BUILT-IN SELF-TEST OF PROGRAMMABLE RESOURCES IN
MICROCONTROLLER BASED SYSTEM-ON-CHIPS

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not
include proprietary or classified information.

John Sunwoo

Certificate of Approval:

Victor P. Nelson Charles E. Stroud, Chair
Professor Professor
Electrical and Computer Engineering Electrical and Computer Engineering

Thaddeus A. Roppel Stephen L. McFarland
Associate Professor Acting Dean
Electrical and Computer Engineering Graduate School
BUILT-IN SELF-TEST OF PROGRAMMABLE RESOURCES IN
MICROCONTROLLER BASED SYSTEM-ON-CHIPS

John Sunwoo

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of
Master of Science

Auburn, Alabama
Dec 16, 2005
 iii
BUILT-IN SELF-TEST OF PROGRAMMABLE RESOURCES IN
MICROCONTROLLER BASED SYSTEM-ON-CHIPS

John Sunwoo

Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at their expense.
The author reserves all publication rights.

 Signature of Author

 Date

 iv
VITA

John Sunwoo, son of Changshin and Jungjean Sunwoo, was born on November 14,
1980 in Gwangju, Korea. He graduated from High School Attached to Chosun University
in 1999. He graduated with a Bachelor of Science degree in Electrical Engineering with a
major in Computer Engineering at Auburn University in May 2003. After completion of
his undergraduate degree, he entered the graduate program in Electrical and Computer
Engineering at the same institute in August 2003. While in pursuit of his Master of
Science degree at Auburn University, he worked under the guidance of Dr. Charles E.
Stroud as a graduate student research assistant in the Auburn University Built-In Self-Test
(AUBIST) laboratory.
 v
THESIS ABSTRACT
BUILT-IN SELF-TEST OF PROGRAMMABLE RESOURCES IN
MICROCONTROLLER BASED SYSTEM-ON-CHIPS

John Sunwoo
Master of Science, Dec 16, 2005
(B.S.E.E, Auburn University, Alabama, 2003)
85 Typed Pages
Directed by Dr. Charles E. Stroud

System-on-Chip (SoC) implementations typically incorporate embedded Field
Programmable Gate Array (FPGA) cores to take advantage of the programmable logic
and routing resources provided by FPGAs. Testing the FPGA core typically requires
numerous configuration downloads to completely test the various modes of operation of
the programmable logic resources and the size of each configuration download file is
large due to large amount of programmable resources. However, the ability to perform
dynamic partial reconfiguration of the FPGA core from embedded processor core opens
new opportunities for testing the FPGA using Built-In Self-Test (BIST). This thesis
discusses the implementation of BIST for FPGA cores using partial dynamic
reconfiguration from the embedded processor. As a result, all external configuration
downloads are eliminated and replaced by one single processor program that programs
 vi
the FPGA core for BIST, executes the BIST sequence, retrieves the BIST results, and
executes diagnostic procedures to locate and identify faults detected by the BIST. Total
testing time is improved by as much as a factor of 45 and a configuration memory storage
requirement by as much as a factor of 83 by using dynamic partial reconfiguration
compared to the traditional approach that requires BIST configuration downloads for
every mode of operation of the programmable logic resources in the FPGA core of the
Atmel AT94K series SoCs.
 vii
ACKNOWLEDGMENTS

I am greatly indebted to Dr. Charles E. Stroud for his guidance and support during
this study. He helped me becoming a better engineer not only with his technical
assistance, but also with his moral support. Also, I would like to express sincere
appreciation to my fellow research colleagues Srinivas, Jonathan, Sudheer, Sachin and
Adam for their advice, concern and friendship. I reserve special thanks to Jinsung who
has given so much of her time for the completion of this thesis. Additional appreciation is
extended to my committee members Dr. Victor Nelson and Dr. Thaddeus Roppel for their
critical reading of the thesis and their helpful suggestions.
Finally, I would like to express my deepest gratitude to my parents, and brothers
(Jin and Nelson). Through their support, encouragement and love I found the strength to
pursue my goals.

 viii
Style manual or journal used: IEEE (Institute of Electrical and Electronic
Engineers) Journal style
Computer software used: Microsoft Office Word 2003, Microsoft Office Visio
2003
 ix
TABLE OF CONTENTS

LIST OF FIGURES ??????????????..????????????? xi
LIST OF TABLES ??????????..????????????????? xiii
CHAPTER ONE ??????????????..??????????????. 1
1.1 Overview of SoCs ??????????????????????........... 2
1.2 Overview of FPGA Core ????????????????????......... 3
1.3 SoC Testing ???????????????????????????.. 5
1.3.1 Overview of Built-In Self-Test ?????????????????.... 5
1.3.2 Merits of BIST ????????...????????????.............. 6
1.4 BIST for FPGAs ?????????????????????????.. 6
1.5 Thesis Statement ?????????????????????????.. 7
CHAPTER TWO ???????????????..????????????... 11
2.1 Architecture of Atmel AT94K Series FPSLIC SoCs ???????????.. 11
2.1.1 FPGA Core Architecture ???????????????????? 12
2.1.2 AVR Microcontroller Architecture ????????????????. 16
2.1.3 RAM Architecture ??????????????????????.. 18
2.1.4 FPGA-RAM-AVR Interface ??????????????????.. 19
2.2 Special Features in the AT94K ???????????????????... 20
2.2.1 Cache Logic Mode ??????????????????????. 20
2.2.2 Use of Macro Generation Language (MGL) ????????????. 22
2.3 Overview of BIST for Embedded FPGA Core in the Atmel FPSLIC ????... 23
2.4 Thesis Restatement ???????????????????????? 27
 x
CHAPTER THREE ??????????????????..????????? 29
3.1 Implementation of ORA and Shift Register ??????????????.. 30
3.2 Implementing Shift Register Reconfiguration for Logic BIST ???????. 33
3.3 Dynamic AVR Reconfiguration of BUTs and ORAs for BIST ???????. 37
3.4 A Better Logic BIST Sequence ???????????????????.. 42
CHAPTER FOUR ?????????????????..??????????.. 47
4.1 Development of C Program for Logic BIST Generation ?????????... 47
4.1.1 Implementation Issues and Considerations ????????????? 48
4.1.2 Efficient Sequence of On-chip Dynamic Configuration of FPGA BIST from
AVR ??????????????????????????????. 50
4.2 Debugging Technique for Developing Logic BIST from Scratch ??????. 56
4.3 Experimental Results ???????????????????????. 57
CHAPTER FIVE ???????????????..????????????... 62
5.1. Summary ?????????????????????????.??.. 62
5.2. Improvements in Total Test Time and Configuration Memory Requirements ?. 64
5.3. Main Contribution ????????????????????????. 66
5.4. Future Research ????????????????????????? 67
REFERENCES ???????????????..?????????????.. 69
 xi
LIST OF FIGURES

Figure 1.1 Basic Structure of Microcontroller Based SoC with FPGA Core ?????. 2
Figure 1.2 General FPGA Structure and Configurable Interconnect Points ?????.. 4
Figure 1.3 Basic BIST Architecture ????????????????????... 5
Figure 1.4 Basic Logic BIST Structure ???????????????????.. 7
Figure 2.1 Symmetrical FPGA Core Surrounded by I/O ????????????.. 12
Figure 2.2 Cell-to-Cell Connections & PLB Cell ???????????????. 13
Figure 2.3 Cell-to-Bus Connections ????????????????????. 13
Figure 2.4 Configurable Interconnect Point Structure and Types [12] ???????. 14
Figure 2.5 Basic Modes of Horizontal Repeater ???????????????.. 15
Figure 2.6 Banked Clock & Set/Reset for One Column of PLB Cells ???????. 16
Figure 2.7 AVR Core Architecture ????????????????????? 17
Figure 2.8 FPGA-RAM-AVR Interface ??????????????????? 19
Figure 2.9 AVR-FPGA Dynamic Cache Logic ????????????????. 21
Figure 2.10 Cell Reconfiguration Method ?????????????????? 21
Figure 2.11 Basic Bist Structure- Logic Bist ????????????????? 23
Figure 2.12 Basic Comparison Based ORA Structure ?????????????.. 24
Figure 2.13 FPGA BIST Structure for Complete Test ?????????????.. 25
Figure 2.14 Diagnosis PLBs from Analyzing Comparison Based ORA Results ???.. 26
Figure 2.15 Logic BIST Architecture of AT94K Series SoCs ??????????.. 27
Figure 3.1 ORA Structure for Logic BIST ?????????????????? 30
Figure 3.2 Two-PLB ORA ???????????????????????? 31
Figure 3.3 High Level Structure of ORA and After the Reconfiguration ??????. 31
Figure 3.4 Comparison ORA and the ORA After Reconfiguration ????????.. 32
Figure 3.5 Shift Register Layout ?????????????????????... 33
Figure 3.6 AVR Code of ORA Reconfiguration to Shift Register ????????? 35
Figure 3.7 Four Layouts for Logic BIST [33] ????????????????.. 39
 xii
Figure 3.8 AVR Code of BUT Reconfiguration and ORA Initialization ??????.. 40
Figure 3.9 Four BIST Phases in One Session for AT94K SoCs ?????????... 43
Figure 4.1 Illustration of Configuration Byte Shared by More then One Resources ?.. 50
Figure 4.2 FIGARO Illustration of How AVR Connects to a Global Clock Buffer ??. 53
Figure 4.3 AVR Code of Generating N Clock Cycles to ?FPGAIOWE? ??????.. 54
Figure 4.4 ADINO Pad connected from Scan Chain ?????????????? 55
Figure 4.5 Use of MGL to Verify AVR Routines ???????????????. 57
 xiii
LIST OF TABLES

Table 1.1 Advantages vs Disadvantages BIST [17] ???????????????6
Table 1.2 List of Acronyms Used ?????????????????????... 9
Table 3.1 Logic BIST Reconfiguration ???????????????????. 41
Table 3.2 Total Memory Reduction ????????????????????.. 41
Table 3.3 Total Test Time and Speed Up ??????????????????.. 42
Table 3.4 Logic BIST Reconfiguration Improvement ?????????????.. 45
Table 3.5 Total Memory Reduction ????????????????????.. 46
Table 3.6 Total Test Time and Speed Up ??????????????????.. 46
Table 4.1 Total Configuration Routine Analysis ???????????????... 58
Table 4.2 Actual Download File Size (Kbytes) ???????????????? 60
Table 4.3 Total Memory Reduction ????????????????????.. 60
Table 4.4 Total Test Time and Speed Up ????????.??????????. 60
Table 5.1 Logic BIST Reconfiguration Comparison ?????????????? 65
Table 5.2 Total Configuration Memory Reduction ??????????????.. 65
Table 5.3 Total Test Time and Speed Up ??????????????????. 65

 1
CHAPTER ONE
INTRODUCTION

Developments of System-on-Chips (SoCs) which integrate high performance
processors, programmable logic and interconnect resources and a considerable amount of
memory in a single chip have recently become a popular trend. An SoC is also referred to
as ?System Large Scale Integration (System LSI)? or ?System Integrated Circuit (System
IC) [6].? SoC technology is the packaging of various kinds of digital system components
on a single IC, where systems could only be implemented on Printed Circuit Boards
(PCBs) in the past. SoC technology is making rapid progress because it is essential to
realizing inevitable trends in modern electronic devices such as miniaturization, low-
power, low-cost, high-speed and high-reliability [6]. Some SoC devices have more
processing ability than a typical 10 year-old desktop computer.
As IC technology advances, it not only makes the design and manufacturing
process more costly but also makes the testing process after manufacturing even costlier
[1]. As a result, the increase in testing cost is much higher compared to the increase in
the integration ratio [1]. The architecture of a typical SoC facilitates interaction between
the on-chip microcontroller and the Field Programmable Gate Array (FPGA) that
contains the programmable logic and interconnection resources. This interaction can
assist in the development of fault detection tests as well as fault recovery strategies [5].
Therefore, Built-In Self-Test (BIST) for SoCs is a very attractive solution not only for
 2
systems but also for designers and manufacturers.

1.1 Overview of SoCs
Typical microcontroller based SoCs include an FPGA core, Random Access
Memory (RAM), a microcontroller, and peripheral input/output logic [7]. Figure 1.1
shows the typical SoC structure.
FPGA core
RAM
Figure 1.1 Basic structure of microcontroller based SoC with FPGA core
Micro-
controller
Peripherals

Current FPGAs are capable of higher logic capacity than the earlier programmable
logic devices [22]. FPGA cores provide the reconfigurable resources within most
microcontroller based SoCs. A detailed FPGA core structure is presented in Section 1.2.
RAM, in general, is a storage media where data can be stored or accessed [8].
RAM in SoCs sometimes interfaces with both FPGA core and microcontroller core. It
enables data interaction between the microcontroller core and the FPGA core [7]. In
particular, Static Random Access Memory (SRAM) is commonly used in SoCs [9]. The
 3
SRAM is important for speed and efficiency of SoCs because it interacts with both
FPGA core and microcontroller simultaneously. Program memory is another type of
storage media; it stores the programs to be executed by the microcontroller.
A microcontroller is a type of processor that is intended to operate in an embedded
system on a single IC. General purpose registers are fixed memory spaces that help the
microcontroller to process data faster and more efficiently [7]. Programming of the
microcontroller is implemented using assembly or C programming language. This makes
the use of microcontrollers in SoCs convenient without time-consuming design and
synthesis processes [7].
All components in a SoC are usually linked to each other closely for maximum
performance [7]. Internal or external interrupts allow interaction with the microcontroller
to initiate execution of certain tasks. Therefore, the FPGA core can generate internal
interrupts to the microcontroller.

1.2 Overview of FPGA Core
An FPGA consists of reconfigurable logic blocks, where the logic can be
programmed multiple times after it is manufactured [8][10]. Unlike standard ICs, FPGAs
can have flexible functionality while having a general structure [11]. As illustrated in
Figure 1.2-a, an FPGA consists of an array of programmable logic blocks (PLBs)
(usually an M x N array), containing gates, look-up table RAMs, flip-flops, and
programmable interconnect wiring. All FPGAs are reprogrammable, since their logic
functions and interconnect are defined by the contents of a configuration memory [8].
The PLBs are functional logic units which can be programmed for different modes
 4
of operation such as RAM-based look-up tables (LUTs) for combinational logic
functions, flip-flops or latches for sequential logic functions, arithmetic operations,
memory functions, etc [12][13]. Usually one PLB consists of multiplexers (MUXs),
LUTs, flip-flops, and routing resources.
(a) General FPGA structure
Programmable
I/O block
Programmable
Logic Block
Programmable
Routing resources
PLB
PLB
PLB
PLB
Local
Routing
Channels
Global
Routing
Channels
Configurable
Interconnect Points
(switches)
 zoom
 (b) FPGA routing resources
Figure 1.2 General FPGA Structure and Configurable Interconnect Points
 There are additional programmable routing resources outside the PLBs. A large
number of programmable switches, known as Configurable Interconnect Points (CIPs) or
Programmable Interconnect Points (PIPs), are built-in into cross sections of the routing
resources. These CIPs enable the internal circuitry of an FPGA to be connected in
various network structures [14][15]. Thus, configuring programmable routing resources
determines the connectivity between PLBs and other components in the chip. As
illustrated in Figure 1.2-b, local routing resources determine connectivity of a PLB to its
neighboring PLB and to global routing resources, while global routing resources
determine connectivity of a given PLB to non-neighboring PLBs, programmable I/O
blocks, or other components in the SoC. [12].

 5
1.3 SoC Testing
Testing of embedded cores in SoCs is a challenging problem as they are deeply
embedded in the SoC with a limited number of Input/Output (I/O) pins. As a result, it
may not be possible to test all the embedded cores in a SoC using test patterns from
external sources [24]. In some companies, more than 30% of the total production cost is
due to testing [16]. BIST could be a better approach for testing SoCs as it does not
require any external test equipment and test patterns are generated internally by the
embedded core itself, thus eliminating the problem of core access [24]. By eliminating
external test equipment, the BIST approach reduces the testing time and cost [24].
1.3.1 Overview of Built-In Self-Test
The most fundamental definition of BIST is: ?To design a circuit so that the circuit
can test itself and determine whether it is ?good? or ?bad?? [17]. As shown in Figure 1.3,
the Test Pattern Generator (TPG), Output Response Analyzer (ORA), and Test Controller
(TC) are the primary components in BIST technology.

Sets of test vectors generated by the TPG are applied to the Circuit Under Test
 6
(CUT) while the ORA monitors test responses from the CUT in order to determine
whether the CUT is good (fault-free) or bad (faulty). The test controller starts the BIST
sequence by initializing the target circuit, and it also controls the BIST sequence [12][17].
1.3.2 Merits of BIST
Various chip testing techniques are currently being widely studied. Among them,
the BIST approach has excellent advantages compared to its disadvantages, as shown in
Table 1. [17]. Eliminating the need for external test equipment as well as reducing
manufacturing test time and cost are the main merits of BIST. BIST fits nicely in modern
SoC testing because it has good internal access to individual embedded cores which, in
most cases, are difficult to access through external I/O pins [9]. For configurable
components such as FPGAs, the disadvantages shown in Table 1, such as the area
overhead and performance penalties, are no longer a consideration, as will be discussed
in the following section.
Table 1.1 Advantages vs Disadvantages BIST [17]
Advantages Disadvantages
+vertical testability (wafer to system)
+high diagnostic resolution
+at speed testing
+reduced need for external test equipment
+reduced development time & effort
+more economical burn-in testing
+reduced manufacturing test time & cost
+reduced time-to-market
-area overhead
-performance penalties
-additional design time & effort
-additional risk to project

1.4 BIST for FPGAs
Traditional BIST approaches introduce area overhead and performance penalties
[17]. However, BIST for FPGAs removes these associated problems by using the re-
programmability of the FPGAs. Initially the FPGA is configured to perform the BIST
 7
operation and, after the test is complete, the chip is reconfigured for its normal system
operation [10].
In the general FPGA BIST structure, groups of PLBs in the FPGA are configured to
be TPGs, Blocks Under Test (BUTs), and ORAs as shown in Figure 1.4. During each
BIST sequence, the BUTs receive identical test patterns from the TPGs and the BUT
outputs are compared by the ORAs [18]. The BUTs are reconfigured in a different mode
of operation after each BIST sequence until all modes of operation are tested. After all
the BIST configurations have been run, a test session is completed [12]. After the first
test session is over, the FPGA is configured reversely: BUTs become ORAs and TPGs,
and vice versa [19][20][21]. In this way, all PLBs in the FPGA are tested completely.
TPG
TPG
BUT
BUT
ORA
BUT
BUT
ORA
BUT
BUT
ORA
BUT
BUT
ORA
BIST
start
Pass/Fail
Figure 1.4 Basic Logic BIST Structure
. . .
. . .
. . .

1.5 Thesis Statement
One of the important goals of BIST is to minimize the testing time and cost [18].
For most FPGA BIST approaches, however, reconfiguration time for each BIST
 8
configuration consumes most of the testing time. This is because of the use of external
configuration control (such as a PC) and the large number and size of the BIST
configuration files that need to be stored in memory and downloaded into the FPGA. For
example, the Xilinx 4000XL has 230 BIST configurations [11]. This means the FPGA
has to be reconfigured 230 different times to completely test it, and a significant amount
of external memory space is needed to store the 230 BIST configurations and a
significant amount of time is required to download the configuration data into the device.
Moreover, there are additional time requirements to retrieve ORA results [18].
The objective of this research and thesis is to improve FPGA BIST time efficiency
on SoCs by utilizing the microcontroller core embedded in the SoC. This thesis focuses
on overcoming BIST time and memory storage penalty factors due to the large number
of BIST configurations. Unlike traditional FPGA BIST approaches, the computing power
of the embedded microcontroller in SoCs can be used to dynamically reconfigure and
test the FPGA cores within the SoC boundary, with improved configuration time and
memory storage requirements [6].
As a result, there is no need for BIST configurations to be downloaded from the
external configuration storage into the FPGA. Only an initial download is done to the
program and data memories for the microcontroller. The microcontroller then
reconfigures the FPGA core, executes the BIST sequence, and retrieves the ORA results.
Only one initial download to the program memory of the SoC is needed, and thus only
one configuration needs to be stored in external memory. Alternatively, the BIST
configuration program can reside in the program memory for on-demand executions of
BIST if the BIST configuration program is sufficiently small.
 9
The proposed BIST approach has been implemented on the Atmel AT94K series
FPSLIC (Field Programmable System Level Integrated Circuit). Further details on the
embedded microcontroller and FPGA core as well as their interactions in the FPSLIC are
described in Chapter 2. Chapter 3 discusses how the microcontroller assists the BIST of
the embedded FPGA core to improve the BIST performance. Chapter 4 extends the idea
to use the microcontroller as the main BIST component which configures the FPGA for
BIST, executes the BIST sequence, retrieves the BIST results and diagnoses faulty PLBs
without the need of external configuration downloads. Experimental results for the
implementation and application in actual SoCs, along with possible improvements, will
also be discussed in each chapter. Finally, Chapter 5 summarizes this research and its
significance, along with possible directions for future research and development. A list of
acronyms used in this thesis is in shown Table 1.2.
Table 1.2 List of Acronyms Used
ADIN AVR Data In
ALU Arithmetic Logic Unit
AVR Advanced Virtual RISC
BIST Built-In Self-Test
BUT Block Under Test
CAD Computer Automated Design
CIP Configurable Interconnect Point
CISC Complex Instruction Set Computer
CPU Central Processing Unit
CUT Circuit Under Test
DSP Digital Signal Processing
FF Flip-Flop
FPGA Field Programmable Gate Array
FPGAIOWE FPGA I/O Write Enable
 10
FPGAIORE FPGA I/O Read Enable
FPSLIC Field Programmable System Level Integrated Circuit
HDL Hardware Description Language
IC Integrated Circuit
IDS Integrated Development System
I/O Input/Output
LFSR Linear Shift Feedback Register
LSI Large Scale Integration
LUT Look-Up Table
MIPS Million Instructions Per Second
MGL Macro Generation Language
MUX Multiplexer
ORA Output Response Analyzer
PC Personal Computer or Program Counter
PCB Printed Circuit Board
PIP Programmable Interconnect Point
PLB Programmable Logic Block
PWM Pulse Width Modulation
RISC Reduced Instruction Set Computer
SoC System-on-Chip
SRAM Static Random Access Memory
TC Test Controller
TPG Test Pattern Generator
UART Universal Asynchronous Receiver-Transmitter
VLSI Very Large Scale Integration
WUT Wire Under Test
XDL Xilinx Design Language
XOR Exclusive OR-Gate

 11
CHAPTER TWO
BACKGROUND

SoCs consist of multiple cores integrated within the same chip boundary. A study
described in [25] introduced the method of using the embedded processor to test other
cores in the SoC [25]. However, it did not address testing embedded FPGA cores.
Proposals such as [26] and [27] suggested using the embedded FPGA core as the main
test resource for SoCs. However, a case study of these proposals showed that the FPGA
core?s limited access to the other cores prevented the thorough test of an SoC [28]. The
test limitations due to the architecture of SoCs are the main concern for BIST. In this
chapter, the architectural features of Atmel?s AT94K series Field Programmable System
Level Integrated Circuit (FPSLIC) are described, followed by the features that affect the
BIST approaches. An overview of previous work in BIST for the embedded FPGA core
in the Atmel AT94K series SoCs is then presented. This chapter concludes with the
restatement of this thesis motivation.

2.1 Architecture of Atmel AT94K Series FPSLIC SoCs
The Atmel AT94K series SoC architecture consists of an FPGA core, RAM cores,
and an 8-bit Advanced Virtual RISC (Reduced Instruction Set Computer) processor core,
denoted as AVR [7]. The individual components have different features for operation in
unique modes as well as in mutual aid modes within a system.
 12
2.1.1 FPGA Core Architecture
As illustrated in Figure 2.1, the Atmel FPGA core comprises a symmetrical NxN
array of identical PLBs, where N = 48 for the largest AT94K series device, the AT94K40.
The FPGA core is based on a fine-grain architecture that has a large number of small
PLBs, each of which is about the one-fourth size of the Xilinx Virtex/Spartan II series
PLB [28] [30].
. . .
I/O Pad
Vertical
Repeaters
FreeRAM
Logic Cell
Horizontal
Repeaters
Figure 2.1 Symmetrical FPGA Core Surrounded by I/O

As illustrated in Figure 2.2, each PLB contains two 3-input LUTs, a D Flip-Flop
(FF) with asynchronous set/reset, and a number of multiplexers that provide a variety of
functions including several modes of operation such as sequential mode, arithmetic mode,
DSP/multiplier mode, counter mode, tri-state/multiplexer (MUX) mode [7]. The logical
value produced by each PLB can be held in the D Flip-Flop (FF) present in the PLB. As
shown in Figure 2.2, the X and Y outputs of each PLB connect diagonally and
orthogonally to its neighboring cells, respectively [7], and these resources are considered
as local routing resources. As illustrated in Figure 2.3, five vertical and five horizontal
 13
busing planes are associated with each PLB as x8 and x4 lines respect to repeater
boundaries. The x8 and x4 lines are considered as global routing resources that span eight
and four PLBs, respectively, with repeaters separating the groups of PLBs as shown in
Figure 2.3. Four inputs to the PLB or one output from the PLB can access any of five x4
lines in the busing planes adjacent to the PLB through Configurable Interconnect Points
(CIPs).

G
l
ob
al
 R
o
ut
i
n
g

Reso
urces

Horizontal Busing Plane

 14

The basic structure of a CIP is shown in Figure 2.4a and consists of a pass
transistor controlled by a configuration memory bit [12]. When the configuration
memory bit is programmed to logic ?1?, wire segments A and B are connected [12].
Cross-point CIPs and Multiplexer CIPs constitute most of the routing resources of the
embedded FPGAs present in AT94K FPSLIC SoCs [33]. Cross-point CIPs enable the
connection between the two wires. As illustrated in Figure 2.4b, the vertical wire A will
be connected to wire B when the cross point CIP is turned ?on?, meaning that the
configuration memory bit controlling the CIP is a logic ?1?. The cross-point CIP is used
when the signal needs to turn from one direction to a perpendicular direction [12]. A
MUX CIP, shown in Figure 2.4c, enables the connection between a single input wire
from a group of wires to a single output wire [12].
As shown in Figure 2.1, vertical and horizontal bus repeaters, placed within the
global routing resources for every 4x4 array of PLBs, prevent signal degradation in the
process of sending signals on distant or heavily loaded nets [33]. Each repeater consists
of four MUX CIPs. The repeater can be configured in the modes illustrated in Figure 2.5
and one repeater block can have a combination of the modes if there are no conflicts in
the directions of different signal paths. For instance, a repeater can be configured to have
 15
the modes shown in Figure 2.5a, 2.5i, and 2.5c with no conflicts. A conflict of the signals
will occur when the repeater is configured to have modes shown in Figure 2.5a, 2.5i, and
2.5k because the modes shown in 2.5i and 2.5k conflict, since two MUX CIPs are
driving the same x8 line. All the repeater signals are buffered through the MUX CIPs
except the mode shown in Figure 2.5e, which consists of a transmission gate and is used
for bi-directional signals. Vertical repeaters are configured in the same way as the
horizontal repeaters and the repeater models shown in Figure 2.5 should be rotated by 90
degrees for visualization of the vertical repeater configuration modes.
Figure 2.5 Basic Modes of Horizontal Repeater
(a) (b) (c) (d) (e)
(f) (g) (h) (i)
(j)
(k)
(l) (m)
x4 line
x8 line
x4 line
x8 line
x4 line
x8 line

 Banked clock and set/reset lines run to the groups of four PLB cells in a single
column within repeater boundaries. As shown in Figure 2.6, eight global clock buses are
connected to the column clock MUX which routes one of the eight clocks to all PLBs in
the column. Any FPGA internal signal can be routed to one of the global clocks or it can
be routed directly to the clock input for any set of four PLBs. Set/reset lines have a
similar architecture and the difference is the direction of the signal flow, set/reset goes up
 16
through the PLBs while clock goes down. Both the clock and set/reset signal can be
inverted by choosing an inverting path on the MUX which is present before the signal
reaches the set of four PLBs.
Global Clock1 - 8
Buried
Clock
Line
repeater
Figure 2.6 Banked Clock & Set/Reset for One Column of PLB Cells
repeater
= PLB
Buried
Set/Reset
Line
From any user I/O
Buffer
From any
global
routing
From any
global
routing

2.1.2 AVR Microcontroller Architecture
The microcontroller from Atmel is called the AVR (Advanced Virtual RISC, and
also known as Alf Vergard RISC: named after the founders Alf Bogen and Vergard
 17
Wollan) [29]. The AVR is based on an 8-bit RISC architecture, meaning 1 byte wide
working registers are used when instructions are fetched and executed. As shown in
Figure 2.7, all 32x8 general-purpose registers are tied to the Arithmetic Logic Unit
(ALU) so that two independent registers can be accessed in only one clock cycle,
allowing most of the AVR instructions to be executed in a single clock cycle [7].
Interrupt
Unit
Serial
UARTs
16-bit
Timer/
Counter
8-bit
Timer/
Counter
32 x 8
General
Purpose
Registers
8-bit Data Bus
Status
and
Control
PC*
Instruction
Register
Instruction
Decoder
Indirect
A
ddr
essi
ng
Direct
Addressing
Interface to FPGA
Control Lines
Program
SRAM
Memory
Data
SRAM
ALU
Figure 2.7 AVR Core Architecture
*PC: Program Counter
Peripherals
Control
Registers
2-wire
Serial
Watchdog
Timer
16 I/O
Lines

The AVR core has a Harvard architecture, which has the ability to execute an
instruction while accessing memory space at the same time [30]. With its architectural
advantage, the AVR has up to ten times faster throughput than the CISC (Complex
Instruction Set Computer) developed by Intel [7]. The AVR can achieve a throughput of
1 MIPS (Million Instructions Per Second) per MHz [7]. In addition, there are two 8-bit
bi-directional general purpose Input/Output (I/O) ports called PORTD and PORTE [7].
There are peripherals such as 8-bit or 16-bit timer/counter with Pulse Width Modulation
(PWM), Universal Asynchronous Receiver-Transmitter (UART), 16 I/Os, and 2-wire
serial port located within the AVR core. Peripherals attached to the AVR core can be
 18
programmed in assembly language or C language. Interrupt sources internal and external
to the SoC allow the AVR to be operated in more interactive ways. The return address of
the program counter (PC) is stored on the stack when interrupts and subroutine calls
occur and the stack is allocated in the Data SRAM [7].
2.1.3 RAM Architecture
There are two types of SRAMs present in AT94K series devices. One type of
SRAM is evenly distributed through the FPGA core and the other type of SRAM is
placed outside of the FPGA core, shared by other cores such as the AVR and its
peripherals.
The SRAMs distributed through the FPGA core are 32x4-bit memory blocks with
one RAM placed in every 4x4 array of PLBs as illustrated in Figure 2.1. This dedicated
SRAM, denoted as freeRAM by Atmel, can be accessed through the global routing
resources by PLBs [7]. Each freeRAM can operate in single port or dual port mode [7].
The other type of SRAM resides outside the FPGA core. Both the FPGA core and
the AVR core share the embedded Data SRAM and, thus, it is designed with a bigger size
than the freeRAM [7]. The Data SRAM is used by the AVR and FPGA for general-
purpose data storage [7]. Depending on the design, the SRAM can be configured in
various modes and can also be flexibly partitioned. In the AT94K40 series SoCs, a
maximum size of 36 Kbyte SRAMs are supported, which can be partitioned into
different sizes of Data SRAM and program memory blocks. Both the AVR and FPGA are
connected to the Data SRAM, which can be partitioned in size from 4 Kbytes to 16
Kbytes. It stores data from the FPGA and AVR, and provides register space for the AVR.
The program memory is used to store AVR programs and it can be partitioned in size
 19
from 20 Kbytes to 32 Kbytes. The program memory provides the space from which the
AVR fetches instructions and runs programs, and it cannot be accessed from the
embedded FPGA core [7].
2.1.4 FPGA-RAM-AVR Interface
As illustrated in Figure 2.8, the Data SRAM resides between the FPGA core and
AVR core, enabling smooth data sharing and/or exchange between the AVR and FPGA
cores. To access the Data SRAM, a 16-bit address is required from the FPGA or AVR
core. Data to be accessed or stored pass through the bi-directional 8-bit data bus across
the FPGA core, the Data SRAM, and the AVR core. The Write/Read Enable signals along
with clock signal provide control over access of the Data SRAM.
Data SRAM
16-Bit Address Bus16-Bit Address Bus
AVR CLK
8-
Bi
t D
a
t
a
 Bus
Read/Write Ena
b
le
Figure 2.8 FPGA-RAM-AVR Interface
AVR Core
16-Bit Interrupt Bus
16-Bit I/O Memory Address
8-Bit Data Bus
Read/Write Enable
(FPGAIORE/FPGAIOWE)
FPGA CLK
8-
Bi
t D
a
t
a
 Bus
Read/Write Enable
FPGA Core

The FPGA core can be directly accessed by the AVR core, as shown in Figure 2.8.
There is an 8-bit data bus between the FPGA core and the AVR that allows them to
 20
communicate interactively under the control of the AVR. FPGAIOWE (FPGAIORE) is a
strobe line that is activated when the AVR writes to (reads from) the 8-bit bi-directional
data bus. There are 16 decoded address lines supplied from the AVR to the FPGA. Also,
a maximum of 16 interrupts are available from the FPGA to the AVR with various
priority levels to make the operations of the AVR efficient [7].

2.2 Special Features in the AT94K
In this section, some of the unique features of the AT94K series device are
described. These features have a direct impact on the development and execution of
BIST in this thesis.
2.2.1 Cache Logic Mode
In the AVR Cache Logic mode, the configuration memory of the FPGA core can be
dynamically reconfigured by the AVR during system operation, without re-downloading
the configuration data externally. This can be done without affecting the contents of the
flip-flops, known as dynamic partial reconfiguration. As illustrated in Figure 2.9, due to
its PLB addressable structure, FPGAX, FPGAY, and FPGAZ hold the address of the
target configuration memory byte of the FPGA to be reconfigured, where FPGAX
corresponds to the horizontal PLB location, FPGAY corresponds to the vertical PLB
location, and FPGAZ corresponds to specific configurable logic and/or routing resources
within the specified PLB. A 32-bit configuration word cache waits until the FPGAD
register receives new data to be written into the FPGA configuration memory [7]. Any
writes into FPGAD result in a configuration clock cycle to the FPGA configuration
memory [7]. Thus, instead of downloading a full configuration each test phase, the AVR
 21
can partially reconfigure the locations where a change is needed. The basic routine to
program the AVR to reconfigure the FPGA core is shown in Figure 2.10.
32-Bit Configuration Word

ldi rTemp, (Column# - 1) ; PLB Horizontal Coordinate
out FPGAX, rTemp
ldi rTemp, (Row# - 1) ; PLB Vertical Coordinate
out FPGAY, rTemp
ldi rTemp, 0bttttzzzz ; TagZ coordinate (Page#[7:4]+Byte#[3:0])
out FPGAZ, rTemp
ldi rTemp, 0bxxxxxxxx ; New PLB ?Byte? Contents
out FPGAD, rTemp
Figure 2.10 PLB Reconfiguration Method

Since the AVR can specify the X (horizontal) and Y (vertical) PLB coordinates, it
can be programmed in such way that the AVR can algorithmically generate
configurations and reconfigure the FPGA core. The fine-grained architecture of the
FPGA core is the major advantage when using X (FPGAX) and Y (FPGAY) PLB
 22
coordinates because of its regular and repeatable structure [24][30]. In other words, a
coarse-grained architecture would make it difficult to algorithmically reconfigure the
FPGA because of its irregular structure. In addition, the FPGA?s symmetrical architecture
enables simple and predictable reconfiguration [7]. One major drawback with AT94K
series SoCs is that the FPGA configuration memory contents cannot be read using the
AV R [2 4] .
2.2.2 Use of Macro Generation Language (MGL)
Atmel provides a specially designed programming language called Macro
Generation Language (MGL) [31]. The language is utilized through Figaro; one of
Atmel?s Integrated Development System (IDS) tools [31]. It is used to instantiate designs
in the FPGA and to produce a downloadable bitstream [33]. The main advantage of using
macro designs made by the MGL is its capability to implement parameterized designs
that can be constructed in any size FPGA array. MGL defines the layout and routing of
the FPGA core [31]. Furthermore, unlike the Xilinx Design Language (XDL), MGL
supports hierarchical designs by calling pre-defined or user-defined macros into newer
macros which could reduce program size. Designs described in MGL can be edited,
debugged, and executed in Figaro IDS software [31]. When configuring a PLB, MGL
based on either predefined macros (gates, multiplexers, flip-flops, etc) or dynamic
macros can be used [32]. Dynamic macros give flexibility in defining the PLB function.
However, the user can only control the PLBs by the dynamic macros and no further
control is provided by MGL [32]. In order to achieve maximum fault coverage from
BIST for FPGAs, complete control over the configuration of the logic and routing
resources is required [33].
 23
2.3 Overview of BIST for Embedded FPGA Core in the Atmel FPSLIC
The BIST architecture for testing the PLB resources in an FPGA, shown in Figure
2.11, configures a column of PLBs to function as two or more identical TPGs that drive
test patterns to alternating columns of identically configured BUTs. The outputs of BUTs
are monitored by comparison-based ORAs located in adjacent columns between the
BUTs [17].

For applying test patterns to the BUTs, there are a number of TPG types that can be
used [17]. The most basic TPG type is the N-bit binary counter since it generates
exhaustive 2
N
 binary test patterns. Another well known type is the Linear Shift Feedback
Register (LFSR) which generates pseudo-random test patterns. If the LFSR has a
primitive polynomial function then it will generate all possible 2
N
-1 patterns excluding
the all-zero pattern [17]. The all-zero pattern can be achieved in an LFSR by adding
circuitry, however, it would cost additional area in the FPGA to be programmed. Thus,
for testing the PLB blocks, if the number of inputs to the BUTs is small, using the binary
counter as a TPG is the most economical and efficient method [33].
 24
The basic design of the ORA is shown in Figure 2.12 where two identical BUT
outputs are compared by the exclusive OR-gate (XOR-gate) [17]. When a mismatch
occurs between the two BUTs, the input of the Flip-Flop (FF) will see a logic ?1? from
the output of the XOR-gate. The logic value ?1? is latched in the flip-flop via the OR
gate and held throughout the BIST sequence. At the end of the BIST sequence, the
content of the flip-flop indicates whether the ORA saw a mismatch of the two BUT
outputs or not. Typically there is more than one ORA to be read at the end of test. ORA
results can be read either individually by reading the configuration memory of the ORA
block directly or they can be scanned out serially using a shift register as illustrated in
Figure 2.11 by the dotted line [17].

The BUTs are reconfigured in various modes of operation until they are completely
tested [10]. The number of modes in which the BUTs are to be configured is determined
by the complexity of the PLB. The more programmable logic resources the PLB has, the
more BUT configurations are typically needed to test all the resources in the PLB. The
BIST architecture is then flipped about the vertical axis (Figure 2.13) to test the PLBs
that were previously TPGs and ORAs for the complete test of all PLBs as BUTs [28].
 25
TPG BUT
BUT
ORA
ORA
ORA
ORA
BUT
BUT
Figure 2.13 FPGA BIST Structure for Complete Test
BUT
BUTTPG
TPGBUT
BUT
ORA
ORA
ORA
ORA
BUT
BUT
BUT
BUT TPG
Test Session
West
Test Session
East

The basic sequence for FPGA BIST consists of the following steps:
1) Configure the FPGA to a BIST structure
2) Execute the BIST sequence
3) Retrieve ORA results
4) Analyze ORA results to find faulty PLBs.
Step 1 requires the configuration of resources in the FPGA to perform the BIST.
Typically this is done by external configuration download to the FPGA for every BIST
configuration. Next, the test controller initiates the BIST (Step 2) by applying BIST
clocks to the FPGA so that the test patterns are applied to the BUT inputs while the BUT
outputs are monitored. At the end of each BIST sequence, ORA results are retrieved so
that they can be analyzed (Step 3 and 4). When analyzing the results, as shown in Figure
2.14, the faulty PLB can be found based on the locations of the ORAs that observed
mismatches [21]. BIST steps 1 through 4 are repeated until all the modes of operation for
the BUT are tested.
 26
2.14 Diagnosis PLBs from Analyzing Comparison Based ORA Results
0 1 1 0
BUT ORA
Faulty BUT
ORA Found
Mismatch

In the case of the Atmel AT94K series SoCs, the BIST architecture shown in Figure
2.15 is used wherein each ORA monitors one diagonal X-output and one direct Y-output
from the neighboring BUTs. The architecture shown in Figure 2.11 is not applicable,
since a PLB cannot be configured to monitor more than one diagonal X-input and one
direct Y-output selected at the same time [33]. Therefore, two different routing schemes
are needed in order to observe both the diagonal X and direct Y connections for complete
testing of the PLB logic resources. For all PLBs except the ones located in corners of the
FPGA array, a total of four configurations of the BUTs are needed to obtain a fault
coverage of 99.7% with only one fault left which is potentially detected [17][33]. The
potentially detected fault is detected during routing BIST to result in 100% fault
coverage with a complete set of BIST configurations [28].
 27

2.4 Thesis Restatement
BIST approaches have been developed for FPGAs by programming some of the
PLBs as TPGs and ORAs to test the remaining programmable logic and interconnect
resources [10]. However, these techniques typically require downloading a large number
of BIST configurations into the FPGA one at a time, executing each BIST sequence, and
retrieving the BIST results at the end of each BIST sequence. While this problem can be
reduced by minimizing the total number of BIST configurations and/or by taking
advantage of the partial reconfiguration capabilities provided in recent FPGAs, the total
test time and memory storage requirements are still dominated by the download process.
For SoC testing, the embedded microprocessor cores in SoCs can be programmed to test
other accessible cores such as FPGA cores. Dynamic, partial, and full reconfiguration of
 28
FPGA cores by embedded processor between each test phase can reduce the total test
time. After completion of BIST, the embedded processor can retrieve the test results,
perform diagnosis, and report the faults and their locations to a higher computing
resource for fault recovery or fault-tolerant applications.
The dynamic partial reconfiguration capability of the embedded processor core was
previously used to a limited extent in [28]. However, this approach needed to download
each and every BIST configuration into the FPGA core. The primary focus of this thesis
is to investigate potential improvements in the total test time and memory requirements
by avoiding any and all downloads into the FPGA. By programming the embedded
processor core to execute algorithmic reconfiguration routines, the amount of memory
required for storing BIST configurations is reduced since no configuration data is
downloaded into the FPGA. The fine-grain architecture, in conjunction with the PLB
addressable configuration memory of the AT94K series SoCs, helps to configure the
BIST structures without the need for excessive configuration clock cycles. If small
enough, the BIST program can remain resident in the program memory for on-demand
reconfiguration and execution of BIST, requiring no download at all. If fast enough, the
BIST program can be more frequently used during idle intervals in system operation for
high reliability, high availability applications.
 29
CHAPTER THREE
AV R ASSISTED FPGA LOGIC BIST

The goal in this thesis is to reduce the total test time and configuration memory
storage requirements associated with BIST of the PLBs in the FPGA core. In order to do
so, previous work [33] which required FPGA configuration download for each test phase
was used, which served as a fundamental model so that any improvements could be
measured. Since the work in [33] has realized some of the problems associated with
BIST for FPGAs in AT94K series SoCs, it has proposed ways to overcome these
problems. In this chapter, improvements over the previous work [33] are discussed with
experimental data taken from the execution of BIST on actual Atmel AT94K series SoCs.
The flow of the chapter is according to the improvements made throughout the
thesis work, which divides into three phases. First, the shift register reconfiguration
development for retrieving ORA results at the end of each BIST sequence [33] is
discussed. This was an essential development for [33] as well as fundamental work for
the next two phases. As the second phase of the development, the AVR processor is used
to assist the BIST developed in [33] by not only reconfiguring ORAs into a shift register
but also reconfiguring the BUTs for each test phase based on BIST structures and
requirements in [33]. This approach replaces most time-consuming FPGA configuration
downloads with simple AVR programs and is denoted as ?AVR-assisted BIST? in this
thesis. The third phase of the development yields a modified version of the AVR-assisted
 30
BIST which has a new way of testing X and Y direct PLB connections and reads test
results at the end of multiple test phases.

3.1 Implementation of ORA and Shift Register
One of the issues in the previous work [33] was the fact that the ORA results could
not be read back directly from the FPGA configuration memory to the test controller (a
PC in our case), which made the implementation of a shift register, or scan chain,
necessary. For implementing the scan chain, another problem arose due to the PLB size
and a small number of input lines. In order to configure a comparison-based ORA with a
shift register feature shown in Figure 3.1, a total of five inputs are needed for one PLB
[33]. Since the PLBs present in Atmel AT94K series SoCs have only four inputs there is
no way to implement the ORA with a shift register feature as shown in Figure 3.1.
DQ
X
Y
From Previous
ORA
Shift Control
Figure 3.1 ORA Structure for Logic BIST

 Initially when the ORA structure was investigated, there were two possible models
that could be implemented [33]. As shown in Figure 3.2, the ORA and the scan chain can
be implemented together by using two PLBs per ORA with four BUTs being compared at
once. However, using this model results in loss of diagnosis resolution compared to using
the model shown in Figure 3.3 [33]. In Figure 3.3a, all ORAs are reconfigured by the
 31
AVR core to form the scan chain shown in Figure 3.3b. As a result, the initial BIST
architecture has the simple ORA shown in Figure 3.4a. After the BIST sequence is
executed and ORA results are ready to be read, the ORAs are reconfigured as a scan
chain (shift register) and the results are scanned (shifted) out for analysis, as is illustrated
in Figures 3.3b, 3.4b and 3.5. The main difference between the two-PLB ORA and one-
PLB ORA is the need for partial dynamic reconfiguration of the ORA cells.
Figure 3.2 Two-PLB ORA
BUT comp
BUT shift
BUT
BUT
 To Next ORA
Shift Data
Shift Control

Figure 3.3 High Level Structure of ORA and After the Reconfiguration
BUT ORA BUT
BUT ORA BUT
BUT
Scan
chain
BUT
BUT
Scan
chain
BUT
(a) Comparison ORA (b) Reconfigured as a Shift Chain
X
Y
X
X
X
Y
Y
Y
Y
Y
Y
Y

 In order to reconfigure the comparison based ORAs (Figure 3.4a) as a shift register
(Figure 3.4b), the AVR first writes to the PLB configuration memory for each ORA to
change the functionality of these PLBs. As the reconfiguration is being performed by the
 32
AVR core, since the ORA scan chain is a directional shift register, diagonal X connection
and orthogonal Y connection which was being compared in Figure 3.4a would be
reconfigured so that each shift register cell is routed to the neighboring shift register by
using the direct Y connection as shown in Figure 3.3b.

 Figure 3.5 shows a simplified illustration of the shift register layout for one of the
logic BIST configurations. Note that the ORA results are scanned out via an external pin.
The shift register reconfiguration program, which will be introduced in next section,
controls the AVR writes to the configuration memory of the FPGA, reconfigures all the
ORAs as a scan chain to have shift-up and shift-down columns as well as to have center
route-through PLBs where the BUTs are reconfigured as part of the scan chain. The
route-through PLBs don?t require any flip-flop to be involved but a simple routing
connection between the shift-up and shift-down columns as illustrated in Figure 3.5
 33

3.2 Implementing Shift Register Reconfiguration for Logic BIST
 In order to implement the dynamic reconfiguration routine of converting ORAs into
a scan chain, assembly or C programming language can be used to develop the AVR
program. There are advantages and disadvantages of using assembly over C. If the
program is written in assembly, which is "machine-level?, it can provide an educative
approach to what goes on inside the processor. Also the assembly program is the best
way to optimize the code because it enables user to control behavior of the processor in
detail. However, C programming language was chosen because of its convenient features
and the support of well-performed compilers that optimize the compiled program fairly
effectively. Although different compilers have slightly different notations and rules to do
the same thing, most compilers do a better job of code size and execution speed
optimization compared to most of the user?s assembly code if the code is long. For our
development needs, due to the usage of many parameterized files and modification
throughout the development sequence, programming in C language was the best choice
 34
to keep the development process efficient.
 A compiler called ?Codevision AVR? was used [7]. It enables use of C language to
generate programs for execution on the AVR microcontroller. The compiler converts the
user?s C program to assembly language and generates an Intel HEX file. The Intel HEX
file is then combined with the FPGA bitstream generated from the Figaro [33]. The
combined file (a combined bitstream) is downloaded to the SoC. The resultant bitstream
programs program/data memory of the AVR, the FPGA configuration memory, and
peripherals around the AVR processor. The compiler can optimize compiled AVR
program size by grouping common tasks into subroutines. When optimizing for speed,
the compiler tries to generate smallest number of subroutines possible so that fewer
branch instructions occur during execution.
 35
interrupt [EXT_INT0] void isr_reconf_ORA(void) {
//UP ? (a)
for (FPGAX = 2; FPGAX < size; FPGAX+=4) {
for (FPGAY = 0; FPGAY < size; FPGAY++) {
//connecting shift register for UP direction ? (b)
FPGAZ = [PLB Tag]+[Byte#];
FPGAD = [Byte]
}
}
//DOWN ? (c)
for (FPGAX = 4; FPGAX < size; FPGAX+=4) {
for (FPGAY = 0; FPGAY < size; FPGAY++) {
//connecting shift register for DOWN direction ? (d)
}
}
//LEFT-TOP ? (e)
FPGAY = size-1; //Top = Row 47
for (FPGAX = 4; FPGAX < size; FPGAX+=4) {
//connecting shift register for every corners ? (f)
}
//LEFT-BOTTOM ? (g)
FPGAY = 0; //Bottom = Row 0
for (FPGAX = 2; FPGAX < size; FPGAX+=4) {
//connecting shift register for every corners(2) ? (h)
}
//CENTER-TOP ? (i)
FPGAY = size-1; //Top = Row 47
for (FPGAX = 5; FPGAX < size; FPGAX+=4) {
//Route throughs between ORAs ? (j)
}
//CENTER-BOTTOM ? (k)
FPGAY = 0; //Top = Row 0
for (FPGAX = 3; FPGAX < size; FPGAX+=4) {
//Route throughs between ORAs ? (l)
}
//START ? (m)
FPGAX = size-2;
FPGAY = 0;
//Putting logic "1" at the end of the scan chain ? (n)
}
Figure 3.6 AVR Code of ORA Reconfiguration to Shift Register

 A C code example for the ORA-to-Shift Register reconfiguration is shown in
Figure 3.6. The example shows the AVR routine for reconfiguring ORAs into shift
registers at the end of a logic BIST sequence. It consists of various for-loops which
reconfigure the ORAs into shift registers. In order to form the shift register illustrated in
 36
Figure 3.5, first, half of the ORA columns are configured to shift data up and the other
half to shift down as shown in Figure 3.6 lines (a) through (d). To connect every column
of shift register pieces into one scan chain, the routines shown in Figure 3.6 lines (e)
through (l) reconfigure either top or bottom PLBs of the ORA columns and some of BUT
PLBs that are adjacent to one end of each shift register column as route-though PLBs
according to Figure 3.5. Finally at the end of the scan chain, the look-up-table is
reconfigured to generate a constant logic value ?1? as shown in Figure 3.6 lines (m) and
(n) to verify the integrity of the scan chain during BIST results retrieval [10]. This also
helps to check the consistency of the cache logic mode itself to ensure that the dynamic
partial reconfiguration was correct. After specifying ?FPGAX? and ?FPGAY? location,
?FPGAZ? is written followed by ?FPGAD? from the AVR so that FPGA configuration
memory can be written.
 The routine is executed through external interrupts. At the end of each BIST
sequence, the higher test controller unit (such as PC) activates the interrupt to
reconfigure the shift register, after which the ORA results can be retrieved by the test
controller. All BIST configurations reported in [33] used similar shift register
reconfiguration programs developed as part of this thesis and were a necessary part of the
development in [33]. Dynamic partial reconfiguration of ORAs into a shift register is
also used in routing BIST due to the fact that the ORA contents cannot be read directly
from FPGA configuration memory. Most of the ORA layouts are regular, thus
algorithmic AVR reconfiguration routines which reconfigure the ORAs to a scan chain
were implemented in a similar way to the logic BIST shown in Figure 3.6 [33].

 37
3.3 Dynamic AVR Reconfiguration of BUTs and ORAs for BIST
 Improvements of the test time and configuration memory requirement can be made
by developing a new BIST sequence using the AVR microcontroller to dynamically
reconfigure FPGA configuration memory. For example, the BIST sequence in the
previous work on the same device is as follows [33]:
1) Reconfigure FPGA for the BIST (download configuration file).
2) Run BIST (BIST clock is applied).
3) Reconfigure ORAs to form a scan chain (dynamic partial reconfiguration via the
AV R) .
4) Retrieve ORA results (to the external controller such as PC).
5) Reconfigure FPGA for the next BUT mode of operation (configuration file
download required).
6) Repeat step 2) ? 5) until all modes of BUT operation are tested.
7) Diagnose the retrieved ORA results to locate the faulty blocks (if there are any
ORA failures).
 Improvement can be made to Step 5 above when the FPGA has to be reconfigured
externally via downloading an external configuration file for the next BIST configuration.
Instead of the external configuration download, this BUT reconfiguration can be done by
the AVR processor through partial reconfiguration of BUTs to the next mode of operation.
Since the BUTs in logic BIST architecture have either column or row oriented structure,
they can be easily reconfigured by an algorithmic AVR routine to save test time.
 Additional improvements can be made to step 4. After the BIST clock cycles are
applied for each BIST sequence, the ORA results are retrieved in this step. This is
 38
because the shift registers are overwritten to ORAs when the next BIST configuration
download occurs, resulting in a chip reset and the contents of ORAs are lost. However,
from another aspect, the new BIST configuration downloads are required in order to reset
the contents of ORAs as well as to reinitialize comparison-based ORA functionality for
the next BIST configuration. Improvements can be made by utilizing the AVR?s dynamic
partial reconfiguration capability since the AVR can reconfigure the shift chain back to
ORAs and clear the flip-flop contents of ORAs so that the next test phase can be run.
Therefore, only one initial BIST configuration download to the FPGA is needed for each
test session and subsequent BIST configuration downloads can be replaced with a small
AVR program.
 As a result, only one BIST configuration needs to be downloaded along with a
program to be executed by the processor core for the reconfiguration of subsequent BIST
configurations. In the previous work [33], the FPGA is tested for four directions (Figure
3.7) and one direction consists of four modes of BUT configuration. Therefore a total of
16 BIST configurations must be downloaded. These sixteen configuration downloads can
be replaced by four downloads with the AVR-assisted BIST. This provides an
improvement to total test time when compared to downloading individual BIST
configurations because the download time dominates the total test time since the
configuration clock usually runs at a lower frequency than the processor clock.
 39
3.7 Four Layouts for Logic BIST [33]
a) West Session b) East Session
c) South Session d) North Session
TPG
BUT
ORA

To reconfigure for the next test phase from the AVR, an external interrupt routine is
used which has a global variable ?phase?. The variable ?phase? is initialized to 1 during
the initial download to the FPGA which means the first BUT mode is configured in the
FPGA. When the interrupt occurs, the ?phase? variable is incremented to configure BUTs
differently and appropriately as the test sequence proceeds, as shown in Figure 3.8 line
(c). In order to achieve maximum speedup, the use of arrays is avoided and a ?switch-
case-break? scheme is used (Figure 3.8a) which saves execution time but requires more
program memory size. After the reconfiguration of the BUTs, the existing shift register is
reconfigured back to ORAs by a routine similar to the BUT reconfiguration routine
shown in Figure 3.8.
 40

 Detailed analysis of the AVR reconfiguration is shown in Table 3.1 in terms of the
number of processor clock cycles required to perform the various functions associated
with reconfiguration and execution of logic BIST. The number of non-commented lines
of C source code and the number of bytes of program memory storage required for the
compile program are also given. In logic BIST for AT94K40 (a 48x48 array) there are
1,152 BUTs and 1,104 ORAs in each BIST configuration [28]. Therefore, BUT
reconfiguration requires about 61 cycles per BUT while reconfiguration of the ORAs
 41
into a shift register requires about 23 cycles per ORA and reconfiguration back to ORAs
after retrieval of the BIST results requires about 34 cycles per ORA.
Table 3.1 Logic BIST Reconfiguration
Reconfiguration function
Average processor
execution cycles
Number of lines
of code
Program memory
bytes
ORA to shift register 25,570 127 764
Shift register to ORA 37,220 102 328
Reconfigure BUT 70,023 154 756
 As illustrated in Table 3.2, in the initial work [33], each of the four BIST
configurations associated with each of the four test sessions contains approximately 65
Kbytes of configuration data including the program for reconfiguration of the ORAs into
a shift register at the end of the BIST sequence for retrieving ORA results.
Table 3.2 Total Memory Reduction
 Download [33] AVR-assisted
Memory
Reduction
Total Configurations 65 Kbytes ? 16 files 67.5 Kbytes x 4 files 3.9
 Therefore, a total of approximately 1.04 Mbytes of memory is needed to store all
sixteen logic BIST configurations. A single configuration for a given logic BIST session
with a program to reconfigure the subsequent three BIST configurations requires only
67.5 Kbytes of configuration and program data (total of approximately 270 Kbytes),
giving a factor of 3.9 reduction in memory storage for four test sessions. In these cases,
the AVR program performs the following steps during the BIST sequence to obtain
improvements over the previous work [33]:
 1) Execute the BIST sequence for the current BIST configuration.
 2) Reconfigure the ORAs into a shift register at the end of the BIST sequence.
 3) Retrieve the BIST results.
 42
 4) Reconfigure the shift register back to ORAs for the next BIST configuration.
 5) Reconfigure BUTs for the next BIST configuration.
 6) Repeat steps 1 through 5 until all of the BIST configurations have been executed.
 The test time is determined by the total time required to download the BIST
configuration and the time for the processor to execute the steps listed above. At the
maximum download (1MHz) and processor clock (25MHz) frequencies, it takes total of
523 milliseconds for a single logic BIST configuration, 2.1 seconds for the test session of
four logic BIST configurations, and a total of 8.4 seconds for the complete set of 16 logic
BIST configurations as shown in Table 3.3. Using the processor core for reconfiguration
(AVR-assisted) of the four BUT configurations within a given test session, it takes a total
of 559 milliseconds per test session, giving a speed-up of 3.75.
Table 3.3 Total Test Time and Speed Up
 Download [33] AVR-assisted Speed up Factor
Download (1MHz) 523msec x 16 540msec x 4 3.87
Run time (25MHz) 1msec x 16 19msec x 4 0.21
Total BIST Time 8.4 sec 2.24 sec 3.75

3.4 A Better Logic BIST Sequence
 Taking the AVR-assisted logic BIST idea one step further, additional improvements
can be made to the BIST sequence. In the previous work [33], one BIST session consists
of four BIST configurations to be downloaded and two different routing schemes, shown
in Figure 3.9, which alternate as the phase increases, requiring retrieval of ORA results
after every BIST configuration [33].
 43
Figure 3.9 Four BIST Phases in One Session for AT94K SoCs
1
1
1
1
1
1
1
1
1
1
1
1
a) Phase 2
(routing scheme 1)
1
1
1
1
1
1
1
TPG
BUT mode 1
ORA
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
BUT mode 2
3
BUT mode 3
4
BUT mode 4
b) Phase 2
(routing scheme 2)
c) Phase 3
(routing scheme 1)
d) Phase 4
(routing scheme 2)
 The MGL-based AVR-assisted logic BIST described in the previous section had to
scan out the ORA results at the end of each BIST sequence. It is due to the fact that the
routing scheme alternated after every test phase, resulting in the inability to locate faulty
PLBs based on failing BIST results. By reordering the BIST configurations and by
grouping the same routing schemes together, the ORA result can be retrieved after
multiple test phases. This results in saving total test time by saving ORA reconfiguration
and retrieval time. As a result, the contents of the ORAs are not cleared in between test
phases because the ORA contents have to be maintained throughout the different BIST
phases in order to scan out results at the end of the test session. In this case, there is some
loss in diagnostic resolution but it does not degrade any fault detection capabilities. Thus,
BIST still detects any faulty PLBs while attaining faster test time while diagnosis can
still identify faulty PLBs. The loss in diagnostic resolution is only to the extent that the
failing BUT mode of operation cannot be identified.
 In the case of the X and Y direct PLB connection tests, which are located on four
 44
corners of the FPGA, avoiding alternating routing schemes results in complete testing of
the PLBs, including X and Y direct connections on the four corners. The work in [33]
reported lower fault coverage in eight PLBs located in the four corners.
 This modified approach to dynamic partial reconfiguration of the FPGA core by the
embedded processor core is analyzed and illustrated in Table 3.4 in terms of the number
of processor execution clock cycles and program memory size required for
reconfiguration of BIST, execution of the BIST sequence, and retrieval of the BIST
results for diagnosis. This new logic BIST approach consists of the following steps:
1) Reconfigure the FPGA for BIST (download configuration file).
2) Run BIST (BIST clock is applied).
3) Partially reconfigure for the next BUT configuration via the microcontroller.
4) Repeat steps 2) and 3) until all modes of operation with the same routing scheme
are run.
5) Reconfigure the ORAs into a shift register.
6) Retrieve the BIST results for diagnosis to locate faulty PLBs.
7) Reconfigure the shift register back to ORAs for a different routing scheme.
8) Reconfigure BUTs for another ORA-to-BUT routing scheme.
9) Repeat steps 2 through 6 for the next test session.
 As shown in Table 3.4, the new BIST sequence produces a 41% reduction in the
average number of execution clock cycles per test phase and a 49% reduction in program
memory storage requirements. This is due in part to the fact that ORA results can be
retrieved after each group of four BIST configurations without loss of fault detection
information, instead of after every BIST configuration as is the case in the externally
 45
controlled logic BIST approach in [33]. Another factor is that the externally controlled
logic BIST approach required running four test sessions (west, east, south, and north) for
complete testing of PLB logic while the modified AVR-assisted logic BIST approach
only requires running two test sessions (west and east), twice each (one for each routing
scheme). Thus, the modified AVR-assisted logic BIST requires fewer reconfiguration
clock cycles to completely test the PLBs in the FPGA core. One penalty of having only
west and east test sessions is that they are not sufficient to test additional routing faults
associated with horizontal transmission gates, which make PLB-to-global bus
connections. Whereas the externally controlled logic BIST approach [33] is able to detect
them in addition to the PLB logic faults. However, it can be solved by running similar
sessions for north and south, or as an alternative, routing BIST requires north and south
test sessions for repeaters and the horizontal transmission gates should be tested in those
BIST configurations.
Table 3.4 Logic BIST Reconfiguration Improvement
Compared Features AVR-assisted Modified AVR-assisted
Total Number of Test Phases 16 16
Number of Downloads Required 4 2
Average Number of Lines of Code 350 x 4 450 x 2
Total Program Memory Size (Bytes) 1,694 x 4 1,736 x 2
 Total Execution Clock Cycles 1,844,916 1,086,462
Average Cycles per Test Phase 115,307 67,904
By comparing the improved and original BIST configurations from [33], a total
memory reduction factor of 7.7 and a test time speedup by a factor of 7.4 are achieved, as
shown in Tables 3.5 and 3.6 respectively. Note that all the data shown are based on the
AT94K40 device which has a PLB array size of 48x48. But it should be noted that all
 46
tests were also developed for and executed on AT94K10 devices, which have a PLB array
size of 24x24. The speedup in testing time in the AT94K10 is less due to the smaller array
size.
Table 3.5 Total Memory Reduction
 Download [33] Modified AVR-assist
Memory
Reduction
Total Configurations 65 Kbytes ? 16 files 67.6 Kbytes x 2 file 7.7
Table 3.6 Total Test Time and Speed Up
 Download [33] Modified AVR-
assist
Speed up Factor
Download (1MHz) 523msec x 16 541msec x 2 7.75
Run time (25MHz) 1msec x 16 22msec x 2 0.36
Total BIST Time 8.4 sec 1.13 sec 7.4

 47
CHAPTER FOUR
AV R GENERATED FPGA LOGIC BIST

The previous chapter described how the embedded AVR microcontroller can assist
in the BIST of the embedded FPGA core using an initial external configuration download
to the FPGA. Significant improvements in the BIST performance were obtained by using
the microcontroller to reconfigure the FPGA for the subsequent BIST configurations
instead of downloading those BIST configurations. This chapter extends the idea to
eliminate all external downloads to the FPGA by replacing those download bitstream files
with a single AVR program. The program contains algorithmic routines to reconfigure the
FPGA core for every BIST configuration. Furthermore, the AVR becomes the test
controller by executing the BIST sequence and retrieving the BIST results. The detailed
development and debugging process of AVR generated BIST configurations will be
discussed. Finally, the improvement over the conventional FPGA BIST will be presented
by showing the BIST time speedup and configuration memory storage reduction factor.

4.1 Development of C Program for Logic BIST Generation
The goal is to develop a program for algorithmic reconfiguration of the FPGA core
for every BIST configuration. This requires only a single download to the program
memory without configuration of the FPGA core. If the program is sufficiently small, it
can reside in the program memory without the need for any download. The key point in
 48
this approach is to have an algorithmic routine to reconfigure the FPGA for different
BIST configurations [28]. If fast enough, the BIST program can be more frequently used
during idle intervals in system operation for high reliability, high availability applications.
 To accomplish the first goal, minimizing the size of the program, the BIST
architecture must be regular to facilitate an efficient reconfiguration algorithm. In
addition, the order of the configuration process must be efficient. The configuration order
also impacts the second goal, minimizing test execution time. The test execution time can
also be reduced by not retrieving test results from the ORAs after each BIST
configuration but instead, using dynamic partial reconfiguration to execute many BIST
configurations before retrieving test results. There is some loss of diagnostic resolution in
that the faulty functionality within a PLB can no longer be identified. However, there is
no loss in diagnostic resolution in that faulty PLB(s) can still be identified [34].
4.1.1 Implementation Issues and Considerations
 Since BIST configurations generated from MGL in [33] test all logic resources in
the BUTs with total of four BIST configurations, the first goal was to program the
embedded processor to perform the same tests by replicating the BIST structures (TPGs,
BUTs, ORAs, etc) which were generated by MGL, replacing all the BIST configuration
downloads with a single AVR program.
 One of the limitations of this approach, of having a single processor program to test
all the resources in an FPGA, is that the time required for developing and debugging the
program can be significant. Most of the FPGA design tools provide a graphical
representation of the design to be implemented in the FPGA to help in debugging the
design. Atmel provides a tool called Figaro which graphically represents how the design
 49
is mapped onto the FPGA, provided the original design is described using MGL, VHDL
or Verilog. On the other hand, if the entire BIST configuration is generated through
partial reconfiguration by the AVR, debugging the design without any tool support can
become quite tedious and error-prone. If the AT94K series SoCs were capable of
dynamic configuration readback via the AVR processor core (which is not the case),
BIST development time would be greatly reduced by facilitating read-modify-write
operations to the configuration memory. Instead, the BIST configurations previously
developed and verified using MGL as described in [33] must serve as a baseline for
developing and debugging the desired program for the AVR processor core.
 In order to develop the AVR program, we must determine the BIST configuration
that has to be generated initially and also the proper order of subsequent configurations so
as to minimize the configuration time from the AVR. We use the BIST configurations
originally developed using MGL [33] to help determine these two issues. While the
graphical representation of the design helps in planning the reconfiguration routines as to
how the different resources (logic, routing, repeaters, and clocks) have to be configured,
the MGL generated bitstream helps in determining the order in which to write various
configuration bytes for different resources so as to make the algorithmic reconfiguration
routines efficient in terms of speed and size as well as power dissipation during
reconfiguration.
 After developing and verifying the routines for the initial configuration, routines are
then developed for reconfiguring the BUTs to test the subsequent modes of operation.
The BIST reconfiguration order has to be carefully considered and arranged since, if
different resources are configured independently, there is possibility of destroying the
 50
previously configured bytes, since some of the configuration bytes are shared by different
programmable resources. For example, as shown in Figure 4.1, if reconfiguring repeater
connection ?A-C? requires writing a logic 1 on the least significant bit location of the
repeater configuration byte, then writing a byte ?00000001? may turn off the existing
activated CIP that is needed for BIST.

4.1.2 Efficient Sequence of On-chip Dynamic Configuration of FPGA BIST from
AV R
 To find an efficient configuration sequence when reconfiguring the FPGA core
from scratch, a primary goal is to avoid the risk of overwriting a configuration bit that has
been previously written and, as a result, inadvertently injecting errors into a BIST
configuration. The following considerations help to minimize this risk. First, do not
configure more than what is needed when configuring the FPGA for the test. For example,
the BIST clock routing need not be configured until the other BIST components are
configured and ready for the BIST clock. When the BIST clock is ready to be applied for
the BIST sequence, the scan chain output path from the ORAs is not needed and should
 51
only be configured right before the BIST results are to be retrieved. Second, keep track of
configuration bytes that control more than one kind of programmable component (such as
repeaters with global clocks and resets, for example). Third, configure resources that are
regular and repeat over the entire array first (such as the BUTs and ORAs, for example)
and then configure the resources that are local to a specific area in the FPGA array (such
as the clock, scan chain output signal, and TPGs).
 The algorithmic reconfiguration program for the embedded AVR core was
developed in C. The program?s subroutines and reconfiguration sequence is arranged in
the following order:
 1. Clear the FPGA - Instead of the chip reset, this subroutine clears the entire FPGA
configuration memory contents to ensure that the BIST components will be configured
into an empty FPGA. It clears all configuration memory bytes associated with PLBs,
repeaters, clocks, set/resets, flip-flops, free RAMs, and I/O buffers [7]. This routine is
also executed when there are transitions between test sessions as shown in Figure 2.15.
 2. Initialize the ORAs - This subroutine configures the local routing resources
associated with each ORA and its LUTs to function as a comparison-based ORA. It
configures the ORAs to either routing scheme 1 or 2, as shown in Figure 2.15, and resets
the ORA flip-flop contents to logic 0.
 3. Initialize/reconfigure the BUTs - This subroutine first configures the cross points
where the TPG signals and buses to the BUT inputs are connected along the very top and
the bottom of the FPGA array. When the routine is used to reconfigure the BUTs for the
next BIST configuration, depending on the current test session and the BIST
configuration, it changes the local routing connecting the BUTs as well as the
 52
programmable logic resources inside the BUTs. The BUTs are also reset through this
subroutine, meaning the flip-flops in all of the BUTs are initialized to either logic 0 or
logic 1 (depending on the BUT configuration) to ensure correct BIST operation. In fact,
this feature provides additional testing of the flip-flops that cannot be tested by
downloading individual BIST configurations into the FPGA core and illustrates the
improved controllability obtained with partial reconfiguration from the embedded
processor core.
 4. Initialize the TPGs - This subroutine programs two 5-bit counters in the TPG
column of the PLB array. It also performs all local, global, and repeater routing between
the TPG PLBs, as well as the TPG to BUT signal connections as shown in Figure 2.15.
When configuring repeaters in this step, writing to some of the repeater bytes needs extra
attention because some of the bytes in repeaters also include global clock and set/reset
control bits. This subroutine also initializes the TPG flip-flops to logic 0 to ensure that the
TPGs are synchronized prior to execution of the BIST sequence.
 5. Route BIST clock controlled by the AVR interface - This subroutine connects the
FPGA Write Enable line (FPGAIOWE as shown in Figure 2.8 and 4.2) from the AVR
interface to one of the global clock input lines of the FPGA core so that the BIST clock
signal can be distributed to all of the PLBs. FPGAIOWE is used to generate and control
the BIST clock from the AVR. Since the AVR-FPGA interface cannot be described and
programmed from the MGL, the circled points shown in Figure 4.2 illustrate dynamic
reconfiguration from the AVR. Finally, this subroutine configures the clock control
settings such as clock invert bits for the TPGs, BUTs, and ORAs which are the last steps
before running the BIST.
 53
Figure 4.2 FIGARO Illustration of How AVR Connects to a Global Clock Buffer
FPGAIOWE from AVR
Dynamic AVR
reconfiguration Points
Global
CLK

 54
 6. Run the BIST - In this subroutine, the embedded AVR processor generates the
BIST clock cycles to the FPGA core to run the complete BIST sequence. A control
register ?FISCR? is assigned to decode and connect one of four I/O registry addresses
(?FISUB? is decoded in Figure 4.3) to the AVR-FPGA data bus. A clock cycle is
generated by writing a dummy value to the 8-bit ?FISUB? as shown in Figure 4.3 which
causes a clock cycle to be generated at the ?FPGAIOWE? pad. The TPGs generate the test
patterns and any ORAs that observe mismatches in the outputs of their two neighboring
BUTs will latch a logic 1.

 7. Reconfigure the ORAs as a scan chain - At the completion of the BIST sequence,
the ORAs will hold the test results to be read by the AVR. During this subroutine, all of
the ORAs are dynamically reconfigured as a scan chain without affecting the contents of
the ORA flip-flops as discussed in previous chapter.
 8. Route the scan out data to the AVR interface - When ORA results are scanned out
to the AVR core, the bidirectional data bus between the AVR and FPGA core must be
used to shift the ORA results to the AVR for storage in the data SRAM. This subroutine
routes a signal path from the output of the last ORA in the shift register to one of the 8-bit
data bus lines (AVR DATA IN 0 in Figure 4.4) to the AVR core.

 55

 9. Retrieve ORA results and store in the data SRAM for fault detection analysis
and/or diagnosis - According to the instruction given to the embedded processor by a
higher computing source (a PC in our case), the AVR can retrieve the ORA results after
every BIST configuration or after multiple BIST configurations. In the latter case, there is
some loss in diagnostic resolution but it does not degrade any fault detection capabilities.
Thus, it still detects and identifies any faulty PLBs while attaining faster test time. The
AVR can either return the actual test results (the contents of the ORAs) or it can perform
an on-chip diagnostic procedure [34] as instructed by the higher computing source. In the
event that the AVR is instructed to perform diagnosis, it returns a list of all faulty PLBs
and their locations in the array for the BIST configuration(s) just executed.
 56
4.2 Debugging Technique for Developing Logic BIST from Scratch
 Atmel?s MGL and Figaro IDS tools can be used to a certain extent to help in
speeding up the development and debugging process for the AVR program, which
consists of the various configuration subroutines. In order to use an MGL program in
debugging, a completely developed and verified MGL-based BIST configuration from
[33] was modified to omit certain configurations of the BIST components in the FPGA
core, as illustrated in Figure 4.5. An AVR program was then developed to write the
configuration of the original components missing in the modified MGL configuration.
The MGL-generated bit stream and the compiled AVR code are then combined into a
single bit stream using Atmel System Designer and downloaded into the SoC. The MGL-
based BIST configuration, with missing BIST components, will report failures upon
running BIST. However, if the BIST runs correctly after the execution of the AVR
configuration routine, then we will have verified, at least to a certain extent, that the
configuration subroutine correctly replaces the missing BIST component. Each BIST
component is removed, one at a time, from the MGL code and combined with an
appropriate AVR configuration subroutine to verify all of the AVR configuration
subroutines for all BIST components. In this manner, we are essentially using the BIST
architecture to test itself for design verification. A fault injection emulation technique is
then used by reconfiguring certain PLBs to have faults and to verify that the BIST
accurately detects and diagnoses these faults [17]. When there is no MGL-generated
configuration data to be downloaded into the FPGA core, we are left with one AVR
program which consists of all the logic BIST reconfiguration subroutines to be
downloaded to the program memory of the SoC.
 57
Figure 4.5 Use of MGL to Verify AVR Routines
a) MGL bitstream to
be downloaded into
the FPGA core
b) AVR program routine
that configures lower
TPGs on the FPGA core
c) Run BIST and verify the
operation with fault inject

4.3 Experimental Results
 The AVR program, consisting of the various subroutines described Section 4.1, is
summarized in Table 4.1 in terms of individual program memory storage requirements,
number of non-commented lines of source code, and the number of processor execution
cycles for each configuration subroutine. Note that Table 4.1 contains the detailed
functional level analysis of the final program which compiles to an Intel HEX file format
to be downloaded to the program memory of the chip to run all of the west and east test
sessions, which are equivalent to the complete set of the logic BIST configurations
developed in [33]. Almost all of the subroutines developed for the west test session were
parameterized so that they can be reused in the east session to reduce the program
memory size. The main difference between the two test sessions is the direction of the
 58
TPG signal flow across the top and the bottom of the array, which corresponds to
horizontal repeaters on the top and bottom rows. The rest of the configuration subroutines
for the BUTs and ORAs are reused simply by applying offsets to the column locations.
TPG configuration routines are also reused by changing the TPG column location from
FPGAX = 0 for the first (west) test session to FPGAX = ArraySize-1 for the second
(east) test session. Thus, most of the configuration subroutines take two parameters:
directions of the TPG signal flow to the BUTs (west or east) and the BIST configuration
for the particular BUT mode of operation to be tested.
Table 4.1 Total Configuration Routine Analysis
Processor Execution
Cycles
BIST
Reconfiguration
Subroutines
Program Memory
Size (KBytes)
Number of
Lines of Code
(Approx.) K10 K40
Clear FPGA 0.492 150 59664 215128
Place/config BUT 0.834 300 25829 100360
Place/route ORA 0.22 70 14844 60686
Place/route TPG 1.486 600 4652 14866
Route BIST clock 0.234 40 1923 4911
ORA/shift reg 0.282 80 6371 24791
Route scan out 0.402 45 24879 97370
Misc. 0.726 2700 * *
Total 4.676 4000 138162 518112
* Ignored in the total value.
 Due to the irregular structure of the TPG and associated routing, the subroutine for
configuring the TPG PLBs and the TPG to BUT routing occupies a large portion of the
program memory. The second biggest subroutine is the placement and reconfiguration of
the BUTs, since this contains 16 different combinations of BUT test configurations as
well as the flip-flop and set/reset tests in half of the BIST configurations. The complete
 59
AVR program occupies 4.7 KBytes of program memory, which corresponds to only
about 14% of the total 32 KByte program memory space available in the AT94K series
SoC.
 In contrast to the program memory size or the number of non-commented lines of C
source code, the number of processor execution cycles listed in Table 4.1 shows a
different aspect of the BIST reconfiguration program. For example, more execution
cycles are required in the routines for clearing the FPGA, for placement and
reconfiguring of the BUTs, and for placement and routing the ORAs. Fewer execution
cycles are required for placing and routing the TPGs. This is because the first three
subroutines contain extensive loops which travel along every X (FPGAX) and Y
(FPGAY) location of the chip. This illustrates how the regular and algorithmic structure
of the BIST architecture helps to reduce the program memory storage requirements. The
K10 notation in Table 4.1 denotes AT94K10 devices, which have an array size of 24?24
PLBs, while the K40 denotes AT94K40 devices, which have a 48?48 PLB array. The
column showing processor execution cycles for K40 is greater by a factor of
approximately four, indicating that the increase in reconfiguration time and retrieval of
results is linear with the device size.
 Subroutines for applying the diagnostic procedure to the BIST results and for
communicating with the higher controlling source also increase the program memory
storage requirements. Also, due to the additional bits added from the tool that generates
the final bit-stream, the actual file size to be downloaded to the program memory of the
AVR increases from 4.7 Kbytes to 12.6 Kbytes as summarized in Table 4.2.

 60
Table 4.2 Actual Download File Size (KBytes)
All
Configurations
On-Chip Diagnosis
+ others
Added by System Designer Bit
Generation
Total
4.676 2.5 5.419 12.6
 With the internal BIST reconfiguration process executed by the AVR core, we
achieve much better external memory storage requirements and faster testing time when
compared to downloading individual BIST configurations into the FPGA. This is
summarized in Table 4.3 for external memory storage and in Table 4.4 for total test time.
The data shown in these tables are for a AT94K40 device with a 48?48 PLB array.
Table 4.3 Total Memory Reduction
 Download[33] AVR-generated Memory Reduction
Total Configurations
65 Kbytes
? 16 files
12.6 Kytes
x 1 file
83
Table 4.4 Total Test Time and Speed up
 Download[33] AVR-generated Speed up Factor
Download (1MHz) 8.371 sec. 0.101 sec. 83.077
Run-time (25MHz) 0.016 sec. 0.085 sec. 0.193
Total BIST Time 8.387 sec. 0.186 sec. 45.125
 The total test time is calculated by adding the download time and BIST execution
time (or run-time as listed in Table 4.4). The external download is done using a
maximum clock speed of 1MHz since all external downloads, which involve a check for
download errors (the check-sum function) at the FPGA, can run at a maximum
configuration clock frequency of 1 MHz [7]. Since the AVR can run at 25 MHz clock
speed, BIST execution time is calculated assuming that the BIST clock runs at 25 MHz.
This data was obtained from simulation on the ?Codevision AVR? C compiler and ?AVR
Studio? for both conventional and processor-only cases and was also verified against
actual download and execution times in several AT94K40 devices.
 61
 As a result of the single AVR program for BIST reconfiguration, we obtain a factor
of 45 speed-up in total test time and a factor of 83 reduction in external memory
requirements for storing BIST configurations. It is interesting to note that the run-time in
Table 4.4 increases for AVR BIST reconfiguration. This is due to the fact that the
embedded processor core is doing all the reconfiguration, execution, and retrieval of
BIST results while in the download of BIST configurations, the processor core is only
used to reconfigure the ORAs into shift registers at the end of the BIST sequence for
retrieval of the test results. With this consideration, the increase in run-time seems
surprisingly small.
 62
CHAPTER FIVE
SUMMARY AND CONCLUSIONS

This chapter summarizes the thesis and emphasizes the main contributions,
followed by possible future research subjects. The summary section addresses problems
in developing BIST configurations on commercially available SoC devices and discusses
how the problems were solved through this thesis work. Experimental results summarize
and discuss improvements in BIST which utilizes embedded AVR microcontroller as a
BIST component, followed by a discussion of possible future research topics.
5.1. Summary
The PLBs in the embedded FPGA core in AT94K FPSLIC devices from Atmel
were tested with 99.7% fault coverage in the thesis work described in [33]. One of the
difficulties in developing BIST configurations on the device was due to that fact that
each PLB has limited amount of resources which made it impossible to have an ORA
with shift register capabilities in a single PLB [33]. With further investigation of the SoC
device, we determined that the embedded FPGA can be dynamically reconfigured from
the embedded AVR core, so that the BIST architecture could start with comparison-based
ORAs, where each ORA monitors two BUTs, and scan out the ORA results by
dynamically reconfiguring the ORAs to shift registers at the end of the BIST sequence.
As a result, BIST configuration bitstreams that are downloaded to the SoC device consist
of FPGA configurations as well as the AVR program for ORA to shift register
 63
reconfiguration. Therefore, the work in [33] was completed and concluded with the
support of the AVR partial reconfiguration which influenced most of the ideas in this
thesis.
In order to improve test time, which is dominated by BIST configuration download
time in [33] and other previous FPGA BIST works in [10]-[12], [18]-[21], the role of the
AVR has been extended to do partial reconfiguration of BUTs for each test phase. This
eliminates the need for new downloads to the FPGA and any chip reset between the BIST
configurations. Without a chip reset, the AVR must reconfigure more resources, such as
resetting flip-flops in ORAs and TPGs, which costs additional clock cycles. However,
faster test time than the approach in [33] was achieved because the AVR reconfiguration
runs at a clock frequency of 25MHz while the external download can only run at 1MHz
in order to provide error checks on the configuration downloads files. The improved
BIST approach, however, needed the initial download to the FPGA for each test session.
With the BIST approach that requires initial download to the embedded FPGA
followed by dynamic reconfigurations of the FPGA from the AVR between test phases,
we focused on imitating the exact BIST architecture and sequence as done in [33].
However, with the dynamic partial reconfiguration capability of the AVR, any
modification can be made to the BIST architecture in such a way that improves the total
test time. One of the modifications made was in the local X and Y routing scheme that
alternates as shown in Figure 3.9. Instead of the alternate routing schemes, one routing
scheme (scheme 1) is maintained to run four BUT configurations, with ORA results
scanned out after the all modes of BUT operation have been tested. Next, the FPGA is
reconfigured to have another routing scheme (scheme 2) to run four BUT configurations
 64
again. This gave better speedup in test time, further reductions in memory storage
requirements, and improved fault coverage at the corners on the FPGA core.
As the AVR?s dynamic partial reconfiguration capability was proven to give
flexibility of developing BIST configurations, the idea arose that the AVR could program
the entire FPGA core from the very beginning without the need of any external download.
All BIST components such as TPGs, BUTs and ORAs were carefully analyzed and a C
program was developed so that the AVR can write certain configurations to certain parts
of the FPGA to perform particular BIST functions such as TPG, ORA, or BUT. The
drawback of this approach was excessive development time due to that fact that there are
no tools that can visualize the dynamic cache logic of AVR writing to the FPGA
configuration memory. In the end, this approach resulted in a single program that
replaces 16 external downloads, achieving better test time speedup and memory storage
requirements reduction than any other approach.
5.2. Improvements in Total Test Time and Configuration Memory Requirements
As a result, we have achieved improvements in the total test time and memory
storage requirement for BIST configurations throughout the development. The final
result is a single program executed by the embedded processor core for the complete
reconfiguration, execution, and retrieval of test results during BIST of the programmable
logic resources in the FPGA core of the Atmel AT94K series configurable SoC, as
summarized in Tables 5.1, 5.2, and 5.3. As can be seen, replacing configuration
downloads to the chip requires more AVR program size and processor execution cycles.
However, this is a good trade-off since it eliminates FPGA configuration downloads
which dominate total BIST configuration memory storage requirement and test time.
 65
Table 5.1 Logic BIST Reconfiguration Comparison
Compared
Features
Download [33] AVR-assisted
Modified AVR-
assisted
AVR-generated
 # of Downloads
Required
16 4 2 1
Total Number of
ORA Retrieval
1 x 16 4 x 4 2 x 2 4 x 1
Number of lines
of code
127 x 16 350 x 4 450 x 2 1,300 x 1
Total Program
memory bytes
764 1,694 x 4 1,736 x 2 4,676 x 1
Total Processor
execution cycles
25,570 1,844,916 1,086,462 2,127,686
Table 5.2 Total Configuration Memory Reduction
 Download [33] AVR-assisted
Modified
AVR-assisted
AVR-generated
Total
Configurations
65 Kbytes
? 16 files
67.5 Kbytes
x 4 files
67.6 Kbytes
x 2 files
12.6 Kbytes
X 1 file
Memory
Reduction
1 3.9 7.7 83
Table 5.3 Total Test Time and Speed Up
 Download [33] AVR-assisted
Modified AVR-
assisted
AV R - generated
Download
(1MHz)
523msec x 16 540msec x 4 541msec x 2 101msec x 1
Run time
(25MHz)
1msec x 16 19msec x 4 22msec x 2 85msec x 1
Total BIST Time 8.4 sec 2.24 sec 1.13 sec 0.186 sec
Speed Up Factor 1 3.75 7.4 45

 66
5.3. Main Contribution
 The ability to perform dynamic partial reconfiguration of the FPGA core from the
embedded processor core provides a major testing capability. However, the non-existent
configuration memory readback capability, as well as lack of graphical tool support that
can show dynamic partial reconfigurations in the FPGA, make the SoC testing (and test
development) much more difficult. Therefore, a unique way of debugging and verifying
AVR?s dynamic reconfiguration was used by combining the AVR program with
previously verified MGL-generated FPGA BIST configurations so that the resultant
download bitstream can be run in the chip for the AVR program verification. Finally, by
having a single program downloaded into the program memory of the embedded
processor to reconfigure the FPGA core algorithmically, downloads to the FPGA core are
eliminated, resulting in significant reduction in the total testing time (a factor of 45) as
well as the configuration memory required (a factor of 83) compared to the previous
work done in [33]. The single AVR-generated BIST and diagnostic program is
sufficiently small to reside on-chip for on-demand BIST and diagnosis of the
programmable logic resources in the FPGA core of the SoC.
 The same techniques discussed in this thesis can also be applied to BIST of the
programmable routing resources. Previous work [33] showed that the number of routing
BIST configurations required (48) was three times more than the logic BIST
configurations (16) for the same device tested in this thesis. In other words, three times
more configuration downloads could be replaced with a single AVR program resulting in
a better reduction of configuration memory requirements and total test time.

 67
5.4. Future Research
 There are two areas that can be considered for future research related to this thesis.
They are the embedded AVR microcontroller itself and a dynamic reconfiguration
visualization tool. Throughout this thesis work, the microcontroller was assumed to be
fault-free. Without this assumption, it is not certain that the FPGA BIST configurations
generated from the AVR are correct. If the AVR can be tested also, then it would support
the argument that the partial reconfigurations that are made by the AVR to the FPGA core
can be trusted. An AVR test could be broken into several parts (such as ALU, stack,
dynamic reconfiguration logic, peripherals and etc), and critical parts that are mostly
used for the BIST reconfiguration shown in this thesis can be selected and tested
individually.
 The AVR leads to the other subject, the dynamic reconfiguration visualization tool.
If developers can see how the FPGA configurations are being changed by the AVR, there
would be no need for spending excessive time in developing AVR-generated BIST
configurations that currently requires developer?s ability of imagining any design
changes (by looking at the AVR program) inside the FPGA core resulting from the AVR
dynamic reconfiguration. Currently, a simulation program called ?AVR Studio? has
capabilities to simulate and record various parts in the AVR (such as registers, ports,
processor clock cycles and etc), and the visualization tool could be built on top of the
AVR simulator as a form of software plug-in module. The visualization tool will not help
general users to debug designs since most designers would not consider the physical
design structure or layout which is typically done by the CAD tool. However, the
visualization tool will be very useful to test engineers, especially those who are related to
 68
the topics and techniques discussed in this thesis.
 69
REFERENCES

[1] D. W. Kim, W. I. Cho, ?Development of Universal BIST Tool to provide BIST
Environment,? Journal of New Technology., Kwang-woon Univ, Vol. 26, pp. 65-75,
1997.
[2] R. Drechsler, "Synthesizing checkers for on-line verification of System-on-Chip
designs," Proc. IEEE International Symp. on Circuits and Systems, Vol. 4, pp. 25-28,
2003.
[3] B. Bentley, "Validating the Intel Pentium 4 microprocessor," Proc. ACM/IEEE
Design Automation Conf., pp. 244-248, 2001.
[4] J. J. Engel, T. S. Guzowski, A. Hunt, D. E. Lackey, L. D. Pickup, R. A. Proctor, K.
Reynolds, A. M Rincon, D. R. Stauffer, "Design methodology for IBM ASIC
products," IBM Journal of Research and Development, Vol 40, No. 4, pp.387-407,
1996.
[5] S. Pontarelli, G. C. Cardarilli, A. Malvoni, M. Ottavi, M. Re, A. Salsano, ?System-on-
Chip Oriented Fault-Tolerant Sequential Systems Implementation Methodology,?
Proc. IEEE International Symp. on Defect and Fault Tolerance in VLSI Systems, pp.
24-26, 2001.
[6] __, Agilent Technologies Home Page: http://www.agilent.com
[7] __, Atmel Home Page: http://www.atmel.com
[8] Hyper Dictionary Home Page: http://www.hyperdictionary.com
[9] M. Schrader, R. McConnell, "SoC Design and Test Considerations," Proc. Design,
Automation and Test in Europe, pp. 202-207, 2003.

 70
[10] M. Abramovici and C. Stroud, "BIST-Based Test and Diagnosis of FPGA Logic
Blocks," IEEE Trans. on VLSI Systems, Vol. 9, No. 1, pp. 159-172, 2001.
[11] C. E. Stroud, K. N. Leach, T. A. Slaughter, ?BIST for Xilinx 4000 and Spartan
Series FPGAs: A Case Study,? Proc. IEEE International Test Conf., pp. 1258-1267,
2003.
[12] S. Wijesuriya, ?Built-In Self-Test of Field Programmable Gate Array Interconnect,?
M.S.E.E. Thesis, University of Kentucky, 1997.
[13] __, Field Programmable Gate Arrays Data Book, Data Book, Lucent Technologies,
January 1998.
[14] J. Rose, A. El Gamal, A. Sangiovanni-Vincentelli, "Architecture of Field-
Programmable Gate Arrays," Proc. IEEE, Vol. 81, No. 7, pp. 1013-1029, 1993.
[15] S. Brown, and J. Rose, "FPGA and CPLD Architectures: A Tutorial," IEEE Design
& Test of Computers, Vol. 13, No. 2, pp. 42-57, 1996.
[16] K. Iijima, A. Akar, C. McDonald, and D. Burek, ?Embedded Test Solution as a
Breakthrough in Reducing Cost of Test for System on Chips,? Proc. IEEE Asian
Test Symp., pp 311 ? 316, 2002.
[17] C. E. Stroud, A Designer?s Guide to Built-In Self-Test, Springer-Verlag, New York,
2002.
[18] C. Stroud, S. Wijesuriya, C. Hamilton and M. Abramovici, ?Built-In Self-Test of
FPGA Interconnect,? Proc. IEEE International Test Conf., pp. 404-411, 1998.
[19] C. Stroud, S. Konala, P. Chen, and M. Abramovici, ?Built-In Self-Test for
Programmable Logic Blocks in FPGAs (Finally, A Free Lunch: BIST Without
Overhead!),? Proc. IEEE VLSI Test Symp., pp. 387-392, 1996.
[20] C. Stroud, E. Lee, S. Konala, and M. Abramovici, "Using ILA Testing for BIST in
FPGAs," Proc. IEEE International Test Conf., pp. 68-75, 1996.
[21] C. Stroud, E. Lee, M. Abramovici, "BIST-Based Diagnostics for FPGA Logic
Blocks," Proc. IEEE International Test Conf., pp. 539-547, 1997.
 71
[22] S. Brown, and J. Rose, "FPGA and CPLD Architectures: A Tutorial," IEEE Design
& Test of Computers, Vol. 13, No. 2, pp. 42-57, 1996.
[23] K. Y. Ko, Mike W. T. Wong, and Y. S. Lee, "Testing System-On-Chip by
Summations of Cores' Test Output Voltages," Proc. IEEE Asian Test Symp., pp 350
? 355, 2002.
[24] J. Sunwoo, S. Garimella, C. Stroud, ?On Embedded Processor Reconfiguration of
Logic BIST for FPGA Cores in SoCs,? Proc. IEEE North Atlantic Test Workship,
pp. 15-22, 2005.
[25] R. Rajsuman, ?Testing a System-On-a-Chip with Embedded Microprocessor,? Proc.
IEEE International Test Conf., pp. 499-508, 1999.
[26] M. Abramovici, C. Stroud, and J. Emmert, ?Using Embedded FPGAs for SoC
Yield Improvement,? Proc. ACM/IEEE Design Automation Conf., pp. 713-724,
2002.
[27] G. Zeng, H. Ito, ?Hybrid BIST for System-On-a-Chip Using an Embedded FPGA
Core,? Proc. IEEE VLSI Test Symp., pp. 353-358, 2004.
[28] C. Stroud, J. Sunwoo, S. Garimella and J. Harris, ?Built-In Self-Test for System-
on-Chip: A Case Study?, Proc. IEEE International Test Conf., pp. 837-846, 2004.
[29] __, AVR Assembly Home Page: www.attiny.com
[30] S. Donthi and R. Haggard, ?A Survey of dynamically reconfigurable FPGA
devices,? Proc. IEEE Southeastern Symp. on System Theory, pp. 422-426, 2003.
[31] __, ?Integrated Development System ? Figaro User Guide?, Atmel Corp., 2002.
[32] C. Sroud, J. Harris, S. Garimella and J. Sunwoo, ?Built-In Self-Test Configurations
for Atmel FPGAs Using Macro Generation Language,? Proc. IEEE North Atlantic
Test Workshop, pp. 83-90, 2004.
[33] J. Harris, ?Built-In Self-Test Configurations for Field Programmable Gate Array
Cores in Systems-On-Chip,? M.S.E.E. Thesis, Auburn University, 2004.
 72
[34] C. Stroud, S. Garimella, J. Sunwoo, ?On-Chip BIST-Based Diagnosis of Embedded
Programmable Logic Cores in System-on-Chip Devices,? Proc. ISCA International
Conf. on Computers and Their Applications, pp. 308-313, 2005.

