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Abstract 

 

This dissertation explores renewal functions for minimal repair and non-negligible repair 

for the most common reliability underlying distributions Weibull, gamma, normal, lognormal, 

logistic, loglogistic and the uniform.   The normal, gamma and uniform renewal functions and 

the renewal intensities are obtained by the convolution method.  In the uniform distribution case 

complexity becomes immense as the number of convolutions increases.  Therefore, after 

obtaining twelve convolutions of the uniform distribution, we applied the normal approximation.  

The exact Weibull convolutions, except in the case of shape parameter    , as far as we know 

are not attainable. 

Unlike the gamma and the normal underlying failure distributions, the Weibull base-line 

distribution does not have a closed-form expression for the n-fold convolution.  Since the 

Weibull is the most important and common base-line distribution in reliability analyses and its 

renewal and intensity functions cannot be obtained analytically, we used the time-discretizing 

method.  Most calculations have been done with the aid of MATLAB Programming Language.  

When MTTR (Mean Time to Repair) is not negligible and that TTR has a pdf denoted as 

r(t), the expected number of failures, expected number of cycles and the resulting availability 

were obtained by taking the Laplace transforms of renewal functions.  Finally, the approximation 

method for obtaining the expected number of cycles, number of failures and availability using 

raw moments of failure and repair distribution is provided. 

Keywords: Reliability, Renewal Function, Renewal Intensity, Convolutions 
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CHAPTER 1 

1 Introduction 

 

This chapter introduces the history of reliability, outlines the objectives that the research 

intends to achieve, and then gives the research methods adopted.  The introduction provides the 

framework for the research that follows.  The chapter concludes by describing the layout of the 

dissertation. 

1.1 History of Reliability 

“During the expansion after World War I, the aircraft industry was the first to use 

reliability concepts.  Initially everything was qualitative.  As the number of aircraft grew during 

the 1930’s, reliability was slowly being quantified as function of mean failure rate and average 

number of failures of an airship or airplane” [1].  

Before World War II, reliability studies were mostly intuitive, qualitative and subjective 

[2].  The early development of mathematical reliability models began in Germany during World 

War II, where “a group led by Wernher Von Braun was developing the V-1 missile” [3].  

During the 1950’s, nuclear industry started to develop and to use reliability concepts in 

nuclear power plants and control systems [1].  Further, this last decade witnessed the initial 

stages of the use of component reliability in terms of “failure rate, life expectancy, design 

adequacy and success prediction” [3]. 
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Since the turn of the 20
th

 century, much of the reliability research results started to 

transfer to industry and academia.  In the past eight decades universities have been teaching 

reliability theory and applications.  There has also been steady growth on reliability publications.  

Furthermore, in order to compete in today’s global economy, manufacturing and other industries 

should consider reliability as a primary concern [4]. 

1.2  Research Objectives 

The research objectives are a combination of mathematical methods along with the some 

approximations.  This work focuses on the renewal function (RF), whose definition will follow, 

and has mainly four objectives.  The RF is simply the mathematical expectation of number of 

renewals in a stochastic process. 

The first objective explores the RF, M t( ) , for minimal repair by using convolutions of 

gamma, normal and uniform distributions.  The closed-form expressions for the RFs are 

provided in the case of normal, gamma (which includes the exponential) and the uniform 

distributions.  Both renewal functions and the renewal intensities )(t =ρ dM t d t( )/ ( )  are 

provided for these distributions.  Further, the exact uniform convolutions through the eighth have 

been known since 1983[5].  

The second objective is discretizing time in order to approximate the fundamental 

renewal equation.  Unlike the gamma and normal underlying failure distributions, the Weibull 

base-line distribution (except when the shape parameter 1 ) does not have a closed form 

expression for the n-fold convolution nf t( )( ) .  Therefore, we cannot obtain the Weibull renewal 
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and intensity functions by using the convolution method.  Since the Weibull distribution is the 

most important of all underlying distributions in reliability analyses, this dissertation uses an 

approximation method by discretizing time in order to estimate the RF, which can be applied to 

any baseline distribution [see also E. A. Elsayed,  (pp. 428-432)]. 

The third objective is obtaining renewal and availability functions for some time to 

failure and time to repair distributions by using Laplace transforms when repair time is not 

negligible. 

The fourth objective is obtaining an approximation for expected number of failures, 

number of cycles and availability when repair is not negligible for some common reliability 

distributions by using the first four raw moments of failure and repair distributions.  

1.3  Research Methods 

The dissertation presented so far generates the renewal functions for some common 

distributions under the case of minimal repair and non-minimal repair.  It develops and enhances 

an overarching process based on multiple mathematical and statistical theories that will generate 

renewal and intensity functions, and will also provide approximation methods. 

For the exponential distribution obtaining a closed-form expression for the RF was 

documented for well over 100 years ago.  Unfortunately, for other distributions such as Weibull 

and uniform this is very difficult.  We used the convolution method for the uniform distribution 

in order to obtain its renewal and intensity functions.  For the uniform distribution, as the number 

of convolutions increases the problem becomes more complex both geometrically and 
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mathematically.  Therefore, after convoluting twelve uniforms we applied the normal 

approximation. 

Unlike the gamma and the normal underlying failure distributions, the Weibull base-line 

distribution (except when the shape parameter 1 ) does not have a closed-form expression for 

the n-fold cumulative convolution nF t( )  ( ) ,
 
and hence n

n 1

M t E N t F t




  ( )( ) [ ( )] ( )  cannot be 

used to obtain the value of the RF M t( ) .  Since the Weibull distribution is the most important 

baseline distribution in reliability analyses, we used the time-discretizing approximation method 

[6] described in Chapter 4.  Further, most calculations are done with the aid of MATLAB 

Programming Language.  We also used moment based method and Laplace transforms method 

for non-negligible repair.  

1.4  Dissertation Layout 

The dissertation is divided into eight chapters including this first chapter entitled 

“Introduction”.  The layout and organization of remaining chapters are as follows. 

Chapter 2 presents the literature review on reliability.  This includes the concept of 

reliability in mathematical details.  It also explains the terms availability and maintainability and 

underlines the differences of these two concepts.  Moreover, it identifies the differences between 

quality and reliability.  Chapter 2 continues on renewal stochastic processes and it discusses 

reliability applications.  Finally, it explains the importance of renewal functions, contributions to 

the literature and the general previous works that have been done. 
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In Chapter 3, the reliability methodology is presented.  The principles, mathematical 

development, and structure are identified and introduced.  Reliability measures like, MTTF 

(Mean Time to Failure), hazard function are explained both mathematically and conceptually.  It 

explains the mathematical concepts of convolution method.  Chapter 3 continues by some 

distribution functions such as uniform, gamma, normal and Weibull that was studied in this 

work.  Chapter 3 concludes with a brief summary table.  

Chapter 4 describes the renewal processes for minimal repair in detail.  It gives the 

renewal and intensity functions for the normal and gamma distributions.  It also provides 

convolutions of the uniform through order n = 12 for the case of minimal repair.  By using these 

convolutions it calculates the renewal and intensity functions for the interval [0, t] when the 

underlying distribution is uniform.  Chapter 4 continues by explaining the time-discretizing 

method in order to approximate the fundamental renewal equation, which can be applied to any 

base-line distribution.  It concludes with approximating the Weibull distribution’s RF. 

In Chapters 5 and 6, unlike the previous chapters, we assume that MTTR (Mean Time to 

Repair) is not negligible and that TTR has a pdf denoted as r(t).  Chapter 5 gives the expected 

number of failures, expected number of cycles and availability by taking the Laplace transforms 

of renewal functions, and Chapter 6 gives the approximate number of renewals for most common 

distributions by using raw moments of failure and repair distributions. 

Chapter 7 introduces the Matlab program, describes the inputs and outputs of the program 

for minimal and non-minimal repair cases.  Finally, Chapter 8 gives the conclusion and possible 

future work. 
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CHAPTER 2 

2 Literature Review 

 

This chapter introduces the literature review on reliability.  It defines reliability, 

availability and maintainability.  It also discusses differences between quality and reliability.   

Furthermore, it briefly discusses the applications of reliability which abound.  Then, it continues 

with importance of renewal functions and previous work on renewal functions.  Finally, it 

summarizes the contribution of this study. 

2.1 Reliability  

The concept of reliability is not new.  Both manufacturers and customers have long been 

concerned with the reliability of products they produce and use [7].  Basically the general 

perception about reliability is functioning without any problem.  Stating something is reliable 

implies it can be depended on to work satisfactorily.  However, the real definition of reliability 

involves quantifying measures.  

“The reliability of an item is the probability that it will adequately perform its specific 

purpose for a given period of time under specified stressed conditions” [8].  Another definition is 

as follows: “Reliability is defined to be the probability that a component or system will perform a 

required function for a given period of time when used under stated operating conditions” [4].  

As it is seen from the two above definitions, reliability is a probability.  Therefore, this implies 

reliability can never be negative or greater than one.  Since reliability is a probability, probability 
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axiom results are used in reliability [8].  Reliability studies deal with different complexity levels 

of units or systems [9]. 

Unreliability induces heavy losses to organizations.  It also causes them to lose 

reputation.  Failure of products before reaching their warranty period is costly.  Therefore, today 

we have reached a point where reliability is considered as a major performance measure [10]. 

In summary, reliability is the survival probability of an item or system beyond a certain 

point in time.  Since the cost of unreliability is high, reliability is considered as a major 

performance parameter.  Unlike most classical statistical parameters, reliability is always a 

function of time (t).  Although in cases of very short mission time, reliability can be considered 

as static merely as an approximation.  

2.2 Availability and Maintainability  

Availability includes both failure and repair rates of a system, and therefore, it is 

considered to be one of the most important reliability performance measures [6].  “Availability is 

the probability that a system or component is performing its required function at a given point in 

time or over a stated period of time when operated and maintained in a prescribed manner” [4]. 

There are generally four types of availability measures [8].  These are: 

1) Point (or instantaneous) availability ( )A t : Instantaneous availability at time t is the 

probability that a repairable unit is functioning reliably at time t.  Therefore, if there is no 

repair, the availability, ( )A t ,
 
is equal to the reliability function  R t( ) . 



8 

 

2) Limiting availability: As time increases, instantaneous availability will approach a 

constant value, once an item has stationary times to failure Ti, stationary times to repair 

TTRi, and this value is known as the limiting availability [8].  

3) Average availability on (0, t]: This can be explained as the “expected fraction of time” 

that a system is operational during (0, t], [8]. 

4) Limiting average availability on (0, t]: This is also known as “steady-state availability”.  

It is the availability of a component or system when the time interval is very large [6].   

Maintainability is the probability that a failed item can be repaired or restored to become 

operationally effective within a specified period of time when repair action is performed in 

accordance with prescribed procedures [11].  Maintainability is important for eliminating 

defects, correcting defects and their causes, meet new requirements and adapt to a changing 

world.  A design process should start with defining system maintainability objectives.  

Both maintainability and availability are very important measures in reliability theory and 

have a wide range of applicability.  However, in the context of this work the brief amount of 

information given above on maintainability and availability should perhaps be satisfactory.  

Maintainability directly affects availability because time for repairs or preventive 

maintenance can change a system from available to unavailable state.  Therefore, there is a close 

relationship between reliability and maintainability.  Reliability affects maintainability, 

maintainability affects reliability and they both impact availability [12].  Further, like reliability, 

availability and maintainability are also probabilities.  Therefore, probability theory rules can be 

applied to both availability and maintainability.  
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2.3 Reliability versus Quality 

Quality may be defined in many different ways.  It can be conceptual, perceptual or 

conditional and it may be interpreted differently.  Basically quality means “fitness to use” and it 

has several dimensions such as “performance”, “reliability”, “durability”, “serviceability”, 

“conformance to standards”, etc. [13], [14].  Therefore, reliability which is closely associated 

with product quality is one of several quality dimensions.  Quality can be defined qualitatively 

and can be achieved through a satisfactory quality assurance program [4].  “Quality assurance is 

the set of activities that ensures quality levels of products and services properly maintained and 

that supplier and customer quality issues are properly resolved” [14] . 

On the other hand, reliability is largely concerned with how long a product can continue 

to operate under specified conditions once it becomes functional.  “Reliability may be viewed as 

the quality of a product’s operational performance over time, and as such it extends quality into 

the time domain” [4].  Improving reliability is an important part of improving product quality 

[15]. 

2.4 Reliability Applications 

Examples of high-reliability systems abound worldwide, such as aircraft systems([16], 

[17] etc.), electric power generating stations ([18], [19] etc.), chemical plants ([20] etc.), power 

systems to telephone and communication systems ([21], [22], [23], [24], etc.), computer systems 

and networks ([25] etc.) [1]. 

Reliability studies are conducted at either the component or system level.  Generally, 

reliability calculations are easier at the component than system level.  If it is the system level, 
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then there are two different classifications.  A system can be static or dynamic.  Further, in both 

cases it can be serial, parallel or mixed.  Explanations of each follow. 

In static reliability component or subsystem reliabilities are considered to be 

approximately constant for a specified duration of time [26].  In this case, the mission time is 

sufficiently short so that the assumption of constant reliability is almost tenable.  Whereas, in 

dynamic models there will be continual reliability degradation of subcomponents with respect to 

time. 

In series system-models all subsystems must operate reliably in order for the system to 

function properly.  As soon as one subsystem fails, the system fails [27].  There is also another 

model type called “chain model” or “weakest link model” that is described in the literature under 

the title of series systems [26].  Based on this model, a system will fail as soon as the weakest 

component (or link) fails.  Therefore, system reliability is equal to reliability of the weakest 

among all components or subsystems [26]. 

However, a pure parallel system is composed of subsystems or components that the 

success of any one of which results in system success [28].  Therefore, such a system is reliable 

if at least one component is reliable.  There are many studies in the literature that deal with 

system reliabilities such as [29], [30], [31], [32], etc. 

2.5 Renewal Processes 

Renewal processes are stochastic events such that their nth stage value is the sum of n 

independent random variables of common distributions with nonnegative ranges [33].  As an 

example, consider a machine component that is replaced as soon as it fails with a new one.  Let 
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N t( )  be the number of replacements during the interval [0, t] of length t.  Then, N t( ) is called a 

renewal counting process.  The study of renewal processes focus on the following topics: 

(1) The pmf (Pr mass function) of N t( ) , 

(2) The expected number of renewals during [0, t] or [t0, t0+t], E N t[ ( )] , denoted by

( )M t E N t    [ ( )] , M for mean, is called the RF.  Henceforth, the symbol E will represent the 

Expected-Value operator.  (Note that this case also includes the negligible repair-time.), 

(3) The occurrence Pr mass or density function of a renewal at specific epochs of time, and 

(4) The time needed for the occurrence of n events (such as failures that are followed by a 

replacements) to occur [34].  [For more details see U. N. Bhat (1984), Elements of Applied 

Stochastic Processes, 2
nd

 Ed., Chapter 8.]. 

2.6 Importance of Renewal Functions 

Renewal functions, gives the expected number of failures of a system or a component 

during a time interval and this is used to determine the optimal preventive maintenance schedule 

of a system [35].  Renewal functions are quantities that have particular importance in analysis of 

warranty ([36],  [37], [38], [39] etc.) [40].  Expected cost of warranty estimation is closely 

related to the RF estimation [36].  For example, consider the case that cell phone manufacturer 

has a two year free replacement warranty which means that if a cell phone fails manufacturer 

agrees to replace it with a brand new one without any charge.  Then , suppose M(2) is the 

expected number of failures(replacements) during two years warranty period and C(2) expected 

warranty cost is C(2)= c*M(2),  where c is assumed as the fixed cost per replacement [36].  It is 
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obvious that the cost of warranty is greatly affected by the number of replacements [35].  In 

today`s competitive environment product`s warranty policy is important to attract customer.  

Offering longer warranty terms usually attract more customers but it means more cost [41].  So, 

warranty has two important roles protection and promotion [42].  Therefore, it is very important 

to determine an optimal warranty time and this means obtaining M(t) with greater accuracy is 

very essential especially if manufacturer produces large number of units or very expensive items.  

Renewal functions play an important role and have wide variety of applications in 

decision making such as inventory theory ([33]), supply chain planning ([43], [44]), continuous 

sampling plans ([45],[46]), insurance application and sequential analysis ([47][48]) [36],[43]. 

2.7 Previous Work on Renewal Functions 

As we have seen in the previous section renewal functions play an important role in many 

applications.  Therefore it is important to obtain renewal functions analytically.  Based on 

analytic method, M(t) is the inverse Laplace transform of  M s where  
f(s)

M s =
s[1 f(s)]

   

([35]), where Laplace transforms will be defined later.  “The advantage of analytical method is 

one can carry out parametric studies of the RF, i.e., the behavior of M(t) as a function of the 

parameters of the distribution” [40].  However, for most distribution functions obtaining the RF 

analytically is complicated and even impossible [43].  Therefore development of computational 

techniques and approximations for renewal functions has attracted researchers [49]. 
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One of the well-known approximations is 2
1 2 1( ) / / 2 1t tM        which is generally 

known as asymptotic approximation and was generated by Tacklind,S (1945)[50] and also cited 

in numerous papers such as [51].  The asymptotic expression has a closed-form expression thus it 

is easy to apply optimization problems that involve renewal process [43].  However since 

asymptotic expansion is not accurate for small values of t, Parsa&Jin (2013) [43] propose better 

approximation by keeping the positive features of  asymptotic approximations such as simplicity, 

closed-form expression, and independence from the distribution.  Jiang (2010) [52], proposes an 

approximation for the RF with an IFR which is also useful in areas such as optimization where 

renewal function needs to be evaluated. 

There are series methods available in the literature to approximate renewal functions such 

as, Smith and Leadbetter (1963) [53] who developed a method to compute the RF for Weibull by 

using power series expansion of t
β 
where β is the shape parameter of the Weibull.  On the other 

hand instead of using power series expansion, Lomnicki (1966) [54] proposes another method by 

using the infinite series of appropriate Poissonian functions of t
β
.  There are also many other  

approximations methods available such as  Xie (1989) [55], Smeiticnk & Dekker (1990) [56], 

Baxter et al (1982) [57], Gang&Kalagnaman (1998) [58], From ( 2001) [59]etc. For example Xie 

(1989) [55] proposed RS-method for solving renewal-type integral equations based on direct 

numerical Riemann-Stieltjes integration.  There are usually three criteria: model simplicity, 

applicability and approximation accuracy to evaluate the value of the analytical RF 

approximation [52].  Increasing the complexity may lead more accurate approximation but may 

make the process complicated and difficult to implement in practice [60]. 
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Studies on renewal functions for some particular underlying renewal functions such as 

Weibull have been done.  Jiang (2009) [61], proposes an approximation for the RF of Weibull 

distribution with an IFR which is accurate for time t up to a certain value of larger than the 

characteristic life.  On the other hand, Jin & Gonigunta (2010) [62], proposes an approximation 

method for Weibull RF with DFR.  Sinha (1985) [63] obtains Bayes estimation of the survivor 

function of the s-normal distribution.  Papdopoulos &Tsokos (1975) [64] obtain confidence 

bounds for the Weibull failure model.  Many others are also available like [65], [66], [67], etc. 

Furthermore, in the literature bounds on renewal functions have been discussed.  Since 

they provide upper and lower bounds on warranty costs bounds on M(t) are very useful for many 

warranty models [40].  Ross (1996) [68], shows that if a distribution has DFR then the RF is 

bounded as   2
2

1 1 1

  1
2

µt t
M t

µ µ µ


   

  
 where 1µ  and 2µ are the first and second raw moments.  

Marshall(1973) [69] provides lower and upper linear bounds on the RF of an ordinary renewal 

process.  Ayhan et.al. (1999) [70] provide tight lower and upper bounds for the RF which are 

based on Riemann-Stieljes integration.  There are also many other studies available about bounds 

on RF such as [71], [72], [73], [74], [75], [76] and etc. 

Finally, simulation can be considered as an alternate approach to estimate the value of 

renewal function. Brown et al (1981) [77] use the Monte Carlo simulation to estimate the RF for 

a renewal process with known interarrival time distribution.  Papadopoulos & Tsokos (1975) 

[64], perform Monte Carlo simulation to obtain 90% and 95% Bayes confidence bounds for the 

random scale parameter and reliability function to illustrate their results.  “The simulation 
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approach offers an alternate method for obtaining the solution to the problem without the need of 

solving complicated mathematical formulations” [40].  

2.8 Contribution of this work to the Literature  

The renewal and intensity functions with minimal repair for the most common lifetime 

underlying distributions normal, gamma, uniform and Weibull are explored.  The exact normal, 

gamma, and uniform renewal and intensity functions are derived by the convolution method.  

Unlike these last three failure distributions, the Weibull distribution, except at shape  = 1, does 

not have a closed-form function for the n-fold convolution.  Since the Weibull is the most 

important failure distribution in reliability analyses, its approximate renewal and intensity 

functions were obtained by the time-discretizing method. And also for non-minimal repair 

moment based approximation method was generated.  Table 1 summarizes the contributions of 

this dissertation. 
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Table 1: Gaps and Contributions 

Gaps in the Literature Contributions 

Obtaining the renewal functions for the 

most baseline distributions is not possible. 

Obtaining renewal functions and renewal intensities for normal and 

gamma distribution by using convolution method. 

Approximating Weibull renewal function and renewal intensity by 

using time discretizing method. 

¨The renewal function of uniform  

distribution using the convolution  

method is not available. 

We used geometrical mathematical statistics method to obtain 

uniform convolutions from n= 2 through n = 12 and then applied the 

normal approximation for convolutions beyond 12 to obtain renewal 

function of uniform distribution.   

 

 

 

 

For the case of non-negligible repair only 

the closed-form renewal functions exist in 

the case of exponential TTF and TTR. 

We obtained the closed form renewal function for gamma TTF and 

exponential TTR when α (shape parameter of gamma) is an exact 

positive integer from 2 to 7. 

We obtained approximations for expected number of cycles 

 When TTF is Weibull and TTR is uniform 

 When TTR  is Weibull and TTF is Weibull 

 When TTF is gamma and TTR is uniform 

 When TTR is gamma and TTF is uniform 

by first obtaining the convolution density functions and then 

using the time discretizing method.  

We obtained approximations for two parameter exponential, three 

parameter Weibull, gamma, normal, lognormal, logistic and 

loglogistic distributions by using the first four moments of failure 

and repair distributions. 
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2.9 Literature Review Summary 

The literature describes a multitude of research in the area of reliability.  Reliability has a 

wide variety of applications from aircraft to power systems.  The literature supports increasing 

applications of reliability in today’s competitive global economy.  In this chapter, we explained 

some important concepts such as availability and maintainability and described the differences 

and association between quality and reliability.  This chapter also explains the importance of 

renewal functions and the general previous work that has been done about them. 
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CHAPTER 3 

3 Methodology 

This chapter describes the mathematical concepts and relationships that are needed in 

reliability and renewal theory presented throughout this dissertation.  

3.1 Reliability Measure 

There are three measures of reliability:  

(1) The reliability function R t( ) ,  

(2) The mean time to failure (MTTF), and  

(3) The hazard (rate) function h t( ) .   

If either function (1) or (3) is known, then the other 2 measures can be uniquely 

determined, but the knowledge of (2), i.e.,  = MTTF, is not sufficient to obtain unique functions 

for R t( ) and h t( ) .  In fact, for the same MTTF of an underlying distribution, there are 

uncountably infinite other base-line distributions that have identically the same MTTF.  

3.1.1 The Reliability (or Survivor) Function R(t) 

 The reliability of a component is the probability (Pr) that the device will perform without 

failure during the mission time t, under specified stress conditions.  For example, 

            R(of a new passenger tire for t = 500 interstate miles) 100% = 1. 

However, the reliability of the same passenger tire under racing conditions at Indianapolis 500 

would be almost zero.  Note that the terminology survivor function, ( )S t   is also used for non-
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repairable items, such as light bulbs, transistors, or rocket-motor of an unmanned spacecraft.   

Let T = the random variable lifetime, or time to failure (TTF), with Pr density function     .  

Then, the reliability function at time t, or the survival Pr for a mission of length t, is given by (the 

Pr that a component lifetime exceeds time t) 

 ( ) ( )d 1 1 1
T T

t

R t T   t f x x Pr T t F t tQPr( ) ( ) ( ) ( )


          ,                           (3.1)    

where ( )F t = the cdf of T at t, and ( ) ( )
T T

Q  t F t  represents the unreliability function at time t, 

or the cumulative failure Pr by time t.  The pdf (Pr density function),  f t( ) , is also referred to as 

the failure (or mortality) density function.  Some authors use the notation ( )tS
 
for the reliability 

or survivor function at time t to imply survival probability beyond t; however, the notation  R t( )  

is a bit more prevalent in engineering applications.  We now obtain the relationship between

 R t( )  and      by differentiating equation (3.1) with respect to t, recalling that

 
T T

f t    dF t dt   dQ t dt( ) ( )/ ( )/  because  ( )  


t
 F t f T dTT .  Due to the fact that time cannot 

be negative, and thus the lower limit in this last integral must be zero instead of   , i.e.

0

( ) ( ) 

t
 F t f T dT

T
 = Failure Probability by time t.  The developments below show the 

relationship between  R t( )  and ( )f  t    
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1          
dR t d dF t

F t f t dR t dF t
dt dt dt

( ) ( )
( ) ( ) ( ) ( )   

and     f t dR t dt f t dt dR t( ) ( )/ ( ) ( ) .   

3.1.2 The Mean Time to Failure 

We are now in a position to obtain the relationship between R t( ) and the mean time to 

failure (MTTF=), which is defined as the mathematical expectation of T = TTF.  Henceforth, 

the symbol V will represent the variance operator, and the reader must be cognizant of the fact 

that anytime the operator E or V is applied to any rv (random variable), the end-result will 

always be a population parameter.  The Mean Time to Failure (MTTF) is given by; 

0 0

MTTF

 

    E T tf t dt t dR( ) ( ) ( )  

                  MTTF

0

( ) ( ) 0 ( ) ( )

0 0 0

   
      tR t R t dt R t dt R t dt]  .         (3.2)  

The above equation clearly shows that the unconditional mean-life, ( ) MTTFE T   , starting at age 

zero, of any device or system is given by the integral of its reliability function evaluated always 

from zero to infinity so that the MTTF is the total area under R t( )  and the abscissa t (i.e., from 0 

to  even if the minimum life is greater than zero).   
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Note that if a component or system is repairable (or renewable, i.e., failed units are 

almost immediately replaced), then E T( ) is called the mean time between failures (MTBF).  The 

MTBF of any system also can be found by integrating its reliability function from zero to infinity 

[78] (a simple technique of obtaining MTBF for complex systems).  Again, the lower limit of the 

integral must always be zero even if the minimum life t0 =   > 0.   

3.1.3 The Hazard (or the Failure Rate) Function h(t)  

By definition the failure rate (FR) of any device is defined as the failure rate during 

t  t Δt( , )  given that the device age is t, i.e., 

 
   

Pr

P t T t Δt T t Pr t T t Δt R t R t Δt
FR t

Δt T t Δt R t Δt

        
  



( ) ( )

( ) ( )
        (3.3) 

This implies that the failure rate of a component at time t is the probability that it will fail in the 

interval t  t Δt( , ) given that its life has exceeded time t (i.e., given that the age of the 

component is t).  Put differently, the failure rate of a population of identical items at time t is the 

proportion of the units failing per unit of time in the interval t  t Δt( , )amongst all survivors at 

time t.  The hazard function (HZF), ( ),h t  is simply the instantaneous FR, i.e.,  

                       
 

0

1
][



  
     
  

Δt

R t Δt R t dR t dt f t
h t

R t Δt R t R t

( ) ( )/ ( )
( ) lim

( ) ( ) ( )
                    (3.4) 

In other words, if we have a system with N0 identical items on test at time 0,  s
N t

survivors at time t and  f
N t  failed items by time t, then by the above definition h t( ) is the rate 
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of failure, 
f

dN t dt( )/  (this derivative is not quite appropriate because  f
N t  is discrete), only 

amongst the survivors  s
N t beyond time t, i.e.,  

0 0

0

( )

( ) ( )

( )
( )( ) ( ) ( )

s

f s s

ss s s

N t
d

dN d N N t NdN t

dR t dt f tdt dt dt dth t
N tN t N t N t R t R t

N

 
 

       


     
( )/ ( )

( ) ( )
 

as before.  The quantity  

   (t) (t) (t) (t) |h dt dR R dF R P t T t dt R P t T t dt T t/ / / ,             

gives the proportion of items that will fail within (t, t dt)  amongst those that are still 

functioning at time t.  From the cumulative of hazard function, CHF   H t ( ) , we can obtain the 

relationship amongst the reliability measures ( )f t , R t( ) , and h t( )as shown below:  

t

0
0 0

( ) ( ) ( )                
( )/ ln ( ) ln ( )

t t
H tH t h x dx dR R R x R t R t e  

                         

t

0

x dx

( ) e




h

R t  

( )

; 
    H tf t

h t f t h t R t h t e
R t

( )( )
( ) ( ) ( ) ( ) ( )

( )
                    (3.5) 

                                                 

Properties of the Hazard function      

 (a) ( ) 0h t  for all t. 
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 (b) 
0

0 0   0
0

f
h  f h

R
  

( )
( ) ( ) ( )

( )
 must be finite at t = 0 unless f(0) =  

 (c) ( )



t

h tlim iff h(t) is an IFR, simply implying that any man-made system must have a finite 

life (or a finite TTF), i.e., no man-made system can last forever!   

 (d)
( )

0 0

( ) ( ) 1

 
  

H tf t dt h t e dt .  Note that the above relationships imply that the assumption of 

almost constant reliability during a short interval (0, t) leads to an almost zero HZF value. 

3.2 Renewal Intensity Function 

The renewal intensity, ( )tρ , gives the instantaneous renewal rate at time t, i.e., 

               
 

0

( )

Δt

M t Δt M t dM t
t

Δt dt
ρ

( )
( ) lim ,



 
                    (3.6) 

so that ( )t Δtρ

 

gives the unconditional probability element of a renewal during the interval t  t Δt( , ), 

and in the case of negligible repair time, ( )tρ
 
also represents the instantaneous failure intensity 

function; hence, 

0

( ) d( ) 
t

xM t xρ .  Note that nearly authors in Stochastic Processes and some in 

reliability literature refer to ( )tρ as the renewal density because ( )t Δtρ

 

gives the probability element 

of a renewal during the interval t  t Δt( , ); however ( )tρ is never a pdf.  Hence, we have chosen to refer 

to ( )tρ as the renewal intensity in lieu of renewal density.  The renewal intensity,
 

( )tρ , should not be 

confused with the hazard rate function  h(t) [79], because ( )h t Δt  is the conditional probability of a 

failure during time interval (t, t+ Δt ) given that the unit’s age is t, whereas ( )t Δtρ   is the unconditional 
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probability of a failure during Δt .  The hazard rate function is a relative rate pertaining only to the first 

failure, whereas the intensity function is an absolute rate of failure for also repairable systems [4], 

including minimal repair.  Only in the case of exponential base-line distribution (CFR) both h t( )  and

( )tρ are identically equal to the constant failure rate . 

3.3 Convolutions 

The n-fold convolution of a statistical distribution arises in a wide variety of applications 

of probabilistic models such as reliability theory, renewal theory, inventory theory, queuing 

theory, continuous sampling plans, insurance risk analysis, and sequential analyses [80].  

Mathematically, a convolution of two density functions  1
f t  and  2

f t  denoted
1 2 
f * f , 

gives the density of sum of two variates 
1 2

T T .  It can be proven that the convolution of    with 

   is given by [81], 

           
1 2 2 1

0 0

1 2

t t

f t * f t   f t u f u du = f t u f u du   ( ) ( ) ( ) ( ) ( ) ( )         (3.7)  

Note that in general the lower limit would be   but in reliability theory, the lower limit 

is always zero.  In the literature review there are some studies about uniform convolutions [82], 

[83], [81], but we used the geometrical approach to obtain the precise uniform convolutions 

through order 12 that are presented in Chapter 4.  Maghsoodloo and Hool [5] obtained the 

uniform convolutions for orders 2, 3, 4, 5, 6 and 8.  
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3.4 The Weibull Distribution  

It is well known that the underlying distribution of almost any manufactured dimension 

by man can be approximately modeled by a normal (or Laplace-Gaussian) pdf.  The Weibull pdf 

plays the exact same important role for the underlying distribution of TTF (or lifetime) of most 

mechanical and electrical components or systems.  The key events in the derivation of what is 

now known as the Weibull distribution took place between the years 1922 and 1943.  There were 

three groups of scientists working independently for different aims.  Waloddi Weibull (1887-

1979) was one of the three working on this distribution.  The reason that the distribution bears 

his name is the fact that he propagated it internationally and interdisciplinary [84].  To arrive at a 

Weibull pdf, consider an exponential pdf at the constant failure rate  = 1 failure per unit of time.  

Note that the symbol λ is used throughout this dissertation if and only if h t( ) is a constant failure 

rate (CFR).  Clearly,  

     

0

1xe dx .


      (3.8) 

Then, for convenience letting t0 = , we make the transformation 0

β
t δ

x  β
θ δ

 
  

 
, .  As a 

result,

1
1

β
dx t δ

β
dt θ δ θ δ


   

    
    

, and substitution into (3.8) yields 

1 1

1

β β
t δ t δβ β
θ δ θ δ

δ δ

t δ dt β t δ
e β e dt

θ δ θ δ θ δ θ δ

          
    

    
    

      
  .              (3.9) 
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Since the value of the integral in Eq. (3.9) is equal to 1 (or 100%), the integrand 

1
β

t δβ
θ δβ t δ

e
θ δ θ δ

   
 

  
  

   
 

must be a probability density function (pdf) over the range  [    .  The pdf, 

                                         
1

0

β
t δβ
θ δβ t δ

f t e   t δ t
θ δ θ δ

   
 

  
    

   
,                                (3.10) 

and ( ) 0f t   for 
0

0 t δ t   , is called the Weibull model, denoted           , with 

minimum (or guaranteed) life      (the location parameter), the characteristic life , and slope 

(or the shape parameter) ;      is called the scaling parameter.  Different authors tend to use 

different symbols for the three parameters of a Weibull pdf, but   is the most common symbol 

for the slope.  Figure 1 shows the Weibull density based on different shape ( ) values.  

The reliability function for Weibull distribution is,  

 

 
1

( )

β

β

x δ β
θ δ u

t
t δ

θ δ

β x δ
R t T t e dx   e du.

θ δ θ δ
Pr

    
  

 
 

 

 
    

  
   

 

                     

1,                           0

,            

t

t

R t

e t




 





 
 

 

 


 
   

        (3.11) 
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Figure 1: Weibull Graph Based on Different Beta Values 

The MTTF of Weibull distribution,  

0 0

( ) ( )

 
   

     

β
t δ

δ
θ δ

δ

E T R t dt dt e dt ; letting 

β
t δ

x
θ δ

 
  

 
in the second integral results in, 

   1 1 11

0 0

( )

    
    

β βx β xθ δ θ δ
E T  δ e x dx δ x e dx

β β

//
. 

Since by definition,
1( )

0


  

n x Г n x e dx , and ( ) ( 1)nГ n Г n+   we obtain 

                      
 

 
1

MTTF ( ) 1 1        
 

Г β
E T δ θ δ δ θ δ Г β

β

/
( ) ( ) /                         (3.12) 

The above MTTF  iff  1β   (i.e., only for the CFR = constant failure rate, and IFR = 

0
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increasing failure rate cases).  The modal point of Weibull is given by  

  
1

1
β

MO δ θ δ β β     
/

( ) ( )/      (3.13) 

The variance of Weibull is given by  

                                    
22 22 1

1 1
    

         
    

T
σ V T θ δ Г Г

β β
( )                               (3.14) 

Special cases of the Weibull model 

(i) When    , the Weibull reduces to the exponential pdf with minimum life t0 =   

and mean-life (or characteristic life tc) equal to .  The Weibull pdf with slope     

can be used to model the TTF of a component during its useful life (constant failure 

rate = CFR). 

(ii) When     and     , the Weibull becomes the Rayleigh density function 

 
2

2λ 22 λ
  ( ) ( )( )

t θ tf t θ t θ e te
/ // / , where 2 λ 

c
θ t / .  

(iii) When 0 <  < 1, it can be shown that the hazard function of the Weibull is a 

decreasing function of time (DFR = decreasing failure rate) so that the Weibull may 

be used to model the TTF during the burn-in (or debugging, or infant-mortality) 

period of a component (see Ebeling pp. 31-32). 

(iv) When  > 1, the hazard function is increasing (i.e., increasing failure rate = IFR) and 

the Weibull density can be used to model the TTF during the wear-out period of a 

component.   
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(v) When 1 <  < 2, h(t) is an IFR concave function, and for  > 2, h(t) is an IFR convex 

function because 
2

2

d ( )h t

dt

 > 0 when   > 2. 

 

Figure 2:  The Graph of Weibull Reliability Function 

3.5 The Normal Distribution 

The normal distribution which is also called Laplace-Gaussian is the most commonly 

used distribution in the field of statistics [85].  The reasons are related to its mathematical 

properties, central limit theorem, and various experimental responses often have distributions 

that are approximately normal [86].  The normal density was first discovered by Abraham de 

Moivre (a French mathematician) in 1738 as the limiting distribution of the binomial pmf and 
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was named the “normal” by Karl Pearson in 1894 [87].  It can be proven that the points of 

inflection occur at   . 

 

Figure 3: Normal Distribution Graph When R(t0.05) = 0.95 

 

A continues random variable T is said to have a normal distribution with parameters µ 

and σ (or µ and σ
2
), where MTTFµ    and    , iff the pdf of T is [88] 

                                
   2 221

2

t µ σ
f t µ σ e       t

σ π

 
  

/
; ,                   (3.15) 

The reliability function is derived from 

               
 

2

2

1 1
1 Φ

22t

x µ t µ
R t exp dx

σσ π σ

  
         

 
  

( ) ,                          (3.16) 
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where   represents the cdf of the N(0,1).  There is no closed-form solution to the above integral, 

and it must be evaluated numerically.  The hazard function cannot be written in closed form 

either and is provided below. 

                                   

   2 221

2

1 Φ

t µ σ
e

f t σ π
h t

R t t µ

σ

 

 
 

  
 

/

( )
( )

( )
     (3.17)

 

It must be noted that the normal failure law is applicable only if its MTTF =  is more than 10 

standard deviations to the right of the origin (or zero) because (10) < 7.6210
24

.  

3.6 The Gamma Distribution 

 By definition 1 x

0

( ) x xnГ n e d


   .  Dividing both sides of this last definition we obtain: 

1 x

0

1
1 x x

( )


  

n e d
Г n

,  and per force the integrand   11   n tf t n t e
Г n( )

;  must be a density 

function called the standard gamma pdf.  When n is not an integer, the common notation for the 

shape parameter n is , , or .   

 A single integration by parts of ( )Г n  will show that ( ) ( 1) ( 1)  Г n n Г n .  After 1n( )  

integration by parts, we obtain     ( ) 1 2 1  Г n n n ...Г .  Inserting 1n=  into the definition of

( )Г n  yields 
1 1

0 0

(1) 1     
t tГ   t e dt e dt

 

; therefore, 
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      ( ) 1 2 1 1 1 0 1       Г n n n n Г! !... .  Further, this last result also implies that

Г n+1 n Г n( ) ( ) ( ); it can be proven that   (1/ 2)Г π  and hence (3 / 2)  (1/ 2) (1/ 2)Г Г , 

5 3 3 3
  1

2 2 2 2
Г Г

     
       

     
 , etc.  For example,   9 36288010  Г ! .  To obtain the gamma 

pdf, we make the transformation x     t in the definition of gamma function:  

  
1 1 λ 1 λ

0 0 0

1
( ) λ λ 1 λ λ

( )

n x n t n tГ n x e dx   t e dt   t e dt
Г n

          
  

( ) ( ) , or 

   1 λ

0

1
λ λ 1

( )

n tt e dt
Г n

  


( ) .   (3.18) 

The above equation clearly shows that the integrand must be a pdf over the range [0, ) 

because its integral over [0, ) yields 100%.  The function under the integral is called the gamma 

pdf, as shown below, in statistical literature with rate  (or  = 1/ the scale parameter) and the 

shape parameter n.   

                                 
1

( )

n tf
Г n

t t e 
 ( ) ( ) .     (3.19) 

When n is a positive integer the above density is called Erlang and has extensive 

applications in Queuing Processes.  When n is not a positive integer, the most common notion 

for shape is ; thus, a better representation for the general gamma pdf is
1

( )

tf t
Г

t e 
  


( ) ( )

. 
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The meaning of the parameters n and  will be made clear in the application example 

provided below, where 1/  is also called the scale parameter.  The major application of the 

gamma pdf occurs from the fact that the sum of n independent and identical exponential rvs, 

TSystem = T1 + T2 +...+ Tn, has a gamma time to failure density function with parameters n and , 

where each Ti is distributed according to e t .  Therefore, an n-unit standby system with 

quiescent failure rates of almost zero for standby units and perfect switching, has a lifetime that 

has the gamma density with parameters n and .  Further, the gamma density has applications in 

maintenance scheduling where the amount of deterioration during an interval [t1, t2] has a gamma 

pdf with scale parameter 1/ and shape 
2 1

n γ t - t ( ) , where γ>0  is a constant of proportionality. 

 The first four moments of the gamma pdf are given by 

   1 2
λ   

System n
E T E T T T n /  

    2
1 2

λ   
System n

V T V T T T n /  

the standardized third moment 
3

2α n / , and 
4

3 6α n ( / ); hence the kurtosis is equal to

4
6 β   n / , and it can be verified that 1 λMO n ( )/ .  Note that the values of

3
2α n /  and

4
3 6α n ( / ), clearly show that the limiting distribution (i.e., as n  ) of the gamma density 

is the Gaussian N(n/,  n/
2
).  Unfortunately, n must exceed 200 (because the exponential is 

highly skewed) before the normal approximation to gamma becomes fairly adequate. 
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To obtain the reliability function for the gamma pdf, we make use of its relationship with 

the Poisson pmf as described below, where X(t) describes the number of failures during a 

mission time of length t and Tn represents time to the nth failure. 

1

0

( ) = 1)






     


 
kn

t

k

R t T t Pr X t n failur
t

s e
k

e
n

Pr ( ) ( )
( )

!
( .  So far, we know the expressions 

for the gamma pdf, the reliability function, and the MTTF λ /n .  The hazard function can be 

obtained from f t R t( )/ ( ) . 

3.7 The Uniform Distribution 

If a < b, the random variable T is said to have a continuous uniform probability density 

on the interval [a, b] if and only if the density function of T is given by [89]  

                                           
1/ ( ),

0,

b t b

elsew

a

her

a

e
f t

  
 


       (3.20) 

where a  is the minimum-life and b is the maximum-life.   The graph of the above pdf is shown 

atop the next page.  Note that all values of t from a  to b  are equally likely in the sense that the 

probability that t lies in an interval of width    entirely contained in the interval from a  to b  is 

equal to      a  ⁄  regardless of the exact location of the interval [90].  Its reliability measures 

are listed below. 

                                         The MTTF is:   
1

2
µ b a  .      (3.21) 

Median of the uniform distribution is:   0 5

1

2
t b a . .      (3.22) 
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Figure 4: Uniform Distribution Graph 

           Variance of the distribution is:   
22 1

12
σ b a        (3.23) 

Because
1 1




 
   

b

t t

b t
dx dx

b a b a b a
,

 

the reliability function is given by:    

                                      R t

1 , 0

,

0

a

b t
a

b

t

t b

, b < t

a

 



 





 (3.24)  

The hazard function is: 
 

   

1
( )

b

b t b

af t
h t

R t a
 




 /

/( )

( )
 

0 , 0

1
,

a

a

t

b
b

t
t

 



 




, which is an IFR.  

Hence the CHF is given by H(t) = 

0

n

0

l

,

,

a

b a
a

b
t b

b

t

t

, t

 
  

 



 

 

                     (3.25) 

 
b 

1/(b- ) 
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3.8 Laplace Transforms 

If ( )f t  is a known function of   for values of      , its Laplace transform   ̅   is 

defined by the equation, 

                                                -st

0

( ) (t) t



 f t e f d ,L                                                           (3.26) 

and abbreviated as,  

                                                    f s ( )f tL                                                                 (3.27) 

Thus, the above operation transforms the function ( )f t
 
of the real variable t into a new 

function   ̅   of the subsidiary variable s, which may be real or complex [91].  Often, it is easier 

to work in the s-space than the t-space to obtain solutions to mathematical problems.  

3.9 Chapter Summary 

This chapter introduced the mathematical concept of the dissertation.  The table below 

shows the summary of reliability measures of most important base-line distributions.  Only the 

Logistic and Loglogistic density reliability measures, both of which have also reliability 

applications, are not yet provided.  
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Table 2: Reliability Measures of Most Common Base-line Distributions 

Lifetime 

Distribution 

Failure Density 

f(t) 

Survival Function R(t) Hazard    

Function 

MTTF 

Exponential te  
te  

 1/ 

 

Weibull 
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e
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CHAPTER 4 

4 Renewal Processes with Minimal Repair 

 

Suppose that failures occur at times Tn (n = 1, 2, 3, 4, …) measured from zero and 

assuming that replacement (or restoration time) is negligible relative to operational time, then Tn 

represents the operating time (measured from zero) until the n
th

 failure, where T0=0 .  Because 

the pdf of T1 may be different from the intervening times X2 = (T2  T1),  X3 = (T3  T2), X4 = (T4 

 T3), ...,  we consider only the simpler case of probability density function (pdf ) of time to first 

failure f1(t) being identical to those of intervening times X2, X3, X4, …  as depicted below.  

 

Figure 5: The Intervening Times of Two Successive Renewals 

Note that X1, X2, X3 … represent intervening times between failures, while Ti represents 

time to the i
th

 renewal measured from zero.  Further, all Xi’s are assumed iid (independently and 

identically distributed).  The above figure clearly shows that Tn (Time to the n
th

 renewal) = 

i

i 1

X



n

= sum of the times to the 1
st
 failure from zero plus the intervening times of 2

nd
 failure until 

the n
th

 failure.  If n > 60, then the Central Limit Theorem (CLT) states that the distribution of Tn  
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approaches normality with mean n, where  = E(Xi) = the mean time between successive 

renewals, i = 1, 2, 3, 4, … and with variance 2n , where 2
 = V(Xi).  However, if the pdf of Xi, 

f(x), X being the parent variable, is highly skewed and/or n is not sufficiently large, then the 

exact pdf of Tn = i

i 1

X



n

 is given by the n-fold convolution of f(x) with itself denoted as

       1 1
*

nT n
f t f t f t


  , where 

   1n
f t


is the pdf of the sum X2 +X3 +…+Xn, or the (n  1) 

convolution of f(t) with itself.  Note that Figure 5 is also approximately valid for the case of 

Minimal-Repair, i.e., the case when MTTR  0, or MTTR = Mean Time to Repair is negligible 

relative to MTTF.  Therefore, in this section by renewal we mean either the replacement of a 

failed component with a brand-new one, or the case when the failed component can almost 

immediately be repaired and consequently be put back on-line. 

The simplest and most common renewal process is the homogeneous Poisson process 

(HPP), where the intervening times are exponentially distributed at the constant inter-renewal (or 

failure) rate .  Because  is a constant and intervening times are iid, a Poisson process is also 

referred to as a homogeneous renewal process.  Throughout this dissertation, we will establish 

that only in the case of exponential failure Pr (Probability) law with CFR (Constant Failure-

Rate), the RNIF is identical to the constant instantaneous hazard function h(t) = .  Further, it is 

also well-known that for a HPP the  V tN t    , and hence the coefficient variation of ( )N t  is 

given by ( ) 1/N t tCV   . 
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4.1 The Renewal Function M(t) during [0, t] with Minimal Repair  

Because the two events    ( )  N t n and     nT t are equivalent, it follows that 

           ( )n nP N t n P T t F t       , where          1 1( )*n nF t F t F t   is the n-fold convolution 

representing the cdf of i

i 1

X
n

nT


 .  Thus,  

                                         1  ( ) 1   n nP N t n P N t n P N t n F t F t                

It has been proven by many authors both in Stochastic Processes and Reliability 

Engineering that the RF for the duration [0, t] is given by 

 
n 1

( )( ) [ ( )] ( )




  n
M t E N t F t ,     (4.1a) 

and      ( )

1

2

(2 1) ( )n

n

nV FN t M tt




             (4.1b) 

where the random variable N(t) represents the number of renewals that occur during the time 

interval [0, t], and ( )( )
n

F t  is the cdf  (cumulative distribution function) of the n-fold convolution 

of f(t) with itself, i.e., ( ) ( )

0

( ) ( )

t

n nF t f d    , where ( )( )nf t  is the n-fold convolution density of f(t).   

It is also widely known that the RNI (Renewal Intensity) of F t( ) by definition is given by 

)( ( )/t =ρ dM t dt .  Authors in Stochastic Processes refer to )(tρ  as the renewal density, while 

some authors in Reliability Engineering refer to )(tρ  as the RNIF (Renewal Intensity Function); 
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because it is also well known that )(tρ  is never a pdf, throughout this dissertation we refer to it 

as the RNIF.  The reader should distinguish between the RNIF )(tρ  and the generally constant 

and unit-less traffic intensity parameter in Queuing Theory defined as    = (average arrival rate 

of customers)/ (average service rate) = expected fraction of time a single server is busy.  Further, 

an approximate expression for the third raw moment of N(t) is given by Kambo et al (2012) [92].  

Their expression for E[N(t)
3
] can be used to approximate the skewness of N(t). 

It is also well-known that for a homogeneous renewal process the pdf of interarrivals Xi’s 

is given by ( )   tf t e , and that of the time to n
th

 failure (or arrival, or renewal) is given by 

   
 

 
1 λ

( ) λ
n

n t
T nf t f t t e

Г n

 
    (the gamma density with shape n and scale  = 1/ ).  As a 

result, the use of Eq. (4.1a) for the interval [0, t] leads to the RF  ( )M t E N t    ( )

=1

( )


 n

n

F t =

1

1 0

( )
( )

t
n x

n x

x e dx
n


 

 





  = 

1
x

n 1x 0

( x)
e dx

( 1)!












t n

n
= x

0x 0

( x)
e dx

!







 

t n

n n
=

x 0

dx




t

=t , a fact 

that has been known for more than 100 years.  Further, the RNIF for a HPP is a constant and is 

given by )(t =ρ ( )/ / dM t dt d( t) dt = .  It has also been proven in the theory of stochastic 

processes [see D. R. Cox and H. D. Miller (1968), pp. 340-347][93] that the  lim = /
t

M tt μ , 

where  = MTTF.  In the case of CFR (Constant Failure-Rate), because the mean of the 

exponential base-line distribution is  = 1/, then it follows that this last limiting result is an 

exact identity only for the exponential density  te , 0  t < .  Further, when MTTR (Mean 



42 

 

Time-to-Restore) is almost zero, then the renewal intensity is practically the same as the failure 

intensity.  In the case of exponential base-line distribution, with minimal repair, the point 

availability function       is simply equal to its reliability function    tR t e . 

4.2 The Renewal Functions for Known Convolutions 

Unfortunately, obtaining a closed-form expression for the RF for all distributions is not as 

simple as the case of exponential interarrival times.  This is due to the fact that the n-fold 

convolution of most baseline distributions used in reliability analyses is not either known or 

attainable. 

4.2.1 The Renewal Function for a Normal Distribution 

For the sake of illustration, suppose that the time between failures, Xi , i = 1,2, 3, 4, …, 

are NID( = MTBF, 2
), i.e., normally & independently distributed with MTBF (Mean Time 

Between Failures), and process variance 2
.  Then, Statistical Theory dictates that time to the n

th
 

failure (measured from zero) is the n-fold convolution of N(, 2
)  with itself, i.e., Time-to-the-

n
th

-Failure Tn = TTFn ~ N(n, n2
).  Hence, in the case of minimal-repair, from Eq. (4.1a) the RF 

is given by 

    ( )

1 1

( ) ( ) ( )
 

 


   n

n n

t n
t F t

n
M




            (4.2)

 

where    universally stands for the cdf (cumulative distribution function) of the  standardized  

normal deviate N(0, 1), and ( )( )nF t  gives the Pr of at least n renewals by time t.  Xie et al (2003) 
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  [94] gives the same exact expression for the normal RF as in Eq. (4.2), which they used as an 

approximation for the Weibull renewal with shape   ≥ 3.  It should be born in mind that the 

normal failure law is approximately applicable in reliability analyses only if the coefficient 

variation of  T, denoted CVT,  ≤ 0.15625 = 15.625% because the support for the normal density is 

( ,  ), while TTF can never be negative (this assures that the size of left-tail below zero is 

less than 110
10

).  If the CV is not sufficiently small, then the truncated-normal can qualify as a 

failure distribution; From (2001) [59] discusses the RF for the truncated-normal.  As an example, 

suppose a cutting tool’s TTF has the lifetime distribution N( = MTBF = 15  operating hours, 2
 

= 2.25) with minimal-repair (or replacement-time), where  CVT  = 0.10.  Then, Eq. (4.2) shows 

that the expected number of renewals (or replacements) during 42 hours of use is given by

1

42 15
42

1 5
2 124107( ) )

.
.(






 

n

M
n

n
 while M(62 hours) = 3.747561 expected renewals.  Using 

the limiting result ( )M t  /t  , we obtain M(42 hours)  42/15 = 2.80 (% relative-error = 31.82, 

while M(62)  62/15 = 4.133333 with % relative-error = 10.29).  

There is a more accurate approximation for ( )M t , through the second moment, given by  

2 2 2( ) / + 2   M t t ( )/( )= 2/ 0.50(CV 1)Tt     [51].  For the above normal 

nonhomogeneous Process, M(62 hours) = 4.1333333 + (2.25225)/450 = 3.638333 (a much 

closer approximation).  We attempted to obtain a more accurate approximation through the third 

moment for RF M(t), but the corresponding approximate Laplace transform had complex roots, 
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consistent with other findings.  Further, for a Laplace-Gaussian process, the renewal intensity by 

direct differentiation of (4.2) is given by  

 
2 22 2

1 1

1

2

 
 

 

    ( )/ /[ ]( )
( ) ( , ) t nμ nσ

n n

dM t
ρ φ nμ nσ e

dt σ
t

nπ
              (4.3)  

where the symbol   stands for the standard normal density.  The value of renewal intensity at 42 

hours for the N(15, 2.25) baseline distribution, from Eq. (4.3), is (at 42 hours) =  0.07883674 

failures/hour.  Note that the value of the hazard-rate at 42 hours is given by h(42) = f(42)/R(42) = 

10.358138 failures/hour, where R(t) is the reliability function at time t.  Because the normal 

failure Pr law always has an IFR (Increasing Failure-Rate) h(t), then h(t) > (t). (Sheldon M. 

Ross, 1996, pp.426-427) [68] proves that / ( ) t M t / t 
20.50(CV 1)T   if  h(t) is a DFR 

(Decreasing Failure-Rate), and he further proves when h(t) is a DFR, then  h(t) ≤ (t) for all t ≥ 

0, and as a result R(t) ≥ 
( )e M t

, and we add that equalities can occur only at t = 0.    

4.2.2 The Renewal Function for a Gamma Baseline Distribution 

Suppose that the TTF of a hot-water heater has a gamma failure density with shape 

parameter  = 1.5 and scale  = 1/ = 3.5 years [this is quite similar to the Example 9.6 on p. 

226 of Ebeling (2010) [4]].  When the heater fails, it is replaced with a new one with the same 

identical shape and scale (i.e., minimal replacement-time).  Our objective is to obtain the RF 

M(t) for  t years of operation.  In order to obtain the RF and RNIF of a gamma NHPP, we first 

resort to Laplace-transforms (LTs).   
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It has been proven in theory of stochastic processes that the LTs of ( )t  and M(t) are, 

respectively, given by [for a proof see (Bhat,1984) [34], pp. 277-280)] 

              L{(t)} = s

0

f (s)
( )

1 f (s)
ρ(s) te t dt


 

  , s > 0,                                      (4.4a)  

and  

                       M( )s = L{M(t)} = s

0

f (s) s
e ( )d

s[1 f (s)] s

ρ( )tM t t


  

                                    (4.4b)  

Further, it is also widely known that the LT of the gamma density   1( ) e
( )

tt tf  
 

 
 

is given by f(s)  =
λ

(λ + s)




,  ρ(s) =L{(t)} =  

λ

(λ + s) λ



 
 , and the gamma M(s) = L{M(t)}= 

λ

s[(λ + s) λ ]



 
 .  We used Matlab’s ilaplace at  = 1/3 and  =1.5, but Matlab(R2012a,64bit) 

could not invert ρ(s) to the t-space at  = 1.5.  It seems that when the shape parameter   is not a 

positive integer, there exists no closed-form inverse-Laplace transform for the gamma density; 

however, when the underlying failure distribution is Erlang (i.e., gamma with positive integer 

shape), then there exists a closed-form inverse Laplace-transform for  = 2, 3, and 4; for positive 

integers beyond 4 there does exist complicated closed-form expressions.  In fact, for the specific 

Erlang density with shape   2 and scale  = 1/, it is well known that M(s) = s t

0

e (t)dtM




  = 
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2

2 2

λ 1 1

4s 4(s 2 )s (s 2λ) 2s

 
  

 
 = 

2

1 1

4s 4(s 2 )2s

 
 

 
.  Upon inversion to the t-space, we 

obtain the well-known M(t) = E[N(t)] =L 1{ M(s) } = L  1

2

1 1

4s 4(s 2 )2s

  
  

  
 = 

21 λ 1
e

4 2 4

tt +    .  Hence, at   2, the RNIF is given by 2λ

2 2

t   λ( ) λ
( )

dM t
ρ e

dt
t , which is 

quite different from the corresponding gamma (at   2) IFR HZF 

 
1

0

( )
( )e

!

k
t

k

t t
t e

k
h t


 



 
   



= ( ) / (1 )t t    > ( )ρ t  for t > 0.  We used Matlab’s ilaplace 

function as an aid in order to obtain the RF and RNIF for the Erlang at shapes     3 and 4 

which are, respectively, given below. 

( )M t  L1
3

3 3

λ

s[(λ + s) λ ]

  
 

  

 = (3 /2)e cos( 3 / 4) sin( 3 / 4) / 3 / 3 1/ 3[ ]tt t t        , 

ρ t( )  L1

3

3 3

λ

(λ + ) λs

  
 

  

 = (3 /2)1 e [cos( 3 / 4) 3 sin( 3 / 4]
3

{ } 
   t t t , 

( )M t  
2

/ 8e / 8 e cos( ) sin( ) / 4 3[ ]t tt t t          ,  

ρ t( )  L1
4

4 4

λ

(λ + s) λ

  
 

  

 = 21 e 2e sin( )
4

[ ]  
  t t t   

The gamma HZF at    3 is given by h(t) =
2 2 2( ) / (3)] / (1 / 2)t t t    , which is not the 

same function as the first ( )ρ t  above.  At  = 5, 6, 7 … Matlab(R2012a) provides an expression 
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for ( )ρ t  only in terms of roots of a polynomial of at least order 5.  The user has to find the roots 

in order to obtain ( )ρ t . 

Referring back to our example where  = 1/3 and  =1.5, we use the cdf F(n)(t) =  

Pr(Tn ≤ t) in order to obtain the RF directly from Eq. (4.1a):                     

1

1 10

λ
( )

λ
( ) ( ) (λ )

(

 
 

 

 


 
n



t
x

n
n n

F t x eM
n

t dx
Γ

1

1 10

(λ , )
(






 


 

 


 
λt n

u

n n

u
e du Γ t n

Γ n
,     (4.5) 

where ( , )t n   = Matlab’s gammainc
1

0

1
( , )

( )

n u
t

t n u e du
n


 

 


     represents the 

incomplete-gamma function at point t and shape n.  In fact, ( , )t n   gives the cdf of the 

standard gamma density at point t and shape n.  Thus, for the Water-heater example

 12M t  years = 
1

(12 / 3.5, 1.5 )

n

n




 = 2.11934672 expected failures.  Using the 2
nd

-order 

approximation we obtain   2 2 2 2/ ( / ) ( / / ) / [2( / ) ]         tM t   = 

/ 0.50(1 ) /t       = 2.1190476 (which yields a 0.0141% relative error).  We next directly 

differentiate Eq. (4.5) in order to obtain the gamma RNIF.  That is,       

    
( )

( )
dM t

ρ
dt

t 1

1 0

( )
(


 



 


 


t
n x

n

x e dx
t n



 
 =

1

1 0

( )
(


 



 


 
 

t
n x

n

x e dx
t n



 
 

                                                 = 
1

1

( )
(


 







 n t

n

t e
n



 
                  (4.6)
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However, the function under the summation in Eq. (4.6) is simply the gamma density 

with shape n and scale  = 1/.  Then, we used our Matlab program, to obtain the value of Eq. 

(4.6) at t = 12 years, at shape  = 1.5 and scale  = 3.5 years, which yielded (t =12) = 0.190348 

renewals/ year.  The value of the hazard-function at 12 years is h(12) = f(12)/R(12) = 

0.0193613/0.0765932 = 0.252781 failures/year.  Because the gamma density is an IFR model iff 

(if and only if) the shape   > 1, then (t) < h (t) for t > 0.  Only at  = 1, the gamma baseline 

failure distribution reduces to the exponential with CFR, the only case for which (t)  h (t) = .  

In order to check the validity of (t = 12) = 0.190348, we resort to the limiting form

  1 1 MTBF
t
lim / /t 


  .  Because the expected TTF of the gamma density is  =, then 

for the Water-heater example  = MTBF = 1.53.5 = 5.25, which yields (12 years)  1/5.25 = 

0.190476/year.  Note that since the renewal-type equation for the RNIF (t) is given by 

   
0

( x) (x)dx,

t

t ft f t       this last equation clearly shows that (0) = f(0); further h(t) = 

f(t)/R(t) for certain yields h(0) = f(0), and hence (0) = f(0) = h(0) for all baseline failure 

distributions.  Moreover, if the minimum-life   > 0, then () = f() = h().

 

 

Some authors in Reliability Engineering, such as Ebeling (2010) [4], use the expression 

0

( )
(0, )e e

t

x dx
M t





  to represent the reliability function R(t) for a NHPP.  Clearly, for the case of 

gamma baseline distribution, which represents a NHPP, the above Ebeling’s expression is an 

approximation because the exact unconditional reliability is always given by 
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0

(x)dx
( )( ) e e

t

h
H tR t





  , H(t) being the CHF (Cumulative Hazard Function).  Leemis (2009) [8] 

defines the RF as the cumulative intensity function using his notation “
0

( ) ( )d

t

t     ”, which is 

identical to the RF M(t), where (t) is his notation for the RNIF.  It seems that he is also using, 

atop p. 146, the notation (t) as the hazard function for the Weibull.  In section 4.3 it will also be 

established that the HZF h(t) and the RNIF (t) of the Weibull are not the same, except at t = 0. 

It is well known from statistical theory that the skewness of gamma density is given by 3 

= 2/ α  and its kurtosis is 4 = 6/, both of these clearly showing that their limiting values, in 

terms of shape , is zero, which are those of Laplace-Gaussian N(/, /
2
).  We compared our 

gamma program at   = 70,  = 15, and t = 5000 which yielded M(5000)  4.186155, while the 

corresponding normal program yielded  M(5000)   4.185793 expected renewals. 

4.3 The Renewal Function when the Underlying TTF Distribution is Uniform  

“Uniform distribution is used to model the time of occurrence of events that are equally 

likely to occur at any time during an interval” [95].  Kececioglu (2002)[95] states that “the most 

frequently used distributions in Reliability Engineering are exponential, Weibull, normal, 

lognormal, extreme value, Rayleigh (the Rayleigh being a special case of the Weibull with 

minimum-life  = 0 and shape  = 2), and uniform”. Electrical bulbs, stress of mechanical 

component which has lower and upper psi limits, network systems are some examples in which 

uniform distribution is used in reliability models.  Zhao and Duan [96] propose a reliability 
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estimation model of IC`s interconnect based on uniform distribution of defects on a chip. And 

also “the uniform distribution is used in Bayesian estimation as a prior reliability distribution” 

([97], [95]) as an example please see [64]. 

Accordingly, suppose the TTF of a component or system (such as a network) is 

uniformly distributed over the real interval [a, b weeks]; then   1/f t c , a ≥ 0, b > a, c = ba > 

0, and the cdf is F(t) = (ta )/c,  a  t < b weeks.  Further, succeeding failures have identical 

failure distributions as U(a, b).  From a practical standpoint, the common value of minimum-life 

a = 0.  Then, the fundamental renewal equation is given by    1

0

( ) ( )d

t

M tM t F t f       

[[34], pp.277-280].  Since we are considering the simpler case of time to first failure distribution 

being identical to those of succeeding times to failure, then  

                                  
0

( x) (x)dx,  
t

M t F t M t f  (4.7a) 

whereas before  F(t) represents the cdf of  T = TTF.  However, Hildebrand (1962) [98]  proves that 

f (s)M(s)  = L
0

( x) (x) x

t

M t f d
  

 
  
 = L

0

( x) (x)

t

M t dF
  

 
  
 , the integral inside the first brackets 

representing the convolution of M(t) with  f(t).  Conversely we can conclude that f (s)×M(s) =  
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L
0

( x) (x)

t

F t dM
  

 
  
 .  Upon inversion of this last LT we obtain L1{ f (s) M(s) } = 

0

( x) (x)

t

F t dM =

0

( x) (x) (x)

t

F t d  .  Hence, Eq. (4.7a) can also be represented as 

                            
0 0

( x) (x) ( x) (x) x

t t

F t dM F tt t F t dM F            

                         

(4.7b) 

The renewal-equation of the type (4.7b) has been given by many authors such as [55], [99], [8], 

and other notables. 

In order to obtain the RF for the uniform density, we substitute into Eq. (4.7a), for the  

specific uniform U(0, b) baseline distribution, for which a = 0, in order to obtain    

    
0

t
( x)d  x /     

t

M t E N t M t b
b

; letting t x=    in this last equation yields    

             M(t) = 

0
1

( )( d )

t

t

b
M

b
    = 

0

1
( )d .

t
t

b
M

b
   

                           

(4.8) 

The above Eq. (4.8) shows that the RNIF is given by
( ) 1 ( )

( )   
dM t M t

t
dt b b

   

d ( ) ( )

dt

M t M t

b
  = 

1

b
   

t td ( ) ( )
e e

dt

b bM t M t

b

/ /  = 
t1

e b

b

/
 

/d
[ ( ) ]

dt

t bM t e = 
t1

e b

a

/
  

/t( ) bM t e = 
t/1

e d t Cb

b

  = t/e Cb  , where C is the constant of integration.  Applying the 

boundary condition M(t = 0) = 0, we obtain     = e 1bM t E N t   
t / , where time must start at 

zero, i.e., this last expression is valid only for 0  t  b, b > 0.  Note that Ross (1996) [68] gives, 
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without proof, the same identical  M t  only for the standard U(0, 1) underlying failure density. 

For example, if the time to down-state of a network is U(0, 8 weeks), then the expected number 

of down-states during the interval (0, 8 weeks) is given by ( )M 8 weeks  = 8/8e  1 = 1.718282.  

In order to calculate the RF for the same uniform distribution during the interval  

(2, 4) we may use the above result: 

                                 
4

2

4 4
/8 /8

2 2

1
( ) ] 0.364696

8
( ) t tt dt e dt eM 2, 4 weeks =       

Bartholomew (1963) [100] describes ( )t t as the (unconditional) Pr element of a 

renewal during the interval (t, t+t), and in the case of negligible repair-time,ρ t( )  also 

represents the instantaneous failure intensity function.  However, as described by nearly every 

author in Reliability Engineering, the HZF h(t) gives the instantaneous conditional hazard-rate at 

time t only amongst survivors of age t, i.e., ( )h t t = Pr(t ≤ T ≤ t +t)/R(t).  The hazard function 

for the U(0, b) baseline distribution is given by h(t) = 
1

b t
, 0  t  b, b > 0, which is infinite at 

the end of life-interval b, as expected.  Because the uniform HZF is an IFR, then for the uniform 

density it can be proven, using the infinite series for 
1 /

1 /

b

t b
and the Maclaurin series for e bt / ,  

that h(t) > ρ t( ) for all 0 < t  b. 

Next in order to obtain the RF for the U(a, b), we transform the origin from zero to 

minimum-life = a > 0 by letting  = a + (ba)t/b = a + ct/b in the RF     =M t E N t    
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e 1b t / .  This yields, ( )M  =  
e 1

a c 
 , and hence  

( ) = [ ( )] e 1
t a c

M t E N t


  , 0 ≤ a  ≤ t < b, 

and  c = b  a > 0.  The corresponding RNIF is given by  
( ) e

t a c
t c

 
 

, 0 ≤ a  ≤ t < b. 

Because the uniform renewal function is valid only for the interval [a, b], we will obtain 

the n-fold convolution of the U(a, b)-distribution which in turn will enable us to obtain M(t) for t 

> b by making use of Eq. (4.1a) that uses the infinite-sum of convolution cdfs, F(n)(t).  As stated 

by Olds (1952) [101], the convolutions of uniform density of equal bases, c, have been known 

since Laplace.  The specific convolutions of the uniform density with itself over the interval 

[1/2, 1/2] were obtained in [5] only for n = 2-fold, 3, 4, 5, 6, and 8-folds.  There are other 

articles on the uniform convolutions such as [102], [103], and [81].  We used the procedure in 

Maghsoodloo & Hool (1983) [5] but re-developed each of the n = 2 through n = 8 convolutions 

of U(a, b) by a geometrical mathematical statistics method.  Further, we programmed this last 

geometric method in Matlab in order to obtain the exact 9 through 12-fold convolutions of the 

U(a, b)  with itself.  Convolution-densities of U(a, b) are given at the appendix. 

The Matlab program, uses the exact n = 2 through 12 convolutions F(n)(t) and then applies 

the normal approximation for convolutions beyond 12.  The question now arises how accurate is 

the normal approximation to F(n)(t), n = 13, 14, 15, …?  We used our 12-fold convolution of the 

standard uniform U(0, 1) to determine the accuracy.  Clearly, the partial sum T12 =

12

i

i 1

X


 , each 

Xi ~ U(0, 1) and mutually independent, has a mean of 6 and variance 12(ba)
2
/12 = 1, where a = 

0, and maximum-life b = 1.  Table 3 shows the normal approximation to F(12)(t)  for intervals of 
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0.50-Stdev.  The table clearly shows that the worst relative-error occurs at ½ StDev, and that the 

normal approximation improves as Z moves toward the right-tail.  The accuracy is within 2 

decimals up to one StDev and 3 decimals beyond 1.49 StDevs.  Therefore, we conclude that the 

normal approximation to each of F(n)(t), n = 13, 14, 15, … , due to the CLT, should not have a 

relative error at  Z = 0.50 exceeding 0.002960. 

Table 3: Normal Approximation to the 12-fold convolution of U(0,1) 

It should also be noted that the normal approximation to the uniform F(n)(t), n = 13, 14, 

15, … must be very accurate from the standpoint of the first 4 moments.  Because the skewness 

of n-fold convolution of U(a, b) with itself is identically zero, which is identical to the Laplace-

Gaussian N(n(a+b)/2, n(ba)
2
/12), and hence a perfect match between the first 3 moments of 

     nT n
f t f t  with those of  normal.  It can be proven (the proof is at the appendix) that the 

skewness of the partial-sum i

i 1

  Xn

n

T


 , Xi’s being iid like X, is given by 

   3/2 2 3/2 3
3 3 2 3 3 3[ X) ( X (( ) ( ) ( )] ( ( )) (X) )   nn nT µ µ nµ nσ µ σ nT T n =                      (4.9a) 

Further, the kurtosis of Tn  is given by 

        4 4 44 43 3  X /α (X)/ +3(  1) (X)/ [ ] /       n n=T T nn n n n ,  (4.9b) 

Z 0.5 1 1.5 2 2.5 3 3.5 4 

F(12)(z) 0.689422 0.839273 0.932553 0.977724 0.994421 0.998993 0.999879 0.999991 

Normal  

Approx. 

0.691462 0.841345 0.933193 0.97725 0.99379 0.99865 0.999767 0.999968 

Rel-Error 0.002960 0.002469 0.000686 -0.00049 -0.00063 -0.00034 -0.00011 -2.3E-05 
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where i ( i = 2, 3, 4) are the universal notation for the i
th

 central moments.  Eq. (4.9b) clearly 

shows that the kurtosis of the uniform
  )(
n

f t , for n = 13, 14, and 15, respectively, are 4  = 

1.20/13 = 0.09231,  1.20/14 = 0.08571, and 1.20/15 = 0.08000, the amount 1.20 being 

the kurtosis of a U(a, b) underlying failure density.  Thus, an n = 120 is needed in order for the 

kurtosis of 
   n

f t  to be within 0.01 of Laplace-Gaussian N(n(a+b)/2, n(ba)
2
/12).  Fortunately, 

the previous summary table clearly indicates that the normal approximation is superior at the 

tails, where kurtosis plays a more important role, than the middle of 
   n

f t  density. 

In order to compute the RNIF ρ t( )  for t > b, we used two different approximate 

procedures, one of which will be detailed in section 4.5.  Eq. (4.1a) clearly shows that  

n n
n 1 n 1

d
t F t f t

dt

 

 

   ( ) ( )( ) ( ) ( ) ; the Matlab program knows the exact 
1( )( )f t = f(t) and uniform 

convolutions 
n

f t( )( ) , for n = 2 , 3, …, 12.  For n > 12, it uses the ordinate of normal density N(n, 

n2
) approximation, where  = (a+b)/2 and 2

 = (ba)
2
/12.     

4.4 Approximating the Renewal Function with Unknown Convolutions 

Unlike the gamma, normal and uniform underlying failure distributions, the Weibull 

base-line distribution (except when the shape parameter   = 1) does not have a closed-form 

expression for the n-fold cdf convolution F(n)(t), and hence Eq. (4.1a) cannot directly be used to 

calculate the renewal function M(t) for all   > 0.  When minimum-life = 0 and shape   = 2, the 

Weibull specifically is called the Rayleigh pdf; we do have a closed-form function for the 

Rayleigh ρ(s) but it cannot be inverted to yield a closed-form expression for its (t).  Because the 
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Weibull is the most important underlying mortality density in reliability analyses, we will use the 

discretizing method to approximate the renewal function for three parameter Weibull 

distribution.  The parameter   is the minimum-life or threshold (a location parameter),   is 

called the characteristic-life ( =    being the scale parameter), and   is the slope (or shape) 

parameter.  Further, it is well-known that the Weibull’s  HZF  1
( )

( )β

0, t<δ

h t β t δ
, t δ




 


 

   is 

an IFR (with CV < 100%) iff the slope    > 1,  h(t) =  = 1/α is a CFR iff    1 (with CV = 

100%), and  it is a DFR iff  0 <   < 1 (with CV > 100%).    It must be highlighted that there 

have been many articles on approximating the Weibull RF such as Jiang (2007)[66], From 

(2001) [59], and other notables.  Note that Murthy et al (2004) [99] provide an extensive treatise 

on Weibull Models, referring to the Weibull with zero minimum-life as the standard model.  

These last three authors also highlight the confusion and misconception resulting from the 

terminologies of intensity and hazard function for the Weibull.  Jin & Gonigunta (2008) [60] first 

approximated the cdf of the 2-parameter Weibull (i.e., threshold  = 0) by an optimum 

generalized exponential function; then they obtained the LT of the corresponding generalized 

exponential, which could be inverted to yield their actual Weibull RF. 

4.5 Discretizing Time in Order to Approximate the Renewal Equation 

Because M (t) = F(t) +

0

( ) ( )d

t

M t f    and the underling distributions are herein 

specified, the first term on the RHS (Right-Hand Side) of M (t), F(t), can be easily computed.  
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However, the convolution integral on the RHS,

 0

( ) ( )d

t

M t f   , except for rare cases, cannot 

in general be computed and has to be approximated.  The discretization method was first applied 

by Xie [55], where he called his procedure “THE RS-METHOD”, RS for Riemann-Stieltjes.  

However, Xie [55] used renewal-type Eq. (7b) in his RS-METHOD. 

The first step in the discretization is to divide the specified interval (0, t) into equal-length 

subintervals, and only for the sake of illustration we consider the interval (0, t = 5 weeks) and 

divide it into 10 subintervals (0, 0.50), (0.50, 1), …, (4.5, 5).  Note that Xie’s method does not 

require equal-length subintervals.  Thus, the length of each subinterval in this example is 

0.50t  weeks.  As a result,  

5

0

(5 ) ( )dM f   

/210

i=1 ( 1)/2

(5 ) ( )d

i

i

M f  



  , where the index i 

= 1 pertains to the subinterval (0, 0.50),  and  i = 10 pertains to the last subinterval (4.5, 5).  We 

now make use of the Mean-value Theorem for Integrals, which states:  if a function f(x) is 

continuous over the real closed interval [a, b], then for certain there exists a real number x0 such 

that 

b

a

f(x)dx  f(x0)(ba), a  x0  b, f(x0) being the ordinate of the integrand at x0.  Because 

both M(t) and the density f(t) are continuous, applying the above Mean-value Theorem for 

Integrals to the 4
th

 subinterval, there exists for certain a real number 4  such that 

2

3/2

(5 ) ( )dM f    4 4(5 ) ( )(2 3 / 2)M f   ,  3/2  4  2.  As a result, 

5

0

(5 ) ( )dM f    
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10

=1

(5 ) ( )(1 / 2)i i

i

M f  , where 0  1  0.50, 0.5  2  1, …, 4.5  10  5.   Clearly the exact 

values of  5 iM  , i = 1, …, 10 cannot in general be determined, and because in this example  

( )(1/ 2)if  = 

/2

( 1)/2

( )d

i

i

f  



 =  Pr[(i1)/2  TTF  i/2], it follows that 

5

0

(5 ) ( )dM f    

/210

=1 ( 1)/2

(5 ) ( )d

i

i

i i

M f  



  .  As proposed by Elsayed [35] who used the end of each subinterval, 

we will approximate this function in the same manner by (5 0.50 )M i which results in  

M (5)  F (5) +

5

0

(5 ) ( )dM f     F (5) + 

/210

i=1 ( 1)/2

(5 0.50 ) ( )d

i

i

M i f  



  =

/210

i=1 ( 1)/2

( )d

i

i

f  



 
 

+ 

             

/210

i=1 ( 1)/2

(5 0.50 ) ( )d

i

i

M i f  



  = 

/210

i=1 ( 1)/2

1 (5 0.50 ) ( )d[ ]{ }


  
i

i

+ M i f                    (4.10) 

The above Eq. (10) is similar to that of (7.10) of Elsayed [35], where his subintervals are 

of length 1t .  We first used the information M (0)  0 at i = 10 to calculate the last term of Eq. 

(10); further, at i = 9, Eq. (10) yields 
(8 1)/2

8/2

1 (5 4.5) ( )d[ ]


 + M f   =
4.5

4

1 (0.50) ( )d[ ] + M f   .  

However, M (0.50) represents the expected number of renewals during an interval of length t   

0.50.  Assuming that t  is sufficiently small relative to t such that N(t) is approximately 

Bernoulli, then M( t   0.50)  1 (0.50) +F 0 (0.50)R .  Hence, at i = 9, the value of the term 
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before last in Eq. (10) reduces approximately to 1 (0.50)[ ]+F 
4.5

4

( )df   .  At i = 8, the value 

of Eq. (10) is given by 
4

3.5

1 (1) ( )d[ ] + M f   , where M (1) =  
2

i=1

1 (1 0.50 )[ ]{  + M i

/2

( 1)/2

( )d }


 
i

i

f   , where M(0.50) has been approximated.  Continuing in this manner, we 

backward recursively solved Eq. (4.10) to approximate M (t).  The smaller   always leads to a 

better approximation of M (t). 

In order to check the accuracy of this approximation method, we first used it to 

approximate M(t) at  =1 (which is the exponential failure law with M(t) = t),  t = 10000, 

minimum-life  = 0,   =  = 1000 = 1/, and t  = 50 = 0.005t, approximation yielded 

M(10000)  9.754115099857199 compared to the exact t = 0.00110000 = 10, a percent 

relative error of 2.459 with cpu-time = 65.112829 seconds.  While, at the same exact 

parameters, our Matlab function at t  = 40 = 0.004t, M(10000)  9.802640211919197 ( a % 

relative error of  -1.97360) with cpu-time = 567.432046.  We ran the same program with same 

parameters by just changing t .  We observed that for smaller values of t  we really approach 

the exact value. The table below depicts the results. 
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Table 4: Time Discretizing Approximation Method Results 

t   M(t) App_M(t) Relative Error 

Elapsed Time 

(seconds) 

10 10.0000000000 9.9501662508319 -0.49834% 40238.61714 

25 10.0000000000 9.8760351886669 -1.23965% 2018.707614 

40 10.0000000000 9.8026402119192 -1.97360% 567.432046 

50 10.0000000000 9.7541150998572 -2.45885% 82.738732 

100 10.0000000000 9.5162581964040 -4.83742% 65.112829 

200 10.0000000000 9.0634623461009 -9.36538% 32.320588 

250 10.0000000000 8.8479686771438 -11.52031% 21.066944 

500 10.0000000000 7.8693868057473 -21.30613% 16.510933 

1000 10.0000000000 6.3212055882856 -36.78794% 16.347242 

 

Figure 6 shows relationship between t and Relative Error. As t increases Relative Error 

increases. This implies that smaller t leads to more accurate result. 
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                      Figure 6: Relative Error versus t  

 

Next, after approximating the Weibull RF, how do we use its M(t) to obtain a fairly accurate 

value of  Weibull RNIF (t)?  Because
0

( ) ( )( )
( ) lim

t

M t t M t

t

dM t
t

dt 

 
 






 , then for 

sufficiently small t  > 0 the approximate
( ) ( )

( )
M t t M t

t
t

 





 , which uses the right-hand 

derivative, and
( ) ( )

( )
M t M t t

t
t

 





 , using the left-hand derivative.  Because the RF is not 

linear but strictly increasing, our Matlab program computes both the left-and right-hand 

expressions and approximates ρ t( )  by averaging the two, where t and t  are inputted by the 

user.  It is recommended that the user inputs 0 < t  ≤ 0.10t. 
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As a result, all available approaches have merits and demerits in terms of complexity, 

computational time and accuracy. The method here is easy to implement basically for any 

lifetime distribution and it gives fairly accurate results for smaller subintervals. However, the 

downside is for smaller subintervals the computational time increases. And also it is not a closed-

form approximation. Based on given parameters the program calculates both renewal and 

reliability measures.  Therefore, this approach cannot be used in some maintenance optimization 

models if is desired to have closed-form expression.  

4.6 Chapter Summary  

This chapter provided the RF and RNIF for the gamma and uniform underlying failure 

densities.  We also devised Matlab programs that output all the renewal and reliability measures 

of a 3-parameter Weibull, normal, gamma, and uniform.  We have highlighted that the RNIF

ρ t( ) is different from the HZF h(t) for t > 0, except in the case of CFR. 
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CHAPTER 5 

5 Expected Number of Renewals for Non-Negligible Repair 

 

Unlike the previous chapters, we now assume that MTTR (Mean Time to Repair) is not 

negligible and that TTR has a pdf denoted as r(t).  This chapter gives expected number of 

failures, number of cycles and availability by taking the Laplace transforms of renewal functions. 

5.1 Expected Number of Failures and Cycles 

Let the variates  X1, X2, X3,… represent  TTFi  be iid with the underlying failure density 

f(x) having means MTBF = x and variance 2
x ; further, let Y1, Y2, Y3 , … represent the  ith 

Time-to-Repair (TTRi),  i = 1, 2, 3, 4,… with the same pdf r(y) having means MTTR = y and 

variance 
2
y .  Then, Ti = Xi + Yi represents the time between cycles (TBCs) which are also iid 

whose density is given by the convolution   ( )* ( )t tg f r t , and whose Laplace transform (LT) 

is given by g(s) f (s) r (s)  .  Clearly the mean and variance of the cycle-times Ti’s are x + y 

and
2 2
x y  .  As described by U. N. Bhat (1984) [34] there will be two types of renewals:  

(1) A transition from a Y-state (i.e., when system is under repair) to an X-state (at which 

the system is operating reliably),  

(2) A transition from an X-state (or operating-reliably-state) to a Y-state (where system 

will go under repair).    
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Let M1(t) represent the expected number of cycles (or number of renewals of type 1), and 

M2(t) represent the expected number of failures  (or renewals of type 2).  Then, as stated by Bhat 

(1984) [34] and E. A. Elsayed (2012), the LTs (Laplace-Transforms) of the two renewal 

functions, respectively, are given by 

      1

g(s) f (s) r (s)
M (s)

s[1 g(s) ] s[1 f (s) r (s) ]


 

  
                                                   (5.1a) 

                            2

f(s) f (s)
M (s)

s[1 g(s) ] s[1 f (s) r (s) ]
 

  
                                           (5.1b) 

The corresponding LTs of RNIFs (Renewal-Intensity Functions) are given by  

                          1

f (s) r (s)
(s)

1 f (s) r (s)





 
,   and 2

f (s)
(s)

1 f (s) r (s)
 

 
                                     (5.2) 

As an example, suppose TTFi ~ Exp() and TTRi ~ Exp(r); then as has been documented 

by numerous other authors, 
s

0

f (s) e (/e )st tdt


       and   r s

0

r (s) re e r / r st tdt


   

.   On substituting these last 2 LTs into Eq. (5.1a), we obtain   

1

r
M (s)

s[( s)(r s) r]




   
 =

2 2 2

r r r

s s (s )

  
 

    
  , where r      

M1(t) =  1
1M (s)L = 1

2 2 2

r r r

s s (s )

     
  

      
L  = 

2 2

r r r
e tt   

 
 

, which gives the 

expected number of transitions from a repair-state to an operational-state (or expected number of 

cycles).   Similarly,  
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2

f (s)
M (s)

s[1 f (s) r (s) ]


 
 =

2 2

2 2 2

r

s s (s )

  
 

    
, which upon inversion yields

 
2

2

2

2 2

r
 e tt tM   

 
 




, representing the expected number of failures during an interval of 

length t.  Note that the limit of both renewal functions M1(t) and M2(t) as r   (i.e., MTTR  

0) is exactly equal to t, as expected.  Further, a comparison of M2(t) with M1(t) reveals that 

M2(t) > M1(t) for all t > 0, which is intuitively meaningful because the expected number of 

failures must exceed the expected number of cycles for all t > 0.   As an example, if  = 

0.0005/hour and repair-rate = 0.05, then M1(t =1000 hours) =  0.485246544456426, while 

M2(1000) = 0.495147534555436, and hence the availability will be shown below that   

A(at t = 1000 hours) = 1+0.4852465444564260.495147534555436 = 0.990099009900990. 

We now obtain a general expression for the RF s M1 and M2 by inverting equations (5.1).  

Eq. (5.1a) shows that 1

g(s)
M (s)[1 g(s) ]

s
             1 1

g(s)
M (s) M (s)g(s)

s
                 

    11

t

0

M ( x)g(x)dG x,M tt t   where G(t) is the cdf of f(x)*r(x) = g(x).  Eq. (5.1b) now 

shows that 2

f(s)
M (s)[1 g(s) ]

s
                 2 2

f(s)
M (s) M (s)g(s)

s
             

   
0

2

t

2M ( x)F g(x)dxtM t t    ; thus, in general the expected number of cycles is given by 
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                                         
0

1

t

1M ( x)G g(x)dxtM t t                                           (5.3a) 

While the expected number of failures  

                                                     
0

2

t

2M ( x)F g(x)dxtM t t                                           (5.3b) 

For example, suppose TBFs ~ N(x = MTBF, 2
x ) and TTR is also N(y,

2
y ); then TBCs 

~ N(x+y, 
2 2
x y  ).  Then, M1(t) = 

1

( )
n

t n

n











, where  =x+y, 

2 2
x y   ,  and M1(t) 

gives the expected number of renewals of the first type, i.e., the expected number of cycles.  

However, because the system is under repair a fraction of the times, then  

 
1

2 ( )x

n x

t n

n
M t






 




.  In order to obtain a good approximation for M2(t) and the resulting 

A(t), we may argue that the expected duration of time the system is under repair is given by M1(t) 

MTTR; letting t2 = t  M1(t) MTTR, then  Eq. (5.3b) shows that the expected number of 

failures is approximately given by   2
2

2

( ) ( )




 
  

 

 

x x

x xn

t n

n
t

t
M .  Clearly, M2(t)  M1(t)  

for all t  0. 

5.2  Availability  

Because we are assuming that a system can be either in an operational-state, or under 

repair, then the reliability function must be replaced by the instantaneous (or point) availability 
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function at time t, denoted A(t), which represents the Pr that a repairable unit or system is 

functioning reliably at time t.  Thus, if there is no repair, the availability function is simply A(t) = 

R(t), the reliability function .  However, if the component (or system) is repairable, then there are 

two mutually exclusive possibilities: 

 (1) The system is reliable at t, in which case A1(t) = R(t),  

 (2) The system fails at time x, 0 < x < t, gets renewed (or restored to almost as-good-as-

new) in the interval (x, x+x) with Pr element (x) dx, and then is reliable from time x to time t 

Trivedi (1982) [104].   

This second Pr is given by  
0

2 (x)dx ( x) 
t

RA tt  .  Because the above two cases are 

mutually exclusive, then  

                         1

0

2 ( x) (x)dx     
t

RA t A t A t tR t                                (5.4). 

Taking Laplace transform of the above Eq. (5.4) [and observing that the integral is the 

convolution of R(t) with (t)] yields 

                                A(s)  = R(s) + R(s) (s)  = R(s) [1+ (s) ]= 

                                         R(s) [1 +
f (s) r (s)

1 f (s) r (s)



 
] =

R(s)

1 f (s) r (s) 
,                        (5.5)  

where r(t) is the density of repair-time.  For the case when the TTF (of a component or a system) 

has a constant failure rate  and time to repair is also exponential at the rate r, 
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s

0

R(s) e e ( )/ st tdt


      ;  hence, the Laplace-transform of availability from  Eq. (5.5) is 

given by A(s)  = 
1/ ( s)

1 [ / ( s)][r / (r s)]

 

    
 = 

r s

s[s ( r)]



  
 = 

r /

s s

 


  
   

   1 tr
A(s) eA t  

  
 

L  where =  + r, which is provided by many other authors in 

Reliability Engineering such as C. E. Ebeling (2010) [4], E. A. Elsayed (2012) [6], etc.  For 

example, given that  = failure-rate = 0.0005 and r = repair-rate = 0.05 per hour, then  =  + r = 

0.0505 and the Pr that the unit is available (i.e., not under repair) at t = 1000 hours is given by

  0.0505(1000)0.05 0.0005
e10

0.0505 0.
00  0.9900

05
9900990

05
1A   , while R(1000 hours W/O Repair) =

0.5

e


= 0.60653066 < A(1000) = 0.9901.  Note that in the exponential case, we can also obtain 

the availability function A(t) directly from Eq. (5.4) as follows:   

    ( x)
1 1

0 0

( x) (x)dx e e (x)dx       
t t

t tRA R t ρt t  , where  

x x
1 1 2 2

d r r r r r
(x) d (x) / dx x e e

dx
ρ M       

      
    

.   Upon substitution of this 

RNIF into the expression for A(t), we obtain   ( x) x

0

r r
e e (1 e )dx  e     

    
  

t
t t tA t , 

as before.  As pointed out by E. A. Elsayed (2012, pp. 466-467) [6], we also observe that 



69 

 

s

0

R(s) ( )te R t dt


   = 

s

0

e [(1 ( )]t F t dt


  = s

0

1
e ( )

s

t F t dt


  =

1
F(s)

s
 .  Hildebrand (1962) [98] 

proves that  F(s) f(s) / s  so that
1 f(s)

R(s)=
s


; on substitution into Eq. (5.5) we obtain

1 f (s)
A(s)

s[1 f (s) r (s)]




 
 = 

1 f (s)

s[1 f (s) r (s)] s[1 f (s) r (s)]


   
 =

1 f (s) r (s) f (s)

s s[1 f (s) r (s)] s[1 f (s) r (s)]


 

   
. Inverting these 3 LTs, we obtain  

                                                               1 2  1  A t M t M t                                                (5.6) 

for all underlying failure distribution f(t) and TTR-distribution r(t).  Eq. (5.6) is the same as that 

of E.A. Elsayed (2012) [6] on his page 467. 

5.3 Markov Analysis  

Note that we can also use Markov analysis, as has been done by many authors in 

stochastic processes, in the case of constant failure and repair rates to obtain the availability of a 

simple on & off- system as depicted in the following Figure:   

     

 

 

 

 

 

0 1 

λ 

r 

Figure 7: On & off system 



70 

 

where state “0” represents a system in the reliable-state and “1” represents the same system 

under repair.  The above figure clearly shows that 0 0 1dP ( ) / P ( ) rP ( ),t dt t t    where P0(t) 

represents the unconditional Pr of finding the systems in the operational state “0” at time t, and 

similarly for P1(t).   Because P1(t) = 1P0(t) for all t, we obtain 0 0 0dP ( ) / P ( ) r(1 P )t dt t     

and hence 0 0dP ( ) / ( r)P ( ) rt dt t   , or 0 0dP ( ) / P ( ) rt dt t  .  This is a simple differential 

equation with the integrating factor e t .  Solving and applying the boundary condition 

0P ( 0) 1t    results in 0

r
P ( ) e tt 

 
 

, which is identical to the A(t) obtained above in 2 

other different methods. 

It should be noted that, although the solution 0

r
P ( ) e tt 

 
 

is valid exactly iff both 

failure and repair rates are constants, it can be used to obtain a rough approximate solution for 

the A(t) when only the MTBF and MTTR are available.  For example, suppose that a system’s 

TTF ~ U(0, 2000 hours), while TTR is also U(10, 30 hours); then, the MFR (Mean Failure Rate) 

 1/2000 = 0.0005, and the MRR = 1/20 = 0.05.  Thus, a rough approximate solution for A(t) in 

this case of uniform TTF and TTR is also given by 0 0.99009
r

P ( ) e 901tt 
  
 

, while this 

last availability value is exact only for the exponential cases of  TTF and TTR. 
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5.4 Renewal and Availability Functions when TTF is Gamma and TTR is Exponential 

It is well known that the LT of an underlying gamma failure density with shape  and 

scale  = 1/ is given by f (s) λ / (λ +s)  
; note that only when  is a positive integer this last 

closed-form is valid.  When  is not an exact positive integer, there is no closed-form solution 

for the LT of a gamma density because the integration-by-parts never terminates.  Thus, in the 

case of shape being an exact positive integer, i.e., Erlang underlying failure-density, we have:  

A(s)  =
1 f (s)

s[1 f (s) r (s)]



 
= 

λ
1

(λ + s)

λ r
s[1 ]

r s(λ + s)



 










=
(λ +s) (s r) λ (s r)

s[(λ +s) (r s) λ r]

  

 

 

 
.  At  = 2 this last 

LT reduces to A(s)  =
2

2 2

s (2 r)s 2λr

s[s (2 r)s 2λr]

   

    
 = 1 2

2

3

1r

cc c

s s s r
 

 
, where 1r  & 2r  are the 

roots of the polynomial 2 2s (2 r)s 2λr 0=    .  Thus,
2

1 ( ) (r / 2) rr r / 2    ,

2

2r r / 2  ( ) (r / 2) r      , 1  2r /c ( )2r  , 1
2

2

(2 r )
c

( 2r) r 4 r

r   


   
, and  

2
3

2

(2 r )
c

( 2r) r 4 r

r   


   
 .  Inverting back to the t-space we obtain

  1 2r r

2 32r / 2r c ec( ) e
t tA t    .  This last availability function clearly shows that as t  , 

 A t  2r / 2( r ) = / 2(r r )/ = MTBF/(MTBF+MTTR), and further, A(0)  1, as expected.  

For example, if a system has an underlying gamma failure distribution with shape  = 2, scale  
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 = 1/ = 1000 hours and TTR has a constant repair-rate r = 0.05, then the availability at 500 

hours is given by A(500) = 0.993855509027565; while the same system with minimal repair has 

an     ( ) e500 500 0.909795989568950(1+ )x t

t

x e dA t R x t



        .  That is, repair will 

improve availability by 9.24%.  The same system has an A(1000 hours) = 0.991466622031406, 

and  R(1000 hours, no repair) = 0.735758882342885; now repair will improve availability by 

34.75%.  Thus, the steady-state (or long-term) availability of such a system as discussed by many 

other authors is A = 0.05/(0.05+0.0005) = 0.99009901. 

 At  = 2 the LT of expected number of cycles reduces to 

2

1 2 2 2

rλ
M (s)

s [s (2 r)s 2λr]


    
 = 5 6 74

2

1 2

c c cc

s s s r s r
  

 
, where 1r  & 2r  are the same 

roots, 
24

r(2 r)

2 )
c

( r

  

 
 , 5 (c r / 2r)     , 4

6
5 2

2

c c r
c

r 4 r




 
, and 5

7
4 1

2

c r c
c

r 4 r




 
.  Upon inversion, 

we obtain   1 2r r

6 71 4 5 cc e c ec
t tM t t   .   For the same parameters as above, we obtain  

M1(t = 10,000 hours) = 4.695618077086354 expected cycles.  Similarly, it can be shown that the 

LT of the expected number of failures is given by 
2

2 2 2 2

λ (r s)
M (s)

s [s (2 r)s 2λr]

+


    
 =

8 9 10 11
2

1 2

c c c c

s s r s rs
  

 
, where 

2 2

8 2

( r )

)
c

( 2r

 

 
 , 9 (c r / 2r)    , 8

10
1 9

2

(2 r r )

r
c

c c

4 r

 


 

 
, and 

2 8
1

9

2
1

(2 r r ) c
c

c

r 4 r

  


 

 
 .  Upon inversion to the t-space we obtain 
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  1 2r r

102 8 119 c e c c  c e
t tM t t    .  The value of expected number of failures during a mission of 

length 10,000 hours is M2(t =10000) = 4.705519067168098, which exceeds M1(10000) = 

4.695618077086354, as expected.  Further, M1(10000) M2(10000) + 1 = 0.990099009918256, 

which is identical to the value availability function obtained from 

   A t 1 2r t r t
( ) c22r / e e2r c3   at t = 10000. 

Unfortunately, when TTF is Erlang at  = 3, 4, 5 & 6 and a specified constant repair rate 

r, the corresponding denominators   s[1 f (s)D s r (s)]  has at least 2 complex roots, which 

are generally complex conjugate pairs.  Yet, after partial-fractioning, the LT’s can be inverted to 

yield real-valued M1(t) and M2(t), as demonstrated below. 

 At  = 3, 1

f (s) r (s)
M (s)

s[1 f (s) r (s) ]




 
 = 

3

3

3

3

λ r

r s(λ + s)

λ r
s[1 ]

r s(λ + s)




 


 = 
3

3 3

λ r

s[(λ +s) r s) rλ ](  
= 

3

2 3 2 2 3 2

λ r

s [ + (3λ + r)s (3λr 3 )s λ 3r ]s +     
 = 3 51 2 4

2

1 2 3

c cc c c

s s s r s r s r
   

  
, where the root 1r  

will be real, while 2r  and 3r  will be complex conjugates, i.e., both 2 3r r  and 2 3r r  will be real 

numbers.   In order to maintain equality in the above PFRAC (Partial Fraction), it can be shown 

that 
3

2

1 2 3

r
c

r r r


  , 1 2 1 3 2

2
3

1 2 3

1c  
r r r r + r r

r
c

r r



 ; further, letting the constants 

 1 2 1 2 3 1 1 2 1 3 2 3
   c (r r r r + r r )r r r ca      , 

2 1 1 2 32
(r r +c )c ra    ,  then 

3
c , 

4
c , and 

5
c
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are the unique solution given by C =  3 4

1

5c   c   c A b   , where C is the 31 solution vector, b 

is a 31 vector b=

1

2

1

a

a

c

 
 
 
  

  and the 33 matrix A =  

2 3 1 3 1 2

2 3 1 3 1 2

r r r r r r

r r r r r r

1 1 1

 
 

   
 
 

 .   A Matlab program 

was devised to obtain the expected number of cycles M1(t) as outlined above.   The program also 

uses similar procedure as above to compute M2(t) and the resulting A(t).   The Matlab program 

has the capability to compute the 3 renewal measures M1(t), M2(t), and A(t) for  = 2, 3, 4, 5, 6 

and 7. 
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CHAPTER 6 

6 The Approximate Expected Number of Renewals for Non-Negligible Repair 

 

As in chapter 5, we assume that MTTR (Mean Time to Repair) is not negligible and that 

TTR (Time to Restore, or repair) has a pdf denoted as r(t) but this chapter gives the approximate 

number of cycles, number of failures and the resulting availability for particular distributions.  

Availability was explained in the previous chapter. The inverse Laplace transform of 

Equation 5.5 results in the point availability A(t).  If the underlying distributions are not 

exponential, problems arise in inverting the Laplace transform [105]. Therefore numerical 

solutions and approximations become the only alternatives for obtaining A(t) [35]. There are 

numerous approximation techniques in the literature such as Sarkar & Chaudhuri (1999) [105] 

uses Fourier transform technique to determine the availability of a maintained system under 

continuous monitoring and with perfect repair policy. They also obtain closed-form expressions 

when the system has gamma life distribution and exponential repair time.  Ananda and Gamage 

(2004) [106] consider statistical inference for the steady state availability of a system when 

repair distribution is two-parameter lognormal and failure distributions are Weibull, gamma and 

lognormal. There are also other papers in the literature that work on confidence limits for steady 

state availability of a system like [107], [108] etc. 

In this chapter in order to approximate availability and renewal functions two different 

approximation techniques are discussed.  First for some cases like Weibull TTF and uniform 

TTR we managed to obtain the convolution of failure density f(t)  and repair density r(t). Then 
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we used these convolution densities to approximate M1(t), M2(t) and A(t) by using time 

discretizing approximation method that was discussed in Chapter 4.  

However, obtaining the convolutions of f(t) with r(t) for the general classes of failure and 

repair distributions is not always tractable, such is the case of both TTF and TTR being Weibull. 

In these cases we used moment based approximation which only requires knowing the first four 

row moments of failure and repair distributions. “There are a number of cases where the 

moments of a distribution easily obtained, but theoretical distributions are not available in closed 

form” [109].  And also, efficient estimators for the various moments of the underlying 

distribution could be calculated from the observed sample data [92].  Kambo et. al. (2012) [92], 

uses first three moments of failure distribution in order to approximate the renewal function for 

negligible repair and they conclude that the method produces exact results of the renewal 

function for certain important distributions like mixture of two exponential and Coxian-2. 

In this chapter, we propose an approximation for the evaluation of expected number of 

cycles, number of failures and availability based on first four row moments of failure and repair 

distributions where convolution of f(t) and r(t) is intractable.  We conclude that the method 

produces very accurate results for especially large values of time t. 

6.1 Weibull TBF and Uniform TTR 

Let the variates  X1, X2, X3,… represent  TTFi  be iid with the underlying failure density 

f(x) having means MTBF = x and variance 2
x ; further, let Y1, Y2, Y3 , … represent the  ith 

Time-to-Repair (TTRi),  i = 1, 2, 3, 4,… with the same pdf r(y) having means MTTR = y and 
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variance 2
y  .  Then, Ti = Xi + Yi represents the time between cycles (TBCs) which are also iid 

whose density is given by the convolution   ( )* ( )t tg f r t , and whose Laplace transform (LT) 

is given by g(s) f (s) r (s)  .  Clearly the mean and variance of the cycle-times Ti’s are x + y 

and
2 2
x y  .   

Suppose the TBFs of a component (or a system) has the Weibull distribution with minimum 

life  = t0   0, characteristic life  >  = t0, and shape (or slope)  > 0, i.e., TTF ~ W(, , ).  

Letting  = 1/(  t0), the density of X = TBFs (Time Between Failures)  is given by 

                      0
0 0

[ (x t )]1(x) [ (x t )] e , t  x <f        
  

Further, we assume that the time-to-restore (TTR) has the uniform U(a, b), 0  a < b <  

density function.  Then, the repair-density r(y) = 1/c, a  y < b and c = b a > 0.  We are 

considering only the simpler case of the TTFF (Time to first Failure) and TTFi, i = 2, 3, 4, … 

having the same Weibull distributions, and also succeeding repairs have the same identical U(a, 

b) distributions.  Then, the Time-Between-Cycles is given by TBCs = TBF + TTR; we used a 

geometrical mathematical statistics method to obtain the exact convolution of f(x) with r(y), 

denoted g(t).  The corresponding pdf of TBCs, g(t),  is given below.   

                    
0

0 0

[ ( t )]
0 0

[ ( t )] [ ( t )]
0

1 e c t t
( )* ( )

e e c, t  <

{ }/

{ }/

t a

t b t a

, a+
g t

t b+
f t r t

b+ t

   

       

  



 
   



 
                (6.1a)
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The above density has no closed-form (or explicit) antiderivative, except when   1, but 

Matlab can integrate g(t) within any desired limits (t1, t2),  a+t0  t1 < t2 < ∞. 

6.2 Uniform TBF and Weibull TTR 

Conversely, suppose that the TBFs of a component or system has the U(a, b) density 

function and its TTR has the W(, , ) density.  Thus, the repair-rate function is given by 

r[r(t]

, where   represents the minimum repair-time.  Only when  =1, the repair-rate is 

constant and is denoted by r, and at  =1 the TTR has the exponential distribution.  Because most 

of TTR distributions in Reliability Engineering are positively-skewed, it is recommended that the 

value of shape  not to exceed 3.  Then, the failure density is f(x) =1/c, a  x < b, c = ba, and 

repair density is given by 

                             1 [r(y )]y r[r(y )] e ,  y <     r
   

As in the previous case, assuming that the TTFF and TTFi, i = 2, 3, 4, … have the same 

identical U(a, b) distributions, and also succeeding repairs have the same Weibull distributions, 

then it can be proven that the TBCs = TTF + TTR has the following density, which is the 

convolution of f(t) with r(t). 

        

[r( )]

[r( )] [r( )]

1 e c
( ) (t)* ( )

e e c,  <

{ }/

{ }/

t a

t b t a

, a+ t b+
g t f r t

b+ t

 

   

     
  

    



 
                  (6.1b) 

It should be noted that the convolution in Eq. (6.1a) is common, while in (6.1b) is not.  

We then used the same procedure as in section 4.5, to devise a Matlab program, to approximate 
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the expected number of cycles M1(t) using the density in (6.1a), and also the same procedure to 

approximate  the renewal function M2(t),  and the resulting approximate availability A(t).   

6.3 Gamma TBF and Uniform TTR 

Secondly, suppose the TBFs of a component (or a system) has the gamma distribution 

with shape  > 0 and scale  =1/.  The density of X = TBF (or uptime) is given by 

                      1 λ(
( )

λ
( ) λ ) e 0xf x = x , x < 


 


   

Further, we assume that the time-to-restore (TTR) has the uniform U(a, b), 0  a < b <  

density function.  Then, the repair (or downtime) density r(x) = 1/c, a  x < b and c = ba > 0.  

We are considering only the simpler case of the TTFF (Time to first Failure) and TTFi, i = 2, 3, 

4, … having the same gamma distributions, and also succeeding repairs have the same identical  

U(a, b) distributions.  Then, the Time-Between-Cycles is given by TBCs = TBF + TTR, and it 

can be proven that TBCs has the following density, which is the convolution of f(t) with r(t), and 

is denoted by g(t).   

                  ( )* ( )
,  <

[ ( ), ] /

[ ( ), ] [ ( ), ] /{ }

c , a t
g t

b
f t r t

c b t

t a

t a t b

 
 

 


 

    

 

   
      (6.2a)

 

where

( )
1 x

0

1
x e dx

( )
[ ( ), ]


 


  

t a

t a





    is the cdf of the standard gamma density, at 

(t).  The above density has no closed-form antiderivative but Matlab can integrate g(t) for 

any interval within a ≤ t < . 
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6.4  Uniform TTF and Gamma TTR 

Conversely, suppose that the TTF of a component or system has the U(a, b) density  

function and its TTR has the gamma density.  Then, the failure density is f(x) =1/c, a  x < b, c = 

ba, and repair density is given by 

                                1 rr
x (  r

( )
) e 0xr = x , x < 


 


 

Note that when the shape   1, the repair-density reduces to the Exponential in which 

case the parameter r becomes the constant repair-rate.  As in the previous case, assuming that the 

TTFF and TTFi, i = 2, 3, 4 … have the same identical U(a, b) distributions, and also succeeding 

repairs have the same gamma distributions, then it can be proven that the TBCs = TTF + TTR 

has the following density, which is the convolution of f(t) with r(t).  

        

 

         ( )* ( )
,  <

[r( ), ] /

[r( ), ] [r( ), ] /{ }

c , a t b
f tg r

t
t t

c b

t a

t a t b

 
 

 




  

 

   
             (6.2b) 

A Matlab program was devised to obtain the renewal measure M1(t), M2(t), and 

availability A(t) only for the prevalent case of Eq. (6.2a). 

6.5  Intractable Convolutions of f(t) with r(t) 

It is clear by now that obtaining the convolutions of f(t) with r(t) for the general classes of 

failure and repair distributions is not always tractable, such is the case of both TTF and TTR 

being Weibull, then g(t) cannot be obtained as above.  Therefore, below we will develop an 

approximate method based on raw moments that will yield approximations for the three 

functions M1(t), M2(t), and the resulting A(t) for any failure and repair distributions.  
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It has been well documented since Pierre Laplace that his LT of any density function is 

given by 
s t

0

f (s) e (t)dtf


  , where the dummy-variable s must exceed zero.  Such a Laplace-

transformation is quite often necessary because the solution in the s-space is lot easier to obtain 

than the direct solution from the t-space.  As discussed in Chapter 5, we obtained

1

f (s) r (s)
M (s)

s[1 f (s) r (s) ]




 
, and 2

f (s)
M (s)

s[1 f (s) r (s) ]


 
 so that we can easily observe these 2 

renewal function LTs have identical denominators, and  is given by   s[1 f (s)D s r (s)]   in the 

s-space, then we can obtain approximations for M1(t) and M2(t), and the resulting 

     1 21A t M t M t  .  We start our procedure with the definition of LT, the method having 

also been applied by other authors. 

             f (s)   
s t

0

e (t)dt




 f = 
2 2 3 3 4 4

0

(1 st s t / 2! s t / 3! s t / 4! ...)f (t)dt



     ,                   (6.3a) 

where we have made use of the Maclaurin series for e
st

 .  Using the definition of statistical raw 

moments, Eq. (6.3a) yields    

f (s)   
s t

0

e (t)dt




 f = 2 3 4
1 2 3 41 s s / 2! s / 3! s / 4! ....         ,                          (6.3a) 

where 
k

k

0

t (t)dt



   f  = E(T
k
).  Similarly, for the repair-density, r(t), we have its LT as: 

  r(s)   2 3 4
1 2 3 41 m s m s / 2! m s / 3! m s / 4! ....     ,                                             (6.3b) 
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where mk = 
k

0

t (t)dt



 r  is the k
th

 raw moment for TTR (Time to Restore).  Therefore, in terms of 

raw moments the denominators of M1(s) and M2(s) are given by  

D(s) = s[ 2 3 4
1 2 3 41 (1 s s / 2! s / 3! s / 4! ....)         ) 

                                                                       ( 2 3 4
1 2 3 41 m s m s / 2! m s / 3! m s / 4! ....     )] 

       = s[ 1 1( m )s   2
2 2 1 1( m 2 m )s / 2      + 3

3 3 1 2 2 1( m 3 m 3 m )s / 6           

            4
4 4 3 1 2 2 1 3( m 4 m 6 m 4 m )s / 24           + 5

4 1 3 2 2 3 1 4( m 2 m 2 m m )s / 24           

             6
4 2 3 3 2 4(3 m 4 m 3 m )s /144       + 7

3 4 4 3( m m )s /144    8
4 4m s / 576  +  ….] 

       = s
2[ 1 1( m )   2 2 1 1( m 2 m )s / 2      + 2

3 3 1 2 2 1( m 3 m 3 m )s / 6           

             3
4 4 3 1 1 3 2 2( m 4 m 4 m 6 m )s / 24           + 4

4 1 3 2 2 3 1 4( m 2 m 2 m m )s / 24          

             5
4 2 3 3 2 4(3 m 4 m 3 m )s /144        + 6

3 4 4 3( m m )s /144    7
4 4m s / 576  +….]                                          

                                                                                                                             (6.4a) 

Note that the inclusion of higher exponents s
8
, s

9
, etc.  in the brackets inside Eq. (6.4a) 

will require the 5
th

, 6
th

, etc. raw moments in the above D(s) which we will not consider.  Thus, 

the 4
th

-order approximation for D(s) is given by 

D(s)   s
2[ 1 1( m )   2 2 1 1( m 2 m )s / 2      + 2

3 3 1 2 2 1( m 3 m 3 m )s / 6           

             3
4 4 3 1 1 3 2 2( m 4 m 4 m 6 m )s / 24           + 4

4 1 3 2 2 3 1 4( m 2 m 2 m m )s / 24          

             5
4 2 3 3 2 4(3 m 4 m 3 m )s /144        + 6

3 4 4 3( m m )s /144    7
4 4m s / 576 .                                              

                                                                                                                             (6.4b)  
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Before setting up partial fractions for 1

f (s) r (s)
M (s)

s[1 f (s) r (s) ]




 
 , it will be judicious to first multiply 

the numerator and denominator by 576 and then divide both by b7 = 4 4m  so that 1M (s)  will 

take the following form: 

1M (s)= 

2 3 4 2 3 4
1 2 3 4 1 2 3 4 7

2 7 6 5 4 3 2
6 5 4 3 2 1 0

576(1 s s / 2! s / 3! s / 4!) (1 m s m s / 2! m s / 3! m s / 4!) / b

s (s b s b s b s b s b s b s b )

           

      
   

            (6.5a)                          

where the coefficients 46 3 4 3 74( m /b m ) b   , 35 4 2 3 2 4 74(3 m 4 m 3 m ) / bb         , 

4 4 1 3 2 2 3 1 4 7b 24( m 2 m 2 m m ) / b          ,  

4 4 3 1 1 33 2 2 724( m 4 m 4 m 6 mb ) / b            ,  

3 3 1 2 2 12 796( m 3 m 3 m ) / bb         , 11 2 2 1 7288( m mb 2 ) / b      , and 

10 1 7576(b m ) / b  .  The above 1M (s)  can now be partial-fractionated as follows: 

           3 5 6 7 8 91 2 4
1 2

3 4 5 6 7 8 9

c c c c c cc c c
M (s)

s s r s r s r s r s r s r s rs
        

      
                  (6.5b)   

where ri, i = 3, 4, 5, 6, 7, 8 and 9  are the 7 real and complex-conjugate pairs of roots of  the 

polynomial  7 6 5 4 3 2
6 5 4 3 2 1 07 s b s b s b s b s b s b s bP        .  A comparison of Eq. (6.5b) 

with (6.5a) shows that  2 7 7c 576 / R b   , where 
9

i

i 3

7 rR


 is the product of all the 7 roots and 

will be real-valued.  Similarly, 1 2 1 7 77 16 576( mc  c ) / ( R )R / R b    , where i

i 3

6 rR


 is 
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the sum of products of any distinct 6 roots out of 7.  Once the 7 roots are obtained, then the 

values of c1 and c2 can be computed, and a good approximation to M1(t) is given by M1(t)  c1 + 

c2t.  In order to solve the partial-fraction coefficients c3, c4, …, c9, we must obtain 7 equations in 

7 unknowns by comparing (6.5b) with (6.5a)  such that the expression for 1M (s)  in Eq. (6.5b) 

will exactly equal to the one in Eq. (6.5a).  The coefficient for c3 will be obtained by equation the 

coefficient of s
2
 in the numerator of (6.5b) with that of (6.5a).  This yields the first equation in 7 

unknowns, as shown below:   

9 9 9 9 9 9 8

i i i i i i i

i 3 i 4 i 5 i 6 i 7

1 6 2 5 3 4 5 6 7 8

i 8 i 3

9c R c R c c c cr r r cr r c rc r
      

             =

1 12 72( m576 m /  22 / b/ )  , where i

i 3

5 rR


  is the sum of products of any 5 distinct 

roots.  Thus the first equation is 

9 9 9 9 9 9 8

i i i i i i i

i 3 i 4 i 5 i

3 4

6 i 7 i 8

5 6 7 8 9

i 3

r r r r r r rc c c c c c c
      

            =

1 1 22 2 5 1 6( m )288 m 2 / b7 c R c R        . The comparison of s
3
 coefficients will give rise to the 

second equation in the 7 unknowns c3, c4, …, c9.   Letting i

i

j

j

5 rR


 , j = 3, 4… 9 be the sum 

of products of any 5 distinct roots out of 7, excluding the j
th

 root, and hence it will have exactly 

6C5 = 6 terms.  Using these notations, the second equation by comparing the coefficients of s
3
 

will be as follows: 

3 35 4 45 5 55 6 65 7 75 8 85 9 95c R c R c R c R c R c R c R         
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1 5 2 14 2 1 33 72c R c R 96 m( 3 3m /m ) b         , where i

i 3

4 rR


 has 7C4 = 35 terms of 

products of any distinct 4 out of 7 roots.   

Similarly, letting i

i

j

j

4 rR


 , j = 3, 4, …, 9 be the sum of products of any 4 distinct roots out 

of 7 excluding the jth roots and equating the coefficients of s
4
, we obtain the third equation 

3 34 4 44 5 54 6 64 7 74 8 84 9 94c R c R c R c R c R c R c R            

                                              1 3 2 2 3 1 41 4 2 3 4 7c R  c R 24 m 4( m 6 m /m ) b4            , 

where i

i 3

3 rR


 is the sum of products of any 3 distinct roots out of 7.  Note that in the 

definition of Rji, the second index i always indicates the number of roots in the product ir . 

Next equating the coefficients of s
5
 results in   

3 33 4 43 5 53 6 63 7 73 8 83 9 93c R c R c R c R c R c R c R       = 

               2 3 3 2 41 3 2 2 1 4 71c R c R 24 m /( 2 m m ) b2 m          

Next equating the coefficients of s
6
 results in: 

3 32 4 42 5 52 6 62 7 72 8 82 9 92c R c R c R c R c R c R c R         

 1 2 2 1 2 4 2 73 3 4c R c R 4 3 m /4m 3 bm      , where 
9

i

i 3

1 rR


  is the sum of all 7 roots.  

Equating the coefficients of s
7
 results in: 

3 31 4 41 5 51 6 61 7 71 8 81 9 91 1 1 2 3 44 73c R c R c R c R c R c R c R c R c 4 m( b) /m             , 
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where 
9

i

i

j1

j

rR


 . Finally, equating the coefficients of s
8
 will yield the last equation.    

3 4 5 6 7 8 9 74 41 1c c c c c c c c / b c  1m                                              

Unfortunately, the above 4
th

-order approximation is sometimes only for small duration of 

time t is not quite adequate, such is the case of normal TTF and TTR.   The only option left is 

include the 5
th

 raw moment in the expression for 1M (s) , i.e.,  

2 3 4 5 2 3 4
1 2 3 4 5 1 2 3 4 8

1 2 8 7 6 5 4 3 2
7 6 5 4 3 2 1 0

2880(1 s s / 2! s / 3! s / 4! s / 5!) (1 m s m s / 2! m s / 3! m s / 4!) / b
M (s)

s (s b s b s b s b s b s b s b s b )

             


       

                                                                                                                                         (6.6) 

where, 58 4b m   , 4 47 5 3 8(5 m m )b   4 / b     , 3 4 4 3 5 2 86 (20 m 20 m 12 mb ) / b       , 

5 1 4 2 3 3 2 45 8(24 m 60 m 80 m 60 m ) / bb            ,  

5 4 1 3 2 2 3 1 4 84b (24 60 m 240 m 240 m 60 m ) / b             ,                                                     , 

4 3 1 2 2 1 33 4 8(120 480 m 720 m 480 m 120m ) /b b            ,

3 2 1 1 2 3 82 (480 1440 m 1440 m 480m ) / bb          and 

21 1 1 2 8(1440 2880 m 1440m ) bb /      , and 10 1 82880(b m ) / b  .  Similarly, it can be 

shown that  2 8 8c 2880 / R b   , where 
10

i

i

8

3

rR


 is the product of all the 8 roots and will be 

real-valued.  Similarly, 1 2 1 1 88 87 2880( mc  c ) / ( R )R / R b    , where i

i 3

7 rR


 is the 

sum of products of any distinct 7 roots out of 8, which also will be real-valued.   Once the 8 roots 

of the polynomial 
8 7 6 5 4 3 2

7 6 5 4 3 1 08 2s b s b s b s b s b s b s b bP s          are obtained, 
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then the values of c1 and c2 can be computed, and a good approximation to M1(t) is given by 

 1 1 2c  cM t t .  In order to solve the partial-fraction coefficients c3, c4, …, c10, we must 

obtain 8 equations in 8 unknowns similar to the previous case.   Unfortunately, even the above 

partial-5
th

 order approximation does not improve the value of M1(t) for small t for the case of 

normal TTF and TTR.  We determined, however, that the exact  
1

1 ( )
n

t n

n
M t






 




 for x 

=1000 hours, y = 90, 2
x = 5625, and 

2
y  = 81 gave a value of M1(6541.938667 hours) = 

5.504179908259676, while the approximation M1(t)  c1 + c26541.938667 = 5.5041799075162, 

where c1 =  0.4975986869792105, and c2 = 0.00091743119266055051. 

We now use the equation 2

f (s)
M (s)

s[1 f (s) r (s) ]


 
 in order to obtain the 4

th
-order 

approximation for M2(t).   Because 2M (s)  has the same denominator as 1M (s) , then  

                      
2 3 4

1 2 3 4 7
2 2 7 6 5 4 3 2

6 5 4 3 2 1 0

576(1 s s / 2! s / 3! s / 4!) / b
M (s)

s (s b s b s b s b s b s b s b )

      


      
,                           (6.7a) 

where the 7 denominator roots r3, …, r9 will be the same as those of 1M (s) .   On a comparison of 

(6.7a) with (6.5b) will show that  2 7 7c 576 / R b   will stay intact, but

1 6 7 72 17 576 / (b R )c c R / R    .  The 7 equations in 7 unknowns can easily be obtained from 

the 7 equations for 1M (s)  and replacing m1, m2, m3, and m4 therein by zeros in every term.  

Once M2(t) is approximated, then A(t)  1+M1(t)M2(t). 
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6.6 Approximation Results  

The moment based approximation for expected number of cycles M1(t), number of 

failures M2(t) and availability A(t) were obtained for the three parameter Weibull, normal, 

lognormal, exponential, logistic, loglogistic and gamma distribution as failure and repair 

distributions.  As we discussed in Chapter 5, the exact results of M1(t), M2(t) and A(t) when TTF 

and TTR are exponentially distributed have been known.  So, we used those results at λ= 0.001 

and r = 0.05 to compare the approximation method that we have developed.  Based on these 

results relative errors were calculated and concluded that the method produces very accurate 

results for especially large values of t versus small values of t. The figures and tables below 

explain the results better.  

Table 5 shows the error of approximation relative to the exact value. As it is seen from 

the table Relative error is almost 95% when time is 20, but as the time increases relative error 

decreases dramatically. And when time is 5000 and relative error is zero on the six decimals.  

 

Table 5: Moment Based Approximation Results for M1(t) 

Time Exact Approximated Rel-Err 

20 0.007316319 0.0003845 -94.745069% 

50 0.031297225 0.0297962 -4.795931% 

100 0.07893304 0.0788158 -0.148480% 

250 0.225874719 0.2258747 -0.000026% 

500 0.470972703 0.4709727 -0.000001% 

1000 0.961168781 0.9611688 0.000000% 

2000 1.941560938 1.9415609 -0.000002% 

5000 4.882737409 4.8827374 0.000000% 
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Table 6 shows the percent error of approximation of M2(t) relative to the exact value. As 

it is seen from the table relative error is almost 0.698% when time is 20, but as the time increases 

relative error decreases dramatically. When time is 5000 and relative error is almost zero.  

Further, relative error is much higher for M1(t) then M2(t) for smaller values of t. 

Table 6: Moment Based Approximation Results for M2(t) 

Time Exact Approximated Rel-Err 

20 0.019853674 0.0199923 0.698296% 

50 0.049374055 0.0494041 0.060800% 

100 0.098421339 0.0984237 0.002381% 

250 0.245482506 0.2454825 0.000002% 

500 0.490580546 0.4905806 0.000001% 

1000 0.980776624 0.9807766 0.000000% 

2000 1.961168781 1.9611688 0.000001% 

5000 4.902345252 4.9023453 0.000001% 

 

Table 7 shows the percent error of approximation of A(t) relative to the exact A(t). Same 

conclusion can be made for availability also.  

Table 7: Moment Based Approximation Results for A(t) 

Time Exact Approximated Rel-Err 

20 0.987462646 0.9803920 -0.716042% 

50 0.98192317 0.9803920 -0.155936% 

100 0.980511701 0.9803920 -0.012208% 

250 0.980392214 0.9803920 -0.000022% 

500 0.980392157 0.9803920 -0.000016% 

1000 0.980392157 0.9803920 -0.000016% 

2000 0.980392157 0.9803920 -0.000016% 

5000 0.980392157 0.9803920 -0.000016% 
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Figure 8 is just graphical representation of Table 5, 6 and 7.  It also shows that the approximation 

method works well for large values of t.  

 

Figure 8: Relative Error versus Time Graph for M1(t), M2(t) and A(t) 
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CHAPTER 7 

 7 MATLAB Program  

 

This chapter introduces the MATLAB based program, describes the input, processing and 

outputs of the program for minimal and non-minimal repair that were explained in previous 

chapters.  It also describes how the program was verified.  

7.1 Minimal Repair 

This section explains the Matlab code for gamma, normal, Weibull and uniform 

distribution for negligible repair that was covered in Chapter 4.  All the code in this section is 

combined in one Graphical User Interface (GUI).  The figure below depicts the MATLAB 

Minimal Repair GUI. 
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Figure 9: MATLAB Based Minimal Repair GUI 

7.1.1 Gamma Distribution 

Matlab output for the gamma distribution gives the MTTF, Standard Deviation, 

Coefficient of Variation, Skewness, Kurtosis, Value of RF at time t, Variance of N(t), First Order 

Limiting Approximation, Second Order Approximation of M(t), Renewal Intensity Function ρ(t) 

and reliability measures f(t), R(t), h(t), H(t) based on the shape parameter, scale parameter and 

time duration that are inputted by a user.   

In some cases such as the exponential TTF, it is possible to calculate the exact M(t) and 

gamma distribution converts to exponential distribution when the shape parameter is one.  

Therefore in order to verify the code it was run when the shape parameter is one which gave 
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exactly the same RF that is calculated from the exponential RF.  Further, in order to check the 

accuracy of the Matlab program, we ran our program for nearly all t-values in Table 5 of [60] at 

their scale  = 1 and their shape parameter k = 1.5, 3, 5, 7 and 9.  Our gamma RF, M(t), matches 

their actual RF “H(t)” to 3 decimals.     

7.1.2 Normal Distribution 

The Matlab output for normal distribution gives Coefficient of Variation, Value of RF at 

time t, Variance of N(t), First Order Limiting Approximation, Second Order Approximation of 

M(t), Renewal Intensity Function ρ(t) and the reliability measures f(t), R(t), h(t), H(t) based on 

the MTTF, Standard Deviation, MTTR and time duration that are inputted by a user.  Unlike 

gamma distribution it doesn`t calculate skewness and kurtosis because it is well known that 

skewness and kurtosis for normal distribution is zero.  

7.1.3 Weibull Distribution 

The Matlab program for Weibull distribution outputs the MTTF, Standard Deviation, 

Coefficient of Variation, Skewness, Kurtosis, Value of RF at time t, First Order Limiting 

Approximation, Second Order Approximation of M(t), Renewal Intensity Function ρ(t) and 

reliability measures f(t), R(t), h(t), H(t).  Unlike gamma, normal and uniform distributions, future 

research is required an approximation for the V[N(t)]  because we do not know the exact F(n)(t) 

for the Weibull, except at  =1 for which we know the exact variance.  Besides possibly 

approximating the Weibull F(n)(t), one has to simulate N(t) from a Weibull process in order to 

obtain a rough approximation for the standard deviation of N(t).  However, this is not a simple 
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task because the variate N(t) is clearly time dependent, and hence no single approximation is 

possible for all  0 ≤ t < .  

The user must specify the parameters of Weibull distribution which are shape parameter 

(β), scale parameter (θ) and minimum guaranteed life (δ).  Next the program asks for time 

duration t and t  increment which will specify the number of subintervals.  The value of t  

should divide the time duration into equal subintervals by considering the minimum guaranteed 

life.  For example, if δ is zero and time duration is 6000, then t can be 300, but if δ is 200 and 

then t  cannot be 300 because 6000200 =5800 and 300 doesn’t divide 5800 without any 

remainder.  

It has been verified that at   =  3.439541, the Weibull mean, median and mode become 

almost identical at which the Weibull skewness is 3 = 0.0405259532 and Weibull kurtosis is 4 

=  0.288751313, these last 2 shape parameters being very close to those of Laplace-Gaussian of 

identically zero.  The Weibull portion of the program at   =  3.439541,  =  = 2000  and t  = 

50 yielded  M(4000) 1.753638831, while the corresponding  normal program (i.e., MTTF =  + 

(  )[(1/)  + 1]=1797.84459964 and StDev = 2 22 /    1   1/   1( ) [ [( ) ] [( ) )]         = 

577.9338342)  resulted in M(4000) =  1.774397152. 

Moreover, Sheldon M. Ross (1996, pp. 426-427) [68] proves that / ( ) t M t / t 

0.50( 1)TCV  if h(t) is a DFR, and the author further proves when h(t) is a DFR, then  h(t) ≤ (t) 

for all t ≥ 0.  The program has been checked when β < 1(for which failure is decreasing) at 
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different cases and observed that M(t) is always smaller than second order approximation and 

larger than the first order approximation. 

7.1.4 Uniform Distribution 

The uniform distribution part has been built little differently than the gamma, Weibull 

and normal portion of the program.  In this case, a function to obtain convolutions called uniform 

convolution as addition to the main uniform code has been generated.  It obtains 12 uniform 

convolutions and for succeeding convolutions it uses the normal approximation.  Inputs for the 

code are the minimum value a, maximum value b, time duration t and △t increment for ρ(t).  As 

an output it gives the mean, standard deviation, coefficient of variation, kurtosis, M(t), Standard 

deviation of N(t), first order approximation, second order approximation, ρ(t), h(t) and R(t). 

The expected number of renewals for uniform distribution when t is between minimum value 

a and maximum value b is         ⁄            .  As an example, the code was run for a 

= 0, b =100 and t=90 and M(t)=  1.459603158715127 was obtained where the exact value is 

1.459603111156950. Therefore the exact same result was obtained through six decimals.  

7.2 Non-Minimal Repair 

This section explains the non-negligible repair part of the program that was covered in 

chapters 5 and 6.  
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7.2.1 The Exact Non-Minimal Repair 

This part contains the code for gamma TTF and exponential TTR when the shape 

parameter α is an integer from 1 to 7.  When α is not a positive integer there is no closed-form 

solution for the Laplace transform of the density.  Section 5.4 explains the procedure in detail.  

Inputs are shape parameter α, 1/scale parameter, repair rate and time duration t.  The 

outputs are the expected number of cycles M1(t) , expected number of failures M2(t) and 

availability A(t). 

In order to verify this code we compared the output for the simplest cases α =1 and α = 2 

for which the exact values of M1(t), M2(t) and A(t) are obtained in Chapter 5. 

7.2.2 Approximate Non-Minimal Repair 

This section explains the code of approximation methods that were discussed in Chapter 

6.  The Matlab code for Weibull TTF and uniform TTR explained in section 6.1 asks the user to 

enter the minimum value a and maximum value b for uniform distribution, shape parameter, 

characteristic life and minimum life for Weibull distribution, time duration t and t .  The output 

gives the approximate expected number of cycles M1(t), approximate expected number of 

failures and approximate availability.  After the convolution of Weibull TTF and uniform TTR 

were obtained, the approximation procedure that is explained in section 4.5 was used to 

approximate the M1(t) when TTF is Weibull and TTR is uniform.  The code for uniform TTF and 

Weibull TTR and gamma TTF and uniform TTR were generated the same manner.  
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As it is explained in Section 6.5 the convolutions of f(t) and r(t) for any repair and failure 

distributions are not always tractable as when TTF is normal and TTR is Weibull.  Therefore an 

approximate method based on raw moments of TTF and TTR was developed.  The first four 

moments of both TTF and TTR distribution were used.  Matlab code was generated based on the 

procedure that is explained in Section 6.5. The user must select the TTR and TTF distribution 

and inputs the parameters for these distributions.  It outputs the M1(t), M2(t) and A(t) along with 

the skewness, kurtosis, MTTF and standard deviation of the baseline failure distribution.  The 

figure below depicts the MATLAB based Non-Minimal Repair GUI.  
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Figure 10: MATLAB Based Non Minimal Repair GUI 

Since the closed-form expression of M1(t), M2(t) and A(t) are known when both TTF and 

TTR are exponential, the code was verified by comparing results with exponential-exponential 

case.  
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CHAPTER 8 

8 Conclusions and Proposed Future Research 

 

Renewal Theory is an expanding field of research with many different applications.  This 

dissertation investigated the renewal and intensity functions for minimal repair and non-minimal 

repair for most common distributions.  Summarized details of our conclusions are found in the 

following section. 

8.1 Summary and Conclusions 

The renewal and intensity functions with minimal repair for the most common lifetime 

underlying distributions normal, gamma, uniform and Weibull were explored.  The exact normal, 

gamma, and uniform renewal and intensity functions were derived by the convolution method.  

In the uniform distribution case complexity becomes immense as the number of convolutions 

increases.  Therefore, after obtaining twelve convolutions of the uniform distribution, we applied 

the normal approximation.  Unlike these last three failure distributions, the Weibull distribution, 

except at shape  = 1, does not have a closed-form function for the n-fold convolution.  Since the 

Weibull is the most important failure distribution in reliability analyses, its approximate renewal 

and intensity functions were obtained by the time-discretizing method. 

The expected number of failures, number of cycles and availability by taking the Laplace 

transforms of renewal functions were obtained when MTTR is not negligible and that TTR has a 

pdf denoted as r(t).  Finally, the raw moments of failure and repair distributions were used to 
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approximate the expected number of cycles, expected number of failures and the corresponding 

availability. 

8.2 Future Work 

The work herein has opened avenues for future research as listed below.  We used time 

discretizing method to approximate the RF for Weibull distribution when repair time was 

negligible.  However, based on the value of t the accuracy of the results may change. Smaller 

t yields more accurate result but more processing times.  Therefore, a correction factor may be 

considered to apply that yields smaller CPU time and more accurate result.  Also we provided 

expected value of N(t) which is M(t) for uniform, normal, gamma and Weibull distributions and 

standard deviation of N(t) for uniform, normal and gamma distribution. However, we didn`t 

provide skewness and kurtosis for N(t) which are also can be provided as an output.  An 

approximate expression for the third raw moment of N(t) is given by Kambo et al (2012) [92].  

Their expression for E[N(t)
3
] can be used to approximate the skewness of N(t). 

Moreover, for the uniform distribution we obtained the RF from twelve uniform 

convolutions and after the twelfth convolution we used normal approximation which gave fairly 

accurate result.  On the other hand, as a future work more convolutions for uniform distribution 

can be obtained.  
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Appendix 

Appendix A: Uniform Convolution Equations, where c = b-a > 0 
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Appendix B: 3rd and 4th Moment of Sums of iid rvs 

The Skewness of the Sum of n independent and Identically Distributed (iid) Variates 

Suppose X1, X2, …, Xn are independently and identically distributed random variables 

each with means   and variances   2
2

2
Xi V  X      , where each Xi is identically 

distributed like X.   Let the nth partial sum
n

i

i 1

nS X


 ; then, clearly  =nE S n  and

 
n

2
S

2= = nV S n .  It is well known that the      3
3 3 3 /  ( ) / ,n ia S X x n a X n     

where   3
3 3 ,a X     and 3

3 , [( ) ]E X    the 3th central moment of X.  The proof 

follows. 

3 3 3

1 1

3( ) [( ) ] [( ) ] [ ]µ ( )
n n

n n i i

i i

S E S n E X n E X  
 

        

           

     3 2

1 1 1

6
n n n

i i i j

i i j

E X μ X µ X µ

  

  
    

  
 =   

            

       
3 3 3

3

1 1

[ ] [ ] [
n n

i i i i i i i

i i

E X μ E X μ nE X μ nµ X

 

          

The corresponding skewness of Sn is given by; 

               
3/23/2 2 3

3 3 2 3 3 3( )nn i iα S nµ X µ nµ X nσ µ X σ n α X nS               

The Kurtosis of the Sum of n iid Variants 

 Suppose X1, X2, …, Xn are independently and identically distributed random variables 

with means    and variances   2
2

2
Xi V  X      , where each Xi is identically distributed 

like X.   It is well known that the kurtosis of each xi is equal to  4 4 3,X    where 

  4
4 4 , /X    and 4

4 , [( ) ]E X    the 4th central moment of X. 
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 Now consider the partial sum i

i 1

S
n

n X


 ; our objective is to compute the 4th central 

moment of Sn from the known central moment of each identical Xi, i =1, 2,…, n.  Clearly, the 

mean of Sn is given by     nE S n  , the variance is given by     2    n iV S nV X n   , and 

thus    

4 4

i

i

4 i

i 1 1

E X E ( )S
n n

n n X 
 

     
       

       





   

1
4 2 2

i i j

i 1 i 1 j

4 2

1

E ( ) ( ) (  C )
n n n

X X X  


  

 
      

  
   

 4 i i jn 2 6   C V( ) V( )Xn X X     

Note that in the binomial expansion of 

4
n

i

i 1

(X )


 
 

 
  , the expectation of odd products 

such as 3
1 2[( )( ) ]E X X    vanish due to mutual independence of Xi and Xj for all i  j.  

Hence,  

                                                       4
4 4     3 ( )1nS n X n n        

 Thus,   4
4

4
4

2 2

(S ) (X) 3 (  1)
S

V(S ) ( )
(X)/ +3(   1) /n

n
n

4
n n n

n
α n n n





   
      

The corresponding kurtosis of Sn is given by, 

     4 4 4  / .(X)/ +3(  1) / 3 (X) 3 /[ ]n n4 4S n=S Xnα n n α n         
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Appendix C: Moments of the Most Common Base-line Distributions in Reliability 

Table 8: Parameters and Density Functions of Most Common Baseline Distributions in 

Reliability  

Lifetime 

Distribution 

Failure Density f(t) Threshold 

Or:  Minimum-life 

Location 

Or: Shape 

Scale 

Exponential ( )e t      1/ 
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The Normal N(µ, 2
); 1  = µ; 2

 = 2
 + µ

2
; 3

 = 32
µ+ µ

3
; 4

 = 34
 + 62

µ
2
 + µ

4
 ; 5

 = 154
µ+ 

52
µ

3
 + µ

5
 . 

Two-Parameter Exponential pdf:  1  = MTTF =  + 1/;   2
  = 2/

2
 + 2/  + 2

  

The skewness 3 = 2, while the kurtosis 4 = 6.  3
 = 6/

3
 + 6/

2
 + 32

/ +3
 

4
  = 9/

4
 + 4 3 1

    6
2

2 1
   + 3

4

1
 . 

Three-Parameter Weibull pdf:  Shape =;  1
  = MTTF =  + (  )[(1/)  + 1];   

Note that when  = 1, then (  ) = 1/; the 2
nd

 raw moment is given by 

2
  = (  )

2
[(2/)  + 1] + 2(  )[(1/) + 1] + 2 

; 2 = V= (  )
2
[[(2/)  + 1]   


2
[(1/) + 1)] = 2

 

3

3
2 3/2

3 2 1 1
Γ(1+ )-3 Γ(1+ ) Γ(1+ ) + 2 Γ (1+ )

2 1
[ Γ(1+ ) - Γ (1+ )]

β β β β

β β

  , and the kurtosis is 

4

4 3 1 2 1 12 4(1 ) 4 (1 ) (1 ) 6 (1 ) (1 ) 3 (1 )

3
2 12 2[ (1 ) (1 ) ]

              

 

    


     

 

 = 4-3 

The 3
rd

 raw moment is  

3
  = (  )

3
[(3/)  + 1] + 3(  )

2
[(2/) + 1] +32

(  )[(1/) + 1] + 3 
 

4
  = 

4
4 +4 3 1

    6
2

2 1
   + 3

4

1
  



120 

 

Lognormal pdf:  

2ln( )
[ ]1

( )
( )

: , ,
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t

t
t

f  e

 

 
 


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 





, where  =Threshold, or Min-Life, 

 is a location  parameter, and  is scale.  The MTTF = 1
  =  +exp(+2

/2)  and 

 
2 22 2 2eT eV       =

2 2ex ( ) ( )p 2 2 exp 2       =
2 22e (e 1)     , and  

2 22 2 /2 2
2 e 2 e          , the skewness is 3 = 3 /

3
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2 2
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4 = 4 /
4
 = 

2 2 2
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 



   , and the 3
rd

 origin-moment is given by 

                                 3 =
2 2 23 4.5 2 2 2 /2 3e 3 e 3 e             

                                      4
  = 2 4

3 1 2 1 1
4

4 4 6 3           a   

Gamma pdf:   1 ( )[ ( )]
( )

tt ef t  
 

  
   ,  = Threshold, α = Shape, and  =1/ = scale. 

1
  =  +α/;  V(T) = α/

2
 =2

                   
2 2

2 / ( / )         ; 3 = 2 /   , 4 =3+6/ 

and  the kurtosis is  4 = 6/,  

3 3 2 2 3 3 2 2 3 2
3 2 / 3 / / 3 / 3 / 3 /                     , and 4

  =

2 4
3 1 2 1 1

4
4 4 6 3           a . 
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Logistic pdf:  
( )/

( )/ 2

e

[1 e ]
g ;

1
),(

t

t
t

 

 





 

 


  ;      1E T  µ    and   2 2( ) / 3V T      

  1E T    = location = µ,   = Scale;  
2 2

2 1( ) / 3 ( )      ,    < t < ; therefore, for RE-

analyses µ must exceed 10(/ 3 ); the cdf is  

                        G(t; , ) =
( )/

( )/ 11

[1 e ]
[1 e ]

t

t

 

 

 

  


                                 < t < . 

The skewness is zero due to symmetry about µ and the kurtosis is
4

2 24

7 /15

( / 3
3 1.20000

)
   




, 

i.e., the Logistic distribution has thicker tails than the corresponding normal with mean µ and 

variance 2 2 2 / 3   , i.e., the N(µ,  2 2 2 / 3   ).   For example, if the location of the mean 

is µ = 200 hours and scale  = 4.5 hours, then the cdf G(t = 185; 200, 4.5) =  

0.034445195666211, while [(185-200)/ 8.162097139054] = Pr(Z 1.837762984739307) = 

0.033048669103432; so, it seems the left-tail of the Logistic is a bit heavier than that of the 

corresponding normal.  At t = 180, the respective cdfs are 0.011607316445305 (Logistic), and 

0.007135857827108 for the corresponding normal.  So, as we move further on the tail, the 

Logistic seems to become even heavier than the normal.   The 3
rd

 raw moment is given by: 

2 3
3 ( )      , and 

4 2 2 4
4 7( ) /15 2( )         . 

Loglogistic pdf: A rv T has a Loglogistic pdf with threshold   iff X = ln(T) has logistic pdf .                   

T = e
X
 + ,  where X is logistic.   The cdf of Loglogistic is obtained as follows:  

FT(t) = Pr(T  t) = Pr(e
X
 +    t) = Pr(e

X  
 t) = Pr[X   ln(t  )] = FX[ln(t  )]; thus,  
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f(t) = dFT(t)/dt  = dFX[ln(t  )]/dt  = dFX[ln(t  )]/dx](dx/dt) = fX[at ln(t  )](t)
1 

= 

     =
-[ln( - )- ]/

-[ln( - )- )]/ 2

-1e

[1+e ]

1
× ×( )-

t δ μ β

t δ μ β
t δ

β
 
= 

[ln( ) ]/

[ln( ) )]/ 2

e

[1 e ]

1

( )

t

tt

  

  

  

  





, t > ,  > 0. 

Thus, cdf is F(t) = 
[ln( ) )]/

1

[1 e ]
t     


 =

[ln( ) )]/ 1
[1 e ]

t      
  ,        t < , where µ is the 

Location-parameter and  is the scale of the Loglogistic pdf.   It seems that the 1
st
 two moments 

do not generally exist from Johnson & et al.  on p. 152, where the rth raw moment is given by 

E(T
r
) = 

r /e (r / )cosec(r / )      , where on a comparison of their Eq. (23. 89) atop their p. 152 

with the above cdf of Loglogistic  we must have  1/ = , and   = µ/; then csc(r / )  = 

1/ sin(r / )  = 1/ sin(r )  ; for the 1
st
 raw moment r = 1, and 1/ sin( )  = 1/0 , which does not 

exist.  Similarly none of the raw moments for r = 2, 3, 4, 5, …, n exist. 

Note that Johnson, Kotz & Balakrishnan define on their p. 151 the log-logistic variate,  

X, as Y =  + ln(X), where Y is the standard logistic, and X is Log-logistic according to their 

definition.   The pdf of their standard logistic Y is given by:  
y

y 2Y

e

(1 e
f

)
y






  ,  

                 
y

y 2Y

e

(1 e
f  

)
y


     < y <                                           (Eq. 23.8  J. K.,& B [110]) 

In our above notation, we have X =  + ln(T),  where now X is logistic  and T is Loglogistic.   

Then, T = e
(X)/

; this last expression clearly shows that the 3 authors (J. K. and B) [110] are 

using    as location and  as scale, and no minimum-life.  Proceeding as before, we have: 
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FT(t) = Pr(T  t) = Pr[e
(X)/

  t ] = Pr[(X)/ 
 
 ln(t) = Pr[X   + ln(t)] = FX[ln(t) + ]; thus,  

f(t) = dFT(t)/dt  = dFX[ln(t)+  ]/dt  = dFX[ln(t) +  ]/dx](dx/dt) = fX[at ln(t) + ]( /
 
T) = 

[ ln(t) ]

[ ln(t) ] 2

e

t{1 e }

  

  




 ; However, 

[ ln(t) ]
e
  

 = 
ln(t)

e e
 

 = 
ln(t )

e e



 = et

 
 ; 

Thus, f(t) = 
2

e

[1 e ]

t

t t



















 = 
2

2

2

( e

[1 e

)

]

t

t t

t

t





 

 









 

 =
2

e

[ e ]

t

t t













 

 =
2

e

[e 1]

t

t t











 
 

                           f(t) = 
2

1
e

(e 1)

t

t













    t  0 and scale  > 0.  (Eq. 23.88, p.151 of J. K. &B) [110] 

The cdf of T is given by F(t) = 
1

1 et
 


 = 

1
(1 e )t

   
 .    

The raw moments of T are given atop p. 152 of [110] as follows: 

E(T
r
) = 

r / r r
e csc( ) 

 

  
   , where 

r
csc( )




=

r
cosec( )




= 

r
1/ sin( )




. (Eq. 23.90 p.152 of 

[110]) 

From the above Eq.  of [110] we obtain   /e / s n )T i (E  

 

  
 ; this last clearly shows that 

the mean exists iff sin( ) 0



 .  Further, as    , sin( )




 0 and then E(T) does not exist.   

Further, for some 0 <  < 1, sin( )



 < 0 leading to a negative MTTF, which is not admissible. 
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We now compare the cdf of Loglogistic from Minitab, F(t) = 
[ln( ) )]/

1

[1 e ]
t     



[ln( ) )]/ 1
[1 e ]

t      
  ,       t < , with the form provided by [110] as F(t) =

1

1 et
 


 = 

ln( )

1

1 e e
t








= 
ln( )

1

1 e
t








 =
ln( )

1

1 e
t   


=  

[ ln( ) ]

1

1 e
t   


.  Because, [110] do not have 

minimum life, then comparing  ln( )t    against   [ln(t0) µ]/ shows that  =1/, and µ/ = 

.  Hence, the raw moments of Minitab’s Loglogistic at zero-min-life are E(T
r
) = 

r /e (r / )csc(r / )      = 
re (r )cosec(r )    =

re (r ) / sin(r )    ; this again shows that when 

scale  =1, 2, 3, 4, 5, …. E(T) and E(T
2
) do not exist.  When  = 0.50, E(T) exists but E(T

2
) does 

not.   

 We now derive the first four moments of Loglogistic as follows. 

E(T) = 

[ln( ) ]/

[ln( ) )]/ 2

e

[1 e ]( )

t

t

t dt

t

  

  




  

  




 ; letting  z= [ln( ) )] /t      results in  

dz = 
1

[( ) / ]t dt 


                  E(T) = 
z

z 2

e

[1 e ]

dzt






 
 ;  however,  z + µ = ln( )t                 

z
et
 




  ; thus E(T) = 

z z

z 2

( e e

[1 e ]

) dz
 


 










  = 

z(1 )

z 2

e

[1 e ]

dz
e





 





 
  . 

We now let u = 
z

e


 in the above last integral; then, du = 
z

e dz


  , and  du (
z

e ) = dz  

            
1 z

u e

   and   

1
dz u du


   
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  E(T) =  
(1 )

2

0 z
u

[1 u]

du( e )
e







 


   = 

(1 )

2

0

u

[1 u]

du(1/ u)
e








   = 

2

0

u

[1 u]

du
e








   . 

Hildebrand (1962, p. 91) [98] proves that  
c

2

0

x

(1 x)

dx
(1 c) (1 c),




     for all c within the open 

interval (1, +1), i.e., c must lie within 1 < c < +1, or else the integral does not exist. 

Therefore, from Hildebrand’s formula, we obtain   

1
  = E(T) =  e (1 ) (1 )


        = e Beta[(1 ),(1 )]


     =   

       e [(1 ),(1 )]B


      , where 0 <  < 1, where B represents the Beta-function. 

The above Eq. clearly shows that the 1
 = E(T) of a Loglogistic exists iff  0 <  < 1.    

The Beta-function is defined as  Beta( , )a b  = ( , )B a b = 

1
1 1

0

x (1 x) dx
a b 

 =

( ) ( ) / ( )a b a b    , a & b > 0.     Next we derive the 2nd raw moment of the Loglogistic 

density.   

E(T
2
) = 

[ln( ) ]/

[ln( ) )]/ 2

2
e

[1 e ]( )

t

t

t dt

t

  

   

  

  



 
 ;  The same z-transformation yields 

2
 = E(T

2
) = 

z

z 2

2 e

[1 e ]

dz
t







 
  = 

z

z 2

z 2 e

[1 e ]

dz
( e )

 









 
  =    

             
z z

z 2 z 2

2 z 2 z 2e e

[1 e ] [1 e ]

dz dz
2 e e

   
 

 

 

 
 

  
         
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     2
  = 

z(1 ) z(1 2 )

z 2 z 2

2 2e e

[1 e ] [1 e ]

dz dz
2 e e

 
 

 
   

 

 

  
     

Again, letting u = 
ze  results in u

1
 = e

z
 , 

ze dzdu   , or 
z 1dz e du u du    , we obtain 

z(1 )

z 2

e

[1 e ]

dz
 





 
 =

(1 )

2

0 1

(1 u)

u ( u du)
 

 


 = 

2

0 (1 u)

u du



  = (1 ) (1 ) (1 ,1 )B          . 

Similarly, 
z(1 2 )

z 2

e

[1 e ]

dz
 





 
  = (1 2 ,1 2 )B    , 0 <  < 0.50.   Hence,  

                 2
 = E(T

2
) = 

2 2
2 e (1 ,1 ) e (1 2 ,1 2 )B B

 
           , 0 <  < 0.50 

The variance of the Loglogistic is given by 

2 2 2
V(T) 2e (1 ,1 ) e (1 2 ,1 2 ) { e [(1 ),(1 )]}B B B

  
                    

        = 
2 2 2

e (1 2 ,1 2 ) e [(1 ),(1 )]B B
 

         

   µ2=
2 2

e [ (1 2 ,1 2 ) (1 ,1 )]B B


        , 0 ≤  < 0.50; thus the variance does not exist 

outside the range 0 ≤  < 0.50; it does not exist at  = 0.50, and is identically equal to zero at  = 

0, which is not permissible.   On a comparison with J. K. B. Eq.(23.90, p. 152), we may deduce 

that  V(T) = 
2 2 2 2

e [2 csc(2 ) csc ( )]


        , where csc( ) 1/ sin( )    . 

To determine the skewness, we proceed as follows: 

3
  = E(T

3
) = 

z

z 2

3 e

[1 e ]

dz
t







 
 ; because we know that minimum life does not impact the 

variance, then for simplicity we obtain the 3
rd

 raw moment for the case of  = 0; thus 
z

et
 

 , 



127 

 

and hence E(T
3
) = 

z

z 2

3 z 3 e

[1 e ]

dz
e

 







 
  = 

z(1 3 )

z 2

3 e

(1 e

dz
e

)




 





 
 = 

3
e (1 3 ,1 3 )B


   , 0 <  < 

1/3.  The 3
rd

 central moment is given by 

 2
3

3
3

e (1 3 ,1 3 ) 3e (1 2 ,1 2 ) e (1 ,1 ) 2 e (1 ,1 )B B B B
   

                    = 

3 3 3 3
e (1 3 ,1 3 ) e (1 2 ,1 2 ) (1 ,1 ) 2e (1 ,1 )3B B B B
  

                  Hence, the 

skewness is  

3

2 1.503

(1 3 ,1 3 ) (1 2 ,1 2 ) (1 ,1 ) 2 (1 ,1 )
,

[ (1 2 ,

3
0 1

1 2 ) ( 1
3

1 , )]
/

B B B B

B B

       

 


 

          

   
   


 

The 3
rd

 raw moment is given by   

3
 = E(T

2
) =

3 2 2 3
3 e (1 ,1 ) 3 e (1 2 ,1 2 ) e (1 3 ,1 3 )B B B

  
                  

Similarly, the 4
th

 standardized moment is  

4 = 

2

2 4

2

(1 4 ,1 4 ) 4 (1 3 ,1 3 ) (1 ,1 ) 6 (1 2 ,1 2 ) (1 ,1 ) 3 (1 ,1 )

(1 2 ,1 2 ) (1 ,1 )[ ]

B B B B B B

B B

           

   

               

    

, 

Letting  (1 ,1 ) Beta(1 , )C 1B          , the above reduces to 

       4 = 
2

2 4

2

(1 4 ,1 4 ) 4C (1 3 ,1 3 ) 6C (1 2 ,1 2 ) 3C

(1 2 ,1 2 ) C[ ]

B B B

B

     

 

        

  
; thus, the kurtosis 

is 4 = 43, only for 0 <  < 1/4 = 0.25. 


