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Abstract

Superprocesses are certain measure-valued Markov processes, whose distributions can
be characterized by two components: the branching mechanism and the spatial motion. It
is well known that some basic superprocesses are scaling limits of various random spatially
distributed systems near criticality.

We consider the Lebesgue approximation of superprocesses. The Lebesgue approxima-
tion means that the processes at a fixed time can be approximated by suitably normalized
restrictions of Lebesgue measure to the small neighborhoods of their support. From this,
we see that the processes distribute their mass over their support in a deterministic and
“uniform” manner. It is known that the Lebesgue approximation holds for the most basic
Dawson—Watanabe superprocesses but fails for certain superprocesses with discontinuous
spatial motion.

In this dissertation we first prove that the Lebesgue approximation holds for superpro-
cesses with Brownian spatial motion and a stable branching mechanism. Then we generalize
the Lebesgue approximation even further to superprocesses with Brownian spatial motion
and a regularly varying branching mechanism. We believe that the Lebesgue approxima-
tion holds for superprocesses with Brownian spatial motion and any “reasonable” branching
mechanism. Our present results may be regarded as some progress towards a complete proof

of this very general conjecture.
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Chapter 1

Introduction
1.1 A short introduction to superprocesses

In this section we give a short introduction to superprocesses. Three characterizations
of superprocesses will be given. They are the Laplace functional approach, the weak conver-
gence approach, and the martingale problem approach. Superprocesses were introduced by
Watanabe [49] in 1968 and Dawson [3] in 1975, and have been studied extensively ever since.
General surveys of superprocesses include the following excellent monographs and lecture
notes: Dawson [4, 5], Dynkin [15, 16], Etheridge [17], Le Gall [32], Li [35], and Perkins [42].
Two extremely informative yet concise and very accessible introductions of superprocesses
are Perkins [43] and Slade [46].

First let us explain the two defining components of a superprocess: the branching mech-
anism and the spatial motion. We begin with branching processes, which contain only one
component of superprocesses: the branching mechanism. Galton-Watson processes are dis-
crete branching processes. They describe the evolution in discrete time of a population of
individuals who reproduce according to an offspring distribution, which is a probability mea-
sure on the nonnegative integers with expectation 1 (we only consider the critical case in this
introduction). The distribution of a Galton-Watson process is determined by this offspring
distribution. Continuous-state branching processes are continuous analogues of the Galton-
Watson branching processes. Roughly speaking, they describe the evolution in continuous
time of a “population” with values in the positive real line R.. The “population” consists
of uncountably many “ndividuals”, if its value is not 0. The distribution of a continuous-

state branching process is determined by a function ® of the following type (again, we only



consider the critical case in this introduction, so no drift term here)
P(v) = av® + / (e =1+ rv)n(dr) (1.1)
0

where @ > 0 and 7 is a o-finite measure on (0, 00) such that [;*(r A r?)m(dr) < oo. This
function @ is called the branching mechanism. Continuous-state branching processes may
also be obtained as weak limits of rescaled Galton-Watson processes, see (1.7). This is closely
related to the weak convergence approach to superprocesses, see (1.8).

Spatial branching processes are obtained by combining the branching phenomenon with
a spatial motion, which is usually given by a Markov process X. In the discrete setting, the
branching phenomenon is a Galton-Watson process, and the individuals move independently
in space according to the law of X. More precisely, when an individual dies at position x,
her children begin to move from the initial point x, and they move in space independently
according to the law of X. Writing Y;',Y}?,... for the positions of all individuals alive at

time t, we may define
&= 0y (1.2)

where d, denotes the Dirac measure at y. The process € = (&, ¢ > 0) is the spatial branching

process corresponding to the branching phenomenon of a Galton-Watson process and the
spatial motion X. Note that this is a measure-valued process, whose value at time t records
the positions of all individuals alive at time ¢.

In the continuous setting, the branching phenomenon is a continuous-state branching
process with branching mechanism ®. The construction of the spatial motions is harder,
and so here we proceed only heuristically. For mathematical support of these heuristics,
refer to the weak convergence approach later in this section (see (1.7) and (1.8)), cluster
representation in Section 2.2, and historical superprocesses and random snakes in Section
2.3. Here we let the “individuals” move independently in space according to the law of a

Markov process X. Thus when an “individual” dies at the position x, her “children” begin



to move from the initial point x, and they move in space independently according to the law
of X. Again we get a measure-valued process £ = (§,t > 0), whose value at time ¢ records
the positions of all “individuals” alive at time t. This measure-valued process & = (&) is
called the (X, ®)-superprocess (or (X, ®)-process, for short).

Superprocesses are measure-valued Markov processes. We first use the Laplace func-
tional approach to characterize their distributions. For a (X, ®)-process on R?, the spatial
motion X is a Markov process in R?. Use pf to denote the integral of the function f with
respect to the measure p. Write P,(§ € -) for the distribution of the process £ with ini-
tial measure p, and E, for the expectation corresponding to F,. The Laplace functional

E, exp(—=&: f) satisfies
By lexp(—=&:.f)|€s] = exp(—&svi—s) (1.3)

where (vt(x),t >0,z € Rd) is the unique nonnegative solution of the integral equation

wlo)+1L | B (X)) i) = L (70X (1.4)

Here we write I, (X € -) for the distribution of the process X starting from z. If X is a
Feller process in R? with generator L, the integral equation (1.4) is the integral form of the

following PDE, the so-called evolution equation
0= Lv—®(v) (1.5)

with initial condition vy = f. More explicitly, PDE (1.5) means

avt

¢ (#) = (Lve) (@) — D(ve(2)).

For the equivalence of the integral equation (1.4) and the differential equation (1.5), see
Section 7.1 in [35]. If X is a rotation invariant (or spherically symmetric, or isotropic) a-

stable Lévy process in R? for some a € (0,2] (see Definition 14.12 and Theorem 14.14 in



[45]) and ®(v) = v'*# for some 3 € (0, 1], we get a superprocess corresponding to the PDE

V= %yAav — 8
where %vAa is the generator of the rotation invariant a-stable process X (see Theorem
19.10 in [24]), and A, = —(—A)*/?2 is the fractional Laplacian (A; = A is the Laplacian, see
Section 2.6 in [39]). Taking v = 1 in the above PDE, we get a superprocess corresponding
to the PDE

1

U= §Aav — P, (1.6)

We call it the («, §)-superprocess ((a, B)-process for short). For the most basic and most
important superprocess, we take @« = 2 and § = 1 to get a (2, 1)-process, which is often
called the Dawson—Watanabe superprocess (DW-process for short). Clearly a DW-process
has Brownian spatial motion and branching mechanism ®(v) = v%. We may abuse the
notation further by referring to («, ®)-processes and (X, 3)-processes. Specifically, an («, ®)-
process has rotation invariant a-stable spatial motion and branching mechanism ¢, and an
(X, B)-process has spatial motion X and branching mechanism ®(v) = v*5.

Next we move to the weak convergence approach, which is the most intuitive way to
define superprocesses. Just as continuous-state branching processes may be obtained as
weak limits of rescaled Galton-Watson processes (see (1.7)), superprocesses can be obtained
as weak limits of rescaled discrete spatial branching processes (see (1.8)). Recall that we can
get intuition about Brownian motion from rescaled random walks, similarly here we may get

some intuition about superprocesses from rescaled discrete spatial branching processes.

We consider a sequence N*, k > 1 of Galton-Watson processes such that as k — oo,

1
(a—kN[';t],t > o) I (2t > 0) (1.7)



where constants a; 1 0o, Z is a continuous-state branching process with branching mecha-
nism ®, and the symbol 14, rmeans weak convergence of finite-dimensional marginals. Then,
according to (1.2), we consider a sequence &, k > 1 of spatial branching processes corre-
sponding to the Galton-Watson processes N*, k > 1 and the spatial motion X. Clearly &F
is a random element with values in the space of finite measures on R?, equipped with the
topology of weak convergence. Now, according to (1.7), we consider a sequence of rescaled
spatial branching processes iéﬁ_], k > 1. Suppose that the initial measures converge as

k — oo (= denotes weak convergence) :

where p is a finite measure on R?. Finally, under adequate regularity assumptions on the

spatial motion X, there exists a measure-valued Markov process ¢ such that

(iﬁfzt],t > 0) L% (¢,t > 0), (1.8)

ag

where ¢ is an (X, ®)-process with initial measure p.

Finally, superprocesses can also be characterized as solutions to martingale problems.
Chapter 7 in [35] is an excellent reference on martingale problems of very general superpro-
cesses. We first discuss a martingale problem of (X, 1)-processes, where X is a Feller process
in R? with generator L. Write M, for the space of finite measures on R?.  Then write
(D([0, 00), My), &, F,) for the space of rcll Mgy-valued paths, the coordinate process, and
the canonical completed right continuous filtration. For any f € D(L) (domain of generator

L), define the process M;(f) by

My(f) = &f — &of — /0 €(L)ds. (1.9)



For any ju € My, use L,, to denote the distribution of an (X, 1)-process with initial measure
p. This is the unique distribution on F = o(|J,5, F) such that the coordinate process
satisfies the following martingale problem: & = u, and for any f € D(L), the process My(f)

defined in (1.9) is a continuous martingale with quadratic variation process

WU%—A@G%&

For a (X, ®)-process, the corresponding martingale is not continuous in general. In this
case, we may split the martingale into two parts: the continuous martingale Mf(f) and the

purely discontinuous martingale MZ(f) (see Theorem 26.14 in [24]). Then we write

My(f) = ME(F) + MA(S) = &f — €of — /0 &(L])ds,

where My (f) is a continuous martingale with quadratic variation process

[Mwmzlammw, (1.10)

and MZ(f) is a purely discontinuous martingale, which can be defined through a compensated
random measure relating to the jumps of . For details, see Section 7.2 in [35]. Note that
the jumps of ¢ are related to the measure 7 in the branching mechanisam ® of (1.1), not
the jumps of the spatial motion X (see Section 2.6 in [17]). We may also note that the
continuous martingale M¢(f) is related to the term av? in the branching mechanisam ® of

(1.1) through its quadratic variation process [M¢(f)]; in (1.10).



1.2 Summary of contents

The purpose of this dissertation is to discuss the Lebesgue approximation of superpro-
cesses in details. In Section 1 we discussed the definitions of superprocesses. Here we give a
summary of the contents of the following chapters.

In Chapter 2, we discuss some basic ingredients of superprocesses in the first three
sections, which are crucial for the Lebesgue approximation of superprocesses. Then we
discuss the background of Lebesgue approximation and some related known results in the
last two sections. In Section 1 we discuss the first moment measure F,§ and the second
moment measure F,&2. In particular, the second moment measure does not exist in general,
which causes a real difficulty for generalizing certain results. In Section 2 we discuss the
very important cluster representation of superprocesses, which contains partial information
of the whole genealogical evolution underlying superprocesses. This cluster representation
is transparent in the discrete setting, however in the continuous setting it is not easy at all
to obtain it rigorously. In Section 3 we discuss two approaches to encode the genealogical
information and to obtain the cluster representation. They are Historical superprocesses
approach and random snakes approach. In Section 4 we discuss some classical results about
the Hausdorff dimensions and Hausdorff measures of superprocesses. The point is that
the Hausdorff measure approach is a more traditional, more successful way to do what
the Lebesgue approximation approach tries to do: Construct nontrivial measures on some
random null sets. Finally in Section 5 we discuss basic ideas of Lebesgue approximation and
review almost all known Lebesgue approximation results. At the end of this section we also
discuss some related open problems.

In Chapter 3, we discuss the Lebesgue approximation of Dawson-Watanabe superpro-
cesses of dimension d > 3, which is the most basic and most transparent case. This chapter is
based on Kallenberg’s proof of Lebesgue approximation of DW-processes of dimension d > 3
in [25], with some technical simplifications. Note that Tribe first proved this result in [48].

Extra efforts haae been made to explain Kallenberg’s approach clearly and to make it more



accessible. In Section 1 we explain some crucial components in the proof and review some
terminology and notation. In Section 2 we first explain the crucial ideas about cluster rep-
resentations, then state several lemmas which will not be used directly in the main proof of
Lebesgue approximation, including the important upper bound of the hitting multiplicities.
In Section 3 we state and prove the Lebesgue approximation for DW-processes of dimensions
d > 3. In order to do so, we list several lemmas that are needed in the main proof. Finally, in
Section 4, we prove all the lemmas in this chapter. We suggest that the reader read the first
three sections in the linear order, then, when need arises, read the proofs of some lemmas in
Section 4.

In Chapter 4, we discuss the Lebesgue approximation of (2, §)-superprocesses of di-
mension d > 2/f3. This chapter is based on my 2013 paper [22]. In Section 1 we explain
the additional difficulties for the Lebesgue approximation of (2, §)-processes and review our
general approach, which overcomes these difficulties. In Section 2 we develop further a trun-
cation of («, B)-processes from [38]. We also characterize the local finiteness of any («, 5)-
superprocess, which can be used to extend certain results to some superprocesses with o-finite
initial measures. In Section 3, we develop some lemmas about hitting bounds and neigh-
borhood measures of (2, §)-processes, in particular, we improve the upper bounds of hitting
probabilities. In Section 4, we derive some asymptotic results of these hitting probabilities. In
particular, for the (2, 3)-superprocess £ we show that e2/=4P {& B2 > 0} — cpq (u*p)(2),
which extends the corresponding result for DW-processes. Finally in Section 5 we state and
prove the Lebesgue approximation of (2, 3)-processes and their truncated processes. When-
ever one feels the lack of details of some results in this chapter, refer back to appropriated
places in Chapter 3.

In Chapter 5, we discuss the Lebesgue approximation of superprocesses with a regu-
larly varying branching mechanism. The branching mechanisms we consider here include
the stable branching mechanisms considered in Chapter 4 as special cases. In Section 5.1

we explain the new difficulties for the Lebesgue approximation of superprocesses with the



more general branching mechanism and review our general approach, which overcomes these
difficulties. In Section 2 we review the truncation of superprocesses in a more general setting.
In Section 3, we develop some lemmas about hitting bounds and neighborhood measures of
the more general superprocesses. In Section 4, we derive some asymptotic results of these
hitting probabilities. Finally in Section 5 we state and prove the Lebesgue approximation of
superprocesses with a regularly varying branching mechanism and their truncated processes.
This general result contains all previous Lebesgue approximation of superprocesses as special

cases.



Chapter 2

Some Basics of Superprocesses
2.1 Moment measures

Moment measures play an important role in the study of superprocesses. For the Markov
process X, write T, f(z) = I1.(f(X;)) for the semigroup of X, where II,(X € -) denotes the
distribution of the process X starting from z. Then the first moment measure of the (X, ®)-

process £ (see (1.3) and (1.4)) is

Eu(&f) = w(Tif). (2.1)

Note that the branching mechanism @ of (1.1) plays no role here. Write p¢(z) for the
transition density of the rotation invariant a-stable Lévy process with generator %Aa (see
(1.6)). Then the first moment measure of the (a, ®)-process £ takes the equivalent measure

form

E& = (uxpl) -\,

where p* p(z) = [ p(x — y)p(dy) and f- A% denotes the measure defined by (f - \*)(B) =
I fd\?.

The second moment measure depends crucially on the branching mechanism. In fact,
second moments do not exist in general. However, they do exist when the measure 7 = 0 in
the branching mechanism ® of (1.1), that is, for the (X, yv?)-process £. The second moment

measure of the (X, yv?)-process £ is
PGP = () + 2 [ (T ) ds (2.2

10



Refer to Section 2.4 in [32] for the proofs of (2.1) and (2.2). For the (X, /)-process £ with
B < 1, only moments of order less than 1 + 3 exist. A useful inequality along this line is

Lemma 2.1 in [37]: For 0 < 0 < 8 < 1,

Bl (&) <1+ ¢(6) [(M(th))l*ﬂ /0 p (T(Toesf)P) ds|

where ¢(f) — oo as § — . When we need to use the second moments, we may truncate £
at any level K > 0 to get the truncated process ¥, which has finite second moments. For
details about this truncation method, see pages 484 - 487 and Lemma 3 in [38].

Using series expansions of Laplace functionals, Dynkin [13] gives moment measure for-
mulas for very general superprocesses. See Section 14.7 in [16] for a concise review of these
formulas. Finally we mention that, for DW-processes, Theorem 4.2 of Kallenberg [27] con-
tains a basic cluster decomposition of moment measures. Theorem 4.4 of that paper gives a
fundamental connection between moment measures and certain uniform Brownian trees, first
noted by Etheridge in Section 2.1 of [17]. It would be interesting to study this connection
for more general superprocesses. For details about the cluster decomposition of moment

measures, See Theorem 5.1 in Kallenberg [26].

2.2 Cluster representation

In this section we discuss the very important cluster representation of superprocesses.
Note that although a superprocess records the positions of all “individuals” alive at time
t, they do not keep track of all the genealogy of these “individuals”. More precisely, let us
pick an “individual” alive at time ¢, then try to identify her “ancestor” at an earlier time
s. Although we know from &, the positions of all “individuals” alive at time s, we don’t
know which specific “individual” at time s is the “ancestor” of the “individual” we picked
at time t. However, in the study of some deep properties of superprocesses, the genealogical

structure underlying the evolution can be extremely useful, even when the final results have

11



nothing directly to do with the genealogy. The cluster representation of superprocesses,
while containing only partial information of the genealogy, is enough for many purposes.

In order to discuss the cluster representation, let us first recall the definition of Poisson
cluster processes. To define a cluster process, we start with a point process ¢ = ). 4., on
some space T'. For a suitable class Mg of measures on S, we consider a probability kernel v
from T to Mg. Choosing the random measures 7; to be conditionally independent of the 7;
with distributions v,,, we may introduce a random measure { = >, 7; on S. This random
measure £ is called a v-cluster process generated by (. If ¢ is Poisson or Cox, we call £ a
Poisson or Cox cluster process.

Due to the underlying independence structure, superprocesses have the following branch-
ing property: If & and & are two independent (X, ®)-processes with initial measures p and '
respectively, then € +¢&' is an (X, ®)-process with initial measure p+ p'. This can be verified
by using any of the three characterizations in Section 1.1. From this branching property, we
see that, for any ¢, the superprocess &; is an infinitely divisible random measure. A random
measure is infinitely divisible iff it is the sum of a Poisson cluster process and a deterministic
measure (see Theorem 1.28 in [17]). Since P{& = 0} > 0, the superprocess ; is just a
Poisson cluster process.

The cluster representation of (X, ®)-processes depends crucially on the branching mech-
anism ® of (1.1). For convenience, we first discuss the cluster representation of (X, 1)-
processes (see Section 3.2 and 6.1 in [17]). For a (X, 1)-process &, at time 0, there are
actually uncountably many “individuals”. All “individuals” produce “offspring” randomly.
However almost all “individuals” have no “offspring” alive at time ¢ > 0, except finitely many
“lucky” ones. In other words, the superprocess at time ¢ is actually “offspring” of finitely
many “ancestors”. The point process records the locations of these finite many “ancestors”
is a Poisson process (o with intensity measure t~'u. This is the generating process in the
Poisson cluster representation of &. Each one of these finitely many “ancestors” generates a

random cluster at time ¢. Clearly this cluster is just her “offspring” at time ¢. These clusters

12



are “the same”, means that they have the same distribution if we move their “ancestors” to
a common point. In summary, & being a Poisson cluster process, is a finite sum of condi-
tionally independent clusters, equally distributed apart from shifts and rooted at the points
of a Poisson process (y of “ancestors” with intensity measure ¢t~';. By the Markov property
of £, we have a similar representation of &, for every s =t — h € (0,t) as a countable sum of
conditionally independent h-clusters (clusters of age h), rooted at the points of a Cox pro-
cess (, directed by h~1&,. In other words, ¢, is conditionally Poisson given &, with intensity
measure h~ ¢, (see page 226 in [24]).

Under some restrictions of the branching mechanism @ of (1.1), (X, ®)-processes also
have a similar cluster representation (see Section 11.5 in [5] and Section 3 in [7]). The
function t~! in the above intensity measure ¢~ should be replaced by another function of
t, determined by the branching mechanism ®. The cluster distributions are also different,

determined by both X and .

2.3 Historical superprocesses and random snakes

It is clear that the cluster representation of the previous section cannot be recovered
from the superprocess € itself, since & records only the positions of all “individuals” alive at
time . A complete picture of the evolution underlying a superprocess is given by a random
tree composed from the paths of all individuals. Two approaches to encode this picture are
provided by historical superprocesses and by random snakes. Both approaches can be used
to verify the cluster representation.

The basic idea of historical superprocesses is very simple (see Section 1.9 in [17]). Let
us explain the idea in the discrete setting, to make it even more transparent. For a discrete
spatial branching process &, pick two individuals alive at time ¢ > 0, and assume that they
have their last common ancestor at time s € (0,¢). Based on the Markov properties of the
spatial motion X and the independence structures of spatial branching processes, clearly

we can think that these two individuals perform the spatial motion X together as a single

13



individual before time s, then separate at time s and begin to perform independent spatial
motion X ever since. In other words, we can think of these two individuals as a single
path before time s, and this path splits into two independent paths at time s. The same
idea still holds in the continuous setting, that is, for the superprocesses. Note that in the
construction of superprocesses, the spatial motion X; is only the location of an individual
at time ¢. In order to remember the spatial locations of all the members in her genealogy
line before her, we may just replace X; by the corresponding path process Xt, which is a
path-valued process. The value of X; is the path of X over the time interval [0,t]. Now we
construct the (X' , ®)-superprocess ¢, which corresponds to the (X, ®)-superprocess £. We
call é the (X, ®)-historical superprocess. Note that the way we define é from ¢ is different
from the naive way we define X from X. If we define é as the corresponding path process
of &, then we would not be able to specify the ancestors of any individual.

Denote the space of all rcll paths over the time interval [0,¢] by W;. Then the state
space of X, is W;, and so X, is a time-inhomogeneous Markov process. Write 11,.,, for the
probability measure under which X starts from the path w at time r. Clearly w is an
rcll path over the time interval [0,7]. Let M, be the space of all finite measures on W,.
This is the state space of ft, and so ft is also a time-inhomogeneous Markov process. The
(X, ®)-historical superprocess f can be characterized by all three approaches in Section 1.1.
It is obvious how to carry out the weak convergence approach. For the Laplace functional
approach, we have

—&uf _ ol
E, e =e Mt

where p is a finite measure on W,, ft is a finite measure on W;, f is a function on W;, and
vy is a function on W,. The function v} (w) with » < ¢ and w € W, is uniquely determined

by the integral equation

14



This may be compared with (1.4), the integral equation of £. The only difference is that é
is a superprocess of historical paths, while £ is a superprocess of spatial positions.

The concept of historical superprocesses was developed in Dawson and Perkins [7] and
Dynkin [14]. We may also refer to Chapter 12 in [5] and Section I1.8 in [42].

From the construction of historical superprocesses it is clear that ét encodes the geneal-
ogy information of all “individuals” alive at time t.

The random snake approach developed by Le Gall and his co-authors allows to give
a complete description of the genealogy. Here we only focus on the basic ideas, since the
technical details and notation can be overwhelming.

The basic idea of random snakes stems from an important fact of branching processes:
The genealogical structures of branching processes can be completely encoded by a (random)
function on R,. More precisely, the genealogical structure of Galton-Watson processes can
be completely encoded by a discrete (random) function defined on nonnegative integers.
These nonnegative integers correspond to all the individuals and the function values are
the generations of these individuals. For continuous-state branching processes, similarly
the genealogical structure can be completely encoded by a continuous (random) function
on R,. Again, any number in R, corresponds to an “individual”, and the function value
is the “generation” or lifetime of this “individual”. This continuous coding function is
called the lifetime process. In fact, continuous coding function can be obtained from a
sequence of rescaled discrete coding functions. Clearly this is closed related to the fact that
continuous-state branching processes may be obtained as weak limits of rescaled Galton-
Watson processes. For a continuous-state branching process with the branching mechanism
® = 02, the lifetime process ¢ is actually just the reflected one dimensional Brownian motion.
The time parameter of the lifetime process ¢; is a labeling of all individuals in a certain order.

For the complete evolution of (X, 1)-processes, we then need to somehow combine the
paths of individuals with this coding continuous random function. This is done by the so

called Brownian snake Wy, which is a path-valued Markov process evolving according to both
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the spatial motion X and the lifetime process ¢;. Note that the term “Brownian” refers to the
branching mechanism, actually the lifetime process, not the spatial motion. The behavior of
the Brownian snake is actually not hard to explain, at least informally. The value W, at time
t of the Brownian snake is a path of the underlying spatial motion X (started at a fixed initial
point) with the random lifetime ¢;. Informally, when ¢; decreases, the path W; is shortened
from its tip, and when ¢; increases, the path W, is extended by adding (independently of the
past) small “pieces of paths” following the law of the spatial motion X. In this way, we can
generate the full set of historical paths of a (X, 1)-process by running the Brownian snake
according to the lifetime process, in this way we are visiting all the “individuals” one by one.

For superprocesses with a general branching mechanism &, similarly the so called Lévy
snakes can be defined. The basic ideas are similar, but technically it is much more com-
plicated. The main reason is that the corresponding lifetime process is not Markov and its
definition is quite involved. Actually part of the beauty, and the power, of the Brownian
snake is that the lifetime process is itself a Markov process. The standard reference of Brow-
nian snake is the excellent lecture notes [32] by Le Gall in 1999. For Lévy snakes, refer to

the excellent monograph [12] by Duquesne and Le Gall in 2002.

2.4 Hausdorff dimensions and Hausdorflf measures

In this section we review some classical results about the Hausdorff dimensions and
Hausdorff measures of superprocesses. First let us review the definitions of Hausdorff di-
mension and Hausdorff measure. For a nice introduction of this topic in a probabilistic
setting, see Chapter 4 and Section 6.4 in [36].

We first define Hausdorff measure, then Hausdorff dimension. Assume A to be a metric

space with the metric p. Use |A| to denote the diameter of the set A, which is defined by

| Al = sup{p(z,y) : z,y € A}.
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For every o > 0 define
M5 (A) = inf{> [A]*: A JA; |Ai <6 for all i}, (2.3)
i=1 i=1
Easy to see that the quantity H$(A) is increasing as 0 decreases, so that the limit

M (4) = lim Hg (4)
is well-defined, although it could be infinite. We call the limit H*(A) = lims_,o H§ (A) the
a-Hausdorff measure of A.

Since subsets of a metric space are metric spaces on their own, the a-Hausdorff measure
H® can be defined for all subsets of the space A. Using the definition of H*, we can check that
the function H* defined for all subsets satisfies all the properties of a metric Carathéodory
exterior measure (see Section 7.1 in [47], or Section 11.2 in [20]). Thus H* is a countably
additive measure when restricted to the Borel sets of A. So indeed, the a-Hausdorff measure
defined on all Borel sets is a measure.

Let us define the Hausdorff dimension. The a-Hausdorff measure H*(A) has the fol-
lowing natural properties: If 0 < a < 3, and H*(A) < oo, then H?(A) = 0; If 0 < a < 33,
and HP(A) > 0, then H*(A) = oco. So there exists a unique number which is denoted by
dim A such that H*(A) = oo for a < dim A, and H*(A) = 0 for @ > dim A. We call this
unique number the Hausdorff dimension of the set A, denoted by dim A. Or in other words,

we define the Hausdorff dimension of the set A by
dim A = sup{a : H?(A) = 0o} = inf{a : H’(A) = 0}.

Using the Hausdorff dimension, we can associate a nonnegative number to any set,
which generalizes the usual integer dimensions. For example, the classical Cantor set has

Hausdorff dimension log 2/ log 3. The graph of a one dimensional Brownian motion, which is
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a continuous (random) curve on R?) has Hausdorff dimension 3/2 a.s. (see Theorem 16.4 in
[19]). This is related to the fact that one dimensional Brownian path is a.s. locally Hélder
continuous with exponent ¢ for any ¢ € (0, 1).

Now we turn to superprocesses. For a DW-process £ in R%, we denote the support of &
by supp &, which is a random closed set in R?. Actually this is even a random compact set,
assuming &y = p is a finite measure (see Theorem 1.2 in [6]). For fixed ¢ > 0, if d > 2, then
a.s. this is a null set (means that it has Lebesgue measure 0). Here Hausdorff dimension is

useful for us to get some more understanding of the size of supp &;. It is well-known that a.s.

dim (supp &) =2 Ad, on {& # 0}.

Note that if & = 0, then supp& = (). More generally, if £ is a (2, 3)-process in R? with
B € (0,1], then for fixed t > 0, if d > 2/, a.s. supp &, is a null set (again, this is a random
compact set, adapt the proof of Theorem 1.2 in [6] to generalize Theorem 1.1 in [8], or see

Section 4.3 in [1]) and

dim (supp ;) = (2/8) Ad, on {& # 0}.

For this result and even more, see Theorem 2.1 in [9]. The situation for (2, 3)-processes is
in stark contrast to (a, 3)-processes £ in R? with a € (0,2) and 3 € (0, 1], where the spatial

motion has jumps. In this case, Evans and Perkins [18, 40] showed that For fixed ¢ > 0 a.s.

supp& = R?, on {& # 0}. (2.4)

We can also discuss the Hausdorff dimension of the range of superprocesses. First for

I C Ry, define the range of £ on I by

R(I) = Jsuppé&, (2.5)

tel
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and the closed range of £ on I by R(I) = R(I), where R(I) is the closure of R(I) . Then

the range of ¢ is defined by
R =|JR([. ).

e>0
For a DW-process € in R?, if d > 4, a.s. R is a null set and dim R = 4 A d. More generally,
if ¢ is a (2, B)-process in R with 8 € (0,1], if d > (2/8) + 2, a.s. R is a null set and

dimR = [(2/58) + 2] A d,

see Corollary 2.2 in [9]. Again, for (a, 3)-processes ¢ in R with a € (0,2) and 3 € (0,1],
a.s. R = R% This is immediate from (2.4) and the definition of the range.

Let us turn back to the a-Hausdorff measures. Although for any nonnegative o the a-
Hausdorff measure is a Borel measure, for some metric spaces it is always a trivial measure
for any «, means that for any «, the a-Hausdorff measure H*(B) can only be 0 or oo for
any B € B(A). For example, if £ is a DW-process in R? with d > 2, then for a fixed ¢t > 0,
a.s. H2(supp&;) = 0 and

HY(BNsuppé&) = oo or 0

for any a < 2 and B € B(R?) (see (2.7), (2.8), and (2.9)). So we need to generalize the
a-Hausdorff measures if we want to construct a nontrivial measure on supp &;.

The definition of Hausdorff dimension still makes sense if we evaluate coverings by
applying, instead of a simple power, an arbitrary non-decreasing function to the diameters
of the sets in a covering. We call this function a gauge function. By a gauge function we
mean a non-decreasing function ¢ : [0,¢) — [0, 00) with ¢(0) = 0.

As before, we define

M3 (A) =inf{) " o(|A]) : A | A |Ai] <6 for all i}, (2.6)

=1 =1

19



Clearly the a-Hausdorff measure H§ in (2.3) is just the special case of ”H(d; with ¢(x) = x®.

Then define the ¢- Hausdorff measure of A by

HO(A) = im H(A).

§—0

As before, H? is a measure on Borel sets.

(67

Under this more general framework, it is more likely to construct nontrivial measures

on a metric space, although this is still not always possible. For a DW-superprocess &, this

approach is extremely successful. Perkins and his co-authors proved the exact Hausdorff

measure of the support at a fixed time or of the range of the process.

support supp ;. For a fixed ¢t > 0, a.s. we have

H¢<' Nsupp &) = &(-),

where for d > 3 (see Theorem 5.2 in [7]),

¢(x) = z” loglog(1/x),

and for d = 2 (see Theorem 1.1 in [33]),

¢(z) = 2?1log(1/z) logloglog(1/x).

Next the range R(0,t]. For a fixed t > 0, a.s. we have

wenRO.0) = ds(),

where for d > 5,

¢(x) = a* loglog(1/x),
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and for d = 4,

¢(z) = z*log(1/z)logloglog(1/x). (2.12)

Note that fot £.ds is a measure on B(R?), which is defined by

/Ot ¢,ds(B) = /Ot &,(B)ds, for any B € B(R?). (2.13)

It is easy to see that the Hausdorff measure results here contain the Hausdorff dimension
results that we reviewed previously.

Omne obvious remaining question is the exact Hausdorff measure function of (2, 5)-
processes, but this may be technically too challenging. Then it is also interesting to try

to get some good upper bound and lower bound of the exact Hausdorff measure function.

2.5 Lebesgue approximations

From the previous section, we see that by choosing carefully a suitable gauge function
¢, we can define some nontrivial random measures on certain random null sets. Since from
the beginning we know that there are some naturally defined nontrivial random measures
on these random null sets (the DW-process & on supp&;, and the local time measure of
one dimensional Brownian motion on its level set, see below), in fact the Hausdorff measure
approach gives representations of these measures with respect to only their support. So
in order to recover these measures, we can forget about the related stochastic processes,
only the support of these measures is needed. In this regard, we also have the packing
measure approach (see [11, 34]), which is similar to the Hausdorff measure approach generally
speaking. A more different approach to do this is the so called Lebesgue approximation
approach. Kingman [28] explained this approach in a very accessible manner and also used
this approach to recover the local time measure of certain Markov processes intrinsically

from the level set.
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Let us first explain Kingman’s idea. For the subset A € R? we use A% to denote the

e-neighborhood of A | that is,

A* ={x:d(z,A) < e}.

It’s easy to see that A° = (A). Recall that A is the closure of A. For their corresponding
Lebesgue measures, clearly A2E° € [0, 00] and A*E° — ME. So when E is a null set, we get
M Ef — 0. Here the interesting thing is that, the rate at which AE® converges to zero is an
indication of the size of E. For example, if E is a part of a sufficiently smooth d’-dimensional

surface in R?, where d’ < d, then

e?~INES ~ ONE,

where C' is a constant depending only on d and d'.

Now let us explain a special case of Kingman’s Lebesgue approximation result. Let
L(t,x) be the local time of a one dimensional Brownian motion B;(t). Let Z(t,z) = {s:
s <t,Bi(s) = z}. Kingman showed that there exists a constant ¢ such that for fixed ¢ and
x, a.s.

e V2N Z(t, x)]F — cL(t, x).

Kingman argued that unlike other approximation results of local time (see Corollary 1.9
and Theorem 1.10 in Chapter VI of [44]), this Lebesgue approximation result only requires
the knowledge of Z(t,x), which is the support of the local time measure L(t,z), to recover
L(t, x).

Next we discuss all known Lebesgue approximation results of superprocesses. For any
measure i on R? and constant € > 0, write p° for the restriction of Lebesgue measure \¢ to

the e-neighborhood of supp 1. Note that using our notations, the e-neighborhood of supp u
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is denoted by (supp ). So we may write u® explicitly by

pE() = A% (- N (supp p)°) -

For a DW-process ¢ in R? with d > 3, Tribe [48] showed that for any fixed t > 0 and any

bounded Borel set B in R%, a.s. as € — 0,

276 (B) = cal(B),

where ¢4 > 0 is a constant depending on d.
Shortly after, in order to prove the strong Markov property of the support process
supp &, Perkins [41] showed that the Lebesgue approximation result holds simultaneously

for all time ¢ > 0. More precisely, for a DW-process ¢ in R with d > 3, a.s. ase — 0

e2dee By, forallt >0, (2.14)

where = denotes the weak convergence of measures. The corresponding Lebesgue approxi-
mation of two dimensional DW-processes ¢ was still open at that time, even for fixed ¢ > 0.
However, Perkins conjectured that for fixed t+ > 0 and bounded Borel set B in R?, a.s. as

e —0,

|loge[ &7 (B) — c&(B).

Later, Kallenberg [25] essentially confirmed the above conjecture. More precisely, for a

DW-process ¢ in R%, Kallenberg showed that for fixed ¢ > 0 a.s. as ¢ — 0,

m(e) |loge| & =&,

where m is a suitable normalizing function bounded below and above by two positive con-

stants. Note that both the conjecture of Perkins and the proof of Kallenberg depend crucially
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on the hitting bounds of DW-processes £ in R? from Le Gall [31]. Kallenberg’s approach
also works for DW-processes € in R? with d > 3, and results in a more probabilistic proof of
Lebesgue approximation of &;.

In [?], we adapted Kallenberg’s probabilistic approach in [25] to prove the Lebesgue
approximation of (2, 5)-processes with § < 1, combined with a truncation method of super-
processes from Mytnik and Villa [38], in order to overcome the additional difficulty imposed
by the infinite variance of (2, 3)-processes. More precisely, for a (2, 3)-process £ in R with

B < 1and d > 2/, we proved that, for fixed t > 0 a.s. as ¢ — 0,
P71 B cpaks,

where ¢34 > 0 is a constant depending on 3 and d.

In view of the Hausdorff measure results (2.10), (2.11), and (2.12), we may ask about
the Lebesgue approximation of the range of a superprocess. Here, Delmas [10] proved the
Lebesgue approximation of the range of DW-processes ¢ in R? with d > 4, using Le Gall’s
Brownian snake. More precisely, for a DW-process ¢ in R? with d > 4, Delmas showed that,

for fixed ¢ > 0 and bounded Borel set B in R?, a.s. as ¢ — 0,

d(e) R, (B) — cq /too ¢sds(B), (2.15)

where R, is the R([t,00)) defined in (2.5), and [~ &ds is defined as in (2.13). About the

normalizing function ¢, it is shown that
¢(e) =4 ford>5, and, ¢(c)=]|loge| ford=4.

These known results lead to a couple immediate open problems. First we may ask if the
Lebesgue approximation of (2, §)-processes holds simultaneously for all time ¢ > 0, in view

of (2.14). Since intuitively the (2, 8)-process ¢ and its support supp & do not jump at the
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same time, an immediate guess should be no. We may then ask if it is possible to prove some
results supporting this guess. What about the strong Markov property of the (2, 3)-support
process supp &;? It seems that we need to find new approaches to prove it (or disprove it).
The second question is that, whether it is possible to prove the Lebesgue approximation of
the range of (2, §)-processes, in view of (2.15).

More generally, we may try to “translate” all Hausdorff measure results into corre-
sponding Lebesgue approximation ones. Here the challenge is that while there is a solid
theory behind Hausdorff measures which one could rely on, there is no such support for
Lebesgue approximation results. One has to “invent” some approaches when trying to es-
tablish Lebesgue approximation results. Still it is very interesting to see that whenever we
can get the Lebesgue approximation results, the results are always shorter and cleaner then

the corresponding Hausdorff measure results.
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Chapter 3

Lebesgue Approximation of Dawson-Watanabe Superprocesses

3.1 Introduction

In this chapter we discuss the Lebesgue approximation of Dawson-Watanabe superpro-
cesses in detail. The Lebesgue approximation of DW-processes of dimension d > 3 was first
proved by Tribe [48], using both probabilistic and analytic techniques. The case of critical
dimension d = 2 is more difficult. However, Kallenberg [25] obtained a similar result for
DW-processes in R? using a more probabilistic approach. His approach can also be applied
to DW-processes of dimension d > 3, and indeed this was done in [25]. The present chapter
is based on Kallenberg’s proof of Lebesgue approximation of DW-processes of dimension
d > 3 in [25], with some technical simplifications. Extra efforts have been made to explain
Kallenberg’s approach clearly and to make it more accessible.

We use £ = (&) to denote the DW-process of dimension d > 3. Recall that £ is a
measure-valued Markov process, so for fixed ¢ and w, the value & (w) is a measure on RY.
We write £ for the restriction of Lebesgue measure A? to the e-neighborhood of supp &, the
support of the measure &, which for fixed ¢ and w, is a compact set in R? (see Theorem
1.2 in [6]). The Lebesgue approximation of DW-processes of dimension d > 3, which is
Theorem 3.5 in this chapter, states that for fixed t > 0, e279¢5 5 ¢4 & as. as € — 0, where
2 denotes weak convergence of measures and ¢; > 0 is a universal constant depending on
d. In particular, this confirms that & “distributes its mass over supp&; in a deterministic
manner” (cf. [17], p. 115, or [42], p. 212), as previously inferred from some deep results
involving the exact Hausdorff measure (cf. [7]).

The proof depends crucially on some basic hitting estimates, due to Dawson, Iscoe, and

Perkins [6]. Here we need the lower bound and upper bound of P,{B§ > 0} (Theorem
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3.1.(a) in [6]), and also the precise convergence result e>~?P,{,Bs > 0} — ¢4 up; for d > 3
as € = 0 (Theorem 3.1.(b) in [6]), where B! denotes an open ball around z of radius r.

The proof also depends crucially on the representation of the DW-process as a countable
sum of conditionally independent clusters. Precisely, each & can be expressed as a countable
sum of conditionally independent clusters of age h € (0, t], where the generating ancestors at
time s =t — h form a Cox process (, directed by h=1¢, (cf. [7, 30]). Typically we let h — 0
at a suitable rate depending on €. However, a technical complication when dealing with
cluster representations is the possibility of multiple hits. More specifically, a single cluster
may hit (charge) several of the e-neighborhoods of n distinct points xy,...,z,, or one of
those neighborhoods may be hit by several clusters. In particular, Lemma 2.4 deals with
this multiple hitting of a single neighborhood by several clusters. To minimize the effect of
such multiplicities, we need the cluster age h to be sufficiently small. On the other hand,
it needs to be large enough for the mentioned hitting estimates to apply to the individual
clusters. Notice that we can translate the hitting estimates for the superprocess £ to the
hitting estimates for the cluster 7, based on the connection between the superprocess and
its clusters.

The reason we don’t cover the case of critical dimension d = 2 is that, although the
two cases of d = 2 and d > 3 use the same general approach, technically the case of d = 2
is much more involved, since we then have to deal with the Logarithm normalizing function

4 as in the case of d > 3. Also when

|log(e)| rather than the power normalizing function &~
d = 2, a corresponding crucial result to the precise convergence result for d > 3, as ¢ — 0,
52_‘1]3“{&38 > 0} — cqup, is not readily available. So in this chapter, we restrict our
attention to the case of d > 3.

We proceed with some general remarks on terminology and notation. A random measure
¢ on R? is defined as a measurable function from ) to the space M, of locally finite measures

on R?, equipped by the o-field generated by all evaluation maps 7g: p+ uB with B € BY,

where B¢ denotes the Borel o-field on R?. The subclasses of measures and bounded sets
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are denoted by M, and B4, respectively. The weak topology in M, is generated by all
integration maps 7 : p — pf = [ fdu with f belonging to the space C{ of bounded,
continuous functions RY — Ry. Thus, p, — u in My iff ju, f — uf for all f € Cg.

Throughout the chapter we use relations such as =, <, ~ , and <, where the first
three mean equality, inequality, and asymptotic equality up to a constant factor, and the
last one is the combination of < and > . We often write a < b to mean a/b — 0. The
double bars || - || denote the supremum norm when applied to functions and total variation
when applied to signed measures. In any Euclidean space RY, we write B” for the open ball
of radius 7 > 0 centered at x € R?. The shift and scaling operators 6, and S, are given by
0,y = x +y and S,z = rx, respectively, and for measures p on R? we define uf, and pS, by
(ub,)B = p(0,B) and (uS,)B = u(S,B), respectively. In particular, (uS,)f = u(f o S1)
for measurable functions f on R?. Convolutions of measures ;1 with functions f are given by
(0 £)(@) = [ fla—u) pldu).

This chapter is organized as follows. In Section 2 we first explain the crucial ideas about
cluster representations, then state several lemmas which will not be used directly in the main
proof of Lebesgue approximation, including the important upper bound of the hitting mul-
tiplicities. In Section 3 we state and prove the Lebesgue approximation for DW-processes
of dimensions d > 3. In order to do so, we list several lemmas that are needed in the main
proof. Finally, in Section 4 we prove all the lemmas in this chapter. We suggest that the
reader read the first three sections in the linear order, then, when need arises, read the proofs

of some lemmas in Section 4.

3.2 Preliminaries

Let us first explain the cluster representations of DW-processes. We write £,(§) =
P,{¢ € -} for the distribution of the process { with initial measure p. For every fixed p,

the DW-process ¢ is infinitely divisible under P, and admits a decomposition into a Poisson
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“forest” of conditionally independent clusters, corresponding to the excursions of the contour
process in the ingenious “Brownian snake” representation of Le Gall [32]. In particular, this
yields a cluster representation of & for every fixed t > 0. More generally, the “ancestors”
of & at an earlier time s =t — h form a Cox process (, directed by h~'¢, (meaning that (,
is conditionally Poisson with intensity h™1&,, given &;; cf. [24], p. 226), and the generated
clusters n} are conditionally independent and identically distributed apart from shifts. In
this paper, a generic cluster of age t > 0 is denoted by 7n;; we write £,(n;) = P.{m € -} for
the distribution of a ¢-cluster centered at z € R? and put P,{n; € -} = [ p(dz) P.{n: € -}.
The first lemma is about some basic scaling properties of DW-processes and their asso-

ciated clusters.

Lemma 3.1 Let & be a DW-process in R with associated clusters n,. Then for any measure

pwonRY, andr.t >0,
(1) Lys, (r*&) = Lr2u(&265r),
(i) Lys, (r*ne) = Lu(10205r).
Although the above two compact identities look nice, they may not be very intuitive for

some people. In order to appreciate better these scaling properties, first we translate the £

notation back to the P notation

P/LST{TQ& S } - PTQM{&"%ST S '}>

PuSr{Tznt € } - Pu{nﬂtsr € }

Recall that the evaluation map mg: p +— pbB is a function defined on the space M, of locally

finite measures on R%. According to the definition of o-field on My, the set {7 > 0}
0

is a measurable set on M, . In the above two identities, take r = 1/e, uS, = d,, and,

S = {ﬂ-B(lJ/r > 0}, we get

P{&B; >0} = P(1/52)6m/5{§t/52Bé > 0},
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P{mB; >0} = Py{ny2B > 0}.

Now these two identities should be intuitive enough for one to appreciate the scaling prop-
erties.

Next we state a well-known relationship between the hitting probabilities of & and 7.

Lemma 3.2 Let the DW-process & in R with associated clusters n, be locally finite under
P,, and fir any B € BY. Then

PA{mB >0} = —tlog(l— P{&B > 0}),

PA&B >0} = 1—exp(—t 'P{nB > 0}).

In particular, P,{&B > 0} ~ t~'P,{n,B > 0} as either side tends to 0.

The following lemma contains some slight variations of classical hitting estimates for
DW-processes of dimension d > 3. By Lemma 3.2 it is enough to consider the corresponding

clusters n;, and by shifting it suffices to consider balls centered at the origin.

Lemma 3.3 Let the n, be clusters of a DW-process in R with d > 3, and consider a o-finite

measure i on RS, Then for 0 < e < Vt, we have

ppy <t P {mBs > 0} < upay,

The classical upper bound is up;i.. Note that as ¢ — 0, the upper bound up;..
is approaching the lower bound pup;, however the constants before these two bounds are
definitely different. Still this suggests that as ¢ — 0, the normalized hitting probability
t1e?74P,{mB5 > 0} converges to cup; for some constant ¢ > 0. This is indeed the case.
Although the classical upper bound can give us this intuitive impression, for all practical
purposes our upper bound upo; is as good, if not better. The reason is that mathematically

speaking, py; is almost the same as p;.
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Next we need to estimate the probability that a small ball in R? is hit by more than one
subcluster of our DW-process . This result will play a crucial role throughout the remainder

of the chapter.

Lemma 3.4 Let the DW-process & in R? be locally finite under P,. Foranyt > h >0
and € > 0, let k5, be the number of h-clusters hitting Bj at time t. Then for d > 3 and as

g2 < h <t, we have
Bk (k) — 1) < g2+ (hlfd/Q,upt + (Mpzt)2) .

Here the intuition is that, if compare to h, the radius ¢ is small enough, then most likely
there will be only one cluster hitting this tiny ball, or no cluster at all. Actually what we
want to control is the discrete quantity (k5 — 1);. However it seems that the only natural

way to relate this quantity to the DW-process &; is through the following simple inequality
(ki = Dy < s (5, — 1)

Then we can relate E, x5 (k5 — 1) to E,& and E,&2, the first and second moment of the
DW-process &. This is actually a very important point, especially in the next chapter when
we are dealing with the (2, §)-superprocesses. Since the (2, 5)-superprocesses have infinite
second moment, to control E,(kj — 1)+ we have to truncate the (2, §)-processes, in order to

get the finite second moment.

3.3 Lebesgue approximation

In this section we first state the main result of this chapter, the Lebesgue approximation
of DW-processes of dimension d > 3, which is Theorem 3.5. In order to give the proof of

Theorem 3.5, we then state Lemma 3.6, 3.7, and 3.8, which will be used directly in the proof
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of Theorem 3.5. However we leave all proofs of lemmas in the next section. At the end of
the present section we give the proof of Theorem 3.5.

For any measure g on R? and constant € > 0, we define the associated neighborhood
measure ;i as the restriction of Lebesgue measure A to the e-neighborhood of supp j, so
that p° has Lebesgue density 1{uBS > 0}. First note that u° is a measure defined from
the measure p. Then recall that &(w) is a measure for fixed ¢t and w, so & (w) is just the
neighborhood measure of &(w). Also recall that M, is the space of finite measures on RY.

For random measures &, and £ with values in My, the weak convergence in L', denoted by
&€ in L,

means that &,f — £f in L! for all f in CZ. Write ¢; = 1/c4 for convenience, where ¢4 is
such as in (3.1).
Now we are ready to state the main result of this chapter, the Lebesgue approximation

of DW-processes of dimension d > 3.

Theorem 3.5 Let & be the DW-process in R with d > 3. Fiz any ju € M, and t > 0. Then

under P, we have as € — 0

~ — w .
Gae¢s B¢ as. and in L.

Here the a.s. convergence means that for every w outside a null set,

Cae” & (W) = & (w).

Note that for fixed ¢ and w, both & (w) and & (w) are deterministic measures.
Next we are going to study (n;)°, the neighborhood measures of the clusters. Since
we will use the cluster decomposition & = 3,7, throughout the proof, naturally in order to

prove ¢qe2 4 €8 5 & we also need to study (7). Write (1})¢ = 1 for convenience.
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Lemma 3.6 Let the i} be conditionally independent h-clusters in R, rooted at the points

of a Poisson process & with E€ = . Fiz any measurable function f > 0 on RY. Then
(1) B>, = (p*pf) - A%

(ii) Var, 35,y f < W22 [ fIP (|l for €2 < h.

In part (i), notice that >, 7l is a random measure, its expectation is the deterministic

measure (p x p§) - A%, which means that for any measurable f > 0

By mif = ((wxpi) - A f

where ((u*p5)- A f is the integral of the function f with respect to the measure (p*pf)- A%
In part (ii), notice that Y. 7€ f is a real-valued random variable, its variance is bounded
above by h*e*@2) || || [|a]|.

Next we compare & and Y. 7, and prove that asymptotically they are the same, so
that we can just replace & by >_. 7. Intuitively this result is clear: Since the ages of clusters
h and the parameter of neighborhood measures € are both going to 0 at some suitable rates,
asymptotically there are no overlaps between the neighborhood measures of clusters, so that

asymptotically >, ni€ and & are the same.

Lemma 3.7 Let & be a DW-process in R* with d > 3, and for fized t > 0, let 0} denote the

subclusters in & of age h > 0. Fix a p € My. Then as e < h — 0,

(e2/Vh)*

Recall that for a signed measure p on R? with f as the density with respect to A%, the

total variation [|p|| satisfies

lull = M| ] = / (@)l
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Note that Y, and & have the density Y, 1{n; B > 0} and 1{¢B: > 0} respectively, so

L,

Z ne —&

= Eﬂ/ ‘ > 1, Bs > 0} — 1{¢B: > 0} da

Now clearly the integrand | >, 1{n; BS > 0} — 1{{B: > 0}] is related to the multiple hitting
of Lemma 3.4.

The last lemma is a precise convergence result about the hitting probability P,{n,B§ >
0}.

For a DW-process ¢ of dimension d > 3, we know from Theorem 3.1 of Dawson, Iscoe,
and Perkins [6] (cf. Remark I11.5.12 in [42]) that, for fixed ¢ > 0, z € R?, and finite y, as
e—=0

e P {&B: > 0} — cq (u* o) (), (3.1)

where c¢q > 0 is a constant depending only on d, and the convergence is uniform for z € R?
and for bounded ¢~! and ||u||. Notice that in this classical result ¢ can change, but it has to
be bounded away from 0.

By using the scaling property of DW-processes, from the classical result above we can
get a precise convergence result about P,{n,B§ > 0} as both h and e are approaching 0

_1h_1€2_d

at some suitable rates. More precisely, after the scaling term (c,) multiplied to

P{nyB§ > 0}, the measure
(cg) *h*e* P {n,BS > 0}dx

converges in a certain sense to dy, the Dirac measure at 0 g, as both h and e are approaching
0 at some suitable rates. This result should be easy to understand since if x # 0, then for
small enough h and ¢, the 7, stated from = will not be able to reach Bj before time h.

Only the 7, stated from 0 will be able to reach Bf before time h, although the probability
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is decreasing to 0. After the scaling term h~1e2~¢ multiplied to Py{n,BS > 0}, it converges

to the constant c,.

Lemma 3.8 Write p5(x) = P,{n,B5 > 0}, where the n, are clusters of a DW-process in R?,
and fir a bounded, uniformly continuous function f > 0 on RY. Then as 0 < €2 < h — 0,

we have

| Rt e (g5 * f) —caf || = 0.

The result holds uniformly over any class of uniformly bounded and equicontinuous functions

f >0 onR%

Here H h=1e?=d (p5s « f) —ca f H is the supremum norm of the function

h='e* = (p * f) (@) — ca f(x),

as a function of z.

Now we are ready to prove Theorem 3.5, but before giving the proof let us discuss the
main ideas in the proof carefully. First of all, we have two possible approaches to attack this
theorem: one is to prove the L'-convergence first, then use some interpolation to get the a.s.
convergence from the L!-convergence (this is indeed what Tribe did in [48]); the other is to
prove the a.s. convergence first. In the first approach, we need to get the a.s. convergence
from the L'-convergence by the usual Borel-Cantelli argument: If EY_ |f,| < oo, then
fn — 0 as. asn — oo. In order to do so, we need an upper bound of the approximating

error

2P {&B; > 0} — ca (px pr)(x),

which we don’t have here. So we will use the second approach: prove the a.s. convergence
first.
In order to prove the a.s. convergence, we need to show that a.s. for all f € Cf, we have

that ¢4e2 1¢f — & f, where C is the class of bounded, continuous functions R? — R,.
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However since there exists a countable, convergence-determining class of functions f in Cf,
we only need to prove for any fixed f € Cf, we have ¢qe> ¢ & f — & f as.

In order to prove this, we write

’52_d§t€f_cd§tf’ < 2

g2

&= mif|
Sonf = h W )|
]2 (55 % £) = caf |

+Cq |€sf - €tf|

Notice that the last term converges to 0 by the a.s. weak continuity of ¢ and the third term
converges to 0 by Lemma 3.4. The first term is related to Lemma 3.3 and the second term is
related to Lemma 3.2, however these two lemmas are about the expectations and variances
of those terms.

In order to get a.s. convergence from results of expectations and variances, we use the
usual Borel-Cantelli argument: take a sequence ¢, and get f(e,) — 0 as n — oo by showing
that £ [f(e,)| < co. Finally we extend the a.s. convergence from the sequence &, to the
whole interval (0, 1) by interpolation.

As for the L'-convergence, since by (1) we easily get

e UBE = ca Bl f,

so the L'-convergence follows from the a.s. convergence by an usual proposition.

Proof of Theorem 3.1:

Proof: (i) Let d > 3, and fix any t > 0, p € My, and f € C4. Write i} for the
subclusters of & of age h. Since the ancestors of & at time s = ¢t — h form a Cox process

directed by &s/h, Lemma 3.6 (i) yields

B 2

&] = n i+ ).
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and so by Lemma 3.6 (ii)

B s —ntewien| = BVa|Y air|e]
< 2R f|? B, /bl

= EEDRYfIP |l

Combining with Lemma 3.7 gives

E.|&f—h & (@h+ )]

WG F =Y

S e ||f||

= 2 (VE+ (VR I

<

(ph, * f)

Taking h = e = " for a fixed r € (0,1) and writing s,, =t — r", we obtain

By O = i+ S|

< D (PR f|] < o

which implies

T (P % f) ‘ — 0 as. P,. (3.2)

Now we write

’52_dfff—cdftf| < 52_d|5taf_h_1€s(pi*f)|+Cd‘£sf_€tf’

+ &I €2 hT (0 = f) — caf || -

Using (3.2), Lemma 3.8, and the a.s. weak continuity of £ (cf. Proposition 2.15 in [17]), we

see that the right-hand side tends a.s. to 0 as n — oo, which implies €279 f — c &, f ass.
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as € — 0 along the sequence (r") for any fixed r € (0,1). Since this holds simultaneously,
outside a fixed null set, for all rational r» € (0,1), the a.s. convergence extends by Lemma
2.3 in [25] to the entire interval (0,1).

Now let 1 € My be arbitrary with up; < oo for all ¢ > 0. Write u = ¢/ + " for bounded
i, and let & = £ 4+£” be the corresponding decomposition of £ into independent components
with initial measures ¢/ and p”. Fixing an r > 1 with supp f C Bj~' and using the result

for bounded p, we get a.s. on {£/Bj = 0}

G f =T = callf = calif
As p' T p, we get by Lemma 4.3 in [25]

P{¢'B; =0} = P{&By =0} — 1,

and the a.s. convergence extends to p. Applying this result to a countable, convergence-
determining class of functions f (cf. Lemma 3.2.1 in [5]), we obtain the required a.s. vague
convergence. If p is bounded, then & has a.s. bounded support (cf. Corollary 6.8 in [17]),
and the a.s. convergence remains valid in the weak sense.

To prove the convergence in L', we note that for any f € C%

B = / P {&B; > 0} f(x)dx
[ eatuen)(a) fo)do = ca B, (3.3
by Theorem 5.3.(i) in [25]. Combining this with the a.s. convergence under P, and using
Proposition 4.12 in [24], we obtain E,|e*~% &5 f — cq & f| — 0. For bounded p, (5.14) extends

to any f € C¢ by dominated convergence based on Lemmas 4.1 and 4.2 (i) in [25], together

with the fact that A (u * p;) = ||| < oo by Fubini’s theorem.
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3.4 Proofs of lemmas

Proof of Lemma 3.1:

(i) If v solves the evolution equation for &, that is,
1
) = ~Av —0?
v=5Av—v

then so does 9(t, z) = r2v(r?t, rz). Writing & = r~2£,2,Sy, ji = r2uS,, and f(z) = r2f(rz),
we get

Euefétf = Eﬂeffﬂtf = e HUr2¢ — 67[“7’5 . Eﬂef&f,

and so L£,(€) = L;(€), which is equivalent to (i).
(ii) Define the cluster kernel v by v, = L£,(n), * € RY, and consider the cluster de-
composition & = [ m{(dm), where ¢ is a Poisson process with intensity puv when & = p.

Here

T_QSTQtSr - /(T_2mr2ts7") g(dm)a r,t > 0.

Using (i) and the uniqueness of the Lévy measure, we obtain
(r2uS)v = pv{r—*m,=S, € -}),
which is equivalent to

r72£/lsr (77) = Lr—QuSr (77) = ‘C,u(ri%??&s?)‘ 0

Proof of Lemma 3.2:

Under P, we have § = >, ni, where the 1} are conditionally independent clusters of age ¢
rooted at the points of a Poisson process with intensity ;/t. For a cluster rooted at x, the hit-
ting probability is b, = P,{n;B > 0}. Hence (e.g. by Proposition 12.3 in [24]), the number of

clusters hitting B is Poisson distributed with mean ;:b/t, and so P,{{B = 0} = exp(—pub/t),
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which yields the asserted formulas. U

Proof of Lemma 3.3:
O

Proof of Lemma 3.4:
Let ¢, be the Cox process of ancestors to & at time s = ¢ — h, and write 7, for the
associated h-clusters. Using Lemma 3.3, the conditional independence of the clusters, and

the fact that £,(? = h2E,&? outside the diagonal, we get with pj (v) = P,{n,B§ > 0}

Buri(si = 1) = By > HmB; AmB; >0}

=UU;m ) B, C2(dr dy)

< g / / Piee) (@) Py (y) &2 (da dy).

By the formula of first moment, Fubini’s theorem, and the semigroup property of (p;), we

get

/ Prio (@) Bu6u(dz) = / Phie)() (1 % pe) (@) d
= / (du) (Pr(e) * Ps) (1) = UDe(e)-

Next, we get by the formula of second moment, Fubini’s theorem, the properties of (p;), and

the relations t < t. <2t — s

/ / Pie () ey () Cov, €, (dz dy)

= 2 [ [mo@ mow dvdy [t [ ar

[ o= )b =ty ) o
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- 2/,u(du) 03 dr/pr(u — ) (pt(a)_r(v))de
< [utaw) [ 0 pia) )
= /,u(du) /Os(t — r)_d/2 P(t(e)+r)/2(w) dr

t
< [ntwntdo) [ 2 dr < o
h

The assertion follows by combination of these estimates. U

Proof of Lemma 3.6:

(i) By Fubini’s theorem and the definitions of 7§ and p5,, we have

Eif = Es / L B5 > 0 f(u) du = (pf,  f)(x),

and so by independence

B[S et |€] = [ eto) Burif = 667 < 1), (34)
Hence, by Fubini’s theorem
Euy i d = By f) = upi + £) = (i) - XS
(i) First,
Var, (i) < Eo(nf*£)* < Eulnf P 1117 = AP B lnf€e]P

For E,||nX¢|]?, using Cauchy inequality and Lemma 3.3, we get

Bl = E. ( [ vz = opay [ > O}dz)
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= //Px ({ni B; > 0} N {ny BS > 0}) dyd=
< / / (PAnK BS > 0} Pl B: > 0})2dyd-
ape®28 / /(pzh(y — 2)pan(z — 2))2dyd=

ahgd’Q/thd/Q / /P4h(y — x)p4h(z — x)dydz

ahgde/ﬁhd/Q.

IN

)

Hence, by independence

ENar |3 0k flc| = . / C(de)Var (5 f) < ans™*P b2 || £IPlu)

Proof of Lemma 3.7:

Let 5 (x) denote the number of subclusters of age h hitting BS at time ¢. Then Lemma

3.4 yields,
EMH Do~ = EM/ ) > W B: > 0} — 1{B; > 0}( dx
- [ Bl -
< £2(d-2) )\d(hl—d/2<lu *pt> + (M *p%)2)
/<\ 62(d—2) (hl—d/ZHMH _i_tfd/QH,uHQ) .
Il

Proof of Lemma 3.8:
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Using (3.1) and Lemmas 3.1 (ii), 3.2, and 3.3, we get by dominated convergence
N hd/2)\dpi/\/ﬁ ~ g hY? (e /VR) 2Ny = cqe?2h. (3.5)

Similarly, Lemma 3.3 yields for fixed 7 > 0 and a standard normal random vector v in R?

IN

g dpt / Py (x) dx / Pie) (u) du
|| >T [u|>r/vVh

— P{m 12 r/\/ﬁ} 0. (3.6)

By (3.5) it is enough to show that ||p5 x f — f|| = 0 as h, €2/h — 0, where p5 = p5 /\p5.

Writing wy for the modulus of continuity of f, we get

/ P () (f(z — u) — f(x)) du
< / 25 (u) wy (Jul) du

< wp(r) +2[|f]] P (u) du,

|u|>r

155+ f = fll = sup,

which tends to 0 as h, €2/h — 0 and then r — 0, by (3.6) and the uniform continuity of f.

O
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Chapter 4

Lebesgue Approximation of (2, 3)-Superprocesses

4.1 Introduction

Throughout this chapter, we use pf to denote the integral of the function f with respect
to the measure . By an (a, 3)-superprocess (or (a, 3)-process, for short) in R? we mean a
vaguely rcll, measure-valued strong Markov process £ = (&) in R? satisfying E,e~%/ = e~r
for suitable functions f > 0, where v = (v;) is the unique solution to the evolution equation
v = 1A,v — v with initial condition vy = f. Here A, = —(—A)*/? is the fractional
Laplacian, a € (0, 2] refers to the spatial motion, and § € (0,1] refers to the branching
mechanism. When o = 2 and § = 1 we get the Dawson—Watanabe superprocess (DW-
process for short), where the spatial motion is standard Brownian motion. General surveys
of superprocesses include the excellent monographs and lecture notes [5, 15, 17, 32, 35, 42].

In this chapter we consider superprocesses with possibly infinite initial measures. Indeed,
by the additivity property of superprocesses, we can construct the («, 3)-process £ with any
o-finite initial measure p. In Lemma 4.5 we show that & is a.s. locally finite for every ¢ > 0 iff
ipa(t,-) < oo for all t, where p,(t, ) denotes the transition density of a symmetric a-stable
process in R%. Note that when o = 2, po(t, z) = py(z) is the normal density in R%.

For any measure p on R? and constant € > 0, write u¢ for the restriction of Lebesgue
measure \? to the e-neighborhood of supp p. For a DW-process ¢ in R? with any finite initial
measure, Tribe [48] showed that e2~ ¢ Beqé as. as € — 0 when d > 3, where = denotes
weak convergence and ¢4 > 0 is a constant depending on d. For a locally finite DW-process &
in R?, Kallenberg [25] showed that () |loge| & % & a.s. as € — 0, where — denotes vague
convergence and m is a suitable normalizing function. Our main result in this chapter is

Theorem 4.18, where we prove that, for a locally finite (2, 3)-process ¢ in R? with 8 < 1 and
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d>2/B, e¥/b-d¢s 5 cgaé a.s. as € = 0, where cg 4 > 0 is a constant depending on 5 and d.
In particular, the (2, 8)-process & distributes its mass over supp ; in a deterministic manner,
which extends the corresponding property of DW-processes (cf. [17], page 115, or [42], page
212). See the end of the present chapter for a detailed explanation of this deterministic
distribution property. For DW-processes, this property can also be inferred from some deep
results involving the exact Hausdorff measure (cf. [7]). However, for any («, 3)-process &
with a < 2, supp& = R? or ) a.s. (cf. [18, 40]), and so the corresponding property fails.
Our result shows that this property depends only on the spatial motion.

To prove our main result, we adapt the probabilistic approach for DW-processes from
[25]. However, the finite variance of DW-processes plays a crucial role there. In order to
deal with the infinite variance of (2, §)-processes with 8 < 1, we use a truncation of («, 3)-
processes from [38], which will be further developed in Section 2 of the present chapter. By
this truncation we may reduce our discussion to the truncated processes, where the variance
is finite.

To adapt the probabilistic approach from [25] to study the truncated processes, we also
need to develop some technical tools. Thus, in Section 3 we improve the upper bounds
of hitting probabilities for (2, §)-processes with f < 1 and their truncated processes. As
an immediate application, in Theorem 4.8 we improve some known extinction criteria of
the (2, 8)-process £ by showing that the local extinction property £ti>0 and the seemingly
stronger support property supp ﬁti@ are equivalent. Then in Section 4 we derive some
asymptotic results of these hitting probabilities. In particular, for the (2, 3)-process £ we
show in Theorem 4.15 that e#=4P,{¢,B: > 0} — csq(p * pi)(z), where B? denotes an
open ball around x of radius r, which extends the corresponding result for DW-processes (cf.
Theorem 3.1(b) in [6]). Since the truncated processes do not have the scaling properties of
the (2, B)-process, our general method is first to study the (2, 5)-process, then to estimate the
truncated processes by the (2, 5)-process, in order to get the needed results for the truncated

processes.
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The extension of results of DW-processes to general («, )-processes is one of the major
themes in the research of superprocesses. Since the spatial motion of the («, 3)-process is
not continuous when o < 2 and the (a, 3)-process has infinite variance when 5 < 1, many
extensions are not straightforward, and some may not even be valid. However, it turns out
that several properties of the support of (2, 3)-processes depend only on the spatial motion.
These properties include short-time propagation of the support (cf. Theorem 9.3.2.2 in [5])
and Hausdorff dimension of the support (cf. Theorem 9.3.3.5 in [5]). Our result also belongs
to that category.

In this chapter we are mainly using the notations in [25]. Recall that the double bars
|| - || denote the supremum norm when applied to functions and total variation when applied
to signed measures. We also use relations such as =, <, and =, where the first two mean
equality and inequality up to a constant factor, and the last one is the combination of <

and > . Other notation will be explained whenever it occurs.

4.2 Truncated superprocesses and local finiteness

Although our main result of the present chapter is about (2, §)-processes, in this section
we discuss the truncation and local finiteness of all (a, 3)-processes, due to their independent
interests.

It is well known that the (v, 1)-process has weakly continuous sample paths. By contrast,
the (o, 5)-process £ with 8 < 1 has only weakly rcll sample paths with jumps of the form

A& = 1d,, for some t >0, r > 0, and x € R%. Let

Ne(dt,dr,dx) = > Sra)
(t,ryz): A&=rdy
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Clearly the point process N¢ on Ry x Ry x R? records all information about the jumps of &.

By the proof of Theorem 6.1.3 in [5], we know that N¢ has compensator measure
Ne(dt, dr, dx) = cg(dt)r=>" (dr)&(dx), (4.1)

where c3 is a constant depending on 3. Due to all the “big” jumps, & has infinite variance.
Some methods for (o, 1)-processes, which rely on the finite variance of the processes, are not
directly applicable to («, 3)-processes with § < 1.

In [38], Mytnik and Villa introduced a truncation method for (a, f)-processes with
B < 1, which can be used to study («, §)-processes with 8 < 1, especially to extend results
of (a, 1)-processes to («, 3)-processes with 5 < 1. Specifically, for the («, 5)-process £ with
p < 1, we define the stopping time 7 = inf{t > 0 : ||[A&]|| > K} for any constant K > 0,
where inf ) = co as usual. When A&, = 1, we see that ||A&|| = r. Clearly 7k is the time
when ¢ has the first jump greater than K. For any finite initial measure pu, they proved
that one can define ¢ and a weakly rcll, measure-valued Markov process £ (which is Y% on
page 485 of [38]) on a common probability space such that & = X for t < 7. Intuitively,
£5 euqals ¢ minus all masses produced by jumps greater than K along with the future
evolution of those masses. In this chapter, we call €& the truncated K-process of £. Since
all “big” jumps are omitted, £& has finite variance. They also proved that £& and & agree
asymptotically as K — oo. We give a different proof of this result, since similar ideas will
also be used at several crucial stages later. We write P,{{ € -} for the distribution of £ with

initial measure pu.
Lemma 4.1 Fiz any finite p and t > 0. Then P,{tx >t} = 1 as K — oc.

Proof: If T < t, then £ has at least one jump greater than K before time t. Noting

that Ne([0,¢], (K, 00),R?) is the number of jumps greater than K before time ¢, we get by
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Theorem 25.22 of [24] and (4.1),

Pirx <t} < E,N¢([0,t], (K, 00),R)

= E,N([0,1], (K, 0),R?)

t
K_l_ﬁEy/ & llds = tllu| K77 =0
0

as K — oo, where the last equation holds by E,[|&]] = ||x]]. O

Using Lemma 1 of [38] and a recursive construction, we can prove that £&(w) < &(w)

for any ¢ and w. So indeed, £¥ is a “truncation” of £.

Lemma 4.2 We can define & and €5 on a common probability space such that:

(i) € is an (a, B)-process with 3 < 1 and a finite initial measure p, and X is its truncated

K -process, which has no jumps greater than K,
(i) &(w) > €8 (w) for any t and w,
(iil) &(w) =& (w) fort < Tr(w).

Proof: Let &y, (t) denote the process &, at time t. Use D([0, 00), My) as our Q, the
space of rcll functions from [0, c0) to My, where M, is the set of finite measures on R%. We
endow 2 with the Skorohod J;-topology. Let A = B((2).

Let (1(t,w) = w(t) be an («, 5)-process defined on (£2,.4,P) with initial measure p, and
define 75, = inf{t > 0 : |A¢G(¢)|]| > K}. Then define a kernel u from M, to Q such that
u(v, ) is the distribution of an (a, 3)-process with initial measure v, and a kernel u* from
M, to Q such that u€ (v, -) is the distribution of the truncated K-process of an («a, §)-process
with initial measure v. By Lemma 6.9 in [24], we can define (; o to be an (a, §)-process with

initial measure (;(7x,) on an extension of (2, A,P), and (j , to be the truncated K-process
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of an (a, B)-process with initial measure (i (7, ). Now define & and & by

1(t) = Gu(t), t < Tk,
Cloot = Ty), t > Tk,
5’{((t) _ C1<t>7 t<TK17

Ci,oo(t - TK1)> t > TK, -

By the strong Markov property of («, 8)-processes and the above construction, we can verify
that & is an (a, B)-process. By Lemma 1 in [38], ££ is the truncated K-process of an
(v, B)-process. Moreover, & and & satisfy conditions (ii) and (iii) on [0, 7x, ).

Let ' be a kernel from My x My to A x A such that u' (v, v/, -, ) is the distribution of a
pair of two independent (a, B)-processes with initial measures v and 1/ respectively. Define

(€20, C2,1) with distribution

o (€8 (7)), &) — €5 (750,

Let CQ = CQ’O + CQJ, Cé = gg?(), and TKy, = mf{t > 0 : ||AC2<t>H > K} Let <2,oo be an
(v, B)-process with initial measure (3(7x,), and let (5, be the truncated K-process of an

(av, B)-process with initial measure ¢}(7g,). Now define & and &f° by

fl(t), t < TKy,
52(t) = CZ(t_TK1)7 TKl §t<TK1+TK27

CZOO(t —TKy — TKz)v t > TK, +TK27

gf(t% t<TK17
Kt _ /
2 ()_ CZ(t_TIﬁ)a TK, §t<7—K1 + Tk,

gé,oo(t —TK, — TKQ)’ t> Try + TK,-
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Similarly, & is an (o, 8)-process and X is the truncated K-process of an («, 3)-process.
They satisfy conditions (ii) and (iii) on [0, 7k, + Tk,)-

Continue the above construction: For every n, define &, and £X such that &, is an («, 3)-
process, £X it the truncated K-process of an (o, 8)-process, and they satisfy conditions (ii)
and (iii) on [0,> 7 , Tk, )-

It suffices to prove that >~ | 7k, = 0o a.s. Suppose P(> -, Tk, < 00) > 0. Then there
exist t and a such that P(}",2 7k, < t) = a > 0. Since for every n, &, is an («, §)-process

with initial measure u, we get
an < E,Ne, (10, ], (K, 00),R?) .

Noting that by (4.1) E,Ne, ([0,1], (K,00),R%) is the same finite constant for different n, we

get a contradiction. So Y .- Tk, = 00 a.s. O

Just as the DW-process, the (o, §)-process & and its truncated K-process £X also have
cluster structures (cf. Corollary 11.5.3 in [5], or Section 3 in [7], especially page 41 there).
Specifically, for any fixed ¢, &; is a Cox cluster process, such that the “ancestors” of &; at time
s =t — h form a Cox process directed by (8h)~YP¢,, and the generated h-clusters 7} are
conditionally independent and identically distributed apart from shifts. For the truncated
K-process £X the situation is similar, except that the clusters are different (because of the
truncation) and the term (8h)~!/# for € needs to be replaced by ax(h) (or aj, when K is
fixed). Use 7" (or %) to denote the generated h-clusters of £5. Write P {n, € -} for
the distribution of n; centered at € R?, and define P,{n; € -} = [ u(dz)P.{n; € -}. The
following comparison of ax(h) and (Bh)~'/#, although not used explicitly in the present

chapter, should be useful in other applications of the truncation method.
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Lemma 4.3 Fix any K > 0. Then as h — 0,
(B1)'P < ac(h) < 2(Bh)"".
Proof: From Lemma 3.4 of [7] we know that
(81)7 = lim 1/ (5, 6).
where vy (h, 0) is the solution of ¥ = —v'*# with initial condition v = 6, and

ag(h) = lim 1/vy(h,6),

6—o00

where vy (h, 0) is the solution of (1.12) in [38] with initial condition v = 6. Define Mg (\) =

Cs(K)X + ®%(N), where C3(K) and ®F are such as in (1.12) of [38]. Then M satisfies

M < Mg (\) and  lim Mic (V)

—— =1.
A—00 /\1+IB

Clearly it is enough to show that (1/2)vy(h,8) < vi(h,0) < v(h,0) as h — 0 and 6 — oo.

This follows from the above properties of M. O

Unlike the normal densities, we have no explicit expressions for the transition densities
of symmetric a-stable processes when o < 2. However, a simple estimate of p, (¢, z) is enough

for our needs.

Lemma 4.4 Let p,(t,7), a € (0,2], t > 0, and x € R, denote the transition densities of a

symmetric a-stable process on RY. Then for any fized o and d,

palt,z+y) <pa(2t,x), |y|* <t
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Proof: First let a = 2. Note that py(¢,x) = p;(x) is the standard normal density on R?.

For |z| < 4+/t, trivially p,(z + y) < pa (). For |x| > 4+/%, it suffices to check that

gl Jaf?
2t T 4t

that is, 2|z + y|* > |z|?, which follows easily from |z| > 4]y|.

Now let @ < 2. By the arguments after Remark 5.3 of [2],

—d/a t
Pal(t,x) < <t dfe p |$|d+a> : (4.2)

Choose K > 21/ to satisfy 1 < 2(1 — 1/K)%. Since |y| < t'/%, we have for |z| > Kt/

t < 2t
‘x+y’d+a - |x’d+o¢'

Noticing also that (2t)/]z|*"® < (2t)~% for |z| > Kt'/*, we get pa(t,x +y) < pa(2t,z) for
ly| < tY/* and |z| > Kt'/®. The same inequality holds trivially for |y| < t'/* and |z| < Kt'/e.

O

Using Lemma 4.2 and Lemma 4.4, we can generalize Lemma 3.2 in [25] to any («, §)-

process.
Lemma 4.5 Let & be an («, 3)-process in R%, o € (0,2] and B € (0,1], and fix any o-finite
measure . Then for any fired t > 0, the following two conditions are equivalent:
(i) & is locally finite a.s. P,
(i) E,& s locally finite.
Furthermore, (1) and (ii) hold for every t > 0 iff
(iil) ppa(t,-) < oo for allt >0,
and if a < 2, then (iii) is equivalent to
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(iv) ppa(t,-) < oo for somet > 0.

Proof: The formulas for E,& and E,& (when 8 < 1), well known for finite u, as well as
the formulas in Lemma 3 of [38], extend by monotone convergence to any o-finite measure

1. We also need the simple inequality that for any fixed a < 2, s, and ¢,

Pa(s, 1) X palt, x). (4.3)

To prove it, use (4.2) and consider three cases: |z| < (s A t)Y?, |z| > (s V t)/%, and
(s AV < |z| < (sVi)/e,

If « =2 and B8 = 1, then this is Lemma 3.2 of [25]. For a < 2 and § = 1, using
Lemma 4.4 and (4.3) we can proceed as in Lemma 3.2 of [25]. For example, for any fixed
t>0and x € RY po(t, 7 —u) < po(|z]V/ 2 —u) < pa(2|z|V, —u) = po (2|2, u) yields
f % palt, -)(x) < oco.

Now assume [ < 1. Condition (ii) clearly implies (i). Conversely, suppose that E,§B =
oo for some B. Then E,{fB = oo for any fixed K > 0 by Lemma 3 of [38]. Also, we get by
Lemma 3 of [38],

ftKB EugtKB 2 I 2
P“{—EM 5 > 7’} > (1—1)? EEM(@KB;Q > +Ci (Eug’fB)‘l

for any r € (0,1). Arguing as in the proof of Lemma 3.2 in [25], we get (& B = oo a.s., and
so B = oo a.s. by Lemma 4.2. In particular, this shows that (i) implies (ii). To prove the
equivalence of (ii) and (iii), again using Lemma 4.4 and (4.3) we can proceed as in Lemma

3.2 of [25]. The last assertion is obvious from (4.3). O
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4.3 Hitting bounds and neighborhood measures

From now on we consider only (2, §)-processes. The Lebesgue approximation depends
crucially on estimates of the hitting probability P,{{B; > 0}. In this section, we first
estimate P,{&B5 > 0} and P,{{fB§ > 0}. Then we use these estimates to study multiple
hitting and neighborhood measures of the clusters i} associated with the truncated K-
process £&. We begin with a well-known relationship between the hitting probabilities of &,

and 7, which can be proved as in Lemma 4.1 of [25].

Lemma 4.6 Let the (2, 3)-process & in R with associated clusters n; be locally finite under

P, let €K be its truncated K -process with associated clusters n<, and fix any B € BY. Then

P {nB >0} = — ()" log(1 - P.{&B > 0}),
P{&B >0} = l—exp (—(8t) VP, {n,B > 0}),
PAnB>0} = —a log(1— B B>0}),

PA{B >0} = 1—exp(—a;'P.{nfB>0}).

In particular, P,{&B > 0} ~ (8t)"YP,{n,B > 0} and P,{¢EXB > 0} ~ a;'P,{nk B > 0}

as either side tends to 0.

Upper and lower bounds of P,{{B5 > 0} have been obtained by Delmas [9], using
a subordinated Brownian snake approach. However, in this chapter we need the following

improved upper bound.

Lemma 4.7 Let n, be the clusters of a (2,3)-process € in R* with 3 < 1 and d > 2/3, let
nE be the clusters of X, the truncated K -process of &, and consider a o-finite measure p on

Re. Then for 0 < e < Vi,
(i) ppy < e¥P~4(Bt) PP, {nBg > 0} < pupay, where t' = Bt/(1+ B),
(it) &7~ a; ' P {nfB§ > 0} < pupoy.
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Proof: (i) From the proof of Theorem 2.3 in [9] we know that
PAEB; > 0} = 1 — exp(— N, (Vi 5 > 0}),
where N, and Y; are defined in Section 4.2 of [9]. Comparing this with Lemma 5.4 yields
(Bt) VPP {n,B; > 0} = N, {Y,B: > 0}.

By Proposition 6.2 in [9] we get the lower bound. For our upper bound, we will now improve
the upper bound in Proposition 6.1 of [9].
For 0 < £/2 < v/, define

A = {(ry) €R* xR, r<t,lyl >=/2}

LH{(ry) e RE xRY r <t —£2/16, |y| < 2/2}.
Following the proof of Proposition 6.1 in [9], we have
(B) VPP Bs > 0} < e P Py{v, € BE/? for some s € [t —£2/16,1)},
where 7 is a standard Brownian motion. Define
T =inf{s >t — /16 : v, € B/?},

where inf () = oo as usual. Then {T < t} = {v, € B/? for some s € [t — £2/16,¢)}. To get

our upper bound, it remains to show that

P(){T < t} f\ €dp2t(l‘).
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e/2
x

To prove this, we need the elementary fact that for any z € R?, ¢ > 0, y € BZ", and

s < s =¢?/16,
Py{% ¢ ch} < Pz{%’ ¢ B:i} < Pz{%’ S B;} < Py{% € Bi},

where z is a point on the surface of B?, and the second relation holds since P.{vy ¢ B} and
P.{vy € B} are both positive constants. Now return to Po{T < ¢}. Noting t — T < £2/16

on {T < t}, we get

PO{T<t} = PO{T<ta’ytGB;}+P0{T<t7’Yt¢B;}
= P(){T <t,n € B;} + EO{PWT{%E—T ¢ B;},T < t}
g Po{T < t, Yt S B;} + EO{PPYT{’)/t_T € B;},T < t}

= PR{T <t,me B} + Rf{T <t,n € B}

IN

Po{w € B3} < e%pula),

where the second and fourth relations hold by the strong Markov property of Brownian
motion and the last relation holds by Lemma 4.4.

(i) This is obvious from (i), Lemma 4.2, and Lemma 5.4. O

As an immediate application of the improved upper bound, we may improve some known
extinction criteria for (2, 3)-processes in R? with 3 < 1 and d > 2/3. This extends Theorem
4.5 of [25] for DW-processes of dimension d > 2. Note that the special case of convergence of
random measures §ti>0 is equivalent to ftB£>0 for any bounded Borel set B. Convergence
of closed random sets is defined as usual with respect to the Fell topology (cf. [24], pp. 324,
566). However, in this chapter we need only the special case of convergence to the empty

set supp &i@, which is equivalent to 1{{;B > 0}50 for any bounded Borel set B.
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Theorem 4.8 Let £ be a locally finite (2, 3)-process in R, B < 1 and d > 2/f3, with arbitrary

wnitial distribution. Then these conditions are equivalent as t — oco:

<1> 5ti>07

(ii) supp &-20,
(ifi) &ope0.

Proof: By Lemma 5.4 and Lemma 5.5(i) we get for any fixed r
P.{&By > 0} < (8)"VPu{nBy > 0} < ppa,
and so P,{§Bj > 0} < upat A 1. For a general initial distribution,
P{&B; > 0} < E(&opa A1),

which shows that (iii) implies (ii). Since clearly (ii) implies (i), it remains to prove that (i)
implies (iii).

Let € be locally finite under P,. We first choose f € CFT(R?) with suppf € B{, where
CF*H(R%) is such as in Proposition 2.6 of [29]. Clearly & f50 if &3350. By dominated
convergence

exp(—pv) = Eyexp(=&f) = 1,

and so pv; — 0. By Proposition 2.6 of [29], we have for ¢ large enough

pt/Q(x) = ¢(t/2,fL‘) < Ut($)7

where ¢ is defined in (1.15) of [29] (on page 1061, see also (1.17) and (1.18) there). So

ppes2 — 0. For general &, we may proceed as in the proof of Theorem 4.5 in [25]. O
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The following simple fact is often useful to extend results for finite initial measures pu to

the general case. Here B? denotes the space of bounded sets in the Borel o-algebra B¢,

Lemma 4.9 Let the (2, 3)-process € in RY with 8 < 1 and d > 2/ be locally finite under

P,, and suppose that @ > g, | 0. Then P, {&B > 0} — 0 as n — oo for any fized t > 0

and B € B4,

Proof: Follow the proof of Lemma 4.3 in [25], then use Lemma 4.5, Lemma 5.4, and
Lemma 5.5(1). O

As in [25] we need to estimate the probability that a ball in R? is hit by more than one

subcluster of the truncated K-process . This is where the truncation of ¢ is needed.

Lemma 4.10 Fiz any K > 0. Let £X be the truncated K -process of a (2, 3)-process & in R?
with f <1 andd > 2/B. For anyt>h >0 and e > 0, let k5, be the number of h-clusters of

EK hitting Bg at time t. Then for 2 < h <t,
Bk (kj, — 1) < @20 (R ppy + (upyr)? ) -

Proof: Follow Lemma 4.4 in [25], then use Lemma 3 of [38] and Lemma 5.5(ii). O

Now we consider the neighborhood measures of the clusters i associated with the trun-
cated K-process £¥. For any measure 4 on R? and constant € > 0, we define the associated
neighborhood measure i as the restriction of Lebesgue measure ¢ to the e-neighborhood of
supp (4, so that p® has Lebesgue density 1{uBS > 0}. Let th’a(w) = P.{nEB5 > 0}, where

the kX are clusters of £X. Write pr*(z) = pis(z) and (7)) = i< for convenience.

Lemma 4.11 Let £5 be the truncated K-process of a (2, 3)-process & in R with 3 < 1 and
d > 2/83. Let the ni" be conditionally independent h-clusters of €&, rooted at the points of a

Poisson process ¢ with EC = p. Fiz any measurable function f > 0 on R, Then,
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(i) Eudompe = (uxprc)- A%,

(i) B, Var [SonfefIc] < ane2019 | 1P|l for 2 < h.

Proof: (i) Follow the proof of Lemma 6.2 (i) in [25].
(ii) First,

Vary (ny °f) < Eo(ny < f)* < Exllm 12 111 = 1Bl =1

For E,||nX¢|]?, using Cauchy inequality and Lemma 5.5(ii), we get

Bl = E ( [ vtz > opay [ > O}dz)
_ // (S BS > 0} 1 {5 BZ > 0}) dyd=

< [ [ s> 0P B2 > 0p) g
< @ct [ [ty - ohpue - ) Pz
= ahsd_Q/ﬂhdm//mh(y—x)p4h(z—x)dydz
R
Hence, by independence
B Nar [ 11c] = B [ cldo)Van, f<5) < ane® /50 | 17 .

We also need to estimate the overlap between subclusters.

Lemma 4.12 Let & be the truncated K-process of a (2, 3)-process € in R with 3 < 1 and

d > 2/B. For any fized t > 0, let ni" denote the subclusters in &5 of age h > 0. Fiz any
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€ Mqy. Then as €2 < h — 0,

E,u, < 62(d72/5)h17d/2.

Kie Ke
E i77h — St

Proof: Follow the proof of Lemma 6.3(i) in [25], then use Lemma 5.5(ii). O

4.4 Hitting asymptotics

For a DW-process £ of dimension d > 3, we know from Theorem 3.1(b) of Dawson,

Iscoe, and Perkins [6] that, as e — 0,

e P& B; > 0} — ca (p* po) (@),

uniformly for bounded ||g||, bounded ¢~!, and = € R%. A similar result for DW-processes of
dimension d = 2 is Theorem 5.3(ii) of [25]. In this section, using Lemma 5.5(i), we can prove
the corresponding result for (2, 3)-processes in R with 3 < 1 and d > 2/8.

First we fix a continuous function f on R? such that 0 < f(z) < 1 for x € B} and
f(z) = 0 otherwise. Let vy be the solution of v = %Av — v with initial condition
v(0) = Af. Since v, is increasing in A, we can define v,, = limy_,o, v5. Using Lemma 5.5(i),

we can get an upper bound of v, similar to Lemma 3.2 in [6].
Lemma 4.13 For anyt > 1 and x € R, v (t,7) < p(2t, 7).

Proof: Letting A — 0o in E, exp(—=&§Af) = exp[—ua(t, )], we get

Px{gtB(l) > 0} =1- exp[_voo@?x)]'

Comparing this with Lemma 5.4 yields

Voo(t, ) = (Bt) VPP {n, B} > 0}. (4.4)
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Now Lemma 4.13 follows from Lemma 5.5(i). OJ

As in Lemma 3.3 of [6], we can apply a PDE result to get the uniform convergence of

Uso- Notice that the improved upper bound in Lemma 5.5(i) is crucial here.

Lemma 4.14 There exists a constant cgq > 0 such that

d

lim e %o (672,67 ) = cpa - pl(t, 1)
e—0

The convergence is uniform for bounded t~* and x € R?.

Proof: We follow the proof of Lemma 3.3 in [6]. By Lemma 4.13, v (¢, x) is finite for

any t > 1 and x € R%. Then by a standard regularity argument in PDE theory,

1
Voo = §Avoo — P (4.5)

on [1,00) x R% By Lemma 4.13, v, (1) € LY(R?). Set
we(t, x) = e Mo (1 + 7%, e 7).

Then by (4.5), . = 5Aw, — 7 2w!tF with initial condition w.(0,2) = e %, (1,6 x).

Applying Proposition 3.1 in [21] gives

lim e g (1472, e7'w) = cgq- p(t, @),
e—0

uniformly on compact subsets of (0,00) x R%. Together with Lemma 4.13 this yields the

uniform convergence on [a, 00) X R? for any a > 0. Moreover, letting t =t — &2, we get

lim e Yy (672 e a) = cpq - p(t', 1),
e—0
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uniformly on [a,00) x R? for any a > 0.
It remains to prove that cz4 > 0. Using (4.4) and the lower bound in Lemma 5.5(i), we

obtain

e (e2t e ) = e 4Bt TVPP 1 {n.2 Bl > 0}

(i) ()
1+ 3’ 1+5 )"

NV

and so cgq > 0. [

Now we can derive the asymptotic hitting rate for a (2, 3)-process.

Theorem 4.15 Let the (2, 3)-process € in R with 8 < 1 and d > 2/ be locally finite under

P,. Fiz anyt >0 and x € R. Then as e — 0,

e2P=p L& BS > 0} — cgalp * po)(x).

The convergence is uniform for bounded |||, bounded t=1, and x € R, Similar results hold

for the clusters 1, with p, replaced by (5t)/p,.

Proof: We first prove that as ¢ — 0,

eXPA(Bt) P Pu{neB; > 0} = cpali*pe)(x), (4.6)

uniformly for bounded ||u||, bounded ¢t~!, and x € R?.
Use p — = to denote the measure u shifted by —z. If p is finite, then by the scaling
of n, (4.4), and Lemma 4.14, we can get the following chain of relations, which proves the

uniform convergence of (4.6):

e?/0=(pt)"P P, {mB: > 0}
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= 0 [P > 0) (- a)(dy
= 20 [ BB > 0) (- 2)(dy)

= = [onle e )= 2)(d) > cnali)(a).

Let p be an infinite o-finite measure satisfying up; < oo for all ¢. From the proof of
Lemma 4.5, we know that (p* py)(z) < oo for any z € R%. Then by dominated convergence
based on Lemma 5.5(i), we can still get (4.6).

Now we turn to &. First note that by Lemma 5.4, as ¢ — 0,

PP &BE >0} —» ¢ & YY) TVPP B > 0} — ¢, (4.7)

/PG B; > 0} w ¢ & P70 P {nfB; > 0} = c. (4.8)

It remains to prove the uniform convergence for &. Since (i * p,)(z) < t=%?||u||, we know
that by (4.6), (8t)"Y#P,{n,Bs > 0} — 0, uniformly for bounded ||x||, bounded ¢!, and

r € R, Then we may use Lemma 5.4 to get the uniform convergence for ;. U

The following result, especially part (ii), will play a crucial role in Section 5. Here we
approximate the hitting probabilities p/¢ by suitably normalized Dirac functions. This will

be used in Lemma 4.17 to prove the Lebesgue approximation of £X.

Lemma 4.16 Let pf(x) = P.{nB§ > 0}, where the ny, are clusters of a (2, B)-process & in
R with B < 1 and d > 2/83. Recall that pi¢(x) = P,{nk B > 0}, where the n’ are clusters
of €K, the truncated K -process of €. Fiz any bounded, uniformly continuous function f >0

on R%,

(i) AsO0<e?<h—0,
| e2#=(BR) 12 (95, * f) — cga f | — 0.
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(ii) Fiz any b € (0,1/2). Then as 0 < e2 < h — 0 with e2/A~dp1+bd — 0,
Ha‘?/ﬁ*da,;l (pre* f) —caaf H — 0.

Both results hold uniformly over any class of uniformly bounded and equicontinuous functions

f >0 onR%

Proof: (i) We follow the proof of Lemma 5.2(i) in [25]. By scaling of  and (4.6),
2154 BV X, — (e VR8NV (4.9

Defining p5, = p§ /\%p5, we need to show that ||p5 * f — f|]| — 0. Write w; for the modulus

of continuity of f, that is, a function wy = w(f,-) defined by
U}f(’l“):Sup{|f(8)—f(t)|;8,t6Rd,|8—t| ST}? r > 0.

Clearly wy(r) — 0 as r — 0 since f is uniformly continuous. Now we get

15 f— fll = sup, / P(u) (Flz — u) — f(2)) du
< [ i) wy(ful) du
< w2061 [ g

It remains to show that f|u|>r p5(u) du — 0 for any fixed » > 0. Then notice that for any

fixed r > 0 by Lemma 5.5(i),

e¥/P=A(ph) P / pi(u) du < / pan(u) du = 0.
u|>r

|u|>r
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(ii) For pi¢, Lemma 5.5(ii) yields for any fixed r > 0,

52/5dah1/ PrE(u) du < / pan(u) du — 0.
[u|>r

|u|>r

Following the steps of the previous proof, it is enough to show that
e2/B=dg INIpKE 5 e 4. (4.10)
Since [, P2n(w) du — 0, Lemma 5.5 yields
S2-A(Gh) VI (BI) AT, = 0, X5~ a (B PN - 0.

By (5.12), to prove (4.10) it suffices to show that

e2/0=4(8R) VO B YAIps — e2/0~ 40 1 { Bl YA%ple — 0,
or equivalently (by (4.7) and (4.8)),

/5Py oyl B5 > 0 = Py A B > 0}) 0.

By Theorem 25.22 of [24] and (4.1),

7 (P paf€BE > 0} = Py o {68 B > 0})

< YPp Ne ([0, b, (K, 00),R?)

1{Bh }ad

= EQ/ﬂ_dE Nf ([Oah]>(K7 OO)’Rd)

1{Bh }ad

h
= 52/B_dE/ 1€ ||ds = e2/B=dpitbd 5 0, O
0
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4.5 Lebesgue approximations

To prove the Lebesgue approximation for a (2, 3)-process & in R? with 3 < 1 and
d > 2/B3, we begin with the Lebesgue approximation for £, the truncated K-process of
£ Since € and £¥ agree asymptotically as K — oo, we have thus proved the Lebesgue
approximation for £&. Write ézq = 1/cs4 for convenience, where cg4 is such as in Lemma

4.14. Recall that £f° = (¢X)?, the e-neighborhood measure of £X.

Lemma 4.17 Let £5 be the truncated K-process of a (2, 3)-process & in R with 3 < 1 and

d>2/B. Fiz any u € My and t > 0. Then under P,, we have as e — 0:
657d52/6_d£f{aﬂ>§f< a.s.

Proof: We follow the proof of Theorem 7.1 in [25]. Fix any f € C%. Write n/<* for the
subclusters of ¢& of age h. Since the ancestors of (& at time s = ¢t — h form a Cox process

directed by £ /ay, Lemma 5.7(i) yields

E, [Zﬁiﬂsf

6] = @€ i« ),
and so by Lemma 5.7(ii)

B S e f—at i )| = Bvar[ 3 afes |e]

an eI R | fIP Bull€ fanl]

IN

IN

eI R £ |l
where the last inequality follows from E,[|¢X|| < ||u||. Combining with Lemma 5.8 gives

Eu| &< f —ai &5 (oh + f) |

< Bl|&er=3 nkef |+ B,

DS —a T x f)
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< 82(0%2/,8) hlfd/2 Hf” + 81/2(d72/ﬁ) hd/4 Hf“

ed7Y/B (d=2Bp1=d/2 o mV2A2B) pd/y | £,
Let ¢ satisfy
(d~2/8) + (~d/2+ 1/2)c = 0. )

Clearly ¢ € (0,2). Taking ¢ = r™ for a fixed » € (0,1) and h = &° = r°*, and writing

Sp=t—h=1t—7r" we obtain

B Y [ - 0 €I )|

< Z(r[(dfz/ﬂ)Jr(fd/ZJrl)c}n + T[71/2(d72//3)+(d/4)0]n) 1f]| < oo,

since (d —2/8) + (=d/2+ 1)c > 0 and —1/2(d — 2/8) + (d/4)c > 0 by (4.11). This implies

@D KL K (R 5 )| 5 0 as. P (4.12)

Now we write

|52/B_d Fef —cpall f
< P gRef — o €N I w f) |+ cpal€Xf — EF f)

&S] €7 ayt (o= f) = caaf || -
For the last term, we first fix b = 1/2 — 1/d, then apply Lemma 4.16. Noting that by (4.11)

(2/8 —d) + (1 + bd)e = (2/8 — d) + (d/2)e > 0,

we get by Lemma 4.16

H 62/5_‘[@,:1 (p,lfe * f) — cpaf H —0
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along the sequence (r™). Using (5.13) and the a.s. weak continuity of £¥ at the fixed time ¢, we
see that the right-hand side tends a.s. to 0 as n — oo, which implies e2//=4 ¢ f — cpa X f
a.s. as € — 0 along the sequence (") for any fixed r € (0, 1). Since this holds simultaneously,
outside a fixed null set, for all rational » € (0,1), the a.s. convergence extends by Lemma
2.3 in [25] to the entire interval (0,1).

Applying this result to a countable, convergence-determining class of functions f (cf.
Lemma 3.2.1 in [5]), we obtain the required a.s. vague convergence. Since p is finite, the
(2, B)-process & has a.s. compact support (cf. Theorem 9.3.2.2 of [5] and the proof of Theo-
rem 1.2 in [6]). By Lemma 4.2, £/ also has a.s. compact support, and so the a.s. convergence

remains valid in the weak sense. O

Now we may prove our main result, the Lebesgue approximation of (2, 5)-processes.
Again, we write ¢gq = 1/cgq for convenience, where cg 4 is such as in Lemma 4.14. Also
recall that & = (&)° denotes the e-neighborhood measure of . For random measures &,

and & on R, £,5¢ (or ) in L! means that &,f — £f in L' for all f in O (or Cf).

Theorem 4.18 Let the (2, 3)-process € in R with 8 < 1 and d > 2/ be locally finite under

P,, and fix any t > 0. Then under P,, we have as € — 0:

Egac?P e, a.s. and in L'

This remains true in the weak sense when p is finite. The weak version holds even for the

clusters n, when ||u|| = 1.

Proof: For a finite initial measure p, by Lemma 4.17 and Lemma 4.1 we get as € — 0

Cpd g2/B—d §fﬂ>§t a.s.
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For a general o-finite measure 1 on R? with up; < oo for all t > 0, write u = p’ + p” for
a finite ¢/, and let & = ¢ + £” be the corresponding decomposition of ¢ into independent
components with initial measures ¢/ and p”. Fixing an r > 1 with supp f C By ' and using

the result for finite p, we get a.s. on {&/ B = 0}

gz/ﬁ*d ftgf — 52/67’1 ;Ef — €34 fzf =CB,d &f

As i/ 1, we get by Lemma 4.9
Pu{félBg = O} = PM”{ftB(T) = 0} — 1,

and the a.s. convergence extends to u. As in the proof of Lemma 4.17, we can obtain the
required a.s. vague convergence.

To prove the convergence in L', we note that for any f € C%

SPipgs = @ [ R eB > 0) fo)do

— /C/&d (;L * pt)({lf) f(QT) dr = CB,d Euftf, (413)

by Theorem 4.15. Combining this with the a.s. convergence under P, and using Proposition
412 in [24], we obtain E,|e¥P~4¢f — cp & f| — 0. For finite p, (4.13) extends to any
f € C& by dominated convergence based on Lemmas 5.4 and 5.5(i), together with the fact
that A (u x p;) = ||u|| < oo by Fubini’s theorem.

To extend the Lebesgue approximation to the individual clusters 7, let (y denote the

process of ancestors of & at time 0, and note that

PAne € -} = Ps,[& € -[|Gol] = 1],
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where Ps, {||Go]| = 1} = (Bt)"YPe=B7" 5 0. The a.s. convergence then follows from the

corresponding statement for &. Since

Pin €} = /u(d:v)Px{m €1

the a.s. convergence under any P, with |u|| = 1 also follows. To obtain the weak L'-

convergence in this case, we note that for f € Cf,

210 e f =sw%/aﬁuﬁ>Mﬂ@m

%CMWW“/WWM@NQM=%ﬂmm

by dominated convergence based on Lemma 5.5(i) and Theorem 4.15. O

As in Corollary 7.2 of [25], for the intensity measures in Theorem 4.18, we have even

convergence in total variation.

Corollary 4.19 Let & be a (2, 3)-process in R with 3 < 1 and d > 2/3. Then for any finite

woandt >0, we have as € — 0:
|/ E.& — cpa B || — 0.

This remains true for the clusters ny, and it also holds locally for & whenever & is locally

finite under P,.

Finally let us give a detailed explanation of the deterministic distribution property
of (2, 3)-processes. Here the deterministic distribution property has two aspects. Define
deterministic functions ®., ® similar to those defined on page 309 of [41], Theorem 4.18

shows that a.s.

P(supp &) = &,
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so a.s. & is a deterministic function of its support supp&;. This is the first aspect of the
deterministic distribution property. Now the second aspect. Since A(OB[) = 0, we get
&(0BL) = 0 a.s. by noting F,& = (u* p;) - A% With the help of Portmanteau Theorem for
finite measures, Theorem 4.18 shows that a.s. for all open balls B with rational centers and

rational radius,

lim ®. (supp &)(B) = &(B),

so the construction of & (w) from its support supp & (w) is the same everywhere for any fixed

w outside a null set.
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Chapter 5

Lebesgue Approximation of Superprocesses with a Regularly Varying Branching Mechanism

5.1 Introduction

Superprocesses are certain measure-valued Markov processes £ = (&;), whose distri-
butions can be characterized by two components: the branching mechanism specified by
a function ®(v), and the spatial motion usually given by a Markov process X. If X is a
Feller process in R with generator L, then the laplace functional E, exp(—¢ f) satisfies
E,lexp(—=&:f)|&s] = exp(—&svi—s) where vi(x) is the unique nonnegative solution of the so-
called evolution equation v = Lv — ®(v) with initial condition vy = f. We call this superpro-
cess an (L, ®)-superprocess (or (L, ®)-process for short). For a € (0,2] and 5 € (0, 1], if X is
a rotation invariant a-stable Lévy process in R? with generator A, and ®(v) = v'*?, we get
a superprocess corresponding to the PDE v = %Aav — 8. We call it an («, 3)-superprocess
((ev, B)-process for short), which is just a (3A,,v'"?)-superprocess in our previous nota-
tion. General surveys of superprocesses include the excellent monographs and lecture notes
[5, 15, 17, 32, 35, 42].

For any measure p on R? and constant ¢ > 0, write u¢ for the restriction of Lebesgue
measure \? to the e-neighborhood of supp u. For a (2,1)-process ¢ in RY, Tribe [48] showed
that 2796 S ¢y & as. as € — 0 for fixed time ¢ > 0 when d > 3, where — denotes weak
convergence. Perkins [41] improved Tribe’s result by showing that the Lebesgue approxima-
tion actually holds for all time ¢ > 0 simultaneously. Kallenberg [25] proved the Lebesgue
approximation of 2-dimensional (2,1)-processes. In [22], we showed that, for any (2, /)-
process ¢ in R? with 8 < 1 and d > 2/83, e¥/P74¢8 Bcg,46 as. as e — 0 for fixed time
t > 0. In particular, the Lebesgue approximation result implies that the superprocess &

distributes its mass over supp & in a deterministic manner. See the end of [22] for a detailed
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explanation of this deterministic distribution property. However, for any (a, )-process &
with a < 2, supp& = R? or ) a.s. (cf. [18, 40]), and so the corresponding property fails.
From all these Lebesgue approximation results, we raise the natural conjecture: Lebesgue
approximation holds for superprocesses with Brownian spatial motion and any “reasonable”
branching mechanism.

As a first step to prove this general conjecture, in this chapter we study the Lebesgue ap-
proximation of superprocesses with Brownian spatial motion and a regularly varying branch-
ing mechanism. For a precise description of the branching mechanism we consider in this
chapter, refer to the beginning of Section 3. The stable branching mechanism ®(v) = v!*#
with 8 € (0,1] is a special case of the regularly varying branching mechanism we consider
here. Our main result in this chapter is Theorem 5.5, where we prove that the Lebesgue
approximation still holds for these more general superprocesses. Specifically, m(c) & - &
a.s. as € — 0 for fixed time ¢ > 0, where m(e) is a suitable normalizing function. In par-
ticular, if the branching mechanism is the stable one, we may recover all previous Lebesgue
approximation results for fixed time ¢ > 0.

Although the previous conjecture may seems very natural, technically we have limited
tools to support some rigorous arguments needed. One such boundary is imposed by the
availability of the very important cluster representation of superprocesses. Luckily the super-
processes we consider here do have the cluster representation. Another boundary is imposed
by the availability of the lower and upper bounds of the hitting probabilities P,{& B > 0},
which is fundamental for the Lebesgue approximation. The restriction on the branching
mechanism we consider actually follows from Theorem 2.3 in [9], which is exactly the lower
and upper bounds of the hitting probabilities.

Armed with the hitting estimates, then we are able to overcome the main difficulty in
this chapter, that is, to obtain an asymptotic result of the hitting probabilities P,{& B > 0},
which is Theorem 5.11. Note that for a (2, #)-process, such a result is obtained by using the

strong scaling property. Since the regularly varying branching mechanism we consider here
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has much weaker scaling property, we then have to rely on only the cluster representation and
the hitting estimations. Also the form of the asymptotic result of the hitting probabilities is
not clear in our general setting. By adapting an idea in Section 5 of [25], we can get the correct
form of our asymptotic result, which determines the form of the Lebesgue approximation.
This chapter is organized as follows. In Section 2 we review the truncation of super-
processes in a more general setting. In Section 3, we develop some lemmas about hitting
bounds and neighborhood measures of the more general superprocesses. In Section 4, we
derive some asymptotic results of these hitting probabilities. Finally in Section 5 we state
and prove the Lebesgue approximation of superprocesses with a regularly varying branching
mechanism and their truncated processes. This general result contains all previous Lebesgue

approximation of superprocesses as special cases.

5.2 Truncation of superprocesses

In this section we discuss the truncation of superprocesses with a general branching
mechanism, due to their independent interests.

We consider a general branching mechanism function ® defined on Ry as

®(v) = av + bv* + / (e =1+ rv)r(dr),
(0,00)

where b > 0 and 7 is a measure on (0, 00) such that [;*(r A r?)7(dr) < co.
It is well known that the (L, 1)-process has weakly continuous sample paths. By contrast,
when 7 # 0, the corresponding superprocess ¢ has only weakly rcll sample paths with jumps

of the form A&, = rd,, for some t > 0, r > 0, and x € R%. Let

Ne(dt, dr.dz) = > Sra)-
(t,ryx): A&i=rdy
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Clearly the point process N¢ on Ry x Ry x R? records all information about the jumps of &.

By the proof of Theorem 6.1.3 in [5], we know that N¢ has compensator measure
Ne(dt, dr,dz) = (dt)m(dr)&(dz). (5.1)

Due to all the “big” jumps, & has infinite variance. Some methods for (L, 1)-processes, which
rely on the finite variance of the processes, are not directly applicable to superprocesses with

a branching mechanism having 7w # 0.
M) = MEE)+ M) = 6 —of = [ €8s,

&#%M+A&@ﬂ®+%ﬁﬂﬂﬁm

where My (f) is a continuous martingale with quadratic variation process

[Mwmzéawmw, (5.2)

and M{(f) is a purely discontinuous martingale, which can be written as follows

M) — /0 t /(o,oo) /R (o) N, dr, )
_ /Ot/(m /R r f(2) Ne(dt, dr, da;)+/ot/(K7oo) /R r f(2)Ne(dt, dr, d)
_ /Ot/(w /R r f(2)Ne(dt, dr, dz)

_|_/0t /(Koo) /Rd rf(z)Ne(dt, dr,dx) — (K, 00) /Ot §sfds

Eplexp(=¢ [)IE] = exp(—€ ve-s) (5.3)
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O = Lv — &% (v), (5.4)

where ® = (a — (K, 00))v + bv® + [, (7™ — 1+ rv)m(dr)

§f=$f+/éﬁ&ﬁh+Mﬂﬂ+Mﬂﬂ—ﬂKa)/ﬁ?w
0 0

where M{(f) is a continuous martingale with quadratic variation process

[Mwmzéﬁwmw (5.5)

and M{(f) is a purely discontinuous martingale, which can be written as follows

MIf) = //000 /Rd ) Nex (dt, dr, d)
_ //OK /Rd ) Nex (dt, dr, dz)

Nex(dt, dr, dz) = > S(t.rz)-
(t,rx): AEK=ré,

Nex (dt, dr,dzx) = (dt)1 k) (r)m(dr)EX (dz). (5.6)

In [38], Mytnik and Villa introduced a truncation method for (a, )-processes with
B < 1, which can be used to study («, 5)-processes with § < 1, especially to extend results
of (a, 1)-processes to (a, B)-processes with § < 1. Specifically, for the (a, §)-process £ with
f < 1, we define the stopping time 7x = inf{t > 0 : [|A&|| > K} for any constant K > 0.
Clearly 7x is the time when £ has the first jump greater than K. For any finite initial
measure f, they proved that one can define ¢ and a weakly rcll, measure-valued Markov
process €& on a common probability space such that & = &f for t < 7. Intuitively, &5

euqgals ¢ minus all masses produced by jumps greater than K along with the future evolution
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of those masses. In this paper, we call £¥ the truncated K-process of £&. Since all “big” jumps
are omitted, £& has finite variance. They also proved that £ and & agree asymptotically
as K — oco. We give a different proof of this result, since similar ideas will also be used at
several crucial stages later. We write P,{{ € -} for the distribution of { with initial measure
L.

Using the same proof of Lemma 1 in [38], we can construct & and £ on a common
probability space such that & (w) = X (w) for t < 7x(w). This confirms our intuition that
£X euqals ¢ minus all masses produced by jumps greater than K along with the future

evolution of those masses.

Lemma 5.1 We can define & and €& on a common probability space such that:

(i) € is an («a, B)-process with B < 1 and a finite initial measure p, and £ is its truncated

K -process,
(i) &(w) =& (w) fort <7 (w).

Now we can prove that (& and & agree asymptotically as K — oo. We choose to give
a complete proof of this result, since similar ideas will also be used at several crucial stages

later. We write P,{¢ € -} for the distribution of £ with initial measure p.
Lemma 5.2 Fiz any finite p and t > 0. Then P,{tx >t} = 1 as K — oc.

Proof: If T < t, then £ has at least one jump greater than K before time t. Noting
that Ne([0,¢], (K, 00),R?) is the number of jumps greater than K before time ¢, we get by
Theorem 25.22 of [24] and (4.1),

Pirx <t} < E,N¢([0,t], (K, 00),R)

= E,N:([0,], (K, 0),R?)

t
7K, 0B, / &.llds = tulx [, 00) = 0
0
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as K — oo, where the last equation holds by E,[|&]| = ||x]]. O

Using the same proof of Lemma 2.2 in [22], we can prove that & (w) < &(w) for any ¢
and w. So indeed, £¥ is a “truncation” of ¢.
Lemma 5.3 We can define & and £¥ on a common probability space such that:

(i) € is an (a, B)-process with B < 1 and a finite initial measure p, and £ is its truncated

K -process,
(i) &(w) > &8 (w) for any t and w,

(iii) &(w) = X (w) fort < Tx(w).
5.3 Hitting bounds

First we specify the regularly varying branching mechanism we consider for the Lebesgue

approximation. We consider the increasing function ® defined on R, by

B(v) = bv? + / 200 1),

s
(0,00) 1 + 2rv

where b > 0 and 7’ is a measure on (0, c0) such that f(o OO)(1 Ar)r'(dr) < oo. To avoid trivial
cases, we assume either b > 0 or 7/((0,00)) = co. The function ® can be expressed in the

usual form for branching mechanism functions,

d(v) = bv? +/ (e =1+ rv)r(dr),

(0,00)

(r Ar?)m(dr) < oo. Notice that

where 7(dr) = [f(o o) e/ [ (4u®)r' (du)|dr satisfies f(o o)

if we take b = 0 and 7/(dr) = ¢/r~1*Adr then we get the stable case ®(v) = cv'+7.

We consider the following two assumptions:
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(A1) The function ® is regularly varying at oo with index 1 + 8 where g € (0, 1]; that
is to say,

= ' for every r > 0

(A2) limsup,_,o, 7~ A d(r) < oco.

The stable case ®(v) = v+ satisfies all these assumptions.

The Lebesgue approximation depends crucially on estimates of the hitting probability
P{&Bs > 0}. In this section, we first estimate P,{§B5 > 0} and P,{¢fB§ > 0}. Then
we use these estimates to study multiple hitting and neighborhood measures of the clusters
nk associated with the truncated K-process . We begin with a well-known relationship

between the hitting probabilities of superprocesses and their clusters, which can be proved

as in Lemma 4.1 of [25].

Lemma 5.4 Let the (a, B)-process & in R with associated clusters n; be locally finite under

P

), let €K be its truncated K -process with associated clusters nf*, and fiz any B € B%. Then

P,u,{ntB > 0} = —Qa¢ lOg(l — Pu{gtB > O}),
PA&B >0} = 1—exp (—a; ' P,{mB > 0}),
PinB>0} = —a log(l—P{§ B> 0}),

PA& B>0} = 1—exp(—(a)) ' Pu{nSB > 0}).

In particular, P,{&B > 0} ~ a; ' P,{n; B > 0} and P,{¢fB > 0} ~ ()P, {nfB > 0} as

either side tends to 0.

Upper and lower bounds of P,{& B > 0} have been obtained by Delmas [9], using the

Brownian snake. However, in this paper we need the following improved upper bound.

Lemma 5.5 Let n; be the clusters of a (2,3)-process € in R* with 3 < 1 and d > 2/3, let
nk be the clusters of ¥, the truncated K -process of &, and consider a o-finite measure j on

Re. Then for 0 < e < Vi,
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() Lo(e)apr < %~y P By > 0} < h()ppar, where = Bt/(1+ ),
(i) 2% (al) " Pu{nf B > 0} < L(e)upar.

Proof: (i) Follow the proof of Lemma 6.3(i) in [25], then use Lemma 5.5(ii).

(i) This is obvious from (i), Lemma 4.2, and Lemma 5.4. O

As in [25] we need to estimate the probability that a ball in R? is hit by more than one

subcluster of the truncated K-process . This is where the truncation of ¢ is needed.

Lemma 5.6 Fir any K > 0. Let £X be the truncated K -process of a (2, 3)-process & in R?
with B <1 and d > 2/B. For anyt > h >0 and & > 0, let k¢ be the number of h-clusters

of £ hitting BS at time t. Then for > < h <t,
Eukf (ke — 1) < B(e)e® 5 (B2 pup, + (ups)?) -

Proof: Follow Lemma 4.4 in [25], then use Lemma 3 of [38] and Lemma 5.5(ii). O

Now we consider the neighborhood measures of the clusters n¥ associated with the trun-
cated K-process £¥. For any measure 1 on R? and constant ¢ > 0, we define the associated
neighborhood measure ;i€ as the restriction of Lebesgue measure A\ to the e-neighborhood of
supp /1, so that u° has Lebesgue density 1{uBS > 0}. Let p;°(z) = P.{ni*B§ > 0}, where

the nf are clusters of €. Write pf*(z) = p&e(x) and (n")¢ = 5 for convenience.

Lemma 5.7 Let £ be the truncated K-process of a (2, 3)-process & in R with 8 < 1 and
d>2/83. Let the ni" be conditionally independent h-clusters of £&, rooted at the points of a

Poisson process ¢ with EC = . Fiz any measurable function f > 0 on R, Then,
(i) E.> mi's = (p* py=) - AT

(i) B, Var [Sanf £1C) < b(e)afe® 22122 | f|2lull for & < h.
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Proof: (i) Follow the proof of Lemma 6.2(i) in [25].
(ii)Follow the proof of Lemma 4.4(ii) in [22]. O

We also need to estimate the overlap between subclusters.

Lemma 5.8 Let €5 be the truncated K-process of a (2, 3)-process € in R with B < 1 and
d > 2/B. For any fized t > 0, let ni" denote the subclusters in €5 of age h > 0. Fiz any

e Mqy. Then as €2 < h — 0,

E, < l%(5)52(d’2/5)h1’d/2.

Kie Ke
E 1.77}1 — St

Proof: Follow the proof of Lemma 6.3(i) in [25], then use Lemma 5.5(ii). O

5.4 Hitting asymptotics

Write p(z) = Pu{muB5 > 0} and p;“(x) = P.{nK B > 0}, where 7, and < denote
an h-cluster associated with the superprocess ¢ in R? and its truncated K-process ¥ re-
spectively. Recall that A5 = Pya{n,B5 > 0}. Write p5¢ = th’E for convenience. For the
functions p§, and pX¢, we have the following basic asymptotic property. Since we do not have
a lower bound for P,{n Bs > 0} in Lemma, this asymptotic property is crucial to us by

showing that essentially P.{n,B5 > 0} and P,{nX B > 0} share the same lower bound.

Lemma 5.9 As0 < 2 < h — 0 with /P~ 144 0 for some b > 0 and b € (0,1/2),

ap ' Npy, ~ (az) TPy

Proof: We just need to show that

a, Np, — (ag) ' Npye

— 0.
a,;lx\dp‘,i
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By Lemma 5.5(i), we get

ay )25 > 1o ()N pe=P = Iy(e)ed=/",

— € b\ e _
0 Pygypss (B5 > 0} < L(EL{(BY) )Nyt

= Ii(e)e® P / pr(z)dz
| >h

< L(e)e¥Phe,

for some ¢ > 0. Since £2/8=4=V'pl+bd _ () we get

a,;lPl{(ng)c}/\d{nth >0}

— 0.
a,:lx\dp‘,i

Similarly, we get . .
(ah )_lpl{(ng)c})\d{nh BS > 0}

—1yd,e
a, A\pj,

— 0.

By Lemma 5.4, finally it suffices to show that

Pl{ng}Ad{ghBta) > 0} - Pl{ng})\d{giIz(Bg > O}

—0
ay AP,

By Theorem 25.22 of [24] and (4.1),

82/6711 (Pl{ng})\d{ghBS > O} - Pl{B(f)zb})\d{é-fll(BS > O}>

< &E Ne ([0, 7], (K, 00), R?)

1{Bh}Ad

— €2/5*dE1{ng}>\dN£ ([O, h], (K, oo)7Rd)

h
= 52/’8_dE/ |&5||ds = e¥/P=dpttbd 0.
0
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Define normalizing functions m(g) by
m(e) = az \pE. (5.11)
with a fixed c satisfying
(d—2/B)+ (—=d/2+1/2)c = 0. (5.12)

Clearly ¢ € (0,2).

Lemma 5.10 Fiz any bounded, uniformly continuous function f >0 on R%. Ase — 0,

[m(e)(az) ™! (e = f) = f[| = 0.
The result holds uniformly over any class of uniformly bounded and equicontinuous functions

f >0 onR%

Proof: By Lemma 5.9, we get
m(e)(as) " Aapi® — 1.

Defining pie = p&e /\4ple we then only need to show that ||p&e * f — f|| — 0. Now follow

the proof of Lemma 4.4(i) in [22] and use Lemma 5.5(ii). O

Theorem 5.11 Let £ be a superprocess in R, Then for any t > 0 and bounded i, we have
ase — 0
() P& BE > 0} — e (uxpy) || = 0,
|m(e)P{&B: >0} — pxp || = 0.

Proof:

Pp{gtKB§ >0} ~ Eu(CK *p{fg) = (ahK)_lEu<§§ *thE)

s
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= e " (ay )T (s xpy ) A e me) (1 ps)

~ e "m(e) (1 pr).

BA&B; > 0} < Eu(Cs * p7)

lm(e)E.(Cs * pf) — pxpe || =0,

P{&B; > 0} > P{&" B; > 0}

le ™! (p* py) — s pil| = 0

as K — oo since by — 0 O

5.5 Lebesgue approximations

Same as in Section 5 of [22], here we begin with the Lebesgue approximation for ££, the
truncated K-process of £&. Then we get the Lebesgue approximation for ¢ immediately by
Lemma 5.2. Write m(e) = 1/m(e) for convenience, where m(e) is defined in (5.11). Recall
that ££¢ = (€)%, the e-neighborhood measure of ££. For random measures &, and £ on R?,

&, — & in L' means that &,f — £f in L' for all f in C{.

Theorem 5.12 Let €5 be the truncated K -process of a superprocess & in R? satisfying as-
suptions (A1) and (A2) with 3 <1 and d > 2/3. Fiz any pn € Mg and t > 0. Then under
P,, we have as € — 0:

m(e) 8 5 ¢K as. and in L'
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Proof: Fix any f € C%. We first prove that m(e) £ f — €K f as. as e — 0. In order
to do that, we only need to show that for any sequence €, — 0 as n — oo, we can pick a
subsequence (still denoted by ¢,,) such that m(e,) & f — €K f a.s. To do this we fix an
r € (0,1). Then for any given sequence &, — 0 as n — oo, we pick the subsequence &,
satisfying ¢, < r™.

We follow the proof of Lemma 5.1 in [22]. Write n/** for the subclusters of & of age h.
Since the ancestors of £ at time s = ¢ — h form a Cox process directed by £ /a¥| Lemma

5.7(1) yields

E, [Zﬁff“f

€] = (@) e i ),

and so by Lemma 5.7(ii)

2
E, ‘

SOaEr — @) )| = BuVar[ 3 aer |

L(e)ay e R | FI? Bl far

IN

IN

L) R | £ Nl
where the last inequality follows from E,||¢X|| < ||u||. Combining with Lemma 5.8 gives

Bl €5°F = (@) €5 e+ 1) |
§F = S |+ B Yo mi s — (el e (o < 1) |
< B(e) IR f]| 4 12 () 2O nt | |

S8 (B(e)e 22 4 12 (@) 2RI | £

< E,

Taking h,, = €%, where c is defined in (5.12) and writing s,, =t — h,, =t — £, we obtain

E, Y m(ea) |65 —ap, €5 (op * 1) |

< Z(l2(rn)l%(rn)r[(df2/5)+(fd/2+1)c]n + 52(rn)l}ﬂ(rn)T[fl/Z(d72/ﬁ)+(d/4)c]n) 1] < oo,
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since (d —2/8) + (—=d/2 4+ 1)c > 0 and —1/2(d — 2/8) + (d/4)c > 0 by (5.12). Note that
in the previous inequality we also used the fact that the subsequence ¢, satisfying &, < r".

The inequality above about the expectations clearly implies
S (en) | 55 — a8 (prm + f) | = 0 as. P, (5.13)
Now we write

| (e) & f — &7 |
< () [ & = (a) T &S (on T x ) |+ 15 — &8 S

+ &SI (e) ai™ (on=* ) = f |-
For the last term, we first fix b = 1/2 — 1/d, then apply Lemma 4.16. Noting that by (4.11)
(2/8—d)+ (1+bd)e=(2/8—d)+ (d/2)c > 0,

we get by Lemma 4.16
[ (e)(az )™t (o f) = f || =0

along the sequence (r"). Using (5.13) and the a.s. weak continuity of £¥ at the fixed time ¢, we
see that the right-hand side tends a.s. to 0 as n — oo, which implies e2/#~¢¢Ke f — cp K f
a.s. as ¢ — 0 along the sequence (r") for any fixed r € (0, 1). Since this holds simultaneously,
outside a fixed null set, for all rational r» € (0,1), the a.s. convergence extends by Lemma
2.3 in [25] to the entire interval (0, 1).

Applying this result to a countable, convergence-determining class of functions f (cf.
Lemma 3.2.1 in [5]), we obtain the required a.s. vague convergence. Since p is finite, the
(2, B)-process & has a.s. compact support (cf. Theorem 9.3.2.2 of [5] and the proof of Theo-

rem 1.2 in [6]). By Lemma 4.2, £ also has a.s. compact support, and so the a.s. convergence
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remains valid in the weak sense. O

Now we may prove our main result, the Lebesgue approximation of superprocesses with
a regularly varying branching mechanism. Again, we write m(e) = 1/m(e) for convenience,
where m(e) is defined in (5.11). Also recall that ££¢ = (£/)¢, the e-neighborhood measure
of ¢X. For random measures &, and ¢ on R?, &, = ¢ in L' means that &, f — &f in L for all

fin CL.

Theorem 5.13 Let the superprocess & in R? satisfy assuptions (A1) and (A2) with 3 < 1

and d > 2/B. Fiz any pu € M, and t > 0. Then under P,, we have as € — 0:
m(e) &5 € a.s. and in L'
Proof: by Theorem 5.12 and Lemma 5.2 we get as € — 0
m(e) & =& as..
To prove the convergence in L', we note that for any f € Cf

W) E&f = me) / PAEB: > 0} f(x) de
S / (4% pi)() f(2) dx = B, (5.14)

by Theorem 5.11. Combining this with the a.s. convergence under P, and using Proposition

412 in [24], we obtain E,|m(e) &f — & f| —» 0. O

If £ is a (2,1)-process in R? with d > 3, then a; = t. By (4) in [25], we get

£

m(e) = e "N, ~ e Tege? e = cqet
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So we recover the Lebesgue approximation of (2, 1)-processes, that is,
Gae?™ e B¢ as. and in L'

Similarly, if ¢ is a (2, 3)-process in R? with 8 < 1 and d > 2/3, then a, = (5t)"/5. By (9) in
22], we get

m(e) = (Be")VPNIpE, ~ cp4etP.

Again, we recover the Lebesgue approximation of (2, 3)-processes, that is,

Cgac?Ple B¢ as. and in L.
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