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Abstract

In this thesis, an algorithm for detecting multipath and spoofed GPS signals based on

signal angle of arrival (AOA) is developed. As the �rst step in determining the AOA of

the signals, a multi-antenna array of GPS antennas is used to determine the attitude of a

test vehicle by calculating precise relative positioning vectors (RPVs) between the antennas.

The RPVs are calculated with the real-time kinematic (RTK) positioning algorithm, which

allows for an RPV error on the order of a centimeter. The precision of the RPVs allows for

sub-degree accuracy of the attitude angles.

A GPS/INS extended Kalman �lter is used to propagate the attitude estimate between

GPS measurements. The propagated attitude estimate allows for estimation of the RPVs

between the antennas without using GPS measurements. To check an incoming set of GPS

measurements, an expected AOA with respect to the antennas is computed using the es-

timated RPVs and the known unit vectors to the GPS satellites. The actual AOAs may

be estimated using the incoming GPS measurements and then compared with the expected

AOAs. If the di�erence between the expected and estimated AOA for a signal is not within a

speci�ed threshold, the signal may be rejected as a faulty signal. Single-di�erenced pseudo-

range measurements and single-di�erenced carrier phase residuals are explored as alternate

metrics for determining faulty signals.

Finally, AOA and the alternate metrics are experimentally tested for their abilities to

detect multipath signals and are compared with each other. The single-di�erenced carrier

phase residual proved to be the most reliable multipath detection metric when used with

calculated RPVs, having a near perfect success rate with the collected data. Using the carrier

phase residual metric with attitude-generated RPVs proved to be less e�ective with a success

rate of approximately 50%. The AOA approach had a similar success rate of about 50%,
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with worse results in instances of repeated multipath. The single-di�erenced pseudorange

metric proved unable to reliably detect multipath due to the short antenna baselines and

relatively large error on pseudorange measurements. The experimental results are validated

by comparing positioning solutions before and after rejecting the signals as well as observing

the pseudorange measurements of signals detected as multipath.
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Chapter 1

Introduction

Since the proposal of the Global Positioning System, or GPS, in 1973, it has become the

gold standard in outdoor positioning. However, it was not the �rst satellite-based navigation

system. The Navy Navigation Satellite System (NNSS), or Transit, employed satellites which

constantly broadcast a 400 MHz tone. By analyzing the changing Doppler shift of the satellite

and broadcast ephemeris data, a user at a known altitude could calculate the range to the

satellite at closest approach. While Transit allowed a user to calculate position to within a

few hundred meters, the system did have several limiting factors. The requirement of known

altitude and a necessary velocity correction made transit nearly useless to aircraft. Also, the

potential for mutual interference of satellites limited the constellation to about �ve satellites

worldwide, leaving windows of satellite unavailability of 35 to 100 minutes. Despite the �aws

of the Transit system, its implementation showed that a satellite-based navigation system

was plausible and paved the way for future satellite navigation systems.

By 1972, the Navy was working on the Timation constellation, which featured satel-

lites with high-precision clocks. The Timation satellites were primarily intended to provide

accurate time information around the Earth, which GPS satellites are still used for today.

The approval for GPS (the system was actually named NAVSTAR, the Global Positioning

System) came in late 1973 with the �rst operational prototype satellite launched in early

1978. Four satellites were approved for the �rst phase of the project, with two more granted

to solve the problem of tracking boosters from test launches of the Trident missile. It was

the approval of the two extra GPS satellites, instead of upgrading the Transit constellation,

that would allow GPS to eventually grow into the system it is today, with 32 satellites [14].
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1.1 Motivation

One of the biggest barriers to accurate GPS navigation is error caused by multipath,

which occurs when a GPS signal re�ects o� of an object. Multipath is discussed and illus-

trated in Section 2.3, but for now it will su�ce to say the re�ection can cause an incorrect

positioning solution. Another problem in GPS navigation, generally unrelated to multipath

error, is known as �spoo�ng.� Spoo�ng is the act of generating a counterfeit GPS signal

with the express intent of in�uencing the positioning solution of a GPS receiver. While most

civilians will probably never face a real threat from spoo�ng, it is a serious threat to military

users, and is discussed further in Section 2.4. In both cases, it is likely the GPS signal will be

arriving at the GPS antenna from a direction other than the location of the GPS satellite.

This thesis uses a GPS/INS attitude system to check the angle of arrival (AOA) of

incoming GPS signals; that is, which direction they are arriving from relative to vehicle GPS

antennas. With a known attitude solution for the vehicle system and known positions of the

GPS satellites, the expected AOA may be computed for each satellite and checked against

the perceived angle of arrival of the signals. If the expected and perceived AOA do not

match up to within a preset threshold, the GPS signal in question can be rejected and its

signal excluded from GPS calculations.

1.2 Previous Work

While there has been much research in the area of anti-spoo�ng for GPS, surprisingly

few people have researched the use of AOA as a spoo�ng or multipath detection technique.

However, AOA and multiple antenna arrays are more commonly used for anti-jamming.

In 1999, Brown et. al. used a controlled radiation pattern antenna (CRPA), an antenna

with multiple internal elements, on aircraft to detect the AOA of jamming signals [2]. The

CRPA systems were able to create a null in the direction of the jammer in a manner similar

to a beamformer, mitigating the jamming a�ects on the antenna. The creation of the null
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also allowed the aircraft to detect the direction of the jammer, provided the aircraft attitude

was known accurately. Using the CRPAs, two or more aircraft working in a team could �nd

ground-based jammer locations with good accuracy.

In 2002 McDowell proposed a system for the mitigation of multipath using a beam-

forming array and proposed another system in 2007 to mitigate GPS spoofers and jammers

[10, 11]. In both cases, the system used a complex beamforming array to identify potential

jamming and spoo�ng threats, then produce a synthetic null in the direction of the jammer

or spoofer. The null is created by multiplying each of the antenna inputs by a complex

weight, which can be con�gured to boost or lower signal power in a given direction.

In 2009, Montgomery et. al. [12, 13] proposed a system in which a pre-surveyed sta-

tionary pair of GPS antennas was used to observe di�erenced carrier phase measurements,

comparing the actual measurements to expected measurements. The work showed that un-

der normal circumstances, the di�erenced carrier phase measurements were predictable and

changed slowly with respect to time. While the antenna pair could not be spoofed under

normal conditions, as it is illegal to broadcast spoofed GPS signals outdoors, the receiver

setup was tested indoors. Instead of using an actual spoofer, Montgomery et. al. collected

GPS signals outside and sent the signals inside, along with a broadcast antenna. The setup

is fairly representative of a GPS spoofer as all of the GPS signals are coming from a central

location (source). The results showed that, excluding noise, the di�erenced carrier phase

measurements were the same for the signals associated with each satellite and that they

were constant with respect to time. In [13], it is mentioned that the concepts could be used

in conjunction with an IMU for a non-stationary array of antennas, although Montgomery

et. al. make no attempt at testing their setup dynamically.

In this thesis, an anti-spoo�ng and anti-multipath algorithm is designed. The algorithm

uses an IMU to propagate the attitude state between GPS measurements, allowing the

incoming GPS measurements to be checked for faulty signals by use of angle of arrival

(AOA) or other related metrics.

3



1.3 Contributions

The following contributions are made in this thesis:

• An algorithm is developed to check incoming GPS measurements in order to detect

multipath error or spoofed GPS signals.

• Several metrics, including AOA, are tested and compared in their ability to detect

faulty GPS measurements

• Potential errors in the metrics are quanti�ed as a function of AOA, baseline length,

attitude error, and signal error

1.4 Thesis Outline

This chapter has served as an introduction to the GPS system and the problem at

hand. In Chapter 2, the structure of the GPS signal is discussed, followed by the GPS

measurements used in this work. Multipath error and spoo�ng are also explained, followed

by potential spoo�ng scenarios and an overview of types of spoo�ng countermeasures.

Chapter 3 presents a di�erential GPS positioning technique to compute precise relative

position vectors (RPVs) between pairs of antennas. Once the RPVs have been calculated,

they are rotated from the standard GPS positioning coordinate frame into a local coordinate

frame to be used in calculating vehicle attitude. In Chapter 4, the IMU used in the work

is then characterized and a kinematic Kalman to estimate vehicle attitude using IMU and

GPS measurements is proposed.

Finally, the multipath and spoo�ng rejection algorithm is discussed in Chapter 5, in-

cluding the calculation and checking of AOA. Alternate metrics closely related to AOA are

also explored. Results are then presented on the performance of the algorithm in Chapter 6,

while conclusions and suggestions for future work are made in Chapter 7. In the Appendices,

standalone GPS positioning and Kalman �ltering are discussed. An overview of the signal

rejection system in the form of a block diagram may be seen in Figure 1.1.
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Figure 1.1: Block diagram overview of the signal rejection system. Text in parentheses
denotes the appendix or chapter and section which contains information about each block.
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Chapter 2

The Global Positioning System

2.1 Signal Structure

The GPS signal is made up of three signal components:

1. Carrier Wave

2. Navigation Data

3. Spreading Sequence

Refer to Figure 2.1 for a visual representation of the components of a GPS signal.

The �rst component, the carrier wave, is a radio wave responsible for carrying the other

two signal components. There are two carrier frequencies, the L1 and L2 frequencies, in use

on all GPS satellites. Additionally, an L5 signal is planned for future use. The L1, L2, and

L5 frequencies are all scalar multiples of a common frequency, fo:

f0 = 10.23 MHz (2.1)

fL1 = 154f0 = 1575.42 MHz (2.2)

fL2 = 120f0 = 1227.60 MHz (2.3)

fL5 = 115f0 = 1176.54 MHz (2.4)
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Figure 2.1: Components of a GPS signal

The second component, the navigation data, contains information on the orbit parame-

ters and health of the GPS satellites as well as the transmission time of those parameters. It

is transmitted at a rate of 50 bits per second. The third component, the spreading sequence,

is made up of pseudo random noise (PRN) � a sequence of bits that appears to be random

but is in fact generated by a known process. There are two such sequences for each satel-

lite: a coarse acquisition (C/A) code and an encrypted precision code, the P(Y) code. Each

satellite has a unique C/A code, sometimes referred to as a Gold code (after Robert Gold),

associated with it. These Gold codes have correlation properties that allow all of the GPS

satellites to transmit at the same frequency without interfering with each other. Speci�cally,

a Gold code will have a high correlation value with a copy of the same code if the two are

perfectly in phase, or low correlation if the two are out of phase or if it is cross-correlated

with another Gold code. Those same correlation properties also allow receivers to track GPS

signals with impressive carrier-to-noise ratios (C/N0), even though GPS signals are much

weaker than the ambient background noise.
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2.2 Measurements

For the purpose of this work, there are three measurements (in addition to ephemeris

data) of interest from each satellite: pseudorange measurements, carrier phase measurements,

and carrier-to-noise ratio measurements. The pseudorange and carrier phase measurements

are often compared to a tape measure or ruler from a GPS receiver to a GPS satellite, as both

of them estimate the distance from the the receiver to the satellite. For the pseudorange, the

ticks of the �ruler� are far apart, nearly 300 meters, corresponding to the distance between

bit changes of the Gold codes. Conversely, the carrier phase measurements are based on

the cycles of the L1 frequency, which repeats about every 19 centimeters. The cycle phase

may generally be tracked to about 0.01 cycles, giving the measurement its precision. The

downside to the carrier phase measurement is that it includes an ambiguous number of extra

cycles between the user and satellite, so the measurement is useless on its own. Keeping

with the ruler analogy, imagine a ruler from the receiver to a satellite, where the end of the

ruler is an unknown distance before or past the satellite, but that distance is some multiple

of 19 centimeters. Finally, the carrier-to-noise ratio is a measurement of GPS signal quality

and is used in this work to calculate measurement covariance matrices for a Kalman �lter,

discussed in a later section.

2.2.1 Pseudorange Measurement

Pseudoranges may be modeled by the equation:

ρki = rki + cdti + cdtk + T ki + Iki + εki (2.5)

where i identi�es a receiver, k identi�es a satellite, rki is the real range, or distance, from

antenna i to satellite k, cdti and cdt
k are the receiver and satellite clock error (in units of

meters) respectively, T ki and Iki are tropospheric and ionospheric errors respectively, and

εki represents the remaining noise, modeled as zero mean Gaussian noise. The range is the
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magnitude of the vector from the GPS receiver to the GPS satellite. The receiver clock error

is caused by the fact that the clock of a receiver will not be perfectly synchronized with

GPS time. It is shown in Appendix A that the receiver clock error may be solved at each

instance of measurements, along with the GPS receiver position using measurements from

at least four satellites. The satellite clock error is a very similar error and is caused by the

inconsistency between a GPS satellite clock and true GPS time. Parameters for calculating

an estimate of the clock error of each GPS satellite as a function of time are included in the

ephemeris data. Tropospheric and ionospheric errors are present due to the signals passing

through the atmosphere.

2.2.2 Carrier Phase Measurement

The carrier phase measurement model is similar to that of the pseudorange measure-

ment:

φki = rki + cdti + cdtk + T ki − Iki + λL1N
k
i + εki (2.6)

It should be noted that there are three di�erences between the pseudorange and carrier phase

measurements. The �rst di�erence between the equations is the cycle ambiguity mentioned

in Section 2.2, represented by the term Nk
i in Equation (2.6). The integer number of cycles is

multiplied by the L1 carrier frequency wavelength (λL1 = 19.03 cm) to express the distance in

meters. The second di�erence is in the εki term, which still represents Gaussian noise, but with

much lower variance than the Gaussian noise in Equation (2.5). Finally, the ionospheric error

on the carrier phase measurement will have the same magnitude as the ionospheric error on

the pseudorange, but will have the opposite e�ect. As mentioned in Section 2.2, carrier phase

measurements are not useful alone; however, they may be used together with pseudorange

measurements to provide a precise relative positioning solution between receivers, discussed

in detail later.
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Figure 2.2: Diagram of multipath error due to signal re�ection from building.

2.3 Multipath Error

GPS receivers calculate a pseudorange to each satellite based on the time it takes for

the signal to travel between the satellite and receiver. Using pseudoranges from multiple

satellites, a position solution may be computed using a recursive least squares algorithm. If

a GPS signal travels an indirect path to the GPS receiver, generally from being re�ected o�

of a building or other obstacle, the signal takes a longer time to reach the receiver. Since the

estimation of the range between a receiver and satellite is based on time, the extra travel time

translates into a distance error in the range measurement. This error, known as multipath,

is common in urban and foliage-rich environments and is the primary barrier to accurate

positioning in those environments. An example of multipath is shown in Figure 2.2, where

the receiver does not have a direct line of sight (LOS) to the GPS satellite supplying the

signal. The path of the received GPS signal is shown in red.
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2.4 Spoo�ng

In the GPS community, the term �spoo�ng� is used to describe the act of creating one

or multiple counterfeit GPS signals with the intent of misleading the location of a GPS

receiver. A GPS receiver that is successfully �spoofed� will accept the counterfeit GPS

signal as an authentic one and use it in the positioning solution. The error of the resulting

position solution will vary based on several factors, including the number of satellites in

view, the geometry of those satellites, and the number of spoofed GPS signals accepted

by the receiver. A spoo�ng attack that is well carried out could potentially fool the GPS

receiver into accepting all of the spoofed GPS signals, allowing a skilled attacker to decide

the perceived location of the GPS receiver.

While no commercially available spoofers exist, Humphreys et al. point out the the

hardware for a spoofer can be assembled from readily available inexpensive parts. The

software for such a device could prove to be more complicated; however, the structure of the

GPS signal is well known and the literature on software-de�ned receivers is plentiful [6].

2.4.1 Spoo�ng Scenarios

There are a plethora of potential GPS spoo�ng scenarios, many of them dangerous and

all of them criminal. In [13], Montgomery et al. provide two such hypothetical scenarios in

an article for Inside GNSS magazine. The �rst scenario involves spoo�ng a receiver used

to synchronize timing between power grids, global trading networks, or communications

networks. GPS receivers are well suited for this task, as a GPS receiver must have a very

accurate estimate of time to function correctly. A successful spoo�ng attack on such a

receiver could have far-reaching, disastrous consequences. Another hypothetical scenario

would involve an operator of a �shing vessel who wishes to log a �ctitious �shing trip in

order to hide an illegal one. There are some places in the world where �shing in certain

areas is restricted, so a �shing vessel might stand to gain a pro�t by �shing in one of these

areas. Since many commercial �shing vessels are tracked by GPS in an attempt to prevent
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these illegal voyages, a vessel could enter one of these restricted areas while spoo�ng its

own GPS tracking system to avoid legal consequences [13]. Spoo�ng has many military

implications too, especially in the case of military vehicles which are designed to operate

autonomously. For example, Iran captured a CIA surveillance drone in December 2011.

According to an interview with an Iranian engineer, the communications between the drone

and remote operators were jammed, forcing the drone into an autonomous mode which

relied on GPS for navigation. The drone was then spoofed and fooled into thinking it was

landing at a US military base, only to land where it could be captured by Iranian forces [15].

While it is impossible to know if the drone was really spoofed or landed due to damage or a

malfunction, the situation certainly serves as motivation for anti-spoo�ng measures.

2.5 Current Anti-Spoo�ng Measures

It is clear that spoo�ng poses a real threat to the integrity of GPS position solutions,

so it is important to know measures may be taken to reduce or remove that threat. In 1995,

Edwin L. Key published an internal memorandum for the MITRE corporation outlining

countermeasures to detect GPS spoo�ng attempts. In the memorandum, Key recommended

six techniques for detecting a spoo�ng attack [8]:

1. Amplitude Discrimination

2. Time-of-arrival Discrimination

3. Consistency of Navigation and Inertial Measurement Unit (IMU)

4. Polarization Discrimination

5. Angle-of-Discrimination

6. Cryptographic Authentication

Most anti-spoo�ng measures today still fall into one of these categories. This work is focused

on the �fth category of techniques, which will be discussed in more detail in the rest of the

12



thesis. As the name suggests, the idea is to discriminate against, or reject, GPS signals

which arrive from a direction other than that of the associated GPS satellite.

Most of the techniques identify spoofed GPS signals based on the characteristics of

received signals. The �rst technique, amplitude discrimination, rejects GPS signals based on

the power of the signals. Real GPS signals are very weak, as they are generated in space and

must travel, at minimum, about 20 kilometers through the atmosphere; conversely, spoofed

signals are generally much stronger. An uncharacteristically strong C/N0, or sudden change

in C/N0, may be an indicator of spoofed signal being received.

Technique three takes a completely di�erent approach to anti-spoo�ng by checking the

results of the GPS solutions instead of the signals themselves. Although Key mentioned

IMUs speci�cally, it may be expanded to include alternate navigation solutions, such as

cell phone navigation. While this technique should be e�ective in theory, many alternate

navigation solutions are less accurate than GPS, allowing at least a small window for a

spoo�ng attack. An IMU in particular will drift over time, and so a high quality IMU would

be necessary to e�ectively check for an altered GPS positioning solution.

Technique six takes yet another approach to the problem, essentially altering the struc-

ture of the GPS signal so that it can not be replicated. The P(Y) code, discussed in Section

2.1, is a perfect example, using a longer code in place of the shorter C/A code. Since the

P(Y) code is known only to military users, would-be spoofers would be unable to replicate

the L2 GPS signal. The author refers the reader to [7] and [19] for more detailed explanations

of common anti-spoo�ng countermeasures.
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Chapter 3

Attitude Determination

Knowing the attitude, or orientation, of the vehicle in a given coordinate frame is an

important step in the ultimate goal of rejecting multipath or spoofed GPS signals. If the

attitude of the vehicle is known, along with the positions of the GPS satellites, it is possible

to calculate the angle of arrival of a GPS signal with respect to a pair of GPS antennas

on the vehicle. To determine the full vehicle attitude (i.e. roll, pitch, and yaw) using GPS

requires an array of three antennas mounted on a vehicle. Ideally, the array of antennas will

line up with the coordinate axes of the vehicle. Di�erential GPS positioning techniques may

then be used to precisely determine the RPV, allowing the attitude to be determined with

simple geometry and coordinate rotations. The precision of the RPVs here is critical, as less

precision in the RPVs will translate to less precision in the attitude estimates.

3.1 Di�erential Carrier Phase Positioning

Di�erential carrier phase positioning, also known as real-time kinematic (RTK) posi-

tioning, exploits the precision of carrier phase measurements to provide very accurate RPV

estimates between two antennas. Before continuing with the derivation of the RTK calcula-

tions, it is helpful to rewrite Equations (2.5) and (2.6) by expanding both range terms:

ρki =

[
(ex)

k
i (ey)

k
i (ez)

k
i 1

]




xk − xi

yk − yi

zk − zi

cdti




+ cdtk + T ki + Iki + εki (3.1)
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φki =

[
(ex)

k
i (ey)

k
i (ez)

k
i 1

]




xk − xi

yk − yi

zk − zi

cdti




+ cdtk + T ki − Iki + λL1N
k
i + εki (3.2)

where

[
(ex)

k
i (ey)

k
i (ez)

k
i

]
is the unit vector from receiver i to satellite k and

[
(xk − xi) (yk − yi) (zk − zi)

]T
is the vector from the GPS receiver to the GPS satellite

in ECEF coordinates. Before the next step, it is important to note two important facts

about Equations (3.1) and (3.2). First,

[
(ex)

k
i (ey)

k
i (ez)

k
i

]
≈
[
(ex)

k
j (ey)

k
j (ez)

k
j

]
for two

receivers that are close to each other. In fact, because the distance to a GPS satellite from

either receiver is several orders of magnitude longer than the distance between two receivers

(for this work), the two unit vectors may be considered equal. The second important fact

is that the two atmospheric errors are strongly correlated by position; that is, they are

nearly the same for two receivers that are close to each other. For receivers only a few

meters apart, the errors will be nearly identical in the measurements of each receiver. Then,

the pseudoranges and carrier phase measurements from receivers i and j for satellite k are

subtracted, or di�erenced. The di�erenced measurements yield:

ρk1 − ρk2 = ∆ρk1,2 =

[
(ex)

k
1 (ey)

k
1 (ez)

k
1 1

]




δx1,2

δy1,2

δz1,2

cdt1,2




+ εk1,2 (3.3)

φk1 − φk2 = ∆φk1,2 =

[
(ex)

k
1 (ey)

k
1 (ez)

k
1 1

]




δx1,2

δy1,2

δz1,2

cdt12




+ λ(Nk
1,2) + εk1,2 (3.4)
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where

[
δx1,2 δy1,2 δz1,2

]
is the RPV from antenna 1 to antenna 2, cdt1,2 = cdt1 − cdt2

and εk1,2 = εk1 − εk2. Equations (3.3) and (3.4) give the single-di�erenced pseudoranges and

single-di�erenced carrier phase measurements, respectively. While many of the errors have

been removed from the measurements, the relative clock bias still remains. The next step is

to choose one satellite l - generally the satellite farthest from the horizon - and subtract the

single-di�erenced pseudorange and carrier phase measurements associated with that satellite

from the other single-di�erenced measurements, yielding the double-di�erenced pseudoranges

and carrier phase measurements:

∇∆ρk,l1,2 =

[
(ex)

k,l
1 (ey)

k,l
1 (ez)

k,l
1

]



δx1,2

δy1,2

δz1,2




+ εk,l1,2 (3.5)

∇∆φk,l1,2 =

[
(ex)

k,l
1 (ey)

k,l
1 (ez)

k,l
1

]



δx1,2

δy1,2

δz1,2




+ λL1(N
k,l
1,2) + εk,l1,2 (3.6)

where

[
(ex)

k,l
1 (ey)

k,l
1 (ez)

k,l
1

]
=

[
(ex)

k
1 (ey)

k
1 (ez)

k
1

]
−
[
(ex)

l
1 (ey)

l
1 (ez)

l
1

]
, Nk,l

1,2 = Nk
1,2−

N l
1,2, and ε

k,1
1,2 = εk1,2 − εl1,2. The double-di�erenced pseudorange and carrier phase measure-

ments may be computed for k = 1, ..., n where n is the number of observed satellites and

k 6= l. While the only error left in Equation (3.5) is the random error, its variance has

now quadrupled from that of the εki term in Equation (2.5), which prevents the guaran-

teed precision desired for attitude determination. Equation (3.6) still maintains a high

degree of precision, since the εki term in Equation (2.6) had a very small variance originally.

However, the double-di�erenced integer ambiguities must be calculated before the double-

di�erenced carrier phase measurements may be used to calculate an RPV. Calculating the

double-di�erenced integer ambiguities is a two stage process. First, the ambiguities must

be approximated, yielding non-integer (��oat�) approximations of the ambiguities. The �oat
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ambiguities are computed using a Kalman �lter, which keeps a running approximation of the

integer ambiguities. After each iteration of the Kalman �lter, an attempt is made to ��x�, or

round, the ambiguities to integers. Fixing the integers is attempted using the least-squares

ambiguity decorrelation adjustment (LAMBDA) method, which uses the state estimate co-

variance matrix from the Kalman �lter to round the integers �intelligently,� in order from

least variance to most variance.

3.1.1 Calculating Float Ambiguities

As a �rst step, the known information must be put into a form that allows the ambigu-

ities to be estimated. The singled-di�erenced pseudorange and carrier phase measurements

may be represented as:




∆ρk1,2
...

∆φk1,2
...




=




(ex)
k
1 (ey)

k
1 (ez)

k
1 1

...
...

...
...

(ex)
k
1 (ey)

k
1 (ez)

k
1 1

...
...

...
...







δx1,2

δy1,2

δz1,2

cdt1,2




+ λL1




0

...

Nk
1,2

...




+ w (3.7)

To estimate the ambiguities, it is necessary to have a model of the ambiguities that will �t

the Kalman �lter. The equations for implementing a Kalman �lter and some background

information on the �lter may be found in Appendix B.

3.1.1.1 Time Update

For the time update step of the Kalman �lter, it is necessary to have a model describing

the state transition that �ts the form of Equation (B.1). Once a GPS signal is being tracked,

the carrier phase integer ambiguity should not change. Therefore, Ak is given by an m×m

identity matrix, where m is the number of ambiguities:

Ak = Im×m (3.8)
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Also, since there is no input into the �system� of integer ambiguities, the Bkuk term of

Equation (B.1) may be omitted completely. Strictly speaking, since there should be no

variability in any of the integer ambiguities, Qk should be an m × m matrix of zeroes;

however, having a �perfect� model puts the �lter at risk of going to sleep, as explained in

Section B.3. To prevent the �lter from going to sleep, Qk may be arti�cially in�ated to

ensure that new measurements will always be taken into account. For this work, Qk was

chosen to be:

Qk = Im×m × 10−6 (3.9)

It is important to note that because Qk re�ects process disturbance error that is not

actually present in the system, Pk will not represent the real covariance of the integer am-

biguity measurements. The state estimation error covariance matrix, Pk, is still useful as a

relative comparison of the variance between the individual ambiguities.

3.1.1.2 Measurement Update

To make Equation (3.7) �t the form of Equation (B.2), it is necessary to remove the

matrix of unit vectors, called the geometry matrix, and the RPV. It is possible to remove

the geometry matrix term by multiplying Equation (3.7) by the left null space, L, of the

geometry matrix; that is, a matrix L such that:

L




(ex)
k
1 (ey)

k
1 (ez)

k
1 1

...
...

...
...

(ex)
k
1 (ey)

k
1 (ez)

k
1 1

...
...

...
...




= 0 (3.10)

Multiplying Equation (3.7) by L will yield:
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L




∆ρk1,2
...

∆φk1,2
...




= L




0m×m

λL1Im×m






Nk

1,2

...


+ w (3.11)

This �ts the format of Equation (B.2), giving:

yk = L




∆ρk1,2
...

∆φk1,2
...




(3.12)

Ck = L




0m×m

λL1Im×m


 (3.13)

xk =



Nk

1,2

...


 (3.14)

The computation of the measurement covariance matrix, Rk, is taken from [9]. Rk is given

by:

Rk = L




σ2
ρ,1 + σ2

ρ,2 0 0 0

0
. . . 0 0

0 0 σ2
φ,1 + σ2

φ,2 0

0 0 0
. . .



LT (3.15)

where σρ and σφ are given by the Table 3.1 and the equations:

σ2
ρ = σ2

ρatm + σ2
DLL (3.16)
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σDLL = λc

√
4d2Bnρ

C/N0

(2(1− d) +
4d

TC/N0

) (3.17)

σ2
φ = σ2

φatm + σ2
PLL (3.18)

σPLL =
λL1
2π

√
Bnφ

C/N0

(1 +
1

TC/N0

) (3.19)

It is important to note that the C/N0 measurement is generally reported in decibels,

but should be converted to the absolute C/N0 before use in Equations (3.17) and (3.19)

Table 3.1: Parameters for use in Equations (3.16) through (3.19)
Parameter Description Value (units)

σ2
ρatm Variance due to atmospheric code delay 5.22 (m)

λc Code chip width 293.05 (m)
d Correlator spacing 0.5 (chips)
Bnp Code loop noise bandwidth 2 (Hz)
T Prediction integration time 2 (ms)

σ2
φatm Variance due to atmospheric carrier delay 0.03 (m)

λL1 Carrier wavelength 19.03 (cm)
Bnφ Carrier loop noise bandwidth 18 (Hz)

3.1.1.3 Implementation

To initialize the �lter, an estimate of the the integer ambiguities must �rst be calculated.

It is observed that subtracting the single-di�erenced pseudorange from the single-di�erenced

carrier phase provides a good candidate:

∆φk1,2 −∆ρk1,2 = ~e




δx1,2

δy1,2

δz1,2

cdt1,2




+ λ(Nk
1,2)− ~e




δx1,2

δy1,2

δz1,2

cdt1,2




= λL1(N
k
1,2) (3.20)
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where ~ek1 =

[
(ex)

k
1 (ey)

k
1 (ez)

k
1 1

]
Note that the error terms have be omitted for clarity.

Equation (3.20) may be simpli�ed to yield the initial estimate of Nk
1,2:

Nk
1,2 =

∆φk1,2 −∆ρk1,2
λL1

(3.21)

The initial state covariance matrix is somewhat arbitrary based on desired �lter performance,

speci�cally how quickly it is desired that Pk should converge. From [9], it was decided that

the state covariance matrix would be initialized as:

P0 =
1

2
× Im×m (3.22)

After initialization, updating the �lter is fairly straightforward using the steps outlined for

a Kalman �lter.

3.1.2 LAMBDA method

Once �oat estimates of the ambiguities have been calculated, the next step is attempt-

ing to get a set of �xed ambiguities. The most straightforward method of obtaining �xed

ambiguities would be to merely round the �oat ambiguities; however, simple rounding does

not account for the information contained in the state covariance matrix associated with

the �oat ambiguities. A popular method that does include the state covariance matrix is

the LAMBDA method[?]. As the name implies, the LAMBDA method uses a decorrelation

transformation to decorrelate the error in the ambiguities so that they may be selected more

carefully. More speci�cally, the transformation centers around a transformation matrix Z

such that

z = Z∗a (3.23)

Qz = Z∗QaZ (3.24)
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where a represents the �oat cycle ambiguities, z represents the transformed �oat ambiguities,

Qa represents the state covariance matrix of the true cycle ambiguities, Qz represents the

covariance matrix of the transformed ambiguities, and Z∗ denotes the conjugate transpose

of Z. Ideally, the transformed ambiguities will be completely uncorrelated, making Qz a

diagonal matrix. To obtain Z, Qa must �rst be represented by the equation:

Qa = L−∗D−1L−1 (3.25)

An alternative representation is to take the inverse of both sides of the equation, giving:

Q−1a = LDL∗ (3.26)

where L is a lower triangular matrix with ones along the main diagonal, and D is a diagonal

matrix. Z will be a matrix of integers and is intended to approximate L; if Z = L:

Qz = Z∗QaZ = Z∗L−∗D−1L−1Z = D−1 (3.27)

which gives the intended result of Qz being diagonal. The integer restriction on L means that

usually Z 6= L and the transformed ambiguities will not be perfectly uncorrelated; however,

the new ambiguities will be much less correlated than the original ambiguities. For details on

the implementation of the decorrelation algorithm, including how the calculate the matrices

involved, the author refers the reader to [4].

Once the ambiguities are decorrelated, a search must be performed to determine the

most probable �xed integer ambiguities. The most probable integer set will minimize the

function:

(ẑ − z)Q−1ẑ (ẑ − z) ≤ χ2 (3.28)
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where ẑ is the vector of estimated transformed ambiguities, z is a vector of integers to be

tested, Q−1ẑ is the covariance matrix for ẑ, and χ2 is a quantity used to control the volume of

the search space for the integers. If Q−1ẑ were diagonal (ambiguities perfectly decorrelated),

the function would essentially be:

n∑

i=1

(ẑi − zi)2

qi,i
< χ2 (3.29)

where qi,i is the element in the ith row and ith column ofQẑ. Equation (3.29) shows the essence

of the idea behind the integer search: error is weighted more heavily for more con�dent

measurements, or the con�dent measurements are given �preference.�

There are several methods for choosing χ2, depending on how thorough of a search is

desired. One method is to round all ambiguities except one to the nearest integer and the

last ambiguity to the second nearest integer. The norm for this integer set (the left hand

side of Equation (3.28)) may then be computed and set to χ2, ensuring that at least one

integer set and probably a few of them will be contained within the bounds of χ2. Another

technique to reduce the search space after an initial χ2 has been selected is to reduce χ2

to the norm of the �rst integer set found. Since the norm of an integer set is essentially a

measurement of error between the �xed and �oat integers, there is no need to look for integer

sets with a higher norm than the �rst set of integers [4].

Once a set of integers has been chosen, they must be transformed back into integer

ambiguities for the di�erenced carrier phase equations. Recall that:

z = Z∗a (3.30)

So the �xed integer set a may be calculated by multiplying z on the left side by the inverse

of Z∗.
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3.1.3 Calculating RPVs

Once the double-di�erenced integer ambiguities have been obtained through the LAMBDA

method, the RPVs may be calculated. Rearranging Equation (3.6), it is seen that:

∇∆φk,l1,2 − λL1(N
k,l
1,2) =

[
(ex)

k,l
1 (ey)

k,l
1 (ez)

k,l
1

]



δx1,2

δy1,2

δz1,2




+ εk,l1,2 (3.31)

Since the integer ambiguities are now known, calculating the relative positioning vector is

given by a least squares solution:

(HTH)−1HT (∇∆φk,l1,2 − λL1(N
k,l
1,2)) =




δx1,2

δy1,2

δz1,2




(3.32)

H =




(ex)
k,l
1 (ey)

k,l
1 (ez)

k,l
1

...
...

...


 (3.33)

3.1.4 Single-di�erenced cycle ambiguities

The most ideal situation for the task at hand would be to know the relative clock

error between the two receivers and the integer cycle ambiguities for the single-di�erenced

carrier phase measurements. In addition to a small increase in RPV precision, knowing the

single-di�erenced cycle ambiguities makes the RPV calculation process more robust, as the

ambiguities are all independent of one another and not connected to any one satellite.

Calculating the single-di�erenced ambiguities requires knowledge of the relative clock

error between the two receivers, so the clock bias must be calculated �rst. It is important

to note that for two separate GPS receivers with two separate clocks, the clock bias will

vary with time and will be random, thus eliminating the possibility of calculating the single-

di�erenced cycle ambiguities. However, it is possible to have two or more GPS receivers that
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share a common oscillator. In the case of a shared oscillator, the receivers will experience

a line bias instead of a clock bias. The manner in which a line bias a�ects the signals is

the same as a clock bias, with the exception that the line bias is constant. To calculate

an estimate of the clock error, a high precision RPV must �rst be calculated between the

antennas of the two receivers. Once the high-precision RPV has been calculated, Equation

(3.3) may be utilized to calculate a noisy estimate of the clock error. Rearranging Equation

(3.3) to give the noisy clock error estimate yields:

∆ρk1,2 −
[
(ex)

k
1 (ey)

k
1 (ez)

k
1

]



δx1,2

δy1,2

δz1,2




= cdt1,2 + ek1,2 (3.34)

As seen in Equation (3.34), a measurement of the clock error may be obtained by cal-

culating the dot product of the unit vector to a satellite and the RPV between the receivers,

then subtracting that dot product from the pseudorange associated with that satellite. The

error on single-di�erenced pseudoranges is fairly substantial, so it is necessary to base the

relative clock error estimate on a large number of measurements. The author saw good re-

sults by using an average of 1000-1500 measurements, although a weighted least squares or

�lter approach may be used � potentially relying on SNR or satellite elevation as an indicator

of the quality of the measurement. Since there are often half a dozen or more satellites in

view, especially in an open environment, it is possible to have a good estimate of the clock

error using a couple hundred calculations of the RPV between the two receiver antennas.

Once the relative clock error has been determined, a similar calculation is carried out on

the single-di�erenced carrier phase measurements to give the single-di�erenced ambiguities.

Rearranging Equation (3.4) will give the single-di�erenced ambiguities:
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∆φk1,2 −
[
(ex)

i
1 (ey)

i
1 (ez)

i
1 1

]




δx1,2

δy1,2

δz1,2

cdt1,2




= λ(Nk
1,2) + ek1,2 (3.35)

Naturally there will be some error in the relative clock bias and RPV for this measure-

ment, but as long as the combined errors do not exceed half of an L1 carrier wavelength, or

about 9.5 cm, the ambiguities will be rounded to the correct value. Since it is known that

the ambiguities must be integers, and the user now knows those integers, the small error of

the pseudorange measurements may be used to correct the clock error. The clock error may

be calculated by rearranging Equation (3.4) another way:

φk1,2 −
[
(ex)

k
1 (ey)

k
1 (ez)

k
1

]



δx1,2

δy1,2

δz1,2



− λ(Nk

1,2) = cdt1,2 + ek1,2 (3.36)

3.2 Rotating from ECEF to ENU

Before the attitude of the vehicle is calculated, the ECEF coordinates of the RPVs

should be rotated into a local ENU frame, as vehicle attitude with respect to the ECEF

frame has little intuitive meaning. To rotate ECEF coordinates into an ENU frame, two

angles are needed � namely the latitude and longitude of the location of the ENU frame. If

the Earth were a perfect sphere, calculating the latitude and longitude of any point on or

above the surface of the sphere would be trivial. Latitude (φ) and longitude (λ) would be

given by the equations:

tanλ =
YECEF
XECEF

(3.37)
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tanφ =
ZECEF√

X2
ECEF + Y 2

ECEF

(3.38)

However, the Earth is not a sphere, but an ellipsoid, and is elongated outward in the

XECEF and YECEF directions. This elongation makes Equation (3.38) incorrect. In the �eld

of GPS, the most commonly used model of the Earth is the World Geodetic System 1984

(WGS84). The following parameters may be found in [18] to �nd the latitude for an ECEF

location:

ae = 6, 378, 137 m (3.39)

be = 6, 356, 752 m (3.40)

ep = .00335281 (3.41)

Li+1 = Lc + ep sin(2Li) (3.42)

Lc = atan(
ZECEF√

X2
ECEF + Y 2

ECEF

) (3.43)

It should be noted that Equation (3.42) is an iterative approach and should be carried out

until the change between iterations is su�ciently small. It is recommended to initialize L0

as Lc [18].

Once the latitude and longitude have been determined, converting from ECEF coor-

dinates to ENU coordinates is a matter of simple rotations. In this thesis, the author has

chosen to �rst rotate the ECEF coordinate frame about the Z-axis to line up the Y-axis with
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Figure 3.1: ECEF and ENU coordinates

the intended East axis, then rotate about the rotated Y-axis to line up the rotated Z- and

X-axes with the North- and Up-axes respectively, as shown in Figure 3.1. This rotation will

work out well for this �gure as the latitude and longitude may be used directly in this case

without recalculating any angles. The coordinate rotations are shown by the equation:




U

E

N




=




cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ







cosλ sinλ 0

− sinλ cosλ 0

0 0 1







XECEF

YECEF

ZECEF




(3.44)

The coordinates in Equation (3.44) are out of order from the preferred East-North-Up

order, but the order is easily recti�ed in an algorithm by reassigning the variables.

3.3 Calculating Attitude

Once the RPVs between the antennas have been determined, calculating the vehicle

attitude becomes a matter of a few coordinate rotations. Figure 3.2 shows the con�guration
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of the antennas with respect to the vehicle coordinate frame, recreated from the manual for

the receiver[1]. The X-axis is a horizontal axis and extends in the positive direction out of

the passenger side of the vehicle. The Y-axis is a horizontal axis as well and extends in

the positive direction out of the front of the car. Finally, the Z-axis is the vertical axis and

extends in the positive direction out of the top of the car. As is shown in Figure 3.2, the

antennas are situated such that the main antenna and �rst auxiliary antenna form a line

along the Y-axis, while the main antenna and second auxiliary antenna form a line along

the X-axis. It is important to note that this is not the only antenna con�guration that

could be used to determine vehicle attitude, but was chosen to make calculating the attitude

easier. The antenna array could be rotated into some other position relative to the vehicle

coordinate frame, as long as the relationship between the antenna con�guration and vehicle

axes is known. Additionally, the antennas do not need to be separated by 90 degrees. As

the third attitude angle to be calculated (roll in this case) depends on the portion of the

second baseline that is orthogonal to the �rst baseline, the 90 degree baseline will yield the

best attitude estimate for a given baseline length compared to a larger or smaller angle.

Once the RPVs are in an ENU frame, the attitude of the vehicle may be calculated. As

shown in Figure 3.3, heading is calculated �rst, followed by pitch, and roll is calculated last.

Heading (ψ) may be calculated as:

ψ = tan−1
EM→A1

NM→A1

(3.45)

where the EM→A1 is the east component of the RPV from the main antenna to the auxilary-1

antenna and NM→A1 is the north component of the same RPV. In the following equations,

UM→A1 will be the up component of the RPV from the main antenna to the auxiliary-1

antenna and the subscript M → A2 will denote an RPV from the main antenna to the

auxiliary-2 antenna. Once heading is computed, the ENU coordinates can be rotated by

the negative heading angle about the U-axis, allowing pitch (θ) to then be calculated. Note
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Figure 3.2: Antenna con�guration shown in vehicle coordinate frame. View is top-down onto
the vehicle. Figure recreated from �gure in Septentrio PolarEx manual.

that the negative rotation is due to the fact that heading is calculated as a negative rotation

about the the U-axis:




E ′M→A1

N ′M→A1

U ′M→A1




=




cos(−ψ) sin(−ψ) 0

− sin(−ψ) cos(−ψ) 0

0 0 1







EM→A1

NM→A1

UM→A1




(3.46)

θ = tan−1
U ′M→A1

N ′M→A1

(3.47)

where E ′M→A1
denotes the east coordinate of the RPV once it has been rotated about the

U-axis. There is no speci�c reason to make the heading a negative rotation, except that the

GPS receiver used in this work derives it as a negative rotation. Keeping the derivation of the

attitude measurements consistent is helpful in comparing them to the attitude measurements
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of the receiver. Finally, the ENU coordinates of the second RPV will need to be rotated

with the heading rotation and the pitch rotation so that roll (φ) can be calculated:




E ′′M→A2

N ′′M→A2

U ′′M→A2




=




1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)







cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1







EM→A2

NM→A2

UM→A2




(3.48)

φ = tan−1
−U ′′M→A2

E ′′M→A2

(3.49)

where E ′′M→A2
denotes the east coordinate of the RPV once it has been rotated about the

U-axis and E-axis. If both RPVs have been rotated by all three attitude angles, the vehicle

X-axis and Y-axis will be in line with the E-axis and N-axis, respectively.

There are other methods of calculating attitude, such as using a non-linear least squares

solution or solving Wahba's problem. In both cases, a cost function is de�ned in which two

sets of identical vectors in di�erent frames are compared with a rotation matrix. The goal

is to use the rotation matrix to minimize the cost function between the two sets of vectors.

The primary reason the author does not use these techniques is that both of them yield

a single rotation matrix, e�ectively the roll, pitch, and yaw rotation matrices combined.

Since the author has an interest in knowing these attitude states individually, he has chosen

to compute them separately instead of decomposing a single rotation matrix into three.

The author refers the reader to [3] for more information on these alternative methods of

computing attitude.
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Figure 3.3: Euler angle sequence (recreated from Septentrio manual) [1]
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Chapter 4

GPS/INS Integration

A large part of this work depends on having an accurate attitude estimate with which

to check new GPS measurements. A more accurate attitude estimate will allow tighter tol-

erances on how much error is allowed in a GPS measurement before it may be rejected.

However, a less accurate attitude estimate will mandate a larger window of GPS measure-

ments that must be accepted, also allowing more room for error. In this chapter, a Kalman

�lter (KF) is designed to estimate the vehicle attitude using GPS and IMU measurements.

Then, the error sources of the IMU used in this work are modeled and quanti�ed.

4.1 GPS/INS Kalman Filter

To combine the GPS and IMU measurements, a kinematic KF was chosen. A kinematic

KF di�ers from a regular Kalman �lter in that it uses a kinematic model (i.e. the kinematic

relationships between dynamic states), rather than a dynamic one, to model the system.

Speci�cally, this Kalman �lter will use gyro measurements as �inputs� to the system in order

to advance the roll, pitch, and yaw estimates, while GPS attitude measurements will be

the measurement updates for the �lter. Since the states being estimated are non-linear, an

extended KF (EKF) is used in place of the regular KF. The primary di�erences between the

EKF and a standard KF are:

1. Since the states are non-linear, the state transition model is linearized about an oper-

ating point.

2. The state estimate covariance matrix is updated a little di�erently than with a standard

KF.
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To calculate the state space matrices needed for the EKF, the di�erential equations describing

the change with respect to time are needed. They are:

φ̇ = (gx − bx) sinφ sin θ + (gy − by) cos θ − (gz − bz) cosφ sin θ (4.1)

θ̇ = (gx − bx) cosφ+ (gz − bz) sinφ (4.2)

ψ̇ = (gx − bx) sinφ cos θ − (gy − by) sin θ − (gz − bz) cos θ sinφ (4.3)

where φ̇, θ̇, and ψ̇ are the changes in the attitude states with respect to time, gx, gy, and

gz are gyro measurements, and bx, by, and bz are gyro biases. The three attitude angles and

three bias states will comprise the six states of the �lter. The model is given by:

ẋ = Ax+Buu+Bww (4.4)

ẋ =

[
φ̇ θ̇ ψ̇ ḃx ḃy ḃz

]T
(4.5)

x =

[
φ θ ψ bx by bz

]
(4.6)

A =



A1,1 A1,2

A2,1 A2,2


 (4.7)

A1,2 =




− sinφ sin θ − cos θ cosφ sin θ

− cosφ 0 − sinφ

− sinφ cos θ sinθ cosφ cos θ




(4.8)
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A1,1 = A2,1 = A2,2 = 03×3 (4.9)

Bu =



−A1,2

03×3


 (4.10)

u =

[
gx gy gz

]T
(4.11)

Bw =



−A1,2 03×3

03×3 I3×3


 (4.12)

y = Cx+ ν (4.13)

C =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0




(4.14)

where w is a 6-by-1 process noise vector and ν is a 3-by-1 measurement noise vector. Since the

noise characteristics are estimated from sensor data, they will be de�ned with the discrete-

time model. The model is discretized using a zero-order hold (ZOH) model with a sampling

rate of 80 Hz (the measurement rate of the IMU, discussed later), giving the discrete-time

state space model:

xk+1 = Adxk +Buduk +Bwdwk (4.15)

Ad = I6×6 +
1

80
A (4.16)
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Bud =
1

80
Bu (4.17)

Bwd =
1

80
Bw (4.18)

yk = Cxk + νk (4.19)

wk ∼ N
(

0,




(4× 10−5)I3×3 03×3

03×3 (10−8)I3×3



)

(4.20)

νk ∼ N
(

0, (2× 10−6)I3×3

)
(4.21)

The values for the gyro noise and GPS attitude noise were taken from gyro and GPS mea-

surements, while the uncertainty associated with the bias terms is chosen for desired �lter

performance. Detailed information about the EKF and the di�erences between an EKF and

a KF may be found in [16].

4.2 IMU Errors

The IMU used in this work is the Crossbow IMU400-CC series. It is a 6-DOF micro-

electromechanical system (MEMS) IMU, giving accelerometer and rate gyro measurements

along each of three Cartesian coordinate axes. Since the scope of this work does not require

the use of the accelerometer measurements, only the gyro measurements will be discussed.

Using a simple sensor model found in [5], gyro output may be modeled by the equation:

gr = r + cr + br + wgyro (4.22)
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where gr is the gyro output, r is the true rotation rate of the gyro, cr is a constant bias,

br is a moving or walking bias, and wgyro is random sensor noise, assumed to be normally

distributed with zero mean. It is desirable to remove as much error as possible, as integrating

rotation rate bias over time will produce error in the attitude estimates. Figure 4.1 shows

raw gyro measurements from a stationary data set.

4.2.1 Bias Error

The speci�cation sheet for the IMU400-CC series shows that each gyro measurement

may experience a bias of up to ±1 deg/s. As shown in Equation (4.22), the measurement

bias has a constant component and a drifting component. Over a long static data set, the

constant bias may be estimated by taking the mean of the measurements throughout the

data set. For the data set in Figure 4.1, the largest calculated mean is just under .004 rad/s,

or about .23 deg/s, well within the range given in the speci�cation sheet for the sensor.

To observe a walking bias visually in the data, it is necessary to �lter the data to

remove the higher frequency noise. Figure 4.2 shows the data from the Y gyro in Figure 4.1

after low-pass �ltering at several bandwidths. The �rst panel of Figure 4.2 starts to show

the movement of the bias, although panels two and three are progressively more helpful in

observing the bias over time. It is evident from the data that there is a detectable walking

bias, although it seems to be bounded to within a range of about .001 rad/s, or .057 deg/s.

Filtered data from the X and Z data sets showed walking biases with similar bounds. Over

half a second, a bias of .057 deg/s has the potential to cause about .03 degrees of error in

angular position.

4.2.2 Random Error

The random error portion of the gyro measurement may be modeled as a zero mean

Gaussian noise. The standard deviation of the normal distribution is normally given in a

speci�cation sheet as a function of sampling rate as the �random walk� parameter. For
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Figure 4.1: Un�ltered stationary gyro measurements over 3 axes. Red lines denote mean
measurement.
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Figure 4.2: Gyro data �ltered at several bandwidths by low pass �lter.
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the Crossbow IMU400CC-200, the parameter is given as < 4.5deg/
√
hr. Computing the

parameter in more useful units gives:

4.5
deg√
hr

= .075
deg√
s

= .075
deg
s√
hz

(4.23)

Multiplying the random walk parameter by the square root of the sampling frequency

will give an upper bound on what to expect for the standard deviation of the random noise,

giving:

σ = .075×
√

80 = .671
deg

s
= .0117

rad

s
(4.24)

In the data sets shown in Figure 4.1, the standard deviation of the sampled data sets

is around the range of σ = .006− .007 rad/s, so the experimental data is within the bounds

expected from information in the speci�cation sheet. Since the random error is completely

non-deterministic, and thus cannot be compensated for, it is helpful to know the worst case

error from integrating the random error. Monte Carlo simulations are a useful tool in such

a situation, as it is simple to simulate a random walk of angular position by numerically

integrating the generated random noise. The standard deviation calculated for Equation

(4.24) was used in the Monte Carlo simulation. The results of the Monte Carlo simulations

are shown in Figure 4.3, along with an envelope representing three standard deviations of

the data at each time step. The envelope reaches approximately ±.16 degrees at .5 seconds,

which is the sampling period of the GPS receiver used in this work. From the 3σ envelope,

it can be determined that about 99.7% of the random walks will result in attitude errors

around or less than .16 degrees, while the largest simulated random walk was still less than

.25 degrees. Overall, the Monte Carlo simulations show an acceptable amount of error for

the purposes of this work.
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Figure 4.3: Monte Carlo simulation of random walk. 3σ envelope shown in black.
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Chapter 5

Faulty Signal Detection Algorithm

The algorithm for checking for multipath or spoofed signals may be separated into three

stages. The �rst stage is an initialization stage, during which the integer ambiguities, relative

clock biases, and gyro biases are computed. Once the initialization stage is completed, RPVs

and attitude may be computed using the integer ambiguities and relative clock biases while

the estimated gyro biases may be used in the KF. Once the initialization stage is complete,

the algorithm repeatedly alternates between a checking stage and an update stage. In the

checking stage, the attitude estimate is propagated by integrating IMU measurements until a

new set of GPS measurements is available. The new GPS measurements are then checked for

an appropriate angle of arrival. Once the new GPS signals have been checked and the faulty

signals rejected, the update stage uses the GPS measurements to calculate new positions

and attitude, allowing the attitude KF to be updated with the GPS attitude estimate.

5.1 Initialization Stage

For the initialization stage, it is important to have the vehicle in an open area so that

the initial integer ambiguity �xes, RPVs, and attitude estimates are correct. The speci�c

steps for �nding the integer ambiguities, RPVs, and attitude estimates were outlined in

Sections 3.1 and 3.3. The initialization stage is also used to initialize the bias in the gyro

measurements. If the vehicle is stationary, r = 0 in Equation (4.22), giving:

gr = cr + br + wgyro (5.1)
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While the algorithm still has the potential to detect multipath or spoofed signals with

double-di�erenced carrier phase measurements, the algorithm is much less robust using the

double di�erences because the double di�erenced ambiguities are all linked to a common

satellite. In the event that the common satellite for the double-di�erenced measurements

is lost, all of the double-di�erenced ambiguities for that pair of antennas would be lost.

Freedom from reliance on any one satellite is not the only advantage of resolving the single

di�erenced ambiguities: the double-di�erenced ambiguities may be calculated directly from

the single di�erenced ambiguities without the need for a Kalman �lter or the LAMBDA

method. It is important to keep the correct set of double di�erenced ambiguities so that the

relative clock bias may be periodically checked via the double di�erenced RPV. The single

di�erenced RPV should not be used to check the clock bias, as the single di�erenced RPV

depends on the clock bias.

5.2 Check Stage

During the check stage, the attitude Kalman �lter is updated using gyro measurements

until a new set of GPS measurements is recorded. Once the new GPS measurements are

recorded, the known baseline of the antennas, the attitude estimates, and the satellite posi-

tions are used to predict an expected AOA for each satellite. The integer ambiguities and

new carrier phase measurements may be used to calculate the actual AOA for each satellite.

The expected and actual AOA for each satellite are then compared, which results in a re-

jection of the measurements of a satellite if the di�erence in AOA exceeds a pre-determined

threshold. The exact threshold at which a signal may be rejected relies on two factors which

will be discussed at the end of Section 5.2.1.

5.2.1 Calculate AOA

A convenient way of calculating the angle of arrival of a GPS signal is to use a property

of the dot product between two vectors, namely:
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cos θ =
~a ·~b
|~a||~b|

(5.2)

Equation (5.2) may be manipulated to give θ directly, yielding:

θ = cos−1

(
~a ·~b
|~a||~b|

)
(5.3)

In the context of this work, ~a is a the vector from an antenna to a satellite and ~b is the

relative position vector between two antennas. Another useful property of the dot product

is the property of scalar multiplication, namely:

c~a ·~b = c(~a ·~b) (5.4)

where c is a scalar [17]. From Equation (5.4), we may rearrange the term inside the paren-

theses in Equation (5.3), giving:

~a ·~b
|~a||~b|

=
1

|~a|
~a · 1

|~b|
~b (5.5)

We see that Equation (5.5) represents the dot product of the unit vectors of ~a and ~b.

Using unit vectors is convenient, as the geometry matrix used in several parts of the algorithm

already contains unit vectors to every satellite in view. The position vector between two

antennas must be computed regularly for attitude determination of the vehicle, so the unit

vector between the antennas is readily available as well. With the appropriate unit vectors,

it is trivial to compute the expected AOA for each GPS signal given an expected RPV.

Mathematically, calculating the AOA of an actual signal requires only some elementary

geometry. The reader will notice from Figure 5.1 that the vector ~r between the two antennas

and the di�erence L in distance to the satellite from the two antennas form two legs of a

right triangle. We may then conclude that the AOA, θ, may be obtained by a property of

the right triangle:
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Figure 5.1: 2-D example of AOA. Solid red lines depict LOS to GPS satellite.

cos θ =
L

|~r|
→ θ = cos−1

(
L

|~r|

)
(5.6)

The length L is simple to obtain if the relative receiver clock error and single-di�erenced

ambiguities are known. An estimate of L may be computed for each signal from the single-

di�erenced carrier phase measurement:

L̂ = ∆φk1,2 − λL1(Nk
1,2)− (cdt2 − cdt1) (5.7)

If the single-di�erenced ambiguities or relative receiver clock bias are unknown, there

is no way to directly compute L. However, it is possible to calculate a related quantity, L′,

which may be computed from the double-di�erenced carrier phase measurement. The ideal

L′ may be computed by:
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L′ =

[
(x̂k1 − x̂l1) (ŷk1 − ŷl1) (ẑk1 − ẑl1)

]



x2 − x1

y2 − y1

z2 − z1




(5.8)

This quantity may be checked by subtracting the double-di�erenced ambiguity term

from each double-di�erenced carrier phase measurement:

L̂′ = ∇∆φk,l1,2 − λL1(N
k,l
1,2) (5.9)

The double-di�erenced approach is less robust than the single-di�erenced approach as

all of the double-di�erenced integer ambiguities rely on a common satellite. In addition, L̂′

does not provide an AOA, so it is a little more di�cult to decide on an appropriate error

tolerance. However, even with the downsides, using the double-di�erenced ambiguities is

better than having no error detection at all.

To establish a threshold on acceptable AOA calculations, two contributing factors must

be considered. The �rst, and most obvious, is the accuracy of the attitude estimate. Since the

RPV used in checking new GPS signals is generated by the attitude estimate, it makes sense

that the estimated AOA will be a�ected by the error in the RPV that is caused by attitude

error. The second contributing factor to be considered is the noise on the single-di�erenced

carrier phase measurement. Since L̂ is generated from the single-di�erenced carrier phase

measurement, any error on the single-di�erenced carrier phase measurement will cause error

in the estimated AOA of a signal. For example, suppose an expected value of L = 0.8 meters

for a one-meter baseline. In that case:

θ = cos−1(
.8

1
) = 36.9◦ (5.10)

Suppose then that there is an error of .02 meters on the single-di�erenced carrier phase

measurement. With the .02 meter error, the estimated AOA is:

46



0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

Expected AOA (deg)

A
p
p
a
re

n
t 
A

O
A

 e
rr

o
r

0.94m Baseline

 

 

.01 m error on ∆φ

.02 m error on ∆φ

.03 m error on ∆φ

.04 m error on ∆φ

.05 m error on ∆φ

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8

Expected AOA (deg)

A
p
p
a
re

n
t 
A

O
A

 e
rr

o
r

1.91m Baseline

 

 

.01 m error on ∆φ

.02 m error on ∆φ

.03 m error on ∆φ

.04 m error on ∆φ

.05 m error on ∆φ

Figure 5.2: Expected AOA vs. apparent AOA error for a given single-di�erenced carrier
phase measurement error. Note that each curve is evaluated up until the point at which the
argument for inverse cosine does not yield a real angle.

θ = cos−1(
.82

1
) = 34.9◦ or θ = cos−1(

.78

1
) = 38.7◦ (5.11)

With an error of a little more than .1 carrier phase cycle, the measured AOA is thrown o�

by as much as two degrees. Figure 5.2 shows apparent AOA error as a function of expected

AOA and various amounts of single-di�erenced carrier phase measurement error. Generally

speaking, a longer baseline will be less a�ected by the single-di�erenced carrier phase error,

and signals with a low or high expected AOA will require a wider threshold than those with

an expected AOA closer to 90 degrees.
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5.2.2 Alternate AOA Checking Strategies

The method for calculating the AOA in Section 5.2.1 is a good one, but the method relies

on knowing the integer ambiguity, which is not always known. Speci�cally, the ambiguity

will not be known for the case of a newly acquired satellite or one that has recently been

rejected, making the AOA calculation in Section 5.2.1 impossible. It is still desirable to have

some idea of the AOA of a signal though, so there are two more approaches that o�er a

reduced level of detection of AOA using less information.

5.2.2.1 Single-Di�erenced Pseudorange

The �rst alternate approach uses the single-di�erenced pseudorange measurements in

place of the single-di�erenced carrier phase measurements. The reader will recall from Equa-

tions (3.3) and (3.4) that the single-di�erenced pseudorange and single-di�erenced carrier

phase measurements will give the same quantity if the carrier phase measurement may be

corrected with the cycle ambiguity, except that the pseudorange measurement is much more

noisy. Then the single-di�erenced carrier phase measurement and integer ambiguity terms in

Equation (5.7) may be replaced by the single-di�erenced pseudorange measurement, yielding:

L̂ = ∆ρk1,2 − (cdt2 − cdt1) (5.12)

This approach does have the drawback of the relatively high noise on the single-di�erenced

carrier phase measurement. It is not uncommon for the error in the single-di�erenced pseu-

dorange to be in excess of a meter, making this approach less e�ective for shorter baselines.

As an example, a one-meter baseline can have values of L between -1 and 1 meter. If the

ideal L for a given satellite is .75 meters, then values of −.25 to 1.75 meter must be accepted

for L̂ to account for the potential error on the single-di�erenced carrier phase measurements.

In this particular example, the wide threshold has the potential to allow AOAs spanning over

100 degrees to be allowed. For the baselines used in this work (.94 meters and 1.91 meters),
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or any baselines able to be implemented on a car, this method is not reliable enough to be

used as the primary multipath/spoo�ng rejection algorithm.

5.2.2.2 Single-Di�erenced Carrier Phase

The second alternate approach utilizes the single-di�erenced carrier phase measurement

without the knowledge of the single-di�erenced carrier ambiguities. If Equation (5.7) is

divided by λL1 and only the remainder is kept, it is seen that:

rem(
L̂

λL1
) = rem(

∆φk1,2 − λL1(Nk
1,2)− (cdt2 − cdt1)
λL1

) = rem(
∆φk1,2 − (cdt2 − cdt1)

λL1
) (5.13)

An estimate of L̂ may be calculated using Equations (5.2) and (5.6). Since this estimate

is based on the RPV calculated from the IMU attitude solution, bounds may be set on

acceptable values for L̂ based on con�dence in the attitude solution. Alternatively, the

ideal and calculated remainders may be compared by calculating the di�erence, or residual,

between them and calculating acceptable error bounds on the residual.

It is interesting to note that unlike the method in Section 5.2.2.1, shorter baselines

present some bene�t in this method. By observing that:

−|r̂| < L<|r̂| (5.14)

and

L = nλL1 +R (5.15)

for some integer n and remainder R where:

0 ≤ R < λL1 (5.16)
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then the number of potential AOAs, m, that will ful�ll the remainder requirement will be:

m = 2|r̂|
λL1

+ 1 if R = 0

m = d( 2|r̂|
λL1

)e if R 6= 0
(5.17)

Note also that Equation (5.15) may be used to calculate all values of L that satisfy the

remainder in Equation (5.13). The AOA associated with each value of L may be calculated

using Equation (5.6). Figure 5.3 gives a visual representation of Equation (5.17), with an

extra potential AOA being added for each additional half carrier cycle of baseline length.

It is important to note that m in Equation (5.17) assumes multipath and spoo�ng signals

may only come from above the vehicle. If it is assumed signals may come from below the

vehicle as well (i.e. an airplane under spoo�ng attack), the number is doubled. If it is

assumed that signals may come from above the vehicle and |r̂| < λL1

2
, then there is only

one AOA that will ful�ll the remainder condition. Alternatively, if |r̂| is large, there will

be many AOAs that could ful�ll the remainder requirement. There is a trade-o� to the

baseline length, however, as a longer baseline will give a more accurate attitude estimate on

the GPS updates. Figure 5.4 shows the expected attitude error as as function of baseline

length. Interestingly enough, the improved attitude accuracy o�sets the increase in number

of potential AOAs almost exactly. For instance, a baseline that is just under .5λL1 will have

approximately 6 degrees of attitude error and one potential AOA, while a baseline of just

under λL1 will have approximately 3 degrees of attitude error and two potential AOAs. If it

is assumed the attitude performance from the IMU is perfect, the choice between baseline

lengths comes down to preference as to whether the error is represented by fewer AOAs

with large error bounds or more AOAs with smaller bounds. However, practically speaking,

there is an advantage to smaller baselines as any attitude error will increase the error bounds

on all potential AOAs, which detracts from the attitude accuracy advantage of the longer

baselines. Figure 5.5 shows a graphical representation of a case where there are four values

of L, and thus four AOAs, that satisfy the remainder requirement in Equations (5.15) and
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(5.16). All of the faulty signals that could ful�ll the remainder requirement will have an L

value that di�ers by an integer number of cycle ambiguities from the L of the correct AOA,

as the di�erence in the length will not contribute to the remainder of the L value. The

blue solid line represents the correct line of sight, and thus AOA, to a particular satellite,

while the red solid lines represent incorrect AOAs. The dashed lines represent error bounds,

which are based on attitude estimation error in the attitude �lter and noise in the carrier

phase measurement. The area outside of the error bounds represents AOAs that can be

con�dently rejected as multipath/spoo�ng signals. Having a correct attitude solution is

especially important with this approach, as an increase in attitude error will mandate larger

bounds on L, which in turn will e�ectively increase the error bounds on all potential AOAs.

In the case of having more than a few potential AOAs, even a small attitude error could

make the detection of faulty signals di�cult.

The range of R that is acceptable depends not only attitude error but on the expected

angle of arrival. Generally speaking, the error bounds on R are worst at 90 degrees for a

given attitude error and are minimized nearing zero and 180 degrees. For example, suppose

for a one-meter baseline that thresholds on R should be computed to take into account two

degrees of error. Then:

L = 1 cos(90◦) = 0 (5.18)

Accounting for two degrees of error:

L = 1 cos(88◦) = .0349 m = .183 cycles (5.19)

In this case, an allowance must be made for ±.0349 m, or ±.183 carrier cycles, for a total

range of .366 cycles. Since R represents the part of a whole cycle, roughly a third of all

signals could potentially be accepted. Conversely, suppose the case for an AOA of 45 degrees

is explored. Then:
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Figure 5.3: Plot of baseline length vs. number of potential AOAs.
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Figure 5.5: Graphical representation of multiple AOAs that ful�ll the remainder requirement
of Equations (5.15) and (5.16). The expected AOA is shown as a blue solid line, while
incorrect AOAs are shown as red solid lines. Red and blue dashed lines represent error
bounds based on attitude estimation error from attitude �lter.
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L = 1 cos(45◦) = .707 (5.20)

Accounting for two degrees of error:

L = 1 cos(47◦) = .682 (5.21)

In this second case, an allowance must only be made for ±.025 m, or ±.131 carrier cycles,

for a total range of .262 cycles. This represents an improvement over the 90 degree case, as

roughly 74 percent of signals may be rejected, instead of 63 percent with the 90 degree case.

Figure 5.6 shows the relationship between expected AOA, error bounds for R, and attitude

error for the two baselines used in this work. The vertical black lines represent practical

boundaries of AOA, as most satellites within 15 degrees of elevation from the horizon are

generally not visible or ignored due to higher levels of atmospheric error. The horizontal

black dashed line represents ±.5 cycles, at which point no signals can be rejected. Comparing

the two plots, the shorter baseline has a clear advantage over the larger baseline in terms of

allowable error.

The carrier phase residual approach is strengthened by the presence of two pairs of an-

tennas that are orthogonal to each other. Figure 5.5 is best expanded to a three-dimensional

representation by projecting the AOA bounds onto a hemisphere around the baseline. The

AOA bounds will form concentric bands about the RPV of the antenna, similar to latitude

lines on a globe. The 3-D representation of the AOA error bounds may be seen in Figure 5.7.

The blue lines in Figure 5.7 represent a set of bounds for which a signal would be accepted

by antenna pair 1, while the red lines represent a set of bounds for which a signal would be

accepted by antenna pair 2. Since rejection of a faulty signal only requires the signal to be

detected by one pair of antennas, a faulty signal must fall into one of the intersections of the

bounds of antenna pairs 1 and 2 to escape detection by both antennas.
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Figure 5.7 also serves to compare several coordinate systems that will be useful in

determining the probability of accepting a false signal as genuine. First, a standard Cartesian

coordinate frame is de�ned with baseline 1 extending in the direction of the positive X-axis

and baseline 2 extending in the direction of the positive Y-axis. The X and Y axes are

in the horizontal plane with the Z-axis pointing up. Next, it is helpful to de�ne spherical

coordinate systems about the antenna baselines.θ1 is the AOA for baseline 1 and denotes the

angle between the positive X-axis and a vector extending away from the origin. θ2 serves the

same purpose for the Y-axis or baseline 2. For a vector extending outward from the origin,

φ1 is the right-handed rotation of the vector about the X-axis. If a vector is projected into

the YZ-plane, φ1 = 0 corresponds to a vector projected onto the Y-axis only while φ1 = π
2

corresponds to a vector projected onto the z axis only. φ2 denotes a vector projected in the

same manner onto the XZ plane, with φ2 = 0 on the negative X-axis only and φ2 = π
2
on

the Z-axis only. Finally, rh denotes distance from the origin and is the same for both sets of

coordinates. Note that φ as it is used here as a variable for spherical coordinates should not

be confused with the carrier phase measurement.

For an AOA θi given by Li that ful�lls the remainder requirement, the error bounds on

θi will be determined by signal noise and attitude error. The error bounds may be expressed

as angles θi,1 and θi,2 or as lengths Li,1 and Li,2, both of which may be used to calculate the

surface area of the hemisphere for which signals will be accepted. To �nd the surface area of

the hemisphere for which incoming signals will be accepted by a single baseline, the surface

area encompassed by each pair of bounds must be calculated �rst. Then the individual

surface areas will be summed to give the total surface area of the hemisphere encompassed

by the residual bounds. For n angles of arrival that satisfy the remainder requirement, the

total surface area of the hemisphere encompassed by the residual bounds is given by:

n∑

i=1

ˆ π

0

ˆ θi,2

θi,1

r2h sin θ dθdφ = r2h

n∑

i=1

π(cosθi,1 − cosθi,2) = r2h

n∑

i=1

r2hπ
Li,2 − Li,1
|~r|

(5.22)
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Figure 5.7: Representation of AOA error bounds projected onto a hemisphere for two or-
thogonal baselines. Antenna baseline 1 extends from the origin outward along the X-axis
while baseline 2 extends from the origin outward along the Y axis. The pair of blue bands
represent error bounds on an AOA for baseline 1 while the red bands represent error bounds
on an AOA for baseline 2. The error bounds will be used to determine the probability of
accepting a false signal.
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where θ is the AOA, φ is rotation about the antenna baseline, rh is the radius of the hemi-

sphere, and |~r| is the antenna baseline length. Also, Li,2 > Li,1 so that the quantity Li,2−Li,1

will be positive and yield a positive surface area calculation. There is no need to establish a

value for rh as it will cancel out in Equation (5.25). Bounds on θi,1, θi,2, Li,1, and Li,2 are:

0 < θi,1, θi,2 < π (5.23)

−|~r| < Li,1, Li,2 < |~r| (5.24)

The probability of accepting a false signal Pfalse using one antenna baseline may then

be given by dividing the surface area within the residual bounds by the total surface area of

the hemisphere:

Pfalse =
(
r2hπ

n∑

i=1

Li,2 − Li,1
|~r|

) 1

2πr2h
=

1

2|~r|

n∑

i=1

Lk,2 − Lk,1 (5.25)

Note that the expression for Pfalse is derived assuming that all incoming signals will come

from above the antenna baseline. If it is assumed that signals may also come from below

the baseline, the AOA bounds will be projected onto a sphere instead of a hemisphere. As

the bottom half of the sphere will mirror the top half, the expressions for total surface area

and total area enclosed by the error bounds will both double, giving the same end result for

Pfalse. To simplify the expression for Pfalse, the error on Lk may be expressed in terms of

L1 carrier wavelengths: Lk,1, Lk,2 = Lk ± aλL1 where 0 ≤ a ≤ 0.5. In that case:

Lk,2 − Lk,1 = (Lk + aλL1)− (Lk − aλL1) = 2aλL1 (5.26)

as long as Lk + aλL1 < |~r| and Lk − aλL1 > −|~r| for all Lk. The baseline length may also be

expressed in terms of carrier wavelengths: |~r| = bλL1 where n−1
2

< b ≤ n
2
. Equation (5.25)

may then be rewritten in a much more compact format:
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image of

Figure 5.8: Di�erential surface area dA as it relates to dθ1 and dθ2.

Pfalse =
2naλL1
2bλL1

=
na

b
(5.27)

In cases where b approaches n
2
or b is large (n� 1), Pfalse reduces further to

Pfalse ≈ 2a (5.28)

As an example, suppose the error bounds on Lk are determined to be ±.1λL1. If the require-

ments for Equation (5.28) are met, Pfalse ≈ .2, or 20%.

As was mentioned earlier, the real strength of the carrier phase residual approach lies

in using two orthogonal antenna baselines. If two sets of antennas are used to check incom-

ing GPS measurements, the incoming signals must pass the residual test for both antennas

simultaneously in order to be accepted. In Figure 5.7, passing the the residual test for both

antennas at once is represented by the intersection of the error bounds from the two orthog-

onal sets of antennas. To calculate the cumulative area encompassed by these intersections,

it is important to de�ne dA in terms of θ1 and θ2. In general, dA will be in the shape of a

trapezoid as seen in Figure 5.8. From the �gure, it can be seen that the area dA is given by:

dA = (rhdθ1)(rhdθ2)
1

sin θs
= (rhdθ1)(rhdθ2)

1√
1− cos2 θs

(5.29)

where θs is one of the interior angles of the trapezoid.
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Before attempting to solve for θs, it is helpful have expressions for the X and Y coordi-

nates in terms of θ1, φ1, θ2, and φ2 :

X = rh cos θ1 = −rh sin θ2 cosφ2 (5.30)

Y = rh cosφ2 = rh sin θ1 cosφ1 (5.31)

It is known that φ̂1 is parallel to lines denoting the error bounds for θ1. Likewise, φ̂2 is

parallel to the error bounds for θ2. As such, the angle between the sides may be found by

the dot product of φ̂1 and φ̂2. Equations for φ̂1 and φ̂2 are given by:

φ̂1 = − sinφ1ŷ + cosφ1ẑ (5.32)

φ̂2 = sinφ2x̂+ cosφ2ẑ (5.33)

Taking the arccosine of the dot product divided by the product of the magnitude of the

vectors gives:

θs = arccos(
φ̂1 · φ̂2

|φ̂1||φ̂2|
) = arccos(cosφ1 cosφ2) (5.34)

Substituting Equation (5.34) into Equation (5.29) yields:

dA = (rhdθ1)(rhdθ2)
1√

1− cos2(arccos(cosφ1 cosφ2)))
(5.35)

= (rhdθ1)(rhdθ2)
1√

1− (cosφ1 cosφ2)2

The (cosφ1 cosφ2) term can be expressed in terms of θ1 and θ2 from Equations (5.30) and

(5.31), giving:
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da =
r2h√

1− (cot θ1 cot θ2)2
dθ1dθ2 (5.36)

The probability of accepting a false signal may then be computed by integrating over the

individual intersections of AOA error bounds, summing the results, and dividing by the total

surface area of a hemisphere:

Pfalse =
1

2π

m∑

i=1

n∑

j=1

ˆ θi,2

θi,1

ˆ θj,2

θj,1

1√
1− (cot θ1 cot θ2)2

dθ1dθ2 (5.37)

=
1

6π

m∑

i=1

n∑

j=1

(1− (cot θ1 cot θ2)
2)

3
2 sin θ1 sin θ2 cos θ1 cos θ2 |

θi,2
θi,1
|θi,2θi,1

for cos2 θ1 + cos2 θ2 ≤ 1. The constraint on θ1 and θ2 serves to ensure that the AOAs are

integrated only where they intersect. For example, suppose θ1 = θ2 = π
6
. Then cos2(π

6
) +

cos2(π
6
) = 3

2
, indicating θ1 and θ2 do not intersect.

Another strength of the carrier phase residual method comes from the low likelihood

that several authentic signals will have the same carrier phase remainders. In a single-spoofer

attack, all of the spoofed signals will originate from the same location, which will cause the

carrier phase remainders to be the same for all of the spoofed signals. The advantage of

the carrier phase remainders being the same is that even if one of the signals happens to

be within the acceptable bounds, the others will not be within the correct bounds and will

be detected. In the case that multiple signals with the same carrier phase remainder are

detected, the signal that happens to fall within the correct bounds may be rejected as well.

5.3 Update stage

The update stage occurs after a set of GPS measurements has been checked for AOA

and the erroneous measurements have been rejected. During the update stage, a new GPS

position, new RPVs, and new GPS attitude solutions are computed, and the attitude Kalman
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�lter is updated with the new GPS attitude solution. Once all of the GPS calculations have

been made, the algorithm returns to the checking stage until a new set of GPS measurements

is received.

5.3.1 Choosing the correct RPV

Calculating a correct RPV between antenna pairs is crucial to erroneous signal detec-

tion. If the RPV between a pair of antennas is wrong, the attitude estimate will be wrong

and the erroneous signal detection will cease to function properly. As is mentioned in the

AOA section, it is preferable to know the single-di�erenced integer ambiguities as double-

di�erenced ambiguities have the misfortune of all being linked to a single satellite. However,

RPVs must be computed using double-di�erenced ambiguities regularly so that the clock

bias inherent in the single di�erenced ambiguities may be estimated at each time step.

In Section 3.1, an approach for estimating double-di�erenced integer ambiguities was

outlined which relied on a KF and a specialized rounding algorithm. The algorithm has

the advantage of using GPS signal quality to weigh the measurements while a cost function

is used to compare di�erent sets of integer ambiguities to the �oat ambiguities. However,

a major disadvantage of the KF approach is that the �oat ambiguities of newly acquired

satellites may take some time to converge to values close to the correct integer ambiguity.

A similar problem, mentioned in the previous paragraph, occurs if the base satellite used

for double di�erencing is lost or reacquired, as all of the �oat ambiguity estimates must be

reset.

An alternative course of action is to use single-di�erenced integer ambiguities to gen-

erate double-di�erenced integer ambiguities. To calculate double-di�erenced ambiguities

from single-di�erenced ones, the single-di�erenced ambiguity of the base satellite is simply

subtracted from the other single-di�erenced ambiguities. Perhaps the biggest advantage of
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generating the double-di�erenced ambiguities from single-di�erenced ambiguities is the �ex-

ibility in choosing the base satellite in the double-di�erencing, as opposed to the the KF

method which requires the base satellite to be chosen when the integers are �xed.

With two separate sets of double-di�erenced integer ambiguity estimates available, it

is important to establish a metric to compare them so that the better RPV estimate may

be chosen. This work investigated three di�erent metrics to compare RPV estimates: RPV

magnitude, change in RPV from previous RPV estimate, and comparison with expected

RPV.

5.3.1.1 RPV magnitude

The simplest of the three metrics is checking the magnitude of the calculated RPVs

against a measured baseline. The most obvious potential problem with the RPV magnitude

approach is that the baseline between each set of antennas must be known accurately prior

to using the system, but in most cases the baselines would be easily measurable. The more

serious problem, and chief reason for not using this approach, is that �xing the integer

ambiguities incorrectly can still yield an RPV with an acceptable magnitude. In fact, carrier

phase errors may cause an incorrect RPV to be closer in magnitude to the correct baseline

than the correct RPV in some cases.

Even if the RPV magnitude is not dependable for choosing the best RPV, it can be

used to detect wrong RPVs. RPVs calculated with RTK positioning are generally accurate

to within one centimeter, so a threshold may be established to eliminate RPV candidates

outside of the threshold. The author used a threshold of ±2 centimeters in this work. The

threshold was chosen on the basis of RTK accuracy as well as potential error on the author's

part in measuring the baseline from the center of each antenna.

64



5.3.1.2 Change in RPV

Another potential metric for comparing RPV candidates is to compare each of the RPV

candidates to the previous RPV, then compare the magnitude of the di�erence between

the previous and current vectors. The idea behind this approach is that an incorrect RPV

might be obviously di�erent from the previous RPV. The �aw with this approach is that

it does not account for the dynamics involved in a non-stationary system. In the case of

slow rotating dynamics, such as those encountered during very slow driving or driving along

�at interstate, this approach may be helpful as the RPV is not expected to change much

between measurements. However, in the course of normal city driving, it is not uncommon

for the RPV to change drastically, especially during a sharp turn. Since the limitations on

this approach stem from the comparison of the current RPV candidates to an old candidate,

the next logical step is to compare the RPV candidates to the predicted RPV for the current

measurements.

5.3.1.3 Expected RPV

The third approach for comparing RPV candidates is to compare the candidates with

an expected RPV based on the known association between the RPVs and the attitude of

the vehicle. The predicted RPV, which is calculated as part of the AOA determination,

may be subtracted from the RPV candidates. The magnitudes of the di�erence may then

be compared to determine which RPV candidate is closer to the expected RPV. Under ideal

circumstances, the predicted RPV will be representative of the true RPV for a given set of

measurements.

Additionally, a threshold may be determined to reject RPVs that are very di�erent

from the predicted RPV. The threshold will be dependent on the expected accuracy of

the RPV as well as the accuracy of the attitude determination. For this work, the author

used thresholds of .1 meter and .2 meters for the baselines of .94 meters and 2.14 meters,
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respectively. These thresholds account for a worst case scenario of one centimeter of RPV

error and approximately �ve degrees of separation of the predicted and candidate RPVs.

5.3.2 Calculating Single-Di�erenced Ambiguities

The method for calculating single-di�erenced cycle ambiguities is covered in Section

3.1.4, but it is important to mention here that calculating the ambiguities for each new

set of GPS measurements can serve as a check against multipath signals as well. When an

RPV is used to estimate single-di�erenced ambiguities from the single-di�erenced carrier

phase measurement, the calculated ambiguities will not be integers, but should be very close

because of the small amount of error on the carrier phase measurements. The author has

observed in this work that the di�erence between the estimated and rounded ambiguity for a

given single-di�erenced carrier phase measurement is generally within ±.1 cycle. Henceforth,

this error will be referred to as the carrier-phase ambiguity residual error.

In concept, this method is the same idea as the signal checking method outlined in

Section 5.2.2.2. The di�erence between the two is that the approach in Section 5.2.2.2 uses

an RPV generated by an attitude estimate while calculating the ambiguities directly uses

an RPV generated by the double-di�erenced ambiguities and carrier phase measurements.

The result is that the latter method provides a much better estimate of the RPV, and

as such allows for smaller thresholds on the acceptable residuals. Since the error on an

RPV calculated by RTK positioning is about one centimeter at most, the result is a worst

case AOA error of about .6 degrees and .3 degrees for .94-meter and 1.94-meter baselines

respectively. In both cases, the error induced by the angular error accounts for an error of

±.05 cycles at most. In this particular case, the threshold is determined more by the noise

on the signal than by the angular error associated with AOA.
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Chapter 6

Experimental Results

6.1 Experimental Equipment

Experimental results were collected using a Septentrio PolaRx2e GPS receiver. The

Septentrio receiver is commercially available as an attitude system and may be con�gured

to output raw GPS measurements such as pseudoranges, carrier phase measurements, and

carrier-to-noise ratios, as well as derived measurements such as position, velocity, and atti-

tude. The availability of both raw and derived measurements make the Septentrio receiver a

good choice for this work, as having both measurements allows the derived measurements of

this work to be compared against those of the Septentrio receiver. Typical attitude accuracy

from the receiver may be found in Table 6.1, recreated from the user manual for the receiver

[1]. Note that the roll accuracy �gures in Table 6.1 assume a 90 degree separation of the

antennas, as seen in Figure 3.2. Roll accuracy �gures for other antenna separation angles

may be found in the manual but were omitted in Table 6.1 as they have no bearing on the

experimental results presented in this thesis.

Baseline Length (m) Heading Accuracy (◦) Pitch Accuracy (◦) Roll Accuracy (◦)

1 0.3 0.6 0.6
3 0.1 0.2 0.2
10 0.03 0.06 0.06

Table 6.1: Typical attitude attitude accuracy for Septentrio PolaRx2e receiver. Roll accuracy
assumes a 90 degree separation between the antennas.

The GPS antennas were mounted on an In�niti G35 using a modi�ed equipment/luggage

rack on the roof of the car, as seen in Figure 6.1. The baseline from the main antenna to

the auxiliary-1 antenna measures .94 meters while the baseline from the main antenna to
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Figure 6.1: In�niti G35 with Septentrio GPS antennas.

the auxiliary-2 antenna measures 1.905 meters. Given the baselines, it is expected that the

heading and pitch accuracy will be a little worse than those shown for a 1 meter baseline in

Table 6.1 � about 0.32 degrees for the heading and 0.64 degrees for the pitch. It is expected

that the roll measurements will be accurate to about 0.3 degrees.

6.2 Testing Locations

The data for this work was taken primarily at two locations: an open �eld near the

Auburn University solar house and at the National Center for Asphalt Technology (NCAT)

test track in Opelika, AL. The �rst location was chosen primarily because it is a benign

GPS environment, namely in that it is a large open space that ensures there is little to

interfere with GPS signals. At the time the data was taken, there were also a large metal

cargo container and small shed with a tin roof located at one end of the �eld, allowing for

instances of multipath that are controlled (i.e., the car should not experience multipath until

it is driven near the cargo container or shed). The second location, the NCAT test track, was

chosen as a location that would have a regular occurrence of multipath, but not so much that
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the attitude solution would be lost. In addition, the skidpad located near the track provides

an area with a clear view of the sky to initialize the attitude solution. The two locations also

allowed for a comparison of performance under di�erent dynamics. The Auburn location

allowed for much faster turning and had a somewhat rugged terrain, while the data taken at

the NCAT test track was taken exclusively on smooth, paved surfaces with very wide turns.

6.3 Performance of Faulty Signal Rejection Methods

6.3.1 Calculate AOA

In the data runs taken at the NCAT test track, detecting multipath through the AOA

proved challenging. In a run with approximately 20 instances of multipath, the AOA al-

gorithm detected eight instances of multipath and one false detection. A data run in the

�eld near the solar house had worse results as it was di�cult to discern outliers in the data.

It is likely that the higher dynamics (and thus higher attitude error) of the �eld data, as

opposed to the track data, were at fault in masking some of the would-be outliers. Another

potential cause for the worse performance could be the source of multipath signals in each

of the data sets. In the track data, the multipath occurred randomly as a result of trees

bordering both sides of the track and therefore were not likely to generate the same multi-

path error consecutively for several measurement intervals. On the other hand, multipath

generated in the �eld data sets was due to stationary objects with sharply de�ned, �at sides,

which should generate the same error at consecutive time intervals for a stationary vehicle

near the objects. Once a signal is rejected, its integer ambiguity must be reset and thus

the AOA can not be calculated until a new integer ambiguity is �xed. The loss of integer

ambiguity means that the AOA can not be computed and thus explains at least some of

the poor performance. Figure 6.2 shows the perceived AOA error for a separate data run

with high dynamics, but no multipath. The black circles depict error based on the RPVs

generated by the attitude estimates to check incoming signals, while the red circles depict

error based on the calculated RPVs. As can be seen from the �gure, the error on the signals
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Figure 6.2: Perceived AOA error for a data run. Black circles depict AOA error from the
predicted RPV while red circles depict AOA error from the calculated RPV.

from the real RPV is consistently lower than that on the RPV generated by attitude esti-

mates. The upper bounds of both errors appear to be shifted by about a degree, which is

reasonable considering the attitude error on the predicted RPVs. Ideally, the performance

of the attitude-generated RPV will approach the performance of the real RPV with more

accurate attitude estimation.

6.3.2 Single-Di�erenced Pseudorange

Detection of multipath signals using the single-di�erenced pseudorange measurements

proved to be very unreliable. As is stated in Section 5.2.2.1, the error bounds on a single-

di�erenced pseudorange measurement are far too large to be useful for detecting pseudor-

anges for the antenna baselines in this work.
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Figure 6.3: Remainders of single-di�erenced carrier phase measurement. Red circles rep-
resent residuals generated from calculated RPV, black circles represent residuals generated
from predicted RPV.

6.3.3 Carrier Phase Residual

The carrier phase residual method, explained in Section 5.2.2.2, showed performance

similar to that of the calculation of AOA at the NCAT test track, with nine of 20 instances

of multipath detected and a few erroneous detections. The performance was similar in the

test data taken from the �eld near the AU solar house. Figure 6.3 shows the residuals

generated from the single-di�erenced carrier phase measurements for a high-dynamic data

set without multipath. Red circles represent remainders generated from calculated RPV

while black circles represent residuals generated from predicted RPV. The results are similar

to those seen in Figure 6.2, with the measurements generated by the calculated RPV much

better than those from the predicted RPV. Once again, the performance related to the

predicted RPV is expected to approach that of the predicted RPV with improved attitude

estimation.
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6.3.4 Calculating Single-Di�erenced Ambiguities

It was mentioned in Section 5.3.2 that calculating the single-di�erenced ambiguities and

checking the di�erence between the calculated and rounded ambiguities could be used to

check incoming signals. The author found this approach to yield the most consistent results in

the experimental data sets � routinely picking out the most multipath signals and making the

fewest erroneous rejections of signals. In the NCAT test track data set mentioned above, the

single-di�erenced carrier phase residuals using the calculated RPV achieved nearly perfect

performance in rejecting multipath. Some of the improved positioning in the �eld data was

still not ideal but was certainly an improvement over the solution without rejecting signals.

The quality of faulty signal detection from this method is a direct result of the precision of

the RPVs calculated with carrier phase measurements, which is shown in Figures 6.2 and

6.3.

6.4 Results Validation

A few methods were used to decide if the signals rejected from data sets were actually

multipath signals. Since the primary reason for rejecting multipath is to get a better posi-

tioning solution, it stands to reason that comparing the positions of the receiver with and

without the multipath signals should show a better position without the multipath signals.

Figure 6.4 shows the calculated positions for a section of the �eld data run. The normal

positioning solution is plotted in red while the positioning solution without the rejected sig-

nals is in green. The vehicle was stopped near the tin shed at the spot of the noisy position

estimate, so multipath was to be expected at that location. The positioning solution without

the detected multipath signals is shown to be much more reasonable than the positioning

with the signals. In most of the data observed, removing the multipath signals improved the

positioning solution visibly when compared to the normal positioning solution. However, it

was also found that the positioning solution could potentially be made worse by removing
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Figure 6.4: Comparison of position estimate with and without rejected signals.

the multipath signals. The circumstances under which the positioning was made worse by

rejecting signals will be discussed more in Section 6.5.

Another metric for validation of the rejected signals is to check the pseudoranges for a

change at the time of signal rejection. Figure 6.5 shows the di�erence between the expected

and measured pseudorange for a particular data run on the skidpad as well as the carrier

phase residual for that signal. The obvious change in pseudorange in Figure 6.5 corresponds

with the rise in the carrier phase residual above the .1-cycle threshold, which is to be expected

if the signal takes an indirect path to the receiver.
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Figure 6.5: The upper sub-plot shows the carrier phase residual measurement for an an-
tenna pair during a data run. The portion of graph above the .1-cycle threshold indicates
the detection of a faulty signal. The lower sub-plot is the pseudorange residual for one
of the antennas, showing the measured pseudorange di�ers signi�cantly from the expected
pseudorange when a faulty signal is detected.
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6.5 E�ects of Satellite Geometry on Positioning

In Section 6.4, it was shown that the rejection of multipath signals could yield an

improved positioning solution over the original positioning solution. However, it is important

to note that GPS positioning accuracy is not based entirely on signal quality. The second

major component of GPS positioning accuracy is the number and geometry, or relative

positions, of available satellites. The e�ect of the satellite geometry on positioning accuracy

is summarized by dilution of position (DOP) metrics. The DOP metrics alone are unitless

but may be multiplied by the standard deviation of the pseudorange measurement to yield an

expected standard deviation in the positioning solution. Various DOP metrics are commonly

used in the GPS community to express the expected accuracy of subsets of the positioning

solutions:

• Geometrical DOP (GDOP): combined total positioning error and clock error

• Position DOP (PDOP): total positioning error

• Horizontal DOP (HDOP): total horizontal (2D) positioning error

• Vertical DOP (VDOP): vertical (1D) positioning error

• Time DOP (TDOP): clock bias error

The most important metric for this work is the HDOP, as this thesis focuses on positioning

on the ground. In select cases, it was found that removing multipath signals could actually

make the positioning solutions worse. One such case may be seen in Figure 6.6. The path

in green depicts positioning calculations in which no satellites were rejected while the path

in red depicts positioning after the rejection of signals from two satellites. In this particular

case, the positioning is actually worse after the rejection of the multipath signals. The reason

the positioning is worse may be seen in the HDOP, which is approximately 1.0 before the

signals are rejected and 2.2 after. Given good quality GPS signals, an increase in the HDOP
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Figure 6.6: Comparison of positioning with and without rejected signals. In this particular
case, rejecting the signals yields a worse positioning solution.

by a factor of two generally means the standard deviations of the horizontal positioning will

be expected to be twice as large. In this particular case, it appears as though the e�ect of the

multipath error on the calculated position is less than the e�ect of using two fewer satellites.

In most of the data, only one satellite is removed at a time, which generally changes the

HDOP by less than 10 percent. This relatively small change in the HDOP, as opposed to the

case for the positioning solution in Figure 6.6, explains why the positioning was improved

by removing the detected multipath signals most of the time.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

From the current experimental results, checking the residuals of calculated single-di�erenced

ambiguities is the most reliable way to detect multipath; however, an improvement in the

attitude �lter to allow better prediction of the RPV could allow better performance in the

AOA and carrier phase residual methods. The AOA method would be especially useful as it

is the only method to use the single-di�erenced carrier phase ambiguity. The pseudorange

method was judged to be unreliable with the antenna baselines on the current experimental

setup due to the large error on the single-di�erenced pseudorange measurements, although

it could potentially work better on an airplane or ship.

It is interesting to note than in Figure 6.3, the residuals generated by the predicted

RPV �t the error curves much better than the residuals generated from the calculated RPV.

This peculiarity is likely due to the attitude accuracy inherent in the calculated RPVs, which

should result in an AOA accuracy of about 0.6 degrees for the short baseline and 0.3 degrees

for the long one. The square shape of the red ambiguities, as opposed to the curve of the

black ones, suggest that the residuals from the calculated RPVs are probably dominated by

noise on the signal rather than attitude inaccuracy.

Since Figure 5.2 assumes that the signal itself is the only source of error (i.e. the user

has �perfect� attitude estimates) in the AOA calculations, it may be used to determine the

maximum performance of an AOA detection system with a given baseline. Additionally, if a

user would like to know the expected performance of an AOA system with a given amount of

attitude error, the curves in Figure 5.2 may be shifted up the positive y-axis by the amount
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of AOA error the attitude is expected to produce. The shifted curve will represent the overall

expected performance of the AOA detection system.

The data showed that removing one faulty GPS signal would usually produce an im-

provement in the positioning solution. However, removing two signals in certain situations

gave a worse positioning solution than using the faulty signals. The likely cause of the dif-

ferent results is shown in the HDOP, which generally changed little with the removal of one

satellite and could change by a factor of two or more with the removal of two satellites.

Therefore, it may be prudent to take the HDOP into consideration when deciding whether

or not to remove faulty GPS signals.

7.2 Future Work

The �rst improvement on this work should be to improve the attitude �lter. The AOA

and carrier phase residual methods have potential to match performance with the calculated

RPV carrier residual method if the attitude �lter is improved. Another bene�t of an improved

attitude �lter would be the potential to reject bad satellites for a short amount of time if the

GPS attitude solution is lost, potentially allowing for the recovery of the attitude solution

without the use of a Kalman �lter for the carrier phase ambiguities.

The anti-spoo�ng capabilities of these methods should also be explored. It is illegal

in the United States to broadcast GPS signals outside of an anechoic chamber without

permission from the federal government, so the remaining options for testing the system are

to test in an anechoic chamber or with permission from the government. The indoor testing

would potentially involve several spoofers representing the �real� GPS signals and another

spoofer as the erroneous signal. Testing in an anechoic chamber poses a number of problems,

namely:

• It may be prohibitively expensive to build an anechoic chamber large enough for the

dynamic vehicle testing.
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• Multiple spoofers would have to be used to imitate satellite geometry as the �real�

signals in the testing.

• If the spoofers representing the GPS satellites are not su�ciently far away from the

receiver antennas, relative carrier phase positioning may not work as it is assumed the

signals received by each antenna are parallel to each other.

Given the di�culties of testing indoors, the most feasible test would be one performed

outdoors with permission from the United States government.

Lastly, the algorithm may be modi�ed to account for the HDOP in the decision of re-

jecting a faulty GPS signal. It was shown that the positioning solution could be made worse

in situations where the HDOP was signi�cantly changed by the rejection, so a method to

quantify the e�ect of a given multipath signal on the positioning solution might be imple-

mented so that signals may be intelligently rejected. Of course, all signals should be rejected

in cases where anti-spoo�ng is desired.
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Appendix A

Determination of Position

Determination of position using GPS is most commonly achieved using pseudorange

measurements. In setting up the position determination, it is helpful to rearrange Equation

(2.5), giving:

ρki =

[
(ex)

i
k (ey)

i
k (ez)

i
k 1

]




xk − xi

yk − yi

zk − zi

cdti




+ cdtk + T ki + Iki + εki (A.1)

where

[
(ex)

i
k (ey)

i
k (ez)

i
k

]
represents the unit vector from the receiver to the satellite. Note

that parameters are included in the ephemeris data for the determination of satellite clock

error as a function of time, so cdtk is a deterministic quantity. Also, T ki , I
k
i , and e

k
i are all

random variables, so they may e�ectively be lumped into one term. Equation (A.1) may

then be rewritten:

ρki − cdtk =

[
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i
k 1
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xk − xi

yk − yi

zk − zi

cdti




+ wki (A.2)

Equation (A.2) is close to the format of least squares, except the unit vectors from

the receiver to the satellite are unknown. Instead of attempting to estimate xi, yi, zi,

and cdti directly, it is more prudent to initialize a position estimate and compare the real
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measurements to the expected measurements given the position estimate. Using an estimated

position, the estimated range to a given satellite is:

r̂ki =

[
(êx)

i
k (êy)
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k (êz)

i
k 1
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(A.3)

If the assumption is made that
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, where
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k (êz)

i
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]
is the estimated unit vector from the receiver to the satellite, Equation

(A.3) may be subtracted from Equation (A.2), yielding:

ρki − cdtk − r̂ki =

[
(êx)

i
k (êy)

i
k (êz)

i
k 1

]




x̂i − xi

ŷi − yi

ẑi − zi
ˆcdti − cdti




+ wki (A.4)

Equation (A.4) does �t the least squares format, allowing the error in the position estimate

to be solved for directly. This gives the position estimate correction as:




δxi

δyi

δzi

δcdti




= (HTH)−1HT~y (A.5)

where H, called the geometry matrix, is a matrix in which each row consists of the estimated

unit vector to a satellite followed by a 1, as seen in Equation (A.4), and ~y is a vector of the

terms seen in the left side of Equation (A.4). It is important to note here that there is

some inherent error in the geometry matrix, caused by the error in the initial guess of the

user's position. However, once the position estimate correction has been applied, the new
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estimate of the receiver position is closer than the previous estimate, so a new geometry

matrix will be more accurate than the previous one. The new receiver position estimate and

new geometry matrix may then be used to compute a new position estimate correction. By

recursively carrying out the least squares calculations, the correction terms should converge

towards zero quickly. It is only necessary to compute the correction terms until they become

su�ciently small.
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Appendix B

Kalman Filter

The Kalman �lter is known as an �optimal� estimator, where optimal is de�ned in this

sense as reducing the expected estimation error at each time step. The equations for a

Kalman �lter are based on a few assumptions, the �rst of which is that the system is linear.

While very few systems are truly linear, this can be a good approximation for many systems,

including nonlinear systems about an operating point. There are also modi�ed formulations

of the Kalman �lter designed to be used with non-linear systems.

The second assumption is that the process noise introduced into the system and the

measurement noise are Gaussian, zero-mean, uncorrelated, and white. If the noise in non-

Gaussian but meets the other noise characteristics, the Kalman �lter is still the best linear

�lter for the system. In the case that some of the other noise characteristics are also not

met, the Kalman �lter may be modi�ed to solve the problem [16].

The third assumption is that the system and noise are modeled perfectly. If there is

error in the system or noise models contain error, the �lter is no longer an �optimal� �lter.

The discrete-time Kalman �lter may be divided into two parts: the time update and

the measurement update.

B.1 System

For the purpose of this work, discrete-time state-space models will be presented in the

following form:

xk+1 = Akxk +Bkuk + wk (B.1)
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yk = Ckxk + νk (B.2)

where xk is the column vector of system states at time instance k, Ak is the discrete-time state

transition matrix, Bk is the discrete-time input matrix, u is the known input to the system,

w is a column of process disturbances, yk is the column of measurements associated with

states xk, Ck is the discrete time measurement matrix, and ν is a column of measurement

noise. It is assumed that w and v are unknown and random, but their statistical properties

are known.

B.2 Time Update

The time update of the Kalman �lter is a �prediction� of sorts, using the system model,

system states, and known inputs to the system to provide an estimate of the states of the

system at the next time step. The time update of the Kalman �lter is implemented through

the following equations:

x̂−k = Ak−1x̂k−1 +Bk−1uk−1 (B.3)

P−k = Ak−1P
+
k−1A

T
k−1 +Qk−1 (B.4)

Equation (B.3) gives what is known as the a priori estimate, an estimate that propagates

the state estimate forward using the system model. Comparing Equations (B.1) and (B.3),

it is clear that they are nearly the same equation, except Equation (B.3) does not include the

process disturbance term. The omission of the disturbance term makes sense intuitively, as

the disturbance is random and unknown; therefore, the a priori estimate is the �best guess�

of the states at the next time step, given the system model.

Equation (B.4) gives the a priori estimate covariance matrix, a measure of the uncer-

tainty in the estimates. P−k will be n × n for a system with n states, with each diagonal
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term representing the expected variance of each state. Each o� diagonal term will be of

the form σiσjρ, where σi is the expected standard deviation of state i, σj is the expected

standard deviation of state j, ρ is the statistical correlation of the two states, and i 6= j.

It is important to emphasize that P−k represents the expected variances and covariances of

the states. If the system model or noise characteristics are wrong, P−k will not represent the

actual variances and covariances of the states. Qk−1 is the discrete time covariance matrix

for the process disturbances.

B.3 Measurement Update

The measurement update of the Kalman �lter serves as a �correction� of the a priori

estimate using measurements of the states. The measurement update of the Kalman �lter

is implemented through the following equations:

Lk = P−k C
T
k (CkP

−
k C

T
k +Rk)

−1 (B.5)

x̂+k = x̂−k + Lk(yk − Ckx̂−k ) (B.6)

P+
k = (I − LkCk)P−k (I − LkCk)T + LkRkL

T
k (B.7)

Equation (B.5) gives the Kalman gain, used in Equation (B.6). Unlike the gains used in

classical estimators, which are generally chosen based on rise time, settling time, and other

characteristics, the Kalman gain is recalculated with each iteration to give an optimal esti-

mate with minimal expected error. Inspecting Equation (B.5), the Kalman gain is calculated

based on the measurement noise covariance matrix (Rk), P
−
k , and Ck. It is helpful to inspect

Equation (B.5) for a single state, single measurement system, in which case it becomes:
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Lk =
P−k

P−k +Rk

(B.8)

Notice that because the system would have a single state and a single measurement,

all terms in Equation (B.8) are scalars. Equation (B.8) captures the very essence of the

Kalman gain: how much the state estimate is changed in Equation (B.6) is based on the

relative uncertainty of the current state estimate versus the new measurements.

If the uncertainty in the state estimate is much higher than the uncertainty in the

measurements (P−k � Rk), Lk approaches 1 and the state estimate will be corrected heavily

toward the new measurement. Making the large correction makes intuitive sense, considering

the measurement is a much better representation of the state than the current state estimate.

As would be expected, Lk would approach zero if the state estimate has much lower

uncertainty than the measurement (P−k � Rk), and the measurement would mostly be

ignored. Ignoring a bad measurement also makes sense intuitively if the state estimate is

known to be reliable. If P−k is routinely much smaller than Rk, the �lter is said to �go to

sleep;� that is, the state estimate will change very little for each new measurement.

Equation (B.6) gives the a posteriori estimate, or the state estimate after the current

system measurements have been taken into account. The (yk − Ckx̂
−
k ) term is known as

the innovation or residual and is the di�erence between the actual measurement and the

expected measurement (based on the current state estimate). How much the a priori estimate

is changed is based on the product of the Kalman gain and the residual.

Equation (B.7) gives the covariance matrix for the a posteriori estimate, which is similar

in concept to Equation (B.4). The di�erence between the two equations is that Equation

(B.4) depends on the process disturbances while Equation (B.7) depends on measurement

noise. In the current formulation, the new state estimate covariance may be calculated

before or after the a posteriori estimate as long as the Kalman gain has been computed.

Other formulations of the Kalman �lter exist that calculate the a posteriori state estimate

covariance before the Kalman gain, and then use the covariance in the calculation of the
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Kalman gain. More detailed information about the alternate implementations of the Kalman

�lter, as well as details on its derivation, may be found in [16].
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