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Abstract 

Citrullus colocynthis (L.) Schrad, closely related to watermelon (Citrullus lanatus L.), 

belongs to the Cucurbitaceae family. It can survive arid environments by maintaining its water 

content without wilting of the leaves or desiccation under severe stress conditions. 

NAC (NAM, ATAF1,2, CUC2) transcription factors play important roles in plant growth, 

development, and responses to abiotic and biotic stress.  Two novel NAC transcription factors 

(CcNAC1 and CcNAC2) were isolated from Citrullus colocynthis. The characterization of the 

two genes was studied in order to gain an understanding of their function under abiotic stress 

conditions.  Manipulation of transcription factors represents a potential strategy for development 

of transgenic stress tolerant plants. Promoter regions, transgentic GUS assays etc. studies results 

indicated that CcNAC1 and CcNAC2 may have multiple functions to regulate the plant’s defense 

responses to abiotic stress.  

Further studies on the functional role of these genes to different qualities of light and 

auxin were based on the in silico analysis of the CcNAC1 and CcNAC2 promoter regions, which 

revealed the presence of several light-associated motifs. The impact of both light and auxin on 

CcNAC1 and CcNAC2 gene expression was examined in C. colocynthis leaves, and using 

reporter (pCcNAC1, 2::GUS) lines in Arabidopsis. Furthermore the effects of constitutive 

overexpression (OE-CcNAC1, 2) lines in Arabidopsis were also examined under a range of 

conditions to confirm reporter line linkages.  White, blue, red, and far red light treatments 
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resulted in similar patterns of quantitative changes in CcNAC1and CcNAC2 expression in both 

species, with the highest transcript increases associated with red light.  Photomorphogenic 

changes in Arabidopsis hypocotyls were correlated with changes in gene transcript levels.  In the 

absence of light hypocotyls of OE-CcNAC1 and OE-CCNAC2 lines were significantly longer as 

compared to hypocotyls of wild type seedlings.  The addition of exogenous auxin (+IAA) to 

growth medium also resulted in changes to the hypocotyl lengths of overexpression lines and 

spatiotemporal reporter line changes in Arabidopsis seedlings.  Our data suggest that CcNAC1, 2 

might be functionally important in the light signaling pathway, and appear connected to the 

phytohormone auxin. Different light and dark treatments resulted in quantitative and 

apatiotemporal changes in CcNAC1 and CcNAC2 expression patterns. This study points to the 

relationship between the auxin, light and NAC TFs.   

We also used high throughput mRNA Illumina sequencing technology and bioinformatic 

strategies to analyze the leaf transcriptome of C. colocynthis under drought treatment. Leaf 

samples following 4 days of water deficit treatment were used for RNA extraction for library 

construction and Illumina sequencing. qRT-PCR analysis of drought induced genes was 

performed to confirm the accuracy of RNA sequencing. More than 5038 whole cDNAs were 

identified and 2545 genes showed significantly changes during drought as compared with Day 1. 

Principle component analysis showed that drought was the major factor in regulation of the 

transcriptome changes and many candidate drought stress related genes were detected. Our data 

imply that there are transcriptional changes in C.colocynthis under drought stress, providing the 

understanding of the molecular regulation mechanism of plant drought resistance.  
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I  Introduction and literature review 

 

Plants have evolved several molecular mechanisms to cope with biotic and abiotic stress. 

Successful adaptation to stress is regulated through the activation or repression of the effects of 

transcription factors on specific target genes.  The NAC (NAM, ATAF and CUC) transcription 

factors (TFs), which constitute one of the largest transcription factor family in plants, have been 

reported to be involved in plant development and biotic and abiotic stress regulation and thus 

might be promising candidates for improving a plants’ stress tolerance.  

Plants are exposed to various biotic and abiotic stresses in the natural environment, which 

are regulated by gene specific transcription factors that activate or repress the transcription 

apparatus by binding at target gene promoters (Fujita et al., 2006).   Transcription factors are 

grouped into families on the basis of sequence similarities, most often in the DNA binding 

domain.  NAM (no apical meristem), ATAF, CUC (cup-shaped cotyledon) or NAC domain 

proteins comprise one of the largest plant specific transcription factors, represented by ~105 

genes in Arabidopsis (Jensen et al., 2010), ~151 in rice (Oryza sativa)(Fang et al., 2008; 

Nuruzzaman et al., 2010), ~163 in Populus (Hu et al., 2010) and ~205 in the soybean genome, 

~152 members in tobacco (Tran et al., 2010).  NAC transcription factors have multiple functions, 

some of which have been well elucidated in Arabidopsis and Oryza sativa (Tran et al., 2009).  

Identification of NACs involved in biotic and abiotic stress is beneficial for elucidating the 
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molecular mechanisms of the stress response and for determining a biotechnological approach 

toward plant improvement.  

Structure of NACs 

N-terminal regions of NACs 

NAC transcription factors contain a highly conserved N-terminal DNA-binding domain 

and a diverse regulatory C-terminal domain (Ernst et al., 2004).  The N-terminal region 

comprises nearly 160 amino acid residues which are divided into five main conserved sub-

domains, named A to E (Ooka et al., 2003). NACs in rice can be classified into 15 types (Ooka et 

al., 2003).  NACs with complete A-E sub-domains are typical A-E type NACs. F-O type NACs 

which are not classified based on conserved motifs, are called NAC-like proteins (Tran et al., 

2009).   The architecture of the NAC domain of 60 residues consists of a twisted β-sheet 

surrounded by a few helical elements (Ernst et al., 2004).  It was determined from in vitro gel 

mobility shift assays that residues Val 111-Lys 168 in Arabidopsis ATNAM constitute the DNA-

binding domain, which corresponds to the inside part of the helix-turn-helix structure (Ernst et al., 

2004).  AtNAC1, AtNAM and ANAC019 from Arabidopsis can bind to a fragment of the CaMV 

35S promoter (Xie et al., 2000; Duval et al., 2002; Tran et al., 2004).  ANAC019/055/072 bind to 

the core element CACG in the ERD1 (early response to dehydration 1) promoter (Tran et al., 

2004).  GmNAC11 and GmNAC20 from soybean bind to the core CGT(G/A) sequence, which is 

complementary to CACG. However, other sequences can also be bound by NACs (Hao et al., 

2011).  
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C-terminal regions of NACs 

The C-terminal regions of NAC proteins are highly divergent and confer the regulation 

diversities of transcriptional activation activity. For example, CarNAC3 from Cicer arietinum, 

AtNAC2 and AtNAM have C terminal trans-activation domains (Duval et al., 2002; He et al., 

2005; Peng et al., 2009). The C-terminal regions of GmNAC20 from soybean and NAC1 from 

Arabidopsis have transcriptional activation ability, but full length NACs have little 

transcriptional activity, which indicates that NAC family proteins may have different 

mechanisms for transcriptional regulation (Hao et al., 2010;  Xie et al., 2000).   

Most NACs were found to function as transcriptional activators (Hao et al., 2010), but 

Calmodulin binding (CB)NAC from Arabidopsis and GmNAC20 from soybean are NAC-like 

proteins which function as transcriptional repressors (Kim et al., 2007; Hao et al., 2011).  

Deletion experiments detected an active repression domain with 35 amino acids, named NARD 

(NAC Repression Domain+ in the d subdomain of the NAC DNA binding domain (Hao et al., 

2010).  

 

Plasma membrane-bound NAC transcription factors 

Membrane-bound motifs are contained in the C-terminal region of some NACs (Tran, et 

al., 2009).   Controlled proteolytic cleavage of membrane-associated transcription factors (MTFs) 
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is an adaptive strategy to abrupt environmental changes, which ensures rapid transcriptional 

responses to incoming stimuli (Pj et al., 2008).  Some NACs in Arabidopsis are MTFs and most 

of the putative NACs are up-regulated by stress conditions, suggesting that they may be involved 

in stress responses. Kim et al. have identified a group of membrane-bound NAC transcription 

factors (designated NTLs), which are released from the membranes by proteolytic cleavage, 

responding to stress conditions and transported into the nucleus (Kim et al., 2007). Also, some 

rice NACs are also membrane-associated (Kim et al., 2007). Studies with a GFP-NTM2 (for 

NAC with Transmembrane Motif2) fused gene showed that the full-size NTM2 protein was 

localized at the plasma membrane, whereas the C-terminal deleted form was predominantly in 

the nucleus (Park et al., 2011).  Similarly, NTM1, which regulates cell division by modulating 

cytokinin signaling, has a transmembrane motif1 (Kim et al., 2006). A fructose specific 

quantitative trait locus (FSQ6) was identified via map-based cloning in Arabidopsis and shown 

to encode the NAC domain encoding protein 89 (ANAC089).The Cvi allele of  FSQ6/ANAC089 

was found to be active without a membrane-bound domain in the nucleus and could suppress 

fructose sensitivity via the ABA-signaling pathway in Arabidopsis (Li et al., 2011). 

 

NACs involved in the regulation of biotic and abiotic stress 

 

NACs and Salt Stress 
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High salinity is a major abiotic stress condition which results in both ionic stress and 

osmotic stress. Salt cress (Thellungiella halophila), an Arabidopsis-related halophyte, showed 

differential gene expression profiles in full-length Arabidopsis cDNA microarray studies.  

At1g01720 (ANAC002) showed significant up-regulation in Arabidopsis following 2h exposure 

to 250mM NaCl (Taji et al., 2004).  The NAC transcription factor NAM2/Arabidopsis NAC 

domain-containing protein 69 (for NAC with Transmembrane Motif1) was found to mediate a 

salt signaling cascade during seed germination via the IAA30 gene, which functioned as a 

negative regulator of auxin signaling (Park et al., 2011).  A salt-responsive NTL in Arabidopsis, 

NTL8, was found to mediate salt-responsive flowering via the FLOWERING LOCUS T (FT) 

(Kim et al., 2007).  MTFs of Arabidopsis, NTL3 and NTL6, were dramatically up-regulated by 

NaCl similarly to CBF2 (C-repeat/dehydration responsive element binding factor 2) (Kim et al., 

2007).  RD (Responsive to Desiccation) 26 mediates both the ABA-dependent and ABA-

independent pathway.   Microarray analysis showed that antioxidant-, defense- and senescence-

responsive genes were up-regulated in RD-26 overexpressed Arabidopsis plants (Fujita et al., 

2004). 

 

NACs and Temperature Stress 

Plants implement multiple molecular mechanisms to cope with heat stress, which include 

maintenance of membrane stability, scavenging of reactive oxygen species (ROS), production of 

antioxidants, accumulation and adjustment of compatible solutes, induction of mitogen-activated 
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protein kinase (MAPK), calcium-dependent protein kinase (CDPK) cascades, chaperon signaling 

and transcriptional activation (Wahid et al., 2007).   Acclimation of plants to temperature stress 

involves the simultaneous alteration of many genes since multiple characters are involved in 

tolerance over a wide range of temperatures (Iba, 2002). MTFs of Arabidopsis, NTL1 and 

NTL11, were induced by heat (37C) (Kim et al., 2007a), while NTL4 and NTL7 were induced 

by cold (4C), and NTL2 and NTL3 were broadly influenced by cold, drought, and NaCl (Kim et 

al., 2007b). 

 

NACs and Drought Stress 

Drought is a worldwide problem, effecting global crop production and quality. 

Scavenging of reactive oxygen, cell membrane stability, expression of aquaporins and stress 

proteins are vital mechanisms of drought tolerance (Anjum et al., 2011).  Microarray analysis 

showed that about 40% of the upregulated genes in rice plants overexpressing OsNAC6 were 

responsive to dehydration, high salinity or cold stress.  A large number of peroxidase genes were 

identified among the upregulated genes, which might be direct targets of OsNAC6 and provide 

protection to the cells under stress (Nakashima et al., 2007). NACs were found to not only be 

positive regulators, but also negative regulators.  For example, an ataf1 mutant could increase the 

rate of recovery after drought stress along with a stimulation of the expression of some stress-

inducible marker genes, which means that ATAF1 is a negative drought response regulator in 

Arabidopsis. Also, enhanced drought tolerance contributed to the increased expression of 



 7  
 

dehydration tolerance genes rather than physical changes during stomatal movement (Lu et al., 

2007).  OsNAC6 overexpression caused growth retardation, low productivity, though it 

improved tolerance towards blast disease, dehydration and high-salt (Nakashima et al., 2007).  

 

NACs and Osmotic Stress 

Water availability is fundamental to almost all aspects of plant physiology. Plants can 

only survive within a certain range of water status.  Significant changes in water potential can 

impose osmotic stress to plants, resulting in damage to cellular activities or plant death.  Drought, 

high salinity and freezing cause osmotic stress to plants (Xiong and Zhu, 2002).  Osmotic stress 

can activate the transduction of a cell death signal through N-rich proteins (NRPs), therefore, 

endoplasmic reticulum (ER)-stress and osmotic stress are integrated into a circuit of cell death 

through NRP-mediated signaling. GmNAC6 (Glycine max NAC6) was found to be induced by 

the osmotic stress inducer, PEG, and the ER-stress-inducing agents, tunicamycin (TUN) and L-

azetidine-2-carboxylic acid (AZC) individually.  When TUN and AZC were combined, the stress 

signals promoted a synergistic accumulation of GmNAC6 transcripts (Faria et al., 2011).  NTL9 

is implicated in osmotic stress signaling during leaf senescence and its pathway is independent of 

known growth hormones (abscisic acid, ethylene, salicylic acid, and jasmonic acid) signaling 

pathways or may act upstream of growth hormone biosynthesis and signaling (Yoon et al., 2008).   
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NACs and Oxidative Stress 

Oxidative stress results in extensive changes in plant metabolism. During oxidative stress 

reactive oxygen species (ROS) and other radicals are produced, which result in damage to key 

biomolecules such as proteins, lipids and DNA leading to cellular dysfunction and ultimately cell 

death (Halliwell, 2006). Microarray analysis in Arabidopsis revealed that the overall metabolic 

response of plant cells to oxidative stress is remarkably similar to oxidative stress response of 

bacteria and yeast (Saccharomyces cerevisiae). Significantly altered functional classes of 

transcripts at the 2 and 6h time points during oxidative stress included NACs.  RD26 -

overexpressed plants showed up-regulation of the GLY (glutathione transferase) gene, which is 

known to be involved in the antioxidant defense system. The transactivation experiment showed 

that RD26 could recognize the cis-acting element of GLY (Fujita et al., 2004).  

Overaccumulation of iron in plant cells leads to oxidative stress.  IEDF2 (for Iron Deficiency 

Responsive Element 2) is known to encode a member of the NAC family of TFs.  Transgenic 

IDEF2 Arabidopsis plants exhibited increased accumulation of Fe under iron sufficient 

conditions, while lower than normal levels of iron were present in iron deficient plants, 

indicating an important role of IDEF2 in maintaining optimal levels of iron in tissues (Walker 

and Connolly, 2008). 

 

NACs and Light Stress 
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Senescence of plants can be induced following dark treatment (Yoshida, 2003).  As dark-

induced senescence occurs, the expression of some molecular regulators (e.g. transcriptional 

regulators) change. Whole-genome ATH1 Genome Array studies showed that more than one 

quarter of NAC proteins in Arabidopsis leaves were upregulated under dark treatment (Lin and 

Wu, 2004).   

High-light (HL) stress can result in damage to the photosynthetic apparatus of plants. 

cDNA microarray analysis in Arabidopsis indicated that some NACs are involved in 

photosynthetic protection (Kimura et al., 2003).  For example, ANAC078 in Arabidopsis was 

shown to regulate flavonoid biosynthesis under HL stress (Morishita et al., 2009).  Light includes 

UV-B and UV-A.  Short wavelength, higher intensity UV-B could modulate ANAC13 by an yet 

unknown and COP1 (CONSTITUTIVE PHOTOMORPHOGENESIS 1)-independent signaling 

cascade. ANAC13 was also modulated by the plant hormone abscisic acid (ABA) and different 

abiotic stresses (Safrany et al., 2008).  

 

NACs and Biotic Stress 

Biotic stress occurs as a result of damage done to plants by other living organisms, such 

as bacteria, viruses, fungi, parasites, beneficial and harmful insects, weeds, and cultivated or 

native plants. The interactions between plants and pathogens have resulted in the evolution of 

many complex defense pathways (Maor and Shirasu, 2005).  Generally, biotic stresses from 
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necrotrophic and biotrophic microbes are perceived in plants by the jasmonic acid-ethylene and 

salicylic acid (JA-ET-and SA)-dependent signaling pathways, respectively (Glazebrook, 2005; 

Jensen et al., 2008).  Age-related resistance (ARR) affords increased resistance to normally 

virulent pathogens as some plants mature (Carviel et al., 2009).  SA accumulation is required for 

resistance (R) gene (specific resistance receptor) –mediated responses, basal resistance responses 

and systemic acquired resistance (SAR) (Delaney et al., 1994;1995;  Ukenes et al., 1993; 

Vernooij et al., 1994; Carviel et al., 2009).  ANAC055 (At3g15500) and ANAC092 (At5g39610) 

were identified as two new ARR-associated genes via microarray analysis, which contributed to 

ARR. Besides this analysis, there are also some reports about the expression of ANAC055 and 

ANAC092 in response to NaCl and ABA treatment (He et al., 2005; Tran et al., 2004). 

ANAC055 is also up-regulated by methyl jasmonate (MeJA) treatment (Bu et al., 2008; He et al., 

2005). NAC092 is a positive regulator of the onset of leaf senescence (Guo and Gan, 2006).  In 

conclusion, some NACs may contribute to ARR gene regulation, which is also regulated by other 

factors. 

GmNAC6 does not only play a role during osmotic and ER stress, but is also induced by 

biotic signals, which could further induce the pathogenesis-related gene1 (PR1) and result in 

necrotic lesions (Faria et al., 2011).   ATAF1 insertion mutations were reported to enhance the 

penetration rate of the fungal pathogen Blumeria graminin f.sp.hordei  into epidermal cells 

(Jensen et al., 2007).  Two NAC proteins, ANAC019 and ANAC055, were found to act 

downstream of AtMYC2 (identified player involved in JA-signaling in Arabidopsis) to regulate 

JA-signaled defense pathway. Their double mutants showed decreased expression of MeJA-
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induced VEGETATIVE STORAGE PROTEIN1 (VSP1) and LIPOXYGENASE2 (LOX2), but 

decreased resistance to the necrotrophic pathogen B. cinerea (Bu, et al., 2008). OsNAC19 (Oryza 

sativa NAC19) protein is involved in rice’s response to infection by the blast fungus 

Magnaporthe grisea and maybe a component in the MeJA-mediated signaling pathway (Lin et 

al., 2007). 

ATAF2 can rapidly be induced by wounding, while pathogen-induced genes are induced 

in overexpressed ATAF2 Arabidopsis. The systemic acquired resistance marker PDF1.2 (in 

jasmonate /ethylene signaling) and PR1 (in SA-mediated signaling pathway) are higher in 

knockout than in wild type Arabidopsis, which indicates that ATAF2 mediates the pathogen-

related signaling pathway (Delessert et al., 2005). 

ABA has been studied mainly in abiotic stress, especially with respect to regulation under 

drought stress, low temperature and salinity (Zhu 2002; Yamaguchi-Shinozaki and Shinozaki, 

2006; Jensen et al., 2008). But more and more evidence accumulates which indicates that ABA 

also has some correlation with biotic stress (Jensen et al., 2008). Global transcript profiling of 

ABA-responsive genes is one way to elucidate ABA signaling components (Huang et al., 2007; 

Rabbani et al., 2003; Jensen et al., 2008).  ATAF1 is one of the identified genes (Lu et al., 2007).  

It has been hypothesized that ATAF1, the previously reported drought-responsive gene, 

negatively regulates ABA synthesis (Lu et al., 2007), and enhances the expression of JA/ET 

defense signaling indirectly. ATAF1 has an effect on ABA signaling, which is required for 
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maintenance of effective penetration resistance toward Blumeria graminis f.sp.hordei (Jensen et 

al., 2008).  

 

NACs and Phytohormones 

Phytohormones such as SA, JA, ET, and ABA primarily regulate the protective responses 

of plants to both biotic and abiotic stresses via synergistic and antagonistic actions, often referred 

to as signaling crosstalk (Bostock, 2005; Lorenzo and Solano, 2005; Mauch-Mani and Mauch, 

2005; Fujita et al., 2006).  Biotic and abiotic stress cannot be isolated from different signaling 

pathways, but constitute complex signaling circuits, with either antagonistic or synergistic 

interaction (Gupta et al., 2000; Spoel et al., 2003; Jensen et al., 2008).  ABA mainly acts as a 

regulator of abiotic stress, and ET, SA, and JA play central roles in biotic stress signaling. But 

NACs are viable candidate molecules that potentially regulate both biotic and abiotic signaling, 

besides AtMYC2 and other transcription factors (Fujita et al., 2006).  RD26, one of dehydration-

responsive NAC transcription factor, is induced by JA, hydrogen peroxide (H2O2), pathogen 

infections, drought, high salinity and ABA treatment (Fujita et al., 2006; Fujita et al., 2004; 

Zimmermann et al., 2004).  ATAF2 is not only pathogen-related, but also related to salt, blast 

disease, dehydration and wounding (Delessert et al., 2005).  JA regulates plant defense responses 

against herbivore attack, pathogen infection and mechanical wounding. JA signaling defense 

response was differentially regulated by AtMYC2, either positively or negatively. ANAC019 

and ANAC055 were not only associated with drought tolerance, but also regulated JA-induced 
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expression of defense genes downstream of AtMYC2 (Bu et al., 2008). NAC transcription factor 

RIM1 is as a host factor involved in multiplication of rice dwarf virus (RDV), and RIM1, are 

also involved in JA signaling in rice plants. Through a 26S proteasome-dependent pathway, 

RIM1 could be degraded by JA treatment. RIM1 interacts with MYC2, one key transcription 

factor in the JA pathway, to regulate the JA-responsive genes.  RIM1 does not only play critical 

roles in JA signaling but also in other biological processes (Yoshii et al., 2010). 

ABA might inhibit the SA-mediated responses in some plants. NRPs (N-rich protein) -

mediated cell death response might function in the SA pathway, which acts antagonistically to 

suppress the ABA-mediated response. Also, because ABA is a central regulator in the plant 

drought regulation pathway, and GmNAC6 was regulated by NRPs and ABA, it is possible that 

NRP mediates GmNAC6 through a cell-death response, which could promote tolerance to 

dehydration (Fujita et al., 2006; Foria et al., 2011). 

During seed germination, both ABA and gibberellic acid (GA) play roles. ABA can break 

seed dormancy, whereas GA promotes seed germination (Okamoto et al., 2006).  Auxin interacts 

with NTM2-mediated salt stress signals during seed germination and part of the NTM-mediated 

salt signals is mediated by IAA30, which functions as a negative regulator of auxin signaling 

(Park et al., 2011).  

Previous reports have indicated that ethylene response genes can influence ABA 

biosynthesis. Cross talk exists between ABA and ethylene (Ghassemian et al., 2000).  The salt 

response of AtNAC2 can be induced by plant hormones ABA and NAA as well as the ethylene 
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precursor ACC. Salt stress induction of AtNACs requires the ethylene and auxin signaling 

pathways, acting downstream. Ethylene receptor EIN2 did completely block AtNAC2 induction 

under salt stress, whereas other upstream components in the ethylene or auxin signaling pathway 

could only partially inhibit the induction. Auxin resistant mutant tir1-1could suppress salt 

induction of AtNAC2 (He et al., 2005).  Xie et al. (2000) showed that NAC1 is induced by auxin 

in Arabidopsis and He et al (2005) similarly showed that AtNAC2 was induced by multiple plant 

hormones (auxin, ABA and ethylene) and high salinity.  
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Figure 1. 1. Signaling network of NACs in biotic and abiotic stresses. 
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Figure1. 2.The correlation between NACs and different phytohormones.  

Plant hormones are indicated in green, NACs in red, the NAC family in yellow. SA, JA, IAA, ET mainly regulate 
herbivory, pathogen, wound responses, while ABA regulates drought, cold, heat, salt and high light stress responses.  
Different phytohormones regulate different NACs, which can bind to NACRS (NAC Recognition Sequence) to 
respond to abiotic and biotic stresses. 
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Figure1. 3. NAC gene evolution in plants.  

The cladogram (not drawn to scale) represents the plant tree of life with major phylogenetic groups noted. The 
number of NACs is also indicated for each species.  
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II Two NAC transcription factors from Citrullus Colocynthis, CcNAC1, CcNAC2, 

implicated in multiple stress responses  

 

Abstract  

NAC (NAM, ATAF1,2, CUC2) transcription factors play important roles in plant growth, development, 

and responses to abiotic and biotic stress.  Two novel NAC transcription factors were isolated from 

Citrullus colocynthis, a highly drought tolerant cucurbit species: CcNAC1 and CcNAC2 each with 

conserved A-E NAC domains. Subcellular location of CcNAC1 and CcNAC2 investigated via transient 

expression of 35S::CcNAC1::GFP and 35S::CcNAC2::GFP fusion constructs in Arabidopsis protoplasts,  

revealed nuclear localization. The transactivation ability of CcNACs was examined in the GAL4 yeast 

assay system, and showed that only the C-terminal domain of CcNAC1 has the ability to activate reporter 

genes LacZ and His3.  The CcNAC genes accumulated in a tissue specific manner with expression levels 

in male flowers of C. colocynthis higher than leaves, hypocotyls or roots.  Genome walking was used to 

isolate the CcNAC1 and CcNAC2 promoter regions.  A high number of stress-related sequence motifs 

were detected, especially in the CcNAC1 promoter. C. colocynthis seedlings were treated with PEG, 

abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), H2O2, ethylene, gibberellic acid (GA), 

wounding or salt. High CcNAC1 expression levels were detected following  JA application and wounding, 

while high CcNAC2 levels followed treatment with GA, JA, SA and wounding, indicative of differential 

regulation of these stress responsive transcription factors in this cucurbit species.     
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 Introduction 

Plant responses to abiotic and biotic stresses involve changes at the transcriptome, cellular and 

physiological levels. The interaction between biotic and abiotic stress is orchestrated by hormone 

signaling pathways (Atkinson and Urwin 2012).  Responses to stress require the production of important 

functional proteins, such as those involved in the synthesis of osmoprotectants, and regulatory proteins, 

kinases, and transcription factors (TFs), operating in the signal transduction pathways (Saibo et al. 2009).  

Several different techniques can be used to study the transcriptome during multiple stress responses.  

Affymetric ATH1 microarrays are commonly used to investigate universal components of the plant’s 

response to different stress conditions (Mongkolsiriwatana et al. 2009, Swindell 2006). Quantitative trait 

analysis (QTL) can be used for the identification of useful regions of genomes (Ashraf  2010), and Next-

Generation high-throughput sequencing (Quail et al. 2012) offers whole plant transcriptome surveys 

(Wang et al. 2010), but gene functional analyses are still needed to study plant development and gain an 

understanding of responses to biotic and abiotic stress conditions.  

Transcription factors are DNA-binding proteins that activate or repress transcription of 

downstream genes by binding to a consensus sequence in their promoters.  The NAC TF family is one of 

the largest TF families in plants, with more than 100 members identified in both Arabidopsis and rice 

(Wang and Dane 2013) and 80 in Citrullus lanatus (Guo et al. 2013). The acronym NAC originates from 

the NAM (no apical meristem), ATAF (Arabidopsis transcription activation factor 1 and 2) and CUC 

(cup-shaped cotyledon) genes.  NAC proteins typically share a well conserved N-terminal NAC domain, 

which is divided into five conserved subdomains (A-E), and a diversified C-terminal transcription 

regulatory domain (Puranik et al. 2012).   NAC transcription factors are specific to plants and associated 
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with many biological functions during embryonic, floral and vegetative development, and stress-related 

processes (Olsen et al. 2005, Atkinson and Urwin 2012).   A number of NAC proteins interact with 

pathogens, the hormones ABA, JA and SA and exhibit interactions with both biotic and abiotic stress 

responses. Signaling crosstalk among phytohormones in NAC associated pathways regulate the protective 

responses in plants via synergistic or antagonistic actions (Tuteja and Sopory 2008).  Different 

phytohormones, which can bind to the NAC recognition sequence, can regulate different NACs and 

further regulate stress-related genes. Many NAC genes are associated with stress, and some of the NAC 

genes have multiple functions. OsNAC6 in rice, for example, is involved in both abiotic and biotic 

stresses (Nakashima et al. 2007). CsNAC1 is induced by salt stress, cold and ABA (Oliveira et al. 2011). 

Overexpression of ONAC045 results in enhanced drought and salt tolerance (Zheng et al. 2009), while 

RD26 was induced by drought, ABA and high salinity (Fujita et al. 2004).  NACs have long been 

associated with stress signaling, and recent discoveries suggest that they may make excellent targets for 

improving broad-spectrum tolerance in crops through genetic engineering (Nakashima et al. 2007, Xu et 

al. 2011). Although quite a few NACs have been functionally characterized primarily in model plants like 

Arabidopsis, the functions of the majority of the members of the large NAC gene family remain unknown 

(Hu et al. 2010).  

Citrullus colocynthis (L.) Schrad, closely related to domesticated watermelon (Citrullus lanatus 

var. lanatus), is a non-hardy drought-tolerant perennial herbaceous species in the Cucurbitaceae family 

(Jeffrey 2008, Al-Zahrani and Al-Amer 2006). It can survive arid environments by maintaining its water 

content without wilting of the leaves or desiccation under severe stress conditions. C. colocynthis has a 

rich history as an important medicinal plant and as a source of valuable oil (Dane et al. 2006). Its seeds 

appear in several early Egyptian, Libyan and Near Eastern sites from about 4000 BC (Zohary and Hopf 
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2000). The species grows in sandy areas throughout northern Africa, southwestern Asia and the 

Mediterrranean region (Zamir et al. 1984, Burkill 1985, Jarret et al. 1997).  Drought tolerance studies in C. 

colocynthis pointed to several drought-inducible genes, including a partial NAC transcript (GenBank 

accession number GH626169), with complex adaptive transcriptional regulation (Si et al. 2009, 2010a, 

2010b). To further characterize the function of stress tolerant genes in C. colocynthis, two novel plant 

specific transcription factors, CcNAC1 (KC814686) and CcNAC2 (KC814687) and their promoter 

regions, were cloned using 5’RACE and the genome walker kit.  Here, we report the characterization of 

the CcNAC1 and CcNAC2 genes to gain an understanding of their function under stress conditions.  

Manipulation of transcription factors represents a potential strategy for development of transgenic stress 

tolerant plants. Results indicate that CcNAC1 and CcNAC2 may have multiple functions to regulate the 

plant’s defense responses to abiotic stress.  

 

 

Materials and methods 

Plant materials  

Citrullus colocynthis seeds (No. 34256) from Israel with high tolerance to drought were sown in potting 

mix in the greenhouse with a 14 h photoperiod and temperatures ranging from 22Ԩ to 33Ԩ and ambient 

relative humidity and light conditions (600-720 μmol m-2 s-1 ).  Arabidopsis seeds were planted for leaf 

protoplast isolation. Wild-type Arabidopsis (A. thaliana, ecotype Columbia) was grown in growth 

chambers for 5-6 weeks, as previously described (Jensen et al. 2007). 
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NAC isolation and phylogenetic analysis 

NAC domain proteins from more than ten different species were used as query sequences for Blastx 

searches of the GenBank database (http://www.ncbi.nlm.nih.gov/) for analysis of the conserved domains 

of NAC proteins.  Primers were designed based on conserved domain sequences for cloning of the 

CcNAC genes into T-easy-vector (Promega, Madison, WI), followed by sequence analysis and re-blasting 

into the NCBI database.  The 5’RACE cloning technique (Clontech Lab Inc, Mountain View, CA) was 

used to obtain full length NAC sequences from C. colocynthis. Vector sequences and low quality 

sequences were manually removed following sequencing. The non-redundant C. colocynthis sequences 

with the highest similarity to the query sequences were investigated as putative NAC domain genes. 

Evaluation of putative open reading frames (ORFs) of the identified sequences was based on (i) the 

sequences near the translation start site corresponding to the eukaryotic consensus sequence 

GCC(AG)CCATGG, (ii) the sequence length and homology to the in vitro translated product, (iii) the 

conserved eukaryotic polyadenylation signal 50-AATAAA-30 following the stop codon. The ORF Finder 

(http://www.ncbi.nlm.nih.gov/gorf/gorf.html) was used to detect ORFs and predict amino acid sequences.  

Primers described in Table 1 were used for cloning of the full length CcNAC1 and CcNAC2 genes.  Con-F 

and Con-R were used for obtaining the conserved regions of CcNAC1 and CcNAC2; GSP1 and GSP2 for  

the 5’ region of CcNAC1 ; 2.1-GSP1 and 2.1-GSP2 for 5’ region of CcNAC2; CcNAC1R/F and CcNAC2 

F/R were used separately to clone the ORF of CcNAC1 and ORF of CcNAC2. 

Previously published plant NAC-like gene sequences were retrieved from the GenBank database: 

ATAF1 (X74555), AtNAC2 (AB049071), AtNAM (AF123311), CUC3 (AF54194), AtNAC3 

(AB049070), ANAC (AY11722), ANAC019 (At1g52890), NAC1 (AF198054), CUC1 (AB049069), 
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CUC2 (AB002560), TIP (AF281062), NAP (At1g69490), BnNAC5-11 (AY245884), BnNAC14 

(AY245886), OsNAC19 (AY596808), OsNAC5 (AB028184), OsNAC4 (AB028183), OsNAC6 

(AB028185), GmNAC8 (EU661911).  Multiple sequence alignment of NAC proteins was performed 

using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Phylogenetic analysis was based on 

Neighbor-joining (NJ) using MEGA5 (Tamura et al. 2011) with 1000 bootstrap replications. Jones Taylor 

Thornton (JTT) model was used as substitution model, while Gamma distribution with invariant sites 

(G+I) as range substitution pattern. Amino acid sequences of NAC genes with high homology to 

CcNAC1 and CcNAC2 (AEF80001, XP_004161162, AFY26893, ACS94038, XP_004149802, 

XP_004172335, ACS94038) were aligned to investigate conserved NAC domains.  

Green Fluorescent protein (GFP) conjugated plasmid construction 

The cDNA was amplified with primers CcNAC1F/R and CcNAC2F/R (Table 2. 1), and the resulting PCR 

product was fused into the pCR8/GW/TOPO entry vector. After a sequencing check, the insert was 

transferred into pMDC43 via the LR reaction (GatewayR Entry vector, Life Technologies). The resulting 

plasmids containing Pro35S: CcNAC-GFP insert were used in electroporation experiments to determine 

the subcellular localization of CcNAC. 

Protoplasts of Arabidopsis were isolated and transformed essentially as previously described in 

Sheen et al. (1999) with minor modifications. The tissues for protoplasts isolation were Arabidopsis 

leaves. The leaves were collected before flowering, excised and cut into 1 mm strips and immediately 

placed into an enzyme solution for overnight digestion in the dark. The enzyme solution which contained 

2% cellulose R10, 0.5% macerozyme R10, 0.5% driselase, 2.5% KCl, 0.2% CaCl2, pH 5.7, was filter 

sterilized. After overnight incubation, leaf tissue was gently shaken for 30 min at 40 rpm to release 

protoplasts, followed by filtration through a 40 µm cell sifter to remove debris and centrifugation at 150g 
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to pellet the protoplasts. Protoplasts were washed twice with a washing solution (0.5 M mannitol, 4mM 

MES pH 5.7, and 20 mM KCl) and re-centrifuged at 150g. The protoplasts were suspended in washing 

solution on ice for electroporation. 

Protoplasts were transformed in a manner essentially as previously described (Sheen et al. 1999, 

Rashotte et al. 2006). Electroporation was typically carried out with 1-2x105 protoplasts in 200 µl of wash 

solution and about 1-2 µl 400 ng/µl of plasmid DNA.  Protoplasts were electroporated at 300 V in a 0.1 

mm cuvette using an Eppendorf Electroporator 2510 (Hauppauge, NY). After overnight incubation in the 

dark, protoplasts were examined under Accu-scope 3025 phase fluorescence microscope (New York 

Microscope Company, Inc.). A GFP filter was used to block the chlorophyll autofluorescence and a UV 

filter was used to detect Hoechst 33342 fluorescence under UV light. All photographs were taken with a 

Qimaging Fast 1394 digital camera (Imaging). 

 

Transcriptional activation activity 

The yeast strain YPG-2 containing His3 and LacZ reporter genes was used as an assay system (Stratagene, 

La Jolla, CA, USA). The coding sequences of ccNAC1 and ccNAC2 and the ccNAC1 and ccNAC2 N-

terminal and C-terminal fragments were obtained by PCR using primers described in Table 2. 2. The PCR 

products were cloned into the vector containing the GAL4 DNA binding domain to obtain pBD-ccNAC1, 

pBD-ccNAC2, pBD-ccNAC1-N, pBD-ccNAC1-C, pBD-ccNAC2-N, pBD-ccNAC2-C. According to the 

protocol of the manufacturer (Stratagene), pBD-ccNAC1, pBD-ccNAC2, pBD-ccNAC1-N, pBD-

ccNAC1-C, pBD-ccNAC2-N, pBD-ccNAC2-C and the positive control pGAL4 and the negative control 
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pBD vector were all transformed into the yeast YPG-2 competent cells. PCR products were inserted into 

the SalI-PstI site of pDB vector containing CcNAC1/ CcNAC2-F, -N, -C, respectively.  

The transformed strains were confirmed by PCR and streaked on YPAD or SD/His- plates. The 

transcription activation activities of each protein were evaluated according to their growth status.  The 

underlined nucleotide bases in Table 2. 2 indicate restriction enzyme digestion sites. 

 

Isolation of CcNAC1 and CcNAC2 promoters and in silico promoter analysis of CcNAC1 and 

CcNAC2 promoters 

The promoters (1585 bp and 1299 bp) of CcNAC1 (KC814688) and CcNAC2 (KC814689) were obtained 

using the Genome walker universal kit (Clontech Cat NO.638904). Plant CARE 

(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/), a database of plant cis-acting regulatory 

elements and a portal of tools for in silico analysis of promoter sequences (Lescot et al. 2002), was used 

to identify consensus motifs in the promoter sequences of CcNAC1 and CcNAC2.  

 

Abiotic treatments 

Treatments were conducted on seedlings at the 5-6 leaf stage. Seedlings were placed in 20% 

PEG8000 solution (-0.5 MPa osmotic potential)  or 50mM NaCl to induce drought or salt treatment or 

water as the control treatment. Hormone and hydrogen peroxide treatments were conducted on fourteen-

day-old seedlings.  Seedlings were treated with 100µM MeJA, 200µM ABA, 100µM SA, 100µm 
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ethephon (ET), 20mM H2O2, or 40µM GA. The leaves were also wounded using a hemostat (wounding).  

Leaves were harvested following each treatment at specific time points: 0h, 1h, 2h, 6h, 12h and 24h.  

 

cDNA synthesis and relative quantitative (RQ) real-time RT-PCR 

RNA was extracted from leaf material using the Trizol (Invitrogen Life Technologies, Grand Island, NY) 

method. To eliminate the remaining genomic DNA, RNA was treated with Dnase I (Ambion Life 

Technologies) according to the manufacturer’s instruction. cDNA was synthesized using RETROscriptTM 

(Ambion). 

qRT-PCR was carried out using an Bio-Rad, iCycler Real Time PCR (Hercules, CA) system and 

iCycler detection system software. The C. colocynthis-specific actin gene (ccActin154F/R), used as the 

reference gene, was amplified in parallel with the target gene, allowing normalization of gene expression 

and providing quantification. Primers were designed based on specific regions. Primers sequences of the 

CcNAC1 (Q-NAC1F/R), CcNAC2 (Q-NAC2F/R) and Actin (ccActin154F/R) are listed in Table 2. 3.  

Detection of RQ real-time RT-PCR products was conducted using the SYBR ® Green PCR Master mix 

kit (Applied Biosystems, Life Technologies) following the manufacturer’s recommendations. 

Quantification of the relative transcript levels was performed using the comparative CT method. The 

induction ratio (IR) was calculated as recommended by the manufacturer and corresponds to 2-∆∆CT, where 

∆∆CT= (CT, target gene, -CT, actin) treatment- (CT, Target-CT, actin)control.   Relative quantification relies on the 

comparison between expression of a target gene versus a reference gene and the expression of same gene 

in the target sample versus the reference sample (Pfaffl 2001).  
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Results  

Cloning and sequence analysis of the CcNAC1 and CcNAC2 genes 

Earlier research on gene expression changes in response to drought in C. colocynthis had identified a 

partial NAC transcript (GH626169), which showed high expression levels in shoots following drought 

(PEG) treatment and in response to different hormones such as ABA, JA, and SA (Si et al. 2009, 2010a).   

Following primer design based on conserved regions of NAC genes, two NAC genes from C. colocynthis 

were sequenced and cloned and designated as CcNAC1 and CcNAC2. CcNAC1 encodes a 900 bp (300 

amino acids) long sequence. CcNAC2 encodes an 888 bp (296 amino acids) long sequence.  Amino acid 

alignment of CcNAC1, CcNAC2 and other NAC proteins was used to construct a phylogenetic tree (Fig. 

2. 1A). Phylogenetic analysis indicated that NAC proteins can be classified into several subgroups based 

on similarities to published NACs (Ooka et al. 2003).  Major subgroups are shown in Fig. 2. 1.  Both 

CcNAC1 and CcNAC2 align with proteins in the ATAF subgroup composed of ATAF1, BnNAC5-11, 

GmNAC8, OsNAC19, OsNAC5, OsNAC4, OsNAC6 and BnNAC14. Amino acid alignment analysis 

(Fig. 2. 1B) indicated that CcNAC1 and CcNAC2 show high homology to NACs with conserved A-E 

domains (five N-terminal subdomains).  Even though the CcNACs are variable, especially at the C-

terminal region, several conserved amino acid domains were detected.  

 

CcNAC1 and CcNAC2 are localized to the nucleus 

To identify the subcellular localization of the CcNACs, the following constructs were made: 

35S::CcNAC1-GFP and 35S::CcNAC2-GFP. The constructs were used to transform Arabidopsis leaf 

protoplasts.   Analysis of more than 20 protoplasts showed nuclear localization of the fusion protein of 
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CcNAC1 and CcNAC2 with GFP, as illustrated in Fig. 2. 2, whereas the GFP protein was distributed 

ubiquitously in protoplasts transformed with vector plasmid control, PMDC43 (Fig. 2. 2A2). These 

results indicated that both CcNAC1 and CcNAC2 are nuclear proteins. 

 

CcNAC1 –C terminal has transcription activation function 

CcNAC1, CcNAC2, their N-terminal domain and C-terminal domain, and full length coding sequence 

were fused to the GAL4 DNA binding domain to investigate their transcription activation activity. The 

yeast strain YRG-2 was transformed with the fusion plasmids pBD-ccNAC1, pBD- ccNAC2, pBD-

ccNAC1-N, pBD-ccNAC1-C, pBD-ccNAC2-N, pBD-ccNAC2-C, the positive control pGAL4 and the 

negative control pBD.  As shown in Fig. 2. 3, all transformed cells can grow well on YPAD medium, but 

only pBD-ccNAC1-C can grow on SD medium without histidine. The filter lift assay showed that the 

yeast cells that grew on the SD medium without histidine turned blue in the presence of 5 bromo-4-

chloro-3-indolyl-β-D-galactopyranoside (X-Gal) due to the activation of another reporter gene LacZ. The 

results indicate that only the C terminal region of CcNAC1 has transcription activation activity, while the 

full length and N-terminal region of CcNAC1 do not have this activity. This phenomenon was also 

observed in GmNAC20 where the C-terminal has transcriptional activation ability (Hao et al. 2010). 

CcNAC2 did not show transcriptional activation activity using yeast assay, since blue color was not 

observed using the X-Gal assay (data not shown).  

 

CcNAC1 and CcNAC2 expression patterns 
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Expression analysis of CcNAC1 and CcNAC2 was conducted using semi-quantitative real-time PCR.  

Actin, used as an internal control for constitutive expression, was uniformly expressed in all organs.   As 

shown in Fig. 2. 4, CcNAC1 and CcNAC2 are expressed in every tissue of C. colocynthis.   CcNAC1 and 

CcNAC2 showed the highest level of expression in male flowers, and low expression levels were detected 

in fruits. Comparisons between the two genes also indicated that CcNAC2 is highly expressed in the 

hypocotyl of C. colocynthis.  

 

In silico identification of stress-related promoter motifs 

CcNAC1 and CcNAC2 promoters were isolated using the genome walking method.  A 1585 bp region 

upstream of the CcNAC1 gene and a 1298 bp region upstream of the CcNAC2 gene were cloned, which 

should contain most of the regulatory domains.  For further analysis of stress-related motifs in the two 

promoters, PlantCARE was used. Table 2. 4 shows the details of stress-related motifs detected in the two 

promoters, with in the attachment the promoter sequences and motifs in color (Fig. 2. 5). The CcNAC1 

promoter contains the ABA response element (ABRE) (Yamaguchi-Shinozaki et al. 1989; Mundy et al. 

1990; Michel et al. 1993; Giraudat et al. 1994; Barker et al. 1994), ARE motif (Manjunath and Sachs, 

2005), CE-3 (coupling element 3) (Hubo et al. 1999), CGTCA motif, TC-rich motif, TGA-box and 

TGACG-motif, which are correlated with ABA response, anaerobic induction, JA response and auxin 

response. The CcNAC2 promoter contains an ABRE motif, ARE motif, HSE (heat stress responsiveness), 

MBS (MYB binding site), Box-W1 and TC-rich repeats, which are correlated with ABA response, 

drought stress, anaerobic stress, JA response and auxin response. Promoter motifs provide evidence for 

the involvement of CcNAC1 and CcNAC2 in biotic and abiotic stresses. The two promoters contain 

several identical motifs, such as ABRE, ARE, TC-rich repeats, which indicate that both promoters might 

have similar functions. However, some key differences in the composition or distribution of putative 
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stress-related cis-acting elements (Fig. 2.5) were observed. Five ABRE motifs are in the CcNAC1 

promoter, but only two ABRE in the CcNAC2 promoter.  CcNAC2 promoter contains three TC-rich 

repeats, while CcNAC1 promoter contains only one TC-rich repeats. Both contain some special motifs, 

for example, CcNAC1 contains CE3, CGTCA-motif and TGA-motif, whereas the CcNAC2 promoter 

contains Box-W1, HSE and MBS motifs. These special characteristics indicate that although both 

promoters have similar regulatory domains, they might be regulated by different factors. It can also be 

deduced that the CcNAC1 and CcNAC2 transcription factors might have differential regulation.  

 

 

CcNAC gene expression during stress and plant hormone treatments 

NAC transcription factors are known to play important roles in plant growth and development, 

and can be induced by multiple biotic and abiotic stresses (Wang and Dane 2013).  The complex 

regulatory and interaction network occurring between hormone-signaling pathways allows the plant to 

activate responses to different types of stimuli (Bari and Jones 2009).  CcNAC1 and CcNAC2 gene 

expression was studied under different stress (drought, wounding, and salt) and phytohormone (ABA, JA, 

SA, GA, ET) treatments as shown in Fig. 2. 6.  Results indicated that both genes, CcNAC1 and CcNAC2, 

show similar expression patterns under hormonal and stress treatments. Both genes are induced by stress 

factors and hormones, even though differences in the timing of induction and level of expression were 

observed. Hormones can thus regulate CcNACs expression levels.  For example, treatment with GA 

resulted in a 10 fold up-regulation of CcNAC1 at 2h, while much higher levels of CcNAC2, 40 fold 

increases, were observed at a later time point, 24h.  Similarly treatment with JA resulted in 30 fold up-

regulation of CcNAC1 at 24h, while the highest levels of CcNAC2 (40 fold) were detected following JA 
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treatment at 12h.  Treatment with ET resulted in higher expression levels of CcNAC2 than CcNAC1, 

although both showed the highest level at 6h.  The highest levels of CcNAC1 were detected 10h following 

ABA treatment, while CcNAC2 showed the highest levels already at 2h (40 fold). Treatment with SA 

resulted in 6-8 fold up-regulation of CcNAC1 from 6h to 24h, while CcNAC2 was expressed from 1h-12h, 

and reached very high levels (40 x).  

Abiotic stresses do regulate CcNACs expression. For example, H2O2 treatment did result in high 

expression of CcNAC1, more than 15 fold at 24h, while it did result in up-regulation of CcNAC2 more 

than 40 fold at 40h. PEG treatment did not induce changes in expression of CcNAC1, but did cause high 

CcNAC2 expression, 15-25 fold.  The effect of salt treatment did effect the expression of CcNAC2 more 

than CcNAC1;  both showed similar patterns. Wounding resulted in high (40x) up-regulation of CcNAC1 

and CcNAC2 after 2 h, and 24h and similar expression patterns.  

 

Discussion 

In this study, two members of the NAC gene family in Citrullus colocynthis were identified and NAC 

gene expression in different tissues and under different treatments was examined. This is the first report 

of molecular characterization of NAC genes in C. colocynthis  The Cucurbitaceae is a large and diverse 

family containing several domesticated species such as watermelon, melon and cucumber (Cucumis 

species), squashes, pumpkins and gourds (Cucurbita species). C. colocynthis is a source of genetic 

improvement for drought resistance, since this species is widely distributed in the Sahara-Arabian desert 

areas and well adapted to drought stress (Dane et al. 2006). Tolerance to drought stress is a complex 

phenomenon, comprising a number of physio-biochemical processes at both the cellular and whole plant 

level which are activated during different stages of plant development.  Molecular mechanisms involved 
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in different stresses have been revealed in other plant species, and transcription factors are one of the 

promising players in stress signaling pathways (Fujita et al. 2006).   

The plant specific NAC proteins constitute a major transcription factor family implicated in many 

developmental processes (Puranik et al. 2012). Like most NACs, CcNAC1 and CcNAC2 contain 

conserved NAC domains. NAC domains are N-terminal regions of NACs that can bind both DNA and 

other proteins (Ernst et al. 2004). N-terminal amino acid substitutions can abolish NAC DNA binding or 

structural integrity (Olsen et al. 2005). CcNAC1 and CcNAC2, like most other NACs, contain conserved 

NAC N-terminal and variable C-terminal domains. Protoplast transformation experiments indicated that 

both CcNAC1 and CcNAC2 are localized in the nucleus, which is where most transcription factors 

function.  Research has indicated that C-terminal regions of many NACs possess trans-activation activity 

(He et al. 2005, Peng et al. 2009). Yeast assay experiments showed that CcNAC1 has trans-activation 

activity, while CcNAC2 does not have that ability. Some NACs have been reported to function as 

transcriptional repressors.  Hao et al. (2010) reported that NARD (NAC Repression domain) contributed 

to the transcriptional repression function of GmNAC20, with the LVFY motif essentially required for 

suppression.  

Examination of CcNAC1 and CcNAC2 expression in different plant tissues pointed to similar 

expression patterns, although both genes were expressed mainly in male flowers and the hypocotyl.  

Tissue specific expression of members of the NAC gene family has also been studied in other species.  

For example, ATAF2, which is a pathogenesis-related gene in Arabidopsis, showed expression mainly in 

roots, leaves and mature flowers (Delessert et al. 2005). ANAC036 which caused a dwarf phenotype in 

Arabidopsis thaliana, was expressed mainly in rosette leaves (Kato et al. 2010).  AtNAC2 was expressed 

mainly in root tissues and involved in salt stress responses and lateral root development (He et al. 2005). 
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ATAF1 in Arabidopsis showed expression in every tissue, but mainly in stems, flowers and seedlings. Its 

overexpression resulted in severe developmental defects in Arabidopsis (Kleinow et al. 2009).   

Phytohormone and stress treatments induced CcNAC1 and CcNAC2 expression to different 

levels.   Since the promoters of both genes contain the anaerobic related motif ARE, this indicates that 

both genes might be correlated with oxidative stress.  Salt and drought stress are worldwide problems, 

effecting global crop production and quality. Both genes were regulated by salt and drought stress, and a 

drought related motif was also detected in the CcNAC2 promoter.  Elevated levels of ABA, JA and 

anthocyanin are metabolic signatures of oxidative stress (Steppuhn et al. 2010).  While the impact of the 

different treatments was similar on both genes, differences in gene expression were detected.  NAC TFs 

are candidate molecules that potentially regulate aspects of both biotic and abiotic signaling (Fujita et al. 

2006). In signaling pathways, different hormones play different parts and crosstalk with each other. 

Earlier experiments had indicated that many NACs play a role in phytohormone pathways (Kim et al. 

2008).  NTL8, a membrane-bound NAC transcription factor, plays a role in GA-mediated salt signaling in 

Arabidopsis (Kim et al. 2008). Studies of gene expression in wild-type and mutant Arabidopsis genotypes 

in response to pathogens revealed interactions among SA, JA and ethylene (Maleck et al. 2000, Tao et al. 

2003, Salzman et al. 2005).  It has been suggested that ethylene produced during wounding can activate 

JA biosynthesis, and ethylene can also interact with the JA pathway to induce a number of pathogenesis-

related and defense genes (Laudert and Weiler 1998, Kunkel and Brooks 2002).  JA operates in a distinct 

defense pathway, which interacts with the SA pathway. JA is known to effectively mediate the defense of 

necrotrophic pathogens, while SA is effective against biotrophic fungi, bacteria and viruses (Murphy and 

Carr 2002). SA is thought to be antagonistic to JA, indicating that SA can block the JA induction pathway 

(Doares et al. 1995). Ethylene and JA are also associated with pathogen-induced wounding (Kunkel and 
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Brooks 2002). JA is one of the main components of the wound repair signal in plant tissues, and the 

formation of JA is activated by ABA, ethylene, hydrogen peroxide, UV, whereas SA and nitric oxide 

inhibit the synthesis of JA (Vasyukova et al. 2011).  Both JA and wounding did induce CcNAC1 and 

CcNAC2 expression, which indicates that both genes might play a role in the signaling of pathogen 

resistance and wounding response.  Similar to AtNAC2, CcNAC1 and CcNAC2 were also up-regulated 

by ethylene. SA is a major component of the systemic acquired resistance (SAR) response which refers to 

induced resistance to pathogens (Bostock 2005). ANAC055, ANAC092 and GmNAC6 genes were 

identified as SA signaling components (Delessert et al. 2005, Faria et al. 2011).  SA similarly induced 

changes in CcNAC1 and CcNAC2 expression, especially to a large degree in CcNAC2 expression. The 

fungal elicitor motif Box-W1 was detected in the CcNAC2 promoter, which is further evidence that 

CcNAC2 has a function in biotic stress responses. JAZ (JASMONATE-ZIM DOMAIN) family proteins 

are JA co-receptors and transcriptional repressors in JA signaling in Arabidopsis.  Research has indicated 

that JAZ orchestrates the crosstalk between JA and other hormone signaling pathways such as ethylene, 

gibberellic acid, SA and auxin (Kazan and Manners 2012). Both CcNAC1 and CcNAC2 were regulated 

by GA as well. It is known that some NACs act as regulators in several phytohormone pathways.  

AtNAC2 is a transcription factor downstream of the ethylene and auxin signaling pathway (He et al. 

2005).  

In conclusion, two NAC transcription factors CcNAC1 and CcNAC2 were identified in C. 

colocynthis.  Different stresses and phytohormones did induce CcNAC1 and CcNAC2 gene expression, 

which may provide clues for a better understanding of NAC gene family in this drought tolerant cucurbit 

species. The identification of novel transcription factors regulating abiotic stress tolerance will enable 

further enhancement of stress tolerance in cultivated cucurbit species.  
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Table 2. 1. Primer sequences for CcNAC1 cDNA and CcNAC2 cDNA cloning. 

 

Primer Tm Length Aim  Sequence (5’-3’) 

Con-F 60 27 Conserved region TTCCATCCAACGGATGAGGAGCTCCGT 

Con-R 60 27 Conserved region  TCAAAACGGCTTCTGCAGGTGCATAAA 

GSP1 64 29 5’ region TGGCTTCTCCTCCTCCTCCTCATTTTCAA 

GSP2 65 28 3’ region AACGCCTTTGATTTTGCAGCTGGACGAT 

ccNAC1 F 58 20 NAC1 CDS ATGGCCGCCGATTTGCAGTT  

ccNAC1 R 56 30  NAC1 CDS TCAAAAAGGCTTGTGAATATACATGAACAT 

2.1-GSP2 64 24 5’region TTTTACAGAACTGGCCTTGCACGGAGAGA 

2.1-GSP1 63 23 3’region TTCGGCTTCTCGTCTTCTTCCTCTTCGTAG 

ccNAC2F 56 24 NAC2 CDS ATGACCACCGAGTTGACTCAGCTG  

ccNAC2R 58 21 NAC2 CDS TCAGAACGGCTTCGGCAGGTG  
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Table 2. 2. Primers used for transcription activation assay of CcNAC1 and CcNAC2 

Primer Sequence (5’-3’) Product 

length 

Tm 

ccNAC1-N-F CCGGAATCCATGGCCGCCGATTTGCAG 478bp 55C 

 ccNAC1-N-R ACGCGTCGACCGCCCTTCTTGTTGTATATACGG 478bp 

ccNAC1-C-F CCGGAATCC GTAATCGAGAAACAGCAACAGC 421bp 50C 

 ccNAC1-C-R ACGCGTCGACATGACCACCGAGTTGACTCAGCTG 421bp 

ccNAC2-N-F ACGCGTCGACATGACCACCGAGTTGACTCAGCTG 481bp 56C 

 ccNAC2-N-R AAAACTGCAG CGCCTTTCTTGTTGTAAATCCGG 481bp 

ccNAC2-C-F ACGCGTCGACGTAATCGAGAAGCGAAATCAGATAGC 408bp 55.8C 

 ccNAC2-C-R AAAACTGCAG GAACGGCTTCTGCAGGTGCAT 408bp 

 

 

Table 2. 3. Q-RT PCR primers for detection of relative expression levels of CcNAC1, 2 

Primers Sequence(5’-3’) Tm Product 

length 

ccActin 154F CACCATCACCAGAATCCAGCACGA  59Ԩ 140bp 

ccActin 154R GGCTCCACTCAACCCAAAGGCTAAC  59Ԩ 140bp 

Q-NAC1F GTCAACCGAGAATGAAAGAAGAGTA 59Ԩ 132bp 

Q-NAC1R TATACATGAACATATCCTGCAATGG 59Ԩ 132bp 

Q-NAC2F GTGCCGGATTTACAACAAGAA 59Ԩ 106bp 

Q-NAC2R AATCTTCGGCTTCTCGCTTC 59Ԩ 106bp 
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Table 2. 4. Details of stress-related elements in CcNAC1 promoter and CcNAC2 promoter 

 

Name of cis 

element  

Sequence Number of 

cis elements 

Function Reference 

CcNAC1 Promoter  

ABRE CCTACGTGGC/ 

CGCACGTGTC/ 

GACACGTGGC/ 

CACGTG/ 

 

5 ABA responsiveness Barker et al. 1994 

ARE TGGTTT 4 Anaerobic induction Walker et al. 1987 

CE-3 GACGCGTGTC 1 ABA and VP1 (seed-

specific transcription 

factor)  responsiveness 

Hubo et al. 1999 

CGTCA motifs CGTCA 3 MeJA-responsiveness Wang, et al. 2011 

TC-rich repeats ATTTTCTCCA 1 defense and stress 

responsiveness 

Diaz-De-Leon et al. 

1993 

TGA-box TGACGTAA 1 auxin-responsive element  

TGACG-motif TGACG 3 MeJA-responsiveness Rouster et al. 1997 

CcNAC2 Promoter 

ABRE CACGTG/ACGTGGC 2 ABA responsiveness Barker et al. 1994 

ARE TGGTTT 3 Anaerobic induction Walker et al. 1987 

Box-W1 TTGACC 1 fungal elicitor responsive Shi  et al. 2011 
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element 

HSE AAAAAATTTC 1 heat stress 

responsiveness 

Schramm  et al. 

2006 

MBS CAACTG 1 MYB binding site 

involved in drought-

inducibility 

Mongkolsiriwatana 

et al. 2009 

TC-rich repeats GTTTTCTTAC/ATTTTCTTCA 3 defense and stress 

responsiveness 

Diaz-De-Leon et al. 

1993 
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Figure2. 1. Phylogenetic tree of CcNAC1, 2and analyses of their amino acid sequences.  

(A) Phylogenetic tree of CcNAC1, CcNAC2 with other NACs proteins in plants. Numbers at the nodes of 

the trees represent the bootstrap vales for the node (100 replicates). CcNAC1and CcNAC2 proteins are 

indicated by arrows. 

(B) Analyses of amino acid sequences of Cc NAC1 and CcNAC2. The five sub-domains (A-E) are 

underlined by dashes (-). A-E domains are conservative domains of NAC transcription factors. 
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Figure2. 2. The subcellular localization of the CcNAC1, 2 in Arabidopsis protoplasts. 

 A representative example of 35S:CcNAC1:GFP, and 35S: CcNAC2:GFP fusion in a leaf mesophyll 

protoplast of Arabidopsis are B1-B3 and C1-C3 . The control (A1, A2, A3) protoplast was transformed 

with vector pMDC43. Protoplasts were visualized under white light (A1, B1, C1), GFP excitation (A2, 

B2, C2 with filter blocking UV and other wavelengths) and UV light (A3, B3, C3).  
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Figure2. 4. CcNAC1, 2 relative expression in different plant tissues.  

 Results are relative to expression in fruits. Arrow bars show SE (n=3).CcNAC1 expression was shown as 
solid black, and CcNAC2 was shown as gray dashed lines. 
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Figure2. 5. Location of stress-related cis-regulatory elements in CcNAC1 , 2 promoters.  
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Figure2. 6. CcNAC1 and CcNAC2 expression profiles under different treatments.  

The gray figures are expression patterns of CcNAC1, while the figures with slanted lines show expression 

patterns of CcNAC2. Gene expression was normalized by comparing ∆∆CT to control (0h) (n=3). Y-axis 

shows the expression level of CcNAC1 and CcNAC2. 
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III Expression and function analysis of CcNAC1 and CcNAC2 genes in Citrullus Colocynthis 

using promoter region analysis and grafting onto Citrullus Lanatus (watermelon) 

 

Abstract 

NAC transcription factors are part of the largest family of transcription factors (TF) found in a 

wide range of land plants with important roles in  plant growth and development.  The expression patterns 

of two NAC TFs from Citrullus colocynthis, CcNAC1 and CcNAC2, were analyzed on different 

rootstocks and under different environmental conditions.  Results indicated that both genes were up-

regulated by drought treatment on C. lanatus and C. colocynthis rootstocks.  To investigate the 

transcriptional regulation governed by the CcNAC gene promoters, transgenic Arabidopsis reporter 

(pCcNAC1, 2::GUS) lines were generated. GUS expression analysis under the control of the CcNAC gene  

promoters revealed that both CcNAC1 and CcNAC2 promoters were activated in response to dehydration 

stress. The pCcNAC1, 2 ::GUS reporter lines showed similar expression patterns at different 

developmental stages, in different tissues and throughout floral development.  Transgenic Arabidopsis 

reporter lines under the control of different fragments of each promoter were generated.  GUS assays 

suggested that different regions have differential responses under different regulation. From these data, 

we propose that the CcNAC1 and CcNAC2 TFs play important roles in plant drought tolerance and 

throughout plant development.  
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Introduction 

To cope with abiotic stress, plants have evolved adaptive molecular mechanims that result in the 

expression of a large number of genes that alter plant physiology depending on the specific type of 

environmental stress. One of the pivotal events in these responses is the perception of stress, which 

activates the expression of stress-response genes via signal transduction (Shinozaki and Yamaguchi-

Shinozaki, 2006). The core signaling components involved in the regulation of stress-responsive genes 

during abiotic stress include kinases, phosphatases and transcription factors. Transcription factors play 

major roles in regulation and responses of plants under drought stress (Narsai et al. 2013).  

NAC (NAM/ATAF/CUC) transcription factors (NAC-TFs) form a unique class of transcription 

factors found in a wide range of land plants.  The characteristic feature of NAC TFs is the presence of a 

conserved NAC-domain at the N-terminus and variable C-terminal sequences (Voitsik et al. 2013). A 

number of NAC TFs are also important regulators under plant abiotic and biotic stresses. For example, 

NTL4 can induce the Atrboh genes, resulting in reactive oxygen species  (ROS) accumulation and 

triggering of leaf senescence, which are direct drought stress responses (Lee et al. 2012). RD26 is induced 

by drought, ABA and high salinity, thus functioning as a transcription activator in ABA-inducible gene 

expression under abiotic stress in plants (Fujita 2004). ATAF1 in Arabidopsis is induced by drought and 

salt stresses, and ATAF-type SNAC1/2 TFs are induced by drought, high salt, low temperature, injury 

and abscisic acid (ABA) (Christianson et al. 2010; Hu et al. 2008). RhNAC2 is involved in the regulation 

of dehydration on flower opening and senescence in rose (Dai et al.  2012). TaNAC2 transgenic tobacco 

shows higher fresh weight and dry weight than non-transgenic tobacco under drought conditions, which 

indicates that  overexpression of TaNAC2 improves tobacco tolerance to drought treatment (Tang et al. 
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2012). Many NAC genes are altered by drought in V6 and/or R2 leaves in Glycine max, whichdid 

contribute to identifying excellent drought-responsive candidate genes (Le et al. 2012). ZmSNAC1 of 

maize enhanced drought tolerance in transgenic Arabidopsis (Lu et al. 2012). Field experiments indicated  

that OsNAC9 in rice can enhance drought resistance without reduction of  grain yield (Redillas et al. 

2012). As a negative stress regulator, overexpression of the GmNAC2 gene reduces abiotic stress 

tolerance in tobacco (Jin et al. 2013).  NAC3 from Arachis hypogaea acted as a positive regulator under 

drought stress, and is known to enhance drought tolerance in tobacco by increasing superoxide 

scavenging (Liu et al. 2013). Also,  SNAC1 enhanced the tolerance of transgenic wheat to drought and salt 

stresses in multiple generations (Saad et al. 2013).  

Citrullus colocynthis (L.) Schrad, closely related to the domesticated and widely cultivated 

watermelon (Citrullus lanatus var. lanatus), is a non-hardy, perennial herbaceous and medicinal plant 

species in the Cucurbitaceae family. It is a drought tolerant species, which can survive arid environments 

by maintaining its water content under severe stress conditions, which is accomplished by extending its 

root system into deep ground water (Dane et al. 2007). Its rootstock has been investigated as a potential 

rootstock for the improvement of drought tolerance mechanism of watermelon (Si et al. 2010).   

Grafting has been used extensively in horticulture to enhance the performance of certain 

vegetables and woody fruit trees (Wu et al. 2013; Savvas et al. 2010). Grafting is also an effective way to 

enhance the viability of transgenic plants, for example, in safflower (Belide et al. 2011).  It has been 

proposed that mRNAs (eg, from root-stock) could be reverse-transcribed to produce cDNAs and be 

integrated into the new host (scion) genome, thus generating bona fide genetic changes (Liu 2006). It was 

also demonstrated that DNA and small RNA could be exchanged by grafting (Stegemann and Bock 2009; 

Bai et al. 2011; Shaharuddin et al. 2006). Posttranscriptional gene silencing (PTGS) signal did migrate 
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from cell-to-cell in advance of the infection front and was transported over long distances through the 

phloem from the donors to recipients (Voinnet et al. 2000). In addition, the grafting process between 

genetically divergent cells (hetero-grafting) might generate novel epigenetic marks in the scion, a  portion 

of which might be inherited to the next generation (Wu et al. 2013). Turnbull et al. (2002) also developed 

a cotyledon micrografting (Cot-grafting) method, unlike other grafting method, in which a graft donor and 

a graft recepient are used that can be of different genotypes, which allowed the protein from the graft to 

be transported via its native route from leaves to the shoot apex (Yoo et al. 2013).  

To reconstruct the transcriptional regulatory network in a particular plant species, we first have to 

identify the general and specific TFs (Ravcheev et al. 2011).   Here, we analyze the expression patterns of 

two transcription factors, CcNAC1 and CcNAC2,  from a very drought tolerant cucurbit species  during 

grafting and study their promoter expression patterns.  

 

Materials and methods  

Plant materials and growth conditions 

C. colocynthis seeds (No. 34256) from Israel were sown in soil with a 14h photoperiod at temperatures 

ranging from 22Ԩ to 30Ԩ and ambient relative humidity.  Arabidopsis thaliana seeds were germinated 

on ½ MS medium and after one week, transferred to vermiculite soil. The conditions for Arabidopsis 

were 23Ԩ and a 16/8h photoperiod and 60% relative humidity. The growth stages were designated as 

described by Boyes et al. (2001). For the water withholding treatment, 7d old Arabidopsis seedlings were 

placed at 0h, 1h, 2h time points into GUS staining buffer for histochemical assay and GUS assay.  
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Grafting analysis  

C. colocynthis seedlings were grafted following the procedure of one cotyledon or the slant graft method 

(Davis et al. 2008). To facilitate rootstock and scion union, seedlings were placed in a shaded plastic 

tunnel with a humidifier (Fedders, Sanford, NC) to maintain 100% humidity and temperatures around 28Ԩ 

for a period of 7-10 d, followed by acclimation for 7d to the natural conditons in the greenhouse. Seedings 

at the 3-4 leaf stage were placed into natural conditions without watering as drought treatment. The leaf 

samples were collected at 0, 2, 6, 9, 13, 17, 23, 25, 26, 29, 30 and 31d and immediately immersed into 

liquid nitrogen for storage at -80Ԩ.  

 

RNA isolation and cDNA synthesis 

RNA was extracted from the samples of C. colocynthis and grafted C. colocynthis leaves according to the 

RNeasy Plant Mini Kit (Qiagen, USA). cDNA was synthesized using ProtoScript cDNA systhesis kit 

(New England Biolabs, USA).  

 

Relative quantitative (RQ) realtime RT-PCR 

The first strand of cDNA was diluted 50 times before it was used in the qRT-PCR reaction. qRT-PCR 

was performed with the SYBR-Green chemistry in an Eppendorf Mastercyler ep realplex with gene 

specific primers (Table 3. 1). Each reaction contains 10 μl of SYBR-Green supermix, 1ul of forward and 

reverse primers (4 um), 7 ul water and 1 ul of cDNA sample. The qRT-PCR program consisted of one 
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cycle of 95Ԩ for 2 min, followed by 40 cycles of 15 sec at 95Ԩ, 15 sec at 58Ԩ, and 30 sec at 72Ԩ, and 

melting curve to check for specificity of the program. C. colocynthis specific actin was used as the 

relative expression gene, with primers for actin (ccActin 154F and ccActin 154R), and for CcNAC1 and 

CcNAC2 genes (primers Q-NAC1F/R and Q-NAC2F/R) as in Table 3. 1. 

 

Construction of plant expression vectors and plant transformation 

The promoters (1585 bp and 1299 bp) of CcNAC1 (KC814688) and CcNAC2 (KC814689) were obtained 

as described by Wang et al. 2014. The different sections of the two promoters were amplified with the 

primers as shown in Table 3. 2 and the resulting PCR products were fused into the pCR8/GW/TOPO 

entry vector. After the sequencing check, the insert was transferred into pMDC162 via the LR reaction. 

The recombinant plasmid containing the pNAC::GUS fusion was transferred to Agrobacterium 

tumefaciens LBA4044, and the resulting strain was used to transform Arabidopsis wild-type by floral dip 

method (Cough and Bent 1998). Transformants were selected on 20 µg ml-1 hygromycin and grown under 

white light. At least ten independent plants were analyzed. Histochemical staining was conducted 

according to Altamura et al. (1991) on different tissues at different developmental stages.  

 

Histochemical assay  

β-glucuronidase activity was assessed by histochemical assay (Jefferson et al. 1987). Histochemical GUS 

analysis was done by immersing different tissues in a GUS reaction buffer. Samples were incubated for 

16-18h at 37Ԩ, followed by 70% ethanol rinse to clear the tissues. Fluorometric GUS assays were 
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performed on seedlings of each line. 100 mg of seedling tissues were ground in GUS extraction buffer (50 

mM sodium phosphate, pH 7.0, 10 mM 2-mercaptoethanol, 10 mM Na2EDTA, 0.1% sodium lauryl 

sarcosin, 0.1% Triton X-100) in one 1.5 ml microfuge tube, using a drill fitted with autoclaved plastic 

pestles. A sample of 475 ul was taken from the clarified extract and warmed to 37Ԩ for 1h after the 

addition of 25 ul GUS assay buffer (2 mM MUG in GUS extraction buffer). The reaction was stopped by 

pipetting 500 ul of the reaction mixture into 1.95 ml of carbonate stop buffer (0.2 M Na2CO3).  A DyNA 

Quant 200 Fluorometer (Hoefer, Inc., San Francisco, CA) was used with a 4-MU standard solution.  To 

calibrate the instrument, 1.9 ml of carbonate stop buffer was added to 100 ml of the 4-MU standard 

solution (1mM). The GUS activity was calculated as fluorescent units per mg fresh weight of tissue.  

 

Drought treatment of pCcNACs::GUS in Arabidopsis by withholding water  

pCcNAC1::GUS and pCcNAC2::GUS seedlings were grown on ½ MS medium until they were 7-8 d old. 

More than five seedlings per line were used for GUS staining and separately for GUS histochemical assay.   

 

Results  

Expression profiles of CcNAC1 and CcNAC2 genes in C. colocynthis during drought 

In order to investigate the CcNAC1 and CcNAC2 gene expression under drought treatment and the 

importance of the rootstock to C. colocynthis gene expression, C. colocynthis scion was grafted onto C. 

lanatus rootstock. Gene expression in C. colocynthis leaves was studied using C. lanatus as rootstock 

(CC/CL)  or its own rootstock (CC), as graphically shown in Fig. 3. 1.  Nonsignificant differences in 
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expression levels were observed for the CcNAC1 and CcNAC2 genes until 23 days after the start of water 

deficit treatment.    After 23 days, both genes  showed up-regulation, and gene expression gradually 

increased until the grafted (CC/CL) plants died at 26 d. Although CcNAC1 showed an almost 3 times 

increase in gene expression in CC/CL 26 days after the start of the drought treatment, CcNAC2 showed 

more than five times an increase at 26 d as compared to gene expression levels before 23 d.   NAC1 and 

NAC2 gene expression in ungrafted C. colocynthis leaves was not much different up to 26 days of 

treatment, but showed strong up-regulation from 26 d to 31 d before plant death. The range of up-

regulation was much higher for CcNAC2 than CcNAC1. It is clear that rootstock did have a major effect 

on onset of senescence.  Wilting of CC on CL rootstock occurred earlier and resulted in death at least 3 

days before wilting and senescence on CC rootstock. However, water deficit stress did influence gene 

expression of CcNAC1 and CcNAC2 to a high degree before senescence of the plants. After the plants 

showed wilting, both genes showed gradually up-regulation until the death of the plants, both in CC/CL 

and CC plants.  It is also clear that roots of C. colocynthis were more efficient for water transport function 

than the roots of C. lanatus.  

 

Expression patterns of the CcNAC1 or CcNAC2 promoters in Arabidopsis during drought treatment  

To further study the correlation of CcNAC1 and CcNAC2 with drought tolerance, water was 

withheld from 7d old pCcNAC1::GUS and pCcNAC2::GUS transgenic Arabidopsis plants. The results as 

shown in Fig. 3. 2 indicated that at 0h time point, both transgenic seedlings showed low levels of GUS 

expression, with pCcNAC1::GUS transgenics at 0h time point having little more GUS expression than 

pCcNAC2::GUS seedlings. At 1h and 3h time points, transgenic seedlings showed an increase in GUS 
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expression levels as compared to control (0h time point). From this experimental result, we can conclude 

that both CcNAC1 and CcNAC2 were activated during drought treatment.   

GUS assays were subsequently used as shown in Fig. 3. 3. The GUS assay showed that both 

transgenic lines showed higher GUS levels during drought treatment.  Figs. 3.2 and 3.3  indicate that after 

withholding water, pCcNAC1::GUS showed 67.1 times the level of expression at 1h treatment as 

compared to control, and 87.5* following 2h treatment.  pCcNAC2::GUS had similar expression pattern 

as pCcNAC1::GUS, with increases of 52.7 times and 60.8 times expression at 1h and 2h time point after 

treatment.  In conclusion, both pCcNAC1::GUS and pCcNAC1::GUS were up-regulated during drought 

treatment.  

 

Developmental regulation of promoters of CcNAC1 and CcNAC2 during early plant development 

The pCcNAC1 and pCcNAC2-driven expression of GUS activity in developing Arabidopsis seedlings was 

studied (Fig. 3. 4). pCcNAC1::GUS and pCcNAC2::GUS transgenic plants were grown on ½ MS medium 

and subjected to histochemical staining for GUS activity following a 2-10 day treatment. In epigeal 

seedlings (2d-3d), both promoters were expressed mainly in the hypocotyls, while the promoter of 

CcNAC1 was also expressed to a limited degree in the cotyledons.  At day 4, promoters of both genes 

were mainly expressed in hypocotyls and again to limited degree in the cotyledons. From day 5 to day 6, 

some GUS activity was detected in the newly developed leaves of both transgenics.  From day 7 to day 10, 

GUS expression was reduced in leaves, but increased in the petioles of both promoter transgenic plants. 

No expression was detected in the roots of the seedlings. Thus, the promoters of CcNAC1 and CcNAC2 

showed similar expression patterns during seedling developmental stages.  
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Developmental regulation of pCcNAC1::GUS and pCcNAC2::GUS expression in Arabidopsis organs 

The pCcNAC1::GUS and pCcNAC2::GUS expression in developing Arabidopsis organs is illustrated in 

Fig. 3. 5.  GUS was expressed in micropyles of seeds of GUS transgenic lines. Also promoters of both 

genes were expressed mainly at both ends of the siliques, but not in seeds, even though the CcNAC2 

promoter showed low expression in the siliques.  Since GUS expression at cutting edges of the stems was 

observed in the transgenics, this might be the result of wounding. In the cauline leaves, GUS expression 

was detected all across the leaves. pCcNAC1::GUS showed higher levels of expression on the rosette leaf 

than pCcNAC2::GUS. GUS assay on organs indicated that both promoters showed similar expression 

patterns in different organs.  

PCcNAC1-driven and pCcNAC2-driven GUS expression during flower development of A. thaliana 

PCcNAC1::GUS and pCcNAC2::GUS histochemical staining was conducted during different stages of 

flower development (Fig. 3.6)  Promoters of both genes showed expression at all developmental stages in 

the stigmas, and petals and both expressed to a higher degree in the late stages as compared to the early 

stages of flower development. On the ninth day of flower developmental stages (fds9), GUS expression 

was detected in the stigma and some in the petals. In fds13, when the bud opened, and petals became 

visible, expression was observed more in the petals and stigmas. During fds15 with extension of the 

stigma above long anthers, the petals and stigmas showed higher expression levels. Differences with 

earlier stages of flower development with expression in filaments and anthers were detected.  Differential 

expression during flower developmental stages indicated that the promoters of both CcNAC genes showed 

similar expression patterns during flower development.  
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Different CcNAC1, 2 promoter fragments show differential expression patterns  

GUS assay was used to detect the effect of length of promoter region on Arabidopsis seedling expression 

following 7 days of growth. It can be deduced from Fig. 3.7 that different fragments showed differential 

expression levels. The pCcNAC1::GUS, Pro1.2 (1142 bp) fragment showed higher expression levels than 

shorter fragments of the CcNAC1promoter region.  Section Pro1.3 (631 bp), Pro1.5 (340 bp) and Pro 1.8 

(129 bp) showed expression levels 1.29 times, 1.05 times and 1.18 times as compared to Pro1.0 (1585 bp).  

One short section of promoter CcNAC1 Pro1.6 (227 bp) showed the lowest expression level (0.85*).  The 

pCcNAC2::GUS fragment Pro2.1 (858 bp) showed the highest expression (*2.49) as compared to other 

fragments. Pro2.3 (346 bp) showed more expression (1.63*) than Pro2.0 (1299 bp). The shortest promoter 

fragments of CcNAC2 Pro2.4, Pro2.5 and Pro2.6 showed less expression as compared to the whole 

sequence of pCcNAC2. Differential expression indicates that different promoter regions have different 

regulatory responses.  The different promoter fragments might contain different motifs, which responded 

to treatment differently, and show variable expression level under normal (in situ) conditions. 

 

Discussion 

NAC TFs are involved in the regulation of biotic and abiotic stresses. The signaling pathways 

include crosstalk between biotic and abiotic stresses and NACs play important parts in the crosstalk 

(Olsen et al. 2005). NACs were found to not only be positive regulators, but also negative regulators 

under drought treatment.  For example, ATAF1 is a negative drought response regulator in Arabidopsis, 

because its mutant could increase the rate of recovery after drought stress along with stimulation of the 
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expression of some stress-inducible marker genes (Lu et al. 2007).  OsNAC6, functions as a positive 

regulator, and improves tolerance towards blast disease, dehydration and high-salt (Nakashima et al. 

2007).   In earlier studies of CcNAC1 and CcNAC2 the up-regulation was observed during many abiotic 

stress treatments (Wang et al. 2014).  In this study of seedling grafting and GUS expression in transgenic 

Arabidopsis it can also be concluded that CcNAC1 and CcNAC2 are drought-related transcription factors. 

CcNAC1 and CcNAC2 both were up-regulated during the later stages of drought treatment (Fig. 3.1).  

Gene functions can be investigated by plant grafting, morphological studies, mutant 

characterization, and gene expression analysis (Simons et al. 2007). Although there are many NAC genes 

in plants, there might be significant variations in the way the genes appear to function in different 

rootstocks. These include differences in the patterns of gene expression in response to grafting (Sorefan et 

al. 2003; Foo et al. 2005; Snowden et al. 2005). There are about 80 NACs in watermelon (Citrullus 

lanatus) (Guo et al.2013). These two NAC genes from C. colocynthis showed up-regulation both on 

rootstock of C. lanatus and C. colocynthis, especially their own rootstock during drought treatment, and 

thus are drought stress-related genes. Further studies using next generation sequencing methods might 

help us discover more of their functional roles under stress conditions. 

NAC transcription factors have been studied by promoter analysis to reveal transcriptional control. 

ANAC092 expression was studied during leaf and flower ageing and in response to salt stress (Balazadeh 

et al. 2010). ANAC012, which negatively regulates xylary fiber development in A. thaliana, was found to 

be preferentially localized to the (pro) cambium region of inflorescence stem and root (Ko et al. 2007). 

Histochemical analysis of RD26 promoter::GUS in transgenic Arabidopsis showed that RD26 expression 

was higher during dehydration (Fujita et al., 2004).  Similarly the NTL4 transcription factors show higher 

expression during drought treatment (Lee et al. 2012).  The promoters of PtNAC068 and PtNAC154 from 
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poplar showed more complex expression patterns in poplar than in Arabidopsis (Han et al. 2012). Also, 

NST1 and NST3 were found to regulate pod shattering in a partially redundant manner in siliques of 

Arabidopsis (Mitsuda and Ohme-Takagi 2008).  Also, the spatial and temporal expression patterns of the 

VND-INTERACTING2 (VNI2) gene are correlated with leaf aging and senescence (Yang et al. 2011).   

In this study of CcNACs during flower developmental stages in Arabidopsis, it was detected that 

the CcNAC1 and CcNAC2 promoters showed higher levels of expression in mature anthers. Whether this 

is correlated with maturity of anthers or senescence, needs to be investigated in more detail.  Since the 

CcNAC1 and CcNAC2 promoters showed very similar expression patterns in Arabidopsis tissues and 

organs, the two NACs might have a similar function.  Because different regions of the promoters showed 

differential regulation, the transcriptional control factors might be different in two promoters.  NAC gene 

functions are relatively conserved within subfamilies and NAC gene lineages have experienced extensive 

duplications (Zhu et al. 2012). CcNAC1 and CcNAC2 have much similarity in structure and functions, so 

we can deduce that both NACs probably were the result of NAC gene duplication in C. colocynthis.   
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Table 3. 1.Q-RT PCR primers for detection of relative expression levels of CcNAC1 and CcNAC2 

Primers Sequence(5’-3’) Tm Product length 

ccActin 154F CACCATCACCAGAATCCAGCACGA  59Ԩ 140bp 

ccActin 154R GGCTCCACTCAACCCAAAGGCTAAC  59Ԩ 140bp 

Q-NAC1F GTCAACCGAGAATGAAAGAAGAGTA 59Ԩ 132bp 

Q-NAC1R TATACATGAACATATCCTGCAATGG 59Ԩ 132bp 

Q-NAC2F GTGCCGGATTTACAACAAGAA 59Ԩ 106bp 

Q-NAC2R AATCTTCGGCTTCTCGCTTC 59Ԩ 106bp 

 

Table 3. 2.Primers for different sections of promoter of CcNAC1 (Pro1) and CCNAC2 (Pro2). 

Usage  Forward 

primer  

Sequence (5’-3’) Reverse 

primer 

Sequence (5’-3’) 

section 1.0 Pro1.0F AAAAATGTATGCATGTTGACTCAATATT Pro1.0R GATTTCTTCTTTCCCTTTTTTCTTCTT 

section 1.2 Pro1.2F CATAAAGGTTCCTACGTTGCTAAAATAA  Pro1.2R GATTTCTTCTTTCCCTTTTTTCTTCTT 

section1.3 Pro1.3F TCCAACTCTTCACTAATCGCTTTCTT  Pro1.3R GATTTCTTCTTTCCCTTTTTTCTTCTT 

section 1.5 Pro1.5F TCATAAAAGCGGTCCCAAAAAGA  Pro1.5R GATTTCTTCTTTCCCTTTTTTCTTCTT 

section 1.6 Pro1.6F CACGCACCCCACTTTCTTTGT  Pro1.6R GATTTCTTCTTTCCCTTTTTTCTTCTT 

section 1.8 Pro1.8F CACGTGTCTCTTTCTTTTCCTCTATAA  Pro1.8R GATTTCTTCTTTCCCTTTTTTCTTCTT 

section 2.0 Pro2.0F ATCAAAAAATTTAGAAGTCAAACAAGACAT Pro2.0R TTTTCTTCTGATATTTCTCCGGCG 

section 2.1 Pro2.1F AAGTTTTTAGTTTGGTTTCGATTTAGTTC  Pro2.1R TTTTCTTCTGATATTTCTCCGGCG 

section 2.3 Pro2.2F GAGGCGAGTAAATGGAATCTGCAG  Pro2.2R TTTTCTTCTGATATTTCTCCGGCG 

section 2.4 Pro2.3F CGCATGCACTTCACGTCTTAATCC  Pro2.3R TTTTCTTCTGATATTTCTCCGGCG 

section 2.5 Pro2.5F CCCTCTCTCCCACCCCTATAAATAC  Pro2.5R TTTTCTTCTGATATTTCTCCGGCG  

section 2.6 Pro2.6F CACAAACACCAAAAAAAAAAACCATA  Pro2.6R TTTTCTTCTGATATTTCTCCGGCG  
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Figure 3. 1. Expression profiles of the CcNAC1, 2 in CC and CC/CL with holding water.  

CC/CL: C.colocynthis grafted onto the C.lanatus var. lanatus rootstock. CC: C. colocynthis. Gene 

expression was normalized by comparing ᇞᇞCt to control (0d) (n=3). 
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Figure 3. 2. pCcNAC1::GUS and pCcNAC2::GUS expression with holding water.   

Treatment 0h, 1h, 3h indicate the number of hours following withholding of water.  Bars are 500 μm in 
the panels. 
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Figure 3. 4. pCcNAC1::GUS and pCcNAC2::GUS in early seedlings of Arabidopsis. 

Histochemical assays show pCcNAC1::GUS and pCcNAC2::GUS expression patterns in from day2 (2d) 

to day10 (10d) seedlings under normal growth conditions. Scale bars are 500 μm. 
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Figure 3. 5. GUS staining in Arabidopsis different tissues. 

A1-E1 came from promoter of CcNAC1; A2-E2 came from promoter of CcNAC2. A1 and A2 are seeds. 

B1 and B2 are siliques. C1 and C2 are stems. D1 and D2 are cauline leaves. E1 and E2 are rosette leaves. 

Arrow points to GUS staining in the micropylar endosperm after testa rupture. Scale bars are 500μm. 
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Figure 3. 6. pCcNAC1::GUS and pCcNAC2::GUS expression in flowers.  

The numbers indicate flower development stages (fds). Bars are 500 μm in the panels. 
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IV Citrullus Colocynthis NAC trasncription factors CcNAC1 and CcNAC2 are involved in 

light and auxin signaling  

 

Abstract 

NACs (NAM, ATAF1, 2, CUC2) are conserved in plants, and have multiple functions in plant growth 

and development. Two NAC transcription factors, CcNAC1 and CcNAC2, were recently identified in the 

highly drought-tolerant cucurbit species, Citrullus colocynthis. This study further examines the functional 

role of these genes to different qualities of light and the associated hormone auxin based on the in silico 

analysis of the CcNAC1 and CcNAC2 promoter regions which revealed the presence of several light-

associated motifs. The impact of both light and auxin on CcNAC1 and CcNAC2 gene expression was 

examined in C. colocynthis leaves, and using reporter (pCcNAC1, 2::GUS) lines in Arabidopsis. 

Furthermore the effects of constitutive overexpression (OE-CcNAC1, 2) in Arabidopsis were also 

examined under a range of conditions to confirm reporter line linkages.  White, blue, red, and far red light 

treatments resulted in similar patterns of quantitative changes in CcNAC1and CcNAC2 expression in both 

species, with the highest transcript increases coming with red light.  Photomorphogenic changes in 

Arabidopsis hypocotyls were also correlated with changes in gene transcript levels.  In the absence of 

light hypocotyls of OE-CcNAC1 and OE-CCNAC2 lines were significantly longer as compared to WT.  

The addition of exogenous auxin (+IAA) to growth medium also resulted in changes to the hypocotyl 

lengths of overexpression lines and spatiotemporal reporter line changes in seedlings.  Our data suggest 

that CcNAC1, 2 might be functionally important in the light signaling pathway, and appear connected to 
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the hormone auxin. This is the first study to indicate that NAC genes might play a role in both light and 

auxin signaling pathways.    

 

Keywords 

Citrullus colocynthis, NAC, transcription factors, promoters, light, auxin, CcNAC1, CcNAC2 

 

Introduction 

Plants use light signals as a source of information to adjust growth and development in response to 

changing environmental conditions via different classes of photoreceptors involved in light signal 

transduction pathways (Briggs and Huala 1999; Parks 2003; Chen et al. 2004; Shikata et al. 2012).  The 

phytochrome family of photoreceptors  are known to respond to far-red light (FR) and red light (R), the 

cryptochromes (cry1 and cry3) to blue and UV-A light, and the phototropins (phot1 and phot2) to UV-B 

and UVR8 (Bhatia et al. 2008; Rizzini et al. 2011).  Phytochromes are red/far-red absorbing 

chromoproteins that regulate a wide range of plant development, from seed germination to flowering 

(Shikata et al. 2012). Blue light induces various developmental responses, including phototropic bending, 

cotyledon opening, photoperiodic flowering, leaf flattening, de-etiolation, stomatal opening, chloroplast 

movements, anthocyanin accumulation, gene expression, and the inhibition of hypocotyl elongation 

(Inoue et al. 2008). 

Many transcription factors are involved in light regulation and some regulate hypocotyl 

elongation.  Hypocotyls have proven to be excellent systems for studying signal interplay in the 
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regulation of growth and developmental responses (Vandenbussche et al. 2005). For example, UGT73C5, 

which catalyzes 23-O-glycosylation of the brassinosteroid brassinolide (BL) and castasterone, has been 

shown to regulate the hypocotyl phenotypes (Poppenberger et al. 2005).  The HY5 mutant exhibits 

elongated hypocotyl under various wavelengths of light, suggesting that functionally HY5 is downstream 

of multiple photoreceptors (Oyama et al. 1997; Koornneef et al. 1980; Chattopadhyay et al. 1998; Ang et 

al. 1998). SHORT HYPOCOTYL IN WHITE LIGHT1 (SHW1) is a master repressor of 

photomorphogenesis involved in Arabidopsis seedling development (Bhatia et al. 2008).  The GT or 

trihelix family of transcription factors are known to bind GT elements in light regulated genes, and phyA 

is a member of the GT transcription factor family (Kaplan-Levy et al. 2011). GT-1 ortholog RML1 in rice 

is down regulated by light and shows a circadian expression pattern (Wang et al. 2004). Many HELIX-

LOOP-HELIX (bHLH) transcription factors are involved in light signaling.  For example, the basic bHLH 

transcription factor PRE3/bHLH135/ATBS1/TMO7 is involved in the regulation of light signaling 

pathway in Arabidopsis and its overexpression line showed less expression under red, far-red and blue 

light (Castelian et al. 2012).  PIFs also belong to the bHLH family (Monte et al. 2007).     

Light signaling is associated with many phytohormones. The HY5 transcription factor integrates 

light and hormone signaling pathways because HY5 promotes the expression of negative regulators of 

auxin signaling (Cluis et al. 2004).  STF1 (SHORT HYPOCOTYL 1) in soybean (Glycine max) is a 

homolog of HY5 with a role in light and hormone signaling, including root development of short 

hypocotyl, accumulation of chlorophyll and root gravitropism (Song et al. 2008). Low-fluence red light 

has been found to increase the transport and biosynthesis of auxin (Liu et al. 2011). Light and auxin also 

control many aspects of plant growth and development in an overlapping manner. Two homologous ATP-

binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis 
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and root development by mediating polar auxin transport (Lin and Wang 2005).  The increase in plant 

stem elongation is regulated by plant hormones, mainly by gibberellins, but also the involvement of 

ethylene, auxins, and cytokinins has been reported (Kurepin et al. 2010).  It has also been reported that the 

salicylic acid pathway interacts with light-induced signaling pathway in plant defense responses (Genoud 

et al. 2002).  Cho et al. (2012) uncovered that when phyB was activated by red light, seed germination 

was promoted by epigenetic transcriptional activation of gibberellic acid biosynthetic enzymes via histone 

demethylation, connecting the light and hormone-mediated induction of seed germination in Arabidopsis.  

HY1, MYC2 and HY5 are functionally interrelated in the light and JA signaling pathways (Rajendar et al. 

2012). Differential expression of the auxin primary response gene MASSUGU2/IAA19 was shown in 

tropic responses of Arabidopsis hypocotyls (Saito et al. 2007). Low light intensity-induced differential 

petiole growth requires blue-light, auxin signaling and polar auxin transport and is, at least in part, 

genetically separate from well-characterized ethylene-induced differential growth (Millenaar et al. 2009). 

ABCB19-mediated polar auxin transport in seedling photomorphogenesis is mediated by cryptochrome 1 

and phyB (Wu et al. 2010). 

Another family of transcription factors, the NACs (NAM, ATAF1, 2, CUC2), which play 

important roles in plant growth and responses to stress, has also been implicated in light mediated 

regulation of plant development.  Whole-genome ATH1 Genome Array studies showed that more than 

one quarter of NAC proteins in Arabidopsis leaves were up-regulated under dark treatment (Lin and Wu 

2004).  cDNA microarray analysis in Arabidopsis indicated that some NACs are involved in 

photosynthetic protection (Kimura et al. 2003).  For example, ANAC078 in Arabidopsis can regulate 

flavonoid biosynthesis under high light stress (Morishita et al. 2009). Short wavelength, higher intensity 

UV-B could modulate ANAC13 by a yet unknown and COP1 -independent signaling cascade. ANAC13 



 97  
 

was also modulated by abscisic acid (ABA) and different abiotic stresses (Safrany et al. 2008).  Auxin 

and blue light are known to regulate the phototropic response in A. thaliana (Sun et al. 2013).  Some 

NACs are also implicated in the auxin response. A mutation in one of the auxin receptors (tir1-1) was 

found to suppress the salt stress induction of AtNAC2 (He et al. 2005).  It was also shown that NAC1 was 

induced by auxin in Arabidopsis and AtNAC2 was induced by multiple plant hormones (auxin, ABA and 

ethylene) and high salinity (Xie et al. 2000; He et al. 2005).  Auxin associated genes such as IAA30 have 

also been link to a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor 

NTM2 during seed germination (Park et al. 2011).  

Expression of many structural, metabolic and regulatory genes is required for light-related 

morphogenesis of plants. Light-inducible promoters may regulate their transcription. Numerous cis-acting 

elements have been identified in light-regulated genes (Terzaghi and Cashmore 1995). The ACE motif 

has been known to stimulate transcription of a parsley basic region/ leucine zipper (bZIP) transcription 

factor, a common plant regulatory factor 1 (CPRF1) in light responses (Feldbrugge et al. 1994).  The AE 

(Activation Element) box dimmer was found to be involved in the regulation of the nuclear gene GapA, 

which encodes the A subunit of glyceraldehyde 3-phosphate dehydrogenase, and confers light 

responsiveness (Park et al. 1996).  The AT1 motif has been found to exist in the promoter of a Bell1-like 

gene of potato, which can be light-activated (Chatterjee et al. 2007).  G-boxes, elements with the core 

CACGTA,  are found in the promoters of many genes that respond to a variety of different stimuli, 

especially light (Terzaghi and Cashmore 1995).  GT-1 sites appear important for light regulation, and can 

be found in many light-regulated genes including RbcS (ribulose-1,5-bisphosphate 

carboxylase/oxygenase small subunit) from many species (Donald et al. 1990; Viret et al. 1994), and in 

phyA from oats and rice (Kuhn et al. 1993; Dehesh et al. 1990).  MRE motif sequences are MYB binding 
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sites known to be involved in light responsiveness (Nalbandi et al. 2012).  The Sp1 motif  is also known 

as a potential light-correlated motif  (Thanh et al. 2012).  CHS promoters from several species have an 

element known as Box1 (H-box), which is essential for light regulation (Terzaghi et al. 1995), while Box4 

was a light-responsive promoter motif correlated with specific phototransduction pathway (Yamada et al. 

1992; Cerardo et al. 1996).  Gap boxes are necessary for GAPB gene transcription, which encodes the B 

subunit of chloroplast glyceradehyde-3-phosphate dehydrogenase (GADPH) of Arabidopsis thaliana 

(Chan et al. 2001).  TCT in the promoter of the RbcS (small subunit of ribulose-1,5-biphosphate 

carboxylase) gene was found to be a light responsive element in poplar (Wang et al. 2013). 

Here we report on the regulation of two NAC transcription factors from C. colocynthis by 

different light signals, which at least in part, are associated with the auxin response.  This is the first 

report on the interaction of light, auxin and NAC transcription factors from this drought tolerant cucurbit 

species.   

 

Materials and Methods  

Bioinformatic analysis  

The partial promoters of CcNAC1 (KC814688) and CcNAC2 (KC814689) (1585 bp and 1299 bp lengths, 

respectively) were cloned as previously described (Wang et al. 2013). Plant CARE 

(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/), a database of plant cis-acting regulatory 

elements and a portal of tools for in silico analysis of promoter sequences (Lescot  et al. 2002), was used 

to identify consensus motifs in the promoter sequences of CcNAC1 and CcNAC2 using standard program 

parameters.   
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GUS constructs and analysis  

The promoters were amplified with the primers shown in Table 1. The resulting PCR products were fused 

into the pCR8/GW/TOPO Gateway entry vector, then transferred into pMDC162 via the LR reaction 

using manufacture’s protocol. The recombinant pMDC162 plasmid containing the pCcNAC::GUS fusion 

was transferred to Agrobacterium tumefaciens LBA4044, and the resulting strain was used to transform 

Arabidopsis wild type (Col). At least ten independently transformed plants for CcNAC1 and CcNAC2 

were identified and further analyzed using histochemical staining according to Altamura et al. (1991) on 

different tissues at different developmental stages as described in the text and a representative line for 

each is shown. 

β-glucuronidase activity was assessed by histochemical assay (Jefferson et al. 1987). 

Histochemical GUS analysis was done by immersing different tissues in a GUS reaction buffer. Samples 

were incubated for 16-18 h at 37Ԩ, followed by a 70% ethanol rinse to clear the tissues. Fluorometric 

GUS assays were performed on seedlings of each line using 100 mg of tissue ground in GUS extraction 

buffer (50 mM sodium phosphate, pH 7.0, 10 mM 2-mercaptoethanol, 10 mM Na2EDTA, 0.1% sodium 

lauryl sarcosin, 0.1% Triton X-100). A sample of 475 ul was taken from the clarified extract and warmed 

to 37Ԩ for 1 h after the addition of 25 ul GUS assay buffer (2 mM MUG in GUS extraction buffer). The 

reaction was stopped by pipetting 500 ul of the reaction mixture into 1.95 ml carbonate stop buffer (0.2 M 

Na2CO3).  A DyNA Quant 200 Fluorometer (Hoefer, Inc., San Francisco, CA) was used with a 4-MU 

standard solution to calibrate the instrument. For calibration, 1.9 ml of carbonate stop buffer was added to 

100 ml of the 4-MU standard solution (1mM). The GUS activity was calculated as fluorescent units per 

mg fresh weight of tissue.  
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Overexpression plasmid construction and transformation 

Two previously cloned genes CcNAC1 and CcNAC2 (Wang et al. 2013) and their cDNA were amplified 

with primers CcNAC1F/R and CcNAC2F/R. The resulting PCR products were fused into the 

pCR8/GW/TOPO entry vector, followed by transfer into pMDC32 via the LR reaction (GatewayR Entry 

vector, Life Technologies) using the manufacturer’s protocol. The recombinant pMDC32 plasmids 

containing 2X35S: CcNAC (CDS) insert were used for transformation into Agrobacterium tumefaciens 

LBA4404.  Arabidopsis plants were transformed via the floral dip method (Clough and Bent 1998) and 

selected on hygromycin-containing medium. Homozygosity of transgenic plants was determined by 

segregation analyses based on the presence or absence of the hygromycin selection marker, and PCR 

analysis of the transgenic plants. 

 

Different light/dark/IAA treatment of C. colocynthis  

Citrullus colocynthis seeds (No. 34256) from Israel with high tolerance to drought were sown in potting 

mix in the greenhouse with a 14 h photoperiod and temperatures ranging from 22Ԩ to 33Ԩ and ambient 

relative humidity and light conditions (600-720 μmol m-2sec-1).  The plants were exposed for 24h to 

red/far-red/ blue/ dark/white light treatments when the seedlings showed 2-3 true leaves. Light intensities 

used in the LED chamber were 60 μmol m-2sec-1 for far-red light, 90 μmol m-2sec-1 for red light, 30 μmol 

m-2sec-1 for blue light treatment using the method of  Folta, 2005.  Following treatment, true leaves from 

2-3 seedlings were immediately placed in liquid nitrogen followed by RNA extraction and qRT-PCR 

analysis. For IAA treatment, the plants were transferred to water plus 10 µM IAA for 24h before freezing 

of true leaves in liquid nitrogen followed by RNA-extraction  and qRT-PCR. 
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Different light/dark /IAA treatment and growth measurements in Arabidopsis  

White light/dark treatment: Plants were grown in petri plates on ½ MS medium (pH=6.5, 15 g/L sucrose), 

either under 8h light/16h dark cycle or under continuous dark conditions, as noted in the text.  For 

determination of the effects of auxin on growth of seedlings, a final concentration of 10 µM IAA was 

added to the ½ MS medium. 

Different light treatments: Seeds of the homozygous lines were germinated on ½ MS medium for 

different light treatments for a 7 day period. The light intensities used (in the LED chamber) were the 

same as described for treatment of C. colocynthis seedlings.  

Growth measurements: Hypocotyl length measurements were taken on wild type and overexpression lines 

from digitized images using ImageJ following 7 days of growth.  

cDNA synthesis and relative quantitative (RQ) real-time RT-PCR 

RNA was extracted from plant material using the Trizol (Invitrogen Life Technologies, Grand Island, NY) 

method. To eliminate the remaining genomic DNA, RNA was treated with Dnase I (Ambion Life 

Technologies) according to the manufacturer’s instruction. cDNA was synthesized using 

RETROscriptTM (Ambion). qRT-PCR was carried out using a Bio-Rad, iCycler Real Time PCR 

(Hercules, CA) system and iCycler detection system software. The C. colocynthis-specific actin gene 

(ccActin154F/R), used as the reference gene, was amplified in parallel with the target gene, allowing 

normalization of gene expression and providing quantification. Primers were designed based on specific 

regions of CcNAC1 and CcNAC2. Primers sequences of the CcNAC1 (Q-NAC1F/R), CcNAC2 (Q-
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NAC2F/R) and Actin (ccActin154F/R) are listed in Table 2.  Detection of RQ real-time RT-PCR products 

was conducted using the SYBR ® Green PCR Master mix kit (Applied Biosystems, Life Technologies). 

Quantification of the relative transcript levels was performed using the comparative CT method. The 

induction ratio (IR) was calculated as recommended by the manufacturer and corresponds to 2-∆∆CT, 

where ∆∆CT= (CT, target gene, -CT, actin) treatment- (CT, Target-CT, actin) control.   Relative 

quantification relies on the comparison between expression of a target gene versus a reference gene and 

the expression of same gene in the target sample versus the reference sample (Pfaffl 2001). 

 

Results  

In silico analysis of CcNAC1 and CcNAC2 promoter 

Numerous cis-acting elements such as ACE, AE, AT1, BOX4, and others have repeatedly been identified 

in light-regulated genes (Terzaghi and Cashmore 1995). Analysis of CcNAC1 and CcNAC2 promoter 

sequences as illustrated in Fig. 1 showed the presence of several putative and specific light-regulated 

elements, which are not commonly found in other plant promoters. The CcNAC1 and CcNAC2 promoter 

regions both contained the ACE, ATI, and GTI motifs, G-box, MRE and Sp1 elements, while the 

CcNAC2 promoter additionally contained the BOX1, BOX4, the GAP-BOX and TCT motif. This 

suggests that CcNAC1 and CcNAC2 may be light regulated.  

CcNACs expression in C. colocynthis under R, FR, B light 

Since C.colocynthis CcNAC1 and CcNAC2 promoters were correlated with light motifs, the plants were 

exposed for 24h red/far-red/blue/white light treatments when the seedlings showed 2-3 true leaves. 

Afterwards, the leaves were immediately placed in liquid nitrogen for RNA extraction and qRT-PCR 
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analysis of CcNAC1, 2 expression. The CcNAC1 and CcNAC2 expression patterns in C. colocynthis 

leaves were very similar under different light treatments (not significantly different). Compared with their 

expression level under white light, CcNAC1 and CcNAC2 expression were up-regulated by blue light, 

about 2 times.  Red light enhanced their expression 10 and 7 times (Fig. 2), while far-red light treatment 

did not result in CcNAC gene expression level changes.  

 

pCcNACs::GUS expression pattern and expression level under R, FR, B light 

In order to gain a better understanding of the expression patterns of pCcNACs::GUS under R, FR, or B 

light, promoter-GUS transgenic lines for each NAC were generated and analyzed using GUS staining 

(Fig.3). pCcNAC1::GUS and pCCNAC2::GUS both showed limited expression throughout the seedling 

under standard white light conditions, with the strongest expression being in the stipule regions and little 

expression in roots and cotyledons (Fig 3A, 3E).  Under red light, GUS expression became intense and 

ubiquitous in transgenic seedlings of both CcNAC1 and CcNAC2, including cotyledons, hypocotyls, and 

roots (Fig.3C and 3G). Blue light induced expression largely in cotyledons, but similar to white light 

expression in hypocotyls and roots. Far red light treatment resulted in low expression levels of both 

pCcNAC1::GUS and pCcNAC2::GUS. The pCcNAC1::GUS expression was detected at low levels in the 

shoot apical meristem, and pCcNACs::GUS at low levels in shoot apical meristem, the bottom of the 

hypocotyl and root (Fig 3D and 3H). Its tissue expression pattern under FR was quite similar to that under 

white light. Results from the GUS staining analysis indicated that red light up-regulated the expression of 

both pCcNAC1 and pCcNAC2-GUS transgenic plants, while far red light limited the expression of both 

promoter-regions of the NAC genes, and blue light induced expression in cotyledons (Fig. 3B and 3F), 
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and the level of expression under blue light was in between that of expression levels under red light and 

far-red light.  

To accurately quantify the effect of blue, red, and far red light on pCcNACs::GUS expression, 

fluorometric GUS assays were conducted on the transgenic lines of pCcNACs::GUS. As shown in Fig. 4, 

the pCcNAC1::GUS  expression level under blue light (N1-B) was 8.29 times higher than that of 

pCcNAC1::GUS under white light (N1-W). The pCcNAC2::GUS activity level under blue light (N2-B) 

was 11.34 times that of pCcNAC2::GUS under white light (N2-W).  Red light resulted in even higher 

expression levels: pCcNAC1::GUS and pCcNAC2::GUS both showed 141.31 (N1-R) and 194.39 (N2-R) 

times higher levels of expression in red light as compared to those under white light. Far red light had the 

opposite effect as compared to other light treatments: pCcNAC1::GUS and pCcNAC2::GUS showed 0.31 

and 0.53 fold changes, thus indicating that far-red light repressed the expression of both genes.  The GUS 

assay results of Fig. 4 correspond to the GUS staining results shown in Fig.3 of pCcNAC1::GUS and 

pCcNAC2::GUS.   

From the GUS expression patterns (Fig.3) and level of level of pCcNAC1::GUS and 

pCcNAC2::GUS (Fig.4) under different light conditions, we can conclude that R, FR, and B light have 

different impacts on the CcNAC1/2 expression. 

  

CcNACs expression patterns without light  

QRT-PCR experiments were conducted to investigate CcNACs expression levels in C. 

colocynthis in the dark. As shown in Fig.5, the expression of CcNAC1 and CcNAC2 in C. colocynthis 

leaves was up-regulated in the dark. CcNAC1 expression level was more than 7.5 times higher than its 

expression level white light, and CcNAC2 expression level was more than 15 times higher as compared to 

its level under white light.  
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The expression patterns of pCcNAC1::GUS and pCcNAC1::GUS Arabidopsis plants in the dark 

are shown in Fig 6. Both promoters were mainly expressed in hypocotyls (Fig. 6A and 6D) and shoot 

apical meristems (Fig. 6B and 6E). Compared with their expression pattern under white light (Fig. 3A and 

3E), higher levels were observed in the hypocotyls under the dark condition (Fig.6). 

 

Photomorphogenic response of overexpression lines of CcNAC1 and CcNAC2 in the dark  

To examine the impact of light on CcNAC1 and CcNAC2, the photomorphogenic responses of 

Arabidopsis transgenic overexpression lines of CcNAC1 and CcNAC2 were studied.  Hypocotyls are 

known to be strongly influenced by both external and internal cues known to regulate cell elongation such 

as light, gravity and hormones (Vanderbussche et al. 2005).  Light signals do regulate gene expression 

and growth via a set of photoreceptors (Bertrand et al. 2005) and many genes are known to be regulated 

by light (Ma et al. 2001).  Since CcNAC1/2 might be associated with light regulation, the hypocotyls of 

the seedlings were first investigated under dark conditions. Seedlings grown under dark conditions are 

etiolated and have long hypocotyls and closed cotyledons, while seedlings grown in the light have a short 

hypocotyl and open cotyledons.  Hypocotyl elongation/etiolation in the absence of light is the result of 

cell elongation (Gendreau et al. 2003). Under dark conditions the hypocotyls of the OE-CcNAC1 and OE-

CcNAC2 lines were significantly (25%-30%) longer than WT hypocotyls, as shown in Fig. 7. Fig. 7C 

shows the average length of the WT hypocotyls and hypocotyls from overexpression lines.  Hypocotyls 

from overexpression lines (>17.5 mm) were longer than WT hypocotyls (~ 15 mm).  

 

Impact of Red, Far Red, and Blue light on growth of OE-CcNAC1 and OE-CcNAC2 lines 
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Under standard white light conditions, both OE-NAC1 and OE-NAC2 lines showed longer 

hypocotyls (~ 2 mm) than the wild type Arabidopsis (~1.75 mm) as shown in Fig. 8.  Red and far-red 

light absorbing phytochromes are part of one of the major influential signaling network in plants.  

Phytochromes exist in two distinct but interconvertible forms in plants, the R light-absorbing Pr form and 

the FR light-absorbing Pfr form. The Pfr form is considered to be the active form, but there is also 

evidence suggesting that the Pr form has some biological activity (Shinomura et al. 2000).  PhyA 

mediates the very low fluence response (VLFR) and the far-red high-irradiance response (HIR); phyB 

mediates both HIR to red light and the R/FR reversible low-fluence response (LFR) (Shinomura et al. 

1996; Yanovsky et al. 1997).  Our results (Fig. 8A and B) showed that R and FR light had different 

impacts on the overexpression lines of CcNAC1 and CcNAC2. Red light enhanced the hypocotyl growth 

of overexpression lines, both OE-CcNAC1 and OE-CcNAC2 showed >6.0 mm of hypocotyl length, 

compared with WT (< 5.5 mm) hypocotyl length. On the contrary, FR shortened the hypocotyl length of 

overexpression lines. Both of the overexpression lines showed less than 2.8 mm of hypocotyl length, 

while WT seedlings showed longer hypocotyls (>2.8 mm). 

Currently, two classes of blue light receptors have been identified in plants: the cryptochromes 

and the phototropins. Cry1 and cry2 are the most important members of cryptochrome family. Cry1 

controls cotyledon expansion, anthocyanin formation and flavonoid biosynthetic enzymes. In addition to 

cry1, cry2 also mediates blue light-mediated inhibition of hypocotyl elongation and anthocyanin 

formation (Christie and Briggs 2001).  In this study the effect of blue light on growth of hypocotyls of 

overexpression lines of CcNAC1 and CcNAC2 (Fig. 8A and B) was investigated.  Under blue light, 

seedlings from WT and OE lines showed significant differences in hypocotyl lengths.   Overexpression 

lines under blue light did show longer hypocotyls (1.0 mm for N1 and 1.16 mm for N2) as compared to 
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WT hypocotyls (0.8 mm).  White light also had more effect on the hypocotyl length of OE-CcNAC1 

(~1.75 mm) and OE-CcNAC2 (~1.9 mm) as compared to WT (~1.45 mm).  Thus, based on results from 

GUS staining and assay analysis as illustrated in Fig. 3 and Fig. 4, it can be concluded that the enhanced 

expression of CcNAC1 and CcNAC2 did induce hypocotyl elongation under blue light and red light 

(Fig.8).  On the contrary, the lower levels of expression of the two genes (Fig. 3 and 4) did result in 

repression of hypocotyl elongation under far-red light (Fig. 8). And OE-CcNAC1, 2 impacts on hypocotyl 

lengths were partially isolated from their promoter effects, because we used constitutive35S promoters in 

overexpression lines. Although the hypocotyls phenotypes of OE lines were not significantly changed 

compared with WT, we can still draw the conclusion that CcNAC1 and CcNAC2 expression levels 

influenced hypocotyl lengths. 

 

Auxin effects on CcNAC1 and CcNAC2 expression levels in C. colocynthis  

Several mechanisms explain the correlation between light and hypocotyl elongation.  It is known that 

auxin promotes hypocotyl, inflorescence stem and flower organ elongation via changes in gene 

expression (Chae et al. 2012).  MSG2/IAA19 and NPH4/ARF4 are involved in tropic hypocotyl growth, 

and ARF2, ARF8, and ARF9 are involved in root and hypocotyl growth and development, although the 

function of Aux/IAA partners in these processes is not clear.  The AFB5-5 mutant of auxin receptor 

shows almost complete resistance to picloram-induced hypocotyl growth (Greenham et al. 2011). H+-

ATPase is known to play a central role in auxin-induced hypocotyl elongation (Takahashi et al. 2012).   

Hypocotyl length is affected by both cell number and cell elongation, and cell elongation is the 

major factor of hypocotyl length (Zhang et al. 2013). Some embryogenesis regulators might control the 

capability for hypocotyl elongation (Junker et al. 2012).   The Arabidopsis TIM50 knockout can cause 
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mitochondrial structural changes and a reduction in intracellular ATP levels, which in turn control cell 

elongation in Arabidopsis hypocotyls through possible signaling via AMP kinase (Kumar et al. 2012). 

COP1/SPA can control hypocotyl elongation in response to low R:FR via auxin biosynthesis (Rolauffs et 

al. 2012). Circadian bursts of hypocotyl elongation occur when plants are exposed to constant light and 

light intensity can strongly influence growth rate. Sucrose can trigger PIF-dependent and –independent 

auxin response pathway and increase hypocotyl elongation (Lilley et al. 2012). By permissive gating of 

light-mediated hormone-related gene transcript levels to the proper time of day, circadian clock controls 

the seasonal and shade-appropriate plant growth, which includes the hypocotyl elongation (Nomoto et al. 

2012). Since we found one auxin-related motif TGA-box in CcNAC1 upstream (Fig.1A) and auxin levels 

are known to be correlated with hypocotyl growth, we conducted experiments to investigate the effect of 

auxin on these two NAC genes. As can be observed in Fig.9, CcNAC1 and CcNAC2 were down-regulated 

by IAA treatment in C. colocynthis (0.4 and 0.25 times, respectively).  

 

The effects of auxin on localization of CcNAC1 and CcNAC2 under light  

Light is able to manipulate plant growth and development through links to the auxin system 

(Halliday and Fankhauser 2003).  Auxin transport through tissues and organs is integral to its action (Wu 

et al. 2010). The impact of light on auxin signaling is not likely to be as simple as the down regulation of 

auxin sensitivity or auxin levels to suppress cell elongation, because exogenous auxin does not 

substantially counteract the inhibitory effects of light (Tian and Reed 2001).   It is known that auxin is 

synthesized in young leaves of the shoot system and transported downward to the root tip through the 

vasculature.  Since light stimuli result in a directional transport of auxin, we investigated whether auxin 

could regulate gene expression in plant tissues.  To understand the mechanism of auxin regulation of 
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CcNAC1 and CcNAC2, the effects of IAA treatment was investigated using CcNAC1-promoter:GUS 

(pCcNAC1::GUS) and CcNAC2-promoter:GUS (pCcNAC2::GUS) transformants.  As shown in Fig. 10,  

the addition of IAA changes the  expression of CcNAC1 from shoot apical meristem (SAM) (A) to the 

bottom of the hypocotyl (B). The expression pattern of CcNAC2 promoter under different levels of IAA 

was similar, since GUS expression was mainly detected in the apical meristem on ½ MS.  However, 

CcNAC2 showed high expression levels at the bottom of the hypocotyl,  root tissue and SAM on ½ MS + 

IAA (Fig. 10D). 

 

Manipulation of the CcNAC1 and CcNAC2 expression patterns under dark by auxin in early stage of 

growth 

To better understand the effects of auxin on CcNAC1 and CcNAC2 expression with or without light, very 

young Arabidopsis seedlings transformed with pCcNAC1::GUS or pCcNAC2::GUS were grown in the 

dark on ½ MS and ½ MS + IAA. In 2-day old Arabidopsis seedlings, GUS expression was detected 

mainly in hypocotyls and cotyledons under normal light conditions as seen in Fig. 11A and D. 

pCcNAC1::GUS (Fig. 11B) and pCcNAC2::GUS (Fig. 11E) showed low levels of expression with IAA 

treatment under light. This phenomenon corresponds to qRT-PCR results from Fig. 9, which showed the 

inhibition of IAA on expression of these two genes. However, IAA treatment did induce their expression 

in the roots of transgenic plants under dark treatment (Fig. 11C and F).  

 

Reversal of OE-CcNAC1 and OE-CcNAC2 phenotypes by auxin under dark conditions 
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To further study the effects of auxin on CcNAC1 and CcNAC2, the photomorphogenic phenotypes of 

overexpression lines were investigated under dark conditions in the presence of 10 uM IAA. Hypocotyls 

of WT and overexpression lines growing on ½ MS and ½ MS + IAA were measured following a 7 day 

dark treatment.  The addition of IAA to ½ MS medium resulted in significantly reduced growth of the 

hypocotyls of the CcNAC1 and CcNAC2 OE lines, as shown in Fig. 12 A and 12B.  The length of 

hypocotyls from OE lines on ½ MS + IAA was significantly shorter, indicating that the growth of WT 

and OE hypocotyls was inhibited, especially in the OE lines.  The average length of hypocotyls of WT 

seedlings was more than 7mm, while hypocotyls of both OE lines were less than 6 mm, indicating 

significantly reduced growth as compared to WT hypocotyl growth observed in Fig. 12C. The results 

indicate that the hypocotyls of OE-CcNAC1 and OE-CcNAC2 were sensitive to IAA, because IAA 

inhibited hypocotyl growth significantly. This phenomenon indicated that growth of overexpression 

seedlings was inhibited by auxin under dark treatment.  

Light regulates many developmental processes, including seed germination and seedling 

photomorphogenesis (Lau and Deng 2010). Light and hormones control many of the same aspects of 

plant development (Kraepiel and Miginiac 1997).  For example, auxin and gibberellins induce cell 

elongation, which can be inhibited by blue, red and far-red light perceived by cryptochromes and 

phytochromes (Kraepiel and Miginiac 1997). Romano et al. (1995) had demonstrated that the regulation 

of hypocotyl elongation by auxin and light are independent, since IAA overproducing plants exhibited 

normal responses to light. Auxin promotes hypocotyl elongation in light-grown seedlings, and several 

components of light signaling have been shown to affect auxin signaling (Valdés et al. 2012).  

Here, our results indicate that in the presence of auxin under dark conditions, the CcNAC genes 

were expressed mainly in the Arabidopsis cotyledons (Fig. 11A and 11D) and roots (Fig. 11C and F) and 
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showed down-regulation in very young seedlings (Fig.11B and 11E). The phenotypes of OE-CcNAC1 and 

OE-CcNAC2 in the presence of auxin under dark conditions displayed shorter hypocotyls (Fig.12) than 

phenotypes without auxin in the dark (Fig. 7). In conclusion, the expression of the two CcNACs and the 

hypocotyls of OE-CcNAC1 and OE-CcNAC2 lines were regulated by auxin and light together. CcNAC1 

and CcNAC2 both play roles in the signaling of auxin and light pathways. 

 

Discussion 

Critical responses to development and environmental stimuli are mediated by different 

transcription factors. Transcription factors play important roles in light mediated regulation of plant 

development.  MYC2 and SPA1 transcription factors regulate the Z/G-box containing promoters, and 

mediate photomorphogenesis in Arabidopsis (Gangappa et al. 2013).  HY5, a bZIP transcription factor, 

functions downstream of multiple photoreceptors and plays roles in promoting photomorphogenesis under 

diverse light conditions (Ulm et al. 2004).  HY5 can directly bind to the ACGT-containing elements 

(ACEs) of the promoters of light-responsive genes (Zhang et al. 2011).  PIF4 and PIF5 (also known as 

PHYTOCHROME INTERACTING FACTOR3-LIKE6) are crucial for the function of the ELF (EARLY 

FLOWERING) 4-ELF3-LUX (LUX ARRHYTHMO) complex (evening complex), which directly 

regulates plant growth diurnally (Nusinow et al. 2011).  PhyB-mediated, post-translational regulation 

allows PIF3 accumulation to peak just before dawn, at which time it accelerates hypocotyl growth, 

together with PIF4 and PIF5, by directly regulating the induction of growth-related genes (Soy et al. 

2012).  COP1 stabilizes PIF in darkness. Phytochromes are known to facilitate PIF degradation and 

reduce COP1 activity.  COP1 and PIF together mediate phytochrome degradation (Smirnova et al. 2012).  

Here, we identified two new transcription factors with functions in light regulation. The mechanisms of 
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light regulation on gene transcription have been reported in several publications.  GT-elements are 

regulatory DNA sequences found in the promoter region of many different plant genes, with a positive or 

negative light-responsive function (Zhou 1999).  HY5 also mediates the crosstalk between light and 

hormone signaling, including ABA, gibberellins and auxins (Oyama et al. 1997; Cluis et al. 2004; Lau 

and Deng 2010). 

Light and auxin signaling pathways are intertwined (Lin and Wang 2005).  IAA has been shown 

to directly interact with, and to be phosphorylated by oat phyA (Colón-Carmona et al. 2000).  Some IAA 

mutants show different light responses, which result in hypocotyl changes both in the dark and in the light 

(Kim et al. 1998; Nagpal et al. 2000).  Light has been shown to affect auxin metabolism, auxin transport, 

and auxin signaling/response (Lin and Wang 2005).  In this study, we conducted functional 

characterization of CcNAC1 and CcNAC2 genes based on their promoter analysis and phenotypes under 

light and dark treatment. The promoters of both genes have light responsive motifs, which indicated that 

both genes were responsive to light. The responsiveness of two kinds of light and auxin factors provided 

future evidence for the correlation among NAC genes and those two signaling pathways.  Under light 

conditions, IAA does regulate the localization of the CcNACs in GUS transgenic Arabidopsis.  In the dark, 

the expression pattern of those two genes is changed, both in expression level and expression localization.  

Both of CcNAC1 and CcNAC2 promoters contain many light-related motifs, although the specific light 

regulation mechanisms of these two transcription factors need to be investigated in more detail. But in the 

dark, IAA could reverse the phenotype and expression patterns of CcNACs compared with those in dark 

condition alone, which means that the two signaling pathways have to be intertwined to regulate their 

genes expression.  
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The relationship between auxin and light has been studied in many plant species.  Some auxin-

associated element transcripts are expressed in a phyA- and PIF1-dependent manner, including two auxin 

resistance genes (AXR1 and AXR4), three auxin transport proteins (PIN1, PIN2, PIN7), a transcription 

factor (ATMYB34),  and  one auxin metabolism related gene (SUR1) (Ibarra et al. 2013).  It was shown 

in stem elongation studies of pea (Pisum sativum L.) that the relationship between IAA content and stem 

growth is correlated with red, far-red and white light, but not correlated with blue light (Sorce et al. 2008).  

In this study, OE-CcNAC1 and OE-CcNAC2 hypocotyls were also influenced by white, red, blue and far 

red light.  BIG gene is required for normal auxin efflux, and its mutant asa1 can suppress the shade 

avoidance in phyA phyB null mutants in all organs other than the hypocotyl, which indicated that BIG 

does not only play a role in auxin signaling, but in light pathways (Kanyuka et al. 2003).  Similarly to the 

BIG gene, our NAC genes did play roles in both auxin and light signaling.  

Red light did lead to increases in both IAA biosynthesis in the apical region (meristem, 

cotyledons, and hook) of Arabidopsis seedlings and polar auxin transport in hypocotyls, leading to 

unchanged free IAA levels in the apical regions and increased free IAA levels in the more basal 

hypocotyl regions (Liu et al. 2011).  It is unknown whether IAA synthesis and transport in our 

overexpression lines was changed, but the addition of auxin to the growth medium definitely changed the 

expression patterns of CcNAC1 and CcNAC2.  Since NACs function downstream of auxin and 

phytochromes, the CcNACs can function under normal light and auxin regulation.  Under different light 

or auxin conditions, CcNACs show different expression levels and localization, thus these genes are light 

and auxin signaling-related. Terminal flower2 (tfl2) mutant, which carries  a mutation in the A. thaliana 

HETEROCHROMATIN PROTEIN 1 homolog, shows defects in both hypocotyl elongation and shade 

avoidance response. PhyA and phyB are epistatic to tfl2 in far-red and red light. Light-dependent and 
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auxin-dependent genes are misexpressed in tfl2 plants, and some of the genes overlap.  Since TFL2 could 

bind to IAA5 and IAA19, it was suggested that TFL2 might be involved in regulation of phytochrome-

mediated light response through auxin action (Valdes et al. 2012).  From our experimental results, we can 

conclude that both auxin and light regulate CcNAC1, 2 gene expression and there might be some 

correlation among auxin, light, CcNACs.  Different kinds of light had different impact on CcNAC1, 2 

expression.  It is known that COP1 is a key negative regulator in light signaling that can ubiquitinate 

positive transcription factors such as HY5 for degradation in the 26S proteasome pathway under different 

light conditions in Arabidopsis (Jia et al. 2013).  Since different lights had different impact on the both 

expression patterns and phenotypes of  CcNAC1 and CcNAC2 genes, the mechanism of the NAC TFs in 

the light signaling pathway remains to be investigated. 

 

Conclusions  

In this study, two NACs from C. colocynthis were further characterized for a function in light signaling 

and auxin signaling.   R/FR and blue light were found to play major roles in regulation of CcNAC1 and 

CcNAC2.  NAC genes have many functions in plant species (Olsen et al. 2005; Wang and Dane 2013). 

This is the first report on the relationship between phytohormone, light and NACs.  Different light and 

dark treatments resulted in quantitative and spatiotemporal changes in CcNAC1 and CcNAC2 expression 

patterns.  However, the mechanism of NAC gene expression under light and auxin are unknown.  The 

regulation of light might be controlled by specific elements in their promoter regions, which can be 

studied using GUS expression of different promoter regions. Also, native promoters linked to these two 

genes in transgenic plants could further explain the components of light regulation and their functional 

mechanisms.  
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CcNAC1 and CcNAC2 also contain several stress related motifs in their promoter regions (Wang 

et al. 2014). Thus we propose that not only stress, but also light and auxin might regulate the expression 

of CcNAC1 and CcNAC2 genes in several ways, resulting in changes in localization of gene expression 

and gene expression levels and phenotype.  It is important to know the detailed mechanisms of the 

regulation of these two genes, not only for understanding the correlation among CcNACs, light, 

phytohormones and stress, but also for future discoveries of NACs in other species. Research is needed to 

understand whether the interaction of auxin with CcNACs in unique to this species.  Techniques such as 

next generation sequencing, two-yeast hybridization could be used to detect other regulatory factors in 

overexpression lines of CcNAC1 and CcNAC2. 
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Table4. 1. Primers used for amplification of promoter regions of CcNAC1, 2 

Primer Sequence (5’-3’) Product 
length 

Tm 

pNAC1-F AAAAATGTATGCATGTTGACTCAATATT 1585bp 60Ԩ 

 pNAC1-R GATTTCTTCTTTCCCTTTTTTCTTCTT  

pNAC2-F ATCAAAAAATTTAGAAGTCAAACAAGACAT 1299bp 60Ԩ 

 pNAC2-R TTTTCTTCTGATATTTCTCCGGCG  

 

Table4. 2.Q-RT PCR primers for detection of relative expression levels of CcNAC1, 2 

Primers Sequence(5’-3’) Tm Product length 

ccActin 154F CACCATCACCAGAATCCAGCACGA  59Ԩ 140bp 

ccActin 154R GGCTCCACTCAACCCAAAGGCTAAC  59Ԩ 140bp 

Q-NAC1F GTCAACCGAGAATGAAAGAAGAGTA 59Ԩ 132bp 

Q-NAC1R TATACATGAACATATCCTGCAATGG 59Ԩ 132bp 

Q-NAC2F GTGCCGGATTTACAACAAGAA 59Ԩ 106bp 

Q-NAC2R AATCTTCGGCTTCTCGCTTC 59Ԩ 106bp 
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Figure 4. 2.CcNAC1, 2quantitative expression under different light in C.colocynthis.  

The gray color indicates CcNAC1 and black color CcNAC2 expression. The asterisk indicates the 

expression is significant compared with its expression under white light. 
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Figure 4. 3. pCcNAC1, 2 :: GUS histochemical assays under different light.  

A, B, C, and D show CcNAC1-promoter region in Arabidopsis. E, F, G and H show CcNAC2-promoter 

regions in Arabidopsis. A and E seedlings were grown under white light, B and F under blue light, C and 

G seedlings under red light, D and H seedlings under far-red light. The bar indicates 0.25 cm.  
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Figure 4. 4. GUS assay of  pCcNAC1::GUS and  pCcNAC2:: GUS under different light.  

Seedlings or seeds were germinated under and treated for 7 days. N1 and N2 stand for CcNAC1 and 

CcNAC2 separately. N1-W and N2-W were treated under white light; N1-B and N2-B were treated under 

blue light; N1-R and N2-R were treated under red light; N1-FR and N2-NR were treated under far red 

light. Fold induction is shown in front of this figure, and number indicates the fold induction of GUS as 

compared to white light of each transgenic line. GUS activities represent the mean values of at least 5 

different lines of transgenic Arabidopsis.   
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Figure 4. 5. CcNAC1 and CcNAC2 expression pattern in C. colocynthis leaves without light.  

The relative CcNAC1 (gray) and CcNAC2 (black) expression levels were normalized to the expression 

levels under white light by qRT-PCR.   
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Figure 4. 6. pCcNAC1::GUS and pCcNAC2::GUS expression in Arabidopsis under dark.  

The bar indicates 0.25cm. 
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Figure 4. 7. Comparison of hypocotyl lengths of OE-CcNAC1 and OE-CcNAC2. 

(A) and (B):  Comparison of hypocotyl lengths of overexpression lines of CcNAC1 or CcNAC2 and WT 

Arabidopsis following 7d of darkness. A and B were grown on ½ MS medium. The bar indicates 5mm.  

 (C) Hypocotyl length measurement of WT and overexpression lines. N1-1 and N1-2 are different lines of 

OE-CcNAC1, N2-1 and N2-2 are different lines of OE-CcNAC2.  WT = wild type Arabidopsis. 

Hypocotyl length was measured in mm. Values are means ± SD of more than 20 independent replicates.  
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Figure 4. 8 Different light impact on hypocotyle length of OE-CcNAC1 or CcNAC2 . 

 (A) Hypocotyl comparison of overexpression lines of CcNAC1 or CcNAC2 with WT Arabidopsis under 

different light treatment. W, B, R, FR are instead of white light, blue light, red light and far-red light. 

Each treatment contains three seedlings, which are wild type, OE-N1 and OE-N2. The bar indicated 

0.25mm. (B) Hypocotyl length of WT, OE-CcNAC1 (N1) and OE-CcNAC2 (N2) seedlings after growth 

under different light conditions. The light conditions include white light, blue light, red light and far-red 

light treatment. Seedlings were grown continuously in the indicated light treatment for 7 days. Values 

shown are means ± SEs of 20 seedlings.  
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Figure 4. 9. CcNAC1 , 2 expression pattern with and without IAA in C. colocynthis. 

The relative CcNAC1 (gray) and CcNAC2 expression levels were normalized to the expression levels 

under white light by qRT-PCR. W/O IAA: without IAA ; W/IAA : with IAA.  
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Figure 4. 10. pCcNAC1:: GUS and pCcNAC2::GUS under normal light conditions.  

A, and B show CcNAC1-promoter transgenic Arabidopsis. C and D CcNAC2-promoter transgenic 

Arabidopsis. A and C seedlings were grown on ½ MS medium, B and D seedlings  on ½ MS with 10µM 

IAA. The bar indicates 0.25 cm. 
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Figure 4. 11. IAA and light regualte pCcNAC1::GUS and pCcNAC2::GUS together. 

A, B and C show pCcNAC1::GUS expression in Arabidopsis ; D, E and F show pCcNAC2::GUS 

expression in Arabidopsis .A and D are 2-days old seedlings on 1/2MS with white light; B and E are 2-

days old seedlings on 1/2MS +IAA under white light; C and F are 2-days old seedlings on 1/2MS+IAA  

under dark. The bar indicates 1mm. 
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Figure 4. 12.  IAA reversed impact on OE- CcNAC1 or CcNAC2 under 7d dark . 

(A and B) Hypocotyl comparison between overexpression lines of CcNAC1 or CcNAC2 with WT 

Arabidopsis  on ½ MS+IAA under 7 d dark . A shows the comparisons between WT and OE-CcNAC1 

seedlings, while B shows the comparisons between WT and OE-CcNAC2 seedlings. The bar indicated 

0.2mm.  

(C) Hypocotyl length (in mm) of overexpression lines of CcNAC1 and CcNAC2 with WT 7 day-old 

Arabidopsis under dark. N1-1 and N1-2 were independent lines of OE-CcNAC1, N2-1 and N2-2 were 

independent lines of OE-CcNAC2. Values are the means ± SD of more than 20 independent replicates.  
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V Analysis of the Citrullus colocynthis transcriptome during water deficit stress 

 

Abstract 

Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus 

var. lanatus), an economically important cucurbit crop.  Drought is a threat to plant growth and 

development, and the discovery of drought inducible genes with various functions is of great 

importance. We used high throughout mRNA Illumina sequencing technology and bioinformatic 

strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples 

at four different time points, day 1 (D1), day 2 (D2), day 3 (D3) and day 4 (D4), were used for 

RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was 

performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the 

first glimpse of the drought responsive transcriptome of this species.  A total of 5038 full-length 

cDNAs were detected, with 2545 genes showing significant changes during water deficit 

conditions (at D2, D3 or D4) as compared to D1. Principle component analysis indicated that 

drought was the major contributing factor regulating transcriptome changes. Up regulation of 

many transcription factors, stress signaling factors, detoxification genes involved in 

phytohormone signaling occurred in C. colocynthis throughout the water deficit experiment.  

Similarly citrulline metabolism genes were induced under water deficit conditions.  The 

transcriptome under water deficit thus showed transcripts, which might be the candidate genes in 
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the defense of drought stress, and might provide an important resource for plant research and 

crop genetic improvement.  

 

Keywords 

Citrullus colocynthis, drought, transcriptome 

 

Introduction 

Water is essential for plant growth in modern agriculture (Guo and Tan 2013).  Drought 

delays the development of crops, and strongly affects morphology, as well as physiological 

processes like transpiration, photosynthesis, respiration and translocation of assimilates (Do et al. 

2013). Drought avoidance can be achieved through morphological changes in plants, such as 

decreased stomatal conductance, reduced leaf area, and extensive root systems (Levitt 1980). 

Drought tolerance is achieved by physiological and molecular mechanisms, including osmotic 

adjustment, antioxidant and scavenger compounds (Bartels and Sunkar 2005). Both strategies 

involve the induction of specific genes and proteins, such as dehydrins (dehydration-induced 

proteins), key enzymes for osmolyte biosynthesis, and detoxification enzymes (Reddy et al. 2004; 

Shinozaki and Yamaguchi-Shinozaki 2007). 



 141  
 

Plant species have developed diverse strategies to adapt and thrive in all kinds of climates 

and terrains and evolved to deal with extreme changes in the environment. These strategies are 

supported by rich and complex metabolic networks that enable the plant to synthesize a wide 

range of compounds. Plant responses to abiotic stresses involve interactions and crosstalk 

between many molecular pathways. High throughput screening techniques such as transcriptome 

sequencing have been used to study the adaptability of plants to drought (Zhao et al. 2013).  This 

led to the discovery of many drought related genes. For example, PIP aquaporins were found to 

fine-tune the environment in response to declining water availability (Sŭrbanovski et al. 2013). 

However, few natural allelic variants have been cloned for drought related traits, so QTL, RNA 

sequencing and other methods are needed to improve methodology for exploring complex 

multivariate data (Juenger 2013; Caccamo and Grotewold 2013).  

The cucurbit family is a large family with several economically important species, such 

as watermelon (Citrullus lanatus), melon (Cucumis melo), cucumber (Cucumis sativus) and 

several Cucurbita species with edible fruits (Jagadeeswaran et al. 2012). Citrullus colocynthis 

(L.) Schrad (2n=2x=22), the bitter apple, closely related to domesticated watermelon (Citrullus 

lanatus var. lanatus), is a very drought-tolerant perennial herbaceous species in the 

Cucurbitaceae family (Jeffrey 2008). It can survive arid environments by maintaining its water 

content under severe stress conditions. C. colocynthis is an important medicinal plant and a 

source of valuable oil (Burkill 1985; Dane et al. 2006). Its seeds were found in several early 

Egyptian, Libyan and Near Eastern sites from about 4000 BC (Zohary and Hopf 2000). This 

species grows in sandy areas throughout northern Africa, southwestern Asia and the 
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Mediterranean region (Zamir et al. 1984, Burkill 1985, Jarret et al. 1997).  The species has been 

used as a model to elucidate the function of genes implicated in the stress response ultimately 

leading to enhancement of stress tolerance in cucurbit crops through genetic manipulation. Si et 

al. (2009) found dynamic gene expression changes in C. colocynthis root tissues by cDNA 

amplified fragment length polymorphism (cDNA-AFLP) technique.  

Several research groups have used next generation sequencing technologies to study gene 

expression profiles in species of the cucurbit family. For example, Guo et al (2011) used 454 

sequencing technology to study the comprehensive profile for watermelon fruit flesh tissues, 

while Grassi et al (2013) studied carotenoid pathway regulators in ripening watermelon fruit.  

The draft genome of watermelon (C. lanatus, 2n=2x=22, ~ 425 Mb) was analyzed by Guo et al 

(2013) using three different watermelon subspecies.  Comparative genomic analysis provided an 

evolutionary scenario for the origin of the 11 watermelon chromosomes derived from a 7-

chromosome paleohexaploid eudicot ancestor. The genome sequence of cucumber (Cucumis 

sativus, 2n=2x=14) has been completed, and the genome of melon (Cucumis melo, 2n=2x=24) is 

being sequenced under the Spanish Genomics Initiative (MELONOMICS) (Huang et al. 2009). 

Liu et al (2013) used sequencing techniques to identify conserved and novel miRNA in 

watermelon, while Wincker (2013) used comparative analysis of genomes between watermelon 

and sweet orange to detect the traits related to their domestication.  

Here, high-throughput sequencing of the leaf transcriptome from C. colocynthis provides 

a glimpse at drought related genes in this uniquely drought tolerant cucurbit species, which 
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should facilitate the identification of valuable multiple genes, needed for complex interactions of 

plant species with the environment.   

 

Results and Discussion 

Transcriptome assembly results  

The transcriptome of C. colocynthis leaves following 4 days of drought stress was assembled and 

assessed following paired-end (2*50bp) Illumina sequencing. The Illumina platform yielded an 

average of 24 million high-quality reads per sample (Table 1). All sample reads were used to 

construct a de novo assembly, and a reference assembly using the completely sequenced 

watermelon genome. A total of 20,581 contigs were generated (Table 2).  The contigs had an 

average length of 1350 bp and N50 of 1870 bp.  BlastX was used against SwissProt and ESTscan 

of translated protein sequences to detect full length cDNAs.  A total of 5,038 full length cDNAs 

were detected in our sequencing assembly. 

Principle component analysis (PCA) was implemented in the CLC workbench. The 

results (Fig.1) illustrate differential gene expression patterns in C. colocynthis seedlings 

following four days of withholding water.  Gene expression patterns on D1 and D2 were quite 

similar, while results from D3 and D4 showed more differences as compared to D1 and D2, and 

gene expression patterns detected on D4 were very different from the other time points as a result 

of drought stress.   
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Differentially expressed genes involved in the response to drought stress in C. colocynthis 

The paired-end reads were mapped to the reference genomes after filtration using the CLC 

genome workbench. Read counts of each unigene were converted to reads per million (RPM). 

The read number of each cDNA was divided by the total number of reads per day (1, 2, 3 or 4) 

from the data set, and multiplied by 106.  Statistical analysis was conducted using Kal’s test in 

the CLC workbench (P<0.05 and fold change ≥1.5). Genes showing non-significant and 

significant changes in read counts are shown in Table S1. Each sample was compared to the day 

1 sample reads for analysis of their significance level of gene expression. The read results 

indicated that 59 genes showed significant changes at D2, D3, and D4 as compared to D1; 13 

genes showed significant differential expression at D2 and D3 as compared to D1; 30 genes 

showed significant differential expression early, at D2, as compared to D1; 897 genes showed 

changes at D3 and D4 as compared to D1; 341 genes were only differentially expressed at D3; 

1191 genes were regulated late, at D4 only, under drought stress. In conclusion, the C. 

colocynthis gene expression patterns showed dramatic changes with 2545 genes showing 

significant changes, mostly occurring late under drought conditions (D3 and D4 of withholding 

water). 

The heat map depicted in Fig. 2 corresponded to the principal component analysis. D3 

and D4 transcripts were clustered together, and D1 and D2 transcripts were clustered. Also 
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significant changes were seen D3 and D4 suggesting that the transcriptional response of many 

genes was up-regulated during drought.  Strong effects were especially observed on D3 and D4. 

 

Gene ontology (GO) classification  

To functionally categorize significantly changed genes in C. colocynthis under drought treatment, 

gene ontology analysis by Blast2go was performed. C. colocynthis unigenes were categorized in 

three main GO categorizes: biological process (2672), molecular function (1368) and cellular 

component (1053). These GO terms were further divided into several sub-categories (Fig. 3). In 

the biological process category, single organism process genes accounted for more than 20% of 

the biological process genes. In the catalytic activity category, more than 40% of genes were 

associated with a molecular function.  In the cellular category, more than 35% of the genes were 

associated with the cellular component.  

 

Validation of Illumina expression patterns by qRT-PCR analysis 

To confirm the reliability of the Illumina sequencing read analysis, 8 candidate genes were 

selected and their expression was compared at D4 and D1 using qRT-PCR. The expression 

patterns resulting from qRT-PCR showed general agreement with those from the Illumina 

sequencing analysis (Table 3).  Discrepancies with respect to ratio of fold changes between 

sequencing and qRT-PCR analysis can be attributed to the essentially different algorithm and 
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sensitivity of the two techniques (Shi et al. 2012).  In the deep-sequencing method the absolute 

expression rather than relative expression as in qRT-PCR analysis is used. Transcriptional qRT-

PCR analyses of 16 genes during the drought treatments are shown in Fig.4.  

Gene Comp5873 is homeobox-leucine zipper protein, with significant upregulation 

during all days of drought in C. colocynthis (Fig. 4). It is known that the expression of several 

homeobox-leucine zipper proteins is correlated to stress. Athb-12, a homeobox-leucine zipper 

domain protein from Arabidopsis, is functionally involved in salt tolerance in yeast (Shin et al. 

2004). Hahb-4, a homeobox-leucine zipper gene is potentially involved in water stress in 

sunflower (Gago et al. 2002). 

Comp862 belongs to the glutathione S-transferase (GST) family, which contains 

heterogeneous, multifunctional dimeric proteins. This gene is highly up-regulated (60x) during 

drought in C. colocynthis. It is thought that GSTs are involved in cellular detoxification (Park 

and Choung 2010). Comp1108 is a member of the NAC gene family and NACs are known to be 

involved in numerous biological processes, including drought stress (Shaminuzzaman and 

Vodkin 2013, Wang et al. 2013).  

Comp10156 is a member of the GID1 (GIBBERELLIN INSENSITIVE DWARF1) 

family in C. colocynthis with high expression under drought conditions. GID1 is a soluble GA 

receptor in rice (Ueguchi-Tanaka et al. 2005). GA-GID1 complex interacts with DELLA proteins 

which are negative regulators of GA signaling pathway (Richards et al. 2001).   
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RD22, a known dehydration responsive gene in Arabidopsis, which is mediated by ABA, 

may have physiological and molecular significance for processes underlying memory functions 

of plants in response to ABA and light pulses (Yamaguchi-Shinozaki et al. 1992; Goh et al. 

2003). One RD22-like protein from soybean can alleviate salinity and osmotic stress (Wang et al. 

2012).  RD22-like genes (Comp 6528) with significant up-regulation (>160x) under drought in C. 

colocynthis were confirmed by qRT-PCR, especially after days of withholding water. 

  NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE1) plays an important role in 

coordinating broader cellular processes in response to stress and bacterial pathogen infection 

(Knepper et al. 2011). The chemical ß-aminobutyric acid, which is known to induce resistance in 

plants, primed the expression of many genes, and NDR1/NHL10 was one of them (Chen et al. 

2013). Comp7317 gene, which is a member of NDR1/NH10 showed significant changes at D2 

only during the early stage of water deficit stress.   

GRAS (for GA Insensitive, REPRESSOR of gal-3 (RGA), SCARECROW (SCR) ) 

transcription factors,  have a major function in plant development and environmental adaption. 

These TFs are particularly implicated in the modulation of plant tolerance to stressors as cold, 

drought, salinity by crosstalks via GA to ABA-dependent and ABA-independent pathways 

(Golldack et al. 2013). For example, SCL7 confers salt and drought tolerance in Arabidopsis (Ma 

et al. 2010).  SCL14 is involved in the detoxification of xenobiotics and possibly endogenous 

harmful metabolites (Fode et al. 2008). Comp20554, which belongs to the GRAS transcription 

factor family, showed significant up-regulation especially on D2.  
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The expression profile of Comp3048, which codes for a methyltransferase, maintained 

high levels during drought stress, especially on D2.  It was found that myo-inositol-O-

methyltransferase (Imt1) responded to low temperature stress in transgenic Arabidopsis (Zhu et 

al. 2012). Trithorax-like H3K4 methyltransferase from barley is drought inducible 

(Papaefthimiou and Tsaftaris, 2012). The methylation of myo-inositol catalyzed by myo-inositol 

methyltransferase (IMT) occurs when plants are under abiotic stress. Over-expressing of IMT 

resulted in improved tolerance to dehydration and salt stress treatment in Arabidopsis. (Ahn et al. 

2011). 

Heat-shock proteins (HSPs) are environmentally induced proteins that enable plants to 

cope with heat and other environmental stresses.  For example, Trichoderma harzianum Hsp70 

transgenic Arabidopsis is abiotic stress tolerant (Montero-Barrientos et al. 2010).  Similarly 

HSP22 was found to be highly upregulated in C. colocynthis roots during drought conditions (Si 

et al. 2009).  Overexpression of GmHsp90S can decrease damage of abiotic stresses in 

Arabidopsis (Xu et al. 2013). Comp14675 belongs to the HSP family, and showed up-regulation 

at later stages from D3 to D4.  

Plant cold shock proteins (CSP) are very conserved among various plant genera (Karlson 

and Imai 2003). The first CSP identified was WCSP1 from winter wheat, which did accumulate 

in response to low-temperature stress (Karlson et al. 2002). Similarly in C. colocynthis CSP 

(Comp13927) was up-regulated during later stages of water deficit.  
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Comp2553, one MA3 domain-containing protein gene, showed significant changes on D3 

and D4 under drought conditions. Loss-of-function of ECIP1 (one MA3 domain-containing 

protein) resulted in enhanced ethylene response but altered salt response (Lei et al. 2011) in 

Arabidopsis. 

Overexpression of plant BL-1 in Arabidopsis resulted in the attenuation of cell death 

induced by biotic stresses (pathogens) and abiotic stresses such as heat, cold, drought, salt and 

chemical-induced oxidative stresses (Ishikawa et al. 2011). BL-1 might function to control the 

level of the “pro-survival and pro-death” signals under multiple stress conditions in plants 

(Watanabe and Lam, 2009). For example, cucumber BAX inhibitor-1 is a conserved cell death 

suppressor induced by cold stress and a negative regulator of programmed cell death (PCD) 

(Chen et al. 2013). Comp372 encodes one BL-1 gene, which was up-regulated by drought at later 

stages.  

Comp8117, which is a homologue of a Populus EST (CU233481.1), is a drought stress 

related gene, up-regulated at D4. Comp10586, which encodes a member of the MYB 

transcription factor family, is up-regulated during the late stage of drought stress. Some MYB 

members have been shown to regulate plant responses to biotic and abiotic stress conditions. For 

example, MdoMYB121 in apple confers abiotic stress tolerance in plants (Cal et al. 2013). 

AtMYB96 acts through the ABA signaling pathway to induce pathogen resistance by promoting 

salicylic acid biosynthesis, and thus regulating stomata movement, drought tolerance and disease 

resistance in Arabidopsis (Seo et al. 2009). MYB88 might function directly or indirectly, as 
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positive regulator of stress-responsive genes (Xie et al. 2010). TaMYB30-B from wheat did 

improve drought stress tolerance in transgenic Arabidopsis (Zhang et al. 2012). 

Another family of transcription factors, the WRKY family,  named for the WRKY 

domain of about 60 amino acids, contains a highly conserved WRKYGQK heptapeptide at its N-

terminus and a zinc-finger-like motif at its C-terminus (Rushton et al. 1995, 2010; Eulgem et al. 

2000). WRKY transcription factors are involved in multiple aspects of plant growth, 

development and stress (Niu et al. 2012). Several TaWRKY in wheat with roles in the abiotic 

stress response acted in an ABA-dependent manner (Zhu et al. 2013). Here, gene 

Comp19751encodes a WRKY gene, which showed up-regulation at D4.  

MADS-box family members function in reproductive development and stress (Arora et al. 

2007). For example, OsMADS25 and OsMADS27 transcripts accumulate in response to osmotic 

stress (Puig et al. 2013). Comp6823, which encodes for a MADS-box gene in C. colocynthis, is 

up-regulated largely at the last stage of drought (D4).  

 

Analysis of the drought stress signaling transcriptome in C. colocynthis  

Drought stress signal transduction consists of ionic and osmotic homeostasis signaling 

pathways, detoxification responses pathways and growth regulation pathways (Zhu et al. 2002). 

Genes detected in C. colocynthis leaves during water deficit are listed in Table 4.  
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In the ion signaling pathway, calcium binding proteins are well known for their 

involvement in both biotic and abiotic stress response pathways (Wan et al. 2012). The calcium 

ion (Ca2+) as a secondary messenger in plants is sensed by calmodulins (CaMs)/CaM-like protein 

(CMLs), the caldineurin B-like proteins (CBLs) and Ca2+-dependent protein kinases (CDPKs). 

CaM binds to CaM-binding proteins (CBPs), which function in different pathways under biotic 

and biotic stress (Ranty et al. 2006).   A total of 10 Ca2+ binding proteins were detected in the C. 

colocynthis transcriptome.  

Protein phosphorylation is a central theme in the cell’s response to stress. The MAP 

kinase cascade in transcript levels consist of a number of protein kinases, such as two-component 

histidine kinase, MAPKKK, MAPKK, MAPK etc.  (Morris et al. 2001). Here we detected 16 

MAP kinases in the C. colocynthis transcriptome.  

Membrane phospholipids can activate several types of phospholipases that cleave 

phospholipids to generate lipid messengers (eg. PA, DAG, IP3), which further regulate stress 

tolerance through modulation of stress-responsive gene expression (Singh et al. 2013).  Several 

members in this pathway, such as phospholipase C (PLC ), diacylglycerol (DAG) and 

phosphotidylinositol 4,5-bisphosphate (PIP2)-like aquaporine were detected (Table 4).  

Detoxification signaling can ameliorate the damage in plants under stresses 

(Triantaphylidès and Havaux 2009), as noted in many other plant species.  A total of 32 

detoxification proteins were detected in the C. colocynthis transcriptome. 
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Molecular mechanisms regulating gene expression in response to drought stress have 

been studied by analyzing the functional transcription factors in ABA-dependent and ABA-

independent pathways (Yamaguchi-Shinozaki and Shinozaki 2006).  Several regulatory proteins 

in ABA-dependent or –independent pathway were detected, among which NAC, MYB/C and 

leucine-rich repeat proteins (LRR). These regulatory proteins can further modulate many 

responsive transcription factors. Several functional proteins such as heat shock protein (HSP) 70, 

HSP22, grpE Like Protein, RBOHD, VIRE2-Interacting protein2 (VIP2), ABA transporter-like 

protein, synaptobrevin-related protein, translocon outer envelope of chloroplast (Toc34-1), beta-

amylase, TIP1 (TIP GROWTH DEFECTIVE 1), RD22 were detected. 

 

Analysis of phytohormone signaling mediators in C. colocynthis  

Phytohormones play important roles in regulating plant responses under biotic and 

abiotic stress. Elaborate phytohormone signaling networks mediate the adaptability of plants to 

different environmental conditions (Kohli et al. 2013).  Many phytohormones  such as ABA,  

salicylic acid (SA), jasmonic acid (JA), auxin, ethylene and gibberellic acid (GA) are being 

studied for their role in abiotic stress responses (Santner et al. 2009; Wolters and Jürgens 2009; 

Klingler et al. 2010; Lopez-Raez et al. 2010; Peleg and Blumwald 2011; Santino et al. 2013).  It 

is known that downstream signaling proteins for auxin, GA, JA, and ABA are subjected to 

ubiquitin-dependent degradation (Santner et al. 2009).  Putative phytohormome signaling genes 

detected in C. colocynthis during the drought response are listed in Table 5. For example, we 
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detected 11 GA receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1), 4  DELLA growth 

inhibitors (DELLAs) and 2 F-box proteins (SLY1) and SNEEZY (SNZ), which play important 

roles in GA signaling pathways ( Davière and Achard 2013).   

The auxin response factor (ARF) family contains transcription factors that bind to auxin-

responsive elements (AREs) in the promoters of primary auxin-responsive genes. Aux/IAAs are 

early auxin-response proteins that bind ARFs, therefore inhibiting ARE-mediated gene 

transcription. Aux/IAAs are involved in ubiquitin-mediated degradation, which is catalyzed by 

SCF E3 ubiquitin ligase. TIR1 can stimulate Aux/IAA proteolysis by binding auxin to this 

protein (Teale et al. 2006). All of the major auxin signaling related transcription factors found in 

the C. colocynthis transcriptome are shown in Table 5.  Similar to the auxin pathway, a novel 

family of transcriptional regulators, the jasmonate ZIM-domain (JAZ) proteins play a target part 

as Aux/IAA. In addition, SOI1 plays a similar role as TIR1, while MYC and R2R3-MYB 

transcription factors work as ARFs (Pérez and Goossens 2013). Several JA signaling pathway 

related genes exist in the C. colocynthis transcriptome.  

Ethylene signaling pathway components were ordered into a hypothetical linear pathway 

based on both genetic (epistasis) analysis and biochemical interactions (Bleecker 2000). Almost 

all of the ethylene signaling homologous members (118 ethylene response factors or ERFs) were 

detected in the C. colocynthis transcriptome. APETALA2/ethylene responsive factor (AP2/ERF) 

transcription factors are well-known for mediating stress responses and development in plants 

(Licausi et al. 2013).  In the SA pathway, NPR1 (non-specific disease resistance 1) is a key 
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regulator in the SA-dependent defense signaling pathways (Boatwright and Pajerowska-Mukhtar 

2013).  Similarly WRKY and TGA play major roles as transcriptional regulators in the SA 

pathway.  We detected 2 NPR1 related proteins, 46 WRKYs and 6 TGAs in C. colocynthis, 

which might function in the C. colocynthis SA pathway.   

Drought triggers the production of the phytohormone ABA, which in turn causes 

stomatal closure and induces expression of stress-related genes (Umezawa et al. 2006). The 

soluble PYR/PYL/RCAR receptors function at the apex of a negative regulatory pathway to 

directly regulate PP2C phosphatases, which in turn directly regulate SnRK2 kinases (Cutler et al. 

2010).  Several of the core transcription factors in the ABA pathway are listed in Table 5.  

 

Cellular metabolism under drought stress in C. colocynthis 

Global gene expression analyses have shown substantial down-regulation of many 

photosynthetic genes under drought not only in Arabidopsis (Harb et al. 2010), but also several 

other species such as indica rice (Gorantla et al. 2007 ; Xu et al., 2012; Damarajua et al., 2011). 

Similarly, many photosystem I and II, chlorophyll a, b binding protein, and oxygen evolving 

enhancer protein genes, showed down-regulation during water deficit stress in C. colocynthis 

(Table 6).  
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Citrulline, a non-protein amino acid intermediate in the arginine biosynthetic pathway, 

has been found to accumulate in leaves of drought tolerant watermelon under water deficit 

conditions (Kawasaki et al., 2000; Kusvuran et al. 2013). Thus several factors related to the 

response of this model drought tolerant species to stress have been identified (Table 7).  

Citrulline metabolic genes (carbamoyl-phosphate synthetase, acetyl glutamate synthase, 

acetylornithine aminotransferase, aminoglutamate decarboxylase, acetylornithine deacetylase, 

and glutamate dehydrogenase) were found to be significantly up-regulated during drought.  

One of the major research goals is to understand the molecular mechanisms underlying 

drought tolerance in plants.  It is clear that drought triggers a wide variety of responses in C. 

colocynthis.  Down regulation of many photosynthetic genes was observed especially at the later 

stages of drought. Up regulation of many transcription factors, stress signaling factors, 

detoxification genes, and genes involved in phytohormone signaling occurred throughout the 

water deficit experiment.  Systematic approaches using genomic analyses should lead to the 

discovery of additional stress factors and provide us with a better understanding of stress 

tolerance mechanisms of plant species.  

 

Materials and Methods  

Plant materials and RNA extraction 



 156  
 

C. colocynthis seedlings were grown in Sunshine Mix #8 under a 16h light /8h dark photoperiod 

at 26Ԩ day, 22Ԩ night temperature.  Seedlings with 2-3 true leaves (2-3 week old) in 50 ml 

containers were exposed to drought by withholding water.  True leaf samples were collected 

each day (day 1-day 4), flash frozen in liquid nitrogen and stored at -80C. RNA was 

subsequently extracted using the TRIzol method (Chomczynski & Sacchi 1987). 

Preparation of cDNA library and sequencing  

Illumina sequencing was performed at the HudsonAlpha Institute of Biotechnology (Hunstsville, 

AL) following manufacturer’s instructions. RNA-Seq reads were first processed to remove 

rRNA sequence contamination. First strand cDNA was synthesized with reverse transcriptase 

and random primers using the small fragment RNAs as template. Second strand cDNA was then 

synthesized followed by phosphorylation by T4 DNA polymerase. The cDNA fragments were 3’ 

adenylated and ligated to the Illumina’s paired-end adapters. The enrichment of cDNA templates 

were conducted following fifteen cycles of PCR amplification. In total, over 20*4Mp were 

sequenced for mapping assembly and differential expression analysis. Raw sequence data are 

available for download at NCBI Sequence Read Archive under the accession (currently awaiting 

SRP# assignment). 

Assembly 

Raw sequencing data were filtered using the CLC Genome Workbench (0.05). Paired –end 

sequences from the four samples were used to construct the de novo C. colocynthis transcriptome 
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assembly with default parameters.  Assembly reads were also assembled against the watermelon 

( C. lanatus) genome sequences, which were downloaded from the Cucurbit Database 

(http://www.icugi.org/cgi-bin/ICuGI/index.cgi). Reads were filtered and assembled using CLC 

workbench. The parameters used were as follows: 2 points of mismatch cost, 2 points of 

insertion cost, 2 points of deletion cost, 0.5 as length fraction, 0.95 as similarity fraction. After 

the de novo assembly and watermelon mapping assembly, we used Trinity to assemble all the 

contigs with the default parameters.  

 

Identification of full length cDNAs 

Two methods were used to identify full length cDNAs. First, Blastx searching (E value:1e-10) 

was used to detect the matched cDNAs in SwissProt database; second, ESTScan 2.0 was used to 

identify the translated sequences.  Sequences with either start codon (ATG) and stop codon 

(TAG/TGA/TAA), or sequences with start codon (ATG) and homologue to a known protein with 

≥80% similarity, were chosen as full length cDNAs. 

 

Expression Analysis with Custom Transcriptome Reference 

Pair-end sequencing reads of the four libraries were filtered using CLC Genome Workbench 

(0.05) before mapping to the references sequences from assembled cDNAs. First, read counts of 

each unigene were converted to reads per million (RPM). Secondly, statistical analysis using 
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Kal’s test provided in CLC Genome Workbench (p<0.05 and fold change ≥1.5) was conducted. 

These transcripts were annotated against the reference sequences. 

 

Gene Ontology Analysis  

The functional annotation software Blast2go (http://www.blast2go.com/b2ghome) was used to 

conduct gene ontology analysis of C. colocynthis genes in this study.  The databases used were 

Swissprot and NCBI. Blast E-value was set as 1.0e-3. The major GO analysis was determined by 

BLAST, mapping, and annotation. Results were presented as a bar chart showing the percent of 

genes belonging to each group. 

 

qRT-PCR Analysis  

For cDNA synthesis, 500ng of the total RNA for each sample (the same RNA was used for 

RNA-seq analysis) was used in reverse transcription with ProtoScript First Strand cDNA 

synthesis kit from BioLabs (NEB #E6550S). qRT-PCR was performed with SYBR-Green 

Supermix from Bio-Rad in an Eppendorf Mastercycler ep realplex with gene specific primers 

(Table 8). Each reaction contains 10μl of SYBR-Green supermix, 1μl of cDNA template, 1μl 

forward primer (4μm), 1μl reverse primer (4μm), 7μl ddH2O2. The qRT-PCR program consists 

of one cycle at 95Ԩ for 15sec, followed 40 cycles of 15sec at 95Ԩ, 15 sec at 55Ԩ, and 30sec at 
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72Ԩ. The relative expression data was compared with actin from C. colocynthis. All experiments 

were replicated three times.  
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Table 5. 1. Transcriptome read statistics 

 

Time point 1d 2d 3d 4d 

 

Paired 

ends reads 

 

Average  

Before 

 trim 

After  

trim 

Before 

trim 

After 

 trim 

Before 

trim 

After  

trim 

Before 

trim 

After 

 trim 

21,194,778 20,339,776 23,566,720 22,626,577 23,435,694 22,531,826 27,388,920 26,288,785 

21,379,596 

21,287,187 

20,537,526 

20,438,651 

23,774,222 

23,670,471 

22,846,047 

22,736,312 

23,626,206 

23,530,950 

22,738,550 

22,635,188 

27,737,584 

27,563,252 

26,649,390 

26,469,088 

%trimmed 96.15 96.11 96.19 96.03 

 

Table 5. 2. Summary details of sequences produced after assembly  

 Length/Number 

N50 1870bp 

Average 

Min 

Max 

1350bp 

201bp 

1956bp 

Total contigs 

Full  length cDNAs 

20581 

5038 
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Table 5. 3. Validation of the RNA-Seq expression profiles of selected C. colocynthis genes. 

Gene ID  Hit ID Annotations Log2FC*-RNA 

seq 

Log2 FC-qRT-PCR 

Comp14675 Cla000300 Heat shock protein 7.60 8.37 

Comp13927 Cla001351 Cold shock protein 3.41 4.8 

Comp2553 Cla002576 MA3 domain-containing protein 2.15 5.33 

Comp372 Cla002814 Bax inhibitor-1 1.90 3.56 

Comp8117 Cla012143 Drought stress related gene 2.87 4.31 

Comp10586 Cla013687 MYB 4.09 5.86 

Comp19751 Cla022362 WRKY 6.27 6.00 

Comp6823 Cla022169 MADS 2.07 3.67 

Transcripts identified as D4 significantly changed genes were compared to transcripts at  D1. The table shows the 

log2 fold change calculated from D4 expression vs D1 expression for RNAseq and qRT-PCR analysis. FC=fold 

change. Gene ID is gene named in C. colocynthis, and Hit ID is blastx of gene with watermelon ID number.  
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Table 5. 4. List and  number of several drought stress signaling pathway members detected 
in the Citrullus colocynthis transcriptome.  

 

Ion Signaling  NO. 

                  Calcium Binding Protein  10 

Protein Kinase Pathways For Osmotic Signaling   

                 MAP kinase 16 

Osmotic Stress-Activated Phospholipid Signaling   

              PLC-like Phosphodiesterase 9 

              DAG 8 

              PIP2-like Aquaporin  5 

Detoxification Signaling   

            Heavy Metal Transport/Detoxification Protein 32 

Transcription Regulators  

Regulatory Proteins   

             MYB 131 

             MYC 43 

             NAC 42 

             Leucine-rich Repeat Proteins 150 

Functional Proteins   

            Heat Shock Protein 70 70 

            Heat Shock Protein 22 1 

           grpE Like Protein  4 

           RBOHD (respiratory burst oxidase) 2 

           VIP2(VIRE2-INTERACTING PROTEIN2) 1 

           ABATransporter-like Protein 100 

           Synaptobrevin-related protein 5 

           Toc34-1 (Translocon outer envelope of chloroplast) 1 

           Beta-amylase 9 

           Puruvate Kinase  11 

           TIP1 (TIP GROWTH DEFECTIVE 1) 1 

           RD22 2 

 



 176  
 

 

Table 5. 5.  Overview of Citrullus colocynthis genes involved in phytohormone signaling. 

 

Function  Ethylene Pathway Major Members Number 
Ethylene-insensitive protein  EIN  5 
Ethylene receptors ETR  3 
Constitutive triple response proteins CTR 1 
EIN3-like (EIL) transcription factors EIL 1 
Ethylene response factors ERF 118 
Function  Auxin Pathway Major Members Number 
Receptors/F-box proteins TIR 1 
Ubiquitin ligase component SCF 5 
Target proteins Aux/IAA 30 
Auxin response factors ARF 30 
Auxin transport protein PIN 6 
Function JA Pathway Major Members Number 
Receptor/F-box proteins COI1 1 
Target proteins JAZ 1 
JAZ interacted proteins NINJA 4 
Activator transcription factors R2R3-myb transcription factor 3 
Activator transcription factors MYC2,3,4 9 
Function SA Pathway Major Members Number 
Regulatory proteins NPR1 2 
SA mainly induced genes WRKY 46 
SA mainly induced genes TGA2,3,5,6 6 
Function  ABA Pathway Major Members Number 
ABA receptors PYR/PYL/RCAR 19 
PYR/PYL/RCAR interacted proteins PP2C 3 
Serine/threonine-protein kinase  SnRK2 1 
SnRK2 target ABI5 1 
Function GA Pathway Major Members Number 
GA receptors GID1A/B/C/-like 11 
E3 ubiquitin ligase SLY1/SNZ 2 
DELLA proteins GA1, RGA, RGL1, 2 ,3 4 
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Table 5.6. Photosynthesis-related and chlorophyll-related gene expression profiles. 

D1RPM-D4RMP are the gene expression reads per millions for each day. ↓ indicates the down-regulation 

of each gene on each time point.  

 

Gene ID  Hit ID Annotations D1RPM D2RPM D3RPM D4RPM 

Comp808 Cla002545 Photosystem I psaA 1180 1066.9 513.6↓ 418.8↓ 

Comp2604 Cla021635 Photosystem I subunit II 309 319 114↓ 22.8↓ 

Comp9446 Cla002576 Photosystem I subunit III 470 428↓ 97↓ 39.1↓ 

Comp4444 Cla012670 Photosystem I subunit IV 274 219↓ 70.4↓ 8.3↓ 

Comp4514 Cla007871 Photosystem I subunit IV A 104.9 98.1↓ 41.2↓ 9.9↓ 

Comp2126 Cla004483 Photosystem I subunit V 292.9 281.8↓ 95.6↓ 23.5↓ 

Comp4727 Cla007940 Photosystem I subunit XI 257.2 229.5↓ 61.4↓ 9.6↓ 

Comp7482 Cla009814 Photosystem I subunit X 225.3 194.1↓ 60.3↓ 12.3↓ 

Comp5307 Cla011174 Photosystem I subunit X 199 176↓ 44↓ 4.6↓ 

Comp1999 Cla005420 Photosystem II polypeptide 225 194.1↓ 60.3↓ 12.3↓ 

Comp2011 Cla008554 Photosystem II 5 kDa protein 138.9 118.7↓ 45.4↓ 2.5↓ 

comp7744 Cla013942 Photosystem II Protein 495.8 515.8 331.4↓ 116.7↓ 

Comp8614 Cla014815 Photosystem II reaction center W 

protein 

310.2 265.5 117.3↓ 28↓ 

Comp2016 Cla022723 Photosystem II core complex 

proteins psbY 

78 76.3↓ 24.7↓ 7.7↓ 

Comp12757 Cla011748 Chlorophyll a-b binding protein 13 290.5 246.2↓ 3.1↓ 0.3↓ 

Comp6677 Cla013483 Chlorophyll a-b binding protein 3C 130.6 89.5↓ 7.9↓ 3.8↓ 
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Comp1476 Cla013826 Chlorophyll a-b binding protein 671.4 583.9↓ 42.9↓ 8.8↓ 

Comp7589 Cla015680 Chlorophyll a-b binding protein 37 737.2 489.3↓ 16.6↓ 10.5↓ 

Comp2286 Cla017325 Chlorophyll a-b binding protein 3C 577.4 230.8↓ 4.1↓ 1↓ 

Comp544 Cla017983 Chlorophyll a-b binding protein 6 235.2 219.1↓ 72.3↓ 48.2↓ 

Comp3797 Cla018117 Chlorophyll a-b binding protein 6 632.9 502.3↓ 154.8↓ 38.3↓ 

Comp15099 Cla019595 Chlorophyll a-b binding protein 21 228.8 126.3↓ 0.1↓ 1 

Comp1922 Cla001764 Chlorophyll a-b binding protein 8 609.1 470↓ 241.6↓ 58.6↓ 

Comp1584 Cla012368 Chlorophyll a-b binding protein 8 1082.2 884.8↓ 111.1↓ 281.1↓ 

Comp940 Cla009752 Chlorophyll a-b binding protein 21 652.6 514.8↓ 43.3↓ 3.6↓ 

Comp13569 Cla009753 Chlorophyll a-b binding protein 21 827.5 676.3↓ 68.1↓ 5.8↓ 

Comp4958 Cla022963 Chlorophyll a-b binding protein 7 538.2 404.7↓ 110.1↓ 18.8↓ 

Comp4043 Cla001790 Oxygen-evolving enhancer protein 1 

of photosystem II 

1088.6 795.9↓ 334.6↓ 82.8↓ 

Comp3077 Cla005429 Oxygen-evolving enhancer protein 

2, chloroplastic 

604.2 531.1↓ 395.2↓ 122.6↓ 

Comp5901 Cla019423 Oxygen-evolving enhancer protein 3 545.6 414.8↓ 86.7↓ 17↓ 
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Comp5521 Cla020781 Orinithine carbamoyltransfrase  25.2 19.1↓ 52.5↑ 32.5 

Comp6244 Cla015337 Acetylornithine aminotransferase 39 45.3↑ 127↑ 147.6↑ 

Comp6587 Cla008748 Glutamine amidotransferase 25.6 19.7 12.4 13.8 

Comp15261 Cla017928 Glutamate 5-kinase 4.3 5.7 1.7 1.6 

Comp3961 Cla019569 Orinithine-oxo-acid transaminase 19.3 30.5 28.1 17.1 

Comp7707 Cla023055 Argininosuccinate lyase 5.6 6.2 3.7 5.3 

Comp3468 Cla003592 Argininosuccinate lyase 22.9 26.8 35.4 25.6 

Comp776_seq2 Cla002611 Arginosuccinate synthase 12.5 25.4 6 7.7 

Comp776_seq1 Cla002609 Arginosuccinate synthase 18.2 18.9 2.4↓ 2↓ 

Comp1556 Cla022915 Carbamoyl-phosphate synthetase 115.4 103.2 53.4↓ 42↓ 
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Table 5. 8. qRT-PCR primer information 

Primer Name Sequence (5' to 3') length 

Comp5873-F TAAGCCGGAAATTGGTGATCAGTT  24 

Comp5873-R TTCTTCTATTGCTGCCTCTTCCCC 24 

Comp862-F AATGCTGCTTTGTTGCCTTCTGATC 25 

Comp862-R CCTCCTTCTTTCCTGTCTCATGCTCT 26 

Comp1108-F TCTTCGCGTATCCAAAAACAACATTA 26 

Comp1108-R CCAGCCAGACTCGCCCAATC 20 

Comp10156-F GAAGCCTCTAAGCACGTCGAAAGTT  25 

Comp10156-R ACCGAGACTACAACCGCCTTACATAC 26 

Comp6528-F ACGGAAGTCGAGAAAGATACGGATT 25 

Comp6528-R GCGTATGTTGGGTGAAATGGCA 22 

Comp7317-F TCCTCCTCACCATCCTCATCGTCT  24 

Comp7317-R GGTTGCGAGCGGAGACAGTGAG  22 

Comp20554-F CCCCCCGATTCTGCCGAC 18 

Comp20554-R ACCGCCTACTAAACTATCCATCCACTC 27 

Comp3048-F CCTTTTACCAGAGACTTTTCCCCAAT 26 

Comp3048-R CGTCCCTCTGTTCACCGGTTTC 22 

Comp14675-F TCAAACCCAGACCCCTCAAGAAAAC 25 

Comp14675-R GCGCTTGGATTGACATGCACC 21 

Comp13927-F ATCCCTTCATCCCCATTTTCCCTCT 25 

Comp13927-R CCAAAGCCGGGTATGTCGTCAAATC 25 

Comp2553-F CCCGAATTAATACGAAGCCTAGAAGA  26 

Comp2553-R CACTGATGCCATTTCTTTTTCTCTGTT 27 
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Comp372-F CAGCGGGTTTATCTCACTCTTGGTT  25 

Comp372-R TTCAAAAAGAGCAGCCCCTAATAAAAT 27 

Comp8117-F AAGGAATTTGGGGATGGTTACAGAG 25 

Comp8117-R GGTTCTCTCCTTCCTTCCATTTCCA  25 

Comp10586-F AGAAAGGAACGCCATGGACTGAAGA 25 

Comp10586-R TTCTGGGCATGACTGGCTACCTGAG  25 

Comp19751-F AATGGAGGAAATATGGTCAAAAGGTG  26 

Comp19751-R ACCTTTCTCTTCACCGGACAGCTAG  25 

Comp6823-F GCTCAAGCATCAGTTCCACAAAATA 25 

Comp6823-R TGCTTCACAACGACATAACCTTCTT  25 
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Figure 5. 1. Principal component analysis of the leaf transcriptome in four days. 
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Figure 5. 2. Heat map depicting changes in transcript patterns under drought treatment.  

2545 genes with clusters of transcripts across four different day (D1-D4) samples under drought 

stress.  
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Figure 5. 4. qRT-PCR analysis of 16 selected genes expression under drought treatment.  

The y-axis is the relative expression compared with Day 1 expression of each gene. The x-axis shows 

days of water-withholding time points.  

 

 

 

 

 

 

 

 

 

 


