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Abstract

A radar system’s focus on low probability of intercept (LPI) performance has

become increasingly important as systems designed for electronic support measures

(ESM) and electronic counter measures (ECM) continue to become more prevalent.

Due to the inherent two-way versus one-way propagation loss of a transmitted signal,

radar systems are often highly visible to intercept receivers, and thus have a high

probability of detection. A novel transmit array beamforming approach has been

introduced that offers significant LPI performance gains for radar systems using a

one-dimensional phased antenna array. This method replaces the traditional high-

gain scanned beam with a set of low-gain, spoiled beams scanned across the same

observation area. A weighted summation of these spoiled beams can result in a re-

turn equivalent to that of the traditional high-gain pattern. As a result, the antenna

performance of the radar system remains unchanged while the peak gain of the trans-

mitted signal is reduced considerably. This LPI technique is expanded for the case

of a two-dimensional antenna array. With this added dimension, the computational

complexity of the method is increased, as the pattern now changes with respect to

both θ and φ. Simulation results show that the developed technique is still applicable

for a two-dimensional array. A carefully calculated set of complex coefficients can

be applied across the set of low-gain basis patterns, which are simply the high-gain

patterns spoiled by a certain phase shift, in a weighted summation. The results of

this summation can be shown to provide nearly identical returns when compared to

that of a traditional high-gain single beam scanned across the observation area. The

high-gain transient power is replaced by lower power signals with an increased in-

tegration time, resulting in the same total energy on the target, and thus the same
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detection performance. The simulation results show that the intercept area, the area

in which a hostile intercept receiver can detect the transmitted signal, can be reduced

significantly due to the low gain of the transmitted spoiled patterns. For example,

the intercept area is reduced by as much as 96% in the case of a 32x32 element array.

The LPI benefits of this technique - significantly reducing the range at which a hos-

tile receiver can intercept the radar beam while maintaining the range at which the

radar can detect the target - are of obvious benefit in the ongoing battle of electronic

warfare.
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Chapter 1

Introduction

On the modern battlefield, radar systems have become a vital component of

warfare and can provide a significant military advantage to whoever possesses them.

There are many critical uses of radar systems including both active and passive

surveillance and detection for offensive purposes. These radar systems can assume

many different shapes and forms and can be mounted on a wide range of platforms

such as missiles, aircraft, and sea and land based observation platforms. Regardless

of location, purpose, and scope, however, all radar systems share a high vulnerability

to detection and exploitation by opposing systems.

1.1 Background

1.1.1 Electronic Warfare

The term electronic warfare (EW) is used to classify military action to identify,

prevent, or exploit hostile use of the electromagnetic spectrum. EW can be further

divided into two categories: electronic support measures and electronic countermea-

sures. Electronic support measures (ESM) involve actions taken to search for, identify,

and analyze detected radar signals. Although ESM are by definition passive, they can

provide a source of EW information required to conduct counter measures. Electronic

counter measures (ECM) involve actions taken to prevent or reduce hostile use of the

electromagnetic spectrum, or actions that actively seek to exploit the hostile radar

system. A further distinction, electronic counter-countermeasures (ECCM) involves

actions taken to ensure friendly use of the electromagnetic spectrum despite hostile

ECM efforts [1].
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1.1.2 Growing ECM Threat

The increasing prevalence of ESM and ECM systems poses a great threat to any

system relying on radar performance. For example, aircraft often face great risk from

enemy defenses if they are detected by hostile ESM or ECM systems. Stationary radar

systems also face threats from Anti-Radiation Missiles (ARM). The threat posed by

these missiles has two aspects that must be considered. First, it is to the advantage

of the radar to avoid for as long as possible any reconnaissance of hostile ARM or

ECM systems. Second, in order to protect itself from incoming missiles, the radar

must work to deceive the ARM without interrupting search operations [2].

The operation of a radar system can also be severely hampered by noise jamming

and deception jamming efforts by ECM systems. Noise jamming involves deliberate

radiation in order to disturb the normal operation of a radar, while deception jamming

involves an attempt to deceive the radar using methods such as range deception or

velocity deception [3].

Due to the great risk associated with these threats, it should be a goal of every

radar design facing these dangers to attempt in some capacity to avoid detection by

a hostile system. The steps in the deployment of an ECM system can be listed as

follows:

1. Search in frequency, azimuth, and elevation

2. Detect an incoming radar signal

3. Identify the signal by its emission characteristics and assess priority of the signal

4. Select the proper ECM to employ

5. Initiate the ECM operation

Any delay in any of these steps could prevent timely ECM initiation, providing

an advantage to the detected system; therefore, it is beneficial to design radar systems
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with ECCM properties in an attempt to decrease the threat caused by hostile systems

[4].

1.2 Introduction to Low Probability of Intercept

Because of the increased threat of ESM and ECM systems, a great focus has

been placed on developing radar systems designed to combat the dangers of detection.

Known as low probability of intercept (LPI) radar systems, these sensors have been

designed to reduce the potential for detection and exploitation by ESM and ECM

systems.

1.2.1 Inherent Weakness of Monostatic Radars

An inherent weakness of any monostatic radar system attempting to avoid de-

tection by an intercept receiver involves the difference in propagation loss between

the radar and the receiver. The theoretical performance of such a radar system can

be defined by the radar range equation [5]. For one way propagation of a transmitted

beam, the power density Qi at a point at a distance R away from the transmitting

source can be calculated as

Qi =
PtGt

4πR2
(1.1)

The power reflected by the target back towards the radar can be expressed by the

product of the incident power density and the radar cross section, σ, of the target.

When considering radar propagation, this reflected power must be taken into account

to compensate for the propagation losses of the wave travelling to the target and back

to the transmitter. The resulting power density Qr received at the transmitter can

be calculated as

Qr =
Prefl
4πR2

=
PtGtσ

(4π)2R4
(1.2)
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From these equations, it can be seen that while one-way propagation loss is

proportional to 1/R2, two-way propagation loss is proportional to 1/R4, meaning

that the power received by a radar system is reduced by the power seen by the target

by a factor of 1/R2. This difference benefits the ESM receiver greatly, as it will always

have the advantage over the radar in terms of received power. In strategic terms, this

means that the intercept receiver in most cases will be able to detect the signal of the

radar system before it itself is detected.

1.2.2 Goal of LPI Development

It is important to note that, as active sensors, all traditional radar systems

must have a finite probability of intercept [6]. That is, there is always a minimum

range between the radar and the ESM system where the detection threshold of the

intercepting receiver is exceeded. Therefore, it is not a feasible goal to completely

avoid detection by a hostile system, but rather to delay that detection as long as

possible. The quiet range of a radar can be defined as the range that the radar can

detect a target without interception from a hostile ESM system [7]. The primary

underlying goal of LPI, therefore, is to focus on increasing this range as much as is

practical for a given radar system.

1.3 Existing LPI Techniques

In order to overcome the inherent disadvantage of a radar system due to propa-

gation losses, a number of techniques have been developed to attempt to reduce the

visibility of the radar to any hostile ESM systems to enhance LPI performance. One

of the primary methods of reducing the visibility of a radar system involves spreading

the transmitted energy, either over time, frequency, or space. It should be noted that

technically there exists a distinction between such spread spectrum techniques and

true low probability of intercept techniques [8]. The principal idea of true LPI radar
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is to avoid interception by mismatching the waveform of the radar with the waveforms

that the ESM system is expecting to receive. As a result, the development of such a

system requires the designer to consider the ESM and ECM systems the radar wishes

to avoid, and a complete assessment of the LPI performance must include analysis

of both the radar and the hostile systems [7]. Although this technical distinction

between approaches exists, the term LPI is used universally to describe any system

attempting to reduce its probability of intercept by a hostile system.

1.3.1 Reducing Transmitted Energy Density

As mentioned above, in general the capacity to reduce the visibility of a radar

system involves reducing the energy density of the transmitted signal. This can be

accomplished by spreading the energy over a longer time by using high duty cycle, or

even continuous wave, waveforms, spreading it over a wider bandwidth, or spreading

it in space, reducing the transmit antenna gain by spreading the energy over a wider

angle [6]. Although there are many ways to implement these spreading techniques,

the concept of high duty cycle, wideband waveforms is generally accepted as advan-

tageous to reducing visibility. By increasing the time duration of a waveform, the

peak power can be lowered while maintaining the same average power. By increasing

the bandwidth of the waveform, the power spectral density can be lowered, reducing

the probability of narrowband interception [9]. According to [10], one of the most

effective techniques for reducing the probability of detection by an ESM system is to

implement ultra wide bandwidth pulses, causing the radar’s transmitted signal to be

mismatched to what the intercept receiver is expecting.

The authors of [11] discuss the many advantages of wideband radars, which in-

clude providing better target identification, and a greater reliability of detection.

They can also provide better velocity tracking, as the accuracy of wideband mea-

surements is less affected by target maneuvering than narrowband measurements.
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Wideband radars can also provide better secrecy and electromagnetic compatibility,

and also allow some level of immunity from interference; since the signal energy is

distributed through the spectrum, any jamming signal must be distributed as well,

requiring significantly more power to effectively maintain jamming capability. How-

ever, it is also noted in [11] that excessive widening of the signal bandwidth can lead

to a decrease in detection quality if the bandwidth is increased such that individual

scatterers on the target are resolved in range.

1.3.2 Continuous Wave Radar

As discussed above, waveforms with high duty cycle or pulse repetition frequency

(PRF) allow the transmitted energy to be spread over time, resulting in increased

LPI performance. The PRF of a waveform could be increased to the extreme case

of becoming a continuous-wave (CW) transmission. A significant advantage of a

CW system is the ease and accuracy with which such systems are able to process

Doppler shifts. A disadvantage of CW radars, however, is their inability to measure

range. One solution to this deficiency is the frequency modulated continuous-wave

(FMCW) radar, which generates a range beat by changing the transmitter frequency

[12]. FMCW is a simple way of giving a radar an extremely high time bandwidth

product. This results in a high resistance to interception by ESM systems, due the

impracticality of matching the ESM receiver to the radar’s sweep pattern or effectively

jamming the system [13].

Many believe that a CW waveform is the ideal waveform for LPI radar, as the

peak power of such a system is much lower than that of a pulsed radar. Although the

advantages of a CW, or FMCW, waveform are great, these systems also face certain

limitations. CW systems can be either monostatic, meaning a single antenna for both

transmit and receive, or bistatic, with separate antennas. Monostatic systems suffer
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from leakage due to transmitting and receiving simultaneously. A bistatic arrange-

ment eliminates this problem by separating the transmit and receive antennas by

some distance; however, this separation introduces other issues, such as the difficulty

in correctly synchronizing time and direction between the two antennas [14].

1.3.3 Noise Radar

LPI development in radar systems with pulse or chirp waveforms is becoming

increasingly difficult, as these waveforms are so well defined and therefore are easier

to exploit with ESM systems. As a result, some researchers have begun focusing

on the development of noise radars. Also known as random signal radars, these are

systems whose transmitting signal is modulated by a lower frequency noise, or is itself

microwave noise [15]. An ideal noise waveform is random by nature, resulting in a

nonperiodic waveform. This makes interception extremely difficult, as each successive

pulse is uncorrelated [16]. It has been shown in [17] that both phase and frequency

modulated noise radar can result in a wider output bandwidth and sidebands that

are suppressed significantly more than the modulated signal of a traditional radar

system.

Random signal radars often work in continuous-wave mode. This is due to the

advantanges of CW radar over conventional pulsed radar in regards to LPI perfor-

mance, and also the ease with which random signal radar can be operated in CW

mode. However, the inherent disadvantages of CW radar, such as leakage in the case

of a monostatic setup, also apply to these random signal radars. This leakage, and its

constraing on operating range, can be the most difficult weakness to overcome when

developing random signal radars [15].
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1.3.4 Frequency Hopping

Another area of research involves frequency hopping. If the total illumination

time on a target is longer than the coherent processing interval required by the radar,

the carrier frequency of the transmitted signal may be changed to allow a new coherent

processing interval to begin. Such frequency agility greatly increases the difficulty

of interception by an ESM system, as the interceptor receiver must now cover the

entire frequency band implemented by the radar [18]. Much research has been done

and many papers have been written on development in this area, such as techniques

based on the application of spread spectrum-frequency hopping methods [19], and

modulators for burst-by-burst carrier frequency hopping in TDMA systems [20].

1.3.5 Other Methods

Many other methods exist to reduce visibility and enhance LPI performance. In

[21], a novel approach has been proposed involving antenna hopping. In this paper,

the author argues that frequency or phase modulation can be imposed on a signal by

the phase shift resulting from switching either receiver input or the transmitter output

among a set of antennas. Some researchers, seeing a potential need for radars without

a scanning transmit main beam, have developed what are known as omnidirectional

radars. These systems, such as the one discussed in [2], require the transmitter to

illuminate the search area continuously, due to the lack of a main scanning beam. Al-

though these systems have very low transmit gain, they are dependent upon multiple

receiving beams to provide continuous coverage of the observation space.

1.4 A Novel Approach to LPI

In [22], a novel technique is developed to provide low probability of interception

for radar systems with phased array antennas. This method involves replacing the

traditional high-gain antenna beam used to scan a search region with a weighted
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summation of a set of low-gain, ”spoiled” beams. These spoiled beams are created

by simply adding a certain phase shift pattern across the array to reduce gain; thus,

this technique could in theory be applied to an existing array with minimal modifica-

tions. The goal of this technique is to reduce the peak gain of the transmitted pattern

while maintaining the same performance as a traditional scanned radar system with a

high-gain main beam. It should be noted that this method is not designed to increase

the quiet gain of the radar, that is, the range at which the radar can detect a target

without interception from a hostile ESM system; therefore, such a system still has

no guarantee of being able to detect a target before being detected itself. Rather,

the technique simply aims to reduce as much as possible the intercept range of an

ESM receiver, thus reducing the probability of intercept. It can be shown using (1.1)

that a reduction of 10 dB in the gain of the transmitting antenna reduces the maxi-

mum intercept range of the ESM system by a factor of 1/
√

10. This translates into a

90% reduction in the intercept area of the ESM receiver. If the detection range and

performance of the transmitting radar can be maintained while also drastically reduc-

ing the intercept range of any potential hostile ESM systems, then the LPI benefits

of such a technique would be substantial. The author of [22] claims to accomplish

this feat by effectively replacing the traditional high gain transient sweep with lower

power beams radiated persistently over the observation area, as demonstrated in the

following chapter.

9



Chapter 2

Original LPI Approach

In [22], the author develops a beam-spoiling technique designed to increase LPI

performance of a radar system. The main approach of this method involves sequen-

tially forming a series of low-gain spoiled beams over the desired search area instead

of scanning with a single high-gain transmit beam. The author claims that after

transmitting and receiving the spoiled beams, the set of formed low-gain beams can

be weighted and combined to achieve the same detection results as a single high-

gain beam, effectively replacing high transmit power with increased scan times. This

technique would reduce the peak power radiated in any one direction while still main-

taining the same antenna performance as a traditional scanned radar system.

2.1 Theoretical Development of the Original Approach

The high-gain pattern synthesis approach presented in [22] applies to a one-

dimensional linear phased antenna array, as shown in Figure 2.1. The far-field radi-

ation pattern of such an array with N elements can be expressed as

f0(θ) = 1 + ejβd sin(θ) + ej2βd sin(θ) + ...+ ej(N−1)βd sin(θ) (2.1)

where β = 2π/λ is the free-space propagation constant, d is the array element spacing,

and θ is the spatial angle measured from the broadside direction. To reduce the

complexity of the calculations, it is beneficial to make the substitution ψ = βd sin(θ).

If θ varies from −90◦ to 90◦, then ψ will vary from −jβd to jβd. The step size of this

array will determine the precision of the array pattern. In [22], d is set at one half
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Figure 2.1: N-element linear phased array antenna

of a wavelength (d = λ/2), but because of the substitution of ψ into the equations,

the element spacing and frequency can be changed without increasing the complexity

of the mathematics. With the substitution, the fundamental array pattern can be

rewritten as

f0(ψ) = 1 + ejψ + ej2ψ + · · ·+ ej(N−1)ψ (2.2)

This array pattern results in a main lobe with high gain directed broadside to the

array. This main lobe can be scanned by applying a linear phase progression across

the elements of the array. In [22], a phase scan of γ = 2π/N is selected. This allows

a total of N scanned patterns to be produced; that is, N distinct far-field patterns

exist with the center of the main lobe pointing in N even increments between −90◦

and 90◦. The number of scanned patterns, and hence the density of the scanned area,

can either be increased or reduced as desired by changing the value of N in γ. The
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set of scanned patterns can be written as

f1(ψ) = 1 + ejγejψ + ej2γej2ψ + · · ·+ ej(N−1)γej(N−1)ψ

f2(ψ) = 1 + ej2γejψ + ej4γej2ψ + · · ·+ ej2(N−1)γej(N−1)ψ

...

fN−1(ψ) = 1 + ej(N−1)γejψ + · · ·+ ej(N−1)(N−1)γej(N−1)ψ (2.3)

For purposes of LPI applications, it is desirable to reduce the peak power trans-

mitted in any one direction to reduce the potential for detection by ECM systems,

while still maintaining the same range and coverage. The author of [22] proposes that

this can be accomplished by creating a set of low-gain, spoiled basis patterns which

can then be weighted and combined to form a far-field pattern with gain equivalent

to that of the original fundamental array pattern. For optimal performance in this

scheme, the low-gain patterns should have low gain and broad beamwidth. It is possi-

ble to create such a spoiled beam by applying a certain phase shift to each element of

the array. In [22], a quadratic phase shift, shown in Figure 2.2, is applied across the

elements of the array used to create the low gain pattern. This phase shift pattern

both defocuses the beam and reduces the gain of the array.

Such an antenna array pattern can be expressed as

g0(ψ) = 1 + ejα1ejψ + ejα2ej2ψ + · · ·+ ejαN−1ej(N−1)ψ, (2.4)

where α1, α2, . . . αN−1 are shown in Figure 2.2. When comparing (2.2) and (2.4), it is

obvious that the basis pattern g0 is simply the fundamental pattern f0 ”spoiled” by

applying the phase shift pattern. Figure 2.3 shows the fundamental array pattern g0

and the fundamental basis pattern f0. In these simulations, the gain of the main lobe
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Figure 2.2: Quadratic Phase Shift
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Figure 2.3: Fundamental Array Pattern and Basis Pattern

of the f0 is approximately 15 dB, while the maximum gain of g0 is approximately 1.7

dB.

As in the case of the fundamental array pattern, a set of N low-gain patterns

can be formed by applying the same linear phase progression, which can be written

as

g1(ψ) = 1 + ejα1ejγejψ + · · ·+ ejαN−1ej(N−1)γej(N−1)ψ

g2(ψ) = 1 + ejα1ej2γejψ + · · ·+ ejαN−1ej2(N−1)γej(N−1)ψ

...

gN−1(ψ) = 1 + ejα1ej(N−1)γejψ + · · ·+ ejαN−1ej(N−1)(N−1)γej(N−1)ψ (2.5)

14



Figure 2.4: Basis Patterns

Again, when comparing (2.3) and (2.5), it is apparent that the set of basis patterns

are simply the equivalent steered patterns spoiled by the phase shift pattern shown

in Figure 2.2. As a result, each basis pattern gn is steered to a specific angle of θ,

just as the original steered pattern; however, due to the spoiling effect of the applied

phase shift, the gain of the main lobe is reduced, resulting in the patterns shown in

Figure 2.4. Although steered to different angles, the set of basis patterns appear to

be indistinguishable because of the spoiling effect.

If it is assumed that the original fundamental array pattern can be written as a

linear combination of the set of basis patterns, then the reconstructed pattern can be

written as

f0(ψ) = ω0,0g0(ψ) + ω0,1g1(ψ) + ω0,2g2(ψ) + · · ·+ ω0,N−1gN−1(ψ) (2.6)
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ω(0, n) represents the weighting of each basis pattern that is required for the sum of

the basis patterns to have a far-field pattern equivalent to that of the fundamental

array. This process can be extended to reconstruct all N possible array patterns from

(2.3) as follows

f1(ψ) = ω1,0g0(ψ) + ω1,1g1(ψ) + ω1,2g2(ψ) + · · ·+ ω1,N−1gN−1(ψ)

= 1 + ejγejψ + ej2γej2ψ + · · ·+ ej(N−1)γej(N−1)ψ

f2(ψ) = ω2,0g0(ψ) + ω2,1g1(ψ) + ω2,2g2(ψ) + · · ·+ ω2,N−1gN−1(ψ)

= 1 + ej2γejψ + ej4γej2ψ + · · ·+ ej2(N−1)γej(N−1)ψ

...

fN−1(ψ) = ωN−1,0g0(ψ) + ωN−1,1g1(ψ) + ωN−1,2g2(ψ) + · · ·+ ωN−1,N−1gN−1(ψ)

= 1 + ej(N−1)γejψ + · · ·+ ej(N−1)(N−1)γej(N−1)ψ (2.7)

In order to calculate the needed weights, a matrix equation can be set up by equating

the equal powers of ejψ of the high-gain patterns and basis patterns. For example,

for the fundamental pattern f0(ψ), an equation can be set up to find the coefficients

ω0,n

A ·



ω0,0

ω0,1

ω0,2

...

ω0,N−1


=



1

1

1

...

1


(2.8)
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where the matrix A is defined in (2.9).

A =



1 1 1 1

ejα1 ej(α1+γ) ej(α1+2γ) · · · ej(α1+(N−1)γ)

ejα2 ej(α1+2γ) ej(α2+4γ) ej(α1+(N−1)γ)

...
. . .

...

ejαN−1 ej(αN−1+(N−1)γ) ej(αN−1+2(N−1)γ) · · · ej(αN−1+(N−1)(N−1)γ)


(2.9)
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Similar matrix equations can be set up relating each of the scanned beams to the

set of basis patterns, resulting in a total of N scanned beams

A ·



ω1,0

ω1,1

ω1,2

...

ω1,N−1


=



1

ejγ

ej2γ

...

ej(N−1)γ



A ·



ω2,0

ω2,1

ω2,2

...

ω2,N−1


=



1

ej2γ

ej4γ

...

ej2(N−1)γ


...

A ·



ωN−1,0

ωN−1,1

ωN−1,2

...

ωN−1,N−1


=



1

ej(N−1)γ

ej2(N−1)γ

...

ej(N−1)(N−1)γ


(2.10)
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These equations can then be combined into a single matrix equation to solve for

all the coefficients simultaneously



ω0,0 ω1,0 ω2,0 ωN−1,0

ω0,1 ω1,1 ω2,1 · · · ωN−1,1

ω0,2 ω1,2 ω2,2 ωN−1,2

...
. . .

...

ω0,N−1 ω1,N−1 ω2,N−1 · · · ωN−1,N−1



= A−1 ·



1 1 1 1

1 ejγ) ej2γ · · · ej(N−1)γ

1 ej2γ) ej4γ ej2(N−1)γ

...
. . .

...

1 ej(N−1)γ) ej2(N−1)γ · · · ej(N−1)(N−1)γ


(2.11)

The complex coefficient weights found allow high-gain patterns to be formed by linear

combinations of the N spoiled beams. Once these weights have been calculated, all

N of the steered high-gain patterns can be synthesized at once. Figure 2.5 shows the

reconstructed high-gain patterns steered to 0 deg, +30 deg, and -30 deg.
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Figure 2.5: Scanned Patterns
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Chapter 3

Expansion of the 2D Method Into 3D

Although the method developed in the previous chapter has obvious benefits for

designing a LPI method of beamforming, a one-dimensional antenna array design,

which can only point in one plane, is not practical for a real world radar system.

Therefore, it is beneficial to explore whether this technique can be expanded into

three dimensions. In order to create a far-field array pattern that is scannable in

both directions, a two-dimensional antenna array must be used instead of the original

one-dimensional array. The analysis for the two-dimensional array follows the same

theory as for the one-dimensional array; however, each element now has radiation

components in both the x and y planes, represented by θ and φ, respectively. Similarly

to the case of the one-dimensional array, we can make the substitutions ψn = βd sin(θ)

and ψm = βd sin(φ). Throughout this theoretical development, n represents the rows

of the array of N elements, while m represents the columns of the array of M elements.

If the range −90◦ ≤ θ ≤ 90◦ and −90◦ ≤ φ ≤ 90◦ is considered, then both ψn and

ψm will vary from −jβd to jβd, with the step size determining the precision of the

array pattern. This antenna configuration and range of angles allows the creation of

a far-field array pattern that can be scanned to any point over a the hemisphere in

front of the array.
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3.1 Theoretical Calculations

Allowing for changes in both θ and φ, the fundamental array pattern of a NxM

two-dimensional array can be written as

f0(θ, φ) = 1 + ejβd sin(θ)ejβd sin(φ) + ej2βd sin(θ)ej2βd sin(φ)+

...+ ej(N−1)βd sin(θ)ej(N−1)βd sin(φ)

=
N−1∑
n=0

M−1∑
m=0

ejnψnejmψm

(3.1)

As in the case of the one-dimensional antenna array, a linear phase progression can

be applied across the array to steer the main lobe. If this phase scan is selected to be

γ = 2π/N ,the a total of NM scanned beams can be formed, with N beam pointing

angles in θ and M beam pointing angles in φ. It should be noted that this selection of

the phase scan is made for convenience in showing the equations involved in developing

the technique. The value of γ, and thus the scanning angle increment, can be changed

with only minor modifications to the equations developed below. The linear phase

progression can be applied across the elements of the two-dimensional array as follows:

First, an increasing phase progression of γ will be applied incrementally across the

rows of the array only, resulting in N beam formations that vary only in θ. A phase of

γ will then be applied across the columns of the array, and the same increasing phase

progression will be applied across the rows to create another N beams formations.

This process will be repeated M times until a total of NM beam formations have
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been created. The set of scanned beams can be represented as

f1(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejn(ψn+γ)ejmψm

f2(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejn(ψn+2γ)ejmψm

f3(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejn(ψn+3γ)ejmψm

...

fN−1(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejn(ψn+(N−1)γ)ejmψm

fN(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejnψnejm(ψm+γ)

fN+1(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejn(ψn+γ)ejm(ψm+γ)

...

fN2−1(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejn(ψn+(N−1)γ)ejm(ψm+(N−1)γ) (3.2)

Now, the same assumption from the one-dimensional case is made: that the above

high-gain patterns can be created from a weighted combination of low-gain, spoiled

basis patterns. These basis patterns are similar to the basis patterns developed for the

two-dimensional array, except that now they must account for changes in the x and

y planes. Also, a new set of phase shifts must be developed for the two-dimensional

array. Again, each element will have a certain phase shift αn,m applied to it, with the

ultimate goal of creating a defocused, spoiled far-field pattern. The selection of the

values of α is discussed further in Section 3.2. The fundamental basis pattern can be
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written as

g0(θ, φ) =1 + ejα0,1ejβd sin(θ)ejβd sin(φ) + ejα0,2ej2βd sin(θ)ej2βd sin(φ) + ...

+ ejαN−1,N−1ej(N−1)βd sin(θ)ej(N−1)βd sin(φ)

=
N−1∑
n=0

M−1∑
m=0

ejαn,mejnψnejmψm

(3.3)

Again, it should be noted that the only difference between this pattern and the

fundamental array pattern from (3.2) is the extra phase shift αn,m, which serves to

spoil the high gain beam pattern. As in the case of the high-gain array patterns, a set

of N2 low-gain basis patterns can be formed by applying a linear phase progression

γ across the elements of the array. The application of γ follows the same pattern

used for the high-gain patterns: incrementing the phase progression applied across
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the rows, and then the columns, as observed in the following

g1(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejα0,1ejn(ψn+γ)ejmψm

g2(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejα0,2ejn(ψn+2γ)ejmψm

g3(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejα0,3ejn(ψn+3γ)ejmψm

...

gM−1(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejα0,M ejn(ψn+(N−1)γ)ejmψm

gM(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejα0,M ejnψnejm(ψm+γ)

gM+1(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejα0,M ejn(ψn+γ)ejm(ψm+γ)

...

gN2−1(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejαN−1,N−1ejn(ψn+(N−1)γ)ejmψm+(N−1)γ (3.4)

The equations for both the high-gain patterns and the low-gain patterns can be

reduced to

fi(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejn(ψn+aγ)ejm(ψm+bγ) (3.5)

gi(ψn, ψm) =
N−1∑
n=0

M−1∑
m=0

ejαm,nejn(ψn+aγ)ejm(ψm+bγ) (3.6)

25



where

i = Na+ b+ 1

0 ≤ a ≤ N − 1

0 ≤ b ≤M − 1

As before, the fundamental array pattern can be shown as a weighted combina-

tion of all N2 basis patterns

f0(θ, φ) = ω0,0g0(θ, φ) + ω0,1g1(θ, φ) + · · ·+ ω0,N2−1gN2−1(θ, φ)

f1(θ, φ) = ω1,0g0(θ, φ) + ω1,1g1(θ, φ) + · · ·+ ω1,N2−1gN2−1(θ, φ)

...

fN2−1(θ, φ) = ωN2−1,0g0(θ, φ) + ωN2−1,1g1(θ, φ) + · · ·+ ωN2−1,N2−1gN2−1(θ, φ) (3.7)

Expanding the high-gain pattern and the basis patterns and equating equal powers of

ejψn and ejψm allow the following matrix equation to be constructed for the coefficients

required to recreate the fundamental array pattern f0

A ·



ω0,0

ω0,1

ω0,2

...

ω0,N2−1


=



1

1

1

...

1


(3.8)

where A is defined in (3.9). The phase shifts applied to the rows and columns in

this equation are represented by γn and γm, respectively. In this research, the phase

applied across the rows and the columns are considered to be equal, i.e. γn = γm;
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however, the separate phases are shown in (3.9) to aid in the explanation of the

construction of the matrix A.
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A
=

                         ej
α
0
,0

ej
α
0
,0

ej
α
0
,0

ej
α
0
,0

ej
α
0
,1

ej
(α

0
,1
+
γ
m
)

ej
(α

0
,1
+
2
γ
m
)

··
·

ej
(α

0
,1
+
(N

−
1
)γ

m
)

ej
α
0
,2

ej
(α

0
,2
+
2
γ
m
)

ej
(α

0
,2
+
4
γ
m
)

ej
(α

0
,2
+
2
(N

−
1
)γ

m
)

. . .
. . .

ej
α
0
,N

−
1

ej
(α

0
,N

−
1
+
(N

−
1
)γ

m
)

ej
(α

0
,N

−
1
+
2
(N

−
1
)γ

m
)
··
·

ej
(α

0
,N

−
1
+
(N

−
1
)(
N
−
1
)γ

m
)

ej
α
1
,0

ej
α
1
,0

ej
α
1
,0

··
·

ej
(α

1
,0
+
(N

−
1
)γ

n
)

ej
α
1
,1

ej
(α

1
,1
+
γ
m
)

ej
(α

1
,1
+
2
γ
m
)

··
·

ej
(α

1
,1
+
(N

−
1
)γ

n
+
(N

−
1
)γ

m
)

. . .
. . .

ej
α
N

−
1
,N

−
1
ej

(α
N

−
1
,N

−
1
+
(N

−
1
)γ

)
ej

(α
N

−
1
,N

−
1
+
2
(N

−
1
)γ

)
··
·

ej
(α

N
−
1
,N

−
1
+
(N

−
1
)(
N
−
1
)γ

n
+
(N

−
1
)(
N
−
1
)γ

m
)                         

(3
.9

)

28



This process can be repeated to form a total of N2 matrix equations

A ·



ω1,0

ω1,1

ω1,2

...

ω1,N2−1


=



1

ejγ

ej2γ

...

ej(N−1)γ



A ·



ω2,0

ω2,1

ω2,2

...

ω2,N−1


=



1

ej2γ

ej4γ

...

ej2(N−1)γ


...

A ·



ωN−1,0

ωN−1,1

ωN−1,2

...

ωN−1,N−1


=



1

ej(N−1)γ

ej2(N−1)γ

...

ej2(N−1)(N−1)γ


(3.10)
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The above matrix equations can be combined into a single N2xN2 matrix equation

to solve for all equations simultaneously.



ω0,0 ω1,0 ω2,0 ω(N−1)2,0

ω0,1 ω1,1 ω2,1 · · · ω(N−1)2,1

ω0,2 ω1,2 ω2,2 ω(N−1)2,2

...
. . .

...

ω0,(N−1)2 ω1,(N−1)2 ω2,(N−1)2 · · · ω(N−1)2,(N−1)2



= A−1 ·



1 1 1 1

1 ejγ ej2γ · · · ej(N−1)γ

1 ej2γ ej4γ ej2(N−1)γ

...
. . .

...

1 ej(N−1)γ ej2(N−1)γ · · · ej2(N−1)(N−1)γ


(3.11)

As discussed in the analysis of the two-dimensional case, once the complex co-

efficients have been calculated, all N2 steered patterns can be synthesized at once.

Because the complex coefficients can be calculated prior to scanning, the performance

of the radar system will not be dependent upon the computation time required to

find these values.
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Figure 3.1: 2-Dimensional quadratic phase shift values

3.2 Calculation of Phase Shift Values

Before the theoretical equations developed in the previous section can be tested,

phase shift values must be chosen to create the low gain basis patterns. As seen

in Figure 2.2, the author of [22] chose a quadratic phase shift applied across the

array. This served to defocus the beam and reduce the gain of the array. For the

two-dimensional array, the quadratic pattern of the phase shift was reused, only

transformed into a two dimensional pattern, as shown in Figure 3.1. First, one quarter

of a two-dimensional quadratic was created with the equation

a = scale ∗ (
3

N2
)2 ∗ (2πt)2 (3.12)
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Figure 3.2: Alpha values used to create basis patterns for the two-dimensional array

which was then expanded to form the full quadratic. This pattern was then used to

create an array pattern of the following form

f(ψn, ψm) =
N∑
n=0

M∑
m=0

ejαn,mejnψnejmψm (3.13)

and the maximum gain of the pattern was calculated. A simulated annealing algo-

rithm was then used to minimize this gain by manipulating the scalar scale of the

equation. Once the optimal scale was found, the simulated annealing algorithm was

again used to manipulate the individual α values in order to reduce the gain as much

as possible. A tolerance of ±1 for each point was used to reduce computation time.

An example of the optimized phase shift values found is shown in Figure 3.2.
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Figure 3.3: Fundamental basis pattern for an 8x8 array pattern

The resulting phase shift values created a low-gain, ”spoiled” beam, as shown in

Figure 3.3 for an 8x8 antenna array. The maximum gain of this spoiled pattern is ap-

proximately 4.7 dB, while the gain of the main lobe of the pattern without the applied

phase shift is approximately 18 dB. Thus, it can be verified that by adding a certain

series of phase shifts to an array pattern, such as the two-dimensional quadratic used

above, the gain of the main beam of a pattern can be reduced significantly.

33



Chapter 4

Simulation Results

The MATLAB programming environment was used for all the following simu-

lations, due to its advantages in handling the large matrix calculations needed in

the discussed beamforming technique. As discussed in the development of the the-

ory behind the technique, the bulk of the computational resources are needed only

in calculating the complex coefficient weights used in the combination of the basis

patterns. Once these coefficients are calculated, the weights can be applied to the

returns of each individual basis function to form an equivalent high-gain beam.

4.1 Simulation Procedure

As discussed in Chapter 3, the field of view taken into consideration is defined by

the range −90◦ ≤ θ ≤ 90◦ and −90◦ ≤ φ ≤ 90◦. The step size of θ and φ control the

precision of the simulated far-field patterns. From the previous chapters, it is apparent

that the calculation of the complex weights is not dependent upon θ and φ; therefore,

the step size is only relevant for the simulation results. Because the ranges of θ and φ

are constant, the values of ψn = βd sin(θ) and ψm = βd sin(φ) remain constant. Two

arrays representing ψn and ψm were created and used throughout the simulations. For

these simulations, the spacing between elements, d, in both the rows and the columns

of the array was set to λ/2 so that ψn = π sin(θ) and ψm = π sin(φ). Because the

arrays representing ψn and ψm remain constant throughout the development of the

complex weights, the element spacing, as well as the frequency of the transmitted

signal, can be changed without affecting the complexity of the computations.
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The plots shown in the following sections are the general normalized power pat-

terns of the array, expressed as [23]

P (θ, φ) = |F (θ, φ)|2

where Fi(θ, φ) has been defined in previous chapters as f0, f1, etc... This power pattern

is further divided by the number of elements, N in the case of the one-dimensional

array and N2 in the case of the two-dimensional array, in order to normalize the

patterns with regards to the number of elements in the array.
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Figure 4.1: Fundamental array pattern for an 8x8 element array

4.2 Simulation Results for an 8x8 Element Array

The simulations were first run for an 8x8 element antenna array. As expected,

the fundamental array pattern f0, shown in Figure 4.1, demonstrates a high gain main

lobe directed broadside to the array, as well as reduced sidelobes along the x and y

axes. Figure 4.2 shows the pattern in the XZ plane, allowing clearer distinction of

the main beam and side lobes. The fundamental basis pattern g0 for the 8x8 array

can be seen in Figure 4.3. As desired, this ”spoiled” pattern exhibits lower, more

uniform gain than the fundamental pattern. The peak gain of f0 is approximately 18

dB, while the peak gain of g0 is approximately 5 dB. This gain difference of 13 dB

corresponds to an approximately 95% reduction in the intercept area.

Following the procedures developed in Chapter 3, a set of 8 ∗ 8 = 64 spoiled

patterns were created, all possessing low, semi-uniform gain similar to Figure 4.3.

Using these patterns, a set of complex coefficients were calculated to allow assembly of

the scanned array patterns from a weighted summation of the 64 basis patterns. The

recreated fundamental array, with the values θ = 0◦ and φ = 0◦, is shown in Figure 4.4.
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Figure 4.2: Fundamental array pattern for an 8x8 element array - XZ Plane

Figure 4.3: Fundamental basis pattern for an 8x8 element array - XZ Plane
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Figure 4.4: Recreated fundamental array pattern for an 8x8 element array

The recreated pattern appears to be virtually identical to the original fundamental

pattern, and further analysis in MATLAB shows that the average difference between

the two patterns is approximately 8× 10−8 dB.

Similarly, each of the remaining 64 scanned array patterns can be recreated

by the appropriate weighted summation of the basis patterns. After the complex

coefficient values have been calculated, all of the scanned patterns can be constructed

simultaneously. An example of one of the scanned patterns, with the main beam

pointed at θ = −15◦ and φ = 15◦ can be seen in Figure 4.5. Each of the reconstructed

patterns has the same beamwidth and gain of this pattern, the only difference being

the pointing angle of the main beam.
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Figure 4.5: Recreated array pattern for an 8x8 element array with θ = −15◦ and
φ = 15◦

4.3 Simulation Results for a 32x32 Element Array

Next, the simulations were run for a 32x32 element array. The fundamental

array pattern of this array, when θ = 0◦ and φ = 0◦, is shown in Figures 4.6 and

4.7. Again, this pattern demonstrates a high gain main lobe directed broadside to

the array and sidelobes along the x and y axes. As before, a set of 32 ∗ 32 = 1024

spoiled basis patterns were created. The fundamental basis pattern, when θ = 0◦ and

φ = 0◦, is shown in Figure 4.8. The peak gain of the fundamental array pattern f0

is approximately 30 dB, while the peak gain of the fundamental spoiled pattern is

approximately 16 dB. This gain difference of 14 dB corresponds to an approximately

96% reduction in the intercept area.

Following the theory developed in Chapter 3, a set of complex coefficients were

calculated to allow creation of the scanned array patterns from a weighted summation

of these spoiled beams. The recreated fundamental array, once again with θ = 0◦ and

φ = 0◦, is shown in Figure 4.9. Again, the recreated pattern appears to be virtually
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Figure 4.6: Fundamental array pattern for a 32x32 element array

Figure 4.7: Fundamental array pattern for a 32x32 element array - XZ Plane
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Figure 4.8: Fundamental basis pattern for a 32x32 element array

identical to the original fundamental pattern, with an average difference between the

two patterns of approximately 5 × 10−15 dB. After the complex weights have been

calculated, any scanned pattern can be recreated from the spoiled patterns. Figures

4.10, 4.11, and 4.12 show a recreated beam with scan angles of θ = 26◦ and φ = 44◦.

As in the case of the 8x8 array in the previous section, all of the reconstructed patterns

have the same bandwidth and gain as the original pattern.
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Figure 4.9: Recreated fundamental array pattern for a 32x32 element array

Figure 4.10: Recreated array pattern for a 32x32 element array with θ = 26◦ and
φ = 44◦
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Figure 4.11: Recreated array pattern for a 32x32 element array with θ = 26◦ and
φ = 44◦ - XZ Plane

Figure 4.12: Recreated array pattern for a 32x32 element array with θ = 26◦ and
φ = 44◦ - YZ Plane
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Chapter 5

Implementation

5.1 Implementation Into an Existing Radar System

It has been shown that the high gain resulting from a traditional scanned main

beam can be greatly reduced by using the method developed in Chapters 2 and 3.

This technique involves replacing the high-gain beam resulting from a linear array

with a weighted summation of a set of low gain, spoiled beams. In Chapter 4, it

was shown that the beam patterns constructed from the superposition of these low

gain basis patterns result in a far field pattern of similar shape and gain to that

of the original high-gain pattern. As noted in the original development of the one-

dimensional array in [22], this technique effectively trades transient peak power with

sustained low power on the target over the search region, resulting in the same amount

of total energy on the target.

In order to implement this theoretical approach into a practical radar system,

the new beamforming technique must be integrated with the existing radar wave-

form. Many different waveforms can be used for different radar systems; however,

the integration of this technique can most easily be observed with a standard pulsed

waveform.

First, consider operation of a traditional waveform with a high-gain main lobe

that is scanned across the search region. The beam is scanned by applying a linear

phase progression across the elements of the array. If the phase-shifter settings of the

system are designed so that the phase progression is increased with each pulse, then

each pulse corresponds to a particular location of the scanned main beam. Likewise,

if the phase shift values designed to form the low-gain patterns are applied across the
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array, then each pulse corresponds to a particular low-gain basis pattern, i.e. pulse

#1 for g0, pulse #2 for g1, etc... The returns of each pulse can then be processed

through a matched filter and stored in memory. After all N pulses, and thus all N

basis patterns, have been transmitted and received, the precalculated complex weights

can be applied across the samples and summed. Each set of weights will result in

the equivalent range return of a single high-gain main beam with the same phase

progression. Once returns from all N basis patterns have been stored, any of the

equivalent high-gain patterns can be formed simultaneously, requiring no additional

scanning time when compared to the traditional method.

5.2 Two-way Analysis

In the theory developed in this paper, it is assumed that separate antenna arrays

are used to transmit and receive, i.e., the pattern created from the antenna array is

only affected on transmit. This is referred to as one-way synthesis. In developing the

pattern theory for a one-dimensional array in [22], the author also considers the case

where the same antenna array is used for both transmit and receive. In this scenario,

the one-way pattern developed in Chapter 2 is not sufficient to fully describe the

pattern seen by the receiver, as the target return must now be scaled by the square

of the pattern. The synthesis of the resulting patterns is more complex than with

separate antennas, and is accomplished by a linear combination of two-way basis

patterns.

The analysis of the two-way pattern synthesis follows the same procedure as

that for the one-way synthesis shown in Chapter 2; however, in each step the squared

version of the patterns must be used. For example, for the case of the one-dimensional

antenna array, instead of developing the expressions for fn(ψ) and gn(ψ), the analysis

must now develop expressions for f 2
n(ψ) and g2n(ψ), respectively. Following this logic,
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the weighted summation of the two-way basis patterns can now be written as

f 2
n(ψ) = ωn,0g

2
0(ψ) + ωn,1g

2
1(ψ) + · · ·+ ωn,2N−2g

2
2N−2(ψ) (5.1)

Because the squared versions of the patterns are used, 2N − 1 scanned patterns will

be created, as opposed to the N scanned patterns created for one-way synthesis. It

is shown in [22] that, in the context of the developed technique, two-way synthesis

has comparable results to one-way synthesis. That is, each of the 2N − 1 scanned

patterns can be recreated from a weighted summation of low gain spoiled patterns.

When considering the two-way synthesis for a two-dimensional antenna array,

the complexity introduced by the squaring of the patterns increases the computa-

tional requirements greatly. When analyzing an array with NxN elements, one-way

synthesis will result in N2 basis patterns, requiring N4 complex coefficients for the

superposition of the spoiled patterns. Two way synthesis of this array would result

in 2N2− 1 basis patterns, requiring 2N4− 1 complex coefficients. The mathematical

complexity required to develop the matrix equations needed to solve for the complex

coefficients is increased substantially. However, as in the case of one-way synthesis, all

of these calculations can be completed prior to scanning. As a result, two-way synthe-

sis would require no additional scanning time when compared to one-way synthesis,

or to the traditional scanning method.

5.3 Computational Limitations

The computational complexity required to develop the needed set of spoiled

basis functions and complex coefficients can vary greatly. With larger array sizes or

smaller step sizes comes a greater required processing power. From the theoretical

development shown in Chapter 3, it is evident that the creation of the set of spoiled

patterns, as well as the calculation of the complex coefficients, is entirely dependent

46



upon the dimensions of the array and step size. Thus, all of the complex coefficient

weights needed to accurately form an equivalent scanned pattern from the set of basis

patterns can be calculated independently of the actual operation of the radar. This

means that the radar itself is not responsible for any of the computationally intensive

matrix calculations, but only for applying the previously calculated weights to the

stored return information.

5.4 Hardware Requirements

As mentioned before, the low-gain basis patterns that need to be transmitted

are simply the high-gain patterns of a traditional system spoiled by a certain phase

shift. As a result, no additional hardware would have to be added to an existing

array in order to transmit these beams; another phase scan would simply be added to

each element before transmitting. The only other hardware needed to implement this

technique would be a means of storing the returns of each of the N transmitted basis

patterns, as well as the hardware necessary to carry out the weighted summation.

5.5 Doppler

It should be noted that, due to the importance of the phase relationship between

basis patterns, a target must remain coherent over the scan time of the radar. If the

target does not remain coherent, as would be likely in the case of long scan times,

motion compensation may be required to allow for the target dynamics. This extra

processing is a factor that must be considered when integrating this LPI technique

with an existing radar system.
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5.6 Areas for Future Research

There are several areas in which this research could be continued and expanded.

First, it would be beneficial to work through the calculations to determine the matrix

equations required to fully analyze the two-way synthesis pattern, as this is a scenario

that is likely to occur in practical radar system. Second, it is possible that the gain of

the basis beams could be reduced even further with continued research into finding the

optimal phase shift values used to spoil the beams. Third, it would also be beneficial

to explore integrating this method with the countless other waveforms used in radar

systems for various objectives.

This paper has been focused primarily on the mathematics and theory of this

technique. A great amount of research could be devoted to the integration of this

method into the hardware of an existing radar system. Tests of actual radars imple-

menting this technique need to be performed to verify the theory developed here.
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Chapter 6

Conclusion

In [22], a method of improving the LPI performance of a linear antenna array was

developed. This method involves replacing the high-gain main beam of a traditional

scanning radar system with a set of low-gain, spoiled beams. These beams, which

are simply the high-gain patterns spoiled by a certain phase shift, can be summed

together to create returns equivalent to that of the traditional system. In this paper,

the method was expanded from the case of a one-dimensional array to that of a two-

dimensional array. This transition increases the complexity of the method, as the

variations in the beam pattern must now be considered in both the x and y planes,

or θ and φ, respectively.

After completing the required matrix calculations, simulations were run for both

an 8x8 element array and a 32x32 element array. In the simulations of the 8x8 array,

the peak gain of the main beam for the fundamental array pattern, when θ = 0◦ and

φ = 0◦, was found to be approximately 18 dB. The peak gain of the fundamental

basis pattern was found to be approximately 5 dB. This lower gain of the transmitted

signal reduces the detection range of a hostile ESM system by a factor of 1/
√

20,

which corresponds to a 95% reduction in the intercept area of any potential hostile

ESM systems.

In the simulations of the 32x32 element array, the peak gain of the main beam

for the fundamental array pattern was found to be approximately 30 dB. The peak

gain of the spoiled patterns was found to be approximately 16 dB. Again, this lower

gain of the transmitted signal reduces the detection range of hostile ESM system by

a factor of 1/
√

25, corresponding to a 96% decrease in the intercept area.
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In both of these cases, complex coefficients were calculated and and applied across

the basis patterns. It was shown that a weighted summation of the complete set of

spoiled patterns resulted in a return equivalent to that of the unspoiled pattern. When

compared to the original fundamental pattern, the recreated pattern at θ = 0◦ and

φ = 0◦ was found to differ by a negligible amount. The other weighted combinations

of the basis patterns were also shown to provide returns equivalent to the high-gain

patterns they replaced.

These results verify the claim made in [22]: that the high gain of single scanned

main beam can be reduced by instead transmitting a set of spoiled beams, effectively

replacing the transient high-power sweep with low power patterns radiated persis-

tently while maintaining the same amount of energy on the target. The results for

both the 8x8 and 32x32 element arrays show a significant decrease in intercept range,

an advantage that could provide an existing system with obvious LPI performance

increases. Although these improvements come at the cost of increased memory re-

quirements and extra processing power, the technique has been shown to offer a

promising method to reduce the visibility, and thus the probability of detection, of a

radar attempting to avoid hostile ESM systems.
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Appendix A

MATLAB Code

A.1 Optimize phase scan 2D.m

1 % Optimizes the phase shift values used to spoil
2 % the array pattern
3

4 clear all
5 close all
6 clc
7

8 %% Optimize scale
9

10 MinimizeFunction = @minimizeGain 2D scale;
11

12 scale = 0.5;
13

14 tic
15 [optimizedScale,gain1,exitFlag1,output] = ...

simulannealbnd(MinimizeFunction, scale, 0, 1);
16 toc
17

18 %% Optimize individual values
19

20 MinimizeFunction = @minimizeGain 2D;
21

22 M = 32;
23 N = 32;
24 t = [N/2:−1:1]' * [N/2:−1:1];
25

26 x0 = optimizedScale * (3/Nˆ2)ˆ2 * (2*pi*t).ˆ2;
27

28 for row = 1:length(x0)
29 for col = 1:length(x0)
30 lb(row,col) = x0(row,col) − 2;
31 ub(row,col) = x0(row,col) + 2;
32 end
33 end
34

35 [x,gain2,exitFlag2] = simulannealbnd(MinimizeFunction, x0, lb, ub);
36

37 alphas = x;
38 alphas = [alphas fliplr(alphas)];
39 alphas = [alphas; flipud(alphas)];
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A.2 minimizeGain 2D scale.m

1 % Minimizes gain of spoiled pattern by optimizing scale
2

3 function G = minimizeGain 2D scale(scale)
4

5 M = 8;
6 N = 8;
7 t = [N/2:−1:1]' * [M/2:−1:1];
8

9 a = scale * (3/Nˆ2)ˆ2 * (2*pi*t).ˆ2;
10

11 a = [a fliplr(a)];
12 a = [a; flipud(a)];
13

14 tN = 0:.1:pi;
15 tM = 0:.1:pi;
16 psiN = zeros(length(tN),length(tM));
17 psiM = zeros(length(tN),length(tM));
18

19 for timeIndexN = 1:length(tN)
20 for timeIndexM = 1:length(tM)
21 psiN(timeIndexN,timeIndexM) = pi*cos(tN(timeIndexN));
22 psiM(timeIndexN,timeIndexM) = pi*cos(tM(timeIndexM));
23 end
24 end
25

26 f = 0;
27 for indN = 1:N
28 for indM = 1:M
29 f = f + exp(1i*(a(indM,indN) + ((indN−1)*psiN + ...

(indM−1)*psiM)));
30 end
31 end
32

33 G = max(max(abs(f)))ˆ2/(Nˆ2);
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A.3 minimizeGain 2D.m

1 % Minimizes gain of spoiled pattern by optimizing
2 % individual alpha values
3

4 function G = minimizeGain 2D(a0)
5

6 a = [a0 fliplr(a0)];
7 a = [a; flipud(a)];
8

9 N = length(a);
10 M = N;
11

12 tN = 0:.1:pi;
13 tM = 0:.1:pi;
14

15 psiN = zeros(length(tN),length(tM));
16 psiM = zeros(length(tN),length(tM));
17

18 for timeIndexN = 1:length(tN)
19 for timeIndexM = 1:length(tM)
20 psiN(timeIndexN,timeIndexM) = pi*cos(tN(timeIndexN));
21 psiM(timeIndexN,timeIndexM) = pi*cos(tM(timeIndexM));
22 end
23 end
24

25 f = 0;
26 for indN = 1:N
27 for indM = 1:M
28 f = f + exp(1i*(a(indM,indN) + ((indN−1)*psiN + ...

(indM−1)*psiM)));
29 end
30 end
31

32 G = max(max(abs(f)))ˆ2/(Nˆ2);
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A.4 Beamer 2D.m

1 clear all
2 close all
3 clc
4

5 %% Setup
6

7 load('8x8 alphas.mat','alphas');
8

9 N = size(alphas,1);
10 M = size(alphas,2);
11

12 tN = 0:.01:pi;
13 tM = 0:.01:pi;
14

15 r2d = 180 / pi;
16

17 %% Create plots of the fundamental patterns
18

19 psiN = zeros(length(tN),length(tM));
20 psiM = zeros(length(tN),length(tM));
21

22 for timeIndexN = 1:length(tN)
23 for timeIndexM = 1:length(tM)
24 psiN(timeIndexN,timeIndexM) = pi*cos(tN(timeIndexN));
25 psiM(timeIndexN,timeIndexM) = pi*cos(tM(timeIndexM));
26 end
27 end
28

29 f0 = 0;
30 g0 = 0;
31 for indN = 1:N
32 for indM = 1:M
33 f0 = f0 + exp(1i*((indN−1)*psiN + (indM−1)*psiM));
34 g0 = g0 + exp(1i*(alphas(indN,indM) + (indN−1)*psiN + ...

(indM−1)*psiM));
35 end
36 end
37

38 f0 max = 10*log10(max(max(abs(f0)))ˆ2/(Nˆ2));
39 g0 max = 10*log10(max(max(abs(g0)))ˆ2/(Nˆ2));
40

41 g0 plot = 10*log10(abs(g0).ˆ2/(Nˆ2));
42 g0 plot(g0 plot ≤ −25) = −25;
43

44 f0 plot = 10*log10(abs(f0).ˆ2/Nˆ2);
45 f0 plot(f0 plot ≤ −25) = −25;
46

47 mesh(r2d*tN−90,r2d*tM−90,f0 plot);
48 axis([−90 90 −90 90 −25 35]);
49 zlabel('Gain (dB)'); xlabel('\theta'); ylabel('\phi');

57



50 set(gca,'Xtick',[−90 −60 −30 0 30 60 90],'Ytick',[−90 −60 −30 0 30 ...
60 90])

51

52 figure
53 mesh(r2d*tN−90,r2d*tM−90,g0 plot);
54 axis([−90 90 −90 90 −25 35]);
55 zlabel('Gain (dB)'); xlabel('\theta'); ylabel('\phi');
56 set(gca,'Xtick',[−90 −60 −30 0 30 60 90],'Ytick',[−90 −60 −30 0 30 ...

60 90])
57

58 %% Create all basis patterns
59

60 pscan = 2*pi/N;
61

62 g = cell(1,Nˆ2);
63 for index = 1:Nˆ2
64 g{index} = zeros(size(psiN));
65 end
66

67 for a = 0:N−1
68 for b = 0:M−1
69 index = N*a + b + 1;
70 for n = 0:N−1
71 for m = 0:M−1
72 g{index} = g{index} + exp(1i*(alphas(n+1,m+1) + ...

n*(psiN + a*pscan) + m*(psiM + b*pscan)));
73 end
74 end
75 end
76 end
77

78 %% Calculate complex coefficent weights
79

80 A = zeros(Nˆ2);
81 B = zeros(Nˆ2);
82

83 for n = 0:N−1
84 for m = 0:M−1
85 row = N*n + m + 1;
86 for a = 0:N−1
87 for b = 0:M−1
88 col = N*a + b + 1;
89 A(row,col) = exp(1i*(alphas(n+1,m+1) + n*a*pscan + ...

m*b*pscan));
90 B(row,col) = exp(1i*(n*a*pscan + m*b*pscan));
91 end
92 end
93 end
94 end
95

96 coefficients = A\B;
97

98 %% Create f0
99
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100 f0 new = zeros(size(psiN));
101 for index = 1:Nˆ2
102 f0 new = f0 new + coefficients(index,1)*g{index};
103 end
104

105 f0 new max = 10*log10(max(max(abs(f0 new)))ˆ2/(Nˆ2));
106

107 difference = f0 new − f0;
108 ave diff = mean(mean(abs(difference)));
109

110 f0new plot = 10*log10(abs(f0).ˆ2/Nˆ2);
111 f0new plot(f0new plot ≤ −25) = −25;
112

113 figure
114 mesh(r2d*tN−90,r2d*tM−90,f0new plot);
115 axis([−90 90 −90 90 −25 35]);
116 zlabel('Gain (dB)'); xlabel('\theta'); ylabel('\phi');
117 set(gca,'Xtick',[−90 −60 −30 0 30 60 90],'Ytick',[−90 −60 −30 0 30 ...

60 90])
118

119 %% Create all fundamental array patterns
120

121 f = cell(1,Nˆ2);
122 for index = 1:Nˆ2
123 f{index} = zeros(size(psiN));
124 end
125

126 for indexF = 1:Nˆ2
127 for indexG = 1:Nˆ2
128 f{indexF} = f{indexF} + coefficients(indexG,indexF)*g{indexG};
129 end
130 end
131

132 for k=1:length(f)
133 f plot{k} = 10*log10(abs(f{k}).ˆ2/Nˆ2);
134 f plot{k}(f plot{k} ≤ −25) = −25;
135 end
136

137 figure
138 mesh(r2d*tN−90,r2d*tM−90,f plot);
139 axis([−90 90 −90 90 −25 35]);
140 zlabel('Gain (dB)'); xlabel('\theta'); ylabel('\phi');
141 set(gca,'Xtick',[−90 −60 −30 0 30 60 90],'Ytick',[−90 −60 −30 0 30 ...

60 90])
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