
Guidance of an Off-Road Tractor-Trailer System Using Model Predictive
Control

by

James T. Salmon

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
December 14, 2013

Keywords: MPC, Coupled Ground Vehicles, Mobile Robots

Copyright 2013 by James T. Salmon

Approved by:

David M. Bevly, Chair, Professor of Mechanical Engineering
John Y. Hung, Professor of Electrical and Computer Engineering

Song-yul Choe, Professor of Mechanical Engineering

Acknowledgments

I would like to dedicate this thesis to all my friends and family who supported me

during my academic career, starting with my immediate family – my parents, Cyndy and

Thad Salmon and my sister, Emily. Throughout the tough moments, you have always been

there to keep me on the right track, you never gave up on me, and I don’t think I would

have made it anywhere near this point without you.

I also want to thank my extended family in Alabama. First, my grandparents, Cecil

and Nell Prescott, as well as my grandmother, Mabel Salmon. Thank you for helping me in

my move to Auburn. Thank you to my grandfather, Joseph T. Salmon Sr., who is no longer

with us. You did some amazing things for our family, and you are greatly missed. Also,

thank you to my aunts, uncles, and cousins out here who helped introduce me to Southern

life. Watching football games with you have been great fun!

Next, I want to thank my advisor, Dr. David Bevly, for offering me a research assis-

tantship position in the GAVLAB. Also, thank you to Dr. John Hung and Dr. Song-Yul

Choe whom I consider co-advisors, for their guidance. Graduate school was challenging, but

I learned a lot more about control systems than I ever knew existed, and I am confident that

I would be able to contribute much as a controls engineer in my career to come.

Also, thank you to my colleagues in the GAVLAB, to all of my friends in Auburn, and

to all of my friends in California. You all have been a positive influence on me throughout

the years, and I wish you all the best.

Finally, I want to thank my great-great grandfather, Dr. Frederic C. Biggin, for his

dedication to Auburn University. Your contributions in the Auburn School of Architecture

set the stage for Auburn’s development into the great institution it has become. Auburn is

in good hands, it has a bright future ahead, and I am glad to be a part of it. War Eagle!

ii

Table of Contents

Acknowledgments . ii

List of Figures . v

List of Tables . viii

1 Introduction . 2

1.1 Background . 2

1.2 Previous Work at Auburn University . 3

1.3 Proposing Model Predictive Control as a Potential Solution 6

1.4 Outline . 8

2 Kinematic and Dynamic Modeling of the System 9

2.1 Kinematic Model . 9

2.1.1 List of Parameters & Velocity Diagram 9

2.1.2 Kinematic Model Derivation . 11

2.1.3 Skid-Steer Vehicle Modification . 14

2.2 Dynamic Bicycle Model . 14

2.2.1 List of Parameters and Acceleration/Force Diagram 15

2.2.2 Force and Acceleration Analysis on Tractor and Trailer 17

2.2.3 Relative Forces and Accelerations . 19

2.2.4 Tire Model Derivation . 20

2.2.5 Equations Collected & Translation to Global Coordinates 23

2.3 Discussion . 24

2.4 Conclusion . 25

3 Applying MPC to a Tractor Trailer System . 26

3.1 Set Point Calculations . 26

iii

3.1.1 Initial Setup . 27

3.1.2 Finding Minimum Cost Using Newton’s Method 32

3.1.3 Finding Minimum Cost using Golden Section Search 34

3.2 Control Calculations . 38

3.2.1 Steering Motor Voltage Calculations for Front-Steering Tractor 38

3.3 Conclusion . 43

4 Computer Simulations and Live Application . 45

4.1 Kubota RTV Simulation Results . 45

4.1.1 Kinematic Controller Model against Bicycle Plant Model 45

4.1.2 Linearized Kinematic Controller Model against Nonlinear Kinematic

Plant Model . 48

4.2 Segway Simulation Results . 51

4.3 Segway Experimental Results . 55

4.3.1 Controller Tuning . 59

4.3.2 Turn Rate Analysis . 64

4.3.3 Applying the Scale Factor to the Input 66

4.4 Conclusion . 69

5 Summary and Conclusion . 70

A Model Predictive Control - A General Case . 72

B Bicycle Model State Equations, Separated by State Variable 75

Bibliography . 79

iv

List of Figures

1.1 Hitch Angle vs Time . 4

1.2 Path Following Using Linear State Feedback [9] 5

1.3 Path Following Using LQG [10] . 5

1.4 Path Following Using Hybrid Backstepping [11] 6

1.5 A Model Predictive Control Flowchart [8] . 7

2.1 Schematic for a Tractor-Trailer System Kinematic Model 10

2.2 Steering to Angular Velocity . 11

2.3 Tractor and Trailer Hitch Velocities . 12

2.4 Schematic for a Tractor-Trailer System Dynamic Model 16

2.5 Tractor Accelerations and Forces . 17

2.6 Trailer Accelerations and Forces . 18

2.7 Tractor & Trailer Hitch Accelerations . 19

2.8 Hitch Forces . 20

2.9 Tractor Motion from Tire Coordinate Frame 21

2.10 Dynamic Model vs Kinematic Model . 24

2.11 Position Differences between the Kinematic and Dynamic Models 25

3.1 Simulation Path . 27

3.2 Set Point Calculations Flowchart . 28

3.3 Test Points Relative to Desired Path . 29

3.4 Newton’s Method Demonstration . 33

v

3.5 MPC Set Point Simulation . 34

3.6 Newton’s Method Incompatibility . 35

3.7 Golden Section Search . 37

3.8 Steering Angle Set-Points . 38

3.9 Armature Motor Model . 39

3.10 Controlled Motor System . 39

3.11 Unwanted Oscillations . 40

3.12 Proportional Control . 41

3.13 Proportional-Integral Control . 41

3.14 Steer Angle Controlled . 42

3.15 Voltage Across Motor vs Time (using PI control) 42

3.16 Motor Response to Step Input with Varying Derivative Control Values . . . 43

3.17 Voltage Across Motor vs Time (using PID control) 44

4.1 MPC with Model Error . 46

4.2 Deviation with High Model Error . 46

4.3 Deviation with Low Model Error . 47

4.4 Wide S-curve Path Following . 48

4.5 Path Following Using Nonlinear Control Model 49

4.6 Path Following Using Linear Control Model 49

4.7 15m Radius S-curve . 50

4.8 Path Following Using Nonlinear Control Model (15m radius) 50

4.9 Path Following Using Linear Control Model (15m radius) 51

4.10 Segway Simulator [18] . 52

4.11 Segway & Trailer Positions, Simulated . 53

4.12 Path Following Error, Simulated . 54

vi

4.13 Set Points, Simulated . 54

4.14 Segway Test Run . 55

4.15 Segway & Trailer Positions (first run) . 56

4.16 Path Following Error (first run at 1 m/s) . 57

4.17 Segway & Trailer Positions (third run at 0.5 m/s) 57

4.18 Path Following Error (third run at 0.5 m/s) 58

4.19 Set Points (third run at 0.5 m/s) . 58

4.20 Results with 4m prediction horizon, weighted 59

4.21 Results with 4m prediction horizon, unweighted 60

4.22 Results with 5m prediction horizon, weighted 60

4.23 Results with 5m prediction horizon, unweighted 61

4.24 Results with 5m prediction horizon, weighted inversely 62

4.25 Results with 4m prediction horizon, weighted inversely 62

4.26 Results with 5m prediction horizon, weighted inversely, one-to-one 63

4.27 Results with 4m prediction horizon, weighted inversely, one-to-one 63

4.28 Turn Rates at 0.5 m/s . 64

4.29 Turn Rates at 1.0 m/s . 65

4.30 Turn Rate Step Input Response . 65

4.31 Path Following at 0.5 m/s . 66

4.32 Path Following at 1.0 m/s . 66

4.33 Path Following at 1.2 m/s . 67

4.34 Path Following at 1.4 m/s . 67

4.35 Path Following at 1.6 m/s . 68

4.36 Path Following at 1.8 m/s . 68

4.37 Path Following at 2.0 m/s . 68

vii

List of Tables

2.1 List of Tractor-Trailer System Parameters (kinematic model) 11

2.2 List of Tractor-Trailer System Parameters (dynamic model) 15

4.1 List of Segway & Trailer Simulation Parameters (kinematic model) 52

4.2 List of Segway & Trailer Live Parameters (kinematic model) 55

4.3 Scale Factors . 59

4.4 Inverted Scale Factors . 61

4.5 Inverted Scale Factors, One-to-One . 63

viii

List of Symbols

� Angle Difference between Tractor and Trailer (
1

�
2

)

� Front Tire Steering Angle of Tractor

ẋ
1

Forward Velocity of Tractor

ẋ
2

, ẍ
2

Forward Velocity and Acceleration of Trailer

ẏ
1

, ÿ
1

Lateral Velocity and Acceleration of Tractor

ẏ
2

, ÿ
2

Lateral Velocity and Acceleration of Trailer

1

, r
1

, ṙ
1

Heading, Angular Velocity, and Angular Acceleration of Tractor

2

, r
2

, ṙ
2

Heading, Angular Velocity, and Angular Acceleration of Trailer

✓
pathj Angle between Trailer’s current heading and closest path point (when finding cost)

✓
predj Angle between Trailer’s current heading and j-th Prediction Point (when finding cost)

a Length from Tractor GPS (kinematic model) or CG (dynamic model) to front tire

b Length from Tractor GPS (kinematic model) or CG (dynamic model) to back tire

c Length from Tractor GPS (kinematic model) or CG (dynamic model) to hitch

C
1

Cornering Coefficient of the Front Tractor Tire

C
2

Cornering Coefficient of the Back Tractor Tire

C
3

Cornering Coefficient of the Trailer Tire

d Length from Trailer GPS (kinematic model) or CG (dynamic model) to hitch

ix

e Length from Trailer GPS (kinematic model) or CG (dynamic model) to trailer tire

H 0
x

, H 0
y

Forward and Lateral Hitch Forces (trailer side)

H
x

, H
y

Forward and Lateral Hitch Forces (tractor side)

I
1

Yaw Inertia of the Tractor

I
2

Yaw Inertia of the Trailer

J 0
i

Derivative of the i-th Cost

J
i

Cost of the i-th prediction

l
j

Shortest Length between j-th Prediction Point and Path (when finding cost)

m
1

Mass of the Tractor

m
2

Mass of the Trailer

w
j

Weight assigned to the j-th Prediction Point (when finding cost)

X
1

, Y
1

Absolute X and Y Positions of Tractor

X
2

, Y
2

Absolute X and Y Positions of Trailer

X
1,ref

, Y
1,ref

Absolute X and Y Positions of Tractor (kinematic model)

X
2,ref

, Y
2,ref

Absolute X and Y Positions of Trailer (kinematic model)

X
pathj Y

pathj Closest Point on the Path to j-th Prediction Point (when finding cost)

X
trailerj Y

trailerj j-th Predicted X and Y Positions of Trailer (when finding cost)

x

Abstract

This thesis presents an effort to improve the path following reliability of a tractor-trailer

system by using a non-linear Model Predictive Control (MPC) approach. The proposed

method allows an autonomous mobile robot to make informed control decisions based on

anticipating changes in the path conditions, rather than reacting to them, which could

potentially reduce path following error on turns.

Using a non-linear tractor-trailer model, the controller takes the tractor’s measured

position and heading, as well as information about the path geometry in front of it, and

it determines the optimal steer angle. Then, in the case of an Ackerman-steered vehicle, a

secondary algorithm takes the desired steer angle and calculates the amount of voltage to

apply to the steering wheel motor to achieve the steer angle. In comparison, a differential-

steered, or skid-steered vehicle takes the set point (given as a turn rate in radians per second)

and computes the voltages to the traction motors internally.

In the MATLAB simulation study, the controller algorithm is capable of guiding a 2-

1/2 meter long trailer around a 5-meter radius turn, when towed by a four wheel drive

off-road utility vehicle, with a maximum error of 8.5 centimeters. These results are highly

idealized, however. Adding sensor noise and process noise in simulation increases the error,

and inherent sensor bias and latency during the live run increases the error substantially.

From the experimental results, it is concluded that non-linear MPC has the potential

to improve the reliability of the path following of a robot and trailer system. In order to

fully reap the benefits of non-linear MPC however, the model has to be accurate, and the

computer has to be fast enough to compute predictions from the model in real-time.

1

Chapter 1

Introduction

Model Predictive Control (MPC) is a relatively new control method, first practiced by

Shell Oil, which determines an optimal input, called a set point, and then guides the system

to that set point. It is a control technique that is commonly used in the oil industry, as well

as other applications in chemical engineering. With advancements in computing power, en-

gineers have begun exploring the usage of MPC to other applications, including autonomous

vehicle control. However, due to the computational expense of MPC, especially when a

nonlinear model is used, most vehicular applications are limited to low-speed operation [1].

For many off-road vehicle applications however, low-speed operation is the norm. In

agriculture, tractor-trailer systems are used to spread seed, fertilizer and top soil. In the case

of the Department of Defense, a tractor pulls a fiberglass trailer that carries metal sensors

to scan the ground for unexploded ordnance, which is further explained in [2]. Despite the

computational expense of MPC, these applications involve process that are slow enough for

MPC to produce good results.

1.1 Background

Auburn University, with the support of the U.S. Army Corps of Engineers, has been

researching ways to control off-road tractor-trailer systems for conducting geophysical sur-

veys, with the trailer being the object of interest for control. A geophysical survey involves

a scan of a given area in search of metal objects in the ground [9].

In an effort to streamline the U.S. Military, the Department of Defense (DOD) has

initiated numerous military base closures around the United States. Many of these bases

contained training sites for tactical strategies that are less commonly used in modern military

2

operations. According to [3], the DOD closed or realigned over 800 defense locations and

relocated over 125,000 personnel since 2005, in an operation called Base Realignment and

Closure (BRAC). When a base closes, the land is sold to private developers. However, there

are legitimate safety concerns regarding unexploded ordnance (UXO) still remaining on plots

of land that used to be training sites.

To ensure that a questionable field is safe, the Army Corps of Engineers conducts geo-

physical surveys to look for potential UXO. While there have been no recorded incidents of

injuries or fatalities during these surveys due to accidental discharge, the risk is still a con-

cern. This is why the Army Corps of Engineers has tasked Auburn University in developing

an unmanned robot vehicle that would carry out the task of searching for UXO. Auburn has

since used a setup consisting of a GPS guided trailer made of fiberglass, towed by a tractor

[5], which would allow the scanning of the ground for metal objects without interference

from the metal inside the tractor.

1.2 Previous Work at Auburn University

Previously, linear state feedback controllers [9], LQG controllers [10], and hybrid back-

stepping controllers [11] were used in the guidance of the surveying system. In all cases,

these control methods work very well in guiding the trailer to the path, as long as the path

is straight. However, due to the complexity of tractor-trailer system dynamics, keeping the

trailer on the path becomes much more difficult when going around turns. The most accu-

rate controller found so far was the linear state feedback controller, which had a maximum

recovery error of 20.4cm [9]. Conversely, the hybrid backstepping controller had maximum

errors of up to 40cm [11], and the LQG controller had maximum errors of around 44cm

[10]. Both authors conclude, however, that these errors might be improved by fine-tuning

the gains.

This thesis proposes, on the other hand, that the biggest source of error is the non-

linearity of a tractor-trailer hitch connection. According to [14], when the angle between

3

Figure 1.1: Hitch Angle vs Time

the tractor and the trailer exceeds 7°, linearized tractor-trailer models become less accurate.

Figure 1.1 shows a time plot of the hitch angle, where the maximum hitch angle reaches

47.8° as a simulated tractor-trailer system navigates an S-curve with turn radii of 5 meters.

The biggest issue during a geophysical survey is recovering out of a turn. As seen

in Figure 1.2, the robot overshoots the beginning of the straight sections of the desired

path, and then it corrects itself. In the case of Figure 1.3, the robot overcompensates and

undergoes an oscillatory correction maneuver to return to the desired path. Finally, in Figure

1.4, the robot does a combination of overshooting the straight section reentries, as well as

overcompensating for errors. With these errors, the ground scanners on the trailer could

potentially miss locations on the ground that contain critical information.

In each of the afore-mentioned works, the robot follows what is known as a “Dubins

path.” According to Lester E. Dubins, the shortest path between two oriented points consists

of straight lines and turns of constant radii [4]. However, dynamic constraints make it

infeasible for a non-holonomic trailer to follow a path perfectly where the curvature changes

instantaneously. One way to address this problem is to design paths with clothoid turns,

4

Figure 1.2: Path Following Using Linear State Feedback [9]

Figure 1.3: Path Following Using LQG [10]

5

Figure 1.4: Path Following Using Hybrid Backstepping [11]

as studied in [6]. A clothoid is an arc where the curvature changes linearly, as opposed

to instantaneously. They are commonly used in highway and railway design, and several

clothoid computation algorithms exist, such as the one introduced in [7]. For each of the

experiments done in this thesis, however, a constant radius turn will be used. This will

force an error into the system intentionally, and it would allow the controller’s recovery

performance to be measured.

1.3 Proposing Model Predictive Control as a Potential Solution

The goal of this research is to develop a control algorithm that will improve the guidance

of a trailer to a desired path during and after making a turn. Unlike the controllers previ-

ously used at Auburn University which choose guidance inputs based on the trailer’s current

position relative to the path, this thesis proposes designing a model predictive controller that

chooses guidance inputs based on where the trailer is predicted to go, based upon a model.

This is similar to the way a human drives a car, as a human subconsciously predicts where

6

Figure 1.5: A Model Predictive Control Flowchart [8]

his or her car is going to go given a forward and steering input, and then the human adjusts

the forward and steering controls of the car accordingly.

Of course, it is fair to ask the question of whether or not a computer can make model

calculations fast enough to determine the optimal control inputs. After all, if a computer

takes too long to predict an optimal solution, the control system becomes useless. Also, if

the model is oversimplified, a model predictive controller’s performance would be no better

than a classical controller. For this application, however, the robot moves at a forward speed

of 1 meter per second. Because of the low speed of the system, inertial properties as well

as tire slip properties of the tractor and trailer will be ignored, and a simplified kinematic

tractor-trailer model will be used, making the nonlinear MPC calculations feasible.

In general, MPC follows an algorithm depicted by the flowchart in Figure 1.5. First,

the controller makes a prediction, choosing a particular steer angle. Then, using a model of

the system, the controller looks at where the trailer will go if the robot uses that steer angle.

It will then compare the result to the desired path. If the result does not meet tolerance

specifications, it will make another prediction. Otherwise, the controller will use this steer

angle (now called a set-point) as a target angle to move the steering wheel to. The controller

then determines the voltage into the steering motor by making control calculations, and it

feeds that voltage into the motor. The controller also runs the input back through the model

and compares the result from the process’s feedback sensors (in this case, a GPS receiver).

7

1.4 Outline

This thesis introduces a numerical approach to a non-linear feedforward control problem,

and it stresses real-time feasibility. It is necessary for the control system to determine

inputs quickly, while maintaining a high degree of accuracy. Two tractor-trailer models

are presented in Chapter 2. The first, a 4th-order kinematic model, is a standard control

model that is currently being used at Auburn University. The second model, a 9th-order

bicycle model, has not been used at Auburn yet, due to its complexity and difficulty for

a computer to numerically compute in real-time. Chapter 3 presents the numerical MPC

method responsible for choosing the appropriate set points, and it shows how these set points

can be achieved through classical control method design. Chapter 4 includes results from

computer simulations with the two competing tractor-trailer models described in Chapter

2, as well as results from an experimental run on a Segway RMP 400. Finally, Chapter 5

presents conclusions from the results of this work and proposes future work.

8

Chapter 2

Kinematic and Dynamic Modeling of the System

This chapter presents the derivation of the aforementioned tractor-trailer models. First,

a kinematic model is derived for a front-steering tractor, as well as a skid-steering tractor,

towing a trailer. Then, a dynamic bicycle model for the same system is derived using

Newtonian mechanics. The chapter then closes with a discussion on why the kinematic

model is preferable for MPC with present technology, but also how the dynamic model

would be preferable in other scenarios.

2.1 Kinematic Model

The kinematic model is a basic, “no-frills” model that can satisfy the prediction require-

ment for Model Predictive Control in low-speed applications. The primary advantage to

using a kinematic model is its simplicity. A computer could numerically integrate a kine-

matic model accurately, using a much larger time step than when numerically integrating a

dynamic model. The disadvantage of a kinematic model is that it assumes (1) the ground

is perfectly flat, (2) the tires have perfect traction with the ground (no slip), and (3) it ig-

nores inertia and lateral forces. Due to the low-speed operation during a geophysical survey,

making these assumptions do not impact the accuracy of the predictions significantly.

2.1.1 List of Parameters & Velocity Diagram

Table 2.1 describes the variables used for a Kubota RTV, while Figure 2.1 shows the

connected tractor-trailer system.

9

X"

Y"

Ψ2"

Ψ1"

r1

r2

c"

a"
b"

d
e" Δ"

&x1

δ"

Figure 2.1: Schematic for a Tractor-Trailer System Kinematic Model

10

Parameter Description Value (if constant)
X

1,ref

Absolute X Position of Tractor variable
Y
1,ref

Absolute Y Position of Tractor variable
X

2,ref

Absolute X Position of Trailer variable
Y
2,ref

Absolute Y Position of Trailer variable
X

1

Absolute X Position of Tractor (back axle) variable
Y
1

Absolute Y Position of Tractor (back axle) variable
ẋ
1

Forward Velocity of the Tractor 1 m/s

1

, r
1

Heading and Angular Velocity of Tractor variable

2

, r
2

Heading and Angular Velocity of Trailer variable
� Front Tire Steering Angle of Tractor variable
� Angle Difference between Tractor and Trailer (

1

�
2

)

1

�
2

a Length from Tractor GPS receiver to center of front tire 0.75 m
b Length from Tractor GPS receiver to center of back tire 1.21 m
c Length from Tractor GPS receiver to hitch 1.74 m
d Length from Trailer GPS receiver to hitch 3.0 m
e Length from Trailer GPS receiver to trailer tire 1.0 m

Table 2.1: List of Tractor-Trailer System Parameters (kinematic model)

Figure 2.2: Steering to Angular Velocity

2.1.2 Kinematic Model Derivation

Considering the tractor coordinates first, it is assumed that there is no lateral velocity

at the back axle of the tractor. Using this assumption, the tractor’s angular velocity can

then be related to its forward velocity and the steering angle of the front tire as shown in

Figure 2.2, which leads to Equation (2.1).

r
1

=

ẋ
1

tan �

(a+ b)
(2.1)

11

r2
d

e#

d + e()r2

&x2

r1

c#

a#
b#

c− b()r1

&x1

X2#

X1#

Y2#Y1#

Figure 2.3: Tractor and Trailer Hitch Velocities

12

Next, by studying Figure 2.3, the forward and lateral velocities at the hitch are found

relative to both the tractor and the trailer.

Velocity of the hitch in tractor coordinates: ẋ
1

ˆi
1

� (c� b)r
1

ˆj
1

Velocity of the hitch in trailer coordinates: ẋ
2

ˆi
2

+ (d+ e)r
2

ˆj
2

These two velocity expressions both describe the same velocity, and therefore, they can

be related to each other using a rotation matrix:

2

64
ẋ
2

(d+ e)r
2

3

75 =

2

64
cos� sin�

sin� � cos�

3

75

2

64
ẋ
1

(c� b)r
1

3

75 (2.2)

An equation for the angular velocity of the trailer can be extracted from the above

relation as shown in Equation (2.3):

r
2

=

ẋ
1

(d+ e)
sin�� (c� b)r

1

(d+ e)
cos� (2.3)

While an equation for the forward velocity of the tractor could be extracted from the

matrix rotation, it is unnecessary to do so. Instead, by finding the tractor’s global position

and considering the headings of both the tractor and the trailer, the trailer’s global position

can be found as well. This eliminates several integration steps, and it allows for a larger

numerical integration time step size. Equations (2.4) and (2.5) show the translation to global

coordinates for the tractor.

˙X
1

= ẋ
1

cos

1

(2.4)

˙Y
1

= ẏ
1

sin

1

(2.5)

13

To summarize the derivation so far, Equations (2.1), (2.4), and (2.5) give the position

and heading of the back axle of the tractor, while Equation (2.3) gives the angular velocity

of the trailer. Now, some kinematic relations are considered to locate the points of interest

(i.e. the GPS receivers) on both the tractor and the trailer. Equations (2.6) and (2.7) give

the antenna location on the tractor:

X
1,ref

= X
1

+ b cos
1

(2.6)

Y
1,ref

= Y
1

+ b sin
1

(2.7)

Finally, the trailer’s GPS receiver location can be calculated using the following Equa-

tions (2.8) and (2.9):

X
2,ref

= X
1,ref

� c cos
1

� d cos
2

(2.8)

Y
2,ref

= Y
1,ref

� c sin
1

� d sin
2

(2.9)

2.1.3 Skid-Steer Vehicle Modification

Many skid-steer vehicles, such as the Segway Robotics Mobility Platform (RMP) 400,

have an existing steering control system that only requires an angular velocity input, re-

moving the need for Equation (2.1). However, there is often a time delay between the

angular velocity input, and when the robot reaches that angular velocity. The design of a

compensator for this delay will be addressed in Chapter 3.

2.2 Dynamic Bicycle Model

The dynamic bicycle model introduces the possibility of adding exterior input forces

to the model, such as bumps and dips in the ground. The major difference in the model

14

Parameter Description Value
X

1

Absolute X Position of Tractor (center of gravity) variable
Y
1

Absolute Y Position of Tractor (center of gravity) variable
X

2

Absolute X Position of Trailer (center of gravity) variable
Y
2

Absolute Y Position of Trailer (center of gravity) variable
ẋ
1

Forward Velocity of Tractor 1 m/s
ẏ
1,

ÿ
1

Lateral Velocity and Acceleration of Tractor variable
ẋ
2

, ẍ
2

Forward Velocity and Acceleration of Trailer variable
ẏ
2

, ÿ
2

Lateral Velocity and Acceleration of the Trailer variable

1

, r
1

, ṙ
1

Heading, Angular Velocity, and Angular Acceleration of Tractor variable

2

, r
2

, ṙ
2

Heading, Angular Velocity, and Angular Acceleration of Trailer variable
H

x

, H
y

Forward and Lateral Hitch Forces (tractor side) variable
H 0

x

, H 0
y

Forward and Lateral Hitch Forces (trailer side) variable
� Front Tire Steering Angle of Tractor variable
� Angle Difference between Tractor and Trailer (

1

�
2

)

1

�
2

a Length from Tractor CG to center of front tire 0.75 m
b Length from Tractor CG to center of back tire 1.21 m
c Length from Tractor CG to hitch 1.74 m
d Length from Trailer CG to hitch 3.0 m
e Length from Trailer CG to trailer tire 1.0 m
m

1

Mass of the Tractor 1225 kg
I
1

Yaw Inertia of the Tractor m
1

· a · b
m

2

Mass of the Trailer 30 kg
I
2

Yaw Inertia of the Trailer m
2

· d · e
C

1

Cornering Coefficient of the Front Tractor Tire 80 ·m
1

C
2

Cornering Coefficient of the Back Tractor Tire 80 ·m
1

C
3

Cornering Coefficient of the Trailer Tire 80 ·m
2

Table 2.2: List of Tractor-Trailer System Parameters (dynamic model)

assumptions is that the tires no longer have perfect traction with the ground, and they have

to push against the ground in order to control a vehicle’s direction. These advantages come

at a cost, however, as the numerical computation requires a significantly smaller time step

size than the kinematic model.

2.2.1 List of Parameters and Acceleration/Force Diagram

Table 2.2 describes the variables used for a Kubota RTV, while Figure 2.4 shows the

connected tractor-trailer system.

15

X"

Y"

Ψ2"

Ψ1"

r1, &r1

r2, &r2

c"

a"
b"

d
e" Δ"

&y1, &&y1

&y2, &&y2

Fy1

Fy2

Fy3

&x1

δ"

m2, I2

m1, I1

Figure 2.4: Schematic for a Tractor-Trailer System Dynamic Model

16

X"

Y"

X1"

Y1"

Ψ1"

&r1

c"

a"
b"

&&y1 + &x1r1
Fy1

Fy2

m1, I1

δ"

Hy

&y1r1,Hx

Figure 2.5: Tractor Accelerations and Forces

2.2.2 Force and Acceleration Analysis on Tractor and Trailer

As seen in Figure 2.5, the tractor has three lateral forces acting on it: two produced

by the tires, and a lateral force produced at the hitch. There are two lateral acceleration

components influenced by these forces – a lateral perturbed acceleration ÿ
1

, and a centripetal

acceleration ẋ
1

r
1

. These forces and accelerations relate as described by Equations (2.10) and

(2.11), using Newtonian mechanics.

m
1

ÿ
1

+m
1

ẋ
1

r
1

= F
y1

+ F
y2

�H
y

(2.10)

I
1

ṙ
1

= aF
y1

� bF
y2

+ cH
y

(2.11)

17

X"

Y"

X2"

Y2"

Ψ2"

r2, &r2

d
e"

&&y2 + &x2r2Fy3

m2, I2

!Hy

&&x2, !Hx

&y2r2

Figure 2.6: Trailer Accelerations and Forces

Next, the trailer’s accelerations and forces are examined as seen in Figure 2.6. In similar

fashion to the tractor equations, Equations (2.12) and (2.13) describe the lateral motion of

the trailer.

m
2

ÿ
2

+m
2

ẋ
2

r
2

= F
y3

+H 0
y

(2.12)

I
2

ṙ
2

= dH 0
y

� eF
y3

(2.13)

Unlike the tractor, which was said to have a constant forward velocity (and hence no

forward acceleration), the trailer does have a forward acceleration component. Equation

(2.14) describes this motion:

18

r1, &r1

c"

a"
b"

&&y1 + &x1r1 − c&r1

&y1r1 − cr1
2

r2, &r2
d

e"

&&y2 + &x2r2 + d&r2

&&x2 − &y2r2 − dr2
2

Figure 2.7: Tractor & Trailer Hitch Accelerations

m
2

ẍ
2

�m
2

ẏ
2

r
2

= H 0
x

(2.14)

2.2.3 Relative Forces and Accelerations

To relate the dynamic tractor and trailer models, similarly to the kinematic model, the

accelerations at the hitch can be determined with respect to both the tractor and the trailer

separately (see Figure 2.7), so they can be related using a rotation matrix (Equation (2.15)).

2

64
ẍ
2

� (ẏ
2

r
2

+ dr2
2

)

ÿ
2

+ ẋ
2

r
2

+ dṙ
2

3

75 =

2

64
cos� � sin�

sin� cos�

3

75

2

64
� (ẏ

1

r
1

� cr2
1

)

ÿ
1

+ ẋ
1

r
1

� cṙ
1

3

75 (2.15)

Using the same rotation matrix as Equation (2.15), Equation (2.16) relates the forces.

Note that by Newton’s Third Law, the force acting on the hitch from the perspective of the

19

c"

a"
b"

Hy

Hx

d
e" !Hy

!Hx

Figure 2.8: Hitch Forces

tractor has to be equal and opposite to the force acting on the hitch from the perspective of

the trailer, as shown in Figure 2.8.

2

64
H 0

x

H 0
y

3

75 =

2

64
cos� � sin�

sin� cos�

3

75

2

64
H

x

H
y

3

75 (2.16)

2.2.4 Tire Model Derivation

Historically, tires have been difficult for engineers to model accurately. In most cases,

tire models are derived experimentally, as opposed to theoretically. For this model, however,

a somewhat non-intuitive approach called the “slip angle” model is used. The slip angle

concept does not imply skidding, but instead implies that as tires roll and experience a

lateral force, some portions of the tire begin to slip from their point of contact with the

20

Ψ1"

r1

c#

a#
b#

&y1,tire &x1,tire

m1, I1

δ"

Hy

&x1β"

&y1

X1#

X1,(re#

Y1#
Y1,(re#

Figure 2.9: Tractor Motion from Tire Coordinate Frame

ground, while other portions of the tire are still essentially “locked” to the ground by static

friction. For a more comprehensive description of the slip angle concept, refer to [12].

When a vehicle is traveling straight, there is virtually no difference between a vehi-

cle’s velocity and a tire’s velocity. However, if a perturbation is introduced in the vehicle’s

movement, the tire will react based on its motion relative to the vehicle.

Figure 2.9 shows an exaggeration of a vehicle’s perturbed motion from the coordinate

frame of the tire. For the following calculations, ẋ will be the tire’s in-line rolling velocity,

ẏ will be the tire’s lateral velocity, and will be the angle difference between the vehicle’s

forward motion and its lateral motion.

From Figure 2.9, the motion of the rear tractor tire can be related to the motion of the

vehicle as shown in Equations (2.17), (2.18), and (2.19).

21

�
1

= arctan

✓
�ẏ

1

ẋ
1

◆
(2.17)

ẋ = ẋ
1

cos �
1

+ ẏ
1

sin �
1

(2.18)

ẏ = �ẋ
1

sin �
1

+ ẏ
1

cos �
1

� br
1

(2.19)

The force produced by the tire is the arctangent of the ratio between the lateral tire

velocity ẏ to its rolling velocity ẋ, multiplied by the negative of the cornering coefficient

(Equation (2.20)).

F
y2

= C
2

arctan

✓
�ẋ

1

sin �
1

+ ẏ
1

cos �
1

� br
1

ẋ
1

cos �
1

+ ẏ
1

sin �
1

◆
(2.20)

Similarly, without any steering angle, the front tire force would be modeled with Equa-

tion (2.21).

F
y1

= C
1

arctan

✓
�ẋ

1

sin �
1

+ ẏ
1

cos �
1

+ ar
1

ẋ
1

cos �
1

+ ẏ
1

sin �
1

◆
(2.21)

Conversely, if a steering angle is included, the front tire force would be modeled with

Equation (2.22).

F
y1

= C
1

arctan

✓
�ẋ

1

sin (�
1

+ �) + ẏ
1

cos (�
1

+ �) + ar
1

cos �

ẋ
1

cos (�
1

+ �) + ẏ
1

sin (�
1

+ �) + ar
1

sin �

◆
cos � (2.22)

Finally, in similar fashion to Equation (2.20), the trailer tire force is modeled by Equa-

tion (2.23).

F
y3

= C
3

arctan

✓
�ẋ

2

sin �
2

+ ẏ
2

cos �
1

� er
2

ẋ
2

cos �
2

+ ẏ
2

sin �
2

◆
(2.23)

22

2.2.5 Equations Collected & Translation to Global Coordinates

Now that the tractor trailer model equations of motion have been derived, Equations

(2.10) through (2.16) can be combined to make Equations (2.24) through (2.28). The indi-

vidual state variables can be isolated by applying Cramer’s Method.

m
1

ÿ
1

+m
2

ÿ
2

cos��m
2

ẍ
2

sin� = F
y1

�m
1

ẋ
1

r
1

+F
y2

� (m
2

ẋ
2

r
2

� F
y3

) cos��m
2

ẏ
2

r
2

sin�

(2.24)

I
1

ṙ
1

� cm
2

ÿ
2

cos�+ cm
2

ẍ
2

sin� = aF
y1

� bF
y2

+ c (m
2

ẋ
2

r
2

� F
y3

) cos�+ cm
2

ẏ
2

r
2

sin�

(2.25)

dm
2

ÿ
2

� I
2

ṙ
2

= (d+ e)F
y3

� dm
2

ẋ
2

r
2

(2.26)

ÿ
1

sin�� cṙ
1

sin�+ ẍ
2

= �ẋ
1

r
1

sin��
�
ẏ
1

r
1

� cr2
1

�
cos�+ ẏ

2

r
2

+ dr2
2

(2.27)

ÿ
1

cos�� cṙ
1

cos�� ÿ
2

� dṙ
2

= �ẋ
1

r
1

cos�+

�
ẏ
1

r
1

� cr2
1

�
sin�+ ẋ

2

r
2

(2.28)

Finally, to translate each vehicle component from local to global coordinates, the fol-

lowing rotation is used:

2

64
˙X
i

˙Y
i

3

75 =

2

64
cos ✓

i

� sin ✓
i

sin ✓
i

cos ✓
i

3

75

2

64
ẋ
i

ẏ
i

3

75 (2.29)

where i = 1 for the tractor, and i = 2 for the trailer.

23

Figure 2.10: Dynamic Model vs Kinematic Model

2.3 Discussion

Both the kinematic and dynamic models were tested using MATLAB. Using a 4th-

order Runge Kutta approximation, the kinematic model can produce an accurate estimate

(<0.01% error) using a time step size of 0.025 seconds. On the other hand, the dynamic

model requires a step size of 0.0001 seconds using a 6th-order Runge Kutta approximation

to achieve an accurate estimate. Depending on the speed of the computer, the small step

size required for the dynamic model could hinder the viability of using the model with MPC.

Fortunately, both models allow for a test of MPC when there is model error. Figure

2.10 shows these two models being run using a starting point where the CG of the tractor

is at the origin, a forward velocity of 1m/s, and a common set of steering instructions that

would guide the tractor around an S-curve. These models produce similar results, but they

are by no means the same. Figure 2.11 shows how the models deviate as they go into the

first turn, and after 6 seconds of a hard turn to the left, the models deviate by about 0.25

meters.

24

Figure 2.11: Position Differences between the Kinematic and Dynamic Models

2.4 Conclusion

This chapter presented two models, a kinematic model and a dynamic model, which

could be used in the design of an MPC controller. The kinematic model takes significantly

less computation effort, but the dynamic model is more realistic in that it considers the

momentum of the vehicles, and it acknowledges that the tires have slip. The slight difference

in the outputs of these two models allows for the testing of an MPC controller’s ability to

compensate for model error before physically implementing the control system on a robot.

25

Chapter 3

Applying MPC to a Tractor Trailer System

This chapter describes the Model Predictive Control (MPC) algorithm used to control

the tractor-trailer system. First, a front-wheel steering tractor model is considered, followed

by a skid-steering vehicle. MPC follows two key steps: set point calculations, and control

calculations. To test these control methods, an S-curve path was designed with two 5-meter

radius turnarounds as shown in Figure 3.1.

3.1 Set Point Calculations

When learning to drive a motor vehicle, a human driver gradually gains some idea of

how the vehicle will respond to a certain steering input. When preparing to make a turn at

a traffic light (particularly left turns), the driving instructor tells the new driver to visualize

an arc from the vehicle’s current position to where the vehicle will be after making the turn.

When the light turns green, the driver follows the arc, anticipating the car’s response to a

steering input by using preexisting knowledge of the vehicle’s response from previous turns.

In the MPC algorithm, the same principle is applied using a model to predict the outcome,

given a steering input.

Figure 3.2 on page 28 illustrates the steps taken for the set point calculations. Subscript

k indexes how many cycles the set-point calculator has run, while subscript i tracks the

number of guesses the computer has made during its current prediction cycle. Every time

the algorithm recycles, the current position and heading of both the tractor and trailer are

accounted for, and an initial guess is made by using the previous tractor steer angle. The

algorithm then uses the model to predict the path the trailer would follow over next 4 seconds.

Next, using the desired path as a reference, a cost function is calculated based on how far

26

-10 -5 0 5 10

0

2

4

6

8

10

12

14

16

18

20

X-Position (m)

Y-
Po

si
tio

n
(m

)

S-curve with 5m turn radius

Figure 3.1: Simulation Path

the predicted path is from the desired path. If this is the first iteration of the prediction

cycle, the steer angle is moved 1° in the direction of the path, and the process is repeated

to calculate another cost value. On subsequent iterations, Newton’s Method is applied in an

effort to bring the cost as close to zero as considered reasonable. Once a steering angle has

been determined that minimizes cost, that steer angle is sent to the steering controller as a

reference.

3.1.1 Initial Setup

At the start of the prediction cycle, the algorithm receives position and heading informa-

tion from a GPS receiver attached to the trailer (X
k,

Y
k

, ✓
k

). If the tractor is a front-steering

vehicle, the algorithm also takes the current steer angle (�
k

) from a wheel encoder attached

to the steering wheel. On the other hand, if the tractor is a skid-steering vehicle, the al-

gorithm notes the current angular velocity of the tractor. The algorithm also assumes a

constant forward velocity (v) of the tractor. For the first prediction, the algorithm uses the

27

Figure 3.2: Set Point Calculations Flowchart

28

Figure 3.3: Test Points Relative to Desired Path

current steering angle and the model to predict the path the trailer would take over the next

4 seconds using that same steering angle.

Figure 3.3 shows an overhead view of this happening. The trailer is located on the left

of the plot, the black line is the intended path, the blue circles indicate the trailer’s predicted

locations – one meter apart from each other, and the red lines indicate the distance between

each prediction point and the path.

Now, to find the optimal steer angle, a cost function is defined. Ordinarily, the MPC

cost function takes the form shown in Equation (3.1).

J =

NX

j=1

⇥
Q

j

(r
j

� x
j

)

2

+R
j

�u2

j

⇤
(3.1)

When using linear MPC, the analytical algorithm shown in Appendix A can be used to

calculate the control input. In the case of a nonlinear approach, iterative methods have to

29

be applied. In many cases, nonlinear MPC is infeasible to implement in real time, but this

research explores a way to reach an input decision quickly.

The cost function is first redefined as the sum of the distances between predicted position

estimates and the path:

J
i

=

�����

4X

j=1

l
j

(±1)
j

����� (3.2)

where l
j

is the shortest distance between the j-th prediction point and the path. To

ensure that this summation converges to zero, all test points to the right of the path are

assigned a positive value, while the test points to the left are assigned a negative value.

Notice that the cost function defined by Equation (3.2) is no longer quadratic, and

instead it has been surrounded by absolute value brackets. Without the absolute value

brackets, the summation could go negative if all prediction points were on the left side of the

path, and a negative cost would imply the existence of a steer input better than optimal.

The absolute value brackets simply state that the length summations that go negative are

just as unfavorable as positive summations.

To determine what the sign should be for each point, some trigonometry is used. First,

the algorithm determines for each point, what angle the path makes with the trailer’s heading

and the nearest point on the path: ✓
pathj = arctan

⇣
Ypathj

�Ytrailerk

Xpathj
�Xtrailerk

⌘
. The algorithm then

determines the angle that the prediction point makes with the trailer’s current heading:

✓
predj = arctan

⇣
Ytrailerj

�Ytrailerk

Xtrailerj
�Xtrailerk

⌘
. After that, it compares these two angles, and it assigns a

cost function value: J
i

=

���
P

4

j=1

l
j

· sign
�
✓
pathj � ✓

predj

����.

It is fair to ask a few questions at this point, starting with “Why go to all this effort?”

The reason is that this ensures (in most cases) that the interior of the cost function crosses

zero on the y-axis of a cost versus steer angle plot. This sets things up nicely for using

Newton’s Method to find the zero of the cost function quickly and efficiently. It is important

to point out that this cost function will not return the same solution as Equation (3.1), but

30

the horizon can be adjusted to mimic the solution of (3.1) by heavily weighing the later

predictions.

The follow-up question would then be, “Why not just use the derivative form of Newton’s

Method to minimize the cost function in Equation (3.1)?” The problem is that each iteration

of the derivative form of Newton’s Method requires at least two cost evaluations to compute

a derivative. This doubles the computational expense of the minimization process. If the

robot’s processor is fast enough to compute these calculations in real time, using (3.1) might

be feasible, but if the processor cannot keep up, unpredictable results would occur.

There are two pitfalls to this redefined cost function, however. One being that there

could potentially be more than one solution to the cost function on any given point on

the path. First, there is the desired solution that keeps the system moving along the path

toward the goal. Then, there may be another solution where the tractor is spinning at a

dangerously high turn rate, but the kinematic model evaluation shows that the sum of the

trailer’s position predictions still add up to zero. This is especially prevalent on a skid-steer

robot, as the distance between the tractor’s center of rotation and the hitch is long, and a

sharp turn causes the trailer to yaw in the other direction for a brief moment. On the other

hand, a front-steer robot is less likely to have that problem as its center of rotation is the

back axle, and the distance from the back axle to the hitch is relatively short compared to

the rest of the vehicle.

Another pitfall is that if the robot drifts too far away from the path, the robot could reach

a position and heading where no steering input exists which would allow the cost function

to reach zero. Although it is tempting to use the derivative form of Newton’s Method to

find the minimum in these cases, simulator tests have shown that the derivative form of

Newton’s Method could inadvertently converge onto the maximum of the cost function, not

the minimum. The fallback method in both of these situations is Golden Section Search,

which while inefficient, guarantees that the solution is a minimum, and it limits the search

range to a user-defined interval.

31

3.1.2 Finding Minimum Cost Using Newton’s Method

Finding the minimum cost is a trial-and-error process, but a good initial guess is the

same steer angle used for the previous prediction cycle. The algorithm uses this guess along

with the model to predict where the tractor and trailer would go. Then, the second guess is

1° to the right or left of that angle (depending on which side of the initial guess the path is

on). With two points available, the algorithm can now predict a third point using Equations

(3.3) and (3.4).

J 0
i

=

J
i

� J
i�1

�
i

� �
i�1

(3.3)

�
i+1

= �
i

� J
i

J 0
i

(3.4)

Figure 3.4 on page 33 illustrates the Newton’s Method process. Each frame in Figure

3.4 depicts the results of a prediction. On the top subplot of each frame, the trailer GPS

receiver is located on the far left-hand side of the plot. The black line is the path. The blue

circles are prediction points based off of the model, one second apart from each other. The

red lines represent the distance from each point to the path. On the bottom subplot of each

frame, the x-axis is the steering angle, while the y-axis is the cost. The blue line is the cost

function that occurs under the current tractor-trailer state conditions, which was computed

only for this demonstration, but is impractical to compute in real time. Finally, the red line

tracks each prediction made using Newton’s Method.

The cycle repeats itself until the change in steer angle is less than 0.5°. As seen in

the Figure, the prediction algorithm ran five times to arrive at the steering angle with a

cost near zero. By reusing the previously calculated steering angle, however, the algorithm

usually arrives at a usable steering angle after three predictions. Figure 3.5 on page 34

shows an overhead simulation of the system guiding to the path using this MPC approach,

assuming the controller could guide to the set points instantaneously.

32

Figure 3.4: Newton’s Method Demonstration
33

Figure 3.5: MPC Set Point Simulation

If the tractor vehicle is a skid-steer vehicle, such as the Segway RMP 400, the controller

uses the same prediction method as before, but it chooses the necessary turn rate (instead

of the steer angle) in order to keep the trailer on the path.

3.1.3 Finding Minimum Cost using Golden Section Search

In some cases, the Newton’s Method approach will not work, as the cost function does

not cross zero on the y-axis. This is especially likely to happen with tractor-trailer systems

where the distance between the center of rotation on the tractor and the hitch is long. It

can also happen when the path following error exceeds a certain point. Figure 3.6 shows an

instance where using MPC on a Segway RMP 400 and trailer system, the cost function would

not reach zero, no matter what steering input is used. To address this, the cost function is

first squared to eliminate the possibility of it going negative, and the Golden Section Search

method of optimization is used.

Again, it is tempting to try the derivative form of Newton’s Method to locate the mini-

mum, but in some cases, a local minimum and local maximum are very close together. This

could result in Newton’s Method converging onto a local maximum. Once this happens, the

34

Figure 3.6: Newton’s Method Incompatibility

robot continues to follow this method, maintaining its steering input on the local maximum

of the cost function and loses the path completely. On the other hand, the Golden Section

Search method guarantees a minimum, provided that a local minimum exists on the chosen

interval.[16]

The prediction points for the Golden Section search method are chosen the following

way. First a prediction interval is chosen (in the case of the Segway, -40 deg/sec to 40

deg/sec). If l
0

defines the length of the full interval, and l
1

and l
2

define the space between

the left and right edges of the interval and the intermediate prediction points, the locations

of l
1

and l
2

can be determined by satisfying the following conditions:

l
1

+ l
2

= l
0

(3.5)

l
1

l
0

=

l
2

l
1

(3.6)

By substituting Equation (3.5) into Equation (3.6), the following equation results:

35

l
1

l
1

+ l
2

=

l
2

l
1

(3.7)

Next, the reciprocal is taken, and R is defined as l

2

l

1

, resulting in the following:

1 +R =

1

R
(3.8)

By multiplying both sides by R, Equation (3.8) becomes R2

+R�1 = 0, and the positive

root, or the golden ratio can be solved for. The result is R =

p
5�1

2

t 0.61803.

To set up the algorithm, x
l

and x
u

define steer inputs at the lower and upper limits of

the prediction interval. The intermediate points x
1

and x
2

are then chosen using the golden

ratio:

x
1

= x
l

+

p
5� 1

2

(x
u

� x
l

) (3.9)

x
2

= x
u

�
p
5� 1

2

(x
u

� x
l

) (3.10)

The costs of these two intermediate points are then evaluated and a comparison is made.

Figure 3.7 illustrates this process. In the cost function presented, J(x
2

) < J(x
1

), so all steer

inputs greater than x
1

are eliminated, and x
1

becomes x
u

for the second iteration. Also,

thanks to the use of the golden ratio, the new x
1

lies at the same point as the old x
2

, so the

cost of that point has already been evaluated and can be reused for the second iteration.

The new x
2

is found by again using Equation (3.10), and its associated cost is evaluated.

This time, J(x
1

) < J(x
2

), so all steer inputs less than x
2

are eliminated, x
2

becomes the

next x
l

, and x
1

becomes the next x
2

. After 10 repetitions, the interval shrinks to about 0.8%

of its original size, giving a turn rate that is accurate to within 0.64 degrees per second.

36

Figure 3.7: Golden Section Search

37

Figure 3.8: Steering Angle Set-Points

3.2 Control Calculations

Once the steering angle has been decided, the controller uses this steering angle as a

reference angle and uses a PID algorithm to determine the voltage to the motor to achieve

that angle quickly. For the Segway, instead of using Equation (2.1) to determine a steer angle

and compute the corresponding turn rate, the turn rate is decided directly during the set

point calculations. Then, the Segway’s computer makes the control calculations internally

to achieve that turn rate. What follows in this section is a method to design a controller to

determine the voltage for a steering motor on an Ackerman-steered vehicle.

3.2.1 Steering Motor Voltage Calculations for Front-Steering Tractor

Looking at Figure 3.8, there are noticeable abrupt changes in the steering angle. The

goal of the control calculations is to not only determine a voltage to apply across the motor,

but to also smoothen out the rough spots on the set point plot.

Figure 3.9 shows a block diagram for an armature motor. This model has the closed-loop

transfer function:

38

Figure 3.9: Armature Motor Model

Figure 3.10: Controlled Motor System

�(s)

V (s)
=

K
m

s [(L
a

s+R
a

) (Is+ C) +K
b

K
m

]

(3.11)

For the simulations done in this thesis, the following parameters were used for the motor:

R
a

= 1⌦

L
a

= 0.001H

K
b

= K
m

= 0.05V s/rad

I = 0.0035kg m2

C = 0.1Js/rad

If a PID controller were applied, the closed-loop system would take the form shown in

Figure 3.10. The following is the complete closed-loop transfer function for the controlled

system:

�
out

(s)

�
in

(s)
=

K
m

(D
c

s2 + P
c

s+ I
c

)

L
a

Is4 + (R
a

I + L
a

C) s3 + [(R
a

C +K
b

K
m

) +K
m

D
c

] s2 +K
m

P
c

s+K
m

I
c

(3.12)

39

23 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.8 23.9 24
15.5

16

16.5

17

17.5

18

18.5

time (s)

st
ee

r a
ng

le
 (d

eg
)

Steer Angle Set Points vs Time

Figure 3.11: Unwanted Oscillations

The goal of this controller is to not only decide on the voltage to apply to the motor, but

also to filter out unwanted oscillations. In order to choose suitable P
c

, I
c

, and D
c

values, the

unwanted oscillations were visually examined (see Figure 3.11). It is seen that the oscillation

period is around 0.1 seconds, translating to a target filter frequency of about 10 Hz. Using

the ’bode’ command in Matlab, the frequency response of the system could be examined

under a variety of PID conditions.

First, a simple proportional controller was considered with a gain of 4. This yielded a

bode plot with a cutoff frequency of 0.332 Hz, and a -37.6 dB gain in the amplitude (which

is an absolute amplitude of nearly zero) at 10 Hz (62.8 rad/sec). Figure 3.12 illustrates these

findings.

Next, a proportional-integral controller was considered with a P
c

gain of 3, and an I
c

gain of 6. This changed the cutoff frequency to 0.501 Hz, and the 10 Hz oscillation amplitude

to -40.1 dB (see Figure 3.13).

The PI controller appears to work in simulation, but these results are misleading. As

seen in Figure 3.14, the steering angle movements are now smooth. However, Figure 3.15

40

-200

-150

-100

-50

0
From: DELTAdesired To: DELTAactual

M
ag

ni
tu

de
 (d

B)

10-1 100 101 102 103 104 105
-270

-180

-90

0

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

Figure 3.12: Proportional Control

-250

-200

-150

-100

-50

0

50
From: DELTAdesired To: DELTAactual

M
ag

ni
tu

de
 (d

B)

10-1 100 101 102 103 104 105
-270

-180

-90

0

Ph
as

e
(d

eg
)

Bode Diagram

Frequency (rad/sec)

Figure 3.13: Proportional-Integral Control

41

0 10 20 30 40 50 60 70 80
-30

-20

-10

0

10

20

30

time (s)

st
ee

r a
ng

le
 (d

eg
)

Steer Angle vs Time

Figure 3.14: Steer Angle Controlled

Figure 3.15: Voltage Across Motor vs Time (using PI control)

42

Figure 3.16: Motor Response to Step Input with Varying Derivative Control Values

shows rapid voltage changes. It is physically impossible for a controller to adjust that quickly,

so a PID controller is employed.

When considering a response to a step input, a small latency introduced by the PI

controller is desired since it filters away the unwanted oscillations, and thus, a PID controller

that carries a similar latency is desired. In Figure 3.16, the step response of the controlled

motor is examined under the same proportional and integral gains (P
c

= 3, I
c

= 6), and

different derivative control gains. As D
c

is increased, the latency increases, and the overshoot

drops. Ultimately, the gains P
c

= 3, I
c

= 6, and D
c

= 2 were chosen. Figure 3.17 shows the

resulting voltage.

3.3 Conclusion

This chapter described the prediction – control method used in the guidance of a robot-

trailer system. The algorithm first chooses a steering angle, then it predicts where the

trailer would go over the next four seconds using that steering angle, and finally it calculates

43

Figure 3.17: Voltage Across Motor vs Time (using PID control)

a cost based on how far the trailer’s predicted movement deviates from the path over that

time. This process is repeated, using a Newton’s Method & Golden Section Search hybrid

algorithm to force the steering angle to converge on the “optimal” steering angle. If the

robot is a skid-steer vehicle, the controller determines the required turn rate for the robot

in radians per second in lieu of the steering angle. From there, control calculations can be

made in order for the robot to achieve the desired steer angle or turn rate.

44

Chapter 4

Computer Simulations and Live Application

This chapter presents the observations made by running various computer simulations,

as well as a live application, using this controller. First, since this control system was

originally intended to be used on an Ackerman-steered vehicle, the controller’s performance

was examined against a bicycle model under varying turn radii. Next, a simulation was

done using a real-time simulator for a differential-steered robot. Finally, this controller was

uploaded onto a Segway RMP 400 robot and examined.

4.1 Kubota RTV Simulation Results

Although the hardware for the Kubota RTV is still being assembled at the time of

this thesis writing, it is still possible to simulate how the controller will behave when the

plant’s response to an input does not match the model’s prediction exactly. For the first

simulation, the MPC simulator is modified to use the kinematic model to generate predictions

and determine inputs, and then use the dynamic bicycle model to simulate the Kubota’s

response. For the second simulation, the MPC simulator uses the linearized kinematic model

to generate predictions, and then it uses the nonlinear kinematic model to simulate Kubota’s

response.

4.1.1 Kinematic Controller Model against Bicycle Plant Model

As expected, when the controller model does not match reality, the controller is subject

to significant error. Figure 4.1 shows an overhead view of the tractor-trailer path following

under these conditions, while Figure 4.2 shows the error. The straight, middle section of the

S-curve is between 30 and 42 seconds on the time plots.

45

Figure 4.1: MPC with Model Error

Figure 4.2: Deviation with High Model Error

46

Figure 4.3: Deviation with Low Model Error

Several attempts were made to tune the controller in order to compensate for the model

error. First, the prediction horizon length was varied to three seconds, five seconds, and six

seconds. None of these changes reduced the maximum error. Longer prediction horizons

resulted in more gradual corrections, while shorter prediction horizons caused more abrupt

corrections. A prediction horizon of 4 seconds produced the least amount of error on the

path turns. Second, weights were added to each prediction point (i.e. the prediction point

one second ahead was multiplied by a factor of 4, the second by 3, the third by 2, and the

fourth by 1). The results were similar to shortening the prediction horizon, where the tractor

would turn more violently to compensate for error. In fact, weighing the earlier points by

too high a factor (or having too short of a prediction horizon) would cause the tractor to

veer off the path to the point of losing the path entirely and starts driving around in circles.

Conversely, a simulation was run with the kinematic model serving as the plant model

as well as the prediction model. This would simulate what would happen if the model closely

reflects the actual plant. Figure 4.3 shows the deviation from the path with a highly accurate

47

Figure 4.4: Wide S-curve Path Following

model. As seen with this model, the controller is still subject to error. The next section

examines this more closely.

4.1.2 Linearized Kinematic Controller Model against Nonlinear Kinematic Plant

Model

For the second simulation, the S-curve was widened so that the straight sections would

be 30 meters long. This would allow for better observation of the settling time of the path

following.

Figures 4.5 and 4.6 show the path following using the nonlinear and linear control

models, respectively. Both models do well when following the straight sections of the path,

but the nonlinear model appears to track toward the path even in the turns. In addition,

since both models choose their turn rates based on future predictions, they have a tendency to

make their steering adjustments early. This leads to the largest error being at the beginning

and end of each turn.

48

Figure 4.5: Path Following Using Nonlinear Control Model

Figure 4.6: Path Following Using Linear Control Model

49

Figure 4.7: 15m Radius S-curve

Figure 4.8: Path Following Using Nonlinear Control Model (15m radius)

50

Figure 4.9: Path Following Using Linear Control Model (15m radius)

To further study this, another S-curve was made with a 15 meter turn radius. Now,

steady-state error could be studied on the turns. By comparing the nonlinear controller

(Figure 4.8) to the linear controller (Figure 4.9), it is seen that the nonlinear controller has

a steady-state error much closer to zero than the linear controller on the turns. As seen in

this simulation study, the steady-state error with the linear controller increases as the turn

radius decreases, but with large turn radii, nonlinear control becomes unnecessary.

4.2 Segway Simulation Results

Next, in preparation for a live run on an autonomous vehicle, the MPC algorithm was

converted from Matlab code to C++. In addition a ROS (Robot Operating System) node

was written into the C++ code in order to communicate the intended control inputs to the

robot. To verify that the ROS node was working properly, a test was run using the ROS

node against a simulator for the Segway [18]. This simulator introduces a realistic amount

51

Figure 4.10: Segway Simulator [18]

of sensor noise and process noise to the feedback, allowing the testing of controller response

under off-road conditions.

In order to match the Segway model used in the simulator, the control kinematic model

was adjusted as shown in Table 4.1:

Parameter Description Value
a Length from Tractor GPS receiver to center of front tire 0.0 m
b Length from Tractor GPS receiver to center of back tire 0.0 m
c Length from Tractor GPS receiver to hitch 0.56 m
d Length from Trailer GPS receiver to hitch 2.65 m
e Length from Trailer GPS receiver to trailer tire 0.261 m

Table 4.1: List of Segway & Trailer Simulation Parameters (kinematic model)

52

Figure 4.11: Segway & Trailer Positions, Simulated

Figures 4.11, 4.12, and 4.13 show the results from one of the runs in the simulator.

As seen in Figure 4.12, the maximum error reaches about 20.8cm as the robot enters the

second turn. This is due to the presence of uneven terrain and slip which were left out of the

model, as well as sensor noise in the GPS measurements. With these random noise inputs,

the maximum error typically ranges from 20-35cm.

The key issue to be addressed by this simulation run is to verify that the steering

inputs do not reach unreasonable values. Early simulation tests with this software showed

that the set points would suddenly jump to very high values, which could have potentially

caused damage to the robot. This ultimately led to the inclusion of the golden section search

optimization method, as it was discovered that in some cases, the cost function would not

reach zero, regardless of the steering input used. As seen in Figure 4.13, the turn rate set

points do not exceed 40 degrees per second. The robot first tries to zero the cost function

using Newton’s Method since that approach is the most efficient, but if any Newton’s Method

step returns a value above 40 degrees per second, the robot uses golden section search.

53

Figure 4.12: Path Following Error, Simulated

Figure 4.13: Set Points, Simulated

54

Figure 4.14: Segway Test Run

4.3 Segway Experimental Results

For the live run, the control model parameters were adjusted as shown in Table 4.2:

Parameter Description Value
a Length from Tractor GPS receiver to center of front tire 0.0 m
b Length from Tractor GPS receiver to center of back tire 0.0 m
c Length from Tractor GPS receiver to hitch 0.615 m
d Length from Trailer GPS receiver to hitch 2.24 m
e Length from Trailer GPS receiver to trailer tire 0.45 m

Table 4.2: List of Segway & Trailer Live Parameters (kinematic model)

55

Figure 4.15: Segway & Trailer Positions (first run)

Early tests at 1 m/s reveal a sharp lag somewhere in the robot system, for reasons yet

to be determined. Figure 4.15 shows an overhead view of the path following, while Figure

4.16 shows the error.

In an attempt to reduce the error, the forward speed was reduced from 1 m/s to 0.5

m/s. However as Figures 4.17 and 4.18 show, there was no significant improvement in the

maximum error on the turns, but there was improvement in the path following on the straight

sections of path.

Examining the set point plot of the run at 0.5 m/s (Figure 4.19), it is seen that the

controller is constantly alternating between the minimum and maximum of allowable turn

rates.

In addition to the control lag, another large source of error is the inconsistent traction

between the Segway and the field. Often, the tires would skid against the ground, especially

during the turns or going over bumps. Future tests will involve adjusting the length of the

prediction horizon, adjusting the weighting on the prediction points, and allowing for faster

turn rates for the Segway.

56

Figure 4.16: Path Following Error (first run at 1 m/s)

Figure 4.17: Segway & Trailer Positions (third run at 0.5 m/s)

57

Figure 4.18: Path Following Error (third run at 0.5 m/s)

Figure 4.19: Set Points (third run at 0.5 m/s)

58

Figure 4.20: Results with 4m prediction horizon, weighted

4.3.1 Controller Tuning

To help examine the performance of the controller, the straight sections of the S-curve

were widened from 12 meters to 30 meters. For safety reasons, the speed of the tractor

was limited to 0.5 meters. Initially, a prediction horizon of 4 meters was chosen, and each

prediction point was weighted by scaling them heavier near the trailer, and scaling them

lighter away from the trailer, as shown in Table 4.3:

Distance from Robot Scale Factor
1 meter

p
4

2 meters
p
3

3 meters
p
2

4 meters
p
1

Table 4.3: Scale Factors

With a 4 meter prediction horizon, weighted using the scale factors of Table 4.3, a

path following performance shown in Figure 4.20 results. While these controller parameters

worked fine in simulation, they produce unstable results on the physical robot.

Next, a 4 meter horizon without weights was tried, as shown in Figure 4.21. The results

suggest that the controller is no longer unstable, but there is no evidence that the controller

would reach steady state.

59

Figure 4.21: Results with 4m prediction horizon, unweighted

Figure 4.22: Results with 5m prediction horizon, weighted

The prediction horizon was then adjusted from 4 meters to 5 meters. Figure 4.22 shows

the performance under a weighting scheme similar to Table 4.3. Similarly to the unweighted

4m horizon trial in Figure 4.21, there is no evidence that the controller would reach steady

state.

Next, the weights were removed from the 5 meter prediction horizon. Figure 4.23 shows

the robot tracking much better to the path under these conditions. These results suggest

that the robot would eventually reach steady state.

So far, the results shown have suggested that by lengthening the prediction horizon and

weighing it so that its “center” is further away from the trailer, the controller tracks better.

60

Figure 4.23: Results with 5m prediction horizon, unweighted

With that in mind, a prediction horizon of 6 meters was tried, but it failed as the computer

speed of the robot was not fast enough to process the calculations in time. To compensate

for this limitation, the 5 meter horizon was kept, but the weighting of the prediction points

was shifted forward by using the scaling factors in Table 4.4:

Distance from Robot Scale Factor
1 meter

p
1

2 meters
p
2

3 meters
p
3

4 meters
p
4

5 meters
p
5

Table 4.4: Inverted Scale Factors

Figure 4.24 shows the robot performance with a prediction horizon of 5 meters, using

this inverted weighing scheme. Now, the robot converges onto the path much more quickly,

and the oscillations appear to have a half-life of roughly 25 meters.

Next, the horizon was reduced back to 4 meters, and the same inverted weighting scheme

was used. The results, shown in Figure 4.25, show that the oscillations converge more slowly

than with the 5 meter horizon. It should be noted that when using the 4 meter horizon with

the inverted weighting, as well as when using the unweighted 5 meter horizon, the trailer

tracked the turns better than with the 5 meter horizon with inverted weighting.

61

Figure 4.24: Results with 5m prediction horizon, weighted inversely

Figure 4.25: Results with 4m prediction horizon, weighted inversely

62

Figure 4.26: Results with 5m prediction horizon, weighted inversely, one-to-one

Figure 4.27: Results with 4m prediction horizon, weighted inversely, one-to-one

Finally, a one-to-one horizon weighting scheme was chosen, illustrated in Table 4.5:

Distance from Robot Scale Factor
1 meter 1
2 meters 2
3 meters 3
4 meters 4
5 meters 5

Table 4.5: Inverted Scale Factors, One-to-One

Figures 4.26 and 4.27 show the results under the one-to-one weighting scheme. From

these results, it is found that the 4 meter prediction horizon produces the most accurate

63

Figure 4.28: Turn Rates at 0.5 m/s

path following on the turns, while the 5 meter prediction horizon shows a faster progression

toward steady state and more gradual oscillations. It is also seen that regardless of the

weighting configuration, the error is still much higher than previous controllers. Subsection

4.3.2 examines the reason for this.

4.3.2 Turn Rate Analysis

After examining the desired turn rates chosen by the controller against the actual turn

rates produced by the robot, it was found that the robot was only turning at roughly 40%

to half the intended turn rate. Figures 4.28 and 4.29 show this discrepancy for the robot

traveling at 0.5 m/s and 1.0 m/s, respectively.

In addition to this scaling discrepancy, the input-output plot shows roughly a 1.5-2

second delay in the response. To better understand the robot response, another test was

done where the robot was given a step input turn rate command of 0.5 rad/sec. As seen

in Figure 4.30, the delay could be modeled as a first order lag with a time constant of 0.5

seconds.

64

Figure 4.29: Turn Rates at 1.0 m/s

Figure 4.30: Turn Rate Step Input Response

65

Figure 4.31: Path Following at 0.5 m/s

Figure 4.32: Path Following at 1.0 m/s

4.3.3 Applying the Scale Factor to the Input

Using the one-to-one weighting scheme, and scaling the intended values of the robot

input by a factor of 2, the robot’s path following improved dramatically. Figures 4.31 and

4.32 show the robot following the path at 0.5 m/s and 1.0 m/s respectively, with a maximum

error of 30 cm on the turns and 15 cm on the recovery. They also shows that the robot

recovers to steady state after about 1.5 oscillations. However, for unknown reasons, there

consistently appears to be a bias of 5 cm in the error measurements as the robot travels

East.

66

Figure 4.33: Path Following at 1.2 m/s

Figure 4.34: Path Following at 1.4 m/s

Next, the run was repeated using forward velocities between 1 and 2 m/s, increasing

the forward velocity in 0.2 m/s intervals. Figures 4.33 through 4.37 show how the controller

begins to lose its ability to reach steady state at 1.6 m/s.

So far, all tests have used a prediction model that assumes an immediate robot response

to a command. Further improvements might be made by factoring a first order lag with a

0.5 second time constant into the steer input of prediction model, or by designing a phase

lead compensator for the input [19].

67

Figure 4.35: Path Following at 1.6 m/s

Figure 4.36: Path Following at 1.8 m/s

Figure 4.37: Path Following at 2.0 m/s

68

4.4 Conclusion

This chapter presented the results from simulation tests in Matlab and the ROS-based

simulator, as well as results from the live run. So far, the results have shown that the perfor-

mance of this controller is comparable to the linear controller used at Auburn University. If

the system lag of the robot were factored into the model, the controller would likely perform

even better.

In addition, the results show that the horizon length and prediction weighting have

a significant effect on controller performance. Shorter horizons with heavier weighting on

the earlier predictions produce better path following on turns, but the controller tends to

overcorrect on the straight sections. Longer horizons with heavier weighting on the later pre-

dictions allow for a better recovery on the straight sections, but the path following becomes

less accurate on the turns. In future work, perhaps the controller code could be rewritten so

that the horizon length and weighting would self-adjust based on the curvature of the path

in front of the trailer, as was studied in [20].

69

Chapter 5

Summary and Conclusion

Improvements in the field of tractor-trailer control are ongoing at Auburn University.

In this thesis, the author presented a derivation of two models – a kinematic model and a

bicycle model. While the bicycle model allows for adjustments regarding turn responsiveness

and tire stiffness, the high demand on computing speed makes its feasibility questionable

using present computer technology. This could, however, change in a few years as computer

processor speeds increase.

Next, a model predictive control strategy was presented that numerically computes a

target steer angle (or turn rate for a skid-steer robot) that would keep the trailer as close

to the path as possible over a given prediction horizon. To achieve the steer angle, classical

control methods, such as a PID controller, can be applied.

The thesis concludes with simulation and experimental results, both in the lab and

in the field. First, the results of using the kinematic model for the controller against the

bicycle model were presented to simulate how the controller would react to model error.

Next, results from a live run on the Segway were presented. The simulation results showed

that the error can be as little as 8.5 cm with a highly accurate model. The live data showed

that this controller can still function with model inaccuracies, and the maximum error was

typically around 29 cm on the turns, and 15 cm on the recovery. Incorporating system lag

into the prediction model should further improve the performance of the controller, but it

will have to be considered future work.

Other future work in this field would include model validation of the bicycle tractor-

trailer model, trying the bicycle model as a control model, as well as trying different tire

models, as faster computing technology becomes available. Another way to improve the

70

Segway path following performance would be to try different skid-steer vehicle dynamic

models that account for tire slip. The overall goal is to someday use a model that produces

a highly accurate and robust control system performance without overwhelming the time

limits of the processor speed. Finding a balance between an accurate model and a reliable

control method that is fast enough to implement in real-time would enable vehicle dynamics

and control engineers to design autonomous vehicle systems to track a path to new levels of

accuracy.

71

Appendix A

Model Predictive Control - A General Case

Model Predictive Control resembles Linear Quadratic Regulation (LQR), in that a cost

function is first defined and minimized in order to find the desired input to a system. The

general form for this cost function is defined by Equation (A.1).

J =

NX

j=1

⇥
Q

j

(r
j

� x
j

)

2

+R
j

�u2

j

⇤
(A.1)

There are several methods to finding the minimum of this cost function. What follows

in this chapter is an algorithm for linear systems [15]. For non-linear systems, such as the

tractor-trailer setup, several methods have been tried, including the method described in

this thesis.

A Linear MPC Algorithm

A linear system in state space takes the following form:

x
k+1

= A
d

x
k

+B
d

u
k

+ w
k

(A.2)

y
k+1

= C
d

x
k+1

(A.3)

To implement MPC, first the system matrices are augmented to create integration vari-

ables.

A
d

!

2

64
A

d

0

C
d

I

3

75B
d

!

2

64
B

d

0

3

75C
d

!

C

d

0

�
x
k

!

2

64
x
k

x
I

3

75 (A.4)

72

Also define:

e
k

=

2

64
w

k

�y
ref

3

75Q
x

=

2

64
CTQ

y

C 0

C Q
I

3

75R
x

= R
y

(A.5)

The predictor can be set up in a matrix format by taking a recursive approach:

x
k+1|k = A

d

x
k

+B
d

u
k

+ w
k

x
k+2|k = A2

d

x
k

+ A
d

B
d

u
k

+B
d

u
k+1|k + w

k

+ w
k+1|k

...

x
k+�|k = A�

d

x
k

+ A��1

d

B
d

u
k

+ ...+B
d

u
k+��1

+ w
k

+ ...+ w
k+��1|k

Now, a new family of matrices can be defined:

Z =

2

66666664

A
d

A2

d

...

A�

d

3

77777775

M =

2

66666664

I 0 0 0

A
d

I 0 0

... ... I 0

A��1

d

... A
d

I

3

77777775

V = diag
✓

B
d

... B
d

◆
(A.6)

X =

2

66664

x
k+1|k

...

x
k+�|k

3

77775
Xref

=

2

66664

xref

k+1|k
...

xref

k+�|k

3

77775
U =

2

66664

u
k

...

u
k+��1|k

3

77775
E =

2

66664

e
k

...

e
k+��1|k

3

77775
(A.7)

Q = diag
✓
Q

x

... Q
x

◆
R = diag

✓
R

x

... R
x

◆
(A.8)

The gain is computed as follows:

L =

⇣
R + (MV)

T QMV
⌘�1

(MV)

T Q (A.9)

73

The control input is then found:

U = �LZx
k

+ Lxref � LME (A.10)

After the control input applied to the system variable k is advanced by 1, the new states

are observed, and the prediction matrix is updated:

X = Zx
k

+MV U +ME (A.11)

Now, Equations (A.9), (A.10), and (A.11) may be repeated indefinitely, or until the

desired state is achieved.

74

Appendix B

Bicycle Model State Equations, Separated by State Variable

In Chapter 2, five state equations were derived for a tractor-trailer bicycle model with

tire slip. These equations were presented as follows:

m
1

ÿ
1

+m
2

ÿ
2

cos��m
2

ẍ
2

sin� = F
y1

�m
1

ẋ
1

r
1

+F
y2

� (m
2

ẋ
2

r
2

� F
y3

) cos��m
2

ẏ
2

r
2

sin�

(B.1)

I
1

ṙ
1

�cm
2

ÿ
2

cos�+cm
2

ẍ
2

sin� = aF
y1

�bF
y2

+c (m
2

ẋ
2

r
2

� F
y3

) cos�+cm
2

ẏ
2

r
2

sin� (B.2)

dm
2

ÿ
2

� I
2

ṙ
2

= (d+ e)F
y3

� dm
2

ẋ
2

r
2

(B.3)

ÿ
1

sin�� cṙ
1

sin�+ ẍ
2

= �ẋ
1

r
1

sin��
�
ẏ
1

r
1

� cr2
1

�
cos�+ ẏ

2

r
2

+ dr2
2

(B.4)

ÿ
1

cos�� cṙ
1

cos�� ÿ
2

� dṙ
2

= �ẋ
1

r
1

cos�+

�
ẏ
1

r
1

� cr2
1

�
sin�+ ẋ

2

r
2

(B.5)

In addition, the tire slip forces were defined as follows:

F
y1

= C
1

arctan

✓
�ẋ

1

sin (�
1

+ �) + ẏ
1

cos (�
1

+ �) + ar
1

cos �

ẋ
1

cos (�
1

+ �) + ẏ
1

sin (�
1

+ �) + ar
1

sin �

◆
cos � (B.6)

75

F
y2

= C
2

arctan

✓
�ẋ

1

sin �
1

+ ẏ
1

cos �
1

� br
1

ẋ
1

cos �
1

+ ẏ
1

sin �
1

◆
(B.7)

F
y3

= C
3

arctan

✓
�ẋ

2

sin �
2

+ ẏ
2

cos �
1

� er
2

ẋ
2

cos �
2

+ ẏ
2

sin �
2

◆
(B.8)

It was noted that the five states could be isolated using Cramer’s Method. To help limit

the algebra, the right-hand side of each equation will be redefined as follows:

A = F
y1

�m
1

ẋ
1

r
1

+ F
y2

� (m
2

ẋ
2

r
2

� F
y3

) cos��m
2

ẏ
2

r
2

sin� (B.9)

B = aF
y1

� bF
y2

+ c (m
2

ẋ
2

r
2

� F
y3

) cos�+ cm
2

ẏ
2

r
2

sin� (B.10)

C = (d+ e)F
y3

� dm
2

ẋ
2

r
2

(B.11)

D = �ẋ
1

r
1

sin��
�
ẏ
1

r
1

� cr2
1

�
cos�+ ẏ

2

r
2

+ dr2
2

(B.12)

E = �ẋ
1

r
1

cos�+

�
ẏ
1

r
1

� cr2
1

�
sin�+ ẋ

2

r
2

(B.13)

Now, the system of equations is written as a matrix equation:

2

66666666664

m
1

0 m
2

cos� 0 �m
2

sin�

0 I
1

�cm
2

cos� 0 cm
2

sin�

0 0 �dm
2

I
2

0

sin� �c sin� 0 0 1

cos� �c cos� �1 �d 0

3

77777777775

2

66666666664

ÿ
1

ṙ
1

ÿ
2

ṙ
2

ẍ
2

3

77777777775

=

2

66666666664

A

B

C

D

E

3

77777777775

(B.14)

76

Taking the determinant of the left-hand 5x5 matrix will give the denominator of each

state variable solution:

den = �I
1

I
2

(m
1

+m
2

)� I
2

m
2

d2
�
m

1

+m
2

sin

2

�

�
�m

1

m
2

c2
�
m

2

d2 sin2

�+ I
2

�
(B.15)

To get the numerator for each state variable, the right-hand column vector is substituted

into the state variable’s corresponding column the left-hand 5x5 matrix, and the determinant

is taken. In other words, substituting into the first column and taking the determinant would

produce the numerator for the first state variable, while substituting into the second column

would produce the numerator for the second state variable, and so on.

For ÿ
1

, the solution would look as such:

ÿ
1

=

����������������

A 0 m
2

cos� 0 �m
2

sin�

B I
1

�cm
2

cos� 0 cm
2

sin�

C 0 �dm
2

I
2

0

D �c sin� 0 0 1

E �c cos� �1 �d 0

����������������

den
(B.16)

For ṙ
1

, the solution would be:

ṙ
1

=

����������������

m
1

A m
2

cos� 0 �m
2

sin�

0 B �cm
2

cos� 0 cm
2

sin�

0 C �dm
2

I
2

0

sin� D 0 0 1

cos� E �1 �d 0

����������������

den
(B.17)

and so on.

77

The solutions come out to be the following:

ÿ

1

=

�A

⇥
m

2

�
I

1

c

2

+m

2

c

2

d

2

sin

2

�+ I

1

d

2

�
+ I

1

I

2

⇤
�Bm

2

c

�
I

2

+m

2

d

2

sin

2

�

�
� I

1

m

2

⇥
(Cd+ EI

2

) cos�+D

�
m

2

d

2

+ I

2

�
sin�

⇤

�I

1

I

2

(m

1

+m

2

)� I

2

m

2

d

2

�
m

1

+m

2

sin

2

�

�
�m

1

m

2

c

2

�
m

2

d

2

sin

2

�+ I

2

�

(B.18)

ṙ

1

=

�Am

2

c

�
I

2

+m

2

d

2

sin

2

�

�
�B

⇥
m

2

�
I

2

+m

2

d

2

sin

2

�+m

1

d

2

�
+m

1

I

2

⇤
+ c

⇥
(C + EI

2

m

1

m

2

) cos�+Dm

1

m

2

�
I

2

+m

2

d

2

�
sin�

⇤

�I

1

I

2

(m

1

+m

2

)� I

2

m

2

d

2

�
m

1

+m

2

sin

2

�

�
�m

1

m

2

c

2

�
m

2

d

2

sin

2

�+ I

2

�

(B.19)

ÿ2 =

Cd
h

m1

⇣

I1 + m2c
2
sin

2
�

⌘

+ m2I1 sin

2
�

i

+ I2
nh

Bm1c � Dm2

⇣

m1c
2
+ I1

⌘

sin�

i

cos� +

h

Em1

⇣

I1 + c2m2 sin

2
�

⌘

� I1
⇣

A cos� � Em2 sin

2
�

⌘io

�I1I2 (m1 + m2) � I2m2d2
�

m1 + m2 sin

2
�

�

� m1m2c2
�

m2d2 sin

2
� + I2

�

(B.20)

ṙ

2

=

(Bm

1

m

2

cd�AI

1

m

2

d) cos�� C

⇥
m

2

�
m

1

c

2

+ I

1

�
+ I

1

m

1

⇤
� 1

2

Dm

2

2

d

�
I

1

+m

1

c

2

�
sin 2�+ Edm

2

⇥
I

1

m

1

+

�
I

1

+m

1

c

2

�
m

2

sin

2

�

⇤

�I

1

I

2

(m

1

+m

2

)� I

2

m

2

d

2

�
m

1

+m

2

sin

2

�

�
�m

1

m

2

c

2

�
m

2

d

2

sin

2

�+ I

2

�

(B.21)

ẍ

2

=

�
I

2

+m

2

d

2

�
(AI

1

�Bm

1

c) sin�+

1

2

(Cm

2

d+ EI

2

m

2

)

�
I

1

+m

1

c

2

�
sin 2��D

⇥
I

1

I

2

�
m

1

+m

2

cos

2

�

�
+m

1

m

2

�
I

1

d

2

+ I

2

c

2

cos

2

�

�⇤

�I

1

I

2

(m

1

+m

2

)� I

2

m

2

d

2

�
m

1

+m

2

sin

2

�

�
�m

1

m

2

c

2

�
m

2

d

2

sin

2

�+ I

2

�

(B.22)

78

Bibliography

[1] P. Falcone, F Borrelli, H. E. Tseng, J. Asgari, D. Hrovat. A Hierarchical Model Predictive
Control Framework for Autonomous Ground Vehicles. American Controls Conference,
2008.

[2] H. H. Nelson, J. R. McDonald. Multisensor towed array detection system for UXO
detection. Geoscience and Remote Sensing, IEEE Transactions on 39.6 (2001): 1139-
1145, 2001.

[3] B. Lepore, Defense Capabilities and Management. GAO-12-709R Military Base Realign-
ments and Closures. Memorandum to the United States Government and Accountability
Office, 2012.

[4] L. Dubins. On curves of minimal length with a constraint on average curvature, and with
prescribed initial and terminal positions and tangents. American Journal of Mathematics
79, pp. 497-516. The Johns Hopkins University Press, 1957.

[5] D. M. Bevly, B. Parkinson Carrier-Phase Differential GPS for Control of a Tractor
Towed Implement. Proceedings of the 13th International Technical Meeting of the Satel-
lite Division of The Institute of Navigation (ION GPS 2000) pp. 2263-2268, Salt Lake
City, UT, September 2000.

[6] T. C. Ng, J. Guzman, M. Adams. Autonomous vehicle-following systems: A virtual
trailer link model. Intelligent Robots and Systems, 2005 IEEE/RSJ International Con-
ference, pp. 3057-3062, IEEE, 2005.

[7] L. Z. Wang, et al. An approximation approach of the clothoid curve defined in the interval
[0, p/2] and its offset by free-form curves. Computer-Aided Design 33.14 (2001): 1049-
1058, 2001.

[8] Seborg, Edgar, Mellichamp. Process Dynamics and Control, 2nd ed. Wiley 2003

[9] D. Hodo. Development of an Autonomous Mobile Robot-Trailer System for UXO Detec-
tion. MS Thesis, Auburn University, 2007.

[10] M. Payne. Non-Collocated Control of an Autonomous Vehicle-Trailer System Using
State Estimation. MS Thesis, Auburn University, 2012.

[11] A. Singh. Nonlinear Control of a Robot-Trailer System Using a Hybrid Backstepping-
linearizing approach. MS Thesis, Auburn University, 2012.

79

[12] D. Karnopp. Vehicle Stability. Marcel Dekker, 2004.

[13] D. Karnopp, D. Margolis. Engineering Applications of Dynamics. Wiley, 2008.

[14] L. Alexander, M. Donath, M. Hennessey, V. Morellas, C. Shankwitz. A Lateral Dynamic
Model of a Tractor-Trailer: Experimental Validation. University of Minnesota & the
Minnesota Department of Transportation, 1996.

[15] P. Malaterre, and J. Rodellar. Design and comparison of multivariable optimal and
predictive controllers on a 2-pool irrigation canal. Journées Hispano-Françaises Systèmes
In- telligents & Contrôle Avancé, Laboratoire Européen Asso- cié, UPC Barcelona, 1996.

[16] S. Chapra, R. Canale. Numerical Methods for Engineers, 6th ed. McGraw Hill, 2010.

[17] R. Larson, B. Edwards, D. Falvo. Elementary Linear Algebra, 5th ed. Houghton Mifflin
Company, 2004.

[18] D. Hodo, et. al. Morse Blender Simulator for Differential Steering Robot. Morse, 2011.

[19] W. Woodall. Low-Bandwidth Three Dimensional Mapping and Latency Reduction Model
Prediction to Improve Teleoperation of Robotic Vehicles. MS Thesis, Auburn University,
2012.

[20] J. Backman, T. Oksanen, A. Visala. Nonlinear Model Predictive Trajectory Control in
Tractor-Trailer System for Parallel Guidance in Agricultural Field Operations. Agricon-
trol, 2010.

80

