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Abstract

Superprocesses are certain measure-valued Markov processes, whose distributions can

be characterized by two components: the branching mechanism and the spatial motion. It

is well known that some basic superprocesses are scaling limits of various random spatially

distributed systems near criticality.

We consider the Lebesgue approximation of superprocesses. The Lebesgue approxima-

tion means that the processes at a fixed time can be approximated by suitably normalized

restrictions of Lebesgue measure to the small neighborhoods of their support. From this,

we see that the processes distribute their mass over their support in a deterministic and

“uniform” manner. It is known that the Lebesgue approximation holds for the most basic

Dawson–Watanabe superprocesses but fails for certain superprocesses with discontinuous

spatial motion.

In this dissertation we first prove that the Lebesgue approximation holds for superpro-

cesses with Brownian spatial motion and a stable branching mechanism. Then we generalize

the Lebesgue approximation even further to superprocesses with Brownian spatial motion

and a regularly varying branching mechanism. We believe that the Lebesgue approxima-

tion holds for superprocesses with Brownian spatial motion and any “reasonable” branching

mechanism. Our present results may be regarded as some progress towards a complete proof

of this very general conjecture.
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Chapter 1

Introduction

1.1 A short introduction to superprocesses

In this section we give a short introduction to superprocesses. Three characterizations

of superprocesses will be given. They are the Laplace functional approach, the weak conver-

gence approach, and the martingale problem approach. Superprocesses were introduced by

Watanabe [49] in 1968 and Dawson [3] in 1975, and have been studied extensively ever since.

General surveys of superprocesses include the following excellent monographs and lecture

notes: Dawson [4, 5], Dynkin [15, 16], Etheridge [17], Le Gall [32], Li [35], and Perkins [42].

Two extremely informative yet concise and very accessible introductions of superprocesses

are Perkins [43] and Slade [46].

First let us explain the two defining components of a superprocess: the branching mech-

anism and the spatial motion. We begin with branching processes, which contain only one

component of superprocesses: the branching mechanism. Galton-Watson processes are dis-

crete branching processes. They describe the evolution in discrete time of a population of

individuals who reproduce according to an offspring distribution, which is a probability mea-

sure on the nonnegative integers with expectation 1 (we only consider the critical case in this

introduction). The distribution of a Galton-Watson process is determined by this offspring

distribution. Continuous-state branching processes are continuous analogues of the Galton-

Watson branching processes. Roughly speaking, they describe the evolution in continuous

time of a “population” with values in the positive real line R+. The “population” consists

of uncountably many “individuals”, if its value is not 0. The distribution of a continuous-

state branching process is determined by a function Φ of the following type (again, we only
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consider the critical case in this introduction, so no drift term here)

Φ(v) = av2 +

∫ ∞
0

(e−rv − 1 + rv)π(dr) (1.1)

where a ≥ 0 and π is a σ-finite measure on (0,∞) such that
∫∞

0
(r ∧ r2)π(dr) < ∞. This

function Φ is called the branching mechanism. Continuous-state branching processes may

also be obtained as weak limits of rescaled Galton-Watson processes, see (1.7). This is closely

related to the weak convergence approach to superprocesses, see (1.8).

Spatial branching processes are obtained by combining the branching phenomenon with

a spatial motion, which is usually given by a Markov process X. In the discrete setting, the

branching phenomenon is a Galton-Watson process, and the individuals move independently

in space according to the law of X. More precisely, when an individual dies at position x,

her children begin to move from the initial point x, and they move in space independently

according to the law of X. Writing Y 1
t , Y

2
t , . . . for the positions of all individuals alive at

time t, we may define

ξt =
∑
i

δY it (1.2)

where δy denotes the Dirac measure at y. The process ξ = (ξt, t ≥ 0) is the spatial branching

process corresponding to the branching phenomenon of a Galton-Watson process and the

spatial motion X. Note that this is a measure-valued process, whose value at time t records

the positions of all individuals alive at time t.

In the continuous setting, the branching phenomenon is a continuous-state branching

process with branching mechanism Φ. The construction of the spatial motions is harder,

and so here we proceed only heuristically. For mathematical support of these heuristics,

refer to the weak convergence approach later in this section (see (1.7) and (1.8)), cluster

representation in Section 2.2, and historical superprocesses and random snakes in Section

2.3. Here we let the “individuals” move independently in space according to the law of a

Markov process X. Thus when an “individual” dies at the position x, her “children” begin
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to move from the initial point x, and they move in space independently according to the law

of X. Again we get a measure-valued process ξ = (ξt, t ≥ 0), whose value at time t records

the positions of all “individuals” alive at time t. This measure-valued process ξ = (ξt) is

called the (X,Φ)–superprocess (or (X,Φ)-process, for short).

Superprocesses are measure-valued Markov processes. We first use the Laplace func-

tional approach to characterize their distributions. For a (X,Φ)-process on Rd, the spatial

motion X is a Markov process in Rd. Use µf to denote the integral of the function f with

respect to the measure µ. Write Pµ(ξ ∈ ·) for the distribution of the process ξ with ini-

tial measure µ, and Eµ for the expectation corresponding to Pµ. The Laplace functional

Eµ exp(−ξtf) satisfies

Eµ[exp(−ξtf)|ξs] = exp(−ξsvt−s) (1.3)

where
(
vt(x), t ≥ 0, x ∈ Rd

)
is the unique nonnegative solution of the integral equation

vt(x) + Πx

(∫ t

0

Φ (vt−s(Xs)) ds

)
= Πx (f(Xt)) (1.4)

Here we write Πx(X ∈ ·) for the distribution of the process X starting from x. If X is a

Feller process in Rd with generator L, the integral equation (1.4) is the integral form of the

following PDE, the so-called evolution equation

v̇ = Lv − Φ(v) (1.5)

with initial condition v0 = f . More explicitly, PDE (1.5) means

∂vt
∂t

(x) = (Lvt)(x)− Φ(vt(x)).

For the equivalence of the integral equation (1.4) and the differential equation (1.5), see

Section 7.1 in [35]. If X is a rotation invariant (or spherically symmetric, or isotropic) α-

stable Lévy process in Rd for some α ∈ (0, 2] (see Definition 14.12 and Theorem 14.14 in
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[45]) and Φ(v) = v1+β for some β ∈ (0, 1], we get a superprocess corresponding to the PDE

v̇ =
1

2
γ∆αv − v1+β

where 1
2
γ∆α is the generator of the rotation invariant α-stable process X (see Theorem

19.10 in [24]), and ∆α = −(−∆)α/2 is the fractional Laplacian (∆2 = ∆ is the Laplacian, see

Section 2.6 in [39]). Taking γ = 1 in the above PDE, we get a superprocess corresponding

to the PDE

v̇ =
1

2
∆αv − v1+β. (1.6)

We call it the (α, β)-superprocess ((α, β)-process for short). For the most basic and most

important superprocess, we take α = 2 and β = 1 to get a (2, 1)-process, which is often

called the Dawson–Watanabe superprocess (DW-process for short). Clearly a DW-process

has Brownian spatial motion and branching mechanism Φ(v) = v2. We may abuse the

notation further by referring to (α,Φ)-processes and (X, β)-processes. Specifically, an (α,Φ)-

process has rotation invariant α-stable spatial motion and branching mechanism Φ, and an

(X, β)-process has spatial motion X and branching mechanism Φ(v) = v1+β.

Next we move to the weak convergence approach, which is the most intuitive way to

define superprocesses. Just as continuous-state branching processes may be obtained as

weak limits of rescaled Galton-Watson processes (see (1.7)), superprocesses can be obtained

as weak limits of rescaled discrete spatial branching processes (see (1.8)). Recall that we can

get intuition about Brownian motion from rescaled random walks, similarly here we may get

some intuition about superprocesses from rescaled discrete spatial branching processes.

We consider a sequence Nk, k ≥ 1 of Galton-Watson processes such that as k →∞,

(
1

ak
Nk

[kt], t ≥ 0

)
fd−→ (Zt, t ≥ 0) (1.7)
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where constants ak ↑ ∞, Z is a continuous-state branching process with branching mecha-

nism Φ, and the symbol
fd−→ means weak convergence of finite-dimensional marginals. Then,

according to (1.2), we consider a sequence ξk, k ≥ 1 of spatial branching processes corre-

sponding to the Galton-Watson processes Nk, k ≥ 1 and the spatial motion X. Clearly ξkt

is a random element with values in the space of finite measures on Rd, equipped with the

topology of weak convergence. Now, according to (1.7), we consider a sequence of rescaled

spatial branching processes 1
ak
ξk[k·], k ≥ 1. Suppose that the initial measures converge as

k →∞ (
w→ denotes weak convergence) :

1

ak
ξk0

w→µ,

where µ is a finite measure on Rd. Finally, under adequate regularity assumptions on the

spatial motion X, there exists a measure-valued Markov process ξ such that

(
1

ak
ξk[kt], t ≥ 0)

fd−→ (ξt, t ≥ 0), (1.8)

where ξ is an (X,Φ)-process with initial measure µ.

Finally, superprocesses can also be characterized as solutions to martingale problems.

Chapter 7 in [35] is an excellent reference on martingale problems of very general superpro-

cesses. We first discuss a martingale problem of (X, 1)-processes, where X is a Feller process

in Rd with generator L. Write M̂d for the space of finite measures on Rd. Then write

(D([0,∞),M̂d), ξt,Ft) for the space of rcll M̂d-valued paths, the coordinate process, and

the canonical completed right continuous filtration. For any f ∈ D(L) (domain of generator

L), define the process Mt(f) by

Mt(f) = ξtf − ξ0f −
∫ t

0

ξs(Lf)ds. (1.9)

5



For any µ ∈ M̂d, use Lµ to denote the distribution of an (X, 1)-process with initial measure

µ. This is the unique distribution on F = σ(
⋃
t≥0Ft) such that the coordinate process

satisfies the following martingale problem: ξ0 = µ, and for any f ∈ D(L), the process Mt(f)

defined in (1.9) is a continuous martingale with quadratic variation process

[M(f)]t =

∫ t

0

ξs(f
2)ds.

For a (X,Φ)-process, the corresponding martingale is not continuous in general. In this

case, we may split the martingale into two parts: the continuous martingale M c
t (f) and the

purely discontinuous martingale Md
t (f) (see Theorem 26.14 in [24]). Then we write

Mt(f) = M c
t (f) +Md

t (f) = ξtf − ξ0f −
∫ t

0

ξs(Lf)ds,

where M c
t (f) is a continuous martingale with quadratic variation process

[M c(f)]t =

∫ t

0

ξs(af
2)ds, (1.10)

andMd
t (f) is a purely discontinuous martingale, which can be defined through a compensated

random measure relating to the jumps of ξ. For details, see Section 7.2 in [35]. Note that

the jumps of ξ are related to the measure π in the branching mechanisam Φ of (1.1), not

the jumps of the spatial motion X (see Section 2.6 in [17]). We may also note that the

continuous martingale M c
t (f) is related to the term av2 in the branching mechanisam Φ of

(1.1) through its quadratic variation process [M c(f)]t in (1.10).
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1.2 Summary of contents

The purpose of this dissertation is to discuss the Lebesgue approximation of superpro-

cesses in details. In Section 1 we discussed the definitions of superprocesses. Here we give a

summary of the contents of the following chapters.

In Chapter 2, we discuss some basic ingredients of superprocesses in the first three

sections, which are crucial for the Lebesgue approximation of superprocesses. Then we

discuss the background of Lebesgue approximation and some related known results in the

last two sections. In Section 1 we discuss the first moment measure Eµξt and the second

moment measure Eµξ
2
t . In particular, the second moment measure does not exist in general,

which causes a real difficulty for generalizing certain results. In Section 2 we discuss the

very important cluster representation of superprocesses, which contains partial information

of the whole genealogical evolution underlying superprocesses. This cluster representation

is transparent in the discrete setting, however in the continuous setting it is not easy at all

to obtain it rigorously. In Section 3 we discuss two approaches to encode the genealogical

information and to obtain the cluster representation. They are Historical superprocesses

approach and random snakes approach. In Section 4 we discuss some classical results about

the Hausdorff dimensions and Hausdorff measures of superprocesses. The point is that

the Hausdorff measure approach is a more traditional, more successful way to do what

the Lebesgue approximation approach tries to do: Construct nontrivial measures on some

random null sets. Finally in Section 5 we discuss basic ideas of Lebesgue approximation and

review almost all known Lebesgue approximation results. At the end of this section we also

discuss some related open problems.

In Chapter 3, we discuss the Lebesgue approximation of Dawson-Watanabe superpro-

cesses of dimension d ≥ 3, which is the most basic and most transparent case. This chapter is

based on Kallenberg’s proof of Lebesgue approximation of DW-processes of dimension d ≥ 3

in [25], with some technical simplifications. Note that Tribe first proved this result in [48].

Extra efforts haae been made to explain Kallenberg’s approach clearly and to make it more
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accessible. In Section 1 we explain some crucial components in the proof and review some

terminology and notation. In Section 2 we first explain the crucial ideas about cluster rep-

resentations, then state several lemmas which will not be used directly in the main proof of

Lebesgue approximation, including the important upper bound of the hitting multiplicities.

In Section 3 we state and prove the Lebesgue approximation for DW-processes of dimensions

d ≥ 3. In order to do so, we list several lemmas that are needed in the main proof. Finally, in

Section 4, we prove all the lemmas in this chapter. We suggest that the reader read the first

three sections in the linear order, then, when need arises, read the proofs of some lemmas in

Section 4.

In Chapter 4, we discuss the Lebesgue approximation of (2, β)-superprocesses of di-

mension d > 2/β. This chapter is based on my 2013 paper [22]. In Section 1 we explain

the additional difficulties for the Lebesgue approximation of (2, β)-processes and review our

general approach, which overcomes these difficulties. In Section 2 we develop further a trun-

cation of (α, β)-processes from [38]. We also characterize the local finiteness of any (α, β)-

superprocess, which can be used to extend certain results to some superprocesses with σ-finite

initial measures. In Section 3, we develop some lemmas about hitting bounds and neigh-

borhood measures of (2, β)-processes, in particular, we improve the upper bounds of hitting

probabilities. In Section 4, we derive some asymptotic results of these hitting probabilities. In

particular, for the (2, β)-superprocess ξ we show that ε2/β−dPµ{ξtBε
x > 0} → cβ,d (µ ∗ pt)(x),

which extends the corresponding result for DW-processes. Finally in Section 5 we state and

prove the Lebesgue approximation of (2, β)-processes and their truncated processes. When-

ever one feels the lack of details of some results in this chapter, refer back to appropriated

places in Chapter 3.

In Chapter 5, we discuss the Lebesgue approximation of superprocesses with a regu-

larly varying branching mechanism. The branching mechanisms we consider here include

the stable branching mechanisms considered in Chapter 4 as special cases. In Section 5.1

we explain the new difficulties for the Lebesgue approximation of superprocesses with the

8



more general branching mechanism and review our general approach, which overcomes these

difficulties. In Section 2 we review the truncation of superprocesses in a more general setting.

In Section 3, we develop some lemmas about hitting bounds and neighborhood measures of

the more general superprocesses. In Section 4, we derive some asymptotic results of these

hitting probabilities. Finally in Section 5 we state and prove the Lebesgue approximation of

superprocesses with a regularly varying branching mechanism and their truncated processes.

This general result contains all previous Lebesgue approximation of superprocesses as special

cases.
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Chapter 2

Some Basics of Superprocesses

2.1 Moment measures

Moment measures play an important role in the study of superprocesses. For the Markov

process X, write Ttf(x) = Πx(f(Xt)) for the semigroup of X, where Πx(X ∈ ·) denotes the

distribution of the process X starting from x. Then the first moment measure of the (X,Φ)-

process ξ (see (1.3) and (1.4)) is

Eµ(ξtf) = µ(Ttf). (2.1)

Note that the branching mechanism Φ of (1.1) plays no role here. Write pαt (x) for the

transition density of the rotation invariant α-stable Lévy process with generator 1
2
∆α (see

(1.6)). Then the first moment measure of the (α,Φ)-process ξ takes the equivalent measure

form

Eµξt = (µ ∗ pαt ) · λd,

where µ ∗ pαt (x) =
∫
pαt (x− y)µ(dy) and f · λd denotes the measure defined by (f · λd)(B) =∫

B
fdλd.

The second moment measure depends crucially on the branching mechanism. In fact,

second moments do not exist in general. However, they do exist when the measure π = 0 in

the branching mechanism Φ of (1.1), that is, for the (X, γv2)-process ξ. The second moment

measure of the (X, γv2)-process ξ is

Eµ(ξtf)2 = (µ(Ttf))2 + 2γ

∫ t

0

µ
(
Ts(Tt−sf)2

)
ds. (2.2)

10



Refer to Section 2.4 in [32] for the proofs of (2.1) and (2.2). For the (X, β)-process ξ with

β < 1, only moments of order less than 1 + β exist. A useful inequality along this line is

Lemma 2.1 in [37]: For 0 < θ < β < 1,

Eµ(ξtf)1+θ ≤ 1 + c(θ)

[
(µ(Ttf))1+β +

∫ t

0

µ
(
Ts(Tt−sf)1+β

)
ds

]
,

where c(θ) → ∞ as θ → β. When we need to use the second moments, we may truncate ξ

at any level K > 0 to get the truncated process ξK , which has finite second moments. For

details about this truncation method, see pages 484 - 487 and Lemma 3 in [38].

Using series expansions of Laplace functionals, Dynkin [13] gives moment measure for-

mulas for very general superprocesses. See Section 14.7 in [16] for a concise review of these

formulas. Finally we mention that, for DW-processes, Theorem 4.2 of Kallenberg [27] con-

tains a basic cluster decomposition of moment measures. Theorem 4.4 of that paper gives a

fundamental connection between moment measures and certain uniform Brownian trees, first

noted by Etheridge in Section 2.1 of [17]. It would be interesting to study this connection

for more general superprocesses. For details about the cluster decomposition of moment

measures, See Theorem 5.1 in Kallenberg [26].

2.2 Cluster representation

In this section we discuss the very important cluster representation of superprocesses.

Note that although a superprocess records the positions of all “individuals” alive at time

t, they do not keep track of all the genealogy of these “individuals”. More precisely, let us

pick an “individual” alive at time t, then try to identify her “ancestor” at an earlier time

s. Although we know from ξs the positions of all “individuals” alive at time s, we don’t

know which specific “individual” at time s is the “ancestor” of the “individual” we picked

at time t. However, in the study of some deep properties of superprocesses, the genealogical

structure underlying the evolution can be extremely useful, even when the final results have
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nothing directly to do with the genealogy. The cluster representation of superprocesses,

while containing only partial information of the genealogy, is enough for many purposes.

In order to discuss the cluster representation, let us first recall the definition of Poisson

cluster processes. To define a cluster process, we start with a point process ζ =
∑

i δτi on

some space T . For a suitable classMS of measures on S, we consider a probability kernel ν

from T to MS. Choosing the random measures ηi to be conditionally independent of the τi

with distributions ντi , we may introduce a random measure ξ =
∑

i ηi on S. This random

measure ξ is called a ν-cluster process generated by ζ. If ζ is Poisson or Cox, we call ξ a

Poisson or Cox cluster process.

Due to the underlying independence structure, superprocesses have the following branch-

ing property: If ξ and ξ′ are two independent (X,Φ)-processes with initial measures µ and µ′

respectively, then ξ+ ξ′ is an (X,Φ)-process with initial measure µ+µ′. This can be verified

by using any of the three characterizations in Section 1.1. From this branching property, we

see that, for any t, the superprocess ξt is an infinitely divisible random measure. A random

measure is infinitely divisible iff it is the sum of a Poisson cluster process and a deterministic

measure (see Theorem 1.28 in [17]). Since P{ξt = 0} > 0, the superprocess ξt is just a

Poisson cluster process.

The cluster representation of (X,Φ)-processes depends crucially on the branching mech-

anism Φ of (1.1). For convenience, we first discuss the cluster representation of (X, 1)-

processes (see Section 3.2 and 6.1 in [17]). For a (X, 1)-process ξ, at time 0, there are

actually uncountably many “individuals”. All “individuals” produce “offspring” randomly.

However almost all “individuals” have no “offspring” alive at time t > 0, except finitely many

“lucky” ones. In other words, the superprocess at time t is actually “offspring” of finitely

many “ancestors”. The point process records the locations of these finite many “ancestors”

is a Poisson process ζ0 with intensity measure t−1µ. This is the generating process in the

Poisson cluster representation of ξt. Each one of these finitely many “ancestors” generates a

random cluster at time t. Clearly this cluster is just her “offspring” at time t. These clusters
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are “the same”, means that they have the same distribution if we move their “ancestors” to

a common point. In summary, ξt being a Poisson cluster process, is a finite sum of condi-

tionally independent clusters, equally distributed apart from shifts and rooted at the points

of a Poisson process ζ0 of “ancestors” with intensity measure t−1µ. By the Markov property

of ξ, we have a similar representation of ξt for every s = t− h ∈ (0, t) as a countable sum of

conditionally independent h-clusters (clusters of age h), rooted at the points of a Cox pro-

cess ζs directed by h−1ξs. In other words, ζs is conditionally Poisson given ξs with intensity

measure h−1ξs (see page 226 in [24]).

Under some restrictions of the branching mechanism Φ of (1.1), (X,Φ)-processes also

have a similar cluster representation (see Section 11.5 in [5] and Section 3 in [7]). The

function t−1 in the above intensity measure t−1µ should be replaced by another function of

t, determined by the branching mechanism Φ. The cluster distributions are also different,

determined by both X and Φ.

2.3 Historical superprocesses and random snakes

It is clear that the cluster representation of the previous section cannot be recovered

from the superprocess ξ itself, since ξt records only the positions of all “individuals” alive at

time t. A complete picture of the evolution underlying a superprocess is given by a random

tree composed from the paths of all individuals. Two approaches to encode this picture are

provided by historical superprocesses and by random snakes. Both approaches can be used

to verify the cluster representation.

The basic idea of historical superprocesses is very simple (see Section 1.9 in [17]). Let

us explain the idea in the discrete setting, to make it even more transparent. For a discrete

spatial branching process ξ, pick two individuals alive at time t > 0, and assume that they

have their last common ancestor at time s ∈ (0, t). Based on the Markov properties of the

spatial motion X and the independence structures of spatial branching processes, clearly

we can think that these two individuals perform the spatial motion X together as a single
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individual before time s, then separate at time s and begin to perform independent spatial

motion X ever since. In other words, we can think of these two individuals as a single

path before time s, and this path splits into two independent paths at time s. The same

idea still holds in the continuous setting, that is, for the superprocesses. Note that in the

construction of superprocesses, the spatial motion Xt is only the location of an individual

at time t. In order to remember the spatial locations of all the members in her genealogy

line before her, we may just replace Xt by the corresponding path process X̂t, which is a

path-valued process. The value of X̂t is the path of X over the time interval [0, t]. Now we

construct the (X̂,Φ)-superprocess ξ̂, which corresponds to the (X,Φ)-superprocess ξ. We

call ξ̂ the (X,Φ)-historical superprocess. Note that the way we define ξ̂ from ξ is different

from the naive way we define X̂ from X. If we define ξ̂ as the corresponding path process

of ξ, then we would not be able to specify the ancestors of any individual.

Denote the space of all rcll paths over the time interval [0, t] by Wt. Then the state

space of X̂t is Wt, and so X̂t is a time-inhomogeneous Markov process. Write Πr,w for the

probability measure under which X̂ starts from the path w at time r. Clearly w is an

rcll path over the time interval [0, r]. Let Mt be the space of all finite measures on Wt.

This is the state space of ξ̂t, and so ξ̂t is also a time-inhomogeneous Markov process. The

(X,Φ)-historical superprocess ξ̂ can be characterized by all three approaches in Section 1.1.

It is obvious how to carry out the weak convergence approach. For the Laplace functional

approach, we have

Er,µe
−ξ̂tf = e−µv

r
t ,

where µ is a finite measure on Wr, ξ̂t is a finite measure on Wt, f is a function on Wt, and

vrt is a function on Wr. The function vrt (w) with r ≤ t and w ∈ Wr is uniquely determined

by the integral equation

vrt (w) + Πr,w

(∫ t

r

Φ
(
vst (X̂s)

)
ds

)
= Πr,w

(
f(X̂t)

)
.
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This may be compared with (1.4), the integral equation of ξ. The only difference is that ξ̂

is a superprocess of historical paths, while ξ is a superprocess of spatial positions.

The concept of historical superprocesses was developed in Dawson and Perkins [7] and

Dynkin [14]. We may also refer to Chapter 12 in [5] and Section II.8 in [42].

From the construction of historical superprocesses it is clear that ξ̂t encodes the geneal-

ogy information of all “individuals” alive at time t.

The random snake approach developed by Le Gall and his co-authors allows to give

a complete description of the genealogy. Here we only focus on the basic ideas, since the

technical details and notation can be overwhelming.

The basic idea of random snakes stems from an important fact of branching processes:

The genealogical structures of branching processes can be completely encoded by a (random)

function on R+. More precisely, the genealogical structure of Galton-Watson processes can

be completely encoded by a discrete (random) function defined on nonnegative integers.

These nonnegative integers correspond to all the individuals and the function values are

the generations of these individuals. For continuous-state branching processes, similarly

the genealogical structure can be completely encoded by a continuous (random) function

on R+. Again, any number in R+ corresponds to an “individual”, and the function value

is the “generation” or lifetime of this “individual”. This continuous coding function is

called the lifetime process. In fact, continuous coding function can be obtained from a

sequence of rescaled discrete coding functions. Clearly this is closed related to the fact that

continuous-state branching processes may be obtained as weak limits of rescaled Galton-

Watson processes. For a continuous-state branching process with the branching mechanism

Φ = v2, the lifetime process ςt is actually just the reflected one dimensional Brownian motion.

The time parameter of the lifetime process ςt is a labeling of all individuals in a certain order.

For the complete evolution of (X, 1)-processes, we then need to somehow combine the

paths of individuals with this coding continuous random function. This is done by the so

called Brownian snake Wt, which is a path-valued Markov process evolving according to both
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the spatial motion X and the lifetime process ςt. Note that the term “Brownian” refers to the

branching mechanism, actually the lifetime process, not the spatial motion. The behavior of

the Brownian snake is actually not hard to explain, at least informally. The value Wt at time

t of the Brownian snake is a path of the underlying spatial motion X (started at a fixed initial

point) with the random lifetime ςt. Informally, when ςt decreases, the path Wt is shortened

from its tip, and when ςt increases, the path Wt is extended by adding (independently of the

past) small “pieces of paths” following the law of the spatial motion X. In this way, we can

generate the full set of historical paths of a (X, 1)-process by running the Brownian snake

according to the lifetime process, in this way we are visiting all the “individuals” one by one.

For superprocesses with a general branching mechanism Φ, similarly the so called Lévy

snakes can be defined. The basic ideas are similar, but technically it is much more com-

plicated. The main reason is that the corresponding lifetime process is not Markov and its

definition is quite involved. Actually part of the beauty, and the power, of the Brownian

snake is that the lifetime process is itself a Markov process. The standard reference of Brow-

nian snake is the excellent lecture notes [32] by Le Gall in 1999. For Lévy snakes, refer to

the excellent monograph [12] by Duquesne and Le Gall in 2002.

2.4 Hausdorff dimensions and Hausdorff measures

In this section we review some classical results about the Hausdorff dimensions and

Hausdorff measures of superprocesses. First let us review the definitions of Hausdorff di-

mension and Hausdorff measure. For a nice introduction of this topic in a probabilistic

setting, see Chapter 4 and Section 6.4 in [36].

We first define Hausdorff measure, then Hausdorff dimension. Assume A to be a metric

space with the metric ρ. Use |A| to denote the diameter of the set A, which is defined by

|A| = sup{ρ(x, y) : x, y ∈ A}.

16



For every α ≥ 0 define

Hα
δ (A) = inf{

∞∑
i=1

|Ai|α : A ⊂
∞⋃
i=1

Ai, |Ai| ≤ δ for all i}. (2.3)

Easy to see that the quantity Hα
δ (A) is increasing as δ decreases, so that the limit

Hα(A) = lim
δ→0
Hα
δ (A)

is well-defined, although it could be infinite. We call the limit Hα(A) = limδ→0Hα
δ (A) the

α-Hausdorff measure of A.

Since subsets of a metric space are metric spaces on their own, the α-Hausdorff measure

Hα can be defined for all subsets of the space A. Using the definition ofHα, we can check that

the function Hα defined for all subsets satisfies all the properties of a metric Carathéodory

exterior measure (see Section 7.1 in [47], or Section 11.2 in [20]). Thus Hα is a countably

additive measure when restricted to the Borel sets of A. So indeed, the α-Hausdorff measure

defined on all Borel sets is a measure.

Let us define the Hausdorff dimension. The α-Hausdorff measure Hα(A) has the fol-

lowing natural properties: If 0 ≤ α < β, and Hα(A) < ∞, then Hβ(A) = 0; If 0 ≤ α < β,

and Hβ(A) > 0, then Hα(A) = ∞. So there exists a unique number which is denoted by

dimA such that Hα(A) = ∞ for α < dimA, and Hα(A) = 0 for α > dimA. We call this

unique number the Hausdorff dimension of the set A, denoted by dimA. Or in other words,

we define the Hausdorff dimension of the set A by

dimA = sup{α : Hβ(A) =∞} = inf{α : Hβ(A) = 0}.

Using the Hausdorff dimension, we can associate a nonnegative number to any set,

which generalizes the usual integer dimensions. For example, the classical Cantor set has

Hausdorff dimension log 2/ log 3. The graph of a one dimensional Brownian motion, which is
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a continuous (random) curve on R2, has Hausdorff dimension 3/2 a.s. (see Theorem 16.4 in

[19]). This is related to the fact that one dimensional Brownian path is a.s. locally Hölder

continuous with exponent c for any c ∈ (0, 1
2
).

Now we turn to superprocesses. For a DW-process ξ in Rd, we denote the support of ξt

by supp ξt, which is a random closed set in Rd. Actually this is even a random compact set,

assuming ξ0 = µ is a finite measure (see Theorem 1.2 in [6]). For fixed t > 0, if d ≥ 2, then

a.s. this is a null set (means that it has Lebesgue measure 0). Here Hausdorff dimension is

useful for us to get some more understanding of the size of supp ξt. It is well-known that a.s.

dim (supp ξt) = 2 ∧ d, on {ξt 6= 0}.

Note that if ξt = 0, then supp ξt = ∅. More generally, if ξ is a (2, β)-process in Rd with

β ∈ (0, 1], then for fixed t > 0 , if d ≥ 2/β, a.s. supp ξt is a null set (again, this is a random

compact set, adapt the proof of Theorem 1.2 in [6] to generalize Theorem 1.1 in [8], or see

Section 4.3 in [1]) and

dim (supp ξt) = (2/β) ∧ d, on {ξt 6= 0}.

For this result and even more, see Theorem 2.1 in [9]. The situation for (2, β)-processes is

in stark contrast to (α, β)-processes ξ in Rd with α ∈ (0, 2) and β ∈ (0, 1], where the spatial

motion has jumps. In this case, Evans and Perkins [18, 40] showed that For fixed t > 0 a.s.

supp ξt = Rd, on {ξt 6= 0}. (2.4)

We can also discuss the Hausdorff dimension of the range of superprocesses. First for

I ⊂ R+, define the range of ξ on I by

R(I) =
⋃
t∈I

supp ξt, (2.5)
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and the closed range of ξ on I by R(I) = R(I), where R(I) is the closure of R(I) . Then

the range of ξ is defined by

R =
⋃
ε>0

R([ε,∞)).

For a DW-process ξ in Rd, if d ≥ 4, a.s. R is a null set and dimR = 4 ∧ d. More generally,

if ξ is a (2, β)-process in Rd with β ∈ (0, 1], if d ≥ (2/β) + 2, a.s. R is a null set and

dimR = [(2/β) + 2] ∧ d,

see Corollary 2.2 in [9]. Again, for (α, β)-processes ξ in Rd with α ∈ (0, 2) and β ∈ (0, 1],

a.s. R = Rd. This is immediate from (2.4) and the definition of the range.

Let us turn back to the α-Hausdorff measures. Although for any nonnegative α the α-

Hausdorff measure is a Borel measure, for some metric spaces it is always a trivial measure

for any α, means that for any α, the α-Hausdorff measure Hα(B) can only be 0 or ∞ for

any B ∈ B(A). For example, if ξ is a DW-process in Rd with d ≥ 2, then for a fixed t > 0,

a.s. H2(supp ξt) = 0 and

Hα(B ∩ supp ξt) =∞ or 0

for any α < 2 and B ∈ B(Rd) (see (2.7), (2.8), and (2.9)). So we need to generalize the

α-Hausdorff measures if we want to construct a nontrivial measure on supp ξt.

The definition of Hausdorff dimension still makes sense if we evaluate coverings by

applying, instead of a simple power, an arbitrary non-decreasing function to the diameters

of the sets in a covering. We call this function a gauge function. By a gauge function we

mean a non-decreasing function φ : [0, ε)→ [0,∞) with φ(0) = 0.

As before, we define

Hφ
δ (A) = inf{

∞∑
i=1

φ(|Ai|) : A ⊂
∞⋃
i=1

Ai, |Ai| ≤ δ for all i}. (2.6)
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Clearly the α-Hausdorff measure Hα
δ in (2.3) is just the special case of Hφ

δ with φ(x) = xα.

Then define the φ-Hausdorff measure of A by

Hφ(A) = lim
δ→0
Hφ
δ (A).

As before, Hφ is a measure on Borel sets.

Under this more general framework, it is more likely to construct nontrivial measures

on a metric space, although this is still not always possible. For a DW-superprocess ξ, this

approach is extremely successful. Perkins and his co-authors proved the exact Hausdorff

measure of the support at a fixed time or of the range of the process. First about the

support supp ξt. For a fixed t > 0, a.s. we have

Hφ(· ∩ supp ξt) = ξt(·), (2.7)

where for d ≥ 3 (see Theorem 5.2 in [7]),

φ(x) = x2 log log(1/x), (2.8)

and for d = 2 (see Theorem 1.1 in [33]),

φ(x) = x2 log(1/x) log log log(1/x). (2.9)

Next the range R(0, t]. For a fixed t > 0, a.s. we have

Hφ(· ∩ R(0, t]) =

∫ t

0

ξsds(·), (2.10)

where for d ≥ 5,

φ(x) = x4 log log(1/x), (2.11)
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and for d = 4,

φ(x) = x4 log(1/x) log log log(1/x). (2.12)

Note that
∫ t

0
ξsds is a measure on B(Rd), which is defined by

∫ t

0

ξsds(B) =

∫ t

0

ξs(B)ds, for any B ∈ B(Rd). (2.13)

It is easy to see that the Hausdorff measure results here contain the Hausdorff dimension

results that we reviewed previously.

One obvious remaining question is the exact Hausdorff measure function of (2, β)-

processes, but this may be technically too challenging. Then it is also interesting to try

to get some good upper bound and lower bound of the exact Hausdorff measure function.

2.5 Lebesgue approximations

From the previous section, we see that by choosing carefully a suitable gauge function

φ, we can define some nontrivial random measures on certain random null sets. Since from

the beginning we know that there are some naturally defined nontrivial random measures

on these random null sets (the DW-process ξt on supp ξt, and the local time measure of

one dimensional Brownian motion on its level set, see below), in fact the Hausdorff measure

approach gives representations of these measures with respect to only their support. So

in order to recover these measures, we can forget about the related stochastic processes,

only the support of these measures is needed. In this regard, we also have the packing

measure approach (see [11, 34]), which is similar to the Hausdorff measure approach generally

speaking. A more different approach to do this is the so called Lebesgue approximation

approach. Kingman [28] explained this approach in a very accessible manner and also used

this approach to recover the local time measure of certain Markov processes intrinsically

from the level set.
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Let us first explain Kingman’s idea. For the subset A ∈ Rd, we use Aε to denote the

ε-neighborhood of A , that is,

Aε = {x : d(x,A) < ε}.

It’s easy to see that Aε = (A)ε. Recall that A is the closure of A. For their corresponding

Lebesgue measures, clearly λdEε ∈ [0,∞] and λdEε → λdE. So when E is a null set, we get

λdEε → 0. Here the interesting thing is that, the rate at which λdEε converges to zero is an

indication of the size of E. For example, if E is a part of a sufficiently smooth d′-dimensional

surface in Rd, where d′ < d, then

εd
′−dλdEε ∼ Cλd

′
E,

where C is a constant depending only on d and d′.

Now let us explain a special case of Kingman’s Lebesgue approximation result. Let

L(t, x) be the local time of a one dimensional Brownian motion B1(t). Let Z(t, x) = {s :

s ≤ t, B1(s) = x}. Kingman showed that there exists a constant c such that for fixed t and

x, a.s.

ε−1/2λd[Z(t, x)]ε → cL(t, x).

Kingman argued that unlike other approximation results of local time (see Corollary 1.9

and Theorem 1.10 in Chapter VI of [44]), this Lebesgue approximation result only requires

the knowledge of Z(t, x), which is the support of the local time measure L(t, x), to recover

L(t, x).

Next we discuss all known Lebesgue approximation results of superprocesses. For any

measure µ on Rd and constant ε > 0, write µε for the restriction of Lebesgue measure λd to

the ε-neighborhood of suppµ. Note that using our notations, the ε-neighborhood of suppµ
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is denoted by (suppµ)ε. So we may write µε explicitly by

µε(·) = λd (· ∩ (suppµ)ε) .

For a DW-process ξ in Rd with d ≥ 3, Tribe [48] showed that for any fixed t > 0 and any

bounded Borel set B in Rd, a.s. as ε→ 0,

ε2−d ξεt (B)→ cd ξt(B),

where cd > 0 is a constant depending on d.

Shortly after, in order to prove the strong Markov property of the support process

supp ξt, Perkins [41] showed that the Lebesgue approximation result holds simultaneously

for all time t > 0. More precisely, for a DW-process ξ in Rd with d ≥ 3, a.s. as ε→ 0

ε2−d ξεt
w→ cd ξt, for all t > 0, (2.14)

where
w→ denotes the weak convergence of measures. The corresponding Lebesgue approxi-

mation of two dimensional DW-processes ξ was still open at that time, even for fixed t > 0.

However, Perkins conjectured that for fixed t > 0 and bounded Borel set B in R2, a.s. as

ε→ 0,

| log ε| ξεt (B)→ c ξt(B).

Later, Kallenberg [25] essentially confirmed the above conjecture. More precisely, for a

DW-process ξ in R2, Kallenberg showed that for fixed t > 0 a.s. as ε→ 0,

m̃(ε) | log ε| ξεt
w−→ ξt,

where m̃ is a suitable normalizing function bounded below and above by two positive con-

stants. Note that both the conjecture of Perkins and the proof of Kallenberg depend crucially
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on the hitting bounds of DW-processes ξ in R2 from Le Gall [31]. Kallenberg’s approach

also works for DW-processes ξ in Rd with d ≥ 3, and results in a more probabilistic proof of

Lebesgue approximation of ξt.

In [?], we adapted Kallenberg’s probabilistic approach in [25] to prove the Lebesgue

approximation of (2, β)-processes with β < 1, combined with a truncation method of super-

processes from Mytnik and Villa [38], in order to overcome the additional difficulty imposed

by the infinite variance of (2, β)-processes. More precisely, for a (2, β)-process ξ in Rd with

β < 1 and d > 2/β, we proved that, for fixed t > 0 a.s. as ε→ 0,

ε2/β−d ξεt
w→ cβ,d ξt,

where cβ,d > 0 is a constant depending on β and d.

In view of the Hausdorff measure results (2.10), (2.11), and (2.12), we may ask about

the Lebesgue approximation of the range of a superprocess. Here, Delmas [10] proved the

Lebesgue approximation of the range of DW-processes ξ in Rd with d ≥ 4, using Le Gall’s

Brownian snake. More precisely, for a DW-process ξ in Rd with d ≥ 4, Delmas showed that,

for fixed t > 0 and bounded Borel set B in Rd, a.s. as ε→ 0,

φ(ε)Rε

t(B)→ cd

∫ ∞
t

ξsds(B), (2.15)

where Rt is the R([t,∞)) defined in (2.5), and
∫∞
t
ξsds is defined as in (2.13). About the

normalizing function φ, it is shown that

φ(ε) = ε4−d for d > 5, and, φ(ε) = | log ε| for d = 4.

These known results lead to a couple immediate open problems. First we may ask if the

Lebesgue approximation of (2, β)-processes holds simultaneously for all time t > 0, in view

of (2.14). Since intuitively the (2, β)-process ξ and its support supp ξ do not jump at the
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same time, an immediate guess should be no. We may then ask if it is possible to prove some

results supporting this guess. What about the strong Markov property of the (2, β)-support

process supp ξt? It seems that we need to find new approaches to prove it (or disprove it).

The second question is that, whether it is possible to prove the Lebesgue approximation of

the range of (2, β)-processes, in view of (2.15).

More generally, we may try to “translate” all Hausdorff measure results into corre-

sponding Lebesgue approximation ones. Here the challenge is that while there is a solid

theory behind Hausdorff measures which one could rely on, there is no such support for

Lebesgue approximation results. One has to “invent” some approaches when trying to es-

tablish Lebesgue approximation results. Still it is very interesting to see that whenever we

can get the Lebesgue approximation results, the results are always shorter and cleaner then

the corresponding Hausdorff measure results.
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Chapter 3

Lebesgue Approximation of Dawson-Watanabe Superprocesses

3.1 Introduction

In this chapter we discuss the Lebesgue approximation of Dawson-Watanabe superpro-

cesses in detail. The Lebesgue approximation of DW-processes of dimension d ≥ 3 was first

proved by Tribe [48], using both probabilistic and analytic techniques. The case of critical

dimension d = 2 is more difficult. However, Kallenberg [25] obtained a similar result for

DW-processes in R2 using a more probabilistic approach. His approach can also be applied

to DW-processes of dimension d ≥ 3, and indeed this was done in [25]. The present chapter

is based on Kallenberg’s proof of Lebesgue approximation of DW-processes of dimension

d ≥ 3 in [25], with some technical simplifications. Extra efforts have been made to explain

Kallenberg’s approach clearly and to make it more accessible.

We use ξ = (ξt) to denote the DW-process of dimension d ≥ 3. Recall that ξ is a

measure-valued Markov process, so for fixed t and ω, the value ξt(ω) is a measure on Rd.

We write ξεt for the restriction of Lebesgue measure λd to the ε-neighborhood of supp ξt, the

support of the measure ξt, which for fixed t and ω, is a compact set in Rd (see Theorem

1.2 in [6]). The Lebesgue approximation of DW-processes of dimension d ≥ 3, which is

Theorem 3.5 in this chapter, states that for fixed t > 0, ε2−d ξεt
w→ cd ξt a.s. as ε → 0, where

w→ denotes weak convergence of measures and cd > 0 is a universal constant depending on

d. In particular, this confirms that ξt “distributes its mass over supp ξt in a deterministic

manner” (cf. [17], p. 115, or [42], p. 212), as previously inferred from some deep results

involving the exact Hausdorff measure (cf. [7]).

The proof depends crucially on some basic hitting estimates, due to Dawson, Iscoe, and

Perkins [6]. Here we need the lower bound and upper bound of Pµ{ξtBε
0 > 0} (Theorem
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3.1.(a) in [6]), and also the precise convergence result ε2−dPµ{ξtBε
0 > 0} → cd µpt for d ≥ 3

as ε→ 0 (Theorem 3.1.(b) in [6]), where Br
x denotes an open ball around x of radius r.

The proof also depends crucially on the representation of the DW-process as a countable

sum of conditionally independent clusters. Precisely, each ξt can be expressed as a countable

sum of conditionally independent clusters of age h ∈ (0, t], where the generating ancestors at

time s = t− h form a Cox process ζs directed by h−1ξs (cf. [7, 30]). Typically we let h→ 0

at a suitable rate depending on ε. However, a technical complication when dealing with

cluster representations is the possibility of multiple hits. More specifically, a single cluster

may hit (charge) several of the ε-neighborhoods of n distinct points x1, . . . , xn, or one of

those neighborhoods may be hit by several clusters. In particular, Lemma 2.4 deals with

this multiple hitting of a single neighborhood by several clusters. To minimize the effect of

such multiplicities, we need the cluster age h to be sufficiently small. On the other hand,

it needs to be large enough for the mentioned hitting estimates to apply to the individual

clusters. Notice that we can translate the hitting estimates for the superprocess ξ to the

hitting estimates for the cluster η, based on the connection between the superprocess and

its clusters.

The reason we don’t cover the case of critical dimension d = 2 is that, although the

two cases of d = 2 and d ≥ 3 use the same general approach, technically the case of d = 2

is much more involved, since we then have to deal with the Logarithm normalizing function

| log(ε)| rather than the power normalizing function ε2−d as in the case of d ≥ 3. Also when

d = 2, a corresponding crucial result to the precise convergence result for d ≥ 3, as ε → 0,

ε2−dPµ{ξtBε
0 > 0} → cd µpt, is not readily available. So in this chapter, we restrict our

attention to the case of d ≥ 3.

We proceed with some general remarks on terminology and notation. A random measure

ξ on Rd is defined as a measurable function from Ω to the spaceMd of locally finite measures

on Rd, equipped by the σ-field generated by all evaluation maps πB : µ 7→ µB with B ∈ Bd,

where Bd denotes the Borel σ-field on Rd. The subclasses of measures and bounded sets
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are denoted by M̂d and B̂d, respectively. The weak topology in Md is generated by all

integration maps πf : µ 7→ µf =
∫
fdµ with f belonging to the space Cd

b of bounded,

continuous functions Rd → R+. Thus, µn
w→µ in Md iff µnf → µf for all f ∈ Cd

b .

Throughout the chapter we use relations such as =
_

, <
_

, ∼
_

, and �, where the first

three mean equality, inequality, and asymptotic equality up to a constant factor, and the

last one is the combination of <
_

and >
_

. We often write a � b to mean a/b → 0. The

double bars ‖ · ‖ denote the supremum norm when applied to functions and total variation

when applied to signed measures. In any Euclidean space Rd, we write Br
x for the open ball

of radius r > 0 centered at x ∈ Rd. The shift and scaling operators θx and Sr are given by

θxy = x+ y and Srx = rx, respectively, and for measures µ on Rd we define µθx and µSr by

(µθx)B = µ(θxB) and (µSr)B = µ(SrB), respectively. In particular, (µSr)f = µ(f ◦ S−1
r )

for measurable functions f on Rd. Convolutions of measures µ with functions f are given by

(µ ∗ f)(x) =
∫
f(x− u)µ(du).

This chapter is organized as follows. In Section 2 we first explain the crucial ideas about

cluster representations, then state several lemmas which will not be used directly in the main

proof of Lebesgue approximation, including the important upper bound of the hitting mul-

tiplicities. In Section 3 we state and prove the Lebesgue approximation for DW-processes

of dimensions d ≥ 3. In order to do so, we list several lemmas that are needed in the main

proof. Finally, in Section 4 we prove all the lemmas in this chapter. We suggest that the

reader read the first three sections in the linear order, then, when need arises, read the proofs

of some lemmas in Section 4.

3.2 Preliminaries

Let us first explain the cluster representations of DW-processes. We write Lµ(ξ) =

Pµ{ξ ∈ ·} for the distribution of the process ξ with initial measure µ. For every fixed µ,

the DW-process ξ is infinitely divisible under Pµ and admits a decomposition into a Poisson
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“forest” of conditionally independent clusters, corresponding to the excursions of the contour

process in the ingenious “Brownian snake” representation of Le Gall [32]. In particular, this

yields a cluster representation of ξt for every fixed t > 0. More generally, the “ancestors”

of ξt at an earlier time s = t− h form a Cox process ζs directed by h−1ξs (meaning that ζs

is conditionally Poisson with intensity h−1ξs, given ξs; cf. [24], p. 226), and the generated

clusters ηih are conditionally independent and identically distributed apart from shifts. In

this paper, a generic cluster of age t > 0 is denoted by ηt; we write Lx(ηt) = Px{ηt ∈ ·} for

the distribution of a t-cluster centered at x ∈ Rd and put Pµ{ηt ∈ ·} =
∫
µ(dx)Px{ηt ∈ ·}.

The first lemma is about some basic scaling properties of DW-processes and their asso-

ciated clusters.

Lemma 3.1 Let ξ be a DW-process in Rd with associated clusters ηt. Then for any measure

µ on Rd, and r, t > 0,

(i) LµSr(r2ξt) = Lr2µ(ξr2tSr),

(ii) LµSr(r2ηt) = Lµ(ηr2tSr).

Although the above two compact identities look nice, they may not be very intuitive for

some people. In order to appreciate better these scaling properties, first we translate the L

notation back to the P notation

PµSr{r2ξt ∈ ·} = Pr2µ{ξr2tSr ∈ ·},

PµSr{r2ηt ∈ ·} = Pµ{ηr2tSr ∈ ·}.

Recall that the evaluation map πB : µ 7→ µB is a function defined on the spaceMd of locally

finite measures on Rd. According to the definition of σ-field on Md, the set {π
B

1/r
0

> 0}

is a measurable set on Md. In the above two identities, take r = 1/ε, µSr = δx, and,

· = {π
B

1/r
0

> 0}, we get

Px{ξtBε
0 > 0} = P(1/ε2)δx/ε{ξt/ε2B

1
0 > 0},
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Px{ηtBε
0 > 0} = Px/ε{ηt/ε2B1

0 > 0}.

Now these two identities should be intuitive enough for one to appreciate the scaling prop-

erties.

Next we state a well-known relationship between the hitting probabilities of ξt and ηt.

Lemma 3.2 Let the DW-process ξ in Rd with associated clusters ηt be locally finite under

Pµ, and fix any B ∈ Bd. Then

Pµ{ηtB > 0} = − t log (1− Pµ{ξtB > 0}),

Pµ{ξtB > 0} = 1− exp (−t−1Pµ{ηtB > 0}).

In particular, Pµ{ξtB > 0} ∼ t−1Pµ{ηtB > 0} as either side tends to 0.

The following lemma contains some slight variations of classical hitting estimates for

DW-processes of dimension d ≥ 3. By Lemma 3.2 it is enough to consider the corresponding

clusters ηt, and by shifting it suffices to consider balls centered at the origin.

Lemma 3.3 Let the ηt be clusters of a DW-process in Rd with d ≥ 3, and consider a σ-finite

measure µ on Rd. Then for 0 < ε ≤
√
t, we have

µpt <_ t−1ε2−dPµ{ηtBε
0 > 0} <

_
µp2t,

The classical upper bound is µpt+ε. Note that as ε → 0, the upper bound µpt+ε

is approaching the lower bound µpt, however the constants before these two bounds are

definitely different. Still this suggests that as ε → 0, the normalized hitting probability

t−1ε2−dPµ{ηtBε
0 > 0} converges to c µpt for some constant c > 0. This is indeed the case.

Although the classical upper bound can give us this intuitive impression, for all practical

purposes our upper bound µp2t is as good, if not better. The reason is that mathematically

speaking, p2t is almost the same as pt.
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Next we need to estimate the probability that a small ball in Rd is hit by more than one

subcluster of our DW-process ξ. This result will play a crucial role throughout the remainder

of the chapter.

Lemma 3.4 Let the DW-process ξ in Rd be locally finite under Pµ. For any t ≥ h > 0

and ε > 0, let κεh be the number of h-clusters hitting Bε
0 at time t. Then for d ≥ 3 and as

ε2 � h ≤ t, we have

Eµκ
ε
h(κ

ε
h − 1) <

_
ε2(d−2)

(
h1−d/2µpt + (µp2t)

2
)
.

Here the intuition is that, if compare to h, the radius ε is small enough, then most likely

there will be only one cluster hitting this tiny ball, or no cluster at all. Actually what we

want to control is the discrete quantity (κεh − 1)+. However it seems that the only natural

way to relate this quantity to the DW-process ξt is through the following simple inequality

(κεh − 1)+ ≤ κεh(κ
ε
h − 1).

Then we can relate Eµκ
ε
h(κ

ε
h − 1) to Eµξt and Eµξ

2
t , the first and second moment of the

DW-process ξt. This is actually a very important point, especially in the next chapter when

we are dealing with the (2, β)-superprocesses. Since the (2, β)-superprocesses have infinite

second moment, to control Eµ(κεh− 1)+ we have to truncate the (2, β)-processes, in order to

get the finite second moment.

3.3 Lebesgue approximation

In this section we first state the main result of this chapter, the Lebesgue approximation

of DW-processes of dimension d ≥ 3, which is Theorem 3.5. In order to give the proof of

Theorem 3.5, we then state Lemma 3.6, 3.7, and 3.8, which will be used directly in the proof
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of Theorem 3.5. However we leave all proofs of lemmas in the next section. At the end of

the present section we give the proof of Theorem 3.5.

For any measure µ on Rd and constant ε > 0, we define the associated neighborhood

measure µε as the restriction of Lebesgue measure λd to the ε-neighborhood of suppµ, so

that µε has Lebesgue density 1{µBε
x > 0}. First note that µε is a measure defined from

the measure µ. Then recall that ξt(ω) is a measure for fixed t and ω, so ξεt (ω) is just the

neighborhood measure of ξt(ω). Also recall that M̂d is the space of finite measures on Rd.

For random measures ξn and ξ with values in M̂d, the weak convergence in L1, denoted by

ξn
w→ ξ in L1,

means that ξnf → ξf in L1 for all f in Cd
b . Write c̃d = 1/cd for convenience, where cd is

such as in (3.1).

Now we are ready to state the main result of this chapter, the Lebesgue approximation

of DW-processes of dimension d ≥ 3.

Theorem 3.5 Let ξ be the DW-process in Rd with d ≥ 3. Fix any µ ∈ M̂d and t > 0. Then

under Pµ, we have as ε→ 0

c̃d ε
2−d ξεt

w→ ξt a.s. and in L1.

Here the a.s. convergence means that for every ω outside a null set,

c̃d ε
2−d ξεt (ω)

w→ ξt(ω).

Note that for fixed t and ω, both ξεt (ω) and ξt(ω) are deterministic measures.

Next we are going to study (ηih)
ε, the neighborhood measures of the clusters. Since

we will use the cluster decomposition ξt = Σiη
i
h throughout the proof, naturally in order to

prove c̃d ε
2−d ξεt

w→ ξt we also need to study (ηih)
ε. Write (ηih)

ε = ηiεh for convenience.
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Lemma 3.6 Let the ηih be conditionally independent h-clusters in Rd, rooted at the points

of a Poisson process ξ with Eξ = µ. Fix any measurable function f ≥ 0 on Rd. Then

(i) Eµ
∑

i η
iε
h = (µ ∗ pεh) · λd,

(ii) Varµ
∑

i η
iε
h f <_ h2ε2(d−2) ‖f‖2 ‖µ‖ for ε2 ≤ h.

In part (i), notice that
∑

i η
iε
h is a random measure, its expectation is the deterministic

measure (µ ∗ pεh) · λd, which means that for any measurable f ≥ 0

Eµ
∑

i
ηiεh f = ((µ ∗ pεh) · λd)f

where ((µ∗pεh) ·λd)f is the integral of the function f with respect to the measure (µ∗pεh) ·λd.

In part (ii), notice that
∑

i η
iε
h f is a real-valued random variable, its variance is bounded

above by h2ε2(d−2) ‖f‖2 ‖µ‖.

Next we compare ξεt and
∑

i η
iε
h , and prove that asymptotically they are the same, so

that we can just replace ξεt by
∑

i η
iε
h . Intuitively this result is clear: Since the ages of clusters

h and the parameter of neighborhood measures ε are both going to 0 at some suitable rates,

asymptotically there are no overlaps between the neighborhood measures of clusters, so that

asymptotically
∑

i η
iε
h and ξεt are the same.

Lemma 3.7 Let ξ be a DW-process in Rd with d ≥ 3, and for fixed t > 0, let ηih denote the

subclusters in ξt of age h > 0. Fix a µ ∈ M̂d. Then as ε2 ≤ h→ 0,

Eµ

∥∥∥∥∥∑
i

ηiεh − ξεt

∥∥∥∥∥ <
_

(ε2/
√
h)d−2.

Recall that for a signed measure µ on Rd with f as the density with respect to λd, the

total variation ‖µ‖ satisfies

‖µ‖ = λd|f | =
∫
|f(x)|dx.
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Note that
∑

iη
iε
h and ξεt have the density

∑
i1{ηihBε

x > 0} and 1{ξBε
x > 0} respectively, so

Eµ

∥∥∥∥∥∑
i

ηiεh − ξεt

∥∥∥∥∥ = Eµ

∫ ∣∣∣∣∣∑
i

1{ηihBε
x > 0} − 1{ξBε

x > 0}

∣∣∣∣∣ dx.
Now clearly the integrand |

∑
i 1{ηihBε

x > 0} − 1{ξBε
x > 0}| is related to the multiple hitting

of Lemma 3.4.

The last lemma is a precise convergence result about the hitting probability Px{ηhBε
0 >

0}.

For a DW-process ξ of dimension d ≥ 3, we know from Theorem 3.1 of Dawson, Iscoe,

and Perkins [6] (cf. Remark III.5.12 in [42]) that, for fixed t > 0, x ∈ Rd, and finite µ, as

ε→ 0

ε2−dPµ{ξtBε
x > 0} → cd (µ ∗ pt)(x), (3.1)

where cd > 0 is a constant depending only on d, and the convergence is uniform for x ∈ Rd

and for bounded t−1 and ‖µ‖. Notice that in this classical result t can change, but it has to

be bounded away from 0.

By using the scaling property of DW-processes, from the classical result above we can

get a precise convergence result about Px{ηhBε
0 > 0} as both h and ε are approaching 0

at some suitable rates. More precisely, after the scaling term (cd)
−1h−1ε2−d multiplied to

Px{ηhBε
0 > 0}, the measure

(cd)
−1h−1ε2−dPx{ηhBε

0 > 0}dx

converges in a certain sense to δ0, the Dirac measure at 0 δ0, as both h and ε are approaching

0 at some suitable rates. This result should be easy to understand since if x 6= 0, then for

small enough h and ε, the ηh stated from x will not be able to reach Bε
0 before time h.

Only the ηh stated from 0 will be able to reach Bε
0 before time h, although the probability
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is decreasing to 0. After the scaling term h−1ε2−d multiplied to P0{ηhBε
0 > 0}, it converges

to the constant cd.

Lemma 3.8 Write pεh(x) = Px{ηhBε
0 > 0}, where the ηh are clusters of a DW-process in Rd,

and fix a bounded, uniformly continuous function f ≥ 0 on Rd. Then as 0 < ε2 � h → 0,

we have ∥∥h−1ε2−d (pεh ∗ f)− cd f
∥∥→ 0.

The result holds uniformly over any class of uniformly bounded and equicontinuous functions

f ≥ 0 on Rd.

Here
∥∥h−1ε2−d (pεh ∗ f)− cd f

∥∥ is the supremum norm of the function

h−1ε2−d (pεh ∗ f)(x)− cd f(x),

as a function of x.

Now we are ready to prove Theorem 3.5, but before giving the proof let us discuss the

main ideas in the proof carefully. First of all, we have two possible approaches to attack this

theorem: one is to prove the L1-convergence first, then use some interpolation to get the a.s.

convergence from the L1-convergence (this is indeed what Tribe did in [48]); the other is to

prove the a.s. convergence first. In the first approach, we need to get the a.s. convergence

from the L1-convergence by the usual Borel-Cantelli argument: If E
∑
|fn| < ∞, then

fn → 0 a.s. as n → ∞. In order to do so, we need an upper bound of the approximating

error

ε2−dPµ{ξtBε
x > 0} − cd (µ ∗ pt)(x),

which we don’t have here. So we will use the second approach: prove the a.s. convergence

first.

In order to prove the a.s. convergence, we need to show that a.s. for all f ∈ Cd
b , we have

that c̃d ε
2−d ξεt f → ξtf , where Cd

b is the class of bounded, continuous functions Rd → R+.
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However since there exists a countable, convergence-determining class of functions f in Cd
b ,

we only need to prove for any fixed f ∈ Cd
b , we have c̃d ε

2−d ξεt f → ξtf a.s.

In order to prove this, we write

∣∣ ε2−d ξεt f − cd ξtf
∣∣ ≤ ε2−d

∣∣∣ ξεt f −∑
i
ηiεh f

∣∣∣
+ε2−d

∣∣∣∑
i
ηiεh f − h−1 ξs(p

ε
h ∗ f)

∣∣∣
+ ‖ξs‖

∥∥ ε2−d h−1 (pεh ∗ f)− cdf
∥∥

+cd |ξsf − ξtf |.

Notice that the last term converges to 0 by the a.s. weak continuity of ξ and the third term

converges to 0 by Lemma 3.4. The first term is related to Lemma 3.3 and the second term is

related to Lemma 3.2, however these two lemmas are about the expectations and variances

of those terms.

In order to get a.s. convergence from results of expectations and variances, we use the

usual Borel-Cantelli argument: take a sequence εn and get f(εn)→ 0 as n→∞ by showing

that E
∑
|f(εn)| <∞. Finally we extend the a.s. convergence from the sequence εn to the

whole interval (0, 1) by interpolation.

As for the L1-convergence, since by (1) we easily get

ε2−dEµξ
ε
t f → cdEµξtf,

so the L1-convergence follows from the a.s. convergence by an usual proposition.

Proof of Theorem 3.1:

Proof: (i) Let d ≥ 3, and fix any t > 0, µ ∈ M̂d, and f ∈ Cd
K . Write ηih for the

subclusters of ξt of age h. Since the ancestors of ξt at time s = t − h form a Cox process

directed by ξs/h, Lemma 3.6 (i) yields

Eµ

[∑
i
ηiεh f

∣∣∣ ξs] = h−1ξs(p
ε
h ∗ f),
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and so by Lemma 3.6 (ii)

Eµ

∣∣∣∑
i
ηiεh f − h−1 ξs(p

ε
h ∗ f)

∣∣∣2 = EµVar
[∑

i
ηiεh f

∣∣∣ ξs]
<
_

ε2(d−2) h2 ‖f‖2Eµ‖ξs/h‖

= ε2(d−2) h ‖f‖2 ‖µ‖.

Combining with Lemma 3.7 gives

Eµ
∣∣ ξεt f − h−1 ξs(p

ε
h ∗ f)

∣∣
≤ Eµ

∣∣∣ ξεt f −∑
i
ηiεh f

∣∣∣+ Eµ

∣∣∣∑
i
ηiεh f − h−1 ξs(p

ε
h ∗ f)

∣∣∣
<
_

ε2(d−2) h1−d/2 ‖f‖+ εd−2 h1/2 ‖f‖

= εd−2
(√

h+ (ε/
√
h)d−2

)
‖f‖.

Taking h = ε = rn for a fixed r ∈ (0, 1) and writing sn = t− rn, we obtain

Eµ
∑

n
rn(2−d)

∣∣ ξrnt f − r−n ξsn(pr
n

rn ∗ f)
∣∣

<
_

∑
n

(
rn/2 + rn(d−2)/2

)
‖f‖ <∞,

which implies

rn(2−d)
∣∣ ξrnt f − r−n ξsn(pr

n

rn ∗ f)
∣∣→ 0 a.s. Pµ. (3.2)

Now we write

∣∣ ε2−d ξεt f − cd ξtf
∣∣ ≤ ε2−d ∣∣ ξεt f − h−1 ξs(p

ε
h ∗ f)

∣∣+ cd |ξsf − ξtf |

+ ‖ξs‖
∥∥ ε2−d h−1 (pεh ∗ f)− cdf

∥∥ .
Using (3.2), Lemma 3.8, and the a.s. weak continuity of ξ (cf. Proposition 2.15 in [17]), we

see that the right-hand side tends a.s. to 0 as n → ∞, which implies ε2−dξεt f − cdξtf a.s.
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as ε → 0 along the sequence (rn) for any fixed r ∈ (0, 1). Since this holds simultaneously,

outside a fixed null set, for all rational r ∈ (0, 1), the a.s. convergence extends by Lemma

2.3 in [25] to the entire interval (0, 1).

Now let µ ∈Md be arbitrary with µpt <∞ for all t > 0. Write µ = µ′+µ′′ for bounded

µ′, and let ξ = ξ′+ξ′′ be the corresponding decomposition of ξ into independent components

with initial measures µ′ and µ′′. Fixing an r > 1 with supp f ⊂ Br−1
0 and using the result

for bounded µ, we get a.s. on {ξ′′tBr
0 = 0}

ε2−d ξεt f = ε2−d ξ′εt f → cd ξ
′
tf = cd ξtf.

As µ′ ↑ µ, we get by Lemma 4.3 in [25]

Pµ{ξ′′tBr
0 = 0} = Pµ′′{ξtBr

0 = 0} → 1,

and the a.s. convergence extends to µ. Applying this result to a countable, convergence-

determining class of functions f (cf. Lemma 3.2.1 in [5]), we obtain the required a.s. vague

convergence. If µ is bounded, then ξt has a.s. bounded support (cf. Corollary 6.8 in [17]),

and the a.s. convergence remains valid in the weak sense.

To prove the convergence in L1, we note that for any f ∈ Cd
K

ε2−dEµξ
ε
t f = ε2−d

∫
Pµ{ξtBε

x > 0} f(x) dx

→
∫
cd (µ ∗ pt)(x) f(x) dx = cdEµξtf, (3.3)

by Theorem 5.3.(i) in [25]. Combining this with the a.s. convergence under Pµ and using

Proposition 4.12 in [24], we obtain Eµ|ε2−d ξεt f − cd ξtf | → 0. For bounded µ, (5.14) extends

to any f ∈ Cd
b by dominated convergence based on Lemmas 4.1 and 4.2 (i) in [25], together

with the fact that λd(µ ∗ pt) = ‖µ‖ <∞ by Fubini’s theorem.
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3.4 Proofs of lemmas

Proof of Lemma 3.1:

(i) If v solves the evolution equation for ξ, that is,

v̇ =
1

2
∆v − v2

then so does ṽ(t, x) = r2v(r2t, rx). Writing ξ̃t = r−2ξr2tSr, µ̃ = r−2µSr, and f̃(x) = r2f(rx),

we get

Eµe
−ξ̃tf̃ = Eµe

−ξr2tf = e−µvr2t = e−µ̃ṽt = Eµ̃e
−ξtf̃ ,

and so Lµ(ξ̃) = Lµ̃(ξ), which is equivalent to (i).

(ii) Define the cluster kernel ν by νx = Lx(η), x ∈ Rd, and consider the cluster de-

composition ξ =
∫
mζ(dm), where ζ is a Poisson process with intensity µν when ξ0 = µ.

Here

r−2ξr2tSr =

∫
(r−2mr2tSr) ζ(dm), r, t > 0.

Using (i) and the uniqueness of the Lévy measure, we obtain

(r−2µSr)ν = µ(ν{r−2m̂r2Sr ∈ ·}),

which is equivalent to

r−2LµSr(η) = Lr−2µSr(η) = Lµ(r−2η̂r2Sr). �

Proof of Lemma 3.2:

Under Pµ we have ξt =
∑

i η
i
t, where the ηit are conditionally independent clusters of age t

rooted at the points of a Poisson process with intensity µ/t. For a cluster rooted at x, the hit-

ting probability is bx = Px{ηtB > 0}. Hence (e.g. by Proposition 12.3 in [24]), the number of

clusters hitting B is Poisson distributed with mean µb/t, and so Pµ{ξtB = 0} = exp(−µb/t),
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which yields the asserted formulas. �

Proof of Lemma 3.3:

�

Proof of Lemma 3.4:

Let ζs be the Cox process of ancestors to ξt at time s = t − h, and write ηih for the

associated h-clusters. Using Lemma 3.3, the conditional independence of the clusters, and

the fact that Eµζ
2
s = h−2Eµξ

2
s outside the diagonal, we get with pεh(x) = Px{ηhBε

0 > 0}

Eµκ
ε
h(κ

ε
h − 1) = Eµ

∑∑
i 6=j

1{ηihBε
0 ∧ η

j
hB

ε
0 > 0}

=

∫ ∫
x 6=y

pεh(x) pεh(y)Eµζ
2
s (dx dy)

<
_

ε2(d−2)

∫ ∫
ph(ε)(x) ph(ε)(y)Eµξ

2
s (dx dy).

By the formula of first moment, Fubini’s theorem, and the semigroup property of (pt), we

get

∫
ph(ε)(x)Eµξs(dx) =

∫
ph(ε)(x) (µ ∗ ps)(x) dx

=

∫
µ(du) (ph(ε) ∗ ps)(u) = µpt(ε).

Next, we get by the formula of second moment, Fubini’s theorem, the properties of (pt), and

the relations t ≤ tε ≤ 2t− s

∫ ∫
ph(ε)(x) ph(ε)(y) Covµ ξs(dx dy)

= 2

∫ ∫
ph(ε)(x) ph(ε)(y) dx dy

∫
µ(du)

∫ s

0

dr∫
pr(v − u) ps−r(x− v) ps−r(y − v) dv
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= 2

∫
µ(du)

∫ s

0

dr

∫
pr(u− v)

(
pt(ε)−r(v)

)2
dv

<
_

∫
µ(du)

∫ s

0

(t− r)−d/2 (pr ∗ p(t(ε)−r)/2)(u) dr

=

∫
µ(du)

∫ s

0

(t− r)−d/2 p(t(ε)+r)/2(u) dr

<
_

∫
pt(u)µ(du)

∫ t

h

r−d/2 dr <
_
µpt h

1−d/2.

The assertion follows by combination of these estimates. �

Proof of Lemma 3.6:

(i) By Fubini’s theorem and the definitions of ηεh and pεh, we have

Exη
ε
hf = Ex

∫
1{ηhBε

u > 0} f(u) du = (pεh ∗ f)(x),

and so by independence

E
[∑

i
ηiεh f

∣∣∣ ξ] =

∫
ξ(dx)Exη

ε
hf = ξ(pεh ∗ f). (3.4)

Hence, by Fubini’s theorem

Eµ
∑

i
ηiεh f = Eµξ(p

ε
h ∗ f) = µ(pεh ∗ f) = ((µ ∗ pεh) · λd)f.

(ii) First,

Varx(η
Kε
h f) ≤ Ex(η

Kε
h f)2 ≤ Ex‖ηKεh ‖2 ‖f‖2 = ‖f‖2Ex‖ηKεh ‖2.

For Ex‖ηKεh ‖2, using Cauchy inequality and Lemma 3.3, we get

Ex‖ηKεh ‖2 = Ex

(∫
1{ηKh Bε

y > 0}dy
∫

1{ηKh Bε
z > 0}dz

)
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=

∫ ∫
Px
(
{ηKh Bε

y > 0} ∩ {ηKh Bε
z > 0}

)
dydz

≤
∫ ∫

(Px{ηKh Bε
y > 0}Px{ηKh Bε

z > 0})1/2dydz

<
_

ahε
d−2/β

∫ ∫
(p2h(y − x)p2h(z − x))1/2dydz

=
_

ahε
d−2/βhd/2

∫ ∫
p4h(y − x)p4h(z − x)dydz

= ahε
d−2/βhd/2.

Hence, by independence

EµVar
[∑

i
ηKiεh f |ζ

]
= Eµ

∫
ζ(dx)Varx(η

Kε
h f) <

_
ahε

d−2/βhd/2 ‖f‖2‖µ‖.

�

Proof of Lemma 3.7:

Let κεh(x) denote the number of subclusters of age h hitting Bε
x at time t. Then Lemma

3.4 yields,

Eµ

∥∥∥∑
i
ηiεh − ξεt

∥∥∥ = Eµ

∫ ∣∣∣∑
i
1{ηihBε

x > 0} − 1{ξBε
x > 0}

∣∣∣ dx
=

∫
Eµ(κεh(x)− 1)+ dx

<
_

ε2(d−2) λd
(
h1−d/2(µ ∗ pt) + (µ ∗ p2t)

2
)

<
_

ε2(d−2)
(
h1−d/2‖µ‖+ t−d/2‖µ‖2

)
.

�

Proof of Lemma 3.8:
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Using (3.1) and Lemmas 3.1 (ii), 3.2, and 3.3, we get by dominated convergence

λdpεh = hd/2λdp
ε/
√
h

1 ∼ cd h
d/2 (ε/

√
h)d−2λdp1 = cd ε

d−2h. (3.5)

Similarly, Lemma 3.3 yields for fixed r > 0 and a standard normal random vector γ in Rd

ε2−d h−1

∫
|x|>r

pεh(x) dx <
_

∫
|u|>r/

√
h

pl(ε)(u) du

= P
{
|γ| l1/2ε > r/

√
h
}
→ 0. (3.6)

By (3.5) it is enough to show that ‖p̂εh ∗f−f‖ → 0 as h, ε2/h→ 0, where p̂εh = pεh/λ
dpεh.

Writing wf for the modulus of continuity of f , we get

‖p̂εh ∗ f − f‖ = supx

∣∣∣∣∫ p̂εh(u) (f(x− u)− f(x)) du

∣∣∣∣
≤

∫
p̂εh(u)wf (|u|) du

≤ wf (r) + 2 ‖f‖
∫
|u|>r

p̂εh(u) du,

which tends to 0 as h, ε2/h→ 0 and then r → 0, by (3.6) and the uniform continuity of f .

�
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Chapter 4

Lebesgue Approximation of (2, β)-Superprocesses

4.1 Introduction

Throughout this chapter, we use µf to denote the integral of the function f with respect

to the measure µ. By an (α, β)-superprocess (or (α, β)-process, for short) in Rd we mean a

vaguely rcll, measure-valued strong Markov process ξ = (ξt) in Rd satisfying Eµe
−ξtf = e−µvt

for suitable functions f ≥ 0, where v = (vt) is the unique solution to the evolution equation

v̇ = 1
2
∆αv − v1+β with initial condition v0 = f . Here ∆α = −(−∆)α/2 is the fractional

Laplacian, α ∈ (0, 2] refers to the spatial motion, and β ∈ (0, 1] refers to the branching

mechanism. When α = 2 and β = 1 we get the Dawson–Watanabe superprocess (DW-

process for short), where the spatial motion is standard Brownian motion. General surveys

of superprocesses include the excellent monographs and lecture notes [5, 15, 17, 32, 35, 42].

In this chapter we consider superprocesses with possibly infinite initial measures. Indeed,

by the additivity property of superprocesses, we can construct the (α, β)-process ξ with any

σ-finite initial measure µ. In Lemma 4.5 we show that ξt is a.s. locally finite for every t > 0 iff

µpα(t, ·) <∞ for all t, where pα(t, x) denotes the transition density of a symmetric α-stable

process in Rd. Note that when α = 2, p2(t, x) = pt(x) is the normal density in Rd.

For any measure µ on Rd and constant ε > 0, write µε for the restriction of Lebesgue

measure λd to the ε-neighborhood of suppµ. For a DW-process ξ in Rd with any finite initial

measure, Tribe [48] showed that ε2−d ξεt
w→ cd ξt a.s. as ε → 0 when d ≥ 3, where

w→ denotes

weak convergence and cd > 0 is a constant depending on d. For a locally finite DW-process ξ

in R2, Kallenberg [25] showed that m̃(ε) | log ε| ξεt
v→ ξt a.s. as ε→ 0, where

v→ denotes vague

convergence and m̃ is a suitable normalizing function. Our main result in this chapter is

Theorem 4.18, where we prove that, for a locally finite (2, β)-process ξ in Rd with β < 1 and
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d > 2/β, ε2/β−d ξεt
v→ cβ,d ξt a.s. as ε→ 0, where cβ,d > 0 is a constant depending on β and d.

In particular, the (2, β)-process ξt distributes its mass over supp ξt in a deterministic manner,

which extends the corresponding property of DW-processes (cf. [17], page 115, or [42], page

212). See the end of the present chapter for a detailed explanation of this deterministic

distribution property. For DW-processes, this property can also be inferred from some deep

results involving the exact Hausdorff measure (cf. [7]). However, for any (α, β)-process ξ

with α < 2, supp ξt = Rd or ∅ a.s. (cf. [18, 40]), and so the corresponding property fails.

Our result shows that this property depends only on the spatial motion.

To prove our main result, we adapt the probabilistic approach for DW-processes from

[25]. However, the finite variance of DW-processes plays a crucial role there. In order to

deal with the infinite variance of (2, β)-processes with β < 1, we use a truncation of (α, β)-

processes from [38], which will be further developed in Section 2 of the present chapter. By

this truncation we may reduce our discussion to the truncated processes, where the variance

is finite.

To adapt the probabilistic approach from [25] to study the truncated processes, we also

need to develop some technical tools. Thus, in Section 3 we improve the upper bounds

of hitting probabilities for (2, β)-processes with β < 1 and their truncated processes. As

an immediate application, in Theorem 4.8 we improve some known extinction criteria of

the (2, β)-process ξ by showing that the local extinction property ξt
d→0 and the seemingly

stronger support property supp ξt
d→∅ are equivalent. Then in Section 4 we derive some

asymptotic results of these hitting probabilities. In particular, for the (2, β)-process ξ we

show in Theorem 4.15 that ε2/β−dPµ{ξtBε
x > 0} → cβ,d (µ ∗ pt)(x), where Br

x denotes an

open ball around x of radius r, which extends the corresponding result for DW-processes (cf.

Theorem 3.1(b) in [6]). Since the truncated processes do not have the scaling properties of

the (2, β)-process, our general method is first to study the (2, β)-process, then to estimate the

truncated processes by the (2, β)-process, in order to get the needed results for the truncated

processes.

45



The extension of results of DW-processes to general (α, β)-processes is one of the major

themes in the research of superprocesses. Since the spatial motion of the (α, β)-process is

not continuous when α < 2 and the (α, β)-process has infinite variance when β < 1, many

extensions are not straightforward, and some may not even be valid. However, it turns out

that several properties of the support of (2, β)-processes depend only on the spatial motion.

These properties include short-time propagation of the support (cf. Theorem 9.3.2.2 in [5])

and Hausdorff dimension of the support (cf. Theorem 9.3.3.5 in [5]). Our result also belongs

to that category.

In this chapter we are mainly using the notations in [25]. Recall that the double bars

‖ · ‖ denote the supremum norm when applied to functions and total variation when applied

to signed measures. We also use relations such as =
_

, <
_

, and �, where the first two mean

equality and inequality up to a constant factor, and the last one is the combination of <
_

and >
_

. Other notation will be explained whenever it occurs.

4.2 Truncated superprocesses and local finiteness

Although our main result of the present chapter is about (2, β)-processes, in this section

we discuss the truncation and local finiteness of all (α, β)-processes, due to their independent

interests.

It is well known that the (α, 1)-process has weakly continuous sample paths. By contrast,

the (α, β)-process ξ with β < 1 has only weakly rcll sample paths with jumps of the form

∆ξt = rδx, for some t > 0, r > 0, and x ∈ Rd. Let

Nξ(dt, dr, dx) =
∑

(t,r,x): ∆ξt=rδx

δ(t,r,x).
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Clearly the point process Nξ on R+ × R+ × Rd records all information about the jumps of ξ.

By the proof of Theorem 6.1.3 in [5], we know that Nξ has compensator measure

N̂ξ(dt, dr, dx) = cβ(dt)r−2−β(dr)ξt(dx), (4.1)

where cβ is a constant depending on β. Due to all the “big” jumps, ξt has infinite variance.

Some methods for (α, 1)-processes, which rely on the finite variance of the processes, are not

directly applicable to (α, β)-processes with β < 1.

In [38], Mytnik and Villa introduced a truncation method for (α, β)-processes with

β < 1, which can be used to study (α, β)-processes with β < 1, especially to extend results

of (α, 1)-processes to (α, β)-processes with β < 1. Specifically, for the (α, β)-process ξ with

β < 1, we define the stopping time τK = inf{t > 0 : ‖∆ξt‖ > K} for any constant K > 0,

where inf ∅ = ∞ as usual. When ∆ξt = rδx, we see that ‖∆ξt‖ = r. Clearly τK is the time

when ξ has the first jump greater than K. For any finite initial measure µ, they proved

that one can define ξ and a weakly rcll, measure-valued Markov process ξK (which is Y K on

page 485 of [38]) on a common probability space such that ξt = ξKt for t < τK . Intuitively,

ξK euqals ξ minus all masses produced by jumps greater than K along with the future

evolution of those masses. In this chapter, we call ξK the truncated K-process of ξ. Since

all “big” jumps are omitted, ξKt has finite variance. They also proved that ξKt and ξt agree

asymptotically as K → ∞. We give a different proof of this result, since similar ideas will

also be used at several crucial stages later. We write Pµ{ξ ∈ ·} for the distribution of ξ with

initial measure µ.

Lemma 4.1 Fix any finite µ and t > 0. Then Pµ{τK > t} → 1 as K →∞.

Proof: If τK ≤ t, then ξ has at least one jump greater than K before time t. Noting

that Nξ([0, t], (K,∞),Rd) is the number of jumps greater than K before time t, we get by
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Theorem 25.22 of [24] and (4.1),

Pµ{τK ≤ t} ≤ EµNξ

(
[0, t], (K,∞),Rd

)
= EµN̂ξ

(
[0, t], (K,∞),Rd

)
=
_

K−1−βEµ

∫ t

0

‖ξs‖ds = t‖µ‖K−1−β → 0

as K →∞, where the last equation holds by Eµ‖ξs‖ = ‖µ‖. �

Using Lemma 1 of [38] and a recursive construction, we can prove that ξKt (ω) ≤ ξt(ω)

for any t and ω. So indeed, ξK is a “truncation” of ξ.

Lemma 4.2 We can define ξ and ξK on a common probability space such that:

(i) ξ is an (α, β)-process with β < 1 and a finite initial measure µ, and ξK is its truncated

K-process, which has no jumps greater than K,

(ii) ξt(ω) ≥ ξKt (ω) for any t and ω,

(iii) ξt(ω) = ξKt (ω) for t < τK(ω).

Proof: Let ξm,n(t) denote the process ξm,n at time t. Use D([0,∞),M̂d) as our Ω, the

space of rcll functions from [0,∞) to M̂d, where M̂d is the set of finite measures on Rd. We

endow Ω with the Skorohod J1-topology. Let A = B(Ω).

Let ζ1(t, ω) = ω(t) be an (α, β)-process defined on (Ω,A,P ) with initial measure µ, and

define τK1 = inf{t > 0 : ‖∆ζ1(t)‖ > K}. Then define a kernel u from M̂d to Ω such that

u(ν, ·) is the distribution of an (α, β)-process with initial measure ν, and a kernel uK from

M̂d to Ω such that uK(ν, ·) is the distribution of the truncated K-process of an (α, β)-process

with initial measure ν. By Lemma 6.9 in [24], we can define ζ1,∞ to be an (α, β)-process with

initial measure ζ1(τK1) on an extension of (Ω,A,P ), and ζ ′1,∞ to be the truncated K-process
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of an (α, β)-process with initial measure ζ1(τ−K1
). Now define ξ1 and ξK1 by

ξ1(t) =

 ζ1(t), t < τK1 ,

ζ1,∞(t− τK1), t ≥ τK1 ,

ξK1 (t) =

 ζ1(t), t < τK1 ,

ζ ′1,∞(t− τK1), t ≥ τK1 .

By the strong Markov property of (α, β)-processes and the above construction, we can verify

that ξ1 is an (α, β)-process. By Lemma 1 in [38], ξK1 is the truncated K-process of an

(α, β)-process. Moreover, ξ1 and ξK1 satisfy conditions (ii) and (iii) on [0, τK1).

Let u′ be a kernel from M̂d×M̂d to A×A such that u′(ν, ν ′, ·, ·) is the distribution of a

pair of two independent (α, β)-processes with initial measures ν and ν ′ respectively. Define

(ζ2,0, ζ2,1) with distribution

u′
(
ξK1 (τ−K1

), ξ1(τK1)− ξK1 (τ−K1
), ·, ·

)
.

Let ζ2 = ζ2,0 + ζ2,1, ζ ′2 = ζ2,0, and τK2 = inf{t > 0 : ‖∆ζ2(t)‖ > K}. Let ζ2,∞ be an

(α, β)-process with initial measure ζ2(τK2), and let ζ ′2,∞ be the truncated K-process of an

(α, β)-process with initial measure ζ ′2(τ−K2
). Now define ξ2 and ξK2 by

ξ2(t) =


ξ1(t), t < τK1 ,

ζ2(t− τK1), τK1 ≤ t < τK1 + τK2 ,

ζ2,∞(t− τK1 − τK2), t ≥ τK1 + τK2 ,

ξK2 (t) =


ξK1 (t), t < τK1 ,

ζ ′2(t− τK1), τK1 ≤ t < τK1 + τK2 ,

ζ ′2,∞(t− τK1 − τK2), t ≥ τK1 + τK2 .
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Similarly, ξ2 is an (α, β)-process and ξK2 is the truncated K-process of an (α, β)-process.

They satisfy conditions (ii) and (iii) on [0, τK1 + τK2).

Continue the above construction: For every n, define ξn and ξKn such that ξn is an (α, β)-

process, ξKn it the truncated K-process of an (α, β)-process, and they satisfy conditions (ii)

and (iii) on [0,
∑n

k=1 τKk).

It suffices to prove that
∑∞

k=1 τKk =∞ a.s. Suppose P (
∑∞

k=1 τKk <∞) > 0. Then there

exist t and a such that P (
∑∞

k=1 τKk < t) = a > 0. Since for every n, ξn is an (α, β)-process

with initial measure µ, we get

an ≤ EµN̂ξn

(
[0, t], (K,∞),Rd

)
.

Noting that by (4.1) EµN̂ξn([0, t], (K,∞),Rd) is the same finite constant for different n, we

get a contradiction. So
∑∞

k=1 τKk =∞ a.s. �

Just as the DW-process, the (α, β)-process ξ and its truncated K-process ξK also have

cluster structures (cf. Corollary 11.5.3 in [5], or Section 3 in [7], especially page 41 there).

Specifically, for any fixed t, ξt is a Cox cluster process, such that the “ancestors” of ξt at time

s = t − h form a Cox process directed by (βh)−1/βξs, and the generated h-clusters ηih are

conditionally independent and identically distributed apart from shifts. For the truncated

K-process ξK , the situation is similar, except that the clusters are different (because of the

truncation) and the term (βh)−1/β for ξ needs to be replaced by aK(h) (or ah, when K is

fixed). Use ηK,ih (or ηKih ) to denote the generated h-clusters of ξK . Write Px{ηt ∈ ·} for

the distribution of ηt centered at x ∈ Rd, and define Pµ{ηt ∈ ·} =
∫
µ(dx)Px{ηt ∈ ·}. The

following comparison of aK(h) and (βh)−1/β, although not used explicitly in the present

chapter, should be useful in other applications of the truncation method.
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Lemma 4.3 Fix any K > 0. Then as h→ 0,

(βh)1/β ≤ aK(h) ≤ 2(βh)1/β.

Proof: From Lemma 3.4 of [7] we know that

(βh)1/β = lim
θ→∞

1/v0(h, θ),

where v0(h, θ) is the solution of v̇ = −v1+β with initial condition v ≡ θ, and

aK(h) = lim
θ→∞

1/v1(h, θ),

where v1(h, θ) is the solution of (1.12) in [38] with initial condition v ≡ θ. Define MK(λ) =

Cβ(K)λ+ ΦK(λ), where Cβ(K) and ΦK are such as in (1.12) of [38]. Then MK satisfies

λ1+β ≤MK(λ) and lim
λ→∞

MK(λ)

λ1+β
= 1.

Clearly it is enough to show that (1/2)v0(h, θ) ≤ v1(h, θ) ≤ v0(h, θ) as h → 0 and θ → ∞.

This follows from the above properties of MK . �

Unlike the normal densities, we have no explicit expressions for the transition densities

of symmetric α-stable processes when α < 2. However, a simple estimate of pα(t, x) is enough

for our needs.

Lemma 4.4 Let pα(t, x), α ∈ (0, 2], t > 0, and x ∈ Rd, denote the transition densities of a

symmetric α-stable process on Rd. Then for any fixed α and d,

pα(t, x+ y) <
_
pα(2t, x), |y|α ≤ t.
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Proof: First let α = 2. Note that p2(t, x) = pt(x) is the standard normal density on Rd.

For |x| ≤ 4
√
t, trivially pt(x+ y) <

_
p2t(x). For |x| > 4

√
t, it suffices to check that

−|x+ y|2

2t
≤ −|x|

2

4t
,

that is, 2|x+ y|2 ≥ |x|2, which follows easily from |x| ≥ 4|y|.

Now let α < 2. By the arguments after Remark 5.3 of [2],

pα(t, x) �
(
t−d/α ∧ t

|x|d+α

)
. (4.2)

Choose K > 21/α to satisfy 1 ≤ 2(1− 1/K)d+α. Since |y| ≤ t1/α, we have for |x| > Kt1/α,

t

|x+ y|d+α
≤ 2t

|x|d+α
.

Noticing also that (2t)/|x|d+α < (2t)−d/α for |x| > Kt1/α, we get pα(t, x + y) <
_
pα(2t, x) for

|y| ≤ t1/α and |x| > Kt1/α. The same inequality holds trivially for |y| ≤ t1/α and |x| ≤ Kt1/α.

�

Using Lemma 4.2 and Lemma 4.4, we can generalize Lemma 3.2 in [25] to any (α, β)-

process.

Lemma 4.5 Let ξ be an (α, β)-process in Rd, α ∈ (0, 2] and β ∈ (0, 1], and fix any σ-finite

measure µ. Then for any fixed t > 0, the following two conditions are equivalent:

(i) ξt is locally finite a.s. Pµ,

(ii) Eµξt is locally finite.

Furthermore, (i) and (ii) hold for every t > 0 iff

(iii) µpα(t, ·) <∞ for all t > 0,

and if α < 2, then (iii) is equivalent to
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(iv) µpα(t, ·) <∞ for some t > 0.

Proof: The formulas for Eµξt and Eµξ
2
t (when β < 1), well known for finite µ, as well as

the formulas in Lemma 3 of [38], extend by monotone convergence to any σ-finite measure

µ. We also need the simple inequality that for any fixed α < 2, s, and t,

pα(s, x) � pα(t, x). (4.3)

To prove it, use (4.2) and consider three cases: |x| ≤ (s ∧ t)1/α, |x| ≥ (s ∨ t)1/α, and

(s ∧ t)1/α < |x| < (s ∨ t)1/α.

If α = 2 and β = 1, then this is Lemma 3.2 of [25]. For α < 2 and β = 1, using

Lemma 4.4 and (4.3) we can proceed as in Lemma 3.2 of [25]. For example, for any fixed

t > 0 and x ∈ Rd, pα(t, x − u) <
_
pα(|x|1/α, x − u) <

_
pα(2|x|1/α,−u) = pα(2|x|1/α, u) yields

µ ∗ pα(t, ·)(x) <∞.

Now assume β < 1. Condition (ii) clearly implies (i). Conversely, suppose that EµξtB =

∞ for some B. Then Eµξ
K
t B =∞ for any fixed K > 0 by Lemma 3 of [38]. Also, we get by

Lemma 3 of [38],

Pµ

{
ξKt B

EµξKt B
> r

}
≥ (1− r)2 (Eµξ

K
t B)2

Eµ(ξKt B)2
≥ (1− r)2

1 + ct (EµξKt B)−1

for any r ∈ (0, 1). Arguing as in the proof of Lemma 3.2 in [25], we get ξKt B =∞ a.s., and

so ξtB =∞ a.s. by Lemma 4.2. In particular, this shows that (i) implies (ii). To prove the

equivalence of (ii) and (iii), again using Lemma 4.4 and (4.3) we can proceed as in Lemma

3.2 of [25]. The last assertion is obvious from (4.3). �
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4.3 Hitting bounds and neighborhood measures

From now on we consider only (2, β)-processes. The Lebesgue approximation depends

crucially on estimates of the hitting probability Pµ{ξtBε
0 > 0}. In this section, we first

estimate Pµ{ξtBε
0 > 0} and Pµ{ξKt Bε

0 > 0}. Then we use these estimates to study multiple

hitting and neighborhood measures of the clusters ηKh associated with the truncated K-

process ξK . We begin with a well-known relationship between the hitting probabilities of ξt

and ηt, which can be proved as in Lemma 4.1 of [25].

Lemma 4.6 Let the (2, β)-process ξ in Rd with associated clusters ηt be locally finite under

Pµ, let ξK be its truncated K-process with associated clusters ηKt , and fix any B ∈ Bd. Then

Pµ{ηtB > 0} = − (βt)1/β log (1− Pµ{ξtB > 0}),

Pµ{ξtB > 0} = 1− exp
(
−(βt)−1/βPµ{ηtB > 0}

)
,

Pµ{ηKt B > 0} = − at log (1− Pµ{ξKt B > 0}),

Pµ{ξKt B > 0} = 1− exp (−a−1
t Pµ{ηKt B > 0}).

In particular, Pµ{ξtB > 0} ∼ (βt)−1/βPµ{ηtB > 0} and Pµ{ξKt B > 0} ∼ a−1
t Pµ{ηKt B > 0}

as either side tends to 0.

Upper and lower bounds of Pµ{ξtBε
0 > 0} have been obtained by Delmas [9], using

a subordinated Brownian snake approach. However, in this chapter we need the following

improved upper bound.

Lemma 4.7 Let ηt be the clusters of a (2, β)-process ξ in Rd with β < 1 and d > 2/β, let

ηKt be the clusters of ξK, the truncated K-process of ξ, and consider a σ-finite measure µ on

Rd. Then for 0 < ε ≤
√
t,

(i) µpt′ <_ ε2/β−d(βt)−1/βPµ{ηtBε
0 > 0} <

_
µp2t, where t′ = βt/(1 + β),

(ii) ε2/β−da−1
t Pµ{ηKt Bε

0 > 0} <
_
µp2t.
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Proof: (i) From the proof of Theorem 2.3 in [9] we know that

Px{ξtBε
0 > 0} = 1− exp(−Nx{YtBε

0 > 0}),

where Nx and Yt are defined in Section 4.2 of [9]. Comparing this with Lemma 5.4 yields

(βt)−1/βPx{ηtBε
0 > 0} = Nx{YtBε

0 > 0}.

By Proposition 6.2 in [9] we get the lower bound. For our upper bound, we will now improve

the upper bound in Proposition 6.1 of [9].

For 0 < ε/2 <
√
t, define

∆ = {(r, y) ∈ R+ × Rd, r < t, |y| > ε/2}⋃
{(r, y) ∈ R+ × Rd, r < t− ε2/16, |y| ≤ ε/2}.

Following the proof of Proposition 6.1 in [9], we have

(βt)−1/βPx{ηtBε
0 > 0} <

_
ε−2/βP0{γs ∈ Bε/2

x for some s ∈ [t− ε2/16, t)},

where γ is a standard Brownian motion. Define

T = inf{s ≥ t− ε2/16 : γs ∈ Bε/2
x },

where inf ∅ = ∞ as usual. Then {T < t} = {γs ∈ Bε/2
x for some s ∈ [t − ε2/16, t)}. To get

our upper bound, it remains to show that

P0{T < t} <
_
εdp2t(x).
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To prove this, we need the elementary fact that for any x ∈ Rd, ε > 0, y ∈ Bε/2
x , and

s ≤ s′ = ε2/16,

Py{γs /∈ Bε
x} ≤ Pz{γs′ /∈ Bε

x} <_ Pz{γs′ ∈ Bε
x} ≤ Py{γs ∈ Bε

x},

where z is a point on the surface of B
ε/2
x , and the second relation holds since Pz{γs′ /∈ Bε

x} and

Pz{γs′ ∈ Bε
x} are both positive constants. Now return to P0{T < t}. Noting t− T ≤ ε2/16

on {T < t}, we get

P0{T < t} = P0{T < t, γt ∈ Bε
x}+ P0{T < t, γt /∈ Bε

x}

= P0{T < t, γt ∈ Bε
x}+ E0{PγT {γt−T /∈ Bε

x}, T < t}

<
_

P0{T < t, γt ∈ Bε
x}+ E0{PγT {γt−T ∈ Bε

x}, T < t}

= P0{T < t, γt ∈ Bε
x}+ P0{T < t, γt ∈ Bε

x}

<
_

P0{γt ∈ Bε
x} <_ εdp2t(x),

where the second and fourth relations hold by the strong Markov property of Brownian

motion and the last relation holds by Lemma 4.4.

(ii) This is obvious from (i), Lemma 4.2, and Lemma 5.4. �

As an immediate application of the improved upper bound, we may improve some known

extinction criteria for (2, β)-processes in Rd with β < 1 and d > 2/β. This extends Theorem

4.5 of [25] for DW-processes of dimension d ≥ 2. Note that the special case of convergence of

random measures ξt
d→0 is equivalent to ξtB

P→0 for any bounded Borel set B. Convergence

of closed random sets is defined as usual with respect to the Fell topology (cf. [24], pp. 324,

566). However, in this chapter we need only the special case of convergence to the empty

set supp ξt
d→∅, which is equivalent to 1{ξtB > 0} P→0 for any bounded Borel set B.
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Theorem 4.8 Let ξ be a locally finite (2, β)-process in Rd, β < 1 and d > 2/β, with arbitrary

initial distribution. Then these conditions are equivalent as t→∞:

(i) ξt
d→0,

(ii) supp ξt
d→∅,

(iii) ξ0pt
P→0.

Proof: By Lemma 5.4 and Lemma 5.5(i) we get for any fixed r

Pµ{ξtBr
0 > 0} ≤ (βt)−1/βPµ{ηtBr

0 > 0} <
_
µp2t,

and so Pµ{ξtBr
0 > 0} <

_
µp2t ∧ 1. For a general initial distribution,

P{ξtBr
0 > 0} <

_
E(ξ0p2t ∧ 1),

which shows that (iii) implies (ii). Since clearly (ii) implies (i), it remains to prove that (i)

implies (iii).

Let ξ be locally finite under Pµ. We first choose f ∈ C++
c (Rd) with suppf ∈ B1

0 , where

C++
c (Rd) is such as in Proposition 2.6 of [29]. Clearly ξtf

P→0 if ξtB
1
0
P→0. By dominated

convergence

exp(−µvt) = Eµ exp(−ξtf)→ 1,

and so µvt → 0. By Proposition 2.6 of [29], we have for t large enough

pt/2(x) � φ(t/2, x) <
_
vt(x),

where φ is defined in (1.15) of [29] (on page 1061, see also (1.17) and (1.18) there). So

µpt/2 → 0. For general ξ0, we may proceed as in the proof of Theorem 4.5 in [25]. �
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The following simple fact is often useful to extend results for finite initial measures µ to

the general case. Here B̂d denotes the space of bounded sets in the Borel σ-algebra Bd.

Lemma 4.9 Let the (2, β)-process ξ in Rd with β < 1 and d > 2/β be locally finite under

Pµ, and suppose that µ ≥ µn ↓ 0. Then Pµn{ξtB > 0} → 0 as n → ∞ for any fixed t > 0

and B ∈ B̂d.

Proof: Follow the proof of Lemma 4.3 in [25], then use Lemma 4.5, Lemma 5.4, and

Lemma 5.5(i). �

As in [25] we need to estimate the probability that a ball in Rd is hit by more than one

subcluster of the truncated K-process ξK . This is where the truncation of ξ is needed.

Lemma 4.10 Fix any K > 0. Let ξK be the truncated K-process of a (2, β)-process ξ in Rd

with β < 1 and d > 2/β. For any t ≥ h > 0 and ε > 0, let κεh be the number of h-clusters of

ξKt hitting Bε
0 at time t. Then for ε2 ≤ h ≤ t,

Eµκ
ε
h(κ

ε
h − 1) <

_
ε2(d−2/β)

(
h1−d/2µpt + (µp2t)

2
)
.

Proof: Follow Lemma 4.4 in [25], then use Lemma 3 of [38] and Lemma 5.5(ii). �

Now we consider the neighborhood measures of the clusters ηKh associated with the trun-

cated K-process ξK . For any measure µ on Rd and constant ε > 0, we define the associated

neighborhood measure µε as the restriction of Lebesgue measure λd to the ε-neighborhood of

suppµ, so that µε has Lebesgue density 1{µBε
x > 0}. Let pK,εh (x) = Px{ηKh Bε

0 > 0}, where

the ηKh are clusters of ξK . Write pK,εh (x) = pKεh (x) and (ηK,ih )ε = ηKiεh for convenience.

Lemma 4.11 Let ξK be the truncated K-process of a (2, β)-process ξ in Rd with β < 1 and

d > 2/β. Let the ηKih be conditionally independent h-clusters of ξK, rooted at the points of a

Poisson process ζ with Eζ = µ. Fix any measurable function f ≥ 0 on Rd. Then,
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(i) Eµ
∑

i η
Kiε
h = (µ ∗ pKεh ) · λd ,

(ii) EµVar
[∑

iη
Kiε
h f |ζ

]
<
_
ahε

d−2/βhd/2 ‖f‖2‖µ‖ for ε2 ≤ h.

Proof: (i) Follow the proof of Lemma 6.2 (i) in [25].

(ii) First,

Varx(η
Kε
h f) ≤ Ex(η

Kε
h f)2 ≤ Ex‖ηKεh ‖2 ‖f‖2 = ‖f‖2Ex‖ηKεh ‖2.

For Ex‖ηKεh ‖2, using Cauchy inequality and Lemma 5.5(ii), we get

Ex‖ηKεh ‖2 = Ex

(∫
1{ηKh Bε

y > 0}dy
∫

1{ηKh Bε
z > 0}dz

)
=

∫ ∫
Px
(
{ηKh Bε

y > 0} ∩ {ηKh Bε
z > 0}

)
dydz

≤
∫ ∫

(Px{ηKh Bε
y > 0}Px{ηKh Bε

z > 0})1/2dydz

<
_

ahε
d−2/β

∫ ∫
(p2h(y − x)p2h(z − x))1/2dydz

=
_

ahε
d−2/βhd/2

∫ ∫
p4h(y − x)p4h(z − x)dydz

= ahε
d−2/βhd/2.

Hence, by independence

EµVar
[∑

i
ηKiεh f |ζ

]
= Eµ

∫
ζ(dx)Varx(η

Kε
h f) <

_
ahε

d−2/βhd/2 ‖f‖2‖µ‖.

�

We also need to estimate the overlap between subclusters.

Lemma 4.12 Let ξK be the truncated K-process of a (2, β)-process ξ in Rd with β < 1 and

d > 2/β. For any fixed t > 0, let ηKih denote the subclusters in ξK of age h > 0. Fix any
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µ ∈ M̂d. Then as ε2 ≤ h→ 0,

Eµ

∥∥∥∑
i
ηKiεh − ξKεt

∥∥∥ <
_
ε2(d−2/β)h1−d/2.

Proof: Follow the proof of Lemma 6.3(i) in [25], then use Lemma 5.5(ii). �

4.4 Hitting asymptotics

For a DW-process ξ of dimension d ≥ 3, we know from Theorem 3.1(b) of Dawson,

Iscoe, and Perkins [6] that, as ε→ 0,

ε2−dPµ{ξtBε
x > 0} → cd (µ ∗ pt)(x),

uniformly for bounded ‖µ‖, bounded t−1, and x ∈ Rd. A similar result for DW-processes of

dimension d = 2 is Theorem 5.3(ii) of [25]. In this section, using Lemma 5.5(i), we can prove

the corresponding result for (2, β)-processes in Rd with β < 1 and d > 2/β.

First we fix a continuous function f on Rd such that 0 < f(x) ≤ 1 for x ∈ B1
0 and

f(x) = 0 otherwise. Let vλ be the solution of v̇ = 1
2
∆v − v1+β with initial condition

v(0) = λf . Since vλ is increasing in λ, we can define v∞ = limλ→∞ vλ. Using Lemma 5.5(i),

we can get an upper bound of v∞, similar to Lemma 3.2 in [6].

Lemma 4.13 For any t ≥ 1 and x ∈ Rd, v∞(t, x) <
_
p(2t, x).

Proof: Letting λ→∞ in Ex exp(−ξtλf) = exp[−vλ(t, x)], we get

Px{ξtB1
0 > 0} = 1− exp[−v∞(t, x)].

Comparing this with Lemma 5.4 yields

v∞(t, x) = (βt)−1/βPx{ηtB1
0 > 0}. (4.4)
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Now Lemma 4.13 follows from Lemma 5.5(i). �

As in Lemma 3.3 of [6], we can apply a PDE result to get the uniform convergence of

v∞. Notice that the improved upper bound in Lemma 5.5(i) is crucial here.

Lemma 4.14 There exists a constant cβ,d > 0 such that

lim
ε→0

ε−dv∞(ε−2t, ε−1x) = cβ,d · p(t, x).

The convergence is uniform for bounded t−1 and x ∈ Rd.

Proof: We follow the proof of Lemma 3.3 in [6]. By Lemma 4.13, v∞(t, x) is finite for

any t ≥ 1 and x ∈ Rd. Then by a standard regularity argument in PDE theory,

v̇∞ =
1

2
∆v∞ − v1+β

∞ (4.5)

on [1,∞)× Rd. By Lemma 4.13, v∞(1) ∈ L1(Rd). Set

wε(t, x) = ε−dv∞(1 + ε−2t, ε−1x).

Then by (4.5), ẇε = 1
2
∆wε − εβd−2w1+β

ε with initial condition wε(0, x) = ε−dv∞(1, ε−1x).

Applying Proposition 3.1 in [21] gives

lim
ε→0

ε−dv∞(1 + ε−2t, ε−1x) = cβ,d · p(t, x),

uniformly on compact subsets of (0,∞) × Rd. Together with Lemma 4.13 this yields the

uniform convergence on [a,∞)× Rd for any a > 0. Moreover, letting t = t′ − ε2, we get

lim
ε→0

ε−dv∞(ε−2t′, ε−1x) = cβ,d · p(t′, x),
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uniformly on [a,∞)× Rd for any a > 0.

It remains to prove that cβ,d > 0. Using (4.4) and the lower bound in Lemma 5.5(i), we

obtain

ε−dv∞(ε−2t, ε−1x) = ε−d(βt)−1/βPε−1x{ηε−2tB
1
0 > 0}

>
_

ε−dp

(
βε−2t

1 + β
, ε−1x

)
= p

(
βt

1 + β
, x

)
,

and so cβ,d > 0. �

Now we can derive the asymptotic hitting rate for a (2, β)-process.

Theorem 4.15 Let the (2, β)-process ξ in Rd with β < 1 and d > 2/β be locally finite under

Pµ. Fix any t > 0 and x ∈ Rd. Then as ε→ 0,

ε2/β−dPµ{ξtBε
x > 0} → cβ,d(µ ∗ pt)(x).

The convergence is uniform for bounded ‖µ‖, bounded t−1, and x ∈ Rd. Similar results hold

for the clusters ηt with pt replaced by (βt)1/βpt.

Proof: We first prove that as ε→ 0,

ε2/β−d(βt)−1/βPµ{ηtBε
x > 0} → cβ,d(µ ∗ pt)(x), (4.6)

uniformly for bounded ‖µ‖, bounded t−1, and x ∈ Rd.

Use µ − x to denote the measure µ shifted by −x. If µ is finite, then by the scaling

of η, (4.4), and Lemma 4.14, we can get the following chain of relations, which proves the

uniform convergence of (4.6):

ε2/β−d(βt)−1/βPµ{ηtBε
x > 0}
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= ε2/β−d(βt)−1/β

∫
Py{ηtBε

0 > 0}(µ− x)(dy)

= ε2/β−d(βt)−1/β

∫
Py/ε{ηt/ε2B1

0 > 0}(µ− x)(dy)

= ε−d
∫
v∞(ε−2t, ε−1y)(µ− x)(dy)→ cβ,d(µ ∗ pt)(x).

Let µ be an infinite σ-finite measure satisfying µpt < ∞ for all t. From the proof of

Lemma 4.5, we know that (µ ∗ p2t)(x) <∞ for any x ∈ Rd. Then by dominated convergence

based on Lemma 5.5(i), we can still get (4.6).

Now we turn to ξt. First note that by Lemma 5.4, as ε→ 0,

ε2/β−dPµ{ξtBε
x > 0} → c ⇔ ε2/β−d(βt)−1/βPµ{ηtBε

x > 0} → c, (4.7)

ε2/β−dPµ{ξKt Bε
x > 0} → c ⇔ ε2/β−da−1

t Pµ{ηKt Bε
x > 0} → c. (4.8)

It remains to prove the uniform convergence for ξt. Since (µ ∗ pt)(x) ≤ t−d/2‖µ‖, we know

that by (4.6), (βt)−1/βPµ{ηtBε
x > 0} → 0, uniformly for bounded ‖µ‖, bounded t−1, and

x ∈ Rd. Then we may use Lemma 5.4 to get the uniform convergence for ξt. �

The following result, especially part (ii), will play a crucial role in Section 5. Here we

approximate the hitting probabilities pKεh by suitably normalized Dirac functions. This will

be used in Lemma 4.17 to prove the Lebesgue approximation of ξK .

Lemma 4.16 Let pεh(x) = Px{ηhBε
0 > 0}, where the ηh are clusters of a (2, β)-process ξ in

Rd with β < 1 and d > 2/β. Recall that pKεh (x) = Px{ηKh Bε
0 > 0}, where the ηKh are clusters

of ξK, the truncated K-process of ξ. Fix any bounded, uniformly continuous function f ≥ 0

on Rd.

(i) As 0 < ε2 � h→ 0,

∥∥ ε2/β−d(βh)−1/β (pεh ∗ f)− cβ,d f
∥∥→ 0.
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(ii) Fix any b ∈ (0, 1/2). Then as 0 < ε2 � h→ 0 with ε2/β−dh1+bd → 0,

∥∥ε2/β−d a−1
h (pKεh ∗ f)− cβ,d f

∥∥→ 0.

Both results hold uniformly over any class of uniformly bounded and equicontinuous functions

f ≥ 0 on Rd.

Proof: (i) We follow the proof of Lemma 5.2(i) in [25]. By scaling of η and (4.6),

ε2/β−d(βh)−1/βλdpεh = (ε/
√
h)2/β−d(β)−1/βλdp

ε/
√
h

1 → cβ,d. (4.9)

Defining p̂εh = pεh/λ
dpεh, we need to show that ‖p̂εh ∗ f − f‖ → 0. Write wf for the modulus

of continuity of f , that is, a function wf = w(f, ·) defined by

wf (r) = sup{|f(s)− f(t)|; s, t ∈ Rd, |s− t| ≤ r}, r > 0.

Clearly wf (r)→ 0 as r → 0 since f is uniformly continuous. Now we get

‖p̂εh ∗ f − f‖ = supx

∣∣∣∣∫ p̂εh(u) (f(x− u)− f(x)) du

∣∣∣∣
≤

∫
p̂εh(u)wf (|u|) du

≤ wf (r) + 2 ‖f‖
∫
|u|>r

p̂εh(u) du.

It remains to show that
∫
|u|>r p̂

ε
h(u) du → 0 for any fixed r > 0. Then notice that for any

fixed r > 0 by Lemma 5.5(i),

ε2/β−d(βh)−1/β

∫
|u|>r

pεh(u) du <
_

∫
|u|>r

p2h(u) du→ 0.
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(ii) For pKεh , Lemma 5.5(ii) yields for any fixed r > 0,

ε2/β−da−1
h

∫
|u|>r

pKεh (u) du <
_

∫
|u|>r

p2h(u) du→ 0.

Following the steps of the previous proof, it is enough to show that

ε2/β−da−1
h λdpKεh → cβ,d. (4.10)

Since
∫
|u|>hb p2h(u) du→ 0, Lemma 5.5 yields

ε2/β−d(βh)−1/β1{(Bhb

0 )c}λdpεh → 0, ε2/β−da−1
h 1{(Bhb

0 )c}λdpKεh → 0.

By (5.12), to prove (4.10) it suffices to show that

ε2/β−d(βh)−1/β1{Bhb

0 }λdpεh − ε2/β−da−1
h 1{Bhb

0 }λdpKεh → 0,

or equivalently (by (4.7) and (4.8)),

ε2/β−d
(
P

1{Bhb0 }λd
{ξhBε

0 > 0} − P
1{Bhb0 }λd

{ξKh Bε
0 > 0}

)
→ 0.

By Theorem 25.22 of [24] and (4.1),

ε2/β−d
(
P

1{Bhb0 }λd
{ξhBε

0 > 0} − P
1{Bhb0 }λd

{ξKh Bε
0 > 0}

)
≤ ε2/β−dE

1{Bhb0 }λd
Nξ

(
[0, h], (K,∞),Rd

)
= ε2/β−dE

1{Bhb0 }λd
N̂ξ

(
[0, h], (K,∞),Rd

)
=
_

ε2/β−dE

∫ h

0

‖ξs‖ds =
_
ε2/β−dh1+bd → 0. �
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4.5 Lebesgue approximations

To prove the Lebesgue approximation for a (2, β)-process ξ in Rd with β < 1 and

d > 2/β, we begin with the Lebesgue approximation for ξK , the truncated K-process of

ξ. Since ξ and ξK agree asymptotically as K → ∞, we have thus proved the Lebesgue

approximation for ξ. Write c̃β,d = 1/cβ,d for convenience, where cβ,d is such as in Lemma

4.14. Recall that ξKεt = (ξKt )ε, the ε-neighborhood measure of ξKt .

Lemma 4.17 Let ξK be the truncated K-process of a (2, β)-process ξ in Rd with β < 1 and

d > 2/β. Fix any µ ∈ M̂d and t > 0. Then under Pµ, we have as ε→ 0:

c̃β,d ε
2/β−d ξKεt

w→ ξKt a.s.

Proof: We follow the proof of Theorem 7.1 in [25]. Fix any f ∈ Cd
K . Write ηKih for the

subclusters of ξKt of age h. Since the ancestors of ξKt at time s = t− h form a Cox process

directed by ξKs /ah, Lemma 5.7(i) yields

Eµ

[∑
i
ηKiεh f

∣∣∣ξKs ] = a−1
h ξKs (pKεh ∗ f),

and so by Lemma 5.7(ii)

Eµ

∣∣∣∑
i
ηKiεh f − a−1

h ξKs (pKεh ∗ f)
∣∣∣2 = EµVar

[∑
i
ηKiεh f

∣∣∣ξKs ]
<
_

ah ε
d−2/β hd/2 ‖f‖2Eµ‖ξKs /ah‖

≤ εd−2/β hd/2 ‖f‖2 ‖µ‖,

where the last inequality follows from Eµ‖ξKs ‖ ≤ ‖µ‖. Combining with Lemma 5.8 gives

Eµ
∣∣ ξKεt f − a−1

h ξKs (pKεh ∗ f)
∣∣

≤ Eµ

∣∣∣ ξKεt f −
∑

i
ηKiεh f

∣∣∣+ Eµ

∣∣∣∑
i
ηKiεh f − a−1

h ξKs (pKεh ∗ f)
∣∣∣
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<
_

ε2(d−2/β) h1−d/2 ‖f‖+ ε1/2(d−2/β) hd/4 ‖f‖

= εd−2/β
(
εd−2/βh1−d/2 + ε−1/2(d−2/β)hd/4

)
‖f‖.

Let c satisfy

(d− 2/β) + (−d/2 + 1/2)c = 0. (4.11)

Clearly c ∈ (0, 2). Taking ε = rn for a fixed r ∈ (0, 1) and h = εc = rcn, and writing

sn = t− h = t− rcn, we obtain

Eµ
∑
n

rn(2/β−d)
∣∣ ξKrnt f − a−1

rcn ξ
K
sn(pKr

n

rcn ∗ f)
∣∣

<
_

∑
n

(
r[(d−2/β)+(−d/2+1)c]n + r[−1/2(d−2/β)+(d/4)c]n

)
‖f‖ <∞,

since (d− 2/β) + (−d/2 + 1)c > 0 and −1/2(d− 2/β) + (d/4)c > 0 by (4.11). This implies

rn(2/β−d)
∣∣ ξKrnt f − a−1

rcn ξ
K
sn(pKr

n

rcn ∗ f)
∣∣→ 0 a.s. Pµ. (4.12)

Now we write

∣∣ ε2/β−d ξKεt f − cβ,d ξKt f
∣∣

≤ ε2/β−d ∣∣ ξKεt f − a−1
h ξKs (pKεh ∗ f)

∣∣+ cβ,d |ξKs f − ξKt f |

+ ‖ξKs ‖
∥∥ ε2/β−d a−1

h (pKεh ∗ f)− cβ,df
∥∥ .

For the last term, we first fix b = 1/2− 1/d, then apply Lemma 4.16. Noting that by (4.11)

(2/β − d) + (1 + bd)c = (2/β − d) + (d/2)c > 0,

we get by Lemma 4.16 ∥∥ ε2/β−d a−1
h (pKεh ∗ f)− cβ,df

∥∥→ 0
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along the sequence (rn). Using (5.13) and the a.s. weak continuity of ξK at the fixed time t, we

see that the right-hand side tends a.s. to 0 as n→∞, which implies ε2/β−d ξKεt f → cβ,d ξ
K
t f

a.s. as ε→ 0 along the sequence (rn) for any fixed r ∈ (0, 1). Since this holds simultaneously,

outside a fixed null set, for all rational r ∈ (0, 1), the a.s. convergence extends by Lemma

2.3 in [25] to the entire interval (0, 1).

Applying this result to a countable, convergence-determining class of functions f (cf.

Lemma 3.2.1 in [5]), we obtain the required a.s. vague convergence. Since µ is finite, the

(2, β)-process ξt has a.s. compact support (cf. Theorem 9.3.2.2 of [5] and the proof of Theo-

rem 1.2 in [6]). By Lemma 4.2, ξKt also has a.s. compact support, and so the a.s. convergence

remains valid in the weak sense. �

Now we may prove our main result, the Lebesgue approximation of (2, β)-processes.

Again, we write c̃β,d = 1/cβ,d for convenience, where cβ,d is such as in Lemma 4.14. Also

recall that ξεt = (ξt)
ε denotes the ε-neighborhood measure of ξt. For random measures ξn

and ξ on Rd, ξn
v→ξ (or

w→) in L1 means that ξnf → ξf in L1 for all f in Cd
K (or Cd

b ).

Theorem 4.18 Let the (2, β)-process ξ in Rd with β < 1 and d > 2/β be locally finite under

Pµ, and fix any t > 0. Then under Pµ, we have as ε→ 0:

c̃β,d ε
2/β−d ξεt

v→ξt a.s. and in L1.

This remains true in the weak sense when µ is finite. The weak version holds even for the

clusters ηt when ‖µ‖ = 1.

Proof: For a finite initial measure µ, by Lemma 4.17 and Lemma 4.1 we get as ε→ 0

c̃β,d ε
2/β−d ξεt

w→ξt a.s.
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For a general σ-finite measure µ on Rd with µpt < ∞ for all t > 0, write µ = µ′ + µ′′ for

a finite µ′, and let ξ = ξ′ + ξ′′ be the corresponding decomposition of ξ into independent

components with initial measures µ′ and µ′′. Fixing an r > 1 with supp f ⊂ Br−1
0 and using

the result for finite µ, we get a.s. on {ξ′′tBr
0 = 0}

ε2/β−d ξεt f = ε2/β−d ξ′εt f → cβ,d ξ
′
tf = cβ,d ξtf.

As µ′ ↑ µ, we get by Lemma 4.9

Pµ{ξ′′tBr
0 = 0} = Pµ′′{ξtBr

0 = 0} → 1,

and the a.s. convergence extends to µ. As in the proof of Lemma 4.17, we can obtain the

required a.s. vague convergence.

To prove the convergence in L1, we note that for any f ∈ Cd
K

ε2/β−dEµξ
ε
t f = ε2/β−d

∫
Pµ{ξtBε

x > 0} f(x) dx

→
∫
cβ,d (µ ∗ pt)(x) f(x) dx = cβ,dEµξtf, (4.13)

by Theorem 4.15. Combining this with the a.s. convergence under Pµ and using Proposition

4.12 in [24], we obtain Eµ|ε2/β−d ξεt f − cβ,d ξtf | → 0. For finite µ, (4.13) extends to any

f ∈ Cd
b by dominated convergence based on Lemmas 5.4 and 5.5(i), together with the fact

that λd(µ ∗ pt) = ‖µ‖ <∞ by Fubini’s theorem.

To extend the Lebesgue approximation to the individual clusters ηt, let ζ0 denote the

process of ancestors of ξt at time 0, and note that

Px{ηt ∈ ·} = Pδx [ξt ∈ ·|‖ζ0‖ = 1],
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where Pδx{‖ζ0‖ = 1} = (βt)−1/βe−(βt)−1/β
> 0. The a.s. convergence then follows from the

corresponding statement for ξt. Since

Pµ{ηt ∈ ·} =

∫
µ(dx)Px{ηt ∈ ·},

the a.s. convergence under any Pµ with ‖µ‖ = 1 also follows. To obtain the weak L1-

convergence in this case, we note that for f ∈ Cd
b ,

ε2/β−dEµη
ε
t f = ε2/β−d

∫
Pµ{ηtBε

x > 0} f(x) dx

→ cβ,d (βt)1/β

∫
(µ ∗ pt)(x) f(x) dx = cβ,dEµηtf,

by dominated convergence based on Lemma 5.5(i) and Theorem 4.15. �

As in Corollary 7.2 of [25], for the intensity measures in Theorem 4.18, we have even

convergence in total variation.

Corollary 4.19 Let ξ be a (2, β)-process in Rd with β < 1 and d > 2/β. Then for any finite

µ and t > 0, we have as ε→ 0:

∥∥ ε2/β−dEµξ
ε
t − cβ,dEµξt

∥∥→ 0.

This remains true for the clusters ηt, and it also holds locally for ξt whenever ξ is locally

finite under Pµ.

Finally let us give a detailed explanation of the deterministic distribution property

of (2, β)-processes. Here the deterministic distribution property has two aspects. Define

deterministic functions Φε,Φ similar to those defined on page 309 of [41], Theorem 4.18

shows that a.s.

Φ(supp ξt) = ξt,
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so a.s. ξt is a deterministic function of its support supp ξt. This is the first aspect of the

deterministic distribution property. Now the second aspect. Since λd(∂Br
x) = 0, we get

ξt(∂B
r
x) = 0 a.s. by noting Eµξt = (µ ∗ pt) · λd. With the help of Portmanteau Theorem for

finite measures, Theorem 4.18 shows that a.s. for all open balls B with rational centers and

rational radius,

lim
ε→0

Φε(supp ξt)(B) = ξt(B),

so the construction of ξt(ω) from its support supp ξt(ω) is the same everywhere for any fixed

ω outside a null set.
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Chapter 5

Lebesgue Approximation of Superprocesses with a Regularly Varying Branching Mechanism

5.1 Introduction

Superprocesses are certain measure-valued Markov processes ξ = (ξt), whose distri-

butions can be characterized by two components: the branching mechanism specified by

a function Φ(v), and the spatial motion usually given by a Markov process X. If X is a

Feller process in Rd with generator L, then the laplace functional Eµ exp(−ξtf) satisfies

Eµ[exp(−ξtf)|ξs] = exp(−ξsvt−s) where vt(x) is the unique nonnegative solution of the so-

called evolution equation v̇ = Lv−Φ(v) with initial condition v0 = f . We call this superpro-

cess an (L,Φ)-superprocess (or (L,Φ)-process for short). For α ∈ (0, 2] and β ∈ (0, 1], if X is

a rotation invariant α-stable Lévy process in Rd with generator 1
2
∆α and Φ(v) = v1+β, we get

a superprocess corresponding to the PDE v̇ = 1
2
∆αv−v1+β. We call it an (α, β)-superprocess

((α, β)-process for short), which is just a (1
2
∆α, v

1+β)-superprocess in our previous nota-

tion. General surveys of superprocesses include the excellent monographs and lecture notes

[5, 15, 17, 32, 35, 42].

For any measure µ on Rd and constant ε > 0, write µε for the restriction of Lebesgue

measure λd to the ε-neighborhood of suppµ. For a (2,1)-process ξ in Rd, Tribe [48] showed

that ε2−d ξεt
w→ cd ξt a.s. as ε → 0 for fixed time t > 0 when d ≥ 3, where

w→ denotes weak

convergence. Perkins [41] improved Tribe’s result by showing that the Lebesgue approxima-

tion actually holds for all time t > 0 simultaneously. Kallenberg [25] proved the Lebesgue

approximation of 2-dimensional (2,1)-processes. In [22], we showed that, for any (2, β)-

process ξ in Rd with β < 1 and d > 2/β, ε2/β−d ξεt
w→ cβ,d ξt a.s. as ε → 0 for fixed time

t > 0. In particular, the Lebesgue approximation result implies that the superprocess ξt

distributes its mass over supp ξt in a deterministic manner. See the end of [22] for a detailed
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explanation of this deterministic distribution property. However, for any (α, β)-process ξ

with α < 2, supp ξt = Rd or ∅ a.s. (cf. [18, 40]), and so the corresponding property fails.

From all these Lebesgue approximation results, we raise the natural conjecture: Lebesgue

approximation holds for superprocesses with Brownian spatial motion and any “reasonable”

branching mechanism.

As a first step to prove this general conjecture, in this chapter we study the Lebesgue ap-

proximation of superprocesses with Brownian spatial motion and a regularly varying branch-

ing mechanism. For a precise description of the branching mechanism we consider in this

chapter, refer to the beginning of Section 3. The stable branching mechanism Φ(v) = v1+β

with β ∈ (0, 1] is a special case of the regularly varying branching mechanism we consider

here. Our main result in this chapter is Theorem 5.5, where we prove that the Lebesgue

approximation still holds for these more general superprocesses. Specifically, m̃(ε) ξεt
w→ ξt

a.s. as ε → 0 for fixed time t > 0, where m(ε) is a suitable normalizing function. In par-

ticular, if the branching mechanism is the stable one, we may recover all previous Lebesgue

approximation results for fixed time t > 0.

Although the previous conjecture may seems very natural, technically we have limited

tools to support some rigorous arguments needed. One such boundary is imposed by the

availability of the very important cluster representation of superprocesses. Luckily the super-

processes we consider here do have the cluster representation. Another boundary is imposed

by the availability of the lower and upper bounds of the hitting probabilities Pµ{ξtBε
x > 0},

which is fundamental for the Lebesgue approximation. The restriction on the branching

mechanism we consider actually follows from Theorem 2.3 in [9], which is exactly the lower

and upper bounds of the hitting probabilities.

Armed with the hitting estimates, then we are able to overcome the main difficulty in

this chapter, that is, to obtain an asymptotic result of the hitting probabilities Pµ{ξtBε
x > 0},

which is Theorem 5.11. Note that for a (2, β)-process, such a result is obtained by using the

strong scaling property. Since the regularly varying branching mechanism we consider here
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has much weaker scaling property, we then have to rely on only the cluster representation and

the hitting estimations. Also the form of the asymptotic result of the hitting probabilities is

not clear in our general setting. By adapting an idea in Section 5 of [25], we can get the correct

form of our asymptotic result, which determines the form of the Lebesgue approximation.

This chapter is organized as follows. In Section 2 we review the truncation of super-

processes in a more general setting. In Section 3, we develop some lemmas about hitting

bounds and neighborhood measures of the more general superprocesses. In Section 4, we

derive some asymptotic results of these hitting probabilities. Finally in Section 5 we state

and prove the Lebesgue approximation of superprocesses with a regularly varying branching

mechanism and their truncated processes. This general result contains all previous Lebesgue

approximation of superprocesses as special cases.

5.2 Truncation of superprocesses

In this section we discuss the truncation of superprocesses with a general branching

mechanism, due to their independent interests.

We consider a general branching mechanism function Φ defined on R+ as

Φ(v) = av + bv2 +

∫
(0,∞)

(e−rv − 1 + rv)π(dr),

where b ≥ 0 and π is a measure on (0,∞) such that
∫∞

0
(r ∧ r2)π(dr) <∞.

It is well known that the (L, 1)-process has weakly continuous sample paths. By contrast,

when π 6= 0, the corresponding superprocess ξ has only weakly rcll sample paths with jumps

of the form ∆ξt = rδx, for some t > 0, r > 0, and x ∈ Rd. Let

Nξ(dt, dr, dx) =
∑

(t,r,x): ∆ξt=rδx

δ(t,r,x).
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Clearly the point process Nξ on R+ × R+ × Rd records all information about the jumps of ξ.

By the proof of Theorem 6.1.3 in [5], we know that Nξ has compensator measure

N̂ξ(dt, dr, dx) = (dt)π(dr)ξt(dx). (5.1)

Due to all the “big” jumps, ξt has infinite variance. Some methods for (L, 1)-processes, which

rely on the finite variance of the processes, are not directly applicable to superprocesses with

a branching mechanism having π 6= 0.

Mt(f) = M c
t (f) +Md

t (f) = ξtf − ξ0f −
∫ t

0

ξs(Lf)ds,

ξtf = ξ0f +

∫ t

0

ξs(Lf)ds+M c
t (f) +Md

t (f)

where M c
t (f) is a continuous martingale with quadratic variation process

[M c(f)]t =

∫ t

0

ξs(bf
2)ds, (5.2)

and Md
t (f) is a purely discontinuous martingale, which can be written as follows

Md
t (f) =

∫ t

0

∫
(0,∞)

∫
Rd
rf(x)N̂ξ(dt, dr, dx)

=

∫ t

0

∫
(0,K]

∫
Rd
rf(x)N̂ξ(dt, dr, dx) +

∫ t

0

∫
(K,∞)

∫
Rd
rf(x)N̂ξ(dt, dr, dx)

=

∫ t

0

∫
(0,K]

∫
Rd
rf(x)N̂ξ(dt, dr, dx)

+

∫ t

0

∫
(K,∞)

∫
Rd
rf(x)Nξ(dt, dr, dx)− π(K,∞)

∫ t

0

ξsfds

Eµ[exp(−ξKt f)|ξKs ] = exp(−ξKs vt−s) (5.3)
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v̇ = Lv − ΦK(v), (5.4)

where ΦK = (a− π(K,∞))v + bv2 +
∫

(0,K]
(e−rv − 1 + rv)π(dr)

ξKt f = ξK0 f +

∫ t

0

ξKs (Lf)ds+M c
t (f) +Md

t (f)− π[K,∞)

∫ t

0

ξKs fds

where M c
t (f) is a continuous martingale with quadratic variation process

[M c(f)]t =

∫ t

0

ξKs (bf 2)ds, (5.5)

and Md
t (f) is a purely discontinuous martingale, which can be written as follows

Md
t (f) =

∫ t

0

∫
(0,∞)

∫
Rd
rf(x)N̂ξK (dt, dr, dx)

=

∫ t

0

∫
(0,K)

∫
Rd
rf(x)N̂ξK (dt, dr, dx)

NξK (dt, dr, dx) =
∑

(t,r,x): ∆ξKt =rδx

δ(t,r,x).

N̂ξK (dt, dr, dx) = (dt)1(0,K)(r)π(dr)ξKt (dx). (5.6)

In [38], Mytnik and Villa introduced a truncation method for (α, β)-processes with

β < 1, which can be used to study (α, β)-processes with β < 1, especially to extend results

of (α, 1)-processes to (α, β)-processes with β < 1. Specifically, for the (α, β)-process ξ with

β < 1, we define the stopping time τK = inf{t > 0 : ‖∆ξt‖ > K} for any constant K > 0.

Clearly τK is the time when ξ has the first jump greater than K. For any finite initial

measure µ, they proved that one can define ξ and a weakly rcll, measure-valued Markov

process ξK on a common probability space such that ξt = ξKt for t < τK . Intuitively, ξK

euqals ξ minus all masses produced by jumps greater than K along with the future evolution
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of those masses. In this paper, we call ξK the truncated K-process of ξ. Since all “big” jumps

are omitted, ξKt has finite variance. They also proved that ξKt and ξt agree asymptotically

as K → ∞. We give a different proof of this result, since similar ideas will also be used at

several crucial stages later. We write Pµ{ξ ∈ ·} for the distribution of ξ with initial measure

µ.

Using the same proof of Lemma 1 in [38], we can construct ξ and ξK on a common

probability space such that ξt(ω) = ξKt (ω) for t < τK(ω). This confirms our intuition that

ξK euqals ξ minus all masses produced by jumps greater than K along with the future

evolution of those masses.

Lemma 5.1 We can define ξ and ξK on a common probability space such that:

(i) ξ is an (α, β)-process with β < 1 and a finite initial measure µ, and ξK is its truncated

K-process,

(ii) ξt(ω) = ξKt (ω) for t < τK(ω).

Now we can prove that ξKt and ξt agree asymptotically as K → ∞. We choose to give

a complete proof of this result, since similar ideas will also be used at several crucial stages

later. We write Pµ{ξ ∈ ·} for the distribution of ξ with initial measure µ.

Lemma 5.2 Fix any finite µ and t > 0. Then Pµ{τK > t} → 1 as K →∞.

Proof: If τK ≤ t, then ξ has at least one jump greater than K before time t. Noting

that Nξ([0, t], (K,∞),Rd) is the number of jumps greater than K before time t, we get by

Theorem 25.22 of [24] and (4.1),

Pµ{τK ≤ t} ≤ EµNξ

(
[0, t], (K,∞),Rd

)
= EµN̂ξ

(
[0, t], (K,∞),Rd

)
=
_

π[K,∞)Eµ

∫ t

0

‖ξs‖ds = t‖µ‖π[K,∞)→ 0
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as K →∞, where the last equation holds by Eµ‖ξs‖ = ‖µ‖. �

Using the same proof of Lemma 2.2 in [22], we can prove that ξKt (ω) ≤ ξt(ω) for any t

and ω. So indeed, ξK is a “truncation” of ξ.

Lemma 5.3 We can define ξ and ξK on a common probability space such that:

(i) ξ is an (α, β)-process with β < 1 and a finite initial measure µ, and ξK is its truncated

K-process,

(ii) ξt(ω) ≥ ξKt (ω) for any t and ω,

(iii) ξt(ω) = ξKt (ω) for t < τK(ω).

5.3 Hitting bounds

First we specify the regularly varying branching mechanism we consider for the Lebesgue

approximation. We consider the increasing function Φ defined on R+ by

Φ(v) = bv2 +

∫
(0,∞)

2rv2

1 + 2rv
π′(dr),

where b ≥ 0 and π′ is a measure on (0,∞) such that
∫

(0,∞)
(1∧r)π′(dr) <∞. To avoid trivial

cases, we assume either b > 0 or π′((0,∞)) = ∞. The function Φ can be expressed in the

usual form for branching mechanism functions,

Φ(v) = bv2 +

∫
(0,∞)

(e−rv − 1 + rv)π(dr),

where π(dr) = [
∫

(0,∞)
e−r/(2u)/(4u2)π′(du)]dr satisfies

∫
(0,∞)

(r ∧ r2)π(dr) < ∞. Notice that

if we take b = 0 and π′(dr) = c′r−(1+β)dr then we get the stable case Φ(v) = cv1+β.

We consider the following two assumptions:
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(A1) The function Φ is regularly varying at ∞ with index 1 + β where β ∈ (0, 1]; that

is to say,

lim
u→∞

Φ(ru)

Φ(u)
= r1+β for every r > 0

(A2) lim supr→0+ r
−(1+β)Φ(r) <∞.

The stable case Φ(v) = v1+β satisfies all these assumptions.

The Lebesgue approximation depends crucially on estimates of the hitting probability

Pµ{ξtBε
0 > 0}. In this section, we first estimate Pµ{ξtBε

0 > 0} and Pµ{ξKt Bε
0 > 0}. Then

we use these estimates to study multiple hitting and neighborhood measures of the clusters

ηKh associated with the truncated K-process ξK . We begin with a well-known relationship

between the hitting probabilities of superprocesses and their clusters, which can be proved

as in Lemma 4.1 of [25].

Lemma 5.4 Let the (α, β)-process ξ in Rd with associated clusters ηt be locally finite under

Pµ, let ξK be its truncated K-process with associated clusters ηKt , and fix any B ∈ Bd. Then

Pµ{ηtB > 0} = − at log (1− Pµ{ξtB > 0}),

Pµ{ξtB > 0} = 1− exp
(
−a−1

t Pµ{ηtB > 0}
)
,

Pµ{ηKt B > 0} = − aKt log (1− Pµ{ξKt B > 0}),

Pµ{ξKt B > 0} = 1− exp (−(aKt )−1Pµ{ηKt B > 0}).

In particular, Pµ{ξtB > 0} ∼ a−1
t Pµ{ηtB > 0} and Pµ{ξKt B > 0} ∼ (aKt )−1Pµ{ηKt B > 0} as

either side tends to 0.

Upper and lower bounds of Pµ{ξtBε
0 > 0} have been obtained by Delmas [9], using the

Brownian snake. However, in this paper we need the following improved upper bound.

Lemma 5.5 Let ηt be the clusters of a (2, β)-process ξ in Rd with β < 1 and d > 2/β, let

ηKt be the clusters of ξK, the truncated K-process of ξ, and consider a σ-finite measure µ on

Rd. Then for 0 < ε ≤
√
t,
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(i) l2(ε)µpt′ <_ ε2/β−da−1
t Pµ{ηtBε

0 > 0} <
_
l1(ε)µp2t, where t′ = βt/(1 + β),

(ii) ε2/β−d(aKt )−1Pµ{ηKt Bε
0 > 0} <

_
l1(ε)µp2t.

Proof: (i) Follow the proof of Lemma 6.3(i) in [25], then use Lemma 5.5(ii).

(ii) This is obvious from (i), Lemma 4.2, and Lemma 5.4. �

As in [25] we need to estimate the probability that a ball in Rd is hit by more than one

subcluster of the truncated K-process ξK . This is where the truncation of ξ is needed.

Lemma 5.6 Fix any K > 0. Let ξK be the truncated K-process of a (2, β)-process ξ in Rd

with β < 1 and d > 2/β. For any t ≥ h > 0 and ε > 0, let κKεh be the number of h-clusters

of ξKt hitting Bε
0 at time t. Then for ε2 ≤ h ≤ t,

Eµκ
Kε
h (κKεh − 1) <

_
l21(ε)ε2(d−2/β)

(
h1−d/2µpt + (µp2t)

2
)
.

Proof: Follow Lemma 4.4 in [25], then use Lemma 3 of [38] and Lemma 5.5(ii). �

Now we consider the neighborhood measures of the clusters ηKh associated with the trun-

cated K-process ξK . For any measure µ on Rd and constant ε > 0, we define the associated

neighborhood measure µε as the restriction of Lebesgue measure λd to the ε-neighborhood of

suppµ, so that µε has Lebesgue density 1{µBε
x > 0}. Let pK,εh (x) = Px{ηKh Bε

0 > 0}, where

the ηKh are clusters of ξK . Write pK,εh (x) = pKεh (x) and (ηK,ih )ε = ηKiεh for convenience.

Lemma 5.7 Let ξK be the truncated K-process of a (2, β)-process ξ in Rd with β < 1 and

d > 2/β. Let the ηKih be conditionally independent h-clusters of ξK, rooted at the points of a

Poisson process ζ with Eζ = µ. Fix any measurable function f ≥ 0 on Rd. Then,

(i) Eµ
∑

i η
Kiε
h = (µ ∗ pKεh ) · λd ,

(ii) EµVar
[∑

iη
Kiε
h f |ζ

]
<
_
l1(ε)aKh ε

d−2/βhd/2 ‖f‖2‖µ‖ for ε2 ≤ h.
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Proof: (i) Follow the proof of Lemma 6.2(i) in [25].

(ii)Follow the proof of Lemma 4.4(ii) in [22]. �

We also need to estimate the overlap between subclusters.

Lemma 5.8 Let ξK be the truncated K-process of a (2, β)-process ξ in Rd with β < 1 and

d > 2/β. For any fixed t > 0, let ηKih denote the subclusters in ξK of age h > 0. Fix any

µ ∈ M̂d. Then as ε2 ≤ h→ 0,

Eµ

∥∥∥∑
i
ηKiεh − ξKεt

∥∥∥ <
_
l21(ε)ε2(d−2/β)h1−d/2.

Proof: Follow the proof of Lemma 6.3(i) in [25], then use Lemma 5.5(ii). �

5.4 Hitting asymptotics

Write pεh(x) = Px{ηhBε
0 > 0} and pK,εh (x) = Px{ηKh Bε

0 > 0}, where ηh and ηKh denote

an h-cluster associated with the superprocess ξ in Rd and its truncated K-process ξK re-

spectively. Recall that λdpεh = Pλd{ηhBε
0 > 0}. Write pKεh = pK,εh for convenience. For the

functions pεh and pKεh , we have the following basic asymptotic property. Since we do not have

a lower bound for Px{ηKh Bε
0 > 0} in Lemma, this asymptotic property is crucial to us by

showing that essentially Px{ηhBε
0 > 0} and Px{ηKh Bε

0 > 0} share the same lower bound.

Lemma 5.9 As 0 < ε2 � h→ 0 with ε2/β−d−b′h1+bd → 0 for some b′ > 0 and b ∈ (0, 1/2),

a−1
h λdpεh ∼ (aKh )−1λdpKεh .

Proof: We just need to show that

a−1
h λdpεh − (aKh )−1λdpKεh

a−1
h λdpεh

→ 0.
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By Lemma 5.5(i), we get

a−1
h λdpεh ≥ l2(ε)λdph′ε

d−2/β = l2(ε)εd−2/β,

a−1
h P

1{(Bhb0 )c}λd{ηhB
ε
0 > 0} ≤ l1(ε)1{(Bhb

0 )c}λdphεd−2/β (5.7)

= l1(ε)εd−2/β

∫
|x|≥hb

ph(x)dx (5.8)

≤ l1(ε)εd−2/βhc, (5.9)

for some c > 0. Since ε2/β−d−b′h1+bd → 0, we get

a−1
h P

1{(Bhb0 )c}λd{ηhB
ε
0 > 0}

a−1
h λdpεh

→ 0.

Similarly, we get
(aKh )−1P

1{(Bhb0 )c}λd{η
K
h B

ε
0 > 0}

a−1
h λdpεh

→ 0.

By Lemma 5.4, finally it suffices to show that

P
1{Bhb0 }λd

{ξhBε
0 > 0} − P

1{Bhb0 }λd
{ξKh Bε

0 > 0}

a−1
h λdpεh

→ 0 (5.10)

By Theorem 25.22 of [24] and (4.1),

ε2/β−d
(
P

1{Bhb0 }λd
{ξhBε

0 > 0} − P
1{Bhb0 }λd

{ξKh Bε
0 > 0}

)
≤ ε2/β−dE

1{Bhb0 }λd
Nξ

(
[0, h], (K,∞),Rd

)
= ε2/β−dE

1{Bhb0 }λd
N̂ξ

(
[0, h], (K,∞),Rd

)
=
_

ε2/β−dE

∫ h

0

‖ξs‖ds =
_
ε2/β−dh1+bd → 0.

�
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Define normalizing functions m(ε) by

m(ε) = a−1
εc λ

dpεεc (5.11)

with a fixed c satisfying

(d− 2/β) + (−d/2 + 1/2)c = 0. (5.12)

Clearly c ∈ (0, 2).

Lemma 5.10 Fix any bounded, uniformly continuous function f ≥ 0 on Rd. As ε→ 0,

∥∥m̃(ε)(aKεr)
−1 (pKεεr ∗ f)− f

∥∥→ 0.

The result holds uniformly over any class of uniformly bounded and equicontinuous functions

f ≥ 0 on Rd.

Proof: By Lemma 5.9, we get

m̃(ε)(aKεr)
−1λd p

Kε
εr → 1.

Defining p̂Kεh = pKεh /λdpKεh , we then only need to show that ‖p̂Kεh ∗ f − f‖ → 0. Now follow

the proof of Lemma 4.4(i) in [22] and use Lemma 5.5(ii). �

Theorem 5.11 Let ξ be a superprocess in Rd. Then for any t > 0 and bounded µ, we have

as ε→ 0 ∥∥m̃(ε)Pµ{ξKt Bε· > 0} − e−bKt(µ ∗ pt)
∥∥→ 0,

‖m̃(ε)Pµ{ξtBε· > 0} − µ ∗ pt ‖ → 0.

Proof:

Pµ{ξKt Bε· > 0} ≈ Eµ(ζKs ∗ pKεh ) = (aKh )−1Eµ(ξKs ∗ pKεh )
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= e−bKs(aKh )−1(µ ∗ ps ∗ pKεh ) ≈ e−bKsm(ε)(µ ∗ ps)

≈ e−bKtm(ε)(µ ∗ pt).

Pµ{ξtBε
x > 0} ≤ Eµ(ζs ∗ pεh)

‖m̃(ε)Eµ(ζs ∗ pεh)− µ ∗ pt ‖ → 0,

Pµ{ξtBε
x > 0} ≥ Pµ{ξKt Bε

x > 0}

‖e−bKt(µ ∗ pt)− µ ∗ pt‖ → 0

as K →∞ since bK → 0 �

5.5 Lebesgue approximations

Same as in Section 5 of [22], here we begin with the Lebesgue approximation for ξK , the

truncated K-process of ξ. Then we get the Lebesgue approximation for ξ immediately by

Lemma 5.2. Write m̃(ε) = 1/m(ε) for convenience, where m(ε) is defined in (5.11). Recall

that ξKεt = (ξKt )ε, the ε-neighborhood measure of ξKt . For random measures ξn and ξ on Rd,

ξn
w→ ξ in L1 means that ξnf → ξf in L1 for all f in Cd

b .

Theorem 5.12 Let ξK be the truncated K-process of a superprocess ξ in Rd satisfying as-

suptions (A1) and (A2) with β < 1 and d > 2/β. Fix any µ ∈ M̂d and t > 0. Then under

Pµ, we have as ε→ 0:

m̃(ε) ξKεt
w→ ξKt a.s. and in L1
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Proof: Fix any f ∈ Cd
K . We first prove that m̃(ε) ξKεt f → ξKt f a.s. as ε → 0. In order

to do that, we only need to show that for any sequence εn → 0 as n → ∞, we can pick a

subsequence (still denoted by εn) such that m̃(εn) ξKεnt f → ξKt f a.s. To do this we fix an

r ∈ (0, 1). Then for any given sequence εn → 0 as n → ∞, we pick the subsequence εn

satisfying εn ≤ rn.

We follow the proof of Lemma 5.1 in [22]. Write ηKih for the subclusters of ξKt of age h.

Since the ancestors of ξKt at time s = t− h form a Cox process directed by ξKs /a
K
h , Lemma

5.7(i) yields

Eµ

[∑
i
ηKiεh f

∣∣∣ξKs ] = (aKh )−1ξKs (pKεh ∗ f),

and so by Lemma 5.7(ii)

Eµ

∣∣∣∑
i
ηKiεh f − (aKh )−1 ξKs (pKεh ∗ f)

∣∣∣2 = EµVar
[∑

i
ηKiεh f

∣∣∣ξKs ]
<
_

l1(ε)aKh ε
d−2/β hd/2 ‖f‖2Eµ‖ξKs /aKh ‖

≤ l1(ε)εd−2/β hd/2 ‖f‖2 ‖µ‖,

where the last inequality follows from Eµ‖ξKs ‖ ≤ ‖µ‖. Combining with Lemma 5.8 gives

Eµ
∣∣ ξKεt f − (aKh )−1 ξKs (pKεh ∗ f)

∣∣
≤ Eµ

∣∣∣ ξKεt f −
∑

i
ηKiεh f

∣∣∣+ Eµ

∣∣∣∑
i
ηKiεh f − (aKh )−1 ξKs (pKεh ∗ f)

∣∣∣
<
_

l21(ε)ε2(d−2/β) h1−d/2 ‖f‖+ l
1/2
1 (ε)ε1/2(d−2/β) hd/4 ‖f‖

= εd−2/β
(
l21(ε)εd−2/βh1−d/2 + l

1/2
1 (ε)ε−1/2(d−2/β)hd/4

)
‖f‖.

Taking hn = εcn, where c is defined in (5.12) and writing sn = t− hn = t− εcn, we obtain

Eµ
∑
n

m̃K(εn)
∣∣ ξKεnt f − a−1

hn
ξKsn(pKεnhn

∗ f)
∣∣

<
_

∑
n

(
l2(rn)l21(rn)r[(d−2/β)+(−d/2+1)c]n + l2(rn)l

1/2
1 (rn)r[−1/2(d−2/β)+(d/4)c]n

)
‖f‖ <∞,
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since (d − 2/β) + (−d/2 + 1)c > 0 and −1/2(d − 2/β) + (d/4)c > 0 by (5.12). Note that

in the previous inequality we also used the fact that the subsequence εn satisfying εn ≤ rn.

The inequality above about the expectations clearly implies

m̃K(εn)
∣∣ ξKεnt f − a−1

hn
ξKsn(pKεnhn

∗ f)
∣∣→ 0 a.s. Pµ. (5.13)

Now we write

∣∣ m̃K(ε) ξKεt f − ξKt f
∣∣

≤ m̃K(ε)
∣∣ ξKεt f − (aKh )−1 ξKs (pKεh ∗ f)

∣∣+ |ξKs f − ξKt f |

+ ‖ξKs ‖
∥∥ m̃K(ε) a−1

h (pKεh ∗ f)− f
∥∥ .

For the last term, we first fix b = 1/2− 1/d, then apply Lemma 4.16. Noting that by (4.11)

(2/β − d) + (1 + bd)c = (2/β − d) + (d/2)c > 0,

we get by Lemma 4.16 ∥∥m̃K(ε)(aKh )−1 (pKεh ∗ f)− f
∥∥→ 0

along the sequence (rn). Using (5.13) and the a.s. weak continuity of ξK at the fixed time t, we

see that the right-hand side tends a.s. to 0 as n→∞, which implies ε2/β−d ξKεt f → cβ,d ξ
K
t f

a.s. as ε→ 0 along the sequence (rn) for any fixed r ∈ (0, 1). Since this holds simultaneously,

outside a fixed null set, for all rational r ∈ (0, 1), the a.s. convergence extends by Lemma

2.3 in [25] to the entire interval (0, 1).

Applying this result to a countable, convergence-determining class of functions f (cf.

Lemma 3.2.1 in [5]), we obtain the required a.s. vague convergence. Since µ is finite, the

(2, β)-process ξt has a.s. compact support (cf. Theorem 9.3.2.2 of [5] and the proof of Theo-

rem 1.2 in [6]). By Lemma 4.2, ξKt also has a.s. compact support, and so the a.s. convergence

86



remains valid in the weak sense. �

Now we may prove our main result, the Lebesgue approximation of superprocesses with

a regularly varying branching mechanism. Again, we write m̃(ε) = 1/m(ε) for convenience,

where m(ε) is defined in (5.11). Also recall that ξKεt = (ξKt )ε, the ε-neighborhood measure

of ξKt . For random measures ξn and ξ on Rd, ξn
w→ ξ in L1 means that ξnf → ξf in L1 for all

f in Cd
b .

Theorem 5.13 Let the superprocess ξ in Rd satisfy assuptions (A1) and (A2) with β < 1

and d > 2/β. Fix any µ ∈ M̂d and t > 0. Then under Pµ, we have as ε→ 0:

m̃(ε) ξεt
w→ ξt a.s. and in L1

Proof: by Theorem 5.12 and Lemma 5.2 we get as ε→ 0

m̃(ε) ξεt
w→ ξt a.s..

To prove the convergence in L1, we note that for any f ∈ Cd
b

m̃(ε)Eµξ
ε
t f = m̃(ε)

∫
Pµ{ξtBε

x > 0} f(x) dx

→
∫

(µ ∗ pt)(x) f(x) dx = Eµξtf, (5.14)

by Theorem 5.11. Combining this with the a.s. convergence under Pµ and using Proposition

4.12 in [24], we obtain Eµ|m̃(ε) ξεt f − ξtf | → 0. �

If ξ is a (2, 1)-process in Rd with d ≥ 3, then at = t. By (4) in [25], we get

m(ε) = ε−rλdpεεr ∼ ε−rcd ε
d−2εr = cd ε

d−2.
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So we recover the Lebesgue approximation of (2, 1)-processes, that is,

c̃d ε
2−d ξεt

w→ ξt a.s. and in L1.

Similarly, if ξ is a (2, β)-process in Rd with β < 1 and d > 2/β, then at = (βt)1/β. By (9) in

[22], we get

m(ε) = (βεr)−1/βλdpεεr ∼ cβ,d ε
d−2/β.

Again, we recover the Lebesgue approximation of (2, β)-processes, that is,

c̃β,d ε
2/β−d ξεt

w→ ξt a.s. and in L1.
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