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System-on-Chip (SoC) implementations typically incorporate embedded Field 
Programmable Gate Array (FPGA) cores to take advantage of the programmable logic 
and routing resources provided by FPGAs. Testing the FPGA core typically requires 
numerous configuration downloads to completely test the various modes of operation of 
the programmable logic resources and the size of each configuration download file is 
large due to large amount of programmable resources. However, the ability to perform 
dynamic partial reconfiguration of the FPGA core from embedded processor core opens 
new opportunities for testing the FPGA using Built-In Self-Test (BIST). This thesis 
discusses the implementation of BIST for FPGA cores using partial dynamic 
reconfiguration from the embedded processor. As a result, all external configuration 
downloads are eliminated and replaced by one single processor program that programs 
 vi
the FPGA core for BIST, executes the BIST sequence, retrieves the BIST results, and 
executes diagnostic procedures to locate and identify faults detected by the BIST. Total 
testing time is improved by as much as a factor of 45 and a configuration memory storage 
requirement by as much as a factor of 83 by using dynamic partial reconfiguration 
compared to the traditional approach that requires BIST configuration downloads for 
every mode of operation of the programmable logic resources in the FPGA core of the 
Atmel AT94K series SoCs. 
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 1
CHAPTER ONE 
INTRODUCTION 
 
Developments of System-on-Chips (SoCs) which integrate high performance 
processors, programmable logic and interconnect resources and a considerable amount of 
memory in a single chip have recently become a popular trend. An SoC is also referred to 
as ?System Large Scale Integration (System LSI)? or ?System Integrated Circuit (System 
IC) [6].? SoC technology is the packaging of various kinds of digital system components 
on a single IC, where systems could only be implemented on Printed Circuit Boards 
(PCBs) in the past. SoC technology is making rapid progress because it is essential to 
realizing inevitable trends in modern electronic devices such as miniaturization, low-
power, low-cost, high-speed and high-reliability [6]. Some SoC devices have more 
processing ability than a typical 10 year-old desktop computer. 
As IC technology advances, it not only makes the design and manufacturing 
process more costly but also makes the testing process after manufacturing even costlier 
[1]. As a result, the increase in testing cost is much higher compared to the increase in 
the integration ratio [1]. The architecture of a typical SoC facilitates interaction between 
the on-chip microcontroller and the Field Programmable Gate Array (FPGA) that 
contains the programmable logic and interconnection resources. This interaction can 
assist in the development of fault detection tests as well as fault recovery strategies [5]. 
Therefore, Built-In Self-Test (BIST) for SoCs is a very attractive solution not only for 
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systems but also for designers and manufacturers. 
 
1.1 Overview of SoCs 
Typical microcontroller based SoCs include an FPGA core, Random Access 
Memory (RAM), a microcontroller, and peripheral input/output logic [7]. Figure 1.1 
shows the typical SoC structure. 
FPGA core
RAM
Figure 1.1 Basic structure of microcontroller based SoC with FPGA core
Micro-
controller
Peripherals
 
Current FPGAs are capable of higher logic capacity than the earlier programmable 
logic devices [22]. FPGA cores provide the reconfigurable resources within most 
microcontroller based SoCs. A detailed FPGA core structure is presented in Section 1.2. 
RAM, in general, is a storage media where data can be stored or accessed [8]. 
RAM in SoCs sometimes interfaces with both FPGA core and microcontroller core. It 
enables data interaction between the microcontroller core and the FPGA core [7]. In 
particular, Static Random Access Memory (SRAM) is commonly used in SoCs [9]. The 
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SRAM is important for speed and efficiency of SoCs because it interacts with both 
FPGA core and microcontroller simultaneously. Program memory is another type of 
storage media; it stores the programs to be executed by the microcontroller. 
A microcontroller is a type of processor that is intended to operate in an embedded 
system on a single IC. General purpose registers are fixed memory spaces that help the 
microcontroller to process data faster and more efficiently [7]. Programming of the 
microcontroller is implemented using assembly or C programming language. This makes 
the use of microcontrollers in SoCs convenient without time-consuming design and 
synthesis processes [7]. 
All components in a SoC are usually linked to each other closely for maximum 
performance [7]. Internal or external interrupts allow interaction with the microcontroller 
to initiate execution of certain tasks. Therefore, the FPGA core can generate internal 
interrupts to the microcontroller. 
 
1.2 Overview of FPGA Core 
An FPGA consists of reconfigurable logic blocks, where the logic can be 
programmed multiple times after it is manufactured [8][10]. Unlike standard ICs, FPGAs 
can have flexible functionality while having a general structure [11]. As illustrated in 
Figure 1.2-a, an FPGA consists of an array of programmable logic blocks (PLBs) 
(usually an M x N array), containing gates, look-up table RAMs, flip-flops, and 
programmable interconnect wiring. All FPGAs are reprogrammable, since their logic 
functions and interconnect are defined by the contents of a configuration memory [8]. 
The PLBs are functional logic units which can be programmed for different modes 
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of operation such as RAM-based look-up tables (LUTs) for combinational logic 
functions, flip-flops or latches for sequential logic functions, arithmetic operations, 
memory functions, etc [12][13]. Usually one PLB consists of multiplexers (MUXs), 
LUTs, flip-flops, and routing resources. 
(a) General FPGA structure
Programmable 
I/O block
Programmable 
Logic Block
Programmable 
Routing resources
PLB
PLB
PLB
PLB
Local 
Routing 
Channels
Global 
Routing 
Channels
Configurable 
Interconnect Points 
(switches)
 zoom
 (b) FPGA routing resources
Figure 1.2 General FPGA Structure and Configurable Interconnect Points
 There are additional programmable routing resources outside the PLBs. A large 
number of programmable switches, known as Configurable Interconnect Points (CIPs) or 
Programmable Interconnect Points (PIPs), are built-in into cross sections of the routing 
resources. These CIPs enable the internal circuitry of an FPGA to be connected in 
various network structures [14][15]. Thus, configuring programmable routing resources 
determines the connectivity between PLBs and other components in the chip. As 
illustrated in Figure 1.2-b, local routing resources determine connectivity of a PLB to its 
neighboring PLB and to global routing resources, while global routing resources 
determine connectivity of a given PLB to non-neighboring PLBs, programmable I/O 
blocks, or other components in the SoC. [12]. 
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1.3  SoC Testing 
Testing of embedded cores in SoCs is a challenging problem as they are deeply 
embedded in the SoC with a limited number of Input/Output (I/O) pins. As a result, it 
may not be possible to test all the embedded cores in a SoC using test patterns from 
external sources [24]. In some companies, more than 30% of the total production cost is 
due to testing [16]. BIST could be a better approach for testing SoCs as it does not 
require any external test equipment and test patterns are generated internally by the 
embedded core itself, thus eliminating the problem of core access [24]. By eliminating 
external test equipment, the BIST approach reduces the testing time and cost [24]. 
1.3.1 Overview of Built-In Self-Test 
The most fundamental definition of BIST is: ?To design a circuit so that the circuit 
can test itself and determine whether it is ?good? or ?bad?? [17]. As shown in Figure 1.3, 
the Test Pattern Generator (TPG), Output Response Analyzer (ORA), and Test Controller 
(TC) are the primary components in BIST technology. 
 
Sets of test vectors generated by the TPG are applied to the Circuit Under Test 
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(CUT) while the ORA monitors test responses from the CUT in order to determine 
whether the CUT is good (fault-free) or bad (faulty). The test controller starts the BIST 
sequence by initializing the target circuit, and it also controls the BIST sequence [12][17]. 
1.3.2 Merits of BIST 
Various chip testing techniques are currently being widely studied. Among them, 
the BIST approach has excellent advantages compared to its disadvantages, as shown in 
Table 1. [17]. Eliminating the need for external test equipment as well as reducing 
manufacturing test time and cost are the main merits of BIST. BIST fits nicely in modern 
SoC testing because it has good internal access to individual embedded cores which, in 
most cases, are difficult to access through external I/O pins [9]. For configurable 
components such as FPGAs, the disadvantages shown in Table 1, such as the area 
overhead and performance penalties, are no longer a consideration, as will be discussed 
in the following section. 
Table 1.1 Advantages vs Disadvantages BIST [17] 
Advantages Disadvantages 
+vertical testability (wafer to system) 
+high diagnostic resolution 
+at speed testing 
+reduced need for external test equipment
+reduced development time & effort 
+more economical burn-in testing 
+reduced manufacturing test time & cost 
+reduced time-to-market 
-area overhead 
-performance penalties 
-additional design time & effort 
-additional risk to project 
 
1.4 BIST for FPGAs 
Traditional BIST approaches introduce area overhead and performance penalties 
[17]. However, BIST for FPGAs removes these associated problems by using the re-
programmability of the FPGAs. Initially the FPGA is configured to perform the BIST 
 7
operation and, after the test is complete, the chip is reconfigured for its normal system 
operation [10]. 
In the general FPGA BIST structure, groups of PLBs in the FPGA are configured to 
be TPGs, Blocks Under Test (BUTs), and ORAs as shown in Figure 1.4. During each 
BIST sequence, the BUTs receive identical test patterns from the TPGs and the BUT 
outputs are compared by the ORAs [18]. The BUTs are reconfigured in a different mode 
of operation after each BIST sequence until all modes of operation are tested. After all 
the BIST configurations have been run, a test session is completed [12]. After the first 
test session is over, the FPGA is configured reversely: BUTs become ORAs and TPGs, 
and vice versa [19][20][21]. In this way, all PLBs in the FPGA are tested completely. 
TPG
TPG
BUT
BUT
ORA
BUT
BUT
ORA
BUT
BUT
ORA
BUT
BUT
ORA
BIST 
start
Pass/Fail
Figure 1.4 Basic Logic BIST Structure
.  .  .
.  .  .
.  .  .
 
1.5  Thesis Statement 
One of the important goals of BIST is to minimize the testing time and cost [18]. 
For most FPGA BIST approaches, however, reconfiguration time for each BIST 
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configuration consumes most of the testing time. This is because of the use of external 
configuration control (such as a PC) and the large number and size of the BIST 
configuration files that need to be stored in memory and downloaded into the FPGA. For 
example, the Xilinx 4000XL has 230 BIST configurations [11]. This means the FPGA 
has to be reconfigured 230 different times to completely test it, and a significant amount 
of external memory space is needed to store the 230 BIST configurations and a 
significant amount of time is required to download the configuration data into the device. 
Moreover, there are additional time requirements to retrieve ORA results [18]. 
The objective of this research and thesis is to improve FPGA BIST time efficiency 
on SoCs by utilizing the microcontroller core embedded in the SoC. This thesis focuses 
on overcoming BIST time and memory storage penalty factors due to the large number 
of BIST configurations. Unlike traditional FPGA BIST approaches, the computing power 
of the embedded microcontroller in SoCs can be used to dynamically reconfigure and 
test the FPGA cores within the SoC boundary, with improved configuration time and 
memory storage requirements [6]. 
As a result, there is no need for BIST configurations to be downloaded from the 
external configuration storage into the FPGA. Only an initial download is done to the 
program and data memories for the microcontroller. The microcontroller then 
reconfigures the FPGA core, executes the BIST sequence, and retrieves the ORA results. 
Only one initial download to the program memory of the SoC is needed, and thus only 
one configuration needs to be stored in external memory. Alternatively, the BIST 
configuration program can reside in the program memory for on-demand executions of 
BIST if the BIST configuration program is sufficiently small. 
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The proposed BIST approach has been implemented on the Atmel AT94K series 
FPSLIC (Field Programmable System Level Integrated Circuit). Further details on the 
embedded microcontroller and FPGA core as well as their interactions in the FPSLIC are 
described in Chapter 2. Chapter 3 discusses how the microcontroller assists the BIST of 
the embedded FPGA core to improve the BIST performance. Chapter 4 extends the idea 
to use the microcontroller as the main BIST component which configures the FPGA for 
BIST, executes the BIST sequence, retrieves the BIST results and diagnoses faulty PLBs 
without the need of external configuration downloads. Experimental results for the 
implementation and application in actual SoCs, along with possible improvements, will 
also be discussed in each chapter. Finally, Chapter 5 summarizes this research and its 
significance, along with possible directions for future research and development. A list of 
acronyms used in this thesis is in shown Table 1.2. 
Table 1.2 List of Acronyms Used 
ADIN AVR Data In 
ALU Arithmetic Logic Unit 
AVR Advanced Virtual RISC 
BIST Built-In Self-Test 
BUT Block Under Test 
CAD Computer Automated Design 
CIP Configurable Interconnect Point 
CISC Complex Instruction Set Computer 
CPU Central Processing Unit 
CUT Circuit Under Test 
DSP Digital Signal Processing 
FF Flip-Flop 
FPGA Field Programmable Gate Array 
FPGAIOWE FPGA I/O Write Enable 
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FPGAIORE FPGA I/O Read Enable 
FPSLIC Field Programmable System Level Integrated Circuit 
HDL Hardware Description Language 
IC Integrated Circuit 
IDS Integrated Development System 
I/O Input/Output 
LFSR Linear Shift Feedback Register 
LSI Large Scale Integration 
LUT Look-Up Table 
MIPS Million Instructions Per Second 
MGL Macro Generation Language 
MUX Multiplexer 
ORA Output Response Analyzer 
PC Personal Computer or Program Counter 
PCB Printed Circuit Board 
PIP Programmable Interconnect Point 
PLB Programmable Logic Block 
PWM Pulse Width Modulation 
RISC Reduced Instruction Set Computer 
SoC System-on-Chip 
SRAM Static Random Access Memory 
TC Test Controller 
TPG Test Pattern Generator 
UART Universal Asynchronous Receiver-Transmitter 
VLSI Very Large Scale Integration 
WUT Wire Under Test 
XDL Xilinx Design Language 
XOR Exclusive OR-Gate 
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CHAPTER TWO 
BACKGROUND 
 
SoCs consist of multiple cores integrated within the same chip boundary. A study 
described in [25] introduced the method of using the embedded processor to test other 
cores in the SoC [25]. However, it did not address testing embedded FPGA cores. 
Proposals such as [26] and [27] suggested using the embedded FPGA core as the main 
test resource for SoCs. However, a case study of these proposals showed that the FPGA 
core?s limited access to the other cores prevented the thorough test of an SoC [28]. The 
test limitations due to the architecture of SoCs are the main concern for BIST. In this 
chapter, the architectural features of Atmel?s AT94K series Field Programmable System 
Level Integrated Circuit (FPSLIC) are described, followed by the features that affect the 
BIST approaches. An overview of previous work in BIST for the embedded FPGA core 
in the Atmel AT94K series SoCs is then presented. This chapter concludes with the 
restatement of this thesis motivation. 
 
2.1 Architecture of Atmel AT94K Series FPSLIC SoCs 
The Atmel AT94K series SoC architecture consists of an FPGA core, RAM cores, 
and an 8-bit Advanced Virtual RISC (Reduced Instruction Set Computer) processor core, 
denoted as AVR [7]. The individual components have different features for operation in 
unique modes as well as in mutual aid modes within a system. 
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2.1.1 FPGA Core Architecture 
As illustrated in Figure 2.1, the Atmel FPGA core comprises a symmetrical NxN 
array of identical PLBs, where N = 48 for the largest AT94K series device, the AT94K40. 
The FPGA core is based on a fine-grain architecture that has a large number of small 
PLBs, each of which is about the one-fourth size of the Xilinx Virtex/Spartan II series 
PLB [28] [30]. 
. . .
I/O Pad
Vertical 
Repeaters
FreeRAM
Logic Cell
Horizontal 
Repeaters
Figure 2.1  Symmetrical FPGA Core Surrounded by I/O
 
As illustrated in Figure 2.2, each PLB contains two 3-input LUTs, a D Flip-Flop 
(FF) with asynchronous set/reset, and a number of multiplexers that provide a variety of 
functions including several modes of operation such as sequential mode, arithmetic mode, 
DSP/multiplier mode, counter mode, tri-state/multiplexer (MUX) mode [7]. The logical 
value produced by each PLB can be held in the D Flip-Flop (FF) present in the PLB. As 
shown in Figure 2.2, the X and Y outputs of each PLB connect diagonally and 
orthogonally to its neighboring cells, respectively [7], and these resources are considered 
as local routing resources. As illustrated in Figure 2.3, five vertical and five horizontal 
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busing planes are associated with each PLB as x8 and x4 lines respect to repeater 
boundaries. The x8 and x4 lines are considered as global routing resources that span eight 
and four PLBs, respectively, with repeaters separating the groups of PLBs as shown in 
Figure 2.3. Four inputs to the PLB or one output from the PLB can access any of five x4 
lines in the busing planes adjacent to the PLB through Configurable Interconnect Points 
(CIPs). 
 
G
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Horizontal Busing Plane
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The basic structure of a CIP is shown in Figure 2.4a and consists of a pass 
transistor controlled by a configuration memory bit [12]. When the configuration 
memory bit is programmed to logic ?1?, wire segments A and B are connected [12]. 
Cross-point CIPs and Multiplexer CIPs constitute most of the routing resources of the 
embedded FPGAs present in AT94K FPSLIC SoCs [33]. Cross-point CIPs enable the 
connection between the two wires. As illustrated in Figure 2.4b, the vertical wire A will 
be connected to wire B when the cross point CIP is turned ?on?, meaning that the 
configuration memory bit controlling the CIP is a logic ?1?. The cross-point CIP is used 
when the signal needs to turn from one direction to a perpendicular direction [12]. A 
MUX CIP, shown in Figure 2.4c, enables the connection between a single input wire 
from a group of wires to a single output wire [12]. 
As shown in Figure 2.1, vertical and horizontal bus repeaters, placed within the 
global routing resources for every 4x4 array of PLBs, prevent signal degradation in the 
process of sending signals on distant or heavily loaded nets [33]. Each repeater consists 
of four MUX CIPs. The repeater can be configured in the modes illustrated in Figure 2.5 
and one repeater block can have a combination of the modes if there are no conflicts in 
the directions of different signal paths. For instance, a repeater can be configured to have 
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the modes shown in Figure 2.5a, 2.5i, and 2.5c with no conflicts. A conflict of the signals 
will occur when the repeater is configured to have modes shown in Figure 2.5a, 2.5i, and 
2.5k because the modes shown in 2.5i and 2.5k conflict, since two MUX CIPs are 
driving the same x8 line. All the repeater signals are buffered through the MUX CIPs 
except the mode shown in Figure 2.5e, which consists of a transmission gate and is used 
for bi-directional signals. Vertical repeaters are configured in the same way as the 
horizontal repeaters and the repeater models shown in Figure 2.5 should be rotated by 90 
degrees for visualization of the vertical repeater configuration modes. 
Figure 2.5 Basic Modes of Horizontal Repeater
(a) (b) (c) (d) (e)
(f) (g) (h) (i)
(j)
(k)
(l) (m)
x4 line
x8 line
x4 line
x8 line
x4 line
x8 line
 
 Banked clock and set/reset lines run to the groups of four PLB cells in a single 
column within repeater boundaries. As shown in Figure 2.6, eight global clock buses are 
connected to the column clock MUX which routes one of the eight clocks to all PLBs in 
the column. Any FPGA internal signal can be routed to one of the global clocks or it can 
be routed directly to the clock input for any set of four PLBs. Set/reset lines have a 
similar architecture and the difference is the direction of the signal flow, set/reset goes up 
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through the PLBs while clock goes down. Both the clock and set/reset signal can be 
inverted by choosing an inverting path on the MUX which is present before the signal 
reaches the set of four PLBs. 
Global Clock1 - 8
Buried 
Clock 
Line
repeater
Figure 2.6 Banked Clock & Set/Reset for One Column of PLB Cells
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2.1.2 AVR Microcontroller Architecture 
The microcontroller from Atmel is called the AVR (Advanced Virtual RISC, and 
also known as Alf Vergard RISC: named after the founders Alf Bogen and Vergard 
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Wollan) [29]. The AVR is based on an 8-bit RISC architecture, meaning 1 byte wide 
working registers are used when instructions are fetched and executed. As shown in 
Figure 2.7, all 32x8 general-purpose registers are tied to the Arithmetic Logic Unit 
(ALU) so that two independent registers can be accessed in only one clock cycle, 
allowing most of the AVR instructions to be executed in a single clock cycle [7].  
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Figure 2.7 AVR Core Architecture
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The AVR core has a Harvard architecture, which has the ability to execute an 
instruction while accessing memory space at the same time [30]. With its architectural 
advantage, the AVR has up to ten times faster throughput than the CISC (Complex 
Instruction Set Computer) developed by Intel [7]. The AVR can achieve a throughput of 
1 MIPS (Million Instructions Per Second) per MHz [7]. In addition, there are two 8-bit 
bi-directional general purpose Input/Output (I/O) ports called PORTD and PORTE [7]. 
There are peripherals such as 8-bit or 16-bit timer/counter with Pulse Width Modulation 
(PWM), Universal Asynchronous Receiver-Transmitter (UART), 16 I/Os, and 2-wire 
serial port located within the AVR core. Peripherals attached to the AVR core can be 
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programmed in assembly language or C language. Interrupt sources internal and external 
to the SoC allow the AVR to be operated in more interactive ways. The return address of 
the program counter (PC) is stored on the stack when interrupts and subroutine calls 
occur and the stack is allocated in the Data SRAM [7]. 
2.1.3 RAM Architecture 
There are two types of SRAMs present in AT94K series devices. One type of 
SRAM is evenly distributed through the FPGA core and the other type of SRAM is 
placed outside of the FPGA core, shared by other cores such as the AVR and its 
peripherals. 
The SRAMs distributed through the FPGA core are 32x4-bit memory blocks with 
one RAM placed in every 4x4 array of PLBs as illustrated in Figure 2.1. This dedicated 
SRAM, denoted as freeRAM by Atmel, can be accessed through the global routing 
resources by PLBs [7]. Each freeRAM can operate in single port or dual port mode [7]. 
The other type of SRAM resides outside the FPGA core. Both the FPGA core and 
the AVR core share the embedded Data SRAM and, thus, it is designed with a bigger size 
than the freeRAM [7]. The Data SRAM is used by the AVR and FPGA for general-
purpose data storage [7]. Depending on the design, the SRAM can be configured in 
various modes and can also be flexibly partitioned. In the AT94K40 series SoCs, a 
maximum size of 36 Kbyte SRAMs are supported, which can be partitioned into 
different sizes of Data SRAM and program memory blocks. Both the AVR and FPGA are 
connected to the Data SRAM, which can be partitioned in size from 4 Kbytes to 16 
Kbytes. It stores data from the FPGA and AVR, and provides register space for the AVR. 
The program memory is used to store AVR programs and it can be partitioned in size 
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from 20 Kbytes to 32 Kbytes. The program memory provides the space from which the 
AVR fetches instructions and runs programs, and it cannot be accessed from the 
embedded FPGA core [7]. 
2.1.4 FPGA-RAM-AVR Interface 
As illustrated in Figure 2.8, the Data SRAM resides between the FPGA core and 
AVR core, enabling smooth data sharing and/or exchange between the AVR and FPGA 
cores. To access the Data SRAM, a 16-bit address is required from the FPGA or AVR 
core. Data to be accessed or stored pass through the bi-directional 8-bit data bus across 
the FPGA core, the Data SRAM, and the AVR core. The Write/Read Enable signals along 
with clock signal provide control over access of the Data SRAM. 
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The FPGA core can be directly accessed by the AVR core, as shown in Figure 2.8. 
There is an 8-bit data bus between the FPGA core and the AVR that allows them to 
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communicate interactively under the control of the AVR. FPGAIOWE (FPGAIORE) is a 
strobe line that is activated when the AVR writes to (reads from) the 8-bit bi-directional 
data bus. There are 16 decoded address lines supplied from the AVR to the FPGA. Also, 
a maximum of 16 interrupts are available from the FPGA to the AVR with various 
priority levels to make the operations of the AVR efficient [7]. 
 
2.2 Special Features in the AT94K 
In this section, some of the unique features of the AT94K series device are 
described. These features have a direct impact on the development and execution of 
BIST in this thesis. 
2.2.1 Cache Logic Mode 
In the AVR Cache Logic mode, the configuration memory of the FPGA core can be 
dynamically reconfigured by the AVR during system operation, without re-downloading 
the configuration data externally. This can be done without affecting the contents of the 
flip-flops, known as dynamic partial reconfiguration. As illustrated in Figure 2.9, due to 
its PLB addressable structure, FPGAX, FPGAY, and FPGAZ hold the address of the 
target configuration memory byte of the FPGA to be reconfigured, where FPGAX 
corresponds to the horizontal PLB location, FPGAY corresponds to the vertical PLB 
location, and FPGAZ corresponds to specific configurable logic and/or routing resources 
within the specified PLB. A 32-bit configuration word cache waits until the FPGAD 
register receives new data to be written into the FPGA configuration memory [7]. Any 
writes into FPGAD result in a configuration clock cycle to the FPGA configuration 
memory [7]. Thus, instead of downloading a full configuration each test phase, the AVR 
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can partially reconfigure the locations where a change is needed. The basic routine to 
program the AVR to reconfigure the FPGA core is shown in Figure 2.10. 
32-Bit Configuration Word
 
ldi rTemp, (Column# - 1) ; PLB Horizontal Coordinate
out FPGAX, rTemp
ldi rTemp, (Row# - 1) ; PLB Vertical Coordinate
out FPGAY, rTemp
ldi rTemp, 0bttttzzzz ; TagZ coordinate (Page#[7:4]+Byte#[3:0])
out FPGAZ, rTemp
ldi rTemp, 0bxxxxxxxx ; New PLB ?Byte? Contents
out FPGAD, rTemp
Figure 2.10 PLB Reconfiguration Method
 
Since the AVR can specify the X (horizontal) and Y (vertical) PLB coordinates, it 
can be programmed in such way that the AVR can algorithmically generate 
configurations and reconfigure the FPGA core. The fine-grained architecture of the 
FPGA core is the major advantage when using X (FPGAX) and Y (FPGAY) PLB 
 22
coordinates because of its regular and repeatable structure [24][30]. In other words, a 
coarse-grained architecture would make it difficult to algorithmically reconfigure the 
FPGA because of its irregular structure. In addition, the FPGA?s symmetrical architecture 
enables simple and predictable reconfiguration [7]. One major drawback with AT94K 
series SoCs is that the FPGA configuration memory contents cannot be read using the 
AV R  [ 2 4 ] .  
2.2.2 Use of Macro Generation Language (MGL) 
Atmel provides a specially designed programming language called Macro 
Generation Language (MGL) [31]. The language is utilized through Figaro; one of 
Atmel?s Integrated Development System (IDS) tools [31]. It is used to instantiate designs 
in the FPGA and to produce a downloadable bitstream [33]. The main advantage of using 
macro designs made by the MGL is its capability to implement parameterized designs 
that can be constructed in any size FPGA array. MGL defines the layout and routing of 
the FPGA core [31]. Furthermore, unlike the Xilinx Design Language (XDL), MGL 
supports hierarchical designs by calling pre-defined or user-defined macros into newer 
macros which could reduce program size. Designs described in MGL can be edited, 
debugged, and executed in Figaro IDS software [31]. When configuring a PLB, MGL 
based on either predefined macros (gates, multiplexers, flip-flops, etc) or dynamic 
macros can be used [32]. Dynamic macros give flexibility in defining the PLB function. 
However, the user can only control the PLBs by the dynamic macros and no further 
control is provided by MGL [32]. In order to achieve maximum fault coverage from 
BIST for FPGAs, complete control over the configuration of the logic and routing 
resources is required [33]. 
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2.3 Overview of BIST for Embedded FPGA Core in the Atmel FPSLIC 
The BIST architecture for testing the PLB resources in an FPGA, shown in Figure 
2.11, configures a column of PLBs to function as two or more identical TPGs that drive 
test patterns to alternating columns of identically configured BUTs. The outputs of BUTs 
are monitored by comparison-based ORAs located in adjacent columns between the 
BUTs [17]. 
 
For applying test patterns to the BUTs, there are a number of TPG types that can be 
used [17]. The most basic TPG type is the N-bit binary counter since it generates 
exhaustive 2
N
 binary test patterns. Another well known type is the Linear Shift Feedback 
Register (LFSR) which generates pseudo-random test patterns. If the LFSR has a 
primitive polynomial function then it will generate all possible 2
N
-1 patterns excluding 
the all-zero pattern [17]. The all-zero pattern can be achieved in an LFSR by adding 
circuitry, however, it would cost additional area in the FPGA to be programmed. Thus, 
for testing the PLB blocks, if the number of inputs to the BUTs is small, using the binary 
counter as a TPG is the most economical and efficient method [33]. 
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The basic design of the ORA is shown in Figure 2.12 where two identical BUT 
outputs are compared by the exclusive OR-gate (XOR-gate) [17]. When a mismatch 
occurs between the two BUTs, the input of the Flip-Flop (FF) will see a logic ?1? from 
the output of the XOR-gate. The logic value ?1? is latched in the flip-flop via the OR 
gate and held throughout the BIST sequence. At the end of the BIST sequence, the 
content of the flip-flop indicates whether the ORA saw a mismatch of the two BUT 
outputs or not. Typically there is more than one ORA to be read at the end of test. ORA 
results can be read either individually by reading the configuration memory of the ORA 
block directly or they can be scanned out serially using a shift register as illustrated in 
Figure 2.11 by the dotted line [17]. 
 
The BUTs are reconfigured in various modes of operation until they are completely 
tested [10]. The number of modes in which the BUTs are to be configured is determined 
by the complexity of the PLB. The more programmable logic resources the PLB has, the 
more BUT configurations are typically needed to test all the resources in the PLB. The 
BIST architecture is then flipped about the vertical axis (Figure 2.13) to test the PLBs 
that were previously TPGs and ORAs for the complete test of all PLBs as BUTs [28]. 
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The basic sequence for FPGA BIST consists of the following steps:  
1) Configure the FPGA to a BIST structure 
2) Execute the BIST sequence 
3) Retrieve ORA results 
4) Analyze ORA results to find faulty PLBs. 
Step 1 requires the configuration of resources in the FPGA to perform the BIST. 
Typically this is done by external configuration download to the FPGA for every BIST 
configuration. Next, the test controller initiates the BIST (Step 2) by applying BIST 
clocks to the FPGA so that the test patterns are applied to the BUT inputs while the BUT 
outputs are monitored. At the end of each BIST sequence, ORA results are retrieved so 
that they can be analyzed (Step 3 and 4). When analyzing the results, as shown in Figure 
2.14, the faulty PLB can be found based on the locations of the ORAs that observed 
mismatches [21]. BIST steps 1 through 4 are repeated until all the modes of operation for 
the BUT are tested. 
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2.14 Diagnosis PLBs from Analyzing Comparison Based ORA Results
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In the case of the Atmel AT94K series SoCs, the BIST architecture shown in Figure 
2.15 is used wherein each ORA monitors one diagonal X-output and one direct Y-output 
from the neighboring BUTs. The architecture shown in Figure 2.11 is not applicable, 
since a PLB cannot be configured to monitor more than one diagonal X-input and one 
direct Y-output selected at the same time [33]. Therefore, two different routing schemes 
are needed in order to observe both the diagonal X and direct Y connections for complete 
testing of the PLB logic resources. For all PLBs except the ones located in corners of the 
FPGA array, a total of four configurations of the BUTs are needed to obtain a fault 
coverage of 99.7% with only one fault left which is potentially detected [17][33]. The 
potentially detected fault is detected during routing BIST to result in 100% fault 
coverage with a complete set of BIST configurations [28]. 
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2.4 Thesis Restatement 
BIST approaches have been developed for FPGAs by programming some of the 
PLBs as TPGs and ORAs to test the remaining programmable logic and interconnect 
resources [10]. However, these techniques typically require downloading a large number 
of BIST configurations into the FPGA one at a time, executing each BIST sequence, and 
retrieving the BIST results at the end of each BIST sequence. While this problem can be 
reduced by minimizing the total number of BIST configurations and/or by taking 
advantage of the partial reconfiguration capabilities provided in recent FPGAs, the total 
test time and memory storage requirements are still dominated by the download process. 
For SoC testing, the embedded microprocessor cores in SoCs can be programmed to test 
other accessible cores such as FPGA cores. Dynamic, partial, and full reconfiguration of 
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FPGA cores by embedded processor between each test phase can reduce the total test 
time. After completion of BIST, the embedded processor can retrieve the test results, 
perform diagnosis, and report the faults and their locations to a higher computing 
resource for fault recovery or fault-tolerant applications. 
The dynamic partial reconfiguration capability of the embedded processor core was 
previously used to a limited extent in [28]. However, this approach needed to download 
each and every BIST configuration into the FPGA core. The primary focus of this thesis 
is to investigate potential improvements in the total test time and memory requirements 
by avoiding any and all downloads into the FPGA. By programming the embedded 
processor core to execute algorithmic reconfiguration routines, the amount of memory 
required for storing BIST configurations is reduced since no configuration data is 
downloaded into the FPGA. The fine-grain architecture, in conjunction with the PLB 
addressable configuration memory of the AT94K series SoCs, helps to configure the 
BIST structures without the need for excessive configuration clock cycles. If small 
enough, the BIST program can remain resident in the program memory for on-demand 
reconfiguration and execution of BIST, requiring no download at all. If fast enough, the 
BIST program can be more frequently used during idle intervals in system operation for 
high reliability, high availability applications. 
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CHAPTER THREE 
AV R  ASSISTED FPGA LOGIC BIST 
 
The goal in this thesis is to reduce the total test time and configuration memory 
storage requirements associated with BIST of the PLBs in the FPGA core. In order to do 
so, previous work [33] which required FPGA configuration download for each test phase 
was used, which served as a fundamental model so that any improvements could be 
measured. Since the work in [33] has realized some of the problems associated with 
BIST for FPGAs in AT94K series SoCs, it has proposed ways to overcome these 
problems. In this chapter, improvements over the previous work [33] are discussed with 
experimental data taken from the execution of BIST on actual Atmel AT94K series SoCs. 
The flow of the chapter is according to the improvements made throughout the 
thesis work, which divides into three phases. First, the shift register reconfiguration 
development for retrieving ORA results at the end of each BIST sequence [33] is 
discussed. This was an essential development for [33] as well as fundamental work for 
the next two phases. As the second phase of the development, the AVR processor is used 
to assist the BIST developed in [33] by not only reconfiguring ORAs into a shift register 
but also reconfiguring the BUTs for each test phase based on BIST structures and 
requirements in [33]. This approach replaces most time-consuming FPGA configuration 
downloads with simple AVR programs and is denoted as ?AVR-assisted BIST? in this 
thesis. The third phase of the development yields a modified version of the AVR-assisted 
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BIST which has a new way of testing X and Y direct PLB connections and reads test 
results at the end of multiple test phases. 
 
3.1 Implementation of ORA and Shift Register 
One of the issues in the previous work [33] was the fact that the ORA results could 
not be read back directly from the FPGA configuration memory to the test controller (a 
PC in our case), which made the implementation of a shift register, or scan chain, 
necessary. For implementing the scan chain, another problem arose due to the PLB size 
and a small number of input lines. In order to configure a comparison-based ORA with a 
shift register feature shown in Figure 3.1, a total of five inputs are needed for one PLB 
[33]. Since the PLBs present in Atmel AT94K series SoCs have only four inputs there is 
no way to implement the ORA with a shift register feature as shown in Figure 3.1. 
DQ
X
Y
From Previous 
ORA
Shift Control
Figure 3.1 ORA Structure for Logic BIST
 
 Initially when the ORA structure was investigated, there were two possible models 
that could be implemented [33]. As shown in Figure 3.2, the ORA and the scan chain can 
be implemented together by using two PLBs per ORA with four BUTs being compared at 
once. However, using this model results in loss of diagnosis resolution compared to using 
the model shown in Figure 3.3 [33]. In Figure 3.3a, all ORAs are reconfigured by the 
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AVR core to form the scan chain shown in Figure 3.3b. As a result, the initial BIST 
architecture has the simple ORA shown in Figure 3.4a. After the BIST sequence is 
executed and ORA results are ready to be read, the ORAs are reconfigured as a scan 
chain (shift register) and the results are scanned (shifted) out for analysis, as is illustrated 
in Figures 3.3b, 3.4b and 3.5. The main difference between the two-PLB ORA and one-
PLB ORA is the need for partial dynamic reconfiguration of the ORA cells. 
Figure 3.2 Two-PLB ORA
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Figure 3.3 High Level Structure of ORA and After the Reconfiguration
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 In order to reconfigure the comparison based ORAs (Figure 3.4a) as a shift register 
(Figure 3.4b), the AVR first writes to the PLB configuration memory for each ORA to 
change the functionality of these PLBs. As the reconfiguration is being performed by the 
 32
AVR core, since the ORA scan chain is a directional shift register, diagonal X connection 
and orthogonal Y connection which was being compared in Figure 3.4a would be 
reconfigured so that each shift register cell is routed to the neighboring shift register by 
using the direct Y connection as shown in Figure 3.3b. 
 
 Figure 3.5 shows a simplified illustration of the shift register layout for one of the 
logic BIST configurations. Note that the ORA results are scanned out via an external pin. 
The shift register reconfiguration program, which will be introduced in next section, 
controls the AVR writes to the configuration memory of the FPGA, reconfigures all the 
ORAs as a scan chain to have shift-up and shift-down columns as well as to have center 
route-through PLBs where the BUTs are reconfigured as part of the scan chain. The 
route-through PLBs don?t require any flip-flop to be involved but a simple routing 
connection between the shift-up and shift-down columns as illustrated in Figure 3.5 
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3.2 Implementing Shift Register Reconfiguration for Logic BIST 
 In order to implement the dynamic reconfiguration routine of converting ORAs into 
a scan chain, assembly or C programming language can be used to develop the AVR 
program. There are advantages and disadvantages of using assembly over C. If the 
program is written in assembly, which is "machine-level?, it can provide an educative 
approach to what goes on inside the processor. Also the assembly program is the best 
way to optimize the code because it enables user to control behavior of the processor in 
detail. However, C programming language was chosen because of its convenient features 
and the support of well-performed compilers that optimize the compiled program fairly 
effectively. Although different compilers have slightly different notations and rules to do 
the same thing, most compilers do a better job of code size and execution speed 
optimization compared to most of the user?s assembly code if the code is long. For our 
development needs, due to the usage of many parameterized files and modification 
throughout the development sequence, programming in C language was the best choice 
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to keep the development process efficient. 
 A compiler called ?Codevision AVR? was used [7]. It enables use of C language to 
generate programs for execution on the AVR microcontroller. The compiler converts the 
user?s C program to assembly language and generates an Intel HEX file. The Intel HEX 
file is then combined with the FPGA bitstream generated from the Figaro [33]. The 
combined file (a combined bitstream) is downloaded to the SoC. The resultant bitstream 
programs program/data memory of the AVR, the FPGA configuration memory, and 
peripherals around the AVR processor. The compiler can optimize compiled AVR 
program size by grouping common tasks into subroutines. When optimizing for speed, 
the compiler tries to generate smallest number of subroutines possible so that fewer 
branch instructions occur during execution. 
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interrupt [EXT_INT0] void isr_reconf_ORA(void) {
//UP ?  (a)
for (FPGAX = 2; FPGAX < size; FPGAX+=4) {   
for (FPGAY = 0; FPGAY < size; FPGAY++) {      
//connecting shift register for UP direction ?  (b)
FPGAZ = [PLB Tag]+[Byte#];
FPGAD = [Byte]
}
}
//DOWN ?  (c)
for (FPGAX = 4; FPGAX < size; FPGAX+=4) {
for (FPGAY = 0; FPGAY < size; FPGAY++) {      
//connecting shift register for DOWN direction ?  (d)
}    
}
//LEFT-TOP ?  (e)
FPGAY = size-1;  //Top = Row 47
for (FPGAX = 4; FPGAX < size; FPGAX+=4) {        
//connecting shift register for every corners ?  (f)
}
//LEFT-BOTTOM ?  (g)
FPGAY = 0;  //Bottom = Row 0
for (FPGAX = 2; FPGAX < size; FPGAX+=4) {                      
//connecting shift register for every corners(2) ?  (h)
}    
//CENTER-TOP ?  (i)
FPGAY = size-1;   //Top = Row 47
for (FPGAX = 5; FPGAX < size; FPGAX+=4) {        
//Route throughs between ORAs ?  (j)
}
//CENTER-BOTTOM ?  (k)
FPGAY = 0;   //Top = Row 0
for (FPGAX = 3; FPGAX < size; FPGAX+=4) {               
//Route throughs between ORAs ?  (l)
}
//START ?  (m)
FPGAX = size-2;
FPGAY = 0;
//Putting logic "1" at the end of the scan chain ?  (n)
}
Figure 3.6 AVR Code of ORA Reconfiguration to Shift Register
 
 A C code example for the ORA-to-Shift Register reconfiguration is shown in 
Figure 3.6. The example shows the AVR routine for reconfiguring ORAs into shift 
registers at the end of a logic BIST sequence. It consists of various for-loops which 
reconfigure the ORAs into shift registers. In order to form the shift register illustrated in 
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Figure 3.5, first, half of the ORA columns are configured to shift data up and the other 
half to shift down as shown in Figure 3.6 lines (a) through (d). To connect every column 
of shift register pieces into one scan chain, the routines shown in Figure 3.6 lines (e) 
through (l) reconfigure either top or bottom PLBs of the ORA columns and some of BUT 
PLBs that are adjacent to one end of each shift register column as route-though PLBs 
according to Figure 3.5. Finally at the end of the scan chain, the look-up-table is 
reconfigured to generate a constant logic value ?1? as shown in Figure 3.6 lines (m) and 
(n) to verify the integrity of the scan chain during BIST results retrieval [10]. This also 
helps to check the consistency of the cache logic mode itself to ensure that the dynamic 
partial reconfiguration was correct. After specifying ?FPGAX? and ?FPGAY? location, 
?FPGAZ? is written followed by ?FPGAD? from the AVR so that FPGA configuration 
memory can be written. 
 The routine is executed through external interrupts. At the end of each BIST 
sequence, the higher test controller unit (such as PC) activates the interrupt to 
reconfigure the shift register, after which the ORA results can be retrieved by the test 
controller. All BIST configurations reported in [33] used similar shift register 
reconfiguration programs developed as part of this thesis and were a necessary part of the 
development in [33]. Dynamic partial reconfiguration of ORAs into a shift register is 
also used in routing BIST due to the fact that the ORA contents cannot be read directly 
from FPGA configuration memory. Most of the ORA layouts are regular, thus 
algorithmic AVR reconfiguration routines which reconfigure the ORAs to a scan chain 
were implemented in a similar way to the logic BIST shown in Figure 3.6 [33]. 
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3.3 Dynamic AVR Reconfiguration of BUTs and ORAs for BIST 
 Improvements of the test time and configuration memory requirement can be made 
by developing a new BIST sequence using the AVR microcontroller to dynamically 
reconfigure FPGA configuration memory. For example, the BIST sequence in the 
previous work on the same device is as follows [33]: 
1) Reconfigure FPGA for the BIST (download configuration file). 
2) Run BIST (BIST clock is applied). 
3) Reconfigure ORAs to form a scan chain (dynamic partial reconfiguration via the 
AV R ) .  
4) Retrieve ORA results (to the external controller such as PC). 
5) Reconfigure FPGA for the next BUT mode of operation (configuration file 
download required). 
6) Repeat step 2) ? 5) until all modes of BUT operation are tested. 
7) Diagnose the retrieved ORA results to locate the faulty blocks (if there are any 
ORA failures). 
 Improvement can be made to Step 5 above when the FPGA has to be reconfigured 
externally via downloading an external configuration file for the next BIST configuration. 
Instead of the external configuration download, this BUT reconfiguration can be done by 
the AVR processor through partial reconfiguration of BUTs to the next mode of operation. 
Since the BUTs in logic BIST architecture have either column or row oriented structure, 
they can be easily reconfigured by an algorithmic AVR routine to save test time. 
 Additional improvements can be made to step 4. After the BIST clock cycles are 
applied for each BIST sequence, the ORA results are retrieved in this step. This is 
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because the shift registers are overwritten to ORAs when the next BIST configuration 
download occurs, resulting in a chip reset and the contents of ORAs are lost. However, 
from another aspect, the new BIST configuration downloads are required in order to reset 
the contents of ORAs as well as to reinitialize comparison-based ORA functionality for 
the next BIST configuration. Improvements can be made by utilizing the AVR?s dynamic 
partial reconfiguration capability since the AVR can reconfigure the shift chain back to 
ORAs and clear the flip-flop contents of ORAs so that the next test phase can be run. 
Therefore, only one initial BIST configuration download to the FPGA is needed for each 
test session and subsequent BIST configuration downloads can be replaced with a small 
AVR program. 
 As a result, only one BIST configuration needs to be downloaded along with a 
program to be executed by the processor core for the reconfiguration of subsequent BIST 
configurations. In the previous work [33], the FPGA is tested for four directions (Figure 
3.7) and one direction consists of four modes of BUT configuration. Therefore a total of 
16 BIST configurations must be downloaded. These sixteen configuration downloads can 
be replaced by four downloads with the AVR-assisted BIST. This provides an 
improvement to total test time when compared to downloading individual BIST 
configurations because the download time dominates the total test time since the 
configuration clock usually runs at a lower frequency than the processor clock. 
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3.7 Four Layouts for Logic BIST [33]
a) West Session b) East Session
c) South Session d) North Session
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To reconfigure for the next test phase from the AVR, an external interrupt routine is 
used which has a global variable ?phase?. The variable ?phase? is initialized to 1 during 
the initial download to the FPGA which means the first BUT mode is configured in the 
FPGA. When the interrupt occurs, the ?phase? variable is incremented to configure BUTs 
differently and appropriately as the test sequence proceeds, as shown in Figure 3.8 line 
(c). In order to achieve maximum speedup, the use of arrays is avoided and a ?switch-
case-break? scheme is used (Figure 3.8a) which saves execution time but requires more 
program memory size. After the reconfiguration of the BUTs, the existing shift register is 
reconfigured back to ORAs by a routine similar to the BUT reconfiguration routine 
shown in Figure 3.8. 
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 Detailed analysis of the AVR reconfiguration is shown in Table 3.1 in terms of the 
number of processor clock cycles required to perform the various functions associated 
with reconfiguration and execution of logic BIST. The number of non-commented lines 
of C source code and the number of bytes of program memory storage required for the 
compile program are also given. In logic BIST for AT94K40 (a 48x48 array) there are 
1,152 BUTs and 1,104 ORAs in each BIST configuration [28]. Therefore, BUT 
reconfiguration requires about 61 cycles per BUT while reconfiguration of the ORAs 
 41
into a shift register requires about 23 cycles per ORA and reconfiguration back to ORAs 
after retrieval of the BIST results requires about 34 cycles per ORA. 
Table 3.1 Logic BIST Reconfiguration 
Reconfiguration function 
Average processor 
execution cycles 
Number of lines 
of code 
Program memory 
bytes 
ORA to shift register 25,570 127 764 
Shift register to ORA 37,220 102 328 
Reconfigure BUT 70,023 154 756 
 As illustrated in Table 3.2, in the initial work [33], each of the four BIST 
configurations associated with each of the four test sessions contains approximately 65 
Kbytes of configuration data including the program for reconfiguration of the ORAs into 
a shift register at the end of the BIST sequence for retrieving ORA results. 
Table 3.2 Total Memory Reduction 
 Download [33] AVR-assisted 
Memory 
Reduction 
Total Configurations 65 Kbytes ? 16 files 67.5 Kbytes x 4 files 3.9 
 Therefore, a total of approximately 1.04 Mbytes of memory is needed to store all 
sixteen logic BIST configurations. A single configuration for a given logic BIST session 
with a program to reconfigure the subsequent three BIST configurations requires only 
67.5 Kbytes of configuration and program data (total of approximately 270 Kbytes), 
giving a factor of 3.9 reduction in memory storage for four test sessions. In these cases, 
the AVR program performs the following steps during the BIST sequence to obtain 
improvements over the previous work [33]:  
 1) Execute the BIST sequence for the current BIST configuration. 
 2) Reconfigure the ORAs into a shift register at the end of the BIST sequence. 
 3) Retrieve the BIST results. 
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 4) Reconfigure the shift register back to ORAs for the next BIST configuration. 
 5) Reconfigure BUTs for the next BIST configuration. 
 6) Repeat steps 1 through 5 until all of the BIST configurations have been executed. 
 The test time is determined by the total time required to download the BIST 
configuration and the time for the processor to execute the steps listed above. At the 
maximum download (1MHz) and processor clock (25MHz) frequencies, it takes total of 
523 milliseconds for a single logic BIST configuration, 2.1 seconds for the test session of 
four logic BIST configurations, and a total of 8.4 seconds for the complete set of 16 logic 
BIST configurations as shown in Table 3.3. Using the processor core for reconfiguration 
(AVR-assisted) of the four BUT configurations within a given test session, it takes a total 
of 559 milliseconds per test session, giving a speed-up of 3.75. 
Table 3.3 Total Test Time and Speed Up 
 Download [33] AVR-assisted Speed up Factor 
Download (1MHz) 523msec x 16 540msec x 4 3.87 
Run time (25MHz) 1msec x 16 19msec x 4 0.21 
Total BIST Time 8.4 sec 2.24 sec 3.75 
  
3.4 A Better Logic BIST Sequence 
 Taking the AVR-assisted logic BIST idea one step further, additional improvements 
can be made to the BIST sequence. In the previous work [33], one BIST session consists 
of four BIST configurations to be downloaded and two different routing schemes, shown 
in Figure 3.9, which alternate as the phase increases, requiring retrieval of ORA results 
after every BIST configuration [33]. 
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Figure 3.9 Four BIST Phases in One Session for AT94K SoCs
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 The MGL-based AVR-assisted logic BIST described in the previous section had to 
scan out the ORA results at the end of each BIST sequence. It is due to the fact that the 
routing scheme alternated after every test phase, resulting in the inability to locate faulty 
PLBs based on failing BIST results. By reordering the BIST configurations and by 
grouping the same routing schemes together, the ORA result can be retrieved after 
multiple test phases. This results in saving total test time by saving ORA reconfiguration 
and retrieval time. As a result, the contents of the ORAs are not cleared in between test 
phases because the ORA contents have to be maintained throughout the different BIST 
phases in order to scan out results at the end of the test session. In this case, there is some 
loss in diagnostic resolution but it does not degrade any fault detection capabilities. Thus, 
BIST still detects any faulty PLBs while attaining faster test time while diagnosis can 
still identify faulty PLBs. The loss in diagnostic resolution is only to the extent that the 
failing BUT mode of operation cannot be identified.  
 In the case of the X and Y direct PLB connection tests, which are located on four 
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corners of the FPGA, avoiding alternating routing schemes results in complete testing of 
the PLBs, including X and Y direct connections on the four corners. The work in [33] 
reported lower fault coverage in eight PLBs located in the four corners. 
 This modified approach to dynamic partial reconfiguration of the FPGA core by the 
embedded processor core is analyzed and illustrated in Table 3.4 in terms of the number 
of processor execution clock cycles and program memory size required for 
reconfiguration of BIST, execution of the BIST sequence, and retrieval of the BIST 
results for diagnosis. This new logic BIST approach consists of the following steps:  
1) Reconfigure the FPGA for BIST (download configuration file). 
2) Run BIST (BIST clock is applied). 
3) Partially reconfigure for the next BUT configuration via the microcontroller. 
4) Repeat steps 2) and 3) until all modes of operation with the same routing scheme 
are run. 
5) Reconfigure the ORAs into a shift register. 
6) Retrieve the BIST results for diagnosis to locate faulty PLBs. 
7) Reconfigure the shift register back to ORAs for a different routing scheme. 
8) Reconfigure BUTs for another ORA-to-BUT routing scheme. 
9) Repeat steps 2 through 6 for the next test session. 
 As shown in Table 3.4, the new BIST sequence produces a 41% reduction in the 
average number of execution clock cycles per test phase and a 49% reduction in program 
memory storage requirements. This is due in part to the fact that ORA results can be 
retrieved after each group of four BIST configurations without loss of fault detection 
information, instead of after every BIST configuration as is the case in the externally 
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controlled logic BIST approach in [33]. Another factor is that the externally controlled 
logic BIST approach required running four test sessions (west, east, south, and north) for 
complete testing of PLB logic while the modified AVR-assisted logic BIST approach 
only requires running two test sessions (west and east), twice each (one for each routing 
scheme). Thus, the modified AVR-assisted logic BIST requires fewer reconfiguration 
clock cycles to completely test the PLBs in the FPGA core. One penalty of having only 
west and east test sessions is that they are not sufficient to test additional routing faults 
associated with horizontal transmission gates, which make PLB-to-global bus 
connections. Whereas the externally controlled logic BIST approach [33] is able to detect 
them in addition to the PLB logic faults. However, it can be solved by running similar 
sessions for north and south, or as an alternative, routing BIST requires north and south 
test sessions for repeaters and the horizontal transmission gates should be tested in those 
BIST configurations. 
Table 3.4 Logic BIST Reconfiguration Improvement 
Compared Features AVR-assisted Modified AVR-assisted
Total Number of Test Phases 16 16 
Number of Downloads Required 4 2 
Average Number of Lines of Code 350 x 4 450 x 2 
Total Program Memory Size (Bytes) 1,694 x 4 1,736 x 2 
 Total Execution Clock Cycles 1,844,916 1,086,462 
Average Cycles per Test Phase 115,307 67,904 
By comparing the improved and original BIST configurations from [33], a total 
memory reduction factor of 7.7 and a test time speedup by a factor of 7.4 are achieved, as 
shown in Tables 3.5 and 3.6 respectively. Note that all the data shown are based on the 
AT94K40 device which has a PLB array size of 48x48. But it should be noted that all 
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tests were also developed for and executed on AT94K10 devices, which have a PLB array 
size of 24x24. The speedup in testing time in the AT94K10 is less due to the smaller array 
size. 
Table 3.5 Total Memory Reduction 
 Download [33] Modified AVR-assist 
Memory 
Reduction 
Total Configurations 65 Kbytes ? 16 files 67.6 Kbytes x 2 file 7.7 
Table 3.6 Total Test Time and Speed Up 
 Download [33] Modified AVR-
assist 
Speed up Factor 
Download (1MHz) 523msec x 16 541msec x 2 7.75 
Run time (25MHz) 1msec x 16 22msec x 2 0.36 
Total BIST Time 8.4 sec 1.13 sec 7.4 
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CHAPTER FOUR 
AV R  GENERATED FPGA LOGIC BIST 
 
The previous chapter described how the embedded AVR microcontroller can assist 
in the BIST of the embedded FPGA core using an initial external configuration download 
to the FPGA. Significant improvements in the BIST performance were obtained by using 
the microcontroller to reconfigure the FPGA for the subsequent BIST configurations 
instead of downloading those BIST configurations. This chapter extends the idea to 
eliminate all external downloads to the FPGA by replacing those download bitstream files 
with a single AVR program. The program contains algorithmic routines to reconfigure the 
FPGA core for every BIST configuration. Furthermore, the AVR becomes the test 
controller by executing the BIST sequence and retrieving the BIST results. The detailed 
development and debugging process of AVR generated BIST configurations will be 
discussed. Finally, the improvement over the conventional FPGA BIST will be presented 
by showing the BIST time speedup and configuration memory storage reduction factor. 
 
4.1 Development of C Program for Logic BIST Generation 
The goal is to develop a program for algorithmic reconfiguration of the FPGA core 
for every BIST configuration. This requires only a single download to the program 
memory without configuration of the FPGA core. If the program is sufficiently small, it 
can reside in the program memory without the need for any download. The key point in 
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this approach is to have an algorithmic routine to reconfigure the FPGA for different 
BIST configurations [28]. If fast enough, the BIST program can be more frequently used 
during idle intervals in system operation for high reliability, high availability applications. 
 To accomplish the first goal, minimizing the size of the program, the BIST 
architecture must be regular to facilitate an efficient reconfiguration algorithm. In 
addition, the order of the configuration process must be efficient. The configuration order 
also impacts the second goal, minimizing test execution time. The test execution time can 
also be reduced by not retrieving test results from the ORAs after each BIST 
configuration but instead, using dynamic partial reconfiguration to execute many BIST 
configurations before retrieving test results. There is some loss of diagnostic resolution in 
that the faulty functionality within a PLB can no longer be identified. However, there is 
no loss in diagnostic resolution in that faulty PLB(s) can still be identified [34]. 
4.1.1 Implementation Issues and Considerations 
 Since BIST configurations generated from MGL in [33] test all logic resources in 
the BUTs with total of four BIST configurations, the first goal was to program the 
embedded processor to perform the same tests by replicating the BIST structures (TPGs, 
BUTs, ORAs, etc) which were generated by MGL, replacing all the BIST configuration 
downloads with a single AVR program. 
 One of the limitations of this approach, of having a single processor program to test 
all the resources in an FPGA, is that the time required for developing and debugging the 
program can be significant. Most of the FPGA design tools provide a graphical 
representation of the design to be implemented in the FPGA to help in debugging the 
design. Atmel provides a tool called Figaro which graphically represents how the design 
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is mapped onto the FPGA, provided the original design is described using MGL, VHDL 
or Verilog. On the other hand, if the entire BIST configuration is generated through 
partial reconfiguration by the AVR, debugging the design without any tool support can 
become quite tedious and error-prone. If the AT94K series SoCs were capable of 
dynamic configuration readback via the AVR processor core (which is not the case), 
BIST development time would be greatly reduced by facilitating read-modify-write 
operations to the configuration memory. Instead, the BIST configurations previously 
developed and verified using MGL as described in [33] must serve as a baseline for 
developing and debugging the desired program for the AVR processor core. 
 In order to develop the AVR program, we must determine the BIST configuration 
that has to be generated initially and also the proper order of subsequent configurations so 
as to minimize the configuration time from the AVR. We use the BIST configurations 
originally developed using MGL [33] to help determine these two issues. While the 
graphical representation of the design helps in planning the reconfiguration routines as to 
how the different resources (logic, routing, repeaters, and clocks) have to be configured, 
the MGL generated bitstream helps in determining the order in which to write various 
configuration bytes for different resources so as to make the algorithmic reconfiguration 
routines efficient in terms of speed and size as well as power dissipation during 
reconfiguration. 
 After developing and verifying the routines for the initial configuration, routines are 
then developed for reconfiguring the BUTs to test the subsequent modes of operation. 
The BIST reconfiguration order has to be carefully considered and arranged since, if 
different resources are configured independently, there is possibility of destroying the 
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previously configured bytes, since some of the configuration bytes are shared by different 
programmable resources. For example, as shown in Figure 4.1, if reconfiguring repeater 
connection ?A-C? requires writing a logic 1 on the least significant bit location of the 
repeater configuration byte, then writing a byte ?00000001? may turn off the existing 
activated CIP that is needed for BIST. 
 
4.1.2 Efficient Sequence of On-chip Dynamic Configuration of FPGA BIST from 
AV R  
 To find an efficient configuration sequence when reconfiguring the FPGA core 
from scratch, a primary goal is to avoid the risk of overwriting a configuration bit that has 
been previously written and, as a result, inadvertently injecting errors into a BIST 
configuration. The following considerations help to minimize this risk. First, do not 
configure more than what is needed when configuring the FPGA for the test. For example, 
the BIST clock routing need not be configured until the other BIST components are 
configured and ready for the BIST clock. When the BIST clock is ready to be applied for 
the BIST sequence, the scan chain output path from the ORAs is not needed and should 
 51
only be configured right before the BIST results are to be retrieved. Second, keep track of 
configuration bytes that control more than one kind of programmable component (such as 
repeaters with global clocks and resets, for example). Third, configure resources that are 
regular and repeat over the entire array first (such as the BUTs and ORAs, for example) 
and then configure the resources that are local to a specific area in the FPGA array (such 
as the clock, scan chain output signal, and TPGs). 
 The algorithmic reconfiguration program for the embedded AVR core was 
developed in C. The program?s subroutines and reconfiguration sequence is arranged in 
the following order: 
 1. Clear the FPGA - Instead of the chip reset, this subroutine clears the entire FPGA 
configuration memory contents to ensure that the BIST components will be configured 
into an empty FPGA. It clears all configuration memory bytes associated with PLBs, 
repeaters, clocks, set/resets, flip-flops, free RAMs, and I/O buffers [7]. This routine is 
also executed when there are transitions between test sessions as shown in Figure 2.15. 
 2. Initialize the ORAs - This subroutine configures the local routing resources 
associated with each ORA and its LUTs to function as a comparison-based ORA. It 
configures the ORAs to either routing scheme 1 or 2, as shown in Figure 2.15, and resets 
the ORA flip-flop contents to logic 0. 
 3. Initialize/reconfigure the BUTs - This subroutine first configures the cross points 
where the TPG signals and buses to the BUT inputs are connected along the very top and 
the bottom of the FPGA array. When the routine is used to reconfigure the BUTs for the 
next BIST configuration, depending on the current test session and the BIST 
configuration, it changes the local routing connecting the BUTs as well as the 
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programmable logic resources inside the BUTs. The BUTs are also reset through this 
subroutine, meaning the flip-flops in all of the BUTs are initialized to either logic 0 or 
logic 1 (depending on the BUT configuration) to ensure correct BIST operation. In fact, 
this feature provides additional testing of the flip-flops that cannot be tested by 
downloading individual BIST configurations into the FPGA core and illustrates the 
improved controllability obtained with partial reconfiguration from the embedded 
processor core. 
 4. Initialize the TPGs - This subroutine programs two 5-bit counters in the TPG 
column of the PLB array. It also performs all local, global, and repeater routing between 
the TPG PLBs, as well as the TPG to BUT signal connections as shown in Figure 2.15. 
When configuring repeaters in this step, writing to some of the repeater bytes needs extra 
attention because some of the bytes in repeaters also include global clock and set/reset 
control bits. This subroutine also initializes the TPG flip-flops to logic 0 to ensure that the 
TPGs are synchronized prior to execution of the BIST sequence. 
 5. Route BIST clock controlled by the AVR interface - This subroutine connects the 
FPGA Write Enable line (FPGAIOWE as shown in Figure 2.8 and 4.2) from the AVR 
interface to one of the global clock input lines of the FPGA core so that the BIST clock 
signal can be distributed to all of the PLBs. FPGAIOWE is used to generate and control 
the BIST clock from the AVR. Since the AVR-FPGA interface cannot be described and 
programmed from the MGL, the circled points shown in Figure 4.2 illustrate dynamic 
reconfiguration from the AVR. Finally, this subroutine configures the clock control 
settings such as clock invert bits for the TPGs, BUTs, and ORAs which are the last steps 
before running the BIST. 
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Figure 4.2 FIGARO Illustration of How AVR Connects to a Global Clock Buffer
FPGAIOWE from AVR
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 6. Run the BIST - In this subroutine, the embedded AVR processor generates the 
BIST clock cycles to the FPGA core to run the complete BIST sequence. A control 
register ?FISCR? is assigned to decode and connect one of four I/O registry addresses 
(?FISUB? is decoded in Figure 4.3) to the AVR-FPGA data bus. A clock cycle is 
generated by writing a dummy value to the 8-bit ?FISUB? as shown in Figure 4.3 which 
causes a clock cycle to be generated at the ?FPGAIOWE? pad. The TPGs generate the test 
patterns and any ORAs that observe mismatches in the outputs of their two neighboring 
BUTs will latch a logic 1. 
 
 7. Reconfigure the ORAs as a scan chain - At the completion of the BIST sequence, 
the ORAs will hold the test results to be read by the AVR. During this subroutine, all of 
the ORAs are dynamically reconfigured as a scan chain without affecting the contents of 
the ORA flip-flops as discussed in previous chapter. 
 8. Route the scan out data to the AVR interface - When ORA results are scanned out 
to the AVR core, the bidirectional data bus between the AVR and FPGA core must be 
used to shift the ORA results to the AVR for storage in the data SRAM. This subroutine 
routes a signal path from the output of the last ORA in the shift register to one of the 8-bit 
data bus lines (AVR DATA IN 0 in Figure 4.4) to the AVR core. 
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 9. Retrieve ORA results and store in the data SRAM for fault detection analysis 
and/or diagnosis - According to the instruction given to the embedded processor by a 
higher computing source (a PC in our case), the AVR can retrieve the ORA results after 
every BIST configuration or after multiple BIST configurations. In the latter case, there is 
some loss in diagnostic resolution but it does not degrade any fault detection capabilities. 
Thus, it still detects and identifies any faulty PLBs while attaining faster test time. The 
AVR can either return the actual test results (the contents of the ORAs) or it can perform 
an on-chip diagnostic procedure [34] as instructed by the higher computing source. In the 
event that the AVR is instructed to perform diagnosis, it returns a list of all faulty PLBs 
and their locations in the array for the BIST configuration(s) just executed. 
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4.2 Debugging Technique for Developing Logic BIST from Scratch 
 Atmel?s MGL and Figaro IDS tools can be used to a certain extent to help in 
speeding up the development and debugging process for the AVR program, which 
consists of the various configuration subroutines. In order to use an MGL program in 
debugging, a completely developed and verified MGL-based BIST configuration from 
[33] was modified to omit certain configurations of the BIST components in the FPGA 
core, as illustrated in Figure 4.5. An AVR program was then developed to write the 
configuration of the original components missing in the modified MGL configuration. 
The MGL-generated bit stream and the compiled AVR code are then combined into a 
single bit stream using Atmel System Designer and downloaded into the SoC. The MGL-
based BIST configuration, with missing BIST components, will report failures upon 
running BIST. However, if the BIST runs correctly after the execution of the AVR 
configuration routine, then we will have verified, at least to a certain extent, that the 
configuration subroutine correctly replaces the missing BIST component. Each BIST 
component is removed, one at a time, from the MGL code and combined with an 
appropriate AVR configuration subroutine to verify all of the AVR configuration 
subroutines for all BIST components. In this manner, we are essentially using the BIST 
architecture to test itself for design verification. A fault injection emulation technique is 
then used by reconfiguring certain PLBs to have faults and to verify that the BIST 
accurately detects and diagnoses these faults [17]. When there is no MGL-generated 
configuration data to be downloaded into the FPGA core, we are left with one AVR 
program which consists of all the logic BIST reconfiguration subroutines to be 
downloaded to the program memory of the SoC. 
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Figure 4.5 Use of MGL to Verify AVR Routines
a) MGL bitstream to 
be downloaded into 
the FPGA core
b) AVR program routine 
that configures lower 
TPGs on the FPGA core
c) Run BIST and verify the 
operation with fault inject
 
 
4.3 Experimental Results 
 The AVR program, consisting of the various subroutines described Section 4.1, is 
summarized in Table 4.1 in terms of individual program memory storage requirements, 
number of non-commented lines of source code, and the number of processor execution 
cycles for each configuration subroutine. Note that Table 4.1 contains the detailed 
functional level analysis of the final program which compiles to an Intel HEX file format 
to be downloaded to the program memory of the chip to run all of the west and east test 
sessions, which are equivalent to the complete set of the logic BIST configurations 
developed in [33]. Almost all of the subroutines developed for the west test session were 
parameterized so that they can be reused in the east session to reduce the program 
memory size. The main difference between the two test sessions is the direction of the 
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TPG signal flow across the top and the bottom of the array, which corresponds to 
horizontal repeaters on the top and bottom rows. The rest of the configuration subroutines 
for the BUTs and ORAs are reused simply by applying offsets to the column locations. 
TPG configuration routines are also reused by changing the TPG column location from 
FPGAX = 0 for the first (west) test session to FPGAX = ArraySize-1 for the second 
(east) test session. Thus, most of the configuration subroutines take two parameters: 
directions of the TPG signal flow to the BUTs (west or east) and the BIST configuration 
for the particular BUT mode of operation to be tested. 
Table 4.1 Total Configuration Routine Analysis 
Processor Execution 
Cycles  
BIST 
Reconfiguration 
Subroutines 
Program Memory
Size (KBytes) 
Number of 
Lines  of Code 
(Approx.) K10 K40 
Clear FPGA 0.492 150 59664 215128 
Place/config BUT 0.834 300 25829 100360 
Place/route ORA 0.22 70 14844 60686 
Place/route TPG 1.486 600 4652 14866 
Route BIST clock 0.234 40 1923 4911 
ORA/shift reg 0.282 80 6371 24791 
Route scan out 0.402 45 24879 97370 
Misc. 0.726 2700 * * 
Total 4.676 4000 138162 518112 
* Ignored in the total value. 
 Due to the irregular structure of the TPG and associated routing, the subroutine for 
configuring the TPG PLBs and the TPG to BUT routing occupies a large portion of the 
program memory. The second biggest subroutine is the placement and reconfiguration of 
the BUTs, since this contains 16 different combinations of BUT test configurations as 
well as the flip-flop and set/reset tests in half of the BIST configurations. The complete 
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AVR program occupies 4.7 KBytes of program memory, which corresponds to only 
about 14% of the total 32 KByte program memory space available in the AT94K series 
SoC. 
 In contrast to the program memory size or the number of non-commented lines of C 
source code, the number of processor execution cycles listed in Table 4.1 shows a 
different aspect of the BIST reconfiguration program. For example, more execution 
cycles are required in the routines for clearing the FPGA, for placement and 
reconfiguring of the BUTs, and for placement and routing the ORAs. Fewer execution 
cycles are required for placing and routing the TPGs. This is because the first three 
subroutines contain extensive loops which travel along every X (FPGAX) and Y 
(FPGAY) location of the chip. This illustrates how the regular and algorithmic structure 
of the BIST architecture helps to reduce the program memory storage requirements. The 
K10 notation in Table 4.1 denotes AT94K10 devices, which have an array size of 24?24 
PLBs, while the K40 denotes AT94K40 devices, which have a 48?48 PLB array. The 
column showing processor execution cycles for K40 is greater by a factor of 
approximately four, indicating that the increase in reconfiguration time and retrieval of 
results is linear with the device size. 
 Subroutines for applying the diagnostic procedure to the BIST results and for 
communicating with the higher controlling source also increase the program memory 
storage requirements. Also, due to the additional bits added from the tool that generates 
the final bit-stream, the actual file size to be downloaded to the program memory of the 
AVR increases from 4.7 Kbytes to 12.6 Kbytes as summarized in Table 4.2. 
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Table 4.2 Actual Download File Size (KBytes) 
All 
Configurations 
On-Chip Diagnosis 
+ others 
Added by System Designer Bit 
Generation 
Total 
4.676 2.5 5.419 12.6 
 With the internal BIST reconfiguration process executed by the AVR core, we 
achieve much better external memory storage requirements and faster testing time when 
compared to downloading individual BIST configurations into the FPGA. This is 
summarized in Table 4.3 for external memory storage and in Table 4.4 for total test time. 
The data shown in these tables are for a AT94K40 device with a 48?48 PLB array. 
Table 4.3 Total Memory Reduction 
 Download[33] AVR-generated Memory Reduction 
Total Configurations 
65 Kbytes  
? 16 files 
12.6 Kytes  
x 1 file 
83 
Table 4.4 Total Test Time and Speed up 
 Download[33] AVR-generated Speed up Factor 
Download (1MHz) 8.371 sec. 0.101 sec. 83.077 
Run-time (25MHz) 0.016 sec. 0.085 sec. 0.193 
Total BIST Time 8.387 sec. 0.186 sec. 45.125 
 The total test time is calculated by adding the download time and BIST execution 
time (or run-time as listed in Table 4.4). The external download is done using a 
maximum clock speed of 1MHz since all external downloads, which involve a check for 
download errors (the check-sum function) at the FPGA, can run at a maximum 
configuration clock frequency of 1 MHz [7]. Since the AVR can run at 25 MHz clock 
speed, BIST execution time is calculated assuming that the BIST clock runs at 25 MHz. 
This data was obtained from simulation on the ?Codevision AVR? C compiler and ?AVR 
Studio? for both conventional and processor-only cases and was also verified against 
actual download and execution times in several AT94K40 devices. 
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 As a result of the single AVR program for BIST reconfiguration, we obtain a factor 
of 45 speed-up in total test time and a factor of 83 reduction in external memory 
requirements for storing BIST configurations. It is interesting to note that the run-time in 
Table 4.4 increases for AVR BIST reconfiguration. This is due to the fact that the 
embedded processor core is doing all the reconfiguration, execution, and retrieval of 
BIST results while in the download of BIST configurations, the processor core is only 
used to reconfigure the ORAs into shift registers at the end of the BIST sequence for 
retrieval of the test results. With this consideration, the increase in run-time seems 
surprisingly small. 
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CHAPTER FIVE 
SUMMARY AND CONCLUSIONS 
 
This chapter summarizes the thesis and emphasizes the main contributions, 
followed by possible future research subjects. The summary section addresses problems 
in developing BIST configurations on commercially available SoC devices and discusses 
how the problems were solved through this thesis work. Experimental results summarize 
and discuss improvements in BIST which utilizes embedded AVR microcontroller as a 
BIST component, followed by a discussion of possible future research topics. 
5.1. Summary 
The PLBs in the embedded FPGA core in AT94K FPSLIC devices from Atmel 
were tested with 99.7% fault coverage in the thesis work described in [33]. One of the 
difficulties in developing BIST configurations on the device was due to that fact that 
each PLB has limited amount of resources which made it impossible to have an ORA 
with shift register capabilities in a single PLB [33]. With further investigation of the SoC 
device, we determined that the embedded FPGA can be dynamically reconfigured from 
the embedded AVR core, so that the BIST architecture could start with comparison-based 
ORAs, where each ORA monitors two BUTs, and scan out the ORA results by 
dynamically reconfiguring the ORAs to shift registers at the end of the BIST sequence. 
As a result, BIST configuration bitstreams that are downloaded to the SoC device consist 
of FPGA configurations as well as the AVR program for ORA to shift register 
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reconfiguration. Therefore, the work in [33] was completed and concluded with the 
support of the AVR partial reconfiguration which influenced most of the ideas in this 
thesis. 
In order to improve test time, which is dominated by BIST configuration download 
time in [33] and other previous FPGA BIST works in [10]-[12], [18]-[21], the role of the 
AVR has been extended to do partial reconfiguration of BUTs for each test phase. This 
eliminates the need for new downloads to the FPGA and any chip reset between the BIST 
configurations. Without a chip reset, the AVR must reconfigure more resources, such as 
resetting flip-flops in ORAs and TPGs, which costs additional clock cycles. However, 
faster test time than the approach in [33] was achieved because the AVR reconfiguration 
runs at a clock frequency of 25MHz while the external download can only run at 1MHz 
in order to provide error checks on the configuration downloads files. The improved 
BIST approach, however, needed the initial download to the FPGA for each test session. 
With the BIST approach that requires initial download to the embedded FPGA 
followed by dynamic reconfigurations of the FPGA from the AVR between test phases, 
we focused on imitating the exact BIST architecture and sequence as done in [33]. 
However, with the dynamic partial reconfiguration capability of the AVR, any 
modification can be made to the BIST architecture in such a way that improves the total 
test time. One of the modifications made was in the local X and Y routing scheme that 
alternates as shown in Figure 3.9. Instead of the alternate routing schemes, one routing 
scheme (scheme 1) is maintained to run four BUT configurations, with ORA results 
scanned out after the all modes of BUT operation have been tested. Next, the FPGA is 
reconfigured to have another routing scheme (scheme 2) to run four BUT configurations 
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again. This gave better speedup in test time, further reductions in memory storage 
requirements, and improved fault coverage at the corners on the FPGA core. 
As the AVR?s dynamic partial reconfiguration capability was proven to give 
flexibility of developing BIST configurations, the idea arose that the AVR could program 
the entire FPGA core from the very beginning without the need of any external download. 
All BIST components such as TPGs, BUTs and ORAs were carefully analyzed and a C 
program was developed so that the AVR can write certain configurations to certain parts 
of the FPGA to perform particular BIST functions such as TPG, ORA, or BUT. The 
drawback of this approach was excessive development time due to that fact that there are 
no tools that can visualize the dynamic cache logic of AVR writing to the FPGA 
configuration memory. In the end, this approach resulted in a single program that 
replaces 16 external downloads, achieving better test time speedup and memory storage 
requirements reduction than any other approach.  
5.2. Improvements in Total Test Time and Configuration Memory Requirements 
As a result, we have achieved improvements in the total test time and memory 
storage requirement for BIST configurations throughout the development. The final 
result is a single program executed by the embedded processor core for the complete 
reconfiguration, execution, and retrieval of test results during BIST of the programmable 
logic resources in the FPGA core of the Atmel AT94K series configurable SoC, as 
summarized in Tables 5.1, 5.2, and 5.3. As can be seen, replacing configuration 
downloads to the chip requires more AVR program size and processor execution cycles. 
However, this is a good trade-off since it eliminates FPGA configuration downloads 
which dominate total BIST configuration memory storage requirement and test time. 
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Table 5.1 Logic BIST Reconfiguration Comparison 
Compared 
Features 
Download [33] AVR-assisted 
Modified AVR-
assisted 
AVR-generated
 # of Downloads 
Required 
16 4 2 1 
Total Number of 
ORA Retrieval 
1 x 16 4 x 4 2 x 2 4 x 1 
Number of lines 
of code 
127 x 16 350 x 4 450 x 2 1,300 x 1 
Total Program 
memory bytes 
764 1,694 x 4 1,736 x 2 4,676 x 1 
Total Processor 
execution cycles 
25,570 1,844,916 1,086,462 2,127,686 
Table 5.2 Total Configuration Memory Reduction 
 Download [33] AVR-assisted 
Modified 
AVR-assisted 
AVR-generated
Total 
Configurations 
65 Kbytes  
? 16 files 
67.5 Kbytes 
x 4 files 
67.6 Kbytes 
x 2 files 
12.6 Kbytes 
X 1 file 
Memory 
Reduction 
1 3.9 7.7 83 
Table 5.3 Total Test Time and Speed Up 
 Download [33] AVR-assisted 
Modified AVR-
assisted 
AV R - generated 
Download 
(1MHz) 
523msec x 16 540msec x 4 541msec x 2 101msec x 1 
Run time 
(25MHz) 
1msec x 16 19msec x 4 22msec x 2 85msec x 1 
Total BIST Time 8.4 sec 2.24 sec 1.13 sec 0.186 sec 
Speed Up Factor 1 3.75 7.4 45 
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5.3. Main Contribution 
 The ability to perform dynamic partial reconfiguration of the FPGA core from the 
embedded processor core provides a major testing capability. However, the non-existent 
configuration memory readback capability, as well as lack of graphical tool support that 
can show dynamic partial reconfigurations in the FPGA, make the SoC testing (and test 
development) much more difficult. Therefore, a unique way of debugging and verifying 
AVR?s dynamic reconfiguration was used by combining the AVR program with 
previously verified MGL-generated FPGA BIST configurations so that the resultant 
download bitstream can be run in the chip for the AVR program verification. Finally, by 
having a single program downloaded into the program memory of the embedded 
processor to reconfigure the FPGA core algorithmically, downloads to the FPGA core are 
eliminated, resulting in significant reduction in the total testing time (a factor of 45) as 
well as the configuration memory required (a factor of 83) compared to the previous 
work done in [33]. The single AVR-generated BIST and diagnostic program is 
sufficiently small to reside on-chip for on-demand BIST and diagnosis of the 
programmable logic resources in the FPGA core of the SoC. 
 The same techniques discussed in this thesis can also be applied to BIST of the 
programmable routing resources. Previous work [33] showed that the number of routing 
BIST configurations required (48) was three times more than the logic BIST 
configurations (16) for the same device tested in this thesis. In other words, three times 
more configuration downloads could be replaced with a single AVR program resulting in 
a better reduction of configuration memory requirements and total test time. 
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5.4. Future Research 
 There are two areas that can be considered for future research related to this thesis. 
They are the embedded AVR microcontroller itself and a dynamic reconfiguration 
visualization tool. Throughout this thesis work, the microcontroller was assumed to be 
fault-free. Without this assumption, it is not certain that the FPGA BIST configurations 
generated from the AVR are correct. If the AVR can be tested also, then it would support 
the argument that the partial reconfigurations that are made by the AVR to the FPGA core 
can be trusted. An AVR test could be broken into several parts (such as ALU, stack, 
dynamic reconfiguration logic, peripherals and etc), and critical parts that are mostly 
used for the BIST reconfiguration shown in this thesis can be selected and tested 
individually. 
 The AVR leads to the other subject, the dynamic reconfiguration visualization tool. 
If developers can see how the FPGA configurations are being changed by the AVR, there 
would be no need for spending excessive time in developing AVR-generated BIST 
configurations that currently requires developer?s ability of imagining any design 
changes (by looking at the AVR program) inside the FPGA core resulting from the AVR 
dynamic reconfiguration. Currently, a simulation program called ?AVR Studio? has 
capabilities to simulate and record various parts in the AVR (such as registers, ports, 
processor clock cycles and etc), and the visualization tool could be built on top of the 
AVR simulator as a form of software plug-in module. The visualization tool will not help 
general users to debug designs since most designers would not consider the physical 
design structure or layout which is typically done by the CAD tool. However, the 
visualization tool will be very useful to test engineers, especially those who are related to 
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the topics and techniques discussed in this thesis. 
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