, g ∈ Fun(G,C) set,

(f, g) =
1

|G|
∑
σ∈G

f(σ)g(σ).

(·, ·) is an inner product on Fun(G,C). By definition the characters of G are in Fun(G,C).

Now we will state some known orthogonality relations of characters of G. For η a character

of G and σ ∈ G, we have η(σ) = η(σ−1) by Theorem 1.1. It is a known fact that Irr(G)

forms a basis for the set of class functions from G to C. It is indeed an orthonormal basis

due to the following result.

Theorem 1.13 ([11, Corollary 2.14, page 20]). Let η, η′ ∈ Irr(G). Then

(η, η′) =
1

|G|
∑
σ∈G

η(σ)η′(σ−1) = δηη′ .

Theorem 1.14 (Generalized Orthogonality Relation). Let η, η′ ∈ Irr(G). For any τ ∈ G

∑
σ∈G

η(στ)η′(σ−1) = δηη′
|G|η(τ)

η(e)
.

For complex-valued functions f and g on Ĝ define

(f, g)̂ =
1

|G|
∑
σ∈Ĝ

f(σ)g(σ).

Theorem 1.15 ([5, Lemma 3.3, page 145]). For ϕ, φ ∈ IBr(G), we have

(Φϕ, φ)̂ =
1

|G|
∑
σ∈Ĝ

Φϕ(σ)φ(σ−1) = δϕφ.

9



We establish an orthogonality relation associated with Osima idempotents of blocks of

a group G which we call the generalized orthogonality relation of blocks. Below we discuss

the formulation of this new result.

Theorem 1.16. For µ ∈ G,

∑
σ∈Ĝ

∑
ϕ∈B∩IBr(G)

∑
φ∈B′∩IBr(G)

Φϕ(e)ϕ(σ)φ(e)Φφ(σ−1µ) = δBB′|G|
∑

ϕ∈B∩IBr(G)

ϕ(e)Φϕ(µ).

Proof. By using Theorem 1.12 we have

sBsB′ =
1

|G|2
∑
σ∈Ĝ

∑
ϕ∈B∩IBr(G)

Φϕ(e)ϕ(σ)σ
∑
τ∈G

∑
φ∈B′∩IBr(G)

φ(e)Φφ(τ)τ

=
1

|G|2
∑
σ∈Ĝ

∑
τ∈G

∑
ϕ∈B∩IBr(G)

∑
φ∈B′∩IBr(G)

Φϕ(e)ϕ(σ)φ(e)Φφ(τ)στ

=
1

|G|2
∑
µ∈G

∑
σ∈Ĝ

∑
ϕ∈B∩IBr(G)

∑
φ∈B′∩IBr(G)

Φϕ(e)ϕ(σ)φ(e)Φφ(σ−1µ)µ

and

δBB′sB =
∑
µ∈G

δBB′
1

|G|
∑

ϕ∈B∩IBr(G)

ϕ(e)Φϕ(µ)µ.

Now, by Theorem 1.11, sBsB′ = δBB′ , so by comparing the coefficients on both sides for a

fixed µ ∈ G we get,

∑
σ∈Ĝ

∑
ϕ∈B∩IBr(G)

∑
φ∈B′∩IBr(G)

Φϕ(e)ϕ(σ)φ(e)Φφ(σ−1µ) = δBB′|G|
∑

ϕ∈B∩IBr(G)

ϕ(e)Φϕ(µ).
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Chapter 2

Symmetrized Tensors

In this chapter we will state some basic definitions and results of different symmetrizers

corresponding to characters discussed in Chapter 1.

2.1 Background

For fixed positive integers n,m set

Γn,m = {γ = (γ1, γ2, . . . , γn) ∈ Zn | 1 ≤ γi ≤ m}.

Let G be a subgroup of the symmetric group Sn. Define a right action on Γn,m by G as

follows. For σ ∈ G and γ ∈ Γn,m

γσ = (γσ(e), . . . , γσ(n)). (2.1)

Consider the relation for γ, θ ∈ Γn,m given by γ ∼ θ if there is an element σ ∈ G such that

γσ = θ. This is an equivalence relation on Γn,m. We fix a set ∆ of representatives of the

equivalence classes of Γn,m with respect to ∼.

Let V be a complex inner product space of dimension m with orthonormal basis

{e1, e2, . . . , em}. V ⊗n = V ⊗ V ⊗ · · · ⊗ V (n factors) is the nth tensor power of V . For

γ ∈ Γn,m let eγ = eγ1 ⊗ eγ2 ⊗ · · · ⊗ eγn . The inner product induced on V ⊗n is given by

〈eγ, eθ〉 =
∏n

i=1(eγi , eθi) where (·, ·) is the inner product of V . Under this inner product

{eγ | γ ∈ Γn,m} is an orthonormal basis for V ⊗n. V ⊗n is a CG-module with the action

σeγ = eγσ−1 for σ ∈ G extended linearly to CG.
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2.2 Symmetrizers associated with ordinary and Brauer characters of G

In the following discussion ∗ stands for either an irreducible ordinary character or an

irreducible Brauer character of G. Denote by S a subset of G where S = Ĝ when ∗ ∈ IBr(G)

and S = G when ∗ ∈ Irr(G).

The symmetrizer corresponding to ∗ is defined by,

s∗ =
∗(e)
|S|

∑
σ∈S

∗(σ)σ.

The theorems in this section pertaining to ∗ ∈ Irr(G) are well known. On the other

hand, we generalize some well-known results for ∗ ∈ Irr(G) to handle the case of ∗ ∈ IBr(G).

Theorem 2.1. The elements sη for η ∈ Irr(G) are orthogonal idempotents.

Proof. Let η, χ ∈ Irr(G). Then by Theorem 1.14 we get,

sηsχ =
η(e)χ(e)

|G|2
∑
σ∈G

∑
τ∈G

η(σ)χ(τ)στ =
η(e)χ(e)

|G|2
∑
µ∈G

∑
σ∈G

η(σ)χ(σ−1µ)µ

= δηχ
η(e)η(e)

|G|2
∑
µ∈G

|G|
η(e)

η(µ)µ = δηχ
η(e)

|G|
∑
µ∈G

η(µ)µ = δηχsη.

The symmetry class of tensors V∗ corresponding to ∗ is the image of V ⊗n under the

symmetrizer s∗:

V∗ = s∗V
⊗n.

Corollary 2.2. If η, χ ∈ Irr(G) and η 6= χ, then the vector spaces Vη and Vχ are orthogonal.

Proof. If sηv = sχw for some v, w ∈ V ⊗n, then

sηv = sη(sηv) = sη(sχw) = 0.
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Let γ ∈ Γn,m. The standard symmetrized tensor e∗γ corresponding to γ is the image of

eγ ∈ V ⊗n under s∗:

e∗γ = s∗eγ =
∗(e)
|S|

∑
σ∈S

∗(σ)σeγ =
∗(e)
|S|

∑
σ∈S

∗(σ)eγσ−1 . (2.2)

By o-basis of a subspace W of V ⊗n we mean an orthogonal basis of W that consists of

standard symmetrized tensors. An interesting question to ask is “For which W does there

exist an o-basis?” In 1991 Wang and Gong gave an example in [16] of such an o-basis for a

symmetry class of tensors Vχ with χ ∈ Irr(G) when G is the dihedral group of order eight.

Ever since there have been papers [1, 3, 4, 7, 8, 10, 15] answering the question when such an

o-basis exists. All these papers however address the problem in the ordinary character case.

This dissertation is devoted to answering the question of when an o-basis exists for a

symmetry class of tensors symmetrized by a Brauer symmetrizer for particular choices of G.

Let Vγ = 〈eγσ | σ ∈ G〉 and let V ∗γ = s∗(Vγ). Observe that V ∗γ = 〈e∗γσ | σ ∈ G〉. V ∗γ is

called the orbital subspace corresponding to γ. Using the orbital subspaces we can write the

symmetry class of tensors as an orthogonal direct sum.

Theorem 2.3 ([9, Theorem 1.1]). We have

V∗ =
∑̇
γ∈∆

V ∗γ (orthogonal direct sum).

In particular, V∗ has an o-basis if and only if V ∗γ has an o-basis for each γ ∈ ∆.

Proof. Let β ∈ Γn,m. Then β = γσ for some γ ∈ ∆ and σ ∈ G, so that e∗β = e∗γσ ∈ V ∗γ . This

shows that V∗ is contained in (and hence equals) the indicated sum.

The sets Eγ = {eγσ |σ ∈ G}, γ ∈ ∆, are pairwise disjoint subsets of the orthogonal set

{eβ | β ∈ Γn,m} and are therefore pairwise orthogonal. For each γ ∈ ∆ the subspace V ∗γ is

contained in the span of Eγ, so the indicated sum is an orthogonal direct sum.

13



Assume that V∗ has an o-basis B. By the first paragraph, B is the union of the sets

Bγ = B ∩ V ∗γ , γ ∈ ∆, and these sets are pairwise disjoint by the second paragraph, so Bγ is

an o-basis for V ∗γ for each γ ∈ ∆.

Finally, if V ∗γ has an o-basis for each γ ∈ ∆, then the union of these bases is an o-basis

for V∗.

For γ ∈ Γn,m let Gγ = {σ ∈ G | γσ = γ} the stabilizer subgroup of γ in G.

Theorem 2.4. For γ ∈ Γn,m and a fixed σ ∈ G, we have

(e∗γσ, e
∗
γ) =

∗(e)2

|S|2
∑
µ∈S

∑
τ∈σµ−1S∩Gγ

∗(µ) ∗ (τ−1σµ−1).

Proof. Let γ ∈ Γn,m and σ ∈ S be fixed. Now by using the Equation 2.2 we get,

(e∗γσ, e
∗
γ) =

∗(e)2

|S|2
∑
µ∈S

∑
ρ∈S

∗(µ)∗(ρ)(eγσµ−1 , eγρ−1)

=
∗(e)2

|S|2
∑
µ∈S

∑
ρ∈S

σµ−1ρ∈Gγ

∗(µ) ∗ (ρ−1)

=
∗(e)2

|S|2
∑
µ∈S

∑
τ∈σµ−1S∩Gγ

∗(µ) ∗ (τ−1σµ−1).

Corollary 2.5. For γ ∈ Γn,m, η ∈ Irr(G), and a fixed σ ∈ G

(eηγσ, e
η
γ) =

η(e)

|G|
∑
ρ∈Gγσ

η(ρ).

Proof. From the above Theorem 2.4 we get

(eηγσ, e
η
γ) =

η(e)2

|G|2
∑
µ∈G

∑
τ∈Gγ

η(µ)η(τ−1σµ−1) =
η(e)2

|G|2
∑
τ∈Gγ

∑
µ∈G

η(µ)η(τ−1σµ−1).
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Then by using the generalized orthogonality relation (Theorem 1.14) we get

(eηγσ, e
η
γ) =

η(e)2

|G|2
∑
τ∈Gγ

|G|η(τ−1σ)

η(e)
=
η(e)

|G|
∑
τ∈Gγ

η(τ−1σ) =
η(e)

|G|
∑
ρ∈Gγσ

η(ρ).

For η ∈ Irr(G) and for γ ∈ ∆ Freese gives the dimension of the orbital subspace V η
γ in

[6]:

dimV η
γ =

η(e)

|Gγ|
∑
σ∈Gγ

η(σ). (2.3)

2.2.1 Symmetrizers associated with PIs

Let ϕ ∈ IBr(G) and put Φ = Φϕ.

The symmetrizer associated with Φ is defined by

sΦ =
ϕ(e)

|G|
∑
σ∈G

Φ(σ)σ. (2.4)

Note that sΦ ∈ CG. For a PI Φ of G the symmetry class of tensors is defined by

VΦ = sΦV
⊗n. For γ ∈ Γn,m the standard symmetrized tensor is defined by eΦ

γ = sΦeγ and the

orbital subspace is defined by V Φ
γ = 〈eΦ

γσ | σ ∈ G〉. With a similar argument as in Theorem

2.3 we have

VΦ =
∑̇

γ∈∆
V Φ
γ (orthogonal direct sum). (2.5)

Theorem 2.6. For σ ∈ G and γ ∈ Γn,m

(eΦ
γσ, e

Φ
γ ) =

ϕ(e)2

|G|2
∑
τ∈G

∑
α∈Gγ

Φ(σ−1ατ)Φ(τ).
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Proof.

(
eΦ
γσ, e

Φ
γ

)
=
ϕ(e)2

|G|2
∑
µ∈G

∑
τ∈G

Φ(µ)Φ(τ) (eγσµ, eγτ )

=
ϕ(e)2

|G|2
∑
τ∈G

∑
µ∈G

σµτ−1∈Gγ

Φ(µ)Φ(τ)

=
ϕ(e)2

|G|2
∑
τ∈G

∑
α∈σGτ−1 ∩Gγ

Φ(σ−1ατ)Φ(τ)

=
ϕ(e)2

|G|2
∑
τ∈G

∑
α∈Gγ

Φ(σ−1ατ)Φ(τ).

2.2.2 Symmetrizers associated with blocks

Let B be a block of G. The symmetrizer corresponding to B is the Osima idempotent

sB of B (Equation 1.4). The symmetry class of tensors is defined by VB = sBV
⊗n. For

γ ∈ Γn,m the standard symmetrized tensor is defined by eBγ = sBeγ and the orbital subspace

is defined by V B
γ = 〈eBγσ | σ ∈ G〉.

Lemma 2.7. For γ ∈ Γn,m

eBγ =
∑

η∈B∩Irr(G)

eηγ.

Proof. By Equation 1.4 we get,

eBγ = sB(eγ) =
∑

η∈B∩Irr(G)

sη(eγ) =
∑

η∈B∩Irr(G)

eηγ.

Theorem 2.8.

VB =
∑̇
γ∈∆

V B
γ (orthogonal direct sum).
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Proof. The argument in the proof is similar to that of the proof of Theorem 2.3, and we

omit the details.

Theorem 2.9. For γ ∈ ∆

dimV B
γ =

1

|Gγ|
∑
σ∈Ĝγ

∑
ϕ∈B∩IBr(G)

ϕ(e)Φϕ(σ−1)

=
1

|Gγ|
∑
σ∈Ĝγ

∑
η∈B∩Irr(G)

η(e)η(σ−1).

Proof. Since sB is an idempotent we have rank (sB) = tr (sB). Then by Equation 1.4 we get,

dimV B
γ = rank (sB) = tr (sB) = tr

1

|G|
∑
σ∈G

∑
η∈B∩Irr(G)

η(e)η(σ−1)σ

=
1

|G|
∑
σ∈G

∑
η∈B∩Irr(G)

η(e)η(σ−1)tr (σ).

Note here that it makes sense to write tr (σ) by viewing σ as a linear transformation on V ⊗n.

In [6, Equation 13] Freese shows that 1
|G|
∑

σ∈G η(e)η(σ−1)tr (σ) = η(e)
|Gγ |

∑
σ∈Gγ η(σ−1). So we

get,

dimV B
γ =

∑
η∈B∩Irr(G)

η(e)

|Gγ|
∑
σ∈Gγ

η(σ−1) =
1

|Gγ|
∑
σ∈Gγ

∑
η∈B∩Irr(G)

η(e)η(σ−1).

Now by Equations 1.2 and 1.3 we get, for any σ ∈ G,

∑
η∈B∩Irr(G)

η(e)η(σ−1) =
∑

ϕ∈B∩IBr(G)

∑
η∈B∩Irr(G)

ϕ(e)dηϕη(σ−1) =
∑

ϕ∈B∩IBr(G)

ϕ(e)Φϕ(σ−1).

17



So it gives

dimV B
γ =

1

|Gγ|
∑
σ∈Gγ

∑
ϕ∈B∩IBr(G)

ϕ(e)Φϕ(σ−1) =
1

|Gγ|
∑
σ∈Ĝγ

∑
ϕ∈B∩IBr(G)

ϕ(e)Φϕ(σ−1)

=
1

|Gγ|
∑
σ∈Ĝγ

∑
η∈B∩Irr(G)

η(e)η(σ−1).

Theorem 2.10. For σ ∈ G,

(eBγσ, e
B
γ ) =

1

|G|
∑
µ∈σGγ

∑
ϕ∈B∩IBr(G)

ϕ(e)Φϕ(µ). (2.6)

Proof. Recall that Vη and Vχ are orthogonal for η, χ ∈ Irr(G) with η 6= χ by Corollary 2.2.

Then using Lemma 2.7 and Corollary 2.5 we get

(eBγσ, e
B
γ ) = (

∑
η∈B∩Irr(G)

eηγσ,
∑

χ∈B∩Irr(G)

eχγ ) =
∑

η,χ∈B∩Irr(G)

(eηγσ, e
χ
γ )δηχ =

∑
η∈B∩Irr(G)

(eηγσ, e
η
γ)

=
∑

η∈B∩Irr(G)

η(e)

|G|
∑
µ∈Gγσ

η(µ) =
∑

η∈B∩Irr(G)

η(e)

|G|
∑
µ∈σGγ

η(µ)

=
1

|G|
∑
µ∈σGγ

∑
η∈B∩Irr(G)

η(e)η(µ) =
1

|G|
∑
µ∈σGγ

∑
ϕ∈B∩IBr(G)

ϕ(e)Φϕ(µ).

The following is a useful lemma which we call the translation principle of the orthogo-

nality of symmetrized tensors.

Lemma 2.11. If the standard symmetrized tensors eBγτ and eBγτ ′ are orthogonal, then eBγτδ

and eBγτ ′δ are orthogonal for every δ ∈ G.
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Proof. By Theorem 2.10 we get, for each δ ∈ G,

(eBγτ ′δ, e
B
γτδ) =

1

|G|
∑

σ∈τ ′δ(τδ)−1Gγ

∑
ϕ∈B∩IBr(G)

ϕ(e)Φϕ(σ)

=
1

|G|
∑

σ∈τ ′τ−1Gγ

∑
ϕ∈B∩IBr(G)

ϕ(e)Φϕ(σ) = (eBγτ ′ , e
B
γτ ) = 0.
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Chapter 3

Dihedral group

In this chapter we focus on the existence of an o-basis of a symmetry class of tensors

associated with a Brauer character, a PI and an Osima idempotent of a block of the dihedral

group.

For an integer n(≥ 3), the dihedral group of degree n is the subgroup Dn of the sym-

metric group Sn, generated by the elements

r =

 1 2 . . . n− 1 n

2 3 . . . n 1

 s =

 1 2 . . . n− 1 n

1 n . . . 3 2

 ,

That is Dn = {rk, srk | 0 ≤ k ≤ n− 1} and |Dn| = 2n.

Dn with n even has 4 degree one irreducible characters. Let ψ1, ψ2, ψ3, ψ4 denote these

characters. Dn with n odd has only 2 degree one irreducible characters; we denote them

with ψ1, ψ2. For all n the degree two irreducible characters of Dn are given by χh where

1 ≤ h < n
2
. For each integer k we get χh(r

k) = ωhk + ω−hk = 2 cos 2πhk
n

where ωn = 1 [14,

page 37]. The character table for Dn is given by

rk srk

ψ1 1 1

ψ2 1 −1

ψ3 (−1)k (−1)k (n even)

ψ4 (−1)k (−1)k+1 (n even)

χh 2 cos(2πhk
n

) 0 1 ≤ h < n
2
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We observe from the table that if η a character of degree one or degree two of Dn, then for

σ ∈ Dn we have

η(σ) = η(σ−1). (3.1)

Let G = Dn. For a fixed prime p write n = pq` with p - `. The set Ĝ of p-regular

elements of G is given by,

Ĝ =

 {r
apq , srk | 0 ≤ a < `, 0 ≤ k < n}, p 6= 2;

{rapq | 0 ≤ a < `}, p = 2.

The set of p-regular conjugacy classes of G is,

{rapq , r−apq}, 0 ≤ a ≤ `/2, {sr2k | 0 ≤ k < n/2}, {sr2k+1 | 0 ≤ k < n/2}, ` even, p 6= 2,

{rapq , r−apq}, 0 ≤ a ≤ (`− 1)/2, {srk | 0 ≤ k < n}, ` odd, p 6= 2,

{rapq , r−apq}, 0 ≤ a < `/2, p = 2.

So the number of p-regular conjugacy classes is

ε =


`
2

+ 3, if ` even, p 6= 2;

`−1
2

+ 2, if ` odd, p 6= 2;

`−1
2

+ 1, if p = 2.

(3.2)

3.1 Brauer characters of Dn

Our effort in this section is to find conditions for the existence of an o-basis for the

symmetry class of tensors corresponding to a Brauer character of the dihedral group G = Dn.

We begin by listing the distinct irreducible Brauer characters of G.

Recall for an ordinary character η of G the restriction of η to Ĝ is denoted by η̂. By 1.7

η̂ is a Brauer character of G.
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For each 1 ≤ h ≤ n
2
, the Brauer character χ̂h is of degree 2. The next lemma gives

conditions for when two Brauer characters of degree two are the same.

Lemma 3.1. For 1 ≤ i, j < n
2
, χ̂i = χ̂j if and only if either i + j ≡ 0 mod ` or i − j ≡ 0

mod `.

Proof. Since any degree two character of G is zero on srk for all k it is enough to check

when two characters are the same on the elements rap
q ∈ G. Suppose χ̂i = χ̂j. Then for any

0 ≤ a < ` we have,

0 = χ̂i(r
apq)− χ̂j(rap

q

) = 2 cos
2πapqi

n
− 2 cos

2πapqj

n
= 4 sin

πapq(i+ j)

n
sin

πapq(i− j)
n

.

So πapq(i+j)
n

= kπ or πapq(i−j)
n

= kπ for some integer k. This gives a(i+j)
`

= k or a(i−j)
`

= k, so

the result follows since ` - a.

Conversely suppose either i + j ≡ 0 mod ` or i − j ≡ 0 mod `. With out loss of

generality we may assume i+ j = k` for some integer k. Then

χ̂i(r
apq)− χ̂j(rap

q

) = 4 sin
πapq(i+ j)

n
sin

πapq(i− j)
n

= 4 sin
πapqk`

n
sin

πapq(i− j)
n

= 4 sin πak sin
πapq(i− j)

n
= 0.

So χ̂i = χ̂j as desired.

Some of the restricted degree two characters are not irreducible as given by the following

lemma.

Lemma 3.2. For all n we have χ̂k` = ψ̂1 + ψ̂2 for 1 ≤ k < pq

2
. When n is even with p 6= 2

we also have χ̂ `
2

+k` = ψ̂3 + ψ̂4 for 0 ≤ k < pq−1
2

.

Proof. For 0 ≤ a < `

χ̂k`(r
apq) = 2 cos(

2πk`apq

n
) = 2 = ψ̂1(rap

q

) + ψ̂2(rap
q

) = (ψ̂1 + ψ̂2)(rap
q

),
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and for 0 ≤ b < n

χ̂k`(sr
b) = 0 = ψ̂1(srb) + ψ̂2(srb) = (ψ̂1 + ψ̂2)(srb).

So we have χ̂k` = ψ̂1 + ψ̂2.

Now assume n is even and p 6= 2. Then it makes sense to consider the characters of G

given by χ̂ `
2

+k`. Now for 0 ≤ a < `, we have

χ̂ `
2

+k`(r
apq) = 2 cos

(2π`(1 + 2k)apq

2n

)
= 2 cos

(
π(1 + 2k)a

)
,

so χ̂ `
2

+k`(r
apq) equals 2 if a is even and −2 if a is odd, and also we have that ψ̂3(rap

q
)+ψ̂4(rap

q
)

equals 2 if a is even and −2 if a is odd. For 0 ≤ k < n we have χ̂ `
2

+k`(sr
k) = 0 =

ψ̂3(srk) + ψ̂4(srk). So we get χ̂ `
2

+k` = ψ̂3 + ψ̂4 as desired.

Let

ε =


4, if ` even, p 6= 2;

2, if ` odd, p 6= 2;

1, if p = 2.

(3.3)

For each 1 ≤ j ≤ ε, the Brauer character ϕ1
j = ψ̂j is of degree 1.

Theorem 3.3. Let G = Dn. The complete list of distinct irreducible Brauer characters of

G is

ϕ1
j = ψ̂j, for 1 ≤ j ≤ ε, ϕ2

i = χ̂i for 1 ≤ i < `
2
.

Proof. For each 1 ≤ j ≤ ε, the Brauer character ψ̂j is of degree one and hence is irreducible.

We see the distinctness of these characters by observing the character values for srk in the

character table above. So we have ε distinct irreducible Brauer character of degree one of G.

To see the distinctness of the degree two Brauer characters in the given list observe that

for any i, j such that 1 ≤ i < j < `
2

we have j − i < ` and i+ j < `, so ` - j − i, i+ j which

gives that χ̂i 6= χ̂j by Lemma 3.1. Now to show that they are irreducible assume that ϕ2
i is
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not irreducible for some 1 ≤ i < `
2
. Then ϕ2

i is a sum of two irreducible Brauer characters of

degree one. So we write ϕ2
i = ϕ1

j +ϕ1
k. Now r2pq ∈ Ĝ and ϕ2

i (r
2pq) = ϕ1

j(r
2pq) +ϕ1

k(r
2pq) = 2.

Now since 1 ≤ i < `
2

we have 0 < 4πpqi
n

= 4πi
`
<

4π `
2

`
= 2π. So ϕ2

i (r
2pq) = 2 cos 4πpqi

n
6= 2.

This gives a contradiction. Therefore ϕ2
i is irreducible. The number of irreducible Brauer

characters of G equals the number of p-regular conjugacy classes of G by Theorem 1.6. Using

Equation 3.3 we see that the number of all characters in the given list is

`

2
+ 3, if ` even, p 6= 2;

`− 2

2
+ 2, if ` even, p 6= 2;

`− 2

2
+ 1 if p = 2.

This is same as the number of p-regular conjugacy classes as given by Equation 3.2, so the

indicated set is a complete set of irreducible Brauer characters of G.

Assume p 6= 2. For 1 ≤ i < `/2, put

Ai = {i, k`+ i, k`− i | 1 ≤ k ≤ pq − 1

2
}

and note that |Ai| = pq.

Lemma 3.4. Let 1 ≤ i < `/2. We have χ̂a = χ̂i = ϕ2
i for all a ∈ Ai.

Proof. Let 1 ≤ i < `/2. No proof is needed when a = i. Suppose a = k` + i or a = k` − i.

Then a− i = k` or a+ i = k`. So by Lemma 3.1 we get χ̂a = χ̂i = ϕ2
i .

3.2 PIs of Dn

Let G = Dn. Let Φ1
j ,Φ

2
i be the PIs corresponding to ϕ1

j , ϕ
2
i ∈ IBr(G) where j = 1, 2, 3, 4

and 1 ≤ i < `
2
. Let η ∈ Irr(G). By Equation 1.2 we have

η̂ =
∑

ϕ∈IBr(G)

dηϕϕ,

where dηϕ are uniquely defined nonnegative integers.
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In the following tables we give the values of the decomposition matrix entries dηϕ cor-

responding to η ∈ Irr(G) and ϕ ∈ IBr(G).

For odd n we get

η ϕ dηϕ

ψj ϕ1
j 1 (j = 1, 2)

χk` ϕ1
j 1 (1 ≤ k ≤ pq−1

2
, j = 1, 2)

χa ϕ2
i 1 (a ∈ Ai, 1 ≤ i < `

2
)

and for even n we get

η ϕ dϕη

ψj ϕ1
j 1 (j = 1, 2, 3, 4)

χk` ϕ1
j 1 (1 ≤ k ≤ pq−1

2
, j = 1, 2)

χ `
2

+k` ϕ1
j 1 (0 ≤ k ≤ pq−1

2
− 1, j = 3, 4)

χa ϕ2
i 1 (a ∈ Ai, 1 ≤ i < `

2
)

Theorem 3.5. Let G = Dn. Then the complete list of PIs of G is

Φ1
j = ψj +

pq−1
2∑

k=1

χk` for j = 1, 2,

Φ1
j = ψj +

pq−1
2
−1∑

k=0

χ `
2

+k` for j = 3, 4,

Φ2
i =

∑
a∈Ai

χa, for 1 ≤ i <
`

2
.

Proof. The proof follows from the tables above and the Equation 1.3.
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3.3 Blocks of Dn

Let G = Dn. The relationships of characters belonging to a block of G can be understood

by means of the decomposition numbers of G for a considered prime p. Recall that both

η, φ ∈ Irr(G) belong to the block containing ϕ ∈ IBr(G) if both decomposition numbers

dηϕ and dφϕ are nonzero. Also recall that each η ∈ Irr(G) belongs to a unique block. Now

by observing the tables above one notes the consistence of characters in blocks of G as

given below. For the blocks we give the notation Ba
b , where a gives the lowest degree of

the irreducible Brauer characters it contains and b gives the lowest index of the degree a

irreducible characters it contains.

• ϕ1
j , ψj, χk` in a block B1

1 where j = 1, 2 and 1 ≤ k ≤ pq−1
2

.

• ϕ1
j , ψj, χ `

2
+k` in a block B1

3 where j = 3, 4 and 0 ≤ k ≤ pq−1
2
− 1.

• for 1 ≤ i < `
2
, ϕ2

i , χa in a block B2
i where a ∈ Ai.

3.4 Block idempotent symmetrization

In this section we will establish necessary and sufficient conditions for the existence of

an o-basis of the symmetry class of tensors VB corresponding to an Osima idempotent sB of

a block B of G = Dn. We will consider the two cases namely B1
j the block containing degree

one irreducible characters of G and B2
i the block consisting only of degree two irreducible

characters of G separately when finding the o-basis.

First we state a specialized formula for the inner product given in Theorem 2.10.

Corollary 3.6. Let G = Dn and let B be a block of G. Then

(eBγσ, e
B
γ ) =

1

|G|
∑

µ∈σGγ∩Cn

∑
ϕ∈B∩IBr(G)

ϕ(e)Φϕ(µ).
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Proof. Fix 0 ≤ k ≤ n−1. We observe from the character table for G that ψ1(srk)+ψ2(srk) =

0 and ψ3(srk) + ψ4(srk) = 0. Therefore by using Theorem 3.5 we get,

∑
ϕ∈B1

1∩IBr(G)

ϕ(e)Φϕ(srk) = ϕ1
1(e)Φ1

1(srk) + ϕ1
2(e)Φ1

2(srk)

= ψ1(srk) + ψ2(srk) + 2

pq−1
2∑

k=1

χk`(sr
k) = 0

and

∑
ϕ∈B1

3∩IBr(G)

ϕ(e)Φϕ(srk) = ϕ1
3(e)Φ1

3(srk) + ϕ1
4(e)Φ1

4(srk)

= ψ3(srk) + ψ4(srk) + 2

pq−1
2∑

k=1

χ `
2

+k`(sr
k) = 0.

Also for fixed i with 1 ≤ i < `
2

we have

∑
ϕ∈B2

i ∩IBr(G)

ϕ(e)Φϕ(srk) = ϕ2
i (e)Φ

2
i (sr

k) = ϕ2
i (e)

∑
a∈Ai

χa(sr
k) = 0.

Now write B for B1
1 , B

1
3 , or B2

i . By Theorem 2.10 we have

(eBγσ, e
B
γ ) =

1

|G|
∑
µ∈σGγ

∑
ϕ∈B∩IBr(G)

ϕ(e)Φϕ(µ) =
1

|G|
∑

µ∈σGγ∩Cn

∑
ϕ∈B∩IBr(G)

ϕ(e)Φϕ(µ).

Lemma 3.7. Let G = Dn. Let B be a block of G. Fix γ ∈ ∆. Let Gγ ∩ Cn = 〈rk〉 with k|n

and let t be the largest such that pt|k.

i) If H = {ra0 , ra1 , ..., rapt−1} is a list of coset representatives of 〈rpt〉 in Cn, then {eBγτ |τ ∈

H} is an orthogonal set. In particular {eBγτ |τ ∈ H ′} is an orthogonal set where H ′ =

{1, r, ..., rpt−1}.
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ii) If Gγ ⊆ Cn, then {eBγτ , eBγsτ |τ ∈ H ′} is an orthogonal set.

iii) If eBγ and eBγρ are orthogonal for some ρ ∈ Ĝ ∩ Cn, then {eBγτ , eBγτρ|τ ∈ H ′} is an

orthogonal set.

iv) If Gγ ⊆ Cn and if eBγ and eBγρ are orthogonal for some ρ ∈ Ĝ ∩ Cn, then

{eBγτ , eBγτρ, eBγsτ , eBγsτρ|τ ∈ H ′} is an orthogonal set.

Proof. i) Take rax , ray ∈ H. Then rax〈rpt〉 6= ray〈rpt〉 and pt - ax − ay. Now we will

show that there are no regular elements in the set raxr−ayGγ ∩ Cn. Take rax−ay+mk ∈

raxr−ayGγ ∩ Cn for some integer m = 0, ..., n
k
− 1. Assume ax − ay + mk = m′pq. Then

ax − ay = m′pq −mk, implying pt | ax − ay which is a contradiction. Therefore by Corollary

3.6 we get (eB
γraxr−ay

, eBγ ) = 0. Now for any rx, ry ∈ H ′ with x 6= y, we have pt - x − y, so

rx, ry are distinct coset representatives of 〈rpt〉 in Cn. Therefore this is a special case of the

argument above so {eBγτ |τ ∈ H ′} is an orthogonal set.

ii) By part i) we know that (eBγτ , e
B
γµ) = 0 for τ, µ ∈ H ′. To show that the set {eBγτeBγsτ |τ ∈

H ′} is orthogonal it remains to show that (eBγsτ , e
B
γµ) = 0 and (eBγsτ , e

B
γsµ) = 0 for τ, µ ∈

H ′. First for (eBγsτ , e
B
γµ) we have, (eBγsτ , e

B
γµ) = (eBγsτµ−1 , eBγ ) = 0 by Corollary 3.6 since

sτµ−1Gγ ∩ Cn = ∅ when Gγ ⊆ Cn. Now for the other case

(eBγsτ , e
B
γsµ) = (eBγsτsµ, e

B
γ ) = (eBγτ−1µ, e

B
γ ) = (eBγµτ−1 , eBγ ) = (eBγµ, e

B
γτ ) = 0,

by part i) and this completes the proof.

iii) Suppose (eBγ , e
B
γρ) = 0 for some ρ ∈ Ĝ ∩ Cn. To show that {eBγτ , eBγτρ|τ ∈ H ′} is an

orthogonal set we only need to show that (eBγτρ, e
B
γµρ) = 0 and (eBγµρ, e

B
γτ ) = 0 since part i)

takes care of the case for two elements of the form eBγτ where τ ∈ H ′. It is easily seen by the

translation principle (Lemma 2.11) and part i) above that (eBγτρ, e
B
γµρ) = (eBγτ , e

B
γµ) = 0.
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Now consider (eBγµρ, e
B
γτ ). We have τ = rx, µ = ry and ρ = rαp

q
for some integers x, y,

and α with 0 ≤ x, y < pt. Then

(eBγµρ, e
B
γτ ) = (eBγryrαpq , e

B
γrx) = (eBγrαpq+y−x , e

B
γ ).

Now to show that (eBγµρ, e
B
γτ ) = 0 it is enough by Corollary 3.6 to show that rαp

q+y−xGγ

has no p-regular elements. Assume to the contrary. Then for some integer m, we have

rmk+αpq+y−x ∈ rαp
q+y−xGγ ∩ Ĝ, implying rmk+αpq+y−x = rm

′pq for some integer m′. But

this implies mk + αpq + y − x − m′pq = jn for some integer j, which is equivalent to

y−x = m′pq−mk−αpq + jn implying pt | y−x. This is a contradiction since 0 ≤ x, y < pt.

iv) Suppose (eBγ , e
B
γρ)=0. To show {eBγτ , eBγτρ, eBγsτ , eBγsτρ|τ ∈ H ′} is an orthogonal set, we

only need to show that (eBγsµρ, e
B
γτ ) = 0, (eBγsτ , e

B
γµρ) = 0, (eBγsτρ, e

B
γµρ) = 0, (eBγsτ , e

B
γsµρ) = 0

and (eBγsτρ, e
B
γsµρ) = 0 since all other combinations of elements in the set are shown to be

orthogonal in the three previous parts. Note that we have (eBγsµρ, e
B
γτ ) = (eBγsµρτ−1 , eBγ ). Now

since Gγ ⊆ Cn we see that sµρτ−1Gγ ∩ Cn = ∅ whence (eBγsµρτ−1 , eBγ ) = 0 by Corollary 3.6.

The argument for the cases (eBγsτ , e
B
γµρ) and (eBγsτρ, e

B
γµρ) is the same. Next due to part iii)

(eBγsτ , e
B
γsµρ) = (eBγsτ(sµρ)−1 , eBγ ) = (eBγsτsµρ, e

B
γ ) = (eBγτ−1µρ, e

B
γ ) = (eBγµρτ−1 , eBγ ) = (eBγµρ, e

B
γτ )

= 0.

Finally by part ii) we get (eBγsτρ, e
B
γsµρ) = (eBγsτ , e

B
γsµ) = 0 and it completes the proof.

Now we look at the block B1
1 of G.

Lemma 3.8. Fix γ ∈ ∆. We have Gγ ∩ Cn = 〈ra〉 with a | n. Let t be the largest such that

pt|a. Then

dimV B1
1

γ =

 2pt, if Gγ ⊆ Cn;

pt, otherwise.
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Proof. First observe that for any 0 ≤ α < `,

χk`(r
αpq) = 2 cos

2πk`αpq

n
= 2.

Write ϕ = ϕ1
j . Then by Theorem 2.9, Theorem 3.5 and the fact that ψ1(σ) + ψ2(σ) = 0 for

all σ 6∈ Cn and ψ1(σ) + ψ2(σ) = 2 for all σ ∈ Cn we get

dimV B1
1

γ =
1

|Gγ|
∑
σ∈Ĝγ

∑
ϕ∈B1

1∩IBr(G)

ϕ(e)Φϕ(σ) =
1

|Gγ|
∑

σ∈Ĝγ∩Cn

(
ψ1(σ) + ψ2(σ) + 2

pq−1
2∑

k=1

χk`(σ)
)

=
1

|Gγ|

(
2 + (pq − 1)2

)
|Ĝγ ∩ Cn| =

2pq

|Gγ|
n

apq−t
=

2

|Gγ|
n

a
pt.

Now if Gγ ⊆ Cn, then |Gγ| = n
a
, in which case we get dimV

B1
1

γ = 2pt and otherwise |Gγ| = 2n
a

which gives dimV
B1

1
γ = pt.

Let n be even and consider the block B1
3 of G containing the characters ψ3 and ψ4.

Lemma 3.9. Let G = Dn with n even and fix γ ∈ ∆. We have Gγ ∩ Cn = 〈ra〉 with a | n.

Let t be the largest such that pt|a. Then

dimV B1
3

γ =


0, if a is odd;

2pt, if Gγ ⊆ Cn, a is even;

pt, if Gγ * Cn, a is even.

Proof. By Theorem 2.9, Theorem 3.5 and the fact that ψ3(σ) + ψ4(σ) = 0 for all σ 6∈ Cn we

get,

dimV B1
3

γ =
1

|Gγ|
∑
σ∈Ĝγ

∑
ϕ∈B1

3∩IBr(G)

ϕ(e)Φϕ(σ) =
1

|Gγ|
∑
σ∈Ĝγ

(
ψ3(σ) + ψ4(σ) + 2

pq−1
2∑

k=1

χ `
2

+k`(σ)
)

=
1

|Gγ|
∑

σ∈Ĝγ∩Cn

(
ψ3(σ) + ψ4(σ) + 2

pq−1
2∑

k=1

χ `
2

+k`(σ)
)
.
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Suppose that a is odd. Let a = a′pt for some odd integer a′. Then Ĝγ ∩ Cn = {rεapq−t | 0 ≤

ε ≤ `
a′
− 1}. Note that `

a′
is even.

χ `
2

+k`(r
εapq−t) = 2 cos

2π( `
2

+ k`)εapq−t

n
= 2 cos 2π(

1

2
+ k)εa′ = 2 cos πεa′,

which is equal to 2 or −2 depending upon whether ε is even or odd. Also ψ3(rεap
q−t

) =

ψ4(rεap
q−t

) equals 1 or −1 according as ε is even or odd respectively. So the sum ψ3(rεap
q−t

)+

ψ4(rεap
q−t

)+2
∑ pq−1

2
k=1 χ `

2
+k`(r

εapq−t) on the right side of the formula for dimV
B1

3
γ above equals

2pq if ε is even and −2pq if ε is odd. Therefore in the case a is odd we get

dimV B1
3

γ =
1

|Gγ|

(
2pq

`

2a′
+−2pq

`

2a′

)
= 0.

Now suppose a is even. Then any p-regular element in 〈ra〉 can be expressed as r2εpq for

some integer ε. We have

χ `
2

+k`(r
2εpq) = 2 cos

2π( `
2

+ k`)2εpq

n
= 2 cos 2π(

1

2
+ k)2ε = 2,

in which case the proof is similar to the proof of Lemma 3.8 above. So we get dimVB1
3

= 2pt

if Gγ is contained in Cn and dimVB1
3

= pt if Gγ is not contained in Cn.

Theorem 3.10. Let G = Dn. Write B = B1
1 . The symmetry class of tensors VB has an

o-basis.

Proof. By Theorem 2.8 we have

VB =
∑̇
γ∈∆

V B
γ ,

so it suffices to show that V B
γ has an o-basis for each γ ∈ ∆. Let γ ∈ ∆. By Lemma 3.8 if

Gγ * Cn, then dimV B
γ = pt. Therefore by part i) of Lemma 3.7 the set {eBγτ |τ ∈ H ′} is an

orthogonal basis. If Gγ ⊆ Cn, then dimV B
γ = 2pt and in this case {eBγτ , eBγsτ |τ ∈ H ′} is an

orthogonal basis by part ii) of Lemma 3.7.
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Theorem 3.11. Let G = Dn with n even. Write B = B1
3 . The symmetry class of tensors

VB has an o-basis.

Proof. Due to Theorem 2.8 it suffices to show that V B
γ has an o-basis for each γ ∈ ∆. Let

γ ∈ ∆. We have Gγ ∩ Cn = 〈ra〉 for some integer a. If a is odd, then by Lemma 3.9

dimV B
γ = 0, so V B

γ has an o-basis. Suppose a is even. Then dimV B
γ = pt if Gγ * Cn, so

by part i) of Lemma 3.7 the set {eBγτ |τ ∈ H ′} is an orthogonal basis and dimV B
γ = 2pt if

Gγ ⊆ Cn, so {eBγτ , eBγsτ |τ ∈ H ′} is an orthogonal basis by part ii) of Lemma 3.7.

Now we will bring our attention to the blocks consisting only of degree two characters

of G. For each 1 ≤ i < `
2

the block B2
i contains ϕ2

i ∈ IBr(G) and this is the only irreducible

Brauer character of G it contains. Below is a statement for conditions when the dimension

of the orbital subspace V
B2
i

γ corresponding to a γ ∈ ∆ is not zero.

Theorem 3.12. Fix γ ∈ Γn,m. Then for 1 ≤ i < `
2

we have dimV
B2
i

γ 6= 0 if and only if

Ĝγ ∩ Cn ⊆ 〈rn
′〉, where n′ = n

gcd(n,i)
.

Proof. Suppose Ĝγ ∩Cn 6⊆ 〈rn
′〉. We have Ĝγ ∩Cn = 〈rb〉 with b|n, so rb 6∈ 〈rn′〉. Fix i with

1 ≤ i < `
2
. Then for σ ∈ Ĝ we have by Theorem 3.5 and Lemma 3.4

Φ2
i (σ) =

∑
a∈Ai

χa(σ) = |Ai|χi(σ) = pqχi(σ). (3.4)

Now by Theorem 2.9

dimV
B2
i

γ =
1

|Gγ|
∑
σ∈Ĝγ

ϕ2
i (e)Φ

2
i (σ) =

ϕ2
i (e)

|Gγ|
∑
σ∈Ĝγ

pqχi(σ) =
pqϕ2

i (e)

|Gγ|
∑

σ∈Ĝγ∩Cn

χi(σ)

=
pqϕ2

i (e)

|Gγ|

n
b
−1∑
j=0

χi(r
jb) =

pqϕ2
i (e)

|Gγ|

n
b
−1∑
j=0

(ωibj + ω−ibj),

where ωib is an n
b
th root of unity. Now

∑n
b
−1

j=0 (ωibj + ω−ibj) 6= 0 if ωib = 1. But if ωib = 1,

then there is an integer m such that ib = mn, so i′′b = mn′ where i′′ = i
gcd(n,i)

. Now since
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gcd(n′, i′′) = 1 we get n′|b which is a contradiction. Therefore
∑n

b
−1

j=0 (ωibj + ω−ibj) = 0 and

hence dimV
B2
i

γ = 0.

Conversely suppose Ĝγ ∩ Cn ⊆ 〈rn
′〉. Note that for any integer c we have

χi(r
cn′) = 2 cos

2πicn′

n
= 2 cos 2πi′′c = 2,

and in this case dimV
B2
i

γ =
φ2
i (e)

|Gγ |
∑

σ∈Ĝγ∩Cn p
qχi(σ) 6= 0.

Theorem 3.13. Let G = Dn. Fix i with 1 ≤ i < `
2
. Let Gγ ∩ Cn = 〈rk〉 with k | n and let t

be the largest integer such that pt | k. If Ĝγ ∩ Cn ⊆ 〈rn
′〉, then

dimV
B2
i

γ =

 4pt, if Gγ ⊆ Cn

2pt, otherwise.

Proof. Let σ ∈ Ĝγ ∩ Cn ⊆ 〈rn
′〉. Then σ = rcn

′
for some integer c and

χi(σ) = χi(r
cn′) = 2 cos

2πicn′

n
= 2 cos 2πi′′c = 2.

Therefore by Theorem 2.9 and Equation 3.4

dimV
B2
i

γ =
1

|Gγ|
∑
σ∈Ĝγ

ϕ2
i (e)Φ

2
i (σ) =

ϕ2
i (e)

|Gγ|
∑
σ∈Ĝγ

pqχi(σ) =
pqϕ2

i (e)

|Gγ|
∑

σ∈Ĝγ∩Cn

χi(σ)

=
2pq

|Gγ|
∑

σ∈Ĝγ∩Cn

2 =
4pq

|Gγ|
|Ĝγ ∩ Cn| =

4pq

|Gγ|
n

apq−t
=

4

|Gγ|
n

a
pt.

Now if Gγ ⊆ Cn, then |Gγ| = n
a
, so dimV

B2
i

γ = 4pt, and if Gγ 6⊆ Cn, then |Gγ| = 2n
a

, so

dimV
B2
i

γ = 2pt.

Theorem 3.14. Let G = Dn and assume dimV ≥ 2. For fixed i with 1 ≤ i < `
2

write

B = B2
i . The space VB has an o-basis if and only if `′ ≡ 0 mod 4, where `′ = `

gcd(`,i)
.
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Proof. Suppose VB has an o-basis. Then by Theorem 2.8 it follows that V B
γ has an o-basis

for each γ ∈ ∆. Let γ = (1, 2, 2, ..., 2). Then Gγ = {1, s}, so Gγ ∩ Cn = 〈rn〉. Now since q

is the largest such that pq|n, by Theorem 3.13 dimV B
γ = 2pq. The space V B

γ has an o-basis,

that is, an orthogonal basis of the form E = {eBγτx | τx ∈ G, 1 ≤ x ≤ 2pq}. Consider the

subgroup J = 〈rpq〉Gγ of G. The index of J in G is pq, so by the pigeonhole principle there

is at least one right coset of J containing τx and τy for some 1 ≤ x, y ≤ 2pq with x 6= y.

Then we have τxτ
−1
y ∈ J , so τxτ

−1
y = rmp

q
β for some integer m and β ∈ Gγ. Therefore

τxτ
−1
y Gγ = rmp

q
βGγ = rmp

q
Gγ = {rmpq , sr−mpq}. Then by Corollary 3.6 and Equation 3.4

0 = (eBγτx , e
B
γτy) =

1

|G|
∑

σ∈τxτ−1
y Gγ∩Cn

ϕ2
i (e)Φ

2
i (σ) =

ϕ2
i (e)

|G|
Φ2
i (r

mpq) =
ϕ2
i (e)

|G|
pqχi(r

mpq).

So we get 0 = χi(r
mpq) = 2 cos 2πimpq

n
= cos 2πim

`
which gives 2πim

`
= (2k + 1)π

2
for some

integer k. Let i′ = i
gcd(`,i)

. Then

4i′m =
4im

gcd(`, i)
=

(2k + 1)`

gcd(`, i)
= (2k + 1)`′.

So `′ is divisible by 4.

Conversely suppose `′ ≡ 0 mod 4. Fix γ ∈ ∆ such that dim V B
γ 6= 0. Then by Theorem

3.12 we have Ĝγ ∩ Cn ⊆ 〈rn
′〉 where n′ = n

gcd(n,i)
. Let Ĝγ ∩ Cn = 〈ra〉 where a | n. Note

that a = a′n′ for some integer a′. We will first show that there exists τ ∈ Ĉn such that

(eBγτ , e
B
γ ) = 0. Let τ = rδp

q
where δ = `′

4
∈ Z. Note here that the set of p-regular elements of

rδp
q
Gγ ∩Cn is the same as rδp

q
Ĝγ ∩Cn since for some τ ∈ Ĉn, τµ ∈ Ĉn if and only if µ ∈ Ĉn.

Then by Corollary 3.6

(eBγrδpq , e
B
γ ) =

1

|G|
∑

σ∈rδpqGγ∩Cn

ϕ2
i (e)Φ

2
i (σ) =

ϕ2
i (e)

|G|
∑

σ∈rδpq Ĝγ∩Cn

Φ2
i (σ)

=
ϕ2
i (e)

|G|

n
a
−1∑
ι=0

Φ2
i (r

δpq+ιa) =
ϕ2
i (e)

|G|

n
a
−1∑
ι=0

pqχi(r
δpq+ιa).
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Note that since 4 | `′, the number i′ = i
gcd(`,i)

is odd. Therefore using i′′ = i
gcd(n,i)

and δ = `′

4

we get

χi(r
δpq+ιa) = 2 cos

2πi(δpq + ιa′n′)

n
= 2 cos

(2πi′ gcd(`, i)δ

`
+

2πi′′ gcd(n, i)ιa′n′

n

)
= 2 cos

(πi′
2

+ 2πi′′ιa′
)

= 2 cos
πi′

2
= 0,

so (eB
γrδp

q , eBγ ) = 0. Let t be the largest such that pt | a. Then by Theorem 3.13, we have

dimV B
γ = 2pt if Gγ 6⊆ Cn, in which case {eBγτ , eBγτρ|τ ∈ H ′} is an o-basis by Lemma 3.7 part

iii), and dimV B
γ = 4pt if Gγ ⊆ Cn, in which case {eBγτ , eBγτρ, eBγsτ , eBγsτρ|τ ∈ H ′} is an o-basis

by Lemma 3.7 part iv).

3.5 Irreducible symmetrization

In this section we will give necessary and sufficient conditions for the existence of an

o-basis of the symmetry class of tensors corresponding to an irreducible Brauer character of

Dn. We will also show the existence of an orthogonal basis for the Brauer symmetry class

of tensors that consists of ordinary standard symmetrized tensors in the case of degree two

irreducible Brauer characters of Dn.

Let G = Dn. Recall that ϕ2
i ∈ IBr(G) for 1 ≤ i < `

2
is of degree two and χi, χjl−i, χjl+i ∈

Irr(G) for 1 ≤ j ≤ pq−1
2

are of degree two. Recall also that Φ2
i denotes the PI corresponding

to ϕ2
i and that Φ̂2

i denotes the restriction of Φ2
i to Ĝ.

Lemma 3.15. For each 1 ≤ i < `
2

we have

Φ̂2
i = pqϕ2

i .

Proof. By using Theorem 3.5 we write

Φ̂2
i =

∑
a∈Ai

χ̂a =
∑
a∈Ai

ϕ2
i = |Ai|ϕ2

i = pqϕ2
i
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Lemma 3.16. For each 1 ≤ i < `
2
,

sϕ2
i

=
|G|
pq|Ĝ|

∑
a∈Ai

sχa .

Proof. By the definition of a symmetrizer sϕ2
i

=
ϕ2
i (e)

|Ĝ|

∑
σ∈Ĝ ϕ

2
i (σ)σ. Now by the Lemma 3.15

above

sϕ2
i

=
2

|Ĝ|

∑
σ∈Ĝ

1

pq
Φ̂2
i (σ)σ =

2

|Ĝ|

∑
σ∈G

1

pq
Φ2
i (σ)σ,

where the second equality holds because Φ2
i vanishes off of Ĝ. Now by Theorem 3.5 we get

sϕ2
i

=
2

pq|Ĝ|

∑
σ∈G

∑
a∈Ai

χa(σ)σ =
|G|
pq|Ĝ|

∑
a∈Ai

2

|G|
∑
σ∈G

χa(σ)σ =
|G|
pq|Ĝ|

∑
a∈Ai

χa(e)

|G|
∑
σ∈G

χa(σ)σ

=
|G|
pq|Ĝ|

∑
a∈Ai

sχa ,

which completes the proof.

Lemma 3.17. For each 1 ≤ i < `
2

we have

Vϕ2
i

=
∑̇
a∈Ai

Vχa (orthogonal direct sum).

Proof. Let v ∈ V ⊗n. Then sϕ2
i
(v) ∈ Vϕ2

i
. Let g = |G|

pq |Ĝ| . By using Theorem 3.16 we get

sϕ2
i
(v) =

∑
a∈Ai

sχa(gv),

so Vϕ2
i
⊆
∑

a∈Ai Vχa . Now to show the other inclusion, note that for some arbitrary va ∈ V ⊗n,∑
a∈Ai sχa(va) is in

∑
a∈Ai Vχa . Therefore there exists an element

∑
a∈Ai sχa(

1
g
va) in V ⊗n such
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that

∑
a∈Ai

sχa(va) = g
∑
a∈Ai

sχa

(∑
a∈Ai

sχa(
1

g
va)
)

= sϕ2
i

(∑
a∈Ai

sχa(
1

g
va)
)
∈ Vϕ2

i
,

so
∑

a∈Ai Vχa ⊆ Vϕ2
i

as desired. In the above computation we have used the Lemma 3.16

and the fact that the symmetrizers corresponding to ordinary irreducible characters are

orthogonal projections (Theorem 2.1). Since ordinary symmetrized spaces are orthogonal by

Corollary 2.2 we have the result.

Recall that for χ ∈ Irr(G) a standard decomposable symmetrized tensor corresponding

to χ is given by eχγ where γ ∈ Γn,m.

Theorem 3.18. For 1 ≤ i < `
2
, Vϕ2

i
has an orthogonal basis consisting of decomposable

tensors of the form eχγ , χ ∈ Irr(G), if and only if `′ ≡ 0 mod 4, where `′ = `
gcd(`,i)

.

Proof. Suppose Vϕ2
i

has an orthogonal basis of the stated form. Then in particular Vχi has an

orthogonal basis due to Lemma 3.17. Therefore by [10, Theorem 3.1] we get n ≡ 0 mod 4i2

where i2 is the power of 2 such that i
i2

is odd. This means that i2 is a factor of ` and further

gcd(`,i)
i2

= gcd( `
i2
, i
i2

) is odd. Then since `′ = `
gcd(`,i)

, for some integer m we get

4m =
n

i2
=
pq`

i2
=
pq`′ gcd(`, i)

i2
= pq`′

gcd(`, i)

i2
,

so 4 | `′ as desired.

Conversely suppose `′ ≡ 0 mod 4. Let `2 be the largest factor of ` that is expressed

as a power of 2. Now since 4 | `′ = `
gcd(`,i)

it is the case that 4 | `2
gcd(`2,i2)

, which gives

gcd(`2, i2) = i2, so 4i2 | `2 and hence 4i2 | `. So we have n ≡ 0 mod 4i2 and therefore Vχi

has an o-basis by [10, Theorem 3.1]. Now, since 4i2 | `, we have ` = a4i2 for some integer a,

so for a fixed k where 1 ≤ k ≤ pq−1
2

we have

k`± i = k(a4i2)± i2i2′ = i2(ka4± i2′),
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where i2′ = i
i2

is odd. Then if (k` ± i)2 is the largest factor of k` ± i as a power of 2, then

(k` ± i)2 = i2, so n ≡ 0 mod 4(k` ± i)2. Therefore Vχk`±i has an orthogonal basis by [10,

Theorem 3.1]. This means Vχa has an o-basis for each a ∈ Ai and hence by Lemma 3.17 we

get the result.

Recall for a character ∗ of G, V ∗γ = 〈e∗γσ | σ ∈ G〉.

Lemma 3.19. For 1 ≤ i < `
2

and γ ∈ Γn,m

V
ϕ2
i

γ =
∑̇
a∈Ai

V χa
γ (orthogonal direct sum).

Proof. Fix 1 ≤ i < `
2

and γ ∈ Γn,m. Take sϕ2
i
(w) ∈ V ϕ2

i
γ for some w ∈ Vγ. Let g = |G|

pq |Ĝ| .

Then by Lemma 3.16,

sϕ2
i
(w) = g

∑
a∈Ai

sχa(w) =
∑
a∈Ai

sχa(gw),

and this gives the inclusion V
ϕ2
i

γ ⊆
∑

a∈Ai V
χa
γ . For the other inclusion consider arbitrary

wa ∈ Vγ and set

v :=
∑
a∈Ai

sχa(wa) ∈
∑
a∈Ai

V χa
γ .

Note that v is also in Vγ, so 1
g
v ∈ Vγ. Then

v = g
∑
a∈Ai

sχa(
1

g
v) = sϕ2

i
(
1

g
v) ∈ V ϕ2

i
γ ,

so we have
∑

a∈Ai V
χa
γ ⊆ V

ϕ2
i

γ .

Since orbital subspaces are orthogonal by Theorem 2.3 we have an orthogonal direct

sum as desired.

38



For γ ∈ Γn,m recall that Gγ is the stabilizer subgroup of γ and ∆η = {γ ∈ ∆ |∑
σ∈Gγ η(σ) 6= 0}. Using Theorem 2.3 and Equation 2.3 we have

Vη =
∑̇
γ∈∆

V η
γ =

∑̇
γ∈∆η

V η
γ . (3.5)

For 1 ≤ i < `
2

put Λi =
⋃
a∈Ai ∆χa .

Theorem 3.20. For 1 ≤ i < `
2

we have

Vϕ2
i

=
∑̇
γ∈Λi

V
ϕ2
i

γ .

Proof. By using Lemma 3.17 and Equation 3.5 we get,

Vϕ2
i

=
∑̇
a∈Ai

Vχa =
∑̇
a∈Ai

∑̇
γ∈∆χa

V χa
γ =

∑̇
γ∈Λi

∑̇
a∈Ai

V χa
γ =

∑̇
γ∈Λi

V
ϕ2
i

γ ,

where the last equality is due to Lemma 3.19.

Lemma 3.21. For each 1 ≤ i < `
2
, γ ∈ Γm,n, and σ ∈ G, we have

(e
ϕ2
i
γσ, e

ϕ2
i
γ ) = g2

∑
a∈Ai

(eχaγσ, e
χa
γ ),

where g = |G|/(pq|Ĝ|).

Proof. Fix 1 ≤ i < `
2
, γ ∈ Γm,n, and σ ∈ G. By Lemma 3.16 we get,

e
ϕ2
i
γ = sϕ2

i
eγ = g

∑
a∈Ai

sχaeγ = g
∑
a∈Ai

eχaγ ,

so

(e
ϕ2
i
γσ, e

ϕ2
i
γ ) = g2(

∑
a∈Ai

eχaγσ,
∑
a∈Ai

eχaγ ) = g2
∑
a∈Ai

(eχaγσ, e
χa
γ ).

39



Lemma 3.22. For a fixed integer a consider the list of numbers of the form k` + a where

k = 0, . . . , pq − 1. Then for any integer 0 ≤ δ ≤ q, there are exactly pq−δ numbers in the list

that are divisible by pδ.

Proof. Let 0 ≤ δ ≤ q. We first show that for any list of pδ numbers of the form k`+ a where

k = 0, . . . , pδ − 1 there is exactly one number in the list divisible by pδ. We will show that

the remainders when divided by pδ of the numbers k`+a where k = 0, . . . , pδ−1 are distinct.

Let 0 ≤ k1 < k2 ≤ pδ − 1 and write k1`+ a = Q1p
δ +R1 and k2`+ a = Q2p

δ +R2 with

Qi, Ri ∈ Z. Assume R1 = R2. Then Q1 < Q2 since if Q1 ≥ Q2, then k1 ≥ k2. Now we have

k1`+ a−Q1p
δ = k2`+ a−Q2p

δ ⇒ (Q2 −Q1)pδ = (k2 − k1)`.

This is a contradiction since pδ - (k2 − k1)`. So all the remainders of the numbers in the list

when divided by pδ are distinct and hence are 0, 1, . . . , pδ− 1. Therefore there is exactly one

number of the form k`+ a where k = 0, . . . , pδ − 1 that is divisible by pδ.

Now we consider the list of pq numbers of the form k` + a where k = 0, . . . , pq − 1 and

a is any integer. By the above result we have that there is exactly one number in the list of

the first pδ numbers that is divisible by pδ. Say pδ | k′` + a where 0 ≤ k′ ≤ pδ − 1. Then

to be divisible by pδ, a number in the list {k` + a|k = 0, . . . , pq − 1} must have the form

(k′ + bpδ)`+ a where b = 0, . . . , pq−δ−1. Therefore there are exactly pq−δ numbers in the list

divisible by pδ.

Theorem 3.23. Fix i where 1 ≤ i < `
2
. There are exactly pq−δ elements of the set Ai that

are divisible by pδ.

Proof. For a = k` − i ∈ Ai where 1 ≤ k ≤ pq−1
2

note that pδ | k` − i if and only if

pδ | pq` − (k` − i) = (pq − k)` + i. Then by writing i = 0` + i we see that the number

of elements of Ai that are divisible by pδ is the same as the number of integers k` + i,

0 ≤ k ≤ pq − 1, that are divisible by pδ, which number is pq−δ by Lemma 3.22.
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Let n′a = n
gcd(n,a)

for a ∈ Ai.

Lemma 3.24. Fix a ∈ Ai. Then n′a = pq−δa`′, where δa is the largest such that pδa | a.

Proof. Let δa with 0 ≤ δa ≤ q, be the largest such that pδa | a. Observe that δa is also the

largest such that pδa | a
gcd(`,i)

since p - gcd(`, i). Then gcd(pq`′, a
gcd(`,i)

) = gcd( pq`
gcd(`,i)

, a
gcd(`,i)

) =

tpδa for some integer t with p - t. Now since t | pq`′ we get t | `′. If a = i we get

a
gcd(`,i)

= i
gcd(`,i)

= i′, so t | i′. On the other hand, if a = k`±i we get a
gcd(`,i)

= k`±i
gcd(`,i)

= k`′±i′

and since t | k`′ ± i′ and t | `′ we get t | i′. Then since gcd(`′, i′) = 1 it should be that t = 1

and this gives gcd(pq`′, a
gcd(`,i)

) = pδa . Now

n′a =
pq`

gcd(pq`, a)
=

pq`

gcd(`, i) · gcd(pq`′, a
gcd(`,i)

)
=

pq`

gcd(`, i) · pδa
= pq−δa`′.

Recall for η ∈ Irr(G), ∆η = {γ ∈ ∆ |
∑

σ∈Gγ η(σ) 6= 0}.

Lemma 3.25. Let 1 ≤ h < n
2
. We have γ ∈ ∆χh if and only if Gγ is of the form H or HT

where H 6 〈rn′h〉 and T = 〈s〉

Proof. Suppose γ ∈ ∆χh . In [10] it is shown that if γ ∈ ∆χh , then Gγ is of the form H or

HT , where H 6 〈rn′h〉 and T = 〈t〉 with t2 = 1 and t 6∈ Cn. So the desired result follows since

s 6∈ Cn and s2 = 1. To prove the other direction suppose Gγ is of the form H or HT . First

assume Gγ is of the form H. We have Gγ = 〈rmn′h〉 for some integer m such that mn′h | n.

Then for any rεmn
′
h ∈ Gγ with ε ∈ Z we have

χh(r
εmn′h) = ωhεmn

′
h + ω−hεmn

′
h .

Now since h′′ = h
gcd(n,h)

and n′h = n
gcd(n,h)

we get,

χh(r
εmn′h) = ωh

′′εmn + ω−h
′′εmn = 2.
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So
∑

σ∈Gγ χh(σ) 6= 0, and hence γ ∈ ∆χh .

Now suppose Gγ is of the form HT , so that Gγ = {rεmn′h , srεmn′h | 0 ≤ ε ≤ n
mn′h
− 1} for

some m. For each ε we have χh(sr
εmn′h) = 0. So

∑
σ∈Gγ χh(σ) =

∑
σ∈Gγ∩Cn χh(σ), which is

the same as the sum in the case of Gγ = H and hence is nonzero. So γ ∈ ∆χh .

Theorem 3.26. Let 1 ≤ i < `
2
. The space Vϕ2

i
has an o-basis if and only if either dimV = 1

or `′ ≡ 0 mod 4, where `′ = `
gcd(`,i)

.

Proof. Put ϕ = ϕ2
i . First suppose Vϕ has an o-basis and assume dimV 6= 1. Now by

Theorem 3.20 the space V ϕ
γ has an o-basis for all γ ∈ Λi =

⋃
a∈Ai ∆χa . Let γ = (1, 2, . . . , 2).

Then Gγ = {1, s}. So for all a ∈ Ai, γ ∈ ∆χa since χa(e) = 2 and χa(s) = 0 and hence

γ ∈ Λi. By Equation 2.3 we have dimV χa
γ = 2 for each a ∈ Ai. Then by Lemma 3.19 we

have dimV ϕ
γ = 2pq, so V ϕ

γ has a nonempty o-basis B. We may assume B contains eϕγ .

By Lemma 3.21 and Corollary 2.5,

(eϕγσ, e
ϕ
γ ) =

∑
a∈Ai

(eχaγσ, e
χa
γ ) =

∑
a∈Ai

χa(e)

|Gγ|
∑
ρ∈Gγσ

χa(ρ) =
χa(e)

|Gγ|
∑

ρ∈Gγσ∩Cn

∑
a∈Ai

χa(ρ).

First note that (eϕγs, e
ϕ
γ ) 6= 0 because with σ = s we get Gγσ∩Cn = {1, s}s∩Cn = {1} whence

the above sum is not zero. Now we will show that (eϕ
γrmp

q , eϕγ ) = 0 or (eϕ
γsrmp

q , eϕγ ) = 0 for some

1 ≤ m ≤ `−1. Assume to the contrary, that is for all 1 ≤ m ≤ `−1, we have (eϕ
γrmp

q , eϕγ ) 6= 0

and (eϕ
γsrmp

q , eϕγ ) 6= 0. Then for 0 ≤ x ≤ pq−1 we have |{eϕγσ | σ ∈ rx〈rp
q〉}∩B| ≤ 1, because

for eϕ
γrxrm1p

q , e
ϕ

γrxrm2p
q ∈ {eϕγσ | σ ∈ rx〈rp

q〉} with 1 ≤ m1 < m2 ≤ `− 1 we get

(eϕ
γrxrm2p

q , e
ϕ

γrxrm1p
q ) = (eϕ

γr(m2−m1)pq , e
ϕ
γ ) 6= 0.

So |{eϕγσ | σ ∈ Cn} ∩ B| ≤ pq. Now by our observation (eϕγs, e
ϕ
γ ) 6= 0 and by our assumption

we get {eϕγσ | σ ∈ s〈rp
q〉}∩B = ∅. For 1 ≤ x ≤ pq−1 we have |{eϕγσ | σ ∈ srx〈rp

q〉}∩B| ≤ 1.

So |{eϕγσ | σ ∈ G \ Cn} ∩ B| < pq. Therefore we get dimV ϕ
γ < 2pq, which contradicts with

the observation above. So (eϕ
γrmp

q , eϕγ ) = 0 or (eϕ
γsrmp

q , eϕγ ) = 0 for some 1 ≤ m ≤ `− 1.
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Note that since Gγ = {1, s} we have Gγr
mpq ∩ Cn = {rmpq} and Gγsr

mpq ∩ Cn =

{rmpq}. Recall since rmp
q

is p-regular we have χk`±i(r
mpq) = χi(r

mpq), so
∑

a∈Ai χa(r
mpq) =

pqχi(r
mpq). So for σ ∈ {rmpq , srmpq | 1 ≤ m ≤ `− 1} we have

0 = (eϕγσ, e
ϕ
γ ) =

2

|Gγ|
∑

ρ∈Gγσ∩Cn

∑
a∈Ai

χa(ρ) =
∑
a∈Ai

χa(r
mpq) = pqχi(r

mpq)

= 2pq cos
2πmpqi

n
.

Therefore, 2πmpqi
n

= (2c+ 1)π
2

for some integer c, so

4i′m =
4im

gcd(`, i)
=

(2c+ 1)`

gcd(`, i)
= (2c+ 1)`′.

So `′ is divisible by 4.

Conversely suppose that dimV = 1. Then following the same argument in [9, Theorem

2.2], Vϕ = 〈eϕγ 〉 with γ = (1, . . . , 1), so Vϕ has o-basis {eϕγ} or ∅ accordingly as dimVϕ is 1 or

0.

Now suppose `′ ≡ 0 mod 4. To show that there is an o-basis for Vϕ, it is enough by

Theorem 3.20 to show that there is an o-basis for V ϕ
γ for each γ ∈ Λi. Fix γ ∈ Λi. Then there

is a ∈ Ai such that γ ∈ ∆χa and by Lemma 3.25, Gγ is of the form H or HT where H 6 〈rn′a〉

and T = 〈s〉. Now let ā ∈ Ai be such that 〈rn′ā〉 is the smallest for which H 6 〈rn′ā〉. Let δā

be the largest such that pδā | ā. Then by Lemma 3.24 we have n′ā = pq−δā`′.

We claim that if pδā | a for some a ∈ Ai, then γ ∈ ∆χa . Fix a ∈ Ai and let δa be

the largest such that pδa | a. Then if pδā | a it follows that pδā ≤ pδa , so n′a = pq−δa`′ ≤

pq−δā`′ = n′ā. Therefore H 6 〈rn′ā〉 6 〈rn′a〉. Then it follows from Lemma 3.25 that, γ ∈ ∆χa

as claimed.

Also we claim that γ ∈ ∆χa only when pδā | a. To see this assume there is a ∈ Ai such

that γ ∈ ∆χa , but pδā - a. Note that H ≤ 〈rn′a〉 by Lemma 3.25. Letting δa be the largest
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such that pδa | a we get pδa < pδā , so n′ā = pq−δā`′ < pq−δa`′ = n′a. This gives 〈rn′a〉 6 〈rn′ā〉

which is a contradiction since 〈rn′ā〉 is the smallest subgroup to contain H. Therefore the

claim holds and then by Lemma 3.19 we can write

V ϕ
γ =

∑̇
a∈Ai

V χa
γ =

∑̇
a∈Ai
pδā |a

V χa
γ .

By Lemma 3.22 there are pq−δā summands in the direct sum above. In the proof of [10,

Theorem 3.1] it is shown that for χ ∈ Irr(G) of degree two, dimV χ
γ = 4 if Gγ = H and

dimV χ
γ = 2 if Gγ = HT . Then we have dimV ϕ

γ = 4pq−δā if Gγ = H and dimV ϕ
γ = 2pq−δā if

Gγ = HT .

Suppose Gγ = H. Write Gγ = 〈rmn′ā〉 for some integer m with mn′ā | n. Now we will

show that {eϕγσ, eϕγsσ|σ ∈ X} where X = {r x`
′

4 |0 ≤ x ≤ 2pq−δā − 1} is an orthogonal basis for

V ϕ
γ . To show this we will compare all possible combinations of elements for orthogonality.

Let σ, τ ∈ X. Consider the elements eϕγsτ and eϕγσ. Then since Gγsτσ
−1 ∩ Cn = ∅ we have

(eϕγsτ , e
ϕ
γσ) = (eϕγsτσ−1 , e

ϕ
γ ) =

2

|Gγ|
∑

ρ∈Gγsτσ−1∩Cn

∑
a∈Ai

χa(ρ) = 0.

For elements eϕγsτ and eϕγsσ we see that (eϕγsτ , e
ϕ
γsσ) = (eϕγτ−1σ, e

ϕ
γ ) = (eϕγσ, e

ϕ
γτ ), so it is enough

to check the orthogonality of elements of the form eϕγσ. In this case it is sufficient to check

that (eϕγσ, e
ϕ
γ ) = 0 for each σ ∈ X with σ 6= 1. Fix σ = r

x`′
4 ∈ X with σ 6= 1. Then

Gγσ ∩ Cn = {rεmn′ā+x`′
4 | 0 ≤ ε ≤ n

mn′ā
− 1}, so we get

(eϕγσ, e
ϕ
γ ) =

2

|Gγ|
∑

ρ∈Gγσ∩Cn

∑
a∈Ai

χa(ρ) =
2

|Gγ|

n
mn′ā
−1∑

ε=0

∑
a∈Ai

χa(r
εmn′ā+x`′

4 )

=
2

|Gγ|

n
mn′ā
−1∑

ε=0

∑
a∈Ai

χa(r
εmpq−δā`′+x`′

4 ) =
2

|Gγ|

n
mn′ā
−1∑

ε=0

∑
a∈Ai

χa(r
`′
4

(4εmpq−δā+x)).

44



We observe here that for any rt ∈ Cn

∑
a∈Ai

χa(r
t) = χi(r

t) +

pq−1
2∑

k=1

χk`+i(r
t) +

pq−1
2∑

k=1

χk`−i(r
t)

= χi(r
t) +

pq−1
2∑

k=1

χk`+i(r
t) +

pq−1∑
k= pq+1

2

χpq`−(k`+i)(r
t)

= ωti + ω−ti +

pq−1
2∑

k=1

(ωt(k`+i) + ω−t(k`+i)) +

pq−1∑
k= pq+1

2

(ωt(p
q`−(k`+i)) + ω−t(p

q`−(k`+i)))

=

pq−1∑
k=0

(ωt(k`+i) + ω−t(k`+i)).

So with t = `′

4
(4εmpq−δā + x) we get,

(eϕγσ, e
ϕ
γ ) =

2

|Gγ|

n
mn′ā
−1∑

ε=0

pq−1∑
k=0

(ω
`′
4

(4εmpq−δā+x)(k`+i) + ω−
`′
4

(4εmpq−δā+x)(k`+i))

=
2

|Gγ|

n
mn′ā
−1∑

ε=0

(
ω
`′
4

(4εmpq−δā+x)i

pq−1∑
k=0

ω
`′
4

(4εmpq−δā+x)k`

+ω−
`′
4

(4εmpq−δā+x)i

pq−1∑
k=0

ω−
`′
4

(4εmpq−δā+x)k`
)

=
2

|Gγ|

n
mn′ā
−1∑

ε=0

(
ω
`′
4

(4εmpq−δā+x)i

pq−1∑
k=0

(ω
`′
4

(4εmpq−δā+x)`)k

+ω−
`′
4

(4εmpq−δā+x)i

pq−1∑
k=0

(ω−
`′
4

(4εmpq−δā+x)`)k
)
.

In order to proceed, we need the fact that if j is a positive integer and ρ ∈ C is a jth

root of unity with ρ 6= 1, then
j−1∑
k=0

ρk =
ρj − 1

ρ− 1
= 0.
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Note that ω
`′
4

(4εmpq−δā+x)` is a pqth root of unity for all ε. If for some fixed ε the expression

`′

4
(4εmpq−δā + x) is not a multiple of pq, then we have

∑pq−1
k=0 (ω±

`′
4

(4εmpq−δā+x)`)k = 0 by the

preceding observation.

On the other hand if a fixed ε is such that `′

4
(4εmpq−δā + x) is a multiple of pq, then

since p - `′ it should be that 4εmpq−δā + x = zεp
q for some integer zε. Then for such ε, on

the right hand side of the above equation we get,

ω
`′
4

(4εmpq−δā+x)i

pq−1∑
k=0

(ω
`′
4

(4εmpq−δā+x)`)k + ω−
`′
4

(4εmpq−δā+x)i

pq−1∑
k=0

(ω−
`′
4

(4εmpq−δā+x)`)k

= ω
`′
4
zεpqi

pq−1∑
k=0

ω
`′
4
zεpq`k + ω−

`′
4
zεpqi

pq−1∑
k=0

ω−
`′
4
zεpq`k = pq(ω

`′
4
zεpqi + ω−

`′
4
zεpqi)

= pq(ω
`
4
zεpqi′ + ω−

`
4
zεpqi′) = pq(ω

n
4
zεi′ + ω−

n
4
zεi′) = pqω−

n
4
zεi′(ω

n
2
zεi′ + 1)

= pqω−
n
4
zεi′((−1)zεi

′
+ 1).

Now clearly i′ = i
gcd(`,i)

is odd because when 4 | `′ = `
gcd(`,i)

we have 4 | `′ = `2
gcd(`2,i2)

,

so i2 = gcd(`2, i2) = gcd(`, i)2, that is, the largest powers of 2 dividing i and gcd(`, i),

respectively, are equal. Here we claim that zε is also an odd number. Observe that x =

zεp
q − 4εmpq−δā = pq−δā(zεp

δā − 4εm), but since x is an integer such that 0 ≤ x ≤ 2pq−δ − 1

we get zεp
δā − 4εm = 1, so zεp

δā = 4εm + 1 and therefore zε is odd as claimed. Then the

last expression of the above equation pqω−
n
4
zεi′((−1)zεi

′
+1) = 0 and this gives us the desired

result that (eϕγσ, e
ϕ
γ ) = 0.

Now suppose Gγ = HT . Write H = 〈rmn′ā〉 with m an integer satisfying mn′ā | n. In

this case we will show that {eϕγσ|σ ∈ X} where X = {σ = r
x`′
4 |0 ≤ x ≤ 2pq−δā − 1} is an

orthogonal basis for V ϕ
γ . Let σ ∈ X not be the identity element. It is sufficient to check that

(eϕγσ, e
ϕ
γ ) = 0. We have HTσ ∩Cn = Hσ ∩Cn, so the computation is the same as in the case

of Gγ = H, whence we have shown the desired result.
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We will state the result for the existence of an o-basis in the case of a degree one

irreducible Brauer character as it appears in [9].

Theorem 3.27 ([9, Theorem 2.2]). Let 0 ≤ j < ε, and put ϕ = ψ̂j. The space Vϕ has an

o-basis if and only if at least one of the following holds:

i) dimV = 1,

ii) p = 2,

iii) m is not divisible by p.

3.6 Projective symmetrization

In this section we will discuss the existence of an o-basis associated with a PI of G = Dn.

To prevent the redundancy of some computations to follow we introduce some notation below.

ε =

 2, if n is odd;

4, if n is even.

Tj =


{k` | 1 ≤ k ≤ pq−1

2
}, j = 1, 2;

{ `
2

+ k` | 0 ≤ k ≤ pq−1
2
− 1}, j = 3, 4.

(3.6)

Then using Theorem 3.5 we can write

Φ1
j = ψj +

∑
t∈Tj

χt, for 1 ≤ j ≤ ε, (3.7)

Φ2
i = χi +

pq−1
2∑

k=1

(χk`+i + χk`−i), for 1 ≤ i <
`

2
. (3.8)
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First considering the PIs corresponding to degree one Brauer characters and using the

Equation 2.4 the symmetrizer is given by

sΦ1
i

=
ϕ1
i (e)

|G|
∑
σ∈G

Φ1
i (σ)σ.

Proposition 3.28. Fix j with 1 ≤ j ≤ ε. Then

sΦ1
j

= sψj +
1

2

∑
t∈Tj

sχt .

Proof. By Equations 2.4 and 3.7 we get

sΦ1
j

=
ϕ1
j(e)

|G|
∑
σ∈G

Φ1
j(σ)σ =

ϕ1
j(e)

|G|
∑
σ∈G

(ψj(σ) +
∑
t∈Tj

χt(σ))σ

=
1

|G|
∑
σ∈G

ψj(σ)σ +
∑
t∈Tj

1

|G|
χt(σ)σ

=
ψ1
j (e)

|G|
∑
σ∈G

ψj(σ)σ +
∑
t∈Tj

χt(e)

2|G|
χt(σ)σ

= sψj +
1

2

∑
t∈Tj

sχt .

Recall that ∆ is a set of representatives of the orbits of Γn,m under the action given in

Equation 2.1. Then for 1 ≤ j ≤ ε by Equation 2.5 we have

VΦ1
j

=
∑̇
γ∈∆

V
Φ1
j

γ .

Theorem 3.29. Fix j with 1 ≤ j ≤ ε and fix γ ∈ ∆. Then

V
Φ1
j

γ = V ψj
γ +̇

∑̇
t∈Tj

V χt
γ (orthogonal direct sum)
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Proof. Let sΦ1
j
(v) ∈ V Φ1

j
γ . Then it is clear from Proposition 3.28 above that sΦ1

j
(v) ∈ V ψj

γ +∑
t∈Tj V

χt
γ . To show the other inclusion consider sψj(w) +

∑
t∈Tj sχt(wt) ∈ V

ψj
γ +

∑
t∈Tj V

χt
γ .

Note that sψj(w) +
∑

t∈Tj sχt(2wt) ∈ Vγ. Then

sψj(w) +
∑
t∈Tj

sχt(wt) = sψj(w) +
1

2

∑
t∈Tj

sχt(2wt) = sψj(w) +
1

2

∑
t∈Tj

∑
b

sχbsχt(2wt)

=
(
sψj +

1

2

∑
b

sχb

)(
sψj(w) +

∑
t∈Tj

sχt(2wt)
)

=
(
sψj +

1

2

∑
b

sχb

)(
sψj(w) +

∑
t∈Tj

sχt(2wt)
)

= sΦ1
j

(
sψj(w) +

∑
t∈Tj

sχt(2wt)
)
∈ V Φ1

j
γ ,

where we have used that sχsψ = δχψsχ for all χ, ψ ∈ Irr(G). This shows that V
Φ1
j

γ =

V
ψj
γ +

∑
t∈Tj V

χt
γ . The orthogonality follows from the argument in the proof of Theorem

2.3.

Fix j with 1 ≤ j ≤ ε and γ ∈ Γn,m. We have by Theorem 2.6

(e
Φ1
j

γσ , e
Φ1
j

γ ) =
ϕ1
j(e)

2

|G|2
∑
τ∈G

∑
α∈Gγ

Φ1
j(σ
−1ατ)Φ1

j(τ).

Below we state as a corollary a useful form of this inner product.

Corollary 3.30.

(e
Φ1
j

γσ , e
Φ1
j

γ ) =
1

2|G|
∑
α∈Gγ

(
2ψj(σ

−1α) +
∑
t∈Tj

χt(σ
−1α)

)
=

1

2|G|
∑
α∈Gγ

(
ψj(σ

−1α) + Φ1
j(σ
−1α)

)
.
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Proof. Using Equation 3.7, Theorem 1.13 and Theorem 1.14 we get,

(e
Φ1
j

γσ , e
Φ1
j

γ ) =
ϕ1
j(e)

2

|G|2
∑
τ∈G

∑
α∈Gγ

Φ1
j(σ
−1ατ)Φ1

j(τ)

=
ϕ1
j(e)

2

|G|2
∑
τ∈G

∑
α∈Gγ

(
ψj(σ

−1ατ) +
∑
t∈Tj

χt(σ
−1ατ)

)(
ψj(τ) +

∑
u∈Tj

χu(τ)
)

=
ϕ1
j(e)

2

|G|2
∑
τ∈G

∑
α∈Gγ

(
ψj(σ

−1ατ)ψj(τ
−1) +

∑
t∈Tj

χt(σ
−1ατ)χt(τ

−1)
)

=
ϕ1
j(e)

2

|G|2
∑
α∈Gγ

(∑
τ∈G

ψj(σ
−1ατ)ψj(τ

−1) +
∑
t∈Tj

∑
τ∈G

χt(σ
−1ατ)χt(τ

−1)
)

=
ϕ1
j(e)

2

|G|2
∑
α∈Gγ

( |G|
ψj(e)

ψj(σ
−1α) +

∑
t∈Tj

|G|
χt(e)

χt(σ
−1α)

)
.

Now since ϕ1
j(e) = ψ1

j (e) = 1 and χt(e) = 2 for each t ∈ Tj we get,

(e
Φ1
j

γσ , e
Φ1
j

γ ) =
1

2|G|
∑
α∈Gγ

(
2ψj(σ

−1α) +
∑
t∈Tj

χt(σ
−1α)

)
=

1

2|G|
∑
α∈Gγ

(
ψj(σ

−1α) + Φ1
j(σ
−1α)

)
.

Theorem 3.31. For i = 1, 2, 3, 4 the space VΦ1
j

has an o-basis if and only if at least one of

the following holds.

i) dimV = 1,

ii) p = 2,

iii) n is not divisible by p.

Proof. If dimV = 1, then VΦ1
j

= 〈eΦ1
j

γ 〉, where γ = (1, 1, . . . , 1), so VΦ1
j

has o-basis {eΦ1
j

γ } or ∅

according as dimVΦ1
j

is 1 or 0.

Assume p = 2. Then Φ1
j is an ordinary irreducible character of the group Ĝ = 〈rpq〉 ≤

Cn. Then using Freese’s result for the dimension of an orbital subspace [6], dimV
Φ1
j

γ is at

most one and hence has an o-basis. So VΦ1
j

has an o-basis by Equation 2.5.
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Assume n is not divisible by p. Then Ĝ = G and hence Φ1
j = ψj. Since ψj is of degree

one, each orbital subspace has dimension at most one and hence VΦ1
j

has an o-basis by the

same argument as in the above paragraph.

Now assume that none of the three conditions stated in the theorem holds. Let γ =

(1, 2, . . . , 2). which is in Γn,m since dimV ≥ 2. We show that (e
Φ1
j

γσ , e
Φ1
j

γ ) 6= 0 for every σ ∈ G.

Note that Gγ = {1, s}.

First let σ ∈ G \ Ĝ. Since p 6= 2 we have σ ∈ Cn. Using Corollary 3.30 we get,

2|G|(eΦ1
j

γσ , e
Φ1
j

γ ) = (ψj + Φ1
j)(σ

−1) + (ψj + Φ1
j)(σ

−1s) = ψj(σ) + 2ψj(sσ) 6= 0.

Now let σ ∈ Ĝ. Then σ ∈ {rapq , srb | 0 ≤ a < `, 0 ≤ b < n}. Assume σ = rap
q

for some

0 ≤ a < `. We have

χk`(σ) = χk`(r
kpq) = 2 cos

2πj`kpq

n
= 2,

and

χ `
2

+k`(σ) = χ `
2

+k`(r
apq) = 2 cos

2π( `
2

+ k`)rap
q

n
= 2 cos πapq = (−1)a2.

We also note that for a fixed j we have that ψj(r
apq) and χt(r

apq) (t ∈ Tj) are all positive or all

negative at the same time for a given a. Recall by Equation 3.1 we have ψj(r
−apq) = ψj(r

apq)

and χt(r
−apq) = χt(r

apq). So

2|G|(eΦ1
j

γσ , e
Φ1
j

γ ) = (ψj + Φ1
j)(r

−apq) + (ψj + Φ1
j)(r

−apqs)

= 2ψj(r
apq) + 2ψj(sr

apq) +
∑
t∈Tj

χt(r
apq) 6= 0
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using that p 6= 2 and that n is divisible by p so that Tj is nonempty. Now assume σ = srb

for some 0 ≤ b < n. By Corollary 3.30 we get

(e
Φ1
j

γσ , e
Φ1
j

γ ) =
1

2|G|

(
(ψj + Φ1

j)(sr
b) + (ψj + Φ1

j)(sr
bs)
)

=
1

2|G|

(
(ψj + Φ1

j)(sr
b) + (ψj + Φ1

j)(r
−b)
)

= (e
Φ1
j

γrb
, e

Φ1
j

γ ).

Now we get (e
Φ1
j

γσ , e
Φ1
j

γ ) 6= 0 since (e
Φ1
j

γrb
, e

Φ1
j

γ ) 6= 0 by the two previous cases. By Equation

2.3 we have dimV χt
γ = χt(e)

|Gγ |
∑

σ∈Gγ χt(σ) = 2 for each t ∈ Tj. As observed earlier, Tj is

nonempty, so dimV
Φ1
j

γ > 1. So we conclude that VΦ1
j

does not have an o-basis and the proof

is complete.

Now we will consider the PIs corresponding to degree two Brauer characters of G = Dn.

Corollary 3.32. For 1 ≤ i < `
2

sΦ2
i

=
pq|Ĝ|
|G|

sϕ2
i
.

Proof. Let 1 ≤ i < `
2
. By Equation 2.4 and Lemma 3.15,

sΦ2
i

=
ϕ2
i (e)

|G|
∑
σ∈G

Φ2
i (σ)σ =

ϕ2
i (e)

|G|
∑
σ∈Ĝ

Φ̂2
i (σ)σ =

pqϕ2
i (e)

|G|
∑
σ∈Ĝ

ϕ2
i (σ)σ =

pq|Ĝ|
|G|

sϕ2
i
.

Recall that VΦ2
i

= sΦ2
i
(V

⊗
n) and Vϕ2

i
= sϕ2

i
(V

⊗
n).

Theorem 3.33. For 1 ≤ i < `
2

we have

VΦ2
i

= Vϕ2
i
.

Proof. Take sΦ2
i
(w) ∈ VΦ2

i
. Then using Corollary 3.32 we get

sΦ2
i
(w) =

pq|Ĝ|
|G|

sϕ2
i
(w) = sϕ2

i
(
pq|Ĝ|
|G|

w) ∈ Vϕ2
i
,
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which shows the inclusion VΦ2
i
⊆ Vϕ2

i
. Then take sϕ2

i
(u) ∈ Vϕ2

i
. Again using Corollary 3.32

we see that

sϕ2
i
(u) =

|G|
pq|Ĝ|

sΦ2
i
(u) = sΦ2

i
(
|G|
pq|Ĝ|

u) ∈ VΦ2
i
,

which gives the other inclusion. So we get VΦ2
i

= Vϕ2
i
.

Theorem 3.34. Fix i where 1 ≤ i < `
2

and let γ ∈ Γn,m. Then

e
Φ2
i

γ =
pq|Ĝ|
|G|

e
ϕ2
i
γ .

Proof. By Corollary 3.32 we get that,

e
Φ2
i

γ = sΦ2
i
(eγ) =

pq|Ĝ|
|G|

sϕ2
i
(eγ) =

pq|Ĝ|
|G|

e
ϕ2
i
γ .

Lemma 3.35. Fix i with 1 ≤ i < `
2
. Then VΦ2

i
has an o-basis if and only if Vϕ2

i
has an

o-basis.

Proof. We observe that,

(e
Φ2
i

γ , e
Φ2
i

τ ) = (
pq|Ĝ|
|G|

e
ϕ2
i
γ ,

pq|Ĝ|
|G|

e
ϕ2
i
τ ) = (

pq|Ĝ|
|G|

)2(e
ϕ2
i
γ , e

ϕ2
i
τ ).

So (e
Φ2
i

γ , e
Φ2
i

τ ) = 0 if and only if (e
ϕ2
i
γ , e

ϕ2
i
τ ) = 0.

Theorem 3.36. Fix i with 1 ≤ i < `
2
. Then VΦ2

i
has an o-basis if and only if either

dimV = 1 or `′ is divisible by 4, where `′ = `/ gcd(`, i).

Proof. The result follows from Lemma 3.35 and Theorem 3.26.

Theorem 3.37. Fix i with 1 ≤ i < `
2
. Then VΦ2

i
has an orthogonal basis consisting of

decomposable tensors of the form eχγ if and only if `′ ≡ 0 mod 4. Where `′ = `
gcd(`,i)

.

Proof. The result follows from Theorem 3.33 and Theorem 3.18.
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Chapter 4

Symmetric group

In this chapter we will discuss some results associated with Brauer characters of a

symmetric group.

For some positive integer n, the symmetric group Sn of degree n is the group of permu-

tations of the set {1, 2, . . . , n} with the binary operation defined by function composition.

The number of elements of Sn is n!. A permutation σ of Sn is given by

σ =

 1 2 · · · n

σ(e) σ(2) · · · σ(n)


or

σ = (i11, . . . , i1r1)(i21, . . . , i2r2) · · · (is1, . . . , isrs),

where 1 ≤ iab ≤ n, iab = icd implies a = c and b = d, and σ(iab) = ia(b+1) (b < ra), σ(iara) =

ia1. The latter is in a factored form, where the factors are disjoint cycles. The length of a

cycle is the number of numbers that appear in the cycle. The lengths of the cycles r1, . . . , rs

of σ, when arranged in non-increasing order is called the cycle type of σ. Two permutations

are conjugate in Sn if and only if they have the same cycle type ([13, Theorem 2.4, page

292]). In particular, the number of conjugacy classes of Sn is equal to the number of different

cycle types of the elements of Sn. So the number of irreducible characters of Sn is the same

as the number of different cycle types of the elements of Sn.

The order of a cycle equals the length of the cycle. Let σ be a permutation with the

cycle type (r1, r2, . . . , rk). Then it can easily be observed that the order of σ equals the least
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common multiple of the numbers r1, r2, . . . , rk. In light of this a p-regular element of Sn is a

permutation with cycle type consisting of numbers not divisible by p.

In the following study we will just consider the principal Braur character of G = Sn,

which is the character ψ given by ψ(σ) = 1 for each σ ∈ G. As the Brauer character afforded

by the trivial KG-module ψ is irreducible.

Theorem 4.1. Let G = Sn with n ≥ 3. Assume that dimV ≥ 2 and p 6= 2. Then

(eψγσ, e
ψ
γ ) 6= 0 for all σ ∈ G, where γ = (1, . . . , 1, 2). In particular, if dimV ψ

γ > 1, then Vψ

does not have an o-basis.

Proof. Let γ = (1, . . . , 1, 2). We can assume γ to be the representative of the orbit containing

it, so γ ∈ ∆. Observe that Gγ = {σ ∈ Sn |σ(n) = n} ∼= Sn−1.

By Theorem 2.4, for any σ ∈ G we have

(eψγσ, e
ψ
γ ) =

ψ(e)2

|Ĝ|2
∑
µ∈Ĝ

∑
τ∈σµ−1Ĝ∩Gγ

ψ(µ)ψ(τ−1σµ−1) =
ψ(e)2

|Ĝ|2
∑
µ∈Ĝ

∑
ρ∈µσ−1Gγ∩Ĝ

ψ(µ)ψ(ρ−1)

=
1

|Ĝ|2
∑
µ∈Ĝ

|µσ−1Gγ ∩ Ĝ|.

So (eψγσ, e
ψ
γ ) = 0 only when µσ−1Gγ ∩ Ĝ = ∅ for some µ ∈ Ĝ. We will show that for all σ ∈ G

there is some µ ∈ Ĝ such that µσ−1Gγ ∩ Ĝ 6= ∅, which implies that (eψγσ, e
ψ
γ ) 6= 0.

We claim here that the cyclic group H = 〈(1, 2, . . . , n)〉 is a set of right coset represen-

tatives of Gγ in G. For h1, h2 ∈ H with h1 6= h2 we have h1h
−1
2 (n) 6= n, so Gγh1 6= Gγh2.

Also |G : Gγ| = n = |H|. Now since GγH = G we have {eψγσ|σ ∈ G} = {eψγh|h ∈ H}. So it is

enough to show (eψγh, e
ψ
γ ) 6= 0 for all h ∈ H. Let h ∈ H. If h = e, then letting µ = e ∈ Ĝ we

get µh−1Gγ ∩ Ĝ = Gγ ∩ Ĝ, and this latter set contains the transposition (1, 2), since n ≥ 3

and p 6= 2, so it is nonempty as desired. Now assume that h 6= e. Then h(n) 6= n and there is

1 ≤ m ≤ n−1 such that h(m) = n. Now let µ = (m,n) and observe that we get µh−1(n) = n,

so µh−1 ∈ Sn−1 = Gγ. Therefore, µ ∈ Ĝ, since p 6= 2, and µh−1Gγ ∩ Ĝ = Gγ ∩ Ĝ 6= ∅ as

desired.
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If dimV ψ
γ > 1, then V ψ

γ does not have an o-basis, so by Theorem 2.3 the space Vψ does

not have an o-basis.

The following example is a case, where we do not have an o-basis for Vψ.

Example 4.2. Let G = S3. Assume dimV ≥ 2 and p = 3. Let ψ be the principal Brauer

character of G and let γ = (1, 1, 2). Then dimV ψ
γ > 1.

Proof. Note since p = 3 we have Ĝ = {1, (a, b), (a, c), (b, c)}. Write eψγ = eψ(112). Then for

σ = (a, b, c) ∈ G we get eψγσ = eψ(211). Now by Equation 2.2 we get

eψ(112) =
1

4
(2e(112) + e(211) + e(121)),

eψ(211) =
1

4
(2e(211) + e(112) + e(121)).

By inspection we see that eψ(112) and eψ(211) are linearly independent, so dimV ψ
γ > 1.

The alternating group G = An is the subgroup of Sn consisting of all the even per-

mutations of Sn. Let ψ be the irreducible Brauer character of G with ψ(σ) = 1 for all

σ ∈ G.

Theorem 4.3. Let G = An. Assume that dimV ≥ 2, n(≥ 3) is odd, and p 6= 2. Then

(eψγσ, e
ψ
γ ) 6= 0 for all σ ∈ G, where γ = (1, . . . , 1, 2). In particular, if dimV ψ

γ > 1, then Vψ

does not have an o-basis.

Proof. Let γ = (1, . . . , 1, 2). We can assume γ to be the representative of the orbit containing

it, so γ ∈ ∆. Observe that Gγ = {σ ∈ An |σ(n) = n} ∼= An−1. Since n is odd H =

〈(1, 2, . . . , n)〉 ⊆ G. Following the same argument as in the proof of Theorem 4.1 we can

show that H is a set of right coset representatives of Gγ in G. The argument to show

(eψγσ, e
ψ
γ ) 6= 0 for all σ ∈ G is the same as in the proof of Theorem 4.1.
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4.1 Special case S4

The symmetric group G = S4 of degree 4 is the group of permutations of a set {a, b, c, d}.

Let p = 2. Then there are two, 2-regular conjugacy classes and

Ĝ = {1, (abc), (acb), (abd), (adb), (acd), (adc), (bcd), (bdc)}.

The Brauer character table of G in this case is (see [12, page 431])

(·) (· · · )

ϕ1 1 1

ϕ2 2 −1

Theorem 4.4. Assume that dimV > 1. The space Vϕi does not have an o-basis for i ∈

{1, 2}.

Proof. Fix i ∈ {1, 2} and put ϕ = ϕi. To show Vϕ does not have an o-basis it is enough by

Theorem 2.3 to show that V ϕ
γ does not have an o-basis for some γ ∈ ∆.

Let γ = (1, 1, 1, 2). Then Gγ = {1, (ab), (ac), (bc), (abc), (acb)}.

Let H = {1, (ab)(cd), (ac)(bd), (ad)(bc)} and observe that G = GγH. So {eϕγσ | σ ∈

G} = {eϕγσ | σ ∈ H}. We will compute the value of (eϕγσ, e
ϕ
γ ) using the formula

(eϕγσ, e
ϕ
γ ) =

ϕ(e)2

|Ĝ|2
∑
µ∈Ĝ

∑
ρ∈µσ−1Gγ∩Ĝ

ϕ(µ)ϕ(ρ−1) (4.1)
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(see proof of Theorem 4.1). The following table lists the products µσ−1, with µ ∈ Ĝ and

σ ∈ H.

σ \ µ 1 (abc) (acb) (abd) (adb) (acd) (adc) (bcd) (bdc)

1 1 (abc) (acb) (abd) (adb) (acd) (adc) (bcd) (bdc)

(ab)(cd) (ab)(cd) (acd) (bcd) (adc) (bdc) (abc) (abd) (acb) (adb)

(ac)(bd) (ac)(bd) (bdc) (abd) (acb) (acd) (adb) (bcd) (adc) (abc)

(ad)(bc) (ad)(bc) (adb) (adc) (bcd) (abc) (bdc) (acb) (abd) (acd)

Now we will look at the part
∑

µ∈Ĝ
∑

ρ∈µσ−1Gγ∩Ĝ ϕ(µ)ϕ(ρ−1) on the right side of the Equation

4.1. Note from the table above that µσ−1 is even for all µ and σ. Now since Ĝ does not

contain odd cycles we can neglect the products of µσ−1 with the elements of the form (··) in

Gγ when considering µσ−1Gγ ∩ Ĝ.

When µ = 1, for all cases of σ 6= 1 we get:

µσ−1(·) = (··)(··)(·) = (··)(··) and µσ−1(· · ·) = (··)(··)(· · ·) = (· · ·) (two times).

From the table we see if µ = (· · ·), then for each σ ∈ H we have µσ−1 = (· · ·). The

table below lists the products µσ−1 (columns) of the form (· · ·) with the even permutations

in Gγ (rows).

(abc) (acb) (abd) (adb) (acd) (adc) (bcd) (bdc)

1 (abc) (acb) (abd) (adb) (acd) (adc) (bcd) (bdc)

(abc) (acb) 1 (ad)(bc) (bcd) (abd) (ab)(cd) (ac)(bd) (adc)

(acb) 1 (abc) (acd) (ac)(bd) (ad)(bc) (bdc) (adb) (ab)(cd)
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Assume that ϕ = ϕ1. Since ϕ(θ) = 1 for all θ ∈ Ĝ and µσ−1Gγ ∩ Ĝ 6= ∅ we get (eϕγσ, e
ϕ
γ ) 6= 0

for all σ ∈ H. Now write eϕγ = eϕ(1112). Then eϕγ(ad) = eϕ(2111). Now by Equation 2.2 we get

eϕ(1112) =
1

9
(3e(1112) + 2e(2111) + 2e(1211) + 2e(1121)),

eϕ(2111) =
1

9
(3e(2111) + 2e(1112) + 2e(1211) + 2e(1121)).

By inspection we note that eϕ(1112) and eϕ(2111) are linearly independent, so dimV ϕ
γ ≥ 2. So

we conclude that V ϕ
γ does not have an o-basis and hence Vϕ does not have an o-basis.

Now assume that ϕ = ϕ2. Then to evaluate (eϕγσ, e
ϕ
γ ) for each σ 6= 1 in H we observe

from the computations above in the cases of µ = 1 = (·) and µ of the form (· · ·) that

∑
µ∈Ĝ

∑
ρ∈µσ−1Gγ∩Ĝ

ϕ(µ)ϕ(ρ−1) = 4ϕ
(

(·)
)
ϕ
(

(· · ·)
)

+ 16ϕ
(

(· · ·)
)
ϕ
(

(· · ·)
)
.

So by the Brauer character table given above and Equation 4.1 we get

(eϕγσ, e
ϕ
γ ) =

ψ(e)2

|Ĝ|2
(

4(2)(−1) + 16(−1)(−1)
)
6= 0.

Now note that by Equation 2.2 we get

eϕ(1112) =
2

9
(−2e(2111) − 2e(1211) − 2e(1121)),

eϕ(2111) =
2

9
(−2e(1112) − 2e(1211) − 2e(1121)).

By inspection eϕ(1112) and eϕ(2111) are linearly independent implying dimV ϕ
γ ≥ 2. So we

conclude that V ϕ
γ has no o-basis and therefore Vϕ does not have an o-basis.

59



Bibliography

[1] C. Bessenrodt, M. R. Pournaki, and A. Reifegerste, A note on the orthogonal basis of a
certain full symmetry class of tensors, Linear Algebra and its Applications 370 (2003),
369-374.

[2] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative
Algebras, Interscience, New York, 1962.

[3] M. R. Darafsheh and N. S. Poursalavati, Orthogonal basis of the symmetry classes of
tensors associated with the direct product of permutation groups, Pure Mathematics and
Applications 10 (3) (1999), 241-248.

[4] J. A. Dias da Silva and M. M. Torres, On the orthogonal dimension of orbital sets,
Linear Algebra and its Applications 401 (2005), 77-107.

[5] W. Feit, The Representation Theory of Finite Groups, North-Holland, New York, 1982.

[6] R. Freese, Inequalities for generalized matrix functions based on arbitrary characters,
Linear Algebra and its Applications 7 (1973), 337–345.

[7] R. R. Holmes, Orthogonal bases of symmetrized tensor spaces, Linear Multilinear Alge-
bra 39 (3) (1995), 241–243.

[8] R. R. Holmes, Orthogonality of cosets relative to irreducible characters of finite groups,
Linear Multilinear Algebra 52 (2) (2004), 133–143.

[9] R. R. Holmes and A. Kodithuwakku (2012), Orthogonal bases of Brauer sym-
metry classes of tensors for the dihedral group, Linear Multilinear Algebra,
DOI:10.1080/03081087.2012.729583.

[10] R. R. Holmes and T.-Y. Tam, Symmetry classes of tensors associated with certain
groups, Linear Multilinear Algebra 32 (1) (1992), 21–31.

[11] I. M. Isaacs, Character theory of finite groups, Dover, New York, 1976.

[12] G. D. James and A. Kerber, The representation theory of the symmetric group, Addison-
Wesley, 1981.

[13] Michio Suzuki, Group theory I, Springer, New York, 1982.

[14] J.-P. Serre, Linear Representations of Finite Groups, Springer, New York, 1977.

60



[15] M. A. Shahabi, K. Azizi, and M. H. Jafari, On the orthogonal basis of symmetry classes
of tensors, Journal of Algebra 237 (2) (2001), 637-646.

[16] B. Y. Wang and M. P. Gong, A higher symmetry class of tensors with an orthogonal
basis of decomposable symmetrized tensors, Linear and Multilinear Algebra 30 (1-2)
(1991), 61–64.

61


	Abstract
	Acknowledgments
	Character Theory
	Group representations and Group Algebra
	Character
	Brauer character
	PIs
	Relationships
	Block
	Orthogonality

	Symmetrized Tensors
	Background
	Symmetrizers associated with ordinary and Brauer characters of G
	Symmetrizers associated with PIs
	Symmetrizers associated with blocks


	Dihedral group
	Brauer characters of Dn
	PIs of Dn
	Blocks of Dn
	Block idempotent symmetrization
	Irreducible symmetrization
	Projective symmetrization

	Symmetric group
	Special case S4

	Bibliography

